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“Essentially, all life depends upon the soil ... There can be no life 

without soil and no soil without life; they have evolved together.” 

 

(Charles E. Kellogg, USDA Yearbook of Agriculture, 1938) 
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Summary 

The arctic is warming 2 – 4 times faster than the global average, resulting in a strong feedback on 

northern ecosystems such as boreal forests, which cover a vast area of the high northern latitudes. 

With ongoing global warming, the treeline subsequently migrates northwards into tundra areas. 

The consequences of turning ecosystems are complex: on the one hand, boreal forests are storing 

large amounts of global terrestrial carbon and act as a carbon sink, dragging carbon dioxide out of 

the global carbon cycle, suggesting an enhanced carbon uptake with increased tree cover. On the 

other hand, with the establishment of trees, the albedo effect of tundra decreases, leading to 

enhanced soil warming. Meanwhile, permafrost thaws, releasing large amounts of previously 

stored carbon into the atmosphere. So far, mainly vegetation dynamics have been assessed when 

studying the impact of warming onto ecosystems. Most land plants are living in close symbiosis 

with bacterial and fungal communities, sustaining their growth in nutrient poor habitats. 

However, the impact of climate change on these subsoil communities alongside changing 

vegetation cover remains poorly understood. Therefore, a better understanding of soil community 

dynamics on multi millennial timescales is inevitable when addressing the development of entire 

ecosystems. Unravelling long-term cross-kingdom dependencies between plant, fungi, and 

bacteria is not only a milestone for the assessment of warming on boreal ecosystems. On top, it 

also is the basis for agriculture strategies to sustain society with sufficient food in a future warming 

world. 

The first objective of this thesis was to assess ancient DNA as a proxy for reconstructing the soil 

microbiome (Manuscripts I, II, III, IV). Research findings across these projects enable a 

comprehensive new insight into the relationships of soil microorganisms to the surrounding 

vegetation. First, this was achieved by establishing (Manuscript I) and applying (Manuscript II) a 

primer pair for the selective amplification of ancient fungal DNA from lake sediment samples with 

the metabarcoding approach. To assess fungal and plant co-variation, the selected primer 

combination (ITS67, 5.8S) amplifying the ITS1 region was applied on samples from five boreal and 

arctic lakes. The obtained data showed that the establishment of fungal communities is impacted 

by warming as the functional ecological groups are shifting. Yeast and saprotroph dominance 

during the Late Glacial declined with warming, while the abundance of mycorrhizae and parasites 

increased with warming. The overall species richness was also alternating. The results were 

compared to shotgun sequencing data reconstructing fungi and bacteria (Manuscripts III, IV), 

yielding overall comparable results to the metabarcoding approach. Nonetheless, the comparison 
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also pointed out a bias in the metabarcoding, potentially due to varying ITS lengths or copy 

numbers per genome.  

The second objective was to trace fungus-plant interaction changes over time (Manuscripts II, III). 

To address this, metabarcoding targeting the ITS1 region for fungi and the chloroplast P6 loop for 

plants for the selective DNA amplification was applied (Manuscript II). Further, shotgun 

sequencing data was compared to the metabarcoding results (Manuscript III). Overall, the results 

between the metabarcoding and the shotgun approaches were comparable, though a bias in the 

metabarcoding was assumed. We demonstrated that fungal shifts were coinciding with changes 

in the vegetation. Yeast and lichen were mainly dominant during the Late Glacial with tundra 

vegetation, while warming in the Holocene lead to the expansion of boreal forests with increasing 

mycorrhizae and parasite abundance. Aside, we highlighted that Pinaceae establishment is 

dependent on mycorrhizal fungi such as Suillineae, Inocybaceae, or Hyaloscypha species also on 

long-term scales.  

The third objective of the thesis was to assess soil community development on a temporal gradient 

(Manuscripts III, IV). Shotgun sequencing was applied on sediment samples from the northern 

Siberian lake Lama and the soil microbial community dynamics compared to ecosystem turnover. 

Alongside, podzolization processes from basaltic bedrock were recovered (Manuscript III). 

Additionally, the recovered soil microbiome was compared to shotgun data from granite and 

sandstone catchments (Manuscript IV, Appendix). We assessed if the establishment of the soil 

microbiome is dependent on the plant taxon and as such comparable between multiple 

geographic locations or if the community establishment is driven by abiotic soil properties and as 

such the bedrock area. We showed that the development of soil communities is to a great extent 

driven by the vegetation changes and temperature variation, while time only plays a minor role. 

The analyses showed general ecological similarities especially between the granite and basalt 

locations, while the microbiome on species-level was rather site-specific. A greater number of 

correlated soil taxa was detected for deep-rooting boreal taxa in comparison to grasses with 

shallower roots. Additionally, differences between herbaceous taxa of the late Glacial compared 

to taxa of the Holocene were revealed. 

With this thesis, I demonstrate the necessity to investigate subsoil community dynamics on 

millennial time scales as it enables further understanding of long-term ecosystem as well as soil 

development processes and such plant establishment. Further, I trace long-term processes leading 

to podzolization which supports the development of applied carbon capture strategies under 

future global warming.  
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Deutsche Zusammenfassung 

Die Arktis erwärmt sich 2 – 4 mal schneller als der weltweite Durchschnitt, was einen starken 

Einfluss auf Ökosysteme wie die borealen Nadelwälder hat, die ein großes Gebiet der hohen 

nördlichen Breiten ausmachen. Durch die globale Erwärmung verschiebt sich die Baumgrenze 

nach Norden in Gebiete mit derzeitigem Tundra-Wachstum. Die Auswirkungen sind komplex: 

einerseits speichern die Wälder große Mengen an globalem terrestrischem Kohlenstoff und 

entziehen dem globalen Kohlenstoff-Kreislauf CO2. Größere Baumbestände führen so vermutlich 

zu einer verstärkten Kohlenstoffaufnahme in Böden. Andererseits verringert sich der Albedo-

Effekt von Tundra durch das Baumwachstum, was zu einer verstärkten Erwärmung des Bodens 

führt. Durch die Erwärmung taut der Permafrost, was große Mengen an gespeichertem 

Kohlenstoff freisetzt, der in die Atmosphäre gelangt. Bislang wurden vor allem Vegetations-

Dynamiken unter Einfluss der Erderwärmung auf Ökosysteme untersucht. Die meisten 

Landpflanzen leben in Symbiose mit Bakterien und Pilzen, die deren Wachstum in nährstoffarmen 

Lebensräumen ermöglichen. Allerdings ist bislang wenig verstanden, wie diese 

Bodengemeinschaften durch Langzeit-Klimawandel und sich verändernde Vegetation beeinflusst 

werden. Deshalb ist es notwendig, bei der Rekonstruktion von Ökosystemdynamiken auch die 

Gemeinschaft von Bodenmikroorganismen auf Zeitskalen von Jahrzehntausenden zu betrachten. 

Das Verstehen von Langzeitabhängigkeiten zwischen Pflanzen, Pilzen und Bakterien ist nicht nur 

ein Meilenstein bei der Untersuchung von Klimawandel auf boreale Nadelwälder. Zusätzlich 

ermöglicht es, angepasste Strategien im Bereich der Landwirtschaft zu entwickeln, um die 

wachsende Bevölkerung auch in Zukunft mit ausreichend Nahrungsmitteln versorgen zu können. 

Das erste Ziel der Arbeit war es, das Potential von ancient DNA für die Rekonstruktion des 

Bodenmikrobioms zu untersuchen (Manuskripte I, II, III, IV). Die Forschungsergebnisse aller 

Projekte ermöglichen einen umfassenden neuen Einblick in die Beziehungen von 

Bodenmikroorganismen zur umgebenden Vegetation. Zunächst wurde ein Primerpaar für die 

gezielte Amplifikation von Pilzen aus ancient DNA aus Seesedimenten etabliert (Manuskript I) und 

angewendet (Manuskript II). Um Zusammenhänge zwischen dem Auftreten von Pilzen und 

Pflanzen zu beurteilen, wurde mit der ausgewählten Primerkombination (ITS67, 5.8S), welche die 

ITS1-Region amplifiziert, die DNA von Proben aus fünf borealen und arktischen Seen vervielfältigt. 

Die Zusammensetzung der Pilzgemeinschaften wurde durch die Erwärmung beeinflusst. Während 

des Spätglazials dominierten die funktionellen ökologischen Gruppen von Hefen und 

Saprotrophen, während mit Erwärmung die Verbreitung von Mykorrhiza und parasitischen Pilzen 

zunahm. Auch der Artenreichtum war von der Erwärmung betroffen. Die Ergebnisse wurden mit 
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shotgun Sequenzierdaten zur Rekonstruktion von Pilzen und Bakterien (Manuskripte III, IV) 

verglichen. Insgesamt waren die Ergebnisse der beiden Ansätze vergleichbar. Allerdings zeigte der 

Vergleich auch eine Verzerrung im metabarcoding auf, die möglicherweise auf unterschiedliche 

Längen der ITS-Region bei verschiedenen Arten oder variierende Anzahlen an ITS-Kopien pro 

Genom zurückzuführen ist. 

Das zweite Ziel war es, Pilz-Pflanzen-Interaktionen im zeitlichen Wandel zu verfolgen (Manuskript 

II, III). Dafür wurde zunächst metabarcoding für die gezielte Amplifikation von Pilz- und Pflanzen-

DNA angewendet (Manuskript II). Die metabarcoding Ergebnisse wurden anschließend mit 

shotgun Sequenzierdaten verglichen (Manuskript III). Alles in allem waren die Ergebisse beider 

Sequenzieransätze vergleichbar, wobei dennoch von einer Verzerrung im metabarcoding Ansatz 

ausgegangen wird. Ein Zusammenhang zwischen Dynamiken in den Pilzgesellschaften und der 

Vegetation wurde gezeigt. Mit der Tundravegetation während des Spätglazials dominierten Hefen 

und Flechten, während die Erwärmung im Holozän zur Ausbreitung borealer Wälder mit 

zunehmender Mykorrhiza- und Parasitenhäufigkeit führte. Zusätzlich wurde gezeigt, dass die 

Etablierung von Pinaceen auch langfristig von Mykorrhizapilzen wie Suillineae, Inocybaceae oder 

Hyaloscypha-Arten abhängt. 

Das dritte Ziel der Arbeit war es, zeitliche Dynamiken in der Zusammensetzung von 

Bodenorganismen im Allgemeinen sowie die Entstehung von Böden im Speziellen auf Zeitskalen 

von Jahrzehntausenden zu untersuchen (Manuskript III, IV). Sedimentproben des nordsibirischen 

Lama-Sees wurden mittels shotgun Sequenzierung analysiert und die Pilz- und 

Bakteriengemeinschaften mit dem generellen Wandel des Ökosystems verglichen. Parallel dazu 

wurde die Entstehung von Podsol aus dem Basalt-Grundgestein rekonstruiert (Manuskript III). Das 

rekonstruierte Bodenmikrobiom wurde mit weiteren shotgun Datensätzen aus Granit und 

Sandstein Einzugsgebieten verglichen (Manuskript IV, Appendix). Es wurde untersucht, ob die 

Entstehung des Bodenmikrobioms abhängig von der Pflanzenart und somit vergleichbar zwischen 

geografischen Standorten ist oder ob abiotische Bodeneigenschaften und somit das Grundgestein 

die Zusammensetzung bestimmt (Manuskript IV, Appendix). Es wurde gezeigt, dass die 

Entwicklung der Bodengemeinschaften zu einem großen Teil von der Vegetation und 

Temperaturänderungen beeinflusst wurde, während die Zeit seit Gletscherrückgang eine eher 

geringe Rolle spielte. Die Analysen zeigten generelle ökologische Ähnlichkeiten vor allem an den 

Standorten mit Basalt sowie Granit als Grundgestein, während das Mikrobiom auf Art-Ebene eher 

ortsspezifisch war. Eine größere Anzahl von korrelierenden Bodenorganismen wurde in 

tieferwurzelnden Nadelbäumen im Vergleich zu flachwurzelnden Gräsern entdeckt, sowie 

Unterschiede zwischen Kräutern des Spätglazials im Vergleich zu Kräutern des Holozäns gezeigt. 
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Mit dieser Dissertation zeige ich die Notwendigkeit, die Dynamik von Bodenorganismen während 

mehrerer Jahrzehntausende zu untersuchen, da so ein besseres Verständnis von Langzeit-

Ökosystem- sowie Bodenentstehungsprozessen ermöglicht wird. Zusätzlich wird durch ein 

besseres Verständnis von Podsolisierungsmechanismen die Entwicklung angewandter carbon 

capture Strategien vereinfacht.  
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1 Introduction 
 

1.1 Arctic ecosystems under global warming 

The Arctic is warming 2-4 times faster than the global average (Solomon et al., 2007), a phenomenon 

commonly known as arctic amplification. The temperature increase results in Arctic greening with 

increasing plant biomass, height, cover, and abundance (Forbes et al., 2010; Myers-Smith et al., 2011; 

Elmendorf et al., 2012), while prolonged growing seasons lead to treeline shifts northwards and 

changing tundra vegetation (Zhang et al., 2013). Further impacts are permafrost thawing (Brown and 

Romanovsky, 2008) as well as more frequent and drastic forest fires (Flannigan et al., 2009).  

 

Figure 1: Distribution area of the circumboreal zone (Brandt et al., 2013). 

Boreal forests stretch over vast areas in the high-latitudes of Alaska, Canada, and Russia (Potapov et 

al., 2008; Fig. 1), encompassing around 30 % of the global forest biome (Brandt et al., 2013), with 

approximately a third of the forests being underlain by permafrost (Zimov et al., 2006). These 

woodlands store more than 30 % of global terrestrial carbon (Kasischke, 2000), making them an 

important carbon sink (Pan et al., 2011; Bradshaw and Warkentin, 2015). Due to the typically harsh 

growing conditions in their distribution areas and decreasing diversity with increasing latitude, these 
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forests are usually low in species richness (Qian et al., 1998; Hart and Chen, 2006). Boreal forests are 

dominated by the coniferous taxa Larix, Pinus, Picea, and Abies. Larix and Pinus sylvestris dominated 

forests are forming the so-called light taiga, while forests dominated by Abies and Picea species, and 

Pinus banksiana are called dark taiga with all being evergreen conifers (Tautenhahn et al., 2016). The 

common soil type below these forests is podzol which is characterised by a low pH and the tendency 

for further acidification (Wiklander and Andersson, 1972). The release of aluminium and iron ions from 

rocks is induced by organic acids during the soil development, resulting in the formation of chelates 

with organic matter. Leaching of these complexes from the upper mineral horizons and subsequent 

deposition in the subsoil induces bleaching of the upper horizons, while leading to the characteristic 

reddish-brown colour of the subsoil (Lundström et al., 2000; Sauer et al., 2007). The transition zone 

from the boreal forest towards Arctic tundra vegetation is known as tundra-taiga ecotone. With 

ongoing warming, the tundra-taiga ecotone is expected to migrate further northwards into tundra 

areas (Grace et al., 2002; Shevtsova et al., 2020; Kruse and Herzschuh, 2022). This invasion of 

coniferous boreal taxa into tundra will drastically impact the climate system as carbon storage 

increases and albedo decreases (Chapin et al., 2005; Pearson et al., 2013). Also, nutrient cycling is 

altered (Van Cleve and Viereck, 1981). 

The typical tundra vegetation is comprised of dwarf shrubs, forbs, graminoids, and non-vascular plants 

(Walker et al., 2005). An increase in shrubby taxa with mid-Holocene warming has been reconstructed 

(Bigelow, 2003). This shrubification has a major impact on the carbon balance of tundra ecosystems 

by enhancing the carbon uptake (Walker et al., 2006; Myers-Smith et al., 2011) and additionally 

altering ecosystem respiration, subsequently affecting the nutrient cycling (DeMarco et al., 2014; 

Wang et al., 2018) and soil carbon stocks (Mcguire et al., 2010). Under warming, further expansion of 

shrubs also facilitates the invasion of tree taxa in tundra areas, leading to forest establishment 

(Edwards et al., 2005; Holmgren et al., 2015). The major ecological consequences of taiga invasion into 

tundra areas are far from being fully understood and an assessment of not only the vegetation cover, 

but other environmental factors such as their subsoil microbial communities, is necessary. 

 

1.2  The plant-associated microbiome  

The rhizosphere of plants is a dynamic micro-biosphere around the roots, containing a diverse range 

of microorganisms sustaining plant growth and survival (Hiltner, 1904; Sharma et al., 2020). Carbon 

release from the roots, termed as rhizodeposition, generates the so-called rhizosphere effect (Whipps 

and Lynch, 1985). Many different types of substrates are being secreted by the roots: water soluble 

exudates, such as amino acids, vitamins, or sugars derived from leaking without metabolic energy 
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involved; secretions of polymeric carbohydrates dependent on metabolic processes; lysates deriving 

from cell autolysis; gases such as CO2 (Lynch and Whipps, 1990). The exuded compounds act as 

chemical attractants for soil microorganisms (Pandey et al., 2017) and, by changing the physico-

chemical properties of soil, also determine the composition of the microbial communities (Yang et al., 

2009). Plant-growth promoting bacteria facilitate nutrient and water uptake (Ahkami et al., 2017) and 

reduce the impact of abiotic stressors by - amongst other factors - increasing salt tolerance (Vacheron 

et al., 2013). Furthermore, mycorrhizal interactions between fungi and root tips enable plant-growth 

in nutrient poor habitats by providing the plant with mainly phosphate and nitrate, but also other 

organically bound nutrients (Read and Perez-Moreno, 2003). Based on the structure and function, a 

distinction is made between ecto, orchid, ericoid and arbuscular mycorrhizae (van der Heijden et al., 

2015). Ectomycorrhizal fungal hyphae are not directly penetrating the plant cells, but forming a 

mantle-structure around the root tip, while hyphae in the cortex are forming the Hartig net around 

the plant cells, enabling the nutrient exchange (Smith and Read, 2010). In contrast, endomycorrhizae, 

such as orchid, ericoid, and arbuscular mycorrhizae, are directly penetrating the plant cells. In 

arbuscular mycorrhizal symbiosis, which are only formed by fungi of the Glomeromycota, hyphae are 

forming tree-shaped subcellular structures called arbuscules in the plant cells, predominantly enabling 

nutrient exchange (Parniske, 2008). Most land plants are dependent on mycorrhizal associations, with 

the majority forming arbuscular mycorrhizae (Brundrett, 2009).  

Considering the well-known importance of subsoil microorganisms for plant establishment, relatively 

little research targeting natural long-term processes behind the establishment of a healthy root 

microbiome from a palaeo-perspective has been done. As a major question, it remains unclear how 

the population of root-associated microorganisms has changed in relation to long-term warming and 

plant establishment.  

 

1.3  Drivers of soil development  

The formation of soil is termed “pedogenesis” and dependent on the mineral composition of the 

parent material, time, climate, topography, as well as living organisms (Delgado-Baquerizo et al., 2020; 

Franzetti et al., 2020). Initial to pedogenesis, bare rocks are exposed to the surface by warming-

induced glacier retreat and are subsequently being weathered and torn into soil. A variety of processes 

are leading to the weathering of the rocks. 

Physical weathering describes the fragmentation of rocks without changes in their chemical 

composition caused by frost blasting, thermal stressors, penetrating plant roots or salt cristallization 

(Hack, 2020), resulting in initial rock-breakdown. In contrast, chemical weathering processes lead to 
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compositional changes of the rocks, converting primary minerals to secondary minerals through 

hydrolysis, oxidation or carbonation (Stonestrom et al., 1998; Viers et al., 2014). Chemical weathering 

can also lead to the complete dissolution of minerals, usually involving water, leading to the release of 

dissolved ions which can be taken up by living organisms or are lost in stream water (Schlesinger and 

Bernhardt, 2013).  

In addition, multiple biogenic factors such as plant root exudates, fungi, and bacteria can drive 

weathering processes. Plants increase weathering by releasing organic acids into the soil as metabolic 

side products, which further react with mineral compounds and thus lead to the weakening and 

dissolving of the rocks (Kelly et al., 1998). Mycorrhizal fungi are spreading their hyphae inside cracks 

in stones (Hoffland et al., 2002) and release siderophores as well as low-molecular weight organic acids 

which further enhance weathering (Hoffland et al., 2004). The efflux of H+ protons due to excess 

ammonium uptake results in soil acidification (Hoffland et al., 2004). Besides fungi and plants, bacteria 

also increase weathering by oxidation and reduction reactions. For example, the oxidation of iron-

bearing minerals results in the release of sulfuric acid (Sasaki et al., 1998). As another example, the 

chelation of aluminium and iron ions with siderophores enhances the solubility and mobility of those 

ions in the environment (Welch et al., 2002; Uroz et al., 2009). 

So far, the degree of contribution of the single processes to soil formation remains unclear. Also, it is 

still debated whether long-term soil development is driven mainly by the time passed by since initial 

deglaciation, yielding it a so-called trajectory. The importance of further environmental biotic and 

abiotic factors during pedogenesis is still under discussion. 

 

 

1.4  Ancient DNA to unravel past ecosystems 

1.4.1 Lake sediments as archives of past community changes 

Looking into the past for gaining a better understanding of future warming-induced ecosystem changes 

is a promising emerging approach. One method to do so is by assessing sedimentary ancient DNA 

(sedaDNA). Lake sediments represent a unique archive for the analyses of such past community 

changes by incorporating and storing the information on their surrounding environment over long 

periods of time (e.g. Epp et al., 2015; Alsos et al., 2018). Terrestrial DNA derived from vertebrate urine 

and faeces (Andersen et al., 2012), soil organisms (Kisand et al., 2018), or plant remains (e.g. Parducci 

et al., 2013; Alsos et al., 2016) binds onto soil particles and, through erosion, gets continuously 

transported in the lake where it deposits at the bottom. Throughout time, the sediment accumulates, 

storing allochthonous signals derived from the catchment or beyond, also including substantial 
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amounts of terrestrial DNA, as well as autochthonous signals derived from the biological production 

within the lake or chemical precipitation (Giguet-Covex et al., 2019). The retrieval of sediment cores 

from the lake bottom enables the reconstruction of past terrestrial environmental changes assessing 

the sedaDNA (Parducci et al., 2017) or pollen grains (e.g. Herzschuh et al., 2004; Pedersen et al., 2013). 

This sedaDNA is relatively well preserved in the lakes as thermal stratification and the temperature of 

approximately 4 °C on the bottom of the lakes favour the development of anoxia (Parducci et al., 2017). 

Besides, further degradation is inhibited when extracellular DNA from lysed cells binds to charged 

minerogenic or organic particles, as immediately nuclease degradation gets prevented (Pietramellara 

et al., 2009). 

By accelerator mass spectrometry (AMS) derived radiocarbon dating of the sediment cores or 

macrofossils, a determination of the age-depth relation of the cores is enabled (Andree et al., 1986; 

MacDonald et al., 1991). This allows the relation of ecosystem turnover to large-scale environmental 

changes such as the Bølling-Allerød warm period or the Pleistocene-Holocene transition. 

Advantageous over other archives such as permafrost is the continuous sedimentation of particles in 

the lakes (Melles et al., 2022), enabling the reconstruction of chronological community changes. To 

verify the ancient origin of the sedimentary DNA, methods such as mapDamage can be applied 

(Jónsson et al., 2013). This includes assessing typical damage patterns of the DNA, such as the 

deamination of cytosines (Briggs et al., 2007) and the increasing C to T substitution at the read ends 

(Meyer et al., 2012). In comparison to experimental warming, the understanding of multiple tens of 

thousands of years in ecology trends alongside natural warming conditions allows a more precise 

assessment of long-term ecosystem adaptation mechanisms and the prediction of future trends.  

 

1.4.2 Metabarcoding for targeting specific communities 

Until recently, sedimentary reconstructions of terrestrial ecosystem changes focused on the analysis 

of pollen grains, spores or macrofossils for assessing vegetation dynamics (e.g. Van Geel, 2001; 

Herzschuh et al., 2004; Pedersen et al., 2013). Fungi, however, possess only very limited fossil remains, 

yielding very little information deriving from non-pollen palynomorphs (Loughlin et al., 2018; Quamar 

and Stivrins, 2021). A more recent alternative to macrofossils, pollen, or non-pollen palynomorphs is 

high-throughput DNA sequencing, being advantageous as it often enables the identification of more 

species as well as the identification at higher taxonomic resolutions (Sønstebø et al., 2010; Parducci et 

al., 2015).  

DNA metabarcoding is a method that can be used when addressing compositional changes in a specific 

taxonomic group. It is based on the PCR amplification of a short, highly variable region of the genome 
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which is flanked by highly conserved regions (Taberlet et al., 2007; Epp et al., 2012). The choice of the 

targeted DNA region depends on the selected taxonomic group, but requires to be relatively stable, 

conserved amongst the organisms within the taxonomic group, and short due to the high 

fragmentation and degradation of the DNA (Epp et al., 2012). So far, sedaDNA studies mostly targeted 

terrestrial vegetation changes using the trnL P6 loop marker (Taberlet et al., 2007; Parducci et al., 2017; 

Alsos et al., 2018; Liu et al., 2020). The advantage of this marker is that with its relatively short length 

of 10 – 143 bp, it is suitable to amplify highly degraded ancient DNA reads (Taberlet et al., 2007).  

In contrast to vegetation studies on sedaDNA, the recovery of fungal communities so far is limited, 

mostly as from an assumption of 1.5 – 5 mio fungal species on earth, only around 200,000 species have 

been classified so far, yielding uncomplete databases, impeding the data interpretation. Nonetheless, 

samples derived from permafrost (Bellemain et al., 2013) or lake sediment (Talas et al., 2021) have 

recently been assessed. For the amplification of fungal DNA, the internal transcribed spacer (ITS) 

region is commonly used (White et al., 1990; Schoch et al., 2012). Located between the 18S (small 

subunit) and 28S (large subunit) rRNA genes, the variable spacer ITS1 and ITS2 and the intercalarly, 

highly conserved 5.8S form the entire ITS region (Schoch et al., 2012). The length of the ITS region is 

highly dependent on the fungal lineage with an average of 550 base-pairs (Feibelman et al., 1994; 

Schoch et al., 2014). As ancient DNA molecules are highly fragmented and relatively short, the 

amplification with most primer pairs for fungal metabarcoding is challenging, as sequence length of 

around 250-400 nucleotides are being targeted (Beeck et al., 2014; Tedersoo et al., 2015). A marker 

suitable for the short ancient DNA fragments is still lacking. Therefore, the need for a revised primer 

pair for the amplification of shorter DNA fragments emerged (Fig. 2).  

 

 

Figure 2: Map of the nuclear ribosomal genes and the intercalary ITS region. Respectively, the positions of the 

forward (ITS67) and reverse primers (5.8S_Fungi) which were established as part of this thesis are marked with 

arrows.  
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1.4.3 Shotgun sequencing for broader overview 

Besides amplifying specific target regions and therefore assessing organismic groups, a new approach 

known as sedaDNA shotgun sequencing recently emerged. This method enables the reconstruction of 

complex ecosystems, taking a snapshot of the entire biome, as the whole DNA contained in a sample 

is being sequenced (Pedersen et al., 2016; Parducci et al., 2019). This became possible as genomic 

databases have been largely extended and improved and therefore a greater assignment of shotgun-

sequenced reads has become possible. Moreover, general sequencing costs are declining. The method 

itself is not limited by sequence or molecule length, but bioinformatic processing of the sequenced 

data usually filters out sequences below a 30 basepair threshold (Pedersen et al., 2016). To assess the 

ancient origin of the reads, typical damage patterns of DNA which occur throughout degradation can 

be assessed, including DNA fragmentation or deamination (Ginolhac et al., 2011).  

So far, the proxy has been applied on permafrost samples (Wang et al., 2021; Courtin et al., 2022; Kjær 

et al., 2022) or, rarely, lake sediment (Wang et al., 2021; Iwańska et al., 2022). Complex ecosystem 

dynamics can be assessed, so far focusing mainly on above-ground terrestrial ecosystems, including 

the dynamics between vegetation and mammals or birds. Studies targeting below-ground beneficial 

or parasitic associations amongst plants and soil microorganisms, including fungi and bacteria, are 

scarce (Courtin et al., 2022). However, understanding the temporal dynamics in the plant microbiome 

will further allow to unravel the complexity of plant-microbe interactions and help understand the 

impact of plants and further environmental factors on microbial community establishment. Vice-versa, 

tracing microbial community establishment helps understanding the functional roles of 

microorganisms in general plant health and ecosystem functioning. 

 

1.5 Thesis objective 

The main goal of this thesis was to contribute to the understanding of how root-associated microbial 

communities have changed over time in relation to vegetation and climate change.  

1.) The first objective was to contribute to understanding of how soil communities changed over 

the past in relation to climate change. To do so, a primer pair suitable to specifically amplify 

short fungal ancient DNA was established. Then, the primer pair was applied to samples of 

multiple lakes to assess community dynamics across locations. For validation, the data were 

compared to fungal data derived from shotgun sequencing. Also, bacterial community changes 

in the shotgun data were assessed.  

2.) The second objective was to trace fungus-plant covariation over time-scales covering multi 

millenia. A comparison of metabarcoding data with shotgun derived data has been done. 
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3.) The third objective of this thesis was to reconstruct weathering and soil development after 

deglaciation using lake sedimentary ancient DNA shotgun data. Aside, factors driving long-

term pedogenesis have been assessed.  

 

1.6 Thesis outline and author contributions 

This thesis is designed as a cumulative dissertation, consisting of 7 chapters. The first chapter provides 

a general introduction to the research topic and presents the main objective and goal of the project. 

Chapters 2, 3, and 4 are comprised of publications which are either published or submitted to a peer-

reviewed scientific journal. The respective status of the publication process is indicated in Table 1 

below. In chapter 5, the overall outcome of the dissertation is being discussed. A list of references 

being used in the introduction and discussion part is provided in chapter 6. Chapter 7, the appendix, 

includes a fourth manuscript which is in preparation. The tables and figures in each chapter are 

numbered separately. 

 

Table 1: Overview of the manuscripts included in this thesis 

Manuscript I 

 

Authors 

 

 

Status 

Summary 

 

 

 

 

 

Authors contributions 

Evaluation of lake sedimentary ancient DNA metabarcoding to  

assess fungal biodiversity in Arctic paleoecosystems 

Peter A. Seeber, Barbara von Hippel, Håvard Kauserud, Ulrike 

Löber, Kathleen R. Stoof-Leichsenring, Ulrike Herzschuh, Laura S. 

Epp 

Published in Environmental DNA, 10.1002/edn3.315. 

We re-evaluated primer combinations for the amplification of the ITS 

region for fungal metabarcoding of ancient sedimentary DNA using in  

silico and in vitro PCR. The analysis yielded the primer pair ITS67 and 5.8S  

most suitable for short fragments. PCR amplification was conducted on  

samples from a boreal and four arctic lakes, yielding a great biodiversity  

of terrestrial fungi.  

PAS: in silico and in vitro primer validation, data analyses, writing first 

draft of the manuscript; BvH: metabarcoding laboratory experiments, 

data analyses, input for interpretation of the metabarcoding data; HK, 

UL, KS-L, UH: input for the analysis and interpretation of the 

https://onlinelibrary.wiley.com/authored-by/ContribAuthorRaw/Kauserud/H%C3%A5rvard
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metabarcoding data, LSE: study design, data analyses, writing first draft 

of the manuscript 

Manuscript II 

 

Authors 

 

 

Status 

Summary 

 

 

 

 

 

 

 

Authors contributions 

Long-term fungus-plant covariation from multi-site sedimentary  

ancient DNA metabarcoding 

Barbara von Hippel, Kathleen R. Stoof-Leichsenring, Luise Schulte,  

Peter Seeber, Laura S. Epp, Boris K. Biskaborn, Bernhard Diekmann,  

Martin Melles, Luidmila Pestryakova, Ulrike Herzschuh 

Published in Quaternary Science Reviews, 295: 107758. 

We used sedimentary ancient DNA metabarcoding to analyse four arctic 

(Lama, CH12, Levinson Lessing, Kyutyunda) and one boreal lake (Bolshoe  

Toko) on their fungal and plant community composition changes during  

the last about 47 cal ka BP. We showed that fungal functional groups are  

shifting in relation to warming and their species richness is alternating.  

We provide evidence that fungal shifts coincide with vegetation changes,  

highlighting long-term dependencies of woody taxa towards mycorrhizal  

fungi.  

BvH: study design, metabarcoding laboratory experiments, data analysis, 

dating and age-depth modeling of Lama, writing first draft of the 

manuscript; KSL: study design, supervision laboratory part and 

bioinformatics; LS: sampling of the cores, supervision of DNA extractions; 

PS and LE: bioinformatic evaluation of the marker; BB: retrieval and 

dating including age-depth modelling of Bolshoe Toko, Kyutyunda and 

CH12; BD: project lead Kyutyunda and Bolshoe Toko; MM: retrieval of 

the sediment core of Lake Lama; UH: study design, supervision of writing 

of first manuscript version. All authors commented on the first and 

revised version of the manuscript. 

Manuscript III 

 

Authors 

 

Status 

Summary 

Postglacial bioweathering, soil nutrient cycling, and podzolization from  

palaeometagenomics of plants, fungi, and bacteria 

Barbara von Hippel, Kathleen R. Stoof-Leichsenring, Martin Melles, Ulrike  

Herzschuh 

Submitted to Nature Communications (06-13-2023) 

Here, we assessed shotgun sequencing data of lake Lama, northern- 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sediment-core
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Authors contributions 

central Siberia to trace plant, fungal, and bacterial community changes 

and reconstructed soil development alongside. The data showed clear 

trends from lichen-dominated tundra communities with strong initial 

weathering in the Late Glacial to larch-spruce forests in the Holocene. On  

top, podzolization was reconstructed. 

BvH: study design, subsampling of Lama sediment, DNA extraction, built 

library, data analyses, writing first draft of the manuscript; KSL: 

supervision laboratory part and bioinformatics; MM: collection of the 

sediment record, XRF analyses; UH: study design, supervision of data 

analyses & supervision of writing of first manuscript version. All authors 

commented on the submitted version of the manuscript. 

Manuscript IV 

Authors 

Status 

Summary 

 

 

 

 

 

 

Authors contributions 

Spatio-temporal microbial associations of plants in cold environments 

Barbara von Hippel, K.R. Stoof-Leichsenring, W. Shen, U. Herzschuh 

in preparation, Appendix 

In this manuscript, we compared the soil communities of three shotgun 

datasets derived from lake sediment cores of two Siberian lakes (Lama 

and Bolshoe Toko) and one from the Tibetan Plateau (Ximencuo). The  

recovered soil communities were correlated to plant occurrences. We  

showed distinct rhizobial communities for each site as well as plant  

genus. Nonetheless, general overlaps between the sites and plant taxa  

were recovered. 

BvH: study design, subsampling of Lama sediment, DNA extraction, 

library built, data analysis, writing first draft; KSL: supervision laboratory 

part and bioinformatics; WS: extraction and library built Ximencuo; UH: 

study design, supervision of data analysis. 
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2 Manuscript I 
 

Evaluation of lake sedimentary ancient DNA metabarcoding to assess fungal biodiversity in 

Arctic paleoecosystems 

Status 

Published in Environmental DNA, 10.1002/edn3.315. 

Authors 

Peter Seeber1, Barbara von Hippel2, Håvard Kauserud3, Ulrike Löber4,5, Kathleen Rosmarie Stoof-
Leichsenring2, Ulrike Herzschuh2,6,7, Laura Saskia Epp1* 

Affiliations 

1 Department of Biology, Limnological Institute, University of Konstanz, Konstanz, Germany 

2 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial 
Environmental Systems, Potsdam, Germany 

3 Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, 
Norway 

4 Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max Delbrück 
Center for Molecular Medicine, Berlin 

5 Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany 

6 Institute of Environmental Science and Geography, University of Potsdam, Germany 

7 Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany 

*corresponding author (laura.epp@uni-konstanz.de) 

 

Keywords 

fungi, in silico PCR, ITS, lake sediment, metabarcoding, sedimentary ancient DNA 

 

2.1 Abstract 
 

Fungi are crucial organisms in most ecosystems as they exert ecological key functions and are closely 

associated with land plants. Fungal community changes may, there-fore, help reveal biodiversity 

changes in past ecosystems. Lake sediments contain the DNA of organisms in the catchment area, 

which allows reconstructing past biodiversity by using metabarcoding of ancient sedimentary DNA. We 

re-evaluated various commonly used metabarcoding primers, and we developed a novel PCR primer 

combination for fungal metabarcoding to produce a short amplicon, thus accounting for amplification 

bias due to the degradation of ancient DNA. In silico PCRs showed higher diversity using this new 

https://doi.org/10.1002/edn3.315
https://onlinelibrary.wiley.com/authored-by/ContribAuthorRaw/Kauserud/H%C3%A5rvard
mailto:aura.epp@uni-konstanz.de


12 
 

primer combination, compared with previously established fungal metabarcoding primers. We 

analyzed data from sediment cores from four artic and one boreal lake in Siberia. These cores had been 

stored for 2–22 years after coring; we, therefore, examined the degradation effects of ancient DNA 

and storage time- related bias affecting fungal communities. Amplicon lengths showed considerable 

variation within and between the major divisions of fungi, for example, amplicons of Basidiomycota 

were significantly longer than those of Mucoromycota; however, we observed no significant effect of 

sample age on amplicon length and GC content, suggesting the robustness of our results. We also 

found no indication of post-coring fungal growth during storage regarding the proportions of common 

mold taxa, which would otherwise distort conclusions on past fungal communities. Terrestrial soil 

fungi, including mycorrhizal fungi and saprotrophs, were predominant in all lakes, whereas typical 

aquatic taxa were only represented to a negligible extent, which supports the use of lake sedimentary 

ancient DNA for reconstructing terrestrial communities. 

