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ABSTRACT

Arctic permafrost regions are critical for anthropogenic climate change. Permafrost

thaw and its subsequent greenhouse gas emissions profoundly influence various soci-

etal, ecological, hydrological, and biogeochemical processes in the Arctic and stand

as one of the most significant and uncertain positive feedback loops in the context of

climate change. To address these critical questions, climate scientists have developed

Land Surface Models (LSMs) that encompass a multitude of physical soil processes.

This thesis is committed to advancing our understanding and refining precise repre-

sentations of permafrost dynamics within LSMs, with a specific focus on the accurate

modeling of heat fluxes, an essential component for simulating permafrost physics.

The first research question overviews fundamental model prerequisites for the repre-

sentation of permafrost soils within land surface modeling. It includes a first-of-its-kind

comparison between LSMs that participated in CMIP6 to reveal their differences and

shortcomings in key permafrost physics parameters. Overall, each of these LSMs rep-

resents a unique approach to simulating soil processes and their interactions with the

climate system. Choosing the most appropriate model for a particular application de-

pends on factors such as the spatial and temporal scale of the simulation, the specific

research question, and available computational resources.

The second research question evaluates the performance of the state-of-the-art Com-

munity Land Model (CLM5) in simulating Arctic permafrost regions. Our approach

overcomes traditional evaluation limitations by individually addressing depth, season-

ality, and regional variations, providing a comprehensive assessment of permafrost and

soil temperature dynamics. I compare CLM5’s results with three extensive datasets:

(1) soil temperatures from 295 borehole stations, (2) active layer thickness (ALT) from

the Circumpolar Active Layer Monitoring Network (CALM), and (3) soil temperatures,

ALT, and permafrost extent from the ESA Climate Change Initiative (ESA-CCI). The

results show that CLM5 aligns well with ESA-CCI and CALM for permafrost extent

and ALT but reveals a significant regional cold temperature bias, notably over Siberia.

These results echo a persistent challenge identified in numerous studies: the existence

of a systematic ”cold bias” in soil temperature over permafrost regions. To address this

challenge, the following research questions propose dual sensitivity experiments.

The third research question represents the first study to apply a Plant Functional
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Type (PFT)-based approach to derive soil texture and soil organic matter (SOM), de-

parting from the conventional use of coarse-resolution global data in LSMs. This novel

method results in a more uniform distribution of soil organic matter density (OMD)

across the domain, characterized by reduced OMD values in most regions. However,

changes in soil texture exhibit a more intricate spatial pattern. Comparing the results

to observations reveals a significant reduction in the cold bias observed in the control

run. This method shows noticeable improvements in permafrost extent, but at the cost

of an overestimation in ALT. These findings emphasize the model’s high sensitivity to

variations in soil texture and SOM content, highlighting the crucial role of soil com-

position in governing heat transfer processes and shaping the seasonal variation of soil

temperatures in permafrost regions.

Expanding upon a site experiment conducted in Trail Valley Creek by Dutch et al.

(2022), the fourth research question extends the application of the snow scheme pro-

posed by Sturm et al. (1997) to cover the entire Arctic domain. By employing a snow

thermal conductivity scheme better suited to the snow density profile observed over

permafrost regions, this thesis seeks to assess its influence on simulated soil tempera-

tures. Comparing this method to observational datasets reveals a significant reduction

in the cold bias that was present in the control run. In most regions, the Sturm run ex-

hibits a substantial decrease in the cold bias. However, there is a distinctive overshoot

with a warm bias observed in mountainous areas. The Sturm experiment effectively ad-

dressed the overestimation of permafrost extent in the control run, albeit resulting in a

substantial reduction in permafrost extent over mountainous areas. ALT results remain

relatively consistent compared to the control run. These outcomes align with our initial

hypothesis, which anticipated that the reduced snow insulation in the Sturm run would

lead to higher winter soil temperatures and a more accurate representation of permafrost

physics.

In summary, this thesis demonstrates significant advancements in understanding

permafrost dynamics and its integration into LSMs. It has meticulously unraveled the

intricacies involved in the interplay between heat transfer, soil properties, and snow

dynamics in permafrost regions. These insights offer novel perspectives on model rep-

resentation and performance.
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CHAPTER 1

Motivations

1.1 Introduction

Permafrost is a widespread feature of the Earth’s northern high-latitude regions, under-
lying about 9 to 14% of the exposed Earth land surface (Gruber, 2012). It is commonly
defined as ground that remains at or below 0°C for at least two consecutive years and
contains soil, sediment, and/or rock with varying amounts of ice (Osterkamp and Ro-
manovsky, 1999). Permafrost is a thermal phenomenon that occurs in regions where
air temperatures are consistently low enough to keep the ground frozen below a near-
surface layer that thaws seasonally, known as the active layer.

In recent years, there has been increasing attention on estimates of carbon stored
in soils, particularly in permafrost regions. Studies estimate that permafrost contains
between 677 and 949 Pg of soil organic carbon (SOC) in the upper few meters of soil,
which is greater than the total amount found in the atmosphere (Palmtag et al., 2022).
The accumulation of such high carbon content in permafrost soils can be attributed to
plant remains and other organic material that have been buried and frozen since the last
ice age, and have been inactive for centuries or even millennia (Schaefer et al., 2014).

The release of carbon from this substantial pool, triggered by warming-induced
thawing and the acceleration of microbial decomposition, represents a pivotal positive
feedback loop contributing to climate change (Schuur et al., 2015). Arctic Amplifica-
tion, which represents warming rates in Arctic regions that are nearly four times higher
than the global average (Rantanen et al., 2022), exacerbates This process. Climate mod-
els indicate that this trend will persist, projecting warming rates between 2.4 to 10.0°C
by 2100, relative to the 1995-2014 period and depending on the specific Shared Socio-
Economic Pathways considered (IPCC, 2021). Despite this, the Arctic remains one of
Earth’s least investigated regions (Miner et al., 2022), making predictions challenging.

These significant temperature increases would lead to substantial portions of per-
mafrost areas surpassing the thawing threshold. Model projections indicate a signif-
icant 20% reduction in the near-surface permafrost area of the Northern Hemisphere,
declining from approximately 15 million square kilometers at the present to 12 million
square kilometers by 2040, with this trend remaining relatively consistent across dif-
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ferent Representative Concentration Pathway (RCP) scenarios (Overland et al., 2019).
Specifically, under RCP 4.5, there is a substantial 50% reduction in permafrost area
relative to the present, expected by 2080. For this reason, permafrost areas over high
northern latitudes are critical for anthropogenic climate change and constitute a central
focus within climate science.

1.1.1 History and classification of permafrost

The term ”permafrost” was first coined by Siemon W. Muller in 1945 to describe the
permanently frozen ground in Alaska (Muller, 1945). However, observations of frozen
ground date back to the late 19th century, when the Russian scientist P. E. Kropotkin first
documented the presence of frozen soils in Siberia (Romanovsky et al., 2010). Since
then, permafrost has been extensively studied by scientists from a range of disciplines
including geology, geography, hydrology, and climatology.

Permafrost covers extensive areas in the Arctic and subarctic regions, where the
mean annual air temperature is below freezing. The depth of permafrost varies from a
few meters to several hundred meters, depending on the local climate and geological
conditions (Bowden, 2010). The permafrost spatial extent, the actual surface area un-
derlain by permafrost, in the Arctic is estimated to be 13-18×106km2 or 9–14 % of the
exposed land surface (Gruber, 2012).

Permafrost is commonly categorized into types based on factors such as its extent,
distribution, and soil ice content. However, there is currently no universally agreed-
upon definition of these classifications within the scientific community. Nonetheless,
there is broad consensus on the differentiation between two main categories: ”con-
tinuous” and ”discontinuous” permafrost zones. The term ”continuous” refers to re-
gions where permafrost covers more than 90% of the land surface, while ”discontinu-
ous” zones indicate areas where permafrost covers less than 90% of the land surface.
Other commonly used classifications include ”sporadic” permafrost, regions where per-
mafrost covers between 10% and 50% of the land surface, and ”isolated” permafrost,
areas where permafrost covers less than 10% of the land surface (Gruber, 2012).

1.1.2 Active Layer Thickness

Active Layer Thickness (ALT) refers to the depth of the soil layer that undergoes sea-
sonal freeze-thaw cycles above the permafrost. Fundamentally, ALT is determined by
the intersection between the Maximum Annual Ground Temperature (MaxAGT) and
the 0°C isotherm, as illustrated in Figure A.2 in Appendix A. It is an important indi-
cator to predict permafrost thaw as it responds rapidly to changes in temperature and
precipitation. Changes in ALT have been observed in many Arctic permafrost regions
due to climate warming, with increasing ALT linked to permafrost thaw (Lawrence and
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Slater, 2005). In addition, an increase in ALT can lead to changes in ecological (Lo-
ranty et al., 2018; Yang et al., 2010) and hydrological processes in permafrost regions,
with a thicker active layer resulting in increased water infiltration and runoff (Scherler
et al., 2010).

1.2 Importance of permafrost for northern social-ecological systems (SES)

Permafrost is a complex system that exerts a profound influence on various ecological,
hydrological, biogeochemical processes, ultimately impacting societies in Arctic and
Subarctic regions. This interconnected relationship is commonly referred to as social-
ecological systems (SES) (Schuur and Mack, 2018).

According to Ramage et al. (2021), approximately 3.3 million people residing in
Arctic regions will experience the effects of thawing permafrost, leading to a wide
array of SES changes affecting their surrounding communities. For instance, subsi-
dence resulting from thawing permafrost can damage critical infrastructure, including
roads, buildings, and pipelines (Jorgenson et al., 2001). Such impacts are expected
to significantly escalate from the current decade to the middle of the century (Over-
land et al., 2019). Furthermore, permafrost thaw can disrupt the water balance within
regions, leading to soil erosion and alterations in surface water and groundwater avail-
ability (Hinzman et al., 2013). For example, in lowland ecosystems, the loss of ice-rich
permafrost has caused a transition from terrestrial to aquatic ecosystems or wetlands,
whereas in upland ecosystems, permafrost thaw replaced water-dependent plant species
with shrubs (Yang et al., 2010). Permafrost degradation also has the potential to signifi-
cantly alter soil moisture content, which, in turn, affects the availability of soil nutrients
and disturbs species composition (Yang et al., 2010).

These diverse permafrost-driven hazards will ultimately impact society, causing
damage to equipment, altering food webs, affecting access to traditional harvest areas,
and raising safety concerns for land-users (Walker et al., 2006; Gibson et al., 2021).

1.3 Importance of permafrost for the global climate and carbon cycle

While the local and regional consequences of permafrost thaw are undeniably signif-
icant, the most pressing concerns from scientists lie in the broader context of global
climate change and the carbon cycle (Biskaborn et al., 2019; Overland et al., 2019).

Prior research, including Humphrey et al. (2021) on soil moisture-atmosphere feed-
back and Thackeray and Fletcher (2016) on snow albedo temperature feedback, has
highlighted the existence of feedback mechanisms between the land surface and the at-
mosphere. These feedback mechanisms emphasize the complex interplay between the
land surface and the atmosphere, playing a vital role in shaping global variations in
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modeled land carbon uptake and energy balance.
As the active layer thickens, previously frozen organic matter is exposed to thaw-

ing and begins to decompose, releasing greenhouse gases such as carbon dioxide and
methane, potent greenhouse gases (Schuur et al., 2008). Increases in ALT and per-
mafrost thaw accelerate the process of decomposition. Aerobic decomposition is the
dominant process in the upper part of the active layer where the soil is well-drained
and oxygen is available. Anaerobic decomposition occurs in waterlogged and oxygen-
depleted soils in the lower part of the active layer, and can result in the release of
methane (Paquin and Sushama, 2015). Changes in ALT can also alter the distribution
and activity of soil microorganisms, leading to changes in nutrient cycling and biogeo-
chemical processes (Mondav et al., 2017).

As temperatures continue to rise, more permafrost will thaw, leading to increased
decomposition and greenhouse gases released. These emissions amplify the green-
house effect, trapping more heat in the atmosphere and further intensifying tempera-
ture increases and permafrost degradation. This cycle creates a positive feedback loop,
called ”permafrost carbon feedback,” that amplifies the rate of climate change and has-
tens global heating (Schaefer et al., 2014). Crossing this threshold can occur in either
direction, meaning permafrost can recover if temperatures decrease. However, the sub-
stantial carbon reserves in permafrost have accumulated over millennia. Consequently,
emissions from permafrost into the atmosphere over short periods, like decades, would
be irreversible within the same time frame (Schuur et al., 2015; Overland et al., 2019).
Hence, there is a pressing need to accurately determine the extent of permafrost thaw
and the consequent release of sequestered soil carbon into the atmosphere.

1.4 History of permafrost representation in climate models

Climate scientists have developed computational tools, known as models, which inte-
grate a wide array of geophysical processes. The representation of permafrost in climate
models has evolved significantly over time. In the early stages of climate modeling, per-
mafrost was often not explicitly included. Models during this era primarily focused on
broader climate patterns and lacked detailed representations of land surface processes.
Initially, Land Surface Models (LSMs), also called land surface scheme, served as lower
boundary conditions for atmospheric models. As these schemes were further devel-
oped, more intricate models emerged, encompassing a multitude of processes (Fisher
and Koven, 2020). One of the earliest attempts to explicitly depict permafrost physics
in a large-scale model dates back to the 1970s when Goodrich (1976) employed a basic
energy balance approach with a simple soil scheme.

Towards the end of the 20th century, there was a growing concern regarding the
impact of human-induced climate change, which led to an increased focus on studying
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permafrost soils and their relationship with the climate system. IPCC reports recog-
nized the significance of permafrost and its potential responses to anthropogenic warm-
ing. The first IPCC (1990) report briefly mentioned that higher temperatures ”could”
increase the emissions of methane in permafrost. The second IPCC (1996) report fea-
tured a section on permafrost, discussing its observed behaviour, potential reactions to
human-induced warming, and the concern of a permafrost carbon feedback, thereby
emphasizing the potential implications of permafrost thawing on carbon release into
the atmosphere. This lead to a growing recognition of the need to include permafrost
in LSMs as part of Earth System Models (ESMs). LSMs simulate the interactions be-
tween the land surface and the atmosphere, making them essential for understanding
permafrost dynamics (Fisher and Koven, 2020).

In the mid-1990’s, the Community Land Model (CLM) made a significant advance-
ment in including permafrost into ESMs (Bonan, 1998). The CLM is a LSM that sim-
ulates the exchanges of energy, water, and carbon between the land surface and the at-
mosphere. The model includes a sophisticated representation of thermal ground regime
that simulates heat diffusion and soil water transfer in a six-layer soil column. The in-
clusion of net land-atmosphere CO2 exchange is an important component of the land
model, enabling its use in studying the global carbon cycle. Other LSMs that include
ground thermal processes have also been developed in parallel, such as the Interaction
Soil-Biosphere-Atmosphere model (ISBA, Noilhan and Planton 1989), the Canadian
Land Surface Scheme (CLASS, Verseghy 1991), and the Tiled ECMWF Scheme for
Surface Exchanges over Land model (TESSEL, Viterbo and Beljaars 1995). These
models have been used to study the response of permafrost to climate change and the
impacts of permafrost thaw on the carbon cycle.

In the late 90s and early 2000s, as the computational capacity and resolution of nu-
merical modelling systems increased, LSMs started to include more complex processes
relevant to Arctic ecosystems such as such as river routing (Lohmann et al., 1996),
more advanced land cover classifications (Oleson and Bonan, 2000), the nitrogen cycle
(Kucharik et al., 2000), multi-layer snowpack (Bonan et al., 2002b), vertical hetero-
geneity in soil texture (Bonan et al., 2002b), and soil organic matter (Lawrence et al.,
2008; Rinke et al., 2008). These advancements marked a significant step forward in
our ability to simulate and understand the intricate feedbacks between the Arctic envi-
ronment and the global climate system, facilitating more accurate assessments of future
climate change scenarios in permafrost regions.

1.5 Recent advances in permafrost representation in climate models

In recent years, significant progress has been made in incorporating permafrost pro-
cesses into LSMs. Chapter 2 delves into the advances made in modeling techniques,
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with a particular focus on the representation of processes in Arctic regions.
However, numerous models initially designed for unfrozen soil applications have

been extended for use in frozen soils. As highlighted by He et al. (2021), several
of these models were not adequately validated with Arctic-conditions measurements.
Their simulation accuracy remains insufficiently demonstrated (Hu et al., 2017).

Furthermore, the level of sophistication in representing these processes varies con-
siderably among models. To assess the current state, Burke et al. (2020) conducted
an intercomparison project that evaluated the representation of permafrost dynamics
in both the Coupled Model Intercomparison Project 6 (CMIP6) and CMIP5 models.
Their findings indicate an overall improvement in the representation of permafrost since
CMIP5, although further enhancements are still necessary. Notably, certain models
within the CMIP6 ensemble demonstrated improved snow insulation, resulting in re-
duced variability in permafrost extent compared to the CMIP5 ensemble. However, the
ability of the models to accurately simulate summer thaw depths shows only limited
improvement between the ensembles.

1.5.1 Systematic cold bias in LSMs

Accurate representation of heat fluxes in LSMs is paramount for understanding and
simulating permafrost dynamics. A persistent challenge identified in numerous studies
is the existence of a systematic ’cold bias’ in soil temperature over Arctic permafrost
regions. This bias has been consistently observed across various LSMs, as documented
in a substantial body of research, including JULES (Dankers et al., 2011; Burke et al.,
2013), JSBACH (Ekici et al., 2014), CLASS (Paquin and Sushama, 2015; Oogathoo
et al., 2022), ISBA (Decharme et al., 2016; Barrere et al., 2017), Noah-MP (Li et al.,
2020), and CLM5 (Dutch et al., 2022).

It is worth noting that some studies evaluating LSMs have reported the absence of
a cold bias (Chadburn et al., 2015, 2017). However, these studies rely on sparse in-situ
measurements that may not fully represent the entire Arctic domain. An exception is the
LSM ORCHIDEE, which suggests a distinctive warm bias (Guimberteau et al., 2018).

Furthermore, evaluation studies of LSMs in the Arctic region typically concentrate
on annual averages, neglecting the seasonality represented by these models. A limited
number of studies have explored this aspect and have generally revealed that the dis-
crepancy between simulated and observed soil temperatures becomes more pronounced
as the freezing period progresses (Dutch et al., 2022). Similarly, Yang et al. (2022)
also observed a cold bias over the permafrost regions on the Qinghai–Tibet Plateau and
found this bias tends to amplify with increasing depth.

The cold bias has received minimal attention in the literature, despite indicating
a significant underestimation of soil temperatures in LSM simulations. This under-
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estimation is primarily because summer temperatures and MaxAGT exert a dominant
influence on ALT and, thus, permafrost thaw. However, it is essential to recognize that
winter temperatures leave a ”memory effect” that carries into the subsequent summer.
Neglecting any extra-cold transfer of temperature from winter to summer could lead
to warmer-than-predicted summer temperatures, an increase in MaxAGT, and, conse-
quently, an underestimation of the maximum permafrost thaw. Furthermore, the winter
cold bias is likely to trigger interconnected effects within soil, snow, vegetation, and
atmosphere physics. For instance, Oogathoo et al. (2022) observed a similar cold bias
with the CLASS model and pointed out that it would likely impact various processes,
including transpiration. This has a direct feedback on the climate system, particularly
affecting precipitation and air temperature. The inaccurate projection of precipitation
and air temperature by climate models will, in turn, affect the timing of snowmelt onset,
soil temperature, available soil liquid water, and eventually the length of the growing
season. Similarly, recent developments in the next version of CLM5 have resulted in
an unexpected occurrence of dead vegetation in the Arctic due to extreme cold tem-
peratures represented by the model (https://github.com/NCAR/LMWG_dev/
discussions/3). The complex interplay among these variables highlights the need
for a comprehensive approach to soil temperature modeling that provides a more holis-
tic view of permafrost behavior within LSMs.

1.6 Research questions

The primary objective of this thesis is to offer insights into enhancing the accuracy and
representation of seasonal, depth and regional variations within LSMs. It also seeks
to address and improve our comprehension of the systematic cold bias observed in the
majority of LSMs across permafrost regions. This endeavor is driven by the goal of
achieving a more accurate understanding of permafrost dynamics and interconnected
processes.

To address the overarching theme of permafrost representation and the mitigation
of the cold bias in Arctic soils, this research follows a methodical progression. First,
I conduct a thorough analysis of the fundamental requirements to represent permafrost
dynamics. Then, I review the existing methodologies used by LSMs for characterizing
soil heat and water transfer to shed light on the performance and limitations of current
approaches. Subsequently, I evaluate one of these models, Community Land Model
(CLM5), to understand the factors underpinning its capacity to accurately represent
permafrost. Following this, I undertake two sensitivity experiments to rectify the iden-
tified shortcomings within CLM5. Finally, I extend the findings to the broader domain
of LSMs for widespread applicability. This systematic approach is summarized in the
following four research questions:
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• Research Question 1: Which physical processes and variables determine a model’s
capability to represent permafrost soils? Which methods do land surface models
use to simulate heat and water transfer in permafrost regions?

• Research Question 2: How accurately does the Community Land Model (CLM5)
simulate permafrost and soil temperature dynamics in the Arctic region, in com-
parison to observed data on permafrost depth and temperature profiles? In partic-
ular, to what extent can CLM5 effectively capture the spatial and seasonal vari-
abilities inherent in permafrost physics across the Arctic region?

• Research Question 3: What is the impact of using a plant functional type (PFT)-
based approach to derive soil texture and soil organic matter in CLM5 on per-
mafrost dynamics, and how does it compare to traditional approaches that use
fixed soil properties?

• Research Question 4: To what extent can modifications to the parameterization
of snow thermal conductivity improve the performance of CLM5 in reproducing
snow cover dynamics over Arctic permafrost regions?

In summary, this thesis aims to improve our understanding of permafrost dynamics
and provide more accurate predictions of future permafrost dynamics within LSMs,
with a particular emphasis on accurate modeling of heat and water fluxes. Addressing
these challenges and refining permafrost representation in LSMs is crucial for better
understanding the complex interactions between permafrost soils and the Earth system.

1.7 Outline of thesis

Following this introduction, Chapter 2 explores the essential requirements for modeling
permafrost dynamics and an overview of essential land model components. Chapter 3
describes the Community Land Model version 5 (CLM5) and assess its ability to re-
produce permafrost dynamics against observations obtained through in-situ and remote
sensing data. In Chapter 4, I conduct a first sensitivity experiment by replacing the de-
fault fixed soil properties used to derive soil texture and soil organic matter with a plant
functional type (PFT)-based approach. I then examine the impact of this change on the
model’s ability to simulate permafrost dynamics. Chapter 5 presents a second sensitiv-
ity experiment where I replace the current snow scheme with one designed specifically
for Arctic permafrost regions. I evaluate the impact of this modification on the model’s
ability to accurately simulate permafrost dynamics. Finally, in Chapter 6, I summarize
the main findings of this thesis and provide concluding remarks on the current state of
permafrost modeling, as well as the challenges that lie ahead.
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CHAPTER 2

Model requirements for representation of permafrost soils

2.1 Introduction

Permafrost is a key component of the Earth’s cryosphere and carbon cycle and plays
an important role in the global climate system. A good representation of permafrost
in LSM is crucial for accurate climate projections, as well as for understanding the
feedback between permafrost and the climate system (Miner et al., 2022).

Model assessments of projecting changes in permafrost extent and carbon stocks
vary widely for both historical trends and future scenarios (Burke et al., 2020). These
discrepancies can, in part, be attributed to variations in the formulations of soil ther-
modynamics and associated variables such as the thermal properties of soil organic
matter (Zhu et al., 2019) and snow pack (Langer et al., 2013). In a correlation anal-
ysis involving 27 Earth System Models (ESMs) contributing to the fifth phase of the
Climate Model Intercomparison Project (CMIP5, Taylor et al. 2012), Zhu et al. (2019)
underscored the critical importance of improving the parameterization of soil thermal
properties. Finally, scholars urge for the development of appropriate soil schemes for
permafrost regions to enhance LSMs predictability and sensitivity (Zhu et al., 2019;
Burke et al., 2020; Yang et al., 2022; Hu et al., 2023).

This chapter describes fundamental concepts and core theories in soil physics of
LSMs, along with their relevance to permafrost physics. After this theoretical analysis,
I examine key variables that form the basis of accurately representing permafrost dy-
namics within LSMs. I conclude this chapter with a thorough comparison of nine LSMs
from the Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al. 2016),
aiming to provide a comprehensive evaluation of their capabilities and functionalities.

2.2 Core theories in soil physics of Land Surface Models

The core objective of land surface modeling is to capture the energy, matter, and mo-
mentum exchanges between the land surface and the atmosphere. One key component
of this system is the heat and water transfers through the soil. In permafrost regions,
as the freeze-thaw process unfolds, soils undergo diurnal and seasonal transformations,
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regulated by the interactions among solid soil particles, ice formations, liquid water,
and gas water.

