
Hasso Plattner Institute for Digital Engineering
at the University of Potsdam

Enterprise Platform and Integration Concepts Research Group
Prof. Dr. mult. h.c. Hasso Plattner

Memory-Efficient Data Management for

Spatio-Temporal Applications

Workload-Driven Fine-Grained Configuration Optimization for
Storing Spatio-Temporal Data in Columnar In-Memory Databases

Dissertation
submitted in partial fulfillment

of the requirements for the academic degree of
Doctor of Natural Sciences

(Dr. rer. nat.)

to the
Digital Engineering Faculty
at the University of Potsdam

by
Keven Richly, M.Sc.

Potsdam, 31st March, 2024

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by/4.0

Supervisors

Prof. Dr. mult. h.c. Hasso Plattner
Hasso Plattner Institute (University of Potsdam)

Prof. Dr. Eleni Tzirita Zacharatou
IT University of Copenhagen

Prof. Dr. Michael Grossniklaus
University of Konstanz

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-63547
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-635473

Abstract

The wide distribution of location-acquisition technologies means that large vol-
umes of spatio-temporal data are continuously being accumulated. Positioning
systems such as GPS enable the tracking of various moving objects’ trajectories,
which are usually represented by a chronologically ordered sequence of observed
locations. The analysis of movement patterns based on detailed positional in-
formation creates opportunities for applications that can improve business deci-
sions and processes in a broad spectrum of industries (e.g., transportation, traffic
control, or medicine). Due to the large data volumes generated in these appli-
cations, the cost-efficient storage of spatio-temporal data is desirable, especially
when in-memory database systems are used to achieve interactive performance
requirements.

To efficiently utilize the available DRAM capacities, modern database sys-
tems support various tuning possibilities to reduce the memory footprint (e.g.,
data compression) or increase performance (e.g., additional indexes structures).
By considering horizontal data partitioning, we can independently apply differ-
ent tuning options on a fine-grained level. However, the selection of cost and
performance-balancing configurations is challenging, due to the vast number of
possible setups consisting of mutually dependent individual decisions.

In this thesis, we introduce multiple approaches to improve spatio-temporal
data management by automatically optimizing diverse tuning options for the
application-specific access patterns and data characteristics. Our contributions
are as follows: (1) We introduce a novel approach to determine fine-grained ta-
ble configurations for spatio-temporal workloads. Our linear programming (LP)
approach jointly optimizes the (i) data compression, (ii) ordering, (iii) indexing,
and (iv) tiering. We propose different models which address cost dependencies
at different levels of accuracy to compute optimized tuning configurations for a
given workload, memory budgets, and data characteristics. To yield maintain-
able and robust configurations, we further extend our LP-based approach to
incorporate reconfiguration costs as well as optimizations for multiple potential
workload scenarios. (2) To optimize the storage layout of timestamps in colum-
nar databases, we present a heuristic approach for the workload-driven combined
selection of a data layout and compression scheme. By considering attribute de-
composition strategies, we are able to apply application-specific optimizations
that reduce the memory footprint and improve performance. (3) We introduce
an approach that leverages past trajectory data to improve the dispatch pro-

iv

cesses of transportation network companies. Based on location probabilities,
we developed risk-averse dispatch strategies that reduce critical delays. (4) Fi-
nally, we used the use case of a transportation network company to evaluate our
database optimizations on a real-world dataset. We demonstrate that workload-
driven fine-grained optimizations allow us to reduce the memory footprint (up
to 71% by equal performance) or increase the performance (up to 90% by equal
memory size) compared to established rule-based heuristics.

Individually, our contributions provide novel approaches to the current chal-
lenges in spatio-temporal data mining and database research. Combining them
allows in-memory databases to store and process spatio-temporal data more
cost-efficiently.

Zusammenfassung

Durch die starke Verbreitung von Systemen zur Positionsbestimmung wer-
den fortlaufend große Mengen an Bewegungsdaten mit einem räumlichen und
zeitlichen Bezug gesammelt. Ortungssysteme wie GPS ermöglichen, die Bewe-
gungen verschiedener Objekte (z. B. Personen oder Fahrzeuge) nachzuverfol-
gen. Diese werden in der Regel durch eine chronologisch geordnete Abfolge
beobachteter Aufenthaltsorte repräsentiert. Die Analyse von Bewegungsmustern
auf der Grundlage detaillierter Positionsinformationen schafft in unterschiedlich-
sten Branchen (z. B. Transportwesen, Verkehrssteuerung oder Medizin) die
Möglichkeit Geschäftsentscheidungen und -prozesse zu verbessern. Aufgrund der
großen Datenmengen, die bei diesen Anwendungen auftreten, stellt die kosten-
effiziente Speicherung von Bewegungsdaten eine Herausforderung dar. Dies ist
insbesondere der Fall, wenn Hauptspeicherdatenbanken zur Speicherung einge-
setzt werden, um die Anforderungen bezüglich interaktiver Antwortzeiten zu
erfüllen.

Um die verfügbaren Speicherkapazitäten effizient zu nutzen, unterstützen
moderne Datenbanksysteme verschiedene Optimierungsmöglichkeiten, um den
Speicherbedarf zu reduzieren (z. B. durch Datenkomprimierung) oder die Per-
formance zu erhöhen (z. B. durch Indexstrukturen). Dabei ermöglicht eine hor-
izontale Partitionierung der Daten, dass unabhängig voneinander verschiedene
Optimierungen feingranular auf einzelnen Bereichen der Daten angewendet wer-
den können. Die Auswahl von Konfigurationen, die sowohl die Kosten als auch
Leistungsanforderungen berücksichtigen, ist jedoch aufgrund der großen An-
zahl möglicher Kombinationen – die aus voneinander abhängigen Einzelentschei-
dungen bestehen – komplex.

In dieser Dissertation präsentieren wir mehrere Ansätze zur Verbesserung
der Datenverwaltung, indem wir die Auswahl verschiedener Datenbankoptimie-
rungen automatisch für die anwendungsspezifischen Zugriffsmuster und Daten-
eigenschaften anpassen. Diesbezüglich leistet die vorliegende Dissertation die
folgenden Beiträge: (1) Wir stellen einen neuen Ansatz vor, um feingranu-
lare Tabellenkonfigurationen für räumlich-zeitliche Workloads zu bestimmen.
In diesem Zusammenhang optimiert unser Linear Programming (LP) Ansatz
gemeinsam (i) die Datenkompression, (ii) die Sortierung, (iii) die Indizierung
und (iv) die Datenplatzierung. Hierzu schlagen wir verschiedene Modelle mit
unterschiedlichen Kostenabhängigkeiten vor, um optimierte Konfigurationen für
einen gegebenenWorkload, ein Speicherbudget und die vorliegenden Dateneigen-

vi

schaften zu berechnen. Durch die Erweiterung des LP-basierten Ansatzes zur
Berücksichtigung von Modifikationskosten und verschiedener potentieller Work-
loads ist es möglich, die Wartbarkeit und Robustheit der bestimmten Tabel-
lenkonfiguration zu erhöhen. (2) Um die Speicherung von Timestamps in
spalten-orientierten Datenbanken zu optimieren, stellen wir einen heuristis-
chen Ansatz für die kombinierte Auswahl eines Speicherlayouts und eines Kom-
pressionsschemas vor. Zudem sind wir durch die Berücksichtigung von Strate-
gien zur Aufteilung von Attributen in der Lage, anwendungsspezifische Op-
timierungen anzuwenden, die den Speicherbedarf reduzieren und die Perfor-
mance verbessern. (3) Wir stellen einen Ansatz vor, der in der Vergangen-
heit beobachtete Bewegungsmuster nutzt, um die Zuweisungsprozesse von Ver-
mittlungsdiensten zur Personenbeförderung zu verbessern. Auf der Grundlage
von Standortwahrscheinlichkeiten haben wir verschiedene Strategien für die
Vergabe von Fahraufträgen an Fahrer entwickelt, die kritische Verspätungen
reduzieren. (4) Abschließend haben wir unsere Datenbankoptimierungen an-
hand eines realen Datensatzes eines Transportdienstleisters evaluiert. In diesem
Zusammenhang zeigen wir, dass wir durch feingranulare workload-basierte Op-
timierungen den Speicherbedarf (um bis zu 71% bei vergleichbarer Performance)
reduzieren oder die Performance (um bis zu 90% bei gleichem Speicherver-
brauch) im Vergleich zu regelbasierten Heuristiken verbessern können.

Die einzelnen Beiträge stellen neuartige Ansätze für aktuelle Herausforderun-
gen im Bereich des Data Mining und der Datenbankforschung dar. In Kombina-
tion ermöglichen sie eine kosteneffizientere Speicherung und Verarbeitung von
Bewegungsdaten in Hauptspeicherdatenbanken.

Acknowledgements

First of all, I would like to thank my supervisor Professor Hasso Plattner. I
greatly benefited from his extraordinary commitment to supporting academic
education in Germany during my bachelor’s and master’s studies, as well as
being a Ph.D. student at the Hasso Plattner Institute. I am genuinely grate-
ful for my time at the Enterprise Platform and Integration Concepts research
group, where I gained valuable experience, followed my research interests, and
became part of an outstanding team. Professor Hasso Plattner and his chair
representatives, Dr. Michael Perscheid, Dr. Matthias Uflacker, and Dr. Jürgen
Müller provided helpful guidance and support for my research over the last years.

Furthermore, I would like to thank my colleagues for all the fruitful dis-
cussions and invaluable feedback. Most notably, my thanks go to Dr. Rainer
Schlosser, Martin Boissier, Christopher Hagedorn, Stefan Halfpap, Jan Koss-
mann, Johannes Hügle, Dr. Ralf Teusner and Dr. Markus Dreseler. I am glad
to have found excellent collaborators and friends in our research group. Thank
you for making the Ph.D. journey a pleasant time.

Also, I wish to thank all students who worked under my supervision on differ-
ent research projects or supported me as teaching assistants in various lectures.
Moreover, I would like to thank all co-authors for the productive collaboration.
On an organizational level, I also thank Marilena Davis and Matthias Herzog for
keeping everything together from an administrative and hardware perspective.

Finally, I want to thank my parents, Birgit and Frank, for their enduring
and unconditional support as well as for sparking my interest in technology.

Contents

1 Introduction . 1
1.1 Business Impact of Spatio-Temporal Data Mining Applications . 1
1.2 Challenges of Spatio-Temporal Data Management 2

1.2.1 Optimization Capabilities of Modern Database Systems . 4
1.2.2 Research Context . 5

1.3 Contributions . 8
1.4 Outline . 12

2 Background . 15
2.1 Spatio-Temporal Data Mining . 15

2.1.1 Data Collection and Characteristics of Spatio-Temporal
Data . 16

2.1.2 Preprocessing . 18
2.1.3 Data Management . 18
2.1.4 Query Processing . 19
2.1.5 Data Mining and Applications . 20

2.2 Aspects of Spatio-Temporal Data Management 21
2.2.1 Data Layouts for Trajectory Data . 21
2.2.2 Data Partitioning . 22
2.2.3 Compression . 24
2.2.4 Time Awareness . 25
2.2.5 Data Placement and Tiering . 26
2.2.6 Index Structures . 26
2.2.7 Data Access and Interoperability . 27

2.3 Columnar In-Memory Data Management Systems 28
2.3.1 Storage Concepts of In-Memory Column Stores 28
2.3.2 Hyrise: A Relational Columnar In-Memory Research

Databases . 30
2.4 Summary . 32

3 Related Work . 33
3.1 Spatio-Temporal Data Management Systems 33
3.2 Database Optimizations Based on Data and Workload

Characteristics . 36
3.2.1 Compression Scheme Selection . 37
3.2.2 Index Tuning . 39

x Contents

3.2.3 Data Tiering Decisions . 41
3.2.4 Joint Tuning Approaches . 45
3.2.5 Storage Concepts for Timestamps . 46

3.3 Summary . 48

4 Optimizing Passenger Dispatch Decisions of Transportation
Network Companies . 49
4.1 Improving Dispatch Decisions by Probabilistic Location

Predictions . 49
4.1.1 Limitations of Status Quo Dispatch Processes 50
4.1.2 Dispatch Decisions Based on Probabilistic Location

Predictions . 52
4.1.3 Approaches to Predict the Locations of Drivers 54

4.2 Probabilistic Location Prediction Algorithm 55
4.2.1 Spatio-Temporal Data Preprocessing 56
4.2.2 Identification of Potential Locations 57
4.2.3 Route Probability Calculation. 60
4.2.4 Location Extrapolation on Road Segment Candidates . . . 62

4.3 Evaluation of Location Prediction Algorithm 62
4.3.1 Dataset . 62
4.3.2 Accuracy of the Predicted Locations 63
4.3.3 Runtime of the Prediction Algorithm 65

4.4 Risk-Averse Dispatch Strategies . 66
4.5 Summary . 68

5 Joint Table Configuration Optimizations for Spatio-
Temporal Data . 69
5.1 Implications of Configuration Decisions on Query Performance

and Memory Footprint . 69
5.2 Optimizing Table Configurations for Spatio-Temporal Workloads 72

5.2.1 Leveraging Fine-Grained Database Optimizations to
Reflect Spatio-Temporal Access Patterns in the Data
Management Layer . 72

5.2.2 Process Overview. 73
5.3 An Approach to Compute Joint Index, Sorting, and

Compression Configurations . 75
5.3.1 Problem Definition . 75
5.3.2 General Model with Chunk-Based Configuration

Dependencies . 77
5.3.3 Segment-Based Cost Estimation . 77
5.3.4 Special Case: Segment-Based Model with Sorting

Dependencies . 79
5.3.5 Heuristic Solution: Independent Segment Effects 80
5.3.6 Database-Specific Configuration Constraints 80

5.4 Integrating Data Tiering Decisions into the Table Configuration
Optimization Process . 81
5.4.1 Problem Definition . 81
5.4.2 General Model with Chunk-Based Configuration

Dependencies . 82
5.4.3 Segment-Based Cost Estimation . 83

Contents xi

5.4.4 Segment-Based Model with Sorting Dependencies 83
5.4.5 Segment-Based Model with Independent Segment Effects 84
5.4.6 Database-Specific Configuration Constraints 85

5.5 Enhancements of the Segment-Based Models 85
5.5.1 Minimal-Invasive State-Dependent Reconfiguration with

Consideration of Modification Costs 85
5.5.2 Robust Configuration Selection for Different Potential

Workload Scenarios . 86
5.6 Summary . 87

6 Memory-Efficient Storing of Timestamps in Columnar
In-Memory Databases . 89
6.1 Problem Definition . 89
6.2 Data Layouts for Timestamps in Columnar Databases 90

6.2.1 Standard Data Layouts for Timestamps 91
6.2.2 An Attribute Decomposition Approach to Store

Timestamps . 92
6.2.3 Impact of Different Compression Techniques on the

Memory Consumption and Query Performance 92
6.3 Workload-Aware Optimizations to Store Timestamps 96

6.3.1 Workload-Driven Combined Data Layout and
Compression Scheme Optimization 96

6.3.2 Optimized Compression Scheme Selection for Multiple
Column Data Layouts . 98

6.4 Summary . 100

7 Evaluation . 101
7.1 Experimental Setup . 101

7.1.1 Dataset . 102
7.1.2 Workloads . 102

7.2 Comparison of the Linear Programming Models 103
7.2.1 Predicted vs. End-to-End Results of the Linear

Programming Models . 104
7.2.2 Comparison of the Linear Programming Models Against

a Rule-Based Heuristic Approach . 106
7.2.3 Impact of Fine-Grained Configurations 110
7.2.4 Scalability of the Linear Programming Approach 111

7.3 Linear Programming Approach with Tiering Decisions 113
7.3.1 End-to-End Results of the Linear Programming Models . 114
7.3.2 Comparisons Against Rule-Based Tuning Heuristics 116
7.3.3 Comparisons Against Existing Approaches 117
7.3.4 Detailed Configuration Analysis . 119
7.3.5 Scaling of the Linear Programming-Based Approach 120

7.4 Model Extensions of the Linear Programming Approach 123
7.4.1 Extension: Reconfiguration Costs . 123
7.4.2 Extension: Robust Configuration Selection 123
7.4.3 Computation Time Impact of the Model Extensions 125

7.5 Impact of Optimized Timestamp Storage Layouts for
Spatio-Temporal Data . 125

xii Contents

7.5.1 Heuristic Approach for the Combined Data Layout and
Compression Scheme Selection . 126

7.5.2 Optimized Compression Scheme Selection for
Timestamps Stored in the Multiple Columns Data Layout 126

7.6 Discussion . 128
7.7 Threats to Validity . 131
7.8 Summary . 134

8 Conclusion . 135
8.1 Future Work . 135

8.1.1 Improving the Integration of Lossy Compression
Techniques . 135

8.1.2 Adjustments of the Fine-Grained Optimizations Concept
for Further Application Scenarios . 136

8.2 Summary . 137

List of Figures . 141

List of Tables . 144

Acronyms . 145

Appendix . 147
A.1 Permission of Reuse of Publications . 147
A.2 Benchmark Workloads . 148
A.3 Publications . 150

References . 153

1

Introduction

Through the wide distribution of location-acquisition technologies, vast amounts
of spatio-temporal data are continuously accumulated. Positioning systems such
as the Global Positioning System (GPS) enable the tracking of a broad spectrum
of moving objects ranging from vehicles and persons to natural phenomena [79,
341, 395]. The data generated by these systems are referred to as spatio-temporal
or trajectory data and reflect the traces of moving objects [319]. Spatio-temporal
data enable the analysis of movement patterns, which are increasingly used in
various applications (e.g., transportation and traffic optimizations)[113, 320].

The trajectory of a moving object is usually represented by a chronolog-
ically ordered sequence of observed locations. In this context, each observed
location that a moving object has passed is described by a position (e.g., a
multi-dimensional coordinate) in a geographic reference system and a tem-
poral component (e.g., a timestamp)[323]. Insights based on the analysis of
spatio-temporal data can significantly impact business decisions in various in-
dustries (e.g., transport and logistics industry). However, storing and processing
large amounts of trajectory data with interactive response times is challeng-
ing [109, 355, 367, 377].

1.1 Business Impact of Spatio-Temporal Data Mining
Applications

In recent years, the market for devices with built-in position tracking capabilities
has grown considerably [379]. Whereas, in the past, dedicated tracking equip-
ment was required to capture the traces of moving objects, nowadays, a broad
spectrum of devices (e.g., mobile phones) include positioning services, such as
GPS. Furthermore, there are various technologies besides GPS which are applied
to produce trajectory data, including radio-frequency identification (RFID) sen-
sors, location estimation via 802.11, infrared and ultrasonic systems, and Global
System for Mobile Communication (GSM) beacons [147]. Additionally, social
media services (e.g., Twitter, Facebook, or Swarm) represent a comprehensive
source of user-generated location sequences through geotagged photos, posts, or
check-ins at various locations [46, 227, 228].

These advances in tracking technologies build the foundation for data mining
approaches and enable novel applications in various use cases by providing large

2 1 Introduction

spatio-temporal data volumes [226, 395]. Trajectory data mining summarizes the
entire process of analyzing spatio-temporal data and extracting useful informa-
tion [349]. For example, several hundred million users use fitness applications
and wearables to record their running activities [55]. In team sports, professional
teams track their players’ movements to improve performance as well as to avoid
injuries and overloading [118]. Several million timestamped locations are gener-
ated per game (e.g., about three million data points per game in the German
Bundesliga) [233, 281]. Even in the medical area, spatio-temporal data mining
techniques are applied in neuroscience (e.g., brain activity analysis based on neu-
ral activations or blood flowing) and precision medicine [23, 71, 288, 318, 356].
Additionally, trajectory data is the foundation for a broad spectrum of urban
services and smart city applications [370, 374]. For transportation network com-
panies (TNC), such as Uber, Lyft, or DiDi, the current position information and
its course over time can be helpful for demand estimations and optimizations of
the fleet management [126]. To optimize their business processes, these compa-
nies constantly track the positions of the drivers. Uber alone generates spatio-
temporal data for over 14 million trips each day [111]. The largest ride-sharing
company in China, DiDi, accumulates more than 106 terabytes of trajectory
data per day to provide route planning and travel time estimation services [96].
Novel spatio-temporal data mining approaches and applications that analyze
the data can significantly impact and improve business decisions in various in-
dustries. Detailed demand predictions and efficient order dispatching strategies
represent a crucial advantage over competitors for transport network compa-
nies. However, managing, storing, and processing spatio-temporal data is not a
trivial task due to the massive volumes of continuously captured data and the
performance requirements in various spatio-temporal use cases [104, 136, 367].

1.2 Challenges of Spatio-Temporal Data Management

Data management for spatio-temporal applications is challenging as various
use cases have critical performance demands which require interactive response
times on large data volumes (e.g., trajectory-based navigation systems or pas-
senger request dispatching for ride-hailing services) [302]. Based on the charac-
teristics of spatio-temporal trajectory data, there are four key challenges [367]:
(i) the data volume, (ii) the high update rate (data velocity), (iii) the required
query latencies of analytical queries, and (iv) the inherent inaccuracy of the
data. Furthermore, the data characteristics which are determined by the spe-
cific application and used technologies – such as the accuracy of the tracked
locations, the dimension of the coordinates, and the sample rate – differ, which
makes the development of a general trajectory data management system com-
plicated [104]. Additionally, the total cost of ownership is critical for companies
that store spatio-temporal data. Due to the amounts of data accumulated in
various use cases, a reduction of costs (e.g., necessary storage capacities) signif-
icantly impacts the profitability of such systems [31, 33, 237]. For these reasons,
the need to efficiently analyze and query this data requires the development of
sophisticated techniques [125].

In recent years, various systems have been developed for trajectory data
management and analytics. However, traditional approaches are usually de-
signed for particular needs, which forces users to stitch together heterogeneous

1.2 Challenges of Spatio-Temporal Data Management 3

systems to analyze trajectory data in an inefficient manner [79]. In contrast to
standalone storage systems specialized for trajectory data, relational database
systems enable a simplified integration of different data sources (e.g., business
data). Database systems are heavily used in all kinds of software to store and re-
trieve data [110]. Based on the widespread acceptance of Database Management
Systems (DBMSs), a variety of storage techniques and access methods have been
developed and optimized by researchers [126]. Relational databases are also ap-
plicable for storing spatio-temporal data in the sample point format. The sample
point format is the most common data format for trajectory data and stores each
observed location as a tuple with a set of attributes [302, 320, 395]. On the one
hand, by integrating spatio-temporal data management into relational database
systems, the data querying benefits from the optimized data processing capabil-
ities and continuous improvements in the research area of database systems. On
the other hand, traditional relational databases are general-purpose systems de-
signed to manage most real-world use cases and workloads sufficiently [165]. As
spatial, temporal, and spatio-temporal data benefit from being treated specif-
ically [126], general-purpose systems usually do not achieve the performance
and compression ratios of specialized systems [64]. To mitigate these effects and
integrate the access methods (e.g., intersects for spatial data) required by Ge-
ographical Information Systems (GISs), modern data management platforms
include specialized engines for specific data types (e.g., spatial, temporal, or
spatio-temporal data) [14, 217, 244, 345, 352, 384, 391].

To provide low latency query services for spatio-temporal data mining ap-
plications, the data management has shifted to in-memory systems [250, 352,
390]. Based on the relatively limited and expensive DRAM capacities of main
memory-optimized DBMS, the efficient utilization of the available resources is
necessary to lower the memory footprint and consequently reduce the related
total cost of ownership to store large volumes of spatio-temporal data [33, 37].
To efficiently utilize the available DRAM capacities, modern database systems
support various tuning possibilities to reduce the memory footprint (e.g., data
compression or tiering) or increase performance (e.g., additional index struc-
tures). Data encoding has been applied to database systems for decades to mit-
igate bandwidth bottlenecks and reduce storage requirements. While removing
additional data structures or applying compression techniques with higher com-
pression rates reduces the memory footprint, it also influences the runtime per-
formance. Therefore, these tuning options are only used defensively by database
administrators (DBAs) [58].

In general, the optimization of the DBMS for spatio-temporal applications
is complex as the data characteristics (e.g., value distribution) are constantly
changing [390]. For instance, in the TNC use case (cf. Section 1.1), the number
of drivers at some locations may be larger during the day and relatively small
at night. This means that the query execution (e.g., the number of accessed
partitions or efficiency of index structures) for querying the same region may
be quite different at different times [58]. Additionally, properties such as sample
rate, spatial reference system, and data accuracy vary between applications
and positioning systems. Consequently, different optimization approaches for
spatio-temporal data have been developed for specific use cases, which cannot
easily be transferred to other application domains. Furthermore, we observed
that various optimizations based on general data properties do not sufficiently
take into account the application-specific access patterns implemented in the

4 1 Introduction

application layer. For example, the access frequency and required resolution of
spatio-temporal data points usually change over time. Specific applications need
detailed positional information to incorporate the current circumstances and
ignore trajectory data after a selected timeframe, as the data no longer reflect
the current situation (e.g., the traffic situation in a specific timeframe [397]).
Sophisticated analytical applications (e.g., demand predictions) often use less
detailed data, as various machine learning approaches cannot manage the high
volumes and granularities of raw trajectory data [209]. Here, we identified high
potentials to reduce the operating costs by minimizing the data footprint or
increasing the performance by considering application-specific access patterns
and changing data characteristics in the various tuning opportunities of modern
databases.

1.2.1 Optimization Capabilities of Modern Database Systems

Database management systems provide a broad spectrum of opportunities to
tune their physical design and configurations [21, 169, 398]. By dividing the data
of a table into various partitions, modern database systems enable fine-grained
tuning decisions [86, 178, 241]. As depicted in Figure 1.1, this concept allows the
application of different configuration optimizations (e.g., sorting, indexing, and
compression scheme) independently for each of these data partitions. All these
configuration decisions impact the overall system’s performance and resource
consumption.

Table

…

Pa
rti

tio
n

#0
Pa

rti
tio

n
#1 Segment a

Compression B

Index 1

Index 2

… ……Pa
rti

tio
n

#n

…Ordering
Unsorted

Segment a
Unencoded

Ordering
Column b

Ordering
Column c

Segment a
Compression B

Index 2

Segment b
Unencoded

Segment b
Compression C

Segment b
Compression B

Segment c
Unencoded

Segment d
Unencoded

Segment c
Compression B

Index 2

Segment c
Unencoded

Segment d
Compression A

Segment d
Compression C

…

…

Column a
Moving Object ID

Column b
Longitude

Column c
Latitude

Column d
Timestamp

Fig. 1.1: Depiction of the storage layout and table configuration for an
exemplary table with n data partitions. Based on the horizontal data par-
titioning, different configuration optimizations (e.g., compression and in-
dexing tuning options) can be applied for each partition independently.

To efficiently utilize the available resources (e.g., DRAM capacities), mod-
ern database systems can apply different table configuration optimizations (e.g.,
data compression or secondary indexes) to reduce the memory footprint or in-
crease performance. While removing additional data structures (e.g., indexes) or
applying more heavy-weight compression techniques reduces the memory foot-
print, these decisions also affect the runtime performance. Many approaches have

1.2 Challenges of Spatio-Temporal Data Management 5

been developed that focus on improving a specific aspect but do not sufficiently
consider the impact on other configuration decisions. In existing work, there are
approaches to improve the compression schema selection [1, 33, 69, 178]. Other
research focuses on the selection of optimized index structures [73, 166, 236, 295]
or data tiering [6, 84, 130, 348]. All these individual decisions optimize a specific
aspect of a table configuration and impact the overall memory consumption and
runtime performance. Furthermore, they mutually influence each other, making
the computation of performance-optimized and memory-efficient configurations
challenging due to the high number of possible combinations [11, 402].

For DBAs, the implications of different tuning options on the runtime per-
formance are difficult to estimate [13, 38, 58]. Non-stable workloads that change
over time, a lack of domain knowledge, and contradicting requirements of multi-
ple applications working on the same data further complicate the situation [72].
Due to its complexity, database tuning often requires considerable effort from
experienced DBAs [343]. The costs for qualified database personnel constitute a
significant factor in the total cost of ownership (TCO) of database systems [52].
As the overall tuning is hard to optimize, various vendors use relatively sim-
ple threshold-based approaches, which tier data partitions to lower-cost storage
mediums with higher latencies or apply compression techniques with a higher
compression rate based on defined thresholds (e.g., data volume or timeframe).
We argue that more advanced strategies for tuning decisions can significantly im-
prove the overall system’s performance and reduce operating costs. By applying
fine-grained table configurations considering multiple tuning options (e.g., com-
pression, data tiering, sorting, and indexing), we are able to optimize each data
segment (cf. Figure 1.1) individually for the specific workload and data char-
acteristics. Furthermore, we can utilize the available memory resources more
efficiently and reduce the manual tuning overhead by automatically improving
data management.

1.2.2 Research Context

In this thesis, we focus on different aspects to improve the trajectory data min-
ing process, which summarizes the entire procedure of accumulating, analyz-
ing, and visualizing spatio-temporal data. Based on our trajectory data mining
framework, the process can be divided into different steps. In this context, the
complexity of each step depends on the collected data and requirements of the
application scenario. As depicted in Figure 1.2, we introduce novel approaches
for two main research questions in this thesis. First, we investigate the use case
of a TNC to analyze the impact of trajectory data-driven decision support sys-
tems on relevant business processes. In this context, the developed approaches
cover the entire trajectory data mining process. Second, we focus on improving
the data management and query processing of spatio-temporal data. By op-
timizing multiple database tuning options for the specific workload and data
characteristics of spatio-temporal applications, we are able to increase perfor-
mance or reduce memory consumption. These optimization approaches are not
limited to the TNC use case and can be applied to further application scenarios
(e.g., sports analytics or smart city applications). Based on these aspects, we
pose the following research questions:

6 1 Introduction

• How can we improve business processes in specific application scenarios by
spatio-temporal data mining?

To demonstrate the impact of spatio-temporal data mining applications on
business decisions and processes, we analyzed the use case of a TNC. These
companies regularly track their drivers’ positions for route planning, travel
time estimation, and urban capacity analyses [96]. The data enables the de-
velopment of novel applications and algorithms to optimize processes such
as the order dispatching of incoming passenger requests.
In the highly competitive ride-sharing market, optimized and cost-efficient
dispatching strategies represent a crucial business advantage. One weakness
of many state-of-the-art dispatch algorithms is the accuracy of the last ob-
served location of available drivers that are used as input data. The current
location of a driver is not exactly known since the observed locations can be
outdated for several seconds and affected by noise. These inaccuracies affect
dispatch decisions and cause critical delays or inefficient assignments. To ad-
dress the problem, we introduced an approach based on location probabilities
that are determined by spatio-temporal data mining of past trajectory data.
In this context, we analyzed the capabilities of our prediction results to (i)
avoid critical delays, (ii) estimate waiting times with higher confidence, and
(iii) enable risk-averse dispatching strategies.

• How can we determine cost and performance-balancing table configuration
optimizations consisting of fine-grained mutually dependent tuning decisions
for the specific data properties and workloads of spatio-temporal applications?

The unprecedented scale of positional information generated in various appli-
cations poses an urgent demand for a practical storage mechanism for trajec-
tory databases [379]. As DBMSs are usually implemented in a general fash-
ion, spatio-temporal data can benefit from being treated specifically [126].
Modern databases have multiple tuning options to improve the storage con-
figuration. As various optimizations for spatio-temporal data have been de-
veloped for specific application characteristics, the impact on memory con-
sumption and runtime performance is hard to predict for particular workload
and data characteristics. Additionally, the data properties (e.g., number and
distribution of moving objects) and the access characteristics for specific data
partitions vary over time and space. [58, 390]. Hence, it remains challenging
to choose an efficient tuning configuration for a concrete application [379].
There have been several efforts to automate the optimization of database
management systems [343]. The constant adjustment of the applied tuning
options based on currently existing data and workload characteristics could
save costs and lead to more efficient table configurations [169]. In the con-
text of fine-grained database optimizations, the challenge of such systems
is to find efficient configurations with a scalable method [11]. In contrast to
existing solutions that often optimize a single aspect (e.g., index or compres-
sion scheme selection), we propose a joint optimization approach for these
tuning options. Zilo et al. [402] argue that mutually dependent configuration
decisions should be optimized simultaneously as long as the problem com-
plexity allows a joint optimization approach. As the different configuration
decisions mutually influence each other, the joint optimization allows for the

1.2 Challenges of Spatio-Temporal Data Management 7

Data Management Query Processing Data Mining
Techniques

ApplicationsPreprocessingData
Collection

● ● ●

Use Case

Transportation
Network Company

Other Application Scenarios (e.g., Sports Analytics, Smart City, etc.)

● ● ●

● ● ●

● ● ●

Budget-Conscious Fine-Grained
Configuration Optimizations

Optimized Data Layouts for Timestamps

Trajectory Data Mining Process

Data-Driven Decision Support Systems
(e.g., Risk-Averse Order Dispatching, Demand Planning)

Workload-Driven Optimizations for
Spatio-Temporal Data Management

1

2

Fig. 1.2: Overview of the research context based on the different steps of
the trajectory data mining process defined by our trajectory data mining
framework (cf. Chapter 2). In research question 1©, we focus on the appli-
cation scenario of a transportation network company and develop solutions
that cover the entire process (cf. Chapter 4). In research question 2©, we fo-
cus on workload-driven optimization approaches for spatio-temporal data.
In this context, we analyze the joint optimization of fine-grained tuning
options (cf. Chapter 5) and storage layouts for timestamps (cf. Chapter 6)
to improve data management and query processing for various application
scenarios.

consideration of side effects, which are difficult to identify in the sequential
optimization of features.
Each of those individual tuning problems is, in general, already challenging
due to the high number of possible combinations of mutually dependent in-
dividual decisions. By incorporating domain knowledge, we can still address
a joint optimization of these dimensions as we exploit the specific charac-
teristics of spatio-temporal data and applications, i.e., a limited number of
columns and few query types. With the independent selection of config-
urations for data partitions, we can reflect the specific access patterns of
spatio-temporal data mining applications in the data management, which
are usually only implemented in the application layer [275]. By considering
the specific data and access characteristics of spatio-temporal applications
in the selection process of different database optimizations, we are able to
leverage these to reduce the memory footprint and increase performance.
Furthermore, we identified that, for various spatio-temporal applications,
the performance is significantly impacted by the temporal component. In
contrast to storing the positions of moving objects, there is less focus on op-
timized storage concepts for efficiently storing large sequences of timestamps.
We identified that the chosen storage layout significantly impacts memory
consumption and runtime performance based on analyzing different stor-
age concepts for timestamps. In addition, based on the data and workload
characteristics (e.g., number of distinct values, sequences of equal values, or
sample rate), the effectiveness of different compression techniques depends
on the application-specific properties. To improve the storing of timestamps

8 1 Introduction

for spatio-temporal data mining applications, we focused on a joint opti-
mization approach of the storage layout and compression techniques for a
given workload.

1.3 Contributions

This work contributes the following advances to the current state of research in
spatio-temporal data management and data mining:

• A data mining framework for spatio-temporal applications

To cover different aspects of the spatio-temporal data mining process (e.g.,
data collection, preprocessing, and query processing), we introduce a trajec-
tory data mining framework that summarizes the entire analysis process. In
advance of existing approaches, the framework has a specific focus on data
management. Based on the framework, we surveyed concepts to store and
process trajectory data. This research was published in the following paper:

[275] Richly, K.: A Survey on Trajectory Data Management for Hybrid
Transactional and Analytical Workloads. In Proceedings of the IEEE Inter-
national Conference on Big Data (BigData). 2018, pp. 562–569

• A probabilistic location prediction approach to enable risk-averse
dispatch decisions for transportation network companies

Based on an analysis of the dispatch processes of a real-world transportation
network company, we identified the use of inaccurate and outdated location
information of the drivers as one reason for inefficient dispatch decisions.
Therefore, we developed an algorithm to determine location probabilities
based on driving patterns observed in past trajectories. We explain the im-
pact of predicted locations on dispatch decisions and introduce strategies to
use these predictions to apply risk-averse dispatch decisions. This research
was published in the following papers:

[279] Richly, K.; Brauer, J.; Schlosser, R.: Predicting Location Proba-
bilities of Drivers to Improve Dispatch Decisions of Transportation Network
Companies based on Trajectory Data. In Proceedings of the International
Conference on Operations Research and Enterprise Systems (ICORES).
2020, pp. 47–58
[284] Richly, K.; Schlosser, R.; Brauer, J.: Enabling Risk-averse Dis-
patch Processes for Transportation Network Companies by Probabilistic Lo-
cation Prediction. In Operations Research and Enterprise Systems. Springer,
2022, Volume 1623 by Communications in Computer and Information Sci-
ence, pp. 21–42
[285] Richly, K.; Schlosser, R.; Brauer, J.; Plattner, H.: A Proba-
bilistic Location Prediction Approach to Optimize Dispatch Processes in the
Ride-Hailing Industry . In Proceedings of the Hawaii International Confer-
ence on System Sciences (HICSS). 2021, pp. 1830–1840

1.3 Contributions 9

Publication [284] is an extended journal version of paper [279]. The pub-
lication [285] is a more detailed explanation of the developed algorithm to
predict location probabilities. The three authors collaboratively wrote the
papers. Janos Brauer implemented and conducted the experiments presented
in the papers.

• A general approach to jointly determine fine-grained table config-
uration optimizations for spatio-temporal applications

We introduce fine-grained table configurations to reflect the application-
specific access patterns for spatio-temporal data in the data management
layer and optimize the configurations correspondingly. Moreover, we present
a linear programming (LP) approach to determine memory-efficient and
performance-balancing table configurations. As we jointly optimize the com-
pression, indexing, and sorting tuning options for each data partition in-
dividually, the computation of an efficient configuration is challenging due
to the vast number of possible setups of mutually dependent tuning deci-
sions. Based on different cost dependencies (e.g., considering sorting effects
and indexing strategies), we developed three LP models and evaluated them
concerning runtime performance and scalability. Furthermore, we demon-
strate that the model with relaxed cost dependencies can improve the gen-
eral approach’s scalability by determining comparable results. Further, we
demonstrate on a real-world dataset with cost efficiency constraints that our
models allow the memory footprint to be significantly reduced with equal
performance or increased performance with equal memory size, compared to
established rule-based heuristics. This research was published in the follow-
ing papers:

[282] Richly, K.; Schlosser, R.; Boissier, M.: Joint Index, Sorting,
and Compression Optimization for Memory-Efficient Spatio-Temporal Data
Management . In Proceedings of the IEEE International Conference on Data
Engineering (ICDE). 2021, pp. 1901–1906
[276] Richly, K.: Optimized Spatio-Temporal Data Structures for Hybrid
Transactional and Analytical Workloads on Columnar In-Memory Databases.
In Proceedings of the VLDB PhD Workshop. 2019, pp. 1–4

The publication [276] is a contribution to the VLDB Ph.D. workshop that
introduced the concepts of leveraging fine-grained database optimizations to
reflect spatio-temporal access patterns and optimize the configurations cor-
respondingly. In publication [282], the author is the first author and wrote
the paper, implemented the approaches, and conducted the experiments.
Rainer Schlosser contributed many ideas and detailed many sections. The
co-authors improved the material and its presentation.

• Extensions of the linear programming models to consider data tier-
ing decisions, robust configuration selection, and reconfiguration
costs

We further adapt the developed LP models to the advanced requirements
of different use cases by introducing three enhancements: (i) data tiering

10 1 Introduction

capabilities, (ii) robust configuration selection, and (iii) consideration of re-
configuration costs. Based on the data volumes of spatio-temporal appli-
cations, the consumed DRAM is a significant cost factor for main-memory
optimized databases. To reduce the TCO, modern database systems tier in-
frequently accessed parts of the data to slower, but also less costly storage
mediums (e.g., solid-state drive (SSD) or non-volatile random access mem-
ory (NVRAM)). Consequently, we extend the base models to integrate data
placement decisions. The developed models can optimize the configuration of
a table for multiple storage devices with a given capacity per storage device.
Furthermore, we enhance our LP approaches to incorporate a worst-case
optimization for potential workload scenarios. As real-world workloads typ-
ically change over time and future workloads are not entirely predictable,
the performance can be negatively affected if the actual workload differs
from the predicted one. The enhanced models are able to determine robust
configurations with adequate performance for different workload scenarios
specified by the DBA.
Additionally, we present an extension to consider reconfiguration costs.
Based on changing access patterns, the applied table configuration might
be outdated. All individual tuning optimizations produce modification costs
(e.g., changing the sorting order of a chunk). To determine optimized con-
figurations for the given input parameters, the models often apply numerous
reconfigurations with only a minor impact on the overall performance. How-
ever, huge modification costs are not desirable in practice. By considering
modification costs in the models, we can identify and perform only minimal-
invasive modifications. This research was published in the following paper:

[283] Richly, K.; Schlosser, R.; Boissier, M.: Budget-Conscious Fine-
Grained Configuration Optimization for Spatio-Temporal Applications. In
Proceedings of the VLDB Endowment 15(13), 2022: pp. 4079 – 4092

The thesis author prepared the majority of the original draft for publica-
tion [283]. The author developed the underlying concept, implemented the
approach, and designed and executed all experiments. Martin Boissier im-
plemented the necessary enhancements of the Hyrise query optimizer and
supported the implementation of the benchmark infrastructure in Hyrise.
Rainer Schlosser supported the development of the different models and
model extensions. Martin Boissier and Rainer Schlosser co-authored the pa-
per and improved its material and presentation.

• A workload-driven optimization approach for memory-efficient
storage layouts for timestamps in columnar in-memory databases

Memory-efficient data management of observed locations’ timestamps is
challenging as numerous compression approaches in columnar databases
support contradicting data characteristics (e.g., low number of distinct val-
ues, sequences of equal values). Based on an evaluation of different storage
concepts for timestamps, we introduce a heuristic approach to jointly op-
timize the applied data layout and compression scheme for a given work-
load. Furthermore, we demonstrate the impact of attribute decomposition
strategies that store parts of timestamps in independent columns to improve

1.3 Contributions 11

the data characteristics for various lightweight compression approaches (e.g.,
dictionary-encoding) and reduce the memory traffic for standard access pat-
terns. This research was published in the following paper:

[277] Richly, K.: Memory-Efficient Storing of Timestamps for Spatio-
Temporal Data Management in Columnar In-Memory Databases. In Pro-
ceedings of the International Conference on Database Systems for Advanced
Applications (DASFAA). 2021, pp. 542–557

The previous list of contributions spans the main scope of this work. Further
contributions were introduced and published by the author of this thesis that
impacted the development of data management optimizations. We list these
contributions here but do not discuss the approaches and applications in detail.
A list of all publications is presented in the appendix (see Appendix A.3).

• Sports Analytics: An approach for the automated analysis and de-
tection of events in team sports

For professional sport clubs, performance analytics (e.g., training control via
key performance indicators (KPIs) or video analysis) of the overall tactics of
a match or the players’ skill levels are an essential aspect. These analytics are
based on positional data on the one hand and specific game events (e.g., pass
or shot on target) on the other hand. The positional data of the ball and play-
ers are tracked automatically by cameras or via sensors. However, the events
are still captured manually by humans, which is time-consuming and error-
prone. We implemented and evaluated different machine-learning approaches
to detect such events automatically in trajectory data. Furthermore, coaches,
scouts, and video analysts extract information about the strengths and weak-
nesses of their team and opponents by manually analyzing video recordings
and statistics. As video recordings are an unstructured data source, finding
specific game situations and identifying similar patterns is a complex and
time-intensive task. We developed an application that enables users to find
specific situations in video recordings and calculate situation-specific KPIs
by analyzing spatio-temporal data. This research was published in the fol-
lowing papers:

[274] Richly, K.: Leveraging Spatio-Temporal Soccer Data to Define a
Graphical Query Language for Game Recordings. In Proceedings of the IEEE
International Conference on Big Data (BigData). 2018, pp. 3456–3463
[281] Richly, K.; Moritz, F.; Schwarz, C.: Utilizing Artificial Neural
Networks to Detect Compound Events in Spatio-Temporal Soccer Data. In
Proceedings of the ACM SIGKDD Workshop on Mining and Learning from
Time Series (MiLeTs). 2017, pp. 13–17
[278] Richly, K.; Bothe, M.; Rohloff, T.; Schwarz, C.: Recogniz-
ing Compound Events in Spatio-Temporal Football Data. In Proceedings of
the International Conference on Internet of Things and Big Data (IoTBD).
2016, pp. 27–35

The publication [274] is a contribution that describes a visual query language
for video recordings developed by the author. Publication [281] is a collabo-
rative effort of all three authors. Florian Moritz implemented and conducted

12 1 Introduction

the experiments presented in the publication. Publication [278] was collabo-
ratively written by the thesis author, Max Bothe, and Tobias Rohloff. Max
Bothe and Tobias Rohloff implemented and conducted the experiments pre-
sented in the publication. Christian Schwarz improved the material and its
presentation in both manuscripts.

• Different visualization and analysis concepts for spatio-temporal
data in the context of smart city applications

We developed two example applications to demonstrate the impact of spatio-
temporal data mining for smart city use cases. Based on the NYC Taxi and
Limousine Commission trip record data [332], we implemented an interactive
visualization concept to identify profitable areas and time frames. This ap-
plication enables users to improve demand predictions and optimize pricing
strategies by providing detailed information about past passenger request
distributions. Additionally, we introduced a recommendation system that
uses the trip record data to optimize existing public transportation net-
works. This material was published in the following papers:

[286] Richly, K.; Teusner, R.: Where is the Money Made? An Interactive
Visualization of Profitable Areas in New York City . In Proceedings of the
International Conference on IoT in Urban Space (Urb-IoT). ACM, 2016, pp.
43–46
[287] Richly, K.; Teusner, R.; Immer, A.; Windheuser, F.; Wolf,
L.: Optimizing Routes of Public Transportation Systems by Analyzing the
Data of Taxi Rides. In Proceedings of the International ACM SIGSPATIAL
Workshop on Smart Cities and Urban Analytics. 2015, pp. 70–76

In publication [282], the author is the first author who wrote the paper and
developed the visualization concept. Ralf Teusner improved the material and
its presentation. Publication [287] is a collaborative effort of all five authors.
The presented application was developed by Alexander Immer, FabianWind-
heuser, and Leanard Wolf. The paper was written collaboratively and the
experiments were conducted by the five authors.

Some of the content presented in this thesis was originally published in con-
densed form in conference proceedings and journal publications with Springer,
EAI, ACM, or IEEE. The corresponding publications containing reused sec-
tions are first-authored by the author of this thesis. All substantial components
of the work, including conceptualization and experiment design, have been di-
rectly carried out or led by the author of this thesis. Reprints were made with
permission from the publishers (see Appendix A.1).

1.4 Outline

The remainder of the thesis follows the structure outlined in this section. Chap-
ter 2 introduces the foundations. We describe the characteristics of spatio-
temporal data and workloads, set the research context based on a developed
trajectory data mining framework, and introduce the architecture of modern

1.4 Outline 13

columnar database systems using the research database Hyrise as an example.
In Chapter 3, we present related work with a focus on spatio-temporal data
management systems and database configuration optimization approaches. The
following Chapter 4 presents an approach to optimize the passenger request
dispatching of TNCs. We describe the limitations of applied state-of-the-art
dispatch strategies based on the last observed location of drivers and introduce
an algorithm to determine location probabilities by analyzing driving patterns in
past trajectory data. Further, we evaluate the accuracy and runtime of the pre-
sented algorithm based on a real-world dataset of a TNC. Based on the predicted
location probabilities, we describe different risk-averse dispatch strategies that
enable the consideration of critical delays caused by inaccurate positional in-
formation. Chapter 5 introduces a workload-driven joint optimization approach
for spatio-temporal data management. In this chapter, we present the implica-
tions of different tuning options on memory consumption and the performance of
modern DBMS. Furthermore, the optimization process is described and different
linear programming models are introduced to determine performance and cost-
balancing fine-grained table configurations. Additionally, we present different
enhancements to the base models to integrate data tiering decisions, reconfigu-
ration costs, and robustness. In Chapter 6, we describe an optimized approach to
store timestamps in columnar databases. In Chapter 7, we describe the experi-
mental setup based on the real-world dataset of a TNC introduced in Chapter 4
and share the evaluation results of the different optimization approaches. In
this context, we demonstrate that, for the TNC example, workload-driven fine-
grained optimizations allow us to reduce the memory footprint (up to 71% by
equal performance) and increase the performance (up to 90% by equal memory
size) compared to established rule-based heuristics. Chapter 8 presents direc-
tions for future work and summarizes the conducted research.