 

2.2 Introduction 

Fungi constitute the third-largest kingdom on Earth in terms of biomass, after plants, and bacteria (Bar-

On et al., 2018), and they have considerable effects on the structure and functioning of most 

ecosystems. Fungi are essential to the survival, growth, and fitness of many organisms with which they 

form associations, including enumerable plant species, in almost all ecosystems (Brundrett, 2004; 

Finlay, 2008). The biodiversity of mycorrhizal fungi is known to influence plant community structures, 

thereby affecting entire ecosystems (Clemmensen et al., 2013; Powell & Rillig, 2018; van der Heijden 

et al., 1998). Particularly in environments which are notoriously nutrient poor, such as the Arctic, 

plants are typically highly dependent on symbioses with mycorrhizal and endophytic fungi (Smith & 

Read, 2008). Apart from mycorrhizal symbioses, fungi exert various other key ecological functions in 

terrestrial and aquatic habitats, including decomposition of components of complex substrates such 

as cellulose and lignin, subsequent recycling of nutrients, and pathogenic effects on countless taxa of 

eukaryotes (Grigoriev, 2013). However, compared to other kingdoms such as Animalia and 

Viridiplantae, knowledge on fungal diversity and distribution of fungal taxa and functional groups is 

relatively limited (Baldrian et al., 2021). The comparable lag in studies on fungi, particularly within their 

natural habitats, may be attributed, in part, to the microscopic dimensions of their vegetative bodies 

with hyphae of only a few microns in diameter, but also to the extreme taxonomic diversity within the 

fungal kingdom with a currently estimated 1–4 million species (Baldrian et al., 2021; Blackwell, 2011; 

Hawksworth & Lücking, 2017), compared to approximately 400,000 species of vascular plants. 

However, only approximately 120,000 species of fungi are thoroughly described and accepted 

(Hawksworth & Lücking, 2017). 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0005
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0013
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0026
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0016
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0048
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0061
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0054
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0101
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0003
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0003
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0009
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0030
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0030
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One crucial problem in fungal systematics and taxonomy is that many fungi occur in morphs which 

differ drastically regarding their phenotypic appearance. Moreover, some fungal species can comprise 

multiple strains showing highly variable morphology, which has often led to their description as 

different species. Molecular approaches to assess biodiversity from environmental samples such as 

soils or sediments predominantly rely on metabarcoding and can be used on modern or ancient DNA 

(reviewed by Ruppert et al., 2019). This method is generally a powerful tool for assessing species 

richness in an ecosystem (Deiner et al., 2017); however, metabarcoding of fungi is notoriously 

challenging due to their overwhelming taxonomic diversity and, consequently, incomplete reference 

databases (James et al., 2020; Lücking et al., 2020; Nilsson et al., 2019). For fungi, the most common 

metabarcoding regions are the two internal transcribed spacers (ITS) ITS-1 and ITS-2 of the ribosomal 

RNA genes (Schoch et al., 2012; Stielow et al., 2015). Even though the resolution to species level based 

on ITS barcodes may be difficult, the current reference databases are the most comprehensive 

regarding this marker, compared to others (Lücking et al., 2020; Stielow et al., 2015), and it is also used 

as the standard barcode by the International Barcode of Life consortium. Databases for this marker 

have increased tremendously in the past years, facilitating more precise taxonomic assignments. 

Furthermore, the increase in available sequences potentially also offers the possibility to optimize 

metabarcoding assays in comparison to the primers that are currently in common use. However, fungal 

metabarcoding primers have not been re-evaluated in close to a decade (Bellemain et al., 2010, 2013; 

Epp et al., 2012), even though fungal metabarcoding may help reveal community turnovers and trace 

ecosystem changes on very long timescales (von Hippel et al., 2021). This is particularly critical 

regarding the high diversity of fungi and the resulting lack of truly universal but exclusive fungi 

metabarcoding primers (see UNITE primer notes, https://unite.ut.ee/primers.php). Moreover, for 

amplifying ancient DNA, amplicons should be particularly short so as to avoid bias due to DNA 

fragmentation, which is problematic as many common primer combinations produce amplicons 

exceeding 500 bp. Robust metabarcoding assays are of particular relevance for the analysis of 

potentially degraded environmental DNA, as recovered from ancient sedimentary deposits (Bellemain 

et al., 2013; Lydolph et al., 2005; Talas et al., 2021), thus we optimized metabarcoding primers for this 

purpose. 

Analyses of sedimentary deposits can reveal fungal community alterations and associated ecosystem 

changes over long periods of time. Investigating past fungal biodiversity changes by reconstructing 

paleoecosystems may generate insights regarding basal structural developments that are to date 

mostly overlooked in classical palynological approaches due to reliance on microscopic remains 

(Chepstow-Lusty et al., 2019; Taylor & Osborn, 1996; Wood & Wilmshurst, 2013). While molecular 

genetic methods are commonly used at present to investigate modern ecosystems (Adamo et 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0052
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0020
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0032
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0038
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0043
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0053
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0056
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0038
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0056
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0006
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0007
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0023
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0064
https://unite.ut.ee/primers.php
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0007
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0039
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0057
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0015
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0058
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0069


14 
 

al., 2020; Heeger et al., 2018), far fewer studies have been conducted on fungal biodiversity in 

paleoecosystems. Early studies concentrated on samples from permafrost soils (Bellemain et al., 2013; 

Lydolph et al., 2005), in which DNA preservation is optimal and which was in general an early target 

for sedimentary ancient DNA (Haile et al., 2009; Willerslev et al., 2003, 2014). DNA from these deposits 

showed a high potential for the analysis of past communities, but with certain peculiarities regarding 

fungi. In particular, Bellemain et al. (2013) suggested that fungal DNA in permafrost potentially 

originated not only from ancient communities but also from organisms that were still alive. Moreover, 

sample material (such as sediment cores) is frequently stored for long periods of time before DNA 

isolation and may thus be prone to growth of fungi (e.g., molds), which could distort ancient 

community signals. Thus, such storage effects must be considered. 

Regarding the ancient DNA of many other organismal groups, lake sediment cores have by now 

become the most commonly targeted environmental archive (Domaizon et al., 2017; Parducci et 

al., 2017). Lake sediments comprise organic and inorganic matter originating from the lake's 

catchment (and beyond), including intracellular and extracellular DNA of a vast spectrum of organisms 

which has been shed into the environment and was subsequently translocated to the sediment by 

various physical processes. Under adequate conditions (e.g., low temperatures and neutral to slightly 

basic pH), integration into lake sediments may help preserve environmental DNA and shield it from 

degradation over considerable time spans (reviewed by Capo et al., 2021). Thus, sediment cores may 

contain a plethora of information with which past ecosystems and changes in biodiversity and 

community structures can be reconstructed. So far, explicit fungal metabarcoding from lake 

sedimentary DNA has been performed in only one study, which used a multiplex PCR approach (Talas 

et al., 2021), and showed that this approach can be used to assess past fungal communities and 

processes in lakes and the surrounding terrestrial environment. 

Here, we developed metabarcoding primers to investigate past fungal biodiversity, and we assessed 

the specificities of fungal sedimentary ancient DNA (sedaDNA) extracted from lake sediment cores in 

Siberia (for details on the cores see von Hippel et al., 2021). To this end, we re-evaluated the existing 

metabarcoding assays for their use in paleoecology and updated metabarcoding primers for use with 

sedimentary ancient DNA. Using this assay, we examined taxonomic resolution and richness as well as 

replicability in paleo records of five Siberian lakes, four of which are located in the Arctic and one in 

boreal Southeast Siberia. All cores reach back through the Holocene and beyond and were stored for 

different time periods (2–22 years) in storage facilities. With this set of cores, we assessed potential 

biases due to sampling location, sample age, and storage time before DNA extraction, and we captured 

the taxonomic resolution of the marker and general fungal diversity on order level from lake sediments 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0002
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0031
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0007
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0039
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0029
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0068
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0067
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0007
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0021
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0046
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0014
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0057
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0064
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across a vast geographical area. For one core from the Taymyr Peninsula, Russia, which had the best 

temporal resolution, we explored trends of diversity in greater detail. 

 

2.3 Materials and Methods 

2.3.1 Primer design and evaluation 

In silico analyses 

Fungal ITS databases increased tremendously in the past years, for example, an in silico PCR using the 

established fungi primer pair ITS1F/ITS2 (Gardes & Bruns, 1993) produced 4658 sequences from EMBL 

release #102 (Epp et al., 2012) but 154,168 sequences from EMBL release #138, with the same settings. 

At the same time, the most common metabarcoding primers for fungi (see 

https://unite.ut.ee/primers.php) have been available for a much longer time (e.g., Gardes & 

Bruns, 1993; Vilgalys & Gonzalez, 1990; White et al., 1990). Thereby now, enlarged database requires 

re-evaluation of their specificity, universality, and taxonomic resolution and allows the design of 

additional primers. This may be particularly important for paleoecological studies of fungi, which rely 

on degraded DNA and thus should optimally amplify short DNA fragments (Pääbo, 1989). We, thus, 

tested a range of existing and newly designed PCR primers for the ITS-1 and ITS-2 regions and tested 

these in silico according to Bellemain et al., 2013 and Epp et al., 2012. Briefly, six databases were 

created by running an in silico PCR on the complete EMBL release #138 using ecoPCR software (Ficetola 

et al., 2010) and with the fungi barcoding primers of Epp et al. (2012). We allowed for three 

mismatches except for the last two nucleotide (nt) positions at the 3′-end of each primer and limited 

product size to 50–2000 nt, apart from one amplicon database which spanned the entire ITS-1–5.8S–

ITS-2-region and was permitted a maximum product size of 4000 nt (primers ITS1 and ITS4). On each 

of these six amplicon databases, we used ecoPrimers software (Riaz et al., 2011) to identify potential 

PCR primers which had to exactly match 70% of the target sequences and match 90% of the target 

sequences with a maximum of three mismatches; product size was limited to 50–500 nt. From the 

output of each database, we selected primer pairs with a maximum difference in melting temperatures 

of 4°C. These primers were then tested in terms of universality within the largest fungal divisions, that 

is, Ascomycota, Basidiomycota, and other fungal taxa collated as “incertae sedis” using in silico PCRs; 

the produced amplicons were dereplicated using the command “obiuniq” of the OBITools software 

(Boyer et al., 2016). Primers that showed a strong bias against any of these three divisions were 

eliminated. Regarding non-target taxa, we examined amplification of Viridiplantae and Metazoa 

sequences; primers that produced a large number of these (i.e., more non-target sequences than 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0027
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0023
https://unite.ut.ee/primers.php
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0027
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0063
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0065
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0045
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0007
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0023
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0025
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0023
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0051
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0012
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sequences from any of the three fungi divisions) were eliminated. Sixteen primer pairs (eight targeting 

ITS-1 and eight targeting ITS-2) were tested in silico (Table 1, Table S1). To define optimal primers to 

universally and specifically target fungi in degraded DNA, primer combinations were excluded (1) if the 

mean amplicon size exceeded 250 bp, (2) if the subkingdom Dikarya as the largest phylum was 

represented by fewer than 50,000 unique amplicons, (3) if Basidiomycota and Fungi incertae sedis 

amplicons were more abundant than those of the largest division Ascomycota, and (4) if the number 

of off-target taxa (Viridiplantae and Metazoa, respectively) exceeded 10% of the number of Dikarya 

amplicons. 

 

TABLE 1. Evaluation of candidate primers for fungal metabarcoding using in silico PCRs  

Primer 
combination 

Dikarya Ascomycota Basidiomycota 
Fungi incertae 

sedis 
Viridiplantae Metazoa Percent 

on-target 
Percent 

off-target 
Count  Length  Count  Length  Count  Length  Count  Length  Count  Count  

ITS1  

ITS67 + 5.8S_Fungi 219,484 
191 (50–
500) 

157,048 
186 (52–
500) 

62,165 
206 (67–
490) 

7418 
168 (65–
437) 

6078 386 97 3 

NS7 + ITS2 603 
464 (54–
500) 

115 
431 
(105–
500) 

480 
476 
(458–
493) 

2283 
496 
(387–
500) 

2982 733 44 56 

ITSF-1 + ITS2 44,026 
294 (59–
497) 

34,039 
301 (64–
499) 

9268 
268 (59–
484) 

8694 
191 (63–
489) 

22 5603 90 10 

ITS1 + ITS2 175,126 
232 (50–
498) 

127,009 
228 (50–
500) 

48,061 
245 (98–
500) 

13,755 
179 (65–
484) 

79,288 9782 68 32 

ITS5 + 5.8S_Fungi 34,832 
238 (66–
500) 

12,133 
362 (73–
496) 

22,951 
233 (98–
493) 

10,262 
161 
(150–
497) 

3316 109 93 7 

ITS67 + ITS67r 209,739 
203 (52–
500) 

147,084 
152 (54–
431) 

62,465 
218 (78–
500) 

14,084 
152 (54–
468) 

68,142 40 77 23 

NS70 + ITS70r 216,395 
205 (54–
499) 

153,704 
198 (54–
500) 

63,958 
218 (75–
499) 

14,517 
153 (50–
432) 

66,517 35 78 22 

NS241 + ITS241r 205,084 
207 (57–
500) 

143,562 
202 (57–
599) 

60,922 
221 (78–
500) 

14,308 
155 (52–
435) 

62,895 43 78 22 

ITS2  

ITS3 + LR3 19,728 
366 
(119–
500) 

15,457 
381 
(119–
500) 

3366 
263 
(144–
481) 

3 
411 
(411–
413) 

1662 897 89 11 

ITS778 + ITS382r 193,800 
206 (67–
500) 

140,473 
193 (67–
496) 

53,512 
239 (96–
500) 

7179 
231 
(132–
442) 

679 3438 97 3 

ITS779 + ITS382r 245,072 
203 (67–
500) 

194,556 
194 (67–
496) 

50,500 
239 (96–
500) 

6820 
231 
(132–
442) 

3182 3120 99 1 

ITS779 + ITS4 35,622 
235 (58–
500) 

27,244 
230 (58–
500) 

8367 
252 
(131–
471) 

3405 
244 
(156–
459) 

2233 1715 91 9 

ITS3 + ITS4 127,574 
328 (56–
499) 

91,520 
315 (56–
498) 

35,935 
361 (97–
499) 

8800 
355 (81–
500) 

35,320 8142 75 25 

ITS3 + ITS382r 252,135 
309 (82–
500) 

186,304 
298 
(116–
500) 

65,677 
346 (82–
500) 

12,931 
340 (66–
499) 

59,521 17,118 78 22 

LROR + LR7 4 
300 
(271–
387) 

3 
271 
(271–
271) 

1 387 0 n/a 15 17 11 88 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-tbl-0001
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#support-information-section
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Primer 
combination 

Dikarya Ascomycota Basidiomycota 
Fungi incertae 

sedis 
Viridiplantae Metazoa Percent 

on-target 
Percent 

off-target 
Count  Length  Count  Length  Count  Length  Count  Length  Count  Count  

ITS3NGS1 + ITS4 130,220 
330 (57–
500) 

91,600 
316 (57–
500) 

38,582 
362 (98–
500) 

3790 
363 
(261–
490) 

9224 8342 88 11 

 

• Notes: Targeted were the internal transcribed spacer (ITS)-1 (top section) and ITS2 (middle section), 

respectively, with EMBL release #142 as a reference database; shown are the counts of unique 

amplicons of the fungal subkingdom Dikarya, the divisions Ascomycota, Basidiomycota, and other 

divisions which are comprised at division rank as “Fungi incertae sedis”, as well as the off-target clades 

Viridiplantae and Metazoa, and average amplicon lengths (with the respective minimum and maximum, 

in parentheses; for fungal taxa). The exclusion of primer combinations for comprehensive fungal 

metabarcoding according to the specified criteria is indicated by gray shading. Bold print indicates the 

primers selected for the metabarcoding experiments. Nucleotide sequences and references are shown 

in Table S1.  

The following primer combinations targeting ITS-1 and ITS-2, respectively, were considered most 

promising: ITS67 (this study) and 5.8S_fungi (Epp et al., 2012) as well as ITS779 and ITS382r (this study). 

For the metabarcoding experiments, we selected the combination ITS67 and 5.8S_fungi as they 

produced slightly shorter amplicons and appeared to produce a somewhat more even ratio of 

ascomycetes and other divisions. 

 

2.3.2 PCR conditions 

Primers ITS67 and 5.8S_Fungi were tested in vitro using DNA isolated from museum vouchers. Samples 

of the following species were obtained from the Natural History Museum of Oslo, Norway: Sordaria 

alcina, Podospora fimicola, Podospora pyriformis, Cladonia rangiferina, Panaeolus fimicola, Coprinus 

sterquilinus, Coprinopsis cinerea, and Pilobolus chrystallinus. DNA was isolated from these specimens 

using the NucleoSpin Plant II kit (Macherey Nagel, Düren, Germany) according to the manufacturer's 

instructions. The PCR reaction mix included 0.25-μl Platinum Taq DNA Polymerase High Fidelity 

(Thermo Fisher Scientific; 5 U/μL), 12.75-μl ultrapure water, 2.5 μl 10 × buffer, 2.5-μl dNTPs (2.5 mM), 

1-μl BSA (20 mg/mL; New England Biolabs, Frankfurt, Germany), 1-μl MgSO4 (50 mM), and 1 μl of each 

primer (5 μM). The following thermocycling protocol was used: 94 °C for 5 min, followed by 40 cycles 

of 94 °C for 20 s, 56 °C for 20 s, 68 °C for 30 s, and final extension at 72 °C for 10 min. 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#support-information-section
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0023
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Evaluation of lake sediment core DNA for analyses of fungal paleoecology 

2.3.3 Sampling and DNA extraction 

The laboratory works were performed at the Palaeogenetic Laboratory at AWI in Potsdam (von Hippel 

et al., 2021). We used sedaDNA isolated from sediment cores of five lakes in the Russian Federation, 

four of which are situated in the Arctic: a) a lake termed CH12 located in the Siberian Taymyr region 

(Khatanga, Russian Federation; 72.399°N, 102.289°E; 60 m a.s.l., collected in 2011; chronology of the 

core described previously [Klemm et al., 2016]; ages are shown as years before present [b.p.]), b) Lake 

Lama, Taymyr peninsula, 69.520°N, 89.948°E; 53 m a.s.l., collected in 1997, c) Lake Levinson-Lessing 

(74.512°N, 98.591°E; 47 m a.s.l.), Taymyr peninsula, collected in 2017, d) Lake Kyutyunda (69.630° N, 

123.649°E; 66 m a.s.l.), Yakutia, northeastern Siberia, collected in 2010, and e) Lake Bolshoye Toko 

(56.265°N, 130.530°E, 903 m a.s.l.) southeastern Siberia (Neryungrinsky District, Sakha Republic), 

collected in 2013. The samples per core and the respective ages are shown in Table S2; for details on 

age-depth models, see von Hippel et al. (2021). 

DNA was isolated from approximately 2–5 g sediment using the PowerMax Soil DNA Isolation kit 

(Qiagen), and DNA extracts were purified and normalized to 3 ng/μl using a GeneJET Genomic DNA 

Purification Kit (Thermo Fisher Scientific); for details, see von Hippel et al. (2021). Seventy samples 

were used (CH12: 28 samples; Lake Lama: 15 samples; Lake Levinson-Lessing: 9 samples; Lake 

Kyutuynda: 10 samples; Lake Bolshoye Toko: 8 samples; Table S2). Extraction blanks of each batch of 

DNA isolation were processed along with the DNA extracts. All extractions and metabarcoding PCR 

setup were performed in dedicated ancient-DNA laboratory facilities of the Alfred Wegener Institute, 

Helmholtz Centre for Polar and Marine Research, Potsdam, Germany. 

 

2.3.4 Metabarcoding PCRs and sequencing 

sedaDNA metabarcoding PCRs of CH12 extracts were performed according to the established PCR 

conditions as specified above, using primers tagged with individual eight-bp tags preceded by three 

variable positions (‘N') to improve cluster formation and using 9 ng DNA; PCRs on other cores are 

described by von Hippel et al. (2021). Six technical replicates of the PCR of each extract (N = 70) and 

extraction blank (N = 11) were used, with one non-template control per PCR batch (N = 30), resulting 

in 510 PCR reactions. MetaFast library preparation and paired-end sequencing at 2 × 250 bp on an 

Illumina MiSeq platform (Illumina, San Diego, CA, USA) were performed by a commercial service 

provider (Fasteris SA, Geneva, Switzerland). 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0064
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0035
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#support-information-section
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0064
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0064
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#support-information-section
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0064
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2.3.5 Data analyses 

Data were processed and analyzed using OBITools software (Boyer et al., 2016) as described by von 

Hippel et al. (2021). Briefly, sequences were clustered using sumaclust (Mercier et al., 2013) at a score 

threshold of 0.97 and were annotated using the OBITools ecotag assignment with two databases—the 

latest UNITE release v. 8.2 (Abarenkov et al., 2010) and the EMBL Nucleotide Sequence Database (Kanz 

et al., 2005) release #142. Only reads containing both primers and both tags were kept in the dataset. 

The dataset was then filtered by best identity scores to count the number of unique taxa on order, 

family, genus levels in a range of 95%–100% best identity (Table 2). As we observed that the curves of 

additional numbers of taxa flattened at approximately 97% (Figure S1), we removed all OTUs with the 

best identity <97%. We retained only OTUs that a) occurred at a minimum of 10 reads per PCR replicate 

and b) occurred at a minimum of 100 reads across the entire dataset. To account for dysfunctional 

PCRs, replicates with <50 reads were discarded. The retained replicates showed highly variable read 

numbers, however, as we attempted no quantitative ecological interpretation but aimed for a full 

descriptive analysis, we opted against resampling so as to avoid exclusion of samples. For ecological 

interpretations based on normalizing the dataset by resampling, see von Hippel et al. (2021). To 

minimize bias due to varying PCR efficiency, we normalized the read counts by transforming each 

OTU's count in a replicate to a proportion of the sum of all reads in the respective sample (proportional 

data per replicate). To produce proportional data per sample, reads per replicate were summed, and 

proportions were calculated accordingly. Shannon–Wiener diversity indices of each sample were 

calculated per lake on the taxonomic levels genus, family, and order, using the function “ddply” of the 

R package plyr version 1.8.6 (Wickham, 2011). 

 

TABLE 2. Numbers of OTUs and percent of respective reads of fungi (UNITE database) and non-fungi taxa (EMBL 

database; lower section) per taxonomic order  

Clade Division Class Order Number of OTUs 

Assigned reads (%) 

97% b.i. 90% b.i. 85% b.i. 

Fungi Ascomycota 

Dothideomycetes 

Pleosporales 7 7.29 5.42 7.63 

Dothideales 2 0.43 0.30 0.29 

Venturiales 2 0.19 2.27 1.87 

Cladosporiales 1 0.01 0.01 0.01 

Eurotiomycetes Eurotiales 14 6.49 5.37 4.45 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0012
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0064
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0041
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0001
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0033
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-tbl-0002
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#support-information-section
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0064
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0066
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Clade Division Class Order Number of OTUs 

Assigned reads (%) 

97% b.i. 90% b.i. 85% b.i. 

Chaetothyriales 2 1.16 7.23 6.42 

Verrucariales 1 0.03 0.20 0.29 

Leotiomycetes 

Helotiales 11 38.80 20.94 19.73 

Phacidiales 1 0.24 0.14 0.12 

Leotiales 2 0.15 0.28 4.33 

Erysiphales 1 0.06 0.03 0.02 

Lecanoromycetes 

Peltigerales 4 0.72 0.73 0.60 

Lecanorales 2 0.06 0.39 0.45 

Saccharomycetes Saccharomycetales 4 0.12 5.55 4.60 

Sordariomycetes Hypocreales 1 0.45 3.33 2.74 

Basidiomycota 

Agaricomycetes 

Agaricales 23 3.51 5.40 5.01 

Polyporales 2 0.98 0.41 0.33 

Hymenochaetales 1 0.90 0.32 0.26 

Russulales 3 0.15 0.38 0.31 

Boletales 2 0.03 0.04 0.32 

Thelephorales 1 0.01 0.38 0.46 

Atheliales 1 0.01 0.13 0.11 

Tremellomycetes 

Filobasidiales 10 3.18 1.14 0.95 

Tremellales 9 1.98 2.01 1.74 

Trichosporonales 1 0.04 0.07 0.06 

Cystofilobasidiales 1 0.02 0.54 0.45 

Microbotryomycetes 

Sporidiobolales 5 2.17 0.77 0.63 

Leucosporidiales 2 0.47 0.16 0.15 

Mucoromycota 

Mortierellomycetes Mortierellales 9 19.81 21.90 22.01 

Mucoromycetes Mucorales 1 0.06 0.02 0.10 

Glomeromycetes Diversisporales 3 0.23 0.43 0.41 

Umbelopsidomycetes Umbelopsidales 2 0.33 0.34 0.56 

Olpidiomycota Olpidiomycetes Olpidiales 1 0.06 0.10 0.09 

Non-target taxa  
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Clade Division Class Order Number of OTUs 

Assigned reads (%) 

97% b.i. 90% b.i. 85% b.i. 

Viridiplantae 

Chlorophyceae 

Sphaeropleales 18 0.49   

Chlamydomonadales 1 0.04   

Trebouxiophyceae Chlorellales 1 0.02   

Chlorodendrophyceae Chlorodendrales 1 0.01   

SAR supergroup 

Eustigmatophyceae Eustigmatales 1 0.01   

Dinophyceae Suessiales 1 <0.01   

Metazoa Insecta Diptera 1 <0.01   

• Note: Percentages are based on the sum of assigned reads in the respective database, at three levels of 

best identity (b.i.).  

Biases introduced through experimental procedures and/or through DNA degradation were examined 

in a number of ways: to assess whether we sampled the fungal diversity comprehensively and 

representatively, we examined accumulation curves for the combined PCR replicates through 

rarefaction in single PCRs. Specifically, to determine the number of OTUs per cumulative number of 

PCR replicates, we produced accumulation curves of each sample of core CH12 using the function 

“specaccum” of the R package vegan (Oksanen et al., 2020). To examine whether sequencing depth 

was sufficient, we rarefied the dataset of core CH12 using “rarefy” in vegan (Oksanen et al., 2020) and 

produced rarefaction curves. To test the replicability of the results, we investigated whether 

dissimilarities between samples were larger than those between replicates. For core CH12, which was 

examined at the highest temporal resolution and which has previously been analyzed for pollen and 

plant DNA (Epp et al., 2018; Klemm et al., 2016), we examined Bray–Curtis dissimilarities between PCR 

replicates of all samples to test whether within-sample variation is smaller than between-sample 

variation. We used the transformed proportional data of core CH12 for a multiple response 

permutation procedure (MRPP) with the function mrpp (vegan; Oksanen et al., 2020) and Bray–Curtis 

dissimilarity distances. 

Using data from all cores, the potential effect of DNA degradation on the results was assessed both 

considering the GC content of recovered sequences and sequence length. To assess DNA degradation-

induced bias toward amplicons with higher GC content (Dabney et al., 2013), we examined GC 

proportions over time as weighted means per sample. The effect of age on weighted mean GC content 

was tested by fitting a linear regression model. To determine differences in amplicon length between 

fungal divisions, we used an ANOVA and a Tukey's test post hoc; to assess the potential effects of age 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0044
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0044
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0100
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0035
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0044
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0017
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on amplicon length (i.e., whether longer fragments are less likely to be amplified in older samples), we 

fitted a linear regression of amplicon length and age for each core. Data analyses were performed 

using R software, version 3.6.0 (R Development Core Team, 2019). 

 

2.4 Results 

Primer design and evaluation 

We evaluated potential combinations of newly designed and previously established metabarcoding 

primers in silico, and three candidate primer pairs did not contravene any of the exclusion criteria (i.e., 

mean amplicon size ≤250 bp, ≥ 50,000 Dikarya amplicons, more Ascomycota than Basidiomycota and 

Fungi incertae sedis amplicons, and Viridiplantae or Metazoa at ≤10% of the number of Dikarya 

amplicons); the combination ITS67 (5′-ACC TGC GGA AGG ATC ATT-3′; this study) and 5.8S_Fungi (5′-

CAA GAG ATC CGT TGT TGA AAG TT-3′; Epp et al., 2012) produced short amplicons (mean length of 

183 bp), showed high specificity to fungi (91% of the amplicons assigned to fungi), and amplified a high 

number of target sequences in silico (N = 383,992). Most other primer combinations were excluded 

because they produced large numbers of off-target amplicons (mostly of plants) or amplicons which 

exceeded our chosen threshold of 250 bp (Table 1). For the selected primers, in silico amplicons of 

Ascomycota (mean length 186 bp; N = 157,058) were shorter than those of Basidiomycota (mean 

207 bp; N = 62,108), and fungi incertae sedis (including Mucoromycota) amplicons were, on average, 

168 bp long (N = 14,308). The taxonomic resolution (i.e., the proportion of unambiguously identified 

taxa) of the amplified marker was 53% at species, 67% at genus, and 60% at the family level, according 

to the ecotaxspecificity function of OBITools software (Boyer et al., 2016). Regarding off-target 

amplification, the selected primer combination produced 6078 Viridiplantae and 386 Metazoa 

sequences. 

Primers ITS67 and 5.8S_Fungi were tested in vitro in PCRs, and the reaction conditions were optimized 

using template DNA extracted from Museum vouchers of eight fungal taxa, including the genera 

Sordaria, Podospora, Cladonia, Panaeolus, Coprinus, Coprinopsis, and Pilobolus. All reactions produced 

amplicons in the expected size range. 
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Evaluation of lake sediment core DNA for fungal paleoecology 

2.4.1 Taxonomic resolution across the cores 

After processing and filtering of the raw data including clustering at 97% (described in detail by von 

Hippel et al., 2021), the resulting 5411 cluster centroids were subjected to taxonomic assignments with 

each database and to subsequent filtering, as indicated above. Across the 70 samples of five cores and 

using the UNITE database, 135 operational taxonomic unit (OTU) cluster centroids were retained 

(Tables S3 and S4), which comprised 33 taxonomic orders (Table 2), 57 families, 79 genera, and 113 

species. Regarding maximum taxonomic resolution, 121 (89%) OTUs were assigned to species level, 7 

(5%) to genus level, 3 (3%) to family level, and 3 (3%) to order level. Using the EMBL database, 384 

OTU cluster centroids were retained, comprising 51 orders, 100 families, 152 genera, and 188 species; 

556 (50%) of the OTUs were assigned to species level, 275 (29%) to genus level, 66 (7%) to family level, 

and 13 (1%) to order level; 4% of the OTUs were assigned only to higher taxonomic levels. The overall 

weighted mean frequencies at class level were plotted across all samples of each lake (Figure 1), and 

changes in taxonomic resolution (i.e., assignment to species, genus, family, class, and order level) 

oversample age are shown in Figure 2. 

 

Figure 1: Proportions of fungal classes in lake sediments, averaged across all respective samples. 
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Figure 2: Effect of sample age on (a) mean amplicon lengths, (b) weighted mean GC content, (c) Shannon–Wiener 

(S-W) diversity indices of fungal taxa on order level, and (d) taxonomic (tax.) resolution, that is, the percentage 

of OTUs assigned on species (red), genus (blue), family (gray), order (green), and class (purple) level. Red crosses 

on the y-axes of panels a and B indicate the respective values of the in silico PCR output (183 bp length and 74% 

GC content). 

 

2.4.2 Comprehensiveness: Rarefaction and accumulation curves 

Rarefaction analysis was performed to estimate OTU richness as a function of sampling effort, that is, 

sequencing depth, based on the minimum number of observed sequence counts. Most rarefaction 

curves showed an asymptotic course, suggesting that sequencing depth was sufficient (Figure S2). To 

test whether the number of PCR replicates was sufficient to assess taxonomic richness per sample, we 

produced OTU accumulation curves of the core with the highest temporal resolution (from lake CH12; 

[Klemm et al., 2016]). These curves did not show saturation over the maximum of six replicates (Figure 

S3). 

 

2.4.3 Amplicon length and GC content to assess bias through degradation 

Average amplicon length as a function of age per core was tested to assess the effect of age on DNA 

degradation. This suggested only negligible decreases in mean amplicon length over time (Figure 2a); 

in none of the five cores did the linear regression indicate a significant effect of age on amplicon length, 

regardless of taxonomic assignment. Degradation processes linked to the age of DNA also lead to an 

increase in GC content (Dabney et al., 2013); in the current study, amplicon GC content ranged from 
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10% to 63% (mean 43% ± 10%), and we observed no bias toward higher GC content in older samples. 

In core CH12, GC content rather decreased significantly with age (est. -0.19; t = −3.33; p = 0.003), while 

no significant effect of age on GC content was observed in the cores of the other four lakes (Figure 2b). 

By comparison, the GC content in the in silico-PCR output was 47%. 

 

2.4.4 General taxonomic composition of fungi in Siberian lake sediment cores 

The predominant taxa (Table 2 and Figure 1) in all lakes were terrestrial saprotrophs, mycorrhizal fungi, 

and other soil fungi, for example, OTUs assigned to the genera Mortierella (order Mortierellales) and 

Inocybe (Agaricales) (Domsch et al., 2007; Varma et al., 2017), respectively. We found very few 

sequences of fungi that were determined to be aquatic, that is, OTUs assigned to Alatospora sp. 

(Ascomycota). These were restricted to four samples of Lake Levinson-Lessing and comprised less than 

4000 reads in the total dataset. 

The dataset also contained reads of off-target taxa (i.e., non-fungi) which were assigned using the 

EMBL database. Out of 936 EMBL-assigned OTUs, 24 OTUs at a total of 59,902 reads were assigned to 

non-fungi taxa, which belonged to the clades Viridiplantae (21 OTUs; 55,777 reads), the SAR 

supergroup (2 OTUs; 2788 reads), and Metazoa (1 OTU; 1337 reads; Table 2). 

Reads produced from extraction blanks and non-template PCR controls were processed as described 

above and were assigned using the UNITE databases, which showed assignment of 141,746 reads to 

34 OTUs. Three of the five most abundant taxa in the PCR and extraction controls (Wickerhamomyces, 

Candida, and Pichia) did not occur at all among assigned sample reads (Table S3), and only the genera 

Aspergillus and Gryganskiella occurred in total numbers of >10.000 reads in extraction blanks and non-

template controls (Table S5). 

 

Diversity of fungal paleocommunities from lake CH12 

We examined Bray–Curtis dissimilarities between PCR replicates of all samples of core CH12 to test 

whether the within-sample variation is smaller than between-sample variation, and MRPP analysis 

suggested significantly lower dissimilarity between PCR replicates of one sample (64.97%) than 

between those of different samples (88.46%; p = 0.001; within-group agreement = 0.26; observed 

delta 0.6503; expected delta 0.8774). In the graphical cluster visualization based on Bray–Curtis 

distances, however, most replicates clustered together regardless of samples, likely due to the 
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predominance of specific taxa in most samples (Figure S4). We, therefore, repeated this analysis after 

excluding a) the most abundant taxa (> 50.000 reads in total) or b) the least abundant taxa (<50.000 

reads in total); however, this analysis did also not visually differentiate samples based on similarities 

of the PCR replicates. 

Across all cores, the fungal divisions Ascomycota, Basidiomycota, Mucoromycota, and Olpidiomycota 

were represented and accounted for approximately 62%, 15%, and 23%, and 0.06% of the fungal reads, 

respectively (Table 2). Amplicons of Basidiomycota were significantly longer (179 ± 44 bp) than those 

of Mucoromycota (153 ± 24 bp; ANOVA F = 3.383; p = 0.037; Tukey’s test p = 0.04). Amplicon lengths 

of Ascomycota (169 ± 22 bp) did not differ significantly from those of Basidiomycota and 

Mucoromycota. The single OTU assigned to Olpidiomycota was 104 bp long. In the case of CH12, we 

found that Ascomycota was more abundant in younger samples and that the proportion of 

Mucoromycota (shortest amplicons) was higher in older samples; however, Basidiomycota (longest 

amplicons) also appeared to be more abundant in older samples (Figure 3). Shannon–Wiener diversity 

indices showed considerable variation in fungal communities over time (Figures 2c). In core CH12, 

OTUs were assigned to a total of 23 orders, and taxonomic richness ranged from 1 (in the oldest 

sample, dated 7011 years) to 14 (sample 5521 years; mean 8 ± 3) with particularly low diversity in 

samples dated 1976, 1845, and 14 years (diversity indices 0.02, 0,05, and 0.03, respectively), even 

though the respective OTUs were assigned to 7, 9, and 6 orders; this discrepancy between richness 

and diversity is due to the dominance of OTUs assigned to the order Helotiales in these samples (> 99%, 

each). 

 

Figure 3: Changes in proportions of the three major divisions Ascomycota (red), Basidiomycota (blue), and 

Mucoromycota (green) over sample age of lake CH12 (a), and respective fragment lengths (b); boxes indicate 

2nd and 3rd quartiles, center lines indicate median values, upper (and lower) whiskers extend to the highest (and 

lowest) value within 1.5-times the interquartile range. Data points beyond the end of the whiskers are shown as 

open dots. 
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The cumulative overall proportions of the typical mold genera Aspergillus, Cladosporium, Mucor, and 

Penicillium in the cores were as follows: 1.37% in Levinson-Lessing (2017), 4.21% in Bolshoye Toko 

(2013), 3.72% in CH12 (2011), 15.66% in Kyutyunda (2010), and 5.76% in Lake Lama (1997). The 

respective proportions remained relatively stable over time and did not appear to increase in deeper 

layers (Figure S5). By comparison, the proportion of these genera in silico PCR output was 3.87%. 

 

2.5 Discussion 

2.5.1 Preservation biases and potential contamination 

Our results confirm that ancient DNA from lake sediment cores can be used for fungal metabarcoding 

from boreal to arctic sites, with samples aged up to 44,995 years. Fungal paleocommunities from lake 

sediments have also been recently reported from temperate conditions and spanning the Holocene 

(Talas et al., 2021). Our putatively authentic ancient fungal DNA, attributed primarily to taxa from the 

terrestrial surroundings of the lake, was in part recovered from cores that had been stored in a storage 

facility under non-frozen conditions for multiple years prior to sampling for DNA, underlining the value 

of sediment core collections also for work with sedimentary ancient DNA. For the ITS1-amplicon 

targeted by our primers, the average length of Ascomycota was shorter than that of Basidiomycota, 

both in silico using ecoPCR on the EMBL database and in the sequencing results (198 vs. 219 bp and 

169 vs. 179 bp, respectively), which is in line with the results of a previous study (Bellemain et 

al., 2010). This difference was smaller in sequencing reads from sedaDNA than in in silico PCR products, 

which could possibly be attributed to the fragmentation of DNA in the environment. An increase in the 

proportion of shorter amplicons with sample age may suggest a bias against the amplification of longer 

DNA sequences, likely due to DNA fragmentation; however, our results suggest only minor, non-

significant declines in amplicon lengths over time in each sediment core (Figure 2), indicating that the 

results are not impacted by DNA fragmentation. 

