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Summary

Water stored in the unsaturated soil as soil moisture is a key component of the hydro-
logical cycle influencing numerous hydrological processes including hydro-
meteorological extremes. Soil moisture influences flood generation processes and
during droughts when precipitation is absent, it provides plant with transpirable wa-
ter, thereby sustaining plant growth and survival in agriculture and natural ecosys-
tems.

Soil moisture stored in deeper soil layers e.g. below 100 cm is of particular impor-
tance for providing plant transpirable water during dry periods. Not being directly
connected to the atmosphere and located outside soil layers with the highest root
densities, water in these layers is less susceptible to be rapidly evaporated and tran-
spired. Instead, it provides longer-term soil water storage increasing the drought
tolerance of plants and ecosystems.

Given the importance of soil moisture in the context of hydro-meteorological
extremes in a warming climate, its monitoring is part of official national adaption
strategies to a changing climate. Yet, soil moisture is highly variable in time and
space which challenges its monitoring on spatio-temporal scales relevant for flood
and drought risk modelling and forecasting.

Introduced over a decade ago, Cosmic-Ray Neutron Sensing (CRNS) is a non-
invasive geophysical method that allows for the estimation of soil moisture at relevant
spatio-temporal scales of several hectares at a high, subdaily temporal resolution.
CRNS relies on the detection of secondary neutrons above the soil surface which are
produced from high-energy cosmic-ray particles in the atmosphere and the ground.
Neutrons in a specific epithermal energy range are sensitive to the amount of hy-
drogen present in the surroundings of the CRNS neutron detector. Due to same
mass as the hydrogen nucleus, neutrons lose kinetic energy upon collision and are
subsequently absorbed when reaching low, thermal energies. A higher amount of
hydrogen therefore leads to fewer neutrons being detected per unit time. Assuming
that the largest amount of hydrogen is stored in most terrestrial ecosystems as soil
moisture, changes of soil moisture can be estimated through an inverse relationship
with observed neutron intensities.

Although important scientific advancements have been made to improve the
methodological framework of CRNS, several open challenges remain, of which some
are addressed in the scope of this thesis. These include the influence of atmospheric
variables such as air pressure and absolute air humidity, as well as, the impact of vari-
ations in incoming primary cosmic-ray intensity on observed epithermal and thermal
neutron signals and their correction. Recently introduced advanced neutron-to-soil
moisture transfer functions are expected to improve CRNS-derived soil moisture
estimates, but potential improvements need to be investigated at study sites with
differing environmental conditions. Sites with strongly heterogeneous, patchy soil
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moisture distributions challenge existing transfer functions and further research is
required to assess the impact of, and correction of derived soil moisture estimates
under heterogeneous site conditions. Despite its capability of measuring represen-
tative averages of soil moisture at the field scale, CRNS lacks an integration depth
below the first few decimetres of the soil. Given the importance of soil moisture also
in deeper soil layers, increasing the observational window of CRNS through mod-
elling approaches or in situ measurements is of high importance for hydrological
monitoring applications.

By addressing these challenges, this thesis aids to closing knowledge gaps and
finding answers to some of the open questions in CRNS research. Influences of
different environmental variables are quantified, correction approaches are being
tested and developed. Neutron-to-soil moisture transfer functions are evaluated
and approaches to reduce effects of heterogeneous soil moisture distributions are
presented. Lastly, soil moisture estimates from larger soil depths are derived from
CRNS through modified, simple modelling approaches and in situ estimates by using
CRNS as a downhole technique. Thereby, this thesis does not only illustrate the
potential of new, yet undiscovered applications of CRNS in future but also opens a
new field of CRNS research. Consequently, this thesis advances the methodological
framework of CRNS for above-ground and downhole applications. Although the
necessity of further research in order to fully exploit the potential of CRNS needs
to be emphasised, this thesis contributes to current hydrological research and not
least to advancing hydrological monitoring approaches being of utmost importance
in context of intensifying hydro-meteorological extremes in a changing climate.
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Zusammenfassung
(in allgemeinverständlicher Sprache)

Wasser, das als Bodenfeuchte in der ungesättigten Bodenzone gespeichert ist, bee-
influsst zahlreiche hydrologische Prozesse. Sie ist von großer Bedeutung für hydro-
meteorologische Extremereignisse, da sie sowohl die Prozesse zur Entstehung von
Hochwassereignissen beeinflusst als auch pflanzenverfügbares Wasser in Dürreperi-
oden bereitstellt, in denen Regen ausbleibt. Vor allem Bodenfeuchte in tieferen
Schichten des Bodens wird zum Beispiel durch die geringere Dichte an Pflanzen-
wurzeln langsamer aufgenommen und reduziert. Die Bodenfeuchte in diesen tieferen
Schichten kann daher vor allem in Trockenperioden zum Überleben der Pflanzen in
landwirtschaftlichen Gebieten und natürlichen Ökosystemen beitragen. Im Kontext
hydro-meteorologischer Extremereignisse kommt der Bodenfeuchte so eine besondere
Bedeutung zu und ist daher Teil nationaler Monitoring- und Anpassungsstrategien
an sich verändernde Klimabedingungen.

Cosmic-Ray Neutron Sensing (CRNS) ist ein geophysikalisches Messverfahren,
das natürlich vorkommende Neutronen aus kosmischer Strahlung zur Bodenfeuchte-
bestimmung nutzt. Die Intensität der über dem Boden gemessenen Neutronen ist
dabei abhängig von der Menge an Wasserstoff in der Umgebung des Neutronendetek-
tors. Da in den meisten Bereichen an Land die Bodenfeuchte den größten Teil des
Wasserstoffs ausmacht, lassen Veränderungen in der gemessenen Neutroneninten-
sität auf veränderte Bodenfeuchtebedingungen schließen. Ein Vorteil dieser nicht-
invasiven Methode ist ihr großer Messbereich von mehreren Hektar. Die, selbst über
kurze Distanzen und Zeiträume auftretenden, Unterschiede werden somit repräsen-
tativ gemittelt und gemessene Bodenfeuchtewerte können so besser für Vorhersage-
modelle von Hochwasser- und Dürreereignissen genutzt werden.

Trotz des Potentials von CRNS für das Monitoring von Bodenfeuchte bleiben
zahlreiche offene Forschungsfragen, von denen einige im Rahmen dieser Arbeit be-
trachtet werden. Hierzu zählt die Bestimmung und Korrektur von Einflussgrößen,
die das Neutronensignal zusätzlich zur Bodenfeuchte beeinflussen. Ebenso gehört
die Ableitung von Bodenfeuchte aus dem Neutronensignal selbst sowie der Umgang
mit stark unterschiedlichen Bodenfeuchtebedingungen im Messbereich dazu. Ob-
wohl CRNS einen großen horizontalen Messbereich besitzt, ist die Messtiefe auf die
oberen ca. 30 cm des Bodens begrenzt. Hierzu werden Ansätze untersucht, die Bo-
denfeuchte mathematisch in größere Tiefen zu extrapolieren und sie direkt dort zu
messen, indem Neutronendetektoren in Bohrlöchern installiert werden.

Mit der Betrachtung der Forschungsfragen kann diese Arbeit einen wichtigen
Beitrag zur Weiterentwicklung von CRNS und der Anwendbarkeit der Methode z.B.
im Rahmen nationaler Monitoring-Programme leisten, denen im Kontext zunehmend
intensiverer hydro-meteorologischer Extremereignisse eine besondere Bedeutung
zukommt.
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Agency for Interior Administration Mecklenburg-Western Pomerania
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Chapter 1

Introduction

1.1 Hydro-meteorological extremes in a changing

climate

Hydro-meteorological extreme events are intensifying on a global scale [Tabari, 2020;
Rodell and Li, 2023] with human and economic losses of river flood events are
being expected to increase with a warming climate [Dottori et al., 2018]. In the
past 25 years, Germany alone experienced severe flood events with high amounts of
tangible and intangible losses, ranging from large-scale river floods e.g. of the Elbe
river in 2002 and 2013 [e.g. Schröter et al., 2015] to events on a smaller spatio-
temporal scale. These include, for instance, the flash flood events in Braunsbach
in 2016 [e.g. Bronstert et al., 2018] or in the Ahr valley in 2021 [e.g. Apel et al.,
2022]. A warming climate alters both the timing of flood events [Blöschl et al.,
2017] and increases the frequency of floods on a global scale [Hirabayashi et al.,
2013]. Yet, regionally varying trends can be found for the timing, magnitudes and
frequencies of flood events. While some regions in Europe experience earlier floods,
a delay can be observed in others [Blöschl et al., 2017]. Similar differences have been
found for flood discharges arising from regionally changing patterns in precipitation,
evaporation and snowmelt, showing that climate change impacts on flood events and
the hydrological cycle can already be observed [Blöschl et al., 2019b].

Decreasing trends of flood discharges in some regions of Europe, due to reduced
precipitation and increased evapotranspiration, illustrate the regionally opposing ef-
fects of a changing climate and underline the findings of Rodell and Li [2023] showing
that extreme dry events are intensifying along with extreme wet events. Thus, a
warming climate can be expected to increase the severity and frequency of drought
events in Europe [Spinoni et al., 2018] as well as on a global scale [Pokhrel et al.,
2021]. Recent examples of drought events in Germany occurred in 2018 and 2019,
also affecting large parts of central Europe [Boergens et al., 2020] and impacting
agriculture, forestry and the transportation sector [e.g. Madruga de Brito et al.,
2020; Boergens et al., 2020] on different temporal scales. For example, droughts can
impact forest ecosystems beyond their own duration [e.g. Senf and Seidl, 2021] while
immediately impacting agriculture [Madruga de Brito et al., 2020]. An associated
effect of the 2018/2019 events were drought-induced forest fires [Madruga de Brito
et al., 2020], which not only affect the respective forest ecosystems and related eco-
nomic losses in forestry, but also affect human health [Xu et al., 2020]. Although
the drivers of wildfires are complex, droughts contribute to the likelihood wildfires
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especially in woody ecosystems [Pausas and Keeley, 2021] and with more frequent
and severe droughts, a potential increase in frequency of wildfires can be expected.

More frequent and intense hydro-meteorological extreme events associated with
a global rise in temperatures lead to severe direct and indirect impacts on ecosys-
tems, economy and human health. Gaining further knowledge on the driving key
hydrological variables, their interconnectivity and monitoring on different spatio-
temporal scales is a prerequisite for developing and advancing the forecasting of
hydro-meteorological extremes as well as risk mitigation and adaption strategies in
a changing climate.

1.2 On the role of soil moisture

1.2.1 The importance of soil moisture in the context of
hydrological extremes

Defined as the water located in the unsaturated, i.e. vadose zone of the soil [Senevi-
ratne et al., 2010], soil moisture represents one key variable in hydrology [Vereecken
et al., 2008, 2014] and the climate system [Seneviratne et al., 2010] driving energy
and water fluxes [e.g. Vereecken et al., 2008; Seneviratne et al., 2010]. Despite its
small share of below 0.01% of the total amount of water on earth [Dingman, 2015],
it has a high importance for several hydrological and environmental processes as
reviewed in numerous studies [e.g. Daly and Porporato, 2005; Robinson et al., 2008;
Seneviratne et al., 2010; Wang et al., 2018]. This includes the modulating process
from precipitation to runoff generation [Wang et al., 2018]. The role of the an-
tecedent soil moisture state for the runoff generation has been analysed by Merz
and Blöschl [2009] for catchments of various sizes, illustrating that antecedent soil
moisture conditions can exert a strong influence on runoff coefficients and runoff gen-
eration, although the impact of antecedent soil moisture on runoff volumes depends
on the runoff generating process [Scherrer et al., 2007]. For example, runoff vol-
umes from Hortionian overland runoff, caused by precipitation intensity exceeding
the infiltration rate, can be expected to be little influenced by antecedent moisture
[Scherrer et al., 2007]. In contrast, runoff from saturation excess due to a decreased
soil water storage volume available through higher soil moisture contents is expected
to influence runoff and flood generation [Merz et al., 2021].

In the large catchment of the Elbe river, Nied et al. [2013] found that soil moisture
patterns are among the flood-initiating conditions and that both, weather patterns
and soil moisture conditions influence flood generation and characteristics [Nied
et al., 2014, 2017]. In addition to floods on a larger spatio-temporal scale, small
scale flash flood events were also found to be influenced by antecedent soil moisture
conditions. For example, Grillakis et al. [2016] report a sensitivity of flash flood peak
discharges on antecedent soil moisture conditions. Although lower antecedent soil
moisture contents indicate a higher water storage capacity and hence, potentially
dampening effect on flood discharges, the opposite may also occur. Dry conditions
can result in hydrophobicity which reduces the infiltration rate into the soil and thus,
increasing surface runoff and runoff coefficients [e.g. Ferreira et al., 2000; Lemmnitz
et al., 2007].

Although regional differences can be observed, on a continental scale, soil mois-
ture excess is the most important flood driver in Europe [Berghuijs et al., 2019],
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with increasing importance being found for the British Isles, north and central Eu-
rope [Kemter et al., 2020]. Due the high importance of soil moisture conditions for
runoff generation and thus, the characteristics and magnitudes of floods on different
spatio-temporal scales, soil moisture information can improve flood modelling [e.g.
Massari et al., 2014; Chifflard et al., 2018] and flood forecasting efforts [e.g. Wanders
et al., 2014], illustrating the high value of soil moisture information for forecasting
as well as the risk assessment and management of flood events in a changing climate.

In addition to the importance for flood events, soil moisture provides the plant-
available water for transpiration, plant growth and photosynthesis, thereby driving
biogeochemical processes such as the carbon and nitrogen cycles [e.g. Seneviratne
et al., 2010]. Several interaction and feedback processes between soil moisture,
vegetation and climatic variables show that that climatic conditions and vegetation
cover exert an influence on soil moisture and vice versa [e.g. Seneviratne et al., 2010;
Wang et al., 2018]. Changing soil moisture contents are observed in many regions of
the world, with 48 % of vegetated area showing a long-term decrease in soil moisture
[Lal et al., 2023] and hence, potentially available water for plants and ecosystems.
Depending on the affected ecosystem, this may lead to an increased vulnerability to
globally intensifying droughts (see chapter 1.1), as vegetation becomes increasingly
sensitive to soil moisture in many parts of the world, especially in arid and semi-
arid regions [Li et al., 2022b]. This may be of special importance as droughts are
developing more rapidly in many parts of the world [Yuan et al., 2023], making
monitoring and forecasting more difficult [Pendergrass et al., 2020]. Depleting soil
moisture contributes to the development of these rapidly developing flash droughts
[e.g. Qing et al., 2022] which not least illustrates the importance of long-term soil
moisture monitoring for drought modelling, forecasting and early warning efforts
[Boeing et al., 2022].

Droughts not only affect local ecosystems but also the production of agricultural
crops through low soil moisture contents and associated water stress. More intense
and rapidly developing droughts can therefore be expected to negatively affect the
global food production. Accurate crop yield modelling and forecasting are vital to
sustain food security. Incorporating soil moisture information into crop yield models
has been found to improve modelling results [Proctor et al., 2022].

Similarly, other drought-associated hazards such as wildfires, can also be linked
to spatio-temporal fire-promoting soil moisture patterns [e.g. Krueger et al., 2015;
O et al., 2020], making soil moisture an important variable for wildfire danger rat-
ing and management [Krueger et al., 2022] and highlighting the importance of soil
moisture information beyond the monitoring, modelling and forecasting of droughts
as hydro-meteorological extremes themselves.

Not least because of the significance of soil moisture against the background
intensifying hydro-meteorological extremes in a warming climate, soil water storage
in agricultural soils and soil moisture in forest soils have been defined as indicators
and described in the latest monitoring report on the official

”
German Strategy for

Adaption to Climate Change“[van Rüth et al., 2023], underlining the importance of
monitoring soil moisture for the development of adaption and mitigation strategies
for a changing climate.
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1.2.2 Soil moisture in deeper layers

In general, the importance of soil moisture described in the previous chapter refers to
the amount of water stored in the entire unsaturated zone. However, the soil surface
is directly connected to the atmosphere, making the soil close to the surface most
important for processes of infiltration, runoff, evaporation and hence, water and
energy fluxes. Globally, the majority of plant roots are located within the upper
100 cm of the soil [Jackson et al., 1996], making this soil layer also essential for
transpiration, photosynthesis and plant growth as well as biogeochemical processes.
As a consequence, soil moisture is often monitored close to the surface. For instance,
stations of the International Soil Monitoring Network ISMN [Dorigo et al., 2011]
observe in situ soil moisture to a maximum depth of 200 cm with the vast majority
of stations monitoring soil moisture to 100 cm only [Dorigo et al., 2021b]. Similarly,
studies which aim for the estimation of root zone soil moisture from measurements
of surface soil moisture in the first centimetres of the soil usually consider depths
down to approx. 100 cm when assessing the root zone soil moisture content [e.g.
Peterson et al., 2016; Manfreda et al., 2014; Zhang et al., 2017; Mishra et al., 2020;
Tian et al., 2020; Franz et al., 2020; Carranza et al., 2021; Guo et al., 2023], while
only some studies consider larger depths of e.g. 200 cm [e.g. Pasik et al., 2023].
Globally available gridded soil moisture products based on, for example, satellite
data, modelling approaches and data reanalysis cover similar vertical extents as
summarised in Xu et al. [2021] and Zheng et al. [2023].

Although most of the roots are located in the upper 100 cm of the soil, the max-
imum rooting depths of vegetation usually exceed this depth with a global average
of 4.6m [Canadell et al., 1996], depending on vegetation type, soil properties and
hydroclimatic conditions [e.g. Fan et al., 2017] including soil moisture through its
influence on root growth [e.g. Maan et al., 2023]. As a consequence, the root dis-
tribution in the entire vadose zone is difficult to quantify and the commonly used
exponential model to describe the cumulative root distribution remains under de-
bate [Pierret et al., 2016] and may only be considered as a first estimate. As most
roots can be found in the upper soil layer, roots below a threshold depth of 100 cm
have been defined as deep roots [Maeght et al., 2013] and deep soil moisture may
be defined correspondingly to water stored in the vadose zone in depths greater
100 cm. Infiltrating water from precipitation percolating to depths below 100 cm
is less susceptible to being removed via root water uptake compared to soil layers
with higher root densities. Consequently, water may be stored in deeper layers of
the unsaturated zone, or percolates further contributing to groundwater recharge.
Depending on the site-specific soil physical and hydroclimatic conditions, plants can
access water in deeper unsaturated soil layers or even groundwater through deep
root growth [e.g. Fan et al., 2017]. For instance, the common Scotts pine (Pinus
sylvestris) may develop a height-to-depth ratio of 0.6 [Pierret et al., 2016] meaning
that for a tree height of 20m, a maximum rooting depth of more than 30m can be
expected allowing the tree to access groundwater resources via tap roots in many
regions.

As the density of roots is much higher close to the soil surface, the highest amount
root water uptake and hence, water supply of plants occurs in the shallow root zone
by uptaking infiltrated water from precipitation while the root water uptake from
deeper layers is comparably marginal [Pierret et al., 2016]. Nevertheless, deep roots
can play an important role for root water uptake in dry periods [Pierret et al., 2016]
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for both forest ecosystems and agricultural crops, as reviewed in Germon et al.
[2020] and Li et al. [2022a]. Therefore, it represents an important factor for drought
tolerance of plant ecosystems. The process of hydraulic lift allows plants to transport
infiltrating water either into deeper layers or water from moist deep layers upwards
[e.g. Nadezhdina et al., 2010; Neumann and Cardon, 2012] and is documented for
many tree species and forest ecosystems [e.g. Neumann and Cardon, 2012]. An
example for a typical hydraulic lift signal in soil moisture time series observed with
in situ sensors can be found in Fig. 1.1 for a mixed forest site in north-eastern
Germany indicating the presence of roots down to at least 450 cm. The signature of
hydraulic lift is characterised by an increase of soil moisture during the night and
a depletion of soil moisture during the day, differing from the typical

”
descending

staircase “evapotranspiration signal characterised by a depletion during the day,
only [Brooks et al., 2002]. Brooks et al. [2002] indicate that hydraulic redistribution
of water from e.g. deeper to shallow layers can delay the soil drying of the upper soil
layers and hence, elongate water availability for transpiration in shallow soil layers
during droughts which increases the drought tolerance of plants.

Figure 1.1: (a) Diurnal soil moisture variations and (b) soil temperature variations
observed by selected in situ point-scale sensors installed in different depths at a
forest monitoring site in north-eastern Germany in July 2020.

Furthermore, roots form macropores in the soil which act as flowpaths enabling
preferential flow along living and dead roots [e.g. see review by Nimmo, 2021]. This
allows infiltrating water to bypass shallow layers and to percolate into deeper soil in-
creasing the amount of water transported and potentially stored in deeper soil layers.
For instance, Hu et al. [2022] found that preferential flow associated with macrop-
ores along roots can be higher compared to macropores not associated with roots.
Consequently, roots contribute to both, increasing infiltration to greater depths and
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thereby increasing soil water storage which can lead to reduced runoff on the one
hand as well as increased stored water in deeper layers potentially accessible during
periods of drought on the other. Maysonnave et al. [2022] recently confirmed the
importance of water stored in deeper layers for enabling plant water supply during
dry periods in a mixed forest in France, finding that root water uptake in layers
below 150 cm depth increases over the growing season when the superficial layers
dry up. Moreover, water in deep soil layers contributed up to 60 % of the transpired
water during the central European drought event in August 2018 [Maysonnave et al.,
2022] indicating their importance for sustaining plant growth during droughts. A
widespread access of vegetation to water in soil layers below 100 and 200 cm has
been indicated by Stocker et al. [2023] on a global scale underlining the importance
of water stored below 100 cm, e.g. as deep soil moisture in the unsaturated zone, for
the water supply of vegetation. Monitoring water stored in the deeper unsaturated
zone may therefore become especially important in a warming climate, accompa-
nied with intensifying hydro-meteorological extremes such as droughts in order to
support forecasting efforts and to improve mitigation and adaptation strategies.

1.2.3 Measuring soil moisture at relevant scales

Soil moisture is highly variable in time and space and may change intensely, even
over small horizontal distances in the centimetre range [Vereecken et al., 2014].
The spatio-temporal variability is driven by a complex interaction of several fac-
tors [Rosenbaum et al., 2012] including topography, soil physical properties, mete-
orological forcing, groundwater, the average soil moisture content and vegetation
[Famiglietti et al., 2008; Rosenbaum et al., 2012]. The degree of surface soil mois-
ture variability on the point scale (approx. measurement volume of 1 dm3, [Robinson
et al., 2008]) is dependent on the scale itself, with an increasing variability reported
for larger spatial scales [e.g. Famiglietti et al., 2008]. Due to the driving meteorologi-
cal forcing, surface soil moisture can be expected to vary stronger than soil moisture
in deeper layers in both the spatial and temporal domain [e.g. Rosenbaum et al.,
2012]. This can be also be related to the degree of interception and transpiration
[e.g. Schume et al., 2003] and throughfall patterns [e.g. Fischer-Bedtke et al., 2023]
as well as infiltration patterns due to species dependent root distributions of forest
vegetation [e.g. Jost et al., 2012]. The influence of vegetation on spatio-temporal
variability of soil moisture is not limited to forest ecosystems but has also been
reported for e.g. grasslands [Demir et al., 2022]. An example of spatio-temporal
variability of point-scale soil moisture close to the surface can be found in Fig. 1.2.
It shows the differing response of several electromagnetic in situ soil moisture sensors
installed in a depth of 10 cm in a mixed forest in north-eastern Germany. Although
installed only a few metres apart from each other, it can be seen that not only the
average soil moisture differs between sensors but also their temporal dynamics.

This exemplifies the high spatio-temporal variability of point-scale soil moisture
and illustrates the need to observe representative averages of soil moisture at the
spatial and temporal scales of the process and application of interest [Dorigo et al.,
2021a]. For instance, environmental model applications such as rainfall-runoff mod-
elling for flood risk assessment and foresting or land-surface modelling for drought
forecasting may require soil moisture information on the process scale of the respec-
tive model domain [e.g. Robinson et al., 2008], e.g. grid cell sizes from tens of metres
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Figure 1.2: Soil moisture time series measured by 12 in situ points-scale sensors
installed in 10 cm depth at a forest monitoring site in north-eastern Germany in
2019.

to tens of kilometres [Dorigo et al., 2021a]. Similarly, agricultural applications re-
quire soil moisture information on the scale of agricultural fields to aid agricultural
management practices such as irrigation for optimising crop yield [Vereecken et al.,
2014]. The required field-scale data in the range from 1 to 10 [Vergopolan et al.,
2021] or 100 ha [Brown et al., 2023] lies between the point scale which can be ob-
served using, for instance, electromagnetic in situ sensors and the coarser scale of
satellite-derived soil moisture products. Observational techniques to measure soil
moisture at the field scale range from networks of co-located in situ point-scale
measurements [Robinson et al., 2008; Vereecken et al., 2014] to non-invasive geo-
physical methods such as electrical resistivity tomography (ERT) [e.g. Cimpoiaşu
et al., 2020], terrestrial gravimetry [e.g. Van Camp et al., 2017] and lower resolu-
tion soil moisture products derived from airborne and space-borne remote sensing.
Detailed reviews on observing soil moisture at different spatio-temporal scales can
be found in Robinson et al. [2008], Vereecken et al. [2008, 2014] and Babaeian et al.
[2019].

All techniques for monitoring field-scale soil moisture come with their individ-
ual limitations and challenges. For example, point-scale sensor networks comprising
several electromagnetic in situ soil moisture sensors can be used to derive continu-
ous field-scale averages of soil moisture in different depths and on a high temporal,
e.g. sub-hourly, resolution [e.g. Vereecken et al., 2014]. However, a very large number
of sensors are required to capture the variability of soil moisture at the field scale
and to derive representative field-scale average values [Babaeian et al., 2019]. The
large number of sensors required are cost and labour intensive which hampers their
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installation and usage [Babaeian et al., 2019] and often their installation depth does
not exceed 100 cm, as exemplary shown for the ISMN [Dorigo et al., 2021b]. Fur-
thermore, agricultural management practices such as ploughing and harvest make
their use impractical in these settings [e.g. Stevanato et al., 2019]. Other geophys-
ical methods such as time-lapse ERT are non-invasive and can be used to derive
soil moisture changes along transects and to greater depths of a few metres allow-
ing to assess e.g. two-dimensional soil moisture distributions [e.g. de Jong et al.,
2020; Vanella et al., 2022; Rieder and Kneisel, 2023]. However, they require addi-
tional information to derive absolute soil moisture contents from raw measurements
through empirical models or calibration [Fäth et al., 2022] and measurements are
often carried-out as snap-shot campaigns with a limited temporal resolution. Field
to landscape-scale soil moisture changes in the entire vadose zone can also be derived
non-invasively from relative terrestrial gravimetry [e.g. He et al., 2022]. However,
additional information such as groundwater storage variations are required to reduce
observed gravity variations to soil moisture storage variations in the vadose zone,
complicating the approach and adding to the high instrumental costs [Van Camp
et al., 2017]. Airborne and space-borne remote sensing soil moisture estimates with
sufficient spatial resolution may also be used to derive field-scale soil moisture av-
erages [Vereecken et al., 2014]. Nevertheless, their temporal resolution is limited
and the measurement depth is restricted to the first few centimetres of the soil [e.g.
Babaeian et al., 2019].

As a consequence, hydrological monitoring efforts for observing soil moisture on
relevant scales for e.g. informing flood and drought modelling, would benefit from
non-invasive methods that are capable to continuously monitor soil moisture at the
field scale with a sufficient temporal resolution and a measurement depth exceeding
the upper centimetres of the soil, thereby coming at a reasonable cost and reduced
complexity by requiring only a comparably small amount of additional data.

1.3 Field-scale soil moisture estimation with

Cosmic-Ray Neutron Sensing

1.3.1 Principles of Cosmic-Ray Neutron Sensing

Cosmic-Ray Neutron Sensing (CRNS) is a non-invasive geophysical method which
allows for the estimation of representative spatial averages of field-scale soil mois-
ture on a high temporal resolution [Schrön et al., 2018b]. CRNS makes use of the
sensitivity of neutrons with energies below 1 MeV to hydrogen. As the hydrogen
nucleus has the same mass as a neutron, elastic scattering causes an energy loss
of the neutron upon collision with the hydrogen nucleus [e.g. Köhli et al., 2015].
Hydrogen effectively slows down neutrons from higher to lower thermal energies (≤
0.25 eV) in which a neutron is in thermal equilibrium with its surrounding material
and where the probability for absorption by nuclei, e.g. hydrogen, is highest. A
change in the hydrogen content of the interacting medium, e.g. the soil, results in a
change of the observed intensity of neutrons in the water-sensitive epithermal energy
range between thermal energies and 1 MeV [e.g. Köhli et al., 2015; Weimar et al.,
2020]. Assuming that the dominating fraction of hydrogen is stored in the soil as
water, changes in soil moisture lead to changes in the observed neutron intensity
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following an inverse relationship.
The potential of the effectiveness of hydrogen to slow down neutrons for hydro-

logical applications has already been described in the mid 20th century by Gardner
and Kirkham [1952] who introduced the active neutron probe for soil moisture mea-
surements. Equipped with a neutron source and a co-located neutron detector, the
ratio of emitted higher energy to detected lower energy neutrons in different depths
via access tubes or at the soil surface can be related to the water content in a few
tens of centimetres of the surrounding soil [e.g. IAEA - International Atomic Energy
Agency, 1970; Gardner, 1986; Babaeian et al., 2019]. As the active neutron method
requires a radioactive neutron source, high safety requirements and regulations need
to be fulfilled which hamper its application and make it impractical [e.g. Gardner,
1986; Babaeian et al., 2019].

Being among the first, Kodama et al. [1975, 1979, 1985] showed the potential
of naturally occurring secondary neutrons from cosmic-rays for passively estimating
snow water equivalents and soil moisture, respectively. While Dorman [2004] sum-
marises several potential fields of applications of cosmic-rays, including soil moisture
measurements, Zreda et al. [2008] and Desilets et al. [2010] were the first to intro-
duce the methodological framework of CRNS for the non-invasive estimation of soil
moisture from the intensity of naturally occurring secondary neutrons from cosmic
radiation above the soil surface.

High-energy cosmic-ray neutrons penetrate the soil and produce water-sensitive
neutrons in nuclear evaporation processes [Köhli et al., 2015] which interact with
the soil constituents including soil moisture and the contained hydrogen before even-
tually leaving the soil column. Above the ground, a neutron detector can measure
the intensity of neutrons in the water-sensitive energy range reflected from the soil.
The first devices used for CRNS applications were composed of two proportional
gas-filled neutron detectors [Zreda et al., 2012]. One for detecting neutrons in the
thermal energy range and second detector for neutrons in the water-sensitive, ep-
ithermal energy range which is shielded by high-density polyethylene to slow down,
i.e. moderate, impinging neutrons to energy levels detectable by the instrument.
In these detectors 3He gas acts as a converter material, by creating a measurable
electronic pulse once a neutron interacts with the detector gas by absorption. Orig-
inating from refurbishing nuclear warheads [Weimar et al., 2020], 3He is expensive
which lead to the development of a variety of detector types and the use of different
converter materials. Apart from 3He, proportional detectors filled with BF3 gas are
most common and installed in CRNS networks around the world [Hawdon et al.,
2014; Cooper et al., 2021; Upadhyaya et al., 2021; Bogena et al., 2022]. However, as
BF3 gas is toxic, in the context of CRNS, further alternative instrumental concepts
to 3He have been introduced including proportional neutron detectors based on solid
boron [Weimar et al., 2020] and solid lithium [Patrignani et al., 2021] as well as scin-
tillators [Stevanato et al., 2019; Stowell et al., 2021] where neutrons interacting with
the scintillator material create detectable photon, i.e. light, pulses.

Depending on the neutron detector type and converter material, different neutron
detectors have different efficiencies in detecting neutrons in the desired energy range.
As the detection of neutrons follows Poisson statistics [Bogena et al., 2013], the
capability of a neutron detector to count more neutrons per time interval leads to a
higher statistical accuracy and lower noise levels in the detected neutron signal. In
order to reduce the Poisson noise in neutron data, moving averages are commonly
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applied in order to reduce the Poisson noise through an extension of the counting
interval and hence, the increase of the total neutron counts per time interval [Zreda
et al., 2008; Bogena et al., 2013; Schrön et al., 2018b]. As moving averages smooth
the signal and reduce, e.g. flatten sharp decreases of the neutron signal during
rainfall events, alternative filtering approaches have been tested [Davies et al., 2022].
Nevertheless, applying a centred 12 or 24 hour moving average remains the standard
procedure in CRNS data processing as it was done for European network of CRNS
detectors [Bogena et al., 2022].

Due to their high sensitivity to hydrogen, epithermal neutrons observed by the
shielded, i.e. moderated neutron detector are used for estimating soil moisture in
the CRNS approach [Desilets et al., 2010]. Consequently, many CRNS instruments
are equipped with an epithermal neutron detector, only, as it is the case for the
Australian CRNS network [Hawdon et al., 2014] and the majority of sites in the
network of the United Kingdom [Cooper et al., 2021]. Although most CRNS re-
search focused on epithermal neutrons, thermal neutrons observed by unshielded,
bare detectors remain an important topic in CRNS research with different stud-
ies investigating their response to influencing environmental factors [e.g. Andreasen
et al., 2017b; Jakobi et al., 2021] and exploring potential fields of application [e.g.
Tian et al., 2016; Jakobi et al., 2018, 2022].

1.3.2 Travelling to the earth’s surface

CRNS relies on secondary neutrons produced by naturally occurring cosmic radi-
ation penetrating the earth’s atmosphere and eventually reaching the ground. On
their path through the atmosphere primary cosmic-ray particles, mainly protons, in-
teract with the atmospheric components and producing secondary particles through
e.g. nuclear evaporation processes in the atmosphere [e.g. Köhli et al., 2015; Weimar
et al., 2020]. A higher air density, through more atmospheric mass per volume, and
a higher air humidity lead to a decrease in the distance a neutron can travel before
it is thermalised [Köhli et al., 2015]. Therefore, changing attributes and composi-
tion of the atmosphere influence the neutron signal observed by a CRNS instrument
above the soil surface.

Consequently, epithermal neutron signals observed by a CRNS instrument need
to be corrected for variations of atmospheric mass, which can be expressed as the
shielding depth in g cm−2 and related to air pressure variations [e.g. Heidbüchel et al.,
2016; Andreasen et al., 2017a] as well as absolute air humidity [e.g. Zreda et al.,
2012; Rosolem et al., 2013] before soil moisture can be estimated. The correction
procedures described in Zreda et al. [2012] and Andreasen et al. [2017a] became
common standard in CRNS research and can be applied with observations of local
air pressure, temperature and relative humidity observations which are standard
meteorological variables and comparably easy to measure.

In addition to the atmosphere modulating the neutron signal observed at the
ground level, variations in the incoming primary cosmic-rays reaching the earth’s
atmosphere from space influence the neutron signal at the ground level and need
to be corrected for [e.g. Zreda et al., 2012]. High-energy cosmic-rays are difficult to
measure and usually observed with large high-energy neutron monitors which are
also commonly used to correct epithermal neutron signals in the scope of CRNS
applications [e.g. Zreda et al., 2012]. Neutron monitors only exist at selected loca-
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tions around the globe [Bogena et al., 2022]. For instance, Väisänen et al. [2021]
identified 147 neutron monitors with publicly available data covering varying time
periods of the past 70 years. As datasets are available from different data bases and
varying data quality levels, Väisänen et al. [2021] identified 29 neutron monitors
stations with the longest record and most reliable data. One of these stations is the
Jungfraujoch neutron monitor in Switzerland which became the standard neutron
monitor for correcting epithermal neutrons observed by CRNS instruments for vari-
ations in incoming primary radiation in different observational networks [e.g. Zreda
et al., 2012; Evans et al., 2016; Cooper et al., 2021; Bogena et al., 2022].

However, differences of geomagnetic cutoff rigidity, which expresses the energy a
cosmic-ray particle must have in order to reach a certain point on earth [Herbst et al.,
2013], and altitude between a neutron monitor station and the respective CRNS ob-
servation site may lead to an insufficient correction. Thus, the Jungfraujoch neutron
monitor may not be representative for the variations of incoming primary radiation
at a CRNS observation site with a different cutoff rigidity and altitude. Scaling ap-
proaches have been developed to scale neutron monitor signals of incoming primary
radiation according to the difference in cutoff rigidity and altitude of the neutron
monitor and the CRNS location for an improved correction of epithermal neutron
signals and in turn, soil moisture estimates [Hawdon et al., 2014; McJannet and
Desilets, 2023]. Yet, evaluating the improvement of these approaches is challenging
as the locally measured epithermal neutron signal by the CRNS instrument always
depends on the hydrogen and especially soil moisture dynamics in its surroundings.
This would either require a constant water content of the soil and surroundings,
or an exact knowledge of the soil moisture distribution and dynamics surround-
ing the CRNS instrument which difficult to observe given the high spatio-temporal
variability of soil moisture.

Furthermore, neutron monitor data is distributed through different databases
with the Jungfraujoch neutron monitor being available from the neutron monitor
database (www.nmdb.eu). In the latter, data are updated and revised by the in-
dividual neutron monitor operators [Väisänen et al., 2021] and the persistence of
certain monitors and their data availability in future remains uncertain. As CRNS
research and the CRNS approach for soil moisture estimation rely on the avail-
ability of information on the incoming primary cosmic-ray flux, finding alternative
options for observing its variations are a key challenge in CRNS research. A poten-
tial approach utilizes cosmic-ray muons which have been shown to respond similar
to cosmic radiation events as neutron monitors [e.g. Braun et al., 2009]. Like high-
energy neutrons, long-term muon data is available from global monitoring networks
such as the Global Muon Detector Network but comprising only a small number
of stations [e.g. Rockenbach et al., 2014]. However, compared to high-energy neu-
trons, muons are easier to measure with relatively small and comparably inexpensive
detectors [Stevanato et al., 2022]. Therefore, some commercially available CRNS in-
struments already include a muon detector and provide a muon product intended
to be used for an on-site correction of observed neutrons for variations of incom-
ing cosmic-rays [Stevanato et al., 2019] and first attempts to compare the correction
with locally observed muons and available neutron monitors have already been made
[e.g. Stevanato et al., 2022; Gianessi et al., 2022]. Another option is the use of exist-
ing CRNS instruments in environments with constant hydrogen, i.e. water content
where ideally only atmospheric factors influence the observed neutron signal. Under
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these circumstances, the neutron signal corrected for variations in air pressure and
absolute air humidity would only represent variations in incoming primary radia-
tion and could be subsequently used for correcting the neutron signal at observation
sites intended for soil moisture measurements. First experiments have been made by
Schrön [2017], designing a floating CRNS instrument on a buoy comprising a bare,
thermal and moderated, epithermal neutron detector and installing it on a lake.
However, the potential and applicability of such approaches remain under debate
and require further research.

In contrast to epithermal neutrons, commonly accepted correction procedures
for thermal neutrons counted by the bare neutron detector are not existing. Studies
which make use of thermal neutrons or investigate their response under varying
environmental conditions correct observed thermal neutron intensities differently.
For example, Tian et al. [2016] used uncorrected thermal neutron observations while
Andreasen et al. [2016] correct thermal neutrons for incoming primary cosmic-ray
flux and air pressure but not for variations in absolute humidity. In contrast, based
on empirical findings, Jakobi et al. [2018, 2022] do not correct thermal neutrons for
the incoming primary cosmic-ray flux but for air pressure and absolute air humidity
variations although the absolute humidity correction was developed for epithermal
neutrons [Rosolem et al., 2013]. Hence, its validity for thermal neutrons remains
uncertain and illustrates an important knowledge gap regarding the thermal neutron
signal of CRNS instruments. Gaining further understanding of how atmospheric
parameters influence the thermal neutron signal will allow for more standardised
and expedient research on potential use-cases of thermal neutrons in CRNS research.

1.3.3 From neutrons to soil moisture

Deriving soil moisture from corrected and filtered epithermal neutron intensities re-
quires mathematical transfer functions. Desilets et al. [2010] were the first to develop
a generally applicable non-linear transfer function including a site-specific calibra-
tion parameter representing the site-specific neutron intensity above dry soil. The
parameter can be calibrated against reference measurements of soil moisture in the
sensitive measurement area around the CRNS instrument usually acquired through
soil sampling and subsequent laboratory analyses. Although a single representative
reference measurement of soil moisture is sufficient to calibrate the site-specific pa-
rameter in the transfer function [Zreda et al., 2012], a calibration against multiple
reference measurements has been recommended [Iwema et al., 2015]. Soil bulk den-
sity estimates are required to transform the transfer function after Desilets et al.
[2010] from gravimetric percent to volumetric soil moisture [Bogena et al., 2013].
More detailed analyses on the influence of bulk density and its changes on the
performance of neutron-to-soil moisture transfer functions can be found in Kasner
et al. [2022]. Observed epithermal neutrons are sensitive to all hydrogen. Additional
below-ground hydrogen pools such as soil organic matter and lattice water need to
be accounted with when deriving soil moisture from observed neutron intensities
[e.g. Zreda et al., 2012; Bogena et al., 2013] in order to derive accurate soil mois-
ture estimates. Similarly, hydrogen stored in above-ground biomass influences the
observed neutron signal. Although its influence may be compensated through de-
termining the site-specifc calibration parameter, temporal changes in biomass have
been found to influence the estimated soil moisture contents [e.g. Baatz et al., 2015;
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Vather et al., 2020] and require correction approaches. Different biomass correction
approaches have been developed and evaluated [e.g. Hawdon et al., 2014; Baatz
et al., 2015; Jakobi et al., 2018, 2022] with the approach by Baatz et al. [2015] may
be considered the most common.

Since the introduction of the initial neutron-to-soil moisture transfer function by
Desilets et al. [2010], other transfer approaches have been developed, including the
universal calibration function [Franz et al., 2013b] as well as the COSMIC opera-
tor [Shuttleworth et al., 2013]. As comparisons of the individual methods revealed
differences but generally similar performances [e.g. Baatz et al., 2014; Iwema et al.,
2015] and due to the simplicity of the equation after Desilets et al. [2010], the latter
became the standard approach for converting epithermal neutron intensities and
is used in observational CRNS networks around the world [e.g. Zreda et al., 2012;
Hawdon et al., 2014; Cooper et al., 2021; Bogena et al., 2022]. However, alternative
approaches are still being developed, including site-specific conversion functions [An-
dreasen et al., 2020] and the recently introduced universal transport solution (UTS)
[Köhli et al., 2021]. The most important novelty of the latter approach is that it
takes the variability of the neutron-to-soil moisture transfer function to changes in
absolute air humidity into account. In contrast, the use of the air humidity correc-
tion [Rosolem et al., 2013] with other transfer approaches only adjusts the neutron
intensities to changes in air humidity, leaving the shape of the functional relationship
unchanged. Additionally, the UTS has been derived from different neutron trans-
port models providing slightly different fitting coefficients for the UTS equation.
Although it has been shown that the UTS can outperform the standard transfer
function [Köhli et al., 2021], a validation at different study sites and comparing the
different available fitting coefficients has yet to be done in order to fully assess the
potential of the UTS approach for future CRNS applications.

1.3.4 Sensitive measurement footprint

Zreda et al. [2008] provide the first quantification of the CRNS sensitive measure-
ment footprint with respect to epithermal neutrons and show that the measurement
radius can extent up to over 600m and covers a depth of several decimetres. The
measurement footprint is non-linearly dependent on soil moisture content, air pres-
sure and air humidity [Zreda et al., 2008; Desilets and Zreda, 2013] and a comparison
with reference in situ measurements from soil samples or point-scale soil moisture
requires the calculation of a weighted average of reference soil moisture information
according to match the sensitive footprint of the CRNS approach. The first weight-
ing approach of reference measurements was introduced by Franz et al. [2012b] and
tested by Franz et al. [2012a]. It includes the dependence of the sensitive measure-
ment depth on the soil moisture content and other hydrogen sources such as lattice
water in the soil as well as the soil bulk density [Franz et al., 2012b,a] in order to
increase the comparability between the reference soil moisture values and the areal
average soil moisture content from CRNS. The latter is not only important for a
comparison of CRNS-derived soil moisture estimates with reference measurements,
but also for the calibration of neutron-to-soil moisture transfer functions against
reference measurements and the derivation of soil moisture from CRNS in the first
place.

Given the high importance of the sensitive measurement area for the under-
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standing and interpretation of the CRNS-derived soil moisture values, Köhli et al.
[2015] provided a more extensive characterisation of the measurement volume re-
vealing a sensitive measurement radius between 130 to 240m and sensitive depth of
15 between 83 cm under wet and dry soil conditions, respectively. In contrast to the
initial analyses from Zreda et al. [2008] as well as Desilets and Zreda [2013], both
the horizontal and vertical footprint dimensions, were found to depend on the soil
moisture content as well as air pressure, absolute air humidity and vegetation cover
[Köhli et al., 2015]. A higher soil moisture content leads to a smaller horizontal
measurement radius and shallower measurement depth. Furthermore, a decreas-
ing sensitivity of the CRNS signal on soil moisture changes in greater distance and
depth has been found [Köhli et al., 2015]. These findings lead to the development
of revised weighting procedures [Köhli et al., 2015] for in situ reference soil mois-
ture information which outperform previous approaches at various study sites [e.g.
Schrön et al., 2017].