2

Background

In this chapter, we present background information on (i) the analysis process
of spatio-temporal data, (ii) different approaches and optimizations to store
spatio-temporal data, and (iii) columnar in-memory data management. As each
of the presented research areas is quite complex, we made the selection of which
aspects to cover depending on the knowledge that later chapters build on. Parts
of the content presented here, including the trajectory data mining framework,
have been published [275].

2.1 Spatio-Temporal Data Mining

To summarize and formalize the whole process of trajectory data mining, we
developed a framework as shown in Figure 2.1. The framework is based on the
work of Feng et al. [104], Zheng [395], and Tanuja et al. [329]. It describes
the different challenges of each step in the spatio-temporal data mining pro-
cess. In contrast to previous research, we focus on the data management layer
to derive various aspects and requirements relevant to storing and processing
spatio-temporal data.

Trajectory data is collected from various moving objects with sensors by
location-acquisition technologies such as GPS. The accumulated data has to
be processed to gather information for different applications. As shown in Fig-
ure 2.1, the general process can be structured into four layers, which are prepro-
cessing, data management, query processing, and data mining. The final layer
of the framework is the application layer, which classifies the different appli-
cation scenarios. Based on the application-specific requirements and character-
istics (e.g., positioning system, data volumes, and performance specifications),
the complexity and relevance of the different framework layers vary.

In this section, we discuss the challenges of the individual process steps.
The preprocessing step streamlines the data provided by various data sources
(e.g., sensors) in the data collection. Additionally, mechanisms to improve the
data quality and integrate data from different sources (e.g., heterogeneous po-
sitioning systems) are performed. The data management tackles the issue of
storing large-scale trajectory data efficiently in a scalable manner and enabling
high-performance access. In the next process step, we focus on the different
spatio-temporal query types and the optimized data retrieval. Furthermore, it

16 2 Background

includes different trajectory-based metrics (e.g., distance metrics). These ac-
cess characteristics and metrics are used in various spatio-temporal data mining
approaches, which are applied in different application scenarios.

Data
Collection

Preprocessing

Data
Management

Query
Processing

Applications

Moving Objects

Sensors

Calibration Sampling Cleaning

Data Tiering and
Archiving

Indexing Compression

Data Placement

Data Layout

Time-Awareness Interoperability Data Access

Spatio-Temporal
Range Query

KNN Queries Top-k Queries

Trajectory-based
Queries

Distance Metric

Characteristic
Trajectory

Behavior Analysis

Urban Services

Location Prediction

Uncertainty
Reduction

Partitioning

Path Discovery and
Optimization

Privacy Preserving

Data Mining Pattern MiningClustering Classification Knowledge
Discovery

Map
MatchingIntegration

Annotations

Fig. 2.1: Framework of the trajectory data mining process.

2.1.1 Data Collection and Characteristics of Spatio-Temporal Data

Nowadays, a wide range of objects (e.g., mobile phones, cars, or airplanes)
are equipped with location-acquisition technologies. Various sensor-based tech-
nologies such as GPS, RFID, infrared and ultrasonic systems, or location es-
timation via 802.11 enable the indoor and outdoor tracking of moving ob-
jects [26, 67, 147, 305]. Moreover, there are different systems that determine
the trajectory of an object based on video data [77, 134]. Additionally, social
media services (e.g., Twitter, Facebook, or Swarm) provide a comprehensive
source of user-generated location sequences through geotagged photos, posts, or
check-ins at various locations [46, 227, 228]. Based on the used technologies and
application-specific configurations, the data characteristics like the accuracy of
the tracked locations, the dimension of the coordinates, and the sample rate
differ [104]. Further aspects that influence the selection of a tracking technology

2.1 Spatio-Temporal Data Mining 17

are the costs, requirements (e.g., weight or dimensions), and the ability to use
already available resources.

(p3, t3)

(p0, t0)

(p2, t2)

sample point locationpi

ti timestamp

trace

trajectory

(p1, t1)

(p4, t4)

(p5, t5)

Fig. 2.2: Representation of a trajectory (blue) generated by sampling from
a moving object’s continuous trace (black).

As displayed in Figure 2.2, a trajectory approximates a moving object’s trace
in geographical space. In contrast to the continuous trace of a moving object,
the captured trajectory is only a sample of locations that the moving object has
passed at a specific time [104]. Usually, the trajectory is represented by a series
of chronologically ordered observed locations [395]. Each sample point consists
of a multi-dimensional coordinate in a geographic reference system pi (e.g.,
latitude and longitude) and a temporal component ti (e.g., timestamp) [323].
In addition, further attributes can be stored for each sample point (e.g., the
operating status of a moving object).

Furthermore, the sample rate quantifies the frequency at which the sample
points are gathered. Depending on the use case, it is also possible to have vary-
ing periods between sample points (e.g., geographically annotated social media
data). Based on the sample rate, there is always a certain degree of uncertainty,
as we have no information about the moving object’s behavior between two
sample points (see Figure 2.2). The amount of sample points is a trade-off be-
tween the accuracy of the approximated trajectory and the resulting costs (e.g.,
transmission and storage costs) that must be determined for each application.
Additionally, we have inaccuracies based on technical limitations of the position-
ing systems as well as noise that affects the accuracy of the observed locations.
In this context, accuracy is defined as the closeness between the measured value
and the ground truth of the moving object’s trace [12]. As displayed in Fig-
ure 2.2, the location p5 is not located on the trace of the moving object. These
devergences can range from several centimeters up to several meters depending
on the applied tracking technologie [331]. As spatial annotations are often less
detailed (e.g., a specific street or city), we also have to consider uncertainty
introduced by imprecise location information in different use cases.

Another aspect is the used spatial reference system (e.g., World Geode-
tic System 84) that significantly impacts the complexity of the applied algo-
rithms [176]. The Cartesian spatial reference system is often used for indoor

18 2 Background

applications and applications in a limited space. This planar system allows the
application of more straightforward algorithms (e.g., distance calculation) but
leads to significant deviations of multiple hundreds of kilometers if applied on
a global scale. For applications on a global scale (e.g., air traffic management),
there are different systems (e.g., geodetic reference system) that have to apply
more complex algorithms on approximations of the earth’s surface (e.g., a sphere
or an ellipsoid) to avoid these deviations but also consume significantly more
computation time [183].

2.1.2 Preprocessing

The different technologies to track the movement of objects generate vast vol-
umes of trajectory data. Additionally, we have to consider the quality of posi-
tional information due to sensor noise and other technical factors [367]. Conse-
quently, it is often necessary to preprocess the data. The general intention of the
techniques used in the preprocessing step is to (i) increase the data quality, (ii)
integrate data from different sources (e.g., different positioning systems), and
(iii) control the captured data volumes. To avoid time-consuming operations on
large trajectory datasets, sampling is a standard approach to reduce the data
amount by minimizing the sample points of a trajectory to the most represen-
tative points [196, 243]. Data integration aims to provide unified access to data
from different data sources [81]. The integration of trajectory data from various
data sources is challenging due to different sample rates, accuracies of the sample
points, spatial reference systems, or data representations [27, 221, 253, 293].

Techniques to increase the data quality can be classified into the cate-
gories: data cleaning, calibration, and map matching. The data cleaning step
is necessary for various applications to filter sensor noise, outliers, and ab-
normal behavior of objects in terms of maximum speed or unreachable con-
straints [102, 103, 249]. As inaccuracies of sample points can lead to deviations in
various metrics of a trajectory (e.g., distance or length), the calibration of trajec-
tory data uses algorithms to adjust the spatial information. Additionally, it aims
to unify the sampling strategy and rate of heterogeneous trajectories [321, 322].
For various trajectory data mining use cases, map matching can be applied to
optimize the accuracy of the data. By using additional information (e.g., road
networks), map matching algorithms adjust the gathered spatial information to
specific positions on the map (e.g., road segments) [80, 238, 269, 310].

2.1.3 Data Management

The large volumes of continuously accumulated data and increasing perfor-
mance requirements of applications foster the development of optimized stor-
age concepts for spatio-temporal data. Based on the specific data and access
characteristics, spatio-temporal data greatly benefit from being treated specif-
ically [126]. The most addressed research areas are compression and indexing
of spatio-temporal data in this context, but also various other factors have to
be considered (e.g., data layouts, partitioning, and tiering) for trajectory data
management. The usage of optimized compression approaches can save costs by
reducing the required storage capacities and increase performance by mitigat-
ing bandwidth bottlenecks or enabling the efficient application of data mining

2.1 Spatio-Temporal Data Mining 19

algorithms [363]. Besides general compression approaches (e.g., delta encoding),
lossy compression techniques exist for spatio-temporal data that use trajec-
tory simplification or generation algorithms to reduce the number of sample
points [203, 239, 310, 379]. These lossy compression approaches represent a
tradeoff between compression ratio and maximum error that defines the devia-
tion between the compressed trajectory and the uncompressed one [104].

Additional data structures like indexes are introduced to increase the query
performance of different query types. These data structures are generally opti-
mized for specific access types and characteristics and require additional memory
resources. An example of an index structure optimized for trajectory data is Tra-
jTree, which was developed to manage retrieval tasks like KNN queries [271].
Popa et al. introduced another trajectory index structure that optimizes the
access costs of spatio-temporal range queries [292]. Other index structures for
different application scenarios are SETI, SEB-Trees, or TB-Tress [47, 258, 311].
Moreover, further relevant aspects impact the interoperability, memory con-
sumption, and performance of trajectory data management systems. Especially
in complex systems, the data layout, placement, partitioning, and tiering con-
cepts have to be optimized to avoid unnecessary data transfers between nodes,
storage devices, or systems [267, 268]. For instance, in some systems, the sample
points of a moving object are divided into several sub-trajectories and stored
in different data partitions to enable pruning and improve the query processing
[254, 353]. In general, all these approaches are optimized for specific access and
data characteristics, which makes the application in different use cases chal-
lenging. In Section 2.2, we discuss the different aspects of spatio-temporal data
management in more detail.

2.1.4 Query Processing

The query processing layer is divided into two parts. The first part focuses
on classifying spatio-temporal access patterns, and the second on metrics and
simplification techniques used in various data mining approaches. For spatio-
temporal applications, we observed different access patterns, which have to be
processed by trajectory data management systems. In this context, some opti-
mizations developed for spatio-temporal data management are more beneficial
for specific access patterns. We distinguish four query types: (i) trajectory-
based queries, (ii) spatio-temporal range queries, (iii) KNN queries, and (iv)
top-k queries [123, 346, 396]. Trajectory-based queries refer to the trajectory
of a single moving object and return the entire trajectory, a specific segment
of the trajectory, or related information like the length of the trajectory [179].
Spatio-temporal range queries include all queries which filter the dataset ac-
cordingly to specified spatial, temporal, or spatio-temporal filter criteria. These
query types are the most common ones, as they are used to filter the data
for different data mining techniques and visualization approaches. Other query
types in spatio-temporal applications are KNN queries, which refer to similar
trajectories or trajectory segments, and k-top queries, which refer to trajectories
with a specific characteristic (e.g., highest average speed) [302].

Additionally, we have different metrics and techniques that are required by
various data mining approaches. As various data mining approaches cannot pro-
cess the data volumes of raw spatio-temporal data, there are algorithms that

20 2 Background

summarize similar trajectories. By representing a set of trajectories via a char-
acteristic trajectory, the amount of data that has to be processed can be sig-
nificantly reduced [188]. The determination of these characteristic trajectories
is a tradeoff between accuracy and the necessary memory consumption. The
approach of representative trajectories is also used in trajectory compression
methods. To determine sets of similar trajectories, a distance metric is required.
It is challenging to define a similarity metric for comparing paths or subpaths
(e.g., different sampling strategies or at different sampling rates) [187, 335, 350].
Examples of such distance metrics are the Euclidean distance [389], longest
common subsequence [347], discrete Fréchet distance [92, 120], or Edit dis-
tance [56, 163].

2.1.5 Data Mining and Applications

A broad spectrum of applications is driven by trajectory data mining, enabling
data-driven decision support. Based on our trajectory data mining framework
(cf. Figure 2.1), we subdivide the applications layer into six parts: (i) urban
services, (ii) behavior analysis, (iii) location predictions, (iv) path discovery and
optimization, (v) privacy-preserving methods, and (vi) uncertainty reduction.

Urban services focus on improving several aspects in urban areas [104, 164].
In this context, spatio-temporal data analysis is used in combination with other
data sources to optimize traffic flow [326, 388], infrastructure [197, 247, 287],
and derive knowledge about the use of areas [375, 387]. Another application
domain is the analysis of behavior patterns of groups of moving objects or
individual ones. Mobility behavior patterns of various kinds of moving objects
(e.g., people, animals, or ships) can be used to detect anomalies or identify
reoccurring patterns [114, 141]. By recognizing different forms of mobility, we
can develop a more detailed understanding of mobility and the importance of
different means of transport [365, 385].

Furthermore, location and arrival time predictions are essential for various
industries. For instance, transportation companies (e.g., airlines, carriers, or
public transport) employ spatio-temporal data to determine estimated arrival
or travel times, which are used for scheduling or passenger information sys-
tems [24, 358]. Also, location predictions are applied to predict the next point
of interest a user will visit and to provide recommendations for points of inter-
est [61, 207, 240]. Related subjects are path discovery and optimization, where
historical trajectory data is leveraged to find a suitable route (e.g., fastest path
problem, most frequent path problem) [60, 213, 301]. Additionally, path discov-
ery is a technique that is used in the research area of uncertainty reduction. In
this context, path discovery algorithms are applied to estimate the trace of a
moving object between two consecutive observed locations, which is especially
relevant for trajectory data with low sample rates [394]. The last category of
applications is privacy-preserving spatio-temporal data mining [16]. Various re-
searchers study and develop methods to analyze large amounts of trajectory data
without drawing conclusions about the behavior of individual moving objects.

All these different application domains are based on trajectory data mining
algorithms. Trajectory data mining algorithms can be summarized and classi-
fied into four categories similar to traditional data mining, i.e., pattern mining,
clustering, classification, and knowledge discovery [187, 198]. In this context,

2.2 Aspects of Spatio-Temporal Data Management 21

the algorithms of conventional data mining techniques must be adopted to in-
corporate the characteristics, properties, and data volumes of spatio-temporal
applications.

2.2 Aspects of Spatio-Temporal Data Management

Based on the different access types and data characteristics presented in the tra-
jectory data mining framework (cf. Section 2.1), there are various opportunities
to improve the data management of spatio-temporal data for a specific use case.
Consequently, different application-specific optimizations were developed to en-
hance the storing and processing of spatio-temporal data. This section classifies
and discusses the different approaches.

2.2.1 Data Layouts for Trajectory Data

The applied data layout is a distinguishing feature of different trajectory data
management systems that significantly impacts memory consumption and run-
time performance. As some data layouts are more suitable for specific query
characteristics and require additional overhead to process other query types,
the selection should be optimized for the particular access patterns of the ap-
plication domain. Besides performance requirements, another aspect that influ-
ences the decision for a data layout is whether the trajectory data is stored in
a standalone system, specialized for trajectory data, or in a standard database
system or framework. In the following, we describe three different data layouts
for spatio-temporal data.

• Sample Point Format: The sample point format is the data layout that is
used in the majority of spatio-temporal data management systems [66, 96,
390]. It stores each observed location as a tuple with the following attributes:
(i) the moving object identifier, (ii) a location (e.g., specified by GPS coor-
dinates), and (iii) the observation time of the location. In some applications,
the tuple is extended by values that provide additional information about
the observed location. The structure of the sample point format stream-
lines the integration of spatio-temporal data storage capabilities into existing
data management systems and frameworks (e.g., relational databases). The
format enables the application of optimized compression, partitioning, and
sorting (e.g., space-filling curves) techniques to improve the performance,
especially for spatio-temporal range queries and KNN queries [59, 290, 334].

• Key-Value Format: A straightforward approach to store trajectories or tra-
jectory segments is to save them as objects in a key-value store. In this for-
mat, the moving object identifier is used as the key referencing a sequence of
chronologically ordered locations. Alternatively, the observed locations could
also be saved as a sequence of pairs consisting of a timestamp and location,
or structured formats like GeoJson could be used [42]. This approach enables
efficient access to all sample points of a specific moving object. In contrast,
operations like spatial or spatio-temporal range queries are more complex
to process because it is necessary to scan all stored objects. Additional data
structures, which contain a minimum bounding box as well as a start and
end timestamp for each trajectory, are stored to address this problem and
significantly reduce the number of objects that must be processed [193].

22 2 Background

• Frame Format: The frame format divides the temporal space of the raw
trajectory data into frames of a fixed duration [352, 353, 393]. The frame
duration depends on the application-specific characteristics of the spatio-
temporal data and has to be defined by the database administrators. After-
ward, each observed location is allocated to a frame based on its timestamp.
As the approach stores one spatial location for each frame, we have to aggre-
gate the data if multiple observed locations are assigned to the same frame. A
drawback of this approach is that the uncertainty is increased, especially for
larger frame intervals, because of the loss of information about the concrete
timestamp and the potential aggregation of multiple observed locations in
a time frame. In contrast, we can reduce memory consumption as the data
layout’s structure already reflects the temporal component, and we do not
need to store a timestamp for each observed location. The different frames
are stored as individual columns in a database table. To store the frames in
a table with a limited number of columns, the sequence of frames is divided
into sections. Each section consists of a fixed number of consecutive frames
and is called a frame group. An advantage of this data layout is that we can
efficiently analyze or compare the positions of different moving objects in one
frame or a set of frames. Furthermore, changing the frame duration requires
a time-intensive reorganization of the data structure. Also, the approach
produces a lot of null values for heterogeneous trajectories with different
sampling strategies and sampling rates.

Furthermore, some approaches store the data redundantly in multiple data
layouts to optimize the query processing for different query types [195].

2.2.2 Data Partitioning

Data partitioning is a common approach to enable the effective parallel process-
ing of spatio-temporal data [25, 79, 96, 127]. Based on the specified partitioning
criteria, we distribute the data on several data partitions. Besides the parallel
processing of partitions, an advantage of this approach is that the flexibility
and scalability of systems are increased as the individual data partitions can be
stored on different storage mediums or servers. In general, it is possible to parti-
tion the data vertically or horizontally [10]. As the spatio-temporal components
are often accessed together, vertical partitioning is only applied in specific use
cases (e.g., various additional attributes are stored for each sample point). Dif-
ferent approaches are conceivable to partition trajectory data horizontally: (i)
temporal partitioning, (ii) spatial partitioning, (iii) object-based partitioning,
(iv) parameter-based partitioning, and (v) hybrid partitioning approaches.

Based on the partitioning criteria, we are able to apply pruning strategies
that skip irrelevant data partitions during query processing [34]. By maintaining
statistics for each data partition (e.g., min/max values), we can determine which
partitions have to be considered for processing a specific query. Consequently,
we can significantly increase the performance by ignoring all other data parti-
tions. For instance, the runtime of a spatial range query benefits if the observed
locations are partitioned by a spatial partitioning criterion, as a possibly large
number of partitions can be pruned during query execution. In contrast, most
partitions are search candidates and must be processed for this query type if
the partitioning criterion is time [79].

2.2 Aspects of Spatio-Temporal Data Management 23

For the selection of an appropriate partitioning strategy, we have to consider
different aspects: (i) parallel data processing, (ii) efficient pruning, (iii) partition
size, and (iv) load balancing. The system should generally leverage the parallel
scan of equally distributed partitions to increase the query performance. Ad-
ditionally, each partition should have a proper size to minimize the overhead
introduced by metadata structures [390].

• Object-Based Partitioning: Object-based partitioning is a strategy where the
trajectory data is partitioned by the identifier of the moving object. This
approach is efficient for trajectory-based access patterns that query all data
points of a moving object or segments of the moving object’s trajectory in a
specific time interval or geographic region. Additionally, for queries that de-
termine metrics for individual moving objects (e.g., length of a trajectory),
the number of partitions that have to be processed can be reduced. A sig-
nificant disadvantage is that spatio-temporal range queries have to scan a
large number of data partitions since every partition could contain relevant
data [179].

• Spatial Partitioning: The general idea of spatial partitioning is to store
trajectories or trajectory segments together, which are geographically co-
located. This means that all sample points included in a specific geographical
region are stored in one partition. A spatial partition strategy is beneficial
for coordinate-based range queries and spatial KNN queries, as various data
partitions can be excluded based on the partition criteria [336]. A potential
disadvantage of this partitioning approach is the sophisticated selection of
the spatial partition criteria, which requires knowledge about the data dis-
tribution as well as future changes in the data distribution [66]. Sub-optimal
partition criteria could lead to unbalanced data partitions, negatively affect-
ing the query performance.
Additionally, this approach is not well suited for trajectory-based queries,
as potentially all partitions have to be scanned to reconstruct the trajectory
of a specific moving object. This problem could be addressed by applying
additional data structures that store for each moving object the minimal
bounding box. By using this data structure, we only have to process the
partitions overlapped by the bounding box.

• Temporal Partitioning: Temporal data partitioning is a common approach
for time series data and spatio-temporal data [154, 255]. The partitioning
strategy is efficient for temporal range queries and spatio-temporal range
queries [376]. Similar to spatial partitioning, this approach has disadvan-
tages concerning trajectory-based queries. As the insert order defines a kind
of temporal order on the data in various applications, time-based partition-
ing avoids a repartitioning process for new data entries [376]. Moreover,
maintaining equally sized partitions is relatively simple in this approach.

• Parameter-Based Partitioning: Parameter-based partitioning is a strategy
where the spatio-temporal data is distributed on various partitions based
on a parameter, which is additionally stored for each sample point. An ex-
ample of such a parameter could be the status or type of a moving object.
This approach is only relevant for selected use cases, where this specific pa-
rameter is often used to filter the trajectory data (e.g., datasets containing
trajectories of different means of transport). Nevertheless, this approach has

24 2 Background

disadvantages for all other query types compared to the other partitioning
strategies.

• Hybrid Partitioning: Various trajectory data management systems apply hy-
brid partitioning approaches [66, 367, 390]. The most common is a two-
dimensional partitioning strategy, which divides the data on the temporal
dimension first and on a second level on the spatial dimension. This partition-
ing strategy allows efficient data pruning for temporal and spatio-temporal
queries. Also, coordinate-based queries benefit since the partitioning scheme
can limit the relevant data partitions. However, the selection of the parti-
tioning criteria to avoid unbalanced partitions is a non-trivial task. For that
reason, Zhang et al. [390] developed an adaptive approach to optimize the
partitioning scheme and adapt it to changing data characteristics.

2.2.3 Compression

Modern location-acquisition technologies create vast amounts of spatio-temporal
data, which cause expensive costs for storage, transmission, and query process-
ing [392]. To lower communication loads, reduce storage requirements, and opti-
mize data processing, there are different compression approaches for trajectory
data. Besides various general compression techniques provided by modern data
management systems, compression approaches developed explicitly for spatio-
temporal data are applied to minimize the memory footprint. The different
compression techniques are based on (i) trajectory simplification, (ii) represen-
tative trajectories, (iii) semantic compression, or (iv) leveraging spatio-temporal
data characteristics. As most of these approaches are lossy compression tech-
niques, there is always a tradeoff between the compression ratio and the added
maximum error. In general, the higher the compression ratio, the less exact the
accuracy of the compressed trajectory data will be [104, 216].

Trajectory simplification, also known as line generalization, reduces the num-
ber of observed locations required to represent a trajectory [83]. Based on a
distance measure (e.g., perpendicular Euclidean distance or direction-aware dis-
tance), the goal is to find an approximation of the original trajectory with
minimal information loss [379]. There are error-bound algorithms that mini-
mize the number of sample points for a given maximum error and size-bound
algorithms that minimize the maximum error for a given number of sample
points. A well-known example of a trajectory simplification approach is the
Douglas-Peucker (DP) algorithm [83]. The DP algorithm computes the sample
point causing the largest perpendicular Euclidean distance for a given trajec-
tory. Only the two endpoints are kept if the distance is smaller than a specified
maximum error. Otherwise, we split the trajectory at the determined point with
the greatest distance and recursively repeat the process. Several other compres-
sion techniques use trajectory simplification to reduce the number of sample
points [57, 203, 229, 234, 239, 360, 368]. A comprehensive evaluation of different
trajectory simplification algorithms was presented by Zhang et al. [379].

Representative trajectories are another approach to compress spatio-temporal
data. Instead of storing individual trajectories, we cluster similar trajectories
and store only one trajectory with additional information (e.g., the number of
trajectories represented and the included moving objects) for each of these iden-
tified clusters. By applying this compression strategy, we lose knowledge about

2.2 Aspects of Spatio-Temporal Data Management 25

the individual trajectories. An example of this approach is TrajStrore [66]. Tra-
jStrore splits the original trajectories into sub-trajectories and clusters them
into cluster groups. For each cluster group, only one representative trajectory
and meta-information, like the time values and moving object identifier of the
original trajectories, are stored. Zhao et al. [392] developed the REST frame-
work, which also uses reference trajectories to compress trajectory data. The
system addresses the computational issue of determining the reference trajecto-
ries by introducing an efficient greedy algorithm. Similar approaches based on
the aggregation of values are also used for time-series data [161, 255].

Semantic compression is another approach applied in some use cases [159,
204]. It leverages additional geographical information (e.g., road networks) to
compress trajectory data. A map-matching algorithm is applied to assign the
observed locations to defined artifacts (e.g., road segments) [53, 399]. Instead of
the observed location (e.g., GPS coordinates), we can store the trajectory as a
sequence of identifiers (e.g., road segment identifier).

Additionally, other approaches leverage the characteristics of spatio-temporal
data. For example, delta-encoding is applied as the coordinates of successive
points usually only vary slightly [66]. Storing the offset between points requires
less memory but introduces additional data processing overhead.

2.2.4 Time Awareness

For trajectory data management systems, the required time awareness of spatio-
temporal applications impacts memory consumption and query performance.
There are different approaches to storing the temporal component of observed
locations. The selection of a suitable storage concept strongly depends on the
specific use case and the used location-acquisition approach (e.g., sample rate
or precision of the temporal information). In the following, we discuss the three
concepts: sequential order, time interval, and timestamp.

• Sequential Order of Observed Locations: Instead of storing a timestamp for
each sample point, the temporal information in this approach is defined
by the sequential order of the sample points. Consequently, we are able to
reduce the memory consumption (e.g., 4 to 8 bytes to store a timestamp) as
we do not explicitly store the temporal component. This approach is only
suitable for use cases where the specific time is less important (e.g., path
reconstruction). For applications with a fixed sample rate, it is also possible
to save only the timestamp of the first sample point and determine the
timestamps of the subsequent sample points based on the initial timestamp
and the position of the sample point in the sequence of observed locations.

• Time Frames: Another approach is to store the temporal data in fixed-length
time intervals. This concept enables uniform data access for trajectories with
different sample rates. Nevertheless, it increases uncertainty as we lose in-
formation about the exact timestamp. As mentioned in the frame format
(cf. Section 2.2.1), we can leverage that aspect and use the data layout to
store the temporal information implicitly. Consequently, we could reduce
the required memory resources to store a sample point, but we increase the
processing complexity of the several query types.

• Timestamps: The most common approach for spatio-temporal data is to
store the temporal component as a timestamp for each sample point. It

26 2 Background

enables accurate temporal analysis and has high flexibility concerning sample
rates, accuracy, and transmission errors. In this context, the precision of the
timestamp and the selected data format have an impact on the memory
footprint as well as the performance.

2.2.5 Data Placement and Tiering

Data placement is a topic that is strongly related to data partitioning. Especially
in distributed trajectory data management systems, the distribution of data par-
titions on different nodes or storage devices is a complex task. For minimizing
NUMA effects, storing and processing data frequently accessed together on the
same node [267, 268] is optimal. Furthermore, effective data placement strate-
gies must consider the workload characteristics and the corresponding utilization
of computational resources [179]. In this context, the optimization objectives of
approaches that distribute data partitions on different nodes are (i) to enable
efficient parallel data processing, (ii) to balance the load on the computational
resources, and (iii) to reduce the data transfer between nodes. Moreover, differ-
ent approaches consider data replication or optimized additional data structures
on various nodes [192, 201]. Xie et al. [367] presented Elite, an elastic storage
infrastructure for trajectory data. The system enables on-demand provisioning
of storage and computational resources. Also, it introduced a mechanism to al-
locate computational resources based on periodically collected statistics from
nodes and a workload estimator.

Another approach that can improve the capabilities of spatio-temporal data
management systems to handle large amounts of trajectory data is data tiering.
In contrast to traditional data management systems and data management for
time-series data, optimized data tiering approaches are less common for trajec-
tory data [339]. Especially, trajectory storage systems that use main memory as
primary persistency face the challenges posed by the cost of DRAM and the in-
herent problems in scaling DRAM capacities [88]. By transferring data to more
cost-efficient storage devices with higher latencies, the required DRAM resources
can be reduced significantly [35]. In this context, optimized data tiering strate-
gies based on the access frequency of data partitions can significantly reduce
operating costs. However, various trajectory data management systems apply
only simple rule-based approaches that tier data based on specified thresholds
(e.g., data size or timeframes).

2.2.6 Index Structures

To improve the performance of storage systems for spatio-temporal data, a broad
spectrum of indexing approaches was developed [215]. As indexes are auxiliary
data structures, they consume further memory resources, which makes selecting
whether an index should be applied and which one challenging [166]. Modern
database systems enable the application of various standard index structures,
such as B+-trees, to improve the performance of data retrieval operations. More-
over, there are optimized approaches for main memory-optimized database sys-
tems [97, 99]. These general-purpose index structures can be used for various
data types and are not designed for the characteristics of spatio-temporal data.
An approach to optimize the B+-tree for trajectory data is the Bx-tree proposed

2.2 Aspects of Spatio-Temporal Data Management 27

by Jensen et al., which uses a space-filling curve as part of the linearization func-
tion [145, 146]. Chen et al. [58] introduced the ST 2-tree, a self-tunable index
that can be reconfigured automatically to enable B+-trees to adapt to changing
data distributions in spatio-temporal data.

Another method is to apply well-known index structures for spatial data,
such as R-trees, quadtrees, or different optimizations of these approaches [28,
122, 124]. As these data structures are designed to index spatial points and
geometric shapes, they do not consider trajectory data’s temporal component.
Similar to the B+-tree, different index structures for spatio-temporal data have
been developed based on the R-tree [3, 258, 272, 291, 311, 330]. Furthermore,
various other indexing approaches were developed explicitly for spatio-temporal
data or to enhance existing index structures to address the properties of trajec-
tory data [232, 246]. In this context, the indexes are often optimized for specific
access characteristics and application domains. For instance, TrajTree [271] and
Dita [302] are spatio-temporal index structures that are optimized for similarity
search between trajectories.

Additionally, different systems apply hybrid index structures. For instance,
TrajSpark [390] and Elite [367] use a distributed multi-level hybrid index struc-
ture. Both index structures have three levels: the first level is a temporal index,
the second is a spatial index, and the third is a traditional B+ tree. Both systems
also use the index structure to partition the data and divide the trajectory of a
moving object into different trajectory segments. A similar segmentation-based
approach is also used by TrajStore [66] and SETI [47]. SETI uses a two-level
index structure to decouple the spatial and temporal dimensions.

Furthermore, Kreska et al. [173] showed that learned index structures could
be an efficient alternative to traditional indexing concepts for conventional
database systems. Pandey et al. demonstrated the applicability of learned index
structures for the spatial component of trajectory data [245].

2.2.7 Data Access and Interoperability

Another aspect of spatio-temporal data management is to support efficient query
mechanisms for spatio-temporal data and enable interoperability with other sys-
tems or applications. There are different approaches to providing query inter-
faces for trajectory data. For instance, Koubarakis and Kyzirakos developed
stSPARQL [170], an extension of SPARQL to query spatio-temporal RDF data.
Furthermore, there are different enhancements for the SQL standard to improve
the handling of temporal, spatial, and spatio-temporal data. TSQL2 (Temporal
Structured Query Language) is a temporal extension for SQL [309]. Addition-
ally, there are different approaches to extending SQL to store and manipulate
spatial data structures [18, 91, 182, 289]. Specially designed for spatio-temporal
data are the language extensions STQL (Spatio-Temporal Query Language) [95]
and SQLST [54]. Both approaches add a set of temporal and spatial operators
(e.g., a meet operator that identifies moving objects that were in the same
place at the same time) to facilitate the querying of trajectory data. Further-
more, the integration of spatial and spatio-temporal capabilities into relational
database systems simplifies the integration of other data sources. Therefore, dif-
ferent database vendors include spatio-temporal data management capabilities
in their systems [117, 217, 352, 391].

28 2 Background

2.3 Columnar In-Memory Data Management Systems

The workload-driven optimization approaches for spatio-temporal data intro-
duced in this thesis are built for relational, column-oriented in-memory database
systems. As the concepts of column orientation and in-memory computing have
an impact on different aspects of our implementation, we explain these con-
cepts in Section 2.3.1. Furthermore, we describe the research database Hyrise
and depict how our optimization approaches leverage the storage concepts of
Hyrise.

2.3.1 Storage Concepts of In-Memory Column Stores

By storing data on fast dynamic random access memory (DRAM) instead of
relatively slow solid-state drives (SSDs) or hard disk drives (HDDs), in-memory
database systems outperform traditional database systems. In contrast to con-
ventional buffer-cache-based databases built under the assumption that not
all data fits into main memory, in-memory databases keep the entire data in
DRAM [264]. For decades, database systems were forced to store the data on
slower storage mediums with higher capacities (e.g., hard drives) based on lim-
ited DRAM resources. To mitigate the orders of magnitude access latency dif-
ferences between DRAM and disk (cf. Figure 2.3), the data was loaded into the
main memory buffer cache (also known as buffer pool) when it was accessed
and kept there until it was evicted by loading other data into DRAM. Almost
all data in such database systems are mapped to database pages, which are
fixed-sized blocks of several Kilobytes (e.g., 8KB or larger is typical) and have
the same representation both on disk and in main memory to avoid transla-
tion overheads [97]. When the database accesses data, it first performs a lookup
to determine whether the corresponding database page is located in the buffer
cache. If the page is not in the main memory, an I/O operation to load the
page into the buffer cache is triggered. As DRAM accesses are significantly less
expensive than disk accesses, an efficient buffer cache management, including
optimized prefetching and eviction strategies, was needed to benefit from the
faster DRAM performance as often as possible [324, 325]. Based on different
drawbacks of operating systems caches for database workloads, the implemen-
tation of these caches was integrated into the DBMS, which further increases
the complexity of DBMS architectures [131, 313].

With increasing capacities and decreasing prices of DRAM, it became viable
to store all data in the main memory and avoid page-based indirections [261].
Färber et al. [97] stated that avoiding the buffer cache indirection can boost
the performance of database systems up to an order of magnitude by bypassing
indirections to resolve physical record pointers and page-level latch contention in
the buffer cache. Instead of data access via database pages, most main memory-
optimized database systems use pointers for direct memory access.

The first in-memory database widely used in productive systems was SAP
HANA, introduced in 2010 [98]. In the following years, all major vendors intro-
duced their own in-memory database systems, including Oracle TimesTen [177]
and Microsoft SQL Server Hekaton [78]. Additionally, there is a wide range of
in-memory research databases, such as HyPer [160] or H-Store [156]. A more
detailed overview of main memory database systems is provided by Färber et
al. [97] as well as Zhang et al. [381].

2.3 Columnar In-Memory Data Management Systems 29

HDD

SSD

NVM

DRAM

CPU
L3 Cache

…

…

Latency
(read access)

15 ns

60 ns

150 ns

30 μs

Capacity

< 50 MB
per CPU

128 GB
per DIMM

512 GB
per DIMM

2 TB
per SSD 1.30 $

0.03 $

Price
(per GB)

3-13 $

10 ms

7.6 $

18 TB
per HDD

Fig. 2.3: The memory and storage hierarchy, including key performance
figures. Numbers are only given for reference and vary from product to
product. Figure partially based on data taken from [17, 19, 139, 299].

As displayed in Figure 2.3, CPU caches have a significantly faster access
latency compared to DRAM. Conversely, these caches have a limited capacity,
which requires efficient utilization of the available cache slots and sophisticated
caching strategies. In this context, DBMSs have to optimize the utilization of
CPU cycles and memory bandwidth [260]. Based on modern CPUs’ increased
performance that exceeds the advances in memory latency, DRAM access rep-
resents a performance bottleneck for database systems [36]. The cache manage-
ment is performed on the granularity of cache lines. Based on the cache size,
the cache can hold a limited number of cache lines, which represent a fixed-size
block of the memory. The size of the cache lines depends on the CPU archi-
tecture (e.g., 32, 64, or 128 Bytes). In the context of this discussion, we stick
to the 64 Bytes of current Intel Xeon architectures. Based on this concept, an
entire cache line is transferred even if only a single 8-Byte word is accessed.
Consequently, 56 additional Bytes have to be transferred. To increase efficiency,
we have to optimize the data organization to ensure that all data of a cache line
can be used.

Latitude
x1

Longitude
y1

Timestamp
t1

Row
Layout

Column
Layout

ID
1

… … …

Latitude
x2

Longitude
y2

Timestamp
t2

ID
2

Latitude
x3

Longitude
y3

Timestamp
t3

ID
3 …

ID
1

ID
2

ID
3

Latitude
x1

Latitude
x2

Latitude
x3

Longitude
y1

Longitude
y2

Longitude
y3

Timestamp
t1

Timestamp
t2

Timestamp
t3

…

0 640 Cache Line

Cache Line 0

Column Scan

Column Scan

Row Materialization

Row Materialization

Fig. 2.4: Visualization of a row-oriented and column-oriented storage lay-
out in the case of the exemplary table from Figure 1.1 with the four columns:
ID, Longitude, Latitude, and Timestamp.

30 2 Background

In relational database systems, the data is organized in two-dimensional
tables with rows and columns. To store the data of a table on conceptually
one-dimensional memory, there are two approaches, the row-oriented and the
column-oriented storage format. As an example, we use the table introduced in
Figure 1.1 with four columns. As shown in Figure 2.4, in a row-oriented format
(top), all values of a row are stored contiguously. Furthermore, the tuples of
different rows are stored successively. This storage format is beneficial for single
tuple access (e.g., row materialization) as only a limited number of cache lines
have to be transferred. In the example, all values of the observed location with
the identifier 2 fit into a single cache line. In contrast, we have a less efficient
cache line utilization for column scan operations. The specific values of the
entries are stored one tuple size apart for each column. If we perform a scan
operation on the Timestamp column, the visualized 64 Byte cache line only
contains 16 Bytes of relevant information (i.e., two timestamp entries of 8-
Byte). Here, we only use 25% of the cache line and correspondingly waste 75%
of the memory bandwidth. This ratio can become even worse through additional
columns so that only a single byte is used per 64 Byte cache line.

In the column-oriented layout (bottom), all values of a column are stored
contiguously and the different columns are stored successively. Based on this
layout, a scan operation on the Timestamp column is able to utilize the entire
cache line. Especially for large tables, a high cache line efficiency can be achieved
as no memory bandwidth is wasted. A drawback of the columnar layout is that
the materialization of a row is significantly more expensive. Generally, one cache
line must be transmitted for each table column. Due to the clear advantages and
disadvantages of both storage formats for specific workload characteristics, there
a different hybrid approaches that try to find an optimal combination of row- and
column-oriented storage formats [20, 35, 116, 260]. The tradeoff between row-
oriented and column-oriented layouts has been studied in more detail by Abadi
et al. [2] and Zukowski et al. [404]. Already in 1985, Copeland and Koshafian
performed a comprehensive analysis of the two storage formats. The columnar
layout is referred to as the decomposition storage model in their work.

2.3.2 Hyrise: A Relational Columnar In-Memory Research
Databases

For the evaluation of our workload-driven optimization approaches for spatio-
temporal data, we use the relational research database Hyrise. Hyrise is a colum-
nar main memory-optimized database. Each table in Hyrise is implicitly divided
into horizontal partitions with a predefined maximum size (see Figure 2.5). A
partition, called chunk, contains fragments of all columns of a table, whereby
the section of a column stored in a chunk is referred to as a segment. There
are two types of chunks, mutable and immutable chunks. Only the most recent
chunk is mutable, and consequently, all insertions, as well as MVCC-enabled
updates, are appended to this unencoded chunk. When this write-optimized
chunk’s capacity is reached, it becomes immutable, and a new mutable chunk is
created. A disadvantage of this approach is that we increase the memory foot-
print by additionally storing per-chunk metadata and redundant information
(e.g., per-segment dictionaries for dictionary-encoded segments). In exchange,
the database system can benefit from pruning during query execution, distribut-
ing the workload more efficiently, and applying fine-grained optimizations of

2.3 Columnar In-Memory Data Management Systems 31

Table

St
or

ag
e

#0
St

or
ag

e
#1

Ch
un

k
#0

Ch
un

k
#1

Ch
un

k
#m mutable

Ordering
Unsorted

immutable
Ordering

Column b

immutable
Ordering

Column c

Ch
un

k
#2

Ch
un

k
#n immutable

Ordering
Unsorted

immutable
Ordering

Column b

Column a
Object ID

Column b
Longitude

Column c
Latitude

Column d
Timestamp

… … ……

Segment a
Unencoded

Index 1

Segment a
Compression B

Segment b
Unencoded

Segment b
Compression C

Segment b
Compression B

Segment c
Unencoded

Segment d
Unencoded

Segment c
Compression B

Index 2

Index 1

Segment c
Unencoded

Segment d
Compression A

Segment d
Compression C

…

Index 1

Segment a
Compression B

… ……

Segment a
Unencoded

Segment b
Unencoded

Segment a
Compression B

Segment b
Compression C

Segment c
Unencoded

Segment d
Unencoded

Index 2

Segment d
Compression A

Segment c
Compression B

… … ……

Fig. 2.5: Depiction of the storage layout for an exemplary table configura-
tion for two storage devices. Besides the allocation decision, we are able to
select for each segment a compression, indexing, and sorting tuning option.

table configurations. For these reasons, similar concepts are applied by various
databases [178, 248, 252].

Fine-grained table configurations enable the application of different tuning
approaches for various data chunks and segments of a table. Consequently, the
configuration of different parts of the data can be optimized for specific work-
loads and data characteristics. Hyrise provides different tuning options, such
as the sorting, indexing, and compression configuration of a chunk [282]. Also,
Hyrise supports the tiering of entire chunks or segments to more cost-effective
storage devices (e.g., NVRAM or SSD), cf, Figure 2.3. Hyrise uses C++’s poly-
morphic memory resources to provide a uniform interface that allows allocating
data in DRAM, NVRAM, or on block devices using UMap [84]. UMap [256, 257]
is a user-space page fault handler that allows – in contrast to mmap – limiting
the buffer size of cached pages. This implementation enables Hyrise to store
data on multiple storage devices.

All these configuration decisions have an impact on the system’s performance
and memory consumption. For in-memory databases, the used DRAM capacities
are an important cost factor [31, 237]. Concerning spatio-temporal data volumes,
minimizing the memory footprint can significantly reduce the system’s operating
costs. Different tuning options reduce the memory consumption but also have
implications on the performance, which are difficult to estimate for database

32 2 Background

administrators [13, 38, 58]. Consequently, various vendors apply relatively simple
threshold-based approaches. Based on a defined threshold (e.g., data volume),
data partitions are transferred to lower-cost storage mediums.

The developed optimization approaches introduced in this thesis are not
limited to the application in Hyrise. All concepts can be adapted and applied
to various relational data management systems. Furthermore, the different op-
timizations are particularly efficient for databases that partition the data and
enable the application of different tuning options for various data partitions.

2.4 Summary

In this chapter, we introduced a framework (cf. Section 2.1) that summarizes and
formalizes the entire process of trajectory data mining. Based on the trajectory
data mining framework, we explained the challenges of the different process steps
and described the specific characteristics of spatio-temporal data and applica-
tions. Afterward, we focused on the data management of spatio-temporal data
(cf. Section 2.2). We classified and discussed different optimization approaches
to enhance the storing and processing of trajectory data. In this context, we
identified that there is a broad spectrum of optimizations (e.g., compression
techniques or index structures) designed for specific application domains and
that it is challenging to estimate the effectiveness of these application-specific
approaches for other application characteristics (e.g., sample rate or access pat-
terns). Furthermore, we explained the theoretical foundations of columnar in-
memory databases (cf. Section 2.3) as these have an impact on different aspects
of our data management optimizations for spatio-temporal data. Finally, we
described the research database Hyrise and depicted how our optimization ap-
proaches leverage the storage concepts of Hyrise.

3

Related Work

In this chapter, we discuss existing approaches for spatio-temporal data manage-
ment systems (Section 3.1) as well as workload-based and data-aware database
optimizations (Section 3.2). In this context, we discuss how existing concepts
and systems relate to our approaches.

3.1 Spatio-Temporal Data Management Systems

In recent years, several systems have been developed to store and process large
amounts of spatio-temporal data, which are accumulated in different applica-
tions (cf. Section 1.1). In this context, the design of the various systems strongly
depends on the characteristics of the addressed use case and different corre-
sponding optimization objectives: (i) scalability, (ii) memory footprint reduc-
tion, (iii) elasticity, (iv) efficiency, or (v) query performance.

An approach to storing trajectory data is to use data management systems
for spatial data, which provide support for different geospatial operations. Var-
ious systems, such as SpatialHadoop [94], SpatialSpark [390], Simba [366], or
LoacationSpark [328], were primarily designed to store spatial data points, but
also used for trajectory data. For the object-rational database PostgreSQL, the
spatial extension PostGIS adds support for geographic objects allowing users to
formulate geospatial queries in SQL [383]. Based on PostgreSQL and PostGIS,
Zimányi et al. [403] developed MobilityDB, a moving objects database that ex-
tends the existing implementation by time-varying data types. As the system
uses the existing operations, indexing, and optimizations, it benefits from the
enhancements done to PostgreSQL and PostGIS. Our optimization approach
follows a similar concept by improving the data management of general-purpose
databases (e.g., Hyrise) for trajectory data. The spatial extensions of disk-based
databases, such as PostGIS, MySQL, or Oracle Spatial, provide rich features and
functions for geospatial data and queries but fall behind when performance is
considered [244]. This is especially the case if interactive analysis on the latest
transactional geographical data is a requirement. Pandey et al. [244] presented
HyPerSpace, a spatial extension to the main-memory database HyPer to enable
high-performance geospatial processing in a general-purpose database system.

Furthermore, with the increased availability of spatio-temporal data, special-
ized data management systems were built for different system infrastructures
to address the specific characteristics of trajectory data further. TrajStore is a

34 3 Related Work

disk-based dynamic storage system for spatio-temporal trajectory data devel-
oped by Cudre-Mauroux et al. [66]. The approach slices trajectories in multiple
sub-trajectories and co-locates trajectory segments that are geographically and
temporally near to each other. The system uses a quadtree as a spatial index
to divide the trajectory segments into spatio-temporal regions. Afterward, the
data of each region is densely packed in a block on disk, called a cell. Each cell
is represented by one or more disk pages. Within a cell, the sample points of
the sub-trajectories are chronologically ordered, and delta encoding is used to
reduce the data footprint. Additionally, the system uses cluster-based compres-
sion to cluster similar sub-trajectories in each cell into cluster groups and store
only one representative trajectory per group. Instead of keeping the individual
sample points of the trajectories, only the representative trajectory and the time
intervals of the original trajectories are stored for each cluster group. The stor-
age structure of TrajStore is optimized for spatial queries over specific regions
with relatively large time bounds. Since the data is stored on disk, the query
execution time is dominated by disk access. Therefore, the primary evaluation
and optimization criterion is the number of disk seeks.