A further source of bias linked to degradation can potentially change the GC content of the DNA. GC 

content can increase with the age of DNA due to degradation impacting primarily GC-poor fragments 

(Dabney et al., 2013). In the current study, GC content ranged from 10% to 63%, and we observed no 

bias toward higher GC content in older samples. Contrary to our expectations, we found a decrease in 

GC content with age in one lake (CH12). This may, however, be an incidental result considering that no 

significant effect of age on GC content was observed in the cores of the other four lakes (Figure 2b). 

Taken together, the lack of GC bias corresponding to sample age suggests that degradation of arctic 

and subarctic sedaDNA may not be problematic for fungal metabarcoding. As we worked with cores 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#support-information-section
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0057
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0006
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-fig-0002
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0017
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-fig-0002


28 
 

that were not sampled for DNA soon after coring, but had in part been stored for 2–22 years prior to 

collecting and freezing DNA samples, we furthermore screened our results for the occurrence of taxa 

that point to recent fungal growth in or on the cores (e.g., dominance of molds). Growth of molds 

during storage of the cores or within the sediment would be expected to increase the proportion of 

these taxa; however, we found little indication for such a bias in our samples (Figure S4). Even though 

the second-oldest core (lake Kyutuynda; from 2010) showed the highest cumulative proportion of the 

four mold genera Aspergillus, Cladosporium, Mucor, and Penicillium (15.66%), this was only due to two 

samples with particularly high abundance, whereas in the core from 1997 (Lake Lama), a substantially 

lower proportion of these taxa was observed (5.76%). Thus, long storage times of sediment cores are 

not necessarily problematic for reproducing ancient fungal communities. 

 

2.5.2 Characteristics of the optimized sedaDNA ITS1 metabarcoding assay 

A large part of the ancient DNA pool in sediment cores is typically reduced to fragments well below 

50 bp (Lammers et al., 2021; Parducci et al., 2017; Pedersen et al., 2016) and will not be traceable at 

all through PCR; however, for metabarcoding, short amplicons are preferable. We, therefore, aimed 

for metabarcoding primers to amplify the shortest possible amplicons, so as to account for potential 

length bias due to fragmentation of DNA with age, while providing high specificity to fungi and high 

taxonomic resolution. Diversity estimates of fungal communities (also including lichenized fungi) based 

on metabarcoding may be considerably biased by the barcode locus (Banchi et al., 2018; Tedersoo et 

al., 2015; Tedersoo & Lindahl, 2016), and ITS-2 was suggested to be preferable over ITS-1, particularly 

with respect to taxonomic assignment of lichenized fungi and Basidiomycetes (Banchi et al., 2018; 

Tedersoo et al., 2015). Thus, a combined approach using both ITS loci would be most reliable. However, 

the larger fragment length of ITS-2 may introduce amplification bias when ancient DNA is concerned. 

Our results using the primer combination optimized in silico suggested high taxonomic diversity at 

relatively short amplicon lengths (mean length of 183 bp), without the discernible introduction of 

biases against any one division. Due to the structure of the ITS region and its marked length variation, 

we could not design a universal primer pair for all fungi with a shorter amplicon, but our results suggest 

no bias in results due to group-specific amplicon length differences. Compared to an assay used 

recently for fungal DNA from a lake sediment core (Talas et al., 2021), the amplicon we propose 

appears to be substantially shorter (Table 1); in the study of Talas et al. (2021), greater length did not 

seem to compromise the results, but this may not universally be the case, and a different study 

recovered largely similar communities using ITS-1 and ITS-2 markers (Blaalid et al., 2013). 
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Despite its short length, the taxonomic resolution offered by our metabarcoding fragment was high 

not only in silico, but also in the sedaDNA results, with a high number of OTUs assigned to species or 

genus level. The exact number of assigned OTUs, and the taxonomic level reached, was highly 

dependent on the database used, underlining the importance of reference sequence collections. In 

general, and particularly for a taxonomic group as highly diverse as fungi, limited availability of 

reference sequences is one of the most crucial factors curbing the potential of metabarcoding 

communities from bulk samples. Moreover, resolving taxonomic diversity in bulk environmental 

samples may also be confounded due to continuously developing taxonomies and phylogenies and 

subsequent disagreement between databases regarding taxonomic levels and assignments, for 

example, the EMBL database still uses the former division Zygomycota which as per the current 

standard was split into the phyla Mucoromycota and Zoopagomycota (Spatafora et al., 2016), as 

implemented in the UNITE database. 

Despite these persistent, inherent challenges to fungal metabarcoding, the observed diversity 

regarding the proportions of fungal divisions resembles the generally known proportions. The numbers 

of described species within the Ascomycota and Basidiomycota as the two largest divisions of the fungi 

kingdom exceed 60,000 and 30,000, respectively, whereas all other divisions comprise fewer than 2000 

known species, each (Naranjo-Ortiz & Gabaldón, 2019); we identified 55 OTUs of Ascomycota, 61 of 

Basidiomycota, and 15 of Mucoromycota, suggesting that the primer pair shows good universality to 

capture fungal diversity. We also screened the in silico PCR results for specific groups that have 

previously been targeted, or have been prominent, in sediment core studies. These are aquatic taxa, 

and in particular, Chytridiomycota, which constituted a major component in the recently published 

study of Talas et al. (2021), as well as coprophilous fungi, such as Sporormiella and Sordaria, which are 

used in palynological studies as proxies for the presence of mammals (Gill et al. 2009, 2013, Davies 

2019). These taxa occurred in the output of the in silico PCR and should thus potentially be retrieved 

by our assay. 

 

2.5.3 Potential of lake sediment fungal DNA for paleoecology 

Fungi which are specific regarding their associations with plants or regarding other environmental 

conditions such as temperature may be indicative of local plant communities and climate, respectively. 

Based on the ecological conditions in the environment of the sampled lakes and on previous 

morphological and molecular studies in various ecosystems, we expected fungal taxa belonging to 

different ecological functional groups such as terrestrial saprotrophs, mycorrhizal fungi, coprophilous 
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fungi, and aquatic taxa (Booth, 2011; Botnen et al., 2020; Grau et al., 2017) which may indicate 

ecosystem structures and environmental changes. Some examples of such ecosystem indicators are 

provided here; however, ecological interpretations of these data are made elsewhere (von Hippel et 

al., 2021). 

The main fungal divisions were Ascomycota, Basidiomycota, and Mucoromycota, and we found 

relatively few reads (0.26%) of taxa which may be assigned to Glomeromycota, according to previous 

taxonomic systems, which is in line with the results of a recent metabarcoding study on fungal diversity 

from sediment of a lake in Eastern Latvia at 56.76°N, 27.15°E (Talas et al., 2021) with respect to 

terrestrial taxa. The overall composition differed between cores, which suggests local effects on past 

communities in the catchment of the respective lake; however, each of them seemed to reflect 

terrestrial communities. The 15 most abundant taxa in each lake comprised terrestrial saprotrophs and 

mycorrhizal fungi (e.g., the genera Mortierella and Inocybe, respectively), which supports the use of 

lake sediment for reconstructing terrestrial fungal communities. OTUs assigned to the genus 

Mortierella were among the 15 most abundant genera in each core, and these fungi typically occur as 

saprotrophs in soil, on decaying leaves, and other organic material (Domsch et al., 2007). Among 

mycorrhizal fungi, the genus Inocybe (Deacon et al., 1983) dominated some of the samples of lake 

CH12 and also occurred sporadically in samples of other lakes (von Hippel et al., 2021). 

Contrary to our expectations, and in contrast to one of the main uses of fungal remains in paleoecology 

using classical, microscopic techniques, we observed no taxa which may be considered obligate 

coprophilous fungi (e.g., Sporormiella sp., Preussia sp., and Sordaria sp.). Spores of these taxa are used 

in morphological studies as proxies for herbivore presence (Davis & Shafer, 2006; Feranec et al., 2011; 

Raper & Bush, 2009). These taxa were recovered previously by Bellemain et al. (2013), using fungal 

metabarcoding on ancient permafrost; however, these deposits were of purely terrestrial origin. A 

large proportion of samples from one of the analyzed sites (Main River) also yielded mammal DNA 

(Willerslev et al., 2014), indicating a particularly high abundance of megafauna at this site. However, 

our data do not support the use of fungal DNA from lake sediment cores as a proxy for the presence 

and abundance of mammals in a similar way to microscopic analyses of spores. Future comparative 

morphological and molecular investigation may help elucidate the discrepancy between the 

approaches. In terms of lichens, which constitute an important part of Arctic vegetation and are crucial 

as the sustenance of herbivores (Kumpula, 2001), we found some 16,000 reads assigned to Peltigera 

sp., which occurred only in cores of Arctic lakes. Other common lichen taxa such as Cladonia sp. or 

Stereocaulon sp. were not observed, which may be due to the absence of DNA of these taxa in the 

sediment cores, absence of these taxa in the respective ecosystems, or biases inherent to ITS-1-based 

metabarcoding of fungi (Banchi et al., 2018; Tedersoo et al., 2015). 
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While the lack of coprophilous taxa in the molecular lake sediment records may be viewed as a 

drawback compared to permafrost deposits, their overall use in paleoecology seems more 

straightforward as they seem to be less confounded by potentially living organisms. Permafrost 

deposits contained a relatively high proportion of psychrophilic taxa (Bellemain et al., 2013), which are 

not necessarily ancient and which give no further paleoecological information in an area of cold ground 

temperatures. In our set of lakes, we found two OTUs assigned to the genus Leucosporidium which 

may be considered psychrotolerant. These were among the most abundant taxa in several samples of 

lake CH12 and showed considerable variation through the core (0%–12% of the respective read 

proportions; mean 3% ± 4%). Here, these sequences, thus, may be indicative of climatic changes and 

show a potential value as paleoenvironmental proxy. 

In comparison to the recently published dataset on the temperate lake from Eastern Latvia (Talas et 

al., 2021), one striking difference is that we observed relatively few (predominantly) aquatic taxa, for 

example, Alatospora sp. (3227 reads in 4 samples). This could reflect the actual situation in the Arctic 

and Subarctic lakes target here, as little is known on aquatic fungi in this part of the world. A previous 

study discovered a substantial amount of aquatic fungi in Scandinavian lakes (Khomich et al., 2017), 

however, it is also possible that the aquatic taxa that do occur in the areas of the current study are 

underrepresented in the current reference databases, and their sequences were, therefore, not 

assigned. 

This points to an aspect that cannot be fully resolved at this point: comparing taxonomic diversity and 

relative abundance between studies is not straightforward due to a) differences between primers (and 

inevitable PCR bias), b) discrepancies between analysis pathways (including data filtration assignment 

algorithms, and comprehensiveness of reference databases), and c) differences between ecosystems 

and sampling substrates (e.g., Arctic vs. non-Arctic systems and lake sediments vs. permafrost or soil 

cores). We acknowledge that the chosen best identity threshold of 97% may be rather conservative 

and may thus not reveal the entire diversity of the examined fungal communities, which would bias 

our interpretations to some extent. However, due to the overwhelming diversity of fungi and the lack 

of complete reference databases, we argue that particularly for ecological conclusions which are based 

on relative abundances, a more stringent approach is likely more reliable than a more relaxed 

approach that would allow a larger proportion of false-positive assignments. 

Taken together, our results support the use of sedimentary ancient DNA from lake sediments for 

reconstructing past fungal communities. The observed community changes may hold valuable 

information on ecosystem changes regarding the abundance of host plants of mycorrhizal or 

pathogenic fungi, climatic changes, and other ecological functions exerted by specific functional groups 

https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0007
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0057
https://onlinelibrary.wiley.com/doi/10.1002/edn3.315#edn3315-bib-0034
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of fungi (for details, see von Hippel et al., 2021). Ecological interpretations, however, should be made 

with caution due to currently limited knowledge on the ecology and ecosystem functions of numerous 

fungal taxa. Moreover, comprehensive global reference databases must be established to reduce bias 

in the interpretation of such data. Further research is, thus, needed to link alterations in past and 

recent fungal communities and with changes on the scale of ecosystems, which may require further 

elucidating the ecology of crucial fungal taxa., 
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3.1 Abstract 

Climate change has a major impact on arctic and boreal terrestrial ecosystems as warming leads to 

northward treeline shifts, inducing consequences for heterotrophic organisms associated with the 

plant taxa. To unravel ecological dependencies, we address how long-term climatic changes have 

shaped the co-occurrence of plants and fungi across selected sites in Siberia. 

We investigated sedimentary ancient DNA from five lakes spanning the last 47,000 years, using the 

ITS1 marker for fungi and the chloroplast P6 loop marker for vegetation metabarcoding. We obtained 

706 unique fungal operational taxonomic units (OTUs) and 243 taxa for the plants. We show higher 

OTU numbers in dry forest tundra as well as boreal forests compared to wet southern tundra. The 

most abundant fungal taxa in our dataset are Pseudeurotiaceae, Mortierella, Sordariomyceta, 

Exophiala, Oidiodendron, Protoventuria, Candida vartiovaarae, Pseudeurotium, Gryganskiella 

fimbricystis, and Trichosporiella cerebriformis. The overall fungal composition is explained by the plant 

mailto:barbara.von.hippel@awi.de
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/terrestrial-ecosystem
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/timberline
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/plant-and-fungus
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/boreal-forest
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composition as revealed by redundancy analysis. The fungal functional groups show antagonistic 

relationships in their climate susceptibility. The advance of woody taxa in response to past warming 

led to an increase in the abundance of mycorrhizae, lichens, and parasites, while yeast and saprotroph 

distribution declined. We also show co-occurrences between Salicaceae, Larix, and Alnus and their 

associated pathogens and detect higher mycorrhizal fungus diversity with the presence of Pinaceae. 

Under future warming, we can expect feedbacks between fungus composition and plant diversity 

changes which will affect forest advance, species diversity, and ecosystem stability in arctic regions. 

 

3.2 Introduction 

Permafrost soils comprise almost half of the global soil organic carbon (Tarnocai et al., 2009). The 

permanently frozen ground enables only the establishment of vegetation with shallow roots (Blume-

Werry et al., 2019), most usually, tundra plants. However, global warming is leading to increased 

shrub-growth on permafrost in arctic regions, particularly at the boundary between the High and Low 

Arctic (Myers-Smith et al., 2015). Changes in the vegetation cover will subsequently influence the 

carbon pool as tundra plants growing on permafrost regulate the uptake and release of carbon dioxide 

and methane (McGuire et al., 2009). 

Boreal forests are the world's largest terrestrial biome, covering an area of around 9% of the total land 

mass between 45° and 70° north (Czimczik et al., 2005). The climate in their distribution area is defined 

by severe winters, warm summers, relatively little precipitation, and an overall short growing season 

(MacDonald et al., 2008), leading to generally low species diversity in the forests. Boreal ecosystems 

are highly impacted by global warming as increasing temperatures result in reduced snow cover 

(Kreyling et al., 2012), loss of permafrost (Fedorov et al., 2017), longer growing seasons (Jarvis and 

Linder, 2000) or severe droughts and wildfire (Flannigan et al., 2009). As a consequence, the 

distribution and abundance of boreal plants is altered (Zhang et al., 2011) and local wildlife is 

endangered (Bradshaw et al., 2009). Furthermore, in Siberia, the migration of evergreen coniferous 

tree taxa into Larix dominated areas after warming has been observed, possibly leading to decreased 

albedo and further temperature increases (Kharuk et al., 2007, 2009). The composition of underground 

microorganisms in boreal forests, for example fungi and bacteria, is also impacted as it is shaped by 

the tree species present (Urbanová et al., 2015), suggesting microbial communities will shift with 

changing vegetation. 

Fungi represent a principal component of soils and sustain a broad variety of ecosystem functions (Frąc 

et al., 2018). Fungal functional types reflect the strong interactions between plants and fungi but, so 
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far, detailed processes involved in particular temporal changes in their covariation are not understood 

(Zobel et al., 2018). Grouping fungi according to their roles in the terrestrial ecosystem allows the 

assessment of compositional shifts. This, however, remains challenging as the ecological functions of 

many taxa are still not understood. Major ecological functional fungus groups in forest ecosystems are 

saprotrophs, mycorrhizae, and parasites. Saprotrophic species are decomposers in terrestrial 

ecosystems (Baldrian and Valášková, 2008). A plant's benefit from mycorrhizal fungi is the enabled 

acquisition of mineral nutrients in solution (e.g. phosphate), while the fungus in return receives 

carbohydrates from the plants (Finlay, 2008), making them indispensable for the plants' establishment 

and survival. Mycorrhizal fungi-plant associations include arbuscular mycorrhizae, ectomycorrhizae, 

ericoid mycorrhizae, and orchid mycorrhizae (Brundrett and Tedersoo, 2018). Parasitic fungi, such as 

Heterobasidion, infecting conifer tree taxa (Garbelotto and Gonthier, 2013), are important for 

eliminating weak trees to maintain the functioning of healthy forest ecosystems. While biotrophic 

plant parasites feed from living tissue, necrotrophic fungi penetrate the plant, destroy the tissue, and 

subsequently provoke plant death (Naranjo-Ortiz and Gabaldón, 2019). 

Experimental warming led to an increase in ectomycorrhizal fungi and free-living filamentous fungi, 

while a decrease in yeast was observed (Treseder et al., 2016). It also showed an increase in the 

evenness of fungal tundra communities, including ectomycorrhizal fungi, in relation to rising 

temperature (Deslippe et al., 2012). Furthermore, under warming, saprotrophs shifted their 

metabolism from wood-decaying to self-maintenance and subsequent spore-production (Romero-

Olivares et al., 2015, 2019). Warming also leads to an increase in specific plant pathogens (Otrosina 

and Cobb, 1989). Next generation sequencing studies of soil fungi in arctic Alaska revealed that 

warming does not affect overall fungus richness but leads to changes in the community composition. 

The results of these studies revealed that decreases in ectomycorrhizae, ericoid mycorrhizae, and 

lichens in the tundra accompany increases of saprotrophic, pathogenic, and root endophytic fungal 

richness (Geml et al., 2015; Mundra et al., 2016). Almost all information on fungal compositional 

turnover originates from short-term warming experiments (from one season up to a few years; e.g. 

Heinemeyer et al., 2003; Geml et al., 2015). Accordingly, time-series of compositional changes in 

fungal communities during past climate changes are highly desirable to assess potential shifts of 

ecosystem functioning in a rapidly warming world. Time-series are also an asset when testing whether 

lab experiments reflect real natural developments on long geological timescales. 

Compositional changes of vegetation and associated fungal communities are slow. They occur on 

decadal, centennial, or even millennial time-scales not being covered by short observational time-

series and thus the exploitation of palaeoecological archives is required. As large parts of Siberia were 

not covered by glaciers during the Last Glacial Maximum (LGM; Svendsen et al., 2004), lakes from this 
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region provide sedimentary archives which continuously cover the rather warm marine isotopic stage 

(MIS) 3 (50–30 thousand years (ka)), the cold MIS 2 (30–15.5 ka), and warm Holocene (MIS 1) (the last 

11.6 ka) (Kreveld et al., 2000; Swann et al., 2005), thereby encompassing tremendous vegetation 

changes. Lake sediments represent natural archives of terrestrial environmental change (e.g. Epp et al., 

2015; Alsos et al., 2018; Courtin et al., 2021). As northern Russia is warming faster than the global 

average (Biskaborn et al., 2019b), lake sediments can provide valuable information on associated 

terrestrial ecosystem changes. While many sedimentary pollen records focus on vegetation change, 

there is only limited information about fungi (e.g. from non-pollen palynomorphs; Van Geel, 2001) as 

their fossil remains are limited (Loughlin et al., 2018; Quamar and Stivrinsz, 2021). 

Sedimentary ancient DNA metabarcoding (sedaDNA) is a promising palaeoecological proxy using 

specific genetic marker regions to study past biodiversity (Sønstebø et al., 2010). So far, many sedaDNA 

studies have investigated plant metabarcoding, mostly applying the trnL P6 loop marker (Parducci 

et al., 2017; Alsos et al., 2018; Liu et al., 2020), but only a few studies focus on fungal aDNA from 

sedimentary deposits (Lydolph et al., 2005; Bellemain et al., 2013; Talas et al., 2021), working on 

Siberian permafrost sediments (Bellemain et al., 2013) and lake sediments (Talas et al., 2021). For 

fungal metabarcoding, the internal transcribed spacer (ITS) region is the most commonly used DNA 

barcoding region (Seifert, 2009), but the primers used in early studies caused quite some amplification 

biases (Bellemain et al., 2010). Subsequently, primers specifically targeting ancient and degraded DNA 

were designed and used on permafrost deposits (Epp et al., 2012; Bellemain et al., 2013). These have 

been refined according to the current status of reference databases by Seeber et al. (2022), providing 

a primer pair that is highly suitable to amplify sedaDNA, targeting short amplicons of a mean length of 

183 bp and highly specific towards fungi. This primer combination enables studies using sedaDNA to 

trace fungus-plant interactions over time and their adaptation mechanisms towards warming even up 

to species level. The advantage of targeting lake sediment samples as ancient DNA records over 

permafrost is that during the sedimentation processes, environmental DNA is continuously deposited 

in the lake, allowing a chronological community reconstruction. A recent investigation of lake 

sediments showed clear variations in fungal community compositions: while saprotrophs remained 

stable over time, host-specific fungi such as plankton parasites and mycorrhizae shifted in relation to 

human impact and changing climate (Talas et al., 2021). 

This study analyses lake sediments from five sites in Siberia spanning MIS 3, 2, and 1 for their fungal 

composition using sedaDNA metabarcoding with the ITS1 marker as well as their vegetation 

composition applying the trnL P6 loop marker. We address the following questions: (1) How does 

fungal and plant alpha diversity change with varying climatic and environmental conditions? (2) How 

do fungal taxonomic composition and function change relative to vegetation transition? Based on the 
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answers, we draw conclusions on fungus-plant covariation under climatic changes over long timescales 

and its impact on biodiversity alteration in Arctic terrestrial environments. As exemplified by the 

response of fungus-plant interactions, our results help to predict more accurately the impact of future 

warming on biodiversity shifts. 

 

3.3 Geographic setting and study sites 

All study sites are located within Siberia, central eastern Russia (Fig. 1), and are characterised by 

permafrost soils (Brown et al., 1997; Tchebakova et al., 2009). The climate in the area is rather 

continental with hot summers and long, severe winters (Atlas Arktiki, 1985). The most prevalent 

vegetation is boreal forest with spruce, pine, fir, and larch in the western and southern parts and pure 

larch forest in the east. Arctic regions along the coast and on the Taymyr Peninsula are covered by 

tundra. The main characteristics of the sampling locations are displayed in Table 1. The climate data 

are taken from the Russian Institute of Hydrometeorological Information: World Data Center (2021) 

unless indicated differently. 

 

Figure 1: Map of central Russia showing the location of the study sites (A+B). (C) to (G) satellite images of the 

lakes with their surroundings. The locations of the cores are marked with a star. The “distribution of deciduous 

and evergreen forests” is taken from the ESA CCI Land Cover time-series v2.0.7 (1992–2015)- data set 

(https://www.esa-landcover-cci.org/). For the illustration, the land cover classes “70” (“Tree cover, 

needleleaved, evergreen”) and “80” (“Tree cover, needleleaved, deciduous”) were extracted. 
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Table 1. Main characteristics of the sampled lakes. 

Lake Coordinates Type of vegetation 
Mean 

temperature 
Dimension Coring 

Levinson 
Lessing 

74.27°N, 
98.39°E; 48 m 
a.s.l. (Taymyr 
peninsula) 

sparse lichen-herb, 
moss-forb, dry sedge-
forb tundra with 
dominant Dryas 
octopetala, Salix polaris, 
and Cassiope tetragona 
(Anisimov and Pospelov, 
1999) 

July: 12.5 °C 
January: -31.5 °C 
Hatanga weather 
station; 71.98 °N, 
102.47 °E; 
distance to the 
lake: 289 km 

15 km × 2.5 km, 
maximum depth: 
120 m (Lebas et al., 
2019) 

year: 2017 
length: 46 m 
(Co1401; 
Fig. 1D) at a 
depth of 112 m 
age: 62 cal ka 
BP (Scheidt 
et al., 2021) 

CH12 

72.4°N, 
102.29°E; 60 m 
a.s.l. (southern 
Taymyr 
Peninsula north 
of the Putorana 
Plateau) 

shrub tundra dominated 
by Sphagnum, 
Hylocomium, 
Aulacomnium, 
Dicranum, and 
Polytrichum as well as 
Empetrum nigrum, 
Betula nana, and 
Vaccinium uliginosum; 
stands of Larix gmelinii 
(Klemm et al., 2016; 
Niemeyer et al., 2017) 

July: 12.5 °C 
January: -31.5 °C 
Hatanga weather 
station; 71.98 °N, 
102.47 °E; 
distance to the 
lake: 60 km 

elliptically shaped, 
mean radius: 
100 m, maximum 
depth: 14.3 m 

year: 2011 
length: 1.21 m 
(Fig. 1C) 
age: 7.1 cal ka 
BP (Stoof-
Leichsenring 
et al., 2015; 
Klemm et al., 
2016) 

Kyutyunda 

69.38 °N, 
123.38°E; 66 m 
a.s.l. (northern 
Siberia on the 
central Siberian 
Plateau) 

tundra-taiga transition 
zone, formed of a 
mosaic of Larix forest 
and shrub tundra with 
Poaceae, Dryas, and 
Saxifraga species 

July: 13 °C 
January: -35.3 °C 
Kjusjur weather 
station; 70.68 °N, 
127.4 °E; distance 
to the lake: 
210 km 

roughly circular at 
2.2 km by 3 km, 
maximum depth: 
3.5 m 

year: 2010 
length: 7 m (PG 
2023; Fig. 1F) 
age: 38.8 cal ka 
BP 
(Supplement 1 
and 2) 

Lama 

69.32°N, 
90.12°E; 53 m 
a.s.l. (Putorana 
Plateau) 

dense taiga with Picea, 
Larix, and Betula, shrubs 
such as Alnus fruticosa, 
Salix, and Juniperus 
communis, and dwarf 
shrubs (Andreev et al., 
2004) 

July: 13.8 °C 
January: -28.8 °C 
Volochanka 
weather station; 
70.97 °N, 94.5 °E; 
distance to the 
lake: 247 km 

area: 318 km2; 
80 km × 7 km; 
maximum depth: 
254 m 

year: 1997 
length: 
18.85 m (depth 
66 m; PG1341, 
Fig. 1E) 
age: 23 kal ca 
BP 
(Supplement 3 
and 4) 

Bolshoe 
Toko 

56.15° N, 130.30 
°E; 903 m a.s.l. 
(northern slope 
of eastern 
Stanovoy 
Mountain Range 
in southern 
central Yakutia) 

deciduous boreal forests 
formed by Larix 
cajanderi and L. gmelinii 
with occurrences of 
Picea obovata, 
P. jezoensis, and Pinus 
sylvestris (Konstantinov, 
2000) 

July: 34 °C 
January: -65 °C 
Toko weather 
station; 56.1 °N, 
131.01 °E; 
distance to the 
lake: 44 km 
(Konstantinov, 
2000) 

area: 
15.4 km × 7.5 km, 
maximum depth: 
72.5 m 

year: 2013 
length: 3.8 m 
(at 26 m depth; 
PG2133; 
Fig. 1G) 
age: 33.8 cal ka 
BP (Courtin 
et al., 2021) 
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3.4 Materials and Methods 

3.4.1 Sampling 

After coring, all sediment was stored at 4 °C to remain cool until sampling and further processing to 

preserve the cores under conditions similar to those on the lakebed. A parallel study (Seeber et al., 

2022) on the fungal metabarcoding marker addressed whether the time of the coring and the 

subsequent long-term storage conditions influenced the metabarcoding results, for example by 

promoting mould. The study demonstrated that there is no direct impact on the results. SedaDNA 

samples were taken from 1 m sub-core segments that were cut in half lengthwise. Subsampling was 

undertaken in the climate chamber of the Helmholtz Centre Potsdam – German Research Centre for 

Geosciences (GFZ) at 10 °C. The chamber is located in the cellar where no molecular genetic studies 

are conducted. Before subsampling, all surfaces were cleaned with DNA Exitus Plus™ (VWR, Germany) 

and demineralised water. All tools were cleaned according to the recommendations of Champlot et al. 

(2010) to avoid contamination with modern DNA and between the samples themselves. All materials 

were taken from the palaeogenetic DNA laboratory at the Alfred-Wegener-Institute (AWI) in Potsdam 

where they had been treated to remove DNA. 

During sampling, protective clothing as well as face masks were worn. The surfaces of the core halves 

were scraped off twice with sterile scalpel blades and samples were taken using four knives and then 

placed in sterile 8 mL Sarstedt tubes. All samples were taken under the same conditions. The core from 

Levinson Lessing was similarly sampled in the laboratories of the Institute of Geology and Mineralogy 

at the University of Cologne. After sampling, the aDNA samples were frozen at −20 °C until DNA 

extraction and amplification. 

Samples for DNA analyses were taken according to their estimated ages, at intervals of about 5 cal kyr 

(calibrated kiloyears), leading to 15 samples from Lama, 9 samples from Levinson Lessing, 10 samples 

from Kyutyunda, and 8 samples from Bolshoe Toko. For CH12, 28 samples were taken, at a higher 

temporal resolution of intervals of about every 100–250 years. 

 

3.4.2 DNA extraction and amplification 

SedaDNA was extracted using the DNeasy PowerMax Soil DNA Isolation Kit (Qiagen, Germany) 

according to the manufacturer's instructions. Before adding 3–7 g of wet sediment material for each 

sample, the PowerBead solution was mixed with buffer C1 and additionally Proteinase K (2 mg mL−1) 
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and DTT (5 M) to break up remaining small pieces of tissue and yield higher DNA concentration. The 

Proteinase K was added to the bead beating tubes before vortexing to reduce the risk of cross-

contamination. We placed the tubes on a vortexer for 10 min and included an additional incubation 

step at 56 °C in a rotation oven overnight. All further steps were conducted according to the 

manufacturer's instructions. The final elution was conducted using 2 mL of solution C6. Each extraction 

batch was processed on a different day to avoid contamination between batches. 0.5 mL of the CH12 

extracts were purified and concentrated to 50 μL with a GeneJET PCR purification Kit (Thermo Fisher 

Scientific, Germany). For all other lakes, 1 mL DNA extract was used for the purification. Afterwards, 

the concentration was measured with a Qubit Fluorometer (Qubit dsDNA BR assay kit, Qubit 4.0 

Fluorometer, Thermo Fisher Scientific, USA) and the DNA diluted to 3 ng μL−1 which balanced out the 

differently processed volumes. Small aliquots were prepared to avoid freeze-thaw cycles. DNA 

extraction blanks were not concentrated, but used directly for subsequent PCR analyses. 

For the amplification of fungal DNA, the tagged forward primer ITS67 and reverse primer 5.8 S were 

used (Seeber et al., 2022). The amplified region has a size of approximately 183 bp (without the 

primers). The use of tagged primers is essential to enable the assignment of the DNA sequences to 

original samples after next generation sequencing. For each batch, six replicates were conducted 

independently from each other. 

For the reconstruction of the palaeovegetation, we used the chloroplast trnL P6 loop marker region 

with the tagged primer trnL g as the forward and trnL h as the reverse primer (Taberlet et al., 2007). 

For each batch, three replicates were conducted independently from each other. 

A PCR reaction contained in total 25 μL consisting of 3 μL DNA at a concentration of 3 ng μL−1, 0.2 μM 

of each primer, 10× HiFi buffer, 2 mM MgSO4, 0.1 mM dNTPs, 0.8 mg mL−1 BSA, and 1.25 U Platinum 

Taq High Fidelity DNA Polymerase (Invitrogen, United States), which can replicate through Uracil and 

is thus suitable for PCRs on damaged DNA (Rasmussen et al., 2010). Each PCR batch also contained 

3 μL of the corresponding DNA extraction blank and a PCR negative control with 3 μL of DEPC-water 

instead of the DNA sample. All steps were conducted in the palaeogenetic laboratories at AWI 

Potsdam. 

The PCR reaction itself was conducted in the Post-PCR laboratories at AWI Potsdam, which are located 

in a separate building to avoid contamination of ancient DNA samples with amplified DNA. Initially, 

lake CH12 was conducted as a separate project itself for the establishment of the metabarcoding 

primers (Seeber et al., 2022). To support the study of the marker establishment as well as this study, 

the results were merged after sequencing which led to small differences in the PCR protocol as 
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described as follows. The fungal ITS marker amplification for the CH12 samples was conducted in a 

thermocycler (Biometra, Germany) following the protocol for voucher samples (Seeber et al., 2022) 

while the other fungal samples were amplified using the following protocol: initial denaturation at 

94 °C for 2 min, 40 cycles of 30 s denaturation at 94 °C, 30 s annealing at 54 °C, and 30 s elongation at 

72 °C, final elongation of 10 min at 72 °C. The thermocycler protocol for plant trnL P6 loop 

amplification followed the protocol of Epp et al. (2018). 

All PCR products were checked by gel electrophoresis (2% agarose gels). Only products showing 

expected gene bands were used for purification and subsequent sequencing. Purification was done 

with the MinElute PCR Purification Kit (Qiagen, Germany) with the elution in 50 μL of the elution buffer. 

Each PCR product was used entirely for purification and treated independently. DNA concentration 

was measured with a Qubit 4.0 Fluorometer, measuring dsDNA using the broad-sensitivity kit. For 

sequencing, 40 ng of each purified PCR product were pooled. If the concentration was not measurable, 

the total purified volume was added to the pool. All PCR replicates were used for the final pools (6 for 

the ITS1 metabarcoding, 3 for the chloroplast P6 loop metabarcoding). For extraction blanks and PCR 

no-template controls, 5 μL of each PCR product was added to avoid diluting the concentration of the 

final sequencing pool too much. The final pool was purified again with MinElute and adjusted to a final 

concentration of 33 ng μL−1 in 30 μL. Three fungal sequencing pools with 175–187 samples each (Pool 

1: 187 samples (3 replicates of each lake besides CH12 and 18 samples of a different project), Pool 2: 

187 samples (all CH-12 samples), Pool 3: 175 samples (3 more replicates for the other lakes)) were sent 

to Fasteris SA sequencing service (Switzerland). The service included library preparation using a 

specified protocol (Metafast library; a PCR-free library preparation method), quality control and 

sequencing on an Illumina MiSeq platform (2 × 250 bp, V3 chemistry with an expected output of 20 

million paired-end reads). 

The plant PCR products were treated equally to the fungal PCR products. We sequenced two pools for 

the plant metabarcoding. These pools were sequenced on an Illumina NextSeq500 device (2 × 150 bp, 

120 million paired-end reads). In addition, plant trnL P6 loop data from the lake CH12 were used from 

Epp et al. (2018). 

 

3.4.3 Bioinformatic analysis 

For the quality-check, filtering and taxonomic assignment of the sequencing results, we used the open 

source OBITools pipeline (Boyer et al., 2016). First, illuminapairedend was conducted to pair sequence 
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ends, followed by obigrep which filters out all unpaired reads. Afterwards, ngsfilter was used to 

demultiplex the file into unique samples and obiuniq was applied to dereplicate sequence reads. All 

sequences shorter than 10 bp and with fewer than 10 reads were deleted applying obigrep. A detailed 

description of all filtering steps is attached (Supplement 5). 

After filtering, ecotag was applied to the vegetation dataset to perform taxonomic classification of the 

sequences against the sequence database. For the taxonomic assignments in the metabarcoding 

community, different approaches can be used. One approach is to work with each assigned sequence 

variant (ASV) present in the sample (after filtering out sequencing errors) and compare them to a 

reference database. In the case of the vegetation dataset, we are working on the level of ASVs. For 

taxonomic classification of the vegetation dataset, we used the ArctBorBryo database based on 

quality-checked and curated Arctic and Boreal vascular plant and bryophyte reference libraries 

(Sønstebø et al., 2010; Willerslev et al., 2014; Soininen et al., 2015). Only those ASVs that have a 100% 

match to the database were kept in the plant dataset. The taxonomic names (either family, genus or 

species level) of the plant ASVs were checked on https://www.gbif.org/ for their occurrence in the 

study area. To simplify the dataset, all reads assigned to the ASVs with the same scientific name are 

merged into one taxon. 

A different approach to analyse metabarcoding data is to work with operational taxonomic units 

(OTUs). When working on the OTU level, the sequence types are clustered together according to a 

specific threshold of sequence identity. For fungal metabarcoding, working on ASV level instead of 

OTUs might lead to an overestimation of the richness of common fungal species due to their haplotype 

variation (Estensmo et al., 2021; Tedersoo et al., 2022), but might also result in an underestimation of 

the richness of rare species. As the common fungi drive the main composition of the datasets, we 

therefore chose to work on an OTU level for this study. Additionally, clustering fungal OTUs is, in 

general, commonly used by the community, following the guideline of Tedersoo et al. (2022), and 

makes a comparison to other studies easier. For the fungal dataset, the open source sumaclust 

algorithm (Mercier et al., 2013) was applied to cluster sequences with an identity threshold of 0.97, 

generating operational taxonomic units (OTUs) before applying ecotag. 

An analysis comparing ASVs and OTUs for the fungal data showed only small differences in the results, 

which did not change the overall pattern. Only absolute numbers of assigned sequences differed (5684 

ASVs and 5411 OTUs). Nonetheless, we tested the distribution of the fungal taxa based on OTUs as 

well as on ASVs in a PCA. A fairly similar distribution of the samples is found (Supplements 6 and 7). 

The richness analysis revealed very similar trends when using ASVs or OTUs. We compared the 

ordinations by applying the functions procrustes () and protest () in the R package vegan (Oksanen 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/vascular-plant
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib131
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib152
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib130
https://www.gbif.org/
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib42
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib141
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rare-specie
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib141
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib85
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib99
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et al., 2020). The Procrustes comparison of the first two PCA axis scores of the datasets with OTUs and 

ASVs yielded a sum of squares of 1.44 while the Protest comparison with 999 permutations showed 

the sum of squares to be 0.7213 with a significance level of 0.001. 

After filtering, ecotag was applied to perform taxonomic classification of the OTUs against the embl142 

(based on the EMBL nucleotide sequence database, release 142; Kanz et al., 2005) and the UNITE 

database release for fungal metabarcoding (Nilsson et al., 2019). The UNITE database is a curated 

fungus database where detection of false positive reads might be lower than in the broader EMBL 

release. Using only the UNITE database for the assignment, however, might preclude identification of 

certain taxa. Therefore, the final assignment for each fungal OTU is based on the assignment from the 

database with the higher identity. When both databases match the same identity but differ in their 

specific species assignment, the UNITE database is used for final taxonomic classification. 