While the sensitive measurement footprint of epithermal neutrons has been in-
vestigated intensively since the introduction of CRNS by Zreda et al. [2008] due
to their importance for soil moisture estimation, the thermal neutron footprint re-
mained long unexplained [e.g. Andreasen et al., 2017a] and often assumed similar in
studies which use and investigate thermal neutron observations [e.g. Vather et al.,
2020]. The first horizontal measurement radius for thermal neutrons of approx. 35m
and thus, a much smaller footprint compared to epithermal neutrons was stated in
Bogena et al. [2020]. In a subsequent study, Jakobi et al. [2021] characterised the
thermal neutron footprint in greater detail. The smaller footprint of was confirmed
and weighting functions similar to those for epithermal neutrons [Köhli et al., 2015]
were derived. Yet, the results remain to be confirmed and weighting functions to
be tested in research applications as it was done previously for epithermal neutrons
[e.g. Schrön et al., 2017].

The large sensitive horizontal and vertical measurement footprint of eptithermal
neutrons is an important advantage allowing to derive an representative weighted
soil moisture average at the field scale [Schrön et al., 2018b]. This aids to bridge the
spatio-temporal scale gap between soil moisture estimates from coarse-scale remote
sensing techniques and e.g. point-scale electromagnetic in situ sensors observing soil
moisture at small scales but with a high temporal resolution [e.g. Vereecken et al.,
2014] as illustrated in Fig. 1.3. Several studies investigate and illustrate the poten-
tial of CRNS for calibrating, validating and evaluating satellite-derived and modelled
soil moisture products [e.g. Holgate et al., 2016; Montzka et al., 2017; Upadhyaya
et al., 2021; Zheng et al., 2023]. Reducing the spatial mismatch between the spatial
discretisation of the model and the observation scale, Iwema et al. [2017] showed
that CRNS-derived soil moisture information can improve the model calibration
compared to point-scale sensors in some cases. Moreover, research conducted by
Dimitrova-Petrova et al. [2020] revealed a stronger correlation between catchment
water storage and near-surface water storage from CRNS-derived soil moisture es-
timates compared to storage information derived from single point-scale sensors
again indicating the higher spatio-temporal representativity of the CRNS-derived
soil moisture estimates.

Despite the large sensitive measurement footprint being advantageous in many
applications, in some cases it might be obstructive. For example, on the one hand,
in cases where the sensitive footprint of the CRNS instrument exceeds the area
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Figure 1.3: Exemplary selection of soil moisture measurement techniques across
spatio-temporal scales. The footprint of an individual sensor is displayed solid while
minimum temporal resolution and maximum spatial extent of typical applications
(e.g. clusters of points-scale in situ TDT and FDR sensors) are depicted by frames
in the respective colour [Figure taken from Heistermann et al., 2022].

of interest. This has been addressed by Brogi et al. [2022, 2023] with respect to
irrigation monitoring in agricultural fields smaller than the CRNS measurement
footprint. On the other hand, difficulties may arise when CRNS-derived soil moisture
estimates are used in the scope soil hydraulic modelling efforts. Soil water flow under
unsaturated conditions is described by the Richards’ equation [e.g. Hopmans et al.,
2002]. The required soil hydraulic parameters are highly variable in space and
given the strong non-linearity in the functional relationships, averaging hydraulic
properties from small-scale measurements such as soil samples to larger scales is
difficult [Hopmans et al., 2002]. As a consequence of the high spatial variability
of soil hydraulic properties and non-linearities in the functional relationships, soil
moisture estimates observed on a larger spatial scale may not be well reproduced
by using a single set of soil hydraulic properties in a soil hydraulic model for the
entire footprint. Although, some studies showed the potential to inversely derive
field-scale soil hydraulic properties from CRNS-derived soil moisture information in
combination with soil hydraulic models [e.g. Rivera Villarreyes et al., 2014], this may
become difficult in cases where the soil hydraulic properties are not homogeneously
distributed with small spatial variability, such as the occurrence of two or more
distinctly different soil moisture regimes in the sensitive measurement footprint.

If soil moisture contents and dynamics in the area of interest and the entire CRNS
footprint follow a Gaussian distribution with the same average soil moisture content
and short correlation lengths, the soil moisture content in the subfootprint area of
interest equals the soil moisture content in the entire footprint and its estimation
is straightforward. However, if this is not the case and the area of interest exhibits
differences in the absolute soil moisture content as well as its temporal dynamics, the
estimation is challenging. For example, in case of a binary soil moisture distribution
where the entire sensitive measurement footprint comprises two subfootprint areas
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with distinct different soil moisture contents, an influence on the observed epithermal
neutron intensity can be expected [Franz et al., 2013a]. Here, the interpretation
of the integral soil moisture content estimated with CRNS becomes challenging
and differentiating between the two soil moisture regimes in order to derive soil
moisture estimates in the subfootprint area of interest is difficult. One approach
has been suggested by Schrön et al. [2018b] who correct the epithermal neutron
signal for binary soil moisture distribution. In their study, a sealed area with no soil
moisture changes covered parts of the footprint and dampened the observed neutron
count rate. Correcting the neutron signal in order to derive a neutron signal which
would occur without the sealed area with constant soil moisture in the footprint,
improved the soil moisture estimates for non-sealed areas [Schrön et al., 2018b].
However, challenges remain for heterogeneous CRNS footprints comprising two or
more subfootprint areas which have different soil moisture contents varying in time
instead of, e.g. a sealed area where a constant moisture content can be assumed.

1.3.5 Vertical footprint limits

Although the large horizontal measurement footprint allows for the estimation of
representative soil moisture averages at the field scale, the sensitive measurement
depth is limited to a maximum of approx. 80 cm close to the neutron detector and
below 50 cm in 300m distance under extremely dry soil conditions [Köhli et al., 2015].
Under wet conditions, the measurement depth reduces to 15 cm close to the detector
and below 10 cm in greater distances which results in a measurement depth around
30 cm for the entire measurement footprint averaged over different soil moisture
conditions and distances to the CRNS instrument, i.e. neutron detector. Although
this value exceeds the measurement depth of field-scale soil moisture products from
e.g. remote sensing, large parts of the root zone and deeper root zone below 100 cm
depth remain outside the observational window of the method.

Due to the importance of monitoring soil moisture in layers below the mea-
surement depth of CRNS for several hydrological applications, different studies at-
tempted to derive soil moisture information in greater depths from CRNS-derived
soil moisture information [e.g. Peterson et al., 2016; Zhu et al., 2017; Nguyen et al.,
2019; Franz et al., 2020]. However, these approaches require either permanently
installed in situ reference sensors in the specific depths for continuous estimates of
soil moisture in deeper layers or reference measurements in the respective depth of
interest for calibrating mathematical models to extrapolate CRNS-derived soil mois-
ture estimates to greater depths. This hampers their applicability when reference
measurements in greater depths are not available.

Similarly, the use of CRNS-derived soil moisture estimates for calibrating and
evaluating existing e.g. physically-based environmental models including land-surface
and rainfall-runoff models is limited to the upper layers of the soil. For example,
Boeing et al. [2022] evaluated drought simulations in Germany with soil moisture
information from different measurement techniques including CRNS but only as-
sessed the upper 60 cm of the soil as soil moisture information in greater depths is
often unavailable. This raises the question if soil moisture in deeper layers can be
directly estimated using CRNS in below-ground applications and poses potential for
further research.
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1.4 Overall aim and research questions

CRNS allows for the estimation of soil moisture at relevant scales of several hectares
and in depths exceeding the upper 5 cm of the soil. Therefore, it can provide im-
portant information to aid hydrological models for assessing risks and forecasting
hydro-meteorological extremes such as floods and droughts and environmental mon-
itoring in general. Yet, several challenges remain to be addressed in order to gain
better understanding of the method and its underlying processes as well as to explore
potential new fields of application.

Consequently, the overall aim of this thesis is to further advance the CRNS
method by gaining further knowledge on the influencing factors on the CRNS signal,
the sensitive measurement footprint and to explore the use of CRNS for deriving soil
moisture information in greater depths. By addressing the research questions listed
below, this thesis not only aims for advancing CRNS from a methodological point
of view and thereby addressing one of the unsolved problems in hydrology identified
by the scientific community [Blöschl et al., 2019a] but also contributes to improv-
ing environmental monitoring efforts. These are pivotal for improved environmental
risk assessments and forecasting as well as mitigation and adaption strategies, being
of utmost importance against the background of intensifying hydro-meteorological
extremes in a changing climate.

Figure 1.4: Schematic illustration and summary of the research questions in the
three parts (grey scale) of CRNS research addressed in this thesis.

This thesis comprises four main chapters addressing research questions in three
parts of CRNS research, which are schematically illustrated in Fig. 1.4. The first
part concerns the variables other than soil moisture influencing the neutron signals
observed in the scope of CRNS:

• What is the influence of air pressure, incoming primary radiation and air
humidity on observed thermal and epithermal neutron intensities?
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• Which potential yield thermal and epithermal neutron detectors installed
above water as an alternative for neutron monitors to correct for variations in
incoming primary radiation?

The second part addresses the sensitive measurement footprint and the estimation
of soil moisture from CRNS:

• How do newly developed transfer functions perform in comparison with the
standard approach in estimating field-scale soil moisture?

• What is the size difference between the footprint of thermal and epithermal
neutrons and can it be useful at heterogeneous study sites?

• How can soil moisture be estimated for selected subfootprint areas?

In the third and last part, the potential of CRNS to derive soil moisture information
for deeper soil layers is explored:

• To what extent can surface soil moisture information from CRNS be extrapo-
lated to greater depth without reference information of deeper soil moisture?

• What is the potential of downhole CRNS for the direct estimation of soil
moisture in the depth of interest?
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Chapter 2

The influence of atmospheric,
geomagnetic and heliospheric
effects on observed CRNS signals

A version of this chapter has been submitted as:

Buoy-based detection of low-energy cosmic-ray
neutrons to monitor the influence of atmos-
pheric, geomagnetic, and heliospheric effects

Martin Schrön, Daniel Rasche, Jannis Weimar, Markus O. Köhli,
Konstantin Herbst, Bertram Boehrer, Lasse Hertle, Simon Kögler,
and Steffen Zacharias

Earth and Space Science (submitted), doi: 10.22541/au.170319441.16528907/v1
(preprint), 2023.
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2.1 Abstract

Cosmic radiation on Earth responds to heliospheric, geomagnetic, atmospheric, and
lithospheric changes. In order to use its signal for soil hydrological monitoring, the
signal of thermal and epithermal neutron detectors needs to be corrected for external
influencing factors. However, theories about the neutron response to soil water, air
pressure, air humidity, and incoming cosmic radiation are still under debate. To
challenge these theories, we isolated the neutron response from almost any terrestrial
changes by operating a bare and a moderated neutron detector in a buoy on a lake
in Germany from July 15 to December 02, 2014. We found that the count rate
over water has been better predicted by a theory from Köhli et al. [2021] compared
to the traditional approach from Desilets et al. [2010]. We further found strong
linear correlation parameters to air pressure (β = 0.0077mb−1) and air humidity
(α = 0.0054m3/g) for epithermal neutrons, while thermal neutrons responded with
α = 0.0023m3/g. Both approaches, from Rosolem et al. [2013] and from Köhli
et al. [2021], were similarly able to remove correlations of epithermal neutrons to air
humidity. Correction for incoming radiation proved to be necessary for both thermal
and epithermal neutrons, for which we tested different neutron monitor stations
and correction methods. Here, the approach from Zreda et al. [2012] worked best
with the Jungfraujoch monitor in Switzerland, while the approach from McJannet
and Desilets [2023] was able to adequately rescale data from more remote neutron
monitors. However, no approach was able to sufficiently remove the signal from a
major Forbush Decrease event on September 13th, to which thermal and epithermal
neutrons showed a comparatively strong response. The buoy detector experiment
provided a unique dataset for empirical testing of traditional and new theories on
CRNS. It could serve as a local alternative to reference data from remote neutron
monitors.

2.2 Introduction

The natural background radiation on Earth is mainly produced by the omnipresent
and continuous exposure to galactic cosmic rays, which are modulated by solar
activity, filtered by the geomagnetic field, and moderated by the Earth’s atmo-
sphere [Hess et al., 1961; Dorman, 2004; Usoskin et al., 2011]. Since 1951, neutron
monitors have been in operation at various places around the globe to continuously
monitor high-energy cosmogenic neutrons as a proxy for space weather [Väisänen
et al., 2021]. About half a century ago, Kodama et al. [1975] revealed the potential
of the lower energetic component of cosmic-ray neutrons for estimating water con-
tent in snow. Two decades after Kodama [1980] and Kodama et al. [1985] presented
more experimental findings also related to soil moisture, Dorman [2004] proposed
the broader use of this concept for hydrological applications. Yet, Zreda et al. [2008]
were the first to introduce the methodological framework of Cosmic-Ray Neutron
Sensing (CRNS) and to demonstrate its potential for large-scale monitoring of soil
moisture. Soon after, Desilets et al. [2010] proposed an empirical but turned-out-to-
be robust relationship to convert neutrons to soil moisture, followed by Zreda et al.
[2012] presenting the concept and establishment of a continental CRNS network.
To date, CRNS is a growing non-invasive and low-maintenance technique providing
continuous hectare-scale root-zone soil moisture to inform and validate products of
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hydrological models [Baatz et al., 2014; Iwema et al., 2017; Patil et al., 2021] and
remote sensing [Montzka et al., 2017; Döpper et al., 2022; Schmidt et al., 2024].

The ambient epithermal neutron radiation above the ground is of key inter-
est for CRNS, as this energy band shows the highest sensitivity to hydrogen in
soils [Desilets et al., 2010; Zreda et al., 2012; Köhli et al., 2015]. Some CRNS
probes additionally measure thermal neutrons as a potential proxy for soil chem-
istry, snow, biomass, or spatial heterogeneity [Tian et al., 2016; Jakobi et al., 2022;
Rasche et al., 2021]. In order to isolate the response of neutrons to the ground
from external influences, CRNS data processing heavily relies on accurate correc-
tions for changes in atmospheric shielding depth (i.e., air pressure), atmospheric
hydrogen content (i.e., air humidity), and incoming cosmic rays (i.e., high-energy
hadron flux). For epithermal neutrons, such corrections have been proposed based
on literature about high-energy cosmic rays [Desilets et al., 2006; Zreda et al., 2012]
or on dedicated simulations [Rosolem et al., 2013]. However, no commonly accepted
correction approaches exist for thermal neutrons, while the transferability of the ep-
ithermal correction functions is under debate [Andreasen et al., 2016; Jakobi et al.,
2018, 2022; Rasche et al., 2021].

There is an ongoing debate about many aspects of CRNS theory and the tra-
ditional correction approaches since correlations to external signals were sometimes
not removed sufficiently, and unexplained variations in the data remained. For ex-
ample, Köhli et al. [2021] used new simulation approaches to explain neutron vari-
ations specifically in semi-arid regions, where limitations of the widely established
approaches from Desilets et al. [2010] and Rosolem et al. [2013] became evident.
However, the simulations from Köhli et al. [2021] were also insufficient to conclude
on a final choice out of many offered correction models. Moreover, many authors
have found inconsistencies in using the neutron monitor ”Jungfraujoch” in Switzer-
land as a reference for the incoming cosmic-ray flux at different periods and locations
on Earth [e.g. Hawdon et al., 2014; Schrön, 2017; Hands et al., 2021]. The main
reason is the dependence of the cosmic-ray flux on the geomagnetic field, which
changes continuously in space and time [Belov et al., 2005; Kudela, 2012; Herbst
et al., 2013]. To account for that, authors suggested different correction approaches
to rescale data from a neutron monitor site to a CRNS location [Hawdon et al.,
2014; McJannet and Desilets, 2023], while their performance is yet to be tested.
Nevertheless, more issues complicate the use of the neutron monitor network as a
reference for CRNS stations across the world: the instruments measure different
neutron energies than CRNS, they are sometimes prone to weather effects, the few
neutron monitors have only scarce coverage on Earth, the data exhibits varying
consistency and quality, and a single institute is responsible for the data provision
and processing [Bütikofer, 1999; Aplin et al., 2005; Korotkov et al., 2011; Oh et al.,
2013; Abunin et al., 2016; Ruffolo et al., 2016; Väisänen et al., 2021]. Consequently,
the future availability of incoming cosmic-ray reference data may not be guaranteed,
which explains the current search for alternative concepts [e.g. Schrön et al., 2016;
Fersch et al., 2020; Gugerli et al., 2022; Stevanato et al., 2022].

An empirical and objective evaluation of traditional and new theories on the
neutron response to the ground, to the atmosphere, and to the magnetosphere,
is a challenging endeavour. Any ground-based CRNS measurement inherently de-
pends on the spatial and temporal variability of nearby hydrogen pools, such as soil
moisture, biomass, ponding water, etc. [Iwema et al., 2021; Schrön et al., 2023a].
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However, such variability can be considered negligible above lakes or other water
bodies, where even rain events would not introduce a significant addition of wa-
ter. Neutron measurements on a lake with a detector that has a comparable energy
sensitivity to CRNS could provide a unique data set to investigate the local and
”actual” influence of non-terrestrial variability on thermal and epithermal neutrons.
In terrestrial CRNS applications, many of the external, ground-related influencing
factors are often unknown and thus challenging to model, leading to uncertainties
in the interpretation of the CRNS signal. A buoy detector on a lake, however, has a
clear pure-water boundary condition and would allow for a more direct comparison
of the observations with simulations of the sensor response. Moreover, a lake-based
buoy CRNS detector might be even suitable as a reference monitor for the incoming
cosmic-ray flux.

The advantage of water bodies beneath a neutron detector has been first reported
by Krüger and Moraal [2010], who performed intercalibration measurements of high-
energy neutron monitors all over the world by placing a miniature detector over
a small nearby pool. CRNS detectors, however, are sensitive to the surrounding
environment up to radii of 300 meters [Desilets and Zreda, 2013; Köhli et al., 2015].
Hence, Franz et al. [2013b] suggested short measurements on a lake to calibrate the
pure-water limit of the sensor response, which was conducted using rafts for a few
days by McJannet et al. [2014], Andreasen et al. [2016] and Rasche et al. [2023].
The first long-term experiment of CRNS detectors on a lake was proposed and
conducted in 2014 and later reported by Schrön et al. [2016] and Schrön [2017]. The
idea was further extended by Weimar [2022] with static and mobile measurements.
The present study performs a first detailed analysis of the data set from 2014 and
uses it to challenge traditional correction functions and recent CRNS theories.

The first hypothesis of this study is that state-of-the-art theories about the
neutron-to-water relationship can predict the drop in neutron count rates from land
to water. Here, we will challenge the widely established method from Desilets et al.
[2010] and the more recent findings from Köhli et al. [2021]. With any ground-
related changes of water content removed, we further hypothesise that the hitherto
established and partly debated correction functions for air pressure [Desilets et al.,
2006; Zreda et al., 2012], air humidity [Rosolem et al., 2013; Köhli et al., 2021], and
incoming cosmic radiation [Zreda et al., 2012; Hawdon et al., 2014; McJannet and
Desilets, 2023] can adequately remove all remaining temporal variations during the
study period. The performance of these approaches will also be tested for thermal
neutrons, for which no study has yet confirmed their applicability. Finally, we pro-
pose using the buoy detector as an alternative for neutron monitors as a reference
for incoming radiation, and test this hypothesis at a nearby CRNS research site.

2.3 Methods

2.3.1 Detection of cosmic radiation on Earth

Cosmic radiation mainly consists of protons and heavier ions, permanently penetrat-
ing the Earth’s magnetic field and interacting with the Earth’s atmosphere [Simpson,
1983]. Their collision with nitrogen, carbon, or oxygen atoms in the air produces
high-energy particle showers, which consist of neutrons, protons, muons, and other
particles. Neutrons and protons can be detected by high-energy neutron monitors
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(NM) on Earth [Mavromichalaki et al., 2011; Väisänen et al., 2021]. The muon
component is regularly monitored by the global muon detector network [Rocken-
bach et al., 2014]. Both their signals are a measure of the incoming cosmic radiation
on Earth’s surface and, as such, highly correlated to space weather and solar ac-
tivity. Besides typical periodicities, such as the 22-year solar cycle, also irregular
short-term events may change the incoming cosmic-ray flux significantly. Exam-
ples of these striking solar events are Forbush Decreases (FD) or Ground-Level En-
hancement (GLE). They are temporary reductions or enhancements of the cosmic
ray flux observed on Earth, caused by the passage of a solar flare or coronal mass
ejection [Laken et al., 2011; Mishev et al., 2014; Lingri et al., 2019; Hands et al.,
2021].

As the cosmic-ray particles interact with the atmosphere, their signal on the
ground additionally carries information on atmospheric conditions, such as air pres-
sure, air humidity, and atmospheric temperature. For research on space weather, it
is important to correct for such atmospheric factors, while research on the response
of cosmic rays to the ground surface requires both atmospheric and heliospheric
influences to be corrected for. To investigate these corrections empirically with
ground-based sensors, however, it is necessary to exclude any ground-related influ-
encing factors.

The interaction of high-energy cosmic rays with the ground usually produces
lower energetic neutrons, which are, in turn, sensitive to environmental factors such
as water content [Zreda et al., 2012]. NMs make use of thick high-density polyethy-
lene shields and lead producers to do both, reduce the influence of those low-energy
neutrons that have already interacted with the ground, and tailor the sensitivity
to direct high-energy cosmic radiation. Data from NMs available from the global
neutron monitor database (https://www.nmdb.eu) is already corrected for atmo-
spheric pressure and acts as a reference of incoming cosmic radiation on Earth for
many adjacent research fields [Mavromichalaki et al., 2011]. The distribution of NM
stations across the globe aims at covering a range of geomagnetic locations, since the
intensity and variability of cosmic rays are a function of the so-called vertical cutoff
rigidity of the geomagnetic field, Rc. This quantity relates to the alignment of the
magnetic field lines, which acts as an energy filter of the primary cosmic-ray parti-
cles that leads to higher radiation exposure at the poles compared to the equator.
Table 2.1 shows an overview of the NMs used in this study: Jungfraujoch (JUNG) is
the standard reference for incoming radiation correction in CRNS research, Athens
(ATHN) exhibits high vertical cutoff rigidity in Europe, Kiel (KIEL) is the closest
NM to the study site, Oulu (OULU) exhibits the lowest cutoff rigidity in Europe,
South pole (SOPO) the lowest globally, while Daejeon (DJON) and Doi Inthanon
(PSNM) may serve as promising candidates to test the correction performance with
NMs at very high cutoff rigidities and in very large distance to the study site.

2.3.2 Cosmic-Ray Neutron Sensing (CRNS)

Detectors with a reduced amount of shielding are more sensitive to low-energy neu-
trons and, thus, to the local environment on the ground. A technology with reduced
shielding is called Cosmic-Ray Neutron Sensing (CRNS) and is based on the re-
sponse of low-energy neutrons to nearby environmental water content [Zreda et al.,
2008]. The main energies used in hydrological CRNS applications are the epithermal
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Table 2.1: Overview of the Neutron Monitors (NM) and the
buoy detector site used in this study, including their coordinates
and geomagnetic cutoff rigidity, Rc, from two different sources
(values for 2010 from https://www.nmdb.eu and for 2014 from
https://crnslab.org/util/rigidity.php).

Neutron Monitor Acronym Country Rc (2010) Rc (2014) Altitude Latitude Longitude
Doi Inthanon PSNM Thailand 16.80GV 16.72GV 2565m 18.59° 98.49°
Daejeon DJON South Korea 11.22GV 10.75GV 200m 36.24° 127.22°
Athens ATHN Greece 8.53GV 8.27GV 260m 37.97° 23.78°
Jungfraujoch JUNG Switzerland 4.50GV 4.54GV 3570m 46.55° 7.98°
Buoy Buoy Germany 2.99GV 2.93GV 78m 51.58377° 12.41423°
Kiel KIEL Germany 2.36GV 2.31GV 54m 54.34° 10.12°
Oulu OULU Finland 0.80GV 0.63GV 15m 65.05° 25.47°
South Pole SOPO Antarctica 0.10GV 0.06GV 2820m -90° 0°

neutrons (with energies between 0.5 eV and 105 eV), and thermal neutrons (ener-
gies below 0.5 eV), as they show the strongest variation with water content [Köhli
et al., 2015]. In dry soil, the epithermal neutrons produced by the penetration of
high-energy particles may leave the ground almost unhindered. In wet soil, on the
other hand, the higher concentration of hydrogen efficiently moderates the neutrons
on their way, leading to less epithermal neutron counts above the surface. While
epithermal neutron variations are mainly dependent on the hydrogen abundance,
thermal neutron radiation shows an additional dependency on chemical components
and is still a subject of research. Thermal neutrons can be detected with stan-
dard neutron detectors, such as proportional counters. Epithermal neutrons can be
detected with an additional layer of high-density polyethylene around these bare
detector tubes [Zreda et al., 2012; Schrön et al., 2018b].

The wetness of the ground is usually expressed as the soil moisture θ in units of
g/g. Conversion functions exist to describe its relationship to epithermal neutrons,
N(θ). The traditional function has been introduced by Desilets et al. [2010]:

NDes(θ) ∝ 0.0808

θ + 0.115
+ 0.372. (2.1)

It is independent on hydrogen in air, for instance, which could be addressed by a
separate correction factor on the neutrons (see section below). A recent study by
Köhli et al. [2021] introduced a universal transfer solution (UTS) for soil moisture
conversion which is inseparable from the air humidity, h in g/m3, of the environment:

NUTS(θ, h) ∝
(p1 + p2 θ

p1 + θ
·
(
p3 + p4 h+ p5 h

2
)
+ e−p6 θ (p7 + p8 h)

)
, (2.2)

where pi represents a range of parameter sets out of many possible candidates offered
by Table A1 in Köhli et al. . They either depend on different simulation approaches
or employ different energy response functions [see also Köhli et al., 2018]. The pa-
rameter set ”MCNP drf” was derived from MCNP [Goorley et al., 2012] simulations,
which include interaction processes of neutrons, protons, muons, and other particles.
It also integrates the actual detector energy response function (drf) of the CRNS
instrument. In contrast, the parameter set ”MCNP THL” uses the MCNP model
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with a less accurate energy threshold window. Parameter sets ”URANOS drf” and
”URANOS THL” express similar detector models, while URANOS has been used
instead of MCNP to simulate the neutron response to soil and water, which includes
only neutron particle interactions and some effective and less accurate representation
of other particles [see Köhli et al., 2023, for details].

Both approaches, Desilets et al. [2010] and Köhli et al. [2021], have in common
that they provide a relative value for neutron count rates that can be scaled with
a factor N0, usually referred to as a calibration parameter. It is different for each
approach and parameter set but essentially mimics the detector-specific count rate
at a very dry state of the soil. From calculations using typical ranges of θ and h it
follows that the N0 values for the UTS function are larger than N0 for the Desilets
approach by factors of 1.61, 2.09, 1.58, and 2.03 for the parameter sets ”MCNP drf”,
”MCNP THL”, ”URANOS drf”, and ”URANOS THL”, respectively.

To date, there is no published evidence of a preferred parameter set for CRNS
data processing with the UTS approach. Standard evaluation procedures would
require a high number of auxiliary measurements of soil moisture in the sensor foot-
print and different depths, in addition to consideration of spatial heterogeneity and
other disturbing factors typically present at most field sites. However, an experi-
ment with θ = const. could facilitate an empirical determination of N(h) to shine a
light on a suitable parameter set that describes this part of the model realistically.

A water body is expected to produce a minimal number of neutrons, which,
unlike for soils, does not change as a result of rainfall events (i.e., θ = const.).
Hence, it is expected that neutrons measured above a lake are only dependent on
atmospheric conditions or solar activity. In the pure-water environment, we follow
the limes approach by Schrön et al. [2023a], θ → ∞, with which Eq. (3.1) reduces to:

lim
θ→∞

NDes(θ) = 0.372 , (2.3)

while Eq. (2.2) reduces to:

lim
θ→∞

NUTS(θ, h) = p2 (p3 + p4 h+ p5 h
2) . (2.4)

The latter varies from 0.15 to 0.28 depending on air humidity and on the chosen
parameter set [Table A1 in Köhli et al., 2021].

2.3.3 Atmospheric and geomagnetic corrections

Previous studies have introduced correction functions for the measured neutrons
to remove the effect of air pressure P , air humidity h, and incoming radiation I.
Conventionally, these functions are usually treated as factors on the neutron counts
(except for Eq. (2.2)):

humidity-corrected Nh = N(θ) · Ch ,

pressure-corrected NP = N(θ) · CP ,

incoming-corrected NI = N(θ) · CI ,

fully-corrected NhPI = N(θ) · Ch · CP · CI . (2.5)
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Air humidity can be corrected by two different approaches. The established ap-
proach by Rosolem et al. [2013] uses a separate correction factor based on the air
humidity h (in g/m3):

Ch = 1 + α (h− href) . (2.6)

The parameter α accounts for water vapor in the near or total atmosphere. It was
determined by Rosolem et al. [2013] using neutron transport simulations. However,
systematic experimental validation has not been reported, yet. The other approach
refers to Eq. (2.2), which intrinsically accounts for air humidity in a non-separable
way. In this case, Nh ≡ N(θ, h) or Ch = 1.

Air pressure can be corrected for using an established exponential function:

CP = eβ(P−Pref) . (2.7)

The attenuation coefficient β equals the inverse attenuation length, L−1, and has
been used for decades to process atmospheric correction of cosmic rays. It can
be determined using different analytical relations [Clem et al., 1997; Dunai, 2000;
Desilets et al., 2006], by minimising the correlation between incoming radiation and
air pressure [Sapundjiev et al., 2014], or by comparing neutron time series with a
reference station, where β is known [Paschalis et al., 2013]. These various approaches
show that β might be a complex variable that depends on several factors, such as
latitude, altitude, type and energy of incident particles [Clem and Dorman, 2000;
Dorman, 2004, and references therein], on variations during the solar cycle and
during solar flare events [Dorman, 2004; Kobelev et al., 2011], and on properties
and yield function of the detector device [Bütikofer, 1999].

We make use of an established calculation of L following Dunai [2000] and De-
silets and Zreda [2001]:

β−1 = L(i) = y +
a

(1 + e(x−i)/b)
c , (2.8)

where i is the Earth’s magnetic field inclination and the empirical parameters are:
a = 19.85, b = −5.43, x = 62.05, y = 129.55. The inclination at the buoy’s
location can be determined from National Centers for Environmental Information
[2015] and was i = 66.9 ◦. This leads to a theoretical prediction of L = 129.7 g/cm2

or β = 0.0077mbar. An alternative tool that is often used by the CRNS community,
is the website http://crnslab.org/util/rigidity.php, which predicts L = 137.0 g/cm2

or β = 0.0073mbar for the buoy location. However, both tools are also based on
calculations derived for high-energy particles and a specific temporal state of the
magnetosphere, while the neutron attenuation has never been explicitly identified
for the lower-energetic CRNS detectors. Given the uncertainty in determining the
correct value for the attenuation coefficient, in this study, we have initialised our
analysis with an average value of L = 133.0 g/cm2.

The approach for correcting incoming radiation has been first formulated by
Zreda et al. [2012] and generalised by Schrön et al. [2016]:
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CI = (1− γ (1− I/Iref))
−1 . (2.9)

It uses reference data I from the neutron monitor database that measures only the
incoming, high-energy component of the cosmic radiation at a few selected loca-
tions on Earth. The parameter γ depicts the amplitude scaling of signal variations
depending on geomagnetic location. The conventional approach has been assum-
ing γ = 1, but it failed to remove the incoming cosmic-ray variability, especially
for large distances between CRNS and NM sites. The underlying challenge is the
dependency of the incoming signal on the geomagnetic location, expressed by the
cutoff rigidity, Rc in GV, of the geomagnetic field. For example, sites near the ge-
omagnetic poles see different cosmic-ray particles than sites near the equator. So
ideally, reference data for incoming radiation should be collected from an NM near
the CRNS measurement site, i.e., at a similar cutoff rigidity.

Hawdon et al. [2014] presented a scaling concept to account for this geomagnetic
effect using γ = 1 − 0.075 (Rc − Rref

c ), however, this approach has not been tested
globally. A more recent approach by McJannet and Desilets [2023] uses so-called
scaling factors that depend on Rc and on the atmospheric depth x for both the
location of the site and of the neutron monitor used as a reference:

CI = τ−1 , (2.10)

τ(x,Rc) = τ−1
ref · ϵ (−p0 x+ p1)

(
1− exp

(
− (p2 x+ p3)R

p4 x−p5
c

))
, (2.11)

with parameters pi fitted on historical NM data. An empirical test of these ap-
proaches for the correction of incoming radiation is still missing.

Besides various correction functions, the neutron data presented in this study has
been smoothed by temporal aggregation or moving average filters. These temporal
smoothing approaches are useful to reduce noise in highly resolved time series in
order to improve further comparative calculations, correlations, or visualisations. In
the current processing scheme, the correction functions have been applied on the
raw data first, followed by subsequent smoothing. Since there is also a debate about
the correct order of these processing steps, we elaborated on this discussion in more
detail in 2.6.

2.3.4 The buoy deployment

To address the open questions on an empirical evaluation of atmospheric and ge-
omagnetic correction approaches for the CRNS method, we decided to deploy a
CRNS detector system on a lake. With a minimum amount of surrounding mate-
rial, a detector system with a thermal and an epithermal neutron counter would
mainly ”see” the surrounding lake water. As the amount of water surrounding a
floating device remains the same, the CRNS detector was not effected by precipi-
tation or evapotranspiration and the total ground-related influence on the neutrons
could be assumed constant. The remaining variations of neutrons should be induced
by atmospheric conditions or solar activity only. An ideal set of correction functions
would be able to reduce the neutron variations over time to zero ± stochastic errors.
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For this experiment, we chose the lake Seelhausener See, which was located about
100 km southwest of Berlin, Germany, at the border between the federal states
Saxony and Saxony-Anhalt (Fig. 2.1a). The lake had formed in the abandoned
opencast of a lignite mine [e.g. Geller et al., 2013]. The lake is still not accessible
for public use and thus offered the perfect place for exposing sensible technology in
the environment. The surrounding is flat land with mainly natural vegetation.

15
 m10

 m5 
m

Bouy

300m

20
 m

Map based on
LMBV, March 2014

b)a)

0.6

0.4

0.2

Origin of detected neutrons (simulation)

  
  
  
  
  
  
-3

0
0
  
  
  
  
 0

  
  
  
  
3
0
0
 m

            -300         0        300 m

Relative
neutron
density

Seelhausener See
0 200 400 600 800 1000 m

c)

Figure 2.1: a) Location of the CRNS buoy detector at lake Seelhausener See. b)
The distance of 300m from the shoreline was chosen such that more than 98,% of
detected neutrons had contact to water only (black dots, simulated with URANOS).
c) Photograph of the buoy in operation. Map credits: adapted from LMBV, March
2014.

In the preparation of this study, the URANOS model by Köhli et al. [2023]
has been used to simulate the origin of the detected neutrons, following the signal
contribution concept presented by Köhli et al. [2015] and Schrön et al. [2023a].
The environment has been modelled in a 700 × 700m2 domain (Fig. 2.1b) with a
virtual detector above water, a given land structure with 10% soil moisture, and
air with 10 g/m³ humidity. We found that a distance of ≈ 300m from the shore is
appropriate to limit the influence of the land on the buoy detector to less than 2%.

Instruments were placed inside a buoy of type 601 Profiler from Idronaut
S.r.l. and then tied between two anchors at the coordinates (51.58377 ◦, 12.41423 ◦)
(Fig. 2.1c). Each rope was put under tension by mounting a trawl net ball (see
Fig. 2.2). Other then usual anchoring techniques [e.g. Boehrer and Schultze, 2008],
this arrangement kept the buoy in place within about 1m and in the same orientation
independently of rising or falling water levels over the entire study period.

The moderated and the bare tube was taken from a standard stationary CRNS
system of type CRS1000 (Hydroinnova LLC, Albuquerque, US) that had previously
been operated at the UFZ Leipzig [Schrön et al., 2018b]. The detectors were dis-
assembled and integrated in a tailor-made aluminium lid, protruding upwards from
the buoy (Fig. 2.2). The system was powered by eight batteries of type Yuasa NPL,
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38Ah, using lead-fleece technology to guarantee proper functioning under wobbling
conditions. After installation on July 15th, 2014, the batteries had to be recharged
by the end of September as the power supply lasted 2.5 months. Finally, the buoy
was retracted under frosty conditions on December 2nd, 2014. An antenna regularly
transmitted sensor data and GPS coordinates to an FTP server to allow scientists
to remotely keep track of the battery status, and for the sake of protection against
theft and tempest. The system further included external sensors for air temperature,
relative air humidity, and air pressure to facilitate atmospheric corrections.

Cambell sensor
Temperature
and humidity

Antenna

pressure
balance

GPS

lid

x 8

bare
tube
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NPMNPM

Datalogger

 

buoyancy: 8.7 kg
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b)a) c)

Figure 2.2: a) Setup of the buoy in the lake at around 10m depth using trawl net
balls and weights. b) Final checks with an open lid near the shore before the final
launch into the water. c) Detector housing inside the tailor-made lid of the buoy,
including GPS, antenna for data transmission, external sensors for air conditions,
and a large battery array.

2.4 Results and Discussion

2.4.1 Buoy dataset

The measurement data of the buoy system is shown in Fig. 2.3. From July to
December 2014, the air pressure varied by 30mbar, while air temperature decreased
from 20 ◦C to 0 ◦C and relative air humidity increased from 40 to 100%. We have
also calculated the absolute air humidity, h, following Rosolem et al. [2013]. The
epithermal neutron count rate has been 416±41 cph, while thermal neutrons showed
on average 240 ± 31 cph. According to counting statistics following Schrön et al.
[2018b], the expected stochastic error of the epithermal neutron count rate would
be ±20 cph (hourly) or ±4 cph (daily), and of thermal neutrons ±15 cph (hourly) or
±3 cph (daily). In this context, the actually measured count rate already indicates
a non-negligible influence of atmospheric and heliospheric factors. The time series
has been gap-free with the exception of a short maintenance period in September
30th. Additionally, a Forbush Decrease event has been captured on September 13th,
which led to a significant drop of neutron count rates by ≈ 10%.
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Figure 2.3: Data collected with the buoy instrument in 2014. Top: Air pressure.
Middle: External air humidity and temperature. Bottom: pressure-corrected neu-
tron counts of epithermal (0.5–1000 eV, black) and thermal energies (0–0.5 eV, grey).
Dots depict hourly measurements, and solid lines depict the daily aggregation. A
Forbush Decrease event has been detected on September 13th. Maintenance work,
including battery exchange, has been conducted on September 30th.

2.4.2 Challenging the neutrons-to-water relationship

Compared to typical over-land locations, the detector showed a significant drop of
neutron counts over water by almost 50% [compare Schrön et al., 2018b, , Fig. 3].
Based on this observation, it was possible to test whether the existing concepts to
describe the relationship between neutrons and water content, N(θ) (Eqs. (3.1),
(2.2)), make the correct predictions following Eqs. (2.3) and (2.4).

The same detector type used in the buoy, CRS1000, has also been used on other
locations, where NDes

0 ≈ 1000 cph has been determined through calibration [see e.g.,
Bogena et al., 2022]. This corresponds to NUTS

0 = 1610 cph, 2090 cph, 1580 cph,
and 2030 cph for the UTS parameter sets ”MCNP drf”, ”MCNP THL”, ”URANOS
drf”, and ”URANOS THL”, respectively (section 2.3.2). Based on the assumption
that these N0 parameters are also applicable to the buoy detector, the expected
count rate in a pure-water environment (Eqs. (2.3), (2.4)) would become 372 cph,
411 cph, 322 cph, 302 cph, 315 cph for the five approaches, respectively. Hence, the
measured average count rate of 416 cph on the lake is in best agreement with the
theoretical value of the ”MCNP drf” parameter set from Köhli et al. [2021] for
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θ → ∞. The agreement is certainly within the uncertainty band of the data (see
Fig. 2.3), while the remaining discrepancy could arise from a non-negligible effect of
neutrons produced by the buoy material and the lead batteries themselves.

From this analysis, we can draw two conclusions. Firstly, the recently suggested
parameter set for N(θ, h) derived from the full particle-physics model (MCNP) and
the full detector response model (drf) fits best to the measured data and thus creates
evidence for its potential superiority over the other parameter sets, including the
approach from Desilets et al. [2010]. Secondly, the buoy detector in this study seems
to be a suitable representation of a pure-water scenario despite the substantial extent
and material of the buoy itself and despite the finite distance to the shore.

2.4.3 Correlation of epithermal and thermal neutrons to
external factors

The influences of (i) air pressure, (ii) air humidity, and (iii) incoming radiation on
epithermal neutrons have been addressed in the literature, where various approaches
exist to correct for these effects (section 2.3.3). Corrections for thermal neutrons
have not been investigated so far, usually following the assumption that the same
functions apply for them, too. For both neutron energies, however, empirical valida-
tion remains difficult, since neutron measurements above soils are always governed
by the spatial and temporal variability of soil moisture, as well as by the site-specific
heterogeneity [Schrön et al., 2023a]. In contrast, it is expected that neutron obser-
vations on a lake would not show terrestrial variability, thereby allowing for an
evaluation of non-terrestrial correction approaches.
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Figure 2.4: Partially corrected daily epithermal and thermal neutron observations
normalised by their mean, correlated with three meteorological variables. Left two
panels: neutrons corrected for air humidity and incoming radiation versus air pres-
sure. Middle two panels: neutrons corrected for air humidity and air pressure versus
incoming radiation. Right two panels: neutrons corrected for air pressure and in-
coming radiation versus air humidity. Each panel also shows the parameters of a
linear model fit (dashed line).

Fig. 2.4 shows the correlation between the daily relative neutron intensity and
atmospheric variables. In each panel, neutron counts have been corrected for two
variables and correlated to the corresponding third variable (compare section 2.3.3).
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Variations in air pressure exert the strongest influence on epithermal neutrons (R2 =
0.91), followed by variations in incoming radiation (R2 = 0.67), represented by data
from the JUNG NM, and absolute air humidity (R2 = 0.61). Thermal neutrons
follow the same rank order.

For air pressure, the correction parameter β = 0.0077mb−1 seems to be an
adequate choice for both thermal and epithermal neutrons. It matches exactly
(within the uncertainty bounds) with the theoretical value of 0.0077 predicted by
Dunai [2000]. However, it differs slightly from the value of 0.0073 suggested by
Desilets et al. [2006] and the corresponding and typically used calculation tool
http://crnslab.org/util/rigidity.php. Note that β can change in time and space, such
that the value determined in this experiment is not globally transferable. Further
research should investigate the performance of the two methods with experimental
data at other locations.

The regression coefficient for absolute air humidity, 0.0054m3/g, exactly matches
the linear correction factor α derived by Rosolem et al. [2013], confirming the ro-
bustness of this approach. Unlike for epithermal neutrons, the correction procedure
required for thermal neutrons has remained under debate. For instance, Andreasen
et al. [2016] and Rasche et al. [2021] did not correct thermal neutrons for variations
in air humidity, arguing that the traditional correction functions have been derived
for epithermal neutrons only. From dedicated simulations, Rasche et al. [2023] found
a new value for thermal neutron correction, α = 0.0021m3/g. In contrast, based
on empirical findings, Jakobi et al. [2018, 2022] correct thermal neutron intensities
for air pressure and absolute humidity but not for variations in incoming radiation.
They claimed that their empirical findings suggested better performance against
biomass estimations.

The buoy-detector observations shed light on the required correction procedures
for thermal neutrons as the effect of other hydrogen pools (e.g., biomass and soil
moisture) on the empirical relationship can be excluded. Fig. 2.4 indicates that
thermal neutrons are similarly dependent on variations in air pressure and incom-
ing radiation compared to epithermal neutrons. The largest difference between
epithermal and thermal neutrons by applying the same correction occurs in respect
to variations in absolute air humidity. We found that the linear regression slope,
0.0023, is less than half of that of epithermal neutrons and very close to the value
recently found by Rasche et al. [2023]. The difference of thermal to epithermal neu-
tron response to air humidity is likely linked to the generally higher production rate
of thermal neutrons by epithermal neutron moderation than the thermal neutron
absorption rate which leads to a weaker response of thermal neutrons to variations
in environmental hydrogen [Weimar et al., 2020].

Consequently, the observations in this study indicate that epithermal and ther-
mal neutron intensities need to be corrected for all three atmospheric variables.
With respect to existing correction approaches, it is evident that the correction fac-
tor for air humidity should be different for epithermal and thermal neutrons, using
α = 0.0054m3/g [Rosolem et al., 2013] and α = 0.0021m3/g [Rasche et al., 2023],
respectively.
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2.4.4 Apparent correlation of thermal neutrons to water
temperature

The observation that the air humidity correction parameters for epithermal and
thermal neutrons are different may have significant impact on the growing number
of studies related to thermal neutron monitoring. Some previous studies applied the
same correction approach from epithermals also to the thermal neutrons without
accounting for this difference [Jakobi et al., 2018, 2022; Bogena et al., 2020]. This
may introduce a risk of overcorrection and apparent correlation to other variables.
In the case of the buoy experiment, the conventional air humidity correction would
cause an apparent correlation of thermal neutrons to lake water temperature. In
fact, the observed corrected count rate of thermal neutrons in Fig. 2.5a showed
a significantly higher correlation to the lake temperature (R2 = 0.26) compared
to corrected epithermal neutrons (R2 = 0.01). We will explain below that this
connection appears logical at first glance, but it is a fallacy on closer inspection.

By definition, the energy range of thermal neutrons corresponds to the mean
kinetic energy of atoms in the environment, and thus their temperature. The the-
oretical foundation for this phenomenon is the temperature dependency of neutron
cross sections [Glasstone and Sesonske, 1981]. The cross section σ represents the
probability of an interaction with an atomic nucleus. Interaction is less likely for
larger relative velocities between target and particle v, i.e., σ ∝ 1/v. In equilibrium,
velocity and temperature are related by the Maxwell-Boltzmann distribution, where
the (mean) particle energy is given by E ∝ mv2 ∝ kT . Hence, σ ultimately depends
on the temperature T of the scattering target: σ(T ) ∝

√
1/T . Since water has a

much higher density than humid air, the temperature of the lake might be more
relevant than the air temperature.