2.2.1 Heat transfer

Soil temperatures are primarily controlled by heat energy transfer. Heat energy can be
transported through soil via various mechanisms, including conduction, convection of
heat by flowing liquid water, convection of heat by moving air, and convection of latent
heat. Among these mechanisms, conduction is the most significant process (Jury et al.,
1991).

Fluids have a natural tendency to balance concentration gradients in order to reach
a state of equilibrium. This process leads to the movement of particles from regions
of higher concentration to regions of lower concentration, driven by molecular motion.
The transfer of heat through this molecular collision is referred to as conduction. The
first law of heat conduction based on the first law of thermodynamics (which describes
conservation of energy), also known as the differential form of Fourier’s law, governs
this phenomenon:

F = −λ∇T (2.1)

where F is the amount of heat conducted across a unit cross-sectional area in unit
time (Wm−2), λ is soil thermal conductivity (Wm−1K−1), and ∇T is the spatial gra-
dient of temperature (Km − 1). In one dimension, Fourier’s law can be expressed as
follows:

Fz = −λ∂T
∂z

(2.2)

where z is in the vertical direction, z and Fz are positive upward.
The steady-state heat flow condition describes only a limited subset of the possi-

ble heat transport processes in soil. In reality, heat transport is typically a function of
both time and space, leading to transient or time-dependent flows that require a more
comprehensive mathematical description than steady-state flows. The initial phase of
developing a complete transient heat flow description is to define the heat conservation
equation, also known as the mass balance or continuity equation:

∂Fz

∂z
+
∂H

∂t
+ rH = 0 (2.3)

where H is the heat content per unit volume, t is time in (s) and rH is the heat sink
term.

In simple terms, Fz represents the heat energy moving out of the soil volume, minus
the heat energy moving into it, H is the increase in heat energy stored in soil volume,
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and rH is the amount of heat energy that disappeared from soil volume by reactions,
during a time interval of ∆t→ 0. rH should be included in the heat balance whenever a
source or sink of heat generates or consumes quantities of energy (e.g., radioactive soil,
chemical reactions). Most LSMs assume that rH = 0.

Following Jury et al. (1991), the heat content per unit volume H may be written as:

H = c(T − Tref ) (2.4)

where c is the heat storage capacity (Jm−3K−1) and Tref is an arbitrary reference
temperature at which H = 0.

If we account for non-steady or transient conditions, we can insert the heat flux
equation 2.2 and the heat content 2.4 into the heat conservation equation 2.3, resulting
in the heat transfer equation:

c
dT

dt
=

d

dz
[λs

dT

dz
] (2.5)

• c represents the heat storage capacity (Jm−3K−1) of the material in question. It
is a measure of the amount of energy that is required to warm a unit mass for
one Kelvin. It represents how much heat energy can be stored in a given amount
of material, and it depends on the density (Appendix B) and properties of the
material. In the context of permafrost, it represents the amount of heat energy
that can be stored in the soil and permafrost at a given depth.

• dT
dt

represents the rate of change of temperature with respect to time. It describes
how quickly the temperature at a given depth changes over time due to heat flow.

• λ represents the heat transfer capacity or soil thermal conductivity (Wm−1K−1)
of the material in question. It is a measure of how fast heat energy can flow
through the material, and it depends on the material’s ability to pass over kinetic
momentum on the molecular/atomic level. The conductivity of a substance in-
creases as the molecules become closer together. Higher conductivity means heat
can better propagate. Gases typically have low soil thermal conductivity, while
liquids exhibit higher values. Solid materials with an organized, grid-like struc-
ture, such as crystalline substances like quartz, are excellent conductors of heat.
Similarly, ice possesses a high soil thermal conductivity due to its solid and struc-
tured nature. In the context of permafrost, it represents how easily heat can be
transferred through the soil and permafrost at a given depth. The estimation of soil
thermal conductivity is recognized to be a challenging endeavor, given its depen-
dence on a multitude of influencing variables (Hu et al., 2017) that are discussed
throughout this chapter. This complexity is further amplified within permafrost
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regions due to soil freeze-thaw processes and the presence of unfrozen water and
ice.

• dT
dz

represents the rate of temperature change with respect to depth. It describes
how quickly the temperature changes as you move deeper into the ground.

If the z dependence of λs is neglected, 2.5 reduces to:

dT

dt
= Kt

d2T

dz2
(2.6)

where Kt =
λs

c
is the soil thermal diffusivity.

To summarize, the heat flow equation 2.6 describes the flow of heat in one dimension
through a material controlled by the strength of the heat flux (the gradient), and by the
material properties, soil thermal conductivity λs and heat capacity c, in terms of the
spatial variable z and time t. This equation links the rate of temperature change at
a particular depth to the second derivative of temperature with respect to that depth,
revealing how temperature evolves over time within a material. Essentially, it shows
that the temperature at a given location within the material is influenced by the amount
of heat that is transferred into or out of that point over time, which depends on the
material’s thermal diffusivity.

Numerical models solve this equation by subdividing the entire soil column into
smaller discrete layers. This vertical discretization is crucial due to the substantial vari-
ations in soil properties with depth. Moreover, the model establishes specific boundaries
and initial conditions. For a given soil column, the boundary conditions typically in-
volve constant temperatures at the surface (attributed to the atmosphere) and at the base
(associated with the geothermal heat flux). The initial condition refers to the temper-
ature distribution at time zero. Solving the heat transfer equation with these specified
boundaries and initial conditions enables us to calculate the temperature profile in the
subsurface as a function of time.

Apart from vertical heat transfer, lateral heat flow can also significantly influence the
temperature evolution of permafrost and has been demonstrated to notably improve the
freeze-thaw depth simulation compared to the original model (Hu et al., 2023). How-
ever, due to its high computational cost, lateral heat flow is not commonly included
in LSMs (Ou and Zhang, 2022). Despite this limitation, understanding the potential
impact of lateral heat flow on permafrost dynamics should be a priority for future re-
search and model development to improve comprehension of how permafrost responds
to climate change.
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2.2.2 Water transfer

This thesis primarily emphasizes heat flows, but it is important to note that water flows
are equally critical for accurately representing permafrost soils. Most state-of-the-art
LSMs have been designed to simulate heat and soil water transfer processes sepa-
rately, although recent studies have proposed considering coupled water and heat trans-
fer developments (Hu et al., 2023). However, these coupled models have yet to gain
widespread acceptance within the land surface modeling community.

Soil water input from precipitation is shared between changes in water storage in
snow, ice, and soil moisture, and is balanced against losses from evapotranspiration,
sublimation and river discharge. In addition to the heat transfer equation, a water bal-
ance equation is needed to describe the movement of water for modeling permafrost.
Starting with the conservation of mass, we can formulate a one-dimensional vertical
water flow in soils equation:

∂θ

∂t
= −∂q

∂z
− e (2.7)

where θ is the volumetric soil water content (mm3 of water / mm3 of soil), z is
height (mm), q is soil water flux (kgm−2s−1), and e is a soil moisture sink term (mm
of water mm−1 of soil s−1). The soil water flux q can be described by Darcy’s law:

q = −k
[
∂ (ψ + z)

∂z

]
(2.8)

where k is the hydraulic conductivity (mms−1), and ψ is the hydraulic potential
(mm), which describes how a soil retains water based on its texture. If we manipu-
late and substitute equation 2.8 into equation 2.7, assuming e = 0, we can derive the
commonly called Richards equation (Richards, 1931):

∂θ

∂t
=

∂

∂z

[
k

(
∂ψ

∂z
+ 1

)]
(2.9)

Similar to the heat flow equation 2.5, this equation is generally solved numerically in
LSMs by dividing the soil column into multiple layers with upper and lower boundaries.

2.2.3 Latent heat energy

Freezing or melting is the process by which a substance undergoes a phase change from
a liquid to a solid state or vice versa. The latent heat is the amount of energy required
to break up the inter-particle bonds in order to melt a substance. The same amount of
energy is released when the bonds of the solid phase build up. During a phase change,
the addition or removal of energy to or from the substance does not cause a change
in temperature. The amount of energy consumed or released during the phase change
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without a change in temperature is referred to as latent heat.
Within LSMs, the incorporation of latent heat into equation 2.5 entails introducing

an extra energy term that functions as either a source or a sink, which is expressed as
follows:

c
dT

dt
=

d

dz
[λs

dT

dz
] + ρiceL

dθice
dt

(2.10)

where Lf is the fusion of water latent heat (kJ/kg), ρice is the density of ice
(kg/m3), and θice (m3/m3) is the amount of ice that freezes or melts within time t
(s). This equation operates under several assumptions: the absence of thermal advec-
tion, no phase change involving the gas phase, and the exclusion of mechanical effects
related to soil freezing, such as the expansion of the total soil volume (Gouttevin et al.,
2012).

During the phase change of permafrost near 0°C, the heat transfer caused by the
latent heat is greater than that caused by heat conduction (Hu et al., 2023). The large
amount of energy needed to melt ice acts as an additional heat capacity, which leads to
the commonly called zero-curtain effect during every autumn and spring in permafrost
soils: soil temperatures stay at 0°C until the full amount of soil water (ice) is frozen
(melted), although air temperatures have already decreased (increased) substantially
lower (higher). The same process also introduces high thermal inertia on longer time-
scales wherever ice (water) contents are high. This explains why permafrost areas on
the border of permafrost zones with soil temperatures close to 0°C only warm slowly
with observed climate warming in comparison to cold Arctic permafrost regions, where
warming rates are higher (Romanovsky et al., 2010; Zhu et al., 2019).

2.3 Key variables in the representation of permafrost soils

This section discusses key variables within permafrost physics, including soil texture,
soil organic matter (SOM), snow, soil moisture and ground ice, Arctic vegetation, at-
mospheric forcings, and lower boundary fluxes. Additionally, I explore their integration
and implementation within LSMs. These factors wield significant influence over soil
heat transfer and storage capacities, directly impacting permafrost soils temperature.
A comprehensive understanding of their interplay and effects on heat and water trans-
fers within permafrost soils is paramount for accurately modeling permafrost in LSMs
(Nicolsky and Shakhova, 2010; Yang et al., 2022).

2.3.1 Soil texture

Soil texture is a fundamental variable to the composition and properties of soils (War-
rick, 2002; He et al., 2021). A soil can be described as a ”soil matrix” composed of
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soil material, water and/or ice, solutes and air. Due to this intricate composition, soils
exhibit a more complex response to changes in energy than pure substances.

In the context of LSMs, soil texture typically represents the relative percentages of
sand (particle size of 0.05 to 0.2 mm), silt (particle size of 0.002 to 0.05 mm), and clay
(particle size below 0.002 mm) (Warrick, 2002).

Mineral soil composition plays a critical role in determining soil properties and
thermal dynamics in permafrost regions. The impact of minerals on soil thermal con-
ductivity depends on two main factors:

• Firstly, soil texture effects porosity (the fraction between the volume of pore
spaces in the soil and the volume of soil), which subsequently influences latent
heat exchange during freeze and thaw cycles (Jury et al., 1991; Ochsner et al.,
2001; Balland and Arp, 2005; Zhu et al., 2019). Sandy soils have higher poros-
ity, allowing for an increase in thermal conductivity with more moisture content,
while cohesive soils with silty or clayey texture show a smaller variation of con-
ductivity with moisture (Luo et al., 2009).

• Secondly, different minerals found in soils possess varying thermal conductivi-
ties, affecting the overall heat transfer through the soil (Jury et al., 1991). For
instance, sandy soils are characterized by a high quartz content, which is one of
the minerals with the highest soil thermal conductivity. In contrast, clay soils
have higher percentages of silicate minerals, resulting in weaker heat conduction
(Luo et al., 2009).

In addition to regulating heat transfer, soil texture also plays a crucial role in vari-
ous non-thermal soil processes, including water infiltration, nutrient retention, carbon
sequestration and storage, protection of soil organic carbon against microbial decompo-
sition (Kravchenko and Guber, 2017), and the exchange of water and energy between
the land surface and the atmosphere (Shao et al., 2022). The unique hydraulic proper-
ties of soils with different textures influence water movement and its retention capacity,
ultimately determining water availability for plant growth and the exchange of heat and
moisture between the soil and the atmosphere. For example, while sandy soils are ex-
tremely porous, clay soils have a higher water holding capacity due to their smaller pore
sizes, facilitating rapid water flow. The greater water-holding capacity also induces a
greater latent heat release during freezing (Zhu et al., 2019).

In theory, sandy soils tend to experience warmer winter soil temperatures due to the
higher amount of latent heat released during freezing. In contrast, during the summer
months, sandy soils demonstrate colder temperatures due to enhanced water drainage
and lower water retention capacity compared to soils with higher clay or silt content.
However, using a network of 184 in-situ stations, Zhu et al. (2019) only found a weak
positive correlation between sand content and thermal conductivity.
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Further study is required to better understanding the complex interplay between soil
texture, its properties, and ecosystem processes (Dai et al., 2019; Zhu et al., 2019; Hu
et al., 2023).

Chapter 4 provides a detailed discussion of how soil texture is included in LSMs.

2.3.2 Soil organic matter

Soil organic matter (SOM) plays a crucial role in providing a broad range of ecosystem
services including production of food and fiber, nutrient supply, and flood and erosion
controls. Some scholars also refer to it as organic matter content (OMC).

Arctic soils, particularly in Northern Eurasia, are rich in organic carbon because the
low soil temperatures in these regions inhibit the decomposition of dead plant material
that accumulates over time, thereby forming commonly called peat deposits (Minayeva
et al., 2016). A peat deposit refers to an accumulation of partially decomposed organic
matter, primarily composed of plant remains such as mosses, sedges, and other vege-
tation, which have gathered in waterlogged environments over extended periods. The
waterlogged conditions cause organic material to decompose slowly, forming a distinc-
tive layer of peat.

Figure A.1 in Appendix A represents the soil organic carbon content of two soil
horizons (0–30 and 30–70 cm) aggregated at a 0.5° by 0.5° horizontal resolution and
estimated from Global Soil Organic Carbon Map (ITPS, 2020). The data represent a
unique global soil inventory providing information on the morphological, chemical and
physical properties of soils at very high resolution.

Soil organic carbon exhibits distinct hydraulic and thermal properties when com-
pared to mineral soil. The presence of organic carbon augments available water ca-
pacity (Hudson, 1994), soil porosity, and saturated hydraulic conductivity (Lawrence
and Slater, 2008; Decharme et al., 2016; Zhu et al., 2019). These enhancements lead
to soils with elevated organic content serving as insulators, thereby retarding the rate
of heat transfer into the soil and resulting in significantly reduced soil thermal conduc-
tivity, while concurrently elevating soil heat capacity in comparison to mineral soils,
ultimately manifesting as lower temperatures during the summer months. This phe-
nomenon has been particularly studied over Arctic permafrost regions (Rinke et al.,
2008; Lawrence and Slater, 2008; Dankers et al., 2011; Paquin and Sushama, 2015;
Decharme et al., 2016; Domine et al., 2016).

The insulating influence of SOM during summer exhibits greater significance in
contrast to its relatively modest warming effect during winter, primarily due to the in-
sulating nature of snow cover (Zhu et al., 2019).

How SOM is incorporated in LSMs is explored in Section 2.4.2.3 and Chapter 4.
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2.3.3 Snow

Snow cover, also called snowpack, plays a significant role in permafrost regions as it
covers a large portion of the land surface, exerting essential influences on permafrost
physics (Sturm et al., 1997). Royer et al. (2021) show that current state-of-the-art snow
models fail to represent the main traits of Arctic snowpacks.

Similar to Blome (2014), we can identify four key physical properties or processes
associated with snow that are crucial in modulating permafrost physics:

• Insulating ”barrier”: Snow acts as an insulating ”barrier” between the soil and the
overlying air from fall to early spring.

• Optical ”reflector”: With its unique optical and radiative properties, snow impacts
the surface energy balance.

• Latent heat ”sink”: The considerable amount of latent heat consumed during
snow melting acts as an energy sink in the surface energy balance.

• Snow/soil hydrology ”regulator”: The accumulation and release of water due to
freezing and melting significantly impact soil hydrology.

These properties have subsequent effects on soil temperature and water content,
which in turn have feedback effects on snow thickness. Each of these points are further
explored below.

2.3.3.1 Insulating ”barrier”

The low soil thermal conductivity of snow is primarily due to air pockets present be-
tween ice crystals. These air pockets act as barriers to heat transfer by conduction, as
air is a poor conductor of heat. When heat energy attempts to pass through the snow, it
must traverse these air-filled gaps, significantly slowing the heat transfer process. Con-
sequently, a snow cover effectively decouples air and soil temperatures, resulting in a
warming of the soil surface.

Numerous scholars have demonstrated that snow cover significantly impacts the
thermal regime of permafrost by providing insulation to the ground during Arctic win-
ters (Nicolsky and Shakhova, 2010; Park et al., 2015; Li et al., 2021). This influence is
closely tied to both the extent and timing of variations in snowfall.

2.3.3.2 Optical ”reflector”

Snow cover can substantially modify the albedo of a land surface, thereby affecting the
amount of solar radiation absorbed by the surface. The extent of this effect depends on
factors such as the shape and size of the snow grains, the solar zenith angle, and cloud
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conditions. In most cases, the effect leads to a reduction in absorbed energy, as snow
has one of the highest albedo values among natural land surface materials, ranging from
0.6 for old, wet snow to 0.85 for fresh snow. This modification of albedo affects the
emission of thermal radiation, thereby influencing surface temperatures and resulting in
a cooling effect on the land surface when compared to bare surfaces.

The net effect of albedo variation depends on the geographical area and season.
During autumn, the albedo of fresh snow is high, and, with a reduced sun elevation
angle, the developing snow cover further decreases energy input to the land surface. In
spring, the albedo of old snow is reduced, while the sun’s elevation angle is almost at
its yearly maximum. Consequently, the cooling effect of snow cover is generally larger
in spring than in autumn.

Under cloudy conditions, snow cover reacts differently, leading to the development
of near-surface temperature inversions due to strong radiative cooling. On the other
hand, moist, cloudy conditions with a high proportion of back-scattered longwave radi-
ation result in higher snow surface temperatures.

2.3.3.3 Latent heat ”sink”

Snow can influence the partitioning of energy between sensible and latent heat fluxes.
The latent heat of the fusion of water is 334 J/g, whereas the volumetric heat capacity
of ice is only 2.1 J/gK. The melting of snow cover during spring acts as a significant
energy sink, warming of the surface, albeit for a short duration of two weeks or less.
The effects on the surface energy balance to date are not yet fully understood. However,
due to its relatively short duration, the mean annual ground temperature (MAGT) is not
strongly influenced by this effect (Blome, 2014).

2.3.3.4 Snow/soil hydrology ”regulator”

Snow accumulation and the freezing of soil water result in a net storage of water from
October to April. When the snow melts and soil thaw begins in spring, water becomes
available for plant uptake and growth. However, this process is confined to a short
period of less than two weeks. As the land surface remains frozen, the infiltration ca-
pacity is low, leading to significant runoff into rivers with peak discharge rates occurring
in May-June (Hu et al., 2023) and large flatland area flooding from May to September.

During the initial stages of soil thawing, high surface moisture values correspond to
the melting of ice in near-surface layers, while deeper layers remain frozen and less per-
meable (Blome, 2014). Consequently, the drainage capacity is limited, leading to the
accumulation of high soil moisture within the shallow thawed upper layers. Further-
more, the refreezing of infiltrated snowmelt water further exacerbates this phenomenon
(Swenson and Lawrence, 2014). As the warm season progresses and the ALT deepens,
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the storage capacity for water increases. The permafrost table acts as a barrier within
the deeper soil, facilitating the development of lateral flow, which contributes to the
formation of slower subsurface runoff. This enlarged water storage capacity, coupled
with improved drainage, can lead to drier conditions within the upper soil layers during
this period of the year.

2.3.3.5 Snow in LSMs

Most LSMs include a snow module in their code, which encapsulates snow accumu-
lation, distribution, and melt processes. Operating at the interface between the atmo-
sphere and the land surface, the snow module plays a fundamental role in simulating
the interactions between meteorological conditions, energy exchange, and the evolv-
ing snowpack. By encompassing a range of physical and thermal properties unique to
snow, such as thermal conductivity, albedo, density, and water content, the snow mod-
ule enables LSMs to accurately capture the complex feedback mechanisms between the
snowpack and the surrounding environment. In Chapter 5, I provide an example of a
snow module from CLM5.

2.3.4 Soil moisture and ground ice

Soil moisture refers to the amount of water present within the pores of the soil, usually
expressed as a percentage of the total soil volume. It represents the liquid and frozen
water content within the soil matrix, including both the water adsorbed on soil particles
and the water filling the soil pores.

The distinct cold Arctic temperatures give rise to a soil moisture pattern specific to
permafrost regions, governed by freezing and thawing processes. Consequently, soil
moisture content plays a pivotal role in permafrost modeling, influencing soil’s thermal
and hydrological processes (He et al., 2021).

Despite often being characterized by a dry climate, permafrost regions frequently
exhibit high soil frozen water contents. This can be attributed to the low temperatures,
which cause soil moisture to freeze during the cold months. As a result, the soil moisture
becomes ”trapped” in a frozen state and is not readily available for evapotranspiration or
water discharge at the beginning of the warm season until it melts. This extended resting
period of soil moisture, combined with freezing-induced cracks in the soil, allows water
from the surface to infiltrate and accumulate, eventually leading to the formation of
large ice wedges and frozen soil underneath, commonly called Yedoma permafrost.
High thermal conductivity of ice generally leads to increased soil thermal conductivities
as compared to the same soil without ice (Farouki, 1981). Furthermore, soil moisture
significantly contributes to the latent heat energy, as explained earlier.

Within LSMs, soil moisture depends on the water fluxes represented by the model,
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typically formulated using the aforementioned one-dimensional form of the Richards
equation. Yet, physical processes associated with ground ice, such as soil profile crack-
ing, are generally omitted.

According to the literature, precise representation of soil moisture content is key for
permafrost modeling, given its substantial influence on permafrost dynamics’ thermal
and hydrological processes. For instance, Li et al. (2019) underscore that soil moisture
content regulates soil thermal conductivity. Meanwhile, Lee et al. (2014)’s model sensi-
tively study examining large-scale repercussions of ground ice on projected permafrost
temperatures revealed a significant impact on soil temperature’s vertical structure and
potential influence on permafrost thaw timing and rate. Importantly, Burke et al. (2020)
found that current CMIP6 ESMs overlook the critical ground ice process in permafrost
soils, highlighting a gap in these models’ predictions of permafrost dynamics.

2.3.5 Arctic Vegetation

Several studies have stressed the importance of Arctic shrubs’ impact on permafrost
regions (Lawrence and Swenson, 2011; Loranty et al., 2011; Bonfils et al., 2012; Myers-
Smith et al., 2011; Pearson et al., 2013; Chen et al., 2021; Heijmans et al., 2022). For
example, Royer et al. (2021) significantly increased the performance of their model by
implementing a more complex representation of the interaction between Arctic plants
and snow. Incorporating better vegetation physics in LSMs should be a priority in future
research.

Arctic plants possess unique water holding capacity characteristics. The extreme
conditions of permafrost, including cold soil temperatures, limited nutrient availability,
and the narrow root zone confined to the shallow active layer thickness (ALT), make
it challenging for larger plants to thrive. In areas with discontinuous permafrost and
deeper ALT, taller tree species with deeper roots like aspen can be found. Conversely,
smaller species like black spruce have better adaptations and can survive in more north-
ern regions.

Mosses, with their sponge-like structure, can hold nearly their own volume of water,
which results in higher conductive properties, particularly when frozen. They act as
excellent insulators when dry, which is often the case at the end of summer (Blome,
2014).

Moreover, non-vascular vegetation types, such as mosses and lichens, have a ten-
dency to ”protect” permafrost through their specific seasonal thermal impacts on the
ground, in contrast to vascular vegetation types like grasses and shrubs, which con-
tribute to summer warming and deepen the ALT (Rinke et al., 2008).

Vegetation also influences heat transport into the ground through its interaction with
snow. The most abundant vegetation types, mosses and lichens in the Arctic typically
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reach a maximum height of a few centimeters, limiting their ability to trap snow to the
same extent as taller vegetation types like tussock grasses. Consequently, winter cool-
ing is more efficient in regions dominated by low vegetation (Blome, 2014). However,
the reverse effect is also observed: a thicker snow cover that persists until late spring
delays soil warming at the beginning of the warm season, resulting in a relatively cooler
ground compared to adjacent locations with a thinner snow cover. Trees and shrubs, on
the other hand, trap a substantial amount of snow in their canopies, which reduces snow
depth at the ground and leads to lower soil temperatures (Myers-Smith et al., 2011).
Furthermore, forested areas accumulate thick organic matter layers, which decompose
poorly due to the cold climatic conditions. Combined with the shading effect of the
canopy and reduced solar energy input, forests generally contribute to permafrost stabi-
lization.