All databases were built to be applicable for the ecotag algorithm as following: the sequences of the 

databases and NCBI taxonomy files were formatted in the ecoPCR format and ecoPCR was run to 

simulate in silico amplification of database sequences with the subsequent primers (allowing 5 

mismatches in each primer sequence). The putatively amplified sequences were used as the reference 

databases and taxonomy information was added. 

Fungal OTUs with identity levels equal to or higher than 98% were used for further analyses to keep 

only well-annotated sequences. All contaminants (non-fungal reads; OTUs occurring only in no-

template controls/extraction blanks) and aquatic fungi as well as OTUs with total read counts lower 

than 10 have been excluded from further analysis. Seeber et al. (2022) describe these reads in more 

detail and show that they make up only a small part of the dataset, validating the reliability of the 

primer pair. For the vegetation data, the identity cut-off was at 100%. The taxa were checked on 

https://www.gbif.org/ for their occurrence in the study area. Taxa which do not occur in the area were 

filtered out from the dataset. Further excluded ASVs are algae which are also amplified by the marker, 

but are not part of the terrestrial vegetation being assessed in this study. We resampled both datasets 

to normalise the count data following the script of Kruse (2020; 

https://github.com/StefanKruse/R_Rarefaction) while using the lowest overall count of a sample as 

the base count. The vegetation data were resampled to a base count of 12,489, resulting in an 

exclusion of the samples from 9.9 cal ka BP (calibrated kiloanni before 1950 CE) of Kyutyunda and 7 cal 

ka BP from CH12 due to too low counts. The fungus data were resampled to a base count of 5,284, 

resulting in the exclusion of the sample from 5 cal ka BP from Kyutyunda and the sample from 18.8 cal 

ka BP from Lama. 

https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib99
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib65
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib98
https://www.gbif.org/
https://github.com/StefanKruse/R_Rarefaction
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3.4.4 Assessment of negative controls and contamination 

For the plant dataset, we ran in total 29 extraction blanks (EBs) and 29 no-template controls (NTCs) 

along with the 189 samples. 100% of EBs and 90% of NTCs are clean and show no or a negligible 

proportion of contamination (lower than 0.01% of total reads). In 10% of NTCs we detected between 

0.014 and 0.035% of the total reads (Supplement 8). We also checked the blanks for their contained 

ASVs and the percentage of the reads in the blanks vs. the samples. We identified 12 different ASVs 

which are present at more than 10% of their abundance (samples + blanks) in the blanks (Supplement 

9). 

We ran a total of 58 EBs and 45 NTCs along with the 384 samples for the fungal metabarcoding. 81% 

of EBs and 82.2% of NTCs are clean and show no or a negligible proportion (lower than 0.01%) of total 

reads. In 19% of EBs we detected 0.01–0.49% of the total reads, and in 17.8% of NTCs we detected 

0.01–0.44% of the total reads (Supplement 10). We identified 13 different OTUs which are present at 

more than 10% of their abundance (samples + blanks) in the blanks (Supplement 11). We excluded 

these OTUs from the analysis and ran the RDA again. The RDA with the excluded OTUs is displayed in 

Supplements 13 and 14. The results are very similar to the RDA in Fig. 4 (RDA1: 11.95% and RDA2: 

2.83%; with excluded OTUs: RDA 1: 12.15% and RDA2: 2.84%). Also, the distribution of the samples 

and the taxa is robust. Those OTUs which we found in the controls are mostly highly dominant in the 

samples which therefore can easily lead to cross-contamination during the laboratory work. As this 

happened in only a very few controls, we kept the OTUs in the dataset. Nonetheless, we cannot rule 

out entirely that the OTUs which do occur in the controls are partially contamination as these are 

mostly taxa which can be found ubiquitously (e.g. Malassezia can be found in soil but also on human 

skin). 

 

3.4.5 Statistical analysis and visualization 

We filtered the fungus dataset following Schiro et al. (2019) and assigned identified taxa to functional 

types according to their most probable role in the ecosystem (Schulze and Mooney, 2012). Mycorrhizal 

fungi include arbuscular mycorrhizae, ectomycorrhiza, and ericoid mycorrhizae. Other groups are 

saprotrophs, parasites, lichens, yeasts, and symbionts. A large number remained as “unknown” if their 

role in the ecosystem is not well understood. Identified plant taxa were assigned to either woody or 

herbaceous taxa. 

https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig4
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib122
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib123
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/arbuscular-mycorrhiza
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/ectomycorrhiza
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/mycorrhiza
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For the statistical analysis, all data have been double-square rooted to better account for low-

abundant taxa. All statistical analyses were implemented on percentage data using R, version 4.0.3 (R 

Core Team, 2020). Taxa were plotted colour-coded after their assigned functions. Plotting was done 

using the tidyverse package and ggplot2 (Wickham, 2016). To analyse differences in species diversity 

amongst the samples and locations, we calculated the alpha diversity using specnumber () of each 

sample from the resampled fungus and plant dataset. 

To investigate relationships between fungi and vegetation, we used the functions cor.test () and cor (). 

First, we assessed whether there is a correlation between fungal OTU and ASV richness and plant taxon 

richness. Second, we related the fungal richness to the most significant vegetation PCA axis scores 

which were extracted from the PCA performed on the vegetation dataset. Finally, we applied the 

significant vegetation PCA axes as constraining variables in a redundancy analysis (RDA) performed on 

fungal compositional data using the function rda (). The scores of the vegetation PC axes were 

combined in a data frame using the function as.data.frame () to be used as the explanatory variable. 

For each axis, only taxa making up most of the separation of the axes were plotted with their names 

in the final RDA to not overload the plot. The significance of the vegetation PC axes was identified using 

PCAsignificance (). We used 10 samples from CH12 which are evenly distributed over the sediment 

record for the RDA to balance the weight of all lakes in the ordination. All ordination analyses were 

performed on double square-rooted data. 

 

3.5 Results 

3.5.1 Fungi: sedaDNA sequencing results and overall patterns of alpha diversity and taxonomic 
composition 

In total, we obtained 52, 213, 129 paired read counts in the fungal dataset. After applying the OBItools 

pipeline, we retained 25,751 unique sequences with 32, 027, 606 counts. Clustering at a similarity 

threshold of 97% with sumaclust resulted in 5411 OTUs. Excluding OTUs with a similarity lower than 

98% against the databases led to 716 remaining OTUs for the embl142 database, whereas the UNITE 

database returned 268 OTUs. After resampling to a base count of 5284 and subsequent filtering steps, 

118 OTUs remained, covering 95.25% of the initial reads obtained after applying the OBItools pipeline. 

The filtered OTUs are regarded as “rare” and are not further assessed. 

The highest OTU numbers before subsequent filtering of taxa are detected for CH12 (209 OTUs). This 

is followed by forested Bolshoe Toko (146 OTUs), Levinson Lessing (137 OTUs), and Lama (135 OTUs). 

The lowest OTU number is detected for the northern lake Kyutyunda (78 OTUs). The OTU richness of 

https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib111
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib111
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib151
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/plant-and-fungus
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single samples ranges from 3 OTUs (Kyutyunda, 30 cal ka BP) to 82 OTUs (CH12, 5.5 cal ka BP) with a 

mean of 23.53 OTUs. Samples from the Holocene show higher richness in comparison to samples from 

MIS2 and MIS3 in most lakes, while for Bolshoe Toko the overall OTU richness follows a decreasing 

trend. 

The 10 most dominant taxa, summing up to 71% of the entire fungal dataset, are Pseudeurotiaceae 

(20%; 30 samples), Mortierella (13%; 63 samples), Sordariomyceta (11%; 26 samples), Exophiala (5.8%; 

6 samples), Oidiodendron (5.6%; 10 samples), Protoventuria (5.5%; 14 samples), Candida vartiovaarae 

(3.1%; 7 samples), Pseudeurotium (2.7%; 9 samples), Gryganskiella fimbricystis (2.6%; 32 samples), and 

Trichosporiella cerebriformis (2.4%; 11 samples). 

The most dominant functional type in the dataset are saprotrophs (40%; 38 OTUs), while yeasts are 

present at 10% (23 OTUs). Parasites (9.05%; 13 OTUs) and mycorrhizae (4.5%; 14 OTUs) are relatively 

rare. Least abundant are other symbionts (1.07%; 5 OTUs), lichens (0.2%; 4 OTUs), and mould (0.2%; 1 

OTU). Fungi of unknown function comprise 24.2% (21 OTUs) of the dataset. 

 

3.5.2 Vegetation: sedaDNA sequencing results and overall patterns of alpha diversity and 

taxonomic composition 

In total, we obtained 48, 939, 032 reads for the vegetation data. Assembling of paired-end reads, 

demultiplexing into samples, and cleaning resulted in 152,194 unique sequence types with 20, 063, 

932 counts. A total of 243 distinct taxa were obtained with 100% similarity to the database (Sønstebø 

et al., 2010; Willerslev et al., 2014; Soininen et al., 2015). 

The comparison of taxa richness between the lakes reveals the highest number for Lama (163), 

followed by Bolshoe Toko (152) and Levinson Lessing (146). CH12 (138) and Kyutyunda (133) have the 

lowest numbers. The taxon richness of single samples varies between 9 (7 cal ka BP, CH12) and 112 

(35 cal ka BP, Bolshoe Toko). 

The most common plant taxa are Salicaceae (37.4%; 69 samples), Dryas (20.4%; 69 samples), Larix 

(5.94%; 44 samples), Alnus alnobetula (5.88%; 67 samples), Papaver (3.86%; 59 samples), Menyanthes 

trifoliata (3.83%; 45 samples), Bistorta vivipara (2.72%, 63 samples), Asteraceae (2.43%; 66 samples), 

Betula (1.6%; 67 samples), and Anemone patens (1.4%; 18 samples). These taxa constitute 85.5% of 

the dataset. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/holocene-epoch
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib131
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib131
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib152
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib130
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3.5.3 Site-specific plant-fungus covariation 

3.5.3.1 Fungus and plant covariation in arctic Siberia from MIS3 to the Holocene 

In Levinson Lessing (northern Taymyr Peninsula, tundra, 40–0 cal ka BP), the Pseudeurotiaceae 

(unknown function) as well as Mortierella and Gryganskiella fimbricystis (both saprotrophs) are highly 

abundant during MIS3 (Fig. 2). Around 38 cal ka BP, the Didymellaceae (parasites) also occur. At the 

end of MIS3, Thamnolia vemicularis (lichen) occurs. The most abundant plant taxa at this time are 

Salicaceae, Dryas, and Papaver. The most abundant fungus taxa in MIS2 are also Pseudeurotiaceae and 

Mortierella, but Trichosporiella cerebriformis (unknown function) also occurs often. For plants, the 

most dominant taxa are Salicaceae and Papaver, followed by Dryas at the end of MIS2 (Fig. 3). During 

the Holocene, Mortierella remains the most frequent fungal taxon but mycorrhizal OTUs (Inosperma 

calamistratum, I. geraniodorum, Mallocybe fuscomarginata, Oidiodendron) and parasites 

(Didymellaceae, Kalmusia variispora) become abundant as well. In the Holocene, there is a drastic 

decline in Papaver while Alnus alnobetula becomes highly abundant. Dryas as well as Salicaceae remain 

mostly abundant. 

https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig2
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig3
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Figure 2: Site-specific fungus abundance displayed in abundance categories according to relative percentages. 

Fungi of the same functional type are colour-coded. The numbers in brackets give the OTUs detected for the 

specific taxon.  
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Figure 3: Fungal functional types in relation to fungal OTU richness and dominant plant taxa. Left column: 

distribution of fungal functional types for each lake. Middle column: fungal OTU richness of each lake (total OTU 

numbers), with the black line representing the fungal taxa while the green line marks the vegetation taxa for 

comparison. Right column: ten most dominant plant taxa of each lake. 
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Figure 4: Fungal and plant co-variation displayed in a redundancy analysis (RDA). The most relevant principal 

component axes of the vegetation were determined, the scores extracted and then integrated into the RDA. The 

fungal taxa are displayed either with their names or as a dot colour-coded according to their functional group 

(see Fig. 2, Fig. 3). The plant taxa are marked with black arrows. The numbers after the taxa names indicate the 

specific OTU. The samples are displayed as stars and colour-coded according to their lake origin. The vegetation 

explains 20% of the fungus distribution. 

 

https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig2
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig3
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CH12 (southern Taymyr Peninsula, tundra, 7–0 cal ka BP) only spans the mid to late Holocene. Around 

7 cal ka BP, Inocybe (mycorrhizae) as well as Golovinomyces sordidus and Didymellaceae (parasites) 

are highly abundant. Mortierella is present throughout the whole record but shows strong declines 

when mycorrhizae and parasites are abundant around 5 cal ka BP (Fig. 2). Until 5.5 cal ka BP, Alnus 

alnobetula and Salicaceae are highly abundant. Woody taxa such as Alnus alnobetula, Larix, Betula, 

and Rhododendron have their highest abundances around 5 cal ka BP (Fig. 3). After 5 cal ka BP, an 

increase in yeast taxa (e.g. Lipomyces anomalus, Cryptococcus) is detected. This coincides with a 

decline in the aforementioned woody taxa. The lichen genus Peltigera is abundant in more recent 

times when the variety of mycorrhizal taxa also increases and Inocybe, Hyaloscypha finlandica, 

Scleroderma, Cortinarius, Inocybe giacomi, and Hyaloscypha hepaticola occur. Saprotrophic taxa such 

as Mortierella species, Lyophyllum fumosum, Penicillium, and Exophiala are present throughout the 

whole record. 

Lama (northern Siberia, tundra-taiga transition zones, 24–0 cal ka BP) covers MIS2 and the Holocene. 

The most abundant fungal taxa during MIS2 are Pseudeurotiaceae, Protoventuria (parasite), 

Mortierella, and Cyphellophora reptans (yeast) (Fig. 2). Dryas as well as Salicaceae dominate the 

vegetation. Around the beginning of the Bølling/Allerød (15 cal ka BP), Pseudosperma and Inosperma 

species (mycorrhizae) become abundant. A little later, Venturia hystrioides and Kalmusia species (all 

parasites) start to occur. Salicaceae is still the most dominant plant taxon, but Alnus alnobetula, Picea, 

Betula, and Populus also frequently occur after 15 cal ka BP. Additionally, a drastic decline in Dryas 

took place after 15 cal ka BP (Fig. 3). 

Kyutyunda covers the late MIS3 to the Holocene (northern Siberia, tundra-taiga transition zones, 38.8–

0 cal ka BP). The most dominant fungal taxa during the late MIS3 are Oidiodendron, Pseudeurotium 

(unknown function), and Penicillium (saprotroph) (Fig. 2). During this time, Salicaceae and Asteraceae 

are the most abundant plant taxa but Alnus alnobetula also occurs (Fig. 3). Oidiodendron is mainly 

present at the end of MIS3. Shortly after, a large increase in Betula is detectable. In MIS2, the fungal 

taxa Oidiodendron and Penicillium are still highly prevalent and the taxon Lachnum fuscescens 

(unknown function) becomes common (Fig. 2). Salicaceae remains the most dominant plant taxon and 

Betula starts to occur more frequently. High abundance of Dryas as well as the first instances of Alnus 

alnobetula are detectable in the late MIS2 (Fig. 3). During the Holocene, Pseudeurotium (unknown 

function) and Kalmusia variispora became the most abundant fungal taxa. Salicaceae maintained its 

broad distribution while other woody taxa such as Alnus alnobetula and Rhododendron increased in 

their abundances. 

https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig2
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig3
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig2
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig3
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig2
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig3
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig2
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig3
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Bolshoe Toko also spans the late MIS3 to the Holocene (central Yakutia, taiga, 35–0 cal ka BP). During 

the late MIS3, Pseudeurotiaceae are the most abundant fungal family but parasitic species (e.g. 

Kalmusia species, Inonotus hispidus) and saprotrophs (e.g. Mortierella, Grykanskiella fimbricystis) also 

occur (Fig. 2). At this time, Salicaceae is the most abundant plant taxon with Dryas occurring 

frequently. Alnus alnobetula and Betula are also present but at low abundance (Fig. 3). In MIS2, 

Gryganskiella fimbricystis and Mortierella are highly abundant fungi and a few yeast taxa (e.g. 

Dioszegia fristringensis, Piskurozyma capsuligena) start to occur. In late MIS2, Inosperma 

calamistratum (mycorrhizae) also occurs. Vegetation is still dominated by Salicaceae until the end of 

MIS2 with scarce abundances of Alnus alnobetula and Betula. In the Holocene, Protoventuria (parasite) 

is the most abundant fungal taxon but also Kalmusia species (parasite), Exophiala heteromorpha 

(saprotroph), and Candida vartiovaarea (yeast) are commonly found. A large increase in more diverse 

woody taxa is detected with more occurrences of Salicaceae as well as Alnus alnobetula, Betula, Larix, 

and Populus. 

 

3.5.3.2 Quantitative relationships between fungi and plant richness and composition 

In all records, we found only a weak borderline-significant correlation between fungi OTU and plant 

taxa richness (r 0.2394, p-value 0.098). For the fungal ASVs and plant taxa richness, the correlation is 

similar (r 0.2351, p-value 0.1039) Fungal richness is positively correlated to the sample scores of the 

first plant PCA axis (PC1: r 0.3863, p-value 0.006; ASVs: PC1 r 0.387, p-value 0.006) and negatively 

correlated to the sample scores of the second plant PCA axis (PC2: r −0.41, p-value 0.003; ASVs: PC2 

r −0.424, p-value 0.002). The first axis reflects the differences between samples characterised by 

woody taxa including Larix and Alnus alnobetula and typical tundra taxa. On the second axis, we 

detected herbaceous plant taxa such as Anemone patens and Thymus positively correlating alongside 

other taxa preferring wetter habitats. Taxa such as Oxyria digyna and Dryas, which are associated with 

rather dry sites, show a negative correlation. 

Sample scores of plant PCA axes 1–5 explain 20% of fungi composition (p 0.001) as revealed by RDA 

(Fig. 4 and Supplement 12). Woody taxa such as Alnus alnobetula, Larix, and Rhododendron appear in 

the upper right quadrant of the RDA plot together with the fungal taxa Mortierella_003, Cryptococcus, 

and Muriformistrickeria rosae (unknown function) (Fig. 3) and samples from CH12 aged 5.5 and 1.8 cal 

ka BP. The RDA also shows that parasitic fungi, such as Didymellaceae, and yeast, such as Lipomyces 

anomalus and Cryptococcus, tend to occur in the presence of woody taxa. Lichens occur predominantly 

in samples of Holocene age. Papaver and Dryas together with the fungal taxa Pseudeurotiaceae, 

https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig2
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig3
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig4
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig3
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Grykanskiella fimbricystis (saprotroph), and Mortierella species occur in the lower left quadrant 

together with all samples from Levinson Lessing. Populus and Ranunculus in the upper left quadrant 

appear together with Lipomyces anomalus (yeast), Cryptococcus (yeast), and Mortierella. Samples here 

mostly originate from Bolshoe Toko although there are some from Lama (around the Bølling/Allerød 

period) and Kyutyunda (Holocene). Samples from the Holocene all occur in the upper half of the RDA 

where woody plant taxa are found and a broader fungal species richness is detected. In general, Lake 

CH12 shows a unique fungal composition in comparison to the other lakes. The samples can be found 

in the right quadrants of the RDA while the samples of the other lakes are located in the left quadrants 

or centred (Fig. 4 and Supplement 6). 

 

3.6 Discussion 

3.6.1 Fungus and plant diversity along a spatiotemporal gradient in Siberia 

Assessing the species richness in an environment enables the determination of community diversity 

and can be an indicator for ecosystem turnover (Hillebrand et al., 2018). After applying metabarcoding 

on 70 samples from five lakes across Siberia, we detected high fungal richness (706 OTUs) while the 

analyses of plant richness yielded 243 distinct taxa. In comparison to Liu et al. (2020) who investigated 

plant species richness in lake sediments in north-eastern Siberia, we detected slightly higher plant 

diversity (their study: 90 to 120 taxa in a single lake, this study: 133 to 163 taxa in a single lake) which 

might be explained by the sediments from the present study covering a longer time span and therefore 

more diverse climate scenarios. To assess fungal richness, we used OTU clusters instead of sequence 

variants, which might lead to under- or overestimation in comparison to species assessment (Frøslev 

et al., 2017). Underestimation may also originate from missing reference material of local taxa in 

databases (Goodwin et al., 2016; Quince et al., 2009). Comparably, a modern species assessment from 

the western Ural yielded 376 observed fungal species (Palamarchuk and Kirillov, 2019), which supports 

the conclusion of Seeber et al. (2022) that their marker is suitable to assess diversity even on long time-

scales. Nonetheless, higher OTU richness (1125 OTUs in 55 samples) was obtained by Talas et al. (2021) 

in their study of a Holocene lake sediment core from eastern Latvia. Their discovery of higher overall 

diversity is explained by inclusion and detection of aquatic fungi (23%, terrestrial 40%), which are 

mostly lacking in our data. Additionally, they kept very short reads and included reads with fewer 

counts (4 instead of 10 in our study). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/woody-plant
https://www.sciencedirect.com/science/article/pii/S0277379122003894#fig4
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib57
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib76
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/plant-specie
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/lacustrine-deposit
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib48
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib48
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib55
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib109
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib101
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib124
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib137
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Bolshoe Toko (146 OTUs) and Lama (135 OTUs) are in forested areas and show higher fungal OTU 

richness compared to Kyutyunda (78 OTUs) from the northern tundra (Fig. 3). A relationship between 

fungal richness and vegetation composition has been shown by multiple studies (e.g. Tedersoo et al., 

2013; Geml et al., 2017), however data from the Siberian treeline are lacking. Our data concur that 

ectomycorrhizal fungal richness is highest with forest cover (Geml et al., 2017). Spatial fungal richness 

is confirmed by the temporal relationship: we observed co-occurrences of high fungal richness and 

woody vegetation. Levinson Lessing shows a large increase in fungal OTU richness and woody taxa 

dominance during the warm Holocene compared to the late Glacial although experimental warming 

did not result in higher fungal diversity (Geml et al., 2015; Mundra et al., 2016). Talas et al. (2021) show 

high richness as well as community turnover with increases in plankton parasitic species and 

mycorrhiza after 4 cal ka BP, suggesting that fungi with more specific hosts or substrates (e.g. 

ectomycorrhizae) are more susceptible to ecosystem changes than taxa with wide preferences. CH12 

shows higher OTU richness than the other lakes, even when considering similar sample numbers, 

supporting the hypothesis that fungal communities from the warmer Holocene might be more species 

rich. Potentially, warming-induced vegetation responses rather than direct warming shape the 

diversity in fungal communities, suggesting a broadening diversity of fungi species alongside future 

treeline migration. 

Metabarcoding on arctic tundra communities reveals that each specific tundra type has a unique 

community of associated fungi (Wallenstein et al., 2007; Geml et al., 2021). This might explain the 

overall highest fungal OTU richness originating from CH12 (dry forest tundra), while Kyutyunda (wet 

southern tundra) shows a rather low richness. Furthermore, our analysis shows a negative correlation 

between fungal richness and the second vegetation PC axis, covering a wetness gradient from species 

related to drier areas (high PC scores) to species rather related to wetter areas. 

A modern spatial study on the Tibetan plateau showed that fungal richness is positively correlated with 

plant richness (Yang et al., 2017). Interestingly, through statistical analyses, we find only a weak 

positive correlation between fungal and plant richness. Most probably, this indicates a quite complex 

relationship between plant richness and vegetation composition. It is also known that other biotic or 

abiotic factors such as the bacterial composition or soil N and C content influence the fungal and plant 

communities (Singh et al., 2009). Besides, the shorter amplicon length of the plant compared to the 

fungal marker can cause biases when amplifying highly fragmented DNA, resulting in a weak statistical 

relationship. Incomplete databases for arctic fungi might also lead to underestimation of taxa richness. 

For plants, it is known that the catchment influences the record quality if the plants are growing closer 

to the soil surface (Giguet-Covex et al., 2019). Potentially, some fungi are also more likely to end up in 

the sediment of the lake if they are growing in the upper soil horizons with their DNA transported to 
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the lake either via animals or rainfall. At the broad scale, plant richness decreases with latitude 

(Kerkhoff et al., 2014). However, a modern study from Kamchatka, Russian Far East, reports highest 

plant species richness in alpine tundra and snowbed communities (Doležal et al., 2013). Recent 

sedaDNA studies from the treeline in Chukotka, Russian Far East, and from Bolshoe Toko showed 

highest terrestrial plant richness in the late Pleistocene in steppe-tundra areas and lowest in the 

forested Holocene (Huang et al., 2020; Courtin et al., 2021). This indicates that a high correlation 

between fungus and plant alpha diversity cannot be expected. 

 

3.6.2 Changes in ecosystem functioning over a spatiotemporal gradient 

To date, molecular analyses of ecosystem functioning that trace fungus-plant covariation have been 

addressed by multiple modern studies. These studies mainly focus on the organisms required for 

modern plant establishment, that is, over spatial (Merges et al., 2018) and short temporal gradients 

(Zhang et al., 2016) or under varying growing conditions (Mohamed and Martiny, 2011). In palaeo-

research, plant communities have been subject to molecular analysis such as metabarcoding studies 

(Liu et al., 2020), shotgun sequencing (Parducci et al., 2019) or target capture (Murchie et al., 2021). 

So far, the turnover of entire ecosystems tracing not only the plant constituent but also their 

associated fungal symbionts has not yet been studied. Our data form not only one of the first molecular 

biological studies revealing fungus community changes over a large temporal gradient but also allow 

conclusions to be drawn on their long-term impact on forest establishment. The following examples 

highlight the impact of vegetation changes alongside climate change on fungus ecological functionality 

and subsequent whole ecosystem turnover. 

 

3.6.2.1 Long-term mutualism in arctic environments inevitable for plant establishment 

Most mycorrhizal taxa detected are from the families Cortinariaceae and Inocybaceae and some from 

Myxotrichaceae and Hyaloscyphaceae (Fig. 2), in agreement with previous metabarcoding studies 

(Nilsson et al., 2005; McGuire et al., 2013; Botnen et al., 2014). We retrieved Inocybe (including the 

subgenus Inosperma (Matheny et al., 2020)) and Cortinarius, both known from high latitudes (Timling 

et al., 2012). They represent ectomycorrhizal associates of arctic tundra and shrubs including Salix and 

Dryas integrifolia (Ryberg et al., 2009; Botnen et al., 2014), both being common taxa in our plant data. 

Our data also support previous studies from boreal forests (McGuire et al., 2013), including a study 

from the Russian Far East detecting Cortinarius, in addition to Lactarius and Russula, as important 
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ectomycorrhizal of Larix gmelinii (Miyamoto et al., 2021). Cortinarius also associates with shrubs of 

Salicaceae and Rosaceae as well as herbaceous Cyperaceae (Garnica et al., 2005), which frequently 

occur in our plant dataset, indicating a broad variety of host taxa for these fungi, from which we can 

infer high adaptability towards warming and changing overall environmental conditions. 

After the Last Glacial, vegetation species richness decreased as well as arbuscular mycorrhizal taxa 

while ectomycorrhiza associated with woody taxa and non-mycorrhizal fungi increased (Zobel et al., 

2018). This resulted in changes in the mutualist trait structure after the Last Glacial Maximum, making 

mycorrhizal associations important factors when predicting ecosystem responses to changing 

environmental conditions. We also observe increasing fungal richness in Holocene samples (Fig. 3). 

This underlines the suitability of sedaDNA fungal metabarcoding studies for appropriate ecosystem 

reconstructions and when considering adaptation mechanisms alongside ecosystem turnover. 

Interestingly, we observed highest values of Pinaceae only after the presence of mycorrhizal taxa (e.g. 

Cortinarius, Inosperma calamistratum) (Fig. 2, Fig. 3), although this might be due to low sample 

numbers. Without mycorrhizal fungi, Pinaceae growth is restrained or establishment is inhibited as 

nutrient uptake is impossible (Marschner and Dell, 1994). Studies from Japan (Ishida et al., 2007) and 

temperate areas in the Himalaya (Pande et al., 2004) revealed Cortinariaceae as the main 

ectomycorrhizal associates of Pinaceae, strengthening the precision of our dataset and its ability to 

correctly recover fungal-plant covariation over long time scales and its possibility to assess ecosystem 

dynamics. Our analysis also highlights the longevity of the dependency of Pinaceae on these particular 

fungi. 

3.6.2.2 Wood-decaying species highly impacted by warming 

We found Mortierella, Penicillium, and Exophiala as the main biomass-decaying taxa (Fig. 2). These are 

common soil fungi in high-latitude ecosystems (Treseder et al., 2007; Allison et al., 2009) and are 

reported amongst the main soil fungi in arctic tundra soils (Kurek et al., 2007; Zhang et al., 2016) due 

to their cold tolerance. Mortierella associates with Vaccinium uliginosum, Betula nana, Salix glauca, 

Empetrum nigrum, and Cassiope tetragona (Voříšková et al., 2019), which are typical taxa in our study. 

Rhizosphere samples from Larix sibirica and Betula pendula from Krasnoyarsk, Siberia revealed 

Penicillium as one of the main constituents (Boyandin et al., 2012). Larix forests growing on permafrost 

show broad host spectra towards saprotrophs (Leski and Rudawska, 2012) as a response to changing 

environment, for example after wildfires (Miyamoto et al., 2021), which explains the overall broad 

distribution of saprotrophs after warming in the area. 
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Saprotrophs are generally highly abundant throughout all records. Their significant decrease around 

10 cal ka BP (Fig. 2, Fig. 3) demonstrates that the climate change during the Pleistocene/Holocene 

transition (Biskaborn et al., 2016, 2019a) also affected soil communities alongside vegetation. This 

finding agrees with results from experimental warming studies in boreal ecosystems, indicating that 

relative saprotroph abundance declines with warming, while the abundance of mycorrhizal fungi and 

lichens increases, underlining long-scale ecosystem turnover as a response to warming (Deslippe et al., 

2012; Geml et al., 2015; Mundra et al., 2016). 

 

3.6.2.3 Host-specific parasites show strong co-occurrence with woody taxa 

We detected parasitic OTUs mostly in samples from the warm Holocene (Fig. 2), confirming early 

findings that experimental warming leads to increases in parasitic and virulent fungi (Geml et al., 2015) 

along with woody taxa expansion. The most abundant parasitic species from our dataset are 

Protoventuria, Kalmusia variispora, K. longispora, and Didymellaceae which co-occur with Salicaceae, 

Larix, and Alnus alnobetula (Fig. 2, Fig. 3). In shrubby tundra in Greenland with Salix occurrences, 

Venturia species are amongst the highest abundant fungi (Voříšková et al., 2019), indicating a strong 

covariation between these taxa. Interestingly, we observe a decline in Salicaceae after Protoventuria 

abundance around 20 cal ka BP (Fig. 2, Fig. 3), supporting previously noted fungal parasite abundances 

in permafrost during the LGM (Lydolph et al., 2005). Venturiaceae has been assigned to Salicaceae as 

pathogens in northern latitudes (Hosseini-Nasabnia et al., 2016), while Kalmusia has been detected in 

Alnus forests (Iznova and Rukšėnienė, 2012). Didymellaceae co-occurs with a broad range of host 

plants such as Larix decidua (Chen et al., 2017). The RDA reveals that Kalmusia species preferentially 

occur in forested areas alongside saprotrophic and mycorrhizal species (Fig. 4), supporting the value 

of our data and the feasibility of co-occurrence analysis in sedaDNA studies and their potential when 

assessing ecosystem dynamics up to species level. Plant-parasite interplay in relation to climate change 

is not fully understood (Burdon and Zhan, 2020) but it is assumed that parasitic fungi are more specific 

in their hosts than mycorrhizal taxa, making them a great target when assessing ecosystem dynamics 

and turnover (Põlme et al., 2018). 

 

3.6.2.4 Lichens influence soil carbon dynamics and local fauna 

The recovered lichen OTUs belong to 16 families with the highest richness in Peltigeraceae and 

Parmeliaceae. The most abundant genera are Thamnolia, Peltigera, and Cetraria, all of them being 
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common in northern Siberian communities (Zhurbenko and Yakovchenko, 2014) and permafrost 

(Lydolph et al., 2005). Thamnolia species often occur in arctic tundra (Sheard, 1977), showing low 

specificity concerning their photobiont while associating with various Trebouxia species (Nelsen and 

Gargas, 2009). Peltigera preferentially grows in temperate regions on soils and among mosses over 

rocks, but also on tree trunks (Nash, 2002) and in boreal forests (Asplund and Wardle, 2015), explaining 

their abundance in the forested Holocene in CH12 (Fig. 2). 

Our analyses are among the few palaeoecological studies detecting lichens (Fig. 2). Lichens are 

commonly missing from fossil records (Taylor and Osborn, 1996) despite being an important 

component of boreal forest and tundra biomass (Asplund and Wardle, 2017; Shevtsova et al., 2020). 

However, we could only detect a few reads, belonging to 48 OTUs (<1% of the whole dataset). 

Unexpectedly, most lichens are recorded from warm periods with well-developed vegetation (late 

MIS3 and Holocene). Lichens are a prominent feature of arctic landscapes and short-term experimental 

warming in the Canadian arctic led to their decline (Fraser et al., 2014). For Siberia, lichens have been 

recovered along a broad latitudinal gradient with high diversity and biomass (Safronova and 

Yurkovsksya, 2019). Lichen cover on permafrost produces a cooling effect, making lichens of great 

importance when considering thawing effects (Porada et al., 2016). Reduced or no lichen cover during 

the glacial might be relevant for past soil carbon dynamics. Lichens tolerate high percentages of CO2 

(Badger et al., 1993), but studies about the impact of low CO2 supply are missing. Possibly, they suffer 

more than other fungi from reduced atmospheric CO2 content as lichens also have to supply their algal 

or cyanobacterial symbionts. 

Lichen distribution also impacts the occurrence of animals such as Moschus moschiferus, which 

preferentially settle in lichen-rich habitats for their food supply (Slaght et al., 2019). Increased lichen 

coverage during the Holocene may have supported the compositional turnover in the megaherbivore 

fauna. Reindeer mostly feed on lichen but changing environmental conditions might impact their 

distribution and diet to include less lichen (Drucker et al., 2011) or to vary seasonally (Bocherens et al., 

2015), giving them higher survival advantage. Changing fungus communities will thus not only impact 

the boreal forest, but also its fauna. 

 

3.6.2.5 Habitat-loss of fungal species due to warming resulting in feedback on whole ecosystem 

The most abundant yeast taxa in our dataset are Candida vartiovaarae, Malassezia restricta, 

Cyphellophora reptans, Cryptococcus, and Lipomyces anomalus (Fig. 2), which are widely distributed 
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in Siberian soils (Polyakova and Chernov, 2001). Candida vartiovaarae is broadly present in forest as 

well as in grassland soils (Yurkov et al., 2012), while Cryptococcus is associated with peatland 

(Thormann, 2006) and boreal swamps (Kachalkin and Yurkov, 2012). A correlation between Malassezia 

species and nematodes in central European forests was discovered, suggesting that nematodes act as 

vectors for the fungi (Renker et al., 2003). To investigate these zoophilic relationships and their 

contribution to ecosystem stability, further metabarcoding data on small soil organisms could be an 

asset. 

Whenever yeasts are highly abundant in the records, especially in colder time periods like the LGM, 

mycorrhizae decrease (Fig. 2, Fig. 3). Most yeasts show adaptive responses when temperatures drop 

to maintain their survival (Kandror et al., 2004). Experimental warming also shows yeast decline with 

rising temperatures (Treseder et al., 2016), indicating that some species will lose their habitats with 

ongoing warming, resulting in a major feedback to the ecosystem, potentially leading to shifts in the 

entire ecosystem and subsequent turnover from, for example, tundra to taiga. 

From our data, it is not possible to determine the role of yeast in soil. Generally, they serve both as 

biotoxins (Santos et al., 2004; Compant et al., 2005) or growth promoters for plants (Nassar et al., 

2005; El-Tarabily and Sivasithamparam, 2006). In Siberia, yeasts might either function as plant 

parasites (Hernández-Fernández et al., 2021) or as biodegraders, as after a period of high yeast 

abundance, we detect decreasing woody taxa. Further research on modern mutualistic and parasitic 

interactions in the area will help to solve this research gap and to understand yeast impact on long-

term ecosystem stability. 

 

3.6.3 Implications of our results for ecosystem functioning and future research avenues 

The interplay between climate, vegetation, fungi, and microorganisms in the boreal forest ecosystem 

is not yet understood. As fungi are a key component of ecosystem functioning, a major impact on 

future ecosystem-climate feedback is expected alongside compositional change and varying soil 

microbiome (McCalley et al., 2014). To our knowledge, we conducted the first study on fungus-plant 

interactions and co-occurrences in the palaeo context, assessing community shifts in boreal forests as 

well as tundra ecosystems. However, our results are only a first proxy on future community changes 

as the magnitude of warming differs strongly between our samples and present warming and any 

relationship may incorporate lagged responses over large time-scales (Biskaborn et al., 2021). 
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To our knowledge, this is the first long-term dataset showing antagonistic relationships among fungal 

functional types as well as warming-related vegetation change related to fungus diversity and 

composition changes. By analogy to the past, future woody taxa advance into arctic regions might 

result in higher fungus diversity and a relative increase in mycorrhizae, parasites, and potentially 

lichens at the cost of saprotroph and yeast abundance. 

Our study design does not allow a definite conclusion to be drawn on whether future treeline advances 

will rely on the presence of specific fungal communities. As ectomycorrhizal communities in sub-arctic 

tundra are generally species-rich and do not show high host preferences (Ryberg et al., 2009, 2011), 

major changes may not ensue. However, the investigated soils in the sub-arctic already have long 

histories of soil development, unlike the northern tundra sites and upper mountain areas. 

Temperature wise, these are potential habitats for forest establishment but might not be favourable 

for diverse soil fungus composition due to a lack of nutrients. 

Lichens do not generally suffer from warming but are affected by the vegetation. The observed decline 

in lichens with denser canopy cover (Cornelissen et al., 2001) may only be relevant to the more 

southerly forests. As our study only returned a few lichen OTUs, it is not possible to draw a robust 

conclusion here. High CO2-concentrations during experimental darkening leads to generally quick CO2 

uptake by the genus Peltigera and subsequently relatively slow release (Badger et al., 1993), making 

lichens potentially valuable for the storage of future warming-induced CO2 from soil. Further research 

into lichens is promising to delve into mechanisms supporting ecosystem adaptation towards changing 

environments. 