While the higher temperature increases the thermal neutron density in air and
water, it reduces the detection probability of the helium-3 counting gas in the same
way [Krüger et al., 2008]. The total observable influence on the thermal neutron
count rate is a combination of two effects as air and lake temperatures decrease
towards the winter: (i) increasing cross sections of nuclei in air and water, which
removes more neutrons on their way to the detector and leads to a decreasing thermal
neutron density in the system, and (ii) at the same time, increasing cross sections
of nuclei in the Helium-3 gas, enabling higher detection efficiency which leads to
higher count rates. Both processes scale with

√
1/T in different directions. Since

lake water temperature and detector temperature show the same dynamics (2.7),
the two effects should almost annihilate each other. Fig. 2.5b shows the calculated
temperature effect of the lake on the thermal neutron production (blue) and the
thermal neutron detection (orange). The combined effects (black) almost cancel
each other out and leave a nearly constant influence on the thermal neutron count
rate.

Hence, the remaining correlation of thermal neutrons to lake temperature results
from the wrong correction coefficient of α = 0.0054m3/g. The observation data in
Fig. 2.4 demonstrate that the thermal neutrons response to air humidity is much
smaller compared to epithermal neutrons. Using the recently published correction
factor, α = 0.0021m3/g [Rasche et al., 2023], which is very close the empirical
observation from the buoy, the new correlation becomes R2 = 0.01 for thermal
neutrons and thereby confirms the insignificance of the temperature effect.
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The example demonstrates the risk of overcorrection and false conclusions from
data when the physical process understanding is incomplete. On the other hand,
we cannot exclude remaining features in the data that could indicate systematic
influences on the neutron count rate. For example, dew formation or ice on the
buoy lid could be responsible for additional neutron moderation in autumn and
winter, while extreme variations of shore moisture could impact the count rate in
the summer. After a finalised analysis of the known external influences, we have
further investigated the remaining correlations in section 2.4.7.
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Figure 2.5: The effect of temperature on the measured buoy neutrons. a) Correlation
of epithermal (black) and thermal neutrons (grey) to the lake temperature after
conventional atmospheric corrections. This introduced an overcorrection for thermal
neutrons. A revised air humidity correction approach simulated by Rasche et al.
[2023] and confirmed by this study removed this remaining correlation. (b) Processes
relevant for neutron production and absorption based on temperature over time. The
reduced production of colder water essentially cancels out the enhanced detection
efficiency of the detector gas.

2.4.5 Challenging the air humidity correction for epithermal
neutrons

As discussed before, air humidity can have a significant effect on the neutron count
rate due to varying density and amount of hydrogen atoms in the atmosphere.
Rosolem et al. [2013] and Köhli et al. [2021] derived mathematical relationships
from neutron transport simulations, but they are difficult to validate experimentally
due to the high amount of other influencing environmental variables. With the
exclusion of terrestrial factors, such as soil moisture and biomass, the use of lake-
side measurements can be again an advantageous solution here.

To investigate which correction approach performs best at the buoy site, we
correct the epithermal neutrons with air pressure and incoming radiation (NPi). If
the remaining variability is only related to air humidity changes, the P, i-corrected
neutrons should equal the inverse correction factor C−1

h . In this ideal case, this
difference is expected to become zero. To quantify the performance of each air
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Table 2.2: Root mean square error (RMSE) between the observed corrected ep-
ithermal intensity for air pressure and incoming radiation, NPi, and the inverse air
humidity correction C−1

h for the approaches from Rosolem et al. [2013] and UTS (see
section 2.3.3). The analysis has also been performed for three different approaches
of incoming radiation to test its robustness.

Incoming correction for NPi Rosolem et al. MCNP drf MCNP THL URANOS drf URANOS THL
Zreda et al. [2012] 5.39 5.50 6.18 6.42 6.94
Hawdon et al. [2014] 5.40 5.48 6.09 6.31 6.82
McJannet and Desilets [2023] 5.38 5.48 6.13 6.37 6.88

humidity correction approach, we calculate the root-mean square error (RMSE)
between NPi and C−1

h over the whole measurement period.
Table 2.2 shows the result of this calculation. The hitherto approach from

Rosolem et al. [2013] exhibits the lowest RMSE, again confirming a good perfor-
mance for air humidity correction, see also section 2.4.3. However, the UTS approach
with the parameter set ”MCNP drf” is comparable in performance with an insignif-
icantly larger error, while other parameter sets show weaker performance. This
confirms the results from section 2.4.2 and the robustness of the full particle-physics
and detector models. The fact that the approach from Rosolem et al. provides
slightly better results than the UTS may be linked to the fact that the UTS was
not tailored to describe the neutron response to changing air humidity alone. UTS
has been optimised to solve the neutron response to the complex combination of soil
moisture and air humidity, which could introduce lesser accuracy for air humidity
variations alone.

2.4.6 Challenging the incoming cosmic-ray correction

Buoy-detector observations of neutrons in the epithermal and thermal energy range
above a water surface and over a period of several months also allows for a compar-
ison of the different correction approaches available for correcting neutron observa-
tions for variations in incoming radiation. The three available correction approaches
described in the methods section were tested with seven different neutron monitors
shown in Tab. 2.1 and compared with a thermal and epithermal neutron observa-
tions corrected for variations in air pressure and absolute air humidity (NPh), as
this correction level should represent variations from changes in incoming radiation,
only. In order to reduce the statistical noise in the data from the buoy detector, a
25-hour moving average was applied after applying the corrections. The epithermal
and thermal NPh was then compared to the inverted correction factors for incom-
ing radiation based on Zreda et al. [2012], Hawdon et al. [2014] and McJannet and
Desilets [2023] (see section 2.3.3).

Table 2.3 shows the results from the analysis performed for selected neutron mon-
itor stations. The Kling-Gupta Efficiency (KGE) was chosen as the goodness-of-fit
measure in order to equally account for variation, correlation, and bias. The anal-
ysis reveals that the performance is generally lower for thermal neutrons compared
to epithermal neutrons. This can be linked to the higher statistical uncertainty in
the thermal neutron data due to the lower count rates. Likewise, a higher difference
in cutoff rigidity between the locations of the neutron monitor and the study site
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leads to a lower KGE for both neutron energies. However, the Jungfraujoch neutron
monitor still reveals the highest KGE, although its cutoff rigidity and altitude are
higher than at the study site (compare Tab. 2.1).

Table 2.3: Performance measured by the Kling-Gupta Efficiency (KGE) of different
correction approaches to rescale incoming neutron intensities from different neutron
monitor stations compared with the observed and P, h-corrected epithermal (E) and
thermal (T) neutron counts of the buoy. See also Tab. 2.1 for the corresponding
cutoff rigidities and altitudes.

CI approach PSNM DJON ATHN JUNG KIEL OULU SOPO Average
E Zreda et al. [2012] 0.269 0.34 0.465 0.737 0.678 0.667 0.765 0.560
E Hawdon et al. [2014] 0.560 0.543 0.640 0.790 0.651 0.566 0.692 0.634
E McJannet and Desilets [2023] 0.639 0.703 0.761 0.760 0.647 0.613 0.619 0.677
T Zreda et al. [2012] 0.220 0.280 0.408 0.635 0.594 0.587 0.714 0.491
T Hawdon et al. [2014] 0.481 0.460 0.567 0.689 0.569 0.493 0.614 0.553
T McJannet and Desilets [2023] 0.627 0.624 0.699 0.657 0.565 0.537 0.545 0.608

Furthermore, it can be seen that the approaches from Hawdon et al. [2014] and
McJannet and Desilets [2023] improve the KGE for the comparison with neutron
monitors with higher cutoff rigidity than the study site compared to the approach
after Zreda et al. [2012]. In contrast, for neutron monitors with a lower cutoff rigidity,
this improvement disappears and the approach according to Zreda et al. [2012]
reveals a higher KGE with the data from the buoy detector. This effect is evident
for both epithermal and thermal neutrons. The recent approach from McJannet and
Desilets [2023] outperforms the approach by Hawdon et al. [2014], while both only
lead to improvements for higher cutoff rigidities compared to the standard approach
after Zreda et al. [2012]. On average and over all neutron monitors investigated,
the approach after McJannet and Desilets [2023] performs best in scaling neutron
monitor signals to the location of the buoy detector, followed by the approach after
Hawdon et al. [2014] and Zreda et al. [2012].

All three approaches provided robust results using data from the JUNG NM,
with a slightly superior performance of Hawdon et al. [2014] at the study site. Ad-
ditionally, the correct selection of a reference monitor seems to be more influential
than then correction method. The results generally indicate the advanced correc-
tion approaches from Hawdon et al. [2014] and particularly McJannet and Desilets
[2023] improve the performance only for higher cutoff rigidities (i.e., regions near the
equator). These findings may be also linked to the complex behaviour of incoming
radiation with different effects occurring at different cutoff rigidities, altitudes, lat-
itudes, and longitudes [López-Comazzi and Blanco, 2020, 2022]. The time series of
epithermal and thermal neutrons are shown in Fig. 2.6 together with the time series
of the JUNG, PSNM, and SOPO neutron monitors. Especially during the Forbush
Decrease in September 2014, a dampening of the neutron signal of the PSNM neu-
tron monitor compared to the JUNG neutron monitor can be seen, which is linked
to the higher Rc of PSNM. In addition, a temporal shift between PSNM and JUNG
indicates differences between neutron monitor intensities due to different longitudi-
nal locations. Lastly, the epithermal and thermal intensities decrease stronger than
JUNG and PSNM, but similar to SOPO. This is an unexpected behaviour, as the
cutoff rigidity of SOPO is much lower than at the buoy location. The coincidence
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could indicate that low-energy neutron counters generally respond stronger to geo-
magnetic changes than high-energy NMs. Particularly with regards to the Forbush
Decrease, the observed discrepancy could also be linked to a change of the primary
cosmic-ray energy spectrum during solar events [Bütikofer, 2018], which may lead
to stronger changes of secondary low-energy cosmic-ray neutrons.
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Figure 2.6: Normalised pressure- and humidity-corrected neutron count rates of the
buoy detector compared with neutron monitor data. a) Epithermal buoy neutrons
with a moving average window of 6 hours (grey dots) and 25 hours (black line). The
latter filter was also applied to the NM data from JUNG in Switzerland (orange),
PSNM in Thailand (red), and SOPO near the South Pole (blue). b) Zoom-in to the
Forbush Decrease event. c-d) Same as a-b for thermal buoy neutrons.

Depending on the moderator material and material thickness, proportional neu-
tron detectors show varying sensitivity to neutrons of different energies [Garny et al.,
2009; Köhli et al., 2018]. A difference in the response of a bare thermal neutron de-
tector and a neutron monitor has been shown by Nuntiyakul et al. [2018]. Further-
more, Hubert et al. [2019] found a different response to solar events for neutrons of
different energies. For the correction of neutron intensities for incoming radiation in
the scope of CRNS, it, therefore, may not be sufficient to scale the neutron monitor
response to different cutoff rigidities and atmospheric shielding depths only [Haw-
don et al., 2014; McJannet and Desilets, 2023], but also to account for the different
response of low-energy neutron detectors and neutron monitors.

The question about the choice of the most suitable neutron monitor for CRNS
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correction is equivalent to the question of which monitor better represents the local
changes of cosmic-ray neutrons at the CRNS site. Sometimes, the answer is not
obvious considering just geographical location parameters. For example, compared
to the location of the buoy experiment, the KIEL monitor has more similar distance,
altitude, and cutoff rigidity than JUNG. However, the neutron dynamics of the buoy
can be better explained by JUNG, while KIEL behaves differently during and beyond
the Forbush Decrease event. These findings indicate the need for further research on
the role of primary incoming radiation for low-energy Cosmic-Ray Neutron Sensing.

2.4.7 Residual correlations

The proper correction of all influencing factors on the neutrons should result in a
time series, where residual deviations from the mean represent Poissonian noise. To
test this hypothesis, a correlation analysis of NPhi was conducted using a selection
of atmospheric variables. In addition, different aggregation levels have been applied
to further test the either random or systematic character of the relationships. The
Spearman’s rank correlation coefficient is shown in Tab. 2.4. It indicates that the
influence of air pressure, incoming radiation, and absolute humidity is removed by
the previously discussed correction procedures. However, a significant correlation
between the NPhi and relative air humidity remained for all aggregation levels and
for both neutron energies.

Table 2.4: Spearman’s rank correlation coefficient between the corrected intensity
(NPhi) of epithermal (E) and thermal (T) neutrons aggregated to different temporal
resolutions. Asterisk indicates statistical significance with p < 0.05.

Variable aggregation: 1 hour 6 hour 12 hour 24 hour
E Air pressure 0.04 0.07 0.07 0.1
E NM (Jungfraujoch) 0.003 0.02 −0.006 0.01
E Abs. air humidity −0.02 −0.04 −0.05 −0.09
E Air temperature 0.003 0.02 0.01 0.0009
E Rel. air humidity −0.07* −0.2* −0.2* −0.3*
E Water temperature 0.01 0.03 0.03 0.008
E Moist air density 0.006 −0.000004 0.01 0.03
E Precipitation 0.0005 −0.09 −0.10 −0.20
T Air pressure 0.03 0.08 0.06 0.03
T NM (Jungfraujoch) −0.006 −0.02 −0.04 −0.08
T Abs. air humidity −0.04* −0.08 −0.10 −0.20*
T Air temperature −0.0007 −0.01 −0.07 −0.1
T Rel. air humidity −0.07* −0.1* −0.2* −0.2*
T Water temperature −0.002 0.02 0.03 0.08
T Moist air density 0.009 0.03 0.08 0.1
T Precipitation 0.01 −0.006 −0.08 −0.10

High values of relative air humidity may indicate the formation of dew and,
thus, a thin film of water on the buoy-detector, which reduces the observed neutron
intensity of the epithermal and thermal detector due to higher neutron absorption.
For example, Sentelhas et al. [2008] use a threshold of ≥ 90% relative humidity

38



Soil moisture from Cosmic-Ray Neutron Sensing D. Rasche

to distinguish periods with leaf wetness. Applying this threshold to the neutron
observations reveals that epithermal and thermal NPhi are, on average, 0.44 and
0.56% lower in periods with dew, respectively. This indicates that some influencing
atmospheric variables are not yet considered in the standard correction procedures
and illustrates the need for further research.

Furthermore, the statistical accuracy increases strongly with increasing integra-
tion times. Already at the 6-hour aggregation level, the Poisson standard deviation
of the uncorrected neutron observations becomes lower than 2%. However, neu-
tron transport simulation revealed that approx. 2% of epithermal neutrons reach
the buoy-detector from the shore, indicating that with higher statistical accuracy,
terrestrial variables such as soil moisture variations could influence the neutron ob-
servations of the buoy detector. This indicates some limitations of the measurement
design in this study and illustrates potential improvements for future lake-side neu-
tron measurements.

2.4.8 Potential for the buoy as a reference for CRNS probes

Typical CRNS stations are located on natural ground to monitor soil moisture dy-
namics or agricultural fields, grass lands, or even snow dynamics in the alps. The
conventional correction approach uses incoming radiation from neutron monitors
(e.g., Jungfraujoch) to remove unwanted effects from solar activity, such as Forbush
Decreases.

We used data from a nearby terrestrial CRNS site at the UFZ Leipzig (25 km dis-
tance), where six identical CRNS stations were co-located on a 20×20m2 grassland
patch. The sum of their signals mimics a larger CRNS station with up to 6000 cph
(≈ 1.4% uncertainty).
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Figure 2.7: Epithermal neutrons aggregated from six collocated CRNS stations at
the UFZ Leipzig, 25 km away [Schrön et al., 2018b, data from]. Neutron counts
were corrected for air pressure and air humidity (dashed black) and corrected for
incoming radiation using NM Jungfraujoch (solid black) and the buoy data (solid
orange). Daily precipitation is indicated from Radolan measurements.

Figure 2.7 shows the epithermal neutron data from this aggregated sensor cor-
rected for air pressure and air humidity (dashed line). The solid line shows the data
conventionally corrected for incoming neutrons with the NM Jungfraujoch. It is
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evident that the correction generally improves the obvious response to rain events,
but the correction of the Forbush Decrease in September 13 was not strong enough.
The orange line shows the same correction approach with the epithermal neutron
data measured at the same time by the buoy. The data was filtered by a 3-day mov-
ing average to reduce the buoy’s noise level. The correction using the local buoy
data better removes the Forbush Decrease from the corrected CRNS neutron counts
(September 13) and is also able to strengthen the response to some rain events (e.g.,
August 24 and September 17).

The results demonstrate that the concept of buoy detector can be used as an
alternative to neutron monitors to correct for the incoming radiation. However,
measurements on the buoy are limited by the low count rate due to the surrounding
water and small detectors, such that there is a risk of introducing additional noise
to the CRNS station data by this correction approach.

2.5 Conclusions

This study presents the concept of a thermal and an epithermal neutron detector in
a buoy on a lake. The arrangement depicts an innovative opportunity to monitor the
response of low-energy cosmic-ray neutrons to atmospheric conditions and to space
weather without the influence of the ground, soil moisture, or any other nearby
terrestrial heterogeneity that can influence the neutron counts. The experiment
conducted on a lake in East Germany covered an almost gap-free period of five
months from July 15th to December 2nd, 2014, including temperatures from 30 to
0 ◦C, and - by chance - a major solar event (Forbush Decrease). The unique data
set facilitates empirical research on challenging conventional theories and traditional
correction functions for atmospheric, geomagnetic, and heliospheric variations. The
experiment revealed the following insights:

1. The epithermal neutron count rate over water dropped by more than 50% com-
pared to values over typical soil. The measured count rate was not in agree-
ment with the theoretical value predicted by the previous N(θ) model [Desilets
et al., 2010]. In contrast, the value was almost exactly predicted by the UTS
approach [Köhli et al., 2021] using the parameter set ”MCNP drf”. This
finding might indicate a potential superiority of UTS for the conversion from
neutrons to soil moisture also for other CRNS applications.

2. The buoy data showed strong correlation to air pressure, which was similar for
both, epithermal and thermal neutrons. The thereby empirically determined
neutron attenuation length was in very good agreement with the theoreti-
cal prediction by Dunai [2000], while it was 5% lower than the conventional
calculation for this region. This indicates that further research is needed to
better adapt traditional calculation methods on the special requirements of
low-energy neutron detectors.

3. The different approaches for air humidity correction have been challenged by
their ability to remove undesired variations of the buoy signal. The conven-
tional approach by Rosolem et al. [2013] performed best and its parameter
α = 0.0054 has been confirmed for epithermal neutrons. Almost similar per-
formance was achieved by the UTS approach using the parameter set ”MCNP
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drf”, while all other parameter sets were not able to fully remove air humidity
variations.

4. Conventional thermal neutron corrections for air humidity, however, led to a
significant overcorrection. A potential influence of lake water temperature on
the thermal neutrons has been excluded by analysis of the nuclear interaction
cross sections. A different correction parameter for thermal neutrons has been
identified, which confirmed independent results from Rasche et al. [2023].

5. The response to incoming cosmic radiation is almost similar for both, ep-
ithermal and thermal neutrons, in contrast to assumptions by some previous
studies. We challenged three existing correction approaches by comparing the
buoy data with data from various neutron monitors and found robust perfor-
mance for NM Jungfraujoch and the approach from Zreda et al. [2012]. The
more sophisticated approaches by Hawdon et al. [2014] and McJannet and De-
silets [2023] showed particularly good skills in rescaling data from NMs with
higher cut-off rigidities than the measurement site.

6. The remarkable Forbush Decrease (FD) observed in Sept 2014 was more pro-
nounced in the buoy data than in data from the NMs, particularly for thermal
neutrons. In addition to the findings from the pressure correction above, this is
another indication that the scaling of incoming radiation from NMs to CRNS
is not well enough understood, probably due to the sensitivity to different
particle energies.

7. After all corrections were applied, the remaining variations of the buoy signal
have been investigated. For both, thermal and epithermal neutrons, a signif-
icant correlation to relative air humidity became evident, which could be an
indication for yet unnoticed sensitivity to dew.

In a final test, we used the buoy data as a reference signal for the incoming radi-
ation correction of a nearby CRNS site. Here, a slightly better correction capability
was evident, particularly during the FD event. This experiment demonstrated that
a buoy could act as a suitable local alternative for a neutron monitor, especially
since it measures similar energy levels as the CRNS, it is much cheaper than an
NM, and it could be installed more closer to CRNS sites, thereby avoiding any ge-
omagnetic or location-specific biases. However, buoys are limited in size, such that
their data is highly uncertain due to the low count rates. Daily temporal resolu-
tion was the minimum for our system to be applicable as a reference monitor. To
overcome this weakness, future studies could deploy buoy detectors on high-altitude
lakes or glaciers, which would equally well resemble a pure-water environment for
the neutrons with much higher count rates [e.g. Gugerli et al., 2019, 2022].

We encourage the usage of the presented data set for further research on new
theories or correction functions. One more example is the debate of whether to
apply temporal smoothing algorithms before or after atmospheric corrections. With
the buoy data, we were able to show that correction prior to smoothing is crucial for
maintaining correlation to the incoming radiation data, for instance (see sect. 2.6).
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2.6 Appendix A

The buoy experiment provides a perfect test for meteorological correction func-
tions. For example, it has been discussed in the community whether smoothing
prior [Heidbüchel et al., 2016] or after correcting neutron data [Franz et al., 2020;
Davies et al., 2022] is recommended. With the buoy data, this hypotheses can be
tested without influence of ground-based variations.
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Figure 2.8: Pearson correlation coefficient between the epithermal Nph vs. inverted
influx correction after Zreda et al. [2012] using the JUNG neutron monitor, when
the correction is applied prior or after smoothing with a moving average.

In general, temporal smoothing of a time series is a linear operation f , since

f : x(t) =
t+τ∑
t−τ

w · x(t′)/
t+τ∑
t−τ

w ,

where 2τ is the window size over which the data is averaged, and w is a weighting
factor (e.g., 1 for a uniform average, or e−τ for exponential filters). In contrast,
some correction functions can be non-linear, e.g., the correction for air pressure or
for incoming radiation. For the combination of linear f and non-linear functions g,
the following rule generally holds:

f(g(x)) ̸= g(f(x)) .

For this reason, the order of processing operations generally matters. In the case
of neutron count variations, corrections should be applied on the raw data, and only
the final product should then be averaged (smoothed). Otherwise, it is not guaran-
teed that a measurement N(t) is corrected for the air pressure P (t) at the same time
t, for instance. Fig. 2.8 shows that the correlation between the buoy experimental
epithermal neutron intensity corrected for variations in atmospheric pressure and ab-
solute humidity and the inverted primary influx correction from Zreda et al. [2012]
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generally increases with increasing moving average window size when the correction
procedures are applied before averaging the raw data. In contrast, a correction after
averaging the raw data leads to (i) a lower maximum correlation and (ii) a decrease
of the correlation at window sizes larger than 25 hours. This is in line with recent
findings by Davies et al. [2022], who found a general improvement of the CRNS-
derived soil moisture when the correction procedure is applied prior filtering of the
neutron intensity time series. In general, for filtering approaches based on a moving
window, the window size needs to be odd in order to create a centred filter to avoid
a temporal shift in the filtered time series. For example, a centred 24-hour moving
average equals a 25-hour moving average.

2.7 Appendix B

At the study location, lake Seelhausener See, direct measurements of the water
temperature were not available. However, it is possible to use measurements of a
nearby lake as a proxy.

Surface temperatures in lakes are mainly determined by the local weather. Hence
lakes located close to each other at the same geographic altitude show similar tem-
peratures. This was verified in a comparison of surface temperatures of mine pit lakes
in the Central German and Lusatian Mining District, in which also Seelhausener See
is located. Boehrer et al. [2014] found that the lake temperatures measured in 0.5m
depth were nearly identical. Only in cases of rapidly rising temperatures (e.g., in
spring time), a difference of up to 2 ◦C was detected between very small and larger
lakes. Numerical models that are calibrated specifically for the conditions of a single
lake often reach about the same accuracy [e.g. Weber et al., 2017], while models that
are not specifically calibrated (e.g. occasional local temperature measurements) will
show greater deviations. Alternative methods, such as satellite imaging and ther-
mometry, only provide sporadic measurements and do not reach a similar accuracy
without additional support from numerical models [Zhang et al., 2020].

Lake Rassnitzer See is situated in 31 km distance south west of the study area
and was previously called ”Mine Pit Lake Merseburg-Ost 1b” [Heidenreich et al.,
1999]. The lakes Seelhausener See and Rassnitzer See exhibit similar morphology,
similar size, and are exposed to similar air temperatures [Böhrer et al., 1998]. Since
it can be assumed that temperatures will hardly differ by more than 1 ◦C, the surface
temperatures (i.e., at 0.5m depth) from Rassnitzer See can be used as an accurate
approximation for temperatures in Seelhausener See at the same depth. This as-
sumption has been supported by the fact that the observed air temperatures were
very similar at both lakes throughout the investigation period (shown in Fig. 2.9).
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Figure 2.9: Water temperatures measured by an anchored weather station with
attached thermistor chain in Rassnitzer See from July 2014 to January 2015 in
several depths (blue shading). Air temperature has been measured at both lakes,
Rassnitzer See (pink solid) and Seelhausener See (orange dashed).
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3.1 Abstract

Cosmic-Ray Neutron Sensing (CRNS) allows for non-invasive soil moisture estima-
tions at the field scale. The derivation of soil moisture generally relies on secondary
cosmic-ray neutrons in the epithermal to fast energy ranges. Most approaches and
processing techniques for observed neutron intensities are based on the assumption
of homogeneous site conditions or of soil moisture patterns with correlation lengths
shorter than the measurement footprint of the neutron detector. However, in view
of the non-linear relationship between neutron intensities and soil moisture, it is
questionable whether these assumptions are applicable.

In this study, we investigated how a non-uniform soil moisture distribution within
the footprint impacts the CRNS soil moisture estimation and how the combined use
of epithermal and thermal neutrons can be advantageous in this case. Thermal
neutrons have lower energies and a substantially smaller measurement footprint
around the sensor than epithermal neutrons.

Analyses using the URANOS (Ultra RApid Neutron-Only Simulation) Monte
Carlo simulations to investigate the measurement footprint dynamics at a study site
in northeastern Germany revealed that the thermal footprint mainly covers mineral
soils in the near-field to the sensor while the epithermal footprint also covers large
areas with organic soils.

We found that either combining the observed thermal and epithermal neutron
intensities by a rescaling method developed in this study or adjusting all parameters
of the transfer function leads to an improved calibration against the reference soil
moisture measurements in the near field compared to the standard approach and
using epithermal neutrons alone. We also found that the relationship between ther-
mal and epithermal neutrons provided an indicator for footprint heterogeneity. We,
therefore, suggest that the combined use of thermal and epithermal neutrons offers
the potential of a spatial disaggregation of the measurement footprint in terms of
near- and far-field soil moisture dynamics.

3.2 Introduction

Soil moisture is a key variable in the hydrological cycle [e.g. Vereecken et al., 2008,
2014; Seneviratne et al., 2010], driving e.g., energy fluxes, groundwater recharge,
runoff generation processes and biomass production, which, in turn, influence cli-
matic variables on varying spatio-temporal scales [e.g. see, Daly and Porporato,
2005; Vereecken et al., 2008; Seneviratne et al., 2010; Wang et al., 2018]. Conse-
quently, observations of soil moisture have a high importance for the estimation of
landscape water balances and hydrological modelling. However, these applications
would profit especially from field-scale observations covering several hectares. At
this scale, the spatial (and temporal) resolution of satellite-derived soil moisture
products is too coarse, and in situ soil moisture sensors would need to be installed
in very large numbers due to the high spatial variability in soil moisture [Famiglietti
et al., 2008; Vereecken et al., 2014; Babaeian et al., 2019]. In agricultural areas,
this in situ installation is additionally hampered by management practices such as
ploughing, tillage and harvest [Stevanato et al., 2019].

Introduced about a decade ago, Cosmic-Ray Neutron Sensing [CRNS; e.g.
Zreda et al., 2008; Desilets et al., 2010] partly overcomes these issues and allows
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for non-invasive soil moisture estimation at the field scale. It provides a represen-
tative spatially averaged soil moisture value across the instrument’s measurement
footprint [Schrön et al., 2018b] of approximately 12 ha. The resulting field-scale
soil moisture products were successfully used for the calibration and validation of
satellite-derived soil moisture products, as well as improved land-surface and rainfall-
runoff models [e.g. Holgate et al., 2016; Montzka et al., 2017; Iwema et al., 2017;
Duygu and Akyürek, 2019; Dimitrova-Petrova et al., 2020]. Combining soil moisture
products of different spatial scales may overcome scale gaps as exemplarily shown
by Fersch et al. [2018]. Roving CRNS-devices [e.g. McJannet et al., 2017; Schrön
et al., 2018a; Vather et al., 2019] as well as dense sensor networks [e.g. Fersch et al.,
2020; Heistermann et al., 2021] pose further opportunities for covering even larger
areas.

Cosmic-Ray Neutron Sensing relies on a number of naturally occurring secondary
cosmic-ray neutrons in the water-sensitive epithermal energy range from > 0.2 eV to
1MeV [Köhli et al., 2015], which are counted by a neutron detector above the soil
surface. Neutrons in the epithermal energy range are highly sensitive to the amount
of hydrogen in the surrounding area due to their energy loss by elastic scattering
processes. As a result, an increase in hydrogen results in a decrease in epithermal
neutrons counted by the instrument as the neutrons are slowed down more effectively.
In turn, thermal neutrons have energies below 0.2 eV and show a more complex
response to the dynamics of hydrogen and other elements. The interaction with
hydrogen shows two competing effects. On the one hand, the thermal neutron
abundance is positively correlated with the amount of hydrogen as more thermal
neutrons are generated due to thermalisation of epithermal neutrons. On the other
hand, neutron absorption leads to a decrease in thermal neutrons with increasing
hydrogen abundance [e.g. Hubert et al., 2016]. As a consequence, thermal neutrons
may show a similar response to variations in hydrogen and, thus, soil moisture (the
largest terrestrial near-surface hydrogen storage). However, this response may be
less distinct than the one of epithermal neutrons [Weimar et al., 2020], which are
mainly driven by elastic scattering. An example for the more complex behaviour of
thermal neutrons is the moderation optimum describing the amount of hydrogen at
which the thermalisation is most effective [Hubert et al., 2016].

The measurement footprint size of CRNS varies with air pressure, air humidity
and soil moisture conditions and ranges from 130 to 240m in radius with a depth
of 15 to 83 cm during wet and dry conditions, respectively [Köhli et al., 2015]. Ad-
ditionally, topographic features such as open water or strong topographic gradients
may influence the footprint size [e.g. Köhli et al., 2015; Schattan et al., 2019; Mares
et al., 2020].

Although neutrons in the epithermal energy range are the basis for deriving soil
moisture contents, thermal neutrons remain the focus of CRNS research as they can
provide valuable information for estimating biomass [e.g. Tian et al., 2016; Jakobi
et al., 2018; Vather et al., 2020] or snow water equivalent [SWE; Bogena et al., 2020],
e.g. by using the ratio of epithermal and thermal neutrons. Compared to epither-
mal neutrons, little is known about the behaviour of thermal neutrons. For instance,
when thermal and epithermal neutrons are combined, a measurement footprint of a
similar size is assumed for both energy ranges [e.g. Vather et al., 2020]. However, the
integration radius of thermal neutrons at the CRNS sensor can be expected to be
much smaller (a footprint of approx. 35m) compared to epithermal neutrons [200m;
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see, e.g., Bogena et al., 2020]. This was recently confirmed by Jakobi et al. [2021],
who estimated a radius of 43 to 48m. Considering different footprint sizes of ther-
mal and epithermal neutrons, a combination of both through calculating neutron
ratios requires all hydrogen to be distributed homogeneously in the measurement
footprints. As a result, uncertainties may arise when hydrogen is not distributed
homogeneously in the footprints, as mentioned by Bogena et al. [2020], and this
limits the applicability of combining thermal and epithermal neutrons. This may
be of particular importance, as most studies with stationary CRNS assume quasi-
homogeneous site conditions or spatial patterns of different soil moisture states and
dynamics with correlation lengths smaller than the CRNS footprint. For instance,
neutron transport modelling so far assumes homogeneous soil water distributions
when characterising footprint dynamics and weighting functions [e.g. Köhli et al.,
2015; Schrön et al., 2017; Jakobi et al., 2021] or developing transfer functions for
deriving soil moisture from epithermal neutron intensities [e.g. Desilets et al., 2010;
Franz et al., 2013b; Andreasen et al., 2020; Köhli et al., 2021]. However, different
footprint sizes may offer the opportunity for a horizontal differentiation between
near- and far-field soil moisture dynamics. Although previous studies confirmed the
applicability of CRNS at heterogeneous study sites for deriving spatially averaged
soil moisture time series [e.g. Franz et al., 2016; Sigouin et al., 2016; Schrön et al.,
2017; Pang et al., 2021], approaches for the spatial disaggregation of CRNS-derived
soil moisture values at heterogeneous observation sites have not yet been assessed
in detail.

Against this background, this study investigates the footprint size and neu-
tron dynamics of epithermal and thermal energies at a heterogeneous study site
in the TERENO (TERrestrial ENvironmental Observatories) lowland observatory
in northeastern Germany. Consisting of mineral soils in the near-field and partly
surrounded by groundwater-influenced organic peatland soils in the far field, dif-
ferent approaches for a spatial disaggregation of the measurement footprint can be
tested at this site. This is aided by the distinct hydraulic characteristics of organic
peatland soils [e.g. Dettmann et al., 2014; Rezanezhad et al., 2016] and mineral soils
which lead to different soil water dynamics and water contents.

Due to the general decrease in thermal neutron count rates with increasing soil
moisture, but with a smaller integration radius, we hypothesise that Spearman’s
rank correlation coefficient between normalized thermal and epithermal neutron
intensities can serve as measure for footprint heterogeneity. Second, we hypothe-
sise that both, adjusting the neutron transfer function to near-field soil moisture
observations or a combination of the normalised epithermal and thermal neutron
intensities allow for a spatial disaggregation of the measurement footprint by im-
proving the estimation of near-field soil moisture. To test these hypotheses, we first
set up Monte Carlo neutron transport simulations using the URANOS (Ultra RApid
Neutron-Only Simulation) code [Köhli et al., 2015]. This code is often used in CRNS
research [e.g. Köhli et al., 2015, 2021; Schrön et al., 2017, 2018a,b; Schattan et al.,
2019; Li et al., 2019a; Weimar et al., 2020] to develop transfer functions and weight-
ing procedures. In our study, we use it to identify the footprint size and dynamics of
neutrons in the thermal and epithermal energy ranges under different soil moisture
conditions at the heterogeneous study site. Second, we adjust the standard trans-
fer function used for deriving soil moisture from neutron observations and apply a
combination of observed thermal and epithermal neutrons in order to improve the
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calibration of CRNS-derived soil moisture estimates against reference soil moisture
observations in the near-field. Finally, we illustrate the potential of deriving differ-
entiated soil moisture dynamics under heterogeneous footprint conditions by either
adjusting the transfer function or by adjusting the neutron signal.

3.3 Material and methods

3.3.1 Study site

The study site is located at the TERENO-NE [Zacharias et al., 2011; Heinrich
et al., 2018] in the lowlands of northeastern Germany (Fig. 3.1). The average annual
temperature is 8.8 ◦C, and rainfall amounts to 591mm per year at the Waren weather
station, which is approx. 35 km away from the study site [station ID: 5349; period
1981–2010; DWD - German Weather Service, 2020a,b]. Geologically, the study site
is situated on a glacial outwash plain south of a terminal moraine formed during the
Pomeranian phase of the Weichselian glaciation [Börner, 2015]. Within the outwash
plain we still find non-eroded outcrops of glacial till of previous glaciation phases
while fens formed subsequently in depressions and local sinks [Börner, 2015] due to
rising temperatures and groundwater levels in the Holocene.

The CRNS site (site A) itself is located on a slightly elevated outcrop of Weich-
selian glacial till surrounded by peatland (Fig. 3.1). Dominating soil types in areas
with glacial till are Cambisols formed on sandy loam, while the peatland areas are
characterised by Histosols rich in clay and silt and low water table depths. Soil
samples were taken from mineral and organic soils in depths from 0 to 30 cm, in
5 cm increments, at 21 random locations within a 200m radius in February 2020
and were analysed to retrieve local soil properties. Within a 10m, 10 to 50m and
50 to 200m radius, 5, 6 and 10 samples were taken, respectively, thus matching the
decreasing sensitivity of the neutron detector with increasing radius. The analy-
ses revealed an average bulk density of 1.43 g cm−3 in areas with mineral soils and
0.29 g cm−3 in areas with organic soils. The site average bulk density calculated
from all available samples is 1.11 g cm−3. Based on the material density of quartz
(2.65 g cm−3), these values were used to estimate soil porosities of 89 and 46 % for
organic and mineral soils. The average percentage of soil organic matter determined
from the loss-on-ignition analyses (550 ◦C, 24 hours) revealed 0.70 g g−1 for organic
soils and 0.02 g g−1 for mineral soils. A subsequent loss-on-ignition analysis (1000
◦C, 24 hours) revealed an average lattice water content of 0.03 g g−1 for organic
and 0.001 g g−1 for mineral soils, respectively. Based on these soil samples, the
average gravimetric water content in organic soils in the far field was 0.62m3 m−3,
while it was only 0.15m3 m−3 for near-field mineral soils, thereby illustrating the
two distinct soil moisture regimes at the study site. Regardless of the soil type,
pasture is the prevailing type of land cover, mainly used for cattle grazing, while
larger areas that are forested with Pinus sylvestris are found in greater distances
of more than 1 km towards the east (Fig. 3.1). The observation site is one of three
sites in the TERENO-NE observatory equipped with a CRS1000 neutron detector
(Hydroinnova LLC, USA) and also includes a weather station that permanently
monitors the relative humidity, wind speed and temperature, as well as the long and
short-wave solar radiation. Additionally, irregular monthly groundwater measure-
ments are available. The other two CRNS observation sites (B and C; Fig. 3.1b)
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represent forest sites with a rather homogeneous distribution of soil moisture in the
measurement footprint of the CRNS. Further details regarding site C can be found
in Heidbüchel et al. [2016].

Figure 3.1: The location of the study area and within Germany (a), the positions of
all CRNS locations of the TERENO lowland observatory in the Mueritz National
Park (b) and the heterogeneous CRNS observation site of this study (c). Sources:
digital elevation model from LAIV-MV - State Agency for Interior Administration
Mecklenburg-Western Pomerania [2011]; land cover from BKG - German Federal
Agency for Cartography and Geodesy [2018a]; administrative units from BKG -
German Federal Agency for Cartography and Geodesy [2018b].

The neutron detectors are composed of two proportional counter tubes filled with
3He gas (see Zreda et al. [2012] and Schrön et al. [2018b] for a detailed description).
There is one bare, unshielded, tube to detect neutrons in the thermal energy range
and a second moderated counter tube shielded with a 2.5 cm high-density polyethy-
lene housing to measure neutrons in the epithermal energy range. It should be
noted that the bare counter tube may observe about 5 % of the epithermal neutrons
and the moderated tube observes up to 45 % of the thermal neutrons [Andreasen
et al., 2016], which should be considered when comparing the different detector sys-
tems and the results of neutron transport simulations. The time series of in situ
soil moisture point sensors of the two different types are available at the site. A
total of six SMT100 sensors (Truebner GmbH, Germany) are installed, with two
sensors each in 10, 20 and 30 cm depths. They record soil moisture at 10min in-
tervals. Time domain reflectometry (TDR) sensors (Campbell Scientific Ltd, UK)
are installed at the same depths, with four sensors in 10 cm depth, three sensors in
20 cm and five sensors at 30 cm depth. The record interval for the TDR probes is
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15min. Measurements are converted to soil moisture by using the manufacturers’
calibrations. All point sensors are installed within a 30m radius around the neutron
detector and, thus, only cover the near-field composed of mineral soils. Continuous
reference observations from the far-field peatland soils are not available. Given the
higher noise level of the TDR time series, but soil moisture dynamics that are very
similar to the SMT100 sensors in the respective soil depths, only SMT100 data are
used in the following analyses and presented in the paper. An identical processing
procedure was used for the soil moisture time series from TDR soil moisture sensors
(for results, see the Appendix).

3.3.2 Neutron simulations

In the present study, we apply the Monte-Carlo-based neutron transport model of
URANOS (version v0.99 ω19; see Köhli et al. [2015] for details). By simulating
200 million source neutrons, we intend to estimate the influence of water content
variations in areas with organic soils in the far field of the neutron detector on the
neutron flux and footprint size of epithermal and thermal neutrons. The model
set-up uses a simplified representation of soil distributions (Fig. 3.1) within a rect-
angular 900 by 900m sized model domain, with a horizontal resolution of 1m around
the neutron detector. The following three simplifications had to be made in order
to set up the model: a flat topography was assumed, soil porosities derived from
field samples were assumed to be valid for the entire simulated soil column of 2m
depth and organic soils are only differentiated by their significantly higher porosities,
while their chemical composition is equal to that of mineral soils. This last simpli-
fication is due to the limitations of the neutron transport model. Although these
simplifications will hamper a direct comparison with observed neutron intensities as
the hydrogen stored in soil organic matter or vegetation will reduce the footprint
sizes and dampen the neutron intensity response to changes in soil water content
under real-world conditions, the simulations will provide valuable information on
the neutron intensity dynamics at the study site. All simulations were made with
a single set of atmospheric boundary conditions, namely an assumed cutoff rigidity
of 3GV, based on Andreasen et al. [2017a], an absolute humidity of 8.3 g m−3 and
an atmospheric shielding depth of 1028.5 g cm−2. In the case of absolute humidity
and atmospheric shielding depth, these values represent site averages derived from
local measurements for the study period from 2015 to 2018.

To investigate the footprint variability caused by soil water changes in the peat-
land soils of the far field, we calculate the footprint radius as the 86 % quantile
of distances (R86) to the detected neutron origins for thermal (0.001 eV to 0.2 eV)
and epithermal (¿ 0.2 eV to 0.01MeV) neutrons. For detected epithermal neutrons,
the distance to the point of the first soil contact is considered as being the point of
origin, as secondary epithermal neutrons generated from nuclear evaporation pro-
cesses in the soil are sensitive to hydrogen by elastic scattering [e.g. Köhli et al.,
2015]. In contrast, to our knowledge, the definition of the origin of detected ther-
mal neutrons has not yet been assessed in detail. On the one hand, the point of
thermalisation (i.e. point where a neutron first reached an energy in the thermal
range) may be a suitable definition of the origin because, as neutrons reach ther-
mal energies, absorption adds to elastic scattering as a second important interaction
process between neutrons and hydrogen, as well as matter in general. On the other
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hand, if thermal neutrons are generated from higher energetic epithermal neutrons,
the amount of detected thermal neutrons may partly be influenced by the amount
of epithermal neutrons and their origin. As a consequence, we apply and compare
both options, i.e. the point of thermalisation and the point of first soil contact, to
define the origin of detected thermal neutrons and the resulting footprint radius.
The measurement depth of epithermal and thermal neutrons is derived similarly.
For thermal neutrons, the average measurement depth D86 is defined as the 86 %
quantile of either the depth of the thermalisation point or the maximum depth along
the neutron transport path while for epithermal neutrons we use only the latter.

It should be noted that the virtual detector in the simulations is significantly
larger (9m radius) than a real neutron detector; this is in order to enhance the
count rate and decrease the computational time. However, this means that neu-
trons originating below the detector (i.e. originating within the 9m radius) are
considered to have a travel distance of 0m. Furthermore, in this study, we consider
an energy window for defining thermal and epithermal neutrons scattering in the
virtual detector. Although detector response functions [see, e.g., Köhli et al., 2018,
2021] mimic the sensitivity of a real neutron detector and would provide a more
realistic neutron intensity, we deliberately decided to keep our model simple and
general (also due to a lack of information on soil moisture dynamics and soil chem-
istry in the peatlands). We are, thus, not aiming at a detailed reproduction of field
conditions but at more general understanding. Although different studies refer to
different upper energy boundaries for thermal neutrons in simulation studies which
depend on the specific neutron detector and applied shielding material, we decided
to use the physical energy threshold in which thermal neutrons are in equilibrium
with the energy of environmental nuclei and neutron absorption becomes a relevant
process as a more general definition of thermal neutrons.

On the one hand, the simulation scenarios described in the following sections
allow the investigation of thermal and epithermal measurement footprint changes
when soil moisture is either stable or dynamic in the near-field where the CRNS
method is most sensitive. Additionally, we can derive potentially valuable infor-
mation on neutron intensity variations when the water content varies at different
rates in the near-field and far field. This may be of particular importance at study
sites influenced by peatland soils, as these are characterised by, e.g., higher storage
capacities. An overview of all simulation sets and the included simulation scenarios
performed in the scope of this study can be found in Table 5.1.