Most LSMs represent plant dynamics using a homogeneous single-layer canopy
(known as the ”big-leaf” approach) assuming that all vegetation within a grid cell be-
haves as a single, uniform ”big leaf” when interacting with the atmosphere. In reality,
there can be various types of vegetation within a grid cell with different characteristics
such as leaf area index (LAI), stomatal conductance, and photosynthetic capacity. By
simplifying these complexities, the big-leaf approach is computationally less demand-
ing than a representation that considers individual plant types or even leaves within the
grid cell.

LSMs commonly group plant species into plant functional types (PFTs). These cat-
egories represent the diversity of vegetation types and their specific properties, such as
photosynthesis pathways, LAI, rooting depth, or specific leaf area. They are param-
eterized based on the averaged characteristics of the vegetation within the grid cell.
Different vegetation types have distinct effects on energy and water exchanges with the
atmosphere, impacting local climate, evapotranspiration rates, and soil heat transfer.

PFTs influence soil heat transfer in several ways depending on the model:

• Albedo and canopy structure: Albedo is the amount of solar radiation reflected
by the land surface. Vegetation with darker leaves and a more open canopy struc-
ture tend to absorb more solar radiation, increasing the surface temperature and
consequently affecting soil heat transfer.

• Evapotranspiration: PFTs regulate evapotranspiration rates, which influence the
cooling effect on the land surface. Transpiration, the process of water movement
through plants and its subsequent release into the atmosphere, cools the vege-
tation and surrounding soil. Higher transpiration rates from certain PFTs can
reduce the soil temperature.

• Rooting depth: Deeper-rooted vegetation can extract water from deeper soil lay-
ers, affecting soil moisture distribution and heat transfer at different depths.
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• Litter and organic matter: The type and amount of litter and organic matter added
to the soil by vegetation influence soil properties, such as soil thermal conductiv-
ity and heat capacity. These properties impact the transfer of heat within the soil
profile.

• Land cover change: Changes in land cover and vegetation distribution, driven
by human activities or natural processes can significantly alter local and regional
climate conditions, including soil heat transfer patterns.

There are two common PFTs used by LSMs to describe Arctic vegetation:

• C3 Arctic grass - C3 arctic grass is a type of vegetation that falls under the C3

photosynthetic pathway, one of the three major pathways through which plants
fix carbon during photosynthesis. C3 plants generally have higher photosynthetic
rates at lower temperatures, making them well-suited for colder regions. These
grasses contribute to the vegetation cover in Arctic ecosystems and play a vital
role in the carbon and energy exchange between the land surface and the atmo-
sphere.

• Broadleaf deciduous shrub - boreal - Broadleaf deciduous shrubs (BDS) are char-
acterized by broad-shaped leaves that shed seasonally (deciduous) in contrast to
needle-shaped leaves of coniferous trees. Boreal shrubs are adapted to the cold
and harsh conditions of the boreal forest, which is a subarctic biome characterized
by cold winters and short growing seasons. These shrubs are an essential com-
ponent of the understory vegetation in boreal forests and play significant roles
in ecosystem processes, including energy balance, nutrient cycling, and carbon
storage.

However, some experts argue that relying on just two PFTs may be insufficient and
recommend the inclusion of a greater variety (Sulman et al., 2021).

2.3.6 Atmospheric forcings

Permafrost is a thermal phenomenon, and thus depends on the temperature of the over-
lying air masses. Additionally, precipitation, wind, solar radiation, specific humidity
also play a crucial role in permafrost dynamics by determining the energy balance at
the surface.

In LSMs, these atmospheric conditions, or forcings, are often represented using
reanalysis data, which provide a consistent and comprehensive record of atmospheric
conditions. Reanalysis data are generated by assimilating observations from multi-
ple sources, including satellites, radiosondes, and surface stations, into a global atmo-
spheric model. This produces a gridded dataset of atmospheric variables, such as air
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temperature, precipitation, and wind speed, with varying spatial and temporal resolu-
tions.

However, the use of reanalysis data in LSMs also has limitations, as these data may
contain biases and errors that can affect the simulation of permafrost dynamics. For ex-
ample, reanalysis data may not capture local-scale variations in atmospheric conditions,
such as the effect of topography on wind patterns. In addition, reanalysis data may be
subject to errors in the assimilation process, such as observation data or model physics
error. Therefore, it is important to evaluate the performance of LSMs using reanalysis
data against independent observations, such as in-situ measurements or remote sensing
data.

2.3.7 Lower boundary fluxes

Lower boundary fluxes refer to the exchanges of energy, moisture, and other relevant
properties between the land surface and the lowermost layer of the model, which typi-
cally represents the underlying bedrock.

According to Hu et al. (2023), the bottom layer depth must be below minimum 30
meters to run a realistic simulation of the soil temperature profile over time, especially
for permafrost. However, in the case of deeper soil configurations, the presence of
extended system memories makes it challenging to attain equilibrium, thereby adding
an additional layer of complexity to the process of model initialization.

A standard practice in LSMs is to default the heat flux at the base of the bedrock
column to zero. Nevertheless, certain experiments have deviated from this practice,
replacing the zero-flux lower boundary condition with a geothermal heat flux, resulting
in positive simulation outcomes (Xiao et al., 2013).

2.4 Comparison of Land Surface Models used in CMIP6

LSMs are crucial components of Earth System Models (ESMs) used to represent what
is happening under and at earth’s surface. Different LSMs employ various schemes and
parametrizations to simulate the dynamic exchange of heat, water, and energy in the
land and in exchange with the atmosphere.

To provide a comprehensive analysis, I selected a range of LSMs commonly uti-
lized in ESMs, detailed in table 2.1, with a focus on models that participated in CMIP6
(Eyring et al., 2016). I exclusively considered models that include studies on per-
mafrost, have good documentation, and have a maximum soil depth exceeding 3 meters.
This selection ensures the inclusion of relevant models with a particular emphasis on
permafrost-related research. A list of models that were not selected from CMIP6 are in
table 2.2.
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Table 2.1 Land Surface Models and Earth System Models

Land Surface
Models (old
versions)

Earth System
Model(s)

Reference paper Arctic paper(s) with
model version used
in this study

CTSM/CLM5
(CLM4.5, CLM4)

CESM2, FGOALS,
NorESM2,
TaiESM1, CMCC,
SAM0-UNICON

Lawrence et al.
(2019)

Burke et al. (2020),
Dutch et al. (2022)

ISBA/Surfex 8.0c CNRM Decharme et al.
(2016)

Burke et al. (2020),
Barrere et al. (2017),
Decharme et al.
(2016)

ELMv0 E3SM Golaz et al. (2019) Burke et al. (2020)
GFDL-LM4 (LM3) GFDL, KIOST-ESM Zhao et al. (2018) Burke et al. (2020),

Milly et al. (2014)
ORCHIDEE-MICT
v8.4.1

IPSL Guimberteau et al.
(2018)

Guimberteau et al.
(2018), Chadburn
et al. (2017)

JULES UKESM1,
HadGEM3

Best et al. (2011) Chadburn et al.
(2015)

JSBACH MPI-ESM,
AWI-CM, NESM3

Reick et al. (2021) Chadburn et al.
(2017), Ekici et al.
(2014)

MATSIRO6.0 MIROC6 Takata et al. (2003) Burke et al. (2020)
CLASSIC1.0 CanESM5 Melton et al. (2020) Paquin and Sushama

(2015), Melton et al.
(2019)

Table 2.2 Land Schemes not selected

Land Scheme Earth System Model(s) Why not selected in this study?

CABLE ACCESS-ESM1-5 Too shallow (2.9m)
BCC-AVIM2 BCC-CSM2-MR Too shallow (2.9m)
CoLM CAMS-CSM1-0, CAS-ESM2.0 Too shallow (2.9m)
HTESSEL EC-Earth3, ERA5-Land Too shallow (1.4m)
GISS LSM GISS-E2-1-G Too shallow (2.7m)
? KACE Poor documentation
HAL 1.0 MRI-ESM2-0 Poor documentation
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In the following, CTSM/CLM5 are referenced as CLM5, ISBA/Surfex 8.0c as ISBA,
and ORCHIDEE-MICT v8.4.1 as ORCHIDEE for simplicity.

Throughout the next two sections, I explore and compare the different soil schemes
employed within these selected LSMs. By examining their distinct characteristics,
strengths, and limitations, I aim to enhance our understanding of how these models
simulate soil processes and contribute to the overall comprehension of land-atmosphere
interactions.

I do not delve into detail of the potential biogeochemistry modules integrated within
these LSMs. Instead, my primary emphasis are on heat diffusion processes. By narrow-
ing my scope, I can effectively explore the essential aspects of these soil schemes and
their implications for the broader understanding of land surface dynamics over per-
mafrost areas.

ESMs employed in CMIP experiments exhibit a broad spectrum of sophistication
in their incorporation of land surface processes. Reflecting this diversity, prior CMIP
analyses (Koven et al., 2013; Burke et al., 2020) have demonstrated substantial dispari-
ties in the simulation outcomes of permafrost-related parameters across distinct models.
Consequently, this section is dedicated to an in-depth comparison and understanding of
these models.

Concurrent with the CMIP initiatives, the Land Surface, Snow, and Soil Moisture
Model Intercomparison Project (LS3MIP, Van Den Hurk et al. 2016) aims to evaluate
the representation of land surface processes within LSMs and to identify inherent sys-
tematic biases. Nevertheless, as of the present, the findings from this initiative remain
unpublished.

Numerous LSMs have been applied in various studies, often with configurations
differing from the one under current discussion. The objective here is to systematically
compare these models in their default configurations, which is employed in CMIP6. An
exception is made for ORCHIDEE, which is examined in an alternative configuration
(Guimberteau et al., 2018). This specific configuration was designed with a focus on
the Arctic region and offers a more extensive documentation compared to the still-in-
development ORCHIDEE v2.0.

2.4.1 Soil discretization

Figure 2.1 provides a visual representation to compare different soil vertical discretiza-
tions used by all LSMs. The vertical discretization of soil layers is an essential aspect
of LSMs, as it directly influences the representation of soil processes.

Most LSMs employ a geometrical distribution of soil layers, with more layers al-
located at shallower depths and fewer layers at greater depths. However, some models
deviate from this general pattern. Notably, ISBA, GFDL-LM4, and JULES exhibit less
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Fig. 2.1 Soil vertical discretization of LSMs. Each rectangle represents a soil layer.
Note that the y-axis is not linear. Lighter blue colours indicate deeper layers.

pronounced variations in layer density along the soil column.
The number of soil layers and their distribution, as well as the maximum depths con-

sidered by the models, show significant variability. Simple models like MATSIRO6.0
use only six layers, while more complex models like ORCHIDEE have 32 layers. Other
models, such as JULES and CLM5, have a comparable number of layers but differ in
their maximum depths.

To accurately simulate soils in permafrost regions, two key requirements have been
identified from previous studies:

• Lawrence et al. (2019) emphasize the need for high resolution within the top 3
meters of the soil column to improve the representation of the active layer thick-
ness (ALT) within the permafrost zone.

• Alexeev et al. (2007) demonstrate that the soil column should extend to a min-
imum depth of 30 meters to properly resolve the annual cycle in temperature.
In addition, only a geothermal steady heat flow at depths greater than 30 m as
the lower boundary condition is suitable to simulate 100-year scale permafrost
changes (Hu et al., 2023).

Based on the two key necessities identified, we can categorize the nine models into
four distinct groups:

• Group 1: Models with low resolution in the top 3 meters and a shallow maximum
depth. This group includes MATSIRO6.0.
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• Group 2: Models with low resolution in the top 3 meters but with a relatively
deep maximum depth. This group includes JSBACH.

• Group 3: Models with high resolution in the top 3 meters but with a shallow
maximum depth. This group includes ISBA, GFDL-LM4, and JULES.

• Group 4: Models with high resolution in the top 3 meters and a deep maximum
depth. This group includes CLM5, ELMv0, ORCHIDEE, and CLASSIC.

Some models apply different physics to specific soil layers. Notably, CLM5, ELMv0,
and ORCHIDEE designate the last 5, 5, and 21 layers, respectively, as ”bedrock.” These
layers are hydrologically and biogeochemically inactive in CLM5 and ELMv0, while in
ORCHIDEE, they remain biogeochemically active. This distinction is a valuable asset,
as hydrological physics become less important in these deep layers (Guimberteau et al.,
2018), allowing for substantial computational savings.

2.4.2 Soil physics

Table 2.3 summarizes the differences in soil physics among those models. Most
models represent the process of heat transport in soil with the 1-D heat flow equation,
including latent heat as a sink or source (see Equation 2.10). They employ a similar dis-
crete finite-difference form to solve this equation. However, JSBACH, MATSIRO6.0,
and CLASSIC1.0 neglect latent heat in their calculations.

As expected, none of the models under study incorporate lateral heat flow, primarily
due to its computational cost.

The key differences lie in how they estimate soil heat capacity and soil thermal
conductivity. Studies have consistently demonstrated the significance of these two pa-
rameters in land surface modeling (Lawrence and Slater, 2008; Hu et al., 2017; Zhao
et al., 2018; Dai et al., 2019). They play a crucial role in governing a wide range of
physical, biological, and chemical processes by influencing energy partitioning at the
ground surface and energy distribution within subsurface soil layers.

2.4.2.1 Soil heat capacity scheme

Most models use a similar soil heat capacity scheme derived from de Vries (1963),
which depends on the heat capacities of the soil solid, liquid water, and ice constituents:

ci = cs, i (1− ϕi) +
wice, i

∆zi
Cice +

wliq, i

∆zi
Cliq (2.11)

where cs,i represents the heat capacity of soil solids, ϕi is the porosity, ∆zi is the
depth of the soil layer i, and wliq,i and wice,i are the liquid water and ice contents,
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respectively. Cliq and Cice are the specific heat capacities (J kg−1 K−1) of liquid water
and ice.

Most other schemes are derived from de Vries (1963) and include additional pro-
cesses. For example, Cox et al. (1999) incorporates the apparent heat capacity associ-
ated with phase change, while Saito (2008) and Verseghy (1991) do not consider depth
variation or porosity in their schemes. Only GFDL-LM4 adopts a fixed soil heat capac-
ity dependent on soil type, which may adversely impact soil temperature representation.

2.4.2.2 Soil thermal conductivity scheme

Table 2.4 Soil Thermal Conductivity Schemes used by LSMs and Comparisons. Re-
sults from He et al. (2021).

Soil Th. Cond. Scheme Model(s) RMSE MAD

Lawrence and Slater (2008),
Peters-Lidard et al. (1998),
Johansen (1975)

CLM5, ELMv0, ISBA,
JULES, JSBACH,
CLASSIC1.0

0.6 0.17

Wang et al. (2016a) ORCHIDEE 0.49 0.03
Cox et al. (1999) JULES 0.68 0.31
Dharssi et al. (2009) JULES 1.6 0.76
Sass et al. (1971) MATSIRO6.0 1.09 0.98
Côté and Konrad (2005) CLASSIC1.0 0.58 -0.28

Soil thermal conductivity plays a crucial role in determining the vertical profiles
of soil heat flux and soil temperature, and it significantly influences soil freeze-thaw
cycles. Due to its strong influence on soil thermodynamics, soil thermal conductivity is
considered one of the most important physical parameters in land modeling studies (Li
et al., 2019; Dai et al., 2019; He et al., 2021; Hu et al., 2023).

As exemplified in this chapter, soil thermal conductivity is dependent on numerous
variables, king its estimation challenging in soil sciences. In response to the controlling
variables, several theoretical and empirical models have been developed to predict soil
thermal conductivity. Column 6 in Table 2.3 presents eight distinct soil thermal conduc-
tivity schemes from the selected list of LSMs. Notably, some models allow for the use
of different schemes, such as JULES. Among the selected LSMs, GFDL-LM4 adopts a
fixed soil thermal conductivity dependent on soil type, which may adversely affect soil
temperature representation.

A detailed description of these soil thermal conductivity schemes can be found in
Dai et al. (2019) or He et al. (2021). Chapter 4 elaborates on the scheme used in the
model employed for this study (Lawrence and Slater, 2008).

In order to assess the effectiveness of these schemes, He et al. (2021) conducted
a comparison involving 39 soil thermal conductivity schemes. This comparison was
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carried out using a comprehensive dataset of soil thermal conductivity measurements
in 27 frozen soils, which included 331 measurements located in various regions around
the world. Table 2.4 reports the results of this study, focusing on the eight schemes used
by the models evaluated in this chapter. The variability of the models around the mean
is assessed using the Root Mean Square Error (RMSE - Appendix B - Equation B.6)
and the mean is evaluated using the Mean Absolute Deviation (MAD - Appendix B -
Equation B.7). Both RMSE and MAD should approach 0 to indicate close agreement
with the observations.

The results do not differ for Johansen (1975), Peters-Lidard et al. (1998), and Lawrence
and Slater (2008) due to the assumption made by He et al. (2021) that the thermal con-
ductivity of quartz is equivalent to that of sand (although this assumption overlooks the
impact of pore space in sands). Additionally, their study does not account for the ther-
mal conductivity of soil organic matter (SOM). Extending this study to include such
differences would be highly valuable.

Based on He et al. (2021) findings, the Wang et al. (2016a) scheme used by OR-
CHIDEE yields the best results, followed by Côté and Konrad (2005). Lawrence and
Slater (2008), Peters-Lidard et al. (1998), and Johansen (1975) have similar scores, with
Cox et al. (1999) closely behind. Dharssi et al. (2009) and Sass et al. (1971) schemes
perform relatively worse compared to He et al. (2021) observations. Interestingly, all
schemes tend to overestimate soil thermal conductivity, with the exception of Côté and
Konrad (2005), indicating a potential for improvement by considering the impact of
SOM.

This comparison is limited to a single study, but provides valuable insights into
the soil thermal conductivity used by the nine models. Further research and extended
studies would enhance our understanding of the soil thermal conductivity representation
in LSMs.

2.4.2.3 Soil organic matter parametrization

A substantial body of land surface modeling literature underscores the pivotal role of
soil organic matter (SOM) in governing soil thermodynamics within permafrost regions
(Rinke et al., 2008; Lawrence et al., 2008; Chadburn et al., 2015; Decharme et al., 2016;
Zhu et al., 2019; Zhang et al., 2021). Although all models, with the exception of GFDL-
LM4, incorporate a representation of SOM, they diverge in terms of parameterization
and levels of sophistication.

Lawrence and Slater (2008) were pioneers in integrating SOM within a large-scale
climate model. They introduced a linear weighted combination of organic soil prop-
erties with standard mineral soil properties. CLM5 and ELMv0 have adopted this ap-
proach, which is discussed in Chapter 4. ISBA, ORCHIDEE, and JULES also base their
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SOM parameterization on Lawrence and Slater (2008), albeit with added complexity.
For instance, ISBA incorporates a pedotransfer function linking soil water retention
at various pressure levels to the fiber content of organic soils (Decharme et al., 2016).
ISBA and JULES calculate soil thermal conductivities as geometric averages of organic
and mineral soils, in contrast to the linear approach proposed by Lawrence and Slater
(2008). Meanwhile, ORCHIDEE introduces a parametrization of the SOM effect on
soil water capacity (Guimberteau et al., 2018).

Exclusively, CLASSIC1.0 diverges from Lawrence and Slater (2008) or Guim-
berteau et al. (2018), deriving the thermal conductivities of organic soils based on the
analysis conducted by Côté and Konrad (2005).

Lastly, JSBACH does not explicitly represent SOM. Alternatively, it represents a
moss and/or lichen layer at the surface, which possesses dynamic moisture contents
and thermal properties, thus serving as a physical representation of the surface organic
layer (Chadburn et al., 2017). MATSIRO6.0 adopts a similar approach by incorporating
a top organic layer (Saito, 2008).

The diverse array of complexities introduced by these various approaches remains
ripe for regional-scale testing to comprehensively assess their additional values.

2.4.2.4 Soil hydrology parametrization

The majority of models solve water mass transfer by using Darcy’s law and soil mois-
ture dynamics by using the Richards equations in a multi-layered representation of the
soil column (Tabe 2.3, column 7). However, we assumed that GFDL-LM4 employ a
”bucket” scheme, which treats the soil column as a single, well-mixed unit. By investi-
gating different setups of soil hydrology schemes with JSBACH, Hagemann and Stacke
(2015) conclude that the utilization of hydrological multi-layers model leads to a more
realistic representation of soil hydrological processes.

From the models using the multi-layers approach, ISBA deviates by adopting a
”mixed-form” of the Richards equations. In this approach, the time tendency is resolved
in relation to volumetric water, while the hydraulic gradient is addressed through water
pressure head. This alternative methodology contrasts with the moisture-based form uti-
lized by other models, where both time tendency and hydraulic gradient are addressed
in terms of volumetric water content. Decharme et al. (2011) argue that the latter ap-
proach is constrained to strictly unsaturated conditions and homogeneous media. This
limitation arises due to the discontinuity of soil moisture at the interfaces of soil layers,
thereby limiting its applicability within hydrological investigations.

In the context of soil hydrology, two commonly used closed-form models predict
the relationship between volumetric water content and soil hydraulic conductivity, as
well as matric potential (or water pressure head). The model proposed by Brooks and
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Corey (1966) (BC - Appendix B - Equation B.2, B.3) offers simple analytical power
functions for soil-water retention, suction and hydraulic conductivity. It is a more sim-
plistic representation of soil’s hydraulic properties than other schemes, but the required
parameters can be determined from the sand, silt and clay fractions of soils, which are
available in many global soil datasets (Best et al., 2011). Some models also refer to
this method as the Campbell (1974) or Clapp and Hornberger (1978) model. On the
other hand, the Van Genuchten (1980) (VG - Appendix B - Equation B.4, B.5) model
provides more complex analytical functions. However, the specific parameters required
for this formulation have not been traditionally available within soil datasets, making it
difficult to use. Still, more recent datasets now include these parameters within their soil
information (Best et al., 2011). The BC model is predominantly used within the atmo-
spheric community, while hydrologists generally prefer the VG model (Decharme et al.,
2011). In a site-study consisting of a fallow field in southwestern France, Decharme
et al. (2011) found that BC gives the best results for simulating the soil moisture pro-
file, while VG displays the best score at the surface. However, their results were not
significantly different. Another study indicates that when appropriate parameter values
are selected, both models exhibit similarities across a wide range of soil moisture levels
(Dharssi et al., 2009). More research is needed to explore this question.

2.4.3 Snow physics

Various studies have aimed to compare the snow physics employed in LSMs. The Earth
System Model–Snow Model Intercomparison Project (ESM-SnowMIP, Krinner et al.
2018) is an extension of LS3MIP focusing on assessing the performance of different
snow models. Menard et al. (2021) conducted an innovative comparison and discussion
involving 27 models from ESM-SnowMIP, excluding ELMv0 and GFDL-LM4. In this
section, I emphasize essential snow properties related to soil heat transfer, which we
believe have not been explored in previous research.

Table 2.5 provides a summary of the snow layering, water phase transitions, snow
densification, and snow thermal conductivity parameterizations used in the models stud-
ied. Each model employs its own developed snow model, except for ELMv0, which uti-
lizes an older version of CLM5. ISBA has been used with a more sophisticated model
like CROCUS (Barrere et al., 2017), but this particular version is not present in the
recent CMIP6 dataset.

2.4.3.1 Snow layering

Concerning snow layering, most of the models incorporate a multi-layer representation
of snow, with the exception of CLASSIC1.0 and GFDL-LM4, which use a single-layer,
simpler representation of snow.
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Within the multi-layer approach, some models use a dynamically evolving set of
snow layers, where these layers actively interact with each other and can be added,
removed, merged, or split over time, triggered by specific snow depth thresholds. Con-
versely, other models adopt a static number of layers, similar to how it is done in soil
and atmospheric applications, with fixed positions in space or pressure levels. Research
indicates that a non-boundary dynamic system works better for snowpack physics (Win-
stral et al., 2019).

The models’ minimum number of layers is three, as seen in MATSIRO6.0 and OR-
CHIDEE, which has been shown to adequately resolve the thermal gradients within the
snow cover, as recognized by Sun et al. (1999). On the other end of the spectrum, the
most sophisticated models, such as CLM5 and ISBA, use up to twelve layers to capture
snow processes in detail.

2.4.3.2 Snow densification

As expected, the most basic models, namely GFDL-LM4, JSBACH, MATSIRO6.0, and
CLASSIC1.0, have fixed snow density. However, for the other models, snow density
can change due to three distinct processes:

• Compaction: Snow layers compact due to overburden pressure stress, leading to
sintering and mechanical creep.

• Destructive metamorphism: Under thermal equilibrium conditions, water molecules
undergo sublimation and condensation on snow crystals to minimize surface free
energy. As a result, newly formed snow crystals with a high surface area to
mass ratio experience transformative metamorphism, where sharp-edged crystals
change into cohesive aggregates with smoother, rounded, or irregular grains (Yen,
1981). This process causes the snowpack to settle and its density to increase.

• Melt metamorphism: The presence of liquid water and melt-freeze cycles cause
changes in the snow crystal structure.