Besides the limitation in temporal resolution, our study suffers from limited taxonomic resolution and 

complex abundance patterns. SedaDNA metabarcoding is highly susceptible to damage and 

degradation, leading to biases in PCR products as taxa might be dismissed due to short lengths (Coissac 

et al., 2012; Taberlet et al., 2012). Sometimes, reference genomes are missing and identification at the 

relevant taxonomic resolution is not possible (Sønstebø et al., 2010). Also, different taxa possess 

varying amounts of genome copy numbers per cell which might lead to overrepresentation of taxa 

with high copy numbers while rare taxa can be missed (Behnke et al., 2011). To strengthen the 

metabarcoding data, a further comparison to target capture similar to Murchie et al. (2021) but on the 

fungal DNA of the same samples would be an asset to validate the recovered abundances and diversity. 
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3.7 Conclusions 

This is the first study showing spatial and temporal changes in palaeo fungus-plant covariation. 

Knowing which fungi influenced the growth of specific plant communities in the past will help to 

predict future community turnover due to varying climate. To understand palaeo community turnover 

in more detail, it is necessary to consider a plant's associated heterotrophic organisms in present times. 

This will help to place knowledge gained in this study into a better context. Additionally, our data are 

a great asset to existing knowledge about boreal forests as they help to shed light on adaptation 

mechanisms of plants towards warming and their subsequent northward migration. Nevertheless, 

there are still many ecological interactions that are unknown which need to be addressed in future 

research, such as which organisms contribute to the rhizospheres of specific plants and whether or 

how these associations change with varying climate or how the fauna is impacted by a changing habitat 

and food source. This might help the development of future afforestation and silviculture strategies. 

Despite this, our findings will already help the assessment of future tipping points in boreal forest 

stability. 
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4.1 Abstract 

Past and recent warming-induced glacier retreat exposes bare rocks, facilitating the establishment of 

soils. The dynamic interplay between climate, vegetation cover, and soil formation, however, is poorly 

understood as time-series covering an appropriate time span are lacking. Here, we present post-glacial 

soil formation during the past 23,000 years as inferred from ancient DNA shotgun analyses of lake 

Lama sediments (northern-central Siberia) targeting plants, rhizosphere-associated fungi, and 

bacteria.  In the Late Glacial, we reveal strong basaltic weathering with lichen-domination and high 

relative abundances of arsenic cyclers, shifting to mycorrhizae-domination in the Holocene. 

Additionally, the bacterial element cycling shifts from C to N dominance and a diversification of 

nitrogen pathways is detected. Further, we reconstruct podzolization starting with Holocene spruce-

forest invasion showing soil acidification and, later, increased iron cycling. Our results show 

pedogenesis is an environmentally driven process, mainly by vegetation, although differences in early 

vs late Holocene larch forest soil communities suggest trajectory effects due to soil ageing. As well as 

basic knowledge on postglacial soil formation, our data provide a scientific knowledge base for the 

design of carbon-capture strategies using basalt weathering. 

 

4.2 Introduction 

Soils often feature as a static entity in terrestrial ecosystems, for example in dynamic global vegetation 

models, despite it being known that they develop and even dynamically respond to drivers1–3. This 

misconception originates, at least partly, from the lack of time-series portraying the major soil 

processes including weathering4, element cycling, and podzolization5 and their reflection in soil 

communities (mainly plants, fungi, and micro-organisms). For example, the initial soil establishment 

after deglaciation at the end of the last glacial and the subsequent soil development in response to 

climate-driven vegetation changes remains largely unexplored. However, understanding soil changes 

and their related drivers is necessary for decision-making to safeguard ecosystem services of soils 

including food production, forestry, and maintenance of ecosystem stability. 

Pedogenesis is initialised by weathering of the parent material which is, amongst other processes, 

supported by plants, fungi, and bacteria6–8. Lichens, as characteristic early colonisers, enhance 

weathering by using their hyphae to penetrate mineral cleavage planes9 as well as releasing organic 

acids6,10,11. Plant root exudates, for example low molecular weight organic acids deriving from 

respiratory CO2
12, additionally increase weathering. In more developed soils, ectomycorrhizae further 

enhance weathering when supplying plants with ammonium, resulting in an efflux of H+ and, 
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subsequently, soil acidification13. However, how basalt weathering changes on millennial time-scales 

in relation to compositional changes of plants, fungi, and bacteria remains largely unexplored .    

Nutrient cycling by fungi and bacteria in the rhizosphere, particularly of carbon, nitrogen, phosphorus, 

and sulphur, determines plant productivity, diversity, and composition14. Most soil organic carbon 

originates from above- and below-ground plant litter degradation and transformation15. In addition to 

the plant-produced organic matter, soil organic carbon can be derived from atmospheric CO2 being 

fixed by multiple photo- and chemoautotrophic microbes in the soil16, while heterotrophic bacteria 

degrade these fixed carbon compounds, later using them as a metabolic substrate, and releasing 

smaller parts as metabolites or as CO2 back into the atmosphere17. Besides soil bacteria, saprotrophic 

fungi are also important for a first degradation of complex carbon compounds such as lignin18. In the 

nitrogen cycle, N-fixing bacteria directly bind atmospheric nitrogen and convert it into a plant-available 

form19. The plant uptake of nitrogen from the soil is supported by mycorrhizal fungi20–22. Vegetation 

densification, such as forest establishment, results in an increased need for nutrient supply due to 

reduced turnover times of wood compared to soft tissue23. Whether nutrient cycling is also changing 

on long time-scales alongside soil development but with similar vegetation cover remains unknown. 

Also, whether a more complex nutrient demand in relation to vegetation densification results in a long-

term diversification of the cycling pathways is currently unknown. 

Podzols are the common soil type in boreal forests which are typically dominated by Larix, Picea, or 

Pinus24. These soils are characterised by low pH and show a high sensitivity towards further 

acidification due to low capacities for cation exchange and small amount of weatherable material25. 

During podzolization, organic acids induce the release of aluminium and iron ions from rocks which 

then form chelates with organic matter24,26. These complexes leach from the upper mineral horizons 

(bleaching) and become - at least partly - deposited in the subsoil leading to its characteristic reddish-

brown colour24,26. So far, podzolization has mainly been described along spatial gradients, and such 

studies do not help our understanding of podzolization temporalities. However, Larix-Rhododendron 

succession, for example, has been found to accelerate podzolization27, although the specific and 

unique impact of ecological processes and environmental drivers are poorly understood. When 

podzolization started in the boreal forest and whether vegetation compositional changes can reverse 

podzolization processes remain largely unknown.  

 

Directly assessing soil dynamics would greatly improve existing knowledge on soil development. 

Through erosion, soil-derived matter, including substantial amounts of DNA, can be transported into a 

lake28. Consequently, the analysis of lake sedimentary ancient DNA (sedaDNA) has become a popular 
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palaeoecological method29. Hitherto, mostly metabarcoding approaches are applied to target single 

organism groups including plants30–32, or, rarely, fungi33,34. Recently, metagenomic approaches 

emerged, enabling the study of complex ecosystems, for example through sequencing the whole DNA 

contained in a sample35–37. Such studies became possible because genome reference databases such 

as the widely used nucleotide (nt) database from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz) have been markedly improved and extended 

recently. Despite the recent methodological improvements, palaeo-metagenomic studies targeting 

soil ecosystem development are hitherto entirely lacking.  

Here we show how postglacial soils became established and further developed in response to climate-

driven vegetation change during the last about 23,000 years, using sedaDNA records of plants, and 

rhizosphere-related bacteria and fungal taxa from lake Lama in north-central Siberia. We show that 

the vegetation as well as temperature variation has an impact on the establishment of the soil 

microbiome, while time itself is less important. We also trace the weathering progress of the basaltic 

bedrock in the lake catchment which shifted from a strong, lichen-dominated weathering during the 

Late Glacial to a generally weaker, mycorrhizae-dominated weathering in the Holocene. We also 

detected a turnover from carbon-dominated nutrient cycling during the Late Glacial to nitrogen-

dominated cycling in the Holocene. Additionally, we reconstruct podzolization by showing increases in 

acidic-pH preferring taxa in all the assessed subsets as well as rising iron cycling with mid-Holocene 

spruce forest expansion.     

 

4.3 Results and Discussion 

4.3.1 Compositional changes of plants, fungi, and bacteria in ancient metagenomic datasets 

Shotgun sequencing of 44 sediment samples, 5 extraction blanks, and 8 library blanks and subsequent 

read filtering yielded 1,240,658,912 reads. Of which, a total of 4,935,634 reads could be assigned to 

5,967 unique terrestrial plant, fungal, and bacterial taxa in the nt database with an identity threshold 

of 0.8. A total of 257,710 reads belong to the Viridiplantae and are assigned to genus or species level; 

3,988,224 reads belong to bacteria and are assigned to genus or species level; and 43,040 reads belong 

to fungi at all taxonomic levels. The read length distribution as well as the characteristic C-to-T 

substitution at the 5’-ends confirm the ancient origin of the reads (see supplement 5-7).  

There are a median of 3,533 plant reads per sample, with 133 plant taxa identified. Among them, 25.2% 

of the reads are assigned to species level, while 74.8% are assigned to genus level. The overall 

compositional vegetation change from tundra-dominated Late Glacial to taiga-dominated Holocene 

reproduces the general trend known from a pollen38 and a metabarcoding34 record from the same lake, 
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and from pollen and aDNA data from other sites in northern Siberia (e.g. 31,39,40). The Late Glacial is 

characterised by a typical glacial flora with high abundances of Dryas (avens) and Saxifragaceae as well 

as Salix (willow) in the river valleys (Figs 2, 4). After about 14 ka, Betula (birch) expands and, with the 

onset of the Holocene, Alnus (alder) and Pinaceae markedly increase in the record. For the early 

Holocene, the data show a massive expansion of Larix (larch), followed by Picea (spruce) during the 

mid-Holocene and a re-advance of Larix during the late Holocene (Figs 2, 5). With the invasion of Picea, 

the herbal community changes: Galegeae is absent from thereon and also Dryas (avens) also decreases 

in abundance, while Ericaceae, including Pyrola rotundifolia (round-leaved wintergreen), and 

Asteraceae increase in association with the Picea forests.  

There are 318 unique fungal assignments, with a median of 225 reads per sample. Among the fungal 

reads, 24 % are assigned to species level, 31.1 % to genus level, and 32.44 % to family level. The 

remaining 12.46 % are at class level or above. We find a general trend from an Ascomycota-dominated 

Late Glacial with a relatively high abundance and diversity of lichens, to a Basidiomycota-dominated 

Holocene (many of them known as mycorrhiza-forming taxa), matching the spatial gradient observed 

in glacier forefields41. Modern studies on tundra and taiga soils from the Kola Peninsula show a 

Penicillium dominance in both biomes42, which is contrary to our findings: Saprotrophs show a shift 

from Penicillium dominance during the Late Glacial towards Mortierella species in the late Holocene in 

our record (Figs 2, 4, 5). The overall high abundance of yeast taxa in the Late Glacial (Malassezia spp., 

Komagataella spp.) are in accordance with metabarcoding data34. Similarly to yeast, lichens 

(Peltigerales, Peltigera spp.) are more abundant in the Late Glacial than in the Holocene. Our data 

indicate that mycorrhizal taxa (Suillineae, Glomeraceae, Rhizophagus, Laccaria, Hyaloscypha, 

Tuberaceae) gained in importance with warming at the onset of the Holocene.  

We recovered 1,251 bacterial assignments at genus and species level with a median of 24,285 reads 

per sample. We restricted the analyses to soil taxa (see Methods). Among them, we recovered 67.5 % 

reads at species level, and 32.5 % at genus level. Like with the vegetation and fungi, the major 

compositional shift for bacteria occurred at the Late Glacial-Holocene transition (Figs 2, 4, 5). We 

discovered Brevundimonas and Hydrogenophaga (both carbon-cycling genera) mainly in the Late 

Glacial. Additionally, arsenic cyclers from the genus Herminiimonas, which oxidise arsenite, are highly 

abundant throughout the Late Glacial43. In contrast, Bradyrhizobium (nitrogen fixation), Ferrigenium 

(iron oxidation), Sideroxydans (iron oxidation), and Pseudolabrys (ammonia oxidation) show high 

abundance in the Holocene samples. 
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4.3.2 Long-term soil development: a trajectory or environmentally driven processes? 

Our time-series data on soil fungi and bacterial community changes trace, for the first time, long-term 

post-glacial soil development which has hitherto only been investigated along spatial gradients (e.g. 

41,44,45). Previous aDNA shotgun studies have focused on changes in above-ground terrestrial 

ecosystems  (e.g. 30,35–37,46), lakes47 or oceans48.  

From variation partitioning using constrained ordination (Fig. 3), vegetation explains the highest 

unique amount of variance in the fungal compositional data, followed by temperature (see Methods), 

while time passed since deglaciation uniquely explains only a minor variation in the dataset. Similarly, 

vegetation and temperature uniquely explain a relatively high amount of variation in the bacterial 

dataset.  

Generally, our findings on the importance of vegetation and temperature on soil development confirm 

spatial and experimental studies. For example, the invasion of Betula nana (dwarf birch) in arctic 

tundra has been identified as a main driver of soil microbial shifts after experimental warming49. Also, 

Alnus (alder) has been found to impact the establishment of bacterial communities after glacier 

retreat50. In tundra communities from the Taymyr Peninsula, vegetation cover also highly impacts the 

composition and biomass of fungi and bacteria51. Interestingly, we find that temperature has a greater 

impact on the bacterial community than on fungal composition, which is in contrast to experimental 

evidence from a pine forest52.  

Overall, our results indicate that post-glacial soil development on a millennial time-scale represents 

environmentally-driven processes rather than a pure trajectory, that is, time passed since glacial 

retreat explains only a small unique variance in the bacterial and fungal compositional changes. This 

agrees with the conclusion of Delgado-Baquerizo et al.3 who compared multiple topsoils worldwide of 

varying ages, and showed that parent material, climate, vegetation, and topography have a much 

greater impact on soil development than soil age has. However, our results disagree with the finding 

that time since recent deglaciation is most important for soil microbiome establishment53. The majority 

of the variance in our fungal and bacterial data is not explained at all and most of the variance is 

explained by a combination of tested variables indicating that we may have missed major drivers 

and/or internal dynamics (e.g. external nutrient supply54, variation in wetness55) and that soil-

temporal-environmental relationships are complex.  

 

4.3.3 Bioweathering supported by lichens and mycorrhiza 

Basalt, forming the bedrock in the lake Lama catchment, is largely composed of feldspar silicates 

containing high amounts of potassium, which is a mobile element released through weathering56,57. 
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Thus we interpret a high ratio of mobile K to immobile Ti (Fig. 6) in the sediment as a proxy for strong 

soil weathering58–60.  

We reveal enhanced weathering during the initial phase of soil formation shortly after deglaciation. 

According to the fungal record, this is at least partially related to lichens (and their release of organic 

acids) which are known to be early colonisers of basaltic rocks9,61,62. A second phase of high weathering 

occurred during the phase of maximum Salix abundance when glacial meltwater percolated the soils 

during the Bølling/Allerød warm period (Figs 2, 6). 

Strong basalt weathering in the Late Glacial is also confirmed by the high abundance of arsenite 

oxidizers (mainly Herminiimonas arsenicoxydans, H. arsenitoxidans; Figs 2, 6) in our bacterial record. 

It is likely that the weathering of basalt led to the release of iron hydroxides63 which have a high affinity 

to bind to arsenic64. The arsenic-cycling taxa oxidise the arsenic anion to arsenate43,65, a process that is 

highly needed after the high arsenic release from initial rock weathering.  

Interestingly, weathering declined with Larix forest expansion after the onset of the Holocene, 

alongside a decline in lichen and an increase in mycorrhiza relative abundance (Figs 2, 6). Previous 

short-term studies have demonstrated a decline in lichen abundance and diversity with warming66,67. 

This indicates that lichens in the catchment acted as the main primary rock weathering fungi for the 

initial rock breakdown61, while mycorrhizae took over the role for finer mineral weathering by releasing 

inorganic nutrients from minerals after first soil establishment68. Warming is assumed to impact the 

diversity and composition of mycorrhizal communities rather than their relative abundance69, an 

assumption supported by our data.  

On the taxon level, we find an increase in mycorrhizal Rhizophagus as well as Glomerales with the 

onset of the Holocene (Fig. 2). Glomerales are arbuscular mycorrhizal fungi, living in symbiosis with 

around 80% of the vascular land plants70. Our data suggest a strong dependency of woody taxa on 

arbuscular mycorrhizae compared to tundra species (Figs 2, 6). Suillineae co-occurred with Larix 

invasion at the onset of the Holocene, disappeared during the Picea forest stage, and reappeared in 

the late Holocene with a second peak in Larix, as confirmed by co-occurrence analysis (Fig. 2, 

Supplement 3). This finding supports studies by Zhou and Hogetsu71 and Praeg and Illmer72, who 

highlight Suillineae as an important Larix mycorrhizal associate. Suillineae species are ectomycorrhizal 

fungi - usually a symbiosis of woody taxa and Asco- or Basidiomycetes21 - which are known to enhance 

weathering by secreting oxalate73,74.  

We also note an increase in Laccaria species after 5 cal ka BP (Fig. 2). Laccaria are known to form 

mycorrhizae with Pinaceae, but also Salicaceae and Fabaceae75. In mycorrhizal associations with Larix, 

Laccaria is known to reduce the amount of phenolics, which defend plant roots against parasitic 
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fungi76. In the late Holocene, Hyaloscypha species became more abundant, coinciding with increasing 

Vaccinium abundance (blueberry; Ericaceae family), confirming known interactions from modern 

studies77. Overall, most of our detected mycorrhizal taxa are known to be non-specific to distinct plant 

species21,70,78. This suggests that mycorrhizal fungi in such an extremely cold and nutrient-poor habitat 

must be generalists, supporting a broad diversity of plants in their growth.  

 

4.3.4 Turnover in carbon, nitrogen, and sulphur cycling 

Our bacterial record reveals a dominance of carbon cyclers during the Late Glacial tundra phase while 

nitrogen cyclers become more abundant with woody-taxa densification from about 15 ka on (Fig. 6). 

This finding supports a 7-year monitoring study on the modern Siberian tundra-taiga ecotone that 

shows increasing nitrogen cycling with densification of the tree stands79. Additionally, the N content in 

tundra soils was generally increased when exposed to warming80,81. We find the major turnover from 

carbon to nitrogen cyclers occurred at the transition from light Larix-dominated forest to dark Picea-

dominated coniferous taiga. Surprisingly, our study suggests that the forest composition has a larger 

effect on C/N cycling than the general invasion of forest.  

As well as their relative share, the composition of the carbon-cycling community also shifted along 

with vegetation change (Figs 2, 6). While we recovered a high relative abundance of polyaromatic 

degraders in the Late Glacial (Brevundimonas, Caulobacter), polysaccharide degraders gained 

importance in the Holocene (e.g. Paenibacillus spp.). This aligns with modern spatial gradients where 

tundra soils in northern Siberia were found to contain polyaromatic compounds82, while forest soils 

generally had a larger proportion of microbial polysaccharides83.  

A shift from bacterial-only carbon cycling to fungal-bacterial co-cycling is revealed, probably because 

the boreal litter is very difficult to decompose due to its high amount of phenol-rich substrates84. It is 

known that the increasing abundance of phenolic acids in soil has a stimulating effect on the 

abundance of saprotrophic fungi85,86 as they can tolerate high concentrations of phenolic compounds 

and degrade them87.  

We also detect a diversification of the nitrogen pathways (Figs 2, 5, 6). During the Late Glacial, nitrogen 

fixation was mainly from the air (Rhizobium spp.). Wettening and warming in the Holocene38 and 

subsequent establishment of dark taiga resulted in a diversification of nitrification processes, including 

ammonium oxidation (Nitrosomas spp.) as well as nitrite oxidation (Nitrotoga, Pseudolabrys). To date, 

current knowledge diverges: some studies showed that increasing moisture88 as well as temperature, 

to a certain extent89, stimulate nitrogen fixation in High Arctic ecosystems90. Experimental warming 

can also induce a decline in nitrogen fixation in arctic tundra sites88. Previous studies91–93 have shown 
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that, depending on the tree species, between 20-40% (Picea plantation) and 70% (Picea-Abies forest) 

of the nitrogen fixation from the air is retained in the canopy. Our study suggests that the 

establishment of (dark) evergreen taiga results in higher foliage retention, meaning that nitrogen is 

directly captured in the crowns without microbial biomass being involved94. Subsequently, the fixation 

of nitrogen in soil from the air is hindered95,96 and the nitrogen cycling pathways diverge. 

Sulphur cyclers show a peak dominated by Thiobacillus during the initial plant establishment when 

sulphur cycling was vital for amino acids (methionine, cysteine) and such protein synthesis (Figs 2, 6). 

In contrast, we find that low S cycling occurs during phases of increased weathering. During these 

phases, S adsorbed onto Fe and Al hydroxides likely became a good source of plant-available sulphur 

as well as a hindering S leaching 97 such that the need for additional bacterial cycling was low. A warmer 

climate and the establishment of forest soils resulted in stronger sulphur cycling, as indicated by high 

abundances of sulphur oxidizers, including Sulfuriferula plumbiphila, mostly replacing Thiobacillus. 

Warming has previously been demonstrated to result in a higher relative abundance of sulphur cycling 

genes in tundra soils98 and to induce high amino acid turnover (mineralization and subsequently re-

uptake) in Alaskan taiga soils99. Our data underline the demand for diversified sulphur sources with 

slower plant turnover in boreal forests. 

 

4.3.5 Tracing podzolization  

We reveal an increase in taxa preferring acidic soil alongside soil development (Fig. 6). The peak of 

acidophilus plants is observed at 2.5 cal ka BP when they make up around 50% of the relative 

abundance (mainly spruce, larch, alder, birch, pine, blueberry - Picea, Larix, Alnus, Betula, Pinus, 

Vaccinium) of taxa with known pH preferences. This agrees with modern data comparing multiple 

forest sites, which show that Picea forests have the lowest pH100. Slowly decomposing litter101 as well 

as poor buffer capacity102 in evergreen Picea forests leads to recalcitrance (e.g. high C/N ratios and 

lignin concentrations101,103), while Larix litter has comparatively high base cation fluxes104. Additionally, 

less nutrients in the soils in Picea forest inhibit organic matter breakdown, leading to the formation of 

organic acids and subsequently to acidification of the soil24,26.  

The bacterial community also shows a strong peak in acidophilus taxa in the late Holocene (Fig. 6). The 

impact of soil acidification on the composition of bacterial communities is known to be driven by 

ecological filtering (i.e. better adapted taxa invade in the area)105. The acidic-preferring bacteria in our 

data show a shift from mainly Delftia species during the Late Glacial towards Sideroxydans dominance 

in the Holocene.  
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Fungi also show an increasing acid-preference in the late Holocene, though the signal is not as 

pronounced as for the other organismic groups, being underlined by many acid-tolerant fungi such as 

Trichoderma or Hyaloscypha, which occur throughout the whole record (Figs 2, 6). Rousk and Baath106 

find that a lowering of the pH generally leads to increased fungal growth while bacterial growth is 

decreased. Our data takes this further by showing that a lowering of the pH leads to more acid-tolerant 

bacteria, while fungal communities are less affected by pH changes. Alongside the acidification of the 

soil, we see evidence for podzolization with increasing iron cycling around 7-6 cal ka BP in our record 

(Figs 2, 6), coincident with the onset of the temperature and moisture maximum in the region38, 

suggesting that podzolization is, to some extent, also warmth- and rain-induced.  

The strong peak in iron-cycling bacteria (mainly Ferrigenium kumadai and Sideroxydans) in the late 

Holocene, alongside the re-expansion of Larix into Picea forests, indicates an iron deficiency induced 

by leaching (Figs 2, 6). We further detect an increased relative abundance of Vaccinium in the late 

Holocene, suggesting compositional differences between the early Larix forest at the onset of the 

Holocene and the late Holocene Larix forest that resulted from podzolization during the preceding 

Picea phase. A comparison of modern Larix and Picea communities reveals a higher Fe concentration 

in the soil with Picea than in that with Larix107. We assume that the iron cycling is not impacted by the 

general presence of Larix, but the change in soil composition induced by the preceding Picea is 

evidence of a trajectory of soil development in the area.  

 

4.4 Implications and conclusions 

By analysing sedaDNA shotgun metagenomics from sediments from lake Lama (northern-central 

Siberia) we reveal a pronounced vegetation shift from tundra towards taiga at the Late Glacial-

Holocene transition. Alongside, we find a lichen decline but an increase in mycorrhizae as well as a 

shift from carbon-dominated nutrient cycling towards nitrogen-dominance.  

With our study we have shown that lake sedaDNA is not only a valuable tool for analysing 

compositional changes of plants, fungi, and bacteria but also allows the reconstruction of soil 

development. We show that the establishment of fungal and bacterial soil communities is, to a great 

extent, influenced by the vegetation cover, followed by temperature variation, while the time since 

initial soil development only plays a minor role. This suggests there could be significant turnover in the 

soil microbiome under future global warming alongside shifting treelines. As the relationship between 

plants and their associated microorganisms is rather tight, understanding drivers of soil microbiome 

communities is an asset when developing advanced fertilisers adapted to global warming scenarios. 
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We found evidence of rapid initial weathering of basalt after glacier retreat with herb- or shrub-

dominated tundra, which declined with the warming-induced taiga invasion. Understanding past 

weathering enables the application of its mechanisms to address ongoing global challenges: 

weathering of basalt is a known carbon sink for atmospheric CO2 108,109. Powdered basalt grains can be 

applied to soils to enhance weathering and thus lock-up large amounts of carbon dioxide, removing it 

from the global carbon cycle110. We show that the most basalt weathering occurred during Salix 

dominance in the river valleys, which is of particular interest when assessing general soil development 

under ongoing global change and making use of basaltic carbon capturing potentials. 

We could show a shift from carbon-dominated nutrient cycling in the Late Glacial towards intensified 

nitrogen cycling in the Holocene. An intensified need for diverse nitrogen cycling in taiga vegetation in 

comparison to tundra is noted, highlighting the differences between tundra and taiga turnover times. 

Our data additionally reveal a diversification of  sulphur sources in boreal forests for plant 

establishment and their amino acid synthesis. Altogether, the data provide strong evidence for a 

relationship between nutrient pools and cycling in relation to plant life cycles.  

Finally, our data also trace the establishment of podzol in the study area with increasing iron cycling in 

the Holocene as well as soil acidification. We highlight that the early and the late larch forests show 

differences in their underlying herbaceous taxa, inferred from changing soil and therefore growing 

conditions. The podzolization process was initiated with the establishment of dark evergreen taiga. 

The re-invasion of larch forest into the area in the late Holocene indicates that soil establishment is a 

trajectory as podzolization is irreversible despite changing vegetation cover. This might be an 

important result for forecasting future plant establishment or even be applicable to foster soil 

development in agricultural settings where multiple plant types need to be grown on the same ground.  

Our study provides basic knowledge for understanding and forecasting treeline advance under future 

global warming. It forms the base for the development of potential afforestation strategies and as such 

highlights the potential of large-scale carbon-capture enhancement through boreal forest 

establishment alongside basalt grain weathering. 

 

4.5 Material and methods  

4.5.1 Geographical setting and study site  

Lake Lama (69.32°N, 90.12°E; 53 m a.s.l.) is located on the Taymyr Peninsula, northern-central Siberia, 

at the western rim of the basaltic Putorana Plateau (Fig. 1). The current vegetation in the area is 

comprised of dense taiga with Picea, Larix, and Betula, as well as shrubs such as Alnus fructicosa, Salix, 

and Juniperus communis, and dwarf shrubs38. Modern mean temperatures are 13.8°C for July and -28.8°C 
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for January (Volochanka weather station; distance to the lake: 247 km111). In 1997, an 18.85 m long 

sediment core (PG1341) was retrieved from the lake at a depth of 66 m, dating back to the last about 

23 ka. Prior to processing, the sediment has been stored in the dark and at 4°C. We refined the age-

depth model of von Hippel et al.34 (Supplement 1). 

 

4.5.2 X-ray fluorescence scanning of the sediment core 

X-ray fluorescence (XRF) scanning was conducted at the University of Cologne, Germany, on one core 

half using an Itrax core scanner (Cox Analytical Systems, Sweden) equipped with a Cr‐tube and a silicon-

drift detector (SDD) in combination with a multi‐channel analyser. Analyses were performed at 30 kV 

and 55 mA, at a resolution of 2 mm and an integration time of 6 seconds. Results are semi‐quantitative 

estimates of relative concentrations of the detected elements112, derived from the detected peak area 

intensities and given in total counts per second (cps). The K and Ti count data were normalised to the 

K/Ti element ratio to account for variations in organic content and other elements113,114.   

 

4.5.3 Core sub-sampling 

The sub-core segments were sampled for sedaDNA in the climate chamber of the Helmholtz Centre 

Potsdam - German Research Centre for Geosciences (GFZ). During the sampling process, protective 

clothing as well as face masks and hair nets were worn. Before sampling, the surfaces of the cores 

were scraped twice with clean knives. The samples were taken using four knives and were then placed 

in sterile 8 ml Sarstedt tubes and frozen to - 20°C until further processing. We included a total of 44 

samples in the study, with an interval of approximately 500 years between samples. A more detailed 

description of the procedure for preparing and cleaning the chamber as well as the subsampling is 

provided by von Hippel et al.34.  

 

4.5.4 DNA extraction 

The extraction of the sedaDNA was conducted in the dedicated ancient DNA laboratories at AWI 

Potsdam, using the DNeasy PowerMax Soil DNA Isolation Kit (Qiagen), following the manufacturer’s 

instruction. An additional incubation step overnight in a rotation incubator at 56°C was added and the 

elution of the DNA was performed as described in von Hippel et al.34. After the extraction, the DNA 

was concentrated using the GeneJET PCR purification Kit (Thermo Fisher Scientific, Germany) by which 

1 mL of the DNA extract was reduced to a volume of 50 µL. The concentrated extracts were measured 

with a Qubit dsDNA BR assay kit using a Qubit 4.0 Fluorometer (Thermo Fisher Scientific, Germany), 
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diluted to a final concentration of 3 ng/µL and stored in aliquots of 15 µL to avoid extensive freeze-

thaw cycles.  

 

4.5.5 Single stranded DNA library build 

The DNA libraries were built following the single stranded DNA library preparation protocol of 

Gansauge et al.115 with the ligation of the second adapter in a rotating incubator as described by 

Schulte et al.116, using 30 ng of DNA as input. Furthermore, the libraries were quantified with qPCR117. 

Further details on the protocol are described in Schulte et al.116. For the setup of the index PCR, we 

used 1x AccuPrime Pfx reaction mix, 2.5 U/µL AccuPrime Pfx Polymerase, 4 µL of P7_X indexing primer 

(10 µM) and P5_X indexing primer (10 µM), and 57 µL of deionized water. 24 µL of the final DNA library 

were added to the reaction. The PCR was conducted according to the following protocol: 2 min at 95 

°C, 20 s at 95°C, 30 s at 60°C, 1 min at 68°C and final elongation for 5 min at 68°C. The appropriate 

number of amplification cycles (steps 2-4) for the index PCR was calculated from the qPCR results and 

varied between 11 and 13 cycles for samples and blank controls. 

The PCR products were purified with MinElute (Qiagen, Switzerland) according to the manufacturer’s 

instructions and eluted in 30 µL elution buffer. The DNA library concentration was determined using a 

Qubit 4.0 Fluorometer dsDNA BR assay kit (Thermo Fisher Scientific, Germany). For the quality control 

and to measure the fragment length composition, we loaded the libraries on a TapeStation (Agilent, 

United States). Mean fragment length and concentration of indexed libraries was used to calculate the 

molarity of each library and equimolar library pools were prepared. In total, we compiled 3 library 

pools. 

The library pools APMG-37 (10 samples, 4 library blanks, 1 extraction blank) and APMG-38 (10 samples, 

3 library blanks, 2 extraction blanks) were sent to Fasteris SA, Switzerland, and were run on a NovaSeq 

device (2x100 bp). A table with the sample composition of the sequencing runs as well as their 

metadata is provided in supplement table 1. The second (23 samples, 6 library blanks, 3 extraction 

blanks) and third (15 samples, whereof 14 were sample replicates to increase read counts for poorly 

sequenced samples) library pools were sequenced  on an NextSeq 2000 platform (2x100 bp) at AWI 

Bremerhaven, Germany.   

 

4.5.6 Bioinformatic pipeline for the analysis of the sequencing results 

The analysis of the raw sequencing data included a quality check using fastQC (version 0.11.118) and a 

deduplication step (removing identical reads) with clumpify (BBmap version 38.87, 
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https://sourceforge.net/projects/bbmap/). The paired-end forward and reverse reads were merged 

with fastp (version 0.20.1119) applying a low complexity filter in order to remove reads of low 

complexity from the dataset. Taxonomic classification was done with Kraken2120 against the nt 

database by NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz; download: 10/2022, with default 

k-mer size 35) with a confidence threshold of 0.8. We also tested the taxonomic classification of 

bacteria against the refseq database by NCBI121, yielding comparable patterns (Supplement 4). The 

Kraken report files were converted into a txt-file using the command awk as an input in R. 

 

4.5.7 Data analysis 

The analysis of the processed DNA data was done in R, version 4.0.3 123. As a first step we combined 

the converted kraken file, with metadata (depth and age of the sediment samples) and a lineage file, 

which adds the full taxonomic lineage of the identified taxa via TaxID (Supplement table 1). The raw 

reads of all three sequencing runs were finally merged in R. 

Three taxonomic data subsets (plants, fungi, bacteria) were created. For the plant dataset, we 

extracted all reads assigned to the clade “Viridiplantae” and kept those reads which were at least 

assigned to genus level. We cleaned the plant subset from aquatic and non-Siberian taxa (list of taxa: 

Supplement table 2) and kept those taxa which occurred in at least three samples. The fungus subset 

is defined by all reads of the kingdom “Fungi”. Due to generally poorly sequenced fungal genomes and 

therefore their absence in databases, we decided to work on taxa assigned to at least phylum level for 

terrestrial fungi (list of taxa: Supplement table 3) and kept all taxa occurring in at least three samples. 

The bacterium subset contains reads assigned to the domain of “Bacteria”. Among bacteria, we only 

kept reads which were assigned to at least genus level and excluded taxa, which are characteristic of 

aquatic habitats (Supplement table 4). Further, we filtered for taxa that occurred in at least three 

samples and with a minimum of 20 reads in all samples.  

 

4.5.8 Analysis of the ancient patterns 

To assess the ancient origin of the analysed reads, we selected key taxa for ancient damage pattern 

analysis with MapDamage (v. 2.0.8, 122), including Larix sibirica (plants), Hyaloscypha bicolor (fungi) and 

Herminiimonas arsenitoxidans (bacteria). Prior to the analyses, we grouped the samples into two 

subgroups (Holocene and Pleistocene samples) and merged their raw sequencing data using the cat 

command. The Holocene group includes samples from 0–10.4 cal ka BP (18 samples), and the 

Pleistocene group from 11.5–23 cal ka BP (27 samples) respectively. With the merged files, we 

http://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz
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repeated the bioinformatic pipeline as described above. From the newly generated kraken output, we 

extracted taxon-specific reads on species level and mapped them against their reference genomes 

(Larix sibirica, accession number MT797187; Hyaloscypha bicolor, accession number 

GCF_002865645.1; Herminiimonas arsenitoxidans, accession number GCF_900130075.1) using 

MapDamage (v. 2.0.8 122) with the options ‘rescale’ and ‘single-stranded’. Fragment length, 

incorporation plots, distribution of the C to T changes, and predicted nucleotide changes for the last 

25 nucleotides of the analysed reads are presented in the supplement 5-7. 

 

4.5.9 Statistical analysis of the dataset 

All statistical analyses were carried out with the software R, version 4.0.3 123. For the analysis, we 

resampled 100 times each taxonomic subset to the basecount of the sample mean value to balance 

uneven read counts between the samples. The resampling of the fungi had a mean count of 272, the 

plant data of 3,533, and the bacteria of 24,285. We followed the github script of Kruse (2019, 

https://github.com/StefanKruse/R_Rarefaction). All statistical analyses were performed on the 

resampled datasets.  

For analysis of the long-term soil development and its driving forces, we assessed the time (i.e. the age 

of the sediment) and the impact of multiple environmental variables (vegetation, temperature). We 

defined “soil development” as the bacterial communities on one side and fungal soil communities on 

the other side (whole subsets). Constrained ordination analyses were run to statistically relate the 

environmental variables to the variation in the composition of either soil community. To yield the 

variable “Vegetation”, we performed a redundancy analysis (RDA) on the double-square rooted 

vegetation subset and determined the significant PC axes using PCAsignificance(), provided the first 

two PC axes were significant. We used the scores of the PC axes 1 and 2 and merged them as a 

dataframe. We used a reconstruction of the temperature variation in the Northern Hemisphere as 

further input for the environmental variables to yield the variable “Temperature”. The reconstruction 

of the temperature variation followed the script of Kruse et al. 

(https://github.com/StefanKruse/R_PastElevationChange). In brief, it is based on the mean 

temperature reconstructions by Shakun et al.125 and Marcott et al.126. For the variable “Time”, we used 

the respective ages of the samples as the input. 

The K/Ti element ratio data derived from the XRF scanning was used as a proxy for weathering58–60. 

The analysis of the XRF data was done by smoothing the scanning data with the function predict 

(package: stats123). All data were plotted with ggplot2 (package: tidyverse127).  
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We analysed co-occurrence patterns between mycorrhizal fungi and respective tree taxa. To do so, we 

analysed the Spearman correlation between the fungal dataset and the plant dataset using the 

function cor (package stats123). The correlation matrix was converted in a dataframe and only positively 

correlated mycorrhizal taxa with a correlation value of at least 0.2 were selected. With the final taxa 

selection, we plotted the reduced data using the function corrplot (package corrplot124).  