Simulation set 1: static near-field soil moisture and variable far-field soil
moisture

In the first simulation set that consists of seven neutron transport simulation sce-
narios, the simulated soil moisture was kept constant in the near-field mineral soil
areas. The soil moisture in areas with peatland soils was altered for each scenario
and ranges from 0.1 to 0.7m3 m−3 across the entire soil column at a porosity of
89 %. During all scenarios, the soil moisture in areas with mineral soil remains
constant at 0.1m3 m−3 at a porosity of 46 % (Table 5.1). This fixed low water
content in the near-field was chosen as the measurement radius from which detected
thermal or epithermal neutrons originate can be expected to be largest at dry soil
conditions [Köhli et al., 2015; Schrön et al., 2017]. Therefore, the largest influence
of far-field soil water dynamics on neutron count rates at the detector location can
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be expected at low soil moisture conditions in the near-field. Hence, simulating con-
stant low near-field soil water contents and solely varying far-field soil water contents
allows for the isolated investigation of the impact of peatland soil water variations
on the observed neutron intensities and the corresponding footprint variations.

Simulation sets 2 and 3: varying soil moisture in both the near-field and
far field

The second set of simulation scenarios included variations in soil moisture contents
in the far field and in the near-field. All other simulation parameters remained
equal to previous simulations. We simulate six simulation scenarios with an equal
decrease in soil water contents in near-field mineral soils and far-field peatland soils.
The highest soil moisture content simulated is 0.35 m3 m−3 for mineral soils and
and 0.70m3 m−3 for peatland soils. These soil water contents are decreased in equal
intervals of 0.05m3 m−3 in both soils (Table 5.1). In the third set of simulations, we
investigate the effect when soil moisture is reduced more strongly in peatland soils
compared to mineral soils. Here, the soil moisture in peatland areas is reduced in
0.10 m3 m−3 intervals, from 0.70 to 0.20m3 m−3, while soil moisture in the mineral
soils is reduced from 0.35 to 0.10m3 m−3 in 0.05m3 m−3 intervals.

Table 3.1: Overview of the different Monte-Carlo-based neutron transport simulation
scenarios conducted within the different simulation sets. Near-field soil moisture
refers to soil moisture in areas covered with mineral soils, while far-field soil moisture
refers that in the peatland soils.

Simulation set Simulation scenario no. Near-field soil moisture (m3 m−3) Far-field soil moisture (m3 m−3)
1 0.10 0.70
2 0.10 0.60

(1) Static 3 0.10 0.50
near-field 4 0.10 0.40
soil mositure 5 0.10 0.30

6 0.10 0.20
7 0.10 0.10
1 0.35 0.70

(2) Equal 2 0.30 0.65
decrease in near- 3 0.25 0.60
and far field 4 0.20 0.55

5 0.15 0.50
6 0.10 0.45
1 0.35 0.70

(3) Unequal 2 0.30 0.60
decrease in near- 3 0.25 0.50
and far field 4 0.20 0.40

5 0.15 0.30
6 0.10 0.20

3.3.3 In situ neutron observations

Processing of measured neutron intensities

For our 4-year study period from January 2015 to December 2018, neutron inten-
sities were aggregated from sub-hourly intervals to hourly values and smoothed by
a 13-hour moving average in order to reduce noise in the data [e.g. Bogena et al.,
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2013]. Data gaps were caused by power cuts, technical issues or maintenance ac-
tivities. Outliers were identified by a threshold of 4 times the standard deviation
and were excluded from the analyses. Raw neutron observations were corrected for
variations in atmospheric shielding depth or air pressure and primary neutron in-
flux [e.g. Zreda et al., 2012]. The standard correction procedure for air humidity
is defined for neutrons in the epithermal energy range [Rosolem et al., 2013] and
may not be valid for thermal neutrons. As a consequence, in this study, we cor-
rected thermal and epithermal neutron intensities only for variations in atmospheric
shielding depth and primary neutron influx in order to maintain comparability. It
should be noted that the correction procedures applied to thermal and epithermal
neutron intensities differ among previous studies [e.g. Andreasen et al., 2016; Jakobi
et al., 2018] and illustrate the need for further research. To correct raw neutron
intensities for varying atmospheric shielding depths, air pressure values in hectopas-
cals measured by the neutron detector are converted to atmospheric shielding depth
in grams per squared centimetre by multiplication with 1.0194 s2 m−1 [Heidbüchel
et al., 2016]. The required reference value is the average atmospheric shielding depth
for the 4-year study period, and the attenuation length (135.6 g cm−2) is adapted
from Heidbüchel et al. [2016]. The correction for variations in primary neutron
flux is done using pressure- and efficiency-corrected primary neutron data from the
Jungfraujoch neutron monitor in Switzerland (JUNG; www.nmdb.eu). Again, the
reference value is defined as the average influx during the study period. The cor-
rected thermal (bare) and epithermal (moderated) neutron intensities for the study
period are illustrated in Fig. 3.2.

Corrected epithermal neutron intensities can be converted to volumetric soil mois-
ture θCRNS in cubic metres per cubic metre (m3 m−3), using the standard transfer
function introduced by Desilets et al. [2010], as follows:

θCRNS =

(
a0

N
N0

− a1
− a2

)
× ρsoil

ρwater
. (3.1)

Here, a0 (0.0808), a1 (0.372) and a2 (0.115) are the shape-defining parameters of
the hyperbolic transfer function. N describes the corrected neutron intensity, ρsoil
is the average soil bulk density in the measurement footprint (kilograms per cubic
metre; hereafter kg m−3), ρwater is the density of water in kg m−3, and N 0 is a free
calibration parameter describing the site-specific neutron intensity over dry soil at
0.0m3 m−3. In this study, we used the revised standard transfer function recently
introduced by Köhli et al. [2021], which provides a physical meaning for each of the
shape-defining parameters from eq. (3.1). The three variables in the revised transfer
function (eq. (3.2)) can be calculated from the variables of the standard transfer
function.

θCRNS =

(
ã0

1− N
Nmax

ã1 − N
Nmax

)
× ρsoil

ρwater
, (3.2)
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Figure 3.2: Field observations for the period from January 2015 to December 2018,
showing the (a) hourly rainfall and approximate monthly groundwater table depth
in far-field peatland soils and (b) the corrected neutron intensities in the thermal
(NT ) and epithermal energy range (NE) (b).

where, in the following:

ã0 = −a2, (3.3)

ã1 =
a1a2

a0 + a1a2
, (3.4)

Nmax = N0 ×
a0 + a1a2

a2
. (3.5)

The calibration procedure is performed for the entire time series of observed, cor-
rected neutron intensities of epithermal neutrons NE. There are two possible options
for deriving soil moisture based on the standard transfer function (eq. (3.1)). The
first option requires eq. (3.1) to be solved for N 0 in order to approximate the cal-
ibration parameter. The calculated N 0 is then used in eq. (3.1). In the second
procedure, the N 0 parameter of eq. (3.1) is calibrated iteratively against reference
soil moisture measurements in order to derive the site-specific neutron intensity over
dry soils N 0.

We used the revised transfer function (eq. (3.2) – (4.4)) and iteratively calibrated
N 0 because continuous in situ soil moisture measurements offer a high number of
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reference points. Regardless of which equation is used for deriving soil moisture
values from neutron observations and the corresponding calibration option, reference
soil moisture observations need to be weighted according to their depth and distance
to the neutron detector in order to match the sensitivity regarding the origin of the
epithermal neutrons [Schrön et al., 2017].

We weighed all available point sensor measurements per time step in order to
derive a depth-distance weighted soil moisture time series after Schrön et al. [2017].
The weighting approach takes, e.g., soil moisture, bulk density (1.43 g cm−3), addi-
tional hydrogen pools (organic matter of 0.02 g g−1 and lattice water of 0.001 g g−1

excluded in this study), air humidity and vegetation height (0.2m) into account.
Hourly time series of all SMT100 soil moisture sensors at depths of 10, 20 and
30 cm for all snow-free periods from January 2015 to December 2018 were weighted
accordingly. For SMT100 probes, we also excluded soil moisture observations dur-
ing soil temperatures below 0 ◦C. Lastly, the N 0 is iteratively adjusted to derive a
soil moisture time series from observed neutron intensities resulting in the highest
goodness of fit in terms of the highest Kling-Gupta Efficiency [KGE; Gupta et al.,
2009], compared to the weighted reference time series from the in situ sensors in
the near-field. To assess the impact of the weighting on the calibration result, we
also compare the depth-distance weighted calibration with a calibration based on
the arithmetic mean of all available in situ sensors. This calibration approach is
referred to as the standard calibration approach throughout the paper.

Improving the CRNS-derived soil moisture estimation

To achieve a better calibration result against the observations of the reference sen-
sors in the near-field, we adjusted the shape of the transfer function by tuning the
parameters a0, a1 and a2. The tuning of all shape-defining parameters was done
in previous studies and resulted in a better goodness of fit between CRNS-derived
soil moisture values and reference measurements [e.g. Rivera Villarreyes et al., 2011;
Lv et al., 2014; Heidbüchel et al., 2016; Tan et al., 2020] and may be especially
necessary at sites with binary soil moisture distributions [e.g. Franz et al., 2013a].
In this study, we adjust parameters N 0, a0, a1 and a2, using a Monte-Carlo based
approach, by testing 10,000 random combinations of the parameters and selecting
the parameter set that produces the highest statistical goodness of fit in terms of the
KGE. This approach will be referred to as alternative approach 1 in the following
sections.

Furthermore, we tested a second approach in which we made use of the simul-
taneously recorded and corrected thermal neutron intensity NT to create a rescaled
neutron time series NET , using equation (3.6) as follows:

NET =

(
NE +NT

NE +NT

)
×NE (3.6)

Here, NE +NT is the average of the sum of epithermal and thermal neutrons, while
NE is the average of the epithermal neutron intensity only. The result from equa-
tion (3.6) is a neutron time series which averages the dynamics of thermal and
epithermal neutron intensities and, thus, leads to a rescaled epithermal neutron
time series NET , which now shows a different relationship with the reference soil
moisture measurements characterised by a shallower slope compared to NE. The
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rescaled time series may be less influenced by peatland soil moisture variations due
to the expected smaller footprint of thermal neutrons while the more distinct inten-
sity change of epithermal neutrons with soil moisture variations is at least partly
conserved. More importantly, the slope of the functional relationship between soil
moisture and the neutron intensity of NET becomes less steep due to the generally
weaker response of thermal neutrons to soil moisture changes [e.g. Weimar et al.,
2020]. For our study site, especially the shallower slope could be used as a proxy
to partly account for, e.g. the stronger soil moisture changes expected to occur in
far-field peatland areas. These would lead to changes that are too strong in ep-
ithermal neutron intensity and would hamper the standard approach for deriving
near-field soil moisture estimates. We would like to note that, in this study, we did
not consider using thermal neutrons alone as this would require a transfer function
specifically designed to the response of thermal neutrons to changes in soil moisture.

The calibration was performed iteratively by adjusting N 0 only. In terms of
normalized neutron intensity dynamics, this equation is equal to summing the ab-
solute epithermal and thermal neutron intensity, which would, consequently, lead
to a much higher N 0 after calibration. The latter approach will be referred to as
alternative approach 2 for the remainder of the paper.

To test if the CRNS-derived soil moisture from one of the alternative approaches
1 and 2 differs significantly from the traditional standard approach, using NE and
calibrating N 0 only, we performed a time series comparison based on bootstrapping
residuals and the Wilcoxon rank sum test. First, the CRNS-derived soil moisture
time series based on (i) NE and calibrating N 0, (ii) NE and calibrating all parameters
and (iii) NET and calibrating N 0 were smoothed with a normal Nadaraya-Watson
kernel regression smoother, using a large bandwidth of 1,000 in order to achieve
an intense smoothing effect. Based on the smoothing method applied, the seasonal
variations in soil moisture remain, while short-term soil moisture changes, i.e. on the
event scale, are removed. Missing values were excluded before applying the smooth-
ing algorithm and reintroduced to the smoothed time series. Then the residuals
were calculated between the smoothed and original soil moisture time series. Next,
a random sample of 5,000 residuals was generated and used to produce a random
distribution of 5,000 soil moisture values per time step for each of the smoothed time
series of the three variants mentioned above. This is done to obtain a distribution
of soil moisture values per time step of each CRNS-derived soil moisture time series
which can be compared in the next step. For each time step, an unpaired Wilcoxon
rank sum test was performed in order to determine time steps where significant
differences (p < 0.05) occur between the CRNS-derived soil moisture time series
calculated with the classic approach and with the two alternative approaches.

In a first attempt to find a measure to characterise footprint heterogeneity, the
Spearman rank correlation coefficients between normalized thermal and epithermal
neutron counts were calculated for the study site and for the two nearby CRNS
sites that are located in forested terrain (see Fig. 3.1) with rather homogeneous
soil characteristics in their footprint. The Neutron intensities of those two sites
were corrected in the same way as described above. Unless otherwise stated, all
calculations were performed in R statistical software [R Core Team, 2018] using,
for instance, the hydroGOF package [Zambrano-Bigiarini, 2017] for calculating the
goodness-of-fit parameters.
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3.4 Results

3.4.1 Simulated neutron response to soil moisture changes
in the far-field peatland soils

The results of all neutron transport simulation scenarios with a constant soil mois-
ture in mineral soils of the near-field reveal that the sensitive measurement footprint
radius is distinctively smaller for thermal neutrons than for epithermal neutrons
(Fig. 3.3). The footprint radius of epithermal neutrons decreases from 141m in
the 0.1m3 m−3 scenario to 111m in the 0.7m3 m−3 scenario, with an average R86

of 122m based on all simulation scenarios. In comparison, the thermal footprint
radius is distinctively smaller but depends on the definition of a detected neutrons
origin in the model domain. If the point of thermalisation is considered as the point
of origin, the thermal footprint only exhibits a minor change in simulation scenar-
ios with increasing soil moisture in the peatland soils of the far field. It remains
rather constant with a minimum and maximum R86 of 42m and 45m, respectively
(Fig. 3.3). The average footprint radius of thermal neutrons from all simulation sce-
narios is 44m, and thus, the average epithermal footprint radius is 2.8 times larger
than the thermal footprint radius. However, if the first soil contact is considered as
the point of origin, then the thermal footprint is larger and decreases with increasing
peatland soil moisture from 107m to 81m, with an average footprint radius of 88m.
Thus, the neutron transport simulations led to an average horizontal integration
area of 0.6 ha and 2.4 ha for thermal neutrons, depending on which footprint defini-
tion is applied. The average horizontal integration area of epithermal neutrons has
a size of 4.7 ha. The average integration depth D86 remains constant for thermal
neutrons with an average D86 of 0.27m if the point of thermalisation is considered
as the origin, while it is distinctively larger if the maximum depth is used. Here,
the average measurement depth increases to 0.52m and is larger than the average
measurement depth of epithermal neutrons, revealing a D86 of 0.31m. Even though
thermal neutrons show a smaller integration radius, the integration depth might be
larger than that of epithermal neutrons.

The number of neutrons detected by the virtual detector decreases with increas-
ing soil moisture in the peatland soils (Fig. 3.4) during the different simulation
scenarios from 0.1 to 0.7m3 m−3. The total number of detected neutrons, i.e. of
neutrons with any origin in the model domain, illustrates the decrease in detected
epithermal and thermal neutrons with increasing peatland soil moisture and a gener-
ally lower number of detected thermal neutrons (Fig. 3.4). The number of detected
epithermal neutrons decreases by 10.3 %, from about 27700 to 24800, in the 0.1
and 0.7m3 m−3 scenario. The number of thermal neutrons detected decreases to
a lesser degree, by 5.4 %, from about 25200 to 23800. Thus, the total number of
epithermal neutrons decreases 1.9 times more than the number of thermal neutrons
with increasing far-field soil moisture.

The visible influence of far-field soil moisture variations on both epithermal and
thermal neutrons raises the question of the impact on the fraction of detected neu-
trons, i.e. the fraction of detected neutrons originating from areas covered with
peatland soils and minerals soils. We investigated the influence of peatland soil
moisture variations in the far field on the fractional contribution to the total num-
ber of thermal neutrons when either the point of thermalisation or the point of first
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Figure 3.3: Simulation results for the measurement footprint radius (a) and depth
(b) of detected thermal and epithermal neutrons.

Figure 3.4: The total number of neutrons in the thermal and epithermal energy
range observed by the virtual detector per simulated peatland soil moisture

soil contact is considered as being the origin of the specific neutron. The latter
represents the position of the first soil contact of a neutron within its life cycle in
the model domain, i.e., the position at which the simulated neutron had its first soil
contact before it further slowed down and reached the virtual detector as a neutron
with thermal energy. For detected epithermal neutrons, the fraction of neutrons
with peatland origin decreases with increasing peatland soil moisture from 19 to
12 % and contributes, on average, 14 % to the total number of detected epithermal
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neutrons (Fig. 3.5). For thermal neutrons, the fraction of neutrons originating from
peatland areas depends on the definition of the point of origin. If the point of ther-
malisation is used, then the average fraction of thermal neutrons originating from
peatland areas is much lower at only 4 %. Furthermore, the fraction does not change
with increasing peatland soil moisture. In contrast, if the point of first soil contact
is used for thermal neutrons as well, then the contribution of thermal neutrons with
peatland origin decreases from 14 to 8 % with increasing soil moisture. On average,
the contribution from peatland is 10 %.

Figure 3.5: The fraction of detected epithermal and thermal neutrons with increasing
soil moisture originating from areas covered with peatland soils and mineral soils in
the model domain. For epithermal neutrons, the point of origin is defined as the
point of first soil contact while for thermal neutrons, both calculations, for the point
of first contact and the point of thermalisation are shown.

3.4.2 Simulated neutron response to soil moisture changes
in both near-field mineral and far-field peatland soils

In addition to keeping soil moisture values in mineral soils of the near-field constant,
we simulated a second set of scenarios where both near-field and far-field soil water
contents were adjusted (Table 5.1). The results of the measurement radius and
depth for the same decrease in soil moisture in areas covered with mineral soils and
peatland soils can be found in Fig. 3.6. The epithermal R86 does not show a visible
increase if soil moisture is reduced equally and reveals an average footprint radius
of 117m. An increase in the R86 can be observed when soil moisture is decreased by
twice as much in the peatland soils compared to the decrease in the mineral soils. In
this case, R86 increases from 118 to 128m. A similar behaviour can be observed for
thermal neutrons if the point of first soil contact is considered as the origin in the
model domain. While in this case the R86 remains constant at 81m if soil moisture
is decreased equally in mineral and peatland soils, R86 increases from 80 to 92m
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when soil moisture is reduced by twice as much in peatland compared to mineral
soil areas. Similar to the simulation set described in the previous chapter where
the soil moisture is kept constant in the near-field, the thermal R86 is much smaller
and does not change with varying soil moisture when the point of thermalisation is
considered. It remains constant at an average value of 43m for the simulation sets
where soil moisture is decreased both equally and unequally.

Figure 3.6: The simulated measurement footprint radius R86 (a) and depth D86 (b)
of thermal and epithermal neutrons when soil moisture in areas with mineral and
peatland soils decreases by the same amount (solid lines) and when peatland soil
moisture decreases twice as much (dashed lines).

Unlike for the previous scenarios with constant near-field soil moisture, the mea-
surement depth varies noticeably in both neutron energy ranges when soil moisture
is also reduced in the near-field of the neutron detector. The epithermal integration
depth D86 increases from 0.12 to 0.3m while the thermal integration depth changes
from 0.11 to 0.27m if the depth of the point of thermalisation is used to define the
measurement depth. In contrast, if the thermal integration depth is calculated as
it is done for epithermal neutrons, by using the maximum depth along the neutron
transport path, then the thermal integration depth becomes much larger and ex-
ceeds the integration depth of epithermal neutrons. It increases from 0.21 to 0.52, if
soil moisture is reduced equally, and to 0.51m if soil moisture is reduced unequally,
in near-field mineral and far-field peatland soils.

A stronger increase in the detected epithermal neutrons normalised by the av-
erage detected neutrons of all simulation scenarios for sets 2 and 3, respectively,
can be observed when soil water contents decrease twice as fast in peatland soils
compared to mineral soils (Fig. 3.7). Simulated thermal neutrons exhibit a more
complex behaviour because the number of thermal neutrons increases with decreas-
ing soil moisture in the model domain when the general soil water content is high;
however, when the overall soil moisture in the model domain is low, the detected
thermal neutrons tend to either remain constant or even decrease if the soil moisture
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Figure 3.7: The simulated normalised thermal and epithermal neutron response
when soil moisture in areas covered with mineral and peatland soils decreases at
equal intervals (solid lines) and when peatland soil moisture decreases twice as much
(dashed lines).

decrease is stronger in peatland soils. Overall, the thermal neutrons tend to increase
with decreasing soil water content.

3.4.3 Relationship between thermal and epithermal neutron
observations

Spearman’s rank correlation coefficient is calculated between the normalised cor-
rected hourly intensities of thermal and epithermal neutrons for the observation site
(site A; Fig. 3.8a) and, for comparison, also at the two other nearby CRNS obser-
vation sites (sites B and C; Fig. 3.8b,c). The Spearman rank correlation coefficient
for the other two sites is 0.95, showing a high correlation between the neutrons
observed by the shielded (epithermal) and unshielded (thermal) counter tube. In
contrast, the correlation coefficient at our main observation site is much lower, with
only 0.58 (Fig. 3.8). Figure 3.8 illustrates the relationship between the relative ob-
served neutron intensities in both energy ranges per study site. Apart from having
higher Spearman’s rank correlation coefficients, the point clouds for both sites that
are assumed to have a more uniform soil moisture (Fig. 3.8b,c) are close to the 1:1
line, although a slight non-linearity is visible. In contrast, the scatterplot for site
A (Fig. 3.8a) reveals a strong heteroscedasticity, with deviations occurring during
high relative neutron count rates in the epithermal and thermal energy range.

Adding the simulated normalised detected neutrons to the scatterplot of site A
results in all simulated data points being located within the range of the observed
values (Fig. 3.9). Data points of simulation sets 2 and 3 with varying near-field
soil moisture cross the 1:1 line while the data points of simulation set 1, where the
near-field soil moisture was kept constantly low, remains on the right side of the 1:1
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Figure 3.8: Relationship between observed normalised thermal and epithermal neu-
tron intensity at the three CRNS sites; namely (a) site A, the main study site, (b)
site B (soil moisture assumed to be uniform) and (c) site C (soil moisture assumed
to be uniform). Normalised intensities were calculated by dividing by the respective
time series mean.

line.

3.4.4 Estimation of soil moisture from observed neutron in-
tensities

We estimated the soil moisture time series from the CRNS signal with three dif-
ferent calibration approaches. We first applied the standard calibration approach
by using the corrected epithermal neutron intensities (NE) and iteratively calibrat-
ing N 0 in equation (3.2) – (4.4). We then compared this standard approach to
alternative approach 1, where NE is used but all parameters (N 0, a0, a1, a2) from
equation (3.2) – (4.4) are adjusted. Last, we compare the standard calibration ap-
proach and alternative approach 1 with alternative approach 2. Here, we rescale the
epithermal neutron intensity (NE) by calculating the normalised sum of the ther-
mal and epithermal neutrons (NET ), based on equation (3.6), and use the rescaled
neutron intensities in equation (3.2) – (4.4) by iteratively calibrating N 0. The ap-
proaches are applied by using a depth-distance weighted reference soil moisture time
series and the arithmetic average of the reference measurements which result in the
statistical goodness of fit presented in Table 5.3.

The calibration of the CRNS-derived soil moisture time series by iteratively ad-
justing N 0, based on the standard calibration approach and a weighted reference soil
moisture time series, results in a KGE of 0.57 (Table 5.3). When all variables are
adjusted in alternative approach 1, the KGE can be increased to 0.84. Similarly, the
KGE increases to 0.85 when alternative approach 2 with rescaled neutron intensities
NET is applied. This improvement is also expressed by a higher Nash-Sutcliffe effi-
ciency (NSE) and lower root mean square error (RMSE) for alternative approaches
1 and 2, either by using a rescaled neutron time series NET and only adjusting N 0

or by using NE and tuning all the parameters. In contrast, using the arithmetic
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Figure 3.9: The relationship between normalised thermal and epithermal neutron
intensities for in situ observations and the relationship between the normalised de-
tected epithermal and thermal neutrons for simulated data. The simulated values
refer to the simulation set and scenarios summarised in Table 5.1. Simulated neu-
trons are normalised by the average number of detected neutrons of all simulations
in the respective energy range.

Table 3.2: Statistical goodness of fit when calibrating equations (3.2) – (4.4) with
(applying) the three different calibration approaches.

Calibration Reference soil moisture Neutron intensities a0 a1 a2 N 0 KGE NSE RMSE
Standard NE 0.0808 0.372 0.115 907.3 0.57 -0.01 0.032
Approach 1 Weighted NE 0.2080 0.155 0.117 595.7 0.84 0.72 0.017
Approach 2 NET 0.0808 0.372 0.115 956.4 0.85 0.71 0.017
Standard NE 0.0808 0.372 0.115 896.9 0.46 -0.84 0.04
Approach 1 Arithmetic NE 0.1400 0.083 0.103 926.4 0.84 0.61 0.019
Approach 2 NET 0.0808 0.372 0.115 955.4 0.79 0.61 0.019

average reference soil moisture time series leads to a lower KGE of 0.46 compared
to the calibration against a depth-distance weighted average with the standard cal-
ibration approach. However, the KGE again increases strongly if either alternative
approach 1 or alternative approach 2 are optimized against the arithmetic average of
reference soil moisture observations to generate a CRNS-derived soil moisture time
series. The derived KGE increases to 0.84 and 0.79, respectively, which is close to
the goodness of fit derived using the weighted reference soil moisture time series.
Similarly, the additional goodness-of-fit parameters for NSE and RMSE improve
when using alternative approaches 1 and 2 instead of the standard approach. In
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general, for alternative approaches 1 and 2, the calibration result in terms of the
KGE improves by at least 0.25 over the 4-year study period when compared to the
standard calibration approach (see also Fig. 3.12 and Table 5.2).

Figure 3.10: On-site observed hourly rainfall sums (a) and CRNS-derived soil mois-
ture time series based on the standard calibration approach, as well as calibration
approaches 1 and 2, in comparison to the depth-distance weighted reference soil
moisture time series derived from SMT100 sensors (b).

The CRNS-derived soil moisture time series based on the three calibration ap-
proaches both over- and underestimate the dynamics of the weighted reference time
series (Fig. 3.10). The largest differences from using the standard calibration ap-
proach to either tuning all parameters of the transfer function in alternative ap-
proach 1 or applying the rescaled NET in alternative approach 2 occur in summer
periods when the weighted near-field reference soil moisture is generally low. In these
periods, using NE in the standard calibration approach results in a distinct underes-
timation of the reference soil moisture while both alternative calibration approaches
produce a CRNS-derived soil moisture time series fitting the weighted reference more
closely (Fig. 3.11). In contrast, differences between the CRNS-derived soil moisture
time series and the reference time series are less pronounced in winter periods when
the near-field reference soil moisture is high.

Although differences between the CRNS-derived soil moisture time series vary
seasonally, an overall closer fit to the weighted reference time series can be achieved
when estimating soil moisture based on the two tested approaches for improving
calibration against near-field reference measurements as previously illustrated by
the statistical goodness-of-fit parameters. Last, we compared the CRNS-derived
soil moisture time series based on the three calibration approaches. A bootstrap-
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Figure 3.11: On-site observed hourly rainfall sums (a) and CRNS-derived soil mois-
ture time series based on the standard calibration approach and alternative ap-
proaches 1 and 2 in comparison to the depth-distance weighted reference soil mois-
ture time series derived from SMT100 sensors (b) for a 3-month period in the summer
of 2016.

ping of the residuals and subsequent Wilcoxon rank sum tests per time step revealed
significant differences (p < 0.05) between CRNS-derived soil moisture time series cal-
culated from the standard calibration approach and the two alternative approaches
tested for improving the calibration. For both alternative calibration approaches and
both reference soil moisture time series, the CRNS-derived soil moisture time series
are significantly different from the time series based on the standard calibration
approach for at least 97 % of the time steps.

3.5 Discussion

3.5.1 Neutron-energy-dependent variations in footprint size
and neutron intensity

Our neutron transport simulations resulted in footprint radii of epithermal neutrons,
which lie in the ranges reported by Köhli et al. [2015] and are shown in Schrön et al.
[2017], for all simulation scenarios. In contrast, little is known about the measure-
ment footprint radius of thermal neutrons. Previous studies assume a similarly sized
footprint [e.g. Vather et al., 2020] or a significantly smaller measurement radius [e.g.
Bogena et al., 2020]. Our simulation results reveal that the derived measurement
radii strongly depend on the definition of the point of origin of the thermal neutrons
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detected by the virtual neutron detector. If the point of thermalisation is used to
calculate the measurement radius R86, then the footprint radius has an average size
of about 43-44m and only exhibits a slight response to changes in soil moisture.
This estimate comes close to what is stated in Bogena et al. [2020] and lies in the
range of what was recently reported by Jakobi et al. [2021]. In our simulations with
constant soil moisture in near-field mineral soils, the fraction of detected neutrons
being thermalised in areas covered with mineral soils and peatland soils remains
constant, although soil moisture in peatland soils is altered (Fig. 3.5). This could
lead to the interpretation that the footprint of thermal neutrons is too small to cover
a significant portion of peatland soils and, thus, peatland soil moisture variations do
not influence the simulated thermal neutron intensity. However, even if the footprint
based on the point of thermalisation is small, an influence of peatland soil moisture
variations on the number of thermal neutrons reaching the virtual detector is visible
(Fig. 3.4). As a consequence, the alternative definition may be more suitable. If the
point of first soil contact is defined as the origin for both epithermal and thermal
neutrons, then the thermal neutron footprint becomes twice as large (compared to
using point of thermalisation as the origin). It then covers larger parts of peatland
areas, and the fraction of detected thermal neutrons originating from peatland ar-
eas changes with varying peatland soil moisture. This definition better explains the
variations visible in the detected thermal neutron intensity because the number of
detected thermal neutrons generated from higher-energy neutrons with peatland soil
contact is likely to vary with peatland soil moisture.

The average measurement depths of epithermal neutrons simulated here also lie
in the range of the values reported in previous studies [Zreda et al., 2008; Köhli
et al., 2015]. For the case of constant soil moisture conditions in the highly sensi-
tive near-field, the average measurement depth of epithermal neutrons only shows a
slight decrease with increasing peatland soil moisture. In the scenarios with varying
soil moisture contents in both the near-field and the far field, a change in the CRNS
measurement depth is clearly visible. The integration depth of the thermal and
epithermal neutrons shows a very similar response to soil moisture variations, with
thermal neutrons having a slightly shallower D86 when based on the point of ther-
malisation. In contrast, if the maximum depth along the neutron transport path is
considered as the measurement depth, then the thermal neutron integration depth
becomes nearly twice as deep (compared to epithermal neutrons). This observation
might be explained in the following way: after a high-energy neutron enters the
soil column, it is slowed down to an epithermal neutron. This epithermal neutron
either leaves the soil or is further slowed down to a thermal neutron before then
leaving the soil. The deeper in the soil an epithermal neutron is generated by a
high-energy neutron, the more likely it will be thermalised before leaving the soil
column. Consequently, thermal neutrons might contain information of soil moisture
from even greater depths than epithermal neutrons (see fig. 3.3 and 3.6). This would
have implications for, e.g., soil sampling campaigns for calibration as larger sam-
pling depths might be required if thermal neutrons are of interest. However, little is
known about the vertical and horizontal footprint dynamics of thermal neutrons in
general and care should be taken when interpreting the presented results based on a
heterogeneous model domain and a narrow range of simulated boundary conditions.
Further research is required to investigate the footprint of thermal neutrons for a
homogeneous study site and under a wide range of boundary conditions to eventu-
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ally derive weighting functions similar to those developed for epithermal neutrons
during the past decade [e.g. Zreda et al., 2008; Franz et al., 2012a; Köhli et al., 2015;
Schrön et al., 2017; Scheiffele et al., 2020]. Very recently, Jakobi et al. [2021] investi-
gated the footprint of thermal neutrons and developed weighting functions based on
the point of thermalisation as the origin generated the first valuable conclusions to
understand the footprint of thermal neutrons. However, as stated before, our study
shows that the footprint of thermal neutrons seems to be larger than estimated,
based on the point of thermalisation, and that the point of first soil contact may
be a better definition for assessing the footprint of thermal neutrons which again
illustrates the need for further research.

Besides the varying dimensions of the integration volume, epithermal and ther-
mal neutrons show a different response to the simulated changes in peatland soil
moisture. This applies to both the simulation set, with a constant near-field soil
moisture, and to the simulation set, with the soil moisture in the near-field and in
the peatland soils changing at different degrees. In general, the total number of de-
tected epithermal and thermal neutrons decreases with an increasing peatland soil
moisture and, thus, with an increasing amount of hydrogen in the model domain.
However, the response of epithermal and thermal neutrons to the different simu-
lated soil moisture contents in mineral and peatland soils differs. Differences in the
response of epithermal and thermal neutrons have also been observed in previous
modelling studies [e.g. Andreasen et al., 2017b] for variations in soil moisture or liq-
uid water layer thickness [e.g. Hubert et al., 2016]. Thermal neutrons show a much
smaller response to variations in hydrogen [Weimar et al., 2020], and they show a
moderation optimum occurring just below 0.10m3 m−3 soil moisture [Sato and Ni-
ita, 2006; Weimar et al., 2020]. The latter is caused by the two competing processes
influencing thermal neutron abundance, i.e. slowing down of epithermal neutrons
(moderation) and absorption of thermal neutrons, for example, by hydrogen [e.g.
Hubert et al., 2016].

Several assumptions need to be considered when interpreting the neutron trans-
port simulation results presented here. In this study, a simplified model domain
was created where topography was neglected. However, while topography may play
a more important role in mountainous terrain [e.g. Schattan et al., 2019; Mares
et al., 2020], smaller topographic gradients, as at our study site, are unlikely to
have a considerable influence on footprint sizes [Köhli et al., 2015]. Nevertheless,
the slightly elevated position of the observation site compared to the surrounding
peatland (Fig. 3.1) may cause slightly larger real-world footprint radii than those
obtained from the simulations. Additional simplifications include the estimation of
soil porosities based on the density of quartz and the use of the same soil chem-
istry for organic and mineral soils. The higher amount of hydrogen stored in the
soil organic matter of the peatlands is likely to shift the simulation results towards
lower ratios of epithermal and thermal neutrons, smaller footprint sizes in the real
world and a shallower response of epithermal and thermal neutrons with changing
soil water content in all simulations, for example. Last, we did not add a vegetation
layer to the simulations as most of the study site is pasture assumed to represent
static sources of additional hydrogen. Nevertheless, the latter will likewise have a
reducing influence on the general footprint size, as is can be exemplary seen when
applying the weighting functions developed by Köhli et al. [2015] and Schrön et al.
[2017] which include a vegetation height parameter.
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As a consequence of the simplifications and limitations of the neutron transport
simulations, care needs to be taken when using the model results to explain the
real-world observations.

3.5.2 Towards a quantification of footprint heterogeneity

The high correlation between thermal and epithermal neutron intensities at the more
uniform sites and the low correlation at the heterogeneous site can be explained by
the fact that both energy ranges have different footprint sizes, as indicated by Bogena
et al. [2020] and partly supported by the neutron simulations shown here. The
heterogeneous observation site has a lower correlation coefficient which indicates
larger differences between the soil water contents and dynamics of the near-field and
of far field with organic peatland soils. However, our simulations indicate that the
thermal neutron intensity is influenced by far-field soil moisture changes occurring
in areas covered with peatland soils. The scatterplot for our heterogeneous site A
(in Fig. 3.8a) shows deviations from the narrow point cloud and, thus, the close
non-linear relationship observed at study sites where soil moisture is more uniform
in terms of absolute values and relative changes. The strongest deviations occur at
high normalised intensities, leading to the heterocedasticity observed and, in turn,
the lower correlation coefficient. Adding the results from all simulations conducted
in the scope of this study to the scatterplot with the observed values (Fig. 3.9)
further illustrates this effect. The simulated intensities comprising different absolute
soil moisture values for mineral soils of the near-field and peatland soils of the far
field, as well as different soil water dynamics, are located in the area representing
deviations from the relationship observed at the two homogeneous observation sites.
In particular, the simulated normalised numbers of detected neutrons with low static
near-field soil moisture and changing peatland soil moisture are located in the area
of the scatter plot considered as having deviations. Under real-world conditions,
this response may be expected during summer periods when mineral soil moisture
contents reached a minimum, while peatland soil moisture continues to change due
to, e.g., high water storage capacities and the variations in shallow groundwater
visible in Fig. 3.2 and Fig. 3.10.

Hence, a twofold influence may be considered. On the one hand, the total soil
moisture content differs between the mineral soils of the near-field and the far-field
peatland soils leading to a different response of thermal and epithermal neutrons
when soil water contents change in the near-field and the far field. On the other
hand, the differences in the moisture content between the near-field and the far field
may fluctuate over time and result in a varying influence on the observed neutron
intensities in the two energy ranges.

Against this background, the simple Spearman rank correlation coefficient can
serve as a first indicator for footprint heterogeneity in terms of soil moisture con-
ditions in the near- and the far field of the neutron detector and could be used to
characterise observation sites and select processing procedures accordingly. Detailed
knowledge of the functional relationship between thermal and epithermal neutrons
at heterogeneous observation sites poses great potential for an improved assessment
of the footprint heterogeneity and the development of advanced indices. However,
this requires further research regarding the relationship of the thermal and epither-
mal neutron intensities under changing soil moisture and with respect to different
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environmental factors such as soil chemistry. As study sites are always restricted
to local boundary conditions, large-scale irrigation experiments using, e.g., centre
pivots [see also Franz et al., 2015] combined with neutron transport simulations
could improve and extend the insights gained in this study regarding indicators for
footprint heterogeneity and the definition of measurement footprints in general. Ad-
ditionally, this may also require the need to develop transfer functions for thermal
neutrons which are similar to those already available for estimating soil moisture
from epithermal neutron intensities [e.g. Desilets et al., 2010; Franz et al., 2013b;
Köhli et al., 2021].

3.5.3 Improving the estimation of near-field soil moisture

The calibration of neutron observations against the near-field reference soil moisture
time series from in situ soil moisture sensors revealed an improvement of the cali-
bration result in terms of the statistical goodness of fit when either all parameters
of the transfer function are adjusted (N 0, a0, a1 and a2) or the combination of ther-
mal and epithermal neutrons based on (3.6) was used and only N 0 was calibrated.
Using the standard calibration approach, the calibration against a weighted average
reference soil moisture time series resulted in a better KGE compared to a simple
arithmetic average. This illustrates the positive effect of the weighting procedure
developed by Köhli et al. [2015] and advanced by Schrön et al. [2017], to match the
sensitivity of the CRNS.

Adjusting all parameters in alternative approach 1, instead of only calibrating
N 0, and combining the thermal and epithermal neutrons in the scope of alternative
approach 2 leads to an improvement in the calibrated KGE by at least 0.25. As the
analyses revealed a significant (p < 0.05) difference between the CRNS-derived soil
moisture based on the standard calibration approach and both alternative calibra-
tion approaches for at least 97 % of the data points of the time series, a significantly
improved representation of the near-field soil moisture dynamics can be achieved
by either adjusting all parameters (approach 1) or combining both neutron energy
ranges (approach 2). However, this does not represent an uncertainty analysis that
considers various statistical sources of uncertainty as was done in previous stud-
ies [e.g. Andreasen et al., 2017b; Baroni et al., 2018; Gugerli et al., 2019; Schattan
et al., 2019; Jakobi et al., 2020].

In this study, reference soil moisture sensors were installed in the near-field of
the CRNS only, and no information on far-field peatland soil moisture dynamics
were available. Although this poses the largest limitation of this study, marked
differences in soil water dynamics can be expected for mineral and peatland soils
due to the distinct hydraulic behaviour of the latter [e.g. Rezanezhad et al., 2016].
In addition, peatland areas at the study site are characterised by groundwater in-
fluence and potentially higher soil water content, as observed in the reference soil
samples taken from mineral and peatland soils in February 2020 (section 2.1). The
obtained calibration results of CRNS-derived soil moisture time series clearly show
an improvement in the representation of near-field soil moisture dynamics when ac-
counting for these peatland soil moisture dynamics through alternative approaches
1 or 2.

The transfer function developed by Desilets et al. [2010], and revised by Köhli
et al. [2021], was designed for a uniform soil water content within the measurement
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footprint. In the example presented in this study, the epithermal neutron response
is stronger than the soil water changes observed in the mineral soils of the near-field,
causing the underestimation of the near-field reference soil moisture during summer
periods. Therefore, adjusting the shape-defining variables of eq. (3.2) – (4.4) in
addition to the calibration parameter N 0 alone in alternative approach 1 allows
for the adjustment of the transfer function for the soil moisture dynamics of the
near-field. Different studies already adjusted the shape-defining parameters of the
standard calibration function (eq. (3.1)) [e.g. Heidbüchel et al., 2016] and achieved
better calibration results compared to adjusting N 0 only. However, the reasons
for changing the physical meaning of eq. (3.1) or (eq. (3.2) – (4.4)) by tuning all
variables of the transfer function remain disputable. The results of this study shed
more light on the potential reasons for an improved calibration against reference
measurements by changing the shape of the transfer function. Distinct differences
in soil moisture states and dynamics within the measurement footprint over time
may lead to neutron responses deviating from the shape of the original transfer
function (eq. (3.1) or (eq. (3.2)). This is in line with findings from previous studies
[e.g. Lv et al., 2014; Heidbüchel et al., 2016]. Nevertheless, care should be taken
when tuning the shape-giving parameters to optimise the goodness of fit against
different reference measurements. This can lead to different optimised values for
the shape-giving parameters (N 0, a0, a1 and a2) depending on the reference soil
moisture time series (see also Table 5.2). This illustrates that the shape-giving
parameters can be fitted to different reference measurements, and that the objective
for the site-specific optimisation needs to be considered. For example, optimising for
a site-specific areal average requires sufficient spatio-temporal coverage of reference
measurements, while optimising for reference soil moisture in defined parts of the
footprint requires representative reference measurements from these areas.

In contrast, in alternative approach 2, we produced a rescaled neutron time series
NET based on observed epithermal (NE) and thermal NT neutron intensities and,
thus, adjusted the signal instead of the transfer function. As the thermal neutron
response to soil water changes is generally weaker [Weimar et al., 2020], summing
the observed normalised intensities of the thermal and epithermal neutrons and
rescaling them using eq. (3.6), leads to a less steep slope of the functional relation-
ship between the neutron intensity and reference soil moisture. Consequently, the
rescaling approach presented here makes use of thermal neutrons (NT ) as a proxy
for a different response to soil water changes, leading to a rescaled neutron time
series NET that is more similar to the epithermal neutron intensities NE if the entire
measurement footprint has the lower soil water content and dampened dynamics
of the near-field where the reference point sensors are installed. Hence, the second
alternative approach tested in this study is suitable for a separation of near- and
far-field soil moisture at the heterogeneous observation site investigated.

Both approaches tested in this study allow for an improvement of the estimation
of near-field soil moisture and illustrate the potential for separating the measurement
footprint where approach 1 is generally applicable, while approach 2 may be most
suitable at sites with conditions similar to those at the study site investigated. We
would like to note that further instrumental adjustments based on additional shield-
ing may also offer the potential to limit the measurement footprint. These include
downward-looking detectors [Badiee et al., 2021] or side-looking devices [Francke
et al., 2022]. However, using a non-modified detector allows the possibility to also
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retrieve an area-averaged soil moisture time series in the entire footprint.
Several limitations need to be considered when assessing the improvement achieved

with the different approaches tested in this study. Besides the horizontal footprint
of the thermal neutrons being smaller than for epithermal neutrons, the integration
depth can be considered to be different as well. This may complicate the joint inter-
pretation and combination of both neutron energies and intensities. Additionally,
the differing influences of other factors on thermal and epithermal neutron obser-
vations should be considered. In this study, raw thermal and epithermal neutron
observations were corrected equally for the influence of variations in atmospheric
shielding depth and incoming high-energy neutron radiation but not for variations
in air humidity as the latter was determined for epithermal neutrons only. The
correction procedures applied to the observed thermal neutrons differ among stud-
ies [e.g. Andreasen et al., 2016; Jakobi et al., 2018], and in addition to the need for
detailed knowledge about the dynamics of the integration volume, further research
is required concerning appropriate correction procedures for thermal neutrons to
varying environmental conditions.

3.6 Conclusions

The neutron transport simulations performed here support previous studies that in-
dicate a distinctively smaller horizontal measurement footprint of thermal compared
to epithermal neutrons. However, the thermal neutron footprint radius strongly de-
pends upon the definition of the origin of the detected neutrons. Our study suggests
that the point of thermalisation alone may not be suitable for characterising the
sensitive measurement footprint size, as detected thermal neutrons do vary with
far-field soil moisture variations. Instead, as with epithermal neutrons, the point of
first soil contact may be more suitable. In this case, the integration radius almost
doubles but still remains smaller than that of epithermal neutrons. The integration
depth also increases strongly even surpassing that of epithermal neutrons.

The relationship between normalised observed thermal and epithermal neutron
intensities is likely to differ between homogeneous and heterogeneous conditions
and may be used to characterise the footprint heterogeneity. The simple Spearman
rank correlation coefficient between the normalized thermal and epithermal neutron
intensities proved to a be a suitable first indicator for the footprint heterogeneity,
with lower values indicating a larger (and varying) difference between soil water
contents in the near- and the far field.

Either adjusting all parameters of the transfer function or rescaling the observed
epithermal neutron intensities by averaging the normalized dynamics of thermal
and epithermal neutrons leads to a significant improvement in the calibration result
against the reference soil moisture sensors in the near-field. This is achieved by
changing the neutron intensity dynamics towards a more dampened response that
would occur if the entire epithermal footprint had the lower soil moisture conditions
and dampened dynamics of the near-field.