A fourth process called constructive metamorphism (Yen, 1981), related to temper-
ature gradients and the formation of depth hoar, is not included in any of the snow
models studied here or in most state-of-the-art snowpack models (Dutch et al., 2022).

All models without fixed snow density incorporate compaction due to overburden
pressure. Notably, CLM5 takes an additional step in representing compaction by in-
cluding a simple representation of compaction by drifting snow (van Kampenhout et al.,
2017), which has been recognized as a potential key factor to represent specific snow
density over Tundra regions (Guimberteau et al., 2018). Destructive metamorphism is
included in ORCHIDEE, ISBA, and CLM5, while melt metamorphism is considered
only by ISBA and CLM5.
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Additionally, fresh snow density is parameterized differently in column 5 of Table
2.5 for each model. ELMv0 and ORCHIDEE use Anderson (1976) parametrization,
which depends linearly on temperature. On the other hand, ISBA and CLM5 use a more
complex dependence of fresh snow density on temperature and wind speed (Decharme
et al., 2016; van Kampenhout et al., 2017). This increase in complexity was introduced
to address excessive subsurface melt predicted in Antarctica (Lenaerts et al., 2019).
However, the potential unintended consequences of applying this increased complexity
to the Arctic snowpack are yet to be explored (Dutch et al., 2022). I further address this
issue in Chapter 5.

2.4.3.3 Water phases

With the exception of GFDL-LM4 and JSBACH, most models in this study allow for
snow to undergo melting or refreezing processes. These phase transitions between ice
and liquid water significantly impact the energy distribution within the soil and exert a
crucial influence on the upper snow layer (Wang et al., 2017).

To handle these phase changes, LSMs typically use temperature as the prognostic
variable and employ a threshold freezing point to determine the occurrence of water
phase change. However, Wang et al. (2017) point out that this approach can lead to
instability issues with mass or heat conservation during numerical simulations. The
sudden variation in bulk (soil and water) hydraulic and thermal properties, especially a
dramatic change in soil hydraulic conductivity, at the freezing point, can cause numeri-
cal instability when solving the coupled energy and water balance equations.

In addition, ISBA and ORCHIDEE models take into account water vapor in their
snow representation. They include the parametrization proposed by Sun et al. (1999),
which represents the soil thermal conductivity due to vapor transfer in the snow de-
scribed in the next section. Estimates provided by researchers for the heat transported
by water vapor vary significantly, ranging from 10% to 40%, depending on the specific
characteristics of the snowpack studied (Sturm et al., 1997), while Mellor (1977) con-
cluded that at very low snow density values, vapor diffusion dominates the heat-transfer
process.

The consideration of phase changes and the inclusion of water vapor in these models
add complexity to better represent the energy distribution and improve the simulation of
snow processes. However, the impact of these considerations have not yet been tested
over the Arctic.

2.4.3.4 Snow thermal conductivity scheme

In this section, I briefly introduce snow thermal conductivity and explain various schemes
utilized by the models listed. A more comprehensive analysis of this topic in LSMs is
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presented in Chapter 5.
Snow thermal conductivity plays a pivotal role in determining the rate of heat trans-

fer to the underlying soil, which is arguably the most crucial model parameter within
snow physics (Hu et al., 2023) and one of the largest sources of uncertainty in LSM
(Langer et al., 2013).

Commonly, LSMs parameterize snow thermal conductivity as a function of simu-
lated snow density or snow temperature, Keff (Yen, 1981). Multiple statistical relation-
ships have been proposed based on experiments conducted in laboratories or on diverse
snowpacks around the world. Consequently, it is reasonable to assert that a statistical re-
lationship derived from experiments involving an alpine snowpack would significantly
differ from the actual Keff of a snowpack found in the Arctic tundra or on an ice sheet,
and vice versa. Moreover, the temperature range observed when those samples were
collected can significantly differ from Arctic permafrost regions (Sturm et al., 1997).

Within the list of models studied here, three use fixed values for snow thermal con-
ductivity (GFDL-LM4, JSBACH, and MATISRO6.0). Among the other non-static Keff

schemes, four distinct Keff approaches are employed:

• Jordan (1991) for CLM5 and ELMv0, is derived from a single study made of 5
observations from New Hampshire mountain areas snowpacks (Yen, 1962) and is
formulated as:

Keff = λair +
(
7.75× 10−5ρsno + 1.105× 10−6ρ2sno

)
(λice − λair) (2.12)

where λair, λice are the thermal conductivity of air = 0.023 Wm−1K−1, and ice
= 2.29Wm−1K−1, and ρsno is the snow density in kgm−3.

• Yen (1981) for ISBA and JULES, is determined from snow density using an equa-
tion fitted to results obtained by seven studies. Snow samples were collected in
St. Petersburg - Russia (13), Uppsala - Sweden (33), the French Alps (56), other
locations in Russia (16), Leipzig - Germany (18), and New Hampshire - USA (5),
plus an additional study from Russia I could not retrieve, for a total of minimum
141. The resulting equation is:

Keff = λice

(
ρsno

ρwater

)1.885

(2.13)

• Anderson (1976) for ORCHIDEE, is derived by the same exact group of studies
from Yen (1981) with two additional theoretical expressions from Schwerdtfeger
(1963) and Woodside (1958). It is formulated as:

Keff = 2.5× 10−6 (ρsno)
2 + 0.02 (2.14)
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• Mellor (1977) for CLASSIC1.0, is similarly derived by the same group of studies
from Yen (1981), but without samples from New Hampshire, and with five ad-
ditional studies. The additional snow samples were collected in Sapporo - Japan
(16), Massachusetts - USA (8), and New Brunswick - Canada (5), plus three un-
documented references for a total of minimum 170. It is presented in Verseghy
(1991) as:

Keff = 2.576× 10−6 (ρsno)
2 + 0.074 (2.15)

From equations 2.13 and 2.14, the additional simple parametrization from Sun et al.
(1999), considering vapor heat transfer within the snow, must be added:

P0

Pa

×max(0, k1 −
k2

Tsno − k3
) (2.16)

where Pa is the air pressure (hPa), P0 is a reference pressure equal to 1000 hPa, and
the coefficients k1 = -0.06023 Wm−1K−1, k2 = 2.5425 Wm−1, and k3 = 289.99 K.

Ignoring vapour heat transfer, Figure A.3 in Appendix A compares the four snow
thermal conductivity schemes depending on snow density. Overall, the equations differ
more at lower density values. Two groups emerge: (a) Yen (1981) and Anderson (1976)
and (b) Jordan (1991) and Mellor (1997) with higherKeff values for the later. Below 200
kgm−3 the two groups differ widely, and there is up to a factor of 2 as already discussed
in Wang et al. (2013), which are close to the typical snow density values found in the
Arctic (Royer et al., 2021). Equations differ greatly below 100 kgm−3 snow density but
such values are rarely observed in Arctic snowpacks.

Ultimately, Sturm et al. (1997) have conducted a comprehensive evaluation of all the
studies employed to establish the four Keff aforementioned equations, shedding light
on inherent issues. For instance, they emphasized that the studies underpinning the
derivation of the initial three equations relied on weathered boxed snow samples. In
addition, the latter three equations were derived without incorporating measurements of
crucial variables such as solar radiation and utilized compressed snow samples that were
not in thermal equilibrium. Moreover, their outcomes were considerably influenced by
data smoothing techniques. The insufficiency of documentation and precision inherent
in these methodologies are addressed in Chapter 5.

2.4.4 Vegetation representation

All models adopt a ”big-leaf” approach and have Plant Functional Types (PFT). Table
2.6 presents the variations in PFT utilized by each model for grid points designated as
vegetated. One significant difference observed among the models is the implementation
of a ”mosaic PFT tile,” or tile distribution. In this approach, a single grid point can
represent a distribution of PFTs rather than being characterized by a single PFT. This is
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Table 2.6 Vegetation Characteristics in Land Surface Models

LSM Vegetated PFTs PFTs linked to Arctic vegeta-
tion

CLM5 15 (tile distribution) C3 arctic grass, BDS boreal
ISBA 15 (tile distribution) C3 arctic grass, BDS boreal
ELMv0 14 (tile distribution) C3 arctic grass, BDS boreal
GFDL-LM4 5 (single) None
ORCHIDEE 11 (tile distribution) None
JULES 9 (tile distribution) None
JSBACH 17 (tile distribution) Tundra, BDS boreal
MATSIRO6.0 10 (tile distribution) None
CLASSIC1.0 4 (tile distribution) None

crucial in accurately representing vegetation heterogeneity over a region, as each grid
point typically covers an area of at least 10 km2. All studied models except GFDL-LM4
incorporate this mosaic PFT tile approach, contributing to a more realistic depiction of
the diverse vegetation in the region.

Regarding the PFTs associated with arctic vegetation used by the models, only four
LSMs employ the same two Arctic-based PFTs: CLM5, ISBA, ELMv0, and JSBACH.
However, JSBACH uses a ”tundra” PFT, which bears similarities to C3 grass but with a
reduced maximum rate of carboxylation in leaves (Chadburn et al., 2017). Curasi et al.
(2023) demonstrates that the inclusion of similar PFTs enhances the ability of LSMs in
simulating the carbon cycle over the Arctic region.

2.5 Conclusion and further research directions

This chapter aims to understand and consolidate fundamental model prerequisites for
the representation of permafrost soils in LSMs. After examining foundational heat and
water transfer principles, I examined soil physics, snow physics, and other key variables
in more detail. Then, I compared LSMs in CMIP6 to reveal their differences, capabil-
ities, and shortcomings in soil physics, soil hydrology, snow physics and vegetation
representation.

First, I delved into the different soil discretization methods employed in LSMs. I
observed significant variability in factors such as the number of soil layers, their dis-
tribution, and the maximum depths in the models, highlighting significant variability.
Based on two key criteria, the need for high-resolution modeling within the top 3 me-
ters of the soil column (Lawrence et al., 2019) and the recommended minimum depth
(Alexeev et al., 2007; Hu et al., 2023), I categorized the nine models studied into four
distinct groups.

This study then highlighted the profound importance of soil thermal conductivity
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schemes in accurately representing soil temperature and permafrost dynamics by exam-
ining various schemes from selected LSMs and observing their implications on soil
temperature representation. Through external comparative analysis, I identified the
Wang et al. (2016a) scheme used in ORCHIDEE yielded the most promising results.
Furthermore, I highlighted the value of considering the influence of soil organic matter.
Continued research in this field holds the potential to further enhance our understanding
of soil thermal conductivity representation in LSMs.

Next, I observed the diversity in approaches to representing soil hydrology, ranging
from multi-layered models to ”bucket” schemes. While the majority of models employ
the Richards equations to simulate water mass transfer and soil moisture dynamics,
the choice between two methods to derive the relationship between volumetric water
content and soil hydraulic conductivity lacks general consensus.

I examined various snow physics parameters including snow layering, densification,
water phases, and thermal conductivity. The models demonstrated differing approaches
to representing these complex processes, and I highlighted the importance of phase
transitions and water vapor in refining energy distribution within the soil. Additionally,
the discussion on snow thermal conductivity shed light on the challenges associated
with deriving accurate equations, given the wide range of snowpack conditions across
different regions. A comprehensive evaluation of existing studies by Sturm et al. (1997),
further discussed in Chapter 5, highlights limitations in current equations, emphasizing
the need for precise documentation and data.

Plant Functional Types (PFTs) is the common way to represent vegetation, where
mosaic PFT tiles emerged as a crucial approach to accurately portray vegetation het-
erogeneity. The significance of aligning PFT choices with Arctic-based vegetation was
highlighted, particularly in terms of enhancing the carbon cycle simulations over the
Arctic.

It is crucial to note that even for models encompassing the same processes, results
can significantly diverge. Such disparities arise due to variations in the finer points of
implementation, differing parameterizations, or resolutions-topics not examined here.
Overall, each of these LSMs represent a unique approach to simulating soil processes
and their interactions with the climate system. Choosing the most appropriate model for
a particular application depends on factors such as the spatial and temporal scale of the
simulation, the specific research question, and the available computational resources.
Low complexity models like GFDL-LM4 are likely to be more computationally effi-
cient. All of these elements are interconnected, further highlighting the importance of
synthetic evaluation of different yet related model aspects in improving our understand-
ing of the system.

In conclusion, the interactions between soil, snow, and vegetation within Arctic
permafrost regions are highly complex and sensitive to local conditions. The advance-
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ments in LSMs discussed here underscore the continuous efforts towards refining our
understanding and modeling capabilities. Further research and studies are essential to
validate and improve these models, facilitating their applicability in predicting climate-
related impacts and informing policy decisions in the face of changing environmental
conditions.

In the subsequent chapters, I delve into case studies involving the application of
CLM5 over the permafrost region, aiming to validate its performance and enhance our
insights into its potential strengths and limitations.
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CHAPTER 3

Evaluation of CLM5 against in-situ and grid-based observations

3.1 Introduction

Understanding the complex dynamics of land surface processes is crucial for unraveling
the intricate interplay between the Earth’s surface and the atmosphere. In permafrost
studies, the significance of accurate LSMs cannot be overstated. These models allow
us to represent the balance and exchanges of energy, heat, water, and carbon fluxes
operating in the soil.

The integration of high-resolution Regional Climate Models (RCMs) further en-
hances our ability to dissect land surface-atmosphere interactions with precision. As
highlighted by Sushama et al. (2007), the fine spatial resolution of RCMs enable a
comprehensive examination of localized climate phenomena. Unlike their global coun-
terparts, RCMs are bounded by lateral climatic data, which mitigates the risk of drifting
into divergent climatic states. This intrinsic constraint ensures that any deviations from
observed conditions are inherently linked to variations in model physics rather than an
evolving climate ”background”. By utilizing reanalysis data for driving these models,
we can align the simulated climate as closely as possible with observed conditions,
setting the stage for rigorous model evaluation. Burke et al. (2020) evaluated that the
restricted resolution of ESMs may contribute to the models’ difficulties in accurately
simulating summer thaw depths. RCMs offer a useful solution to this challenge.

This chapter evaluates the ability of the state-of-the-art CLM5, to accurately repli-
cate seasonal and annual ground temperature profiles, which are pivotal benchmarks for
representing the underlying permafrost dynamics. After a comprehensive description
of CLM5, I overview the different validation data and validation procedures used in
this study. Subsequently, I present the results and a discussion of this evaluation before
drawing conclusions in the final section.

Through this holistic investigation, I aim to unearth the strengths and limitations of
CLM5 in capturing the complex land surface processes that underpin Arctic permafrost
regions. By subjecting this model to rigorous scrutiny, I hope to enrich our under-
standing of its performance and contribute to the ongoing refinement of land surface
modeling approaches for permafrost studies.
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3.2 Community Land Model (CLM5) description

This study uses the Community Earth System Model (CTSM) (https://github.
com/ESCOMP/CTSM). CTSM is released by the National Center for Atmosphere
Research (NCAR) and is the default land component of the community-developed
CESM2, part of the CMIP6 experiment. CTSM is a three-dimensional process-based
model of the land surface and the terrestrial biosphere that calculates water, energy,
and carbon fluxes between the surface and different soil layers. The land component of
CTSM, known as the Community Land Model (CLM5), is prominently featured in this
study. In the subsequent sections, I refer to CTSM as CLM5 to simplify the discussion.

A comprehensive model description and global evaluation can be found in Lawrence
et al. (2019) and in the technical description in Lawrence et al. (2018).

Several updates and parameterizations have been introduced in CLM5 compared
to CLM4.5, enhancing its performance in simulating various processes. Among oth-
ers, these updates include improvements in snow density, hydraulic redistribution, and
nitrogen cycling.

The model stratigraphy includes a complex 25 soil layers representation, with a
bottom layer at around 50 meters. Compared to the previous iteration of CLM5, the
soil layer resolution of the default model is increased, especially in the first 3 meters,
to more explicitly represent the active layer thickness (ALT) in permafrost areas, a
key element in this study. Soil texture (fraction of sand, clay and silt) and organic
matter density (OMD) are derived from Bonan et al. (2002a) and Hugelius et al. (2013),
respectively. The fractions vary with depth for the first 10 layers but are constant for the
following 15 layers.

The representation of spatial land surface heterogeneity in CLM involves a nested
subgrid hierarchy. In this hierarchy, grid cells are composed of multiple land units,
columns, and patches, as illustrated in Figure A.4, Appendix A. Notably, each grid cell
can have a different number of land units, with each land unit accommodating a distinct
number of columns. Furthermore, multiple patches can exist in the vegetated land units,
each representing a specific Plant Functional Type (PFT).

In my configuration, vegetation heterogeneity is characterized by using a fraction
of 15 + 2 different PFTs in each grid cell, including 1 PFT for crops, and 1 PFT for
bare soil (absence of vegetation), sharing the same soil column. Radiation, tempera-
ture, and interception are calculated for each PFT separately. All PFTs share common
equations but with different parameters, except for leaf phenology. This study uses the
satellite phenology mode where stem and leaf area indices are derived from monthly
climatologies.

CLM5 calculates radiative fluxes for shortwave radiation as an interaction of the
optical properties of the canopy and surface with the descending shortwave radiation.
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Shortwave radiation in the visible and near-infrared range is considered separately for
diffuse and direct light. The net shortwave radiation is therefore dependent on a number
of optical properties of the vegetation and snow, including the stem and leaf area index,
ice grain size distribution of the snow pack, and aerosol deposits in the snow.

The heat transfer equation 2.5, presented in Chapter 2, is solved numerically to cal-
culate the soil, snow, and surface water temperatures for the 25-layer soil column and
zero heat flux at the bottom of the soil column. The numerical solution is described
in https://escomp.github.io/ctsm-docs/versions/master/html/

tech_note/Soil_Snow_Temperatures/CLM50_Tech_Note_Soil_Snow_

Temperatures.html#numerical-solution. At each time iteration, the snow/soil
temperatures are evaluated to determine if phase change takes place. Chapters 2 and 4
describe the equations in detail.

Hydrology calculations, including the Richards equation 2.9 presented in Chapter
2, occur in the upper 20 soil layers, while the 5 bedrock layers are considered to be
impermeable for water. The numerical solution is described in https://escomp.
github.io/ctsm-docs/versions/master/html/tech_note/Hydrology/

CLM50_Tech_Note_Hydrology.html#numerical-solution. Vertical soil
moisture transport in the model is driven by infiltration, surface and subsurface runoff,
gradient diffusion, gravity, canopy transpiration through root extraction, and interac-
tions with groundwater, respecting the conservation of mass.

van Kampenhout et al. (2017) recently substantially modified the snow module. It
includes a calculation of snow compaction, fraction of snow covered, ice and water con-
tent driven by mass conservation, and particle deposition (of black, organic carbon and
mineral dust). The vertical discretization includes a maximum of twelve snow layers
in an Eulerian method, in which each layer has a prescribed maximum thickness. The
model assumes a maximum snow depth (or snow cap) of 10 meters snow water equiv-
alent (SWE) to avoid runaway snow. Any mass exceeding the snow cap (whether rain
or snow) is channelled to the river component. The snow module is further discussed in
Chapter 5.

Figure 3.1 shows a schematic illustration of processes simulated by CLM5. Overall,
CLM5 is characterized by comprehensive and well-developed hydrothermal processes
and has been extensively used to study permafrost (Cai et al., 2019; Lawrence et al.,
2019; Birch et al., 2020; Dutch et al., 2022; Cheng et al., 2023), making it an effective
tool for this study.

3.2.1 Model set-up

The model version used throughout this study is ctsm5.1.dev086, forked version https:
//github.com/AdrienDams/CTSM/.
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Fig. 3.1 Schematic representation of primary processes in CLM5. SCF = snow cover
fraction. Note that not all soil levels are shown. Not all processes are depicted. Op-
tional features that are not active in default configurations are italicized (adapted from
Lawrence et al. 2019).

Fig. 3.2 Domain used in this study. The common coordinate projection used is a north
polar stereographic with a central longitude of 0°and central latitude of 90°N. The
colours represent the most dominant (left map) and second most dominant (right map)
PFT for each grid point. NET - Needleleaf evergreen tree, NDT - Needleleaf deciduous
tree, BET - Broadleaf evergreen tree, BDT - Broadleaf deciduous tree, BES - Broadleaf
evergreen shrub, BDS - Broadleaf deciduous shrub.
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The domain is specially developed for this case study. It covers the entire north pole
from the latitude 57 N. The surface is represented by a non-regular icosahedral grid de-
veloped using the ICON tool (https://webservice.dwd.de/cgi-bin/spp1167/
webservice.cgi). This type of grid was used to compare the results of this study to
future works using an ICON-CLM5 coupling infrastructure. To our knowledge, this is
the second time CLM5 has run on such domain, following a prior study by Birch et al.
(2020), who used a similar Pan-Arctic domain but at a coarser resolution. The domain
consists of 204086 grid points with a triangular resolution which varies approximately
between 116.25 and 179.37 km2, giving a rectangular resolution of around 12 km2.
Figure 3.2 represents the domain used in this study with the two most prominent PFT
for each grid point.

The default meteorological forcings data (CRU/GSWP3) are replaced by the finer
resolution ERA5 forcings from 1980 to 2021. ERA5 description can be found in Hers-
bach et al. (2020). The forcing is at an hourly timestep and on a 0.25°(around 14 km2)
latitude-longitude grid. To our knowledge, this is the second time that CLM5 was used
with large scale resolution forcings, after Cheng et al. (2023). While this increase in
resolution should represent a substantial improvement over previous global reanalysis
methods used (Albergel et al., 2018), it also introduces additional uncertainty, as the
model was not parameterized with these settings as its default configuration.

Supplementing the default model configuration, several adjustments were effectu-
ated. To save computation time, this study uses the satellite phenology (SP) set-up,
meaning it does not include complex carbon cycle interactions, and the land-ice and
river routing models (MOSART) were deliberately deactivated. Furthermore, recali-
brations to the snow initialization protocol were made, with the snow water equivalent
(SWE) restricted to 0.8 meters, deviating from the default 10 meters. This refinement
aims to avert the unrealistic distortion that was engendered by the former ceiling of 10
meters, leading to snow heights upwards of 20 meters in non-glaciated regions. Ad-
dressing this significant bias requires further study.

To start the run in an equilibrium state, a spin-up of 30 years using ERA5 reanalysis
(looping from 1980 to 1989) was used before running the model from 1980 to 2021 (42
years). Results from the spin-up can be found in Appendix A, Figure A.5.

3.3 Validation data

I used three datasets to evaluate the Arctic region, including two different in-situ datasets
and one derived from remote sensing products, all of which offer complementary per-
spectives.
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Fig. 3.3 Location of the 295 borehole stations used. The size of each point represents
the number of data records per station over the whole period and for all depths.

3.3.1 In-situ ground temperature stations data

In the western Arctic region, the availability of daily long-term soil temperature records
(spanning a minimum of 10 years) is notably limited. The inception of continuous
measurements only commenced in the late 1990s, and even these measurements rarely
extend beyond a depth of 1 meter (Matthes et al., 2017).

I expanded upon the dataset used by Matthes et al. (2017) to comprise a distinc-
tive and diverse network encompassing 295 borehole stations across the entire Arctic
pole, represented in Figure 3.3. This comprehensive dataset is denoted as ”295GT”
and encapsulates a temporal span of 42 years, from 1980 to 2021. I use monthly aver-
ages to expedite the analysis, preventing an an investigation into daily variation. Data
were obtained from various sources: the Permafrost Laboratory website (https://
permafrost.gi.alaska.edu), the GTN-P database (http://gtnpdatabase.
org), the Nordicana D website (https://nordicana.cen.ulaval.ca/), and
the Roshydromet network (http://aisori-m.meteo.ru/).

Ground temperatures have been recorded across 278 distinct depth levels, ranging
from 0.01 m to 60 m. To align with the soil ceiling defined by CLM5, I confined my
analysis to a depth of 50 m.

3.3.2 Circumpolar Active Layer Monitoring Network (CALM)

In addition to the stations measuring ground temperature, I also used the Circumpolar
Active Layer Monitoring Network (CALM), as described in Shiklomanov et al. (2012).
CALM is a large-scale effort to construct a station network where the seasonal depth
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of thaw is measured over 124 CALM stations operated by researchers from Canada,
Denmark/Greenland, Norway/Svalbard, Russia, and the United States/Alaska.

3.3.3 ESA Climate Change Initiative

In parallel to in-situ based data, I also used grid-based products from the European
Space Agency (ESA) Climate Change Initiative (CCI). Throughout this study, I ref-
erence this dataset as ”ESA-CCI.” A detailed account of the data and its validation
procedures can be found in Heim et al. (2021).

The ESA-CCI initiative constitutes a global monitoring program meticulously de-
signed to deliver Earth Observation Essential Climate Variables (ECVs) products over
extended temporal spans.

ESA-CCI products encompass ECVs with a very high pixel resolution of 1 km2

and include mean annual ground temperature (MAGT) at distinct ground depths of 1,
2, 5, and 10 meters, Active Layer Thickness (ALT), and permafrost fraction (PFR). The
geographical extent of these products spans the Northern hemisphere above 30°N within
an Arctic stereographic circumpolar projection. The temporal coverage for MAGT,
ALT, and PFR time series ranges from 1997 to 2019 at an annual resolution.