For assessing the pH preferences of all data subsets, we assigned the taxa to five categories of 

preference, namely acidic, slightly acidic, neutral, slightly alkaline, and alkaline (supplement tables 2-

4). We merged the percentages of the slightly alkaline and alkaline preferring taxa to yield the overall 

alkaline preference for plotting. The displayed acidic-preferring taxa are only those being assigned to 

strong acidic preference. 
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Fig. 1: Map of central Russia showing the location of the study site (A+B). (C): satellite image of the lake and its 

surroundings. The coring location in the lake is marked with a star. For the “distribution of deciduous and 

evergreen forests”, data from the ESA CCI Land Cover time-series v2.0.7 (1992–2015)- data set were used 

(https://www.esa-landcover-cci.org/). The land cover classes “70” (“Tree cover, needleleaved, evergreen”) and 

“80” (“Tree cover, needleleaved, deciduous”) were extracted for the illustration of the figure. 

 

https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib41
https://www.esa-landcover-cci.org/
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Fig. 2: Relative abundance of the most prominent plants, fungal, and bacterial taxa recovered from the 

sediment of lake Lama. The abundance is relative to the taxa recovered in the respective subset (plants, fungi, 

bacteria). In brackets is the respective vegetation type, fungal ecology, or bacterial element cycle. A: Most 

prominent taxa in the Late Glacial, B: Most prominent taxa in the Holocene. 
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Fig. 3: Variation partitioning of fungi and soil bacteria. The numbers are the percentage of explained variation 

for the respective driver (for overlapping areas the combined variation). We show that vegetation as a single 

variable has the greatest impact on the establishment of either community, followed by the temperature. The 

unexplained variation is given as the percentage of the residuals. The asterisks indicate the statistical significance 

of each single result (** = p ≤ 0.01 , *** = p ≤ 0.001). Values <0 are not shown. 
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Fig. 4: Ecosystem and soil dynamic changes over time. Upper part: development and changes in the ecosystem 

over time during the Late Glacial, when glacial melt-water flow and lichen cover lead to strong weathering of the 

basaltic bedrock. After early colonisation, the vegetation subsequently developed towards shrubby tundra. 

Lower part: Carbon (C) cycling in the soil was high. Sulphur (S) cycling was high during early colonisation, while 

arsenic (AsI cycling was prominent until the onset of the Holocene. The size of the circles represents the 

importance of the respective element cycling process. All cyclers besides Penicillium (fungus) are representing 

bacterial taxa. Yeast taxa were highly abundant throughout the Late Glacial.  
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Fig. 5: Soil establishment during the Holocene, resulting in the formation of podzol. With the onset of the 

Holocene, Pinaceae invaded the area and an early Larix (larch) forest was established. During the thermal 

optimum in the Holocene, this early Larix forest was replaced by Picea (spruce), leading to an increase in iron 

(Fe) cycling in the soil and the start of podzol development. The changes in the soil properties enabled the re-

invasion of Larix with Vaccinium taxa as a herbaceous soil cover. The nutrient cycling in the Holocene is 

dominated by nitrogen (N) cyclers in the soil. Additionally, carbon (C) cycling changed towards polysaccharide 

cycling and sulphur cycling diversified. In the late Holocene, iron cycling increased. All cyclers besides Mortierella 

(fungus) are representing bacterial taxa. 
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Fig. 6: Reconstruction of soil development from lake Lama sediment. General weathering is shown by the K/Ti 

ratio of the XRF data. Arsenic cycling bacteria are prominent in the samples from the Late Glacial up until 7.5 ka 

BP. A transition in relative abundance from lichen towards mycorrhizae is apparent throughout the core. We 

display a turn-over in nutrient cycling bacteria from carbon (C) dominated cycling in the Late Glacial to nitrogen 

(N) dominated cycling in the Holocene and show the sulphur (S) cycling alongside. The pH preferences 

(acidic/alkaline) of the taxa of the respective subsets show an acidification with increasing soil age and ongoing 

development. 
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5 Discussion and synthesis 

The main goal of this thesis was to shed light onto long-term community dynamics of plants and soil 

microorganisms using lake sedimentary ancient DNA. In this work, I assessed the long-term 

establishment of rhizosphere communities in relation to changing vegetation cover and identified 

distinct community trends for the (Late) Glacial and Holocene. Here, I discuss the included manuscripts 

forming the base of this thesis in this context. 

 

5.1 Long-term rhizosphere establishment in tundra and taiga areas 

During the Late Glacial, northern-central Siberia, central Yakutia, and the Tibetan Plateau were covered 

by shrubby tundra, while with the onset of the Holocene and local warm periods, mainly larch-

dominated coniferous forests with spruce and herbs invaded the areas (Manuscripts II, III, IV). I 

highlight in my thesis the long-term dependency of boreal forest establishment on mycorrhizal 

associations. I also show turnover from initial vegetation with lichen cover after glacier-retreat towards 

boreal forests with strong mycorrhizae-domination (Manuscripts II, III). Additionally, I show that 

changes in the element cycling reflect the needs of higher trees for diversified nitrogen cycling in 

nutrient poor habitats (Manuscript III). Whereas for fungus-plant covariation, the major ecological 

trends were comparable amongst sites, specific local signals were detected on taxon level, reflecting 

the dependency of microbiome establishment on soil properties (Manuscripts II, IV).  

 

5.1.1 SedaDNA as a proxy for soil microbiome 

Until recently, the use of lake sedaDNA for the reconstruction of past ecosystem dynamics has mainly 

focused on plant communities, diatoms or mammals (e.g. Pansu et al., 2015; Stivrins et al., 2018; 

Parducci et al., 2019), while the analysis of soil communities is a relatively new approach (Talas et al., 

2021). This is partially because databases for fungi are still far from being comprehensive, but also 

because short metabarcoding primer pairs for assessing the broad fungal community have been 

lacking. To close this gap, we first reassessed existing primer pairs and established a new, relatively 

short primer combination targeting the ITS1 region (Manuscript I). Then, I applied this primer pair on 

a variety of lake sediment cores for target specific metabarcoding (Manuscript II), demonstrating that 

fungal ecological groups show distinct trends in their abundance under long-term climatic change. For 

comparison, I assessed fungal terrestrial communities as well using shotgun sequencing (Manuscripts 

III, IV), showing overall similar results with the two approaches, though also revealing bias in the 

metabarcoding. With the shotgun sequenced data, also bacterial communities were included in the 

analysis (Manuscripts III, IV), demonstrating the possibility to reconstruct the diverse soil microbiome.  
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5.1.1.1 Fungal DNA metabarcoding 

We underlined the possibility to trace fungal community dynamics using ITS metabarcoding on lake 

seaDNA with establishing and applying a primer pair targeting the ITS1 region. In fungal 

metabarcoding, the ITS region spanning ITS1 and ITS2 is mainly being targeted. Though, due to varying 

lengths of the ITS between different species and a subsequent bias in PCR amplification towards 

shorter sequences, an accurate community reconstruction is limited (Baldrian, 2019). Commonly, ITS2 

is used for these studies as it is more consistent than ITS1 (Walters et al., 2015), while I amplified ITS1 

as it yielded the most promising primer pair for palaeo-reconstructions with short sequence lengths as 

well as high species recovery (Manuscripts I, II). A comparative study using ITS1 vs. ITS2, targeting 

lichen diversity (Fernández-Mendoza et al., 2017; Banchi et al., 2018), showed differing compositional 

patterns between the barcodes. This underlines the bias in the chosen barcode, emphasising the need 

to target ITS1 as well as ITS2 when assessing a broad ecological diversity of fungi. As an alternative to 

the ITS region, the 16S region which is commonly used for bacterial metabarcoding (Stackebrandt and 

Goebel, 1994), can also be applied for fungal metabarcoding, though it has less hypervariable regions 

in fungi (Schoch et al., 2012). The abundance of 16S in the bacterial as well as fungal ribosome renders 

it a great asset to the shotgun sequencing data of Manuscript III. While not only strengthening the 

bacterial shotgun data, it could potentially verify the fungal community composition as derived form 

ITS metabarcoding in Manuscript II. Furthermore, the protein-coding RPB1 subunit of RNA Polymerase 

II has been proposed as a fungal barcode and has in combination with the ITS primer been suggested 

to yield high species recovery rates (McLaughlin et al., 2009; Schoch et al., 2012).This would yield it in 

combination with our established primer (Manuscript I) an additional great target region for ancient 

DNA metabarcoding. Nonetheless, each barcode shows slight differences in amplified species (Schoch 

et al., 2012). Due to time and money constraints during the work on this thesis, only the primer pair 

published in Manuscript I could be applied on a large scale. Though in future, a metabarcoding 

approach comparing adapted primers for ITS1 as well as ITS2 or RPB1 for fungal communities deriving 

from lake sedaDNA would be a great asset. 

 

5.1.1.2 Targeting soil communities with shotgun sequencing 

Besides the recovery of fungi and their community compositional trends, I could also show for the first 

time the possibility to reconstruct terrestrial bacterial communities from lake sedaDNA and assign 

them to their respective roles in the rhizosphere (Manuscripts III, IV). As plant-growth promotion in 

the rhizosphere is not solely deriving by fungi, assessing the bacterial community alongside the fungal 

changes is of great importance for understanding ecological dependencies. So far, rhizobial bacteria 

have been assessed by amplifying modern rhizosphere samples of tree individuals (Praeg and Illmer, 
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2020), or shotgun sequencing of rhizosphere soil (Babalola et al., 2020). For such studies on modern 

plant individuals, rhizosphere analyses are rather straight-forward, as a comparison to bulk soil as a 

control is possible, enabling the assessment of direct biotic dependencies. Those direct relations 

between specific plant species and their rhizobiome are more complicated to assess from lake 

sediment as a correlation can only be tested using statistics, while no real associations are observed 

(Manuscript IV). Addressing bacterial changes throughout rhizospheres alongside, for example, major 

vegetational changes is of advantage as it helps identifying important drivers for general plant 

establishment or treeline migration in nutrient poor habitats. Nonetheless, the assessment of a range 

of modern rhizospheres in the target area would be beneficial for the comparison to the reconstructed 

sedaDNA rhizosphere dependencies. This is necessary as the rhizobiome is highly dependent on the 

surrounding environment and influenced by factors such as bedrock (Vieira et al., 2020) or altitude (Li 

et al., 2014; Praeg et al., 2019). In the case of this thesis, this could entail sequencing the rhizosphere 

of several dominant tree, shrub, herb, and grass individuals in the vicinity of the lakes, comparing it to 

sequenced bulk samples, and relating it then to the data of the manuscripts II, III, and IV respectively.  

 

5.1.1.3 Comparison between metabarcoding and shotgun sequencing for the soil microbiome 

I applied metabarcoding and shotgun sequencing to recover ancient fungal communities in a variety 

of lake sediment cores (Manuscripts I, II, III, IV), showing that major trends in fungi composition are 

comparable between metabarcoding and shotgun sequencing (Manuscripts II, III, IV). Nonetheless, I 

discovered slight differences between the methods when comparing trends in fungal ecology: I 

showed an increasing relative abundance for mycorrhizal fungi with warming and ongoing soil 

development using shotgun sequencing (Manuscript III), while the fungal metabarcoding data of the 

same lake exhibited no clear trends (Manuscripts I, II). I observed differences between the two 

approaches also for plant-parasitic fungi, where for metabarcoding a high covariation with woody 

plant taxa was obtained (Manuscript II). In contrast, in the shotgun data, not many correlations 

between (woody) plants and parasitic fungi were detected (Manuscript IV). Arbuscular mycorrhizal 

fungi form part of the phylum of Glomeromycota which shows a high intraspecific variation in the ITS 

region (Lloyd-Macgilp et al., 1996) and therefore also in barcoding (Schoch et al., 2012). Thus, this 

indicates a bias in the metabarcoding amplification towards species with an overall shorter ITS, 

explaining the differences between the shotgun and metabarcoding results, while indicating that we 

might missed some species in the barcoding approach. Also, varying copy numbers of the ITS per fungal 

genome were described, ranging up to > 100 per genome, leading to further bias in the metabarcoding 

data (Raidl et al., 2005; Debode et al., 2009; Baldrian, 2019). Additionally, the reconstruction of the 

lichen community differed prominently between the approaches: while the shotgun sequencing 
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showed a broad abundance of lichens in the Pleistocene with a strong decline until the onset of the 

Holocene (Manuscript III), the metabarcoding did not reveal pronounced trends in lichen abundance 

(Manuscript II). Therefore, the combination of metabarcoding multiple target regions for one organism 

group, such as ITS, RPB1, as well as 16S for fungi and bacteria, and additional shotgun sequencing will 

give the best overview of the soil microbiome. Overall, my data suggest that the application of 

barcoding multiple target sites, coupled with whole genome sequencing methods is an appropriate 

choice when reconstructing a broad fungal community. When only applying metabarcoding, the 

primer selection should be re-evaluated using specific barcodes for selected fungal groups, for example 

when focusing on arbuscular mycorrhizae reconstruction, as stated by Lee et al. (2008).  

For validation of the shotgun data for the bacterial communities (Manuscripts III, IV), a metabarcoding 

approach such as for fungi (Manuscripts I, II) will be an asset. As an initial step, the barcoding primers 

for bacteria need to be re-evaluated as well to adapt them for the amplification of ancient DNA. 

Commonly used primer pairs for bacterial metabarcoding on aquatic sediment target regions of >300 

nucleotides (Stoeck et al., 2010; Caporaso et al., 2012; Leray et al., 2013; Fonseca et al., 2022), while 

an established primer pair for targeting the bacterial rhizosphere amplifies a region of 580 nt (Baker 

et al., 2003; Lasa et al., 2019). This renders those primers not suitable for ancient DNA due to too long 

amplicon sizes. A re-evaluation of the primer pairs for the amplification of bacterial 16S, comparable 

to the reassessment of fungal primers as in Manuscript I, and their adaptation to the amplification of 

shorter fragments would be an asset. The primer pair used by Lasa et al. (2019) includes three variable 

gene regions. For example, using a different reverse primer or varying the forward and reverse primer 

combinations for the amplification of a shorter RNA region with only one variable gene region could 

be promising. A profound characterisation of ancient rhizosphere bacterial communities will enable 

further understanding of the impact of long-term global warming on terrestrial nutrient cycles.  

 

5.1.2  Fungi-vegetation interaction changes over time 

Plant-fungus interactions are complex and thus so far only understood on spatial gradients within a 

country (Silva et al., 2014) or global comparisons (Bahram et al., 2013), for single individuals (Praeg 

and Illmer, 2020), or on time-scales covering a couple of years (Nuñez et al., 2009; Liu et al., 2019; 

Weber et al., 2019). As climate change is a slow, but steady process, especially when assessing the Last 

Glacial-Holocene transition, long-term monitoring of sedaDNA datasets are a great tool for the 

understanding long-term dependencies.  

In my thesis, I demonstrate the possibility to reconstruct complex fungal-plant interactions from lake 

sediment and highlight the long-term dependency of Pinaceae establishment on mycorrhizal fungi 
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including Suillineae, Inocybaceae, and Hyaloscypha species (Manuscripts II, III). So far, such 

dependency was shown only on a short temporal gradient of several years (Nuñez et al., 2009). It is 

known that some fungal species show a high host fidelity towards specific plant taxa, such as Suillus 

species being associates for Pinaceae (Kretzer et al., 1996; Nguyen et al., 2016). However, it has 

remained unknown if mycorrhizal associations were dynamic during ecosystem establishment and if 

they did adapt to changing environmental conditions. In my thesis, I provide evidence that such 

mycorrhizal associations are dynamic throughout time and dependent on the stage of soil 

development. Shotgun sequencing revealed that the mycorrhizal community composition of an early 

invaded larch forest is different to the mycorrhizal communities of the reinvaded late larch forest 

multiple thousand years later (Manuscript III). For the invaded larch forest at the site, the herbaceous 

understorey vegetation of the forest changed and Ericaceae such as Vaccinium species became more 

abundant in the late larch forest. In British woodlands, an influence of arbuscular mycorrhiza on 

herbaceous understorey vegetation was demonstrated (Guy et al., 2022). The presented data show 

that mycorrhizal plant-fungus interactions are complex, while indicating also a vice-versa impact of the 

herbaceous taxa on fungi. Besides, I also demonstrate that mycorrhizal interactions are differing in the 

same plant genera across geographical locations. This indicates a strong adaptation of mycorrhizae to 

the local environment and as such to soil properties independent from the soil development stage 

(Manuscript IV). These include environmental parameters such as the bedrock, which varied in the 

assessed datasets from basalt over sandstone to granite, showing Suillus as the known Pinaceae 

associate only as a strong correlated mycorrhizal fungus for Larix in the basaltic location. In Finnish 

boreal forests, a major impact of geographical location on the establishment of fungal communities 

has been demonstrated (Qu et al., 2021), underlining that the large spatial gradient covered by my 

data and therefore the unique environmental factors such as elevation, precipitation, or local soil 

properties are shaping the rhizosphere to a great extent. My data show varying mycorrhizal 

associations depending on the age of the forest and the understorey vegetation as well as the impact 

of different geographical locations (Manuscripts III, IV). As an example, the data present increasing 

relative abundance of Suillineae and Hyaloscypha with the re-invaded larch forest with Vaccinium 

understorey in the late Holocene (Manuscript III). This underlines the complexity of mycorrhizal 

associations, proving that they are far from being fully understood and thus parameters shaping these 

associations need to be further assessed.   

I demonstrate in my thesis that the relative abundance of saprotrophic fungal communities is shifting 

with the presence or absence of woody taxa and that their community composition is alternating 

depending on the respective abundant plant taxa (Manuscripts II, III, IV). Mainly, this includes a shift 

from Penicillium domination with tundra vegetation to increasing Mortierella abundance in boreal 

forests, indicating a high selective pressure of plants towards saprotrophic fungi. A positive feedback 
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of herbaceous understorey vegetation on saprotrophic fungal biomass as well as on the fungi:bacteria 

ratio has already been demonstrated for deciduous forests (Stefanowicz et al., 2022). In boreal forests, 

protease activity was strongly correlated only with soil fungal communities but not with bacterial 

communities (Sakurai et al., 2007; Vuong et al., 2020). As the litter of boreal taxa compared to 

herbaceous taxa or shrubs is differing in its lignin content (Rahman et al., 2013; Peng et al., 2022), the 

enzymes required for breakdown of the sugar or polymer molecules are also shifting, explaining the 

different compositional patterns of saprotrophs. A recent study showed differences in cell wall 

structures in herbaceous and woody plants due to differing hemicellulose, cellulose, and lignin 

interaction networks and subsequent host-specific parasitic fungal plant-cell-wall degrading enzymes 

(Dou et al., 2021), being in good agreement with my data (Manuscripts II, III, IV). This concludes the 

occurrence of host-specific saprotrophic fungi, potentially evolved due to differences in the cell wall 

structures. The relative increases in saprotrophic fungi occurrence with woody taxa might have also 

emerged from increased abundance in mycorrhizal fungi, as litter decomposition at most sites is 

decreased with the presence of ectomycorrhizal fungi, leading to enhanced carbon storage in forest 

soils, termed the “Gadgil effect” (Fernandez and Kennedy, 2016). These interspecies competitions have 

yet not been fully understood using modern data sets. Therefore, it remains unclear whether also 

arbuscular mycorrhizae are enhancing the effect. 

For plant-parasitic fungi, I obtained contradictory results with metabarcoding (lakes: CH12, Lama, 

Bolshoe Toko, Kyutyunda, Levinson Lessing) and shotgun sequencing (lakes: Lama, Bolshoe Toko, 

Ximencuo) (Manuscripts II, IV). Metabarcoding indicates that parasitic fungal communities are strongly 

co-occurring with woody plant taxa and following their dynamics (Manuscript II), indicating that not 

only a changing climate is causing their ecology trend. In contrast, shotgun sequencing of three lake 

sediments and the assessment of correlations between specific plant taxa and their rhizobiome did 

not reveal high correlations for parasitic fungi (Manuscript IV). So far, increasing plant parasitic fungi 

richness with warming (Geml et al., 2015) as well as a great host-specificity between plants and fungal 

parasites (Põlme et al., 2018) were shown. Nonetheless, the generally warming-related changes in 

plant-parasite interplay are not fully understood (Burdon and Zhan, 2020). The contradicting results of 

my manuscripts indicate that the increase in parasitic fungi alongside woody taxa is potentially rather 

warming-induced, than being dependent on the specific boreal plant taxa. This assumption is 

supported by Sepp et al. (2021) who assessed the impact of woody patches in grassland areas on fungal 

community composition, showing that mainly symbiotic fungal communities are changing between 

the different vegetation cover. Nonetheless, as demonstrated by my results, more research on 

ecosystem wide plant-parasitic interaction under different environmental conditions is needed to 

delimit main causes of compositional shifts. 
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On an ecology level, I also highlight the habitat loss of yeast, including Komagataella and Malassezia 

species, due to natural long-term warming. I revealed a decline in their relative abundance with 

warming which subsequently impacts the whole ecosystem (Manuscripts II, III). This strengthens a 

study showing declining yeast abundance with experimental warming on a relatively small timeframe 

of 8 years (Treseder et al., 2016), while proving this scenario also for natural warming. The ecological 

roles of yeast in soil are vast: while some species possess saprotrophic properties (Mašínová et al., 

2018), others are plant parasites (Hernández-Fernández et al., 2021), produce biotoxins (Santos et al., 

2004) or act as plant-growth promoters (El-Tarabily and Sivasithamparam, 2006). This indicates that 

yeast may play a role in the establishment and survival of plants. The decline in yeast abundance with 

warming is potentially also relatable to the relative increase and taxon shift of saprotrophs, pointing 

out that less carbon decaying yeast are needed with ongoing warming. Also, the abundance of some 

yeast was found to impact the establishment of mycorrhizal fungi by reducing their overall 

colonization, resulting in less plant-defence related genes (Mestre et al., 2022). This indicates that 

there is a strong interplay between yeast and further fungal taxa, suggesting that the yeast decline 

with warming (Manuscripts II, III) also favours the subsequent establishment of mycorrhizal taxa. By 

underlining the complexity of yeast functional ecology and their tremendous impact on terrestrial 

ecosystems, I show the need for further research on their distinct functionalities and biotic 

dependencies. 

A large remaining problem is that the modern rhizosphere of many plants is not fully understood due 

to its complexity. Assessing long-term changes and subsequently relating covariations would be easier 

if the modern analogue is better understood. Therefore, it will be of great advantage assessing selected 

species in the catchment areas and sequencing their rhizobiomes. Thus, a relation to changing 

rhizosphere related taxa in the past will be more straight-forward and more promising.   

 

5.1.3  Soil development on a temporal gradient 

In my thesis, I was able to reconstruct post-glacial development of podzol from the sequencing data of 

lake Lama in northern central Siberia. Alongside, I showed that soil development is to a large extent 

driven by the vegetation cover, while time passed by since initial deglaciation is of neglectable 

importance.  

Assessing the trends in bacterial element cycling alongside the dynamics of plant community changes, 

I grouped the taxa based on their preferred soil pH. The results directly pointed to a strong trend 

towards acidification in the Holocene, which I proved also for the fungi (Manuscript III). I found further 

indication for ongoing pedogenesis with strong basaltic weathering dominated by lichen after 
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deglaciation (Manuscript III) and a high abundance of arsenic cyclers, mainly Herminiimonas species. 

In the Holocene, fungal weathering changed to mycorrhizae-domination (Manuscript III) and the soil 

stabilised. So far, lake sedaDNA has been used mainly to assess terrestrial or marine ecosystem 

dynamics. In Manuscript III, I used sedimentary ancient DNA for the first time to reconstruct large-

scale geological processes in a catchment area, highlighting new potentials for sedaDNA research. 

I could show shifts from polyaromatic to polysaccharide carbon cycling for lake Lama with an additional 

increase in saprotrophic fungi alongside the invasion of boreal forests, indicating a strong connection 

between bacterial and fungal carbon cycling (Manuscripts II, III). A large contribution to soil organic 

carbon derives from plants via rhizodeposition through the roots or through litter decomposition 

(Gougoulias et al., 2014). Rhizodeposition mainly consists of simple molecules such as sugars, amino 

acids, or secondary metabolites which can be rapidly respired and degraded (Bais et al., 2006). In 

contrast, more complex compounds including cellulose or the polyaromatic lignin need prior 

depolymerisation by extracellular enzymes before microbial degradation (Baldrian and Valášková, 

2008; Wallenstein and Weintraub, 2008). In line with this, my data indicate that saprotrophic fungi are 

more specialised in the degradation of the rhizodeposits of taiga than bacterial carbon cyclers. This 

implies a niche separation between fungal and bacterial carbon cycling dependent on the ecosystem 

type and plant cover with the need of highly specific enzymes for the cleavage of the respective plant 

litter. 

For the bacterial community of basaltic bedrock, I was able to reconstruct a turnover in nutrient cycling 

with changing vegetation cover from carbon-dominated cycling in shrubby tundra towards nitrogen-

dominated cycling in boreal forests. The major turnover occurred with the invasion of dark taiga, 

including a diversification of nitrogen pathways from Rhizobium dominated nitrogen fixation to 

nitrogen cycling by Pseudolabrys and Bradyrhizobium (Manuscript III). For sites with granitic or 

sandstone bedrock, nitrogen cycling was continuously at a high level (Manuscript IV). For the basaltic 

bedrock, that might be an indication for higher foliage retention in dark coniferous forests compared 

to deciduous coniferous forests or tundra and the reduced turnover time with trees (Manuscript III). 

However, the comparison to the other sites does not fully support this interpretation being a sole root-

cause (Manuscript IV). The general increase in nitrogen cycling for the basaltic site is also relatable to 

the changing soil structure with the Picea invasion (Manuscript III). Surprisingly, these major changes 

in nutrient cycling throughout the core were not detected alongside pedogenesis or in relation to 

vegetation changes for the other sites with granitic and sandstone bedrock (Manuscript IV). A major 

reason here could be that the sites are not only geologically different, but also vary in their altitudes, 

ranging from 50 to 4000 m above sea level. Additionally, my thesis indicates while demonstrating the 

complexity of nutrient cycles in soil, that pedogenesis and the resulting impact on the nutrient cycles 



115 
 

is highly bedrock specific. This specificity is being relatable to the varying content in silicate in the rock 

types, different pore sizes in the bedrock and the emerging soil, and therefore varying aeration and 

water drainage (Voroney, 2007).  

I could show that podzolization is reconstructable from a basaltic bedrock using lake sedaDNA: I 

detected an acidification of the soil with ongoing soil age starting from the onset of the Holocene by 

assessing the pH preferences of plants, fungi, and bacteria, alongside the establishment of boreal 

forest in the area (Manuscript III). Additionally, I reconstructed increasing iron cycling in the late 

Holocene after spruce invasion (Manuscript III). The release of iron and aluminium ions from rocks 

which is induced by organic acids, resulting in complexation with organic matter, and the subsequent 

leaching of the complexes from the upper soil horizons to the subsoil is characteristic for podzol 

establishment (Lundström et al., 2000; Sauer et al., 2007). The duration of podzolization is so far 

unknown and varying time spans have been indicated: Various studies specified the development of 

ferric podzol and the differentiation of horizons to take several hundred years (e.g. Singleton and 

Lavkulich, 1987; Lundström et al., 2000). In contrast, Barrett and Schaetzl (1992) indicate large time 

spans and estimate that the development of a spodic horizon near lake Michigan took between 4 – 10 

kyr. In accordance with this study, my data underline the extremely long period of time from initial 

weathering to podzol development. I showed a drastically increased and ongoing iron cycling over 

several thousand years in the late Holocene, potentially marking the beginning of podzolization and 

indicating a time-span of multiple thousand years for the development. Nonetheless, the timing of the 

respective processes remains unknown, while the discusses contrasting time-scales indicate a site-

specific duration of pedogenesis which is highly dependent on local biotic and abiotic factors. 

I demonstrate the possibility to trace weathering of bedrock alongside soil development mainly using 

bacterial and fungal compositional changes (Manuscript III). Nonetheless, the data indicate that these 

trends are highly catchment as well as bedrock specific when compared to shotgun data of other sites 

(Manuscripts III, IV). When assessing soil processes, next to the community composition, it would be 

highly interesting to also measure metabolic rates and link them to the microorganisms (Baldrian, 

2019). As the metabolome is a rather instable value (Gil et al., 2015), proteomics might be a more 

promising alternative for palaeo studies. The metabolome and the proteome are highly intertwined 

such that proteins are driving the cellular metabolisms through enzyme activity, while metabolites as 

signalling molecules influence protein expression (Kresnowati et al., 2006; Bradley et al., 2009; 

Buescher et al., 2012). So far, ancient proteomics were mainly done on tissue isolates (Welker et al., 

2015, 2016; Chen et al., 2019), while data on lake sediments or generally tracing temporal community 

changes are lacking. Further application on lake sediment also for the analysis of rhizosphere processes 

seems promising: an increasing fungal protein richness in forests compared to shrublands has recently 



116 
 

been demonstrated (Fernandes et al., 2022), suggesting that a profound comparison to the ecosystem 

trends derived from the metabarcoding (Manuscripts I, II) and the shotgun data (Manuscripts III, IV) is 

possible.  

 

5.2 Conclusion and future perspectives 

The thesis objective was to analyse long-term plant-microbe interactions which drive ecosystem and 

soil establishment in nutrient poor permafrost landscapes. This could be fulfilled while showing the 

relevance of cross discipline research in such highly complex systems. 

Little is known about long-term plant dependencies towards soil microorganisms and on the dynamic 

establishment of rhizobial communities. Most studies assessing rhizobial dynamics focus on up to only 

several years due to complex sampling and experimental set-up, though initial rhizosphere as well as 

plant establishment itself are processes which can themselves take several years. However, 

understanding the rhizosphere leads to a better understanding of treeline dynamics. With the base of 

this thesis, an assessment of future treeline dynamics is facilitated by unfolding microbial associations 

needed for tree establishment.  

To validate the way of reconstructing pedogenesis, it will be necessary to apply this on further 

sediment cores. If applicable on different bedrock and catchment types, the method can be widely 

used, helping to understand global soil development and turnover. Soil development forms the base 

for the survival of modern society in terms of agriculture and livestock. Intensified use of resources 

and overproduction in dry areas do not allow soils to recover and deserts arise. A further 

desertification leads to an increase of exposed bare soils and higher absorption of solar radiation, while 

hindered plant growth reduces the capacity to store excess carbon. As such, a better knowledge of 

long-term pedogenesis will facilitate dealing with future declining resources. 

In a warming world, it is inevitable to counteract excess carbon dioxide emission with capturing and 

storage to meet the goals of the Paris agreement, limiting anthropogenic warming to 1.5 - 2 °C. Carbon 

capturing by application of basalt grains on soil and its subsequent weathering is an emerging strategy, 

resulting in mineral carbonation. Our data provide a great basis for future improvement of the 

technique as we highlight natural, molecular mechanisms alongside the rock weathering and its impact 

on the development of ecosystems. Further intensified research on the molecular processes behind 

basalt weathering will be of great advatage when globally extending its application on large scales. 
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7 Appendix 

Due to their overall sizes, all supplementary tables to the manuscripts are provided separately on a 

CD. 

 

7.1 Appendix to manuscript I 

Supplemental figures for 

P.A. Seeber, B. von Hippel, H. Kauserud, U. Löber, K.R. Stoof-Leichsenring, U. Herzschuh, L.S. Epp. 

Evaluation of lake sedimentary ancient DNA metabarcoding to assess fungal biodiversity in Arctic 

paleoecosystems. Environmental DNA (2022), 10.1002/edn3.315. 

 

 

 

Supplementary Figure S1. Numbers of orders, families, and genera at best-identity cutoffs of 95%–100% (core 

CH12, before further filtration steps). 
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Supplementary Figure S2. Rarefaction curves of PCR replicates of core CH12. Shown are the numbers of OTUs as 

a function of the number of sequencing reads. 
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Supplementary Figure S3. Saturation curves of number of OTUs per cumulative number of replicates in the 

sediment core of lake CH12. The age of each sample is indicated above the respective graph. 
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Supplementary Figure S4. Cluster visualization based on Bray-Curtis distances of all OTUs (left), rare OTUs (< 

50,000 reads; top right), and abundant OTUs (> 50,000 reads; bottom right).  
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Supplementary Figure S5. Cumulative proportions of mold genera (Aspergillus, Cladosporium, Mucor, and 

Penicillium) over time in the five sediment cores. 
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7.2 Appendix to manuscript II 
 

Supplemental information for  

von Hippel, B., Stoof-Leichsenring, K.R., Schulte, L., Seeber, P., Epp, L.S, Melles, M., Herzschuh, U. Long-

term fungus–plant covariation from multi-site sedimentary ancient DNA metabarcoding. Quat. Sci. 

Rev. 295, 107758 (2022). 

 

Supplement 1: Available radiocarbon ages (years before 1950 CE) from Biskaborn et al. (2016) next to slightly 

corrected composite depths, dating error, and method applied in the Poznan radiocarbon laboratory. RES 

insoluble humin fraction; SOL alkali-soluble humic acids fraction; TOC total organic carbon. To perform age-depth 

modelling we used RES values from bulk sediment samples.  

14C Lab ID Sample ID 
14C age 

(yrs) 

14C error 
(yrs) 

Depth below 
sediment surface 
(cm) 

Sample 
type 

Method 

Poz-49481 PG2023-2_50,5-51 2405 35 76.75 bulk RES 

Poz-49472 PG2023-2_71,5-72 3585 30 93.25 bulk RES 

Poz-49471 PG2023-2_188-188,5 5900 40 210.25 bulk RES 

Poz-49470 PG2023-3_79-79,5 8000 50 304.75 bulk RES 

Poz-49474 PG2023-3_187-187,5 9420 50 412.75 bulk RES 

Poz-49483 PG2023-3_244-244,5 10620 60 469.75 bulk RES 

Poz-49482 PG2023-4_78,5-79 13360 100 492.75 bulk RES 

Poz-50559- PG2023-5_25-26 16870 260 638 bulk SOL 

Poz-50560 PG2023-5_25-26 27820 300 638 bulk RES 

Poz-50557 PG2023-4_231-232 29180 350 644 bulk RES 

Poz-50558- PG2023-5_25-26 29990 380 638 bulk TOC 

Poz-50555- PG2023-4_231-232 33500 500 644 bulk TOC 

Poz-49484 PG2023-5_162,5-163 33770 350 775.25 bulk RES 

Poz-50556- PG2023-4_231-232 33900 700 644 bulk SOL 
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Supplement 2: Bacon age-depth model based on radiocarbon age determinations (bulk sediment samples, RES 

values, Supplement 1) from sediment core PG2023 retrieved in 2010 from Lake Kyutyunda. This is a refined 

version of the age-depth correlation for this sediment core published by Biskaborn et al. (2016), based on the 

IntCal20 calibration curve (Reimer et al., 2020) and compiled in the R package bacon (Blaauw and Christen, 2011). 
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Supplement 3: Radiocarbon ages from the Lama PG1341 core which were used to calculate the age-depth model 

alongside dated woody remains (*: data from Andreev et al. (2014)). The reservoir effect for this core is 4460 

years and was subtracted from the determined 14C ages before the age-depth modelling.  

14C Lab  

ID 
Sample ID 

14C age 
(yrs) 

14C error 
(yrs) 

Depth below 
sediment surface 
(cm) 

Sample 
type 

Metho
d 

6794 PG1341-4AR_15-16 4597 25 15-16 Bulk C14 

6795 PG1341-4AR_42-43 4845 25 42-43 Bulk C14 

6796 PG1341-4AR_80-81 5698 25 80-81 Bulk C14 

6797 PG1341-4AR_105-106 6530 26 105-106 Bulk C14 

6036 PG1341-4_140 7333 62 140-141 Bulk C14 

UTC8876 Woody remains 5255* 48 211 
Woody 
remains C14 

UTC8877 Woody remains 6200* 60 253 
Woody 
remains C14 

6037 PG1341-5_260 11258 83 260-261 Bulk C14 

6038 PG1341-5_380 13365 100 380-381 Bulk C14 

6039 PG1341-5_503 17536 154 503-504 Bulk C14 

6040 PG1341-6_620 17400 104 620-621 Bulk C14 

6041 PG1341-6_740 16954 101 740-741 Bulk C14 

6042 PG1341-7_860 17480 105 860-861 Bulk C14 

6043 PG1341-7_980 18594 120 980-981 Bulk C14 

6044 PG1341-8_1046 18887 397 1046-1047 Bulk C14 

6045 PG1341-8_1220 18011 354 1220-1221 Bulk C14 

6046 PG1341-9_1340 18976 395 1340-1341 Bulk C14 

6047 PG1341-9_1460 18967 119 1460-1461 Bulk C14 

6048 PG1341-10_1580 20900 501 1580-1581 Bulk C14 

6049 PG1341-10_1700 21296 531 1700-1701 Bulk C14 

6050 PG1341-11_1820 23707 683 1820-1821 Bulk C14 
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Supplement 4: Age-depth model for Lake Lama. The age-depth model was established using the package bacon() 

in R. The reservoir effect is 4460 years. We used two dated woody remains alongside 19 radiocarbon-dated bulk 

sediment samples to set up the age model. A change in the sedimentation rate after a depth of 500 cm is visible, 

leading to a hiatus in the age model. 
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Supplement 5: Obitools Pipeline and Cleaning Steps. The single steps and their commands are listed in the table 

as well as an explanation of each step. The last column includes the resulting size of the fungal dataset as an 

example. 