In conclusion, both approaches tested for improving the estimation of near-field
soil moisture pose great value for the use of CRNS at study sites with heterogeneous
soil water contents and dynamics. On the one hand, complementary observations
of thermal and epithermal neutrons offer the opportunity to test for footprint het-
erogeneity using simple correlation measures. On the other hand, in addition to
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adjusting the transfer function, the thermal neutron intensity proved to be a useful
proxy for rescaling the epithermal neutron intensities in order to improve the rep-
resentation of near-field soil water time series at the study site. Several limitations
of this study need to be considered and also illustrate the need for further research,
especially regarding the general response of thermal neutrons to environmental con-
ditions, suitable correction procedures for these phenomena and the behaviour of
both neutron energies at study sites with heterogeneous distributions of soil water
and pools of hydrogen in general. Nevertheless, this study illustrates the possibility
of achieving a spatial disaggregation of soil moisture at heterogeneous study sites
and the potential of using both neutron energies for improving CRNS-derived soil
water estimates.
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3.7 Appendix

Figure 3.12: On-site observed hourly rainfall sums (a) and CRNS-derived soil mois-
ture time series based on the standard calibration approach and calibration ap-
proaches 1 and 2 in comparison to the depth-distance weighted reference soil mois-
ture time series derived from TDR sensors (b).

Table 3.3: Statistical goodness of fit when calibrating equations (3.2) – (4.4) with
(applying) the three different calibration approaches using reference soil moisture
observations from TDR sensors with a higher noise and lower signal quality.

Calibration Reference soil moisture Neutron intensities a0 a1 a2 N 0 KGE NSE RMSE
Standard NE 0.0808 0.372 0.115 849.5 0.40 -0.58 0.040
Approach 1 Weighted NE 0.1420 0.153 0.100 724.6 0.80 0.64 0.019
Approach 2 NET 0.0808 0.372 0.115 899.9 0.68 0.31 0.026
Standard NE 0.0808 0.372 0.115 842.6 0.33 -1.03 0.044
Approach 1 Arithmetic NE 0.1420 0.153 0.100 724.6 0.78 0.58 0.020
Approach 2 NET 0.0808 0.372 0.115 898.4 0.64 0.19 0.028
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Chapter 4

Depth-extrapolation of surface soil
moisture estimates derived with
CRNS

A version of this chapter has been submitted as:

Depth-extrapolation of field-scale soil moisture
time series derived with cosmic-ray neutron sens-
ing using the SMAR model

Daniel Rasche, Theresa Blume, and Andreas Güntner

SOIL (submitted), 2024.
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4.1 Abstract

Soil moisture measurements at the field scale are highly beneficial for different hy-
drological applications including the validation of space-borne soil moisture prod-
ucts, landscape water budgeting or multi-criteria calibration of rainfall-runoff models
from field to catchment scale. Many of these applications require information on
soil water dynamics in deeper soil layers. Cosmic-Ray Neutron Sensing (CRNS)
allows for non-invasive monitoring of field-scale soil moisture across several hectares
around the instrument but only for the first few tens of centimetres of the soil.
Simple depth-extrapolation approaches often used in remote sensing applications
may be used to estimate soil moisture in deeper layers based on the near-surface
soil moisture information. However, most approaches require a site-specific calibra-
tion using depth-profiles of in situ soil moisture data, which are often not available.
The physically-based soil moisture analytical relationship SMAR is usually also cal-
ibrated to sensor data, but could be applied without calibration if all its parameters
were known. However, in particular its water loss parameter is difficult to estimate.
In this paper, we introduce and test a simple modification of the SMAR model to
estimate the water loss in the second layer based on soil physical parameters and the
surface soil moisture time series. We apply the model at a forest site with sandy soils
with and without calibration. Comparing the model results against in situ reference
measurements down to depths of 450 cm shows that the SMAR models both with
and without modification do not capture the observed soil moisture dynamics well.
The performance of the SMAR models nevertheless meets a previously used bench-
mark RMSE of ≤ 0.06 cm3 cm−3 in both, calibrated and uncalibrated scenarios.
Only with effective parameters in a non-physical range, a better model performance
could be achieved. Different transfer functions to derive surface soil moisture from
CRNS do not translate into markedly different results of the depth-extrapolated soil
moisture time series simulated with SMAR. However, a more accurate estimation of
the sensitive measurement depth of the CRNS improved the soil moisture estimates
in the second layer. Despite the fact that the soil moisture dynamics are not well
represented at our study site using physically reasonable parameters, the modified
SMAR model may provide valuable first estimates of soil moisture in a deeper soil
layer derived from surface measurements based on stationary and roving CRNS as
well as remote sensing products where in situ data for calibration are not available.

4.2 Introduction

Soil moisture is a key parameter in the hydrological cycle [e.g. Vereecken et al., 2008,
2014; Seneviratne et al., 2010]. It controls several aspects of the environment such
as soil infiltration, runoff dynamics, plant growth and biomass production which
in turn influence evapotranspiration as well as the climatic conditions on varying
spatio-temporal scales [see reviews by e.g. Daly and Porporato, 2005; Vereecken
et al., 2008; Seneviratne et al., 2010; Wang et al., 2018]. Thus, information on
soil water dynamics at the field scale have great importance for various larger-scale
hydrological applications ranging from landscape water budgeting to multi-criteria
calibration approaches in rainfall-runoff modeling. However, due to the high spatio-
temporal variability of soil water content [Famiglietti et al., 2008; Vereecken et al.,
2014] which is highest in surface soil layers [Babaeian et al., 2019], measuring field-
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scale soil moisture and its dynamics proves difficult based on invasive point-scale soil
moisture measurement methods as for example reviewed in Vereecken et al. [2014]
and Babaeian et al. [2019]. For instance, the installation of electromagnetic point
sensors measuring at high temporal resolution would require a very large number of
sensors to obtain a representative field-scale average [Babaeian et al., 2019]. Addi-
tionally, sensor networks are not always feasible as agricultural management prac-
tices hamper a permanent installation of point sensors [Stevanato et al., 2019]. As a
consequence, extensive point sensor networks which allow for the estimation of field-
scale soil moisture are often restricted to a rather small number of research related
monitoring sites such as the Terrestrial Environmental Observatories (TERENO,
www.tereno.net) in Germany [e.g. Zacharias et al., 2011; Bogena et al., 2018; Kiese
et al., 2018; Heinrich et al., 2018].

Kodama et al. [1979], Kodama et al. [1985] and Dorman [2004] suggested the
potential of naturally occuring secondary neutrons produced by high-energy cosmic
rays for estimating soil and snow water. About a decade ago Zreda et al. [2008];
Desilets et al. [2010], introduced a methodological framework for soil moisture es-
timation using cosmic-ray neutrons. The Cosmic-Ray Neutron Sensing (CRNS)
approach is a non-invasive geophysical method for estimating representative field-
scale soil moisture [Schrön et al., 2018b] based on the measurement of cosmic-ray
neutrons which are inversely related to the amount of hydrogen in the vicinity of
the neutron detector. As soil water is the largest pool of hydrogen in the footprint
of the neutron detector in most terrestrial environments, CRNS allows for the mea-
surement of integrated soil moisture of several hectares around the instrument and
the first decimetres of the soil [e.g. Zreda et al., 2008; Desilets et al., 2010; Köhli
et al., 2015; Schrön et al., 2017].

Estimating soil moisture using CRNS has a high potential for various hydrolog-
ical applications, which require soil moisture observations at the field scale. Several
studies demonstrate the potential of CRNS-derived soil moisture estimates for exam-
ple for a comparison with satellite derived soil moisture products, their validation
and the improved calibration of environmental models [e.g. Holgate et al., 2016;
Montzka et al., 2017; Iwema et al., 2017; Duygu and Akyürek, 2019; Dimitrova-
Petrova et al., 2020]. Besides stationary CRNS probes for the retrieval of field scale
soil moisture time series, roving CRNS-devices have been successfully used, mapping
CRNS-derived surface soil moisture in even larger areas with instruments mounted
on vehicles [e.g. McJannet et al., 2017; Schrön et al., 2018a; Vather et al., 2019] and
[Fersch et al., 2018] illustrate potential synergies between CRNS, airborne radar and
in situ point sensor networks for soil moisture estimation across spatial scales. Due
to the sensitivity of CRNS to any hydrogen in the measurement footprint, snow
monitoring [e.g. Schattan et al., 2017, 2019; Gugerli et al., 2019], irrigation manage-
ment [e.g. Li et al., 2019a] as well as biomass estimation [e.g. Baroni and Oswald,
2015; Tian et al., 2016; Jakobi et al., 2018; Vather et al., 2020] pose further fields of
application and are reviewed in Andreasen et al. [2017a].

Although the large areal footprint of the CRNS-instrument allows estimating
field-scale integral soil moisture, the CRNS-derived time series lack soil moisture
information from greater depths. However, soil moisture at these greater depths
becomes highly relevant as soon as the rooting depth of crops or forest extends past
the first decimeters. The maximum rooting depth and hence, root zone extent as
well as root density along the soil profile varies with vegetation type and biome
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[e.g. Canadell et al., 1996; Jackson et al., 1996]. According to Jackson et al. [1996],
on global average across all biomes, the 75% of plant roots occur in the first 40
centimetres of the soil, which would be largely covered by the CRNS. However, the
global average maximum rooting depth, and thus, root zone depth is about 4.6m
[Canadell et al., 1996] where the rooting depth also depends on prevailing soil hy-
drological conditions [Fan et al., 2017]. Even grassy vegetation and crops can have
rooting depths of more than 200 cm [Canadell et al., 1996], thus exceeding the mea-
surement depth of CRNS. Deep roots play a significant role for the water supply of
plant ecosystems especially during dry conditions [Canadell et al., 1996] i.e. through
hydraulic redistribution [see e.g. Neumann and Cardon, 2012] or increased root wa-
ter uptake from deeper soil layers under drought conditions [Maysonnave et al.,
2022]. Furthermore, plant species influence infiltration and vertical soil moisture
patterns through species dependent root distributions [e.g. Jost et al., 2012] and
horizontal soil moisture patterns through species dependent evapotranspiration and
interception rates [e.g. Schume et al., 2003]. Hence, field-scale soil water information
from the deeper vadose zone overcoming these smaller scale heterogeneities can be
important for the quantification of water storage variations, potential influences on
vegetation dynamics, matter fluxes and the characterisation of the local hydrological
cycle.

Given the importance of soil moisture in the deeper root zone, extending CRNS-
measurements to greater depths is of high importance for broadening the applica-
bility of CRNS for soil water estimations [Peterson et al., 2016]. Numerous studies
extrapolate surface soil moisture time series to greater depths using different em-
pirical approaches [e.g. Zhang et al., 2017; Li and Zhang, 2021] including regression
analyses, machine learning techniques or other approaches such as the soil water
index (SWI) [Wagner et al., 1999; Albergel et al., 2008]. Few studies address the
depth-extrapolation of field-scale CRNS-derived soil moisture time series [e.g. Pe-
terson et al., 2016; Zhu et al., 2017; Nguyen et al., 2019; Franz et al., 2020] to
the shallow root zone (approx. 100 cm) by applying and comparing extrapolation
approaches with the SWI being the most commonly used approach [e.g. Peterson
et al., 2016; Dimitrova-Petrova et al., 2020; Franz et al., 2020]. All these approaches
require reference soil moisture information in the depth of interest to either build
an empirical model or calibrate the depth-extrapolated soil moisture time series.
This information may not always be available in sufficient quantity and quality. In
contrast, the physically-based soil moisture analytical relationship (SMAR) [Man-
freda et al., 2014], applied and modified in recent studies [e.g. Faridani et al., 2017;
Baldwin et al., 2017, 2019; Gheybi et al., 2019; Zhuang et al., 2020; Farokhi et al.,
2021], allows for the extrapolation of daily surface soil moisture information to a
second, lower soil layer by solely relying on soil physical information and a water
loss term. This method does not require calibration if the environmental parameters
are known.

Against this background, we investigate the potential to depth-extrapolate hourly
and daily surface soil moisture time series without calibration and thus without the
need for reference soil moisture information in the depth of interest by applying the
SMAR algorithm at a highly equipped study site in the TERENO-NE observatory
located the lowlands of north-eastern Germany. While soil physical parameters may
be determined from soil analyses, the water loss parameter describing the water loss
per unit time from the second soil layer is more difficult to estimate. Therefore, we
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propose a simple modification of the SMAR algorithm to estimate the water loss
term from soil physical characteristics and from the surface soil moisture time series
derived from CRNS. We first compare the standard SMAR that uses a constant,
calibrated water loss term (calibrated against in situ reference sensors) with the
modified, uncalibrated SMAR that uses the estimated water term loss for different
depths of the second soil layer down to 450 cm depth. Secondly, we calibrate all
soil parameters in the original and modified version of the SMAR model in order to
assess its best possible performance at the study site for the given in situ reference
data. In addition, we apply different neutron-to-soil moisture transfer functions
available to derive the surface soil moisture time series. This is done to assess which
transfer function performs best and if a better CRNS-derived surface soil moisture
time series translates into better estimates of the depth-extrapolated soil moisture.
Lastly, we test the influence of the choice of the depth of first soil layer, i.e. the sen-
sitive measurement depth of CRNS, on the goodness of fit of the depth-extrapolated
to soil moisture estimates.

4.3 Material and methods

4.3.1 Study site

The study site is located in the TERENO-NE observatory [Heinrich et al., 2018] in
the young Pleistocene landscape of north-eastern Germany (Fig. 4.1). The site hosts
the CRNS sensor

”
Serrahn“ [Bogena et al., 2022]. The site has a mean annual tem-

perature of 8.8◦C and mean annual precipitation of 591mm per year, measured at
the long-term weather station in Waren (in a distance of approximately 35 km) oper-
ated by the German Weather Service (station ID: 5349, period 1981–2010) [DWD -
German Weather Service, 2020a,b]. It is situated on the southern ascent of a glacial
terminal moraine formed during the Pomeranian phase of the Weichselian glaciation
in the Pleistocene [Börner, 2015]. The dominating soil types in the vicinity of the
sensor are Cambisols formed on aeolian sands with depths down to 450 cm deposited
during the Holocene [Rasche et al., 2023]. Continuing downwards, these are followed
by deposited glacial till of the terminal moraine, glacio-fluvial sediments and glacial
tills originating from earlier glaciations with the latter forming the aquitarde the
upper groundwater aquifer with water level depths ranging between 13 and 14m
below the surface [Rasche et al., 2023]. A mixed forest dominated by European
beech (Fagus sylvatica) and Scots pine (Pinus sylvestris) is the dominant landcover
type. A clearing covered by grassy vegetation can be found nearby.

In order to calibrate the CRNS sensor, soil samples were taken at different dis-
tances around the instrument in February 2019 as shown in Fig. 4.1. Soil samples
were taken in 5 cm depth increments from 0–35 cm using a split tube sampler con-
taining sampling rings in order to derive soil moisture, soil physical characteristics,
average grain size distributions, soil organic matter and lattice water from laboratory
analyses as shown in Tab. 4.1. Soil moisture and soil bulk density were determined
from oven-drying at 105◦C for 12 h and gravimetric analyses of all individual soil
samples. Subsequent loss-on-ignition analyses at 550 and 1000◦C with a duration
of 24 h were used to determine the amount of soil organic matter and lattice water
from bulk samples per depth assuming that no inorganic carbon is present in the
acidic aeolian sands. Soil porosity was estimated based on the material density of
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Figure 4.1: Location of the study area within Germany (a) and location of the
CRNS observation site

”
Serrahn“ (b) (digital elevation model: LAIV-MV - State

Agency for Interior Administration Mecklenburg-Western Pomerania [2011], land
cover: BKG - German Federal Agency for Cartography and Geodesy [2018a]).

quartz (2.65 g cm−3) and corrected for the amount of soil organic matter based on
the density of cellulose (1.5 g cm−3).

In addition to the stationary CRNS instrument, the study site is equipped with a
groundwater observation well, a weather station and a network of in situ point-scale
soil moisture sensor profiles (type SMT100; Truebner GmbH, Germany). A total
of 59 in situ soil moisture sensors is deployed in depths down to 450 cm depth with
12 sensors in 10 cm, 6 sensors in 20 cm, 8 sensors in 30 cm, 8 sensors in 50 cm, 6
sensors in 70 cm, 4 sensors in 130 cm, 7 sensors in 200 cm, 4 sensors in 300 cm as
well as 450 cm. The sensors are located in distances up to 22m from the CRNS
instrument and continuously monitor the volumetric soil moisture content based on
the manufacturer’s calibration function.

4.3.2 Field-scale surface soil moisture derived with CRNS

Secondary neutrons are produced by primary cosmic-rays interacting with matter
in the atmosphere and in the ground. Depending on their energy level, secondary
neutrons may be classified as fast (0.1-10 MeV), epithermal (> 0.25-100 keV) and
thermal neutrons (< 0.25 eV) [e.g. Köhli et al., 2015; Weimar et al., 2020]. Cosmic-
Ray Neutron Sensing for soil moisture estimation relies on the amount of neutrons in
the epithermal energy range produced by nuclear evaporation in the atmosphere and
ground [Köhli et al., 2015]. Epithermal neutrons are sensitive to elastic scattering by
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Table 4.1: Soil physical characteristics at the CRNS site Serrahn obtained from
laboratory analyses of soil samples [Rasche et al., 2023, modified]. Below the maxi-
mum sampling depth of 35 cm and down to the maximum depth of the aeolian sand
deposits, the soil physical are assumed to have the same soil physical parameters
as the layer between 30 and 35 cm. The soil moisture content at field capacity and
wilting point were taken from tabulated values in Sponagel et al. [2005] according
to the respective soil grain size class (medium-fine sand) and the soil bulk density
of the individual layers.

Depth Grain size fractions Bulk density Porosity Organic matter Lattice water Field capacity Wilting point
(cm) (weight-%) (g cm−3) (-) (g g−1) (g g−1) (cm3 cm−3) (cm3 cm−3)

> 2mm 2 - 0.63mm 0.63 - 0.2mm 0.2 - 0.063mm < 0.063mm
0–5 2.7 19.7 42.2 33.7 2.1 0.24 0.91 0.32 0.003 0.16 0.06
5–10 1.1 8.7 43.5 45.7 2.4 0.77 0.70 0.10 0.002 0.16 0.06
10–15 0.7 7.2 41.5 47.9 2.8 1.25 0.52 0.05 0.002 0.16 0.06
15–20 1.2 7.8 38.7 44.3 2.2 1.43 0.45 0.02 0.002 0.14 0.05
20–25 1.7 7.7 42.2 46.5 2.2 1.55 0.41 0.02 0.002 0.14 0.05
25–30 1.7 8.5 43.5 45.4 1.2 1.59 0.40 0.01 0.002 0.12 0.04
30–35 1.1 8.0 42.8 46.8 1.5 1.63 0.38 0.01 0.002 0.12 0.04
35–450 1.1 8.0 42.8 46.8 1.5 1.63 0.38 0.01 0.002 0.12 0.04

collision with hydrogen and are further moderated to thermal neutrons (< 0.25 eV).
Thus, the amount of epithermal neutrons detected by the instrument is inversely
correlated with the amount of hydrogen in the sensitive measurement footprint of
the sensor.

Epithermal neutron counts detected by the instrument are influenced by atmo-
spheric pressure, the amount of primary high-energy cosmic-ray neutrons entering
the earth’s atmosphere from space [Zreda et al., 2012] as well as variations of abso-
lute air humidity [Rosolem et al., 2013] and need to be corrected for these influencing
factors before soil moisture information can be derived. In this study, we use the cor-
rection procedure for air pressure and incoming primary cosmic-ray flux presented in
Zreda et al. [2012]. The correction factor for the shielding effect of the atmosphere
can be calculated from local air pressure measurements where the attenuation length
L is set to 135.9 g cm−2 for the study area [Heidbüchel et al., 2016]. The correction
factor for the incoming high-energy primary neutron flux was obtained from hourly
pressure and efficiency corrected primary neutron intensities (cps) of the Jungfrau-
joch neutron monitor (JUNG, www.nmdb.eu). Furthermore, the neutron data was
corrected for the influence of absolute air humidity introduced by Rosolem et al.
[2013]. The absolute humidity is calculated from relative humidity and temperature
observations of the weather station at the observation site according to Rosolem
et al. [2013]. For all correction approaches, the time series averages of air pressure,
incoming radiation and air humidity are used as the required reference values. Fi-
nally, a 25 h moving average filter is applied to the corrected neutron time series to
reduce noise and uncertainty in the data [e.g. Schrön et al., 2018b].

θStandard =

((
ã0

1− Npih

Nmax

ã1 − Npih

Nmax

)
× ρsoil

ρwater

)
− (θSOM + θLW) , (4.1)

where

ã0 = −a2, (4.2)
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ã1 =
a1a2

a0 + a1a2
, (4.3)

Nmax = N0 ·
a0 + a1a2

a2
. (4.4)

Desilets et al. [2010] introduced a transfer function to convert neutron counts
into soil moisture by calibration against reference measurements. Although other
approaches exist [e.g. Franz et al., 2013b; Köhli et al., 2021], the Desilet’s equation
became the methodological standard and can be rewritten as eq. (4.1) – (4.4) [Köhli
et al., 2021] with a0 = 0.0808, a1 = 0.372, a2 = 0.115 and N 0 being a local calibra-
tion parameter describing the neutron intensity above dry soil [Desilets et al., 2010].
As observed epithermal neutron intensities are sensitive to any hydrogen present in
the measurement footprint, the water equivalent of soil organic matter θSOM and
the amount of lattice water θLW in cm3 cm−3 need to be subtracted. Additionally,
ρsoil describes the average soil bulk density in the measurement footprint (g cm−3)
and ρwater the density of water assumed to be 1 g cm−3. In this neutron-to-soil
moisture transfer function the neutron intensity corrected for variations in air pres-
sure, incoming primary neutron flux and absolute humidity N pih is used. However,
the more recent study by Köhli et al. [2021] suggests that the influence of absolute
air humidity and soil moisture on the observed epithermal neutron signal are in-
terdependent, i.e. the shape of the neutron-soil moisture relationship changes with
absolute humidity. The universal transport solution (UTS), eq. (4.5) – eq. (4.6),
[Köhli et al., 2021] accounts for the changing relationship between neutrons and soil
moisture under different conditions of absolute humidity.

Npi = ND ·
(
p1 + p2 θtotal
p1 + θtotal

·
(
p3 + p4 h+ p5 h

2
)
+ e−p6 θtotal (p7 + p8 h)

)
, (4.5)

where

θtotal = (θUTS + θSOM + θLW) · 1.43 g cm
−3

ρsoil
(4.6)

The UTS is designed to describe the neutron intensity response caused by changes
in total soil water content and absolute air humidity and therefore, the predicted
neutron intensity represents the intensity corrected for variations in atmospheric
pressure and incoming primary neutron flux N pi. Soil moisture can be derived from
the UTS using numerical inversion or a look-up table approach which is used in
this study. Analogously to the standard transfer function, the UTS needs to be
calibrated locally. The calibration parameter ND may be interpreted as the average
neutron intensity of the local neutron detector under the boundary conditions de-
fined in the neutron transport simulations which where used to subsequently derive
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the UTS. θtotal describes the total water content comprising the sum of all below-
ground hydrogen pools, namely the soil moisture content θUTS , θSM and θLW which
is then scaled by ratio of the soil bulk used in the neutron transport simulations to
derive the UTS (1.43 g cm−3) and the local soil bulk density at the study site ρsoil
[Köhli et al., 2021]. Different sets of shape-giving parameters p1 – p10 are available
for the UTS in Köhli et al. [2021] and originate from the different neutron transport
models used and whether a simple energy window threshold (thl) was used (parame-
ter sets: URANOS thl, MCNP thl) to evaluate the neutron transport simulations or
a more complex detector response function was applied (parameter sets: URANOS
drf, MCNP drf). The latter mimics the response of a real neutron detector and is
therefore expected to provide more accurate results. In the scope of this study, we
investigate which of the two transfer functions and which parameter set of the UTS
performs best in estimating surface soil moisture.

The CRNS footprint diameter as well as the integration depth decrease with
i.e. increasing soil water content. The radius ranges between 130 and 240 m and
the integration depth ranges between 15 and 83 cm during wet and dry conditions,
respectively [Köhli et al., 2015]. In addition, further factors may influence the foot-
print dimensions such as open water or topography [e.g. Köhli et al., 2015; Schattan
et al., 2019; Mares et al., 2020]. Consequently, reference measurements need to
be depth-distance weighted according to the sensitivity of the CRNS instrument in
order to match field observations of reference measurements when calibrating the
two different transfer functions and derive soil moisture information from observed
neutron intensities. In this study, we adapt the weighting procedure proposed by
Schrön et al. [2017] which takes the total water content, average bulk density, ab-
solute air humidity and vegetation height (set to 20m) into account. Reference
soil moisture information from the soil sampling campaign in February 2019 was
weighted accordingly and used for calibrating both transfer functions. In a second
step, the CRNS-derived soil moisture time series are compared to an analogously
weighted average of all available in situ soil moisture sensors in 10, 20 and 30 cm
depth. In order to assess the impact of weighting procedure, the calibration is re-
peated using the arithmetic soil moisture average from soil samples and comparing
the CRNS-derived soil moisture time series to the arithmetic average soil moisture
time series from in situ sensors.

4.3.3 Depth-extrapolation of surface soil moisture
time series from CRNS

Modification of the SMAR model

To estimate depth-extrapolated soil moisture time series for a second, deeper soil
layer from CRNS-derived surface soil moisture time series, the SMAR model is used.
Introduced by Manfreda et al. [2014], it allows for the physically-based estimation of
soil moisture in an adjacent second, lower soil layer from soil moisture information
in a first, upper soil layer. SMAR is based on the relative saturation in the first and
second layer s1 (-) and s2 (-), respectively, the relative saturation at field capacity sc1
(-) and wilting point sw2 (-). In order to transform values from cm3 cm−3 to relative
saturation, the respective variables are divided by the porosity of the individual
layer n1 (cm3 cm−3) and n2 (cm3 cm−3). After applying the SMAR model, the
resulting relative saturation time series of the second layer s2 (-) is transformed back
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to volumetric soil moisture in cm3 cm−3 by multiplication with n2 (cm3 cm−3) and
resulting in the depth-extrapolated soil moisture time series θLayer 2. Soil moisture
in layer 2 at time t is calculated with

s2 (ti) = sw2 + (s2 (ti−1)− sw2) · e−a·(ti−ti−1) + (1− sw2) · b · y (ti) · (ti − ti−1) (4.7)

where a and b depend on the vertical extent of the first layer (Zr1 in mm) which
begins at the soil surface, and the vertical extent of the second layer (Zr2 in mm).
Zr2 is the difference between the maximum depth of the second soil layer and Zr1.
The water loss term V 2 (mm t−1) comprises the bulk water losses from the second
layer due to percolation and evapotranspiration per unit time:

a =
V2

(1− sw2) · n2 · Zr2
, (4.8)

b =
n1 · Zr1

(1− sw2) · n2 · Zr2
. (4.9)

The fraction of saturation of the first layer that instantaneously infiltrates into
the second layer y(ti) (-) is described as [e.g. Manfreda et al., 2014; Patil and Ram-
sankaran, 2018]:

y (ti) =

{
(s1 (ti)− sc1) , s1 (ti) ≥ sc1

0, s1 (ti) < sc1
(4.10)

The SMAR model can be applied using known soil physical and environmental
variables. However, although the soil physical parameters may be estimated through
pedotransferfunctions, using tabulated values or global soil databases (e.g. SoilGrids
2.0 [Poggio et al., 2021]), the bulk water loss from the second layer V 2 is more
difficult to estimate. This hampers the use of SMAR without calibration against
reference soil moisture information in the depth of interest, i.e., in the deeper soil
layer. To overcome this issue we modified and extended the SMAR model in order
to estimate the V 2 based on simple soil physical, environmental variables and the
surface soil moisture time series. A modification of the SMAR model with an ex-
tended definition of the water loss term V 2 has been suggested by Faridani et al.
[2017] leading to an improved performance compared to the original SMAR model.
As any modification makes the SMAR model more complex and potentially less
easy to apply, our aim was to keep the added complexity to the model low by only
including 3 additional parameters. These are the relative saturation at field capacity
in the second layer sc2 (-) and the cumulative root fraction to the maximum depth
of the first and second layer R1 (-) and R2 (-), respectively. The water loss term is
then defined as the sum of evapotranspiration ET 2 (mm t−1) and percolation P2
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(mm t−1) from the second layer.

V2 = ET2 + P2 (4.11)

We adapt the suggestion of Manfreda et al. [2014] to make use of existing (sur-
face) soil moisture time series to gain information about water loss from the soil by
evapotranspiration at a study site. Here, we estimate the amount of evapotranspira-
tion from the deeper layer ET 2 based on the difference between the current and past
value of relative saturation of the first layer, by scaling the value to the dimension
(i.e. extent) of second layer and by considering the difference in cumulative root
fraction between both layers, assuming that root water uptake for ET is larger in
the layer with more roots eq. (4.13). The required root fraction R (-) for maximum
depth d (cm) of the first and second layer are derived from the empirical equation
(eq. 4.12) for forest biomes presented in Jackson et al. [1996]:

R = 1− 0.970d (4.12)

Using eq. 4.13, ET 2 can only be estimated from the change in relative saturation
in the first layer when 1) the relative saturation of the first layer s1 decreases, 2)
no infiltration into the second layer occurs and 3) the relative saturation of the
second layer exceeds the relative saturation at wilting point. This means that both,
surface evaporation and transpiration losses are scaled from the first layer to the
second layer. Although surface evaporation is hardly relevant for the second layer
due to its missing connection with the surface, this is a reasonable yet simplified
approach because surface evaporation is a comparatively small component of total
evapotranspiration in forests, with transpiration dominating evapotranspiration [e.g.
Li et al., 2019b; Paul-Limoges et al., 2020].

ET 2 (ti) =

{
(s1 (ti − 1)− s1 (ti)) · n1 · Zr1 · Zr2

Zr1
· (R2−R1)

R1
, s1 (ti − 1) ≥ s1 (ti) ; y (ti) > 0; s2 (ti − 1) ≤ sw2

0, otherwise.

(4.13)

The amount of percolation P2 from the second layer is estimated in analogy
to the infiltration into this layer as an instantaneous water loss when the relative
saturation exceeds field capacity sc2 (eq. 4.14).

P2 (ti) =

{
(s2 (ti − 1)− sc2) , s2 (ti − 1) ≥ sc2

0, s2 (ti − 1) < sc2
(4.14)

Application of the SMAR model

We applied the SMAR model in its original form by calibrating the V 2 water loss
term as a constant value. The calibration and evaluation was performed against
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an average soil moisture time series in the deeper layer derived from in situ soil
moisture sensors. All available in situ sensor soil moisture time series per depth were
averaged to derive average soil moisture time series per sensor depth. Subsequently,
we calculated an average soil moisture time series for the second, deeper soil layer
by weighting the averages per depth according to their representative layer extent
(called reference time series in the following). For example, having soil moisture
sensors installed in 30, 50 and 70 cm depth, the average soil moisture content per
time step of all sensors installed in 50 cm is representative for the layer between
40 and 60 cm. The soil physical parameters assigned to the individual layers can
be found in Tab, 4.1. The calibration is performed by minimising the root-mean
square error (RMSE) between the depth-extrapolated soil moisture time series and
the entire reference soil moisture time series in the second soil layer.

The original SMAR with calibrated V 2 and the modified SMAR model with
estimated V 2 are applied to estimate a soil moisture time series in a second soil
layer with a maximum depth below terrain surface of 70, 130, 200, 300 and 450 cm.
In contrast, the modified SMAR model based on eq. 4.11–4.14 is applied using the
same soil physical parameters but it does not require calibration of the V 2 water
loss term.

In order to test if a better surface soil moisture time series translates to better
extrapolated soil moisture values in the second layer, we apply the SMAR model
using the CRNS-derived surface soil moisture estimated from the standard transfer
function (eq. (4.1)) as well as using the UTS (eq. (4.5) – (4.6)) with the parameter
set resulting in the highest goodness of fit expressed by the lowest RMSE.

The vertical extent of the first soil layer is defined according to the representative
measurement depth of the CRNS-derived soil moisture time series. In first step, the
model is tested using a depth of the first layer of 35 cm as the sensitive measurement
depth of CRNS is often estimated to range between 30 and 40 cm. However, more
accurate approaches exist to determine the sensitive measurement depth. In this
study, we also calculate median CRNS measurement depth of the entire CRNS-soil
moisture time series based on Schrön et al. [2017] and use it as the depth of the first
soil layer in the SMAR model. According to Schrön et al. [2017], the sensitive mea-
surement depth D86 is estimated using the calibrated CRNS-derived soil moisture
time series for distances from 1 to 300m around the instrument. Subsequent aver-
aging allows for estimating the average measurement depth in the CRNS footprint
for each time step of the time series. The time series median measurement depth
D86 is then calculated for the soil moisture time series derived with the standard
transfer function and the UTS. For both CRNS-derived soil moisture time series,
the estimated median sensitive measurement depth is 20 cm and much smaller than
the rough initial estimate of 35 cm. As a consequence, we decided to apply the orig-
inal and modified SMAR model with a first layer depth of both 20 cm and 35 cm to
investigate the effect on the resulting depth-extrapolated soil moisture time series.

In summary, for each maximum depth of the second soil layer, the SMAR model
is applied in its original form based on calibration and in the modified version
presented in this study which does not require calibration. This is done using the
CRNS surface soil moisture time series based on the standard transfer function as
well as on the UTS. Lastly, we test whether the estimation of the representative
measurement depth of CRNS and thus, the depth of the first soil layer, has an
influence on the resulting modelled soil moisture time series in the second layer. An
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overview of the different applications of the SMAR model performed in this study
is given in Fig. 4.2.

Figure 4.2: Overview of SMAR models set up in the scope of this study to compare
the original SMAR based on the calibration of the water loss V 2 and the modified
SMAR which does not require calibration.

To assess the robustness of the modified and uncalibrated SMAR model, we
made a simple assessment of parameter uncertainty and its effect on the model
results. We set up an ensemble of 50 realisations of the modified SMAR by randomly
varying the values for n1, n2, sc1, sc2, sw2 and R1 in a range of ± 10%. These
sensitivity runs of the modified, uncalibrated SMAR are then assessed using the
minimum to maximum range of calculated root mean square error (RMSE) between
the simulated soil moisture time series in the second soil layer and the reference from
in situ sensors. In satellite soil moisture estimations, a threshold of 0.06 cm3 cm−3

has been used [Jackson et al., 2010] to evaluate the original SMAR performance
for root-zone soil moisture estimates based on satellite-derived surface soil moisture
information [Baldwin et al., 2019]. We adopt this benchmark for evaluating the
performance of the uncalibrated, modified SMAR in this study.

Lastly, we performed a full calibration of the original and modified SMAR models
in order to estimate the best possible simulation results within a physically accept-
able range of the model parameters. This was done by randomly varying the values
for n1, n2, sc1, sc2, sw2 and R1 in a range of ± 20%. For the original SMAR
model, the water loss term V 2 was calibrated instead of the R1 with values in the
range between 1 and a maximum of 500mm. The calibration was performed by
selecting the parameter combination that resulted in the lowest RMSE among a
total of 10,000 random parameter sets. For the full calibration scenarios, we defined
the year 2017 as the calibration period, while the entire study period (2016-2022)
is used to evaluate the depth-extrapolated soil moisture time series. Except for the
fact that several parameters were calibrated, the different scenarios are identical to
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those where just the V 2 parameter was calibrated (see Fig. 4.2). In all SMAR appli-
cations in this study, the initial soil moisture content of the second layer was set to
the first CRNS-derived soil moisture record of the first layer. The SMAR model with
physically reasonable environmental value ranges showed generally low performance
as described in the results section and led to some additional calibration tests of
the model. Experimental calibration runs indicated that calibration parameters in
a non-physical value range could produce better model results. Therefore, a second
full calibration was performed where the values of the parameters sc1, sc2 and sw2

where allowed to range from -1 to their initial, literature-based value while the range
for other model parameters remained unchanged.

The SMAR model was originally designed to depth-extrapolate surface soil mois-
ture time series on a daily resolution, as it assumes that all water above field capacity
sc1 infiltrates into the second layer within one day [Manfreda et al., 2014]. Conse-
quently, the SMAR model has been applied on a daily resolution in previous studies
[e.g. Baldwin et al., 2017, 2019]. In CRNS research, an hourly temporal resolution is
the community standard and therefore, we test whether the SMAR models in their
original and modified forms can also be applied at hourly resolution with a reason-
able goodness of fit. All analyses described in this chapter are therefore carried out
on both a daily and hourly basis.

All calculations were performed in R statistical software [R Core Team, 2018,
2023] using the hydroGOF package [Zambrano-Bigiarini, 2017, 2020] for calculating
goodness-of-fit measures which evaluate absolute values and time series dynamics,
namely the RMSE, the Kling-Gupta Efficiency (KGE) [Gupta et al., 2009] as well
as the Pearson correlation coefficient.

4.4 Results and discussion

4.4.1 CRNS-derived surface soil moisture time series

The goodness of fit of the calibrated CRNS-based soil moisture time series to the time
series derived from in situ point observations is shown for the two transfer functions
Tab. 4.2. When the different transfer functions are calibrated against an arithmetic
average soil moisture from soil samples and compared to an arithmetic average of
soil moisture time series in 10-30 cm depth, the Pearson correlation coefficient and
the KGE are lower than when using a weighted average of soil moisture observations
for calibration as proposed by Köhli et al. [2015] and Schrön et al. [2017]. However,
the RMSE is slightly higher for the calibration against the weighted observations.
This might be linked to differences between the laboratory measurements of soil
moisture in the soil samples (which were used for calibration) and the continuous
soil moisture data obtained from the in situ sensors. Overall, however, in view of
the much better KGE and correlation values, the results underline the importance
of the weighting procedures when calibrating the CRNS observations to derive soil
moisture estimates or comparing them to observations from in situ soil moisture
sensors.

The goodness of fit of the CRNS-derived soil moisture time series that are based
on the revised standard transfer function is always lower than for those that are
derived with the UTS all parameters sets, especially when the KGE is considered,
showing the improved soil moisture estimation with the UTS. However, the param-
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Table 4.2: goodness of fit between the CRNS-derived soil moisture time series and
the arithmetic and weighted average soil moisture time series from the local in
situ point-sale soil moisture sensors in 10-30 cm depth. The different neutron to
soil moisture transfer functions are independently calibrated against soil moisture
from soil samples taken in February 2019. The UTS transfer function can be used
with different parameter sets originating from different neutron transport models
which are either based on an energy level threshold (thl) or a more realistic detector
response functions (drf).

Transfer function in situ soil moisture Calibration parameter (cph) KGE (-) RMSE (cm3 cm−3) Pearson correlation (-)
Revised standard

Arithmetic average

777 0.08 0.030 0.88
UTS URANOS drf 1245 0.14 0.029 0.86
UTS URANOS thl 1596 0.59 0.020 0.87
UTS MCNP drf 1294 0.33 0.025 0.87
UTS MCNP thl 1645 0.59 0.021 0.87
Revised standard

Weighted average

809 0.46 0.030 0.91
UTS URANOS drf 1302 0.49 0.029 0.89
UTS URANOS thl 1693 0.81 0.022 0.90
UTS MCNP drf 1357 0.60 0.027 0.90
UTS MCNP thl 1741 0.77 0.023 0.90

eters sets of the UTS mimicking the varying sensitivity of a real neutron detector
to neutrons of different energies (URANOS drf, MCNP drf) perform worse than
those which rely on a simple energy range threshold (URANOS thl, MCNP thl).
This counter-intuitive result has been previously described by Köhli et al. [2021]
and could be related to the high sensitivity of the CRNS method to the soil mois-
ture dynamics in the first few centimetres of the soil where unfortunately no in situ
sensors are installed (the uppermost sensors are installed in 10 cm depth). There-
fore, the better performance of the energy threshold parameters sets of the UTS can
be related to insufficient reference soil moisture information from the in situ sensor
network. Generally, the UTS with the parameter sets representing the response
of a real neutron detector can be expected to be provide more accurate results.
Here, the UTS with parameter set MNCP drf reveals a higher statistical goodness
of fit compared to the URANOS drf parameter set which is in line with the findings
presented in Köhli et al. [2021]. The improved performance of the UTS with the
parameter set MNCP drf compared to the standard transfer function is shown in
Fig. 4.3, revealing that the latter tends to overestimate soil moisture under the wet
winter conditions and underestimate soil moisture under dry summer conditions.

Different from the study of Köhli et al. [2021] which introduced the UTS, we
apply UTS to derive soil moisture from neutron observations at a forest site. The
UTS calibration parameter ND represents the average count rate under boundary
conditions of the neutron transport simulations conducted to the derive the UTS.
Therefore, ND can be expected to be close to the average corrected neutron intensity
observed at a study site with little or without vegetation or other above-ground
hydrogen pools influencing the observed neutron intensity. At our study site, the
calibrated ND is much higher than the observed average corrected neutron intensity
N pi (557 cph). This is probably caused by the influence of the forest vegetation on
observed neutron intensities and the calibration parameter of the transfer function
and has been similarly described for the standard transfer function by Baatz et al.
[2015]. As hydrogen stored in air humidity influences the functional relationship
between neutron intensities and soil moisture, hydrogen stored in vegetation might
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have a similar effect. Therefore, a correction or inclusion approach for other above-
ground hydrogen pools such as vegetation may yield an even better performance of
the UTS and may be investigated in future studies.

Our analyses confirm the improved performance of the UTS compared to the
standard transfer function. In order to test whether the improved performance in
deriving surface soil moisture translates into a better estimation of soil moisture in
deeper layers, we apply the SMAR model using the surface soil moisture time series
based on both the revised standard transfer function and the UTS with the MCNP
drf parameter set (Fig. 4.3).

Figure 4.3: Soil moisture estimates with CRNS. (a) estimated time-variable sensitive
measurement depth D86 of the CRNS-approach and precipitation time series (light
blue bars); (b) soil moisture time series derived with the revised standard transfer
function and the UTS with parameter set MCNP drf and (c) a period in 2022
illustrating the differences between the two CRNS-derived soil moisture time series.
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4.4.2 Depth-extrapolation of CRNS-derived soil moisture
time series

Original SMAR with calibrated water loss and uncalibrated, modified
SMAR

The performance measures and the corresponding values for the depth-extrapolated
soil moisture time series based on the calibrated original SMAR (calibrated water
loss only) and the uncalibrated modified SMAR (estimated water loss based on
eq. (4.11-4.14)) are listed in Tab. 4.3 as well as Tab. 4.4 and exemplary time series
for a second layer depth of 130 cm are shown in Fig. 4.4 and Fig. 4.5 for a hourly and
daily resolution, respectively. The standard transfer function and the UTS produce
similar results with RMSE values ranging between 0.055 and and 0.015 cm3 cm−3

for hourly values and between 0.054 and and 0.014 cm3 cm−3 for daily values over
all simulated scenarios. The SMAR model with daily resolution generally results
in a higher goodness of fit. The correlation coefficients tend to be lower for the
scenarios using the uncalibrated, modified SMAR and higher for the original SMAR
with calibrated water loss. For KGE, the results are the opposite.

The better performance at a daily time step (irrespective of the depth-extrapolation
method) can be attributed to the fact that it is generally assumed that all water
above field capacity infiltrates from the first into the second layer within one time
step. While this may be a reasonable assumption on a daily time step for which the
SMAR model was designed for [Manfreda et al., 2014], this perquisite is likely to be
violated at the hourly time step. Nevertheless, for our study site, the differences in
terms of the RMSE are rather small, indicating that the SMAR model may also be
used with an hourly resolution.

Following the RMSE threshold of ≤ 0.06 cm3 cm−3 which has been used to eval-
uate the original SMAR performance [Baldwin et al., 2019; Guo et al., 2023], all
simulations with the original and with the modified SMAR and both with an hourly
and daily resolution lie below this threshold. This indicates that all SMAR models
result in acceptable soil moisture time series for the second soil layer down to 450 cm
depth according to RMSE performance. However, taking the dynamic goodness-of-
fit parameters KGE and correlation coefficient into account, the performance with
regard to the temporal dynamics is not satisfactory. This can also be visually iden-
tified from Fig. 4.4 and Fig. 4.5 for a second layer depth of 130 cm. The original
SMAR with calibrated constant water loss reaches the wilting point of the second
soil layer over large parts of the study period, indicating that the water loss cal-
ibrated by minimising RMSE, results in a high constant water loss to match the
reference average water content of the second layer but thereby causing too strong
and rapid decreases of soil moisture in dry summer periods. Here, the uncalibrated,
modified SMAR model provides more realistic gradual decreases of soil moisture,
leading to a better performance when visually assessing the time series. This is
also true for the maximum second layer depth of 450 cm investigated in this study
(Fig. 4.8 and Fig. 4.9) and illustrates that care should be taken when relying on sta-
tistical goodness-of-fit measures and that a visual assessment and interpretation of
the simulation results should be undertaken. Nevertheless, it should be noted that
the simulated soil moisture time series both for the original and for the modified
SMAR do not represent intermediate pulses of increased soil moisture seen in the
reference data even during the drier summer period.
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For large maximum depths of the second layer such as 450 cm, the original SMAR
with calibrated water loss better simulates the amplitudes of soil moisture in the
second layer for a temporal resolution of both hours and days. This indicates that
the water loss estimated with the modified SMAR is too low for large depths. The
condition of eq. (4.13), imposing that no evapotranspiration losses occur when water
percolates from the first to the second layer, could be one reason. Another reason
could be uncertainties of the relative root fraction that is required to scale the
water losses from the the first to the second layer. The use of an exponential
model to describe the cumulative root distribution, as done in this study, is highly
simplistic and such models generally remain under debate [e.g. Pierret et al., 2016].
Furthermore, too much water percolating from the first into the second soil layer
may be compensated through the calibration of the water loss parameter in the
original SMAR model, but this cannot be done when the uncalibrated, modified
SMAR is applied.