Considering the evaluation conducted by Heim et al. (2021), the ESA-CCI dataset
exhibits a median bias of -1.12°C for MAGT. Disparities are concentrated along the
southern boundary of the permafrost extent in the Eurasian region. With regard to ALT,
residuals exceeding 1 meter are prominent within warmer permafrost zones situated in
forested areas encompassing Alaska, Canada, and Central Siberia. Lastly, PFR demon-
strates a high agreement with observed values.

3.4 Validation procedures and algorithms

This study introduces a new validation procedure. The semi-automated evaluation in-
cludes different techniques of comparisons with in-situ based and grid-based data. All
the algorithms can be found in https://github.com/AdrienDams/cegio and
are described below.

My validation methods aim to comprehensively integrate and analyze (1) temporal
scale variations, (2) spatial distributions, and (3) depth variations, in the context of per-
mafrost assessments. Generally, previous studies tend to prioritize one of these aspects
at the expense of the others. In contrast, my approach aims to emphasize all three di-
mensions concurrently. The aim is to maintain the depth spread that I find essential to
evaluate the capabilities of a land model.
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3.4.1 295GT

To compare the model outputs with the 295GT dataset, I compare each station to the
nearest grid point and perform a linear interpolation using the two closest CLM5 depth
level options.

3.4.2 CALM

ALT is computed from the model outputs by deriving a curve of maximum annual
ground temperature (MaxAGT) depending on depth, using a spline to fit the available
data points. I find the depth at which this curve crosses from unfrozen to frozen soils and
calculate ALT as the depth corresponding to 0°C. Thalik formations were disregarded.
Figure A.2 in Appdenix A shows a schematic representation of how I calculated ALT.

3.4.3 ESA-CCI

To compare the results to ESA-CCI products, I aggregated ESA-CCI products to the
domain grid using a conservative second-order regridding equation described in Jones
(1999).

The equations to determine the PFR at each grid point within CLM5 is determined
by the following equation:

PFR =

1, 1
M

∑M
y=1 minz=1,N maxt(y)=1,2Y Ti(z, t(y)) < 273.15K

0, 1
M

∑M
y=1 minz=1,N maxt(y)=1,2Y Ti(z, t(y)) ≥ 273.15K

(3.1)

where M is the number of years minus one (41 in our setup), z is the index for the
depth, N is the number of depths, t is the index for the days in the year y and the next
year, Y is the number of days in a year, and Ti(z, (t(y)) is the temperature depending
on the day, depth and grid cell.

In simple terms, I first calculated the maximum temperature over a two-year period
for each grid cell and each layer. Then, I calculated the vertical minimum to see if
there is one layer that is continually frozen over these two years. From this, I obtained
a temperature data grid for each year, which I then averaged over the period spanning
1997 to 2019 to fit ESA-CCI products period. Subsequently, I classified grid points
into two categories: those with temperatures below 0°C were designated as permafrost,
while those with temperatures above 0°C were classified as non-permafrost. It is worth
noting that this method provides a binary definition of permafrost, in contrast to other
datasets like ESA-CCI, which offer a quantitative representation of permafrost ranging
from 0 to 100% resulting from to their ensemble-members experiments.
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Fig. 3.4 Period (1997 to 2019) MAGT at 1m depth in°C for CLM5 (left) and ESA-CCI
(right). Darker blue indicates that colder temperature. ESA-CCI data are aggregated on
the CLM5 grid using a conservative projection method.

To reconcile this difference, I adopted three classes for the ESA-CCI data: con-
tinuous if greater than 90%, discontinuous if between 50% and 90%, and free if less
than 50%. Six distinct masks were then created to facilitate the comparison between
the two CLM5 model permafrost classifications and three ESA-CCI product permafrost
classifications (see Fig. 3.11).

The determination of ALT at each grid point within CLM5 is calculated in a similar
way as described in the section above. The resulting ALT data for both the model and
ESA-CCI were subsequently period-averaged from 1997 to 2019.

To obtain the final maps, I made a simple grid difference between the CLM simu-
lation and ESA-CCI for (a) MAGT, (b) PFR and (c) ALT period-averaged products. In
addition, I calculated the Mean Absolute Deviation (MAD - Equation B.7 in Appendix
B) and Root Mean Square Error (RMSE - Equation B.6 in Appendix B) for MAGT and
ALT. In my case, predicted values are results from the model and observed values are
ESA-CCI products. A lower MAD indicates that the model’s predictions are closer to
the actual values, while a lower RMSE indicates that the predictions are closer to the
actual values on average.

3.5 Results

3.5.1 Soil temperature

Fig. 3.4 and Fig. 3.5 display the mean annual ground temperature (MAGT) at 1 meter
between CLM5 and ESA-CCI. I deliberately chose to show values at 1 meter of depth
exclusively because my results show that the spatial variation is much stronger than the
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Fig. 3.5 Period (1997 to 2019) MAGT at 1m depth difference between CLM5 and ESA-
CCI in°C. Darker blue colour represent CLM5 soil temperature is colder than ESA-
CCI. ESA-CCI data are aggregated on the CLM5 grid using a conservative projection
method.
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depth variation, making it more relevant to this analysis.
The climatology pattern in Fig. 3.4 is similar to ESA-CCI, but their difference

in Fig. 3.5 is very significant. In general, the model shows a much colder domain,
especially over Siberia where temperature differences are up to -8°C. Over the Alaskan
region, the model is much closer to ESA-CCI, with some areas still showing a difference
around -2°C.

Some positive bias is observed over mountainous regions, such as the north coast
of Baffin Island. However, this is likely attributed to the difference in resolution of
the two products. ESA-CCI derives its forcings from daily ERA5 reanalysis data and
are downscaled using the 1 km Global Multi-resolution Terrain Elevation Data (West-
ermann et al., 2020). Using this process, ESA-CCI uses atmospheric forcings on a
much finer resolution (1 km2) than the atmospheric forcings utilized in this study (12
km2). This difference in resolution allows ESA-CCI to more accurately represent cold
high-elevation areas, explaining the observed warm bias.

Fig. 3.6 compares soil temperature at 278 depth levels between CLM5 (simulation
on y-axis) and 295 stations (observation in x-axis). I used the 295GT (in-situ observa-
tions database) because it provides monthly averages instead of period annual averages,
creating a better picture of the model’s accuracy in representing soil temperature. Ad-
ditionally, this offers an effective tool to analyze seasonality of permafrost.

TheR2 coefficients are highly dependent on the region, and there is a linear gradient
from high coefficients in the west to low coefficients in the east. Alaska has the highest
coefficient of 0.77, while Eastern Russia has a low coefficient of 0.51. This indicates
that the model is better able to represent soil temperature in some regions than others.

Regarding the data points on the scatter plot, one can observe that they are spread
around both 0-degree lines, forming what I refer to as the ”zero-curtain cross anomaly”.
This phenomenon can be attributed to the mismatch in timing between thawing and
freezing during phase transition. For instance, when observations cross the 0°C thresh-
old in a positive direction, two scenarios may unfold: (1) the model is in a thawing
phase, and its predicted values closely match the observations, or (2) the model has not
yet initiated thawing, and its predicted values are colder than the observed ones. These
scenarios can occur in both directions and are a consequence of the model’s simplified
representation of latent heat energy.

Looking at specific regions does not reveal a clear trend in Alaska in terms of
depth differences (Figure 3.7a). However, when we examine the correlations between
months and soil temperature, the coefficients are much lower (Figure 3.7b) than the
year-averaged coefficient. Specifically, for every month, the correlation loses 0.1 points
on average, with a more pronounced decrease of 0.2 points in winter.

We can observe a different trend in Eastern Siberia. Unlike Alaska, there is a clear
decrease in soil temperature correlation with increasing depth (Fig. 3.8). Interestingly,
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Fig. 3.6 Soil temperature at 278 depth levels comparison between CLM5 (simulation
on y-axis) and 295GT (observation in x-axis) in°C. Monthly averages between 1980
to 2020. Each colour represents the region location (see legend). Lines represent an
attempt at correlation between the observed and simulated values and R coefficients
are shown in the legend for each region. The map shows an approximation of the
regionalisation.
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(a) Soil temperature at different depths (b) Soil temperature for different months

Fig. 3.7 Comparison of soil temperature between CLM5 and observations in Alaska.
Figure 3.7a shows the scatter plot of soil temperature at different depths, while Fig-
ure 3.7b shows the scatter plot of soil temperature for different months. The different
colours represent the depth bins and the twelve months, respectively. The lines repre-
sent the attempted correlation between the CLM5 simulations and observations, and the
R coefficients for each panel are shown in the legend.

(a) Soil temperature at different depths (b) Soil temperature for different months

Fig. 3.8 Comparison of soil temperature between CLM5 and observations in Eastern
Siberia. Figure 3.8a shows the scatter plot of soil temperature at different depths, while
Figure 3.8b shows the scatter plot of soil temperature for different months. The different
colours represent the depth bins and the twelve months, respectively. The lines represent
the attempted correlation between the CLM5 simulations and observations, and the R
coefficients for each panel are shown in the legend.
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(a) Alaska (b) Canada (c) European Siberia

Fig. 3.9 Heatmaps of the period average (1980-2021) soil temperature for CLM5 and
295GT. Months are on the x-axis and the depth bins are on the y-axis. The first, second,
third and fourth rows show the CLM5 averages, 295GT averages, their difference and
the RMSE, respectively.

below a depth of 3.20m, the correlation coefficient drops from 0.4 to 0, indicating that
the model is no longer able to accurately match the observations. Furthermore, when
looking at the correlation by month, there is only a significant correlation during the
summer, and no correlation between the observations and the model during the rest of
the year.

The next figures, Fig. 3.9 and 3.10, present heatmaps of the period average soil
temperature for CLM5 and 295GT for six regions: Alaska, Canada, Eastern Russia,
Northern Europe, Western Russia, and the Tibetan Plateau.

The analysis reveals that the model is generally colder than observations across all
months, depths, and regions. However, there are some specific discrepancies worth
highlighting. Over Canada, the model shows winter temperatures that are warmer than
observations, especially at the surface. This discrepancy is likely due to the model’s
poor representation of snow depth over certain islands in the Arctic, where many Cana-
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(a) Western Siberia (b) Central Russia (c) Eastern Siberia

Fig. 3.10 Heatmaps of the period average (1980-2021) soil temperature for CLM5 and
295GT. Months are on the x-axis and the depth bins are on the y-axis. The first, second,
third and fourth rows show the CLM5 averages, 295GT averages, their difference and
the RMSE, respectively.
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Fig. 3.11 Permafrost extent area mask difference between CLM5 and ESA-CCI. Refer
to the legend for colour meanings. ESA-CCI data are aggregated on the CLM5 grid
using a conservative projection method.

dian observation stations are located. Over Alaska, the model exhibits warmer temper-
atures than observed in summer, although this disparity is less prominent than the one
observed in Canada.

Appendix C provides a supplementary analysis that complements the regional study
of soil temperature presented in the preceding chapter. This appendix offers a detailed
comparison of temperature data from a selection of 10 stations, each carefully chosen
to enhance our understanding of specific aspects related to soil temperature variations.

3.5.2 Permafrost extent

There is strong agreement between the CLM5 and ESA-CCI permafrost extents, with
93% of the two datasets overlapping, including the discontinuous Arctic permafrost
regions (Fig. 3.11), with a total extent of 13.358 and 12.544 ×106 km2 for CLM5 and
ESA-CCI, respectively. However, there is a slight overestimation of permafrost extent
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Fig. 3.12 Period (1997 to 2019) annual averages of Active Layer Thickness (ALT) in
meters for CLM5 (left) and ESA-CCI (right). Darker green indicates deeper ALT. ESA-
CCI data are aggregated on the CLM5 grid using a conservative projection method.

in the CLM5 results in the southern regions of Alaska, Canada, and particularly Siberia.

3.5.3 Active Layer Thickness (ALT)

The period annual averages and their difference of ALT between the CLM5 climate
model and the ESA-CCI remote sensing product are shown in Fig. 3.12 and Fig. 3.13,
respectively. Both figures exhibit stark contrasts at the borders of the domain, which we
consider to be warm Arctic permafrost regions. Specifically, the CLM5 model shows
large ALT values in these areas, with depths reaching up to 6 meters and even deeper
locally. Additionally, some mountainous areas also display large differences of up to 4
m in ALT. However, in the majority of the domain above 65 °N, the CLM5 model is
within 1 meter of the ESA-CCI product. These findings suggest that while the CLM5
model performs well in some areas, there are notable discrepancies in the warm Arctic
permafrost regions and mountainous areas. However, ESA-CCI products are known to
be underestimated in these areas (Heim et al., 2021).

Fig. 3.14 compares the annual period difference of ALT between the CLM5 model
and in-situ observations from the CALM network. Similar to the comparison with the
ESA-CCI product, there is a strong agreement between the CLM5 model and CALM
observations above 65°North.

However, in the warm Arctic permafrost regions over Alaska, there were large dif-
ferences between the two datasets. Unfortunately, due to a lack of local CALM stations,
I was unable to confirm whether this pattern extends to the warm Arctic permafrost re-
gions over Siberia. Overall, these results confirm that the CLM5 model performs well in
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Fig. 3.13 Period (1997 to 2019) annual difference of Active Layer Thickness (ALT) in
meters between CLM5 and ESA-CCI. Darker red indicates that CLM5 ALT is deeper
than ESA-CCI ALT. ESA-CCI data are aggregated on the CLM5 grid using a conserva-
tive projection method.

58



Fig. 3.14 Period (1990 to 2021) annual difference of Active Layer Thickness (ALT)
in meters between CLM5 and CALM network. The background represents the ALT
period average of CLM5. Coloured dots represent the ALT difference for each location
between CLM5 and CALM. Darker red indicates CLM5 ALT is deeper, darker blue
means CALM ALT is deeper.
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Fig. 3.15 Active Layer Thickness (ALT) year averages in meters of CLM5 against
CALM for the western (blue) and eastern (orange) Arctic. The blue line represents
an attempt of correlation between the observed and modeled values.

certain regions but struggles in others, particularly in warm Arctic permafrost regions.
Fig. 3.15 offers an alternative comparison of annual average ALT between CLM5

and the CALM network, without averaging over time periods. This allows us to capture
the full variability of the ALT at the CALM sites. To further analyze the results, I
divided the domain into two regions because of their distinct patterns: the West Arctic,
which includes Greenland, Canada, and Alaska, and the East Arctic, which includes
Europe and Siberia. The scatter plot in the West Arctic shows a poor performance
of the CLM5 model with no significant correlation found with the in-situ data. This
is likely due to most of the CALM stations in this region being located in the warm
permafrost areas where we previously observed large differences between the CLM5
model and the ESA-CCI product. On the other hand, the comparison in the East Arctic
was slightly better. However, the model tends to overestimate ALT above 1 meter.

3.6 Discussion and conclusions

This chapter presents the first evaluation of a regional land surface model to use three
distinct datasets of in-situ observations and remote sensing products over the Arctic cov-
ering a period of 42 years (from 1980 to 2021). This aligns with the recommendations
of previous studies in high-latitude regions calling for model evaluations that involve
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multiple sources of observations and cover temporal periods of a minimum of 10-30
years (Mooney et al., 2020). Furthermore, my approach tackles the limitations of tradi-
tional evaluations by addressing depth, seasonality, and regional variations individually,
instead of sacrificing one for the others. This allows for a comprehensive assessment
of permafrost and soil temperature dynamics. Furthermore, to enable accessibility and
facilitate future research, all algorithms are publicly available online.

As anticipated from my literature review, both comparisons against borehole station
datasets and the European Space Agency Climate Change Initiative products (ESA-
CCI) reveal a significant cold temperature bias across all months, depths, and regions,
particularly over Siberia. However, the model displays significantly warmer values
compared to ESA-CCI over mountainous areas, which is likely linked to the difference
in resolution between the two products. This pattern could not be confirmed with the
borehole dataset, as there are few stations situated above 1000 meters.

The results demonstrate that CLM5 is in strong agreement with ESA-CCI in sim-
ulating permafrost extent, albeit with a slight overestimation in the southern parts of
the domain. Concerning the active layer thickness (ALT), there is significant agreement
between CLM5 and both ESA-CCI products and the CALM network above 65°N.

However, this evaluation reveals a substantial overestimation of ALT over warm
Arctic permafrost regions. Interestingly, the presence of the cold bias may potentially
obscure areas where the ALT evaluation is accurate. It is plausible to anticipate a higher
degree of overestimation in ALT if the model’s cold bias is eliminated. Nevertheless,
ALT primarily depends on the maximum annual ground temperature (MaxAGT), which
might not be significantly impacted by the observed cold bias.

One major issue with CLM5 is its inability to properly represent seasonality of soil
temperature, which leads to a spurious high yearly correlation, as the months tend to
offset each other. This issue is particularly pronounced in Eastern Siberia. Taking the
period and year average, as is typically done in the literature, smooths the results, but the
actual comparison between the model and the observations is likely to be much worse.
Similar trends emerge when examining the correlation between ALT annual averages,
which is notably weaker than when averaging over specific time periods.

It should be noted that CLM5 is run at a relatively coarse horizontal resolution (12
km2), while observations are mainly point-scale or representative of a much smaller
area (1 km2), and therefore not highly representative of large area means, particularly
for complex terrain (Dankers et al., 2011). Moreover, grid-averaged soil properties and
coarse-resolution atmospheric forcings might also introduce biases in the comparison
between observed and simulated variables. Therefore, comparisons between observed
and simulated results should be viewed as an indication of the model performance rather
than a true in-situ validation.

In conclusion, the CLM5 model exhibited both strengths and weaknesses in sim-
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ulating permafrost properties and dynamics. While it showed good agreement with
ESA-CCI in simulating permafrost extent, its significant cold temperature bias, partic-
ularly over Siberia, is a major limitation. Moreover, the model’s overestimation of the
ALT over warm Arctic permafrost regions, coupled with its inability to properly repre-
sent seasonality, calls for caution when interpreting the model results. The findings of
this study have important implications for guiding future model development, and for
understanding the impacts of permafrost dynamics on climate and ecosystems.

I conduct two sensitivity experiments to address the cold bias observed:

• In Chapter 4, the first experiment (Research question 3) focuses on the summer
snow-free period, where insulation is primarily influenced by soil texture and
organic matter. By introducing a novel approach to derive these variables, I aim
to enhance the representation of summer conditions.

• In Chapter 5, the second experiment (Research question 4) concentrates on the
winter period, where snow thermal insulation dominates the heat transfer pro-
cesses. By modifying the snow scheme, I aim to improve the representation of
winter conditions.
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CHAPTER 4

Sensitivity experiment on soil texture and soil organic matter

4.1 Introduction

In order to predict the future impacts of climate change on permafrost, it is crucial
to develop accurate models that can simulate permafrost dynamics. LSMs have been
developed to simulate the land surface and soil layers and predict future climate change.
Soil thermal and hydrologic conductivities are key variables in these models, and they
are greatly influenced by soil texture (proportions of sand, clay, and silt (SCS) in a soil)
and soil organic matter (SOM), represented by the organic matter density (OMD) in
LSMs (see Chapter 2). The latter emerges as a pivotal factor, particularly considering
that soils in Arctic permafrost regions store substantial quantities of carbon (Schuur
et al., 2008).

Typically, most LSMs derive the SCS and OMD proportions for each grid point
through coarse resolution grid maps that are subsequently interpolated on the grid. Two
prominently employed databases tailored to the high-latitude regions are the global Har-
monized World Soil Database (ITPS, 2020) and the Northern Circumpolar Soil Carbon
Database (NCSCD, Hugelius et al. 2013). The NCSCD gathers 1778 pedons from
Arctic permafrost regions for an extensive circumpolar coverage. However, Hugelius
et al. (2013) have highlighted various challenges associated with employing the NC-
SCD database:

• Generalization and Ecological Fallacy: Maps at smaller scales tend to be more
generalized, thereby introducing the modifiable areal unit problem (MAUP) and
ecological fallacy. MAUP underscores the imposition of arbitrary spatial divi-
sions rooted in the analysis scale, while ecological fallacy occurs when findings
derived from aggregated data are erroneously assumed to be valid for individual
data points within that aggregation. In the context of the NCSCD, this pertains to
using pixel values from gridded datasets for localized analyses.

• Gridded Data Limitations: Gridded NCSCD datasets consist of high-resolution
pixels derived from polygon units of varying resolutions. Consequently, prudence
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is essential when applying these datasets to local-scale analyses involving a lim-
ited number of pixels. Pixel values reflect their immediate spatial context and the
surrounding conditions.

• Uncertainties and Errors: Quantitative assessments of uncertainties/errors linked
to using NCSCD for SOC storage estimation are presently lacking. Distinct con-
fidence levels have been ascribed to circumpolar SOC estimates, predicated on
the availability of regional data. The extent of uncertainties hinges on landscape
intricacy and the scale of study.

• Landscape Complexity and Scale: Endeavors conducted on a circumpolar scale
are predisposed to heightened variability and uncertainty due to the intricate na-
ture of landscapes. In contrast, regional investigations may yield lower uncertain-
ties in SOC estimates.

This chapter addresses these caveats through a sensitivity experiment, wherein soil
texture and SOM are derived using a novel approach. This sensitivity experiment seeks
to assess the influence of this new method on permafrost dynamics by juxtaposing its
outcomes with those attained through the original method.

Following this introduction, the second section provides a brief overview of soil tex-
ture and SOM, and how they affect soil thermal and hydrologic conductivities in CLM5.
The third section describes the new method used in this experiment. The fourth section
presents the results of the sensitivity experiment. Finally, the last section discusses
implications for permafrost dynamics.

4.2 Soil texture and soil organic matter in CLM5

Model soil thermal and hydraulic conductivities are defined via mineral soil parameter-
izations that are dependent on soil texture and SOM, which are then used to simulate
the soil temperature and moisture content. As explained in Chapter 2, soil texture rep-
resents the relative percentages of sand (particle size of 0.05 to 0.2 mm), silt (particle
size of 0.002 to 0.05 mm), and clay (particle size below 0.002 mm), while soil organic
carbon is represented as a parameter, called organic matter density (OMD) in kg/m3.

In CLM5, soil texture and OMD are derived from Bonan et al. (2002a) and Hugelius
et al. (2013), respectively. This dataset reports carbon down to 1 meter depth and is par-
titioned across the top 10 CLM5 layers (approximately 1m36 in depth) as in Lawrence
et al. (2019).

The following subsections use Lawrence and Slater (2008) demonstration to link
soil texture and SOM with soil thermal and hydraulic conductivities, and heat capacity.
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4.2.1 Soil thermal conductivity

In CLM5, soil thermal conductivity is a parameter that is used to calculate the temper-
ature of the soil at each depth. Soil heat conduction is solved numerically in CLM5 via
the heat transfer equation 2.5 explained in Chapter 2:

c
dT

dt
=

d

dz
[λs

dT

dz
] (4.1)

For each of the top ten soil layers, soil thermal conductivity is calculated as a com-
bination of the saturated λsat and dry λdry thermal conductivities weighted by a normal-
ized thermal conductivity:

λ = Keλsat + (1−Ke)λdry (4.2)

The Kersten number Ke, is a function of the degree of saturation Sr and phase of
water for unfrozen and frozen soils in the equations:

Ke = log(Sr) + 1 (unfrozen soil) (4.3)

Ke = log(Sr) (frozen soil) (4.4)

Below a degree of saturation Sr of 10−7, the soil thermal conductivity is equal to:

λ = λdry (4.5)

Below the top ten soil layers, λ is equal to λbedrock = 3 W m−1 K−1 which is the
thermal conductivity assumed for the deep ground layers (typical of saturated granitic
rock).

I focus exclusively on the saturated thermal conductivity, with no consideration for
the dry thermal conductivity, as the latter remains independent of soil texture or SOM.

4.2.1.1 Saturated thermal conductivity

The saturated thermal conductivity λsat depends on the thermal conductivities of the
soil solid, liquid water, and ice constituents:

λsat = λ1−θsat
soil λ

θliq
θliq+θice

θsat

liq λ
θsat

(
1−

θliq
θliq+θice

)
ice (4.6)

where λsoil, λliq and λice are the soil, liquid water and ice thermal conductivities,
respectively, and θsat, θliq and θice are the volumetric saturated, liquid and ice water
contents, respectively.

In this experiment I focus exclusively on soil solid thermal conductivity λsoil, which
varies with the soil texture and SOM:
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λsoil = (1− fom)λst + fomλom (4.7)

While this study primarily modifies soil solid thermal conductivity, the alterations
can indirectly affect soil moisture due to its dependence on soil texture. This results in
implicit changes in water content, even though there have been no adjustments to the
calculation of thermal conductivity related to liquid water content.