Wang et al. developed SharkDB, an in-memory column-oriented trajectory
store [353]. The system uses a hierarchical I/P frame approach to store and com-
press the raw trajectory data in a column-oriented data structure. Based on the
characteristics of the trajectory data, the temporal space is divided into frames
with a fixed time interval. Afterward, each sample point is exactly allocated to
one frame based on its timestamp. The information about the accurate times-
tamp gets lost by assigning sample points to defined frames. This increases the
uncertainty, especially for larger frame intervals. Additionally, the approach pro-
duces a lot of null values for heterogeneous trajectories with different sampling
strategies and sampling rates. Furthermore, adopting the time intervals based
on changing application requirements or data characteristics requires a time-
intensive reorganization of the data structure. To reduce memory consumption,
the sequence of frames representing a trajectory is divided into frame groups,
which consist of a fixed number of consecutive frames. The first frame of each
frame group is defined as an I-frame and is stored uncompressed. All other
frames of a frame group are P-frames, which are stored delta encoded. Based on
the frame groups, the system uses a hierarchical storage structure to increase the
scan performance. The frame groups of the raw trajectory represent the lowest
level of the hierarchical storage structure. The higher levels of the structure use
the same I/P frame storage approach but only include the data of the I-frames
of the lower level. The approach of SharkDB was adopted to a columnar table
scheme and integrated into SAP HANA [352]. Due to the storage concept, find-
ing a specific sample point or a set of trajectories in a particular area can be
time-intensive as the system has to scan several columns.

Elite is an elastic infrastructure for spatio-temporal trajectory data devel-
oped by Xie et al. [367]. It is a peer-to-peer storage and index schema for elastic
storage and query processing. The system’s design focuses on efficiently process-
ing spatio-temporal range queries and nearest-neighbor queries. The approach
combines online transactional data processing and online analytical processing
for large trajectory datasets and supports the processing of uncertain trajectory
data. One of the key aspects is the on-demand provisioning of computational re-
sources to accelerate query processing. In general, the indexing concept consists
of three layers distributed across all system nodes. The first layer is represented

3.1 Spatio-Temporal Data Management Systems 35

by a skip list that partitions the temporal domain into a set of time intervals.
Each time interval is assigned to a torus, which is the second index layer. In the
system, a torus corresponds to a cluster of nodes, whereby each node stores a
specific subset of the data and routing table about its neighboring nodes. The
routing table includes the IP addresses of the neighbors and their date ranges.
For the communication between the different nodes of a torus, the CAN routing
schema is used [273]. The third layer consists of an oct-tree and a hash table. The
oct-tree is used to store the sample points of the trajectory and the hash table
is used to map a trajectory’s ID to its observed locations. The flexibility of the
distributed system enables the on-demand allocation of storage and computa-
tional resources but also leads to additional routing overhead and data transfer
between different nodes. Additionally, the system is a standalone solution to
analyze large amounts of trajectory data, which complicates the integration of
other data sources.

TrajSpark is a Spark-based trajectory data management system developed
by Zhang et al. [390]. In contrast to LocationSpark [328], GeoSpark [373], or
SpatialSpark [372], which use point-based partitioning and indexing strategies
optimized for independent points, TrajSpark attempts to leverage the chronolog-
ical order and characteristics of trajectories to increase the query performance.
The system stores the trajectory data in segments, delta encoded and ordered
by moving object identifiers in TRDDs, which is an adapted version of Spark’s
Resilient Distributed Datasets (RDDs). While TRDD only supports sequential
scans, a multi-level IndexTRDD is introduced to improve the query perfor-
mance. The IndexTRDD consists of a local and a global index structure. The
first level of the global index is a temporal range index. The second level is a
spatial quadtree and the last level is a traditional B+ tree. To adjust the applied
data partitioning strategy to changes in the data distribution, the system uses
a time-decay model. By monitoring the data distribution, the system creates
a new spatial index to partition the data if the distribution of recently loaded
data has greatly changed and exceeds a given threshold. In this context, the JSD
distance is used to measure the difference between two data distributions [242].

UlTraMan developed by Ding et al. [79] is another data management sys-
tem for trajectory data based on the distributed computing framework Spark.
To avoid the usage of heterogeneous systems for data storage, processing, and
analysis, UlTraMan provides a unified engine for a holistic trajectory data man-
agement and analytics solution. It has a flexible application interface, which
supports customizable data organization, preprocessing, and analysis pipelines.
By integrating pluggable components (e.g., index structures or processing tech-
niques), the systems can be adapted to the requirements of different analysis sce-
narios. As many important techniques and optimizations are realized based on
random data access (e.g., hash-maps or indexes), the authors enhanced Spark’s
RDDs, which facilitate sequential operations on the data, and integrated an
abstraction called TrajDataset. This abstraction enables random access at both
local and global levels. The flexible system design allows UlTraMan to be used
in diverse application scenarios, but the implications of the different pluggable
components on the memory footprint and performance are hard to estimate.
Based on UlTraMan, Fang et al. [96] developed Dragoon, a hybrid system for
integrated offline and online scalable trajectory data management and analytics.

Another distributed in-memory trajectory analytics system based on Spark
is DITA [302]. In contrast to other systems, DITA is optimized for trajectory

36 3 Related Work

similarity search and join operations. It can support the most widely adopted
similarity functions (e.g., Fréchet distance) to quantify the similarity between
trajectories. Based on a set of selected representative points, called pivots, the
system creates a trie-like structure to index the pivots and effectively prune
irrelevant partitions and dissimilar trajectories.

CloST is a spatio-temporal data storage system to support data analytics
using Hadoop [327]. The main design objective of the system is to avoid scanning
the entire dataset to process spatio-temporal range queries. Therefore, CloST
stores the data in a table and partitions it hierarchically into blocks using all the
core attributes: (i) object identifier, (ii) spatial location, and (iii) time. First, the
data is partitioned based on the hash values of the object identifier and coarse
time ranges. Second, the resulting partitions are further divided into second-
level partitions according to a spatial index. Finally, each second-level partition
is divided into a number of third-level partitions based on finer time ranges. In
this context, the third-level partitions contain the actual records and higher-
level partitions serve as indexes. Each third-level partition, called a block, is
stored in a block file layout as a regular file on HDFS. The block file layout
groups the records of a moving object and stores each group in a file section.
The values are sorted by time for each section and organized in a column-
store fashion. Each column is compressed with delta or run-length encoding for
numeric values or gzip for non-numeric values to reduce the memory footprint.
Additionally, each section is compressed again using gzip to reduce the data
size further. To optimize the data distribution on blocks, CloST introduces a
storage optimizer that periodically tunes the spatial and temporal partitioning
based on the query log.

Li et al. [194] developed TrajMesa a distributed NoSQL trajectory query
engine based on GeoMesa, an open-source indexing toolkit for spatio-temporal
data [143]. Based on the precondition that disk storage costs are significantly
cheaper than computing costs, TrajMesa stores two copies of trajectory data
with different carefully designed keys in different tables. By using two storage
approaches and indexes optimized for different access patterns, the system im-
proves query processing by selecting the best-suited storage configuration for
a given query. Based on the higher DRAM storage costs, our approach opti-
mizes different partitions of the data for the occurring access patterns instead
of storing multiple versions of the data.

3.2 Database Optimizations Based on Data and Workload
Characteristics

This section focuses on approaches to optimize the selection of database tun-
ing options based on workload and data characteristics. In this context, we
briefly discuss (i) data compression, (ii) indexing, and (iii) data tiering. Fur-
thermore, we analyze (iv) tuning approaches to jointly optimize multiple tuning
configurations and (v) data type-specific optimizations for storing timestamps
in databases.

3.2 Database Optimizations Based on Data and Workload Characteristics 37

3.2.1 Compression Scheme Selection

For DBMS, data compression is essential to reduce the used storage resources
and, consequently, the operation costs of such systems [270]. Moreover, it allows
efficient processing (e.g., vectorization using SIMD instructions) and mitigates
bandwidth bottlenecks [32, 184]. On the negative side, data compression can lead
to reduced performance for CPU-bound applications as additional CPU cycles
are used to compress and uncompress the data [162, 362]. Based on the applied
compression technique and implementation details of compression approaches,
the performance and compression ratio can vary significantly [1, 68, 136]. More-
over, application-specific data characteristics and access patterns strongly in-
fluence the performance of compression approaches, making selecting efficient
compression schemes complex [33]. As these implications are hard to estimate,
DBAs apply data encoding only conservatively to avoid a negative impact on
the runtime performance [32].

Based on the column-oriented database C-Store [315], Abadi et al. [1] pre-
sented an extension, which supports various compression schemes allowing oper-
ations directly on compressed data. Moreover, the authors introduced a decision
tree-based approach to aid DBAs in deciding how to compress a specific column.
The selection is based on workload and data properties but does not adapt to
changing environments nor consider memory budgets. A similar approach was
proposed by Lemire et al. [190] for integer data. They defined a set of rules to
choose between different encodings.

For the database HyPer [160], Lang et al. [178] presented the concept of data
blocks. Similar to our research database Hyrise (cf. Section 2.3.2), the system
divides the data of a table into fixed-size chunks. Each data block is a self-
contained container that stores one or more attribute chunks in a compressed
format. The system supports different byte-addressable compression techniques
(single value compression, ordered dictionary encoding, and truncation) to en-
able efficient point access. For each data block, it selects a compression scheme
statically concerning the resulting memory consumption based on data charac-
teristics. As each data block is self-contained, the chosen compression per at-
tribute is limited to the corresponding data block. This blockwise compression
is similar to our approach, where we independently apply different chunk-based
or segment-based tuning options (e.g., encodings or indexes). A drawback of
this approach is that we have an increased memory consumption caused by re-
dundancy (e.g., identical entries in multiple dictionaries). However, it enables
the selection of an optimized compression scheme for each column in each block,
which can amortize the overhead [178].

Cen et al. [45] introduced the Learned Encoding Advisor (LEA), a learned
approach to column encoding selection. LEA can optimize the compression
scheme for encoded size, end-to-end scan performance on the target system, or
a combination of the two. To leverage localized correlations in data, it enables
fine-grained optimizations by selecting an encoding per column and block. LEA
has two phases, a training phase and an inference phase. In the training phase,
it trains three internal models for each encoding type to predict the encoded size
(one model) and the overall scan time for the column (two models that work
together) based on synthetic training data. In the inference phase, the system
uses data statistics (e.g., cardinality, min/max) and sample statistics to predict
the optimal encoding using random forest and linear regression. CodecDB [150]

38 3 Related Work

models the encoding selection as a learning-to-rank problem. Based on data
characteristics (e.g., value length, cardinality ratio, and sortedness), the system
trains a model to estimate the compression ratio of a given encoding scheme on a
dataset. For the training, different real-world datasets are used. CodecDB selects
the compression scheme with the best estimated compression ratio. In contrast
to LEA, CodecDB does not consider workload characteristics. Both approaches
do not take into account memory budgets, robustness, or reconfiguration costs.

By analyzing light-weight integer compression, Damme et al. [69] found
that sophisticated compression techniques can have significant impacts on both
performance and compression ratios. The authors indicate that consideration of
multiple dimensions is necessary to determine which technique is the best for
a specific scenario. Also, Raman and Swart [270] presented a method based on
a mix of column and tuple coding that leverages successive similar values and
correlations of sorted relations to improve data compression for row-oriented
databases. Based on similar observations and the fact that different decisions
influence each other, we propose a joint optimization. For example, the sorting
decision has a major impact on the data characteristics and, consequently, on
the compression ratio of different approaches (e.g., run-length encoding). Addi-
tionally, the sorting of a column has an impact on the runtime, which can lead
to obsolete auxiliary data structures.

Boissier and Jendruk [33] introduced a workload-driven selection of com-
pression configurations with memory constraints for columnar databases. The
approach uses a greedy heuristic to determine configurations based on data char-
acteristics and estimated runtime performances via regression models. Further-
more, Boissier [32] presented a linear integer programming approach that yields
optimal configurations and a greedy hybrid heuristic as an efficient and scalable
solution for the compression scheme selection problem. The author presented
two enhancements of the linear programming approach to achieve robustness
by avoiding unexpected performance regressions. The first enhancement enables
DBAs to define constraints on single query runtime changes. As the presented
LP-based approach optimizes the cumulative workload runtime, several deter-
mined configurations can improve the overall runtime but increase the runtime
for a specific query. To avoid these scenarios, the DBA can define a set of queries
and a maximal runtime factor for these queries. By including these constraints in
the model, performance requirements for individual queries can be guaranteed.
The second enhancement focuses on equally distributed performance gains. The
purpose of this adaption is to enforce that all workload queries have a similar
relative runtime change compared to their optimal performance. To lower the
chances of unexpected performance regressions, we also included an extension
in our approach to determine robust configurations. In contrast to individual
query runtimes, we focus on robustness concerning different potential workload
scenarios.

In practice, many DBMSs solve the problem by defining a default encoding
per data type with acceptable performance for different data and workload char-
acteristics [150]. Although various commercial databases provide the means to
estimate the impact of compression, they do not apply a compression selection
mechanism that is fully exploiting the potential of automated workload-driven
column compression [32]. Furthermore, none of the presented approaches consid-
ers the impact of other tuning options on the compression scheme selection. For
instance, additional data structures (e.g., indexes) significantly affect memory

3.2 Database Optimizations Based on Data and Workload Characteristics 39

consumption and the performance of database operations, which can signifi-
cantly impact the compression scheme selection process.

3.2.2 Index Tuning

The performance of certain database operations can be improved by apply-
ing auxiliary data structures such as secondary indexes. Accordingly, various
indexing approaches optimized for specific access patterns or data types have
been developed to reduce the runtime. For instance, there are different spatio-
temporal index structures (cf. Section 2.2.6). In general, there is a tradeoff
between performance improvements and the necessary memory consumption.
While the performance of a DBMS is an important aspect for DBAs, the oper-
ating costs caused by the used memory resources represent a significant factor of
the operation costs [380]. The efficiency of an applied index structure strongly
depends on the workload and data characteristics. Therefore, indexes do not
always accelerate performance. Due to expensive maintenance operations for
indexes as well as specific access types (e.g., filter operations with low selectiv-
ity), the usage of additional indexes can even increase the workload processing
time [115, 245].

Zhang et al. [390] observed that the characteristics of spatio-temporal data
change over time, which leads to a decreased efficiency of data structures (e.g.,
indexes). They proposed a time-decay model to monitor the data distribution
and adopt the used indexing schema accordingly. In the proposed multi-level
index structure, they first divide the data into time ranges according to the
temporal component and maintain for each time range an independent spatial
index. To adapt to density and distribution changes over time and consider
different densities between regions, Chen et al. [58] developed the Self-Tunable
Spatio-Temporal B+-Tree index (ST2B-Tree). The index is based on a tradi-
tional B+-Tree and requires no modification of the basic structure. The keys
of the B+-Tree are composed of a temporal and a spatial component. In this
context, a Voronoi cell approach with a configurable number of reference points
is used for the data partitioning. The grid granularity is determined by the ob-
ject density around a reference point. Based on frequent updates to subtrees,
the system can rebuild and optimize a subtree using a different set of reference
points and grid size without significant overhead. In contrast to static index
structures, these approaches are able to adjust and optimize the indexing con-
cerning dataset and workload changes. However, they are not designed to decide
whether it is beneficial to apply an index for a given workload nor to consider
any memory limitations.

An approach to reduce the memory footprint of indexes are partial index
structures [300]. Instead of indexing a complete set of tuples of a table, partial
indexes include only a subset of tuples [314]. Partial indexes are especially ben-
eficial if a set of tuples is accessed in a high percentage of requests and have a
relatively low update rate [108]. Considering the often tremendous memory re-
quirements of full table indexes, an advantage of partial index structures is that
they are suitable for self-tuning and can grow or even shrink on demand [294].
Fuentes et al. [108] propose a tuning process that considers solutions contain-
ing partial and full table indexes. For the selection of partial index structures,
the approach determines the set of indexable attributes and the set of possible

40 3 Related Work

restrictions by analyzing a given workload. Based on a profit function, only par-
tial indexes that have a greater benefit than a defined threshold compared to
a full index are considered. The final configuration is determined based on an
algorithm that stepwise adds index candidates to the final configuration that
minimizes the execution costs for the given workload.

Based on horizontal partitioning, different systems enable the creation of
partition-wise index structures [48, 86]. Wu and Madden [364] developed Shi-
nobi, a system that determines an optimal set of non-overlapping range parti-
tions and chooses indexes for each partition to maximize workload performance.
It only indexes frequently accessed partitions. By applying indexes partition-
wise, the costs of creating and maintaining an index on a single partition be-
come cheaper, which enables the system to perform fine-grained optimizations.
In contrast to the traditional full table indexes, the index must not always be
updated when a tuple is inserted, updated, or deleted. Instead, only the index
of the corresponding partition has to be adopted by data modifications. Ad-
ditionally, they propose an algorithm to maintain the partitions as workloads
change. To avoid a lookup operation for each partition’s index to be executed for
specific search conditions, Weisgut [361] proposed a partial index that is created
table-wise but that stores only index entries for frequently accessed partitions.
Thus, partition indexes are more efficient in terms of memory consumption as
they can selectively index data, whereas a full table index contains index entries
for all tuples of a table. Especially for trajectory data, partial index structures
can be beneficial as full table spatio-temporal index structures can have a high
memory footprint. Moreover, index structures optimized for the specific access
patterns of different partitions can improve performance. For example, Ray et
al. described a spatio-temporal index in which the spatial domain is organized
as grid cells and a partial temporal index is maintained for each grid cell. The
partial temporal index is applied with finer intervals for more recent data and
with coarser granular intervals for older data.

Based on the high number of possible index candidates, the selection of an
efficient configuration is challenging. Different database systems support only a
limited set of index structures and have varying implementations that impact
the performance. Moreover, based on the application-specific data and workload
characteristics, the efficiency of index structures can vary significantly. Schlosser
et al. [295] introduced a workload-driven index selection approach that builds on
a recursive mechanism and accounts for index interaction. In contrast to other
approaches, the presented strategy also allows the scalable computation of index
configurations for large workloads. Kimura et al. [162] presented an index selec-
tion approach that selects viable secondary indexes and considers compressed
alternatives for each index based on a given memory budget. In this context,
they focus on accurate index size estimations. This index size-aware approach
uses a heuristic to prune index candidates and configurations of candidates. A
greedy selection of indexes was developed for IBM DB2 by Valentin et al. [342].
Based on a ratio between the runtime improvement and memory consumption,
the index configuration is determined by a greedy heuristic. To account for in-
dex interactions, the determined configuration is randomly shuffled in search of
potentially better configurations. SWIRL [167] is an index selection algorithm
that applies reinforcement learning and requires a preliminary training proce-
dure. The training effort is then traded off against runtime performance, which
is especially relevant for cloud-based applications. In contrast to other solutions

3.2 Database Optimizations Based on Data and Workload Characteristics 41

that have to interactively test multiple configurations to find a suitable config-
uration, SWIRL learns which indexes are beneficial under what circumstances
in a training phase.

Caprara et al. [44] formulated the index selection problem as an integer
linear programming model. For a given workload, a set of index candidates,
and a total amount of memory available for secondary indexes, it selects a
set of indexes that minimizes the execution time under consideration of index
candidate-specific maintenance costs. To achieve a manageable model complex-
ity, they restrict that for every query, at most, one index is used to retrieve
the tuples. Thus, opportunities that arise when multiple indexes exist simulta-
neously are not taken into account. Another linear programming-based index
advisor is CoPhy, developed by Dash et al. [73]. In contrast to the approach
presented by Caprara et al., CoPhy supports the utilization of multiple indexes
per query and incorporates multiple query plans potentially chosen by the query
optimizer depending on different index configurations. What-if cost estimations
are used to determine the costs of executing a query using a given index configu-
ration and maintaining the index configuration. Furthermore, the model allows
additional constraints, such as index constraints (e.g., limiting the size, con-
tained columns, and column width) or performance constraints (e.g., a specific
speed up compared to an initial index configuration). An exhaustive evaluation
of different index selection approaches was done by Kossmann et al. [166].

All these approaches determine optimized index configurations, but they do
not consider the possibility of different compression techniques to minimize the
data footprint and create further space for auxiliary data structures. In this
context, the definition of memory budgets reserved for auxiliary data structures
is challenging for DBAs. Additionally, various approaches use heuristics based
on the large solution space (the number of attributes and attributes per in-
dex), where further optimization approaches can be considered that leverage
the limited number of index candidates for spatio-temporal data.

3.2.3 Data Tiering Decisions

This section focuses on data placement strategies for modern multi-tier DBMS
architectures. In this context, we distinguish between caching and tiering strate-
gies. The difference between these approaches is that caching strategies maintain
a buffer cache to overcome capacity limitations by loading temporary copies of
the data stored on secondary storage devices (e.g., HDD or SSD) into DRAM
if accessed. In contrast, tiering strategies migrate the original data between
multiple tiers [139].

In general, relational database systems are designed for a specific storage
class and do not cope well with multitudes of storage devices [348]. For in-
stance, traditional DBMSs such as PostgresSQL [316] and MySQL are optimized
for HDD as the primary storage class and maintain only a small buffer cache in
DRAM to mitigate the HDD latency and capacity limitations of DRAM. There
are different eviction strategies to efficiently maintain the buffer cache and min-
imize cost-intensive page misses [63, 185]. Based on the workload characteristics
of modern database systems (e.g., OLAP workloads with large, sequential ta-
ble scans), buffer management approaches applied by operating systems (e.g.,
last recently used) are insufficient, as operation system-specific access charac-
teristics differ significantly [62]. Consequently, different DBMSs choose to im-

42 3 Related Work

plement a DBMS-managed buffer pool in user space [313]. Furthermore, various
approaches have been developed and optimized for specific storage classes to
address the characteristics of the storage classes (e.g., capacity limitations and
latency differences). For instance, there are approaches to cache data stored on
SSD in DRAM [151, 152, 340] or to avoid time-consuming data access on HDD
by maintaining a cache on SSD [22, 142]. Additionally, there are hybrid strate-
gies that support multiple storage classes [206, 212]. With increasing DRAM ca-
pacities, in-memory databases, such as SAP HANA and HyPer, were developed
that store the entire data in main memory. These database systems abolished the
buffer cache as existing implementations cause an unneglectable overhead even
for data stored in DRAM [132]. By removing the buffer cache, the in-memory
databases lose the capability to store data that exceed the available main mem-
ory resources and to store data on cheaper storage devices. Consequently, new
approaches have to be developed to be cost-efficient [208].

In contrast to caching strategies, DeBrabant et al. [76] introduced the con-
cept of anti-caching. The major difference between these approaches is the pri-
mary storage location. Rather than storing data on slow SSDs or HDDs and
maintaining a buffer cache to profit from faster access latencies to cached data,
anti-caching stores the data primarily on DRAM and evicts less frequently ac-
cessed data, called cold data, to slower storage tiers. This approach enables the
access of memory-resident data without the buffer cache abstraction layer. How-
ever, the problem that arises is which data should be kept in DRAM and which
data should be evicted.

The original implementation of the anti-caching concept of DeBrabant et
al. was implemented for the distributed main memory-optimized row-oriented
research database H-Store [156], which is the foundation for the commercial
database VoltDB [317]. To decide which data is classified as cold data and
consequently evicted, H-Store maintains an LRU (least recently used) list on
row granularity. Every time a row is accessed, it is removed from its current
position and appended at the end of the list. Based on a user-defined memory
budget, the least recently used rows of the list are evicted to HDD. In contrast
to row-oriented databases, it is significantly more complex in the columnar data
layout to migrate data on the row level. Instead, we focus our data tiering
decisions on segment granularity (cf. Section 2.3.2).

Based on distinguishing between hot and cold data, Stoica and Ailam-
maki [312] developed a strategy to reorganize cold data so that the OS can
efficiently page it out. Another implementation of the anti-caching strategy was
presented by Eldawy et al. [93]. The system, called Siberia, adds a framework
for managing cold data in the Microsoft Hekaton main-memory database en-
gine [78]. Siberia provides the capabilities to migrate cold data to secondary
storage as well as to access and manipulate hot and cold data. By analyzing
log data, it uses an exponential smoothing method to estimate record access
frequencies. Based on this data, a backward algorithm classifies a number of
records as hot, which have to be stored in main memory [191]. Furthermore,
there are different systems that enable database administrators to choose the
storage location on the table level. Table-granular data placement decisions of-
ten waste fast storage space as also less frequently accessed parts of the table
occupy memory [348].

SAP HANA [98, 225, 263] is a commercial in-memory database system that
uses a main/delta architecture to achieve high throughput rates for analytical

3.2 Database Optimizations Based on Data and Workload Characteristics 43

as well as transactional workloads. In the main/delta architecture, each table is
horizontally divided into a read-optimized main storage and a write-optimized
delta storage [307]. Periodically, the delta storage is merged into the main stor-
age [264]. By default, all data stored in SAP HANA is memory-resident and can
be directly accessed without an abstraction layer. To substantially increase the
database capacity and allow the system to scale beyond the available DRAM
resources, SAP HANA supports different data eviction approaches [303]. The
first one is called column-loadable data. Based on a maintained LRU list, the
database migrates the least recently used columns from DRAM in cases where
are predefined memory consumption limit is exceeded. As this setting applies to
entire columns, it does not allow for fine-grained tiering decisions [84]. With the
Native Storage Extension (NSE), Sherkat et al. introduce a second one, called
page-loadable data. This approach extends the database by an elastic DRAM
buffer cache with a configurable size limit and modifies the underlying data
structures to make them partially accessible on a per-page basis [303, 304]. In
contrast to traditional buffer cache implementations, the buffer cache is only
used for data that is marked as page-loadable. All data that is not classified by
the DBA as page-loadable remains in the main memory and is accessed with-
out the buffer cache indirection. This is possible based on a unified persistence
format for in-memory processing and paged access [303]. Additionally, Andrei
et al. [15] developed another tiering approach in SAP HANA for non-volatile
memory (NVM). In this approach, the read-optimized main storage is stored
by default on NVM and the delta storage on DRAM. For individual tables,
columns, or partitions, the DBA can define exceptions and force the database
to keep the data structures in main memory.

A drawback of these three approaches is that the tiering decisions have to
be made manually by the DBA. For the classification of page-loadable data, the
NSE provides a Load Unit Advisor [303]. Based on a metric called scan den-
sity, the advisor should help the DBA to identify objects (tables, partitions, or
columns) that are suitable to be marked as page-loadable or column-loadable.
The scan density is determined for an object based on the ratio of the access
scan count and the object’s memory consumption. In this context, the recom-
mendations are based on thresholds defined by system parameters.

Lasch et al. [180] presented an approach based on SAP HANA to determine
data placement configurations for the two storage classes, DRAM and persistent
memory. The method uses a mixed-integer linear model to select a placement
configuration on column granularity. In this context, each column consists of
three data structures: data vector, dictionary, and index. Each data structure
of a column can be placed independently on DRAM or persistent memory. The
optimization approach provides two different modes (budget and target) with
different objectives. In the budget mode, the DBA defines a maximal additional
CPU time (compared to all data stored in DRAM) for a given workload and
the model maximizes the data volume placed on persistent. In the target mode,
the DBA defines the data size that should be stored on persistent memory and
the model minimizes the additional CPU time. To model the performance dif-
ferences between DRAM and persistent memory, a cost function is used based
on the estimated number of cache misses and the total additional CPU time de-
termined individually for each data structure and different access types. For the
additional CPU time calculation, the system executes a set of microbenchmark
queries. A disadvantage of the approach is that other configuration decisions

44 3 Related Work

have been made before the execution of the microbenchmark (e.g., selected
compression technique) or the model execution (e.g., if an index is applied or
not). As spatio-temporal access characteristics vary for different partitions of a
column, optimizations on column level are less effective.

Leanstore [189] is a storage engine developed by Leis et al. that implements
an optimized buffer cache that overcomes the inefficiencies of traditional buffer
managers. For cache eviction, Leanstore uses a speculative second chance al-
gorithm. Based on the Leanstore’s storage manager, Neumann and Freitag de-
veloped Umbra [237], a DBMS that stores data primarily on SSD and main-
tains a large in-memory buffer cache. In contrast to Leanstore, Umbra supports
variable-size pages, which makes buffer management more complex. An alterna-
tive storage engine for Umbra to handle multiple storage devices, called Mosaic,
is presented by Vogel et al. [348]. Mosaic is a storage engine for scan-heavy
workloads on relational database systems. It introduces a linear optimization
approach to find data placement configurations that maximize I/O throughput
for a given workload and budget. The capacity mode of the presented linear
optimization strategy (LOPT), which is an LP-based data placement strategy,
places data on SSD and HDD with column granularity and considers different
compression algorithms for each device. In this approach, the optimization is
done on columnar granularity and does not consider indexing or sorting de-
cisions. Furthermore, Mosaic requires that for each device, only one encoding
can be applied. This encoding has to be defined by the DBA in advance. As it
is optimized for data placement decisions for SSD and HDD devices, the cost
model is based on the throughput and accessed data size. An advantage of this
cost model is that less detailed information about the workload (e.g., selectivity
of queries) is required, and no benchmarking or calibration queries have to be
executed. In budget mode, Mosaic provides purchase recommendations to find
the best configuration subject to specific performance requirements. Like Mo-
saic, Guerra et al. [119] developed a general-purpose framework for dynamic tier
management that includes an advisor for purchase recommendations.

Boissier et al. [35] present a linear programming-based model and a heuristic
approach that evicts cold data to secondary storage. For a given DRAM budget
and workload, the system determines a Pareto-optimal selection of columns that
are stored in DRAM. To represent the costs to access a column in DRAM or on
secondary storage, the authors use a bandwidth-centric cost model that models
all accesses as scan operations with a particular selectivity. The scan costs are
determined based on the column’s size, the scan operation’s selectivity, and a
fixed cost parameter for the storage class. In contrast to other approaches and
similar to our approach, detailed workload information (e.g., selectivity of scans)
is used to improve the cost estimations. Moreover, an extension of the linear
programming model is presented that considers reconfiguration costs. Here, a
fixed cost factor is integrated to represent the migration costs of a column. Like
other approaches [15, 75], Boissier et al. support only two tiers. In contrast,
our approach supports multiple devices or device classes that users can add or
remove without reengineering the models.

Dreseler [84] introduces an automatic tiering approach for the research
database Hyrise. In this context, the author integrates a memory management
framework that enables transparent data allocation and access on different tiers
and the migration of data structures between different storage devices. Further-
more, a lightweight access tracking approach was introduced to provide access

3.2 Database Optimizations Based on Data and Workload Characteristics 45

statistics on segment granularity. The developed concepts in this work are also
used in this thesis (cf. Section 2.3.2). To determine data placement decisions for
each segment and a given memory budget for each tier, Dreseler used a greedy
knapsack algorithm. Similar to the scan density used by NSE, a profit density
is used to determine the profit of a segment based on the access frequency and
the segment’s memory consumption.

Due to the growth of data volumes, query engines (e.g., Apache Spark [378]
or MapReduce [74]) use distributed file systems such as the Hadoop Distributed
File System (HDFS) [306] or Google File System (GFS) [112] to data on differ-
ent nodes. In this context, files are split into blocks, which are distributed and
replicated across various nodes. Multiple approaches have been implemented to
improve the placement of these blocks on nodes based on storage and workload
characteristics [62, 137, 174]. OctopusFS [155] is a distributed file system based
on HDFS developed by Kakoulli and Herodotou that considers a fixed set of
heterogeneous storage tiers with different capacities and performance character-
istics. The system applies multi-objective optimization techniques for intelligent
data management decisions considering fault tolerance, data and load balancing,
and throughput maximization. Based on OctopusFS, the same authors devel-
oped a machine learning-based approach to automatically tier data based on
file access predictions [137]. OctopusFS and other approaches based on HDFS
blocks use blocks as atomic storage units. Similar to general-purpose data place-
ment systems [144, 351], they cannot perform domain-specific optimizations as
they have no detailed information about the blocks (e.g., access types). Addi-
tionally, these approaches consider further aspects for data placement decisions
(e.g., replication, load balancing, or data locality). For our approach, we focus
on a single machine.

3.2.4 Joint Tuning Approaches

As workload and data variations can significantly impact the performance of the
database system, database tuning and continuous adoptions are crucial. How-
ever, it is impractical for the DBAs to keep track of the system’s performance
all the time [58]. As the costs for DBAs are a not negligible factor in the TCO
of database systems [49], self-managing systems that optimize different config-
urations automatically came to recent popularity [169, 252]. In this context,
there are different approaches that jointly optimize various aspects of database
systems (e.g., materialized views, indexes, or storage layouts). For instance,
different approaches use machine learning to tune multiple knobs of database
systems with the goal of optimizing an expected reward (e.g., increasing perfor-
mance) [11, 87, 382, 386].

Zilo et al. [402] addressed the tuning order problem and classified the pair-
wise dependencies between tuning options as non-dependent, unidirectional de-
pendent, and mutually dependent. Furthermore, the authors described a hybrid
approach to define an order for the tuning process based on these dependen-
cies. Non-dependent features can be sequentially optimized in any order. For
unidirectional dependent ones, the most efficient ordering should be selected.
Moreover, the authors stated that mutually dependent ones should be optimized
simultaneously as long as the problem complexity allows a joint optimization.
A disadvantage of this approach is that it is required to know the dependencies

46 3 Related Work

between various features in advance, which is challenging and requires expen-
sive calculations [169]. Kossmann and Schlosser [169] presented an approach to
tune multiple mutually dependent features. The authors demonstrated the inter-
dependencies of different feature tunings and presented a linear programming
approach to determine an optimized tuning order for a given set of features.

The Database Engine Tuning Advisor (DTA) for Microsoft SQL Server was
developed by Agrawal et al. [9]. For a given workload, the DTA determines a
physical design recommendation consisting of indexes and materialized views.
Moreover, the approach suggests a vertical and horizontal partitioning config-
uration for tables, indexes, and materialized views [10]. To estimate the effects
of different tuning options, the system leverages the “what-if” analysis inter-
face of SQL Server [51], which uses the cost model of the query optimizer to
determine the performance of a query on a given configuration. To minimize the
overhead on the production system, DTA provides a metadata-based approach
to determine a physical database design on a test server without copying the
data. Afterward, the determined configuration can be applied to the production
system.

Abebe et al. [4] developed the distributed database system Proteus. Proteus
is able to store data in multiple formats and storage tiers. Based on learned costs
models, an adaptive storage advisor (ASA) autonomously decides on suitable
row- and column-storage formats, storage tier, and whether to employ opti-
mizations such as sorting or compression in addition to data replication and
partitioning schemes. Proteus groups data items into partitions with varying
sizes, which can reach from a single data cell up to an entire table, and selects
for each partition a storage layout. The ASA decides whether to apply a layout
change based on a calculated net benefit. The net benefit considers the esti-
mated costs to execute the storage reconfiguration as well as the expected cost
effect, which is determined based on the predicted latency difference between
the current and proposed layout. To predict the latency of different operations
and layouts for ongoing and predicted workloads, the system’s cost functions use
linear regression, non-linear regression, and neural network models. Moreover,
Abebe et al. [5] presented Tiresias, a predictor designed to make decisions to op-
timize storage configurations in database systems. Like Proteus, Tiresias drives
storage and indexing adaptation decisions by computing the expected benefit
of a change under consideration of the reconfiguration costs. For the calcula-
tion of the benefit, Tiresias determines for each ongoing and predicted request
the relative change in the execution latency weighted with the probability that
the request arrives. It makes these predictions by collecting observed latencies
and access histories. As a data layout change is based on the net benefit, which
is mainly determined by the latency improvement and does not consider the
memory consumption of different optimizations, a risk of this method is that a
large amount of the available memory resource is used for a limited number of
optimizations.

3.2.5 Storage Concepts for Timestamps

There are different approaches to improve the storing of timestamps for spatio-
temporal and time series data. For applications with a fixed sample rate, meth-
ods exist that calculate the timestamp of an observed location based on the
trajectory’s start timestamp and the position of the observed location in the

3.2 Database Optimizations Based on Data and Workload Characteristics 47

sequence of chronologically ordered locations [275]. For this approach, only the
start timestamp for each trajectory is stored, which significantly reduces the
memory footprint of spatio-temporal data. However, this approach is mainly
suitable for applications where the temporal component is less important. Ad-
ditionally, it has problems concerning transmission errors and lossy compression
approaches [239]. Another approach is delta encoding, which is applied by sys-
tems such as TrajStore [66]. Instead of storing for each point a timestamp, only
the delta between two timestamps is stored. Based on the assumption that the
timeframe between two observations of a moving object varies only slightly,
Pelkonen et al. [255] introduced a concept to store timestamps for time series
data as the delta of deltas. In this approach, the offset to the delta between
two data points is stored with a variable amount of bits depending on the off-
set. Timestamps with the same delta can be stored with one bit, which makes
the approach memory efficient. However, this storage concept is optimized for
analyzing and visualizing time series data. For spatio-temporal workloads with
trajectory-based and spatio-temporal range queries, additional overhead is in-
troduced due to the computation of an observed location’s timestamp based on
the deltas, which has to be performed for moving objects. Wang et al. [352, 353]
presented an I/P frame-based structure (cf. Section 3.1) to store trajectory data
in in-memory column stores. The authors divide the data into frames of a fixed
period (e.g., one minute) and create for each of these frames two table columns,
which store the two-dimensional coordinates of one representative location for
each moving object in this timeframe. In this approach, the determination of
the timespan of one frame is challenging for use cases with varying sample rates.
A drawback of this data layout is that the timeframes introduce additional un-
certainty and that many columns have to be scanned for spatial range queries.

Furthermore, various algorithms optimize the compression scheme of a ta-
ble, which can also be applied for timestamp columns (cf. Section 3.2.1). These
approaches focus on the optimized selection of compression schemes based on
data and workload characteristics but do not consider that different data lay-
outs can be applied to store specific data types. Based on the applied data
layout, columns’ data characteristics can significantly change and create further
optimization potentials. Jiang et al. [149] presented the PIDS, Pattern Infer-
ence Decomposed Storage, a storage method for decomposing string attributes
in columnar databases. The system identifies patterns in string attributes and
splits the attribute correspondingly in sub-attributes based on an unsupervised
approach. Additionally, PIDS can rewrite query operations on the logical view
to operate on sub-attributes to minimize I/O costs and speed up the execu-
tion time. The proposed pattern inference algorithm consists of two phases. In
the splitting phase, PIDS applies three rules iteratively to discover patterns.
The rules identify common symbols, sequences of the same length, and com-
mon sequences. In the second step, the algorithm removes redundant structures
and merges adjacent identified sequences. PIDS stores and compress each sub-
attribute independently as a column, using a dictionary and bit-pack-run-length
hybrid encoding. All entries that the determined pattern could not match are
stored separately. A limitation of the presented system is that the splitting
of attributes into sub-attributes takes only into account the column’s stored
entries and general data properties (e.g., the ratio of distinct values). Other
factors, such as workload characteristics or the impact of different compression
approaches, are not considered. Furthermore, all sub-attributes are compressed

48 3 Related Work

with the same encoding approach. Based on the resulting access pattern and
data characteristics of the sub-attribute, further optimizations of the storage
layout could be applied.

3.3 Summary

In this chapter, we briefly discussed different existing approaches for data man-
agement systems optimized for spatio-temporal data as well as workload-driven
and data-aware database optimizations. We investigated various standalone data
management systems for spatial and spatio-temporal data (cf. Section 3.1). Af-
terward, we presented that different general-purpose database systems devel-
oped specialized extensions for spatial and spatio-temporal data management.
Based on the large data volumes and response times requirements in various
application scenarios, the operating costs of such systems can be significantly
reduced by optimizing different tuning options provided by modern database
systems. Consequently, we analyzed different approaches to optimizing the se-
lection of database tuning options based on workload and data characteristics.
We briefly discussed data compression scheme selection (cf. Section 3.2.1), index
selection (cf. Section 3.2.2), and data placement (cf. Section 3.2.3) approaches.
Furthermore, we analyzed tuning approaches to jointly optimize multiple tun-
ing configurations (cf. Section 3.2.4) and data type-specific optimizations for
storing timestamps in databases (cf. Section 3.2.5). To the best of our knowl-
edge, no spatio-temporal storage system applies a joint optimization approach
to determine workload-driven fine-grained storage configurations that consider
the given memory budget of different storage devices.

4

Optimizing Passenger Dispatch Decisions of
Transportation Network Companies

In this chapter, we introduce an approach to optimize the dispatch decisions
of transportation network companies (TNCs) based on the analysis of spatio-
temporal data. First, we describe the limitations of state-of-the-art dispatch
processes based on the last observed location of a driver in Section 4.1. Af-
terward, we present the concept of probabilistic location predictions to improve
the dispatch decisions. In Section 4.2, we briefly describe the location prediction
algorithm that we developed and present an evaluation of the approach based
on a real-world dataset of a TNC. The evaluation in Section 4.3 shows that the
algorithm is able to predict the directions of drivers accurately. In Section 4.4,
we explain different dispatch strategies based on the determined probabilistic
locations before we discuss and summarize the results in Section 4.5. Parts of
the presented content have been published [279, 284, 285].

4.1 Improving Dispatch Decisions by Probabilistic
Location Predictions

The demand for ride-hailing and ride-sharing services has rapidly increased over
the last few years. TNCs such as Uber or Lyft offer a peer-to-peer ride-hailing
service by connecting vehicle drivers with passengers to provide flexible and on-
demand transportation [222]. The application of efficient dispatching strategies
that assign drivers to passenger requests in real-time is crucial for these service
providers [7]. To dispatch incoming passenger requests, different policies are ap-
plied to optimize specific objective functions (e.g., minimizing the overall travel
time, reducing the overall waiting time, optimizing the utilization of available re-
sources, or increasing customer and driver satisfaction) [266, 369]. Besides other
criteria (e.g., customer status), spatio-temporal cost functions are an integral
part of state-of-the-art dispatching algorithms. Based on the current position of
all available drivers and the passenger, geographical distance or estimated time
of arrival metrics are calculated [199]. Consequently, the quality of the decisions
is strongly affected by the accuracy of the observed and transmitted locations of
the drivers. For that reason, it is necessary to have exact location information
or accurate location predictions.

Additionally, the passenger’s travel and expected waiting times are deter-
mined based on the location of the selected driver by traffic-adjusted routing

50 4 Optimizing Passenger Dispatch Decisions

services. The estimated waiting time, which is communicated initially to the
customer, has to be accurate as the cancellation rate strongly increases with the
waiting time. High cancellation rates reflect unsatisfied passengers leading to a
drop in passenger retention rate, as the ride-hailing industry is characterized
by fierce competition. Ultimately, high cancellation rates reduce the revenue of
a TNC. Hence, the communicated waiting time has to be accurate. Otherwise,
the passenger has to wait longer than initially communicated, which leads to
an increase in the cancellation rate. By analyzing the TNC’s data, we observed
that passengers do not tolerate delays, as more than 50% of all delay-related
cancellations happen within the first two minutes of waiting time.

Based on a manual analysis of dispatch decisions of a globally operating
TNC, we discover that over one-fifth of delayed pickups are due to unplanned
detours that were caused by inaccurate information about the driver’s posi-
tion [279]. As one cause for delayed pickup times and suboptimal dispatch de-
cisions, we identified the inaccuracy and uncertainty of the driver’s location.
There are different factors like noise or technical limitations of the GPS, which
influence the accuracy of the observed locations [359]. Additionally, the given
sampling rate, data transfer problems, and the time consumed by the entire
dispatch process affect the actuality of the spatio-temporal information. Conse-
quently, the correct position of a driver at the time of the order assignment can
deviate significantly from the last observed location, which is currently used as
input to calculate the estimated travel time or distance.

4.1.1 Limitations of Status Quo Dispatch Processes

The assignment of available drivers to passenger requests is a dynamic vehicle
routing problem or dial-a-ride problem. As described by Psaraftis et al. [265], the
vehicle routing problem is characterized as dynamic if requests are received and
updated concurrently with the determination of routes. In the setup of TNCs,
incoming bookings of passengers have to be continuously assigned to an available
driver considering further information, such as the current traffic situation or
the availability of drivers, which are unknown in advance. To optimize the time-
critical dispatch process, TNCs usually define policies that use specific cost
functions (e.g., minimum travel time or distance) to improve a specific objective
function (e.g., minimize the overall waiting time) [266]. As inputs, most of these
cost functions use the location of the passenger and the locations of a set of
available drivers. A common approach is the nearest vehicle dispatch used by
various ride-hailing services [153]. Here, the driver with the shortest travel time
to the pickup location is assigned. Based on the locations, the travel time is
determined by using services that offer traffic-adjusted routing services (e.g.,
Google Maps) to incorporate the current traffic situation.

Consequently, accurate calculations require precise and up-to-date location
information. To demonstrate the limitations of dispatch decisions based on the
last observed location, we use the dispatching example depicted in Figure 4.1 to
exemplify the implications of the inaccuracy and uncertainty of a driver’s current
location at the time of dispatch. The example shows a dispatching scenario on
a highway, where the upper-right user pin represents the passenger’s pickup
location and the car pins represent a single driver’s potential GPS location.
While the dotted marker represents the driver’s last observed location (which

4.1 Improving Dispatch Decisions by Probabilistic Location Predictions 51

the dispatching algorithm uses), the solid markers represent the driver’s possible
locations at the time of dispatch.

There are different factors like noise or technical limitations of GPS-based
systems [359], which affect the recorded location of a driver and can lead to
coordinates that are not directly assignable to position on a road segment. In
the example, the driver’s last recorded position is between the two highway lanes.
Based on the last observed location, it is difficult for the dispatching algorithm
to determine the driver’s direction. Here we can assume that the driver is in the
right lane. However, suppose the driver’s correct location is A. In that case, the
actual travel time can be much higher than its estimated counterpart, as turns
on highways are impossible and the next exit may be far away.

A

B

D
C

Fig. 4.1: An example highlighting the implications of the driver’s current
location’s inaccuracy and uncertainty. The dotted location marker between
the two highway lanes depicts the last recorded location. The other markers
indicate a driver’s possible current locations on the two roads.

Even when on the right side of the street, the driver’s location at the time of
dispatch relative to the necessary highway exit is unknown: the driver may have
or may not have taken the exit (location D and C) or the driver may not have
reached the exit (location B). The actual travel time varies significantly with
locations B, C, or D, as missed exists on highways are costly in terms of time.
Consequently, there is a high risk of delay. In addition, the driver’s last recorded
location may be older than the sampling rate indicates, as urban effects such as
tunnels may prevent the transmission of GPS signals. Also, the entire process of
assigning a driver and the acknowledgment of the driver takes several seconds,
where the position of the driver is continuously changing. As shown by the
example, the actual position of a driver at the time of the order assignment can
deviate significantly from the last observed location and consequently influence
the determined value of the cost function. Therefore, the dispatching algorithm
has to decide based on incorrect information, for which reason it may not assign
the optimal driver to a requesting passenger, and also, the driver could arrive
delayed at the pickup location.

In this context, we introduce the concept of detoured dispatches and risky
dispatches. We classify a dispatch as a detoured dispatch if the assigned driver’s

52 4 Optimizing Passenger Dispatch Decisions

arrival at the pickup location is delayed due to an initial detour of the driver.
Based on this definition, we define a dispatch as risky if the dispatched driver’s
arrival at the pickup location is likely to be delayed due to uncertainty about
the current position of a driver, which may lead to an initial detour or a sub-
optimal route. To evaluate the share of delays caused by detoured dispatches, we
manually analyzed a sample of 500 dispatch decisions. The dispatch processes
were randomly selected from a real-world dataset of a TNC, which includes
the bookings and the spatio-temporal data of Dubai, spanning from November
2018 to February 2019. Further, we limited the analysis to dispatch processes
where the driver arrived at the pickup location between one and five minutes
delayed. We identified that in about 20 percent of the delayed arrivals, the driver
performed an initial detour based on the random sample.

For that reason, it is necessary to develop new strategies to improve the
accuracy of the applied spatio-temporal cost functions by precise predictions of
the exact drivers’ locations. Furthermore, the dispatching algorithms should be
enhanced and optimized by incorporating the risk factor for delays based on
inaccurate positional information.