Another major reason for the generally poor performance of both the original
and the modified SMAR can be the literature-based soil physical parameters used
here in order to apply the SMAR model without calibration against in situ reference
measurements. In ensemble simulations with the modified SMAR, the soil physical
parameters were varied in a range of ± 10%. The minimum and maximum RMSE
values derived from the 50 hourly and daily ensemble runs are shown in Tab. 4.7. It
can be seen that smaller RMSE values can be achieved with parameter values that
are different from the initial ones (Tab. 4.3). The maximum RMSE for all depths
except for 70 cm still meet the RMSE benchmark criterion, indicating a certain
robustness of the uncalibrated, modified SMAR model presented in this study if the
soil physical parameters can be reasonable well estimated.

We also tested the impact of the input surface soil moisture time series to both
the original SMAR with calibrated water loss and the uncalibrated, modified SMAR.
Using either the CRNS-derived soil moisture time series based on the UTS equation
or the revised standard equation for the first layer results in visually similar results
with similar RMSE values, slightly higher correlation coefficients for the second case,
and slightly better KGE values for the first case (Tab. 4.3, Tab. 4.4). Overall, in
this study, a better estimated surface soil moisture time series from CRNS does not
necessarily translate into a distinct improvement of the depth-extrapolated time
series. This may be explained by the considerable overall deficiencies of the SMAR
models to represent the soil moisture dynamics at our study site which are larger
than the differences between the surface soil moisture time series derived with the
different neutron-to-soil moisture transfer functions.

In contrast, improvements of the depth-extrapolated soil moisture times series in
the second layer can be seen when the depth of the top soil layer in the SMAR model
is taken to be the median calculated sensitive measurement depth (D86, Schrön et al.
[2017]) of the CRNS technique. Here, the statistical goodness of fit is generally
higher compared to using an assumed sensitive depth of 35 cm for the top soil layer.
This is the case for both the standard and the modified SMAR model and inde-
pendent of the transfer function used for the CRNS soil moisture in the top layer
(standard or UTS) with hourly and daily resolution. The better matching time se-
ries compared to the reference time series is also visible in Fig. 4.4 and Fig. 4.5 and
is expressed through the RMSE values in Tab. 4.3 and Tab. 4.4. The nature of the
SMAR model as a water balance approach implies that the correct estimation of the
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volume of the upper soil layer and its storage is directly related to the accuracy of the
depth-extrapolated time series of the second soil layer. Consequently, an accurate
assessment of the sensitive measurement depth of CRNS is also highly important
when using CRNS-derived soil moisture time series in e.g. (soil) hydrological model
applications.

Table 4.3: Statistical goodness of fit between the depth-extrapolated hourly soil
moisture time series from CRNS surface observations and the average soil moisture
time series in the second layer calculated from the available in situ point-scale soil
moisture sensors. The water loss parameter is either a calibrated static value (orig-
inal SMAR model) or estimated based on the procedure described for the modified
SMAR model, see chapter 2.

Layer 2 depth (cm) Layer 1 depth (cm) Transfer function SMAR Water loss V2 (mmh−1) RMSE (cm3 cm−3) Pearson correlation KGE (-)

70

35
Revised standard

Modified Estimated - 0.055 0.735 -1.74
Original Calibrated 156 0.040 0.589 0.13

UTS MCNP drf
Modified Estimated - 0.053 0.733 -1.64
Original Calibrated 132 0.041 0.577 0.14

20
Revised standard

Modified Estimated - 0.041 0.803 -1.54
Original Calibrated 64 0.035 0.661 0.24

UTS MCNP drf
Modified Estimated - 0.040 0.795 -1.44
Original Calibrated 58 0.035 0.654 -0.24

130

35
Revised standard

Modified Estimated - 0.036 0.711 -0.85
Original Calibrated 104 0.041 0.537 0.12

UTS MCNP drf
Modified Estimated - 0.035 0.714 -0.83
Original Calibrated 94 0.041 0.529 0.13

20
Revised standard

Modified Estimated - 0.033 0.773 -0.81
Original Calibrated 58 0.038 0.608 0.16

UTS MCNP drf
Modified Estimated - 0.033 0.768 -0.79
Original Calibrated 52 0.038 0.604 0.17

200

35
Revised standard

Modified Estimated - 0.033 0.698 -0.82
Original Calibrated 113 0.036 0.492 0.15

UTS MCNP drf
Modified Estimated - 0.032 0.704 -0.81
Original Calibrated 102 0.036 0.489 0.15

20
Revised standard

Modified Estimated - 0.032 0.743 -0.78
Original Calibrated 63 0.034 0.557 0.18

UTS MCNP drf
Modified Estimated - 0.031 0.741 -0.77
Original Calibrated 57 0.034 0.556 0.19

300

35
Revised standard

Modified Estimated - 0.036 0.676 -1.36
Original Calibrated 157 0.026 0.450 0.25

UTS MCNP drf
Modified Estimated - 0.035 0.681 -1.33
Original Calibrated 142 0.026 0.449 0.25

20
Revised standard

Modified Estimated - 0.034 0698 -1.27
Original Calibrated 87 0.025 0.511 0.29

UTS MCNP drf
Modified Estimated - 0.033 0.694 -1.24
Original Calibrated 79 0.025 0.512 0.29

450

35
Revised standard

Modified Estimated - 0.044 0.545 -2.02
Original Calibrated 300 0.015 0.333 0.30

UTS MCNP drf
Modified Estimated - 0.043 0.556 -1.98
Original Calibrated 269 0.015 0.336 0.31

20
Revised standard

Modified Estimated - 0.040 0.558 -1.91
Original Calibrated 158 0.015 0.392 0.33

UTS MCNP drf
Modified Estimated - 0.039 0.566 -1.88
Original Calibrated 143 0.015 0.396 0.33
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Figure 4.4: Hourly depth-extrapolated soil moisture time series for a depth of 130 cm
using the calibrated standard SMAR model (calibrated water loss V 2) with a top
layer depth of 35 cm (a), and 20 cm (b) as well as the depth-extrapolated soil mois-
ture time series based on the uncalibrated modified SMAR (estimated water loss)
model presented in this study (top layer depth of 35 cm (c) and 20 cm (d)) based
on the CRNS-derived surface soil moisture time series from the standard transfer
function and the UTS.
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Figure 4.5: Daily depth-extrapolated soil moisture time series for a depth of 130 cm
using the calibrated standard SMAR model (calibrated water loss V 2) with a top
layer depth of 35 cm (a), and 20 cm (b) as well as the depth-extrapolated soil mois-
ture time series based on the uncalibrated modified SMAR (estimated water loss)
model presented in this study (top layer depth of 35 cm (c) and 20 cm (d)) based
on the CRNS-derived surface soil moisture time series from the standard transfer
function and the UTS.
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Table 4.4: Statistical goodness of fit between the depth-extrapolated daily surface
soil moisture time from CRNS and the average soil moisture time series in the second
layer calculated from the available in situ point-scale soil moisture sensors. The
water loss parameter is either as a calibrated static value (original SMAR model)
or estimated based on the procedure described in the methods section (modified
SMAR model, see chapter 2).

Layer 2 depth (cm) Layer 1 depth (cm) Transfer function SMAR Water loss V2 (mmh−1) RMSE (cm3 cm−3) Pearson correlation KGE (-)

70

35
Revised standard

Modified Estimated - 0.054 0.685 -1.18
Original Calibrated 131 0.040 0.602 0.10

UTS MCNP drf
Modified Estimated - 0.051 0.675 -0.92
Original Calibrated 113 0.040 0.59 0.11

20
Revised standard

Modified Estimated - 0.037 0.760 -1.03
Original Calibrated 56 0.034 0.688 0.20

UTS MCNP drf
Modified Estimated - 0.035 0.752 -0.78
Original Calibrated 51 0.034 0.678 0.22

130

35
Revised standard

Modified Estimated - 0.034 0.626 -0.38
Original Calibrated 87 0.039 0.575 0.08

UTS MCNP drf
Modified Estimated - 0.032 0.614 -0.22
Original Calibrated 79 0.040 0.564 0.09

20
Revised standard

Modified Estimated - 0.029 0.697 -0.35
Original Calibrated 48 0.036 0.644 0.12

UTS MCNP drf
Modified Estimated - 0.028 0.680 -0.19
Original Calibrated 44 0.036 0.635 0.13

200

35
Revised standard

Modified Estimated - 0.031 0.619 -0.34
Original Calibrated 91 0.035 0.546 0.09

UTS MCNP drf
Modified Estimated - 0.030 0.608 -0.19
Original Calibrated 83 0.035 0.538 0.10

20
Revised standard

Modified Estimated - 0.027 0.685 -0.30
Original Calibrated 51 0.032 0.611 0.13

UTS MCNP drf
Modified Estimated - 0.026 0.668 -0.16
Original Calibrated 47 0.032 0.605 0.13

300

35
Revised standard

Modified Estimated - 0.035 0.633 -0.72
Original Calibrated 124 0.024 0.515 0.20

UTS MCNP drf
Modified Estimated - 0.034 0.625 -0.56
Original Calibrated 113 0.025 0.511 0.20

20
Revised standard

Modified Estimated - 0.027 0.688 -0.64
Original Calibrated 67 0.023 0.587 0.25

UTS MCNP drf
Modified Estimated - 0.027 0.673 -0.48
Original Calibrated 62 0.023 0.583 0.25

450

35
Revised standard

Modified Estimated - 0.043 0.551 -1.18
Original Calibrated 237 0.014 0.392 0.37

UTS MCNP drf
Modified Estimated - 0.043 0.549 -1.03
Original Calibrated 215 0.014 0.392 0.37

20
Revised standard

Modified Estimated - 0.032 0.594 -1.10
Original Calibrated 122 0.014 0.470 0.39

UTS MCNP drf
Modified Estimated - 0.032 0.581 -0.95
Original Calibrated 112 0.014 0.470 0.39
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Full calibration of the original and modified SMAR

To further assess the performance of the original and modified SMAR at the study
site, we performed a full (all parameter) calibration of the two SMAR models with
10,000 random combinations of the soil physical parameters. The initially assigned
soil physical parameters were altered in the range of ± 20% to assign values in a
physically acceptable range for the sandy soils at the study site. Additionally to the
soil physical parameters, the bulk water loss V 2 in the original SMAR was calibrated
with random values in the range from 1 to 500mm. For the modified SMAR model,
the relative root fraction in the first layer R1 was varied in the range of ± 20%
instead.

The results of the full calibration can be found in Tab. 4.5 and Tab. 4.6 and
exemplary time series for a second layer depth of 130 cm are shown in Fig. 4.6 and
Fig. 4.7 for a hourly and daily resolution, respectively. The results for the maximum
depth of 450 cm can be found in the appendix. As expected, minimizing the RMSE
in the calibration period 2017 leads to a decrease of the RMSE for the entire study
period compared to the uncalibrated modified SMAR or when calibrating the water
loss term in the original SMAR only. This is the case for both the hourly and daily
time step, with generally better performance for the latter in terms of RMSE and
KGE. Using a first layer depth of 20 cm instead of 35 cm leads to better soil moisture
dynamics in the deeper layers. This is in line with results presented in the previous
chapters when comparing the uncalibrated, modified SMAR and the original SMAR
with calibrated water loss.

Following the statistical goodness-of-fit parameters in Tab. 4.5 and Tab. 4.6,
the modified SMAR performs worse than the calibrated original SMAR in different
depths after all parameters have been calibrated. This may be attributed to using
a single-objective optimisation for minimising the RMSE, only. Furthermore, in
the original SMAR, the bulk water loss from the second layer was optimised while
for the modified SMAR, only the cumulative root fraction in the first layer was
adjusted. This leads to more restricted conditions for the modified SMAR model.
For example, calibrating the estimated complete water loss in the latter eq. 4.11
based on a calibration factor could lead to improved the results of the fully calibrated,
modified SMAR and more close to those derived for the fully calibrated original
SMAR. Nevertheless, the generally higher process restrictions due to the defined
estimation of ET 2 and P2 in eq. 4.13–4.14 of the modified SMAR remain.

In summary, the full calibration of the original and modified SMAR model with
soil model parameters in physically reasonable value range show similar character-
istics to those scenarios described in the previous chapter where literature-based
values where assigned for soil physical parameters and only the bulk water loss V 2

was calibrated. Although the overall visual performance improved and a higher sta-
tistical goodness of fit can be achieved when all environmental model parameters
are calibrated, the original and modified SMAR model tested in this study do not
show satisfying results with respect to the temporal dynamics of the soil moisture
time series of the second layer. Many intermediate rainfall events are not captured
and thus, the reference soil moisture time series show a more dynamic behaviour
than those simulated by the original and modified SMAR.

Calibration experiments revealed that assigning values in a non-physical param-
eter range, e.g. negative values, for soil physical model parameters could lead to an
improved performance of SMAR. When allowing a non-physical value range for the
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model parameters sc1, sc2 and sw2, the visual and statistical performance of both,
the original and modified SMAR improve dramatically with the exception of the
depth of 70 cm. Again exemplary shown for a maximum depth of 130 and 450c̃m
depth and both temporal resolutions, Fig. 4.12 – 4.15 as well as Tab. 4.8 – 4.9 il-
lustrate the improved performance of both SMAR models. The poor and even worse
performance in the depth of 70 cm compared to the full calibration with physically
reasonable values could be related to a non-sufficient value range for the calibrated
parameters when values in a non-physically based value range are assigned. Even
better results may also be derived for other depths with a different value range or
by also calibrating the remaining parameters n1, n2, V 2 and R1 in a non-physically
reasonable value range. These results show that satisfactory results with the original
and the modified SMAR can be obtained at our study site at the expense of physical
realism of the model, and only if in situ soil moisture measurements in the depth of
interest are available for calibration.

General discussion

The evaluation of the original SMAR model against in situ observations in previous
studies showed a range of RMSE values and correlation coefficients [e.g. Manfreda
et al., 2014; Faridani et al., 2017], indicating that the performance of the SMAR
model varies between study sites.

The particular water flow dynamics at our study site located in a mixed for-
est with sandy soils may explain the overall unsatisfactory representation of soil
moisture dynamics of the SMAR model when model parameters are assigned in a
physically reasonable range. Preferential flow in macropores including bypass flow
along roots [e.g. Nimmo, 2021] can result in highly conductive forest soils with in-
filtrating water being quickly transported from the surface to deeper layers. For
example, Chandler et al. [2018] and Alaoui et al. [2011] found that forest soils can
have higher saturated hydraulic conductivity compared to other land cover types
and combined with differing preferential flow processes this may lead to increased
infiltration and percolation into lower layers of forest soils [e.g. Alaoui et al., 2011].
Complex preferential flow and infiltration processes are unlikely to be properly cap-
tured by the SMAR as it allows water movement only for soil moisture conditions
above field capacity. A more complex root distribution than the exponential one
assumed in this study and related temporally varying transpiration water losses
from different depths adds for complexity that is not captured by the SMAR model.
Maysonnave et al. [2022], for instance, found that root water uptake in forests can
vary with time and depth depending on the water availability in different layers.
These features can neither be reproduced by the original nor modified SMAR and
makes forest sites generally challenging, in particular for simplified models. How-
ever, this may be partly compensated for when model-specific effective parameters
are used. In this case, calibration against in situ reference soil moisture information
is required and the parameters lose their physical meaning and interpretability but
may account for the particular soil hydraulic processes of the study site.

In addition to the simplicity of the model, the field-scale approach of this study
adds further difficulties when evaluating the simulated soil moisture time series
against point-scale soil moisture observations. The reason is their high spatio-
temporal variability, especially in forests caused by e.g. heterogeneous evapotran-
spiration, interception, [e.g. Schume et al., 2003] and root distribution patterns [e.g.
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Jost et al., 2012]. Even more, the decreasing number of reference in situ soil mois-
ture sensors with increasing soil depth may lead to a lower representativeness of the
reference soil moisture time series at larger depths, lowering comparability to the
model results. Nevertheless, with point sensors down to 450 cm, this study allows for
exploring the potential of SMAR for larger depths than usually feasible. Even when
depths down to 450 cm are considered, the original and modified SMAR meet the
benchmark RMSE of ≤ 0.06 cm3 cm−3 in scenarios with literature-based and with
calibrated model parameters. This underlines the usefulness of SMAR to derive a
first estimate of soil moisture in a second, deeper soil layer.

The largest limitation of the present study for evaluating the standard and the
introduced modified SMAR models is its application to a single observation site.
A comparison with other simple depth-extrapolation approaches including the soil
water index [e.g. Wagner et al., 1999; Albergel et al., 2008], empirical approaches
such as regression models [e.g. Zhang et al., 2017] and cumulative distribution func-
tion matching [e.g. Gao et al., 2018] as well as other versions of the SMAR model
[e.g. Faridani et al., 2017] would allow for an improved evaluation of the presented
modification of the SMAR model and should be assessed in future studies at sites
with a broader range of climatic conditions, vegetation covers and soils.
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Figure 4.6: Hourly depth-extrapolated soil moisture time series for a depth of 130 cm
using the standard SMARmodel with a top layer depth of 35 cm (a), and 20 cm (b) as
well as the depth-extrapolated soil moisture time series based on the modified SMAR
model presented in this study (top layer depth of 35 cm (c) and 20 cm (d)) based
on the CRNS-derived surface soil moisture time series from the standard transfer
function and the UTS. The soil physical parameters n1, n2, sc1, sc2, sw2 and R1

were optimised by reducing the RMSE against reference soil moisture values in the
year 2017. For the original SMAR model, the water loss term V 2 was calibrated
instead of R1.
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Table 4.5: Statistical goodness of fit between the depth-extrapolated hourly surface
soil moisture time series from CRNS and the average soil moisture time series in
the second layer calculated from the available in situ point-scale soil moisture sen-
sors with the fully calibrated SMAR in a physically acceptable parameter range.
The calibrated model parameters and goodness-of-fit indicators for the original and
modified SMAR model are shown.
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Figure 4.7: Daily depth-extrapolated soil moisture time series for a depth of 130 cm
using the standard SMARmodel with a top layer depth of 35 cm (a), and 20 cm (b) as
well as the depth-extrapolated soil moisture time series based on the modified SMAR
model presented in this study (top layer depth of 35 cm (c) and 20 cm (d)) based
on the CRNS-derived surface soil moisture time series from the standard transfer
function and the UTS. The soil physical parameters n1, n2, sc1, sc2, sw2 and R1

were optimised by reducing the RMSE against reference soil moisture values in the
year 2017. For the original SMAR model, the water loss term V 2 was calibrated
instead of R1.
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4.5 Conclusions

In the present study we investigated the feasibility of depth-extrapolating surface
soil moisture time series derived from CRNS to deeper soil layers without additional
in situ soil moisture information for calibration. We furthermore evaluated the
Universal Transport Solution (UTS) for the estimation of field scale soil moisture
from CRNS neutron counts.

Being among the first who evaluate the UTS as a new transfer function to es-
timate field-scale surface soil moisture information from CRNS, we confirm its im-
proved performance compared to the standard approach. The UTS accounts for the
interdependence of soil moisture and air humidity on the observed neutron intensity,
being most important for dry soil conditions. Although applied at a forested site
with rather dry soils but with large amounts of above-ground hydrogen stored in
the local biomass and influencing the neutron signal, CRNS-derived soil moisture
estimates can be improved compared to using established transfer functions. Thus,
our results suggest hat the UTS should be used for an improved estimation of surface
soil moisture in future CRNS research and applications.

We modified SMAR for estimating soil moisture times series in a second, deeper
layer in a way that it can be applied without calibration against in situ sensors and
with soil physical properties and the cumulative root fraction as a vegetation pa-
rameter only. Our analyses show that for a benchmark RMSE of ≤ 0.06 cm3 cm−3,
the uncalibrated modified SMAR can compete with the original SMAR model down
to a maximum depth of the second soil layer of 450 cm when the same soil physical
properties are assigned and only the water loss term is calibrated. A certain ro-
bustness of the uncalibrated, modified SMAR in terms of the RMSE was shown by
sensitivity runs of the model. However, major temporal dynamics of the reference
in situ soil moisture in the second soil layer are neither captured by original nor
by the modified SMAR. This is likely linked to the location of the study site in
a mixed forest site with sandy soils, accompanied with preferential flow and root
water uptake processes that are difficult to simulate, especially with rather simple
modelling approaches. Only the use of SMAR with calibrated effective albeit non-
physical parameters partly accommodates to the specific soil hydraulic processes at
the study site, showing an improved simulation of soil moisture dynamics in a second
soil layer. Under these circumstances, deeper soil moisture time series may be more
satisfactorily simulated even with simple modeling approaches such as SMAR.

Although our study suggests that improved surface soil moisture estimates from
CRNS do not translate to distinctly improved soil moisture estimates in greater
depths, a more accurate estimation of the representative measurement depth of
CRNS leads to better results of the SMAR model. This indicates that an accurate
estimation of the representative measurement depth of CRNS is especially important
when using CRNS data as input for hydrological models.

Given the overall performance of the SMAR model at our single study site, fur-
ther research and testing of the presented modified version of the SMAR model with
and without calibration at sites with varying climatic conditions, vegetation cover
and soil properties is necessary and encouraged for future studies. Despite the overall
unsatisfactory performance of the SMAR model with respect to accurately capturing
soil moisture dynamics at our study site, meeting the defined RMSE benchmark, the
simple modification of the SMAR algorithm may serve as a valuable first estimate
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of soil moisture from a second, deeper soil layer, when in situ reference soil moisture
information for calibration are not available and the soil physical parameters can be
reasonably well estimated.

In CRNS research, this modified SMAR approach opens up potential for roving
CRNS, i.e., by mounting CRNS instruments on cars [e.g. Schrön et al., 2018a] or
trains [e.g. Schrön et al., 2021; Altdorff et al., 2023] moving beyond the field scale of
stationary CRNS applications, thereby providing valuable information for landscape
water balancing or hydrological catchment models on larger scales. Moreover, the
modified SMAR approach introduced in this study is not limited to CRNS applica-
tions. It may also be used in estimating root-zone soil moisture in greater depths
from satellite derived surface soil moisture in which the original SMAR already
proved useful [e.g. Baldwin et al., 2017, 2019; Gheybi et al., 2019].
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Table 4.6: Statistical goodness of fit between the depth-extrapolated daily surface
soil moisture time from CRNS and the average soil moisture time series in the second
layer calculated from the available in situ point-scale soil moisture sensors with the
fully calibrated SMAR in a physically acceptable parameter range. The calibrated
model parameters and goodness-of-fit indicators for the original and modified SMAR
model are shown.
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4.6 Appendix

Table 4.7: Minimum and maximum RMSE values between the depth-extrapolated
soil moisture time from CRNS using the modified SMAR model of the 50 ensemble
runs and the reference soil moisture time series in the second layer calculated from
the available in situ point-scale soil moisture sensors for the simulations with hourly
and daily resolution.

Hourly resolution Daily resolution
Transfer function Layer 1 depth (cm) Layer 2 depth (cm) RMSEmin (cm3 cm−3) RMSEmax (cm3 cm−3) RMSEmin (cm3 cm−3) RMSEmax (cm3 cm−3)

Revised standard

35

70 0.040 0.073 0.037 0.072
130 0.029 0.049 0.025 0.049
200 0.027 0.044 0.023 0.045
300 0.026 0.047 0.025 0.047
450 0.034 0.057 0.032 0.058

20

70 0.032 0.052 0.027 0.049
130 0.027 0.042 0.024 0.038
200 0.026 0.040 0.023 0.034
300 0.025 0.043 0.020 0.035
450 0.031 0.052 0.023 0.043

UTS MCNP drf

35

70 0.037 0.070 0.035 0.070
130 0.028 0.048 0.024 0.049
200 0.027 0.043 0.022 0.045
300 0.024 0.047 0.024 0.047
450 0.032 0.057 0.032 0.059

20

70 0.031 0.051 0.026 0.049
130 0.027 0.041 0.023 0.037
200 0.026 0.040 0.022 0.033
300 0.024 0.043 0.019 0.035
450 0.030 0.051 0.023 0.044
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Figure 4.8: Hourly depth-extrapolated soil moisture time series for a depth of 450 cm
using the calibrated standard SMAR model (calibrated water loss V 2) with a top
layer depth of 35 cm (a), and 20 cm (b) as well as the depth-extrapolated soil mois-
ture time series based on the uncalibrated modified SMAR (estimated water loss)
model presented in this study (top layer depth of 35 cm (c) and 20 cm (d)) based
on the CRNS-derived surface soil moisture time series from the standard transfer
function and the UTS.
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Figure 4.9: Daily depth-extrapolated soil moisture time series for a depth of 450 cm
using the calibrated standard SMAR model (calibrated water loss V 2) with a top
layer depth of 35 cm (a), and 20 cm (b) as well as the depth-extrapolated soil mois-
ture time series based on the uncalibrated modified SMAR (estimated water loss)
model presented in this study (top layer depth of 35 cm (c) and 20 cm (d)) based
on the CRNS-derived surface soil moisture time series from the standard transfer
function and the UTS.
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Figure 4.10: Hourly depth-extrapolated soil moisture time series for a depth of
450 cm using the standard SMAR model with a top layer depth of 35 cm (a), and
20 cm (b) as well as the depth-extrapolated soil moisture time series based on the
modified SMAR model presented in this study (top layer depth of 35 cm (c) and
20 cm (d)) based on the CRNS-derived surface soil moisture time series from the
standard transfer function and the UTS. The soil physical parameters n1, n2, sc1,
sc2, sw2 and R1 were optimised by reducing the RMSE against reference soil mois-
ture values in the year 2017. For the original SMAR model, the water loss term V 2

was calibrated instead of R1.
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Figure 4.11: Daily depth-extrapolated soil moisture time series for a depth of 450 cm
using the standard SMARmodel with a top layer depth of 35 cm (a), and 20 cm (b) as
well as the depth-extrapolated soil moisture time series based on the modified SMAR
model presented in this study (top layer depth of 35 cm (c) and 20 cm (d)) based
on the CRNS-derived surface soil moisture time series from the standard transfer
function and the UTS. The soil physical parameters n1, n2, sc1, sc2, sw2 and R1

were optimised by reducing the RMSE against reference soil moisture values in the
year 2017. For the original SMAR model, the water loss term V 2 was calibrated
instead of R1.
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Table 4.8: Statistical goodness of fit between the depth-extrapolated hourly surface
soil moisture time series from CRNS and the average soil moisture time series in the
second layer calculated from the available in situ point-scale soil moisture sensors
with the fully calibrated SMAR and effective parameters in a non-physically based
value range. The calibrated model parameters and goodness-of-fit indicators for the
original and modified SMAR model are shown.
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Table 4.9: Statistical goodness of fit between the depth-extrapolated daily surface
soil moisture time from CRNS and the average soil moisture time series in the
second layer calculated from the available in situ point-scale soil moisture sensors
with the fully calibrated SMAR and effective parameters in a non-physically based
value range. The calibrated model parameters and goodness-of-fit indicators for the
original and modified SMAR model are shown.
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Figure 4.12: Hourly depth-extrapolated soil moisture time series for a depth of
130 cm using the standard SMAR model with a top layer depth of 35 cm (a), and
20 cm (b) as well as the depth-extrapolated soil moisture time series based on the
modified SMAR model presented in this study (top layer depth of 35 cm (c) and
20 cm (d)) based on the CRNS-derived surface soil moisture time series from the
standard transfer function and the UTS. The soil physical parameters n1, n2, sc1,
sc2, sw2 and R1 were optimised by reducing the RMSE against reference soil mois-
ture values in the year 2017. Here, the parameters sc1, sc2 and sw2 were calibrated
as effective parameters in a non-physically based value range. For the original SMAR
model, the water loss term V 2 was calibrated instead of R1.
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Figure 4.13: Daily depth-extrapolated soil moisture time series for a depth of 130 cm
using the standard SMAR model with a top layer depth of 35 cm (a), and 20 cm (b)
as well as the depth-extrapolated soil moisture time series based on the modified
SMAR model presented in this study (top layer depth of 35 cm (c) and 20 cm (d))
based on the CRNS-derived surface soil moisture time series from the standard
transfer function and the UTS. The soil physical parameters n1, n2, sc1, sc2, sw2

and R1 were optimised by reducing the RMSE against reference soil moisture values
in the year 2017. Here, the parameters sc1, sc2 and sw2 were calibrated as effective
parameters in a non-physically based value range. For the original SMAR model,
the water loss term V 2 was calibrated instead of R1.
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Figure 4.14: Hourly depth-extrapolated soil moisture time series for a depth of
450 cm using the standard SMAR model with a top layer depth of 35 cm (a), and
20 cm (b) as well as the depth-extrapolated soil moisture time series based on the
modified SMAR model presented in this study (top layer depth of 35 cm (c) and
20 cm (d)) based on the CRNS-derived surface soil moisture time series from the
standard transfer function and the UTS. The soil physical parameters n1, n2, sc1,
sc2, sw2 and R1 were optimised by reducing the RMSE against reference soil mois-
ture values in the year 2017. Here, the parameters sc1, sc2 and sw2 were calibrated
as effective parameters in a non-physically based value range. For the original SMAR
model, the water loss term V 2 was calibrated instead of R1.
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Figure 4.15: Daily depth-extrapolated soil moisture time series for a depth of 450 cm
using the standard SMAR model with a top layer depth of 35 cm (a), and 20 cm (b)
as well as the depth-extrapolated soil moisture time series based on the modified
SMAR model presented in this study (top layer depth of 35 cm (c) and 20 cm (d))
based on the CRNS-derived surface soil moisture time series from the standard
transfer function and the UTS. The soil physical parameters n1, n2, sc1, sc2, sw2

and R1 were optimised by reducing the RMSE against reference soil moisture values
in the year 2017. Here, the parameters sc1, sc2 and sw2 were calibrated as effective
parameters in a non-physically based value range. For the original SMAR model,
the water loss term V 2 was calibrated instead of R1.
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Chapter 5

Estimating soil moisture in larger
depths with downhole CRNS

A version of this chapter has been published as:

A change in perspective: downhole cosmic-ray
neutron sensing for the estimation of soil mois-
ture

Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli,
Markus Morgner, Andreas Güntner, and Theresa Blume

Hydrology and Earth System Sciences, 27(16):3059–3082. doi: 10.5194/hess-27-
3059-2023. 2023.
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5.1 Abstract

Above-ground Cosmic-Ray Neutron Sensing (CRNS) allows for the non-invasive es-
timation of the field-scale soil moisture content in the upper decimetres of the soil.
However, large parts of the deeper vadose zone remain outside of its observational
window. Retrieving soil moisture information from these deeper layers requires ex-
trapolation, modelling or other methods, all of which come with methodological
challenges. Against this background, we investigate CRNS for downhole soil mois-
ture measurements in deeper layers of the vadose zone. To render calibration with
in situ soil moisture measurements unnecessary, we rescaled neutron intensities ob-
served below the terrain surface with intensities measured above a waterbody.

An experimental set-up with a CRNS sensor deployed at different depths of up
to 10m below the surface in a groundwater observation well combined with particle
transport simulations revealed the response of downhole thermal neutron intensities
to changes in the soil moisture content at the depth of the downhole neutron detector
as well as in the layers above it. The simulation results suggest that the sensitive
measurement radius of several decimetres, which depends on soil moisture and soil
bulk density, exceeds that of a standard active neutron probe which is only about
30 cm. We derived transfer functions to estimate downhole neutron signals from soil
moisture information and we describe approaches for using these transfer functions
in an inverse way to derive soil moisture from the observed neutron signals. The
in situ neutron and soil moisture observations confirm the applicability of these
functions and prove the concept of passive downhole soil moisture estimation even
at larger depths using Cosmic-Ray Neutron Sensing.

5.2 Introduction

Soil moisture is a key variable in the hydrological cycle [Vereecken et al., 2008, 2014;
Seneviratne et al., 2010], as it drives energy and water fluxes, thereby influencing
groundwater recharge, runoff generation processes and, subsequently, the local water
balance. It influences vegetation growth and vegetation communities which, in turn,
influence the local soil moisture and microclimate [e.g. see, Daly and Porporato,
2005; Seneviratne et al., 2010; Wang et al., 2018]. Averaged over several ecosystems,
approximately 75% of roots can be found in the upper 40 cm of the soil [Jackson
et al., 1996]. As a result, soil moisture in these upper decimetres of the root zone
exerts an important control on the hydrological cycle. However, the maximum
rooting depth largely exceeds the upper decimetres of the soil, depends on the plant
species [Canadell et al., 1996] and is driven by local hydrological conditions [e.g.
Fan et al., 2017]. These deep roots can be of high importance for the water supply
of other, more shallow rooting plants through processes such as hydraulic lift [e.g.
Neumann and Cardon, 2012; Pierret et al., 2016], especially during dry periods.
Additionally, infiltrating water can be diverted along deep roots to greater depths
as preferential flow [e.g. see, Nimmo, 2021], potentially leading to increased water
storage in deeper layers of the unsaturated zone. Among others, these processes
make deeper layers similarly important for the local water balance and the local
hydrological processes.

As soil moisture is highly variable, even on small horizontal scales [Vereecken
et al., 2014], a large number of point-scale measurements (e.g. in situ sensors) are
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required to overcome the small-scale variability and derive representative averages.
One method to directly measure representative soil moisture averages over several
hectares and is Cosmic-Ray Neutron Sensing [CRNS; Schrön et al., 2018b]. This
techniques was introduced by Zreda et al. [2008] and Desilets et al. [2010] about
a decade ago and uses secondary neutrons produced from cosmic rays which are
inversely correlated with the amount of hydrogen in the surrounding area. It allows
for the non-invasive estimation of average soil moisture contents up to depths of
15–83 cm [Köhli et al., 2015] and, thus, largely covers the shallow soil layers with
high root densities.

Despite the large horizontal measurement footprint radius of 130–240m [Köhli
et al., 2015], CRNS lacks an integration depth large enough to cover greater parts
of the deeper root zone. Other geophysical methods with a large (hectometre-scale)
horizontal measurement area such as geoelectric approaches [Cimpoiaşu et al., 2020;
de Jong et al., 2020] and the observation of integral mass changes by terrestrial
gravimetry [Van Camp et al., 2017; Reich et al., 2021], may allow one to infer soil
moisture dynamics at larger depths of the vadose zone. However, the separation
of the integral gravity signal into different hydrological signatures can be challeng-
ing [Van Camp et al., 2017]. In addition, depending on the geophysical method
chosen, continuous measurements may not be feasible, which would hamper the
monitoring of the soil moisture dynamics in the deeper vadose zone.

Another soil moisture measurement technique with a measurement volume smaller
than other geophysical methods but larger than that of point-scale sensors is the
active neutron probe. Invented in the middle of the previous century [Gardner and
Kirkham, 1952], the active neutron probe allows for the estimation of soil moisture
at a depth of interest via access tubes. Instead of passively observing the flux of
naturally occurring epithermal (0.25 eV–100 keV) neutrons, as is the case for above-
ground CRNS, an active neutron source produces fast neutrons (100 keV–10MeV)
and a co-located neutron detector observes the intensity of backscattered slowed-
down thermal (below 0.25 eV) neutrons. The intensity of thermal neutrons measured
under radiation of a fast-neutron source largely depends on the hydrogen content
of the soil due to the decelerating power of hydrogen through elastic collisions and
removal of thermal neutrons by absorption [see e.g. IAEA - International Atomic
Energy Agency, 1970; Gardner, 1986; Kramer et al., 1992; Ferronsky, 2015, for a
detailed review].

An important advantage of downhole soil moisture estimation using active neu-
tron probes is their decimetre-scale measurement volume around the probe in the
soil. The Ølgaard (1965) equation in Kristensen [1973] and Gardner [1986] de-
fines the measurement radius in a surrounding soil volume as the radius R95 within
which 95% of the detected thermal neutron signal originates. Accordingly, the
radius inversely depends on the soil water content, described as R95 ≈ 53 cm for
θ = 0.05 cm3 cm−3, or as R95 ≈ 20 cm for θ = 0.35 cm3 cm−3. As a consequence, the
measurement volume of the active neutron probe exceeds the integration volume of
standard in situ point-scale sensors and allows for a more representative average soil
moisture value at the depth of interest. However, a disadvantage of this method is
the precautions that need to be taken when handling active radiation sources [e.g.
IAEA - International Atomic Energy Agency, 1970; Gardner, 1986] as well as the
typically non-continuous nature of snapshot measurement campaigns with active
neutron probes.
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Kodama et al. [1985] observed the response of cosmic-ray neutrons to changes
in soil moisture at depths down to 40 cm, largely covering the sensitive measure-
ment depth of above-ground CRNS. Against this background, we investigate the
possibility of using CRNS as a passive downhole technique (d-CRNS) to estimate
soil moisture at different depths below 40 cm, also including the deeper unsaturated
zone. For this, we installed CRNS neutron detectors in a standard groundwater
observation well, thereby using the well casing above the groundwater level as an
access tube.

We hypothesise that a sufficient neutron intensity can be observed by a down-
hole neutron detector to measure neutron intensity changes caused by soil moisture
dynamics at discrete soil depths, thereby, taking advantage of both the passive, non-
invasive characteristics and continuous monitoring capabilities of CRNS as well as
the decimetre-scale measurement volume of sub-surface active neutron probes. Us-
ing existing standard groundwater observation wells allows for the a multi-purpose
use of existing observational infrastructure, as simultaneous groundwater level mea-
surements remain undisturbed.

To test our hypotheses, we first conducted particle transport simulations using
the Monte Carlo N-Particle (MCNP) particle transport code commonly employed in
CRNS research [e.g. Zreda et al., 2008; Franz et al., 2012a; Andreasen et al., 2016,
2017b; Weimar et al., 2020; Köhli et al., 2021, among others] to investigate the
neutron flux at different soil depths. As we expect the neutron response to changes
in moisture in the surrounding soil to be different compared with above-ground
CRNS or the active neutron probe, we use the particle transport simulations to
obtain information on the integration volume and to derive a transfer function from
soil moisture to neutron intensities. In a second step, we compare the estimated
neutron intensities calculated from reference soil moisture observations based on
the derived transfer function with measurements of downhole neutron intensities at
different depths. Finally, we illustrate the potential of passive downhole Cosmic-Ray
Neutron Sensing for the estimation of soil moisture in the vadose zone.

5.3 Material and methods

5.3.1 Study site

The study site comprises the permanent CRNS observation site
”
Serrahn“ [Bogena

et al., 2022], located in the Müritz National Park in the lowlands of north-eastern
Germany (Fig. 5.1). The site is of one of three permanently operating CRNS sta-
tions [Heidbüchel et al., 2016; Rasche et al., 2021] in the Terrestrial Environmental
Observatories TERENO-NE [Zacharias et al., 2011; Heinrich et al., 2018]. The ob-
servatory is located in the cfb climatic zone following the Köppen-Geiger classifica-
tion [Bogena et al., 2022], with an average annual temperature of 8.8◦C and a precip-
itation sum of 591mm yr−1 at the closest long-term weather station in Waren (at a
distance of approximately 35 km) operated by the German Weather Service [station
ID: 5349; period 1981–2010; DWD - German Weather Service, 2020a,b].

The study site is located on a glacial terminal moraine formed during the Pomera-
nian phase of the Weichselian glaciation in the Pleistocene [Börner, 2015]. The
sedimentological profile obtained during the drilling of an on-site groundwater ob-
servation well (Fig. 5.2) with a total depth of 24m revealed an uppermost layer of
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Figure 5.1: Panel (a) presents the location of the study area within Germany, panel
(b) shows the location of the study site in relation to the reference lake measure-
ment site and panel (c) displays the details of the CRNS observation site

”
Serrahn“

where the field experiment took place. The digital elevation model was sourced
from LAIV-MV - State Agency for Interior Administration Mecklenburg-Western
Pomerania [2011], and land cover was taken from BKG - German Federal Agency
for Cartography and Geodesy [2018a]).

aeolian sands deposited during the Holocene reaching a depth of 450 cm followed by
a 400 cm thick layer of glacial till which can be attributed to the geological unit of
the terminal moraine. From a depth of 850 cm, a layer of glacio-fluvial coarse sands
containing fine gravel components extend downward until they reach the glacial till
deposited during an earlier phase of the Weichselian glaciation. Regular measure-
ments show a variation in the groundwater level of between 13 and 14m below the
surface. Soil samples collected in the scope of the calibration of the permanent
CRNS sensor Serrahn in February 2019 were taken in order to determine the soil
physical characteristics, such as average grain size distributions, soil organic matter
and lattice water, via laboratory analyses, as shown in Tab. 5.1. Soil organic matter
and lattice water contents were obtained from subsamples of bulk samples from all
sample locations per depth using 24 h loss-on-ignition analyses at 550 and 1000◦C,
respectively. Based on the average bulk density at 0–35 cm in the upper soil layer
and at 35 cm depth as the representative value for greater depths, soil water contents
at field capacity and wilting point were derived for medium fine sand from tabulated
values [Sponagel et al., 2005]. Accordingly, 0.16 and 0.06 cm3 cm−3 for the upper
layer and 0.12 and 0.04 cm3 cm−3 for greater depths were derived for the soil water
content at field capacity and wilting point, respectively. Similarly, the soil porosity
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was estimated based on the material density of quartz (2.65 g cm−3) and corrected
for the amount of soil organic matter based on the density of cellulose (1.5 g cm−3).
Consequently, we derived a porosity of 0.52 and 0.38 cm3 cm−3 for the upper soil
layer and below depths of 35 cm, respectively.

Table 5.1: Soil physical characteristics obtained from laboratory analyses of soil
samples taken in February 2019. Soil bulk densities per depth were obtained from
oven-drying soil core samples at 105◦C for 12 h and subsequent averaging.

Depth (cm) Grain size (weight %) Bulk density (g cm−3) Organic matter (g g−1) Lattice water (g g−1)
> 2mm 2 - 0.63mm 0.63 - 0.2mm 0.2 - 0.063mm < 0.063mm

0–5 2.7 19.7 42.2 33.7 2.1 0.24 0.32 0.003
5–10 1.1 8.7 43.5 45.7 2.4 0.77 0.10 0.002
10–15 0.7 7.2 41.5 47.9 2.8 1.25 0.05 0.002
15–20 1.2 7.8 38.7 44.3 2.2 1.43 0.02 0.002
20–25 1.7 7.7 42.2 46.5 2.2 1.55 0.02 0.002
25–30 1.7 8.5 43.5 45.4 1.2 1.59 0.01 0.002
30–35 1.1 8.0 42.8 46.8 1.5 1.63 0.01 0.002

The land cover at the site is mainly a mixed forest dominated by European
beech (Fagus sylvatica) and Scots pine (Pinus sylvestris) with a clearing covered by
grassy vegetation located a few decametres from the neutron detector. A vegetation
survey was conducted in July 2021 in order estimate the total above-ground biomass
at the site. Using allometric regressions for Pinus sylvestris [Urban et al., 2014] and
Fagus sylvatica [Chakraborty et al., 2016] revealed a total wet above-ground biomass
estimate of 3.73 g cm−2, assuming that other sources of biomass can be neglected.

Along with the stationary CRNS instruments and the groundwater observation
well, the study site is equipped with a weather station and a network of in situ
point-scale soil moisture sensor profiles (type SMT100; Truebner GmbH, Germany).
The soil moisture sensors are installed at depths down to 450 cm along the profiles
displayed in Tab. 5.3 and continuously monitor the volumetric soil moisture based
on the manufacturer’s calibration function. The measurement interval is 10 min-
utes. The soil moisture profiles are located close to the CRNS instruments and at a
distance of 20–40m from the groundwater observation well (Fig. 5.1).

5.3.2 Experimental design

In the scope of this study, we deployed a gaseous proportional neutron detector of the
type CRS1000 (Hydroinnova LCC, USA) inside the on-site groundwater observation
well. The detector uses 3He as the converter gas [see Zreda et al., 2012; Schrön et al.,
2018b, for details]. We disassembled the original set-up and placed two unshielded
counter tubes into 50 cm long polypropylene pipes with a wall thickness of 1.9mm.
The relative air humidity in closed groundwater observation wells is constantly close
to saturation, making such additional protection of the counter tubes necessary. For
the downhole measurements, the CRS1000 counter tubes as well as their readout
electronics were lowered into the well to the desired measurement depths by steel
ropes. The data logger with its direct-current (DC) power supply remains above the
surface.

As shown in the schematic illustration in Fig. 5.2, the groundwater well itself
is composed of an aluminium tube above the surface that is mounted to a small
concrete foundation, whereas the below-ground tube is made of 7.5mm thick PVC
(polyvinyl chloride) with an inner diameter of 11mm. An approximately 100mm
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wide gap between the surrounding undisturbed sediment and the well tube was filled
with sand and clay (see Fig. 5.2), depending on the surrounding material, during the
installation of the groundwater well in 2014. The presence of filling material as well
as the PVC tube material may reduce the response of the sensor to changes in the soil
moisture of the surrounding undisturbed soil due to, for example, the high absorption
cross section of chlorine and scattering cross section of hydrogen contained in the
PVC material. Although some influence on the neutron signal has been described
for the active neutron probe [e.g. Keller et al., 1990], the precise influence of both
remains unknown for the d-CRNS approach. Following the assumption that the
soil moisture dynamics in the porous filling material are similar to those in the
surrounding undisturbed material and the sphere of influence largely exceeds the
volume of the filling material, we expect the soil moisture signal to dominate the
dynamics in the downhole neutron intensity.