In equation 4.7, there are three key variables. First, fom is the soil organic matter
fraction:

fom = omd/omdmax (4.8)

where omd is the organic matter density and omdmax = 130 kg m−3 is the maximum
soil carbon density, equivalent to a standard bulk density of peat (Lawrence and Slater,
2008).

Second, λst is soil texture thermal conductivity and is empirically derived as:

λst =
8.80 (%sand) + 2.92 (%clay)

(%sand) + (%clay)
, (4.9)

where %sand and %clay are the percentages of sand and clay.
Finally, λom is the thermal conductivity of SOM solid and has been empirically

derived as equal to 0.25 W m−1 K−1 (Lawrence and Slater, 2008).

4.2.2 Soil heat capacity

The volumetric soil heat capacity introduced in equation 4.1 is a function of the heat
capacities of the soil solid, liquid water, and ice constituents:

c = csoil (1− θsat) +
wice

∆zi
cice +

wliq

∆zi
cliq (4.10)

where csoil, cliq and Ccice are the specific heat capacities (J kg−1 K−1) of soil solid,
liquid water and ice, respectively. As with the thermal conductivity, this study focuses
only on the soil solid. csoil is derived at each of the first ten soil layers as:

csoil = (1− fom)cst + fomcom (4.11)

where com is the the heat capacity of SOM and equals 2.5×106 J m−3 K−1 (Lawrence
and Slater, 2008). cst is the heat capacity of the soil texture and is empirically derived
as:

cst =

(
2.128 (%sand)i + 2.385 (%clay)i

(%sand)i + (%clay)i

)
× 106 (4.12)
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Below the first ten layers, cst is simplified as the heat capacity of the bedrock
cs,bedrock = 2× 106 J m−3 K−1.

4.2.3 Hydraulic conductivity

The soil hydraulic properties are also influenced by the soil texture and organic content.
As the hydraulic properties of soil texture and organic soil can vary significantly, the
overall hydraulic properties of each soil layer are calculated as weighted averages of the
properties of the soil texture and organic content, similar to how thermal conductivity
is determined.

The hydraulic conductivity is defined at the depth of the interface of two adjacent
layers and is a function of the saturated hydraulic conductivity ksat, the liquid volumet-
ric soil moisture of the two layers, and an ice impedance factor. The scope of this study
is limited to saturated hydraulic conductivity.

The saturated hydraulic conductivity is defined in the model as:

ksat = (1− fom)kst + fomkom (4.13)

where fom is the soil organic matter fraction defined in Chapter 2. kst is the soil
texture hydraulic conductivity and is empirically derived as:

kst = 0.0070556× 10−0.884+0.0153(%sand) (4.14)

Finally, kom is the hydraulic conductivity of SOM and is derived as:

kom = max(0.28− 0.2799× zi/zsapric, kst) (4.15)

where zi is the soil depth at the layer i and zsapric = 0.5 m is the depth that SOM
takes on the characteristics of sapric peat (Lawrence et al., 2018).

4.3 New method to derive soil texture and soil organic carbon

4.3.1 Description of the Obu method and experiment

The method presented here was initially developed for the ESA-CCI products (Heim
et al., 2021) to shift away from using a global grid map for deriving soil texture and
SOM. In the default configuration, CLM5 relies on data from Bonan et al. (2002a) and
Hugelius et al. (2013). Instead, the model calculates the soil texture and SOM for each
individual grid cell within the domain, depending on the distribution of plant functional
types (PFTs) of each grid cell. For each PFT, a certain amount of SCS and OMD is
given. This section explains the linkages between PFTs, SCS and OMD used in Heim
et al. (2021).
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”Stratigraphies” were generated from approximately 6500 samples collected from
700 pedons distributed across Arctic regions, including Siberia, Northern America,
Scandinavia, Greenland, and Svalbard. These samples were meticulously collected
with known volumes and were weighed both before and after the drying process. Sub-
sequently, they use an elemental analyzer to determine their organic carbon content.
The process involved several steps:

• Mass calculation for soil components: The initial step involved calculating the
mass of various soil components.

• Water mass calculation: The mass of water in the samples was determined as the
difference between the wet sample and dry sample mass.

• SOM mass calculation: To ascertain the mass of SOM, the dry sample weight was
multiplied by the organic matter mass, which was then doubled. This multipli-
cation by two served as a conversion factor between Soil Organic Carbon (SOC)
and SOM, as proposed by Pribyl (2010).

• Mineral material mass calculation: Finally, the mass of mineral material was
derived by subtracting the dry sample mass from the calculated SOM mass.

Fractions of volumetric contents for each of the components were calculated by
dividing volume of component with a total volume of sample. Component volumes
were calculated from the mass by assuming the following densities:

• 1g/cm3 for water

• 1.3g/cm3 for SOM (Farouki, 1981)

• 2.65g/cm3 for mineral material in soil (Hillel, 2003)

The volumetric fraction of air was calculated as the remainder after subtracting the
sum of the other fractions from one.

Pedons were initially categorized based on the field-recognized land cover classes.
Subsequently, averages were computed for each centimeter of the soil column, and
standard deviation was employed to establish ranges of potential values associated with
each land cover category. These generated soil columns were then further grouped
into seven distinct depths, using a hierarchically constrained clustering approach. This
depth categorization was designed to optimize the data for suitability as input in LSMs,
ensuring that the resulting datasets are structured to enhance modeling accuracy and
relevance.

The application of a PFT-based approach to derive soil texture and SOM has not yet
been assessed within the realm of land surface modeling. To address this knowledge
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gap, I conducted a sensitivity experiment using CLM5. Two distinct simulation runs
were conducted: the ”control run,” which shares the configuration discussed and evalu-
ated in Chapter 3, and the ”Obu run,” where the conventional method for deriving soil
texture and SOM is replaced with the Obu method.

4.3.2 Differences in SCS and OMD between the control run and the Obu run

Figure 4.1 shows the column average (first 10 layers) differences between the control
run and Obu run in terms of the distribution of SCS.

In the control run, sand content exhibits a stark contrast between western and east-
ern Arctic regions, with values reaching around 80% in parts of Canada but only around
20-30% in Siberia. The Obu run shows a more linear distribution of sand, with values
decreasing as one moves further north. However, the Canadian archipelago is as an
exception to this pattern, as the Obu run shows a significant increase in sand content in
areas outside of the permafrost region, such as southern Russia, Europe, and southern
Canada. Within the permafrost region, there is a general trend of decreased sand con-
tent, especially in inland Canada and the Victoria Island, with the exception of Alaska
where sand content has increased. Furthermore, the distribution of sand in the Obu run
is much more heterogeneous compared to the control run, which exhibited more distinct
patches.

Clay content in the control run is generally around 20-30% throughout the domain,
except for parts of northern Canada where values are below 10%. In contrast, the Obu
run shows much more homogeneous distribution of clay with values around 10%, re-
sulting in an overall reduction in clay content, particularly in northern Canada.

Silt content increased over the entire domain in the Obu run, except in southern Rus-
sia and southern Canada, with a significant increase in northeastern Canada. Overall,
these changes in the distribution of soil minerals suggest that there may be significant
changes in the hydraulic properties of the soil, which can impact the water cycle and
other related Arctic processes.

Figure 4.2 shows the column average (first 10 layers) distribution of OMD in the
soil for the control run, the Obu run, and their difference. In general, OMD is more
heterogeneous in the control run, with values ranging from 10 kg/m3 to 80 kg/m3

across the domain. In contrast, the Obu run shows a more homogeneous distribution of
OMD, with values ranging from 40 kg/m3 to 50 kg/m3 across most of the domain.

Comparing the two runs, OMD values decreased in the Obu run for most of Canada
and Siberia, with only the Alaskan region showing an increase. This reduction in OMD
values is particularly evident in the northern regions of Canada, where OMD values in
the control run are generally higher than in the Obu run. Overall, these results suggest
that the changes in soil properties due to the Obu experiment have led to a more ho-
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Fig. 4.1 Column average (first 10 layers) of soil texture: sand (first row), clay (second
row) and silt (third row) in the control run (first column), Obu run (second column) and
their difference (third column). Darker red indicates higher values in the Obu run. Unit
is %.
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Fig. 4.2 Column average (first 10 layers) of organic matter density in the control run
(first column), Obu run (second column) and their difference (third column). Darker
red indicates higher values in the Obu run. Unit is kg/m3, assuming a carbon content
of 0.58 gC per gOM.

mogeneous distribution of OMD across the domain, with a decrease in OMD values in
most regions.

4.4 Results

4.4.1 Soil temperature

4.4.1.1 Comparison between the Obu and control runs

Figure 4.3 shows the four seasons averaged difference in soil temperature between the
Obu and control runs for the 1980-2021 period. In winter, there is a significant increase
in temperature over most areas, up to +2°C, except over the Taymir Peninsula and the
northwest where temperatures are similar. The only significant decrease in temperature
is observed in the center of Canada. Autumn and spring share similar results to winter.

In summer, the increase in temperature is more pronounced over northern Europe
and southern Siberia, with an increase of up to +3°C. The rest of Siberia shows increases
between +1 to +2°C. In contrast to the January results, the western Arctic experiences
an increase exclusively in the center of Canada. Over northwest Canada and especially
over Alaska, there is a decrease in temperature of up to -3°C.

Figure 4.4 presents the year-averaged difference in soil temperature at a depth of
1 meter between the Obu and the control runs. In general, the Obu run exhibits an
overall increase in soil temperature, ranging from +0.5 to +2°C. The most substantial
temperature increases are observed in central Siberia and in proximity to the Mackenzie
River in Canada. Conversely, certain regions in Canada and Alaska display a decrease
in temperature, particularly notable in the western areas of Hudson Bay.
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Fig. 4.3 Period averaged (1980-2021) soil temperature difference between the Obu and
control runs at 1 m depth in°C for four seasons: a) December, January, February (DJF),
b) March, April, May (MAM), c) June, July, August (JJA) and d) September, October,
November (SON). Darker red indicates the Obu run is warmer than the control run.
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Fig. 4.4 Yearly period averaged (1980-2021) soil temperature difference between the
Obu and the control runs at 1 m depth in°C. Dark red indicates that the Obu run is
warmer than the control run.
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Fig. 4.5 Period (1997 to 2019) MAGT at 1 m difference between CTSM and ESA-
CCI in°C for the control run (left) and Obu run (right). Dark blue means CTSM soil
temperature is colder than ESA-CCI. ESA-CCI data are aggregated on the CTSM grid
using a conservative projection method.

4.4.1.2 Comparison between the Obu run and ESA-CCI

Figure 4.5 compiles an evaluation of the 1-meter soil temperature year-averaged, com-
paring the results from the control run against the ESA-CCI dataset and the same eval-
uation with the Obu run. The Obu run has effectively mitigated a part of the cold bias
observed in the control run. While the spatial heterogeneity of the bias stays identical,
we observed a reduction in the cold bias of up to 4°C. This decrease is greater over
areas like Siberia where the cold bias is strong in the control run. Overall, this level
of bias aligns reasonably well with what has been observed in the ESA-CCI evaluation
(Heim et al., 2021). Only the Ural region show a bias above -4°C. The warm bias ob-
served over high-altitude regions is still present. The MAD and RMSE show a strong
improvement, decreasing from 2.73 in the control run to 2.06 in the Obu run, and from
3.27 to 2.55, respectively.

4.4.1.3 Comparison between the Obu run and the 295GT dataset

Figure 4.6 illustrates the period-averaged monthly soil temperatures at various depths
(-20 cm, -80 cm, -160 cm, and -320 cm) for the observations (in black), control run (in
blue), and Obu run (in green) in°C. These values are derived from an average of 295
stations over the entire period (1980-2021). With a focus on seasonal and column-depth
variations, this comparative analysis emphasizes the improvements realized through the
Obu simulation in contrast to the control run.
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Fig. 4.6 Period averaged (1980-2021) of monthly soil temperature at 4 different depths
(-20, -80, -160 and -320 cm) for the observations (black), control run (blue) and Obu
run (green) in°C. For each depth, an average depth range was taken as follows: -20 =
[0, -40], -80 = [-41, -120], -160 = [-121, -200], -320 = [-201, -440]. The area represents
the RMSE over all years. All values come from an average of the 295 stations through
the full period.
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Fig. 4.7 Permafrost extent area mask difference between CLM5 and ESA-CCI for the
control run (left) and Obu run (right). Refer to the legend for colour meanings. ESA-
CCI data are aggregated on the CLM5 grid using a conservative projection method.

On average, the model exhibits a tendency to underestimate soil temperatures at
all depths, with a bias of approximately -4°C. However, the Obu run presents a slight
reduction in this bias compared to the control run, notably during the summer months
and primarily within the uppermost soil layer. However, this effect becomes less pro-
nounced at greater depths, as the properties of soil increasingly overlook the insulating
properties of SOM. These observations suggest that while the model consistently under-
estimates soil temperatures, the Obu run introduces some improvements, particularly in
mitigating the bias during summer and within the shallow soil layers. Nevertheless,
further refinements may be necessary to achieve a closer alignment with observed soil
temperature values.

Appendix C presents an analysis that supplements the regional soil temperature
study discussed in this chapter and compares temperature data from 10 selected sta-
tions, using the Obu run.

4.4.2 Permafrost extent

Similar to the soil temperature in Figure 4.5, the permafrost extent difference between
CLM5 and ESA-CCI remote products is depicted in Figure 4.7, comparing the con-
trol run (left) and the Obu run (right). In general, the Obu run demonstrates a closer
alignment to ESA-CCI, with the total permafrost area measuring 12.857 ×106 km2,
compared to 12.544 ×106 km2 for ESA-CCI, while the control run recorded a larger
extent of 13.358 ×106 km2. Significant changes are observed in the southern region of

76



Canada, where all permafrost areas simulated by CLM5 but not captured in ESA-CCI
have been eliminated. Additionally, the extensive permafrost area in the Southwestern
Europe, previously absent in ESA-CCI, experienced a substantial reduction. Despite
the improvements, disparities between ESA-CCI and the model persist, particularly
in northern Greenland, western Alaska, and southern regions of western Siberia and
Europe. These findings indicate that the Obu run successfully enhances the model’s
representation of permafrost extent, aligning it more closely with ESA-CCI, although
some discrepancies still exist in specific geographic regions.

4.4.3 Active Layer Thickness (ALT)

4.4.3.1 Comparison between the Obu and control runs

Figure A.6 in Appendix A, illustrates the difference in period-averaged (1980-2021)
active layer thickness (ALT) between the Obu and the control runs. The results indicate
that ALT generally exhibits greater depths in Siberia and Europe, while it is compar-
atively shallower in Alaska and in western Hudson Bay in the Obu run as compared
to the control run. Specifically, the southern regions of Siberia experience an increase
in ALT of up to 2 meters deeper, while these changes become less pronounced over
mountainous areas. Conversely, the ALT in Alaska and Canada shows a decrease of
around 0.5 to 1 meter, with some localized exceptions in the southern regions and along
the northern coasts. These findings suggest that the Obu run yields substantial modifi-
cations to the ALT distribution, deepening the active layer in Siberia and Europe, while
reducing its depth in Alaska and Canada, though local variations are evident.

4.4.3.2 Comparison between the Obu run and ESA-CCI

Similar to the soil temperature in Figure 4.5, ALT difference between CLM5 and ESA-
CCI remote products are shown in Figure 4.8, comparing the control run (left) and the
Obu run (right). As anticipated, the Obu run leads to an overall increase in bias across
the domain. Notably, the bias becomes more pronounced moving southward. However,
the rise in MAD remains modest, transitioning from 0.97 to 1.24, while the RMSE
remains relatively consistent, shifting only slightly from 1.73 to 1.93.

4.4.4 Soil liquid and ice water

Figure A.7 in Appendix A showcases substantial differences between the Obu and the
control runs regarding the sum of soil liquid and ice water in the top 1-meter col-
umn. These differences exhibit both positive and negative values across various regions.
Firstly, significant decreases exceeding 150 kg/m2 of soil water are observed in southern
parts of Europe, as well as western and central Siberia. Areas near the Mackenzie River
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Fig. 4.8 Active layer thickness difference between CTSM and ESA-CCI in meters for
the control run (left) and Obu run (right). Darker red means CTSM ALT is deeper
than ESA-CCI. ESA-CCI data are aggregated on the CTSM grid using a conservative
projection method.

also displayed similarly pronounced decreases of more than -150 kg/m2. Conversely,
certain regions exhibit an increase in the sum of soil water. Notably, the western region
of Hudson Bay demonstrates values around +100 kg/m2, while Alaska shows increases
around +50 kg/m2. The remaining areas within the domain exhibit differences rang-
ing between -50 to +50 kg/m2. These findings indicate substantial alterations in the
distribution of soil liquid and ice water within the 1-meter top column in the Obu run
compared to the control run.

4.5 Discussion and conclusions

In land surface modelling, soil texture and soil organic matter (SOM) are recognized
as two of the most influential factors that shape soil properties, physics, and thermal
dynamics in Arctic permafrost regions. Understanding the interplay between these vari-
ables is crucial to accurately simulate permafrost dynamics in LSMs.

Deviating from the conventional use of global coarse-resolution maps (e.g., Hugelius
et al. 2013), this study pioneers the use of a Plant Functional Type (PFT)-based ap-
proach to derive soil texture and SOM, called the Obu method. While PFT-based meth-
ods have shown promise in recent remote sensing products like ESA-CCI (Heim et al.,
2021), their effectiveness in LSM remains untested. This study aims to bridge this gap
by evaluating the performance of PFT-based approaches to understand their potential
contributions to permafrost dynamics and soil physics modeling.
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To achieve this, I conducted a sensitivity experiment using CLM5 with two distinct
runs: the ”control run” with the configuration discussed in Chapter 3, and the ”Obu
run” where the conventional method for deriving soil texture and SOM is replaced by
the Obu method. This investigation centered on assessing the repercussions of this
experiment on key parameters, including soil temperature, permafrost extent, ALT, and
soil liquid and ice content.

Overall, the Obu method led to a more homogeneous distribution of soil organic
matter density (OMD) across the domain, marked by a decrease in OMD values in
most regions. However, changes in soil texture exhibit a more complex spatial pattern.

Key findings indicate that the Obu run induces significant modifications to the soil
temperature profile, characterized by a notable warming trend in most regions. First,
the increase in soil and content has been associated with summer temperature decreases
in Alaska, primarily due to enhanced water drainage and lower water retention capacity
compared to soils with higher clay or silt content, leading to higher porosity and lower
thermal conductivity. Conversely, an increase in sand content results in autumn tem-
perature increases in the Mackenzie Basin, attributed to a higher amount of latent heat
released during freezing. Secondly, decreases in SOM content are linked to summer
temperature increases in the Mackenzie Basin and the eastern Siberian regions. This
effect is attributed to the insulating properties of SOM, characterized by high poros-
ity and low thermal conductivity. Although a warming effect is also observed in the
northern regions, it is less pronounced due to the insulating snow cover in winter and
in deeper layers where soil properties increasingly overlook the insulating properties
of SOM. Nevertheless, localized cooling effects are evident in specific areas of Canada
and Alaska.

Comparing the Obu run to the observation datasets reveals a significant decrease of
the cold bias observed in the control run. In most regions, the Obu run demonstrates an
improvement compared to the control run, with a cold bias below -4°C. However, an
exception is observed in the Ural region, which exhibits a more substantial cold bias,
necessitating further investigation. The summer season is where the highest increase
emerges. During the winter season, no clear relationship can be drawn, primarily due
to the insulating properties of the snow cover, which dampens thermal dynamics (Zhu
et al., 2019). Regarding year average, the global mean absolute deviation and the spread
of temperature values improved (from 2.73 to 2.06 for MAD, 3.27 to 2.55 for RMSE),
indicating a better overall representation of soil temperatures.

For permafrost extent, the Obu experiment greatly solved the overestimation of per-
mafrost present in the control run over the southern regions in Siberia (from 13.358 to
12.857 ×106 km2, compared to 12.544 ×106 km2 for ESA-CCI).

Regarding active layer thickness (ALT), the comparative analysis between the Obu
and the control runs reveals significant increases in ALT over most regions, with the
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greatest impact observed in the southern areas and a marginal effect in the northern
regions. Consequently, we observe an slight increase in the MAD and RMSE, from 0.97
to 1.24 and 1.73 to 1.93, respectively. This observed increase in ALT can be attributed
to the fact that ALT strongly depends on the maximum annual ground temperature
(MaxAGT). As the Obu experiment increases temperatures in the summer, it directly
impacts the maximum thaw depth, leading to greater ALT values. However, the impact
of these changes in ALT is limited when compared to the overall improvements in soil
temperature and permafrost extent achieved in the Obu run.

It is important to emphasize that my experiment incorporates changes in both soil
texture and SOM, making it challenging to dissect the exact impact of each factor in-
dividually. Nonetheless, my findings highlight the high sensitivity of models to soil
texture and SOM and the pivotal role of soil composition in governing heat transfer
processes and shaping the seasonal variation of soil temperatures in Arctic permafrost
regions. Furthermore, it is crucial to acknowledge that the quality of input datasets
also plays a substantial role in modeling accuracy, and addressing uncertainties in these
datasets remains an ongoing challenge in permafrost research.
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CHAPTER 5

Sensitivity experiment on snow thermal conductivity

5.1 Introduction

Snow is a crucial component of Arctic’s climate system, exerting significant influence
on various aspects of the region’s surface conditions. The snow cover acts as a thermal
insulator by limiting heat loss in the winter (Lawrence and Slater, 2010; Li et al., 2021;
Royer et al., 2021), but its insulating properties are highly variable and insufficiently
detailed in Earth System Models (ESMs) (Barrere et al., 2017). With the Arctic region
experiencing rapid warming, especially in the winter (Post et al., 2019), a significant re-
duction in snow cover has been observed (Meredith et al., 2019). Model studies suggest
that the recent reduction in the extent of snow cover plays a significant role in the thaw-
ing of permafrost in northern regions and may become increasingly important as Arctic
warming continues (Park et al., 2015; Mudryk et al., 2018; Overland et al., 2019).

The Arctic has long been recognized as a difficult region to study due to its inherent
remoteness, the lack of observations (Domine et al., 2019; Royer et al., 2021), and hu-
man errors (Menard et al., 2021). The lack of information on snow properties in Arctic
permafrost regions places a major limitation on permafrost and climate modelling more
generally (Domine et al., 2016; Gouttevin et al., 2018).

The depth and density of the snowpack are fundamental in determining its insulation
capacity, and are inherently intertwined with the temperature conditions of the ground
surface. The efficiency of snow cover as an insulator intensifies with thickness, with
optimal insulation observed at an approximate depth of 25 cm (Slater et al., 2017). Be-
yond this point, further increases in snow depth do not yield a significant enhancement
of insulation properties.

The diversity of snowpack density properties can be categorized into two main snow
types in Arctic environments: depth hoar and wind slab (Domine et al., 2018).

• Depth hoar refers to a type of snow crystal structure that forms within the snow-
pack due to temperature gradients and water vapor fluctuations. It typically de-
velops in cold, dry conditions with large temperature differences between the
ground and the overlying snow layer. The temperature gradient, especially at
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the beginning of the snow season, is affected by soil moisture, as greater mois-
ture maintains the soil at 0°C longer, allowing large temperature gradients to per-
sist, driving large upward water vapor fluxes, and favoring depth hoar formations.
Depth hoar crystals are characterized by their large, faceted, and often cup-shaped
grains. These crystals are highly porous and have a low density, making them
poor heat conductors. Due to their porosity, depth hoar crystals trap a significant
amount of air within their structure, enhancing their insulating properties.

• Wind slab is a distinct layer of snow, the commonly called ”tundra snow”, that
forms due to wind transport and deposition. Wind can transport snow parti-
cles, causing them to accumulate in locations with low vegetation and high wind
speeds. Wind slab layers have a relatively high density compared to other snow
layers. The compacted nature of wind slabs reduces their overall porosity and air
content, resulting in better heat conductivity and decreased insulation properties
compared to other snow types.

Models such as CLM5 (Dutch et al., 2022), Crocus (Barrere et al., 2017) and
SNOWPACK (Domine et al., 2019; Gouttevin et al., 2018) struggle to represent these
two phenomena. Vertical density profiles simulated by these models exhibit notewor-
thy discrepancies, with observed snow density deviating significantly from the model’s
estimations, both in the top wind slab and bottom depth hoar layers of the snowpack
(Dutch et al., 2022). A paper under review is trying to solve this issue (Fourteau et al.,
2023).

Studies show that neglecting the role of depth hoar in providing thermal insulation
properties to Arctic snowpacks can have significant consequences for soil temperature
(Gouttevin et al., 2018; Royer et al., 2021; Dutch et al., 2022). For instance, CLM5
tends to overestimate the thermal conductivity of snowpack and, thus, underestimate its
insulating capacity (Dutch et al., 2022), which is consistent with the cold bias identified
in Chapter 3.