4.1.2 Dispatch Decisions Based on Probabilistic Location
Predictions

To overcome the limitations of drivers’ assignments based on the last observed
locations, we propose a novel approach that uses probabilistic location predic-
tions. Here, we determine the potential locations of a driver with the corre-
sponding probabilities at the time the order is assigned based on previously
observed spatio-temporal data and the current trajectory of a driver. Here, we
can leverage that traffic repeats itself [338]. Additionally, drivers of TNCs often
try to stay in specific profitable areas to increase the chances of getting further
trips [286]. To incorporate the location probabilities into the dispatch process,
the cost functions must be adopted consequently.

An example of how probabilistic location prediction can influence assign-
ment decisions is shown in Figure 4.2. The black marker represents the pick-up
location and the blue, green, and orange markers the last observed map-matched
location of three available drivers. A traditional dispatching algorithm that uses
a specific cost function (e.g., shortest distance or shortest travel time) would as-
sign the booking request to the blue driver based on the last observed locations.
By analyzing the predicted potential positions of the drivers, we can see that the
blue and green drivers are likely to move away from the passenger’s location. In
contrast, the orange driver is directly driving in the direction of the passenger.
Therefore, it is highly likely that the orange driver would be the best option for
the dispatch algorithm. In this example, we demonstrate that by including the
driving behavior and direction of drivers, the result of the dispatch algorithm
can change. Additionally, we can immediately detect whether the estimated ar-
rival time of a particular driver (e.g., the blue driver in Figure 4.2) would be
too optimistic and whether detours and, in turn, critical delays are likely.

In the second example (see Figure 4.3), we demonstrate the impact of the
probabilities calculated based on observed patterns in past drives. The size of
the dots represents the probability of the corresponding location. The larger a
dot is, the higher the probability of the location. Similar to the first example
(see Figure 4.3), the blue driver has the shortest distance and seemingly the

4.1 Improving Dispatch Decisions by Probabilistic Location Predictions 53

Fig. 4.2: Predicting potential current locations of candidate drivers to be
assigned to a waiting customer (black marker): Example of three differ-
ent drivers (green, blue, orange marker). The dots represent the predicted
potential next locations of each driver based on their driving behavior.

Fig. 4.3: Improving dispatch decisions using probability distributions for
the current locations of potential drivers: Comparing the likelihood of a
driver reaching the customer (black marker) without critical delays. Exam-
ple of three different drivers (green, blue, orange marker). The dots repre-
sent the predicted next locations of each driver (the larger the dot is, the
higher the probability of the location).

shortest travel time to the pick-up location. But the big dot in the left-bottom
corner indicates that there is a high chance that the blue driver misses the exit.
Consequently, it may be preferable to assign the trip to another driver. The
green driver has a higher probability of being on the shortest route to the pick-
up location, but also, there is a not negligible probability that the driver stays

54 4 Optimizing Passenger Dispatch Decisions

on the highway and needs to perform a costly detour to reach the location of the
passenger. Based on the last observed location, the orange driver has the longest
distance to the pick-up location, but the predicted probabilities show that she
is highly likely to drive in the direction of the pick-up location. Consequently,
assigning the order to the orange driver is potentially not the optimal decision,
but the one with the lower risk of delays.

Our proposed approach enables TNCs to apply dispatching strategies that
take risk considerations into account. Whether to optimize expected arrival
times, worst-case scenarios, or other risk-aware criteria can be strategically de-
termined by the companies. However, accurate location probabilities are key for
such risk-aware dispatching strategies. By applying risk-averse dispatching poli-
cies, TNCs can optimize the request dispatching and avoid unnecessary detours
of their drivers.

4.1.3 Approaches to Predict the Locations of Drivers

Route prediction algorithms can be separated into long-term and short-term
route prediction algorithms. Long-term route prediction approaches forecast
drivers’ entire route to their final destination, whereas short-term route pre-
diction algorithms predict only a fraction of the remaining route a driver can
drive within a provided prediction time. Various long-term route prediction al-
gorithms use Hidden Markov Models (HMMs) that model a driver’s intended
route as a sequence of hidden states since drivers’ intentions can only be ob-
served indirectly by the driven routes [181, 308, 371]. Simmons et al. [308] use
an HMM that models the road segment, destination pairs as hidden states, and
the GPS data as observable states. While Simmons et al. do not require a sep-
arate map-matching step, Ye et al. [371] require one, as their HMM models the
driven road segment as observable states, while clusters of routes serve as hidden
states. Other approaches use clustering techniques to group similar trajectories
into clusters so that deviations of the current trajectories to past trajectories
are more tolerated [107, 181]. Lassoued et al. [181] hierarchically cluster trajec-
tories via two different similarity metrics: same destination or route similarity.
In this context, the route similarity metric is defined as the fraction of the
shared road segments. Froehlich and Krumm [107] predict the intended route
by using an elaborate route similarity function to compare the current route
to a representative combination of routes of each cluster. The similarity met-
ric depicts the distance differences between the GPS recordings of trajectory
without pre-requiring a map-matching step. Further approaches use machine
learning techniques, such as reinforcement learning [400], neural networks [230],
and methods of social media analysis [371].

While long-term route prediction algorithms are helpful for the prediction
of an entire route, their predictions are bound to previously observed routes.
In our problem, however, the pick-up routes of individual drivers are rarely
identical, as pick-up locations are not stationary, but various aspects can be used
in short-term prediction. Trasarti et al. [337] use clustering techniques to extract
fractions the driver is expected to be able to drive within the provided prediction
time. These approaches, however, still lack the support for new unseen routes.
Karimi et al. [157] predict the most probable short-term route by mining the
driver’s turning behavior at intersections and using the trajectories’ underlying
road network. They traverse the road network in depth-first fashion to find the

4.2 Probabilistic Location Prediction Algorithm 55

maximum reachable locations from the driver’s current location. Additionally,
they determine the traversal time of road segments by using the corresponding
speed limits. This approach was extended by Jeung et al. [148] by mining the
road segments’ traversal time from trajectories. Both approaches require the
trajectories to be map-matched, as the turn probabilities are calculated on road
segment level. In contrast, Patterson et al. [251] avoid map-matching by using
practical filters that incorporate the error of all random variables into one model.
Additionally, dynamic short-term route algorithms exist that reconstruct their
models on the fly on data changes. These approaches acknowledge the dynamic
nature of traffic and moving objects, whose environment changes aperiodically.
Zhou et al. [397] continuously evict patterns from outdated observed trajectories
so that the applied models only consider data from the most recent trajectories.

In addition, there are different turning behavior predictions, which model
drivers’ turning behavior as a Markov process [148, 157, 175, 205, 251, 401].
These approaches are similar in the way they model the turning behavior at in-
tersections as Markov chains, in which the states represent road segments, and
drivers’ decisions indicate their transitions at intersections. They differ, how-
ever, in the order of the Markov chain, i.e., the number of past road segments
they consider. While some consider only the last driven road segment to be an
indicator for the next turn [148, 157, 205, 251], Krumm [175] proposes the usage
of an nth-order Markov chain, in which the next road segment is predicted by
following the last n driven road segments as states in the Markov chain. The
evaluation shows that the accuracy of the determined turning behavior predic-
tions increases with the number of road segments n considered in the forecast.
However, with the increasing order of the Markov chain, fewer sequences of
driven road segments are observed as the state space (cf. number of segment
combinations) increases exponentially. Also, they experimented with inferring
if the result’s accuracy is sensitive to context information, such as time of day
or day of the week. However, they did not find such sensitivity, as the fraction
of matched road segment sequences of the given context was small due to the
training dataset’s size.

Ziebart et al. [401] model the turning behavior of drivers via a Markov deci-
sion process whose cost weights of actions are learned via inverse reinforcement
learning using context-aware and road-specific features. Further approaches ana-
lyze the speed and acceleration profiles of drivers to predict the turning behavior
at an upcoming intersection. Liebner et al. [200] cluster speeding profiles using
k-means to predict a driver’s turning behavior at a single intersection. Phillips
et al. [259] and Zyner et al. [405] use short-term memory neural networks to
predict the turning behavior. These approaches use different context-sensitive
turning probabilities to improve the prediction accuracy but do not incorporate
the determined probabilities into further analysis or decision processes.

4.2 Probabilistic Location Prediction Algorithm

To minimize detoured dispatches and enable risk-aware decisions, we propose
an approach to predict probabilities of future driver positions based on patterns
observed in past trajectories. In this context, we aim to predict the possible
locations of dispatching candidates at the time of the trip assignment. Based on
the applied dispatching policy, the algorithm calculates the cost function for the

56 4 Optimizing Passenger Dispatch Decisions

candidates (e.g., estimated travel time) as a combination of the cost function
values for various possible locations (see Section 4.4). Mining driving patterns
and predicting possible locations allows more precise estimation of pickup times,
leading to shorter waits, despite the inherent uncertainty and inaccuracy of a
driver’s current position. The algorithm uses repeating driving patterns from
all drivers that can be generalized to apply them to forecast upcoming driving
behaviors.

As we forecast a driver’s next locations around the time of dispatch, we
constrain the analysis to free-time trajectories. In free-time trajectories, drivers
are generally not influenced by external factors and drive freely around to get
assigned to incoming passenger requests. Drivers are unaware of a request until
it is communicated to them. Consequently, at the time of dispatch, drivers
drive freely around, and hence, their decisions are similar to those they have
made in past free-time trajectories. The analysis of trajectories also allows us
to extract information on the dynamic characteristics of the road network, such
as traffic. Traffic affects drivers’ traversal times on road segments, and hence
we need to incorporate this into the location prediction to ensure accuracy. As
traffic repeats itself [338], we can consequently use historical traffic patterns to
forecast future traversal times on road segments.

Overall, the prediction algorithm consists of four parts: (i) data preprocess-
ing, (ii) road segment candidates determination, (iii) route probability calcula-
tion, and (iv) location prediction.

4.2.1 Spatio-Temporal Data Preprocessing

The process starts with the data preprocessing step, in which we segment the
trajectories in sub-trajectories representing distinct driving sessions, classify the
sub-trajectories based on the occupancy state, and map-match the observed
locations. To divide the spatio-temporal data of a driver into different driving
sessions, we apply a time-based approach. We defined a time limit of ten minutes.
The trajectory is segmented into sub-trajectories if (i) the driver’s position does
not change in the time limit, (ii) no further data is tracked in the time limit, or
(iii) the occupancy state of the driver changes.

Afterward, we classify each sub-trajectory based on the occupancy state.
Here, we distinguish between the two states, free and occupied. Depending on
the occupancy state, a driver’s driving behavior changes significantly. Suppose
the driver is transporting passengers or is on the way to the pickup location of
a passenger. In that case, drivers use the shortest route based on the current
position, the destination, and the traffic situation. Routing services often suggest
these routes. In contrast, drivers with the occupancy state free are freely driving
around intending to get incoming bookings. Their paths depend on personal
experience and individual preferences, as well as external circumstances. For
that reason, we distinguish trajectories based on the occupancy state for our
use case.

The transmitted coordinates of the GPS sensors have not to be located on a
specific road as the data can be affected by various factors (see Section 4.1.1).
Noise, technology-based limitations, and measurement errors can cause a dis-
crepancy between the observed and the driver’s exact location [359]. These in-
accuracies can result in an observed location being off-road or assigned to an
incorrect road segment. For that reason, a map-matching step is necessary to

4.2 Probabilistic Location Prediction Algorithm 57

ensure that each observed location is assigned to a road segment on the one
hand and, on the other hand, to reduce inaccuracies and filter measurement
errors [211]. In this step, we map each tracked GPS location to a specific point
on a road segment of a road network. A road network is a directed multigraph
that represents the real-world traffic infrastructure of a specified area along with
the corresponding metadata [29]. In the graph, each node represents an inter-
section between at least two road segments represented by edges. These road
network maps are created and maintained by humans or automatically updated
by trajectory-based algorithms [135]. A road segment is a directed edge that
is defined by a source and target intersection. It is associated with a list of in-
termediate GPS coordinates describing the segment’s geography. For each road
segment, meta-information such as the length and a speed limit is stored [29].
A set of connected road segments composes a road. Here, we used the data of
OpenStreetMap1.

The obvious algorithm is to match each observed location with the near-
est road segment. Due to measurement noise and the dense structure of road
segments in urban areas, this algorithm is prone to error. State-of-the-art map
matching algorithms take into account sequences of points before deciding on
a match to increase the physical plausibility of the resulting pings and the
corresponding trajectory [238]. Therefore, we decided to apply an algorithm
published by Newson and Krumm [238]. Their approach demonstrates high ac-
curacy despite high noise in GPS measurement as well as a low sampling rate
and is widely used. The map-matching algorithm utilizes an HMM, in which a
system’s hidden state is only observable indirectly via measurements over time.
In the scenario, a driver’s movement in the road network, i.e., a sequence of road
segments, is implicitly observed via a sequence of GPS measurements. The used
HMM is configured to model this characteristic. Consequently, the HMM de-
rives the most likely sequence of hidden states, i.e., driven road segments, from
observed measurements. As suggested in related work [107, 238], we applied
filters to remove outliers based on traversal speed and acceleration thresholds.
We set the thresholds according to physical plausibility, i.e., it is doubtful to
surpass the thresholds in the given road network via street-legal cars. The speed
threshold is set to 200 kmh−1 because the used road networks have maximum
speed limits of 120 kmh−1. Additionally, we set the acceleration threshold to
12 m s−2.

Based on the map-matched locations and the assigned route segments, we
define a route as a temporally ordered sequence of connected road segments of
a driver in a limited time interval. Due to the GPS sensors’ sample rate, it can
occur that the assigned road segments of two consecutive locations are discon-
tiguous. If the resulting road segments are not connected, the corresponding
road segments to connect the segments by the shortest path are added to the
route.

4.2.2 Identification of Potential Locations

After the data preprocessing step, we determine a set of road segment candidates
that includes all reachable road segments of a driver based on the driver’s last
observed position and the prediction frame (see Figure 4.2). As prediction frame

1 https://www.openstreetmap.org

58 4 Optimizing Passenger Dispatch Decisions

f , we define the time difference between the timestamp of the last observed loca-
tion and the expected time of the trip assignment. Instead of considering just all
road segments in the neighborhood, this approach restricts the set of candidates
that include all potential reachable ones to a small number of road segments.
Due to this step, the number of candidates can be reduced for subsequent parts
of the prediction algorithm, allowing for faster predictions.

Determination of Road Segment Candidates

We partially analyze the given road network to determine the relevant road
segments on which the driver is estimated to be after the defined prediction
frame f . Therefore, we use the road segment of the last observed location of an
available driver as the starting point. First, we determine the time required for
the driver to leave the current road segment based on the driver’s position and
the traversal time of the segment. Each road segment has an associated cost
value, which depicts its traversal time (i.e., the time a driver needs to traverse
it completely). In Section 4.2.2, we briefly discuss the algorithms to determine
the traversal time of road segments.

Following, we determine all possible paths of the driver based on the starting
point and the road network structure by summing up the traversal times of
adjacent road segments until the prediction frame is exceeded. Here, we simulate
all potential routes a driver could drive in reality by analyzing all potential
sequences of road segments. By summing up the traversal times of the segments
of a path, the algorithm calculates the time it would take the driver to drive the
associated route. Since the prediction frame restricts the overall traversal time,
the end of a path is reached if we can add no further road segments without
exceeding the prediction frame. By definition, the algorithm expects drivers to
reach the last road segment of a path.

As we assume that for all road segments of a valid path, except the last one,
there is still enough time to leave the road segment in the prediction frame,
we expect drivers to be located on one of these candidate road segments. Con-
sequently, we define for a given road network’s set of road segments E, the
set of road segment candidates M ⊆ E, which contains all reachable road seg-
ments of a driver within the prediction frame f ∈ R+

0 . Given the traversal time
troute : E → R+

0 of the fastest route from a driver’s current location to a road
segment r ∈ E and the traversal time trs : E → R+

0 , we define the set of road
segment candidates M = {r ∈ E | troute(r) ≤ f ≤ troute(r) + trs(r)}.

Traversal Time of Road Segments

As already mentioned, each road segment has an associated cost value, which
depicts the estimated time a driver needs to traverse a road segment completely.
We calculate the traversal time of a road segment based on its length and the
driver’s forecasted traversal speed on it. This approach is used as we cannot
derive a driver’s spent time on a road segment solely from tracked GPS data
since we do not know the exact time the driver enters and leaves the road
segment. However, with two consecutive observed locations on the same road
segment, we can calculate a driver’s average traversal speed between the two
observations. Therefore, we translate the problem of road segment traversal time

4.2 Probabilistic Location Prediction Algorithm 59

forecasting to the problem of forecasting traversal speeds on road segments.
Some algorithms use speed limits as an estimation of a road segment’s traversal
speed [157, 205]. However, these fail to reflect the dynamic nature of traffic
conditions on a road segment (e.g., traffic lights or congestions).

In our approach, we mine the traversal speed from past trajectories. The
mined traversal speed is the average speed of all drivers on the road segment in
a given timeframe (e.g., of a given hour). By mining the traversal speed on a road
segment level, we implicitly incorporate traffic light phases and special traffic
situations (e.g., traffic jams and slow-moving traffic). The algorithm calculates
and averages the speed between consecutive locations on the same road segment
and does not have a route interpolated between them. Without these constraints,
a driver could have left the road segment so that the actual time spent on the
road segment is unknown. As the traffic volume changes in specific areas over
the day (e.g., rush hour), the daytime has an impact on the traversal speed of
a road segment. In this context, we mine the traversal speed for different hours
to address temporal traffic phenomena. We define a driver’s traversal speed of
a given time to be the traveled distance of the path between the associated
observed location and its successor in the road network divided by their time
difference. Unlike related work, we do not apply an approximate distance metric,
such as the great circle distance [82], that neglects the underlying road network
and thus fails to represent the actual traveled distance between two observed
locations. Instead, we leverage the underlying road network to calculate the
exact distance traveled between consecutive tracked locations. To calculate the
traveled distance, we first add the fractions of the two locations that indicate
what percentage of the current road segment has already been traversed by the
driver, multiplied by the length of the respective road segments to the distance.
As consecutive locations’ road segments can be nonadjacent, we also add the
length of the interpolated route to the distance.

To ensure that the mined traversal speed values are representative of the
correct traversal speeds, we filter mined traversal speeds that have been ob-
served as fewer than a defined observation support threshold. The selection of
a small time frame enables the consideration of detailed traffic patterns but
also strongly limits the number of observed drivers in the time frame. For that
reason, we selected a time frame of one hour, which allows us to distinguish be-
tween different traffic situations and delivers a sufficient number of observations
for the majority of road segments. Due to the high number of road segments,
road segments exist for which we either only observe a few or no observed loca-
tions for a given hour. In cases where we have no or only a minimal number of
observations, we use the driver’s current speed if all road segments in the path
have the same speed limit. The last fallback option is to use the speed limits.

We define the traversal speed of a driver at the observed location mt with
the timestamp t to be the driver’s average speed between the observed locations
mt and the next location mt+1. To calculate the average speed between the
observed locations mt and t+1, we divide the traveled distance tdist(mt,mt+1)
between the two locations by their time difference. In contrast, we define the
previous traversal speed at the time of the current location mt to be the driver’s
average traversal speed between the driver’s previous location mt−1 and mt.

60 4 Optimizing Passenger Dispatch Decisions

4.2.3 Route Probability Calculation

To determine the probability of a route, we analyze drivers’ turning behav-
ior at intersections to assess drivers’ probability of taking a specific turn. These
turning patterns allow the computation of the overall probability of different po-
tential routes. By definition, intersections connect at least two road segments.
Consequently, to model drivers’ turning behavior at intersections, we can count
the co-occurrences of road segment pairs and calculate the corresponding prob-
abilities [157, 175, 205, 357].

We model the turn probabilities by a Markov chain of nth-order, as a driver’s
behavior at intersections, can be represented by a sequence of events, in which
the probability of each event, i.e., the decision at the current intersection, de-
pends only on the state attained in the previous event, i.e., the decision at the
previous intersection. For instance, in a 1st-order Markov chain, in which the
turning behavior at the current intersection is independent of the decisions made
at previous intersections. In contrast, in an nst-order Markov chain, the deci-
sion depends on n previous decisions at intersections. In the model, the road
segments serve as states and the turn probabilities as transition probabilities
between the states. Let H be a set of past free-time trajectories and E be a
set of road segments. Given road segments ri ∈ E and rj ∈ E, we define the
support τ(H, ri ≻ rj) as the number of trajectories in H that contain ri ≻ rj .
Based on that, we define the transition probability from ri to rj as:

P (ri ≻ rj) =
τ(H,ri≻rj)

rk∈E τ(H,ri≻rk)
. (4.1)

Let R be a driver’s current route with i ∈ N+ road segments, where R(1) is
the first and R(i) is the driver’s current road segment of R. We calculate the
probability of a road segment rj ∈ E to be the next road segment given the
current route’s previous n ∈ N, n ≤ i, road segments by

Pn[R ≻ rj] =

P [R(i− n+ 1) ≻ R(i− n+ 2) ≻ . . . ≻ R(i) ≻ rj]. (4.2)

We define the transition probabilities of the nth-order Markov chain in the
following by extending the support measure to be the number of trajectories
that contain the route R(i− n+ 1) ≻ . . . ≻ R(i) ≻ rj .

The selection of the Markov chain order is a tradeoff. Markov chains of a
higher order allow us to represent the behavior of drivers better to drive around
a specific area. This behavior is typical for drivers of TNCs, as particular regions
are more profitable compared to others [286]. Using nth-order Markov chains,
the number of routes, i.e., states of the Markov chain, that do not have many
observations increases since the number of possible states increases exponentially
with the order. A road network contains a large number of road segments.
Therefore, we may observe some road segments of the road network infrequently.
States with few observations are inexpressive for drivers’ turn behavior. To avoid
inexpressive states, we filter states whose support is below a minimum support
threshold smin ∈ N. Additionally, with decreasing observations per state (or a
higher order of the Markov chain), the likelihood of overfitting increases. While
we can better model the turning probabilities of past free-time trajectories with

4.2 Probabilistic Location Prediction Algorithm 61

higher order, we perform worse when applying the higher-order Markov chain
to new trajectories because we may not have observed some states due to the
exponentially increasing number of Markov states.

We calculate the probability of each location by calculating the probability
of its associate route. We compute the probability Proute[R̂] of a predicted route
R̂ by applying the turn probabilities Pn of an nth-order Markov chain that we
mined from past trajectories to the turns of the predicted route

Proute[R̂] =

i∈N:0<i≤|R̂|
Pn[R(i− n− 1) ≻ . . . ≻ R(i− 1) ≻ R(i)].

(4.3)

Similar to the construction of the Markov chain, we analyze each route with
a sliding window size equivalent to the chains order. In each step, we match
the state, extract the next road segments transition probability, and multiply
it with the previously obtained probabilities. The first window starts with the
last n ∈ N+ road segments directly preceding the predicted route. Due to the
size of possible co-occurrences and the state support filter, we may be unable
to match a state of the predicted route to the constructed Markov chain. We
need to resolve these missing states in order to calculate the probability of the
predicted route.

There are a couple of strategies in research to resolve missing states. Jeung
et al. [148] introduce a concept called reverse mobility statistics, which assumes
that drivers follow the new route back to their origin after driving a new route
due to drivers tendency to drive familiar routes. Therefore, they assign missing
states the same probabilities as their observed reversed counterparts. While this
may be true for drivers with a fixed origin, e.g., someone leaving their home to
visit a new place, this is not necessarily the case for drivers in the context of
a TNC since they do not drive back to their origin after a booking. Because
we only double the number of observed states at max, we may still not resolve
many missing states. Thus, we apply a different strategy.

We resolve the missing state by distributing its transition probabilities uni-
formly. This strategy is both neutral and universally applicable to all missing
states. Therefore, the algorithm can also handle missing states and thus can also
predict locations on unprecedented road segments that it would have otherwise
filtered out because their associated probability is zero. To predict turning be-
haviors at intersections precisely, we need to know the historical sequence of
connected road segments between consecutive observed locations. In the con-
text of higher sampling rates, it is possible that a driver has traversed a road
segment entirely between two locations and the turn probability calculation
algorithm wrongly attributes the latter’s road segment to be adjacent to the
former’s road segment. Consequently, we count the occurrence of the nonadja-
cent road segment instead of the traversed road segment leading to mistakenly
lower turn probabilities.

During the route interpolation of two consecutive locations, we are con-
fronted with an abundance of possible routes the driver could have taken. We
use Dijkstra’s shortest path algorithm to identify the route with the shortest
traversal times between two consecutive locations. Traffic situations and the
demand vary for specific regions depending on the daytime [286]. For that rea-

62 4 Optimizing Passenger Dispatch Decisions

son, we distinguish between different contexts (e.g., rush hour) to increase the
accuracy of the turn probability prediction.

4.2.4 Location Extrapolation on Road Segment Candidates

In the final step, we extrapolate a driver’s specific location on the determined
road segments, as the estimated time to the passenger can vary based on the
particular location on a road segment. During the short-term route predic-
tion (cf. Section 4.2.2), we calculate a set of road segment candidates that a
driver is expected to reach within the prediction frame f . We determine for
each candidate road segment a driver’s required traversal time tpath ∈ R+

0 to
reach it. As the remaining time tremaining of each candidate road segment, i.e.,
tremaining = f− tpath, is not large enough to traverse it completely, we expected
the driver to be located on it. Given each candidate’s remaining traversal time
tremaining, we estimate the driver’s precise position via the fraction of the road
segment the driver is expected to have traversed within the remaining time of
the prediction frame.

4.3 Evaluation of Location Prediction Algorithm

This section evaluates the applicability of the presented location prediction al-
gorithm based on the real-world dataset of a TNC. First, we introduce the
dataset and explain the data characteristics (Section 4.3.1). Afterward, we an-
alyze the accuracy (Section 4.3.2) and the computation time (Section 4.3.3) of
the approach.

4.3.1 Dataset

For the evaluation, we use a real-world dataset of a TNC. The dataset consists of
the observed locations of drivers and booking information in the City of Dubai. It
includes the data for three consecutive months, from November 2018 to February
2019. Moreover, the trajectory data have a raw size of about 15.9 GB and
store 400 million GPS-tracked location information. Due to privacy concerns,
the data involve only dispatch process-related positional information and no
details about the routes of passengers. Compared to other publicly available
passenger transportation datasets (e.g., NYC Taxi Rides [332]), the dataset
has a significantly higher granularity as a driver’s position is tracked around
every five seconds. Besides the timestamp, latitude, longitude, and the driver’s
identifier, a status attribute is tracked for each observed location. This status
attribute represents the driver’s status (free or occupied). In this context, the
status free indicates that a driver is available for incoming passenger requests,
and the status occupied defines that the driver is on the way to the pickup
location of an assigned passenger request. All attributes are stored as integers.
Based on the insertion order, a certain temporal ordering of the sample points
exists. Still, we cannot guarantee that the timestamp column is sorted due to
transmission problems and delayed transmissions (cf. Section 4.1.1).

The corresponding OpenStreetMap road network of the City of Dubai has
139 117 road segments with an average length of 115m. The length of road
segments can vary based on the road type (e.g., highway).

4.3 Evaluation of Location Prediction Algorithm 63

4.3.2 Accuracy of the Predicted Locations

To evaluate the overall quality of the location prediction algorithm (cf. Sec-
tion 4.2), we use 1 000 pings located on the same road segment to predict the
road segments the associated drivers could be on after the prediction frame,
i.e., the road segment candidates, along with their respective probabilities. As
ground truth serves the driver’s correct road segment after the prediction frame
f , which defines the period, we try to predict based on the timestamp of the
last observed location. We compare the discrete probability distribution of these
predicted road segments with the discrete relative frequency distribution of the
drivers’ correct road segments. We model the turning behavior via 2nd-order
Markov chains. For the experiments, we set the prediction frame f to 5 seconds,
10 seconds, and 20 seconds and compare the results of a highly frequented road
segment, i.e., one with many observations, to a less frequented road segment to
evaluate how the algorithm performs with a smaller set of observations.

We perform out-of-sample four-fold cross-validation for all experiments and
report the average score over all four runs. In Figure 4.4, we illustrate the results
of our location prediction algorithm for drivers that are currently on a highly
frequented road segment. The training dataset for the algorithm includes 21 751
traversal speed and 9 224 turn observations for the respective road segments.

The predicted probability density over the set of road segment candidates
is similar to the distribution of the relative frequencies of the individual road
segments of the ground truth. The average absolute difference between the prob-
ability of a predicted road segment and its relative frequency in the ground truth
for the three prediction frames are 0.012 (5 seconds), 0.033 (10 seconds), and
0.075 (20 seconds). For a prediction frame of 5 seconds, the predicted probability
deviates on average by 1.2% from the actual relative frequency. The difference
proves that the location prediction algorithm is accurate for frequently observed
road segments. As the prediction frame increases, the difference between the pre-
dicted probabilities of the road segments and their actual relative frequencies
increases. The reason for this is that with an increasing prediction frame, the
impact of the estimated traversal speeds’ inaccuracies increases. The impreci-
sion of the estimation may be caused by temporary traffic conditions that the
mined traversal speed estimations do not capture in full detail.

We conduct the same experiments on a less frequented road segment with
fewer observations. Figure 4.4 shows our algorithm’s results for a representative
unfrequented road segment. For the road segment, we obtained 2 210 traversal
speed and 3 977 turn observations during the trajectory data analysis process.

The results show that the set of road segment candidates the location pre-
diction algorithm predicts overlaps on average with 63.5% of the ground truth
across prediction times. Although the ground truth contains every member of
the set of candidates, we miss on average 36.5% of the ground truth’s road
segments because we did not observe two turns during the trajectory analysis
process. We may have missed these turns during the observation due to tem-
porary road conditions, e.g., road constructions blocking the turns. However,
the relative frequencies of the turn’s following road segments are low, for which
reason these turns are generally infrequent. Finally, the missed turns account on
average for 0.4% of road segments within the ground truth, which is a negligible
amount. The average absolute difference of the predicted road segments’ prob-

64 4 Optimizing Passenger Dispatch Decisions

abilities to their relative frequencies in the ground truth for the less frequented
road segment is 0.039 (5 seconds), 0.053 (10 seconds), and 0.031 (20 seconds).

0.007

0.001

0.245

0.239

0.504

0.501

0.196

0.227

0.048

0.032

0.114

0.085

0.004

0.000

0.130

0.172

0.508

0.458

0.106

0.164

0.138

0.121

0.102

0.227

0.003

0.0010.131

0.018

0.042

0.065

0.500

0.352

0.018

0.058

0.204

0.280

0.510

0.578

0.154

0.164

0.218

0.258

0.003

0.000

0.002

0.000

0.113

0.000

0.503

0.546

0.095

0.074

0.128

0.155

0.002

0.000
0.001

0.000

0.001

0.000

0.270

0.225

0.501

0.411

0.049

0.060

0.060

0.116

0.001

0.000
0.003

0.000

0.386

0.413

105 20
Prediction Frame [s]

Hi
gh

ly
Fr

eq
ue

nt
ed

Le
ss

 F
re

qu
en

te
d

Fig. 4.4: Results of the next location prediction algorithm for a highly
frequented and a less frequented road segment. We run the experiment on
1 000 out-of-sample observed locations that share the same road segment
indicated by the dashed green arrow. The upper value in the box denotes the
relative frequency of drivers that are on the respective road segment after
the prediction time. In contrast, the value below depicts the probability we
predict for drivers to be on that road segment after the prediction time.

Furthermore, we conducted additional location predictions for different ex-
amples. Naturally, we found that the results depend on the specific setting
considered (road segment, time, individual driving behavior, etc.). However,
overall, we obtained similar accuracy results as in the shown example, see Fig-
ure 4.4. Further, we observed that the most critical factor is the amount of data
associated with a specific setting.

Moreover, we evaluated if the turning behavior at intersections changes with
the time of the day (e.g., rush hour). For that reason, we construct one Markov
chain that models the turning behavior of drivers during rush hour and one
during the evening hours. We select both time frames (rush hour and evening)
so that both Markov chains cover the same number of observations.

Further, to assess if the context-specific modeling boosts prediction accu-
racy, we assess if Markov chains of the same context have more similar turn
probabilities than Markov chains of different contexts, considered as Both, cf.
Figure 4.5. We measure the similarity via the average absolute difference of turn
probabilities of the same Markov state. We constrain the comparison to inter-

4.3 Evaluation of Location Prediction Algorithm 65

sections with at least 50 observations for each context. The restriction results
in 2 485 intersections, for which we compare the turn probabilities. Here, we
observe that considering different contexts or time intervals can improve the
accuracy of the turn probabilities.

0.0 0.02 0.04 0.06 0.08 0.1+
Mean of absolute difference of intersections’

turn probabilities across Markov chains

0

20

40

60

80

100

C
um

ul
at

iv
e

R
el

at
iv

e
Fr

eq
ue

nc
y

[%
]

Observation Period
Rush Hour Evening Both

Fig. 4.5: Sensitivity to context: The histogram shows the cumulative dis-
tribution of the mean absolute differences of intersections’ turn probabilities
of different times of the day.

4.3.3 Runtime of the Prediction Algorithm

We conduct experiments to evaluate if the algorithms fulfill real-time runtime
requirements. This is especially interesting in the context of dispatching. Dis-
patching algorithms have to decide in an adequate time, as with increasing
passenger waiting time, the cancellation rate increases and the discrepancy be-
tween drivers’ last recorded locations used for dispatching and their current
location increases with execution time. We concentrate on the runtime analysis
of the short-term route prediction because it has the highest runtime complexity
of the three subcomponents. Therefore, the route prediction should be the most
time-consuming subcomponent of the location prediction algorithm. During the
experiment, we focus on drivers that leave their current road segment. Other-
wise, the algorithm does not traverse the road network, and hence, only the
estimation of a driver’s current traversal speed and the retrieval of the current
road segment’s length contribute to the runtime.

We investigate the effect of an increasing prediction frame on the perfor-
mance of the short-term route prediction algorithm. For this reason, we execute
the algorithm with a prediction frame f of 5, 10, 30, and 60 seconds on the
dataset. Figure 4.6 visualizes the results of the experiment measured on a con-
sumer notebook. The results depict the median execution time to increase with
an increasing prediction frame. This is due to the fact that with a larger pre-
diction frame, the algorithm visits more road segments during traversal as the
overall traversal time threshold, i.e., the traversal’s early exit criterion, is larger.

66 4 Optimizing Passenger Dispatch Decisions

Additionally, the number of road segments that must be analyzed for different
intersections is responsible for the high variance of the results.

5 10 30 60
Prediction Frame [s]

20

40

60

80

100

120

Ex
ec

ut
io

n
T

im
e

[m
s]

Fig. 4.6: Execution times for increasing prediction frames: The box-plot
diagram shows the execution times of the short-term route prediction al-
gorithm for different prediction frames. We run 10 000 predictions for each
of the four folds.

The results of the experiment show that the execution times of the short-term
route prediction algorithm fulfill real-time runtime performance requirements.
Although with an increasing prediction frame, the algorithm’s execution time
increases as well, the algorithm’s median execution time of 54ms for a prediction
frame of 60 s demonstrates that the algorithm also executes in real-time for
larger prediction frames. Therefore, live dispatching algorithms can utilize the
algorithm without experiencing losses in their runtime performance.

4.4 Risk-Averse Dispatch Strategies

Based on the probabilistic location predictions (cf. Section 4.1.2), we propose
different risk-aware dispatch strategies. When choosing a driver, the goal is to
not only minimize the (expected) arrival time but also account for the risk

of critical delays. By p
(d)
k , we denote the probability that a driver d’s current

location is k (where the set of potential locations K(d) is derived as described

in Section 4.2); by t
(d)
k we denote the (estimated) time to reach the customer

from location k. A driver d’s random arrival time is denoted by T (d). Next, we
define five different dispatch assignment strategies:

• Best Expected Arrival Time: Select the driver d with the smallest ex-

pected arrival time E(T (d)) =

k∈K(d) p
(d)
k · t(d)k , i.e.,

min
d

E(T (d)).

The approach optimizes the mean arrival time based on potential current
locations instead of the outdated last known location as used in many status
quo strategies, see Section 4.1.1. Based on the example in Figure 4.3, this
strategy would avoid assigning the passenger request to the blue or green

4.4 Risk-Averse Dispatch Strategies 67

driver as both have a high probability of a time-consuming detour resulting
in a significantly longer mean estimated travel time.

• Worst Case Optimization: Select the driver d with the smallest worst
case arrival time:

min
d

max

k∈K(d)
t
(d)
k

.

The approach seeks to keep potential delays as small as possible. The ap-
proach allows to determine an upper bound for the arrival time.

• Mean-Variance Optimization: Select the driver d with the best balance
of mean arrival time and associated variance penalized by a chosen factor α,
e.g., α := 0.1:

min
d

E(T (d))+α ·

k∈K(d)

p
(d)
k ·

t
(d)
k − E(T (d))

2

.

The criterion combines the risk-neutral approach A with an incentive to
choose drivers with low deviations of potential arrival times according to
their current uncertain location, which in turn, yields more predictable ar-
rival times.

• Best Expected Utility: Select the driver d with the best expected util-
ity (i.e., smallest expected penalty) using a suitably chosen convex penalty
function u, e.g., u(x) := x2:

min
d

k∈K(d)

p
(d)
k · u(t(d)k)

.

The criterion looks for short arrival times while penalizing delays in a pro-
gressive way (as intended). Similar techniques are used in [140] for risk-
sensitive path selections under uncertain travel costs.

• Probability Constraints & Quantile-based Criteria: Select the driver
d with the best arrival time that can be realized with at least probability z
(smallest z-quantile):

min
d

q
P

T (d) ≤ q

≥ z

.

The criterion allows to formulate performance measures that are easy to
interpret and to communicate, e.g., with z = 90% probability a driver will
arrive within time q.

For all proposed approaches, the computation time is not an issue, as each
objective can be easily evaluated numerically for a couple of potential drivers.
The proposed approaches allow the optimization of different risk preferences,
which may resemble a company’s strategic goals. In this context, also further
criteria can be used (e.g., conditional value at risk, etc.). Additionally, other
factors as the customer-specific cancelation rate based on previous bookings and
the current market situation, can be included in the decision process. Note, the
key for all of those approaches is our probabilistic location prediction approach.
Naturally, the suitability and effectiveness of the proposed risk-aware dispatch
strategies have to be evaluated in practice.

68 4 Optimizing Passenger Dispatch Decisions

4.5 Summary

We studied the limitations of established dispatching strategies and presented
a novel approach to improve the dispatch processes of TNCs by using a lo-
cation prediction algorithm. In particular, we identified inaccurate positional
information as one aspect of drivers’ late arrivals at pickup locations (cf. Sec-
tion 4.1.1). These inaccuracies are produced by various circumstances (e.g., out-
dated data, noise, or technical limitations). Current state-of-the-art dispatch
strategies have limitations, which are caused by using a driver’s last observa-
tion. Using those systematically outdated locations can lead to wrong dispatch
decisions, as drivers may have to take unexpected detours. Our approach seeks
to attack the problem of outdated locations by predicting a probability dis-
tribution for a driver’s actual location (cf. Section 4.1.2). Our algorithm uses
patterns observed in past trajectory data to determine sets of potential locations
and their corresponding probabilities (cf. Section 4.2). We demonstrate the ap-
plicability and accuracy of our prediction approach using numerical experiments
based on a real-world dataset (cf. Section 4.3). The evaluation showed that the
algorithm is quite accurate in predicting the possible locations of a driver. As
the prediction of the correct road segment is quite hard, especially at the transi-
tions between two road segments, the determination of the driving directions of
a driver has high accuracy. In Section 4.1.2, we showed that accurate directions
could significantly improve dispatching decisions.

Additionally, the accuracy of the turn probabilities and traversal speeds
of individual road segments depends on the number of observations. In this
context, we present fallback strategies (e.g., speed limits) for areas with only a
few observations. The impact of these inaccuracies on dispatch decisions in less
frequented areas is often negotiable as the communicated estimated arrival times
are higher and there are wider variations between the drivers. Moreover, we
verify that the algorithm’s runtime is sufficiently fast to be applied in practice.
In order to further improve traditional dispatch strategies, we propose different
concepts to minimize the probability of large waiting times. This way, the risk
of critical delays can be addressed, and thus, helps to minimize the customers’
cancellation rates. Here, an overall evaluation of the impact on the cancellation
rate was not possible due to the traffic-adjusted calculation of arrival times.
Consequently, it was impossible to determine realistic estimated arrival times
for different routes for past dispatch decisions. Our results reveal possibilities
to improve the dispatch processes of TNCs as the risk of critical delays can be
quantified and endogenized. Additionally, it enables these companies to use given
resources more efficiently and increase customer satisfaction by communicating
precise arrival time information.

5

Workload-Aware Joint Table Configuration
Optimizations for Spatio-Temporal Data

Based on the performance requirements of modern spatio-temporal data min-
ing applications, in-memory database systems are frequently used to store and
process the data. To efficiently utilize the available DRAM capacities, modern
database systems apply various optimizations (e.g., data compression or sec-
ondary indexes) to increase performance or lower the operation costs by reducing
the memory footprint. However, the selection of cost and performance-balancing
configurations is challenging due to the vast number of possible setups consist-
ing of mutually dependent individual decisions. In this chapter, we introduce an
approach to optimize the data management of columnar in-memory databases
for spatio-temporal applications.

In Section 5.1, we use the research database Hyrise (cf. Section 2.3.2) to
demonstrate the implications of different configuration decisions on the memory
consumption and query performance of a system. We use the dataset of a trans-
portation network company (TNC), introduced in Chapter 4, to visualize the
impact and dependencies of various configuration decisions in a real-world ex-
ample. In Section 5.2, we present the concept of leveraging fine-grained database
optimizations to reflect spatio-temporal access patterns and describe the entire
process to determine optimized table configurations for spatio-temporal work-
loads. In Section 5.3, we introduce our linear programming (LP) approach to
determine application-specific fine-grained configuration decisions for a given
memory budget. In Section 5.4, we extend our LP models to include data tier-
ing decisions in the joint optimization process. To yield maintainable and ro-
bust configurations, we present two enhancements of the LP-based approach
to incorporate reconfiguration costs and a worst-case optimization for potential
workload scenarios.

Parts of the presented content, including the LP models for the joint com-
pression, sorting, tiering, and indexing configuration optimization as well as
the extensions to consider reconfiguration costs and robustness, have been pub-
lished [282, 283].

5.1 Implications of Configuration Decisions on Query
Performance and Memory Footprint

The selection of tuning configurations is a trade-off between performance (e.g.,
runtime) and costs (e.g., memory consumption). In Figure 5.1, we visualize the

70 5 Joint Table Configuration Optimizations for Spatio-Temporal Data

implications of different tuning configurations measured in the research database
Hyrise, which has comparable performance to other database systems [85]. To
demonstrate the impact of different table configurations on the memory con-
sumption and the runtime performance of database operations, we use the real-
world dataset of a TNC, introduced in Section 4.3.1, as a running example. The
used subset of the dataset consists of ten million observed locations of drivers
for three consecutive days. We stored all attributes as integers. Based on the
insertion order, a particular temporal ordering of the sample points exists, but
we cannot guarantee that the timestamp column is sorted due to transmission
problems. We compare the memory consumption and runtime performance of
isolated executed table scan operations on a single column for the different chunk
ordering options (incl. unsorted) and encoding configurations (incl. unencoded).
The chunk ordering options include an unsorted option, which is determined by
the insertion order of the table, and a sorting option for each column. The set of
analyzed encodings consists of an unencoded option and the four compression
approaches (i) LZ4 encoding, (ii) dictionary encoding, (iii) frame-of-reference
encoding, and (iv) run-length encoding. Additionally, we include an index con-
figuration, which is represented by a group key index [100] that can be applied
to dictionary-encoded segments.

Memory Consumption [MB]

0

20

40

60

80

100

R
un

tim
e

[m
s]

I II III IV

0 50 100 0 50 100 0 50 100 0 50 100

unsorted
driver_id
longitude
latitude
timestamp
status

Chunk Ordering

LZ4
dictionary
dictionary (group key)
frame-of-reference
run-length
unencoded

Encoding & Index
Configuration

A

B C

D

Fig. 5.1: Impact of different tuning decisions on memory consumption and
performance for ten million observed locations partitioned into ten chunks
and specific scan operations: a LessThanEquals scan (selectivity: 1%) on
(I, II) the driver id column, (III) the longitude column, and (IV) a Between
scan on the longitude column with a selectivity of 10%.

In Subfigure I, the runtimes of the encoding tuning options on an unsorted
table for a LessThanEquals scan operation with a selectivity of 1% are visual-
ized. Here, we can see that the different configuration options have a significant
impact on performance as well as memory consumption. In this case, dictionary
encoding is the compression approach with the lowest runtime (8.4 ms), which
is over four times faster than the runtime of frame-of-reference encoding (37.7
ms). We can further reduce the runtime to 4.2 ms by using additional memory
and applying a group key index structure [100].

In Subfigure II, we include sorting effects. The colors of the symbols indicate
the sorting column of the table. If the scan operation is performed on a sorted

5.1 Implications of Configuration Decisions on Query Performance and Memory Footprint 71

column, the runtime of the different configurations is significantly lower A©. For
instance, the scan operation with applied run-length encoding executed on a
sorted column takes only 0.17 ms compared to 27.5 ms on an unsorted column,
which is over 160 times faster. Also, the memory consumption for this config-
uration (0.15 MB) is over 540 times lower than the value to store an unsorted
column (81.25 MB). Moreover, in B©, we can observe that there is a correla-
tion between the data of different columns and that the table’s specific sorting
decision can also impact the memory footprint and performance for various en-
codings (e.g., LZ4). LZ4 encoding stores data as a sequence of sequences and
benefits from repeating sequences of literals [65]. Based on the resulting data
characteristics, the ordering of the table by longitude or latitude leads to an
increased memory consumption (280%) and runtime performance (140%) com-
pared to the values for an unsorted table or a table sorted by timestamp. In
contrast, the sorting decision has a significantly lower impact on the data foot-
print and runtime for frame-of-reference encoding. In C©, we can observe that
ordering by one of the coordinate columns leads to a lower memory consump-
tion for run-length encoding. Although the memory consumption is smaller,
the runtime of the scan operation is about 30% higher for this tuning option
compared to ordering by timestamp. In the benchmark, we partitioned the ten
million observed locations into ten chunks with a chunk size of one million and
applied the same configuration for each segment. Based on the specified queries’
selectivities, some chunks can be pruned during query execution. As the data
characteristics vary between chunks (e.g., during nighttime, we can observe that
there is a significantly reduced number of active drivers and that the average
trip length is increased), the impact of the sorting decision also varies between
chunks. In this case, the sorting by timestamp leads to an increased memory
consumption of some chunks that are not accessed by the query. Furthermore,
other effects (e.g., fewer branch mispredictions and caching) based on the data
characteristics impact the runtime performance of the tuning options.

In Subfigure III, we execute a scan operation with the same selectivity on the
longitude column. Based on the changed data characteristics, the runtime per-
formance and memory consumption of several tuning options changed D©. For
instance, as the longitude column has a higher number of distinct values, the
memory consumption to apply an index significantly increases. In Subfigure IV,
we can observe that the given workload influences the effectiveness of the differ-
ent tuning options. Based on the measurements, we can summarize that various
aspects determine the efficacy of specific tuning options. Overall, Figure 5.1 mo-
tivates that the selection of suitable tuning options for a particular application
context can be highly beneficial for memory consumption and performance. Fur-
ther, the selection of performance and cost-balancing configurations consisting
of mutually dependent tuning options is challenging due to the large number of
potential setups. Thus, it is difficult for database administrators to estimate the
impact of specific tuning decisions [58]. Especially for workloads with a mix of
different types of queries, the impact of individual tuning decisions is hard to
predict, and hence, the overall tuning is not easy to optimize.