Above-ground CRNS relies on epithermal neutrons counted by moderated detec-
tor tubes shielded with a 2.5 cm layer of high-density polyethylene (HDPE). In the
scope of d-CRNS, we use thermal neutrons counted from unshielded detectors. This
is done for different reasons. Firstly, thermal neutrons respond to changes in environ-
mental hydrogen content and, thus, soil moisture [e.g. Hubert et al., 2016; Weimar
et al., 2020; Rasche et al., 2021]. Secondly, we expect the neutron intensity (i.e.
count rate) to decrease strongly with soil depth. A bare counter tube is then more
effective, as the HDPE shielding of a moderated tube would not only slow down but
would also reflect a certain percentage of potentially countable neutrons away from
the instrument and would, thus, reduce the observed intensity. Furthermore, it has
been shown that thermal neutrons can potentially be used to obtain soil moisture
information from larger depths compared with epithermal neutrons [Rasche et al.,
2021]. This may be especially useful for downhole measurements in order to increase
the potential measurement radius. Lastly, using unshielded detector tubes is of a
practical nature, as the removal of the 2.5 cm HDPE shielding reduces the weight
and dimensions of the CRS1000 counter tubes, allowing them to fit into standard
groundwater well tubes with an inner diameter of 11 cm.

5.3.3 Neutron measurements and processing

The counter tubes simultaneously measured neutron intensities at 100 cm (tube
no. 2) and 200 cm (tube no. 1) depths from July 2021 to November 2021 from
January 2022 to May 2022. In between these two periods, the detectors were placed
at 500 cm (tube no. 2) and 1000 cm (tube no. 1) depths.

Following conventional approaches, the observed above-ground epithermal neu-
tron intensities were corrected for variations in atmospheric shielding depth, abso-
lute air humidity and primary neutron flux [Zreda et al., 2012; Rosolem et al., 2013]
before being smoothed by a 25 h and 49 h moving average in order to reduce the un-
certainty in the time series [Schrön et al., 2018b]. For downhole CRNS applications
measuring thermal neutrons, an adjusted correction algorithm for the neutron signal
is required. Thermal neutrons detected by a downhole CRNS have not interacted
with the atmosphere from the point where they reach water-sensitive energies in
the soil to eventually reaching the detector. As a consequence, downhole thermal
neutron intensities will be corrected for variations in atmospheric shielding depth
and primary neutron influx only. In accordance with Heidbüchel et al. [2016], the
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Figure 5.2: Schematic illustration of the experimental set-up at the study site.
The thermal (unshielded) neutron detectors no. 1 and no. 2 were simultaneously
installed at respective depths of 200 and 100 cm from July to November 2021 and
from January to May 2022 and at respective depths of 1000 and 500 cm for the time
period in between.

required neutron attenuation length was set to 135.9 g cm−2 for the study site. The
neutron monitor database (www.nmdb.eu, station: JUNG - Jungfraujoch) was used
to obtain data for the primary neutron flux.

To convert above-ground neutron intensities to soil moisture estimates, a calibra-
tion against soil moisture reference measurements is necessary in order to scale the
transfer function to possible site-specific characteristics. This is the case for the N0
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method [Desilets et al., 2010], as well as for the recently introduced universal trans-
port solution (UTS) [Köhli et al., 2021]. Reference soil moisture measurements can
be obtained at shallow depths from soil sampling and subsequent laboratory analysis
or from point-scale in situ soil moisture sensors. However, using a CRNS detector as
a downhole instrument would require reference measurements from greater depths,
which are more difficult to acquire. For this reason, we decided to adapt an ap-
proach proposed by Franz et al. [2013b] for above-ground CRNS applications using
epithermal neutrons. It comprises scaling the transfer function by the neutron in-
tensity measured above water instead of above dry soil, as is the case for the N0
method. The count rate above dry soil can be calibrated with reference soil moisture
information; however, without this reference information the count rate above dry
soil needs to be measured in order to transfer observed neutron count rates to soil
moisture. Measuring neutrons above an (ideal) hydrogen-free soil is practically im-
possible, whereas the intensity above water can be measured directly and, thus, does
not require additional calibration. This approach has been applied in previous stud-
ies related to above-ground epithermal CRNS [e.g. McJannet et al., 2014; Andreasen
et al., 2016, 2020]. We adjusted the approach of above-water measurements for the
scaling of thermal neutrons. Therefore, a measurement at 25 cm (detector bottom)
above the water surface and of 1.5 h duration was conducted with the two detector
tubes on Lake Hinnensee prior to their installation below the ground (Fig. 5.1). By
scaling the downhole neutron intensities with the detector-specific neutron intensity
above water by calculating the neutron ratios, Eq. (5.1) allows for the comparison of
observed neutron ratios with simulated neutron ratios. Furthermore, it enables the
development of a transfer function from simulations that may be applied without
additional calibration against reference soil moisture measurements.

Unlike the measurements below the ground, the neutron intensity above water
needs to be corrected for variations in absolute air humidity. A specific humidity
correction function has been developed for epithermal neutrons only [Rosolem et al.,
2013; Köhli et al., 2021] and may not be valid for thermal neutrons. For this reason,
we developed a first equation to correct thermal neutron intensities observed above
water to variations in absolute humidity. The observed neutron ratio Nr,

Nr =
Ns

Nw

(5.1)

can then be calculated from the downhole thermal neutron intensity Ns corrected
for variations in atmospheric shielding depth and primary neutron influx only as
well as the thermal neutron intensity above water Nw corrected for variations in
atmospheric shielding depth, primary neutron influx and absolute humidity.

5.3.4 Particle transport simulations

Several different Monte Carlo-based particle transport simulation toolkits have pre-
viously been used for the investigation of secondary cosmic-ray neutrons at the soil-
atmosphere interface in the context of CRNS, including GEANT4 [Hubert et al.,
2016; Brall et al., 2021], MCNP [Zreda et al., 2008; Franz et al., 2012a; Andreasen
et al., 2016, 2017b; Weimar et al., 2020; Köhli et al., 2021] and URANOS [Köhli
et al., 2015, 2021; Li et al., 2019a; Rasche et al., 2021], the latter of which only
simulates neutrons of different energies. Although simulating only neutrons (and
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not including protons and muons) might be sufficient at the soil-atmosphere inter-
face with a detector placed above the surface, the simulation of the neutron flux at
different depths of the soil requires the inclusion of several other types of particles
that may induce neutron production in the deeper soil volume. As the atmospheric
neutron flux is attenuated strongly within the soil volume, the in-soil neutron pro-
duction dominates the thermal neutron flux below soil depths several decimetres.
In-soil neutrons are generated by different cosmic-ray particle species depending on
the soil depth. Within the first few metres, the inelastic collisions of high-energy
protons and neutrons with atomic nuclei lead to particle production in hadronic
showers [e.g. Mollerach and Roulet, 2018]. During the collision, neutrons are ejected
from the nucleus with energies peaking at few hundred megaelectron volts [e.g.
Gudima et al., 1983]. The target nucleus remains in an excited state after the im-
pact and deexcites via the emission of lower-energy neutrons with few megaelectron
volts. This process is called evaporation. The hadrogenic neutron production falls off
rapidly with soil depth due to the short penetration length of high-energy neutrons
and protons. Below that and down to several tens of metres, hadrogenic neutron
production is significantly lower and is dominated by muons [Heusser, 1996] via
capture processes that release neutrons with few megaelectron volts. Consequently,
we used the MCNP v6.2 model [Werner et al., 2018] to simulate the neutron ratios
for different soil depths and soil bulk densities, as this model includes, for example,
protons, muons and neutrons as source particles within the model domain. Energy
spectra and angular distributions of the particle species were set according to Sato
[2015] and Sato [2016]. The starting particles are released 450m above the soil
surface embedded in a cylindrical simulation domain with 6m radius and reflecting
boundaries.

All simulation scenarios described in the following comprise a cutoff rigidity of
2.6GV, an absolute humidity of 10 gm−3 and an atmospheric pressure of 1013.25 hPa.
The detector has a length of 50 cm and diameter of 5.5 cm. The tube volume is filled
with 3He at 1.5 bar, and all neutrons are counted that undergo an absorption pro-
cess in the simulated detector volume. Thus, the behaviour of an unshielded (bare)
proportional neutron detector tube is modelled.

In a first step, the detector was placed 50 cm above an infinite water surface,
with the 50 cm being measured from the detector tube centre. The detector volume
is slightly larger than the real CRS1000 detector tubes in order to enhance the
counting statistics in low-count environments. To estimate the influence of variations
in absolute humidity on the thermal neutron intensity above water and in order to
develop a correction function, the simulation scenario was repeated with air humidity
values of 1, 6, 11, 16, 21 and 26 gm−3.

Neutron responses at different soil depths were modelled with a soil bulk density
of 1.43 g cm−3 where the soil material is composed of 75% SiO2 and 25% Al2O3.
The detector was placed at shielding depths of 75, 100, 150, 200, 250, 300, 350, 400,
500, 750, 1000 and 1500 g cm−2 with 10 different soil moisture contents ranging from
0.005 to 0.5 cm3 cm−3. The shielding depth describes the total amount of matter
that a particle has to travel trough. It is influenced by the material dry bulk density,
the absolute depth in centimetres and the soil water content (Eq. (5.10)). In the
simulation scenarios, the absolute depth of the detector was changed for the different
soil moisture states in order to maintain the same simulated shielding depth at the
detector centre. In accordance with the set-up of the real groundwater observation
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well, the virtual detector was placed in a PVC cylinder of the same dimensions.
To investigate the influence of the local soil bulk density on the simulated neutron
response, a smaller subset of scenarios for all soil moisture states with the shielding
depths of 75, 100, 200, 350, and 500 g cm−2 were additionally modelled with soil
bulk densities of 1.1 and 1.8 g cm−3.

In order to assess the sphere of influence for the downhole neutron detector,
particle tracking simulations for a single shielding depth of 300 g cm−2 and all soil
moisture conditions listed above were run. The trajectory of all detected neutrons is
traced backwards in order to determine the locations where they probed the soil via
scattering. Above 150–200 g cm−2 an increase in the measurement volume can be
expected due to an increased contribution from neutrons that previously scattered
in the atmospheric layer before entering the soil and eventually being detected.
Using the simulations with 300 g cm−2 allows for the isolated characterisation of the
measurement volume without the influence of neutrons that previously interacted
with the atmosphere. In the scope of this study, the dimensions of the measurement
volume are estimated based on the locations of all elastic scattering processes above
the thermal energy regime and, thus, the entire moderation process from the point
where a detected neutron was generated.

To assess the influence of the well tube material on the neutron ratio as well as
on the dimensions of the sphere of influence, we not only simulated a PVC well tube
with a wall thickness of 7.5mm but also a well tube composed of stainless steel of
equal wall thickness and a well tube composed of thinner PVC. The additionally
simulated PVC material had wall thickness of 5mm and a density of 1.44 g cm−3,
and the steel tube (type X5CrNi18-10) had a wall thickness of 7.5mm, a density
of 7.85 g cm−3, and contained 18% chromium and 10% nickel. Particle transport
simulations with a shielding depth of 300 g cm−2 were run to investigate the size of
the measurement volume for stainless steel, and the neutron ratios were simulated
for a soil bulk density of 1.43 g cm−3 and shielding depths from 100 to 400 g cm−2.

5.4 Results

5.4.1 MCNP simulations

Neutron ratio response and sphere of influence

We simulated the detector-specific neutron intensity above water to aid with pro-
cessing the downhole neutron intensities without the need for calibration based on
in situ soil moisture information. The simulation revealed a dependence of thermal
neutrons detected above water on absolute air humidity. The thermal neutron in-
tensity decreased approximately linearly by 0.21% per 1 gm−3 absolute humidity
(R2 = 0.93), which is less than half of what has been reported for epithermal neu-
trons [Rosolem et al., 2013]. The correction function developed by Rosolem et al.
[2013] for epithermal neutrons can, thus, be adjusted to correcting observed thermal
neutron intensities above water by changing the correction factor from the original
0.0054 to the derived 0.0021. It should be noted that the reference absolute humidity
for the simulations and the transfer functions was set to an arbitrary 10 g cm−3.

Neutron ratios were calculated for all neutron transport simulations using the
reference simulation scenario with the detector placed above a water surface. The

127



Soil moisture from Cosmic-Ray Neutron Sensing D. Rasche

simulation results for the first set of scenarios conducted with a soil bulk density
of 1.43 g cm−3 are shown in Fig. 5.3. The response of the simulated neutron ratios
observed by the virtual downhole neutron detector to changes in soil moisture dif-
fer between the different simulated shielding depths, with generally lower neutron
ratios at larger depths. For each simulated shielding depth, the neutron ratio de-
creases with increasing soil moisture, although a specific behaviour can be observed
for shallow shielding depths. From the 75 to the 100 g cm−2 shielding depth sce-
nario, the simulated neutron ratio increases, i.e. the neutron intensity observed by
the downhole neutron detector increases, when the soil moisture content is below
0.045 cm3 cm−3. This reveals a peak neutron intensity in shallow soil layers under
low-soil-moisture conditions. At higher soil moisture contents, this peak ratio dis-
appears and a continuous decrease in the neutron ratio with increasing shielding
depth per simulated soil moisture content can be observed. The simulation sets
conducted with lower (1.1 g cm−3) and higher (1.8 g cm−3) soil bulk densities show a
similar behaviour, although the absolute values of the neutron ratios change. Higher
soil bulk densities result in lower neutron intensities and, thus, lower neutron ratios
observed by the virtual downhole neutron detector and vice versa (see section 5.4.1
for details). We also investigated the possible influences of the groundwater ob-
servation well tube material by simulating a 5mm PVC and 7.5mm stainless-steel
tubing. The additional subset of simulations revealed that neutron ratios for a well
tube composed of stainless steel are on average 60% higher compared with a PVC
tube with equal wall thickness but the two materials respond similarly to changes
in soil moisture. In addition, a thinner PVC material with a thickness of only 5mm
produces neutron ratios which are on average 28% higher compared with a PVC
tubing with a wall thickness of 7.5mm.

Figure 5.3: Simulated values of Nr from neutron transport modelling with the pre-
dicted values (red lines) from Eq. (5.5-5.10) for a soil bulk density of 1.43 g cm−3,
different soil moisture conditions and different shielding depths.
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In this study, the sphere of influence, i.e. the measurement volume around the
downhole neutron detector, is calculated as the 86% quantile and 95% quantile
of all locations of elastic collision processes of a detected neutron in the soil. The
definition based on the 86% quantile relies on the convention established for de-
scribing the horizontal integration radius and integration depth of above-ground
CRNS applications, whereas the 95% quantile is common for active neutron probe
applications. In order to better compare d-CRNS with above-ground CRNS and
the traditional active neutron probe, the results of both definitions are shown in
Fig. 5.4.

Figure 5.4: Simulated horizontal radii of the sphere of influence defined as the R86

and R95 for different local (at the depth of measurement) soil moisture values θ (see
Eq. (5.9)) and soil bulk densities. In addition, the R95 values based on the equation
of Ølgaard (1965) in Gardner [1986] for an active neutron probe are displayed for
comparison.

In line with above-ground CRNS, only the 86% quantile is used for a math-
ematical description of the sphere of influence and its dimensions. The shape of
the sphere of influence simulated for a neutron detector with a height of 50 cm and
diameter of 5.5 cm and for different soil moisture contents at a shielding depth of
300 g cm−2 measured at the detector centre can be described by the following equa-
tions. The horizontal sensitive radius of the sphere R86 can be described by the
local soil moisture content θ (cm3 cm−3; see Eq. (5.9)) as well as the local soil bulk
density ρ (g cm−3) and the fitted parameters p1 to p3 (Tab. 5.2) at the depth of the
neutron detector via

R86 =
p1

(ρ/ (g cm−3)) · (1 + p2 · θ · 100)
+ p3 ·

(
ρ/
(
g cm−3

))p4 . (5.2)

The simulated horizontal radii of the sphere of influence defined as the R86 and R95,
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are shown in Fig. 5.4 for different soil moisture values and soil bulk densities. Both
R86 and R95 decrease with increasing soil moisture and show generally lower values
when the soil bulk density is higher. For instance, a bulk density of 1.43 g cm−3 leads
to an R95 of 170 cm at 0.005 cm3 cm−3 and to an R95 of 34 cm at 0.5 cm3 cm−3. At the
same bulk density and for the same soil moisture values, R86 is generally smaller and
decreases from 127 to 26 cm. The values derived from the Ølgaard (1965) equation
in Gardner [1986] for the R95 of an active neutron probe reveal 69 and 16 cm at
0.005 and 0.5 cm3 cm−3 and, hence, smaller radii of the sphere of influence than for
a downhole neutron detector for all simulated soil bulk densities and both R95 and
R86. Consequently, even for a high bulk density of 1.8 g cm−3, the generally smaller
R86 of d-CRNS is approximately 40% larger than the R95 of an active neutron probe.

The average vertical sensitive radius of the sphere of influence V86 can be de-
scribed by Eq. (5.3) and has a size range of 89–24 cm from the lowest (0.005 cm3 cm−3)
to the highest (0.5 cm3 cm−3) simulated soil moisture content at a 1.43 g cm−3 bulk
density. In combination with the simulated horizontal radii, an ellipsoidal shape of
the sphere of influence can be derived for a downhole neutron detector in d-CRNS
applications, with R86 and V86 describing the ellipsoid’s semi-axes from the detector
centre. However, a vertical shift in the most sensitive area, i.e. the location of the
largest horizontal radius relative to the detector centre with varying soil moisture,
can be observed. This dimension is described by Eq. (5.4) and shown in Fig. 5.5.
The vertical sensitive radius V86 increases with decreasing soil moisture, while the
most sensitive region Vc86 is always located slightly above the detector centre and
shifts upwards with lower soil water contents. For example, for a soil bulk density
of 1.43 g cm−3, the most sensitive region of the downhole neutron detector Vc86 is
located 5–20 cm (for 0.5–0.005 cm3 cm−3 soil moisture content) above the detector
centre. The fitted parameters p1–p5 required in Eq. (5.2), Eq. (5.3) and Eq. (5.4)
can be found in Tab. 5.2, and a schematic illustration of the sphere of influence
for different soil moisture contents can be found in Fig. 5.6. We define the vertical
footprint size as

V86 =
p1

(ρ/ (g cm−3))p2 · (1 + p3 · θ · 100)
+ p4 ·

(
ρ/
(
g cm−3

))p5 , (5.3)

and the location of the most sensitive region above the detector centre as

V c86 =
p1 · exp ((−θ · 100) /p2)

(ρ/ (g cm−3))
+ p3 ·

(
ρ/
(
g cm−3

))p4 . (5.4)

The simulation results for a well tube made from stainless steel with a wall
thickness of 7.5 mm revealed similar dimensions of the sphere of influence to those
derived for PVC with equal wall thickness. Averaged over the range of simulated
soil moisture values and for a soil bulk density of 1.43 g cm−3, R86 is approximately
1.2 cm larger for a well tube made from PVC compared to the steel tube, whereas
Vc86 and V86 are 8.2 cm and 4.5 cm smaller, respectively. The fitted parameters for
a well tubing made from stainless steel can be found in Tab. 5.4.
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Figure 5.5: (a) Simulated values of the vertical sensitive radius V86 from the detector
centre and (b) the position of the most sensitive area relative to the detector centre
Vc86 for different local soil moisture values θ (see Eq. (5.9)) and soil bulk densities.

Predicting neutron ratios

Our neutron transport simulations revealed a change of the hyperbolic relationship
between the neutron ratio Nr and the simulated soil moisture content depending
on the shielding depth D measured at the centre of the detector tube (Fig. 5.3).
Therefore, we derived a hyperbolic fit model with the analytical form of Eq. (5.5)
for each shielding depth and subsequently predicted the shape-defining parameters
F1 and F2 by shielding depth. A third-order and second-order exponential model
resulted in a high goodness of fit for parameters F1 and F2, which lead to the fol-
lowing equations, allowing for the estimation of Nr:

Nr =
F1

F2 + θ
, (5.5)

where (5.6)

F1 = (p1 · exp (p2 · D) + p3 · exp (p4 · D) + p5 · exp (p6 · D)) · ρ

1.43 g cm−3
,

(5.7)

F2 = (p7 · exp (p8 · D) + p9 · exp (p10 · D)) · ρ

1.43 g cm−3
. (5.8)

The equation makes use of two key quantities, the local soil water content at the
depth of measurement

θ = θSM + θSOM + θLW (5.9)
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Figure 5.6: Schematic illustration of the sphere of influence described by R86, Vc86
and V86 for a soil with a bulk density of 1.43 g cm−3 and a soil moisture content of
0.10 and 0.35 cm3 cm−3 in the entire soil column. The V86 is different above (upper
V86) and below (lower V86) the neutron detector (its centre is marked by an “here);
thus, V86 represents the average vertical extent. A schematic neutron transport
path is displayed with a high-energy particle producing a hydrogen-sensitive and,
thus, water-sensitive neutron in the soil which is slowed down to thermal energies
by multiple elastic scattering interactions before eventually being detected.

and the shielding depth

D = d ·
(
ρ̂+ θ̂SM · ρwater

)
+DAGM . (5.10)

The parameters and variables used in Equations (5.5)–(5.10) are explained in
the following. The fitted parameters p1–p10 can be found in Tab. 5.2 for a PVC
well tube with a wall thickness of 7.5mm, in Tab. 5.4 for a well tube composed of
stainless steel of equal thickness and in Tab. 5.5 for a PVC well tube with a thickness
of only 5mm, while the following remaining variables depend on the conditions of
the study site. The variable θ describes the total local water content comprising soil
moisture θSM , lattice water θLW and the water equivalent of soil organic matter θSOM

in (cm3 cm−3) at the depth of neutron observation measured as the distance from
the soil surface to the centre of the detector tube d (in cm). Based on the subset of
neutron transport simulations with different soil bulk densities, we found F1 and F2

to be dependent on the ratio between the density ρ at the depth of measurement
and the soil density of 1.43 g cm−3 used in the simulations from which the equations
were derived.
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The second required variable is the shielding depth D, describing the total mass
neutrons, protons and muons need to travel through before reaching the depth of
the centre of the detector tube. The shielding depth represents the integral mass
from the surface to the detector centre. Thus, it depends on the measurement depth
d (in cm) as well as on the average soil bulk density ρ̂ (g cm−3) from the soil surface
to the measurement depth. Likewise, the average soil water content θ̂SM (cm3 cm−3)
is required, assuming a constant water density ρwater of 1 g cm

−3. It should be noted
that for the calculation of the shielding depth, the total mass of material above
the centre of the detector tube is required, regardless of its elemental composition.
Thus, the mass of soil organic matter and lattice water is already accounted for by
the integral soil bulk density. Additionally, as the study site of the present work
is located in a mixed forest, the total above-ground mass (D

AGM
) associated with

vegetation needs to be added. Above-ground mass from other sources, such as snow,
may also be considered and included inD

AGM
. Furthermore, it should be noted that,

in Eq. (5.5–5.8), the parameters p2, p4, p6, p8 and p10 are in square centimetres per
gram (inverse shielding depth), whereas the remaining parameters p1, p3, p5, p7 and
p9 are dimensionless.

Applying the above equations (Eq. (5.5-5.10)) to the input variables of the neu-
tron transport simulation and comparing this prediction with the simulated Nr shows
a good overall fit, with a percent bias between the predicted and simulated values of
-1.2% for a bulk density of 1.43 g cm−3 (Fig. 5.3) and 0.8% for all modelled densities.

Table 5.2: Fitted parameters for Eq. (5.2-5.8) derived from particle transport sim-
ulation scenarios for a PVC well tube with a wall thickness of 7.5mm.

Eq. no. Variable p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

(5.2) R86 173 cm 0.214 4.05 cm 2
(5.3) V86 113 cm 1.2 0.121 8.61 cm 1
(5.4) Vc86 25.2 cm 5 2.82 cm 1
(5.7) F1 0.252 -0.0206 cm2 g−1 0.00794 -0.000839 cm2 g−1 0.267 -0.00674 cm2 g−1

(5.8) F2 0.0406 0.000139 cm2 g−1 0.265 -0.0172 cm2 g−1

Estimating soil moisture

A key motivation of this study is to derive soil moisture time series by d-CRNS at
depths larger than those accessible by surface CRNS. The equations above describe
the physical relationships that influence the neutron intensity, and thus Nr, inside
the shaft of the groundwater observation well or access tube. They illustrate that
both the soil moisture at the local depth of the detector as well as the average soil
moisture in the vadose zone above the detector have an effect on the Nr observed at
a certain measurement depth. However, estimating two unknown variables, namely
θSM and θ̂SM , from Nr (the single known variable) is only possible with further
assumptions. One option would be the use of Eqs. (5.5-5.10) as a forward operator
in combination with soil hydraulic models [e.g. HYDRUS-1D; Šimůnek et al., 2008]
to model soil moisture time series at different soil depths. The model can then be
calibrated by applying Eq. (5.5-5.10) with the modelled soil moisture time series and
optimising the goodness of fit between the observed and predicted Nr by adjusting
the parameters in the soil hydraulic model. However, soil hydraulic models may
require further variables, such as rainfall, evapotranspiration and root distributions,
which are not always available.
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We propose an alternative and more simple approach to estimate the soil mois-
ture time series at the depth of measurement from the observed neutron ratios by
using Eq. (5.5-5.10). This approach is exemplary in that, while reasonable for the
conditions of our study site, the assumed range of soil moisture between the wilting
point and field capacity in Eq. (5.5-5.10) may need to be modified for other sites.
Following these equations, the approach is based on the fact that the influence of θSM
on Nr is considerably larger than that of θ̂SM . For example, at a θSM of 0.1 cm3 cm−3,

a change in θ̂SM from 0.05 to 0.15 cm3 cm−3 results in a 6% change in Nr (at a mea-
surement depth of 100 cm). In contrast, changing θSM from 0.05 to 0.15 cm3 cm−3 at

a value of 0.1 cm3 cm−3 for θ̂SM leads to a 47% change in Nr. The higher sensitivity
of Nr to changes in the soil moisture content at depth of measurement allows for its
estimation as described in appendix A.

5.4.2 Experimental evidence

Observed neutron response

The reference measurement at Lake Hinnensee was conducted in order to the derive
the detector-specific raw count rate above water and resulted in values of 315 and 155
counts per hour (cph) for detector tube no. 1 and 2, respectively. The measurement
duration of 1.5 h and measurement intervals of 1 min led to a Poisson standard
deviation of 14 and 10 cph or a coefficient of variation of 4.6 and 6.6%, respectively.
The average uncorrected downhole neutron count rate was 101 cph for 100 cm (tube
no. 2) and 70 cph for 200 cm (tube no. 1), covering the entire measurement period.
During about two months of measurements at larger depths, the average count rate
was significantly lower, with tube no. 2 observing 6 cph for 500 cm and tube no. 1
observing 11 cph for 1000 cm. As a result, the measurement uncertainty increased
sharply. For instance, for an observed count rate of 10 cph, the coefficient of variation
was 32%.

Nr calculated based on the corrected neutron count rates decreases with increas-
ing measurement and shielding depth (Fig. 5.7). The average Nr decreases from 0.63
for 100 cm and 0.22 for 200 cm to 0.039 for 500 cm and 0.034 for 1000 cm.

Figure 5.8 shows the comparison of the observed neutron intensity corrected for
variations in air pressure and primary neutron influx Ns and the local in situ reference
soil moisture at depths of 100 and 200 cm. Due to the location of all reference
sensors outside the expected sphere of influence of the downhole neutron detector, a
comparison with the soil moisture sensor at the respective depth showing the highest
Pearson correlation coefficient between the observed and predicted values from a
hyperbolic, non-linear least-squares-fit model in the form of Eq. (5.5) is shown. In
case of the downhole neutron detector installed at 100 cm depth, the reference sensors
with the highest and lowest goodness of fit in 70 and 130 cm are considered (due
to the lack of sensors at 100cm depth), whereas reference soil moisture sensors at
the same depth are available for the neutron detector at 200 cm depth. Figure 5.8
illustrates that a distinct neutron intensity response to changes in the local soil
moisture following a hyperbolic relationship can be observed at both measurement
depths. However, differences occur between the individual in situ reference sensors
including distinct different slopes of the fitted hyperbolic regression model as well
as larger deviations from the model fit, indicating different soil moisture dynamics
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Figure 5.7: Panel (a) presents the hourly precipitation observed at the study site
during the experimental period. Panel (b) shows observed time series of Nr in the
different measurement depths of 100, 200, 500 and 1000 cm. Points represent the
original (not smoothed) neutron ratios from corrected neutron intensities and lines
represent the 25 h moving average calculated from corrected neutron intensities.

at the individual reference sensor locations.

Predicting neutron ratios from reference soil moisture observations

In order to provide experimental proof of the proposed downhole application of
cosmic-ray thermal neutron sensing (d-CRNS), in a first step, observed soil mois-
ture time series along the different reference sensor profiles are used to predict Nr

based on Eqs. 5.5–5.10. Again, for the measurement depth of 100 cm, we include
the sensor profiles with sensors down to depths of 70 and 130 cm, as there are no
reference sensors available at the same measurement depth. For each sensor pro-
file, the average soil moisture content is calculated from all sensors along the profile
weighted by the depth range covered by each sensor down to the maximum depth
of the respective sensor profile (70 and 130 cm) to calculate θ̂SM . Additionally, the
soil moisture time series from the sensors installed at depths of 70 and 130 cm are
defined as θSM for each individual profile depending on the maximum profile depth.
This leads to the set of predicted Nr time series shown in Fig. 5.9. The observed time
series of Nr for the CRNS lies within the range of predicted Nr time series although
the values observed at 100 cm depth are slightly shifted towards the range of the
neutron ratios predicted from reference sensor profiles with a depth of 130 cm. Fur-
thermore, the dynamics of the predicted neutron ratios from reference soil moisture
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Figure 5.8: Comparison of the hourly corrected neutron intensity Ns smoothed with
a 25 h moving average and values from the reference soil moisture sensors with the
highest and lowest Pearson correlation coefficient (r) between the observed data and
predicted data from a hyperbolic, non-linear least-squares-fit model in the form of
Eq. (5.5). Panel (a) shows 100 cm depth and reference sensors at 70 and 130 cm
depths, whereas panel (b) shows 200 cm depth with the corresponding reference soil
moisture sensors also at 200 cm depth.

sensors match the dynamics of the CRNS-based values, which becomes especially
visible during the rainfall event at the beginning of November 2021 (Fig. 5.11) as
well as during the period in March 2022 when very little rainfall was observed. The
latter led to a decrease in soil moisture and, hence, an increase in the observed Nr.
Additionally, the short-term neutron ratio variations in the observed time series Nr

are strongly reduced when the time series is smoothed with a 49 h moving average
compared with a 25 h moving average that better corresponds to the Nr time series
calculated from reference soil moisture sensors.

Similarly, a set of Nr time series is calculated from the available reference soil
moisture sensor profiles with sensors at depths down to 200 cm and 450 cm. At
a measurement depth of 200 cm reference measurements are available at the exact
depth of the detector tube location, whereas the neutron ratios observed at 500 cm
are compared to those predicted from sensor profiles with a maximum sensor depth
of 450 cm. Fig. 5.9c shows the observed and predicted time series of Nr at 200 cm.
The temporal dynamics of the predicted Nr time series are smaller than those pre-
dicted from soil moisture sensors at shallower depths. This matches the dynamics
of the observed Nr; however, stronger short-term fluctuations become more visible
here. Although the dynamics are dampened in both the observed and the different
predicted Nr time series, the soil moisture increase caused by the intense rainfall
event in late August 2021 is clearly visible (Fig. 5.12). In contrast, the predicted
Nr time series from soil moisture sensors down to 450 cm depth do not show any
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Figure 5.9: Panel (a) shows the hourly precipitation observed at the study site during
the experiment. Panels (b)-(d) present the observed (by CRNS detector at 100, 200
and 500 cm depth) and predicted (based on reference soil moisture measurements
at similar depths) time series of Nr. The different times series of the predicted Nr

at each depth represent the results for every individual soil moisture sensor at that
depth (θSM) and the average from the associated sensor profile from the soil surface

to the depth of the CRNS (θ̂SM).

dynamics over the measurement period (Fig. 5.9d). However, despite the short-term
fluctuations visible in the observed neutron ratio, no trend can be observed, which
is in line with the predicted values of Nr. In both measurement depths of 200 cm
and 500 cm, the observed time series of Nr largely lie within the set of time series
predicted with different reference soil moisture sensor profiles.
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Estimating soil moisture from neutron ratio observations

The soil moisture time series of θSM derived from the observed Nr at depths of 100
and 200 cm are shown in Fig. 5.10. The estimated soil moisture time series follow
the general dynamics of the reference values of θSM at both depths. During the
observed intense precipitation events in August and November 2021, θSM at both
100 and 200 cm depth shows a distinct increase, which can also be seen in the soil
moisture time series observed by the reference sensors. Similarly, the dry period
in March 2022 results in a decrease in soil moisture, as indicated by θSM estimated
from Nr at depths of 100 and 200 cm as well as by the in situ reference sensors at
the respective depths. While the absolute values of θSM at 100 cm depth lie in the
range of observed soil moisture values from the different in situ reference sensors
available, the values of θSM at 200 cm depth are at the upper end of the set of time
series of reference sensors.

Figure 5.10: The observed time series of θSM from reference soil moisture sensor
profiles and estimated time series of θSM from Nr. The different colours indicate
the observed time series from individual reference sensors at the respective depths.
At both depths, corrected neutron intensities were smoothed with a 49 h moving
average prior to calculating Nr and subsequently estimating soil moisture. Panel
(a) shows th hourly precipitation observed at the study site during the experiment.
Panel (b) presents θSM from reference soil moisture sensors at 70 and 130 cm depth
and estimated time series of θSM at 100 cm depth. Panel (c) displays θSM from
reference soil moisture sensors and estimated time series of θSM from Nr at 200 cm
depth.
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5.5 Discussion

5.5.1 Feasibility assessment

The particle transport simulations conducted within the scope of this study revealed
a distinct relationship of the neutron ratio (Nr) with the local soil moisture content
as well as with the shielding depth. As a consequence, changes in both the local
soil moisture content at the depth of measurement and in the average soil moisture
content above the detector (due to its contribution to the shielding depth) alter the
neutron intensity and, thus, Nr observed by a downhole neutron detector. This illus-
trates the general possibility of deriving soil moisture information from Nr observed
in the scope of d-CRNS.

Before neutron ratios can be calculated from downhole neutron intensities and
from neutron intensities observed with the same detector above a water surface,
the latter need to be corrected for variations in absolute humidity. The response
of thermal neutrons to changes in absolute air humidity found here is less than
half of the value that was reported by Rosolem et al. [2013] and may be explained
by the generally smaller response of thermal neutrons to changes in hydrogen [e.g.
Weimar et al., 2020]. The rate of change between the thermal neutron intensity
and absolute humidity derived in our study can be used to adjust the correction
approach described by Rosolem et al. [2013] for epithermal neutrons so that it can
be used to correct thermal neutrons observed above water instead. Although this
correction approach may also be used as a first approach to correct thermal neutron
intensities measured above soils, it should be noted that the response of neutron
intensity to absolute humidity may change with soil moisture content, as reported for
epithermal neutrons by Köhli et al. [2021]. This illustrates the need to develop more
sophisticated approaches to the correction thermal neutron intensities for variations
in absolute air humidity.

A specific feature observed in the neutron transport simulations is that, although
neutron intensities generally increase with decreasing shielding depths, we find a
maximum of the neutron intensity and, hence, the neutron ratio for low soil moisture
content at shielding depths between 75 and 100 g cm−2, with lower neutron intensi-
ties at shielding depths below 75 g cm−2. A maximum secondary neutron intensity
at shallow depths below the surface has been simulated, for example, for surface of
Earth’s [Phillips et al., 2001; Zweck et al., 2013] or the surface of Mars [Zhang et al.,
2022], and it is linked to production of neutrons in the upper soil layers through
nuclear evaporation as well as moderation by elastic scattering and absorption pro-
cesses. Based on the neutron transport simulations conducted for a soil bulk density
of 1.43 g cm−3, an intensity maximum occurs in the soil up to a soil moisture content
of 0.045 cm3 cm−3 at a shielding depth of 100 g cm−2 (Fig. 5.3). At higher soil mois-
ture contents, the maximum disappears. This may be linked to a smaller leakage of
neutrons to the atmosphere as more hydrogen causes more elastic scattering in the
soil.

The tube and filling materials of the groundwater well noticeably influence the
signal of the active neutron probe [e.g. Keller et al., 1990] due to, for example, an
influence of material chemistry on thermal neutron intensities [e.g. Quinta-Ferreira
et al., 2016]. The simulation results of the present study show that the dimensions of
the sphere of influence can be comparable for a well tube made of PVC and stainless
steel with equal material thickness. As the average difference between a stainless
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steel and a PVC tube is approximately 1 cm for R86 and between 8 and 5 cm for
Vc86 and V86, a small effect of the material composition on the sphere of influence
can be identified but may be regarded as negligible. However, a thinner or thicker
wall of the tube is likely to have a stronger impact on the measurement volume. For
instance, a thicker PVC wall can be expected to reduce the measurement volume.

In contrast, the neutron ratios differ between a well tube composed of stainless
steel and PVC. Although the response to changes in soil moisture are similar, the
absolute neutron ratios of a PVC well tube compared with a stainless-steel tube of
equal thickness are noticeably lower. This may be attributed to the influence of the
higher absorption probability of chlorine for thermal neutrons in the PVC material.
For the same reason, a thinner PVC material reduces the absolute neutron ratios to
a smaller degree compared with a thicker PVC wall tubing.

For similar reasons, the effect of the filling material surrounding the actual tube
of the groundwater observation well might be of importance in the scope of d-CRNS
and should be assessed in future research. However, at our study site the width
of the filling material around the tube was only 10 cm, and the filling material was
similar to the original material of the surrounding undisturbed soils: a sand filling
for soil layers composed of sandy soils and clay for less conductive layers at greater
depths. Therefore, similar soil moisture dynamics in the refilled material to those
of the undisturbed material can be assumed for our test site.

The radius (R95) of the sphere of influence of the d-CRNS approach, even at high
soil bulk densities, is larger compared with active neutron probes. For the latter,
neutrons have to traverse the soil volume twice: on the way into the soil and back to
the detector. In contrast, for passive applications, the water-sensitive neutrons in the
fast-energy range are directly generated in the soil by high-energy neutrons, protons
and muons, and they only have to traverse the soil volume once. Consequently,
secondary cosmic-ray neutrons can reach the downhole neutron detector from origins
at greater distances.

According to the particle transport simulation, the most sensitive volume lies
above the detector centre. This is related to the source of cosmic-ray neutrons from
above the soil surface. Similarly to the measurement footprints of above-ground
CRNS, the sphere of influence varies with soil water content and with bulk density,
with a higher sensitivity close to the neutron detector. As a consequence, reference
soil moisture measurements close to the detector are likely to be more important
than those at greater distances of the integration volume when predicting neutron
ratios from reference soil moisture observations. Thus, further research may be
required in order to assess whether weighting schemes for reference soil moisture
measurements similar to those developed for above-ground CRNS are necessary in
order to improve predicted neutron ratios. It should be noted that the simulated
footprint dimensions are only valid for the modelled detector geometry and may
vary with detector size and well or access tube dimensions.

Thermal neutrons detected with an unshielded, bare neutron detector, as is used
in the present study, are more sensitive to absorption processes compared with neu-
trons in the epithermal energy range, which are dominated by moderation processes.
As a consequence, soil chemistry influences the observed neutron intensity in the soil
and, hence, also the derived neutron ratios from thermal neutrons and the neutron
ratio variations with changes in soil moisture contents due to differing nuclear ab-
sorption probabilities in soils with different chemical compositions [e.g. Zreda et al.,
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2008; Quinta-Ferreira et al., 2016]. However, we purposely used a simple soil chem-
istry set-up, which has been used as a standard configuration in several simulation
studies, in the particle transport simulations [e.g. Köhli et al., 2015, 2021]. This
is done in order to derive a first set of equations describing the neutron ratio re-
sponse and sphere of influence in the scope of the d-CRNS approach that can be
applied over wide range of observation sites instead of tailoring the simulation set-up
and, thus, the derived equations, specifically to the observation site of this study.
Although a standard soil chemistry was used to derive the transfer functions, the
observed neutron ratios match the dynamics and ranges of predicted neutron ra-
tios from in situ reference sensors, indicating the suitability and applicability of the
d-CRNS approach as well as the equations derived at this site. A different soil chem-
istry may only introduce an overall damping of the measured intensity [Köhli and
Schmoldt, 2022]. Nonetheless, the conclusions are limited by the single site chosen
for this study. Further research is required to test and validate the transferability of
the approach and to investigate the influences of, for example, varying soil chemical
compositions, access tube and filling materials, and suitable technical set-ups for
practicable applications.

5.5.2 Uncertainties

The experimental set-up of field measurements conducted within the scope of this
study comprised the measurement of thermal neutrons with an unshielded propor-
tional detector at 100, 200, 500 and 1000 cm depth with co-located reference in situ
soil moisture sensors installed down to 450 cm depth. Observed neutron intensities
in the groundwater observation well show a distinct response with changing soil
moisture contents at the depth of measurement, indicating the possibility of mea-
suring soil moisture and supporting the results from the various particle transport
simulation scenarios.

In line with the exponential decrease in the absolute neutron flux with increasing
soil depth, the uncertainty in the neutron intensity as well as the neutron ratio (Nr)
increases. In general, the observed downhole neutron intensities are lower than
those observed above a water surface and thus, lower compared with the intensities
expected for above-ground CRNS applications. As the uncertainty increases with
decreasing neutron intensity, the hourly time series needs to be averaged over longer
time intervals compared with time series of above-ground neutron detectors. While
above-ground neutron time series are typically averaged with a moving average of 13–
25 h [e.g. Bogena et al., 2013; Schrön et al., 2018b], longer moving average windows
of 25–49 h are more suitable for d-CRNS. However, with respect to the passive,
continuous nature of d-CRNS as well as the expected smaller soil moisture dynamics
at greater depths where soil moisture responses are also more strongly dampened,
larger averaging intervals are acceptable.

Additional improvements can be made to reduce the uncertainty in observed
downhole neutron time series. For example, detector tube no. 2 showed significantly
lower neutron intensities compared with tube no. 1, which can be related to the set-
tings of the instrument electronics. As the detector system used in this study was
reassembled from different CRS1000 neutron detector systems, the neutron pulse
module settings of tube no. 2 did not match the ideal configuration of the propor-
tional counter tube attached; thus, a large part of potentially countable thermal
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neutrons were discarded, leading to the lower observed intensities.
In spite of these uncertainties, our study reveals that observed Nr values follow

the temporal dynamics of predicted Nr values from Eqs. (5.5-5.10) and lie within
the range of predicted Nr values from in situ reference soil moisture sensor profiles.
Both intense rainfall events and gradual soil moisture changes during drying periods
could be observed in the downhole measurements. The measurements at 100 cm
depth exhibit stronger dynamics compared with those in 200 cm, which is in line
with reference soil moisture time series and predicted neutron ratios. The observed
Nr time series at 100 cm is closer to that predicted for 130 than for 70 cm depth;
this may be explained by the fact that the predicted time series of Nr strongly differ
between 70 and 130 cm depth as well as among the sensors within the two depth
layers. This is due to markedly different values and dynamics of the individual
soil moisture sensors. This marked variability in point-scale soil moisture hampers
direct comparison to the results derived from d-CRNS. It should be noted that,
especially at large depths of 500 cm, few soil moisture dynamics occur and the d-
CRNS uncertainty is high, limiting the range of suitable application depths of d-
CRNS. The results of this initial study revealed that the predicted hourly time
series of Nr from reference soil moisture sensors at 70 and 130 cm have a coefficient
of variation of 5–12% for the study period. At 200 cm, the coefficients of variation
are in a range between 3 and 16%. The time series of the observed Nr need to be
smoothed with a 49 h moving average to suppress noise and to result in coefficients
of variation at the same order of magnitude, i.e., a value of 11% at 100 cm and 9%
at 200 cm depth, respectively. In contrast, the coefficient of variation of the observed
Nr at 500 cm depth with the same moving average applied is 4.3 times larger than
the maximum coefficient of variation from the predicted Nr time series at 450 cm
depth. According to these findings, the d-CRNS observations can be expected to
be dominated by noise at the depth of 500 cm, rendering them unable to resolve the
small soil moisture variations at this depth. However, the d-CRNS approach may
be suitable for resolving the soil moisture dynamics at this site for shielding depths
of up to at least 330 g cm−2 which roughly corresponds to a soil depth of at least
200 cm, when a moving average interval of 49 h is applied.

The uncertainties in θSM that are caused by the simplified estimation method
used here (section 5.4.1) are comparatively small. Although we allowed the assumed
mean soil moisture in the unsaturated zone above the sensor to vary between the
wilting point and field capacity when estimating the soil moisture at the sensor
depth (which represents the upper bound of the possible uncertainty), the resulting
uncertainty bounds of θSM are very small and hardly relevant for the depth of 100 cm,
and they are still small for the depth of 200 cm (see Figure 5.10).

While it is a major advantage of this study that in situ point-scale soil moisture
observations for evaluating the d-CRNS approach are available at the study site
at 200 cm and even at 450 cm depth, all reference sensors are unfortunately located
outside the sphere of influence of the downhole neutron detectors in the groundwater
observation well (at distances between 20 and 40m). However, the observed Nr lies
within the set of predicted time series of Nr from in situ reference sensor profiles and
follows the general temporal dynamics of the predicted time series of Nr, thereby
supporting the applicability of d-CRNS.