Step Command Result (in brackets: the size of 

the fungal dataset after the 

subsequent step) 

illuminapairedend illuminapairedend inputR1.fastq -r 

inputR2.fastq > paired_end.fastq 

Paired-ending of sequences 

(52,213,129) 

Obigrep obigrep -p ‘mode!="joined"' 

paired_end.fastq > 

paired_end_joined.fastq 

Greps out only joined sequences 

(52,213,129) 

Ngsfilter ngsfilter -t tagfile.txt -u unident.fastq 

pairedend_joined.fastq > assigned.fastq 

Demultiplexing into samples 

(40,699,830) 

obiuniq obiuniq -m sample assigned.fastq > 

assigned_unique.fastq 

Dereplicate sequence reads 

(3,294,811) 

obigrep obigrep -l 10 -p 'count>=10' 

assigned_unique.fastq > 

assigned_unique_l10_c10.fastq 

Delete sequences with length 

shorter than 10 and counts 

lower than 10 

obiclean obiclean -s merged_sample -r 0.05 -H 

assigned_unique_l10_c10.fastq > 

assigned_unique_l10_c10_clean.fastq 

Selects sequences according to 

head, singleton, and interval; if a 

sequence is less than 20 times 

more frequent it will be assigned 

to the sequence with the higher 

count under the requirement 

that the difference is  -d number 

of differences between the 

sequences (default 1), if you use 

option -H head sequences will 

be selected only (26,665) 

sumaclust (only for 

ITS dataset) 

./sumaclust -t 0.97 

assigned_unique_l10_c10_clean.fastq > 

assigned_merged_datasets_sumaclust97.

fasta 

Clustering of sequences into 

OTUs using a similarity threshold 

of 97% between cluster centres 

and member sequences (5411 

cluster created) 

obigrep (only after 

sumaclust) 

obigrep -p 'cluster_center' 

assigned_merged_datasets_sumaclust97.

fasta >  

Extraction of the cluster centres  
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assigned_merged_datasets_sumaclust97

_centres.fasta 

Ecotag ecotag -R database.fasta -d database 

assigned_merged_datasets_sumaclust97

_centres.fasta > 

assigned_merged_datasets_sumaclust97

_centres_database.fasta 

Taxonomic assignment of the 

OTUs with the database (either 

UNITE, embl or ArctBryo) 

obiannotate obiannotate --delete-tag=explain 

assigned_merged_datasets_sumaclust97

_centres_database.fasta > 

assigned_merged_datasets_sumaclust97

_centres_database_anno.fasta 

Adds sequence record 

annotations, deletes the 

attribute named “explain” 

Obitab obitab -o 

assigned_merged_datasets_sumaclust97

_centres_database_anno.fasta > 

assigned_merged_datasets_sumaclust97

_centres_database_anno.txt 

Change fasta to tabular format 
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Supplement 6: PCA on the fungal data on 716 OTUs. The samples are displayed in red, while the OTUs are 

displayed in black.  
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Supplement 7: PCA on the fungal data on 5466 ASVs. The samples are displayed in red, while the ASVs are marked 

in black.  
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Supplement 8: Assessment of the vegetation extraction blanks and NTCs with filtered and unfiltered read counts. 

We show the total counts and their percentage from the unfiltered dataset as well as from the filtered dataset 

where all contaminants were removed.   

Control total counts (unfiltered)  % total 
counts 

total 
counts 
filtered 

% total 
counts 

aLE_NTC_1 0 0 0 0 

aLE_NTC_2 2122831 16.12 1577 0.014 

aLE_NTC_3 0 0 0 0 

LE309_P_EB 0 0 0 0 

SO129P_EB 3 0 3 0 

SO129P_NTC 1 0 1 0 

SO130P_EB 1 0 0 0 

SO129P_NTC 4 0 3 0 

SO134P_EB 118 0 118 0 

SO134P_NTC 0 0 0 0 

SO137P_EB 23 0 23 0 

SO137P_NTC 15 0 14 0 

SO139P_EB 3 0 3 0 

SO139P_NTC 6395 0.049 3830 0.035 

ELS010_EB 0 0 0 0 

ELS010_NTC 0 0 0 0 

LS141P.10_EB 68 0 68 0 

LS141P.11_NTC 23 0 23 0 

LS174P.10_EB 23 0 23 0 
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LS174P.11_NTC 12 0 12 0 

LS167P.03_EB 0 0 0 0 

LS180P.11_NTC 41 0 41 0 

LS145P.10_EB 73 0 68 0 

LS145P.11_NTC 80 0 80 0 

LS139P.10_EB 359 0 358 0 

LS139P.11_NTC 60 0 60 0 

LS181P.10_EB 101 0 101 0 

LS181P.11_NTC 110 0 109 0 

LS183P.10_EB 0 0 0 0 

LS183P.11_NTC 70 0 70 0 

LS189P.10_EB 17 0 17 0 

LS189P.11_NTC 69 0 68 0 

LS191P.10_EB 17 0 17 0 

LS191P.11_NTC 102 0 102 0 

LS162P.10_EB 117 0 116 0 

LS175P.10_EB 55 0 55 0 

LS175P.11_NTC 69 0 69 0 

LS184P.10_EB 29 0 29 0 

LS184P.11_NTC 2 0 2 0 

LS163P.10_EB 72 0 72 0 

LS163P.11_NTC 8332 0.06 2335 0.02 

LS176P.10_EB 119 0 111 0 
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LS176P.11_NTC 122 0 122 0 

LS185P.10_EB 23 0 22 0 

LS185P.11_NTC 16 0 15 0 

LS166P.10_EB 62 0 61 0 

LS166P.11_NTC 67 0 63 0 

LS186P.10_EB 292 0 21 0 

LS186P.11_NTC 11 0 11 0 

LS190P.10_EB 709 0 54 0 

LS190P.11_NTC 30 0 29 0 

LS167P.10_EB 174 0 174 0 

LS167P.11_NTC 118 0 117 0 

LS178P.10_EB 109 0 107 0 

LS178P.11_NTC 87 0 87 0 

LS187P.10_EB 50 0 50 0 

LS187P.11_NTC 133 0 132 0 

LS193P.12_NTC 106 0 105 0 
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Supplement 9: ASVs from the vegetation data with abundance in the blanks of more than 10 %. The table shows 

the scientific name of the ASV and how often it appears in the controls versus the samples with read numbers 

and percentages. 

Scientific name x in controls reads 

control 

% in 

controls 

% in 

samples 

reads 

samples 

x in 

samples 

Saxifraga 

oppositifolia_001 

1 392 89.7 10.3 45 3 

Convallaria 

majalis_001 

1 112 77.78 22.22 32 4 

Saliceae_003 1 180 66.18 33.82 92 26 

Apiaceae_001 1 2303 50.78 49.22 2232 11 

Menyanthes 

trifoliata_001 

11 47 41.96 58.04 65 27 

Pooideae_001 1 1577 24.46 75.54 4871 7 

Saliceae_004 1 68 23.05 76.95 227 35 

Ceratophyllum 

demersum_008 

3 6 19.35 80.65 31 8 

Ceratophyllum 

demersum_007 

6 8 14.81 85.19 54 17 

Ceratophyllum 

demersum_005 

5 7 12.5 87.5 49 13 

Polygonoideae_002 1 3 12 88 22 11 

Myriophyllum 

sibiricum_001 

10 96 11.36 88.64 749 48 
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Supplement 10: Assessment of the fungal extraction blanks and NTCs with filtered and unfiltered read counts.  

Control total counts 

(unfiltered) 

% total 

counts 

Cont. rem. % total 

counts 

BH040P.10_EB 40280 0.48 40280 0.49 

BH039P.11_NTC 36169 0.43 36169 0.44 

BH008P.10_EB 32470 0.39 32470 0.39 

BH147P.14_NTC 29299 0.35 29299 0.35 

BH149P.09_EB 35579 0.43 29232 0.35 

BH035P.11_NTC 14620 0.17 14620 0.18 

BH148P.12_EB 13025 0.16 13025 0.16 

BH031P.11_NTC 12132 0.15 12132 0.15 

BH051P.10_EB 8096 0.10 8096 0.10 

BH151P.12_EB 7199 0.09 7196 0.09 

BH152P.10_NTC 5274 0.06 5274 0.06 

BH151P.04_EB 4676 0.06 4676 0.06 

BH033P.11_NTC 5144 0.06 2750 0.03 

sample.EB2c 2066 0.02 2066 0.02 

BH155P.09_EB 1676 0.02 1676 0.02 

BH151P.13_NTC 1232 0.01 1232 0.01 

BH164P.11_NTC 1227 0.01 1227 0.01 

BH154P.04_EB 1113 0.01 1113 0.01 

BH147P.13_EB 430 0.01 422 0.01 

BH042P.11_NTC 217 0 217 0 
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sample.EB1d 57 0 57 0 

BH036P.10_EB 15 0 15 0 

sample.NTC4 12 0 12 0 

sample.EB2d 11 0 11 0 

BH037P.11_NTC 10 0 10 0 

sample.NTC5 6 0 6 0 

BH153P.10_EB 4 0 4 0 

BH007P.11_NTC 4 0 4 0 

sample.EB1f 4 0 4 0 

sample.EB2f 4 0 4 0 

sample.EB2e 2 0 2 0 

sample.EB3a 2 0 2 0 

sample.NTC3 2 0 2 0 

BH003P.10_EB 1 0 1 0 

BH003P.11_NTC 1 0 1 0 

BH032P.11_NTC 1 0 1 0 

BH009P.10_EB 1 0 1 0 

sample.EB1c 1 0 1 0 

sample.EB3b 1 0 1 0 

BH010P.10_EB 1 0 1 0 

BH147P.10_EB 1 0 0 0 

BH040P.11_NTC 0 0 0 0 
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BH008P.11_NTC 0 0 0 0 

BH150P.10_EB 0 0 0 0 

BH046P.10_EB 0 0 0 0 

BH046P.11_NTC 0 0 0 0 

BH007P.10_EB 0 0 0 0 

BH149P.10_NTC 0 0 0 0 

BH034P.11_NTC 0 0 0 0 

BH041P.11_NTC 0 0 0 0 

BH042P.10_EB 0 0 0 0 

BH047P.10_EB 0 0 0 0 

BH047P.11_NTC 0 0 0 0 

BH049P.10_EB 0 0 0 0 

BH049P.11_NTC 0 0 0 0 

BH039P.10_EB 0 0 0 0 

BH009P.11_NTC 0 0 0 0 

sample.EB1b 0 0 0 0 

sample.EB1e 0 0 0 0 

sample.EB3e 0 0 0 0 

sample.NTC6 0 0 0 0 

BH041P.10_EB 0 0 0 0 

BH162P.10_EB 0 0 0 0 

BH162P.13_EB 0 0 0 0 
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BH162P.14_NTC 0 0 0 0 

BH152P.09_EB 0 0 0 0 

BH155P.10_NTC 0 0 0 0 

BH154P.12_EB 0 0 0 0 

BH154P.13_NTC 0 0 0 0 

BH153P.18_NTC 0 0 0 0 

BH158P.10_EB 0 0 0 0 

BH158P.13_EB 0 0 0 0 

BH153P.17_EB 0 0 0 0 

BH158P.14_NTC 0 0 0 0 

BH159P.10_EB 0 0 0 0 

BH159P.17_EB 0 0 0 0 

BH159P.18_NTC 0 0 0 0 

BH150P.17_EB 0 0 0 0 

BH150P.18_NTC 0 0 0 0 

BH148P.04_EB 0 0 0 0 

BH148P.12_EB 0 0 0 0 

BH148P.13_NTC 0 0 0 0 

BH161P.16_NTC 0 0 0 0 

BH165P.14_NTC 0 0 0 0 

a _EB1 0 0 0 0 

a _EB2 0 0 0 0 
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a _NTC 0 0 0 0 

b _EB2 0 0 0 0 

b_NTC 0 0 0 0 

g_NTC 0 0 0 0 

h_NTC 0 0 0 0 

BH032P.10_EB 0 0 0 0 

BH035P.10_EB 0 0 0 0 

BH033P.10_EB 0 0 0 0 

BH036P.11_NTC 0 0 0 0 

BH037P.10_EB 0 0 0 0 

BH051P.11_NTC 0 0 0 0 

BH007P.11_NTC 0 0 0 0 

BH031P.10_EB 0 0 0 0 

BH034P.10_EB 0 0 0 0 

BH010P.11_NTC 0 0 0 0 

BH038P.10_EB 0 0 0 0 

BH038P.11_NTC 0 0 0 0 
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Supplement 11: OTUs from the fungi data with abundance in the blanks of more than 10 %. The table shows the 

scientific name of the ASV and how often it appears in the controls versus the samples with read numbers and 

percentages. 

Scientific name x in 

controls 

reads 

controls 

% in 

controls 

% in 

samples 

reads 

samples 

ecology x in 

samples 

Malassezia 

restricta_001 

3 26732 31.28 68.72 58741 yeast 37 

Mortierella 

sp._001 

5 23865 10.17 89.83 210816 saprotroph 92 

Venturia 

hystrioides 

1 19095 13.62 86.38 121134 parasite 5 

Malassezia 

restricta_002 

2 18773 97.71 2.29 439 yeast 5 

Candida 

parapsilosis 

1 13680 98.2 1.8 251 yeast 1 

Malassezia 

globosa_001 

1 8183 97.32 2.68 225 yeast 3 

Pichia 

kudriavzevii 

1 6597 70.93 29.07 2704 yeast 1 

Aspergillus 

versicolor 

1 3950 21.55 78.45 14381 saprotroph 11 

Mortierella 

sp._004 

3 2384 62.00 38.00 1461 saprotroph 1 

Saccharomyces 1 1674 44.49 55.51 2089 yeast 1 

Piptoporus 

betulinus 

1 1375 10.5 89.5 11715 parasite 2 

Aspergillus sp. 

BF8 

1 1090 26.4 73.6 3039 saprotroph 2 

Trametes 

versicolor 

1 376 18.64 81.36 1641 saprotroph 5 
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Supplement 12: Supplement to Figure 4 “Fungal and plant co-variation displayed in a redundancy analysis 

(RDA)”. The sample ages are displayed alongside the vegetation distribution. The samples are colour-coded 

according to their lake origin as well as their occurrence in a rather forested (darker colour) or tundra (lighter 

colour) area. The sample names are shortened with the lake name (BT= Bolshoe Toko, Ky = Kyutyunda, La = Lama, 

Le = Levinson Lessing) and the calibrated year BP. 
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Supplement 13: Supplement to Figure 4 “Fungal and plant co-variation displayed in a redundancy analysis 

(RDA)”. In this figure, all OTUs which occur in the blanks were filtered out. The samples are displayed as stars 

according to their location. The main taxa are colour-coded according to their ecological function. 
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Supplement 14: Supplement to Figure 4 “Fungal and plant co-variation displayed in a redundancy analysis 

(RDA)”. In this figure, all OTUs which occur in the blanks were filtered out. The sample ages are displayed 

alongside the vegetation distribution. The samples are colour-coded according to their lake origin as well as their 

occurrence in a rather forested (darker colour) or tundra (lighter colour) area. The sample names are shortened 

with the lake name (BT = Bolshoe Toko, Ky = Kyutyunda,  La = Lama, Le = Levinson Lessing) and the calibrated 

year BP. 
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7.3 Appendix to manuscript III 
 

Re-evaluation of the age-depth model of Lake Lama core PG-1341 

We re-evaluated the age-depth model of the core PG1341, which was previously published in von 

Hippel et al. (2022). A better correlation of the overlaps using the data for the magnetic susceptibility 

as well as using the TOC data of Andreev et al. (2004) as comparison to the parallel core yielded a 

further overlap of 145 cm between the core segments 5 and 6. Therefore, the core is 1.45 m shorter 

than initially thought. The new age-depth model will be publicly available after acceptance of the 

manuscript. 

 

Supplement 1: Refined age-depth model of Lake Lama, core PG1341. 
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Supplement 2: Mycorrhizal taxa recovered from lake Lama sediment and their respective relative abundance 

throughout the sediment. The size of the bubbles marks the relative abundance. 
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Supplement 3: Co-occurrence analysis between trees and mycorrhizae. Only positively correlated mycorrhizal 

taxa are displayed. The size and color of the circle represents the degree of correlation. 

 

 

Supplement 4: Composition and abundance of the bacterial taxa assigned against the Refseq Kraken database 

(download: 02/2023; https://www.ncbi.nlm.nih.gov/refseq/). Due to the size of the figure, Supplement 4 is 

provided as a separate file on the CD. 

 

 

https://www.ncbi.nlm.nih.gov/refseq/
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Larix sibirica 

 

Pleistocene samples (11.5 - 23 cal ka BP; 690 mapped reads) 

 

 

Holocene samples (0 - 10.4 cal ka BP; 2.991 mapped reads) 

 

 

Supplement 5: Post mortem damage patterns for Larix sibirica DNA reads. MapDamage plots for overlapping 

extracted kraken reads aligned against the Larix sibirica mitochondrial genome (Accession number MT797187): 

Left: Misincorporation plots, red: C to T substitutions, blue: G to A substitutions, grey: all other substitutions, 

orange: soft-clipped bases which are not aligned to the reference and excluded from damage pattern. Right: 

Read length distributions.  
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Hyaloscypha bicolor 

 

Pleistocene samples (11.5 - 23 cal ka BP; 332 mapped reads) 
 

 

Holocene samples (0 - 10.4 cal ka BP; 63 mapped reads) 
 

 

Supplement 6: Post mortem damage patterns for Hyaloscypha bicolor DNA reads. MapDamage plots for 

overlapping extracted kraken reads aligned against the Hyaloscypha bicolor genome (Accession number 

GCF_002865645.1): Left: Misincorporation plots, red: C to T substitutions, blue: G to A substitutions, grey: all 

other substitutions, orange: soft-clipped bases which are not aligned to the reference and excluded from damage 

pattern. Right: Read length distributions. 
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Herminiimonas arsenitoxidans 

 

Pleistocene samples (11.5 - 23 cal ka BP; 44.778 
mapped reads) 

 

 

Holocene samples (0 - 10.4 cal ka BP; 2064 mapped 
reads) 

 

 

Supplement 7: Post mortem damage patterns for Herminiimonas arsenitoxidans DNA reads. MapDamage plots 

for overlapping extracted kraken reads aligned against the Herminiimonas arsenitoxidans genome (Accession 

number GCF_900130075.1): Left: Misincorporation plots, red: C to T substitutions, blue: G to A substitutions, 

grey: all other substitutions, orange: soft-clipped bases which are not aligned to the reference and excluded from 

damage pattern. Right: Read length distributions. 
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Supplement tables: The supplement tables contain information on the metadata of all samples. 

Besides, they contain a list of all recovered taxa in the subsets. The taxa were checked for contaminants 

and indicated if applicable. All other taxa yielded the final data subset and were assigned to ecology or 

element cycle as well as their pH preferences.  

 

Supplement table 1: Metadata of the samples. The table provides information on the sample composition of the 

sequencing runs and the ages as well as depths of the samples. 

 

Supplement table 2: Recovered plant taxa assigned to their pH preferences. 

 

Supplement table 3: Recovered fungal taxa assigned to their ecology as well as pH preferences 

 

Supplement table 4: Recovered bacterial taxa assigned to their element cycles and pH preferences. 
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7.4.1 Abstract 

Global warming has a major impact on Arctic tundra and taiga ecosystems by causing permafrost thaw 

and intense forest fires. A further consequence is the warming-induced treeline shift of boreal forests 

northwards. Alongside treeline migration, also the plant-associated subsoil microorganisms are 

changing. These northern ecosystems are mostly underlain by permafrost which limits their nutrient 

supply. Warming leads to deeper thawing-depths, releasing nutrients from previously frozen soil and 

subsequently, altering the nutrient cycling. This further influences the establishment of plant-microbe 

associations around the roots. However, the major long-term drivers of such soil community 

establishment under changing vegetation cover as well as the selectivity of plants towards specific 

microorganisms remain poorly understood. 

We used shotgun sequencing to assess the impact of abiotic and biotic drivers on the establishment of 

soil communities in permafrost landscapes across Siberia and the Tibetan Plateau. In all locations, the 

vegetation had the greatest impact on the establishment of fungal as well as bacterial communities, 

while the temperature had varying influence depending on the bedrock type. We also analyzed 

patterns in soil microbial ecology across the locations as well as plant-type dependent preferences in 

soil taxa across the sites. The soil microbiome in the areas with granitic and basaltic bedrock showed 

greater similarity to each other compared to the sandstone bedrock. The carbon cycling bacteria were 

to a large extent positively correlated with plant taxa, while sulfur cyclers showed rather little 

correlations across all cores. In contrast, fungus-plant correlations were generally more site-specific 

with higher unique local associations of parasites, followed by saprotrophs. All in all, our data help the 

understanding of healthy plant microbiomes in different soil environments under global warming.   

  

7.4.2 Introduction 

The rhizosphere is defined as the dynamic micro-biosphere around the plant roots, where a great 

variety of microorganisms including fungi and bacteria are responsible for sustaining plant growth and 

survival (Hiltner, 1904; Hartmann et al., 2008). By excreting organic and inorganic soluble and insoluble 

metabolites, plants attract and gather microorganisms around their roots (Bais et al., 2006). However, 

the effect of this so-called rhizodeposition is mainly determined by the release of organic carbon in the 

soil (Jones et al., 2009b). The contribution of fungi to carbon cycling is mainly by degrading more 

complex compounds such as lignin (Zhao et al., 2020), while bacteria further utilize and degrade the 

fungus-derived substrates (Boer et al., 2005).  
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Besides, plant-growth in terrestrial ecosystems is highly limited by the amount of available nitrogen 

(Vitousek and Howarth, 1991; LeBauer and Treseder, 2008). In nutrient-poor habitats, mycorrhizal 

fungus-plant associations in the rhizosphere are inevitable for plant nitrogen supply (Schimel and 

Bennett, 2004). The nitrogen cycle in the soil is directly impacted by the breakdown of organic matter 

and the depolymerization of proteins (Jan et al., 2009), as the resulting products are subsequently 

being used by microorganisms as energy and nutrient sources (Jones et al., 2009a). Furtheron, 

symbiotic rhizobial bacteria enzymatically fix gaseous nitrogen by converting it to ammonia for better 

plant-availability (Vitousek et al., 2002). In northern tundra and taiga, the available nutrients are 

limited by the soil volume, as these ecosystems are typically growing on permafrost ground (Brown et 

al., 1997) and only nutrients in thawed soil horizons are accessible. Due to reduced decomposition 

rates resulting from the low temperatures, the overall nitrogen supply to trees is little (Schuur and 

Mack, 2018). Warming induced thaw of the permafrost enlarges the active layers, increasing the pool 

of available nitrogen (Salmon et al., 2018). Biological weathering also contributes to the release of 

nutrients from rock (Uroz et al., 2009) and therefore increases their plant-availability. However, long-

term bedrock-dependent nutrient cycling in relation to plant community establishment and the 

recruitment of a healthy root microbiome have so far not been understood. 

Multiple biotic and abiotic environmental factors are known to shape the composition of the 

rhizosphere taxa. So far, most research focused on understanding parts of the soil community while 

targeting mostly either bacterial or fungal symbionts. On time scales of a few years, experimental soil 

warming was found to directly impact the community composition of fungi in the rhizosphere (Solly et 

al., 2017). For bacterial community composition, a major impact of soil properties like soil texture, 

water content, and soil type were found, outcompeting the direct influence of biotic factors deriving 

from the vegetation cover (Vieira et al., 2020). For both bacteria and fungi composition and diversity, 

the elevation is a known important driver (Zhao et al., 2020; Ren et al., 2021). Nonetheless, the 

assessment of environmental impacts on either component of these intertwined soil communities is 

to a large extent lacking. Also, major biotic and abiotic drivers on the long-term establishment of such 

soil communities remain largely unexplored. 

Dynamic processes in the rhizosphere have so far been assessed only on spatial gradients (e.g. Bahram 

et al., 2013; Silva et al., 2014) or on temporal scales covering a few years (Nuñez et al., 2009; Weber 

et al., 2019). In such studies, rhizosphere samples are compared to bulk soil to assess the root 

associated microorganisms. This yields complicated sampling as well as restriction to selected taxa, 

with the results being biased by, for example, the annual time-point of sample retrieval (Calvaruso et 

al., 2014), or the plant development stage (Chaparro et al., 2014). Recently, the analysis of sedimentary 

ancient DNA (sedaDNA) as a proxy to reveal long-term dependencies of microorganisms towards their 
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plant hosts emerged (von Hippel et al., 2022). Assessing lake sedaDNA offers the unique potential to 

trace changes in the whole catchment area around the lake without the limitation to a single plant 

organism. This is possible as the terrestrial DNA from the surrounding of the lake gets continuously 

transported in the lakes through erosion and further deposits at the bottom of the lake (e.g. Epp et al., 

2015; Alsos et al., 2018). So far, the assessment of entire ecosystems from lake sedaDNA has mostly 

focused on plant-megafauna changes (Wang et al., 2021; Courtin et al., 2022; Kjær et al., 2022). Von 

Hippel et al. (n.d.) showed for the first time the possibility to reconstruct rhizobial associations as well 

as soil development relying on lake sedaDNA sequencing data based on bacterial and fungal read 

counts. Nonetheless, it remains unknown if such reconstructed subsoil microorganisms can be 

correlated to single plant taxa and if subsequently a reconstruction of single plant rhizospheres is 

possible. 

Here, we assessed the impact of multiple abiotic and biotic drivers on soil development and analyzed 

dependencies of plants towards specific microorganisms across sites. First, we analyzed shotgun 

sequencing data from lake sediment cores deriving from three different bedrock areas to assess the 

drivers of soil community development in the locations. Second, we compared correlations between 

the soil microbiome and typical plant taxa across the sites. We show that in all sites, vegetation had 

the greatest impact on the composition of either community, while the impact of time and 

temperature varied. The taxon-specific microbiome is site-specific with more overlapping taxa shared 

between higher plants than herbs or grasses. The overlapping soil taxa also shifted from mainly carbon 

cyclers and yeast being positively correlated with woody taxa in all sites to nitrogen cyclers being 

dominant positively correlated taxa with herbs across all sites. 

 

7.4.3 Geographical setting and study sites 

The studied lakes are located in Siberia, central eastern Russia (Lama and Bolshoe Toko), and on the 

Tibetan Plateau (Ximencuo). The locations of the lakes are displayed in Figure 1, while further main 

characteristics are provided in Table 1. The information on the climate data are taken from the Russian 

Institute of Hydrometeorological Information: World Data Center (2021) if not indicated differently.  
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Figure 1: Location of the study sites. The lakes Lama and Bolshoe Toko are located in central Siberia, while the 

lake Ximencuo is located on the Tibetan Plateau. 

 

Table 1: Main characteristics of the sampled lakes and cores 

Lake Coordinates Type of 
vegetation and 

bedrock 

Mean 
temperature 

Dimension Coring 

Lama 69.32 N, 90.12 E; 
53 m a.s.l. 

(Putorana 
Plateau) 

dense taiga 
with Picea, 
Larix, and 
Betula, shrubs 
such as Alnus 
fruticosa, Salix, 
and Juniperus 
communis, and 
dwarf shrubs 
(Andreev et al., 
2004) 

bedrock: basalt 

July: 13.8 °C 

January: -28.8 °C 

Volochanka 
weather station; 
70.97 N, 94.5 E; 

distance to the 
lake: 

247 km 

area: 318 km2; 

80 km x 7 km; 

maximum 
depth: 254 m 

year: 1997 

length: 17.4 

depth: 66 m 

age: 23 cal ka 
BP (von Hippel 
et al., 2022 and 
von Hippel et 
al., submitted) 

Bolshoe Toko 56.15 N, 130.30 
E; 903 m a.s.l. 
(northern slope 
of eastern 
Stanovoy 
Mountain Range 

deciduous 
boreal forests 
with Larix 
cajanderi and L. 
gmelinii and 
occurrences of 

July: 34 °C 
January: -65 °C 

Toko weather 
station; 56.1 °N, 
131.01 °E; 
distance to the 

area: 15.4 km × 
7.5 km, 
maximum 
depth: 72.5 m 

year: 2013 

length: 3.8 m 

depth: 26 m 

age: 33.8 cal ka 
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in southern 
central Yakutia) 

Picea obovata, 
P. jezoensis, and 
Pinus sylvestris 
(Konstantinov, 
2000) 

bedrock: 
sandstone 

lake: 44 km 
(Konstantinov, 
2000) 

BP (Courtin et 
al., 2021) 

Ximencuo 33.37 N, 101.10 
E; 4030 m a.s.l. 

alpine 
meadows with 
dwarf shrubs 
and high alpine 
cushion and 
rosette plants 
(Schlütz, 1999) 

bedrock: 
granite 

July: 9.8 °C 

January: -11.4 °C  

Darlag (Guymai) 
weather station; 
33.79 °N 99.80 
°E; 

distance to the 
lake: 140 km 

area: 50 km2 

maximum 
depth: 63.3 m 

year: 2004 

length: 12.8 

depth: 50 m 

age: 39.5 cal ka 
BP 

 

7.4.4 Material & Methods 

7.4.4.1 Sub-sampling of the sediment cores 

The cores of Bolshoe Toko and Lama were stored at 4 °C to prevent DNA degradation. Further 

subsampling of the cores was done in the climate chamber of the German Research Centre for 

Geosciences (GFZ) where no molecular genetic work is done. The chamber was prepared and cleaned 

as described by von Hippel et al. (2022). During the sampling, protective clothing as well as face and 

hair masks were worn to avoid contamination. The surface of the cores was scraped twice with clean 

knives before sampling. For the sampling itself, four clean knives were used. The samples were placed 

in sterile 8 ml Sarstedt tubes and kept at -20 °C until DNA extraction.  

The samples from Ximencuo were received from a collaboration of Freie Universität Berlin, Germany, 

and Lanzhou University, China, and further sub-sampled in the dedicated ancient DNA laboratories at 

AWI Potsdam. The outside of the samples was scraped using sterile scalpels and only the clean inner 

part was used for extraction.  

 

7.4.4.2 DNA extraction 

The DNA was extracted following the manufacturer's instruction, using the DNeasy PowerMax Soil DNA 

Isolation Kit (Qiagen). To yield higher concentrations of DNA, we added Proteinase K (2 mg mL−1) and 

DTT (5 M) to the PowerBead solution before adding the samples. Additionally, we incubated the 

extractions overnight at 56 °C in a rotation oven as described by von Hippel et al. (2022). In total, 96 

samples were used for DNA extraction with 26 samples belonging to Lake Bolshoe Toko, 44 to Lake 

https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib70
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib70
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Lama and 26 to Lake Ximencuo. We concentrated the eluted DNA using the GeneJET PCR Purification 

Kit (Thermo Fisher Scientific, Germany) using 1 ml of the extracts and concentrated to 50 µl. The 

contraction of the extracts were determined with a Qubit 4.0 Fluorometer (Thermo Fisher Scientific, 

Germany) using the Qubit dsDNA BR assay kit. To prevent extensive freeze-thaw cycles, we prepared 

small aliquots of the DNA. For library built, the concentrations of the extracts were diluted to 3 ng/µl. 

 

7.4.4.3 Single stranded DNA library built 

We followed the protocol of Gansauge et al. (2017) for preparing the single-stranded DNA libraries. 

The ligation of the second adapter was done in a rotating incubator as described by Schulte et al. 

(2021). Further quantification of the libraries was done using qPCR (Gansauge and Meyer, 2013). The 

exact protocol was described by Schulte et al. (2021). Then, the libraries were indexed to enable the 

assignment of the sequencing results. The index PCR reaction is composed of 1x AccuPrime Pfx reaction 

mix, 2.5 U/µL AccuPrime Pfx Polymerase, 4 µL of P7_X indexing primer (10 µM) and P5_X indexing 

primer (10 µM), 57 µL of deionized water and 24 µL of the final library. The protocol for the PCR was 

conducted as follows: 2 min at 95°C, 20 s at 95°C, 30 s at 60°C, 1 min at 68°C and final elongation for 5 

min at 68°C. From the qPCR results, we calculated the appropriate number of amplification cycles 

(steps 2-4) for the following index PCR, which varied between 9 and 14 cycles. 

We purified the PCR results using MinElute (Qiagen, Switzerland) following the manufacturer’s 

instructions. The final DNA was eluted in 30 µL elution buffer and the concentration determined with 

a Qubit 4.0 Fluorometer. Using a TapeStation (Agilent, United States), we performed quality control 

assessment and also determined the composition of the fragment lengths. 7 sequencing pools were 

compiled with 3 µL of the libraries and blanks. 

We sent the pools APMG-37 and APMG-38 (Lake Lama) to Fasteris SA, Switzerland, where they were 

run on a NovaSeq device (2x100 bp). The pools for Bolshoe Toko, Ximencuo, and two additional pools 

for Lama were sent to AWI Bremerhaven, Germany where they were run on a NextSeq 2000 platform 

(2x100 bp). The sample composition of each sequencing run is part of the supplementary (Supplement 

Table 1), also including further metadata.  

 

7.4.4.4 Bioinformatic pipeline for the analysis of the sequencing data 

The raw sequencing data were quality checked using fastQC (version 0.11.; Andrews, 2010) and 

identical reads were removed (deduplicated) using clumpify (BBmap version 38.87, 

https://sourceforge.net/projects/bbmap/). We merged the paired-end forward and reverse reads with 
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fastp (version 0.20.1; Chen et al., 2018), including a low complexity filter to filter out reads with low 

complexity from the dataset. Kraken2 (Wood et al., 2019) was used for the final taxonomic annotation 

of the reads against the nt database by NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz; 

download: 10/2022 for Lama; download 04/2021 for Bolshoe Toko and Ximencuo, with default k-mer 

size 35) using a confidence threshold of 0.8. Using the command awk, the kraken report files of each 

core were converted into a txt-file as further input for R for subsequent data analysis. 

 

7.4.4.5 Data analysis 

The analysis of the sequencing data was done in R, version 4.0.3. For further information on the 

samples, we added metadata including the age and depth of the samples (Supplement Table 1) as well 

as a file containing the full taxonomic lineage information of the identified taxa based on their taxID. 

All raw reads for each lake were merged in R. 

The initial processing of the data was done as described by von Hippel et al. (n.d.). In brief, for each 

lake, we created subsets for plants, bacteria, and fungi. For all subsets, we only kept reads of taxa 

which occurred in at least 3 samples. For the bacteria, only taxa with an overall minimum read count 

of at least 20 were included. All taxa were checked for their occurrence at the respective location and 

else filtered out. The vegetation subset for each lake was merged on genus-level before further 

analysis. For assessing soil development, we worked on genus and species level for the plants. 

 

7.4.4.6 Statistical analysis of the datasets   

For the statistical analyses of the datasets, we used R, version 4.0.3. Each dataset was resampled 100 

times to the respective base count of the sample mean value of all samples to account for uneven 

reads, following the GitHub script of Kruse (2019, https://github.com/StefanKruse/R_Rarefaction). The 

base counts for Lama were 2,556 (plants), 272 (fungi), and 24,285 (bacteria). For Bolshoe Toko, the 

base counts were 4,575.5 (plants), 247 (fungi), 105,767 (bacteria), and for Ximencuo 305 (plants), 52 

(fungi), 59,509 (bacteria). The resampled datasets were used for all further statistical analyses. To 

account for all variation in the vegetation, we resampled the vegetation data also on species level and 

used it as the input for the soil development analysis (mean basecount: Lama: 3,533; Bolshoe Toko: 

4741; Ximencuo: 349.5) 

For the analysis of long-term soil development, we assessed the data as described by von Hippel et al. 

(n.d.). In brief, “soil development” was defined as either the fungal or the bacterial community. The 

impact of temperature, vegetation and time on the communities was assessed based on constrained 

http://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz
https://github.com/StefanKruse/R_Rarefaction
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ordination for a statistical comparison between the respective environmental parameters and the soil 

community compositions. A redundancy analysis (RDA) was run on the double-square rooted 

vegetation subset and the significant PC axes were determined using PCAsignificance(). The scores of 

the first two axes extracted and merged as a dataframe to yield the variable “vegetation”. For the 

variable “temperature”, we used a reconstruction of temperature variation in the Northern Hemi-

sphere, based on the script of Kruse et al. (https://github.com/StefanKruse/R_PastElevationChange). 

The respective age of the samples was used as input for the variable “time”.  

To assess the correlations between the plants and the soil taxa, we merged the fungi and bacteria as 

datasets by the respective sample. Each lake was handled separately. The Spearman correlation 

between the plants and soil taxa was determined using the function cor (package stats; R Core Team, 

2021). The resulting correlation matrix was converted in a data frame. Only soil taxa with correlation 

values of at least 0.4 (respective 0.2 for Table 2) were extracted for each plant taxon. Each co-occurring 

soil taxon counted as 1 correlation. The correlations of the same fungal ecology or bacterial element 

cycle were merged to yield overall correlations for the respective soil function. We plotted the final 

data using ggplot2 (package: tidyverse; Wickham et al., 2019). 

 

7.4.5 Results  

7.4.5.1 Compositional changes of representative plant taxa alongside dynamics in fungal 

ecologies and bacterial element cycling in ancient metagenomic datasets 

The 44 samples, 5 extraction blanks, as well as 8 library blanks of lake Lama yielded a total of 

1,240,658,912 reads after subsequent filtering. 26 samples, 2 extraction blanks, and 4 library blanks 

from Ximencuo yielded in 1,675,237,772 reads, while 26 samples, 3 extraction blanks, and 2 library 

blanks of Bolshoe Toko had 851,075,447 reads. With an identity threshold of 0.8, we recovered overall 

1,617 unique terrestrial plant, fungal, and bacterial taxa in the nt database for lake Lama. Ximencuo 

yielded 861 unique taxa and Bolshoe Toko 1,045. For lake Lama, we worked on 257,710 reads 

belonging to Viridiplantae being assigned to genus or species level; 3,988,224 reads belonging to 

bacteria assigned to genus or species level; and 43,040 reads belong to fungi at all taxonomic levels. 

On the same taxonomic levels, the read counts for Ximencuo yielded 12,134 plant reads, 4,914,223 

bacterial reads, and 2,454 fungal reads, while the read counts for Bolshoe Toko yielded 167,353 plant, 

6,715,407 bacterial, and 7,220 fungal reads. The composition of the plants, fungi, and bacteria of lake 

Lama has been described in detail by von Hippel et al. (n.d.). The overall compositional changes are 

described in the Supplement and Supplemental figures are provided (Supplemental figs 1 - 3). 

 

https://github.com/StefanKruse/R_PastElevationChange
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7.4.5.2 Impact of abiotic and biotic drivers on soil establishment across geographical locations 

We assessed the drivers of soil community establishment between the three lakes using variation 

partitioning constrained ordination which showed distinct patterns for all locations respective bedrock 

types (Figure 2). 

 

Fig. 2: Variation partitioning of soil fungi and bacteria. The numbers represent the percentage of the respective 

explained variation (in overlapping areas of the combined variation). A: Lama, B: Bolshoe Toko, C: Ximencuo. We 

show for all lakes that the vegetation had the greatest unique impact on the establishment of either community. 

For Lama, the vegetation is followed by temperature, while for Bolshoe Toko and Ximencuo differences between 

fungi and bacteria were detected. For the bacteria in Bolshoe Toko, the temperature also had the second greatest 

impact as well as for the fungi in Ximencuo. Vice-versa, for fungi in Bolshoe Toko and bacteria in Ximencuo, time 

had a greater impact on the community establishment. 
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For lake Lama, the drivers were described and discussed in detail by von Hippel et al. (n.d.). In brief, 

the vegetation had the greatest unique impact on the establishment of fungal and bacterial 

communities, followed by temperature variation, while time after deglaciation had a rather 

neglectable impact on the establishment of either community (Fig. 2 A). Nonetheless, a great part of 

the variation remained unexplained.   