72 5 Joint Table Configuration Optimizations for Spatio-Temporal Data

5.2 Optimizing Table Configurations for Spatio-Temporal
Workloads

As the workload and data characteristics particularly impact the effective-
ness of various tuning options (cf. Section 5.1), we argue that the selection
of application-specific tuning options can significantly improve the operating
costs (e.g., memory consumption) and the performance of database systems.
In Section 5.2.1, we explain our approach to optimize the data management
of spatio-temporal data in general-purpose database systems by applying fine-
grained database optimizations. In Section 5.2.2, we describe the process to
determine optimized table configurations.

5.2.1 Leveraging Fine-Grained Database Optimizations to Reflect
Spatio-Temporal Access Patterns in the Data Management Layer

Due to the high volumes of continuously accumulated trajectory data and cost-
related limited main memory resources, database optimizations that leverage the
characteristics of spatio-temporal applications are valuable. The used DRAM
capacities are an important cost factor for in-memory databases [33, 180]. Con-
cerning spatio-temporal data volumes, minimizing the data footprint can signif-
icantly reduce the system’s operating costs. One aspect of spatio-temporal data
management is that the specific data access patterns are often implemented
in the application layer but are not reflected in the storage layer. The access
frequency and access characteristics of spatio-temporal data points change over
time. Complexity increases as several applications with different access pat-
terns commonly work on the same spatio-temporal data. Based on the running
example of a TNC, we observed applications with high selectivity queries on
the most current data (e.g., passenger request dispatching). These applications
partially ignore data after a specific timeframe, as the data do not reflect the
current situation (e.g., traffic circumstances or order situation) anymore. Addi-
tionally, there are queries with a low selectivity on mostly older data for sophis-
ticated analytical applications (e.g., demand prediction). Another aspect is that
the spatio-temporal data characteristics can vary between different timeframes
strongly (e.g., seasons or day and night) [390]. For instance, we can observe, for
the TNC example, a reduced number of active drivers during nighttime. Also,
different areas are more frequented based on the time. By considering these
application-specific properties in the selection of tuning options, we can achieve
the best performance based on the often cost-constrained hardware resources of
spatio-temporal applications.

Modern database systems partition the data of a table by different criteria
(e.g., time) to enable various optimizations (e.g., pruning). In Hyrise, we im-
plicitly divide the data into horizontal partitions with a predefined maximum
size (cf. Section 2.3.2). Similar concepts are applied by other databases [178,
248, 252]. This concept enables the application of different tuning options pro-
vided by data management systems for various partitions and segments of a
table. Consequently, database administrators can apply fine-grained table con-
figurations consisting of multiple tuning options (e.g., sorting, indexing, and
compression configuration) to optimize the storage layer for the given data and
workload characteristics. The implications of different configuration decisions

5.2 Optimizing Table Configurations for Spatio-Temporal Workloads 73

on the runtime performance are difficult to estimate for a database admin-
istrator [13, 38]. Consequently, various vendors apply simple threshold-based
data-driven approaches. Based on a defined threshold (e.g., data volume or
timeframe), data partitions are transferred to lower-cost storage mediums with
higher latencies or more heavyweight compression techniques are applied. How-
ever, the selection of cost and performance-balancing configurations is challeng-
ing due to the vast number of possible setups consisting of mutually dependent
individual decisions.

We introduce an approach that determines fine-grained table configurations
optimizing multiple tuning dimensions as we leverage the characteristics of
spatio-temporal applications. First, we exploit that the number of attributes in
spatio-temporal applications is typically small, preventing the number of vari-
ables in our models from becoming unmanageable large. Second, the relatively
small number of attributes limits the number of potential index candidates.
Real-world datasets such as SAP’s enterprise resource planning system include
tables with hundreds of attributes. Faust et al. [99] showed that large indexes
with up to 16 attributes are used in such systems. Based on the number of
index candidates in such systems, it would be too complex to determine joint
table configurations. Furthermore, the number of multi-column index candidates
can be reduced in advance as in the spatio-temporal domain indexes that are
potentially beneficial are typically known or can be restricted to a small set,
i.e., the number of options. Third, we exploit that trajectory-based queries and
spatio-temporal range scans dominate various spatio-temporal workloads [275].
Trajectory-based queries return all sample points of the trajectory or a sub-
trajectory of a specific moving object. In contrast, a spatio-temporal range query
determines all sample points of various moving objects in the defined temporal
and spatial bounds (e.g., data visualization or acquiring data as input for data
mining applications). For these query types, we can build relatively accurate
cost models to estimate the operating costs for each segment. Additionally, to
avoid random accesses, which are significantly slower than sequential accesses,
Hyrise materializes the intermediate results into an uncompressed format once
non-sequentially processing operators occur (e.g., join). Once an intermediate
result is materialized, no encoded or tiered data is accessed any longer.

5.2.2 Process Overview

The optimization process consists of a controller, benchmark engine, and con-
figuration optimizer. The controller operates the process and acts as an inter-
mediary between the target database management system (DBMS) and the
configuration optimizer. It collects the runtime and benchmark data from the
target DBMS for the configuration optimizer, which uses the data to recom-
mend a new table configuration based on the internal tuning models. Based on
the selected tuning model and workload, the benchmark engine executes a set
of benchmark queries on different table configurations.

The optimization of a table configuration can be triggered based on specific
metrics (e.g., time intervals, performance constraints) or after the specified max-
imum size of a mutable chunk is reached. As shown in Figure 5.2, in the first
step 1©, the controller collects the workload data from the target DBMS. During
runtime, modern database systems track various parameters to optimize the per-
formance of a DBMS autonomously [169]. The SQL plan cache is used to extract

74 5 Joint Table Configuration Optimizations for Spatio-Temporal Data

1 collect workload data

2 create benchmark

3 run benchmark

4 collect metrics

Configuration Optimizer

Selectable Tuning Models

5 update metrics 6 process

7 recommend table
configuration

8 deploy new table
configuration

Target DBMS
(e.g., Hyrise)

Controller

Benchmark
Manager

workload query templates,
chunk access statistics,
target DBMS metadata,

benchmark query results,
and memory consumption

Data Repository

Fig. 5.2: Overview of the optimization process - The controller collects the
workload information of the target DBMS. Based on the workload data,
the benchmark manager executes a set of benchmark queries. The work-
load data and the benchmark metrics are transferred to the configuration
optimizer, which processes the updated data and uses the selected algo-
rithm to determine an optimized table configuration. Finally, the new table
configuration is applied to the target DBMS.

the query templates of the workload. Each template describes a set of similar
executed queries. Additionally, the segment access statistics captured by Hyrise
are collected [84]. Moreover, we can use min/max statistics of each segment
to determine the relevant chunks for a specific query template. These work-
load statistics are used in various physical database tuning tools [38, 169, 231].
Based on the query templates and the selected tuning model, the benchmark
engine 2© creates a set of benchmark queries. In step 3©, the benchmark consist-
ing of isolated executed single-column scan operations is conducted on different
configurations to get information about the runtime performance and memory
consumption of different encoding types for each column.

Due to the limited number of attributes in spatio-temporal data tables, the
number of queries is manageable. Alternatively, estimated cost models [33, 219]
or what-if analysis [8, 50] could be used to predict the runtime performance and
memory consumption. By determining the input parameters for the LP models
based on the stored trajectory data and queries, we can consider the application-
specific characteristics in the optimization process. The controller 4© collects the
benchmark results and 5© transfers the results as well as the workload data to
the configuration optimizer. The configuration optimizer uses the data and the
tuning models to 6© calculate an optimized configuration. Based on the recom-
mended new table configuration 7©, the controller 8© applies the configuration
on the target DBMS. Here, each chunk’s determined configuration can be ap-
plied asynchronously to reduce the overhead [86].

5.3 An Approach to Compute Joint Index, Sorting, and Compression Configurations 75

5.3 A Linear Programming Approach to Compute Joint
Index, Sorting, and Compression Configurations

To efficiently utilize the available DRAM capacities, we introduce a joint LP-
based approach to determine fine-grained configurations for specific spatio-
temporal applications. As the different configuration decisions mutually influ-
ence each other, we seek to jointly optimize the compression, index, and ordering
configuration to determine the best runtime performance for a given workload
and memory budget. Note that each of those individual tuning problems is, in
general, already challenging. We are still able to address a joint optimization
of these dimensions as we exploit the specific characteristics of spatio-temporal
data and applications, i.e., a limited number of columns and few query types.
Further, we present different LP variants with differences regarding accuracy
and numerical complexity, which allows for balancing multiple aspects (e.g.,
solving time) for the specific use case. For instance, to obtain a manageable
problem complexity, we focus on single-attribute indexes and discuss the use of
specific selected multi-attribute indexes based on domain knowledge.

Linear programming is an optimization technique for finding a solution for a
given linear problem based on a mathematical model. In this context, a solution
is defined by a set of variables, referred to as decision variables, whose values
have to be decided in some optimal fashion [344]. The objective of linear pro-
gramming is to minimize or maximize a linear function of these decision variables
subject to linear constraints [70, 105]. The linear function is called the objective
function and describes the optimization criteria (e.g., minimal runtime). The
constraints are a set of equalities or inequalities that restrict the solution space
for the value assignment of the decision variables. A solver determines the solu-
tion based on the mathematical model consisting of the objective function, a set
of constraints, and a set of input parameters using standard algorithms (e.g.,
simplex or branch & bound, etc.).

In this section, we formalize the problem of database systems to determine
memory-efficient table configurations for spatio-temporal data (Section 5.3.1).
In Section 5.3.2, we introduce a general LP model that solves the specified prob-
lem. Additionally, we present heuristic solutions based on segment-specific costs
(Section 5.3.3) using specialized LP models with (Section 5.3.4) and without
(Section 5.3.5) sorting dependencies. In Section 5.3.6, we show how our models
can be adapted to include database-specific restrictions.

5.3.1 Problem Definition

We consider a table with a set of attributes N and a set of chunks M (cf. Sec-
tion 2.3.2). The problem is to find a valid table configuration for an available
memory budget B and a given workload Q consisting of different query tem-
plates q, which occur with frequency fq, such that the overall performance is
maximized by minimizing the workload’s total execution time. A valid table
configuration consists of a (i) sorting, (ii) compression, and (iii) index configu-
ration for all columns n within each chunk m. Consequently, for each segment
(n,m) with n ∈ N,m ∈ M , we have to select a configuration from sets of avail-
able compression E, indexing I, and sorting O options. Note, these sets also
include basic options, i.e., data can be unsorted, unencoded, or not indexed.

76 5 Joint Table Configuration Optimizations for Spatio-Temporal Data

For the different sets, parameters, and variables of the LP approach, we provide
a notation table (cf. Table 5.1).

S
et
s

N set of attributes n
M set of chunks m
E set of encoding types e
I set of indexes i
O set of ordering options o
Q set of query templates q
S all scan operations s of a given query set Q
K set of configuration options k (CCD model)

P
a
ra
m
et
er
s

nq,s scan column of the scan operation q, s
ωq,s scan factor of the scan operation q, s
fq scan frequency of query q
uq,s,e successive scan penalty (for scan operation q, s given e)
am,q,s proportional size of the segment (m,nq,s)
ve,i defines whether index i valid for encoding e
cm,n,e,o,i scan costs for segment ns of chunk m
cq,m,s,k scan costs for chunk m (CCD model)
φm,n,e,o,i memory consumption for segment (n,m)
B main memory budget
pq,s,e,o,i execution time of a scan operation s

V
a
ri
a
b
le
s xm,n,e,o,i decision if a configuration is active (SSD, ISE)

ym,o decision (a chunk m’s sorting, SSD)
zm,n,e,i decision (a segment n’s configuration, SSD)
xm,k decision (a chunk m’s configuration, CCD)

Table 5.1: Notation table for the LP approach to determine table config-
uration optimizations.

As the required DRAM capacities of spatio-temporal data represent a signif-
icant cost factor of modern systems, the available memory resources have to be
leveraged efficiently. The size of a segment (m,n) with configuration e, o, i (with
e ∈ E, o ∈ O, i ∈ I) is described by the parameters φm,n,e,o,i. Note, φm,n,e,o,i

also includes the memory consumed by the index (if an index is applied on the
segment). A valid table configuration must not exceed the given memory budget
B. For a chunk m ∈ M we consider potential joint configurations k from a given
set of feasible options K. An option k characterizes combinations of configura-
tions on a segment level, i.e., by em,n,k ∈ E, om,n,k ∈ O, and im,n,k ∈ I, we
denote encoding, sort, and index decisions for column n ∈ N . Further, as we
are focusing on spatio-temporal range queries and trajectory-based queries, each
query template can be described as a composition of various scan operations,
where the set Sq returns all scan operations s of a query template q, q ∈ Q. For
scan operation s of template q the corresponding costs for chunk m and under
a specific tuning configuration k are denoted by parameters cq,m,s,k, s ∈ Sq,
q ∈ Q, m ∈ M , k ∈ K.

5.3 An Approach to Compute Joint Index, Sorting, and Compression Configurations 77

5.3.2 General Model with Chunk-Based Configuration Dependencies

First, we consider a general model with chunk-based configuration dependencies
(CCD), which represents a solution approach accounting for full cost dependen-
cies within a chunk. In this model, the costs associated with a segment can
depend on all specific configuration decisions of all other segments. This en-
ables the model to particularly include multi-attribute indexes (e.g., k-d tree
on latitude and longitude) or multi-attribute sorting options (e.g., space-filling
curves) as long as (i) the number of considered configurations is tractable and
(ii) the necessary data is at hand.

In the CCD model, we use the binary variables xm,k, to express whether
for a chunk m ∈ M the joint configuration k ∈ K is chosen. The objective of
the CCD model is to minimize the cost (in this case, the runtime) for a given
workload, cf. Q and f , over all x variables (denoted by x)

minx

m∈M,k∈K

xm,k ·

q∈Q,s∈Sq

fq · cq,m,s,k (5.1)

subject to the B budget constraint, which guarantees that the accumulated
memory consumption of all segments (m,n) with their selected configurations
e, o, i, b (cf. φm,n,e,o,i) does not exceed the memory budget B, we use,

m∈M,k∈K

xm,k ·

n∈N

φm,n,em,n,k,om,n,k,im,n,k
≤ B. (5.2)

To ensure a unique configuration option for each chunk m we use

k∈K

xm,k = 1 ∀m ∈ M. (5.3)

The CCD model, (5.1) to (5.3), is linear and can be optimally solved using
standard solvers. Naturally, the model’s complexity and the required input is
driven by the size of K, which can quickly become large when exhaustive com-
binations of tuning options are used. In this context, we recall that the options
within K should be chosen by taking domain knowledge into account such that
only reasonable configurations are considered. Moreover, we note that within
these options for a certain chunk, we can exclude all options that are dominated
by another option (with smaller required memory and better scan costs). This
can reduce the number of options |K| dramatically. The CCD model can be,
e.g., used in specialized domain settings, where it is crucial to be able to account
for complex tuning dependencies. In applications with less complex dependen-
cies, basic models may be more suitable as they can be directly characterized
by segment-based costs, which are discussed next.

5.3.3 Segment-Based Cost Estimation

Cost estimations for different configurations are a crucial aspect. To determine
them on a segment-level, we consider the scan operations of a query and their
execution order, which is defined by the query optimizer. Based on the Hyrise
query optimizer implementation, the order of the scan operations is determined

78 5 Joint Table Configuration Optimizations for Spatio-Temporal Data

by the operations’ selectivity value, starting with the lowest selectivity value [35].
To consider that a scan operation s of a query template q (executed after a pre-
vious scan operation of the same query template) operates only on a subset of
the data, we introduce a scan factor ωq,s. This factor ωq,s is determined by the
ordered sequence of (consecutively executed) scan operations of a query tem-
plate. To determine ωq,s, we consider the selectivity factor of the j-th operation
of a query template q denoted by ω̃q,j . By default, the selectivity factor of the
first scan operation of a query template is defined as ω̃q,1 = 1. Accounting for
the combined selectivities of consecutive operations within a query template q
for its scan operation s with operation order Jq,s ∈ {1, ..., |Sq|} we obtain the
scan factor, s ∈ Sq,

ωq,s =

j=1,...,Jq,s

ω̃q,j . (5.4)

Besides the selectivity, each scan operation s of query template q, s ∈ Sq,
q ∈ Q, has the following attributes: (i) the scanned column nq,s, and (ii) the
type of the scan operation (e.g., between scan, less than equal scan, equal scan).
The costs of the scan operations on segment n of chunk m (aggregated over all
scan operations that access n, s ∈ Sq : nq,s = n and weighted by fq) are denoted
by cm,n,e,o,i and determined by the segment’s encoding e ∈ E and index decision
i ∈ I as well as the ordering decision o ∈ O := {0} ∪ N , where O includes all
columns of the table plus the unsorted option (’0’). For m ∈ M,n ∈ N, e ∈
E, o ∈ O, i ∈ I, we define:

cm,n,e,o,i :=

q∈Q,s∈Sq :
nq,s=n

fq · pq,s,e,o,i · am,q,s · ωq,s · uq,s,e. (5.5)

The parameter pq,s,e,o,i defines the measured performance of the scan op-
eration s ∈ Sq of query q ∈ Q executed as isolated scan operation on column
nq,s stored in main memory if for the entire column encoding e ∈ E, index de-
cision i ∈ I, and for all chunks the ordering decision o ∈ O are applied. Further,
in (5.5), we use the successive scan penalty uq,s,e as we observed that consec-
utive scans are slower than single scan operations, depending on the applied
compression technique e. To reflect this observation and to adopt the measured
isolated scan performance pq,s,e,o,i of the benchmark queries (cf. Section 5.2.2),
we multiply pq,s,e,o,i of all consecutive scan operations with the fixed parameter
uq,s,e for each value e ∈ E. This penalty value u is database-specific and can be
measured with a simple set of benchmark queries.

Based on statistics and filters maintained by database systems, entire chunks
can be pruned during query execution to increase the scan performance [86].
This is especially the case for temporal range queries, which only scan specific
sections of the data. For that reason, we introduce the parameter am,q,s, cf.
(5.5), which describes the proportional size of the segment (m,nq,s) in relation
to the amount of data scanned within a complete column scan on column nq,s.
As the costs for pruned chunks are neglectable, for not accessed chunks we let
am,q,s := 0. For accessed chunks m, we define am,q,s by their relative share
of actually scanned chunks, i.e., by 1 divided by the number of not pruned
chunks. This approximation is sufficient for our approach, although it has some
inaccuracies if the values are unequally distributed over the different chunks.

5.3 An Approach to Compute Joint Index, Sorting, and Compression Configurations 79

5.3.4 Special Case: Segment-Based Model with Sorting
Dependencies

The segment-based model with sorting dependencies (SMS) allows solving the
configuration problem with costs determined per segment, cf. Section 5.3.3. It
still allows to include intra-chunk dependencies between segments with regard
to the chunk-based ordering decision. The corresponding segment’s costs are
computed based on (5.5) under consideration of the specified sorting column of
the chunk. This enables the model to reflect the implications of different ordering
configurations on memory usage and scan performance described in Section 5.1.

For the specialized SMS model, we use an adapted LP formulation, (5.1) to
(5.3). The objective to minimize the costs is given by

minx,y,z

m∈M,n∈N,e∈E,o∈O,i∈I

xm,n,e,o,i · cm,n,e,o,i, (5.6)

where the binary variables xm,n,e,o,i describe whether a certain tuning config-
uration, cf. e ∈ E, o ∈ O, i ∈ I, for segment n ∈ N of chunk m ∈ M is used
(’1’) or not (’0’). Similar to (5.1), the overall cost is calculated as the sum of
the costs c of all selected segment configurations, cf. (5.6).

To ensure valid table configurations, we define different sets of constraints.
We distinguish between model-specific and database-specific constraints. The
model-specific constraints define general requirements for the determined ta-
ble configurations. Database-specific constraints to incorporate technical restric-
tions and limitations of different database systems are discussed in Section 5.3.6.

For the SMS model, we define three types of model-specific constraints. The
first one is the memory budget rule, cp. (5.2)), that defines that the accumulated
memory consumption of all segments (m,n) with their selected configurations
e, o, i (cf. φm,n,e,o,i) does not exceed the memory budget B,

m∈M,n∈N,e∈E,o∈O,i∈I

xm,n,e,o,i · φm,n,e,o,i ≤ B. (5.7)

Secondly, to guarantee that for each chunk m a unique ordering option is
chosen, we use the binary variables ym,o, which describe whether ordering o is
used for chunk m, i.e.,

o∈O

ym,o = 1 ∀m ∈ M. (5.8)

Thirdly, we use binary variables zm,n,e,i to ensure a unique index and encoding
combination for chunk m’s segment n,

e∈E,i∈I

zm,n,e,i = 1 ∀m ∈ M,n ∈ N. (5.9)

The chunk variable y and segment variable z together specify the config-
uration xm,n,e,o,i = ym,o · zm,n,e,i. To express x linearly we use the following
auxiliary coupling constraints for all m ∈ M , n ∈ N , e ∈ E, o ∈ O, i ∈ I,

xm,n,e,o,i ≥ ym,o + zm,n,e,i − 1 (5.10)

xm,n,e,o,i ≤ ym,o (5.11)

xm,n,e,o,i ≤ zm,n,e,i (5.12)

80 5 Joint Table Configuration Optimizations for Spatio-Temporal Data

5.3.5 Heuristic Solution: Independent Segment Effects

To heuristically solve the SMS model, we use a relaxation regarding the ordering
dependencies of the cost effects between segments. In this simplified model with
independent segment effects (ISE), we only account for whether a certain chunk’s
segment is sorted (’1’) or not (’0’). Hence, instead of the full set of ordering
options O = {0}∪N for each chunk, we use the simplified binary set O := {0, 1}
of available ordering options for each chunk’s segment. For the unsorted option
(’0’), the rows’ order is set by the insert sequence and we use the costs cm,s,e,0,i,
cf. (5.5). If a segment (m,n) is sorted, we use cm,s,e,n,i. With this formulation, we
reduce the complexity by abstracting the sorting decision’s intra-chunk effects.
Thus, the model approximates the exact implications on the memory footprint
and scan performance caused by sorting a chunk by column n (see Section 5.1).

Compared to the SMS model, the relaxed ISE model uses less variables and
constraints. Specifically, we use a smaller family of binary decision variables
xm,n,e,o,i, where the ordering option only reflects the binary set o ∈ {0, 1}. The
variables y and z, cf. (5.8)-(5.12), are not required. The objective of the ISE
model is, cp. (5.6),

minx

m∈M,n∈N,e∈E,o∈{0,1},i∈I

xm,n,e,o,i · cm,n,e,o·n,i (5.13)

where we use o·n ∈ O to include the costs defined in (5.5) via cm,s,e,o·n,i. Similar
to (5.7), we define the budget constraint,

m∈M,n∈N,e∈E,o∈{0,1},i∈I

xm,n,e,o,i · φm,n,e,o·n,i ≤ B. (5.14)

Note, the relaxed use of c and φ in (5.13) and (5.14) only approximates the
exact values. Further, we directly use x to ensure that for each chunk m at most
one column is sorted, cp. (5.8),

n∈N,e∈E,i∈I

xm,n,e,1,i ≤ 1 ∀m ∈ M (5.15)

and that for each segment, a unique configuration of compression e, sorting o,
and indexing i, is chosen, i.e.,

e∈E,o∈{0,1},i∈I,

xm,n,e,o,i = 1 ∀m ∈ M,n ∈ N. (5.16)

5.3.6 Database-Specific Configuration Constraints

Additionally, we introduce database-specific constraints to the model-specific
constraints, which enable the models to reflect certain properties of various
database systems. The values for these constraints vary between databases
and define combinations of incompatible indexing and encoding decisions. For
Hyrise, secondary indexes require dictionary-encoded segments as they exploit
the dictionary in order to improve space efficiency [100]. Consequently, in-
dexes on all non-dictionary segments are forbidden. Regarding the ISE (cf. Sec-
tion 5.3.5) and SMS (cf. Section 5.3.4) model, this is realized via the constraint

xm,n,e,s,i ≤ ve,i ∀m ∈ M,n ∈ N, e ∈ E, s ∈ S, i ∈ I, (5.17)

5.4 Integrating Data Tiering Decisions into the Table Configuration Optimization Process 81

where the binary parameters ve,i, e ∈ E, i ∈ I, describe whether an index i
is valid (=1) for a specific encoding e or not (=0). For the CCD model (cf.
Section 5.3.2), the set of constraints (5.17) can be directly satisfied by consid-
ering only corresponding valid configuration options within the set K. Similar
database-specific restrictions can be treated in the same manner. For instance,
to ensure that specific index structures are only applied to specific data types
(e.g., optimized spatial or spatio-temporal index structures).

5.4 Integrating Data Tiering Decisions into the Table
Configuration Optimization Process

In-memory databases outperform traditional disk-based database systems by
storing data on faster DRAM compared to solid-state drives (SSDs) or hard disk
drives (HDDs). Based on the volumes of spatio-temporal data accumulated in
different applications, the required DRAM capacities to store the data represent
a significant cost factor or even exceed the available resources of modern systems.
Furthermore, the scalability of single-node in-memory databases is also limited
by the stagnation of DRAM capacities [218]. For this reason, modern database
systems apply data tiering strategies that transfer less frequently used partitions
of the data to slower and less expensive storage mediums [35, 348].

In this section, we enhance the problem definition to include data place-
ment decisions and describe the necessary adoptions of the three LP models
introduced in the previous sections to incorporate data tiering decisions.

5.4.1 Problem Definition

As described in Section 5.3.1, we consider a table with a set of attributes N
and a set of chunks M . Instead of selecting an optimal table configuration for a
given DRAM budget B, we determine a valid table configuration for a given set
of available storage devices D with individual memory budgets. Consequently,
for each segment (n,m) with n ∈ N,m ∈ M , we have to select a configuration
from sets of available (i) compression E, (ii) indexing I, (iii) storage device D,
and (iv) sorting O options (cf. Figure 2.5).

To improve the cost-efficiency of spatio-temporal data management systems,
infrequently accessed data partitions are often transferred to slower and less
expensive storage locations (cf. Figure 2.3). To reflect these properties in the
model, we assume a given storage budget Bd for each storage medium d ∈ D.
The memory consumption of a segment (m,n) with an applied tuning option
e, o, i (with e ∈ E, o ∈ O, i ∈ I) is described by the parameters φm,n,e,o,i under
the assumption that the used storage medium has no impact on the needed
amount of bytes to store a segment. A valid table configuration must not exceed
the given storage budgets Bd for all available storage devices d ∈ D. Addition-
ally, we have to consider that the selected storage device d has a significant
impact on the runtime performance of the given workload Q. Based on the no-
tation table of the base models (cf. Table 5.1), we provide an adjusted version
for the LP approach with integrated data tiering decisions (cf. Table 5.2).

82 5 Joint Table Configuration Optimizations for Spatio-Temporal Data

S
et
s

N set of attributes n
M set of chunks m
E set of encoding types e
I set of indexes i
O set of ordering options o
D set of storage devices d
Q set of queries q
Sq set of all scan operations s of a query q
K set of configuration options k (CCD model)
W set of potential workload scenarios w (robust model)

P
a
ra
m
et
er
s

nq,s scan column of the scan operation q, s
ωq,s scan factor of the scan operation q, s
fq scan frequency of query q
uq,s,e successive scan penalty (for scan q, s given e)
am,q,s proportional size of the segment (m,nq,s)
τe,i,d penalty for storage medium d
ve,i defines whether index i valid for encoding e
cm,n,e,o,i,d scan costs for segment n of chunk m
φm,n,e,o,i memory consumption for segment (n,m)
Bd memory budget for storage device d
pq,s,e,o,i execution time of a scan operation q, s
∆m,n,e,o,i,d(η̄m,n) reconfiguration cost based on a given state η̄

V
a
ri
a
b
le
s xm,n,e,o,i,d decision if a configuration is active (SSD, ISE)

ym,o decision (a chunk m’s sorting, SSD)
zm,n,e,i,d decision (a segment n’s configuration, SSD)
xm,k decision (a chunk m’s configuration, CCD)

Table 5.2: Adjusted notation table for the LP approach with integrated
data tiering decisions and the enhancements of the segment-based models
(cf. Section 5.5).

5.4.2 General Model with Chunk-Based Configuration Dependencies

To include data tiering decisions in the general model (CCD), we have to en-
hance the joint configuration k with k ∈ K. The set of possible options K
includes, therefore, valid combinations of configurations on a segment level, i.e.,
by em,n,k ∈ E, om,n,k ∈ O, im,n,k ∈ I, and dm,n,k ∈ D we denote encoding,
sort, index, and data placement decisions for column n ∈ N . In the memory
constraint, we have to guarantee that the accumulated memory consumption
of all segments (m,n) with their selected configurations e, o, i, b (cf. φm,n,e,o,i)
does not exceed a tier’s budget Bd, i.e., ∀d ∈ D we use (5.19). The adopted
CCD model is described as follows:

minx

m∈M,k∈K

xm,k ·

q∈Q,s∈Sq

fq · cq,m,s,k (5.18)

m∈M,k∈K

xm,k ·

n∈N :dm,n,k=d

φm,n,em,n,k,om,n,k,im,n,k
≤ Bd. (5.19)

k∈K

xm,k = 1 ∀m ∈ M. (5.20)

5.4 Integrating Data Tiering Decisions into the Table Configuration Optimization Process 83

5.4.3 Segment-Based Cost Estimation

To estimate the costs of a scan operation on a segment, we use the cost func-
tion (5.5) with the parameters described in Section 5.3.3. Moreover, we have
to incorporate a factor that approximates the impact on the performance of
a segment that is not stored in DRAM. The costs of the scan operations on
segment n of chunk m (aggregated over all scan operations that access n,
s ∈ Sq : nq,s = n and weighted by fq) are denoted by cm,n,e,o,i,d and deter-
mined by the segment’s encoding e ∈ E and index decision i ∈ I as well as
the data placement decision d ∈ D and ordering decision o ∈ O := {0} ∪ N ,
where O includes all columns of the table plus the unsorted option (’0’). For
m ∈ M,n ∈ N, e ∈ E, o ∈ O, i ∈ I, d ∈ D, we define:

cm,n,e,o,i,d :=

q∈Q,s∈Sq :
nq,s=n

fq · pq,s,e,o,i · am,q,s · ωq,s · uq,s,e · τe,i,d. (5.21)

Here, the parameter pq,s,e,o,i defines the measured performance of the scan
operation s ∈ Sq of query q ∈ Q executed as an isolated scan operation on
column nq,s stored in main memory d0 if for the entire column encoding e ∈ E,
index decision i ∈ I, and for all chunks, the ordering decision o ∈ O are ap-
plied. Additionally, each storage medium has a penalty τe,i,d, which reflects the
difference between the measured access performance on DRAM and the access
times on storage medium d, which can also depend on the index and encoding
decision. Correspondingly, we multiply the estimated costs for an operation on
a specified segment with the storage penalty τe,i,d. The parameter τe,i,d is used
to reduce the number of benchmark queries (see Section 5.2.2). In this context,
an estimation of the storage penalty τe,i,d is suitable as the differences between
storage mediums are generally higher (cf. Figure 2.3).

5.4.4 Segment-Based Model with Sorting Dependencies

Based on the adopted equation for the segment-based costs cm,n,e,o,i,d, cf. (5.21),
we have to adopt the binary decision variable xm,n,e,o,i,d and the objective of
the model correspondingly. For the specialized SMS model with data tiering, we
use an adapted LP formulation,

minx,y,z

m∈M,n∈N,e∈E,o∈O,i∈I,d∈D

xm,n,e,o,i,d · cm,n,e,o,i,d, (5.22)

where the binary variable xm,n,e,o,i,d describe whether a certain tuning config-
uration, cf. e ∈ E, o ∈ O, i ∈ I, d ∈ D, for segment n ∈ N of chunk m ∈ M is
used (’1’) or not (’0’). To ensure valid table configurations, we define different
sets of constraints. The first one describes tiering-specific budget constraints, cp.
(5.19), that defines that the accumulated memory consumption of all segments
(m,n) with their selected configurations e, o, i on storage device d (cf. φm,n,e,o,i)
does not exceed a tier’s budget Bd, i.e.,

m∈M,n∈N,e∈E,o∈O,i∈I

xm,n,e,o,i,d · φm,n,e,o,i ≤ Bd ∀d ∈ D. (5.23)

84 5 Joint Table Configuration Optimizations for Spatio-Temporal Data

Furthermore, to guarantee that for each chunk m a unique ordering option
is chosen, we use binary variables ym,o, which describe whether ordering o is
used for chunk m, i.e.,

o∈O

ym,o = 1 ∀m ∈ M. (5.24)

We have to modify the binary variable zm,n,e,i,d to ensure a unique index, en-
coding, and tiering combination for chunk m’s segment n,

e∈E,i∈I,d∈D

zm,n,e,i,d = 1 ∀m ∈ M,n ∈ N. (5.25)

By modifying the variable z, we enforce additionally that each segment is as-
signed to a storage device. The chunk variables y and segment variables z shall
together specify the configuration xm,n,e,o,i,d = ym,o · zm,n,e,i,d. Similar to Sec-
tion 5.3.4, we use the following auxiliary coupling constraints to express the
variables x linearly for all m ∈ M , n ∈ N , e ∈ E, o ∈ O, i ∈ I, d ∈ D,

xm,n,e,o,i,d ≥ ym,o + zm,n,e,i,d − 1 (5.26)

xm,n,e,o,i,d ≤ ym,o (5.27)

xm,n,e,o,i,d ≤ zm,n,e,i,d (5.28)

Various database systems support the tiering of entire database partitions.
In contrast, the research database Hyrise also enables the tiering of single seg-
ments [84]. In case a chunk-tiering concept is applied, we have to ensure that
all segments of a chunk are stored on the same storage device d, d ∈ D. For this
purpose, we add the (optional) constraint:

e∈E,i∈I,d∈D

d · zm,1,e,i,d =

e∈E,i∈I,d∈d

d · zm,n,e,i,d ∀m ∈ M,n ∈ N. (5.29)

5.4.5 Segment-Based Model with Independent Segment Effects

Similar to the SMS model, we have to enhance the ISE model to include data
tiering decisions. Compared to the SMS model, the relaxed ISE model has fewer
variables and constraints. Specifically, we use a smaller family of binary decision
variables xm,n,e,o,i,d. The variables y and z, are not required.

minx

m∈M,n∈N,e∈E,o∈{0,1},i∈I,d∈D

xm,n,e,o,i,d · cm,n,e,o·n,i,d (5.30)

For the budget constraints we define ∀d ∈ D,

m∈M,n∈N,e∈E,o∈{0,1},i∈I

xm,n,e,o,i,d · φm,n,e,o·n,i ≤ Bd. (5.31)

Moreover, we have to adapt the constraint (5.15) to ensure that also in the
ISE model with tiering decisions, for each chunk m, at most one column is
sorted,

n∈N,e∈E,i∈I,d∈D

xm,n,e,1,i,d ≤ 1 ∀m ∈ M (5.32)

5.5 Enhancements of the Segment-Based Models 85

and that for each segment, a unique configuration of compression e, sorting o,
indexing i, and tiering d decision is chosen, i.e.,

e∈E,o∈{0,1},i∈I,d∈D

xm,n,e,o,i,d = 1 ∀m ∈ M,n ∈ N. (5.33)

Furthermore, to obtain the same tiering in a chunk ∀m ∈ M,n ∈ N , we use
the following (optional) constraint, cp. (5.29),

e∈E,o∈{0,1},i∈I,d∈D

d · xm,1,e,o,i,d =

e∈E,o∈{0,1},i∈I,d∈D

d · xm,n,e,o,i,d. (5.34)

5.4.6 Database-Specific Configuration Constraints

Correspondingly to the model-specific constraints of the SMS and ISE models,
we have to adjust the database-specific constraint:

xm,n,e,s,i,d ≤ ve,i ∀m ∈ M,n ∈ N, e ∈ E, s ∈ S, i ∈ I, d ∈ d. (5.35)

5.5 Enhancements of the Segment-Based Models

This section introduces two different enhancements, which are presented for
the ISE model with data tiering described in Section 5.4. The first extension
(Section 5.5.1) enables the internalization of reconfiguration costs required for
a table configuration update (given an existing one). The second one addresses
a robust configuration selection for multiple potential workload scenarios (Sec-
tion 5.5.2), i.e., we look for allocations that are not optimized for one workload
but ”near-optimal” for various of them.

5.5.1 Minimal-Invasive State-Dependent Reconfiguration with
Consideration of Modification Costs

Real-world workloads typically change over time. As a result, current data place-
ments and configuration decisions might be outdated and have to be adapted
to avoid performance deterioration. However, the reorganization of an applied
configuration is costly and time-consuming [354]. The challenge is to identify
’minimally invasive’ reallocations, which have a significant impact compared to
their costs [169]. Therefore, we extend the ISE model to show exemplarily how
to endogenize reconfiguration costs. We assume a current configuration state,
e.g., characterized by parameters x̄m,n,e,o,i,d ∈ {0, 1}, which characterize the
applied configuration decisions.

In case a segment (m,n) is transferred from a current configuration η̄m,n :=
(ēm,n, ōm,n, īm,n, d̄m,n) to a new configuration (e, o, i, d), we generally assume
given reconfiguration costs ∆m,n,e,o,i,d(η̄m,n). As the costs of different modifica-
tions vary (e.g., a change of the sorting configuration requires a reordering of all
segments of the chunk) [354], the database administrator can define individual
costs for each modification operation (e.g., changing the encoding of a segment).
There are various metrics for determining the costs of individual modifications

86 5 Joint Table Configuration Optimizations for Spatio-Temporal Data

(e.g., estimated time, size of reorganized data, or defined by the database ad-
ministrator based on experience) [220, 295, 354]. To model reconfiguration costs,
we replace the ISE objective as follows

minx

m∈M,n∈N,e∈E,
o∈{0,1},i∈I,d∈D

cm,n,e,o·n,i,d · xm,n,e,o,i,d

+α ·

m∈M,n∈N,e∈E,
o∈{0,1},i∈I,d∈D

∆m,n,e,o·n,i,d(η̄m,n) · xm,n,e,o,i,d. (5.36)

The additional cost term in (5.36) (governed by the penalty factor α) pre-
vents configurations from being widely reorganized while the performance in-
crease is only marginal. Note, while for α=0, we obtain the original performance-
maximizing model without reconfiguration costs, for large α any costly configu-
ration changes will be prevented. The α enables the DBA to balance the trade-off
between potential performance gains and reconfiguration costs. In this context,
the selection of the α depends on different aspects (e.g., the time interval be-
tween table optimizations and availability of resources). The other constraints
of the basic ISE model remain unchanged (cf. (i) the budget constraint, (ii)
at most one sorted column, (iii) unique configurations for each segment). Ad-
ditional variables or constraints are not required. Hence, the ISE model with
reconfiguration costs can still be solved via standard solvers.

5.5.2 Robust Configuration Selection for Different Potential
Workload Scenarios

In general, spatio-temporal data characteristics and workloads are continuously
influenced by the environment [390]. As future workloads are not entirely pre-
dictable, the performance can be negatively affected if the actual workload dif-
fers from the predicted one. This is a potential weakness of existing approaches
that are only optimized for a specific workload. Hence, it is crucial to consider
potential workload scenarios to obtain a robust performance. Potential future
workload scenarios can be determined, e.g., based on previously observed (sea-
sonal) workloads or forecasts (characterized by query frequencies).

Given a set of potential scenarios, data allocations and tuning configurations
can be optimized to maximize expected performance (risk-neutral) or more ro-
bust (risk-averse) objectives (cf., e.g., worst case, expected utility, mean-variance
criteria, etc.). In particular, such risk-aware objectives seek to avoid the risk of
poor performance. To be able to deal with diverse scenarios, one is willing to
sacrifice a certain share of the best possible expected performance.

We consider the set W of potential workload scenarios w, e.g., with proba-
bility Pw, w ∈ W , where

w Pw = 1. We assume that a workload scenario w

is characterized by a set of queries with given frequencies f
(w)
q (within a cer-

tain period). Hence, the workloads costs defined in (5.5) generalize to multiple
workloads w ∈ W as, m ∈ M,n ∈ N, e ∈ E, o ∈ O, i ∈ I, d ∈ D,

c
(w)
m,n,e,o,i,d :=

q∈Q,s∈Sq :
nq,s=n

f (w)
q · pq,s,e,o,i · am,q,s · ωq,s · uq,s,e · τe,i,d (5.37)

For instance, a worst-case optimization for the ISE model reads as follows.
Using the non-negative real-valued variable Z for the worst-case performance
costs over all scenarios w ∈ W , we use the objective

5.6 Summary 87

min
x,Z

Z (5.38)

subject to the constraints (5.31)-(5.33) and the new ones, ∀w ∈ W ,

m∈M,n∈N,e∈E,o∈{0,1},i∈I,d∈D

c
(w)
m,n,e,o·n,i,d · xm,n,e,o,i,d ≤ Z. (5.39)

Note, the model (5.38)-(5.39) remains linear and is independent of the dis-
tribution Pw. As we only have one additional variable and |W | new constraints,
this extended/robust version of our ISE model has low overhead and the num-
ber of potential scenarios to be considered can be chosen such that the model
remains tractable or the runtime does not exceed a targeted limit. Further, the
proposed approach can also be used within the SMS or the CCD model.

5.6 Summary

In this chapter, we introduced our LP approach to determine optimized table
configurations consisting of multiple tuning decisions for spatio-temporal data
and workloads. To increase the performance or lower the operating costs by
reducing the memory footprint, modern database systems provide various tun-
ing options (e.g., data compression or index structures). However, the selection
of cost and performance-balancing configurations is challenging due to the vast
number of possible setups consisting of mutually dependent individual decisions.
As the workload and data characteristics particularly impact the effectiveness
of various tuning options (cf. Section 5.1), the impact of tuning decisions on the
system’s efficiency is challenging to estimate for DBAs. To improve the data
management for spatio-temporal data, we proposed an approach that deter-
mines fine-grained table configurations to optimize different partitions of the
data individually (cf. Section 5.2). We introduced different LP models to jointly
optimize the compression, index, and ordering configuration to achieve the best
runtime performance for a given workload and memory budget (cf. Section 5.3).
The LP models consider cost dependencies at different levels of accuracy to
address distinct requirements (e.g., high performance or low solver runtimes).
The LP model with chunk-based configuration dependencies (CCD) represents
a general solution to the problem. Additionally, we presented heuristic solutions
based on segment-specific costs using specialized LP models with (SMS) and
without (ISE) sorting dependencies. Based on the volumes of spatio-temporal
data accumulated in different applications, the required DRAM capacities to
store the data represent a significant cost factor or even exceed the available
resources of modern systems. For this reason, we enhanced our LP models to
include data placement decisions for multiple storage devices (cf. Section 5.4).
Furthermore, we presented two extensions of the LP models to integrate recon-
figuration costs and robustness (cf. Section 5.5).

6

Memory-Efficient Storing of Timestamps in
Columnar In-Memory Databases

For columnar in-memory databases, the efficient storing of timestamps is chal-
lenging as numerous standard optimizations (e.g., compression approaches such
as dictionary encoding) for columnar databases are developed for contradicting
data characteristics (e.g., low number of distinct values). In the context of spatio-
temporal data, the temporal component is represented in various applications by
timestamps to reflect different and varying sample rates (cf. Section 2.2.4). Con-
sequently, we have to store vast amounts of timestamps. In contrast to storing
the spatial coordinates of moving objects in columnar databases [158, 244, 366],
there is less focus on optimized storage concepts for the temporal component.
However, it significantly impacts the memory footprint and performance.

By applying storage concepts designed for row-oriented databases, where
the data transfer dominates the temporal information processing, we do not
leverage the potential of the columnar data layout (e.g., an improved cache
line utilization for filter operations). Consequently, optimized data layouts and
compression techniques can improve the runtime performance and reduce the
memory footprint [33, 36]. In this chapter, we describe the challenges of storing
large amounts of timestamps in columnar databases (Section 6.1). We compare
different data layouts to store timestamps and evaluate the data layouts’ mem-
ory consumption and runtime performance in combination with various com-
pression techniques (Section 6.2). Based on the advantages and disadvantages
of different data layouts for specific requirements (e.g., memory limitations,
performance constraints), we introduce two approaches to optimize the storage
format for a given workload (Section 6.3). First, we introduce a heuristic ap-
proach for the workload-driven joint selection of a data layout and compression
scheme. Second, we present a linear programming (LP) model to select an opti-
mized compression scheme for attribute decomposition approaches that store a
timestamp in multiple columns (Section 6.2.2). Parts of the presented content
have been published [277].

6.1 Problem Definition

In various applications, in-memory databases are used to address the perfor-
mance requirements of modern spatio-temporal data mining applications [79,
302, 390]. Especially for main-memory optimized databases that keep the most

90 6 Memory-Efficient Storing of Timestamps in Columnar In-Memory Databases

data in relatively limited and expensive DRAM, the operating costs can be re-
duced by utilizing the available resources more efficiently [33]. In this context,
the application-specific data characteristics (e.g., sample rate or accuracy of the
temporal component) and workload properties significantly impact the mem-
ory consumption and performance of different storage formats. Besides the data
layout, the applied compression scheme influences these factors and must be
considered in the selection process. Consequently, we propose a joint optimiza-
tion approach of these features to improve the storing and querying of temporal
information for a specific application. By taking the application-specific access
patterns into account, we are able to optimize the storage layout. One aspect is
that the access frequency of trajectory data varies based on the up-to-dateness
of the observation date. Furthermore, the access granularity of temporal queries
is different for various partitions of the data. Another aspect is that in various
spatio-temporal data mining applications, the queries predominantly request
specific time ranges (e.g., all values of a day or an hour), which only address
parts of the temporal information. By considering these access patterns, we can
optimize the storage formats for timestamps and reduce the memory traffic by
only processing the relevant parts of the timestamp.

There are different approaches to storing timestamps more efficiently for
spatio-temporal and time-series data. A method is to determine the temporal
information based on the position of an observed location in the sequence of
chronologically ordered locations (cf. Section 2.2.4). By applying this approach,
we can significantly reduce memory consumption. However, this approach does
not apply to applications where the locations are tracked without a fixed sample
rate or the transmission of each observed location can not be guaranteed. Other
approaches use specific data layouts to represent the temporal component and
aggregate values for fixed periods to reduce the data footprint [352, 353]. A
drawback of such approaches is that they increase the uncertainty, and the
adaption to varying sample rates is rather complex.

Additionally, various approaches optimize the compression scheme [1, 33,
178] for a database table. These approaches focus on optimizing compression
scheme based on data and workload characteristics but do not consider that
different data layouts can be applied to store specific types of data. Based on
the applied data layout, columns’ data characteristics can significantly change
and create further optimization potentials.

6.2 Data Layouts for Timestamps in Columnar Databases

This section describes and evaluates different data layouts for timestamps in
columnar in-memory databases. In various spatio-temporal applications, we ob-
served that the provided data types of columnar databases are not used. Al-
though these data types offer many features to query and process temporal in-
formation, the developers used customized data layouts based on standard data
types due to performance or memory constraints. As displayed in Figure 6.1, we
analyze standard data layouts such as string format and Unix timestamps. Ad-
ditionally, we evaluate different attribute decomposition approaches that store
the date and time components separately or use multiple columns concerning
their applicability in columnar databases.

6.2 Data Layouts for Timestamps in Columnar Databases 91

6.2.1 Standard Data Layouts for Timestamps

The first data layout based on standard data types that we observed in spatio-
temporal data mining applications is the string format. It stores a timestamp in
a single column of the data type string. Based on the ISO 8601 guidelines, the
different time units (e.g., year, month, or day) are stored in descending order
and divided by specific delimiters. The format applied by most applications
is YYYY-MM-DD HH:MM:SS. Due to the specified delimiter symbols, it is
possible to query parts of the timestamp (e.g., all observed locations in a specific
hour over multiple days) via SQL LIKE statements. Based on the defined order
of the time units, we can preserve the chronological order of the timestamps.
SQL statements that require such an order (e.g., BETWEEN) can be realized
via string comparisons. A disadvantage of this approach is that a relatively high
amount of memory is necessary to store a single timestamp. Consequently, we
have high memory traffic to process the data even if only parts of the timestamp
are queried.