A key motivation of this study is to provide a new methodological approach to
derive soil moisture information from deeper layers of the vadose zone in a larger
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integration volume compared with point-scale in situ sensors. However, deriving soil
moisture from observed Nr is difficult, as two soil moisture variables influence the
latter: the soil moisture content at the measurement depth (θSM) and the average
soil moisture from the soil surface to the detector centre (θ̂SM). A first option
would be the use of Eq. (5.5-5.10)) as a forward operator in combination with a
soil hydraulic model. Similar approaches have been conducted using techniques
such as the COSMIC (COsmic-ray Soil Moisture Interaction Code) forward-operator
model [Shuttleworth et al., 2013] for above-ground CRNS applications [e.g. Brunetti
et al., 2019; Barbosa et al., 2021]. Although the application as a forward operator in
combination with soil hydraulic modelling may produce more accurate results as the
soil water transport is simulated at different depths, and also allows for the retrieval
of soil moisture simulated in several soil layers, a large number of input parameters
are required that may not be available at all sites. Furthermore, coupling the derived
equations with a soil hydraulic model may introduce additional uncertainties due to
the model assumptions and the propagation of uncertainties from input parameters.

In contrast, the simple approach to estimate the local soil moisture content at
the depth of measurement (as the most sensitive variable) showed that the resulting
soil moisture time series follow the dynamics and also lie in the range of expected
values derived from in situ soil moisture sensors. However, it should be noted that
this approach may be less accurate and only allows for an estimation of the local
soil moisture time series.

As this study is restricted to a single observation site, further research is required
to test both the soil hydraulic-model-based approach and the approach used here
under different site-specific boundary conditions, set-ups and measurement depths.
This also includes the consideration of uncertainties arising from soils with high
vertical variability in bulk density (and possibly soil moisture), their impact on
predicted neutron ratios, and their impact on the estimated soil moisture at the
depth of measurement. For example, a lower bulk density and a lower soil water
content would lead to more neutrons penetrating into greater depths and, hence, to
increased count rates and footprint volumes. Nevertheless, the two mentioned ap-
proaches are available for soil moisture retrieval from d-CRNS and could be applied
under different soil hydrological conditions in future studies.

5.6 Conclusions

In this study, we tested the feasibility of CRNS downhole applications to estimate
soil moisture at greater depth by combining particle transport simulations with a
first application in the field. Although we used an unshielded neutron detector that
was most sensitive to thermal neutrons, a distinct response to changes in the soil
moisture content at the observation depth as well as in the shielding depth above the
neutron detector was found. This illustrates the possibility to observe soil moisture
values at greater depth with d-CRNS without additional soil moisture information
for calibration. This is achieved through the calculation of neutron ratios using a
measurement above water. The sphere of influence has a unique shape differing
from those expected for active neutron probes as the neutron source and detector
are not co-located. As detected neutrons are produced directly in the soil, the sphere
of influence is much larger compared with an active neutron probe; thus, d-CRNS
allows one to derive representative average soil moisture information at different
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depths of the root zone.
Our measurements of downhole neutron intensities and calculated neutron ratios

from a groundwater observation well provide experimental evidence that downhole
thermal neutron detectors are sensitive to changes in soil moisture contents at the
measurement depth. Simultaneously, the results of this study illustrate the oppor-
tunityto use existing monitoring infrastructure to retrieve soil moisture information
from deeper soil layers. The transfer functions developed from particle transport
simulations in the scope of this study can be used as an forward operator to cal-
culate neutron signals from soil moisture information. In combination with soil
hydraulic models, the forward operator can then be used to derive soil moisture
contents in future applications. When the use of complex models is hampered, for
example, by scarce data, a simple approach can be used for a first estimation of the
soil moisture at the measurement depth.

In conclusion, we provide both simulation-based and experimental evidence for
the feasibility of using downhole secondary cosmic-ray neutrons for the continuous,
non-invasive estimation of soil moisture from greater depth. This method has sev-
eral advantages compared with traditional in situ soil moisture sensors: the larger
integration volume of the measurement counteracts the usual problems caused by
the high spatial variability in soil moisture, even at small scales as a result of the
subsurface heterogeneity. Furthermore, it does not require demanding installation
procedures, as it simply uses existing infrastructure (i.e. observation wells) which is
readily available in many locations as part of standard monitoring networks. The
mathematical relationships presented allow for the prediction of the neutron signal
from soil moisture information, and approaches are available to derive soil moisture
contents from downhole neutron observations. However, as this study poses several
limitations and is only a first proof of concept, further testing and developments
will be necessary. This effort is worthwhile, especially as deep soil moisture mea-
surements are becoming increasingly important to monitor subsurface droughts or
water stress in forests as well as to validate hydrological models and extrapolation
efforts from remote-sensing products.
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5.7 Appendix A

In order to derive soil moisture information at the depth of measurement from the
observed neutron ratios, we propose the following exemplary approach:

1. For θ̂SM , we assign values ranging from the wilting point to the field capacity
in steps of 0.001 cm3 cm−3.

2. For every value of θ̂SM , we apply Eqs. (5.5-5.10).

3. For each time step of the observed time series of Nr, values of Nr are calcu-
lated by assigning values from 0.01 cm3 cm−3 to the soil moisture content at
saturation in steps of 0.0001 cm3 cm−3 to θSM .

4. The value of θSM that produces the smallest absolute difference between the
observed and calculated Nr at each time step is chosen. This procedure results
in a time series of θSM for each value of θ̂SM .

5. Based on this set of time series, we propose averaging the values for θSM for
each time step in order to provide a single time series of estimated soil moisture
values at the depth of measurement. The minimum and maximum time series
can also be calculated to assess the range (uncertainty) of possible θSM values
based on the observed Nr.
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5.8 Appendix B

Table 5.3: Sensor distribution of the reference soil moisture sensor profiles at the
study site located at a distance of about 20–30m from the groundwater observation
well.

Profile no.
Depth (cm) 1 2 3 4 5 6 7

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓
20 ✓ ✓ ✓ ✓ ✓ ✓
30 ✓ ✓ ✓ ✓ ✓ ✓ ✓
50 ✓ ✓ ✓ ✓ ✓ ✓ ✓
70 ✓ ✓ ✓ ✓ ✓ ✓
130 ✓ ✓ ✓ ✓
200 ✓ ✓ ✓ ✓ ✓
300 ✓ ✓
450 ✓ ✓

Table 5.4: Fitted parameters for Eq. (5.2-5.8) derived from particle transport sim-
ulation scenarios for a stainless-steel well tube with a wall thickness of 7.5mm.

Eq. no. Variable p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

(5.2) R86 185 cm 0.164 4.51 cm 2
(5.3) V86 115 cm 1.2 0.211 23.9 cm 0.5
(5.4) Vc86 31.2 cm 4 6.7 cm 0.6
(5.7) F1 0.502 -0.0206 cm2 g−1 0.0158 -0.000839 cm2 g−1 0.531 -0.00674 cm2 g−1

(5.8) F2 0.0667 0.000139 cm2 g−1 0.435 -0.0172 cm2 g−1

Table 5.5: Fitted parameters for Eq. (5.7-5.8) derived from particle transport sim-
ulation scenarios for a PVC well tube with a wall thickness of 5mm.

Eq. no. Variable p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

(5.7) F1 0.348 -0.0206 cm2 g−1 0.011 -0.000839 cm2 g−1 0.369 -0.00674 cm2 g−1

(5.8) F2 0.0482 0.000139 cm2 g−1 0.314 -0.0172 cm2 g−1
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Figure 5.11: Panel (a) shows the hourly precipitation observed at the study site
during a detailed period of the experiment in October-November 2021, and panel
(b) presents the observed time series of Nr at 100 cm depth and the predicted time
series of Nr from reference soil moisture sensor profiles at 70 and 130 cm depths. The
different colours indicate the predictions from individual reference sensor profiles.
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Figure 5.12: Panel (a) show the hourly precipitation observed at the study site
during a detailed period of the experiment in October-November 2021, and panel
(b) presents the observed time series of Nr at 200 cm depth and the predicted time
series of Nr from reference soil moisture sensor profiles at 200 cm depth. The different
colours indicate the predictions from individual reference sensor profiles.
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Figure 5.13: Panel (a) shows the hourly precipitation time series, and panel (b)
presents the different soil moisture time series derived from CRNS. The neutron
observations from above-ground CRNS were processed with standard correction and
calibration procedures [site Serrahn; Bogena et al., 2022]. A 25h moving average
was applied to the corrected neutron intensities prior to deriving soil moisture from
above-ground CRNS observations with the standard transfer function [Desilets et al.,
2010; Köhli et al., 2021]. Marked periods with snow cover represent periods with
fractional to full snow cover and snow depths of up to 10-15 cm.
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Chapter 6

Synthesis and conclusion

6.1 Synthesis

The four chapters of this thesis comprise individual studies which contribute to the
advancement of the CRNS technique in respect to (i) atmospheric, geomagnetic and
heliospheric variables influencing epithermal and thermal neutron observation and
their correction, (ii) the possibilities to derive soil moisture from corrected neutron
observations and to reduce the measurement footprint as well as (iii) to obtain
CRNS-derived soil moisture information for greater soil depths.

6.1.1 On the correction of environmental influences on
neutron observations

Alternatives for the correction of high-energy cosmic ray fluxes

Apart from variations of hydrogen in the ground, e.g. stored as soil organic matter,
lattice water and most importantly soil moisture as well as above the ground as
hydrogen stored in biomass, epithermal and thermal neutron signals are influenced
by atmospheric variables and the intensity of primary high-energy cosmic radiation.
Above land, the investigation of influencing factors beyond variations of hydrogen
stored in and above the soil is inherently difficult. Given the high spatio-temporal
variability of soil moisture, knowledge on its exact spatio-temporal variations would
be required to separate observed neutron signals into the different components. In
contrast, when CRNS instruments, i.e. neutron detectors, are placed above a large
water body, the below and above-ground hydrogen pools can be assumed constant
and the atmospheric influences as well as the influence of incoming primary radiation
variations can be isolated.

The value of an above-water reference measurement of neutron intensities has
been already proposed by Franz et al. [2013b] and applied by McJannet et al. [2014]
for e.g. transforming neutron observations to soil moisture. Similarly, Andreasen
et al. [2016] used above-water measurements of thermal and epithermal neutrons for
a comparison with modelled neutron intensities. In chapter 5 of this thesis, above-
water measurements are used to derive a detector-specific scaling parameter for a
neutron-to-soil moisture transfer function, enabling a direct measurement of the re-
quired calibration parameter and to obviate the need for a calibration against in situ
soil moisture measurements. While these measurements are usually of a comparably

150



Soil moisture from Cosmic-Ray Neutron Sensing D. Rasche

short duration of a few days, continuous long-term measurements of epithermal and
thermal neutron measurements may also serve as an alternative to neutron moni-
tors for determining the variations incoming primary radiation and its subsequent
use for the correction of neutron signals observed at CRNS sites on land [Schrön
et al., 2017]. After correcting neutron signals observed above water for the effect
of air pressure and absolute air humidity variations based on local measurements of
air pressure, relative air humidity and air temperature, the remaining signal mainly
consists of variations in incoming primary radiation and a noise component, only.
In chapter 2, this remaining signal of an floating above-water detector is compared
to neutron monitors around the globe covering different altitudes and geomagnetic
cutoff rigidities. In general, the corrected neutron signal correlates well with the
signals of the respective neutron monitors with better matching temporal dynamics
for neutron monitors with similar cutoff rigidity and altitude. Advanced scaling
approaches accounting for the difference in geomagnetic cutoff rigidity and altitude
[Hawdon et al., 2014; McJannet and Desilets, 2023] improve the statistical goodness
of fit with the different neutron monitors, especially for large difference in cutoff
rigidity and altitude, with the most recent approach after McJannet and Desilets
[2023] generally showing the best performance.

On the one hand, the findings from chapter 2 illustrate that newly developed
scaling approaches can provide an improved incoming primary radiation correction
of observed epithermal neutron intensities from CRNS with available neutron mon-
itors. On the other hand, and more importantly, it is shown that floating CRNS
instruments mounted on buoys or pontoons can serve as an alternative to neutron
monitors for measuring variations incoming radiation and consequently, offer the
possibility for correcting neutron signals at CRNS site on land. Given the uncer-
tainty of the availability of high-quality and near-real time neutron monitor data
in future and the dependency on the CRNS technique on the availability of data
of incoming primary cosmic-ray variations, these findings are of high importance
for advancing the CRNS technique and sustaining its applicability in future by be-
coming independent from external data sources as e.g. individual national CRNS
networks could operate their own CRNS reference station observing neutron in-
tensities above water. Yet, differences in altitude and geomagnetic cutoff rigidity
between the above-water reference site and the CRNS instruments installed on land
remain.

Therefore, muons observed by CRNS instruments with an additional muon de-
tector could serve as an on-site reference for incoming primary radiation and its
correction [Stevanato et al., 2019, 2022] which would allow for a site-specific correc-
tion for incoming radiation. Although muons have been shown to respond to solar
events [e.g. Braun et al., 2009] and hence, variations in incoming primary radiation,
their intensity observed at the ground level is influenced by air pressure and air
temperature variations in different altitudes of the atmosphere [de Mendonça et al.,
2016] which needs to be removed before using them in correction procedures for
CRNS data. Previous studies used near-surface temperatures only [e.g. Stevanato
et al., 2022], while correction approaches incorporating temperature information
from the entire atmosphere profile provided the most accurate results in correcting
the temperature effect from muon observations [de Mendonça et al., 2016]. The need
for high altitude air temperature information for accurately correcting muon infor-
mation may hamper their application in correcting low-energy cosmic-ray neutrons.
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Furthermore, it has been shown that neutrons of different energies respond differ-
ently to solar events such as Forbush Decreases [Hubert et al., 2019]. This raises the
question if a direct comparison between high-energy neutrons detected by neutron
monitors and muons detected by local detectors is generally possible or if additional
scaling and transfer functions are required to obtain most accurate correction re-
sults. Installing CRNS instruments above water which are identical to those used
in CRNS applications would overcome this issue and allow for a more direct com-
parison and correction of variations in primary incoming radiation. Consequently,
above-water CRNS instruments and locally observed muons yield potential to serve
as alternatives for correcting variations in incoming primary cosmic radiations in
the context of CRNS. Although chapter 2 underlines the potential of above-water
measurements, the advantages, disadvantages and remaining challenges of either ap-
proach remain an important topic in CRNS research and further developments are
required to enable and sustain the applicability of the CRNS technique, also in the
absence of available high-energy neutron monitor data.

Differing influences on epithermal and thermal neutrons

The above-water neutron measurements described in chapter 2 also provide a first
empirical analysis of the dependencies of epithermal neutrons, observed by the mod-
erated neutron detector and thermal neutrons observed by the bare detector under
conditions with a constant amount of hydrogen in the sensitive measurement foot-
print. It is shown that epithermal neutrons respond most intensely to changes
in air pressure followed by incoming primary radiation and absolute air humidity.
Thereby, empirical evidence for the air humidity correction factor determined by
Rosolem et al. [2013] from neutron transport simulations is provided indicating its
validity for hydrogen-rich environments. Some studies suggest that applying individ-
ual correction factors can improve the goodness of fit of CRNS-derived soil moisture
estimates when compared against reference soil moisture measurements [e.g. Jeong
et al., 2021]. However, the empirical findings of this thesis underline the impact of
the three parameters on observed neutron intensities and the need for correcting
their effect on the observed neutron signal. Empirical findings from studies which
obtain better results when using only selected correction parameters may be related
to the high-spatio temporal variability of the target variable, e.g. soil moisture, and
its insufficient representation in reference measurements or the insufficient choice of
correction data sets, e.g. a neutron monitor. This again highlights the usefulness of
measurements above a water surface without variability in environmental hydrogen
content in order to assess the impact of atmospheric variables and incoming radia-
tion flux on neutron observation and to evaluate correction approaches. While the
response of epithermal neutrons has been already shown in a preliminary analysis
of the buoy experiment [Schrön et al., 2016; Schrön, 2017], the response of thermal
neutrons remained unexplored.

In previous research investigating the response of thermal neutrons to environ-
mental changes and their potential in, e.g., estimating snow water equivalents or
above-ground biomass, thermal neutron intensities have been corrected differently
for atmospheric variables such as air pressure and air humidity as well as varia-
tions in incoming primary cosmic radiation. Chapter 2 provides the first empirical
evidence that thermal neutrons also respond to changes in atmospheric pressure,
incoming primary cosmic radiation and absolute humidity. While the effect of air
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pressure is similar on epithermal and thermal neutrons, first differences become visi-
ble when the incoming primary radiation is considered. This corresponds to findings
from previous studies indicating a different response of different neutron energies to
changes in primary cosmic radiation [e.g. Hubert et al., 2019]. On the one hand, this
highlights the need for further research, but on the other hand, due to the similar
response, an equal correction of epithermal and thermal neutrons as first approach
may be justified rather than not applying any correction for variations of incoming
primary radiation. Distinct differences are visible when the response to changes in
absolute air humidity is considered, which is less than half of what can be observed
for epithermal neutrons. This empirical finding is in line with results from neutron
transport simulations conducted in chapter 5 and validates the first air humidity
correction coefficient for thermal neutrons subsequently developed in this thesis.

As illustrated in chapter 2, applying correction procedures designed for epither-
mal neutrons to thermal neutron observations can lead to an over-correction, mis-
leading results and biased interpretations. As a consequence, results from studies
using and correcting thermal neutrons for not all influencing parameters [e.g. Tian
et al., 2016] and with correction procedures designed for epithermal neutrons [e.g.
Jakobi et al., 2018, 2022; Bogena et al., 2020] need to be assessed with extreme
caution. When thermal neutrons are not corrected for absolute air humidity vari-
ations using the approach after Rosolem et al. [2013] for epithermal neutrons [e.g.
Andreasen et al., 2016], conclusions on the observed neutron responses need to be
drawn against the background of an air humidity effect still being present in the
neutron signal. However, due to the relatively small effect of air humidity, this may
be more feasible than interpreting the results in the light of all influencing factors
and potential over-corrections.

6.1.2 From neutron observations to soil moisture estimates

Towards new transfer functions

Observing neutron intensities above water poses further potential for the comparison
with neutron transport simulations, as above-water conditions are less complex than
terrestrial field sites with e.g., heterogeneous soil moisture conditions, and hence,
can be easier and more accurately represented in computational models [Andreasen
et al., 2016]. This has been already demonstrated with the validation of the sim-
ulated air humidity correction factor for thermal neutrons (chapter 5) using the
buoy-based neutron measurements above water (chapter 2) and is further exploited,
evaluating newly developed neutron-to-soil moisture transfer functions. Köhli et al.
[2021] provide an innovative transfer function relating epithermal neutron obser-
vations to changes in soil moisture and incorporating the change of the functional
relationship with air humidity. The new transfer function is available with differ-
ent fitted parameter sets originating from the simulations with different neutron
transport models. As neutron transport models naturally produce deviating results
depending on, for example how specific physical processes are mathematically im-
plemented, it remains challenging which parameter set provides the most accurate
results.

By using the above-water measurements from chapter 2, it was shown that the
parameter sets from the MCNP neutron transport model are generally better than
those from the URANOS neutron transport model, which is in line with Köhli et al.

153



Soil moisture from Cosmic-Ray Neutron Sensing D. Rasche

[2021]. Contrasting results have been found regarding the use of complex detector re-
sponse functions for evaluating the transport simulations. Using a detector response
function mimicking the response and behaviour of a real neutron detector to derive
the fitting parameters for the transfer function can be expected to match measured
field data more closely. Applying the transfer function above water, where only air
humidity influences the neutron signal dynamics, it was found that those parameter
sets which are based on detector response function produce more accurate results.
However, Köhli et al. [2021] found that the transfer function performs slightly worse
in predicting neutron signals from local soil moisture measurements using these pa-
rameter sets. Köhli et al. [2021] suggested insufficient spatio-temporal soil moisture
reference data as an explanation why the more realistic detector response function
parameter sets performed worse. Further evidence for this hypothesis was found
in chapter 4 where the new transfer function with all available parameter sets was
tested against soil moisture measurement from a network of in situ point-scale soil
moisture sensors. It was confirmed that the parameter sets from the MCNP model
provide better results and that the detector response function parameter sets per-
formed slightly worse. The number of reference soil moisture sensors is, however,
limited with a minimum installation depth of 10 cm and therefore the first centime-
tres of the soil to which the CRNS method is most sensitive are not covered. This
may lead to the better performance of the transfer functions with parameter sets
not representing the response of a real neutron detector [Köhli et al., 2021] and
again illustrates the advantages of above-water measurements of neutron signals in
order to exclude the spatio-temporal variability of different soil moisture and other
sources of hydrogen at terrestrial observation sites.

On the basis of chapter 2 and 4, the initial findings of Köhli et al. [2021] can be
confirmed, that the new transfer function with the fitting parameter set derived from
the MCNP model and evaluated with a detector response function provide the most
accurate results. Furthermore, chapter 4 confirms the superior performance of the
new transfer function compared to the standard transfer function after Desilets et al.
[2010]. Although the standard transfer function is still commonly used for deriving
soil moisture from CRNS in current research [e.g. Altdorff et al., 2023; Brogi et al.,
2023; Jiang et al., 2023], the findings of this thesis underline the potential of new
approaches and the need for a shift from using the standard transfer function to the
universal transport solution introduced by Köhli et al. [2021], for retrieving most
accurate soil moisture estimates.

Limiting the horizontal footprint

Some cases of application require a reduction of the epithermal neutron signal and
especially, the subsequently derived soil moisture estimates to an area of interest
smaller than the actual sensitive measurement footprint of CRNS. This could be
the case if two distinct soil moisture regimes, e.g. caused by different soil physical
properties or vegetation covers, occur within the CRNS measurement footprint with
only one being of interest for a specific monitoring application or environmental
modelling task.

In the case of a constant soil moisture value in one part of the footprint and a
variable soil moisture content in the subfootprint area of interest, a correction of the
neutron signal can be applied to account for the resulting dampening effect in the
neutron signal [Schrön et al., 2018b]. However, difficulties arise when multiple soil
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moisture regimes with varying and unknown soil moisture dynamics occur within
the sensitive measurement footprint. Chapter 3 investigates possibilities to reduce
the CRNS-derived soil moisture estimates at a study site with two distinct soil
moisture regimes. On the one hand, the neutron signal of the bare, thermal neutron
detector is used and on the other hand, the neutron-to-soil moisture transfer function
is adjusted to compensate for the influence of soil moisture dynamics from areas
outside the subfootprint area of interest.

Thermal neutrons observed by the unshielded, bare neutron detector have been
thought to have a smaller measurement radius and thus, a smaller sensitive mea-
surement footprint compared to epithermal neutrons observed by the moderated
neutron detector of CRNS instruments. Bogena et al. [2020] were the first stating a
measurement radius of 35m for thermal neutrons, which is much smaller compared
to the values above 150m suggested by Köhli et al. [2015] as the lower bound for
epithermal neutrons. A footprint radius in a similar range of 40-50m was deter-
mined by Jakobi et al. [2021] from neutron transport simulations, suggesting that
at the study site described in chapter 3, the thermal neutron signal should not be
influenced by soil moisture dynamics occurring in areas of greater distance, i.e. those
not of interest. Following these results, thermal neutrons could be used to derive
soil moisture for the subfootprint area of interest. However, the neutron transport
simulations conducted in chapter 3 show that also thermal neutrons respond to soil
moisture changes in distances beyond the suggested 40-50m. This indicates that
the definition of the sensitive measurement radius used in previous studies is in-
sufficient and should be adapted to the one used for determining the measurement
radius of epithermal neutrons. In this case, the measurement footprint is likely to be
much larger than 50m, although it remains smaller than the footprint of epithermal
neutrons. Supporting evidence for the larger footprint of the bare neutron detector
derived in chapter 3 is given by Brogi et al. [2022], who simulated measurement foot-
print radii of above 120m for a neutron detector shielded with 5mm HDPE, which
largely measures thermal neutrons and is hence, most comparable to an unshielded,
bare detector.

Consequently, the neutron signal of the bare neutron detector cannot be used
for estimating soil moisture in subfootprint areas around the CRNS instrument
as small as investigated in chapter 3. However, the correlation between the two
neutron signals may yield some information about the horizontal heterogeneity and
should be investigated more closely in future studies. At some observation sites
including the latter, the thermal neutron signal may still be considered as a proxy
for a different response of neutrons to soil moisture changes in the subfootprint
area of interest. An adjusted neutron signal for a better estimation of soil moisture
with the standard neutron-to-soil moisture transfer function in subfootprint areas
can be derived. Although the approach improved the soil moisture estimates in a
subfootprint area at the study site considered in chapter 3, the transferability to
study sites with other characteristics and soil moisture distributions is limited.

Instead, a more general approach successfully tested in chapter 3 includes the
change of the neutron-to-soil moisture transfer function rather than changing the
neutron signal by fitting the functional relationship to reference soil moisture in-
formation in the subfootprint area of interest. The adjusted transfer function may
then be able to partly compensate for the influences of soil moisture changes in
parts of the footprint which are outside the area of interest. Although this approach
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strongly improved the estimation of soil moisture in a subfootprint area of interest
and is generally applicable, it requires a sufficient amount of in situ reference soil
moisture information for calibration of all parameters of the neutron-to-soil mois-
ture transfer function. As multiple calibration campaigns have been suggested in
previous studies for obtaining more accurate CRNS-derived soil moisture estimates
[Iwema et al., 2015], enough reference data for adjusting may already be available at
many CRNS observation sites due to existing sampling strategies. Even more data
for an adjustment of the transfer function could be obtained from a small number of
permanently installed point-scale in situ soil moisture sensors, which has been sug-
gested in other studies [e.g. Scheiffele et al., 2020] to complement CRNS observation
sites and allow for additional analyses and processing procedures.

The finding that adjusting the neutron-to-soil moisture transfer function can be
used to improve the estimation of soil moisture in a subfootprint area of interest
and thereby limiting the measurement footprint, sheds light on other studies which
adjusted the functional relationship to improve CRNS-derived soil moisture esti-
mates in the entire footprint such as Lv et al. [2014] and Heidbüchel et al. [2016].
Spatio-temporal heterogeneities of soil moisture could have led to the necessity of
adjusting the neutron-to-soil moisture transfer function. Investigations by Schrön
et al. [2023a] on the influence of soil moisture heterogeneities in the measurement
footprint on the observed epithermal neutron signal confirm a change of the neutron
response to soil moisture, if e.g. soil moisture changes are limited to a smaller sub-
footprint area close to the CRNS instrument. A subsequently provided correction
approach may allow for the correction of the transfer function for areas with static
soil moisture in the measurement footprint [Schrön et al., 2018b, 2023a] and serve
as a more general approach than empirically deriving site-specific transfer functions
by calibration against in situ reference soil moisture information. However, in case
of non-static soil moisture conditions in both, the subfootprint area of interest and
the remaining footprint area with generally unknown soil moisture content, it re-
mains to be investigated whether the physically-based approach after Schrön et al.
[2023a] can robustly improve the derived soil-moisture estimates in the subfootprint
area of interest. Here, the empirical adjustment of the transfer function against
reference soil moisture information in the subfootprint area of interest may serve as
an efficient alternative. Due to its simplicity, the latter may be especially useful as
the reduction of the CRNS-derived soil moisture estimates to a specific subfootprint
soil moisture regime is a prerequisite for their subsequent incorporation in, e.g. soil
water transport models.

Although chapter 3 contributes to the understanding of impact of subfootprint
soil moisture heterogeneities in the scope of CRNS research, further research is re-
quired, especially with respect to differing and partly unknown soil moisture contents
in the sensitive measurement footprint, their influence on epithermal and thermal
neutron signals as well as potential correction approaches.

6.1.3 Deriving soil moisture in greater depths

Modelling deeper soil moisture

Soil moisture in deeper soil layers is of great importance for the water supply of
plants and hence, the drought tolerance of ecosystems as well as the storage capacity
available to retain water in the flood generation process. Despite its generally large
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integration volume allowing for estimating representative areal soil moisture averages
at the field scale, the measurement depth of CRNS is limited to the first decimetres
of the soil.

Simple mathematical modelling approaches have been used to extrapolate sur-
face soil moisture information from CRNS to greater depths [e.g. Peterson et al.,
2016; Zhu et al., 2017; Nguyen et al., 2019; Franz et al., 2020]. However, all these
approaches require reference soil moisture information in the depth of interest for
calibrating or building empirical models or permanently installed reference sensors.
In many cases, such reference in situ soil moisture information is not available, which
raises the question of approaches that can be applied without calibration and relying
on soil physical and environmental parameters.

Complex soil hydraulic models solving the Richards equation including HYDRUS-
1D [Šimůnek et al., 2008] may be used when solely relying on soil physical and envi-
ronmental variables and have been applied to simulate soil water fluxes in different
aspects of CRNS research [Bogena et al., 2013; Lv et al., 2014; Brunetti et al., 2019;
Barbosa et al., 2021]. Although physically-based, models with higher complexity
decrease the ease of application and usually require a larger number of input pa-
rameters such as precipitation, which is not always available at CRNS observation
sites.

Against this background, a simple but physically-based depth-extrapolation ap-
proach after Manfreda et al. [2014] is modified in chapter 4 in order to allow its
application based on estimated soil physical and environmental parameters. Us-
ing literature-based values and estimating the remaining parameters based on the
modification described in chapter 4, the depth-extrapolation approach provides soil
moisture information in a second, deeper soil layer without the necessity of in situ
reference soil moisture information in the depth of interest for calibration.

Under similar boundary conditions, the modified, uncalibrated modelling ap-
proach can compete with the original, calibrated approach introduced by Manfreda
et al. [2014] by meeting a benchmark statistical goodness of fit threshold used to
evaluate the modelling approach in previous studies [Baldwin et al., 2019]. However,
at the forested study site with sandy soils considered in chapter 4, the modelling
approach in its original and modified form is generally not able to capture the soil
moisture dynamics in deeper soil layers to a sufficient degree.

Only a calibration against in situ reference soil moisture information and allowing
soil physical parameters of the model in a non-physically reasonable range sufficiently
captures the soil moisture dynamics observed by in situ reference sensors in the depth
of interest. Likely caused by complex preferential flow processes in sandy forest soils,
this illustrates the limitations of modelling approaches for deriving information on
soil moisture in deeper soil layers.

On the one hand, the results presented in chapter 4 underline the value of simple
depth-extrapolation approaches for simulating first estimates soil moisture in greater
depths, even when no in situ reference soil moisture information for calibration are
available. These approaches are not limited to CRNS-derived surface soil moisture
estimates and may also be applied with surface soil moisture information derived
from, for example, remote sensing applications, making them applicable on even
larger spatial scales. On the other hand, complex soil hydraulic processes are difficult
to capture, especially with simple modelling approaches highlighting the need for in
situ measurements of soil moisture in greater depths.
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Measuring deeper soil moisture

Obtaining the most accurate and reliable results in soil hydrological modelling appli-
cations requires the evaluation and calibration of the model against in situ reference
information such as measured soil moisture values. Point-scale electromagnetic soil
moisture sensors buried in the soil are commonly used to measure soil moisture at
monitoring sites. However, a large number of sensors are required to obtain repre-
sentative field-scale averages of soil moisture to make them most comparable with
the process scales of many (soil) hydrological models.

Especially in larger depths, the installation of a larger amount of electromag-
netic sensors is accompanied with higher work efforts and soil disturbance. Other
geophysical methods such as ERT may overcome the need for sensor installations in
the depth of interest and measure soil moisture on a larger spatial scale. However,
these come with their own methodological challenges and limitations. Other geo-
physical methods also often rely on campaign-based snapshot measurements while
continuous soil moisture information on a high temporal resolution are required for
monitoring purposes and beneficial for model calibration and validation efforts.

The main advantage of CRNS in its standard application with instruments in-
stalled above the soil surface is the large integration volume allowing for estimating
representative field-scale averages of soil moisture at a high, i.e. hourly temporal res-
olution. Therefore, chapter 5 investigates the possibility of using neutron detectors
in access tubes to observe soil moisture in greater depths.

Used as an analogy to the active neutron probe for soil moisture measurements
developed in the last century [Gardner and Kirkham, 1952] and equipped with an
active neutron source and co-located neutron detector, the downhole CRNS ap-
proach described in chapter 5 is an entirely passive approach. Compared to the
active neutron probe, its application is not restricted due to radiation hazards and
can be operated in a continuous mode.

The methodological framework introduced in chapter 5 produced valuable esti-
mates of soil moisture in greater depths and does not require calibration against
in situ reference soil moisture information. Instead, the detector-specific neutron
intensity above a large water-body is used as a calibration parameter, as previously
suggested for above-ground CRNS applications [Franz et al., 2013b]. The detector-
specific intensity above water can be measured by taking the CRNS instrument on
a lake, making in situ soil moisture sensors or soil samples from the depth of in-
terest not necessarily required. In contrast, soil physical properties including the
soil bulk density need to be reasonably well estimated in order to obtain the most
accurate results. Adding to the limitations of the approach, the impact of a soil
profile comprising soil layers with different bulk densities and soil chemical composi-
tions has not been assessed in chapter 5 and requires further research to investigate
the applicability of the introduced methodological framework at sites with different
environmental characteristics.

The integration volume of the downhole CRNS approach is much smaller com-
pared to the CRNS applied above-ground. Nevertheless, chapter 5 suggests that it
is almost twice as large as the estimated measurement volume of the active neutron
probe, being another advantage of the passive downhole CRNS approach. Conse-
quently, a downhole CRNS instrument may be as representative as a larger number
of point-scale electromagnetic in situ sensors in a specific depth, which reduces the
amount of work and soil disturbance in monitoring soil moisture in greater depths.
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Using existing monitoring infrastructure such as groundwater observation wells
has already been suggested in the context of the active neutron probe [Keller et al.,
1990] and is adapted for downhole CRNS in chapter 5. The application of downhole
CRNS for estimating soil moisture in the deeper unsaturated soil does not restrict
groundwater level measurements and illustrates the potential of using existing mon-
itoring infrastructure for deeper vadose zone monitoring. For instance, Boeing et al.
[2022] were not able to evaluate drought simulations in Germany in deeper soil layers
due to an insufficient reference soil moisture data availability for greater depths. On
a national scale, equipping a sufficient number of existing groundwater observation
wells with downhole CRNS would allow for evaluating and improving nationwide
hydrological model results, even in deeper soil depths of ≥ 100 cm.

Being a passive approach, downhole CRNS relies on the intensity of hydrogen-
sensitive neutrons in the measurement depth. As the source of these secondary
cosmic-ray neutrons are high-energy cosmic-ray particles originating from space, the
intensity of potentially detectable neutrons decrease with increasing soil depth, rais-
ing the question in which depth-range downhole CRNS can be applied. Generally,
larger depths result in lower neutron intensities. Here, the same neutron detector
requires larger integration times for obtaining a similar statistical accuracy.

Thermal neutrons with an unshielded, bare neutron detector have been observed
in a few tens of metres [e.g. Grieger et al., 2020] to several hundreds of metres below
the soil surface [e.g. Best et al., 2016]. The origin of these neutrons is dominated
by high-energy neutrons and protons in the first few metres. Muons become the
dominating source for hydrogen-sensitive neutrons in several tens of metres followed
by radioactive decay processes dominating in depths of hundreds of metres [Heusser,
1996; Best et al., 2016]. The presence of thermal neutrons in depths of several
hundreds of metres suggests the potential to theoretically obtain information on the
amount as well as variations of hydrogen and thus, water in the surrounding rock
material in these depths illustrating potential further fields of application.

With a focus on soil moisture, the approach presented in chapter 5 only con-
sidered the unsaturated zone of the soil with depths down to 10m, showing that
neutrons can still be observed in these depths. However, a reasonable accuracy
with integration times of 24 and 48 hours was only achieved down to 200 cm with
a CRNS neutron detector designed for above-ground applications. In larger depths,
integration intervals of multiple days to weeks might be required for the same de-
tector to obtain a sufficient statistical accuracy. Given, the generally dampened soil
moisture dynamics in larger depths longer integration times and thus, a lower tem-
poral resolution may be still be considered acceptable. The spatio-temporal scale
of downhole CRNS relative to other methods is shown in Fig. 6.1. The develop-
ment and improvement of neutron detectors for CRNS applications is ongoing [e.g.,
Stevanato et al., 2019; Weimar et al., 2020; Stowell et al., 2021; Patrignani et al.,
2021]. More efficient, yet geometrically small neutron detectors tailored to downhole
CRNS applications could further improve the method and should be investigated in
future.

Although chapter 5 introduces a first methodological framework of downhole
CRNS yielding large potential for monitoring soil moisture in the deeper unsaturated
zone, several open questions remain. These comprise the general applicability of
the method at different observation sites, the impact of vertically heterogeneous soil
physical properties as well as different soil chemical compositions including neutrons
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Figure 6.1: Spatio-temporal scale of downhole CRNS relative to other soil mois-
ture measurement techniques. A larger integration time and thus, lower temporal
resoltion may allow for a larger measurement depth of downhole CRNS. The foot-
print of an individual sensor is displayed solid while minimum temporal resolution
and maximum spatial extent of typical applications (e.g. clusters of points-scale in
situ TDT and FDR sensors) are depicted by frames in the respective colour [Figure
modified after Heistermann et al., 2022].

produced by radioactive decay processes of soil components emphasizing the need
for further research.

6.2 Conclusions and outlook

Cosmic-Ray Neutron Sensing is a promising measurement technique for monitoring
soil moisture at spatio-temporal scales relevant for informing flood and drought risk
modelling and forecasting. This becomes especially important in a warming climate
with intensifying hydro-meteorological extremes.

Although the methodological framework of CRNS has been introduced more than
a decade ago, numerous challenges and questions remained unsolved. Therefore,
this thesis aimed for advancing the CRNS method in different aspects ranging from
correcting observed neutron signals to the estimation of soil moisture near-surface
and deriving soil moisture estimates from larger soil depths.

A major challenge in CRNS research and monitoring applications is the cor-
rection of the raw neutron signals observed by the CRNS neutron detector prior
soil moisture can be estimated. For the first time, this thesis provides empirical
evidence that both epithermal and thermal neutrons are sensitive to the same influ-
encing variables. Thereby confirming the applicability of existing and new correction
approaches developed in the scope of this thesis, through the validation of neutron
transport models with field experiments. On the one hand, these findings indicate
that care needs to be taken when interpreting the results on thermal neutrons for
hydrological and environmental applications, but not correcting the neutron signal
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sufficiently. On the other hand, confirming the dependence of thermal neutrons to
variations of air pressure, incoming primary radiation and absolute air humidity
and by presenting an adjusted correction approach for the latter, this thesis sets a
benchmark for investigating the potential of thermal neutrons in future studies.

Both thermal and epithermal neutrons respond to variations of incoming primary
radiation and a correction is required to obtain most accurate soil moisture esti-
mates. Solely relying on high-energy neutron monitors sparsely distributed across
the globe, and with the future operation of specific neutron monitors being uncer-
tain, finding alternatives remains a major challenge in CRNS research. This thesis
shows that scaling functions developed in recent studies can improve the correc-
tion based on neutron monitor sites in large distances to the respective CRNS site.
Nevertheless, the best result would be obtained with information of the high-energy
neutron flux close to the site of interest.

The present thesis illustrates the potential of permanently installed neutron de-
tectors above water bodies to monitor variations in the neutron signal caused by
variations in incoming primary radiation which could be subsequently used for the
correction of neutron signal at terrestrial observation sites. These floating detectors
are easier to install and maintain and may be installed close to a specific CRNS
monitoring network, for example. Although other approaches including the use of
locally observed muons are currently investigated and further research is of utmost
importance, the results presented in this thesis represent an important step forward
in finding suitable alternatives for the correction of neutron signals for variations in
incoming primary radiation observed in the scope of CRNS.

Soil moisture derived from epithermal neutrons requires neutron-to-soil moisture
transfer functions. Most studies rely on the standard transfer function introduced
with the methodological framework of CRNS. However, more recently introduced
transfer functions are expected to provide more accurate estimates of soil moisture.
Tested at a terrestrial CRNS monitoring site and above water, newly developed
transfer functions accounting for interdependence between soil moisture and absolute
humidity provide more accurate representations of observed neutron signals and soil
moisture values. Consequently, the results of this thesis indicate the necessity for a
shift from the standard transfer function to newly developed approaches for more
accurate estimates of field-scale soil moisture.

Strongly heterogeneous, e.g. binary, soil moisture distributions in the sensitive
measurement footprint may allow for investigating the sensitive measurement foot-
print size of epithermal and thermal neutrons. Showing that thermal neutrons have
a smaller footprint than epithermal neutrons, but much larger than estimated in
previous studies, the results of this thesis shed new light on potential research ap-
plications of thermal neutrons but likewise underline the need for further research.

In contrast, heterogeneous soil moisture distributions in the sensitive measure-
ment footprint complicate the estimation of soil moisture with CRNS. This thesis
provides an generally applicable approach to reduce CRNS-derived soil moisture
observations to the soil moisture regime in the subfootprint area of interest. This
is a prerequisite for subsequent soil hydrological modelling applications such as the
derivation of soil moisture in larger soil depths.

Despite its large integration radius, the measurement depth of CRNS is limited
to the upper decimetres of the soil. The high importance of soil moisture in deeper
layers raises the question of increasing the observational window of CRNS in the ver-
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tical through soil hydrological modelling approaches of varying complexity. Simple
modelling approaches are generally easier to apply and require fewer model input
information, but usually require soil moisture information in the depth of interest for
model calibration or set-up. This thesis provides a modification of a simple mod-
elling approach, making it applicable without reference information in the depth
of interest and solely relying on soil physical and environmental parameters which
can be estimated with sufficient accuracy. Although it is shown that valuable first
estimates of deeper soil moisture can be derived, an insufficient performance at mon-
itoring sites with complex soil hydraulic processes involved underline the need for
in situ measurements of deeper soil moisture.

Against this background, this thesis provides first evidence that CRNS can be
used in downhole applications. By applying the introduced methodological concept
of downhole CRNS, in situ estimates of soil moisture in depths of below 100 cm
and with sufficient accuracy in terms of absolute values and time series dynamics
were derived. These findings do not only yield a high potential for national soil
moisture monitoring efforts in observing soil moisture in greater depths and utilising
existing monitoring infrastructure, but open an entirely new field of CRNS research.
With several new research questions raised from these initial investigations, further
research is needed to test the introduced methodological framework and investigate
the role of varying soil properties as well as soil chemistry to fully assess and exploit
the potential of downhole CRNS.

In conclusion, this thesis addresses open research questions and challenges in sev-
eral different aspects of CRNS research. Providing methodological advancements
by testing and introducing new correction approaches, evaluating neutron-to-soil
moisture transfer functions and developing new fields of application, it not only
contributes to addressing open challenges in hydrological research identified by sci-
entific community. It also underlines the potential of CRNS for national soil moisture
monitoring efforts e.g. in the scope of official climate change adaption strategies as
well as flood and drought risk modelling and forecasting being of special importance
in the context of intensifying hydro-meteorological extremes in a changing climate.
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Gerke, A. Güntner, I. Heine, G. Helle, M. Herbrich, K. Harfenmeister, K.-U.
Heußner, C. Hohmann, S. Itzerott, G. Jurasinski, K. Kaiser, C. Kappler, F. Koeb-
sch, S. Liebner, G. Lischeid, B. Merz, K. D. Missling, M. Morgner, S. Pinkerneil,
B. Plessen, T. Raab, T. Ruhtz, T. Sachs, M. Sommer, D. Spengler, V. Stender,
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in flood magnitudes and spatial extents across Europe. Geophysical Research
Letters, 47(7). doi: 10.1029/2020gl087464.

178



Soil moisture from Cosmic-Ray Neutron Sensing D. Rasche

R. Kiese, B. Fersch, C. Baessler, C. Brosy, K. Butterbach-Bahl, C. Chwala, M. Dan-
nenmann, J. Fu, R. Gasche, R. Grote, C. Jahn, J. Klatt, H. Kunstmann,
M. Mauder, T. Rödiger, G. Smiatek, M. Soltani, R. Steinbrecher, I. Völksch,
J. Werhahn, B. Wolf, M. Zeeman, and H. Schmid. 2018. The TERENO pre-
alpine observatory: Integrating meteorological, hydrological, and biogeochem-
ical measurements and modeling. Vadose Zone Journal, 17(1):180060. doi:
10.2136/vzj2018.03.0060.

P. Kobelev, A. Belov, E. Mavromichalaki, M. Gerontidou, and V. Yanke. 2011.
Variations of barometric coefficients of the neutron component in the 22-23 cycles
of solar activity. CD Proc. 32nd ICRC, id0654, Beijing.

M. Kodama. 1980. Continuous monitoring of snow water equivalent using cosmic
ray neutrons. Cold Regions Science and Technology, 3(4):295–303. doi: 10.1016/
0165-232x(80)90036-1.

M. Kodama, S. Kawasaki, and M. Wada. 1975. A cosmic-ray snow gauge. Interna-
tional Journal of Applied Radiation and Isotopes, 26:774–775.

M. Kodama, K. Nakai, S. Kawasaki, and M. Wada. 1979. An application of cosmic-
ray neutron measurements to the determination of the snow-water equivalent.
Journal of Hydrology, 41(1-2):85–92. doi: 10.1016/0022-1694(79)90107-0.

M. Kodama, S. Kudo, and T. Kosuge. 1985. Application of atmospheric neutrons
to soil moisture measurement. Soil Science, 140(4):237–242.
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H. Krüger and H. Moraal. 2010. A calibration neutron monitor: Statistical accuracy
and environmental sensitivity. Advances in Space Research, 46(11):1394–1399. doi:
10.1016/j.asr.2010.07.008.
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lau, and S. Achleitner. 2017. Continuous monitoring of snowpack dynamics in
alpine terrain by aboveground neutron sensing. Water Resources Research, 53(5):
3615–3634. doi: 10.1002/2016wr020234.
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