The crux of the challenge lies in the representation of the thermal property variabil-
ity within Arctic snow, aiming to rectify the prevalent cold bias found in most LSMs. I
hypothesize that a modification to the snow thermal conductivity schemes, which quan-
tify snow’s insulation in models, could effectively capture the sensitivity inherent in
Arctic snow, thereby restoring an accurate thermal insulating function to the snowpack.
To realise this endeavor, I compare a sensitivity experiment using a alternative snow
thermal conductivity scheme, to the default scheme used in CLM5.

After this introduction, the second section of this chapter elaborates on snow ther-
mal conductivity studies and its implementation in snow modules. The third section
describes the CLM5 snow module and the sensitivity experiment. The fourth section
presents the results. Finally, the last section discusses implications of the experiment
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for permafrost dynamics.

5.2 Snow thermal conductivity

The insulation capability of snow is commonly quantified through its thermal conduc-
tivity. In the presence of snow, snow thermal conductivity determines the rate of heat
exchange between the soil and the atmosphere. Some research suggests that it is one of
the most critical model parameters in snow physics (Hu et al., 2023) and a significant
source of uncertainty in LSMs (Langer et al., 2013).

Heat transfer processes in snow exhibit greater complexity compared to those in
soil. In snow, heat is transferred by conduction, convection, and radiation across the air
space, and by the the movement of vapor by sublimation and condensation (discussed
in the next section). However, as a result to low temperatures, the effect of radiation
transfer is usually not significant (Yen, 1981). Due to these complications, the thermal
conductivity of snow is expressed as an effective thermal conductivity Keff, which is
intended to embrace all of the heat-transfer processes.

Snow exhibits a low Keff, generally falling within the range of 0.01-0.7 Wm−1K−1

(Gouttevin et al., 2018). Researchers (Sturm et al., 1997; Domine et al., 2016; Dutch
et al., 2022) have found that tundra snowpacks typically display Keff values toward the
lower end of this range.

Numerous investigations have measured snow thermal conductivity (Sturm et al.,
1997; Dutch et al., 2022) and establish statistical relationships (Anderson 1976, Mellor
1977, Yen 1981, Jordan 1991) to formulate an equation between Keff and snow density,
based on experiments made in laboratories or on different snowpacks around the world.
It is therefore reasonable to assume that a statistical relationship derived from alpine
snowpack experiments will differ greatly from the actual Keff of an Arctic snowpack
or on ice sheet, and inversely. Interestingly, these equations are still used in the most
advanced snow models like Crocus and SNOWPACK (Domine et al., 2019).

Nonetheless, Sturm et al. (1997) contend that these models lack in-depth critical
analysis or evaluation of the original data, presenting fitted curves without providing
the actual data points (e.g., in Yen 1981). Over time, this unintended consequence has
given the illusion of greater regularity and less dispersion in the compilation of mea-
surements than is actually true. Furthermore, this approach has hindered readers from
assessing the quality of the data. Curves established on the foundation of robust ex-
periments with extensive datasets are treated equally to those built on insufficient data.
Similarly, curves developed using indirect measurement techniques (such as deriving
conductivity from variations in snow temperature) and those with lower accuracy are
given the same weight as curves derived from data acquired using more precise labora-
tory methodologies.
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In a concerted effort to address these concerns, Sturm et al. (1997) introduced what
we consider to be the most expansive dataset available to date. Encompassing approxi-
mately 488 measurements collected mostly in the Arctic and Antarctica across various
types of seasonal snow, this dataset includes meticulously recorded snow sample tem-
peratures and comprehensive descriptions, facilitating a comprehensive exploration of
the influence of attributes beyond density on thermal conductivity. Utilizing this dataset,
they derived refined regression equations for thermal conductivity based on density, out-
lined as follows:

Keff =

0.023 + 0.234 · ρsno, if ρsno < 0.156

0.138− 1.01 · ρsno + 3.233 · ρ2sno, if 0.156 ≤ ρsno ≤ 0.6
(5.1)

where ρsno is the snow density in gcm−3. Sturm et al. (1997) highlighted six advan-
tages of their dataset compared to others:

• They employed a needle probe and a dynamic test method known for its accuracy
with low-conductivity materials (Sturm and Johnson, 1992), which is particularly
advantageous for materials prone to metamorphism.

• They presented a unified dataset, where all data were collected using a consistent
methodology.

• This dataset includes measurements on standard materials, enabling the assess-
ment of systematic errors and accuracy.

• Measurements were conducted at stable, relatively low temperatures, minimizing
sensitivity to temperature dependence.

• The dataset uniquely provides detailed descriptions of the type of snow.

• The dataset encompasses a significantly larger amount of data compared to other
combined datasets.

The variance in mean thermal conductivity across different datasets can largely be
attributed to variations in the temperature at which the tests were conducted. The mean
value in the dataset is -14.6°C, while the authors estimated that other data still in use
were collected at an average of approximately -5°C. This discrepancy makes the dataset
from Sturm et al. (1997) particularly well-suited for simulating Arctic permafrost re-
gions.

Nonetheless, Sturm et al. (1997) also acknowledged certain limitations in their
study. Primarily, the dataset overrepresents two snow types frequently found in high
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Fig. 5.1 Comparison of four schemes for Keff from 0 to 700 kgm−3 for snow density.
Note that the y-axis is logarithmic.

latitudes: depth hoar and wind-slab, to the detriment of snowpack that can be found in
mountainous areas. Consequently, they advocate for the adoption of distinct schemes
based on different locations and snow conditions. Furthermore, other studies have crit-
icized the method used by Sturm et al. (1997) to measure snow thermal conductivity
and suggest that more recent methods would be better options (Riche and Schneebeli,
2010; Fourteau et al., 2022).

Sturm et al. (1997) equation is compared to the previous equations discussed in
Chapter 2 in Figure 5.1, and extended above the 0.6 gcm−3 threshold. As expected,
there is a distinct offset between Sturm et al. (1997) and others, with differences of up
to a factor of 3 compared to Mellor (1977) and Jordan (1991). Above 150 kgm−3, it
is distinguished by its significantly smaller Keff. Its dual-equation system ensures that
unrealistically lowKeff values are avoided, in cases involving small snowpack densities,
unlike Yen (1981) and Anderson (1976).

Dutch et al. (2022) recently applied the alternative formulation proposed by Sturm
et al. (1997) in their investigation, which involved a comparative analysis between
CLM5 and in-situ measurements acquired in Trail Valley Creek, Northwest Territo-
ries, Canada. Their study unveiled that the initial version of CLM5 overestimated snow
thermal conductivity by a factor of 3 compared to observations, consequently inducing
a cold bias in the wintertime soil temperature simulations. When applying the Sturm
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et al. (1997) scheme to CLM5, a significant improvement of wintertime soil tempera-
tures simulations was discerned. This study thereby provides valuable insights into the
propensity of most LSMs to neglect the implications of the Sturm et al. (1997) analysis
in their framework.

While the contribution by Dutch et al. (2022) constitutes a notable advancement
within the realm of snow science, their investigation was limited to a single location
assessment. To understand the full potential of applicability of the Sturm et al. (1997)
scheme, it is essential to extend their experimentation to a larger regional context. This
chapter is dedicated to bridging this knowledge gap by conducting an Arctic domain
simulation and sensitivity experiment with CLM5 using the Sturm et al. (1997) snow
thermal conductivity scheme.

5.3 Description of snow module in CLM5

The snow module in CLM5, described in van Kampenhout et al. (2017) and Lawrence
et al. (2019), includes physical processes such as snow accumulation, compaction (due
to overburden pressure and drifting snow), refreezing, melting, and sublimation, allow-
ing for a comprehensive representation of snow’s behavior. However, the snow module
does not take into account water vapor.

The model uses a multi-layer approach that discretizes the snowpack into a maxi-
mum of 12 layers. Vertical discretization is performed in an Eulerian method, employ-
ing prescribed maximum (∆zmax) and minimum (∆zmin) layer thicknesses that adapt
based on temperature and grain size gradients, leading to merging or creating layers as
needed to maintain these thresholds. Any mass in excess of the snow cap is routed to
the river component. Four prognostic variables are represented: snow density, water
content, temperature, grain size, and aerosol concentration.

Radiation and atmospheric-related processes are described in van Kampenhout et al.
(2017) and Lawrence et al. (2019). Here, I focus on the important processes for a stand-
alone land model simulation.

The thermal state is dependent on the skin temperature, the divergence of pene-
trated shortwave radiation, and the latent heat released through refreezing, which is
determined by three factors: snow depth, thermal capacity, and porosity.

van Kampenhout et al. (2017) introduced a new fresh snow density (ρfs) parame-
terizsation by combining a temperature term ρT with a linear wind-dependent density
term ρw (Appendix B, Equations B.8, B.9, B.10).

As stated in Chapter 2, snow can densify via four distinct processes: compaction by
overburden pressure, compaction by drifting snow, destructive metamorphism, or melt
metamorphism. Furthermore, snow thermal conductivity is solely dependent on snow
density and calculated following Jordan (1991) scheme using equation 2.12.

86



5.4 Sturm experiment with CLM5

In general, improvements to the CLM5 snow module have led to increased snow density
across most of the Arctic compared to CLM4.5, as observed by Lawrence et al. (2019)
and in our results (Appendix A, Figure A.9). There is a theoretical positive correlation
between snow density and thermal conductivity: as snow density increases, the thermal
conductivity also tends to increase (Adams and Sato, 1993). Denser snow has fewer air
voids, resulting in fewer insulating air pockets. Consequently, heat is transferred more
efficiently through the solid ice matrix, leading to higher thermal conductivity.

My hypothesis is that the underestimation of snowpack density by CLM4.5, com-
bined with the high thermal conductivity scheme from Jordan (1991), artificially re-
sulted in an acceptable winter offset over Arctic permafrost regions, as shown in Koven
et al. (2013). Meanwhile, the introduction of the new fresh snow density function by
van Kampenhout et al. (2017) may have unintended consequences, making the snow too
dense in Arctic permafrost regions, particularly because specific tundra snowpack fea-
tures like depth hoar are not represented by the model (Dutch et al., 2022). As the snow
thermal conductivity scheme remains unchanged from CLM4.5 to CLM5, higher snow
density means that cold winter conditions can penetrate the snow more effectively. This
results in reduced snow insulation and could explain the significant cold bias observed
in CLM5 in Chapter 3 and in Dutch et al. (2022).

Unfortunately, it appears unlikely that the issue of better snow density representation
in LSMs will be resolved in the near future, and recent developments in this area seem
premature (Fourteau et al., 2023). In response, Dutch et al. (2022) suggest using the
Sturm et al. (1997) snow thermal conductivity scheme, which is better suited for tundra
snowpack properties. This study seeks to expand upon their initial research conducted
in the Trail Valley Creek by conducting a sensitivity experiment across the entire Arctic
domain.

To achieve this objective, I conducted two simulation: (1) the ”control run”, which
shares the configuration discussed and evaluated in Chapter 3, and (2) the ”Sturm run”,
where the conventional snow thermal conductivity scheme is replaced with the scheme
proposed by Sturm et al. (1997). For practical reasons, I modified the equation 5.1 to
compute snow density above 0.6 gcm−3. By analyzing the differences in model outputs
between these two runs, I investigate the consequences of adopting this new approach
and its implications for LSMs’ representation of Arctic permafrost regions.
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Fig. 5.2 Period (1980 to 2021) winter offset for the control run (left) and Sturm run
(right).

5.5 Results

5.5.1 Soil temperature

5.5.1.1 Comparison between the Sturm and control runs

An effective method for assessing the wintertime heat transfer from the atmosphere to
the soil involves the computation of the ”winter offset.” I adopted the definition pro-
posed by Burke et al. (2020), wherein the winter offset represents the difference be-
tween the mean soil temperature at 0.2 m and the mean air temperature for the Decem-
ber to February period. Burke et al. (2020) argue that this index serves as a valuable
tool for gauging the insulating capacity of snow and shows the largest uncertainty in
representing permafrost dynamics among CMIP6 models.

Figure 5.2 presents a comparative analysis of the winter offset between the control
and Sturm simulations for the 1980-2021 period. As expected, the offset values show
a significant increase throughout the entire Arctic domain. Notably, the values ranging
from 20 to 30°C are expected from a tundra snowpack (Wang et al., 2016b). This ob-
servation is particularly remarkable, considering that there is no difference in effective
snow depth between the Sturm and control runs (Appendix A - Figure A.8). This sug-
gests that the snow insulation in the Sturm simulation is considerably diminished and,
in general, more realistic.

However, it is crucial to note that the figure also reveals unrealistic offset values,
above 30°C, particularly in high-altitude regions. These anomalies are particularly
prominent over the central Siberian Plateau, the Verkhoyansk Range, most of Eastern
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Fig. 5.3 Period averaged (1980-2021) soil temperature difference between the Sturm
and control runs at 1m depth in°C for four seasons: a) December, January, February
(DJF), b) March, April, May (MAM), c) June, July, August (JJA) and d) September,
October, November (SON). Darker red indicates that the experiment is warmer than the
control run. The grey mask represents glaciers. Note that the colour scale is not the
same for all maps.

Siberia, and the northern regions of the Baffin Island.
Figure 5.3 shows the four seasons averaged difference in soil temperature between

the Sturm and control runs for the 1980-2021 period. In winter, there is an extremely
significant increase in temperature, from +4 to +10°C over the Siberian permafrost
region, and up to 5°C in northern Canada and Alaska. It is especially prevalent in
mountainous areas. While in spring, there is an increase up to 3°C is found mostly over
high-altitude areas over the whole domain and on the southwestern Hudson Bay. In
summer, the increase in temperature is much less marked over the whole domain with an
increase of temperature from +1 to +2°C, except for mountains areas and southwestern
Hudson Bay. In spring, an increase of up to 3°C is found mostly over mountainous
areas across the whole domain and on the south-west of Hudson Bay.

Figure 5.4 presents the year-averaged difference in soil temperature at a depth of 1
meter between the Sturm and the control run. As expected, there is a global temperature
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Fig. 5.4 Yearly period averaged (1980-2021) soil temperature difference between the
Sturm and control runs at 1m depth in°C. Darker red indicates that the Sturm run is
warmer than the control run. The grey mask represent the glaciers.
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Fig. 5.5 Period (1997 to 2019) MAGT at 1m difference between CTSM and ESA-CCI
in°C for the control run (left) and Sturm run (right). Darker blue indicates that CTSM
soil temperature is colder than ESA-CCI. ESA-CCI data are aggregated on the CTSM
grid using a conservative regridding method.

increase of up to +6°C. The greatest increase is observed over Siberia and high-altitude
areas like the Brooks Range and northern Baffin Island. Only the south of Sweden,
Finland and West Russia show no significant increase.

5.5.1.2 Comparison between the Sturm run and ESA-CCI

Figure 5.5 compiles an evaluation of the 1-meter soil temperature year-averaged, com-
paring the results from the control run against the ESA-CCI dataset and the same eval-
uation with the Sturm run for the period spanning 1997-2019, similar to Fig. 4.5. It is
evident that the Sturm run effectively mitigated a significant portion of the cold bias ob-
served in the control run. Most regions only have a small cold bias, typically reaching
up to -2°C. This level of bias aligns well with what has been observed in the ESA-CCI
evaluation, as noted by Heim et al. (2021).

The MAD shows a noteworthy improvement, decreasing from 2.73 in the control
run to 2.02 in the Sturm run. However, the spread of temperature values, represented
by the RMSE, only reduced slightly, from 3.27 to 2.95. This is probably linked the
pronounced warm bias observed over high-altitude areas, a feature that was present in
the control run but was significantly amplified in the Sturm simulation. These high-
altitude regions encompass the central Siberian Plateau, the Verkhoyansk Range, most
of Eastern Siberia, the northern regions of Baffin Island, and the Brooks Range.
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5.5.1.3 Comparison between the Sturm run and the 295GT dataset

Figure 5.6 illustrates the period-averaged monthly soil temperatures at various depths
(-20 cm, -80 cm, -160 cm, and -320 cm) for the observations (depicted in black), control
run (in blue), and Sturm run (in red) in °C. These values are derived from an average of
295 stations over the entire period (1980-2021), similar to Fig. 4.6.

Notably, the Sturm run effectively minimized the bias gap introduced by the con-
trol run, particularly during winter and within the uppermost layers. Nonetheless, the
degree of improvement is less pronounced in summer and for deeper layers, as the
properties of soil increasingly overlook the insulating properties of snow with depth.
Furthermore, there is a significant overshoot observed in the top -20 cm layer during
the winter season.

Appendix C presents an additional analysis from ten distinct stations that comple-
ments the regional soil temperature in this chapter, using the Sturm run.

5.5.2 Permafrost extent

Similar to the soil temperature in Figure 5.5, Figure 5.7 illustrates the difference in
permafrost extent between CLM5 and ESA-CCI remote products, with the control run
(left) and the Sturm run (right). Here, the overestimation of permafrost made by the
control run has been resolved to the detriment of mountainous regions (in red) that have
been reclassified as non-permafrost by the Sturm run. In addition, the Sturm run shows
a significant loss of discontinuous permafrost (in yellow). This induces a significant
decrease of 9.489 ×106 km2, compared to 12.544 ×106 km2 for ESA-CCI.

5.5.3 Active Layer Thickness (ALT)

5.5.3.1 Comparison between the Sturm and control runs

Figure A.11 in Appendix A, illustrates the difference in period-averaged (1980-2021)
active layer thickness (ALT) between the Sturm and control runs. The results show a
significant increase in depth of up to +4 m. However, it is important to note that most
of these changes occur in mountainous areas, while tundra plains exhibit no significant
alterations. Additionally, large portions classified as non-permafrost in the Sturm run
are not displayed on this map.

5.5.3.2 Comparison between the Sturm run and ESA-CCI

In alignment with the soil temperature data presented in Figure 5.5, Figure 5.8 illus-
trates the differences in ALT between CLM5 and ESA-CCI remote products. This
comparative analysis encompasses both the control run (left) and the Sturm run (right).
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Fig. 5.6 Period averaged (1980-2021) of monthly soil temperature at 4 different depths
(-20, -80, -160 and -320 cm) for the observations (black), control run (blue) and Sturm
run (red) in °C. The area represents the RMSE over all years. All values come from an
average of the 295 stations through the full period.
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Fig. 5.7 Permafrost extent area mask difference between CTSM and ESA-CCI for the
control run (left) and Sturm run (right). Refer to the legend for colour meanings. ESA-
CCI data are aggregated on the CTSM grid using a conservative regridding method.

Fig. 5.8 Active layer thickness difference between CTSM and ESA-CCI in meters for
the control run (left) and Sturm run (right). Darker red colour indicates that CTSM
ALT is deeper than ESA-CCI. ESA-CCI data are aggregated on the CTSM grid using a
conservative regridding method.
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The results indicate a significant bias increase in mountainous areas, while the bias
in plain tundra regions remains relatively similar. MAD and RMSE scores shift from
0.97 to 1.32 and from 1.73 to 2.13, respectively. Again, these statistics do not consider
large regions classified as non-permafrost in the Sturm run.

5.6 Discussion and conclusions

Snow plays a critical role over permafrost regions, providing thermal insulation during
winter which has substantial implications for heat exchange between the atmosphere
and the soil. My investigation delved into the complexities of snow thermal conductiv-
ity, an essential parameter for understanding snow’s insulation capabilities.

The study discussed the limitations of existing models in adequately representing
the thermal properties of Arctic snow, highlighting the discrepancies between model
simulations and observational data. I drew attention to the pioneering work of Sturm
et al. (1997) and their comprehensive dataset, which provides underestimated insights
into the relationship between snow density and thermal conductivity. I suggest that they
have provided a snow thermal conductivity scheme under-utilized by state-of-the-art
LSMs.

Building upon Dutch et al. (2022)’s site experiment in Trail Valley Creek , this chap-
ter applies Sturm et al. (1997)’s snow thermal conductivity scheme to the entire Arctic
domain, as it is better suited to the snow density profile found over Arctic permafrost
regions. My aim was to study the impact of this scheme on simulated soil temperatures
and permafrost dynamics, thereby improving the model’s performance in reproducing
snow physics over Arctic permafrost regions.

Comparing the Sturm simulation to the control run, I observed a substantial in-
crease in soil temperature throughout the entire Arctic domain, particularly in winter
and spring. This outcome aligns with my hypothesis that the diminished snow insula-
tion in the Sturm run would result in higher winter soil temperatures. However, similar
to observations in Chapter 4, this effect becomes less pronounced at greater depths, as
the properties of soil increasingly overlook the insulating properties of snow. Further-
more, results show unrealistic offset values in high-altitude regions.

Comparing the Sturm run to the observation datasets reveals a significant mitigation
of the cold bias observed in the control run. In most regions, the Sturm run shows only
a small cold bias, generally up to -2°C; however, there is a distinct warm bias of up
to +4°C over some regions, mostly over mountainous areas. Notably, the winter cold
bias over Siberia has been significantly reduced and the global mean absolute deviation
(MAD) has improved (from 2.73 to 2.02). However, the spread of temperature values
(RMSE) remains relatively constant (from 3.27 to 2.95), probably due to the strong
observed positive bias in high-altitude regions.
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Regarding permafrost extent, the Sturm experiment addressed the overestimation
of permafrost present in the control run over southern Siberia. However, it is to the
detriment of many regions which are no longer considered permafrost in the domain,
most of which are located over mountainous areas at the southern borders of the domain.
Additionally, there is a notable reduction in the extent of discontinuous permafrost.
Consequently, the total permafrost extent area decreases from 13.358 to 9.489 ×106

km2, in contrast to the 12.544 ×106 km2 extent as estimated by ESA-CCI.
In terms of active layer thickness (ALT), the comparative analysis between the

Sturm and control runs show similar bias over flat areas. However, the bias in the Sturm
run is significantly amplified over mountainous regions. Overall, the mean regional bias
and its variability slightly increased (from 0.97 MAD and 1.73 RMSE to 1.32 MAD and
2.13 RMSE), with the caveat that large regions designated as non-permafrost were not
included in these calculations.

The distinct features observed over mountainous areas can be attributed to two main
factors. Firstly, the comparisons between ESA-CCI and the control run highlight a sig-
nificant difference between low and high-altitude regions, with the latter showing either
no bias or a warm bias. This discrepancy arises from variations in atmospheric forc-
ing resolution between CLM5 and ESA-CCI, as discussed in Chapter 3. Removing the
”cold mask” in the Sturm simulations amplified these temperature differences. Sec-
ondly, the Sturm scheme is recognized to be less suited for mountainous regions (Sturm
et al., 1997; Dutch et al., 2022).

While the Jordan (1991) scheme might improve results over regions with high-
density snowpacks, it is important to note that the column-averaged snow density rep-
resented by the model does not differ between the mountain and tundra regions (Ap-
pendix A - Figure A.10). This implies that the primary factor contributing to these
distinct features is the resolution-dependent atmospheric forcings. However, I believe
that a significant portion of this warm bias observed over mountainous areas could be
resolved through a more accurate representation of high-density mountain snowpacks.
Such an enhancement would involve the utilization of different snow schemes tailored
to specific types of snow (e.g., tundra or alpine) and require further research.

In summary, the integration of the Sturm et al. (1997) snow thermal conductivity
scheme within CLM5 has led to significant enhancements in the modeling of soil tem-
perature in tundra regions. These improvements are especially notable in reducing cold
biases and aligning model outputs more closely with observations datasets. However,
this enhancement has the unintended result of misclassifying significant mountainous
areas as non-permafrost. These findings underscore the importance of refining snow-
related processes in LSMs to enhance our understanding of permafrost dynamics in the
context of climate change.

This study highlights potential avenues for future research. One notable limitation
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in my study, as in many others, is the exclusive focus on presenting thermal conductivity
solely as a function of snow density, neglecting other intrinsic snow characteristics such
as grain size, bonding, and temperature, which can also significantly influence thermal
conductivity (Sturm et al., 1997). Barrere et al. (2017) demonstrates that relying solely
on density to determine snow thermal conductivity is particularly inadequate in the Arc-
tic region. Another key limitation is my focus on thermal conductivity without delving
into the densification processes and parameters within the model, even though snow
thermal conductivity is entirely dependent on snow density. Figure A.10 (Appendix A)
reveals a relatively uniform distribution of snow density across the domain. This contra-
dicts real-life observations where mountain snowpack typically exhibits higher density
(Zhao et al., 2023) compared to tundra snowpack. Scholars have argued that achieving
reliable permafrost modeling is not feasible in the absence of a proper representation of
snow density (Langer et al., 2013; Dutch et al., 2022).
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CHAPTER 6

Conclusion

6.1 Introduction

Arctic permafrost regions are critical for anthropogenic climate change and constitute
a central focus within climate science (Overland et al., 2019). Permafrost thaw and its
subsequent greenhouse gas emissions profoundly influence various societal, ecological,
hydrological, and biogeochemical processes in the Arctic (Ramage et al., 2021; Yang
et al., 2010; Hinzman et al., 2013) and stand as one of the most significant and uncertain
positive feedback loops in the context of climate change (Schuur et al., 2008; Schaefer
et al., 2014; Schuur et al., 2015; Biskaborn et al., 2019). For each additional 1°C of
warming, the global volume of permafrost is projected to decrease by about 25% rela-
tive to the present volume. However, these decreases may be underestimated due to an
incomplete representation of relevant physical processes in ESMs (IPCC, 2021). This
underscores the urgent need for providing accurate predictions concerning changes in
permafrost coverage in response to future global climate change (Miner et al., 2022).