TIMESTAMP

1541030411

1541030426

1541030502

1541091616

1541225680

TIMESTAMP

2018-11-01 00:00:11

2018-11-01 00:00:26

2018-11-01 00:01:42

2018-11-01 17:00:16

2018-11-03 06:14:40

DATE TIME

2018-11-01 00:00:11

2018-11-01 00:00:26

2018-11-01 00:01:42

2018-11-01 17:00:16

2018-11-03 06:14:40

YEAR MONTH DAY HOUR MINUTE SECOND

2018 11 1 0 0 11

2018 11 1 0 0 26

2018 11 1 0 1 42

2018 11 1 17 0 16

2018 11 3 6 14 40

String

(string)

Unix Timestamp

(integer)

Date/Time

(string)

Multiple Columns

(integer)

Fig. 6.1: Visualization of different data layouts to store timestamps in
relational database systems.

Another approach is the usage of Unix timestamps, which are widely used
by operating systems and file formats. Each timestamp is stored as an integer
value in a single column. The integer value represents the number of seconds
that have elapsed since the Unix epoch, which is defined as the 00:00:00 UTC
on the first of January 1970. Compared to the string format, we need less mem-
ory to store a single timestamp. Additionally, modern CPUs are optimized to
process integers values efficiently [363]. This approach is well-suited for queries
requesting a continuous data period. Due to leap seconds and years, calculat-
ing specific recurring periods in a more extensive timeframe is not trivial. For
that reason, several database systems convert the Unix timestamps into the
string format to process these types of queries (e.g., all observed locations in
an hour on various days). This entire process is time-consuming, especially for
large spatio-temporal data volumes.

Several standard compression techniques for columnar databases benefit
from a relatively low number of distinct values (e.g., dictionary encoding) or
a high number of equal consecutive values (e.g., run-length encoding) [263]. In
general, both presented data layouts produce a high number of distinct values.
To address this issue, it can be beneficial to split the timestamp into a date and
time part for several applications. By storing the data and time components
in separate columns, we can apply at least on the date column more efficient

92 6 Memory-Efficient Storing of Timestamps in Columnar In-Memory Databases

compression approaches based on resulting data characteristics (e.g., reduced
the number of distinct values). Especially for fine-grained tracking applications,
which store the position of a moving object several times per minute, we have
large sequences of equal values in the date column. Additionally, we can reduce
the memory traffic for queries that only address the date or time unit. Cor-
respondingly, a drawback is that we have to perform two scan operations for
queries that access both components.

6.2.2 An Attribute Decomposition Approach to Store Timestamps

Based on the concept of the separation of date and time, we propose an attribute
decomposition approach to store timestamps. As displayed in Figure 6.1, we
store each time unit in a single integer column in this data layout. Additionally,
further distributions are possible based on the workload and data characteristics
of the specific application scenario. In this context, data access metrics (e.g.,
histograms of simultaneous queried values) or rule-based pattern analysis (cf.
Section 3.2.5) can be applied to identify a decomposing strategy. Based on the
tracking technology’s accuracy and sample rate, we can reduce the number of
columns to store the temporal component. In contrast to row-oriented databases,
we can add further columns without high reconfiguration costs in columnar
databases if the sample rate changes or higher accuracy is required [262]. Besides,
columns containing only a single default value (e.g., the column to store seconds
if the sample rate is on a minute base) and columns with a low number of distinct
values can be efficiently compressed in column stores.

Furthermore, there are specific access patterns that query fixed standard
time ranges (e.g., all observed locations of a day, month, or quarter) in various
spatio-temporal applications. The multiple columns data layout is beneficial for
such queries, as we can reduce the memory traffic by leveraging cache lines more
effectively and processing only parts of the temporal information. Additionally,
the multi columns data layout can improve the data characteristics for different
standard compression approaches of columnar databases (see Figure 6.1). For
instance, all columns have a limited and low number of distinct values, which
is beneficial for dictionary encoding, as we have stable dictionaries (except the
year column) and a significantly reduced amount of bits to store the dictionary
position of a value. Depending on the sample rate, we have sequences of equal
values (e.g., month or year column), which can be efficiently compressed by
applying run-length encoding. In contrast, a disadvantage of the approach is
the selection of specific timestamps or time ranges, as multiple columns have
to be scanned. To mitigate these performance drawbacks, multi-column index
structures or query optimizations that consider column dependencies can be
used [101, 168].

6.2.3 Impact of Different Compression Techniques on the Memory
Consumption and Query Performance

Modern main-memory-optimized databases apply a variety of compression tech-
niques [33]. In this section, we analyze the impact on the memory consumption
and runtime performance of the presented data layouts (cf. Section 6.2) in com-
bination with different compression approaches. To evaluate the data layouts, we

6.2 Data Layouts for Timestamps in Columnar Databases 93

use a real-world dataset of a transportation company introduced in Section 4.3.1
and the in-memory research database Hyrise (cf. Section 2.3.2), which is opti-
mized for columnar data layouts [86]. All measurements have been executed
server equipped with Intel Xeon E7-4880v2 CPUs (2.50GHz, 30 logical cores).
The dataset includes the timestamps of ten million dispatch process-related ob-
served drivers’ locations for three consecutive days of a transportation network
company (cf. Section 4.3.1). A certain temporal ordering of the sample points
exists based on the insertion order, but we cannot guarantee that the timestamp
column is sorted due to transmission problems and delayed transmissions.

Memory Consumption

To analyze the impact on the data footprint of the data layouts for different
compression techniques, we applied the three compression techniques (i) dic-
tionary encoding, (ii) LZ4 encoding, and (iii) run-length encoding on the ten
million timestamps of the dataset. As displayed in Figure 6.2, the applied com-
pression approach has a significant impact on the memory size that is necessary
to store the timestamps. For instance, the Unix timestamp column consumes
with applied LZ4 compression 1.3 MB, which is only 3.2 percent of the main
memory to store the Unix timestamp column with applied dictionary encoding.
Additionally, we observe that data layouts storing the data as integer values
have a better compression rate for LZ4 and run-length encoding. Although the
timestamps are decomposed and stored in six different columns, the multiple
columns approach consumes comparable memory amounts. For run-length (1.7
MB) and LZ4 (2.4 MB) encoding, the multiple columns approach requires signif-
icantly less memory to store the data compared to the string format. In addition,
the measurements show that different compression techniques are better suited
for specific data layouts. For example, the separated date and time approach
consumes around two-thirds of the string approach for applied run-length en-
coding. In contrast, for LZ4 encoding, the string data layout needs 37.5 MB,
which is significantly less memory than the separated date and time approach
(66.9 MB). A reason for this is that the date column contains long sequences of
equal values through the separation, which can be efficiently compressed with
run-length encoding.

Encoding

1

10

100

1,000

M
em

or
y

C
on

su
m

pt
io

n
[M

B
]

Dictionary LZ4 Run-Length Unencoded

Date/Time
Multiple Columns
String
Unix

Data Layout

Fig. 6.2: Comparison of the memory consumption of the different data
layouts in combination with four different compression approaches.

94 6 Memory-Efficient Storing of Timestamps in Columnar In-Memory Databases

In Figure 6.2, a notable observation is that the multiple columns approach
has the highest memory consumption of the four data layouts for dictionary
encoding, even though the data characteristics should be beneficial for this com-
pression technique. The reason for this is that the used columnar database does
not support a bit-packing mechanism [363]. Consequently, one byte is used to
store the dictionary position for each value instead of the minimal number of
bits that are necessary to specify the dictionary entry. By applying such bit-
packing mechanisms, we can reduce the data footprint significantly. Figure 6.3
shows the memory consumption for the six columns of the multiple columns
data layout with and without bit-packing. Based on the minimal number of bits
to encode the corresponding columns dictionaries, we determined the bit-packed
memory consumption.

Column

0

2

4

6

8

10

M
em

or
y

C
on

su
m

pt
io

n
[M

B
]

YEAR MONTH DAY HOUR MINUTE SECOND

0

10

20

30

40

50

60

TOTAL

Dictionary
Dictionary (Bit-optimized)

Encoding

Fig. 6.3: Comparison of the attribute decomposition approach’s memory
consumption for the different columns with and without applied bit-packing
mechanism.

The bit-optimized storing of the values is particularly efficient for our
dataset’s YEAR and MONTH columns, as both columns only contain one dis-
tinct value. Consequently, we can reduce the memory footprint of these columns
to about 1.25 MB. By applying a bit-packing mechanism, the overall memory
consumption of the multiple columns data layout could be reduced by nearly 50
percent to about 30.5 MB. With a memory consumption of about 30.5 MB, the
multiple columns data layout with applied bit-packing has the lowest data foot-
print of the analyzed data layouts for dictionary encoding. By using such an op-
timization, the space efficiency of the storage layout increases significantly [90].
Furthermore, we can observe that the specific implementation of the approaches
is relevant for selecting an efficient storage layout.

Query Performance

Data compression is usually a trade-off between the size of the data structures
and its access performance [235, 276]. To analyze the data layouts’ runtime per-
formance for different compression approaches, we defined a set of five bench-
mark queries. The benchmark contains different commonly used query types,
including single-value access and range scans with varying selectivity values and
query ranges to consider a broad spectrum of access patterns. The first query
(q0) is an equal scan that selects a specific timestamp. The queries (q1, q2) rep-
resent standard temporal range queries between two timestamps. In contrast to

6.2 Data Layouts for Timestamps in Columnar Databases 95

q1 that selects all data points between the 1st of November 2018, 21:01:43, and
the 3rd of November 2018, 03:15:06 (including five million entries), q2 queries all
observed locations in a relatively small timeframe of 180 seconds. The queries
q3 and q4 access only parts of the timestamps. Query q3 returns all data entries
of a specific day, and q4 returns for all three days all data entries in a specific
hour (between 6 am and 7 am).

EN
C

O
D

IN
G

QUERY

D
ic

tio
na

ry
LZ

4
R

un
-L

en
gt

h
U

ne
nc

od
ed

1

100

10,000

1,000,000

R
untim

e [m
s]

1

100

10,000

1,000,000

R
untim

e [m
s]

1

100

10,000

1,000,000

R
untim

e [m
s]

1

100

10,000

1,000,000

R
untim

e [m
s]

q₀ q₁ q₂ q₃ q₄

Date/Time Multiple Columns String Unix
Data Layout

Fig. 6.4: Comparison of the runtime performance of the different data
layouts in combination with different compression techniques.

As displayed in Figure 6.4, depending on the applied compression technique,
there are significant differences in the query runtime. Overall, dictionary encod-

96 6 Memory-Efficient Storing of Timestamps in Columnar In-Memory Databases

ing has the lowest query runtimes for our set of benchmark queries. Also, the
string and separated date and time approach have a comparable performance
for dictionary encoding compared to the multiple columns and Unix timestamp
approaches. For query q4, the separated data and time approach with dictio-
nary encoding has the lowest overall runtime. The Unix timestamp and multiple
columns approach generally have a better query runtime for all other compres-
sion techniques. Additionally, we can observe that the separated date and time
approach has a better query runtime than the string data layout except for query
q2. Moreover, the multiple columns approach has a comparable or even better
performance than the Unix timestamp except for query q2. The performance
drawbacks of the data layouts that use more than one column for query q2 are
caused by the fact that multiple scan operations (depending on the previous
scan operations) have to be performed. In contrast, these approaches are bene-
ficial for queries that consider only parts of the timestamps (e.g., q4) as the data
traffic can be reduced significantly. Finally, we can observe that the selection
of an efficient data layout and compression technique strongly depends on the
given workload characteristics and system constraints (e.g., available memory).

6.3 Workload-Aware Optimizations to Store Timestamps
in Columnar In-Memory Databases

As described in the previous section, the different configurations to store
timestamps have significant differences in memory consumption and runtime
performance for various workload characteristics. The selection of cost and
performance-balancing configurations is challenging due to the number of pos-
sible configurations and the fact that usually spatio-temporal applications with
different query characteristics operate on the same database table. To optimize
the storage layout of timestamps, we present two different workload-driven ap-
proaches. In Section 6.3.1, we describe a heuristic approach for the workload-
aware selection of a timestamp storage configuration consisting of a data layout
and compression technique. In Section 6.3.2, we introduce an LP model to select
an optimized compression scheme for the multiple columns data layout.

6.3.1 Workload-Driven Combined Data Layout and Compression
Scheme Optimization

Based on the application-specific constraints, we can apply different heuristic ap-
proaches to select a configuration. As the selection decisions of a data layout and
compression technique are mutually dependent (cf. Section 6.2.3), we propose a
joint optimization approach. By considering the workload and data character-
istics, we can adapt the storage format to application-specific constraints. For
each data layout d ∈ D, where D describes the set of available data layouts,
and compression technique e ∈ E, where E defines the set of relevant data en-
codings, we specify φd,e as the memory consumption to store the timestamps
of the given dataset with the data layout d and the encoding e. Besides various
compression approaches, the set E can also contain different implementations
(e.g., bit compression for dictionary encoding) as well as configurations (e.g.,
different LZ4 block sizes) of the same compression technique. Table 6.1 presents
a notation table for the optimization approach.

6.3 Workload-Aware Optimizations to Store Timestamps 97

S
et
s

D set of data layouts d
E set of encodings e
Q set of queries q
M set of partitions m

P
a
ra
m
et
er
s φd,e memory consumption for a data layout d and encoding e

pd,e,q execution time of a query q
fq frequency of query q
am,q proportional costs of partition m for query q
α factor for balancing memory consumption and runtime

B
en

efi
ts rd benefit of data layout d

rd,e benefit of data layout d and encoding e
rd,e,m benefit of data layout d and encoding e for partition m

Table 6.1: Notation table for the workload-driven combined data layout
and compression scheme optimization approach.

For applications with strict memory requirements, we can select the config-
uration with minimal memory consumption, mind,e {φd,e} for d ∈ D, e ∈ E.
Equally, we can select the configuration based on the maximum performance
for a given workload without any data footprint considerations. We specify a
workload Q as a set of queries q ∈ Q. The performance of a given workload Q,
we define as the sum of the costs of each query q ∈ Q, which are calculated
based on the costs of the query execution pd,e,q multiplied with the frequency
of the query fq,

q∈Q

pd,e,q · fq. (6.1)

To determine the costs pd,e,q for each query, we can measure the runtime per-
formance or use cost models. We calculate the benefit rd,e based on a weighted
ratio between memory consumption and runtime performance to optimize the
timestamps’ storage configuration. A similar approach is used by Valentin et
al. [342] in the context of the index selection problem. For each combination of
a data layout d ∈ D and encoding e ∈ E, we define the benefit r as (α ≥ 0):

rd,e = 1/

φd,e · (

q∈Q

pd,e,q · fq)α

. (6.2)

The α value defines the proportional balancing of memory consumption and
runtime performance for the optimization objective. This factor enables the
database administrator (DBA) to adapt to different application requirements.
The applied data layout and compression approach should be transparent for
the application. Based on the Equation (6.2), we select the data layout d and
encoding e with the maximum benefit maxd,e {rd,e} for d ∈ D, e ∈ E. The
database should optimize the used configuration internally and provide a unified
interface (e.g., the timestamp data type).

Various modern database systems divide a table into partitions based on
partition criteria (e.g., time) to benefit from pruning during query execution,
more efficient workload distribution, and simplified data tiering [86, 178, 248,
252]. An optimized adaptation of the storage layout to spatio-temporal access
patterns can be achieved by applying optimized configurations individually for

98 6 Memory-Efficient Storing of Timestamps in Columnar In-Memory Databases

each partition [282]. In this context, we have to calculate the benefit for each
partition rd,e,m for d ∈ D, e ∈ E, and m ∈ M , where M describes a set of
partitions. Consequently, we have to adapt the equation:

rd,e,m = 1/

φd,e,m · (

q∈Q

pd,e,q · fq · am,q)
α

. (6.3)

In (6.3), we determine the memory consumption φd,e,m separately for each
partition. Additionally, we have to introduce a parameter am,q, which determines
the proportional share of the partition m of the runtime performance pd,e,q for
a given query q ∈ Q. Similar to the approach without data partitions, we select
for each partition m ∈ M the configuration with the highest benefit rd,e,m.
This approach requires that the database system is capable of applying different
data layouts for various partitions of the data and adjusting the query processing
correspondingly. If the data layout should be consistent for all partitions, we can
determine the aggregated benefit of all partitions for each data layout d ∈ D by

rd =

m∈M
max

e
{rd,e,m} . (6.4)

Based on the data layout with the highest overall benefit maxd {r(d)}, we
can determine the encoding scheme for each partition m correspondingly.

6.3.2 Optimized Compression Scheme Selection for Multiple
Column Data Layouts

By applying an attribute decomposition approach (cf. Section 6.2.2), we have
further optimization potential to improve the runtime performance or reduce
the memory footprint. As the different temporal components of timestamps are
stored in separate columns, we can select an optimized encoding approach for
each column. Figure 6.5 shows that the columns in the multiple columns data
layout have different data characteristics, which are beneficial for specific com-
pression techniques. For instance, in our dataset of a transportation network
company, the YEAR column has only one distinct value. Consequently, this col-
umn is well-suited for run-length encoding or could also be stored as a single
default value. In contrast, the SECOND column has significantly shorter se-
quences of equal values, which leads to a lower compression rate for run-length
encoding. We propose an LP approach to determine an optimized compression
scheme for given workloads and memory budgets to address this issue. Further-
more, by introducing memory budgets, we enable DBAs to specify the amount
of memory used to store the timestamp and optimize the compression scheme
correspondingly.

To select for each column an encoding to achieve the lowest overall runtime
for a given workload Q, we have to determine the proportional costs of each
database operation (e.g., scan operation) for each column. We define the func-
tion A(q), which decomposes a query q with q ∈ Q and determines all single
operations for the individual columns of the data layout. For instance, A(q)
divides a temporal range scan q into multiple scan operations based on the tem-
poral units queried by q. As spatio-temporal workloads are often dominated by
range queries and trajectory-based queries [275], we are focusing on scan opera-
tions in this context. The approach can be extended for further spatio-temporal

6.3 Workload-Aware Optimizations to Store Timestamps 99

Encoding

0.0001

0.001

0.01

0.1

1

10

100

M
em

or
y

C
on

su
m

pt
io

n
[M

B
]

Dictionary LZ4 Run-Length Unencoded

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND

Column

Fig. 6.5: Comparison of the memory consumption of the different columns
in the multiple columns data layout for dictionary, LZ4, and run-length en-
coding. Especially for run-length encoding, the varying data characteristics
of the columns have a significant impact on the data footprint.

operations. Correspondingly, S describes the set of all operations of a given
workload:

S =

q∈Q
A(q). (6.5)

The costs of a scan operation s, s ∈ S, on a column is denoted as cs,e and
determined by the column’s encoding e ∈ E. For s ∈ S, e ∈ E, we define:

cs,e := ps,e · ωs · fs · us,e. (6.6)

The parameter ps,e defines the measured scan performance of an isolated
executed scan operation on the column ns with applied encoding e. Further, the
parameter ωs denotes the accumulated selectivity of the previous operations
of the same query and fs the frequency of the scan operation. We use the
successive scan penalty us,e as we observed that consecutive scans are slower
than single scan operations, depending on the applied compression technique e.
The order of the scan operations is determined by the selectivity of the different
scan operations based on A(q) of a query q. The objective of the model is to
minimize the costs (in this case, the runtime) for a given set of scan operations
S,

min
e

s∈S,e∈E

xns,e · cs,e (6.7)

where the binary variables xns,e describe whether a certain encoding e is applied
(’1’) or not (’0’) on column ns. Here, ns ∈ N is the column in the set of all
columns N that is scanned by the given scan operation s. For the model, we
define two constraints. The first constraint guarantees that the accumulated
memory consumption of all columns n ∈ N with their selected encoding does
not exceed the given memory budget B, i.e.,

n∈N,e∈E

xn,e · bn,e ≤ B. (6.8)

To guarantee that for each column n exact one compression approach e ∈ E
is selected, we specify the second constraint:

100 6 Memory-Efficient Storing of Timestamps in Columnar In-Memory Databases

e∈E

xn,e = 1 ∀n ∈ N. (6.9)

To solve the optimization problem, a standard solver with support for mixed-
integer programming (e.g., Gurobi [121]) is used.

6.4 Summary

In this chapter, we presented different approaches to store timestamps in colum-
nar in-memory databases more efficiently. The efficient storing of timestamps is
challenging as numerous standard optimizations (e.g., compression approaches
such as dictionary encoding) for columnar databases are developed for contra-
dicting data characteristics (e.g., low number of distinct values). However, for
various applications (e.g., spatio-temporal applications), the access performance
and memory consumption of temporal information are crucial aspects. By com-
paring different combinations of data layouts and compression techniques, we
observed significant differences in memory requirements and runtime for dif-
ferent access patterns of the applied configurations (cf. Section 6.2). Based on
the advantages and disadvantages of different configurations for specific require-
ments (e.g., memory limitations or performance constraints) and workload char-
acteristics, we introduced two optimization approaches to improve the storage
configuration for a given workload (cf. Section 6.3). We presented a heuristic ap-
proach for the workload-driven joint selection of performance and cost-balancing
configurations consisting of a data layout and compression scheme. Moreover,
we described an attribute decomposition approach that stores a timestamp in
multiple columns (cf. Section 6.2.2), which is beneficial for specific access meth-
ods and workloads characteristics (cf. Section 6.2.3). Additionally, we proposed
an LP model for the multiple column approach to determine an optimized com-
pression scheme for a given workload (cf. Section 6.3.2).

7

Evaluation

This chapter presents the evaluation of the different workload-driven optimiza-
tion approaches presented in the previous chapters. For the evaluation, we used
the dataset and query patterns of a transportation network company (TNC)
introduced in Chapter 4. Further information about the experimental setup is
provided in Section 7.1. In Section 7.2, we evaluate the different linear program-
ming models (LP) to determine a joint table configuration (cf. Section 5.3).
Further, we compare our models against rule-based heuristics and briefly dis-
cuss the accuracy and scalability of the approaches. In the following section, we
present the evaluation results of the LP models with data tiering decisions (cf.
Section 5.4). In Section 7.4, we analyze the impact of the model extensions that
consider reconfigurations costs and robust configuration selection. Section 7.5
demonstrates the influence of different configuration decisions for timestamps
on the runtime performance and memory consumption. Moreover, we discuss
the results (Section 7.6) and threats to validity (Section 7.7). In Section 7.8, we
conclude the chapter with a summary.

7.1 Experimental Setup

To evaluate the different proposed optimization approaches for spatio-temporal
data management, we use the dataset and workload characteristics of a TNC.
We use the research database Hyrise (cf. Section 2.3.2) to determine the input
values for the LP models (cf. Section 5.2.2) and to measure the performance
and memory consumption of different configuration optimizations. In this con-
text, we execute the benchmark queries single-threaded to exclude potential
multi-threading and scheduling overheads which might mask the effects of spe-
cific tuning decisions. We define the input parameters based on the database’s
supported encoding and indexing properties. The set of available encodings E
consists of five options introduced in Section 5.1. As secondary indexes, we use
an approach of Faust et al. [100] that leverages a segment’s dictionary to increase
space efficiency. Consequently, we have to ensure that indexes are only allowed
on dictionary-encoded segments (cf. Section 5.3.6). If not otherwise specified, we
focus on single-column indexes in the evaluation, even though the CCD model
could reflect multi-column optimizations. A limitation that we further discuss
in Section 7.6 is that the index decisions are made for each segment indepen-
dently. All these settings are database-specific and have to be adopted based on

102 7 Evaluation

the specific capabilities of the target database management system. Naturally,
this set of tuning options can be flexibly defined and varied. Moreover, our mod-
els are able to consider further index structures, storage devices, or encoding
approaches for specific application scenarios. The LP framework is of general
nature and ensures optimal configurations for a given set of tuning options and
associated cost parameters.

If not otherwise indicated, all measurements have been executed on a server
equipped with Intel Xeon E7-4880v2 CPUs (2.50GHz, 30 logical cores). Only for
the evaluation of the end-to-end measurements of the optimization approaches
with data tiering decisions (cf. Section 7.3), we use a server equipped with Intel
Xeon Platinum 8180 CPUs (2.50GHz, 56 logical cores) and an Intel P4800X
SSD. Our different models are implemented in Pyomo, a Python-based open-
source optimization modeling language [43, 133]. In contrast to other algebraic
modeling languages like AMPL [106], AIMMS [30], GAMS [41], or JuMP [89],
Pyomo embeds its modeling objects in a full-featured high-level programing
language. To solve the LP models, we used the Gurobi Solver [121] with 16
parallel threads and no relaxations like optimality gaps or time limits.

7.1.1 Dataset

For the evaluation of the approaches, we use the real-world dataset of a TNC
introduced in Section 4.3.1 as a running example. The dataset consists of 400
million observed locations of drivers for three consecutive days in the city of
Dubai [279] (raw size 15.9 GB). Compared to other passenger transportation
datasets (e.g., New York Taxi Rides [332]), the dataset has a significantly finer
granularity as the drivers’ position is tracked multiple times per minute. The
driver’s identifier, timestamp, latitude, longitude, and the driver’s status are
stored as integer values in the database table for each observed location. Based
on the insertion order, a certain temporal ordering of the sample points exists.
Due to delayed transmission, there is no guarantee that the table is initially
sorted, which could be used in query processing. To evaluate the base LP models
(cf. Section 5.3), we used a subset of the data that contains ten million observed
locations (raw size 0.4 GB) to reduce the benchmark execution time. We used
the entire dataset for the LP models with data tiering decisions (cf. Section 5.4).
Unless otherwise noted, we partition the data into ten chunks containing one
million or 40 million observed locations depending on the dataset.

As mentioned in Section 4.3.1, the dataset only includes the dispatch-related
observed locations of a single city. The volumes of trajectory data that have to
be stored and processed by globally operating large TNCs can be significantly
larger (e.g., over 100 terabytes per day [96]). Consequently, optimizations that
significantly reduce resource requirements (e.g., DRAM capacities) can have a
major impact on the operating costs of such systems. As the size of the dataset
only influences the input parameters like the runtime of the benchmark queries
and the memory consumption, the presented approaches can also be used to
optimize significantly larger datasets.

7.1.2 Workloads

Based on the TNC dataset, we defined two different workloads A and B, which
are described by the corresponding sets of query templates QA and QB (cf. Sec-

7.2 Comparison of the Linear Programming Models 103

tion 5.3.1). The workloads are designed to represent the characteristic of spatio-
temporal workloads and include domain-specific access patterns of TNCs. TNCs
use spatio-temporal data for various applications (e.g., order dispatching, de-
mand predictions, A/B testing, and pricing strategies). In this context, we have
different access patterns that, for example, find all available drivers in a specific
area and timeframe for order dispatching or provide the data of a particu-
lar area for machine learning-based analysis (e.g., demand predictions). These
kinds of data requests can be represented as spatio-temporal range or trajectory-
based queries, which dominate the majority of spatio-temporal workloads. As
our models are of general nature and perform workload-driven optimizations,
the approaches do not focus on a specific workload and can be applied to dif-
ferent workloads and datasets.

Both workloads A and B contain six query templates. A query template rep-
resents a set of similar database queries. In Appendix A.2, we provide a detailed
overview of the different query templates, including the selectivity values of the
various scan operations, frequencies, and a list of pruned data chunks. The query
template set QA has a focus on the temporal aspect of spatio-temporal work-
loads. Moreover, the workload is dominated by two query templates, which rep-
resent 80% of all queries. For the dataset with ten million entries, these queries
return the driver’s positions with the status free in the last 25 hours (qA0, 30%
of the queries in the workload) and all positions of free drivers in a eleven hours
time window in an approximate two by two km area (qA1, 50%). These kinds
of queries are often used to optimize the routes of drivers and perform demand
analysis [286]. Further, the rest of the workload contains four query templates:
(qA2, 16%) select all trips of a set of drivers (0.01% of all values) in a timeframe
of 25 hours (40% of all values), (qA3, 2.5%) all trips in a timeframe of two days,
(qA4, 0.5%) all trips in a specific area (9.5 by 9.5 kilometers), and (qA5, 1%) all
trips of a group of drivers (50% of all values) in a specific area and timeframe
(25 hours) with the status free.

In contrast to workloadA, the frequencies of the different query templates are
more equally distributed for workload B. It includes query templates that focus
on filtering for specific groups of drivers and areas, which are used for various
applications (A/B testing or performance evaluations). The first three query
templates of query template set QB select the trajectory data of a particular
set of drivers: (qB0, 15%) all trips of a group of drivers (0.01% of all values) with
the status free, (qB1, 15%) all trips of a group of free drivers (5% of all values) in
a specific area of 3.5 by 3.5 km, and (qB2, 10%) all trips of a group of drivers (1%
of all values) in a larger area. Further, qB3 (25%) selects all trips in a relatively
large region (20 by 20 km) and a timeframe of 4 hours. The query template qB4

(15%) selects all trips of drivers within a specific set of identifiers that worked in
the last 4 hours. Finally, qB5 (20%) returns all trips in a small region of 500 by
500 meters for a timeframe of 30 hours. If not otherwise indicated, we execute
the queries single-threaded and abstract from result materialization.

7.2 Comparison of the Accuracy, Performance, and
Scalability of the Linear Programming Models

For the evaluation of the three LP models introduced in Section 5.3, we analyze
the predicted and end-to-end measured results (Section 7.2.1), the performance

104 7 Evaluation

compared to a greedy heuristic approach (Section 7.2.2), the impact of fine-
grained configuration optimizations (Section 7.2.3), and the scalability of the
different LP models (Section 7.2.4).

7.2.1 Predicted vs. End-to-End Results of the Linear Programming
Models

In the first step, we evaluate the runtime and memory consumption predicted
by the models (cf. Section 5.3) for different memory budgets B compared to the
end-to-end measured values for the corresponding table configurations in Hyrise.
For the end-to-end Hyrise measurements, we executed each query of the work-
load 100 times and determined the average execution time to achieve stable and
representative numbers. As displayed in Figure 7.1, the three LP models are
able to predict both values for both workloads pretty accurately. In contrast to
workload A, the models predict a slightly higher runtime performance than the
end-to-end measured values for workload B. But, we can observe the differences
between the models are quite accurate. Overall, the measurements show high
optimization potentials for fine-grained configuration decisions, especially for
limited memory budgets. After a specific memory budget value (e.g., 120 MB
for workload A and 140 MB for workload B), the performance only increases
slightly or stagnates. Compared to the SMS model’s (cf. Section 5.3.4) bench-
mark results, we can observe that the ISE model (cf. Section 5.3.5) can determine
competitive table configurations, especially for larger memory budgets.

0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

[s
]

60 80 100 120 140 160 180 200 220 240 260
Budget [MB]

60

100

150

200

M
em

or
y

C
on

su
m

pt
io

n
[M

B
]

Workload A

0

5

10

15

Ex
ec

ut
io

n
Ti

m
e

[s
]

60 80 100 120 140 160 180 200 220 240 260
Budget [MB]

60

100

150

200

M
em

or
y

C
on

su
m

pt
io

n
[M

B
]

Workload B

CCD
ISE
ISE (shuffle)
SMS

MODEL

measured
predicted

MODE

Fig. 7.1: Comparison of predicted (dashed line) and end-to-end measured
(solid line) results: performance (top) and memory consumption (bottom)
of our three linear programming approaches, cf. CCD, ISE, & SMS (Model),
measured in Hyrise for the workloads A & B and different memory budgets
B = 65, ..., 250 MB. Note, the turquoise line covers the blue one as the
measured values of the SMS model basically coincide with those of the
CCD model. In comparison to ISE, ISE (shuffle) used randomly shuffled
data chunks to determine the unsorted benchmark values.

7.2 Comparison of the Linear Programming Models 105

Furthermore, the values of the measured memory consumption in Hyrise
show that the LP models (except the ISE model) can determine table config-
urations that use the entire available resources without violating the memory
budget constraints. The insert order impacts the data characteristics of spe-
cific columns (e.g., driver identifier). As the dataset includes mainly dispatch
process-related trajectories, these effects are further enhanced. Therefore, the
performance and memory consumption measurements can be inaccurate for a
column in the ISE model if a chunk is sorted by another column. To address
this issue, the ISE (shuffle) approach determines the input values for the un-
sorted option based on a shuffled dataset. Before the benchmark queries are
executed, the entries in each chunk are randomly shuffled to avoid unintended
side effects. As displayed in Figure 7.1 the standard ISE model’s table configu-
rations allocate more memory than allowed for various budgets. The ISE model
underestimates the memory consumption, especially for lower memory budgets.
Here, the ISE model can not consider the effects of a specific sorting column
on other columns’ data characteristics (e.g., the number of identical values in
succession). These characteristics have an increased impact on the compression
rate of compression approaches like run-length encoding or frame-of-reference
encoding, which are used mainly for low memory budgets. In this context, the
faster runtimes for lower memory budgets of the ISE model are caused by the
usage of significantly more memory. We can achieve that the ISE model meets
the memory budget constraint by applying the ISE (shuffle) approach. As the
ISE (shuffle) model has less information about intra-chunk effects, it cannot
determine configurations for relatively small memory budgets. We are using the
ISE (shuffle) approach for the upcoming evaluations, as it is more consistent
in fulfilling the memory budget constraint and able to determine configurations
with similar performance. Further, as the predicted results of the SMS and CCD
model coincide, it is verified that the CCD and SMS models are equivalent in
the case that only single-column indexes are used. For that reason, we limit the
evaluation to the SMS and ISE (shuffle) model unless otherwise noted.

Encoding Memory Consumption [MB] Execution Time [s]

Workload A Workload B

Dictionary 181.25 11.493 5.804
Frame of Reference 91.70 30.773 28.694
LZ4 76.10 32.005 30.858
Run-Length 248.92 25.859 26.942
Unencoded 200.01 16.776 11.397

Table 7.1: End-to-end measured memory consumption and execution
times of standard table configurations consisting of a single encoding deci-
sion for the workloads A & B.

Additionally, we can observe that workload-driven table configuration op-
timizations can significantly improve the runtime performance and reduce the
memory footprint. Compared to standard configurations that use the same en-
coding approach for each segment of a table (cf. Table 7.1), the LP models enable
database administrators to balance performance requirements and budget con-

106 7 Evaluation

straints efficiently. For instance, the standard configuration that uses dictionary
encoding for each segment – the default setting for various columnar databases
– has a memory consumption of 181.25 MB and an execution time of 5.804 s for
workload B. In contrast, the table configurations determined by the SMS and
CCD model can achieve similar performance results with only 75 MB of main
memory. Here, the LP approach can reduce the required memory resources by
up to 58 percent. For workload A, we have comparable results achieving similar
performance measurements with up to 43 % memory footprint (85 MB). More-
over, the standard configuration that applies LZ4 encoding on each segment has
a relatively small memory footprint of 76.1 MB. Compared to the performance
of table configurations of the SMS and CCD models for a memory budget of 75
MB, the execution time for workload A is about 2.8 times and for workload B
about 6.8 times slower. These numbers demonstrate the high potential of fine-
grained workload-driven table configuration optimizations to reduce operating
costs and increase the performance of spatio-temporal data management.

7.2.2 Comparison of the Linear Programming Models Against a
Rule-Based Heuristic Approach

This section compares the memory consumption and performance of table con-
figurations determined by the LP models against a greedy heuristic approach.

Rule-Based Tuning Heuristics

We seek to evaluate the determined table configurations of our models against
standard approaches. As a common approach, we implemented a rule-based
greedy heuristic. Similar to the SMS model (cf. Section 5.3.4), the heuristic
includes intra-chunk dependencies by taking into account the specific sorting
column. As a valid table configuration requires that exactly one sorting option
o ∈ O is selected for each chunk, we have to integrate this constraint into
the heuristic. For that reason, we implemented a two-phase approach. In the
first phase, we determine a valid base configuration. By selecting the tuning
option with the highest benefit rm,n,e,o,i for each chunk, we determine the sorting
order of the corresponding chunk. Similar to the approach for the selection
of optimized data layouts for timestamps (cf. Section 6.3.1), we calculate the
benefit based on a weighted ratio between memory consumption and runtime
performance. For each segment (m,n) and each tuning option e ∈ E, o ∈ O,
and i ∈ I, we define the benefit r as (α ≥ 0):

rm,n,e,o,i = 1/

bm,n,e,o,i · (

q∈Q,s∈Sq :
nq,s=n

cm,n,e,o,i)
α

. (7.1)

To calculate the costs cm,n,e,o,i of a scan operation on a segment (m,n) with
m ∈ M and n ∈ N and the given tuning options, we use the same cost esti-
mations as for the LP models, cp. (5.5). The α value is a factor to define the
proportional balancing of the memory consumption and runtime performance
for the optimization objective. A higher α value indicates that the performance
is higher weighted compared to the memory consumption. Based on the sort-
ing decision of the selected tuning configuration with the highest overall benefit
within a chunk, the ordering for the entire chunk is specified. Afterward, the

7.2 Comparison of the Linear Programming Models 107

base configuration is determined by selecting for each segment (m,n) the tun-
ing configuration with the lowest memory consumption for the chunk’s given
determined sorting option.

In the second phase, we select the tuning option with the largest difference
between the benefit of the tuning option and the currently applied configuration
of the segment. Afterward, we check if the selected tuning option fits into the
remaining memory budget. The table configuration is adapted correspondingly
if the configuration change does not violate the remaining memory budget con-
straint. After a configuration change, the benefits of the tuning options for the
corresponding segment have to be recalculated. This step is repeated until no
more changes are possible for the given memory budget.

Evaluation Results

As displayed in Figure 7.2, the LP models outperform the greedy heuristics, cf.
GH(α), and can leverage the available memory budget more efficiently. Never-
theless, based on the application-specific requirements (e.g., low memory foot-
print or high performance) that can be defined by the α value, the greedy
heuristics’ table configurations demonstrate considerable performance improve-
ments compared to standard configurations (cf. Table 7.1). For instance, for a
similar memory budget (180 MB), the table configurations determined by the
greedy heuristic with an α value of 10 (GH(10)) have a reduced runtime of about
8% for workload A and about 35% for workload B compared to the standard
dictionary encoding configuration.

Furthermore, the greedy heuristics’ measurements show that the selection of
the α value significantly impacts performance and memory consumption. We can
observe that the overall performance for different α varies between workloads
and memory budget ranges. For example, for α = 1, the greedy heuristic does
not leverage the available memory budget and performs relatively poorly for
all memory budgets for workload A. In comparison, for workload B, there is
a wide range of memory budgets (120 MB to 180 MB), where this α value
delivers the best performance of the greedy heuristics. By using a two-phase
approach, the greedy heuristics select the sorting configuration for the entire
table in the first phase. Based on the selected sorting decisions, the calculation
of table configurations may not be possible for low memory budgets and specific
α values (e.g., for α = 10 and B = 70 MB).

Moreover, we can observe that the memory consumption and performance
stagnate for the heuristic approaches at a particular memory budget depend-
ing on the α value. At this point, there are no further tuning options available
that provide a benefit. The greedy heuristics with higher performance weighting
(e.g., GH(10)) can determine table configurations with only a slight performance
decrease for large memory budgets compared to the LP approaches. For work-
load A and a memory budget of 250 MB, the performance difference between
the SMS model and the greedy heuristic (GH (10)) is only 6%. In contrast, the
table configurations determined by this heuristic have significantly slower run-
times than the LP models for lower memory budgets (up to 87% performance
gain of the SMS model compared to GH (10) for equal memory budgets). Also,
the greedy heuristics that focus more on memory consumption (e.g., GH (0.5))
have a significantly lower runtime for more restrictive memory budgets. A reason

108 7 Evaluation

0

10

20

30

Ex
ec

ut
io

n
Ti

m
e

[s
]

60 80 100 120 140 160 180 200 220 240 260
Budget [MB]

60

100

150

200

M
em

or
y

C
on

su
m

pt
io

n
[M

B
]

Workload A

0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

[s
]

60 80 100 120 140 160 180 200 220 240 260
Budget [MB]

60

100

150

200

M
em

or
y

C
on

su
m

pt
io

n
[M

B
]

Workload B

GH (0.5)
GH (1)
GH (10)
GH (2)
GH (3)
ISE
SMS

MODEL

Fig. 7.2: Comparison of end-to-end measured execution time (top) and
memory consumption (bottom) for workload A (left) and workload B
(right) of the LP models (SMS, ISE) compared to the greedy heuristic
approach with different α values (GH (α)).

for this behavior is that greedy heuristics with a higher α value spend a signifi-
cant amount of memory on optimizing the performance of a limited number of
segments.

Overall, we have shown that our LP-based configuration decisions are supe-
rior to rule-based heuristics. Our models achieve up to 50% increased perfor-
mance for a given memory budget, or a comparable runtime is obtained with
up to 55% less required main memory for workload A. For workload B, the LP
approach achieves up to 82% increased performance by equal memory size or
reduces the memory footprint up to 56% by similar performance compared to
the best greedy heuristic for a given memory budget.

Detailed Configuration Analysis

Figure 7.3 shows specific table configurations computed by the different ap-
proaches for workload B. In each row, the determined table configurations of the
approaches (SMS, ISE, and GH(10)) are visualized for four ascending memory
budgets. For each table configuration, we depict the individual selected tuning
option for each segment. In this context, a segment is determined based on the
corresponding chunk (rows) and the column (columns). The different columns of
the table are represented by ids, where the mapping is the following: (0) drivers
identifier, (1) latitude, (2) longitude, (3) timestamp, and (4) status. The color
of each segment determines which encoding is applied. Additionally, a rectangle
in the top left corner indicates that the corresponding segment is indexed and
a triangle in the top right corner shows that the chunk is sorted by that col-
umn. To identify specific partitions of the table with a high memory footprint,
the circle in the middle of each segment displays the allocated memory of the
corresponding segment.

7.2 Comparison of the Linear Programming Models 109

0
1
2
3
4
5
6
7
8
9

C
hunk

0
1
2
3
4
5
6
7
8
9

C
hunk

0 1 2 3 4
Column

0 1 2 3 4
Column

0 1 2 3 4
Column

0 1 2 3 4
Column

0
1
2
3
4
5
6
7
8
9

C
hunk

LZ4 dictionary frame-of-reference
run-length unencoded

Encodings
1 2 3
4 5 6

Memory Usage [MB]

90 MB 110 MB 130 MB 150 MB

SM
S

IS
E

GH
 (1

0)

Fig. 7.3: Visualization of table configurations computed for five columns
and ten chunks by the SMS model, ISE model, and the greedy heuristic
with α=10 for four different memory budgets (90 MB, 110 MB, 130 MB,
and 150 MB). A rectangle in the top left corner indicates that the corre-
sponding segment is indexed and a triangle in the top right corner shows
that the chunk is sorted by that column. Additionally, the color of a seg-
ment represents the applied encoding and the size of the circle indicates
the consumed memory by a segment.

We observe that the selected sorting configuration varies strongly between
the greedy heuristic and the two LP models (ISE & SMS). As the greedy ap-
proach determines the sorting configuration initially for each chunk based on
the tuning option with the highest overall benefit, this selection can be subop-
timal for lower memory budgets. In contrast, the LP models adopt the sorting
configuration with increasing memory budgets. For instance, the third chunk in
the SMS as well as in the ISE model is sorted by the first column (the driver
identifier column) for the two first memory budgets (90 & 110 MB). For the
last ones, the LP models determined that it is more beneficial to change the
sorting order of the chunk. The decreased scan performance due to the sorting
order’s change is compensated by creating an index on the previously sorted
segment. For various workload scenarios, we observed that the sorting decision
per chunk is based on a segment’s access frequency and compression ratio for
more restricted memory budgets. With increasing memory budgets, indexes are

110 7 Evaluation

applied to segments with low selectivity queries, enabling sorting the chunk by
another column.

By analyzing the different configurations, we can further identify that some
combinations of tuning options are beneficial for the data characteristics of spe-
cific columns concerning memory consumption or performance. For instance,
run-length encoding applied on sorted segments with a limited number of dis-
tinct values (e.g., the driver identifier or status column) leads to a relatively
small memory footprint and fast processing times. In contrast, run-length en-
coding is significantly less efficient if the chunk is sorted by a column with many
distinct values (e.g., longitude, latitude, or timestamp column). Consequently,
it is only applied to sorted segments or infrequently accessed segments.

Furthermore, Figure 7.3 demonstrates an advantage of the LP approach
compared to the greedy heuristic. The heuristic leverages vast amounts of the
available memory (e.g., by applying dictionary encoding) to increase the perfor-
mance of a limited number of segments. Accordingly, LZ4 encoding is applied to
various segments even for increased memory budgets, which negatively affects
the overall performance (cf. Figure 7.2). In contrast, the LP models more equally
distribute the available memory budget on all accessed segments to improve the
performance of various segments. Additionally, we can observe that the joint
optimization of different tuning options is an advantage, as index structures
are already applied for lower memory budgets. In this case, all approaches use
indexes to increase the overall performance even though there are various seg-
ments that are still compressed with more heavy-weight compression techniques.
We observe that all approaches apply various tuning options for different chunks
to take into account pruned segments as well as data and access characteristics.
The example shows that optimized joint tuning configurations are complex and
cannot be determined manually anymore, particularly for larger problems (e.g.,
datasets, workloads, or number of tuning options).

7.2.3 Impact of Fine-Grained Configurations

This section investigates the impact of different chunk sizes and the associated
number of chunks on the end-to-end measured workload runtime and mem-
ory consumption in Hyrise. For the evaluation, we use the ISE model (cf. Sec-
tion 5.3.5) to determine table configurations for different chunk sizes and mem-
ory budgets B = 70, ..., 250 MB. We partitioned the data into one chunk (chunk
size of 10 million), ten chunks (chunk size of 1 million), and 100 chunks (chunk
size of 100 000).

As displayed in Figure 7.4, the fine-grained table configurations with smaller
chunk sizes achieve significantly better performance than column-based opti-
mizations. One reason for this is that the database can use chunk pruning to
skip entire partitions of the data during query execution [86]. Another reason is
that we can optimize the applied tuning configuration of each segment specif-
ically for the segment’s access and data characteristics. Consequently, we can
select different tuning options for partitions with strongly differing access types.
In contrast, to choose a tuning option for an entire column, we have to consider
all access patterns on the corresponding column (even if the queries access dif-
ferent sections of the data), which can negatively impact the runtime of several
queries.

7.2 Comparison of the Linear Programming Models 111

Furthermore, we can observe that the table configurations for 10 and 100
chunks can leverage the available memory resources more efficiently. For in-
stance, for a memory budget of 160 MB, the determined table configuration for
workload A and a chunk size of ten million uses only about 140 MB (87.5%)
of the available resources. Compared to improving the configuration of individ-
ual chunks with smaller chunk sizes, applying configuration optimizations (e.g.,
lightweight compression such as dictionary encoding) on a single chunk with ten
million entries requires significantly larger amounts of memory. Therefore, we
can observe a stepwise memory consumption increase for table configurations
with a chunk size of ten million. Another drawback of optimizations on column
granularity is that we have to use additional memory resources for infrequently
accessed data sections if we apply optimizations to increase performance (e.g.,
indexes). In contrast to the performance differences between a chunk size of
ten million and one million (for workload A up to 75% and for workload B up
to 78% reduced runtime by equal memory size), we can only observe a perfor-
mance increase of up to 10% for workload A and up to 38% for workload B by
equal memory between the chunk size of one million and 100 000. Based on the
overhead introduced by smaller chunk sizes (e.g., separate dictionaries for seg-
ments), there is a boundary that limits the performance increase by minimizing
the chunk size.

0

10

20

30

40

50

Ex
ec

ut
io

n
Ti

m
e

[s
]

60 80 100 120 140 160 180 200 220 240 260
Budget [MB]

60

100

150

200

M
em

or
y

C
on

su
m

pt
io

n
[M

B
]

Workload A

0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

[s
]

60 80 100 120 140 160 180 200 220 240 260
Budget [MB]

60

100

150

200

M
em

or
y

C
on

su
m

pt
io

n
[M

B
]

Workload B

1 million
10 million
100k

CHUNK SIZE

Fig. 7.4: Comparison of the end-to-end measured execution time (top) and
memory consumption (bottom) of the table configurations determined by
the ISE model for different chunk sizes (1 million, 10 million, and 100k)
and memory budgets.