The establishment of soil communities around lake Bolshoe Toko is also driven by vegetation as the 

main unique driver (Fig. 2 B). For fungi, the other unique drivers showed neglectable percentages, 

while a combination of temperature, time, and vegetation also had a great impact on community 

establishment. For bacterial community establishment, the temperature had a greater impact than the 

time. Also, for Bolshoe Toko, a great part of the variation remained unexplained. 

For Ximencuo, the vegetation also had the greatest unique impact on the establishment of either 

community out of all tested variables (Fig. 2 C). For the fungi, the temperature also had a greater 

impact, while time passed since deglaciation was not driving the community establishment. The 

bacteria in contrast were more driven by the time than the temperature. A large part of the variation 

here was explained by all combined variables. 
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7.4.5.3 Relative positive correlations of functional soil taxa with plants across the locations 
 

 

Fig. 3: Soil taxa with positive correlations to plant taxa in relation to the overall occurrence of the respective 

element cycle or ecological function. The correlations are based on a correlation value of at least 0.4. Compared 

to the overall occurring taxa of the respective cycle, carbon cyclers show most positive correlations to plant taxa 

for all cores, followed by nitrogen cyclers. For fungi, most relative positive correlations were detected for 

parasites, followed by saprotrophs. The names of the lakes are shortened (BT = Bolshoe Toko, XMC = Ximencuo). 

 

We analyzed the soil taxa which are positively correlated with plants for all lakes. This yielded for 

bacteria in Lama high correlations of carbon cyclers, followed by nitrogen cyclers, while sulfur cyclers 

showed rather little correlations. For the fungi, the parasites and saprotrophs showed the highest 
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overall correlations, but also yeast and mycorrhizae were generally highly positively correlated (Fig. 3). 

Nonetheless, the relative correlations for fungi were lower than for bacteria. 

For Bolshoe Toko, the highest correlation for bacteria was found for carbon cyclers, followed by 

nitrogen cyclers, while sulfur cyclers showed rather neglectable overall correlations. For fungi, the 

parasites had the highest correlations in the core, followed by saprotrophs and yeast. Compared to 

the other cores, a higher number of lichen and mycorrhizae correlations was revealed in Bolshoe Toko 

(Fig. 3). 

Ximencuo also had the highest proportion of correlations amongst the carbon cyclers, followed by 

nitrogen cycling bacteria. For the fungi, the relative correlations followed comparable trends to Lama. 

Parasites revealed the highest overall proportions, followed by saprotrophs, yeast, and mycorrhizae 

(Fig. 3). 

All in all, Lama and Ximencuo showed similar patterns in their overall positively correlated rhizosphere 

taxa, while the microbiome in Bolshoe Toko yielded a rather differing pattern.  

 

7.4.5.4 Assessment of the plant taxon-specific microbiome across the locations  

We also assessed the microbiomes of typical glacial plant genera which occurred in all three cores 

(Table 2, Fig. 4). For the trees, we assessed Larix and Picea as the main boreal tree taxa and Salix as 

well as Betula as representative arctic shrubs. Saxifraga, which is a typical earlier colonizer after 

deglaciation (Robbins and Matthews, 2009), and Vacciniumc, which is often found as understory of 

coniferous forests, were the assessed herbs. The grasses Carex and Poa are also common arctic taxa 

in glacial landscapes. 
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Fig. 4: Plant taxon-specific correlated soil taxa according to their element cycle (bacteria) or ecology (fungi).  

The assessed plants represent typical glacial taxa for each plant growth form and are abundant in all lakes. 

Distinct patterns in the correlated soil microbiome for each plant taxon and location were detected. The names 

of the lakes are shortened (BT = Bolshoe Toko, XMC = Ximencuo). 

 

Table 2:  Plant-specific positively correlated soil microbial taxa shared between all locations. The soil taxa in 

this table are correlated with the respective plant taxa with a rho value of at least 0.2. 

Plant Type Soil taxa 

Larix tree Brettanomyces nanus (yeast) 
Bacillus (C cycling) 
Clostridium (unknown) 
Coniosporium apollinis CBS 100218 (yeast) 
Paenibacillus (C cycling) 
Polaromonas sp. JS666 (C cycling) 

Picea tree Aplosporella prunicola CBS 121167 (saprotroph) 
Bacillus (C cycling) 
Bradyrhizobium icense (N cycling) 
Bradyrhizobium paxllaeri (N cycling) 
Bradyrhizobium sp. CCBAU 051011 (N cycling) 
Clostridium (unknown) 
Coniosporium apollinis CBS 100218 (yeast) 
Methylocystis rosea (C cycling) 
Monilinia vaccinii corymbosi (parasite) 
Thermothielavioides terrestris NRRL 8126 (unknown) 

Salix shrub Brevundimonas (C cycling) 
Trichosporon asahii var. asahii CBS 2479 (yeast) 

Betula shrub Caulobacter mirabilis (C cycling) 
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Rhodotorula graminis WP1 (yeast) 
Saccharomycetales (yeast) 

Vaccinium herb Acidovorax antarcticus (N cycling) 
Acidovorax monticola (N cycling) 
Burkholderiaceae (N cycling) 
Glomeraceae (mycorrhizae) 
Pucciniales (parasite) 
Rhodoferax koreense (unknown) 
Variovorax sp. PAM28562 (PGPB) 
Variovorax sp. PBL H6 (PGPB) 
Variovorax sp. PBS H4 (PGPB) 

Saxifraga herb Acidovorax sp. 1608163 (N cycling) 
Acidovorax sp. RAC01 (N cycling) 
Acidovorax (N cycling) 
Acinetobacter lwoffii (C cycling) 
Acinetobacter (C cycling) 
Hydrogenophaga sp. BPS33 (C cycling) 
Hydrogenophaga sp. PBL H3 (C cycling) 
Hydrogenophaga sp. RAC07 (C cycling) 
Hydrogenophaga (C cycling) 
Malassezia restricta (yeast) 
Nocardioides sp. S5 (N cycling) 
Thelephora (mycorrhizae) 
Tuber calosporum (mycorrhizae) 

Carex grass Aspergillus chevaliere (saprotroph) 
Malassezia restricta (yeast) 
Malassezia (yeast) 
Trametes versicolor FP 101664 SS1 (saprotroph)  

Poa grass Malassezia restricta (yeast) 

 

Overall, for Larix and Picea, similarities in the correlated soil microbial ecologies were detected. For 

bacteria, the nitrogen cyclers were strongly positive correlated in Lama and Bolshoe Toko, followed by 

the carbon cyclers (Fig. 4). In contrast, in Ximencuo, the carbon cyclers were prominent for Larix, but 

not for Picea, while nitrogen cyclers generally showed rather little correlations (Fig. 4). The highest 

relative correlation of mycorrhizae for Larix and Picea was detected in Ximencuo, while no strong 

correlations were detected in Bolshoe Toko. In Bolshoe Toko, no strong correlation for fungal ecologies 

were detected for either Pinaceae genus. The assessment of shared correlated soil taxa for Larix 

revealed carbon cyclers (Bacillus, Paenibacillus) as well as yeast (Brettanomyces nanus, Coniosporium 

apollinis). For Picea, besides carbon cyclers and yeast, nitrogen cyclers from the genus Bradyrhizobium 

were shared between the cores (Table 2).  

For the shrubby taxa Betula and Salix, the rhizosphere microbiome was rather unique. In Ximencuo, 

Salix showed high correlations with all bacterial cyclers, while Betula had rather neglectable 

correlations. Lichen were strongly positive correlated (Fig. 4). In Bolshoe Toko, Betula showed high 
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correlation values for bacteria, while fungi dominated the correlations in Salix. For Lama, the 

correlations of fungi and bacteria in either plant genus were comparable. For fungi, mycorrhizae and 

saprotrophs showed prominent correlation values and carbon cyclers for the bacteria (Fig. 4). The 

assessed soil taxa yielded a rather unique microbiome for all sites with only two taxa overlapping for 

Salix (Brevundimonas, C cycling; Trichosporon asahii var. asahii CBS 2479, yeast; Table 2) and three 

taxa shared for Betula (Caulobacter mirabilis, C cycling; Rhodotorula graminis WP1, yeast; 

Saccharomycetales, yeast; Table 2). 

Saxifraga and Bistorta showed great differences in their soil microbiome across the sites (Fig. 4). For 

Ximencuo, yeast and mycorrhizae were strongly correlated with Vaccinium, while Saxifraga showed 

greater importance of saprotrophs. The bacteria were dominated by carbon and nitrogen cyclers, while 

the sulfur cyclers were uncorrelated for these taxa (Fig. 4). In Bolshoe Toko, the herbs had rather 

unique correlation patterns. Lichen correlations with both plants were strong. Also, mycorrhizal fungi 

showed importance in the correlation. The bacteria were almost uncorrelated for Vaccinium, while 

Saxifraga showed dominance of correlated carbon cyclers, followed by nitrogen cycling bacteria (Fig. 

4). In Lama, no strong fungal correlations for Vaccinium were detected, while sulfur cycler dominated 

the correlations, followed by nitrogen and carbon cycler. For Saxifraga, yeast and lichen showed 

stronger correlations, while carbon cyclers were the dominant bacteria for this taxon. The shared soil 

taxa for Vaccinium were dominated by nitrogen cycling bacteria (Acidovorax) and plant-growth 

promoting bacteria (PGPB, Variovorax). Saxifraga shared Acidovorax species (N cycling) and 

Hydrogenophaga (C cycling), but also mycorrhizae (Tuber calosporum, Thelephora) were overlapping 

(Table 2). 

For the grass taxa in Ximencuo, the sulfur cyclers were the strongest correlated nutrient cyclers for 

Carex, followed by nitrogen cyclers (Fig. 4). Saprotrophs showed high correlations for the fungi, 

followed by yeast. Poa had low correlations for carbon and nitrogen cyclers, but mycorrhizal fungi and 

yeast were relatively high correlated. In Bolshoe Toko, the correlations of nutrient cycling bacteria for 

both taxa were neglectable (Fig. 4). Yeast and parasites were the most prominent correlated fungal 

ecologies, followed by saprotrophic fungi. In Lama, Carex and Poa showed generally high correlations 

for the cyclers, dominated by carbon and followed by nitrogen cyclers (Fig.4). For fungi, saprotrophs 

showed higher correlations than parasitic fungi, while for Carex, lichen were also strongly correlated. 

On taxon level, the grasses had rather little overlap across the sites (Table 2). Carex shared overlapping 

saprotrophs (Aspergillus chevaliere, Trametes versicolor) and Malassezia species (yeast), while Poa had 

the single overlapping taxon Malassezia restricta (yeast). 
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7.4.6 Discussion 

7.4.6.1 Site-specific soil development 

We show that the vegetation had the highest unique impact on soil community development at all 

locations. This underlines previous findings of von Hippel et al. (n.d.), who reconstructed soil 

development from basaltic bedrock using sedaDNA, stating that long-term soil development is rather 

environmentally driven than a pure trajectory. Earlier onwards, a great influence of vegetation cover 

on the formation and transition between soil types was already shown using pollen, spores, and 

geochemical data from sediments of a peat bog (Willis et al., 1997). In addition to these studies, we 

demonstrate that independently from the bedrock, long-term soil development is environmentally 

driven with vegetation as the strongest driver. 

For Lama, the temperature had a major influence on either soil community, while time since recent 

deglaciation was neglectable, suggesting that soil development in the area is not a trajectory (von 

Hippel et al., n.d.). Surprisingly, in Ximencuo, temperature variation only drove the fungal composition. 

This indicates differences in general soil development between the sites, implying that granite 

weathering and - as part of it - soil community establishment is only partially impacted by changing 

climate. For granitic glacier forefields, a great influence of fungi onto rock weathering through the 

release of a variety of organic acids was demonstrated (Brunner et al., 2011), while also ubiquitous soil 

bacteria such as Bacillus subtilis were found to highly impact basalt weathering (Song et al., 2007). 

Lichen as well as mycorrhizal fungi were in general of lower abundance in the core of Ximencuo with 

slight increase of mycorrhizae during the Holocene. This might lead to weathering changes induced by 

growing mycorrhizae abundance. Combined with the greater impact of temperature variation on 

fungal communities as indicated above, this might be an implication for a higher relevance of fungal 

composition compared to bacteria in granitic weathering.  

For Bolshoe Toko (sandstone), the temperature impacted only the establishment of bacteria to some 

extent. The weathering processes yielding to sandstone breakdown are so far not fully understood, 

though increased weathering with lowering pH alongside the presence of the bacterium 

Acidithiobacillus thiooxidans has been observed (Potysz et al., 2020). This indicates that global warming 

induced changes in bacterial community compositions might induce pH lowering of the soil and lead 

to acidification. Soil acidification is further known to induce increasing root respiration and 

subsequently alter plant composition (Chen et al., 2015). This implies future plant community changes 

in the area of Bolshoe Toko with ongoing warming as a consequence of bacterial community changes.  

However, for either community at all sites, a large proportion of the variation remained unexplained. 

For grassland communities, Vieira et al. (2020) stated a higher influence of soil than of plant properties 

on bacterial community establishment. Together with the findings of von Hippel et al. (n.d.), this 
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indicates that additional further drivers (e.g. nutrient supply (Jiang et al., 2018) or wetness (Voříšková 

et al., 2019)) have a great impact on soil development and should be taken into further consideration. 

Also, the complexity of soil development as a process is being underlined.   

 

7.4.6.2 Differences in the bedrock 

The overall higher comparability between the microbiomes of plant taxa in Lama and Ximencuo in 

relation to Bolshoe Toko indicates a higher similarity of soil properties and, as such, nutrient availability 

between basalt and granite than sandstone. Basalt is a fine-grained igneous rock with high proportions 

of plagioclase feldspar, olivine and pyroxene. In contrast, the coarse-grained igneous rock granite is 

composed of quartz, feldspar, and mica (Le Bas and Streckeisen, 1991; Philpotts and Ague, 2009). 

Sandstone is a sedimentary rock and not igneous, being primarily composed of quartz with proportions 

of further minerals such as feldspar or mica. Differences between the nutrient availability and 

concentrations between the rock types would be expected due to the varying rock compositions. As 

an example, the different bedrock types differ in their silicate composition and subsequently also the 

mineral compositions of the soils: Granite contains up to 70 - 77 % of silicate, basalt 45 - 53 % and 

sandstone 50 - 99 %.  

Baek et al. (2020) compared the nutrient availability in soil and forest floor between sandstone and 

basalt and showed that in basaltic areas, the nutrient concentrations in soil are comparably higher. For 

sandstone, the nutrient content in forest floor was higher. In relation to our data, this indicates that 

sandstone is lower in nutrient availability and therefore, nutrient recycling from plant material on the 

forest floor needs to be more efficient, requiring highly specified bacteria. For Antarctica, a 

dependency of microbial community structure on the bedrock was shown, mainly derived by varying 

organic carbon content in the soils (Tytgat et al., 2016). For our data, this would suggest closer 

similarities in the community between sites with similar organic carbon content.  

In a comparison of the carbon content of granitic and basaltic soil, no clear differences were found 

(Castanha et al., 2012). This explains the greater similarity of the positively correlated microbial 

ecologies of Ximencuo and Lama due to the similarity in nutrient content between the bedrocks. 

Recently, with increasing ecosystem complexity and biomass, a decreasing nitrogen abundance in 

tissue was demonstrated for basalt derived soil (Zaharescu et al., 2019). This supports our data showing 

the need of a drastic increase in nitrogen cycling with Picea invasion in the boreal forests around lake 

Lama. We highlight a bedrock-specific impact, as such major turnover was not detected in Ximencuo 

with the invasion of boreal forests in the Holocene. 
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7.4.6.3 Correlation between the lake biota 

7.4.6.3.1 General Trends in positively correlated rhizosphere taxa 

We assessed the overall numbers in generally positive correlated rhizosphere soil taxa and compared 

them within as well as between the cores. For fungi, the highest correlation of taxa compared to the 

number of plant taxa was found for parasites in all cores, followed by the saprotrophs, while 

mycorrhizae show relatively little correlation compared to the number of plant taxa especially in Lama 

and Ximencuo. This underlines previous findings on high host specificities, exclusivity, and adaptation 

of saprotrophs (Zhou and Hyde, 2001) as well as plant parasites (Jiming Li et al., 2020). Moreover, our 

data shows that the specificity of parasitic fungi in dense boreal forests with high plant richness such 

as the area around Bolshoe Toko is more pronounced compared to tundra (Ximencuo) or taiga with 

lower species richness (Lama) (Fig. 3), suggesting that lower species richness as well as harsher growing 

conditions force the microbes to become more generalist towards their hosts.  

We show relatively little correlated mycorrhizal taxa in comparison to the plant taxa with the highest 

correlations found for Bolshoe Toko. Mycorrhizal fungi are known to show low host-specificity towards 

their plant hosts due to the relatively little number of mycorrhizal fungi compared to potential host 

plants (Smith and Read, 2008). Under varying abiotic conditions, changing mycorrhizal associations 

have been detected, though nonetheless some generalists were identified (e.g. Deslippe et al., 2011; 

Leski and Rudawska, 2012; Nguyen et al., 2016). However, our data indicate that bedrock as well as 

local growing conditions have a more pronounced effect on the fungal composition than the specific 

plant taxa. 

 

7.4.6.3.2 Plant taxa specific microbiome 

We showed that the soil microbiome is site-specific as well as plant taxon-specific as relatively little 

overlap was revealed. Nonetheless, distinct patterns in overlapping taxa for plant groups were 

observed with woody taxa sharing mostly carbon cycling bacteria and yeast taxa between the sites. 

Trees and shrubs have a higher contribution to the organic matter in the rhizosphere compared to 

herbaceous taxa which derives from the plant leaves or needles, branches and barks (Kögel-Knabner, 

2002),. This implies a higher need for specified carbon cyclers with the boreal taxa. Also, this suggests 

that the cycling of other nutrients and fungal saprotrophs, parasites, and mycorrhizae for these plants 

are highly site-specific and adapted to the local conditions. The overall percentage of nitrogen being 

stored in broadleaf trees is higher than in needleleaf trees (Berg and Staaf, 1981). Compared to 

broadleaf taxa, needleleaf trees also possess a slower initial turnover in biomass (Prescott et al., 2000; 

Osono et al., 2014), which supports the need of increased nitrogen cycling with the coniferous taxa. 
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However, our data show that the nitrogen cycling taxa for these taxa are relatively site-unique, 

indicating that a deficiency in a nutrient requires direct local adaptation.   

In contrast, for the herbaceous taxa Saxifraga and Vaccinium, a variety of overlapping correlating 

nitrogen cycling bacteria as well as mycorrhizal fungi was detected. Additionally, for Saxifraga also few 

shared correlated carbon cycling bacteria were revealed. In all locations, Saxifraga is mainly abundant 

during the Late Glacial, while Vaccinium is predominantly occurring in the late Holocene in boreal 

forests. Lacking the adapted rhizobial taxa of the boreal forest in the Late Glacial, this indicates the 

additional need of Saxifraga for further specified carbon cycling, underlining the need of herbs for a 

strong, particular rhizobiome during that time. Aside, the overall content of nitrogen in herbaceous 

foliage is 30 % higher than in trees (Gilliam, 2007; Muller, 2014). This suggests that these taxa are 

symbiotic with distinct bacteria across sites for faster recycling and subsequent plant-availability of 

nitrogen. However, Li et al. (2020) proposed a highly plant-genotype-specific as well as environment-

dependent rhizobiome for Vaccinium species. Additionally, for the herbaceous taxon Ranunculus 

glacialis (early colonizer) a high impact of the altitude in correlation with other abundant plant taxa on 

the composition of rhizobiome has been shown (Praeg et al., 2019). This might indicate also that the 

greater overlap in co-occurring taxa for the early colonizer Saxifraga derived from the typical glacial 

vegetation in all sites during the Late Glacial and therefore similar co-occurring plant taxa.  

The grass taxa Carex and Poa possess almost no overlapping positively correlated taxa amongst the 

sites. Though, both plant genera showed strong positive correlations with Malassezia taxa (yeast) at 

all locations. Potentially, this is an indication for a less complex rhizobiome of grass taxa which would 

support the study of Li et al. (2023) who showed a less diverse microbiome in Poa rhizosphere than in 

bulk soil samples. Also, this suggests a site-specific and therefore bedrock-specific rhizosphere 

adaptation of grass taxa, which due to their shallow rooting depths need to be highly adapted to the 

local environmental conditions for nutrient supply.   

All in all, there is also a general difference between the rooting depths of the assessed taxa with the 

coniferous trees rooting deepest, followed by shrubs, herbs and grasses. With increasing root depths, 

nutrients from deeper soil layers can be accessed which are unreachable for shallow rooted-plants 

(Corre-Hellou et al., 2007). This would underline the need for more specific nitrogen cycling bacteria 

in herbs with shallow roots to provide sufficient nutrients to the plants. Moreover, Bao et al. (2020) 

showed that soil properties had a higher impact on microbial communities than the vegetation type. 

This explains the overall very little overlapping correlations in the soil taxa between the plants and 

sites due to unique soil properties derived from the different bedrocks. 
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7.4.7 Implications and future directions 

Assessing the drivers of rhizosphere establishment and the rhizosphere microbial composition enables 

the understanding of healthy root systems. The varying impact of temperature on the establishment 

of soil communities with changing bedrock suggests differing contribution of fungi or bacteria to the 

respective functioning soil communities and consequently also for plant establishment. Consequently, 

under future global warming, this would imply growing differences in and importance of the soil 

communities.  

Assessing modern rhizosphere communities to place the palaeo data in a greater context would be a 

great asset. The chosen sites possess great differences in their altitudes and bedrocks. Subsequently, 

also their soil properties and as such nutrient availability would be expected to vary. Therefore, it 

would be advantageous to assess the rhizosphere of these taxa in modern samples at different 

locations, also deriving from locations with the same bedrock. A comparison within the bedrock as well 

as amongst the bedrock types will be a great contribution for the understanding of rhizosphere 

establishment. Long-term, this might even enable selective seeding with important rhizobial 

microorganisms to sustain plant growth in a future changing world. Knowing important contributors 

to a healthy plant rhizosphere might help prevent disease outbreaks and counteract future warming-

induced plant damages. Further assessment of the roles of fungi and bacteria impacted by natural 

long-term warming scenarios will be inevitable also in modern agriculture.  
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7.4.9 Supplement to manuscript IV 

Compositional changes of the plant taxa and soil microbial communities 

For Lake Lama, the plant data showed an invasion of Larix and Picea in the area around the onset of 

the Holocene (Supplemental Fig. 1). Shrubby Salix was present in high abundances throughout the 

record, while Betula abundance increased after the Bølling-Allerød. Saxifraga was mainly present until 

the onset of the Holocene, while Vaccinium abundance increased in the late Holocene. Carex and Poa 

showed higher abundances until the onset of the Holocene (Supplemental Fig. 1). In lake Bolshoe Toko, 

Larix and Picea as well as Betula were present throughout the whole record, but showed all a drastic 

increase in relative abundance around the onset of the Holocene. Shrubby Salix was mainly abundant 

throughout the Late Glacial and declined around the onset of the Holocene. Saxifraga and Vaccinium 

were in this core mainly abundant in the Late Glacial (Supplemental Fig. 1). The grass genera Poa and 

Carex had their major occurrences before the onset of the Holocene. The record of Ximencuo showed 

an increase in Larix and Picea around the onset of the Holocene which was alongside increasing Betula 

abundance. The Pinaceae disappeared after around 5 cal ka BP. Salix showed a drastic increase around 

the Bølling-Allerød and remained broadly abundant. Saxifraga was mainly abundant until the onset of 

the Holocene, while Vaccinium appeared in the Holocene. Poa and Carex were mainly abundant until 

the Bølling-Allerød warm period around 15 cal ka BP, but remained present throughout the record 

(Supplemental Fig. 1). 

 

For lake Lama, we showed a relative increase in nitrogen cycling in the Holocene, while the relative 

abundance of carbon cycling bacteria was declining throughout the core (Supplemental Fig. 2). Overall 

for Bolshoe Toko, we detected a high relative abundance of N cyclers throughout the record 

(Supplemental Fig. 2) and peaks in carbon cyclers at 30 cal ka BP before the Last Glacial Maximum. 

Carbon cyclers were also peaking around the warmer periods of Bølling-Allerød and after the onset of 

the Holocene. The bacterial data of Ximencuo were dominated by nitrogen cycling taxa throughout 

the record. Around 7.5 cal ka BP, carbon cycling bacteria showed a drastic peak, coinciding with the 

peak of the Pinaceae in the record (Supplemental figs 1, 2).   

 

For lake Lama, lichen declined throughout the record, while mycorrhizal taxa were gaining importance 

with the invasion of Pinaceae (Supplemental figs 1, 3). Parasitic fungi were increasing in their relative 

abundance after the Bølling-Allerød warm period. Saprotrophic fungi were peaking around the Last 

Glacial Maximum and in the Late Holocene. Overall yeast abundance was declining with warming 

(Supplemental Fig. 3). For fungal dynamics in Bolshoe Toko, we detected a drastic decrease in lichen 

with the increase in Pinaceae. Mycorrhizae were peaking around the Last Glacial Maximum and in 
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warmer periods of the Holocene. Parasitic fungi as well as saprotrophs showed an increase with the 

expansion of Pinaceae alongside warming with the onset of the Holocene (Supplemental figs 1, 3). 

Yeast showed a drastic peak around the Bølling-Allerød and decreased with warming in the Holocene 

(Supplemental Fig. 3). The fungi record of Ximencuo showed lichen peaks around the Last Glacial 

Maximum as well as during warmer phases of the Holocene. Mycorrhizae were increasing in their 

relative abundance after the onset of the Holocene. Parasitic fungi were highly abundant throughout 

the record with increasing relative abundance during the Holocene. Saprotrophic fungi showed a 

drastic peak after the Bolling Allerod warm period before the onset of the Holocene. Yeast revealed 

generally high relative abundances throughout the core, with a decline around the onset of the 

Holocene alongside Pinaceae invasion (Supplemental Fig. 3).  

 

 

 
Supplemental figure 1: Dynamics in the relative abundances of the assessed plant taxa in the cores. The 

assessed plants represent typical glacial taxa for each plant growth form and are abundant in all lakes. Most 

assessed plants show comparable patterns in their occurrences for all lakes from the Late Glacial to the Holocene. 
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Supplemental figure 2: Dynamics in the relative abundances of carbon and nitrogen cycling bacteria in the 

cores.  Lake Bolshoe Toko and Ximencuo were overall dominated by nitrogen cycling, while in Lama, carbon 

cycling was prominent throughout the Late Glacial. The shift to nitrogen dominance occurred around 7.5 cal ka 

BP.  
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Supplemental Figure 3: Dynamics in the relative abundances of fungal ecological functions in the cores. An 

increase in the relative abundance of parasitic fungi with warming was detected for all cores, while yeast rather 

declined. All other functional ecology groups showed unique patterns for each core.  

 

Supplemental table 1: Metadata of the samples. The table includes information on the sample composition of 

the sequencing runs and the ages as well as depths of the samples.   



190 
 

Acknowledgements 
 

First of all, I would like to thank Prof. Ulrike Herzschuh for giving me the opportunity to conduct such 

fascinating research over the last 3 years, the fruitful discussions, and the possibility to conduct field 

work in Central Yakutia. Second, I am grateful to Dr. Kathleen Stoof-Leichsenring for giving me the 

chance to join her research group and for supervising me in all matters concerning lab work and 

bioinformatics. 

I am more than happy that I got to share the office A43-210 for some time with my two friends and 

colleagues Philip and Ramesh whose support and encouragement carried me through until the finish 

line. Also, a big thank you to Luise not only for proof-reading this thesis, but whose friendship and R 

skills helped me a lot in the struggles of my first PhD year. 

I also owe gratitude to Claudia Sprengel and Claudia Hanfland from the POLMAR graduate school for 

their help in most organisational issues regarding my PhD. 

I am grateful for the support of many more people at AWI, mainly from the Biodiversity group, 

especially Sarah, Janine, Amelie, Moein, Amedea, Jérémy, Stefan, Simeon, Izabella, Ugur, Robert, 

Sarah, and Josefine, and the AWI Basketball crowd for making me laugh and run on Wednesday nights. 

I would also like to thank the supervisors of my Master thesis, Dr. Kaya Bork and Prof. Rüdiger 

Horstkorte, for showing me the beauty in science and PCR and encouraging me to start a PhD. 

Starting a PhD with the pandemic made the move to Potsdam not easy which is why I am more than 

grateful to my friends Mia, Quitterie, and Lea who helped me survive the lockdowns with dinner nights 

and supported me when the stress was overwhelming. Also, I am grateful to Sarah and Christina for all 

the chats and to Flor for our friendship back from Argentina, helping me to get settled here. 

I am lucky to have made many more friends in Potsdam, supporting me especially in the last bits of the 

PhD with open arms, food, distractive sport sessions and laughters: thank you to Katha, Wiki, Tobi, 

Johanna, all bouldering friends from 7a+, and my Ultimate frisbee team. 

For the very last time, I want to thank my good friend Pascal who did not only support me during the 

hard years of studying Biochemistry and pursuing a PhD, but most important, who never stopped 

believing in me and my skills, even when I myself did. A big hug to many more people for your 

supportive friendship during the last years: Juli, Sophie, Clara, Lene, Michel, Corinna, Basti, Lisa, Farina, 

Pia, Finn, Linus, Inge, Julia, Thea – I am more than lucky to call you my friends. 

Last but not least, I am grateful to my family and their never-ending support and encouragement in 

the last three years and to my siblings Katharina, Johannes, and Andreas for always making me laugh.  



191 
 

Eidesstattliche Erklärung 
 

Hiermit erkläre ich, dass ich die vorliegende Arbeit mit dem Titel „Long-term bacteria-fungi-plant 

associations in permafrost soils inferred from palaeometagenomics” selbstständig und unter 

Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe. Wörtlich oder sinngemäß 

übernommenes Gedankengut habe ich als solches kenntlich gemacht. Diese Dissertation wird 

erstmalig an der Universität Potsdam eingereicht. Die dem Verfahren zu Grunde liegende 

Promotionsordnung ist mir bekannt. 

 

Potsdam, 29.06.2023 

 

 

Barbara von Hippel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



192 
 

Damage pattern analysis – Auflagen Doktorarbeit 
 

Summary 

The analysis of the DNA damage supports that the main patterns which were assessed in the 

manuscripts III and IV of this thesis are of ancient origin. The comparison between the datasets HOPS 

and Kraken yielded overall similar temporal patterns for the most prominent taxa, indicating that 

either pattern allows a valid interpretation of temporal ecological trends. We compared the datasets 

as the HOPS pipeline allows to distinguish between ancient and default reads. We found damage 

patterns for all three kingdoms i.e. plants, fungi, and bacteria with the strongest patterns for plants. 

More detailed analyses are required to also better understand differences in DNA damage between 

the assessed kingdoms.  

 

 

Main 

Proofing the ancient origin of metagenomics derived DNA reads is necessary to differentiate reads 

from modern contaminants as well as to ensure that the ancient organisms did not continuously 

survive and replicate in the sediment. To do so, a variety of bioinformatic tools has been established 

in recent years, including the HOPS pipeline (Huebler et al., 2019) and mapdamage (Jonsson et al., 

2013). Providing the damage pattern analysis of ancient DNA reads in scientific publications has so far 

been well established for plants, while research on microorganisms including bacteria and fungi is 

lacking. In this thesis, I included for the first time an analysis of compositional trends of ancient fungal 

and bacterial DNA reads derived from shotgun metagenomics (von Hippel et al., unpublished a, b). I 

assessed their DNA damage using mapdamage (see dissertation Barbara von Hippel), showing that 

plants provide the typical damage pattern, while the assessment of fungi and bacteria is rather 

complex. With the help of Dr. Kathleen Stoof-Leichsenring and under supervision of Ulrike Herzschuh, 

I also assessed the damage using the HOPS pipeline to compare the results. Here, Kathleen Stoof-

Leichsenring established the bioinformatic implementation of the HOPS pipeline and the initial scripts 

for data analysis. 

 

For the damage pattern analysis of the reads, we re-analysed the raw data using the HOPS pipeline. 

We assessed the outputs of the HOPS and the kraken pipeline for all three subsets. The temporal 

patterns of the community compositions showed comparable trends between the HOPS and the 

kraken pipeline for the prominent taxa (Figure 1 and 2). We assessed the composition of the selected 

taxa scaled up to 100 % for the comparison of the dataset of the two reference databases. The 
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comparison between the HOPS_damage (at least one damage lesion in the first five bases from either 

end of the read) and HOPS_default (all reads that fulfill the filtering criteria) reads datasets yields 

overall similar patterns for the assessed taxa. The comparison between the HOPS_default dataset and 

the kraken dataset revealed overall comparable trends between the Late Glacial and the Holocene. 

However, the magnitude of relative abundances varied for some taxa between the used pipelines.  

A 

 

B 

 

C 

 

Fig. 1: Comparison between HOPS ancient and HOPS default reads. A: Fungi, B: Bacteria, C: Vegetation. 
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A 

 

B 

 

C 

 

Fig. 2: Comparison between the HOPS (default) and the kraken pipeline. A: Fungi, B: Bacteria, C: Vegetation. 
 

We assessed the statistical comparability of the datasets using procrustes and tested the significance 

using protest in R Studio, package vegan (Oksanen et al., 2017). The results for all taxa scaled on 100 

percent with the procrustes call on the PCA scores of the datasets are displayed in Table 1 below: 
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Table 1: Statistical comparison between the kraken and the HOPS datasets  
 

procrustes call procrustes sum 
of squares 

root mean 
square error 

correlation in 
symmetric procrustes 
rotation 

significance 

kraken dataset, HOPS 
ancient dataset 

0.7803  0.1363064  0.4687  0.001  

kraken dataset, HOPS 
default dataset 

0.6822  0.127449  0.5637  0.001  

HOPS ancient dataset, 
HOPS default dataset 

0.2158  0.07167679  0.8856  0.001  

 

The protest analysis reveals the closest similarity between the ancient and the default dataset (Table 

1). This is expectable as the ancient dataset forms part of the HOPS default dataset. Also, the 

procrustes comparison between the kraken pipeline output and the HOPS default output revealed 

close similarities between the datasets. All dataset comparisons are statistically significant. With this 

comparison, we conclude that a damage pattern analysis based on the HOPS pipeline is of use for the 

validation of the results based on the kraken output. 

 

To evaluate the ancient origin of the assessed reads, we analyzed the damage patterns of the 

subgroups in the data. To do so, we focused on the data from the Holocene samples due to variations 

in the sediment properties at a depth of 530 cm (Melles et al., 2006), equalling a depth of 380 cm 

according to the age-depth model (von Hippel et al., 2022, 2023). This change in the sediment 

properties indicates changed preservation conditions for the DNA. We summed up all reads in the 

ancient as well as default datasets for each subset based on sample age. We assessed the damage 

pattern of selected key taxa for each subset. For fungi in the Holocene, for most samples more than 

40% of the reads were assigned on species level, which would yield an overall good taxon-based 

assessment of the reads. The percentage lowered during the Late Glacial with ongoing sample age. 

This might derive due to the haplotype variation of fungi (Estensmo et al., 2021; Tedersoo et al., 2022), 

limited databases (Goodwin et al., 2016; Quince et al., 2009) which reduces the possibilities for an 

adequate reference genome, or due to expected higher damage for older samples. 

 

To additionally prove the ancientness of the reads, we assessed trends of the C/T substitutions from 

the first position to position 10 for all taxa in the subsets and placed a trendline (Figure 3). We plotted 

all reads (Fig. 3A) as well as all reads without zero C/T substitutions in the first position (Fig. 3B), as a 

https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib55
https://www.sciencedirect.com/science/article/pii/S0277379122003894#bib109
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C/T substitution at position 1 is an additional indicator for the ancientness of the reads. For damaged 

DNA reads, an increase of the damage pattern - measured as the increase in C/T transitions via the 

deamination of cytosine - at the first positions of the DNA reads is stated (Warinner et al., 2017; Key 

et al., 2017; Briggs et al., 2007; Kirchner, 2011; Huebler et al., 2019). The further away the position is 

from the ends of the strands, the less the substitutions become. We recovered these trends for all 

subsets and proved the ancient origin of the reads. 

 

A 

 

B 

 

 

 

 

 

 

 

 

 

Fig. 3: Frequency of C/T transition at the first 10 positions. A: including all taxa, B: without reads with 0 C/T 

transitions at position 1. 

 

In general, we show damage patterns for all subsets. Nonetheless, we detected poorer DNA damage 

patterns mainly for fungi but also bacteria, than for plants. The pattern for fungi is highly biased by 

reads containing either only C/T substitutions at the respective position or none (Fig. 3A and B), 

probably derived by the overall very low read counts of fungi.  

So far, there is one study assessing DNA damage for fungi derived from Oetzi gut (Oskolkov et al., 

2024), assessing the damage of the DNA of Pseudogymnoascus. The fungal DNA in Oetzi gut is likely to 

be better preserved due to permanent freezing than the DNA derived from the lake sediment. Up to 
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this point, DNA damage was mainly shown for plants (e.g. Crump et al., 2021; Courtin et al., 2022) and 

mammals (Kistler et al., 2017).  

Fungi and plant DNA possess differing splice site combinations (Frey and Pucker, 2020) with some plant 

species including up to 90 % of repetitive sequences in their genome (Mehrotra and Goyal, 2014). 

These repetitive sequences are susceptible to DNA damage (Nimeth et al., 2020), which indicates that 

they could lead to strong damage patterns. In contrast, asco- and basidiomycetes usually have less 

than 5 % repetitive DNA (Wöstemeyer and Kreibich, 2002). This indicates that an improvement and 

adaptation of the yet existing damage pattern analysis tools is important when assessing damage of 

genomes from non-plant kingdoms, such as proposed in Fernandez-Guerra et al. (2023), as differently 

constituted genomes will probably degrade in a different way. 

 

Additionally, the databases for fungi are known to be lacking species (Nilsson et al., 2016). This points 

out that there are difficulties with finding an appropriate reference genome. A fungal metabarcoding 

study showed a drastic increase in sequenced fungal genomes over the last 10 years (Seeber et al., 

2022), indicating that with deeper sequencing of fungal genomes, the assessment of ancient patterns 

will be facilitated. The same study also provided information on the mean amplicon length for fungal 

metabarcoding derived from the same lake and parts of the samples, pointing out shorter amplicons 

with older sample ages, indicating higher fragmentation.  

 

All in all, this represents only initial results and requires further assessment.  
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