To address these critical questions and challenges, the development of LSMs began
incorporating physical soil processes, enabling us to explore the complex dynamics of
permafrost and its interactions with the broader climate system.

This thesis is dedicated to enhancing our comprehension and developing precise
representations of permafrost dynamics within LSMs, with a particular emphasis on
accurate modeling of heat and water fluxes, which are crucial components for simu-
lating permafrost physics (Zhu et al., 2019; Yang et al., 2022). At the outset of this
study, I formulated four research questions to set the framework for my investigation
into fundamental model prerequisites, model performance evaluations, the influence of
soil properties, and the critical role of snow thermal conductivity in permafrost physics.
The following sections summarize the conclusions drawn from each research question.

6.2 Research question 1

Which physical processes and variables determine a model’s capability to repre-
sent permafrost soils? Which methods do land surface models use to simulate heat
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and water transfer in permafrost regions?
Chapter 2 summarizes the essential requirements for effectively representing per-

mafrost soils within LSMs. In addition, this study is the first review within the literature
to make a comparison between LSMs that participated in CMIP6 to reveal their differ-
ence, performance, and shortcomings on soil physics, soil hydrology, snow physics and
vegetation representation.

This study underscores the profound importance of factors like soil discretization,
thermal conductivity, hydrology schemes, critical snow physics parameters (e.g. layer-
ing, densification, water phases, and thermal conductivity), and vegetation representa-
tion in representing permafrost.

While each LSM has a distinct approach to these processes, selecting the most suit-
able model necessitates careful consideration of spatial and temporal scales, research
objectives, and available computational resources. Importantly, the divergence in model
outcomes emphasizes the need for a holistic and synthetic evaluation of various aspects,
highlighting the inherent complexity of permafrost dynamics.

6.3 Research question 2

How accurately does the Community Land Model (CLM5) simulate permafrost
and soil temperature dynamics in the Arctic region, in comparison to observed
data on permafrost depth and temperature profiles? In particular, to what ex-
tent can CLM5 effectively capture the spatial and seasonal variabilities inherent
in permafrost physics across the Arctic region?

The evaluation of CLM5 provides valuable insights into simulating Arctic per-
mafrost regions. My approach overcomes traditional evaluation limitations by indi-
vidually addressing depth, seasonality, and regional variations, providing a compre-
hensive assessment of permafrost and soil temperature dynamics. I compare CLM5’s
results with three extensive datasets: (a) soil temperatures from 295 borehole stations,
(b) active layer thickness (ALT) from Circumpolar Active Layer Monitoring Network
(CALM) data, and (c) soil temperatures, ALT, and permafrost extent against the ESA
Climate Change Initiative (ESA-CCI).

Comparisons with both borehole station datasets and ESA-CCI reveal a strong cold
temperature bias across the majority of the domain. These findings align with a persis-
tent challenge identified in numerous studies: a systematic ”cold bias” in soil tempera-
ture over Arctic permafrost regions. Concerning permafrost extent and ALT, the results
indicate that CLM5 aligns closely with ESA-CCI and CALM, albeit with a substantial
overestimation of ALT over warm Arctic permafrost regions. One significant limitation
of CLM5 is its inability to accurately capture the seasonality of soil temperature and
inter-annual variability of ALT.
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To promote the ease of use and foster future research in the field, all algorithms
employed in this evaluation are publicly accessible and documented online: https:
//github.com/AdrienDams/cegio.

6.4 Research question 3

What is the impact of using a plant functional type (PFT)-based approach to derive
soil texture and soil organic matter in CLM5 on permafrost dynamics, and how
does it compare to traditional approaches that use fixed soil properties?

In the context of permafrost physics modeling, soil texture and soil organic matter
(SOM) are fundamental parameters for representing soil physics and thermal dynamics.
This work is the first to depart from the conventional use of coarse-resolution global
data in LSMs by applying a Plant Functional Type (PFT)-based approach to derive soil
texture and SOM.

This novel method results in a more uniform distribution of SOM across the domain,
marked by reduced SOM values in most regions. However, changes in soil texture ex-
hibit a more intricate spatial pattern. Comparing these results to observations reveals
a significant reduction in the cold bias observed in the control run. This reduction is
attributed to the increase in sand content observed in some western regions and the
regional decrease in SOM, particularly during the summer season. During the winter
season, no clear relationship can be established, primarily due to the insulating proper-
ties of the snow cover, which dampen thermal dynamics (Zhu et al., 2019).

This method provided significant improvements in permafrost extent with the trade-
off of an overestimation in ALT. This increase can be attributed to the strong dependence
of ALT on the MaxAGT. As the Obu experiment results in higher summer temperatures,
it directly influences the maximum thaw depth, resulting in increased ALT values. Nev-
ertheless, it is crucial to emphasize that the influence of these ALT changes remains
limited when juxtaposed with the comprehensive enhancements in soil temperature and
permafrost extent achieved in the Obu run.

6.5 Research question 4

To what extent can modifications to the parameterization of snow thermal con-
ductivity improve the performance of CLM5 in reproducing snow cover dynamics
over Arctic permafrost regions?

Inspired by the site experiment conducted by Dutch et al. (2022) in Trail Valley
Creek, I implemented the snow thermal conductivity scheme initially proposed by
Sturm et al. (1997) across the Arctic region. This adaptation aims to use a snow scheme
that aligns more effectively with the observed snow density profile characteristic of
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Arctic permafrost regions. My objective is to investigate implications of this modifi-
cation on simulated soil temperatures, with the ultimate goal of improving the model’s
accuracy in replicating variations in snow cover dynamics over Arctic permafrost areas.

The outcomes of this experiment reveal a notable alleviation of the cold bias pre-
viously identified in the control run. In most regions, the Sturm run displays only a
modest cold bias. However, certain areas exhibit a distinctive warm bias, particularly
those with high-elevation terrain.

Regarding the representation of permafrost extent, this experiment effectively ad-
dresses the overestimation of permafrost observed in the control run, particularly in
southern Siberia, to the detriment of many high-altitude regions which are no longer
considered permafrost in the domain and a loss of discontinuous permafrost. In addi-
tion, we observed a significant increase in ALT bias, primarily in mountainous areas.

I attribute the bias observed over high-altitude regions to two factors: (1) differences
in the resolution of the atmospheric forcing data used between ESA-CCI and CLM5 and
(2) the newly implemented snow scheme may not be ideally suited for mountainous
regions (Sturm et al., 1997; Dutch et al., 2022).

These findings underscore the critical necessity of investigating the treatment of
snow-related processes within LSMs, thereby advancing our comprehension of per-
mafrost dynamics within the broader context of climate change.

6.6 Outlook

This section highlights potential avenues for future research:

• As discussed in Chapters 4 and 5, my experiments primarily focused on the
physics near the surface of the soil column, specifically addressing SOM within
the top meter of the soil column and snow physics. Consequently, I did not specif-
ically address the cold bias in the deeper layers, where soil properties gradually
dominate over the insulating effects of SOM and snow. Addressing biases in
these deeper layers would require further research. One potential solution may
involve investigating various soil physics parameters examined in Chapter 2, such
as the Wang et al. (2016a) scheme used in ORCHIDEE. This model, being the
only one that did not exhibit a cold bias in its evaluation (Guimberteau et al.,
2018), warrants further investigation to uncover the reasons behind this unique
characteristic.

• One aspect that was not thoroughly examined in the two sensitivity experiments
was the issue of poor seasonality discussed in Chapter 3. Exploring how these ex-
periments address the challenge of poor seasonality could be an intriguing avenue
for future research.
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• The Obu experiment (RQ3) introduced a novel approach by simultaneously al-
tering both soil texture and soil organic matter (SOM) in the model. While this
approach revealed intriguing insights into their combined influence, it also posed
a challenge in understanding the exact impact of each factor individually. Future
research could delve deeper into isolating the effects of soil texture and SOM
on permafrost dynamics. This dissection could provide a more nuanced under-
standing of their respective roles and guide model improvements tailored to each
component.

• While my exploration of snow thermal conductivity (RQ4) marked a significant
improvement, it was limited by focusing solely on snow density as the key param-
eter influencing heat transfer. In the future, it would be advantageous to broaden
the scope of this parameterization. Incorporating additional factors such as grain
size, bonding, and temperature, could lead to a more accurate representation of
snow’s thermal properties (Sturm et al., 1997).

• While the Sturm et al. (1997) scheme proved to be effective in many regions,
its applicability diminishes in mountainous areas and may prove impractical for
different types of snowpack, such as those found in ice sheets. To address this
challenge, the development of a snow model that incorporates various snow ther-
mal conductivity schemes based on snow types appears promising. However, this
goal can only be achieved if the snow model is capable of accurately representing
diverse snow types. As observed, the distribution made by CLM5 of column-
averaged snow density across the domain appears relatively uniform, which di-
verges from real-world observations where mountain snowpack typically exhibits
higher density compared to tundra snowpack (Zhao et al., 2023). Consequently,
achieving reliable permafrost modeling is unattainable without an accurate repre-
sentation of snow density (Langer et al., 2013; Dutch et al., 2022). Nevertheless,
recent efforts to solve this issue appear promising (Fourteau et al., 2023).

• Both the RQ3 and RQ4 experiments have yielded valuable insights, but neither
is perfect on its own. As soil properties, snow characteristics, and permafrost
dynamics are interdependent, future research could explore the potential benefits
of combining these two approaches. For example, Figure 6.1 compares the in-situ
stations evaluation between the control, Obu, and Sturm runs for different depths
and seasons. Obu and Sturm runs are more prominent in summer and winter,
respectively. A unified run incorporating both experiments could provide a more
holistic perspective and improve the overall accuracy of LSMs.

• Finally, my simulations were limited to the use of a stand-alone LSM. It would
be highly valuable to investigate the impact of the two sensitivity experiments
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Fig. 6.1 Period averaged (1980-2021) of monthly soil temperature at 4 different depths
(-20, -80, -160 and -320 cm) for the observations (black), control run (blue), Obu run
(green), and Sturm run (red) in°C. The area represents the RMSE over all years. All
values come from an average of the 278 stations through the full period.
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proposed here within a fully-coupled ESM. This approach will enable us to gain
insights into the interdependencies between the soil and snow with the atmo-
sphere (e.g. the early snowmelt in the Sturm run could influence albedo and,
consequently, have a significant impact on atmospheric conditions), the vegeta-
tion (e.g. mitigating extreme cold temperatures should improve vegetation sur-
vivability and the impact on transpiration [Oogathoo et al. 2022]) and the carbon
cycle (e.g., underestimated soil temperatures may lead to an underestimation of
the maximum permafrost thaw).

6.7 Conclusion

In summary, this research emphasizes the critical importance of judiciously selecting
climate parameters, with a particular focus on soil texture, SOC, and snow thermal con-
ductivity. My results emphasize the crucial roles these parameters play in controlling
heat transfer processes and shaping the seasonal variations of soil temperatures as repre-
sented by LSMs in Arctic permafrost regions. This thesis represents a significant stride
forward in our understanding of permafrost dynamics and offers fresh perspectives on
its representation within LSMs.

As we move forward with this research, it is essential to acknowledge the broader
implications of my work. The accurate representation of permafrost dynamics by LSMs
is not only crucial for understanding the climate system but also for predicting the
behavior of permafrost and its potential response to climate change. By bridging the
gap between theoretical models and real-world observations, this thesis contributes to
the advancement of climate science and our ability to make informed predictions about
our changing environment.
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Appendix A

Additional figures

A.1 Global Soil Organic Carbon Map

Fig. A.1 Global soil organic carbon in tonnes/ha derived from FAO and ITPS (2020).
Darker indicates a higher SOM content per hectare.
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A.2 Active Layer Thickness

Fig. A.2 Schematic of the mean, minimum and maximum annual temperature profile
from the surface boundary layer to below the bottom of the permafrost. MaxAGT is
the maximum annual ground surface temperature, MinAGT is the minimum annual
ground temperature, MAGT is the mean annual ground temperature, ALT is the active
layer thickness, and Dzaa is the depth of zero annual amplitude of ground temperature.
Modified from Burke et al. (2020).
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A.3 Thermal conductivity vs. snow density for four schemes

Fig. A.3 Comparison of four schemes for Keff from 0 to 700 kgm−3 for snow density.
Note that the y-axis is logarithmic.
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A.4 CLM5 subgrid hierarchy

Fig. A.4 Standard configuration of the CLM5 subgrid hierarchy. The upper right box
shows hypothetical subgrid distribution for a single grid cell. Note that the crop land
unit is only used when the model is run with the crop model active. TBD = tall building
district; HD = high density; MD = medium density; G = glacier; L = lake; U = urban; C
= crop; V = vegetated; PFT = plant functional type; Irr = irrigated; Rnfd = rainfed. Red
arrows indicate allowed land unit transitions. Purple arrows indicate allowed patch-
level transitions (adapted from Lawrence et al. 2019).
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A.5 Spin-up results of control run

Fig. A.5 Results from the spin-up used in the control run of soil temperature at the tenth
layer in °C (upper left), volumetric soil water at the eight layer in mm3/mm3 (upper
middle), total water storage in meters (upper right), sensible heat flux in Wm2 (bottom
left), latent heat flux in Wm2 (bottom middle), and snow depth at a location in Taymir -
74.61N, 107.8E (bottom right). All results represent a spatial average of all grid points
in the domain.
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A.6 Comparison of ALT between the Obu and control runs

Fig. A.6 Period averaged (1980-2021) active layer thickness difference between the
Obu and control runs in meters. Darker red indicates that the Obu run is deeper than the
control run.
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A.7 Soil liquid and ice water difference between the Obu and control runs

Fig. A.7 Yearly period averaged (1980-2021) 1m-column soil liquid + ice water differ-
ence between the Obu and control runs for July in kg/m2.
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A.8 Effective snow depth in the Sturm and control runs

Figure A.8 shows the period-average effective snow depth of the control and Sturm run.
The effective snow depth characterizes the insulation provided by snow during the cold
period (Burke et al., 2020). Sdepth,eff is a cumulative value where the average snow depth
in each month, denoted as Sm in meters, is adjusted according to its duration:

Sdepth,eff =

∑M
m=1 Sm(M + 1−m)∑M

m=1m
(A.1)

Snow can be present anytime from October (m = 1) to March (m = 6) with the
maximum duration, M , being 6 months. his weighting approach favors early snowfall
over late snowfall, as it contributes more to the overall insulating effect. When the
effective snow depth, Sdepth,eff, surpasses 0.25 meters, the insulating capacity of the
snow remains relatively constant (Burke et al., 2020), and seasons with earlier snowfall
typically exhibit higher Sdepth,eff than seasons with later snowfall.

Fig. A.8 Period (1980 to 2021) average of effective snow for the control run (left) and
Sturm run (right).
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A.9 Snow density in CLM4.5 and CLM5

Fig. A.9 Monthly average of snow density (column-averaged) for January 2000 in
kgm−3 for the CLM45 (left), CLM5 (center), and their difference (right). Darker read
indicates that the snow density is higher in Sturm.

A.10 Snow density in the Sturm and control runs

Fig. A.10 Period (1980 to 2021) monthly average of snow density (column-averaged)
in January in kgm−3 for the control run (left) and Sturm run (right).
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A.11 Comparison of ALT between the Sturm and control runs

Fig. A.11 Period averaged (1980-2021) active layer thickness difference between the
Sturm and control runs in meters. Darker red indicates that the Sturm run is deeper than
the control run.
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Appendix B

Additional equations

B.1 Particle density

The particle density is a fundamental soil physical property. Particle density is defined
as the mass of soil particles divided by the volume occupied by the solids (i.e., excluding
voids and water). Typical values for soils range from 2.5–2.8 Mg/m3 (Warrick, 2002).
The bulk density ρb is the state of compaction and the amount of pore space in a soil
and can be derived as:

ρb =
mass of solids

mass of solids and pore spaces
(B.1)

The solids are all soil particles, where as the pore spaces are spaces holding either
air, water or other liquids. Typically, sands pack closely, with values ranging from 1.4
to 1.9 Mg/m3 (Warrick, 2002). Clays tend to bridge and cannot pack as tightly, giving
values from 0.9 to 1.4 Mg/m3.

B.2 Brooks and Coorey, 1964 (BC) model

BC model formulae are:

θ

θs
=

(
Φ

Φs

)− 1
b

(B.2)

Kh = Khs

(
θ

θs

)2b+3

(B.3)

where θ is the volumetric soil water content, θ is the volumetric soil water content
at saturation, Φ is the soil water suction, Φs is the saturated soil water suction, b is the
Clapp and Hornberger (1978) soil exponent, Kh is the hydraulic conductivity, and Khs

is the hydraulic conductivity for saturated soil.
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B.3 van Genuchten, 1980 (VG) model

VG model formulae are:

S =
θ − θr
θs − θr

=
1

[1 + (αvΦ)n]
m (B.4)

Kh = KhsS
ξ
[
1−

(
1− S

1
m

)m]2
(B.5)

where θr is the residual volumetric soil water content, n is the van Genuchten (1980)
soil parameter, m = 1− 1/n, and ξ = 0.5.

B.4 Root Mean Square Error (RMSE)

RMSE is metric used to measure the average magnitude of the errors between predicted
and actual values. RMSE gives more weight to larger errors, which can be useful when
you want to penalize large prediction errors more severely. RMSE provides a measure
of how spread out the prediction errors are. RMSE is calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (B.6)

where n is the number of data points, yi represents the observed values, and ŷi

represents the predicted (modeled) values.

B.5 Mean Absolute Deviation (MAD)

MAD is a metric used to measure the overall accuracy of a model’s predictions. It
quantifies how close the predicted values are to the actual values, regardless of whether
the predictions are overestimates or underestimates. MAD is calculated as:

MAD =
1

n

n∑
i=1

|ŷi − yi| (B.7)

B.6 Van Kampenhout et al. (2017) functions

ρT =


50 + 1.7(17)

3
2 if T > Tfrz + 1,

50 + 1.7(T − Tfrz + 15)
3
2 if Tfrz − 15 < T ≤ Tfrz + 2,

−3.8328(T − Tfrz)− 0.0333(T − Tfrz)
2 if T ≤ Tfrz − 15.

(B.8)

ρw = 266.861

(
1

2
(1 + tanh(U/5))

)8.8

(B.9)
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ρfs = ρT + ρw (B.10)

where T denotes the atmospheric near-surface temperature (in Kelvin), Tfrz the
freezing temperature of water (273.158K), and U denotes 10 m wind speed in ms−1.
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Appendix C

Local comparisons of a list of borehole stations

While the main thesis delved into the broader regional trends and patterns, this appendix
examines the specific results of 10 selected stations and compare it to the 3 runs used
in this study: control, Obu and Sturm runs. These stations were chosen based on the
number of data records available, meeting criteria to be classified as permafrost by our
model, and spread across diverse Arctic regions. The geographical locations of these
stations are illustrated in Figure C.1. The dashed lines represents

This complementary analysis (Fig. C.2) serves to provide a more comprehensive
perspective on soil temperature dynamics, offering valuable insights that may not have
been fully explored in the main discussion.
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Fig. C.1 Location of the selected 10 borehole stations. U13xxx (68.63°N, -149.60
°E), SAMOYL (72.37°N, 126.47°W), IV4-1x (68.48°N, -155.74°E), 241250 (68.50°N,
112.43°W), 232740 (67.43°N, 86.62°W), 592192 (63.75°N, -68.55°E), ISAibx
(78.78°N, -103.55°E), BISibx (73.22°N, -119.56°E), 254000 (65.73°N, 150.90°W),
202920 (77.72°N, 104.30°W).
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Fig. C.2 The dashed lines represent the station observations from 295GT, and the solid
lines represent the model results. Red lines are MaxAGT, black lines are MAGT, and
blue lines are MinAGT.
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Côté, J. and Konrad, J.-M. (2005). A generalized thermal conductivity model for soils
and construction materials. Can. Geotech. J., 42(2):443–458.

Dai, Y., Wei, N., Yuan, H., Zhang, S., Shangguan, W., Liu, S., Lu, X., and Xin, Y.
(2019). Evaluation of Soil Thermal Conductivity Schemes for Use in Land Surface
Modeling. J Adv Model Earth Syst, 11(11):3454–3473.

Dankers, R., Burke, E. J., and Price, J. (2011). Simulation of permafrost and seasonal
thaw depth in the JULES land surface scheme. The Cryosphere, 5(3):773–790.

de Vries, D. (1963). Thermal properties of soils. In W. R. Wijk and A. J. W. Borghorst

(EDs.), Physics of the Plant Environment, pages 210–235. North-Holland, Amsterdam.

Decharme, B., Boone, A., Delire, C., and Noilhan, J. (2011). Local evaluation of the
Interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using
four pedotransfer functions. J. Geophys. Res., 116(D20):D20126.

Decharme, B., Brun, E., Boone, A., Delire, C., LeMoigne, P., and Morin, S. (2016). Im-
pacts of snow and organic soils parameterization on northern Eurasian soil temperature
profiles simulated by the ISBA land surface model. The Cryosphere, 10(2):853–877.

Dharssi, I., Vidale, P. L., Verhoef, A., Macpherson, B., Jones, C., and Best, M. (2009).
New soil physical properties implemented in the Unified Model.

Domine, F., Barrere, M., and Sarrazin, D. (2016). Seasonal evolution of the effective
thermal conductivity of the snow and thesoil in high Arctic herb tundra at Bylot Island,
Canada. The Cryosphere, 10(6):2573–2588.

Domine, F., Belke-Brea, M., Sarrazin, D., Arnaud, L., Barrere, M., and Poirier, M.
(2018). Soil moisture, wind speed and depth hoar formation in the Arctic snowpack. J.

Glaciol., 64(248):990–1002.

Domine, F., Picard, G., Morin, S., Barrere, M., Madore, J.-B., and Langlois, A. (2019).
Major Issues in Simulating Some Arctic Snowpack Properties Using Current Detailed
Snow Physics Models: Consequences for the Thermal Regime and Water Budget of
Permafrost. J. Adv. Model. Earth Syst., 11(1):34–44.

Dutch, V. R., Rutter, N., Wake, L., Sandells, M., Derksen, C., Walker, B., Hould Gos-
selin, G., Sonnentag, O., Essery, R., Kelly, R., Marsh, P., King, J., and Boike, J. (2022).
Impact of measured and simulated tundra snowpack properties on heat transfer. The

Cryosphere, 16(10):4201–4222.

Ekici, A., Beer, C., Hagemann, S., Boike, J., Langer, M., and Hauck, C. (2014). Sim-
ulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model.
Geoscientific Model Development, 7(2):631–647.

128



Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and
Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6
(CMIP6) experimental design and organization. Geosci. Model Dev., 9(5):1937–1958.

Farouki, O. T. (1981). The thermal properties of soils in cold regions. Cold Regions

Science and Technology, 5(1):67–75.

Fisher, R. A. and Koven, C. D. (2020). Perspectives on the Future of Land Surface
Models and the Challenges of Representing Complex Terrestrial Systems. J Adv Model

Earth Syst, 12(4):e2018MS001453.

Fourteau, K., Brondex, J., Brun, F., and Dumont, M. (2023). A novel numerical imple-
mentation for the surface energy budget of melting snowpacks and glaciers. preprint,
Cryosphere.

Fourteau, K., Hagenmuller, P., Roulle, J., and Domine, F. (2022). On the use of heated
needle probes for measuring snow thermal conductivity. J. Glaciol., 68(270):705–719.

Gibson, C. M., Brinkman, T., Cold, H., Brown, D., and Turetsky, M. (2021). Identi-
fying increasing risks of hazards for northern land-users caused by permafrost thaw:
integrating scientific and community-based research approaches. Environ. Res. Lett.,
16(6):064047.

Golaz, J., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D.,
Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht,
G., Bogenschutz, P. A., Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M.,
Cameron-Smith, P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng,
Y., Flanner, M., Foucar, J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E.,
Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W.,
Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H., Lin, W., Lipscomb,
W. H., Ma, P., Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy,
R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J. E. J., Riley,
W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi,
X., Singh, B., Tang, J., Taylor, M. A., Thornton, P. E., Turner, A. K., Veneziani, M.,
Wan, H., Wang, H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S.,
Yang, Y., Yoon, J., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K.,
Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q. (2019). The DOE E3SM Coupled Model
Version 1: Overview and Evaluation at Standard Resolution. J. Adv. Model. Earth Syst.,
11(7):2089–2129.

Goodrich, L. E. (1976). A numerical model for assessing the influence of snow cover

on the ground thermal regime. McGill University, Montreal.

129



Gouttevin, I., Krinner, G., Ciais, P., Polcher, J., and Legout, C. (2012). Multi-scale
validation of a new soil freezing scheme for a land-surface model with physically-based
hydrology. The Cryosphere, 6(2):407–430.
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