7.2.4 Scalability of the Linear Programming Approach

To analyze the scalability of the different models (ISE, SMS, and CCD), we
evaluated the runtime of the solver to compute the table configurations by scal-
ing in the following dimensions: (i) memory budget, (ii) #scan operations that

112 7 Evaluation

define the workload, (iii) #chunks, and (iv) #compression and index options.
As a general benchmark setup, if not chosen differently, we use the settings de-
scribed in Section 7.1 and use workload B with |∪qSq| = 17 scan operations,
where |M | = 10, |E| = 5, |N | = 5, |O| = 6, and |I| = 2.

Impact of Memory Budgets and Workload Size

At first, we evaluate the solver time of the different models for increasing mem-
ory budgets B. As displayed in Figure 7.5 (top left), the ISE model has the lowest
solve time with a mean of 0.02s, followed by the CCD model with 0.1s. Due to
the increased complexity introduced by the number of concrete sorting options
(cf. Section 5.3.4), the computation takes significantly longer for the SMS model
(12.6s mean solver time). The CCD model’s solve time is lower than the one
of the SMS model, but the pre-calculation of the chunk configurations takes
significantly longer. Note, the number of valid indexing and compression config-
urations for a chunk k in the example consists of

 |N |
7776

options (cf. Section 7.1).

We selected the memory budgets of 100 MB and 200 MB for further evaluation
to analyze the differences between a more limited and generous memory budget.

Second, we investigate the capabilities of the models to scale with the work-
load. Therefore, we evaluated the computation performance for an increasing
number of scan operations. As shown in Figure 7.5 (top right), the workload
size has no impact on the solver time. As described in Section 5.3.3, the amount
of scan operation is only relevant for calculating the parameter c. The compu-
tation of the parameters is done in advance and can be executed highly parallel.
Based on these observations, we can argue that the different models are capable
of handling large workloads.

Impact of Data Size

Due to spatio-temporal data volumes, scalability with regard to data size is cru-
cial. In this context, we analyze our models’ solve time for different numbers of
chunks. Naturally, the complexity of all three models increases with the number
of chunks, see Figure 7.12 (bottom left). The ISE & CCD model scale is linear
with the number of chunks, whereby the ISE model’s solver times are orders of
magnitude lower. For the budget of B = 100 MB, the ISE model needs 57ms
for 100 chunks and 553ms for 1 000 chunks to compute the corresponding table
configurations. In comparison, the CCD model needs 65s for 100 chunks and
637s for 1 000 chunks. In contrast, the SMS model does not scale linearly with
the cardinality of M ; the model computes the table configuration in about 14s
for 100 chunks and 815s (1 000 chunks). The measurements demonstrate that
all three models can also determine table configurations for a large number of
chunks. Based on the low solver runtimes, the ISE model represents a well-suited
approach for large problem domains.

Impact of the Number of Tuning Options

As modern database systems support various compression techniques and in-
dex implementations, we investigate the impact of the number of compression
and index options on the solver time. For that reason, we generated additional

7.3 Linear Programming Approach with Tiering Decisions 113

60 80 100 120 140 160 180 200 220 240 260
Budget [MB]

0.001

0.01

0.1

1

10

100

So
lv

er
 T

im
e

[s
]

0 200 400 600 800 1,000
#Chunks

0.001

0.01

0.1

1

10

100

1,000

So
lv

er
 T

im
e

[s
]

0 2,000 4,000 6,000 8,000 10,000
#Scan Operations

0.001

0.01

0.1

1

10

100

So
lv

er
 T

im
e

[s
]

(5, 1) (10, 2) (20, 4) (30, 6) (40, 8) (50, 10)
#(Compression, Index) Configurations

0.001

0.01

0.1

1

10

100

1,000

So
lv

er
 T

im
e

[s
]

CCD
ISE
SMS

MODEL

100
200

BUDGET

Fig. 7.5: Comparison of the solve time of our three LP models to compute
valid table configurations for various memory budgets B =75,..,250 MB
(top left) as well as different numbers of tuning options: #scan operation
|S| (top right), #chunks |M | (bottom left), and cardinality of the indexing I
and compression options E (bottom right) for two selected memory budgets
B of 100 MB and 200 MB.

benchmark values (cf. Section 5.2.2) for up to 50 compression techniques and
ten different index options. We apply no database-specific limitations for this
benchmark so that each index option can be applied in combination with each
compression option. As displayed in Figure 7.5 (bottom right), we can observe
a slight increase in the solver time for the ISE model up to 231ms for the setup
with 50 compression techniques, ten indexes, and a memory budget of 100 MB.
For the SMS model, the solver time increased from 14s for the Hyrise example
settings to 130s for the largest considered setup. Due to memory restriction, it
was impossible to determine the results for all setups for the CCD model. As
already mentioned in Section 5.3.2, the number of possible chunk configurations
|K| can increase quickly. In this context, we further analyzed the applicability of
the CCD model for reasonable numbers of |K| based on randomly generated cost
inputs. We evaluated that problems with selected six million tuning combina-
tions (per chunk) can be solved in less than 42 seconds, which, in general, shows
the applicability of the model. Further, we recall that domain knowledge should
be included in specific applications to select only relevant tuning configuration
candidates, which can include more complex concepts, such as multi-attribute
indexes.

7.3 Linear Programming Approach with Tiering Decisions

In this section, we present the evaluation results for the LP models with data
tiering decisions introduced in Section 5.4. To analyze the performance impli-
cations of integrated tiering decisions, we increased the dataset of a TNC. As
mentioned in Section 7.1.1, the dataset contains 400 million observed locations.

114 7 Evaluation

Furthermore, we adopted the queries of workload B to the extended dataset.
We adapted the filter predicates of the workload’s different scan operations to
correspond to the previously defined selectivity values (cf. Appendix A.2). In
contrast to the other experiments, we use a server equipped with Intel Xeon
Platinum 8180 CPUs (2.50GHz, 56 logical cores) and an Intel P4800X SSD
connected via PCI Express 3.0. Note, we only use two storage devices (DRAM
and Intel P4800X SSD), but the models can determine configurations for setups
with multiple storage devices. The τ value (cf. Section 5.4.3) for each encoding
is determined by the mean performance difference of a set of scan operations
executed with different selectivity values on both storage devices. As the tiering
of segments is based on UMap (cf. Section 2.3.2), we have to define a UMap
page and buffer size. For the user-space page management, UMap uses a buffer
of pages in DRAM [256]. To ensure that the data has to be read from the slower
datastore and avoid caching effects, we selected a small buffer size of 1000 pages
and a page size of 128 KiB.

As secondary indexes, we use the approach of Faust et al. [100]. Further-
more, we include multi-column indexes, which are implemented in Hyrise (cf.
compound group-keys [101]), in the evaluation to demonstrate the capabilities
of the CCD model. Both approaches leverage a segment’s dictionary to increase
space efficiency. Consequently, we have to ensure that indexes are only allowed
on dictionary-encoded segments (cf. Section 5.3.6). Besides five single column
indexes, we consider 46 multi-column indexes (MCIs) with attribute lengths of
2-4. The MCI set includes all relevant index candidates for the given workload
(cf. [166]). For combinations of the four tuning dimensions, we considered about
K = 120 000 options per chunk.

7.3.1 End-to-End Results of the Linear Programming Models

As displayed in Figure 7.6, the three LP models are able to improve joint table
configurations for the given workload. Overall, we can observe that there are high
optimization potentials for fine-grained configuration decisions, especially for
lower memory budgets. After a specific DRAM budget value, the performance
only increases slightly or stagnates after most of the segments are stored in the
main memory. Compared to the SMS benchmark results, we can observe that
the ISE model is able to determine competitive table configurations, especially
for larger memory budgets.

However, without detailed information about intra-chunk effects, the chunk-
based and segment-based ISE models have a 12% decreased performance com-
pared to the other approaches. Also, for the initial case, where all data is stored
on SSD, the ISE models have 30% performance decrease. The ISE model cannot
consider the effects of a specific sorting column on other columns’ data charac-
teristics (e.g., the number of identical values in succession). These characteristics
have an increased impact on the compression rate of compression approaches
like run-length encoding or frame-of-reference encoding, which are used in par-
ticular for low memory budgets. Further, as the SMS model and CCD model
without MCI results coincide, it is verified that the SMS model is equivalent to
the CCD model if multi-column optimizations are not considered.

In Figure 7.7, we can observe that the different LP models are able to utilize
the available DRAM capacities efficiently. Also, the models satisfy the given
memory limitations. In contrast to the chunk-based optimization approaches,

7.3 Linear Programming Approach with Tiering Decisions 115

0 1 2 3 4 5 6 7 8 9 10
DRAM Budget [GB]

100

200
300
500

1,000

2,000
3,000
5,000

10,000

Ex
ec

ut
io

n
Ti

m
e

[s
] CCD

CCD (with MCI)
ISE (Chunk)
ISE (Segment)
SMS (Chunk)
SMS (Segment)

MODEL

Fig. 7.6: End-to-end measured runtime performance of the table configura-
tions determined by the different LP models for the given workload, a fixed
budget of 3 GB on SSD, and increasing DRAM budgets (incl. multi-column
indexes (MCI)).

0 1 2 3 4 5 6 7 8 9 10
DRAM Budget [GB]

0

2

4

6

8

M
em

or
y

C
on

su
m

pt
io

n
[G

B
]

CCD
CCD (with MCI)
ISE (Chunk)
ISE (Segment)
SMS (Chunk)
SMS (Segment)

MODEL

DRAM
SSD

STORAGE

Fig. 7.7: DRAM (solid line) and SSD (dashed line) memory consumption
of the table configurations determined by the different LP models for the
given workload, a fixed budget of 3 GB on SSD, and increasing DRAM
budgets (0-10 GB).

we observe that segment-based approaches store infrequently or never accessed
segments even for higher DRAM budgets on SSD to generate more space in
DRAM for further optimizations. Finally, we can observe that the SMS and
CCD model reached a configuration at 8 GB where no further improvement can
be achieved (with more DRAM budget).

In this experiment, segment-based approaches have no significant advantage
compared to chunk-based approaches. The reason for that is that our work-
load accesses 92% of all segments. For workloads that query only a limited
set of segments, we can expect better performances for the segment-based ap-
proach as less DRAM budget has to be used for never accessed data. By storing
infrequently accessed segments on the slower storage, lightweight compression
techniques or additional index structures can be applied for frequently accessed
segments in the main memory.

The table configurations with MCIs have a slightly better performance for
the memory budgets of 3 GB and 4 GB. For the other memory budgets, we

116 7 Evaluation

cannot observe a performance gain for the CCD model with MCI. Based on
the implementation of MCIs in Hyrise, which is optimized for primary key ac-
cess, the runtime improvements provided by MCIs for spatio-temporal work-
loads compared to other data structures (e.g., single-column indexes) are not
that significant, especially concerning the increased memory footprint of MCIs.
Naturally, the performance difference could be increased if the database system
supports specifically optimized index structures for spatio-temporal data [215].
In the evaluation, we observed that MCIs are often used on the SSD to mitigate
access time differences. The usage of MCIs requires that columns positioned at
the beginning of the index are frequently accessed together. While this is typi-
cally the case for OLTP workloads, where compound primary keys are accessed
with high selectivity, it is less often the case for spatial workloads. MCIs are,
in this case, too large for DRAM as they cannot always be used but are still
helpful when placed on slower storage devices, where their added storage costs
are less of a problem. In DRAM, the LP models apply mainly single-column
indexes, which have a significantly reduced memory footprint. Interestingly, the
selected MCIs do not only focus on latitude/longitude but rather cover distinct
columns such as the driver ID.

7.3.2 Comparisons Against Rule-Based Tuning Heuristics

Similar to Section 7.2.2, we seek to evaluate the determined table configurations
of our LP models with tiering decisions against a rule-based heuristic approach.
Therefore, we implemented two rule-based greedy heuristics. Equivalent to the
SMS model (cf. Section 5.4.4) and ISE model (cf. Section 5.4.5), we developed a
heuristic that considers segment-based tiering decisions and one that integrates
chunk-based tiering decisions. Both heuristics include intra-chunk dependencies
by taking into account the specific sorting column. As a valid table configuration
requires that one sorting option o ∈ O is selected for each chunk, we must inte-
grate this constraint into the selection process of the base configuration. Hence,
we apply a two-phase approach. In the first phase, we determine a base configu-
ration with minimal memory consumption by selecting the tuning configuration
with the lowest memory consumption for each segment. Additionally, we define
for the base configuration that all segments are stored on the storage device with
the highest latency, in this case, the SSD. In this context, each chunk’s ordering
is determined by the tuning option with the highest overall benefit rm,n,e,o,i,b

for the corresponding chunk. In the second phase, we calculate the benefit for
each tuning option and adopt the table configuration iteratively based on the
calculated benefits and the available memory budget. For each segment (m,n)
and tuning option e ∈ E, o ∈ O, i ∈ I, b ∈ B, we define r as (α ≥ 0):

rm,n,e,o,i,b = 1/

φm,n,e,o,i · (

q∈Q,s∈Sq :
nq,s=n

cm,n,e,o,i,b)
α

. (7.2)

To calculate the costs cm,n,e,o,i,b of the scan operations, we use the same
cost function as for the LP models, cp. Equation (5.21). The α value is a factor
to define the proportional balancing of the memory consumption and runtime
performance within the objective. The heuristics optimize the memory budgets
Bd for all d ∈ D separately, starting with the device with the lowest latency.
We select the tuning option with the highest benefit compared to the currently

7.3 Linear Programming Approach with Tiering Decisions 117

applied configuration. Afterward, we check if the selected tuning option fits into
the remaining storage budget of the device and change the configuration corre-
spondingly if the change does not violate the memory budget constraint. The
steps are repeated until no more changes are possible. Afterward, the memory
budget of the next storage device is optimized. For the chunk-based approach,
we additionally ensure that only entire data chunks can be transferred to a tier,
cf. Constraint (5.29).

As displayed in Figure 7.8, the LP models outperform the greedy heuris-
tics, cf. H(α), and can use the available memory budget more efficiently (cf.
Figure 7.9). The measurements show that greedy heuristics struggle to com-
pute configurations for scenarios with limited DRAM capacities. Here, the SMS
model can achieve a runtime of 200s for a DRAM budget of 2 GB, which is only
10% of the fastest runtime of a table configuration determined by a heuristic
for the same budget. The heuristics need significantly more DRAM budget (7
GB) to achieve comparable performance results. In this case, the LP model’s
table configurations use only 29% of the memory budget required by the table
configuration of the heuristic (H-10) with segment-based tiering decisions. We
observe that the heuristics use the majority of the available DRAM resources to
optimize single chunks or segments. Consequently, large parts of the data have
to be stored on the significantly slower SSD, even for higher DRAM capacities
(cf. Figure 7.9). Additionally, the greedy heuristics’ measurements show that the
selection of the α value has a significant impact on performance and memory
consumption. As the heuristics select the sorting configuration for each chunk in
the initial phase, the sorting decisions can be sub-optimal for different budgets.

0 1 2 3 4 5 6 7 8 9 10
DRAM Budget [GB]

100

200
300
500

1,000

2,000
3,000
5,000

10,000

Ex
ec

ut
io

n
Ti

m
e

[s
] H-0.5 (Chunk)

H-0.5 (Segment)
H-10 (Chunk)
H-10 (Segment)
ISE (Chunk)
SMS (Chunk)

MODEL

Fig. 7.8: End-to-end measured runtime performance of the table configura-
tions determined by the heuristic approaches compared to the LP models
for the given workload, a fixed budget of 3 GB on SSD, and increasing
DRAM budgets (0-10 GB).

7.3.3 Comparisons Against Existing Approaches

In this section, we compare our LP approach against existing solutions. A com-
parison is not straightforward as various joint optimization approaches focus
on other aspects (e.g., materialized views, partitioning, or knob configurations).

118 7 Evaluation

0 1 2 3 4 5 6 7 8 9 10
DRAM Budget [GB]

0

2

4

6

8

M
em

or
y

C
on

su
m

pt
io

n
[G

B
]

H-0.5 (Chunk)
H-0.5 (Segment)
H-10 (Chunk)
H-10 (Segment)
ISE (Chunk)
SMS (Chunk)

MODEL

DRAM
SSD

STORAGE

Fig. 7.9: DRAM (solid line) and SSD (dashed line) memory consumption
of the table configurations determined by the heuristic approaches for the
given workload, a fixed budget of 3 GB on SSD, and increasing DRAM
budgets (0-10 GB).

In Figure 7.10, we evaluate the SMS model regarding (i) the tiering dimen-
sion [348] and (ii) a consecutive joint tuning approach [169]. Concerning the
tiering dimension, we re-implemented the capacity mode of Mosaic’s presented
linear optimization strategy (LOPT) [348]. This LP approach is based on Umbra
and optimizes the data placement on columnar granularity. As Mosaic is opti-
mized for data placement decisions on SSD and HDD devices, the cost model
is based on the throughput and accessed data size. Furthermore, parallel scan
operations on multiple devices are allowed. To represent the query processing
in Hyrise, we adopted the cost estimation that scan operations are executed
sequentially, where each scan only processes the qualifying positions of the pre-
vious scan. An advantage ofMosaic’s cost model is that less detailed information
about the workload (e.g., selectivity of queries) is required, and no benchmark-
ing queries have to be executed. Based on the prerequisite that Mosaic requires
all segments stored on one device to have the same encoding, we selected the
best encoding for each device for the given benchmark setup. For a fair com-
parison, we partitioned the data to enable pruning during query execution and
applied the same configuration for all segments of a column. Based on these
restrictions, a relatively large amount of memory has to be used to store a sin-
gle dictionary-encoded column in DRAM. As displayed in Figure 7.10, for small
memory budgets, we can observe a comparably weak performance as significant
parts of the available DRAM were unused by Mosaic as the remaining DRAM
budget was not big enough to store another column. Furthermore, the model is
not designed to optimize other aspects (e.g., sorting or indexing), which have a
significant impact on the overall performance.

Furthermore, we compare the SMS model against the joint tuning approach
of Kossmann and Schlosser [169], which proposes a heuristic to tune different
dimensions in a subsequent manner. The authors use predefined memory bud-
gets for each optimization step in this context. We evaluated this approach as
follows: Starting with an untuned base configuration, we choose a specific tuning
order for our four considered dimensions. Given a budget, we solve our model
for the first dimension by freeing the corresponding variables and fixing those
for the other dimensions. The same is done for the remaining tuning dimen-

7.3 Linear Programming Approach with Tiering Decisions 119

sions. Instead of one LP, for [169], we solve four LPs of smaller size. Further, we
iterated over all plausible tuning orders to not miss the best possible one (i.e.,
in our case, we obtained the order: encoding, sorting, tiering, indexing, which is
consistent with the order derived for the three-dimensional tuning example used
in [169]). For the index selection, we reserved 10% of the available budget in
the previous steps. We discover that our LP approach outperforms [169] by 15%
for larger DRAM budgets and achieves up to 6.8 times better performance for
more restrictive memory budgets (cf., Figure 7.10). Naturally, the final results
also depend on the distribution of the total budget (e.g., budget for indexes)
to the four steps. Recall that this reveals another advantage of our model as
the nontrivial optimization of the distribution of the budgets is included in our
model.

0 1 2 3 4 5 6 7 8 9 10
DRAM Budget [GB]

100

1,000

10,000

Ex
ec

ut
io

n
Ti

m
e

[s
] Consecutive Tuning

Mosaic
SMS (Segment)
SMS (without index)

MODEL

Fig. 7.10: Comparison of the end-to-end measured runtime of the table
configurations determined by the capacity mode of Mosaic, a consecutive
tuning approach, and the SMS model for a fixed budget of 3 GB on SSD,
and increasing DRAM budgets (0-10 GB).

7.3.4 Detailed Configuration Analysis

Figure 7.11 shows the specific table configurations computed by the SMS model,
the heuristic approach with α = 10 (H-10), the CCD model with MCIs, and the
consecutive tuning approach. The configurations were determined for a budget
of 3 GB on both storage devices. For each configuration, the segments defined
by the chunk (y-axis) and the column (x-axis) in the top area are stored in
DRAM and the bottom ones on SSD. The color of each segment indicates the
applied encoding and the circle in the middle represents the consumed memory.
If an index is applied to a segment (indicated by a black rectangle or diamond
in the top left corner), the consumed memory of the index is included in the size
of the circle. A sorted column is represented by a black triangle in the top right
corner of a segment. Note, for the CCD model, we force the tiering decision to
be the same within a chunk.

We observe that the selected sorting configuration varies strongly between
different approaches. As the greedy heuristic determines the sorting configura-
tion based on the segment with the highest overall benefit for each chunk in
the first phase, this selection can be sub-optimal for lower budgets. Addition-
ally, we can see that the greedy heuristic uses significantly more of the available

120 7 Evaluation

0 1 2 3 4
Column

0 1 2 3 4
Column

0 1 2 3 4
Column

0

1

2

3

4

5

6

7

8

9

C
hunk

0

1

2

3

4

5

6

7

8

9

C
hunk

0 1 2 3 4
Column

Dictionary FoR-SIMD LZ4 RunLength Unencoded
Encodings

50 100 150 200 250 300 350

Memory Consumption in MB

SMS (Segment) H-10 (Segment) CCD (MCI) Consecutive Tuning
DR

AM
SS

D

Fig. 7.11: Comparison of the table configurations for five columns and ten
chunks: (i) SMS model, (ii) H-10 heuristic with α =10, (iii) CCD model
with MCI, and (iv) consecutive tuning approach for a memory budget of
3 GB DRAM (top) and 3 GB SSD (bottom). A triangle in the top right
corner of a segment indicates the sorted column of a chunk. A square in
the top left corner indicates a single-column index for the segment and a
diamond refers to an MCI.

DRAM budget to improve the performance of specific segments, which leads to
an improved runtime for scan operations on these segments, but also consumes
a significant part of the available main memory. In contrast, the SMS model
distributes the available memory on more segments and selects compression
techniques with higher compression ratios (e.g., frame-of-reference encoding)
to store more segments in DRAM. The CCD model applies different MCIs to
mitigate the increased SSD access latency. In contrast, the CCD model uses
single-column indexes in DRAM, which have a lower memory footprint. For the
consecutive tuning approach, we can observe the problems of the one-by-one
execution of tuning steps. In the first step, the LP leverages the entire memory
budget to optimize the encoding configuration. It selects dictionary encoding for
various segments to increase the runtime performance. Based on the memory
footprint of these segments, the LP for the tiering decision can only transfer a
limited number of segments to DRAM. Consequently, a relatively large number
of segments have to be stored on SSD.

7.3.5 Scaling of the Linear Programming-Based Approach

To analyze the impact of scalability of the different models with integrated data
tiering decisions (ISE, SMS, and CCD), we evaluated the runtime of the solver to
compute the table configurations by scaling in the following dimensions: (i) the

7.3 Linear Programming Approach with Tiering Decisions 121

number of chunks, (ii) the number of scan operations that define the workload,
(iii) the number of storage devices, and (iv) the number of compression and
index options. As a general benchmark setup, if not chosen differently, we use
the settings described in Section 7.1 with |Q| = 6, |∪qSq| = 17 scan operations,
where |M | = 10, |E| = 5, |N | = 5, |O| = 6, |I| = 2, and |B| = 2. The memory
budgets are defined as 3 GB for DRAM and 3 GB for SSD.

Impact of Data Size

Naturally, the complexity of all three models increases with the number of
chunks, see Figure 7.12 (left top). The ISE & CCD model scale linear with
the number of chunks, whereby the ISE model’s solver times are orders of mag-
nitude lower. For the given budgets, the segment-based ISE model needs 24ms
for ten chunks and 613ms for 500 chunks to compute the configurations. In
comparison, the CCD model needs 22s for ten chunks and a similar amount of
time for 500 chunks. In contrast, the SMS models do not scale linearly with the
cardinality of M ; the models compute the table configurations in about 1.5s for
ten chunks and 205s (500 chunks) for the segment-based approach and 2.5s for
ten chunks and 413s (500 chunks) for the chunk-based approach.

Impact of Workload Size

We evaluated the computation performance for an increasing number of scan
operations. As shown in Figure 7.12 (bottom left), the workload size has no
impact on the solver time. As described in Section 5.4, the amount of scan op-
eration is only relevant for the calculation of the parameter c. The computation
of the parameters can be executed highly parallel. Based on these observations,
we can argue that the different models are capable of handling large workloads.
Another observation is that the segment-based approaches have a faster runtime
compared to their chunk-based equivalents.

Impact of the Number of Storage Devices

We evaluate the impact of the number of storage devices on the solver time.
Modern systems feature a diversity of storage devices, from NVMe and SSD to
network-interconnected memory and HDD [256]. The LP models are designed to
support setups with multiple storage devices. We defined a base budget of 8 GB
and divided this budget by the number of available storage devices. The storage
penalty τe,i,b is set for all encodings (e) and index configurations (i) to a fixed
value, defined by the storage device’s number (b). As displayed in Figure 7.12,
all five models can determine table configurations for infrastructures with eight
different storage mediums in a suitable time (less than 50s). Here, we have to
consider that the solver times are also depending on the specific setup (e.g.,
latency between storage devices and storage capacities).

Impact of the Number of Tuning Options

As modern database systems support various compression techniques and index
implementations, we investigate the impact of the number of compression and

122 7 Evaluation

0 100 200 300 400 500
#chunks

0

100

200

300

400
So

lv
er

 ti
m

e
in

 s

0 2,000 4,000 6,000 8,000 10,000
#scan operations

0.01

0.1

1

10

100

So
lv

er
 ti

m
e

in
 s

1 2 3 4 5 6 7 8
#storage devices

0

10

20

30

40

50

So
lv

er
 ti

m
e

in
 s

(5, 1) (10, 2) (20, 4) (30, 6) (40, 8) (50, 10)
#(compression, index) configurations

0.01

0.1

1

10

100

1,000

10,000

So
lv

er
 ti

m
e

in
 s

CCD ISE (Chunk) ISE (Segment) SMS (Chunk) SMS (Segment)
MODEL

Fig. 7.12: Comparison of the solver times of the five versions of our LP
models for the specified scenarios to compute valid table configurations for
different numbers of tuning options: #chunks |M | (top left), #scan opera-
tions |∪qSq| (bottom left), #storage devices |D| (top right) and cardinality
of the indexing |I| and compression options |E| (bottom right).

index options on the solver time. We generated additional values for up to 50
compression techniques and ten index options. Moreover, we apply no database-
specific limitations for this benchmark so that each combination of encoding and
index options can be used. In Figure 7.12 (bottom right), we observe a slight
increase in the solver time for the ISE model up to 2.7s (chunk-based) and 1.9s
(segment-based) for the setup with 50 compression techniques and ten indexes
options. For the segment-based SMS model, the solver time increased from 1.5s
for the Hyrise settings to 348s for the largest considered setup. Similar to the
scalability evaluation of the base LP models (cf. Section 7.2.4), it was not possi-
ble to determine results for all setups for the CCD model. As already mentioned
in Section 5.4.2, the number of possible chunk configurations |K| can increase
quickly. In this context, we further analyzed the applicability of CCD for reason-
able numbers of |K| based on randomly generated cost inputs. The evaluation
showed that the CCD model solves problems with selected six million tuning
combinations (per chunk) in less than 60s, which, in general, shows the model’s
applicability. Further, we recall that domain knowledge should be included in
specific applications to select only relevant tuning configurations, which can con-
sist of more complex concepts, such as multi-attribute indexes. Also, a hybrid
optimization process could be possible, in which the CCD model compares the
table configuration determined by the SMS or ISE model with several adopted

7.4 Model Extensions of the Linear Programming Approach 123

versions that include multi-column optimizations (e.g., advanced sorting strate-
gies).

7.4 Model Extensions of the Linear Programming
Approach

This section evaluates the proposed model extensions to consider reconfiguration
costs (cf. Section 5.5.1) and robustness (cf. Section 5.5.2).

7.4.1 Extension: Reconfiguration Costs

Based on the LP approach, minor workload or infrastructure (e.g., DRAM ca-
pacities) changes can lead to significant reconfiguration costs [169]. All individ-
ual tuning optimizations produce modification costs (e.g., changing the sorting
order of a chunk consumes time and resources). To determine optimized configu-
rations for the given input parameters, the models often apply numerous recon-
figurations with only a minor impact on the overall performance. However, huge
modification costs are not desirable in practice. By considering modification
costs in the models (cf. Section 5.5.1) we are able to identify and perform only
minimal-invasive modifications. There are various metrics to determine modi-
fication costs (e.g., reorganized data, estimated time, or selected by database
administrator) [220, 295, 354].

For the evaluation, we defined for each modification a cost factor. A change
of the applied sorting configuration has the highest costs, and a segment re-
allocation has the lowest. The database administrator can specify these costs
per reconfiguration operation individually. For the given base configuration de-
termined by the SMS model for a DRAM budget of 3 GB, we increased the
available memory budget by 1 GB and evaluated the configurations for different
α values. The α enables the balancing of the trade-off between performance and
reconfiguration cost and depends on different aspects (e.g., the time interval be-
tween optimizations or availability of resources). The results of the end-to-end
measured performance show that compared to the best possible α=0 solution,
the α=1 configuration has only a 2.25% performance decrease with about 40%
fewer reconfiguration costs. For α=5, there is a performance reduction of 17.6%
and a reduction of about 78% of the reconfiguration costs.

7.4.2 Extension: Robust Configuration Selection

As the prediction of precise future workloads is complicated, table configurations
optimized for a specific workload can lead to unsatisfactory performance if the
actual workload strongly differs from the expected one. Consequently, we intro-
duced a worst-case optimization approach for our LP models (cf. Section 5.5.2)
to determine robust table configurations for different workload scenarios speci-
fied by the database administrator. By considering multiple potential workload
scenarios in the table configuration optimization, we can avoid critical down-
turns in performance caused by changes in the workload characteristics.

To evaluate the extension of the models, we defined three different workload
scenarios based on the workload introduced in Section 7.1.2. Workload 1 repre-
sents an increase in the usage of a specific application. Therefore, the frequency

124 7 Evaluation

of query q4 is three times higher than in the standard workload. In the second
workload, we removed query q2 to represent incomplete information about the
workload. The third workload contains an additional query that accesses two
segments of the status column, which are not accessed by one of the queries
in the standard workload. We determined a workload-specific optimized table
configuration for each of these workloads for a DRAM budget of 3 GB and an
SSD budget of 3 GB using the segment-based SMS model. In Figure 7.13, we
denote these configurations correspondingly as w1, w2, and w3. Furthermore,
we include a table configuration determined for the standard workload (w4) and
a robust configuration for the same memory budgets. To determine the robust
table configuration, the optimized table configuration of the LP model is based
on all four potential workload scenarios.

As displayed in Figure 7.13, we compared the end-to-end measured execu-
tion times of the five table configurations for the three different workload sce-
narios. Here, we can observe that for each workload scenario, the corresponding
workload-specific table configuration achieves the best performance. Moreover,
we can see that these configurations have a significantly higher runtime for
other workload scenarios. For instance, for the second workload scenario, the
table configuration w2 has the best performance as it is specifically optimized
for the workload and can use more of the available memory budget to optimize
the segments accessed by the workload scenario. We can observe that this table
configuration has an increased runtime for the other workload scenarios as vari-
ous segments stored on SSD have to be accessed. In contrast, table configuration
w3 has the best performance for the tired workload scenario, but performance
downturns for workload scenario two as large amounts of the available resources
are used to optimize the segments of the two additional query templates, which
do not occur in workload scenario two. Compared to the workload-specific table
configurations, the robust table configuration has a longer runtime for all three
evaluated workload scenarios. Based on the worst-case optimization approach,
it provides an adequate runtime for all potential workload scenarios and en-
ables database administrators to avoid significant performance drops caused by
deviant workload characteristics.

R
ob

us
t

w
1

w
2

w
3

w
4

Workload 1

0

200

400

600

800

Ex
ec

ut
io

n
Ti

m
e

[s
]

R
ob

us
t

w
1

w
2

w
3

w
4

Workload 2

0

100

200

300

400

500

Ex
ec

ut
io

n
Ti

m
e

[s
]

R
ob

us
t

w
1

w
2

w
3

w
4

Workload 3

0

500

1,000

Ex
ec

ut
io

n
Ti

m
e

[s
]

Fig. 7.13: Comparison of execution times of table configurations for three
different workload scenarios. We used the segment-based SMS model for
each workload to determine an optimized table configuration (w1, w2, and
w3). We compare the end-to-end measured performance of these table con-
figurations for each workload scenario against a robust configuration (ro-
bust) and the configuration determined for the standard workload (w4).

7.5 Impact of Optimized Timestamp Storage Layouts for Spatio-Temporal Data 125

7.4.3 Computation Time Impact of the Model Extensions

The extensions to consider multiple potential workload scenarios and reconfig-
uration costs increase the complexity of the LP models. Therefore, we inves-
tigate the impact of the different extensions on the time the solver needs to
compute an optimal configuration. For the evaluation, we determined the table
configurations for a memory budget of 3 GB DRAM and 3 GB SSD using the
segment-based ISE and SMS models.

As displayed in Table 7.2, the integration of reconfiguration costs only
slightly impacts the solver times. Depending on the defined reconfiguration costs
∆ and the chosen α value, the solver times of the models with reconfiguration
costs can even be faster than the baseline of the LP models without extensions.
For instance, the solver can efficiently exclude a large number of configurations
from the solution space if the reconfiguration costs are high. Furthermore, we
can observe the expected increase in the solver runtimes for the robust selec-
tion approaches based on the number of different workload scenarios |W | that
must be considered in the optimization. For the evaluation, we determined 100
different variations of the workload described in Section 7.1.2. Each workload
scenario contains the same six query templates and randomly chosen distribu-
tions of the frequencies. With increasing workload scenarios w ∈ W , minimizing
the variable Z is getting costlier. As the database administrators must define
these different workload scenarios, we expect only a limited number of potential
workloads, leading to an increased but manageable solver runtime.

Model Base RC Robust Selection Robust Selection & RC

|W | = 5 10 50 100 5 10 50 100

ISE 0.03 s 0.03 s 0.09 s 0.06 s 0.52 s 0.68 s 0.08 s 0.07 s 0.37 s 0.64 s
SSD 1.83 s 2.13 s 2.24 s 6.14 s 8.02 s 23.42 s 4.93 s 4.01 s 10.09 s 24.45 s

Table 7.2: Measured solver runtimes for the ISE and SMS models with
tiering decisions for (i) the standard models without extensions (Base), (ii)
the models with reconfiguration costs (RC), (ii) the models with robust
table configuration selection for different numbers of workload scenarios
|W |, and (iv) the models that include robustness as well as reconfiguration
costs.

7.5 Impact of Optimized Timestamp Storage Layouts for
Spatio-Temporal Data

In this section, we evaluate the proposed workload-driven optimization ap-
proaches to store timestamps in columnar in-memory databases (cf. Section 6.3).
First, we analyze the selected configurations by the heuristic approach (Sec-
tion 7.5.1). Second, we show the results of the LP approach (cf. Section 6.3.2)
to optimize the compression scheme for a given workload (Section 7.5.2).

126 7 Evaluation

7.5.1 Heuristic Approach for the Combined Data Layout and
Compression Scheme Selection

To evaluate the heuristic selection approach and illustrate the impact of different
α values, we analyze the determined configurations for three chosen α values. In
Figure 7.14, we visualize the selected data layout and compression techniques
for a given α value and workload distribution. The workload is defined based
on the queries introduced in Section 6.2.3. Based on the memory consumption
(cf. Figure 6.2) and measured query runtimes (cf. Figure 6.4) of the different
data layouts and compression approaches, the heuristic selects the combina-
tion with the highest benefit determined by Equation (6.2). Further compres-
sion techniques and data layouts can be added based on the properties of the
used database system. For a value α ≤ 1, the memory consumption is higher
weighted than the runtime performance. Consequently, for all three workload
distributions, the Unix timestamp data layout in combination with LZ4 encod-
ing is selected for α = 0.1, as this combination has the lowest memory footprint
(cf. Figure 6.2). For the first workload distribution, the performance of query
q2 dominates the workload runtime, which is a range query that queries a con-
tinuous time interval. The Unix timestamp data layout can achieve a relatively
low runtime for such access types as only a single column has to be scanned
(cf. Figure 6.4). Consequently, for all three α values, the Unix timestamp data
layout is selected. As for α = 5 the performance is significantly higher weighted
as the memory consumption dictionary encoding is chosen compared to LZ4
encoding for α = 5. For the two other workload distributions, the separated
date/time format is selected for α = 5 based on the superior runtime perfor-
mance for query q0, and q4 with applied dictionary encoding. This data layout
has a relatively high memory consumption, so the multiple columns approach
is selected for α = 2, representing a suitable tradeoff between performance and
memory footprint.

Q0 Q1 Q2 Q3 Q4

20 20 20 20 20

15 1 34 40 10

50 1 9 20 20

Workload Distribution in Percent

⍺ = 0.1 ⍺ = 2 ⍺ = 5

Unix

LZ4

Unix

LZ4

Unix

Dictionary

Unix

LZ4

Multiple Columns

Run-Length

DateTime

Dictionary

Unix

LZ4

Multiple Columns

Run-Length

DateTime

Dictionary

Selected Data Layout and Encoding

Fig. 7.14: Visualization of the selected data layout and compression tech-
nique by the heuristic (cf. Section 6.3.1), for three different workload distri-
butions based on the queries introduced in Section 6.2.3 for three different
α values.

7.5.2 Optimized Compression Scheme Selection for Timestamps
Stored in the Multiple Columns Data Layout

For the evaluation of our LP approach to optimize the compression scheme for
the multiple columns data layout (cf. Section 6.3.2), we define a set of query

7.5 Impact of Optimized Timestamp Storage Layouts for Spatio-Temporal Data 127

templates. The set consists of queries that filter for a specific timestamp or time-
frame and queries that return all values in a defined timeframe over multiple
days. We have the following query distributions in the benchmark: all times-
tamps of a day (40 percent of all queries), a specific timestamp (5%), and a
specific timeframe of 20 seconds (5%). Furthermore, we have queries that select
all entries on each day in a timeframe of 30 minutes (20%), a timeframe of two
hours (15%), and before noon (15%).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Budget [MB]

0

10

20

30

40

50

60

M
em

or
y

C
on

su
m

pt
io

n
[M

B
]

4,500

5,000

5,500

6,000

6,500

7,000

7,500

8,000

Execution tim
e [m

s]

Fig. 7.15: Comparison of the measured runtime performance (solid blue)
line and memory consumption (dashed orange) of the applied compression
scheme determined based on the given workload for different memory bud-
gets B = 0, ..., 70 MB.

We used the model to determine the compression scheme for the different
columns of the multiple columns data layout (cf. Section 6.2.2) for various mem-
ory budgets B and the described workload. As displayed in Figure 7.15, we ap-
plied the configurations on the dataset of ten million timestamps and measured
the runtime performance and memory consumption. As expected, the runtime of
the benchmark queries decreases for increased memory budgets. The step-wise
increases in the runtime performance are based on replacing the applied encod-
ing of a column from run-length or LZ4 encoding to dictionary encoding, which
has a faster scan performance. Based on the given memory budget, workload,
and the benchmark runtimes of the isolated executed scan operations, the LP
approach determines the optimal compression configuration enabling database
administrators to adjust the storage configuration to application-specific re-
quirements. Moreover, we can observe that the runtime performance stagnates
after the memory budget exceeds 51.1 MB. The optimization approach uses the
additional memory resources to apply dictionary encoding also on the SECOND
column, but this has no considerable impact on the overall runtime performance.

Figure 7.16 provides more details about the selected compression schemes for
different memory budgets. For low memory budgets, the LP model’s compres-
sion scheme reduces the data footprint to 1.05 MB. This represents a reduction
of over one-third compared to the scheme that uses run-length encoding for
all columns, with the lowest memory consumption of the four single encoding
compression schemes (1.74 MB). By considering the data characteristics in the
compression scheme selection, we can reduce the memory footprint and save
costs in use cases with limited main memory resources. With increasing mem-
ory budgets, we can observe that the LP model replaces run-length encoded

128 7 Evaluation

YEAR MONTH DAY HOUR MINUTE SECOND

Run-Length Run-Length Run-Length Run-Length Run-Length LZ4

Run-Length Run-Length Run-Length Run-Length Run-Length Run-Length

Run-Length Run-Length Dictionary Run-Length Run-Length LZ4

Run-Length Run-Length Dictionary Run-Length Run-Length Run-Length

Dictionary Dictionary Dictionary Dictionary Dictionary LZ4

Dictionary Dictionary Dictionary Dictionary Dictionary Dictionary

Compression Schema

Dictionary Dictionary Dictionary Dictionary Dictionary Dictionary

LZ4 LZ4 LZ4 LZ4 LZ4 LZ4

Run-Length Run-Length Run-Length Run-Length Run-Length Run-Length

Unencoded Unencoded Unencoded Unencoded Unencoded Unencoded

Bu
dg

et
1.1 MB

6.1 MB

11.1 MB

Memory
Consumption Runtime

1.05 MB 7609.68 ms

1.73 MB 7580.04 ms

11.05 MB 7205.69 ms

11.73 MB 7054.54 ms

51.02 MB 4943.79 ms

60.00 MB 4927.80 ms

60.00 MB 4927.80 ms

2.39 MB 14429.28 ms

1.73 MB 7534.34 ms

240.00 MB 4967.31 ms

Measurements

16.1 MB

51.1 MB

61.1 MB

Fig. 7.16: Evaluation of the measured memory consumption and run-
time performance for different compression schemes determined by the LP
model for different memory budgets (top) compared to standard compres-
sion schemes (bottom), where all six columns are encoded with the same
compression technique.

columns with dictionary-encoded columns, which have a better runtime per-
formance. We selected the memory budgets in such a way that the model can
not only replace run-length encoded columns with dictionary-encoded columns
in the compression configurations. For a memory budget of B = 11.1 MB, the
consumed main memory of the SECOND column has to be reduced by applying
LZ4 encoding (compared to the configuration for B = 6.1 MB) to enable the
application of dictionary encoding on the DAY column without violating the
memory budget constraint, cf. Constraint (6.8). This is done because the over-
all performance benefits more from faster scan operations on the DAY column
than on the SECOND column. The DAY column’s scan performance has the
proportional highest impact for the given workload, as 80 percent of the queries
access this column. Consequently, this is the first column the model chooses to
apply dictionary encoding.

7.6 Discussion

Overall, the evaluation showed that fine-grained table configurations are well-
suited to optimize database systems by reflecting spatio-temporal access pat-
terns. By selecting for each segment optimized tuning options based on the data
characteristics and workload, we can reduce the memory footprint or increase
the system’s performance.

We demonstrated that our LP models are a convenient approach for deter-
mining table configurations consisting of multiple tuning decisions for a given
memory budget. In this context, we can leverage the characteristics of spatio-
temporal workloads, which are dominated by spatial and temporal range queries

7.6 Discussion 129

and trajectory-based queries for most applications. Based on the scalability and
compute times of the approaches, we showed that the LP models are able to
optimize the storage layouts for large datasets. Especially for low memory bud-
gets, the LP models can significantly improve performance compared to stan-
dard compression or greedy heuristic approaches. As DRAM capacities are a
not negligible cost factor for various spatio-temporal data management sys-
tems, we can reduce the operating costs by meeting performance requirements
with less memory consumption. We demonstrated that SMS and ISE models are
suitable approximations of the general CCD approach, which could determine
comparable results for the given benchmarks. It turned out that the ISE model
has an especially good tradeoff between computation time and the performance
of the produced configurations. Based on these characteristics, the ISE model
is well-suited for use cases that require fast decisions. For instance, scale-out
scenarios with partially replicated databases. In this context, workload-driven
partial replication is a mechanism to reduce the memory footprint of a repli-
cation cluster and balance the load distribution by executing queries indepen-
dently on replica nodes [128, 129]. Based on the dynamic allocation of resources,
the determination of table configuration optimized for a specific subset of the
workload can be beneficial. However, the ISE model is not always capable of
complying with the given memory budget. The SMS model has higher accuracy.
Consequently, we recommend applying the SMS model in scenarios with strong
sorting dependencies, strict memory budget policies, or high-performance re-
quirements. To address the limitations of the ISE and SMS models to represent
multi-attribute optimization approaches (e.g., composite indexes or space-filling
curves), we introduced the general CCD model with chunk-based cost depen-
dencies. We were able to calculate table configurations for this general model
for six million configurations in a reasonable time (42 seconds). The number of
configurations that have to be considered by the CCD model can be reduced by
incorporating domain knowledge or using a multistage approach, where the SMS
or ISE model is used to determine the best configuration without multi-attribute
tuning options and the CCD model is used to incorporate further optimizations
in a separate step.

Furthermore, we extended the LP models to integrate data tiering decisions.
To our knowledge, this is the first approach to jointly optimize a table’s sort-
ing, indexing, tiering, and compression configuration. Based on the increased
complexity of the optimization problem, we demonstrated that your approach
is well-suited concerning computation time and performance. Our LP solutions
allow us to reveal the main drivers of effective tunings and to infer recommen-
dations for best practices (which columns to index, how to compress old/new
chunks in case of small/large budgets, etc.). For example, we observe the fol-
lowing stylized patterns in optimal solutions. The sorting decision per chunk is
based on the access frequency and memory saving of a segment. With increasing
memory budgets, indexes are applied on segments with low selectivity queries,
enabling sorting by another column. Based on the latency difference between
the two storage devices, the determined models apply more heavy-weight com-
pression techniques in main memory and compensate the increased latency with
lightweight compression approaches on the slower SSD. Further, we obtain that
the possibility to tune chunks and their segments (accounting for their individual
specifics) on a fine-grained level is, in general, heavily exploited, cf. Figure 7.11,
and does contribute to improving overall performance.

130 7 Evaluation

Additionally, we addressed further requirements of spatio-temporal data
management systems by integrating extensions for considering reconfiguration
costs and robustness. As the LP models determine an optimal solution for the
given input parameters, slight variations of these parameters can lead to a large
number of cost-intensive modification operations (e.g., changing the sorting or-
der of a chunk). By incorporating the reconfiguration cost of individual tuning
options in the objective of the LP models, we are able to identify and per-
form only minimal-invasive modifications (cf. Section 7.4.1). Consequently, we
can reduce the reconfiguration costs significantly. Another aspect is that future
workloads are not entirely predictable, and the performance can be negatively
affected if the actual workload differs from the predicted one. In this context,
we demonstrate that a worst-case optimization for various potential workload
scenarios can increase the robustness of the determined table configurations and
mitigate performance drops. This optimization approach often achieves not the
optimal performance for a specific workload but can avoid unexpected perfor-
mance decreases, which is often more important for database administrators.
By integrating these extensions, the table configurations can be optimized by
the LP models with regard to the requirements of real-world scenarios.

Furthermore, we demonstrated the impact of different data layouts and com-
pression approaches for timestamps on data footprint and runtime performance.
We pointed out that the presented commonly-established approaches have ad-
vantages and disadvantages for different workload characteristics. Consequently,
we introduced a heuristic approach that enables the combined selection of a data
layout and compression scheme for a given workload. For the joint workload-
aware choice of a superior compression scheme and data layout, we evaluated
our heuristic approach, which enables the balancing of memory consumption
and performance requirements. In this context, we showed that the selected
configurations have an equal or better runtime for the given application-specific
constraints compared to standard approaches. Furthermore, we presented dif-
ferent heuristic enhancements for partitioned data tables to reflect time-specific
access patterns by applying different configurations for various data partitions.

Besides, we describe a data layout that uses attribute decomposition to store
a single timestamp in multiple columns. This optimized data layout for columnar
databases is beneficial for various workloads and data compression techniques.
For instance, for workloads that query specific timeframes (e.g., a day) or a
specific timeframe repeatedly in a larger time range, the multi-column data
layout can significantly reduce the memory traffic and, consequently, the run-
time performance. Moreover, it enables the enhanced selection of a compression
scheme that incorporates the specific workload and data characteristics. To de-
termine an optimized compression scheme for a given workload and memory
budget, we introduce an LP model. This model enables database administra-
tors to restrict the used memory for timestamps and evaluate the anticipated
performance decreases. The efficiency of this approach can be additionally in-
creased by not limiting the optimization to the columns of the timestamp and
considering the different temporal columns in the configuration optimization of
the entire table (cf. Chapter 5). All these approaches to optimize the storing
of timestamps in columnar in-memory databases should be autonomously per-
formed by the database system. It should provide a unified interface (e.g., the
timestamp data type provided by various database systems) so that the applied
storage optimizations are transparent for applications. Overall, we demonstrate

7.7 Threats to Validity 131

that workload-aware data layout and compression scheme optimizations can
significantly reduce memory consumption and improve performance.

7.7 Threats to Validity

The evaluation showed that fine-grained table configuration optimizations could
significantly improve columnar in-memory databases’ performance and memory
footprint for spatio-temporal workloads. Nevertheless, although the model is of
general nature and allows to attack complex and coupled tuning dependencies,
there are the following limitations. First, we exploit the fact that in our use
case, the number of attributes |N | is small, keeping the LP models tractable
with regard to the number of variables and constraints. In contrast to other
application scenarios (e.g., enterprise systems), the storing of trajectory data
requires only a manageable number of attributes. Real-world datasets of other
domains can consist of thousands of attributes spread over various database
tables. For instance, a single table in SAP’s enterprise resource planning (ERP)
system can include hundreds of attributes [35]. Especially for the CCD model,
an increased problem space based on the number of columns leads to increased
complexity, solver runtimes, and the limitation of different tuning options that
can be evaluated (e.g., multi-column indexes). But also, for the SMS model,
each additional attribute leads to a significant increase in the input parameters
of the model based on the sorting dependencies. Besides the parameters of the
models, a larger set of attributes also requires a larger set of benchmark queries
and calibrations queries, which are necessary for the applied cost model of the
presented LP approach (cf. Section 5.2.2). We discuss a strategy to address these
issues in future work.

Second, we achieve to keep the model tractable by also considering a com-
parably small number of indexes |I| (cf. single-attribute indexes in the SMS
model or distinguished multi-attributes in the CCD model). In this context, we
leverage that based on the relatively small number of columns, only a limited
number of multi-column index candidates exist. Furthermore, different index ap-
proaches (e.g., spatial or spatio-temporal indexes) are only applicable to specific
attributes or data types. Other index structures are limited to specific encod-
ing approaches or can be excluded based on domain knowledge, which further
narrows the problem space. Nevertheless, optimizing joint tuning problems for
larger problems will require different, most likely heuristic techniques. In this
context, the proposed model may also serve as an upper-bound reference to ver-
ify the quality of such techniques by providing optimal solutions for tractable
setups of joint tuning problems.

A limitation of the used database (that we reflected in the models) is that an
index on a segment has to be used for a scan operation. Modern query optimizers
with advanced index usage strategies can produce query plans that do not use
inefficient available index structures. We can represent this behavior by adopting
(cf. Equation (5.5) and Equation (5.21)) such that for the parameter ps,e,o,i, the
minimum of the execution time with and without an index structure is used.
Correspondingly, the adopted versions of Equation (5.5) would be

132 7 Evaluation

cm,n,e,o,i :=

q∈Q,s∈Sq :
nq,s=n

fq ·min(pq,s,e,o,i, pq,s,e,o,0) · am,q,s · ωq,s · uq,s,e. (7.3)

By applying the cost estimation (7.3), an applied index structure has less
negative performance effects for scan operations with higher selectivity values.
Instead of using the index for scan operations with high selectivity values, a
table scan is performed. As the modification only impacts the calculation of the
cost parameter and does not further increase the number of parameters, it does
not affect the solver time of the different models. In this context, the applied
cost estimations must represent the capabilities of the target database system
and its components (e.g., query optimizer).

Naturally, accurate cost parameter inputs are key in the model. Our cost
estimations used in Equation (5.5) and Equation (5.21) provide a reasonable
and viable starting point. More accurate estimations seem possible, e.g., using
more sophisticated data-driven cost models, and would allow us to minimize
further the gap between model-based solutions and their actual end-to-end per-
formance. However, more complex cost models may also add more overhead.
Using machine learning-based approaches to determine the segment-based costs
of operations can significantly reduce the setup costs consisting of calibration
and benchmarking queries (cf. Section 5.2.2). As our cost estimations are based
on these parameters, we are able to consider different factors that influence
the runtime performance (e.g., implementation and hardware details) but have
to execute these queries on the production system or a replicated system. In
contrast, other approaches, such as Mosaic [348], can determine tuning deci-
sions without the setup overhead. As these approaches reduce the setup costs
significantly, the usage of cost estimations should be evaluated.

Another aspect that we have to consider in this section is that we evaluated
our approach only with a limited set of encoding and index options supported
by the research database Hyrise. In this context, we demonstrate that we can
restrict the problem space to the database-specific set of supported tuning op-
tions by applying our LP models. Furthermore, we can represent specific capa-
bilities of the target database system in our models by excluding not applicable
combinations of tuning options (cf. Section 5.3.6). The different models are also
capable of considering further compression techniques as well as indexing strate-
gies. The ISE and SMS models can determine configurations even for larger sets
of tuning options (cf. Section 7.2.4 and Section 7.3.5). Additionally, further tun-
ing options (e.g., compression techniques) can be added without adjusting the
models. In the evaluation, we did not focus on lossy compression techniques for
spatio-temporal data (e.g., line generation or trajectory simplification). These
approaches minimize the number of entries per chunk by reducing the number of
observed locations to represent the trace of a moving object (cf. Section 2.2.3).
Moreover, these approaches can be combined with the different encodings that
we analyzed in the evaluation. A decrease in the data size by reducing the
number of observed locations has a positive impact on the memory consump-
tion and the execution time of database operations. Consequently, applying the
lossy compression approach with the highest compression ratio would always be
beneficial to reduce the data size and further compress the data by using a loss-
less compression technique. Zhang et al. [379] presented a detailed evaluation
of different trajectory simplification approaches. Nevertheless, it is challenging
to identify an efficient table configuration for the simplified trajectory data. In

7.7 Threats to Validity 133

future work, we describe an advanced concept to integrate lossy compression
techniques.

In the evaluation, we showed the benefit of our LP for the use case of a
transportation network company. Our approach is not limited to this application
scenario, as the models determine the optimal configuration for the given input
parameters, which consider the application-specific data and workload charac-
teristics. The different models are of general nature and determine the best
configuration consisting of multiple tuning decisions for the defined expected
workload. In this context, the performance of the computed table configurations
depends on the accuracy of the workload prediction used in the optimization
process. The system’s performance can be negatively affected if the estimated
workload strongly differs from the actual workload. Consequently, it is crucial
to have accurate workload estimations. Forecasting workloads is a complex and
challenging research area [138, 214]. In the thesis, we do not further focus on
this problem but propose a model extension that allows optimizing the config-
uration for different workload scenarios, which enables database administrators
to incorporate uncertainty about future workloads and perform a worst-case
optimization. Additionally, we can leverage in this context that spatio-temporal
applications often have repetitive similar access patterns.

Another aspect we have to discuss is the focus on table scan operations in the
cost estimation (e.g., Equation (5.5)). This restriction is based on the observa-
tion that spatio-temporal range queries and trajectory-based queries often dom-
inate spatio-temporal workloads. A valid assumption that is not only utilized
in various storage optimizations for spatio-temporal data but also in general
optimization approaches (e.g., Mosaic) [245, 348]. Based on the implementa-
tion of our system, the models can be extended to support other operations
by providing a cost model for the specific operator that enables the estimation
of the operator’s costs on a segment level. The integration of cost models for
further operators only impacts the calculation of the cost parameter and has
consequently no impact on the solve time of the different models.

We used the runtime of the solver to solve the different models to present the
scalability of our approach and demonstrate the complexity differences between
the different models. The solver time strongly depends on the used solver and
parameters (e.g., number of threads or available memory resources). Further-
more, we did not use further optimizations as optimality gaps or time limits.
By applying these relaxations, we can reduce the solve time by accepting near-
optimal solutions or the best result the solver was able to determine within the
given time limit.

To highlight the impact of the different tuning options, we executed the
benchmarks single-threaded. In general, database operations are executed multi-
threaded. Measuring and considering the effects of the parallel execution of
database operations is hard and significantly increases complexity. We reduce
the complexity based on the assumption that we optimize the performance of the
individual scan operations for each segment. In this context, we also abstract
from caching effects, system utilization, and the execution order of queries.
In general, all these parameters cannot be influenced or predicted during the
optimization process.

134 7 Evaluation

7.8 Summary

In this chapter, we analyzed the accuracy, performance, and scalability of the
models introduced in Chapter 5 based on the real-world application example of
a TNC. First, we evaluated the base models (cf. Section 5.3) that jointly opti-
mize the sorting, indexing, and compression configuration for a given workload
and memory budget. We demonstrated that fine-grained table configurations are
a practical approach to optimizing columnar in-memory databases for spatio-
temporal data. In contrast to standard configurations, the runtime and memory
consumption can be significantly reduced (cf. Section 7.2.1). Compared to the
standard configuration that applies dictionary encoding to all segments, the LP
models achieve similar performance with up to 58% less required memory re-
sources. Moreover, we showed that our LP models could determine efficient con-
figurations that outperform greedy heuristics and achieves up to 82% increased
performance by equal memory size or reduces the memory footprint by up to
56% with comparable performance. Second, we evaluated our enhanced models
that extend the LP models by including data tiering decisions (cf. Section 5.4).
In this context, we demonstrated that our models are superior to existing rule-
based heuristics (cf. Section 7.3.2). Our models achieve up to 90% increased
runtime performance for a given memory budget; a comparable runtime is ob-
tained with up to 70% less required memory. Moreover, we showed that our LP
models are superior to consecutive optimization approaches (cf. Section 7.3.3).
In this context, the LP approaches could increase the performance by 15% for
less restrictive memory budgets and achieve significantly faster runtimes (up to
6.8 times) for more restricted memory budgets.

Further, we discussed the scalability of our base models (cf. Section 7.2.4)
and enhanced models with tiering decisions (cf. Section 7.3.5) to demonstrate
the scalability of the LP approach concerning the number of (i) chunks, (ii) tun-
ing options, (iii) storage devices, and (iv) query templates. We introduced three
LP models (cf. CCD, SMS, and ISE) addressing cost dependencies at different
levels of accuracy while allowing for trading their solve time. The SMS model re-
liably finds optimized tuning configurations if sorting dependencies are present.
If those are not strong or shorter runtimes are in focus, we identified that the
relaxed ISE model is a suitable scalable alternative with competitive results.
Third, we demonstrated that the proposed model extensions, which include re-
configuration costs and robustness, are suitable for reducing modification costs
and avoiding significant performance drops (cf. Section 7.4). Furthermore, we
showed that workload-driven combined data layout and compression schema
optimizations could significantly impact the memory consumption and perfor-
mance of timestamps. Finally, we briefly discussed the different measurements
(cf. Section 7.6) and threats to validity (cf. Section 7.7).

8

Conclusion

In this chapter, we conclude this thesis with suggestions for future research di-
rections (Section 8.1) and a summary of how the presented contributions address
our research questions (Section 8.2).

8.1 Future Work

This section introduces approaches for future work to improve the integration
of lossy compression techniques (Section 8.1.1) and to adjust the presented
workload-driven configuration optimization process for other application do-
mains (Section 8.1.2). For both approaches, we summarize the problem domain,
describe how the current implementation addresses the problem, and present
enhanced strategies for future work.

8.1.1 Improving the Integration of Lossy Compression Techniques

To reduce resource consumption (e.g., memory usage) for storing and processing
large amounts of spatio-temporal data, lossy compression techniques are applied
in various use cases [239]. In this context, trajectory simplification is the most
common lossy compression method. As described in Section 2.2.3, the basic idea
of this method is to remove sample points considered as less important based
on a distance measure such that the original trajectory can be approximated
by a series of successive line segments constructed from the remaining sample
points [379]. In general, the applied distance measures are error-bound or size-
bound. Error-bound metrics remove sample points based on a distance function
(e.g., angle distance, Euclidean distance, or perpendicular distance) and a de-
fined maximum error [188]. The advantage of this approach is that the maximum
error can specify the approximation of the resulting trajectory. A disadvantage
is that the expected compression ratio is hard to predict, as it depends on the
dataset and the defined maximum error. The size-bound approaches remove the
sample points with the lowest deviation compared to the original trajectory un-
til a given compression ratio is reached. The same distance functions as for the
error-bound approaches can be used to determine the deviation. In contrast to
the error-bound approach, the resulting data footprint is predictable, but the
approximated trajectory can be less accurate. Hence, it remains challenging to
determine a proper algorithm in a concrete application scenario [379].

136 8 Conclusion

In our joint workload-driven optimization approach (cf. Chapter 5), we are
able to consider trajectory simplification techniques. By defining a maximum er-
ror value or targeted compression ratio for the entire table or individual chunks,
the data footprint can be reduced for different data partitions. As these com-
pression methods reduce the number of sample points in different chunks, they
also decrease the data footprint and runtime of database operations. Addition-
ally, further compression techniques can be applied (e.g., dictionary encoding)
on top of the simplified trajectories. The linear programming (LP) models to op-
timize a table configuration would select a lossy compression approach whenever
possible based on the reduced data footprint and runtime advantages.

To avoid unevenly distributed data partitions, which can negatively impact
the system’s performance, we must consider different reorganization strategies
to integrate lossy compression techniques more efficiently. For size-bound ap-
proaches, we can choose a suitable compression ratio for a set of chunks so that
entire chunks can be excluded from the data. For error-bound approaches, this
is not possible, as we cannot configure the resulting number of sample points.
Consequently, we have to reorganize the chunks (e.g., merge chunks) if there are
too many chunks containing significantly fewer entries.

Another approach to integrating the basic idea of trajectory simplification
into the chunk concept is to cluster data based on different granularity values.
In this context, the granularity of a trajectory is defined by a maximum error
value (error-bound approaches) or a compression ratio (size-bound approaches).
Based on the granularity, we partition all entries with the same granularity in
a specific set of chunks and all other entries with a higher granularity in a
separate set of chunks. Correspondingly, we have to store the granularity for
each chunk. By distributing the data on different partitions, we can efficiently
prune and minimize the number of data partitions that have to be accessed by
queries based on the requested granularity [202]. We can prune all chunks with
a higher granularity value as defined in the request during query processing.
This approach would be beneficial if we have various applications with different
requirements concerning data resolution. Moreover, different tuning approaches
can be applied based on the specific access characteristics for different granu-
larity values.

8.1.2 Adjustments of the Fine-Grained Optimizations Concept for
Further Application Scenarios

Besides spatio-temporal data, workload-driven optimizations of table configura-
tions are also suitable for improving performance and reducing operating costs in
further applications (e.g., business data). For in-memory HTAP databases that
are capable of processing both transactional (OLTP) and analytical (OLAP)
workloads, there is an economic desire to leverage the available memory re-
sources efficiently [186]. The ongoing shift towards vendor-hosted cloud deploy-
ments increases the significance as smaller memory footprints enable the place-
ment of more tenants on the same server. Consequently, the operating costs
can be significantly reduced by applying various table configuration optimiza-
tions that reduce the memory footprint. Therefore, the challenge is guaranteeing
fast response times (often defined by service level agreements) and optimizing
memory consumption. To improve the configurations for various application sce-

8.2 Summary 137

narios, we have to scale the presented LP approaches in two dimensions (i) the
number of tables and columns and (ii) the number of supported query types.

Especially for enterprise resource planning systems with large parts of the
data never or infrequently accessed, workload optimizations can improve re-
source utilization [210, 264]. The evaluation of our LP approach demonstrated
that the different models could determine configurations for larger datasets.
Concerning the number of columns, the ISE model showed that it is able to de-
termine table configurations for a larger set N . In contrast, for the SMS model
and CCD model, we observed a significant increase in the solver time for larger
numbers of columns. Consequently, we have to use the ISE model or reduce
the number of attributes for tables of business applications with several hun-
dred columns. In this context, we can leverage the fact that a large part of the
columns in such a system is used for configuration purposes and, consequently,
never accessed in specific customer workloads [264]. In this case, we do not need
to consider all columns in the model and can apply a pre-processing step in
which we choose the configuration with the lowest memory consumption on all
columns and data partitions that are not accessed by query of the workload.
Based on this strategy, we are able to reduce the number of columns significantly.
Additionally, we can reduce the number of data partitions by summarizing data
chunks with equal access and data characteristics (e.g., fiscal quarter) and apply
for each section the determined configuration. Furthermore, the LP models can
be used as a baseline for developing heuristic approaches.

The second factor that we have to address is the number of query types.
An advantage of spatio-temporal applications is that there is only a limited set
of query types. In modern business applications, various query types define the
workload. Based on the number of different query types, benchmark queries
are no longer suitable for determining the impact of different configurations.
As mentioned in Section 5.2.2, there are different approaches to predict the
runtime of different operators [5, 32, 219]. In this context, the accuracy of the
different approaches and the impact on the determined configurations have to
be further evaluated. The presented approach can improve performance and
resource consumption in other domains besides spatio-temporal data by further
investigating these research areas.

8.2 Summary

The wide adaption of location-acquisition technologies led to large amounts of
spatio-temporal data. Analyzing the trajectories of moving objects based on
detailed positional information creates opportunities for applications that can
improve business decisions and processes in a broad spectrum of industries. In
this context, we analyzed the processes of transportation network companies
(TNC), which track the positions of their drivers for route planning or de-
mand predictions [96]. Using the collected spatio-temporal data of a TNC, we
developed algorithms to optimize the order dispatching of incoming passenger
requests. Such process optimizations and advanced decisions support systems
based on spatio-temporal data mining represent a crucial business advantage
over competitors. However, at the same time, the storing and processing of
spatio-temporal data is a significant cost factor for companies due to the large

138 8 Conclusion

amounts of continuously accumulated data and interactive performance require-
ments.

In this thesis, we explored the potential of columnar in-memory databases to
store and process spatio-temporal data. We demonstrated the impact of different
database optimizations to improve query response times or reduce the operat-
ing costs of such systems. Moreover, we presented the concept of fine-grained
database optimizations to reflect spatio-temporal access patterns in the storage
layer and optimize partitions of the data, particularly for the application-specific
workload and data characteristics of spatio-temporal systems. For database ad-
ministrators, the implications of different tuning options are hard to estimate.
Consequently, various tuning approaches are only applied conservatively to avoid
performance decreases. To address the problem, we presented two novel meth-
ods for the workload-driven joint optimization of different configuration options
for spatio-temporal data mining applications. Our developed approaches allow
us to answer our two research questions as follows:

• How can we improve business processes in specific application scenarios by
spatio-temporal data mining?

To demonstrate the impact of spatio-temporal data mining applications on
business decisions, we investigated the use case of a TNC. For peer-to-peer
ride-hailing providers, it is a crucial competitive advantage to dispatch pas-
senger requests cost-efficiently and to communicate accurate waiting times.
In this context, we analyzed the limitations of established dispatching strate-
gies. In particular, we identified inaccurate positional information as one as-
pect of drivers’ late arrivals at pickup locations. Due to technical restrictions
and outdated data (e.g., noise, low sample rates, or continuous movement
of drivers), state-of-the-art dispatch algorithms based on the last observed
locations of drivers regularly suffer from inefficient driver assignments with
critical delays. We introduced an approach that addresses the problem of
outdated locations by predicting a probability distribution for a driver’s
actual location. The proposed algorithm uses patterns observed in past tra-
jectory data to determine sets of potential locations and their corresponding
probabilities. Furthermore, we suggested different dispatch strategies that
enable quantifying and considering the risk of critical delays. Based on a
real-world dataset of a TNC, we demonstrated the applicability and accu-
racy of our prediction approach using numerical experiments. Furthermore,
we highlighted the capabilities of our location prediction approach to (i)
minimize the customers’ cancellation rates by avoiding critical delays, (ii)
estimate waiting times with higher confidence, and (iii) enable risk-averse
dispatching strategies.

• How can we determine cost and performance-balancing table configuration
optimizations consisting of fine-grained mutually dependent tuning decisions
for the specific data properties and workloads of spatio-temporal applications?

To efficiently utilize the available memory capacities, modern database sys-
tems apply various optimizations (e.g., data compression or secondary in-
dexes) to reduce the memory footprint or increase performance. However,
the selection of cost and performance-balancing configurations is challenging

8.2 Summary 139

due to the vast number of possible setups consisting of mutually dependent
individual decisions. We introduced a linear programming (LP) approach
to determine fine-grained configuration decisions for spatio-temporal work-
loads. The proposed approach jointly optimizes the compression, sorting,
indexing, and data tiering configuration to maximize the performance by
minimizing the runtime for a given workload, memory budget, and data
characteristics. We presented three LP-based models (CCD, SMS, and ISE)
addressing cost dependencies at different levels of accuracy and evaluated
the performance of the determined table configurations as well as the scal-
ability. To yield maintainable and robust configurations, we extended the
LP-based models to incorporate reconfiguration costs and multiple potential
workload scenarios. We demonstrated on the TNC dataset that our models
allow us to significantly reduce the memory footprint (up to 71% by equal
performance) or increase the performance (up to 90% by equal memory size)
compared to established rule-based heuristics.
Furthermore, we analyzed different storage concepts for timestamps in
column-oriented databases. As various standard compression approaches for
a columnar storage layout are optimized for contradicting data character-
istics (e.g., low number of distinct values, sequences of equal values), the
memory-efficient storing of timestamps is challenging. We presented and
compared different approaches to storing timestamps in columnar in-memory
databases. Additionally, we proposed a data layout that uses an attribute de-
composition approach to store the temporal information in multiple columns.
We showed that this multi column data layout is beneficial for range queries
with standard access ranges (e.g., month or year). Moreover, we introduced
an LP-based model to determine an optimized compression scheme for this
storage concept. Based on the TNC dataset, we evaluated the memory con-
sumption and performance of different data layouts and compression tech-
niques. The results showed that there are significant differences between the
various configurations for specific access patterns. For this reason, we devel-
oped a heuristic approach to select an optimized data layout and compression
scheme for a given workload.

Based on the contributions presented in this thesis, we demonstrated how
business decisions can be improved by trajectory data mining. Furthermore,
we introduced two approaches to optimizing data management specifically for
such applications. By applying joint workload-driven database optimizations,
we enable columnar in-memory databases to store and process spatio-temporal
data more memory-efficient.

List of Figures

1.1 Depiction of the storage layout and table configuration for an
exemplary table with n data partitions. 4

1.2 Overview of the research context based on the different steps of
the trajectory data mining process defined by our trajectory
data mining framework. 7

2.1 Framework of the trajectory data mining process. 16
2.2 Representation of a trajectory generated by sampling from a

moving object’s continuous trace. 17
2.3 The memory and storage hierarchy, including key performance

figures. 29
2.4 Visualization of a row-oriented and column-oriented storage

layout in the case of the exemplary table with the four columns:
ID, Longitude, Latitude, and Timestamp. 29

2.5 Depiction of the storage layout for an exemplary table
configuration for two storage devices. 31

4.1 An example highlighting the implications of the driver’s current
location’s inaccuracy and uncertainty. 51

4.2 Example of three different drivers for predicting potential
current locations of candidate drivers to be assigned to a waiting
customer. 53

4.3 Improving dispatch decisions using probability distributions
for the current locations of potential drivers: Comparing the
likelihood of a driver to reach the customer without critical
delays. 53

4.4 Results of the next location prediction algorithm on a highly
frequented road segment. 64

4.5 A histogram showing the cumulative distribution of the mean
absolute differences of states’ turn probabilities across Markov
chains of different times of the day. 65

4.6 Prediction performance of the short-term route prediction
algorithm for different prediction frames. 66

142 List of Figures

5.1 Impact of different tuning decisions on memory consumption
and performance for ten million observed locations partitioned
into ten chunks and specific scan operations. 70

5.2 Overview of the optimization process. 74

6.1 Visualization of different data layouts to store timestamps in
relational database systems. 91

6.2 Comparison of the memory consumption of the different data
layouts in combination with four different compression approaches. 93

6.3 Comparison of the attribute decomposition approach’s memory
consumption for the different columns with and without applied
bit-packing mechanism. 94

6.4 Comparison of the runtime performance of the different data
layouts in combination with different compression techniques. . . . 95

6.5 Comparison of the memory consumption of the different columns
in the multiple columns data layout for dictionary, LZ4, and
run-length encoding. 99

7.1 Comparison of predicted and end-to-end measured performance
and memory consumption of our three linear programming
approaches. 104

7.2 Comparison of end-to-end measured execution time and memory
consumption of the linear programming models (SMS, ISE)
compared to the greedy heuristic approach with different α values.108

7.3 Visualization of table configurations computed by the SMS
model, ISE model, and the greedy heuristic with α=10 for four
different memory budgets. 109

7.4 Comparison of the end-to-end measured execution time and
memory consumption of the table configurations determined by
the ISE model for different chunk sizes and memory budgets. . . . 111

7.5 Comparison of the solve time of our three LP models to compute
valid table configurations for various memory budgets as well as
different numbers of tuning options. 113

7.6 End-to-end measured runtime performance of the table
configurations determined by the different LP models for the
given workload, a fixed budget of 3 GB on SSD, and increasing
DRAM budgets . 115

7.7 DRAM and SSD memory consumption of the table configurations
determined by the different LP models for the given workload, a
fixed budget of 3 GB on SSD, and increasing DRAM budgets. . . 115

7.8 End-to-end measured runtime performance of the table
configurations determined by the heuristic approaches compared
to the LP models. 117

7.9 DRAM and SSD memory consumption of the table configurations
determined by the heuristic approaches. 118

7.10 Comparison of the end-to-end measured runtime of the table
configurations determined by the capacity mode of Mosaic, a
consecutive tuning approach, and the SMS model. 119

List of Figures 143

7.11 Comparison of the table configurations: (i) SMS model, (ii)
H-10 heuristic, (iii) CCD model with MCI, and (iv) consecutive
tuning approach for a memory budget of 3 GB DRAM and 3
GB SSD. 120

7.12 Comparison of the solver times of the five versions of our
LP models for the specified scenarios to compute valid table
configurations for different numbers of tuning options. 122

7.13 Comparison of execution times of table configurations for three
different workload scenarios. 124

7.14 Visualization of the selected data layout and compression
technique by the heuristic for three different workload
distributions. 126

7.15 Comparison of the measured runtime performance line and
memory consumption of the applied compression scheme
determined based on the given workload for different memory
budgets. 127

7.16 Evaluation of the measured memory consumption and runtime
performance for different compression schemes determined by
the LP model compared to standard compression schemes. 128

List of Tables

5.1 Notation table for the LP approach to determine table
configuration optimizations. 76

5.2 Adjusted notation table for the LP approach with integrated data
tiering decisions and the enhancements of the segment-based
models. 82

6.1 Notation table for the workload-driven combined data layout
and compression scheme optimization approach. 97

7.1 End-to-end measured memory consumption and execution times
of standard table configurations consisting of a single encoding
decision for the workloads A & B. 105

7.2 Measured solver runtimes for the ISE and SMS models with
tiering decisions for the standard models and models with the
different extensions. 125

A.1 Overview of the query templates included in the query template
set QA representing the benchmark workload A. 148

A.2 Overview of the query templates included in the query template
set QB representing the benchmark workload B. 149

Acronyms

ASA Adaptive Storage Advisor.

CCD LP model with chunk-based configuration dependencies.

DBMS Database Management System.
DRAM Dynamic Random Access Memory.
DTA Database Engine Tuning Advisor.

GFS Google File System.
GH Greedy Heuristic.
GIS Geographical Information System.
GPS Global Positioning System.
GSM Global System for Mobile Communication.

HDD Hard Disk Drive.
HDFS Hadoop Distributed File System.
HMM Hidden Markov Model.
HTAP Hybrid Transactional and Analytics Processing.

ISE LP model with independent segment effects.

KPI Key Performance Indicator.

LP Linear Programming.

NSE Native Storage Extension of SAP HANA.
NVM Non-Volatile Memory.

OLAP Online Analytical Processing.
OLTP Online Transcation Processing.

RDD Resilient Distributed Datasets.
RFID Radio-Frequency Identification.

SMS Segment-based LP model with sorting dependencies.
SSD Solid-State Drive.

TCO Total Cost of Ownership.
TNC Transportation Network Company.

A

Appendix

A.1 Permission of Reuse of Publications

Reuse of Material Published by ACM
Authors can reuse any portion of their own work in a new work of their own
(and no fee is expected) as long as a citation and DOI pointer to the Version
of Record in the ACM Digital Library are included. Contributing complete pa-
pers to any edited collection of reprints for which the author is not the editor,
requires permission and usually a republication fee. Authors can include par-
tial or complete papers of their own (and no fee is expected) in a dissertation
as long as citations and DOI pointers to the Versions of Record in the ACM
Digital Library are included. Authors can use any portion of their own work in
presentations and in the classroom (and no fee is expected).

Reuse of Material Published by IEEE
In reference to IEEE copyrighted material which is used with permission in
this thesis, the IEEE does not endorse any of Hasso Plattner Institute’s prod-
ucts or services. Internal or personal use of this material is permitted. If in-
terested in reprinting/republishing IEEE copyrighted material for advertising
or promotional purposes or for creating new collective works for resale or re-
distribution, please go to http://www.ieee.org/publications_standards/

publications/rights/right_link.html to learn how to obtain a License from
RightsLink.

Reuse of Material Published by Springer
Authors have the right to reuse their articles Version of Record, in whole or in
part, in their own thesis. Additionally, they may reproduce and make available
their thesis, including Springer Nature content, as required by their awarding
academic institution. Authors must properly cite the published article in their
thesis according to current citation standards.

http://www.ieee.org/publications_standards/publications/rights/right_link.html

148 A Appendix

A.2 Benchmark Workloads

Overview of the query templates for the benchmark workloads A and B. For
each query template, the selectivity of the corresponding filter values is dis-
played in curly brackets. For instance, a selectivity value of 0.4 indicates that
the corresponding scan operation returns 40% of the entries if executed on the
data of the entire table. The specific values depend on the data characteristics
of the used dataset. Additionally, the frequency of the query template and the
skipped chunks are displayed. Based on statistics maintained for each chunk
(cf. Section 2.3.2), several chunks can be pruned during query execution for a
specific query. These dataset-specific values are exemplary and vary for different
chunk sizes.

ID Query Template Frequency
Skipped
Chunks

qA0

SELECT * FROM Table WHERE

("timestamp" <= {value selectivity: 0.4})
AND ("status" <= 0.7)

30%
4, 5, 6,
7, 8, 9

qA1

SELECT * FROM Table WHERE

("timestamp" <= {0.2})
AND ("latitude" BETWEEN {0.05})
AND ("longitude" BETWEEN {0.05})

50%
2, 3, 4,
5, 6, 7,
8, 9

qA2

SELECT * FROM Table WHERE

("driver id" <= {0.0001})
AND ("timestamp" <= {0.4})

16%
0, 3, 4,
5, 6, 7,
8, 9

qA3
SELECT * FROM Table WHERE

("timestamp" BETWEEN {0.8}) 2.5% 9

qA4

SELECT * FROM Table WHERE

("latitude" BETWEEN {0.3})
AND ("longitude" BETWEEN {0.3})

0.5% –

qA5

SELECT * FROM Table WHERE

("driver id" <= {0.5})
AND ("latitude" BETWEEN {0.2})
AND ("longitude" BETWEEN {0.2}
AND ("timestamp" BETWEEN {0.4})
AND ("status" <= 0.7)

1%
0, 1, 7,
8, 9

Table A.1: Overview of the query templates included in the query template
setQA representing the benchmark workload A. We determined the skipped
chunks for the dataset with ten million observed locations (cf. Section 7.1.1).

A.2 Benchmark Workloads 149

ID Query Template Frequency Skipped Chunks

10 M 400 M

qB0

SELECT * FROM Table WHERE

("driver id" <= {0.0001})
AND ("status" <= 0.7)

15%
0, 3, 6,
7, 8

0, 1

qB1

SELECT * FROM Table WHERE

("timestamp" BETWEEN {0.2})
AND ("latitude" BETWEEN {0.1})
AND ("longitude" BETWEEN {0.1})
AND ("status" <= {0.7})

15%
0, 1, 2,
6, 7, 8,

9

0, 1, 2,
6, 7, 8,

9

qB2

SELECT * FROM Table WHERE

("driver id" <= {0.01})
AND ("latitude" BETWEEN {0.3})
AND ("longitude" BETWEEN {0.3})

10% – –

qB3

SELECT * FROM Table WHERE

("timestamp" <= {0.05})
AND ("latitude" BETWEEN {0.7})
AND ("longitude" BETWEEN {0.7})

25%
1, 2, 3,
4, 5, 6,
7, 8, 9

1, 2, 3,
4, 5, 6,
7, 8, 9

qB4

SELECT * FROM Table WHERE

("driver id" <= {0.01})
AND ("timestamp" <= {0.4})

15%
4, 5, 6,
7, 8, 9

4, 5, 6,
7, 8, 9

qB5

SELECT * FROM Table WHERE

("latitude" BETWEEN {0.01})
AND ("longitude" BETWEEN {0.01})
AND ("timestamp" BETWEEN {0.5})

20%
0, 1, 8,

9
0, 1, 8,

9

Table A.2: Overview of the query templates included in the query tem-
plate set QB representing the benchmark workload B. We determined the
skipped chunks for the dataset with ten million (10 M) and 400 million
(400 M) observed locations (cf. Section 7.1.1). The data of both datasets
are partitioned into ten chunks.

150 A Appendix

A.3 Publications

Our work has been presented at renowned international conferences and work-
shops as well as published in journals. A list of all publications is provided in
this section.

• Richly, K.; Schlosser, R.;Boissier, M.: Budget-Conscious Fine-Grained
Configuration Optimization for Spatio-Temporal Applications. In Proceed-
ings of the VLDB Endowment 15(13), 2022: pp. 4079 – 4092

• Richly, K.; Schlosser, R.; Brauer, J.: Enabling Risk-averse Dispatch
Processes for Transportation Network Companies by Probabilistic Location
Prediction. In Operations Research and Enterprise Systems. Springer, 2022,
Volume 1623 by Communications in Computer and Information Science, pp.
21–42

• Richly, K.; Schlosser, R.; Boissier, M.: Joint Index, Sorting, and Com-
pression Optimization for Memory-Efficient Spatio-Temporal Data Manage-
ment . In Proceedings of the IEEE International Conference on Data Engi-
neering (ICDE). 2021, pp. 1901–1906

• Richly, K.: Memory-Efficient Storing of Timestamps for Spatio-Temporal
Data Management in Columnar In-Memory Databases. In Proceedings of the
International Conference on Database Systems for Advanced Applications
(DASFAA). 2021, pp. 542–557

• Richly, K.; Schlosser, R.; Brauer, J.; Plattner, H.: A Probabilistic
Location Prediction Approach to Optimize Dispatch Processes in the Ride-
Hailing Industry . In Proceedings of the Hawaii International Conference on
System Sciences (HICSS). 2021, pp. 1830–1840

• Richly, K.; Brauer, J.; Schlosser, R.: Predicting Location Probabilities
of Drivers to Improve Dispatch Decisions of Transportation Network Com-
panies based on Trajectory Data. In Proceedings of the International Con-
ference on Operations Research and Enterprise Systems (ICORES). 2020,
pp. 47–58

• Richly, K.: Optimized Spatio-Temporal Data Structures for Hybrid Trans-
actional and Analytical Workloads on Columnar In-Memory Databases. In
Proceedings of the VLDB PhD Workshop. 2019, pp. 1–4

• Richly, K.: A Survey on Trajectory Data Management for Hybrid Transac-
tional and Analytical Workloads. In Proceedings of the IEEE International
Conference on Big Data (BigData). 2018, pp. 562–569

• Richly, K.: Leveraging Spatio-Temporal Soccer Data to Define a Graphical
Query Language for Game Recordings. In Proceedings of the IEEE Interna-
tional Conference on Big Data (BigData). 2018, pp. 3456–3463

• Richly, K.; Moritz, F.; Schwarz, C.: Utilizing Artificial Neural Net-
works to Detect Compound Events in Spatio-Temporal Soccer Data. In Pro-
ceedings of the ACM SIGKDD Workshop on Mining and Learning from Time
Series (MiLeTs). 2017, pp. 13–17

• Richly, K.; Teusner, R.: Where is the Money Made? An Interactive Vi-
sualization of Profitable Areas in New York City . In Proceedings of the
International Conference on IoT in Urban Space (Urb-IoT). ACM, 2016,
pp. 43–46

• Richly, K.; Bothe, M.; Rohloff, T.; Schwarz, C.: Recognizing Com-
pound Events in Spatio-Temporal Football Data. In Proceedings of the In-

A.3 Publications 151

ternational Conference on Internet of Things and Big Data (IoTBD). 2016,
pp. 27–35

• Richly, K.; Teusner, R.; Immer, A.; Windheuser, F.; Wolf, L.: Op-
timizing Routes of Public Transportation Systems by Analyzing the Data of
Taxi Rides. In Proceedings of the International ACM SIGSPATIAL Work-
shop on Smart Cities and Urban Analytics. 2015, pp. 70–76

• Richly, K.; Lorenz, M.; Oergel, S.: S4J – Integrating SQL into Java
at Compiler-Level . In Proceedings of the International Conference on Infor-
mation and Software Technologies (ICIST). Springer, 2016, Volume 639 by
Communications in Computer and Information Science, pp. 300–315

• Schlosser, R.; Richly, K.: Dynamic Pricing under Competition with
Data-Driven Price Anticipations and Endogenous Reference Price Effects.
In Journal of Revenue and Pricing Management 18(6), 2019: pp. 451–464

• Schlosser, R.; Richly, K.: Dynamic Pricing Competition with Unobserv-
able Inventory Levels: A Hidden Markov Model Approach. In Operations
Research and Enterprise Systems. Springer, 2018, Volume 966 by Commu-
nications in Computer and Information Science, pp. 15–36

• Schlosser, R.; Richly, K.: Dynamic Pricing Strategies in a Finite Hori-
zon Duopoly with Partial Information. In Proceedings of the International
Conference on Operations Research and Enterprise Systems (ICORES).
2018, pp. 21–30

• Matthies, C.; Kowark, T.; Richly, K.; Uflacker, M.; Plattner,
H.: ScrumLint: Identifying Violations of Agile Practices Using Development
Artifacts. In Proceedings of the International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE). 2016, pp. 40–43

• Kowark, T.; Richly, K.; Uflacker, M.; Plattner, H.: Incremental,
Per-Query Ontology Matching with RepMine. In Proceedings of the Inter-
national Conference Companion on World Wide Web (WWW). 2016, pp.
215–218

• Matthies, C.; Kowark, T.; Richly, K.; Uflacker, M.; Plattner,
H.: How Surveys, Tutors, and Software Help to Assess Scrum Adoption in
a Classroom Software Engineering Project . In Proceedings of the ACM In-
ternational Conference on Software Engineering (ICSE). 2016, pp. 313–322

• Teusner, R.; Richly, K.; Staubitz, T.; Renz, J.: Enhancing Content
between Iterations of a MOOC–Effects on Key Metrics. In European MOOCs
Stakeholder Summit 2015: pp. 147–156

• Kowark, T.; Teusner, R.; Richly, K.; Plattner, H.: RepMine: A Sys-
tem for Transferrable Analyses of Collaboration Activities in Software En-
gineering . In IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW). 2015, pp. 78–81

• Bross, J.; Richly, K.; Kohnen, M.; Meinel, C.: Identifying the Top-
Dogs of the Blogosphere. In Social network analysis and mining 2(1), 2012:
pp. 53–67

• Bross, J.; Richly, K.; Schilf, P.; Meinel, C.: Social Physics of the
Blogosphere - Capturing, Analyzing and Presenting Interdependencies within
a Single Framework . In From Sociology to Computing in Social Networks -
Theory, Foundations and Applications, Springer, Volume 1 by Lecture Notes
in Social Networks. 2010, pp. 301–321

References

[1] Abadi, D. J.; Madden, S.; Ferreira, M.: Integrating compression and
execution in column-oriented database systems. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 2006, pp.
671–682

[2] Abadi, D. J.; Madden, S. R.; Hachem, N.: Column-stores vs. row-
stores: how different are they really? . In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2008, pp. 967–980

[3] Abdelguerfi, M.; Givaudan, J.; Shaw, K.; Ladner, R.: The 2-3TR-
tree, a trajectory-oriented index structure for fully evolving valid-time
spatio-temporal datasets. In Proceedings of the ACM GIS International
Symposium on Advances in Geographic Information Systems. 2002, pp.
29–34

[4] Abebe, M.; Lazu, H.; Daudjee, K.: Proteus: Autonomous Adaptive
Storage for Mixed Workloads. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data. 2022, pp. 700–714

[5] Abebe, M.; Lazu, H.; Daudjee, K.: Tiresias: Enabling Predictive Au-
tonomous Storage and Indexing . In Proceedings of the VLDB Endowment
15(11), 2022: pp. 3126–3136

[6] Agarwal, N.; Wenisch, T. F.: Thermostat: Application-transparent
page management for two-tiered main memory . In Proceedings of the ACM
ASPLOS International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 2017, pp. 631–644

[7] Agatz, N. A. H.; Erera, A. L.; Savelsbergh, M. W. P.; Wang, X.:
Optimization for dynamic ride-sharing: A review . In European Journal of
Operational Research 223(2), 2012: pp. 295–303

[8] Agrawal, S.; Bruno, N.; Chaudhuri, S.; Narasayya, V. R.: Au-
toAdmin: Self-Tuning Database Systems Technology . In IEEE Data Eng.
Bull. 29(3), 2006: pp. 7–15

[9] Agrawal, S.; Chaudhuri, S.; Kollar, L.; Marathe, A.;
Narasayya, V.; Syamala, M.: Database Tuning Advisor for Microsoft
SQL Server 2005 . In Proceedings of the VLDB Endowment . 2004, pp.
1110–1121

[10] Agrawal, S.; Narasayya, V.; Yang, B.: Integrating vertical and hori-
zontal partitioning into automated physical database design. In Proceedings

154 References

of the ACM SIGMOD International Conference on Management of Data.
2004, pp. 359–370

[11] Aken, D. V.; Pavlo, A.; Gordon, G. J.; Zhang, B.: Automatic
Database Management System Tuning Through Large-scale Machine
Learning . In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 2017, pp. 1009–1024

[12] Al-Ammar, M. A.; Alhadhrami, S.; Al-Salman, A.; Alarifi, A.;
Al-Khalifa, H. S.; Alnafessah, A.; Alsaleh, M.: Comparative sur-
vey of indoor positioning technologies, techniques, and algorithms. In Pro-
ceedings of the IEEE International Conference on Cyberworlds. 2014, pp.
245–252

[13] Almeida, A. C.; Baião, F.; Lifschitz, S.; Schwabe, D.; Campos, M.
L. M.: Tun-OCM: A model-driven approach to support database tuning
decision making . In Decision Support Systems 145, 2021: p. 113538

[14] Alsahfi, T.; Almotairi, M.; Elmasri, R.: A survey on trajectory data
warehouse. In Spatial Information Research 28(1), 2020: pp. 53–66

[15] Andrei, M.; Lemke, C.; Radestock, G.; Schulze, R.; Thiel, C.;
Blanco, R.; Meghlan, A.; Sharique, M.; Seifert, S.; Vishnoi, S.;
et al.: SAP HANA adoption of non-volatile memory . In Proceedings of
the VLDB Endowment 10(12), 2017: pp. 1754–1765

[16] Andrienko, N.; Andrienko, G.; Fuchs, G.; Jankowski, P.: Scalable
and privacy-respectful interactive discovery of place semantics from human
mobility traces. In Information Visualization 15(2), 2016: pp. 117–153

[17] Appuswamy, R.; Graefe, G.; Borovica-Gajic, R.; Ailamaki, A.:
The five-minute rule 30 years later and its impact on the storage hierarchy .
In Communications of the ACM 62(11), 2019: pp. 114–120

[18] Aref, W. G.; Samet, H.: Extending a DBMS with Spatial Operations.
In Proceedings of the International Symposium on Advances in Spatial
Databases (SSD)

[19] Arulraj, J.; Pavlo, A.; Dulloor, S. R.: Let’s talk about storage & re-
covery methods for non-volatile memory database systems. In Proceedings
of the ACM SIGMOD International Conference on Management of Data.
2015, pp. 707–722

[20] Arulraj, J.; Pavlo, A.; Menon, P.: Bridging the archipelago between
row-stores and column-stores for hybrid workloads. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. 2016,
pp. 583–598

[21] Athanassoulis, M.; Bøgh, K. S.; Idreos, S.: Optimal Column Layout
for Hybrid Workloads. In Proceedings of the VLDB Endowment 12(13),
2019: pp. 2393–2407

[22] Athanassoulis, M.; Chen, S.; Ailamaki, A.; Gibbons, P. B.; Sto-
ica, R.: MaSM: efficient online updates in data warehouses. In Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data. 2011, pp. 865–876

[23] Atluri, G.; Karpatne, A.; Kumar, V.: Spatio-Temporal Data Mining:
A Survey of Problems and Methods. In ACM Computing Surveys 51(4),
2018: pp. 1–41

[24] Ayhan, S.; Costas, P.; Samet, H.: Predicting estimated time of arrival
for commercial flights. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining . 2018, pp. 33–42

References 155

[25] Baig, F.; Teng, D.; Kong, J.; Wang, F.: SPEAR: Dynamic Spatio-
Temporal Query Processing over High Velocity Data Streams. In Proceed-
ings of the IEEE ICDE International Conference on Data Engineering .
2021, pp. 2279–2284

[26] Bajaj, R.; Ranaweera, S. L.;Agrawal, D. P.: GPS: location-tracking
technology . In Computer 35(4), 2002: pp. 92–94

[27] Basik, F.; Gedik, B.; Etemoglu, Ç.; Ferhatosmanoglu, H.: Spatio-
Temporal Linkage over Location-Enhanced Services. In IEEE Transac-
tions on Mobile Computing 17(2), 2018: pp. 447–460

[28] Beckmann, N.; Kriegel, H.; Schneider, R.; Seeger, B.: The R*-
Tree: An Efficient and Robust Access Method for Points and Rectangles.
In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data. 1990, pp. 322–331

[29] Ben Ticha, H.; Absi, N.; Feillet, D.; Quilliot, A.: Vehicle routing
problems with road-network information: State of the art . In Networks
72(3), 2018: pp. 393–406

[30] Bisschop, J.: AIMMS-Optimization Modeling , 2006
[31] Boehm, A.: In-memory for the masses: enabling cost-efficient deploy-

ments of in-memory data management platforms for business applications.
In Proceedings of the VLDB Endowment 12(12), 2019: pp. 2273–2275

[32] Boissier, M.: Robust and budget-constrained encoding configurations for
in-memory database systems. In Proceedings of the VLDB Endowment
15(4), 2021: pp. 780–793

[33] Boissier, M.; Jendruk, M.: Workload-Driven and Robust Selection of
Compression Schemes for Column Stores. In Proceedings of the Interna-
tional Conference on Extending Database Technology (EDBT). 2019, pp.
674–677

[34] Boissier, M.; Kurzynski, D.: Workload-Driven Horizontal Partition-
ing and Partition Pruning for Large HTAP Systems. In Proceedings
of the IEEE International Conference on Data Engineering Workshops
(ICDEW). 2018, pp. 116–121

[35] Boissier, M.; Schlosser, R.; Uflacker, M.: Hybrid Data Layouts
for Tiered HTAP Databases with Pareto-Optimal Data Placements. In
Proceedings of the IEEE ICDE International Conference on Data Engi-
neering . 2018, pp. 209–220

[36] Boncz, P. A.; Manegold, S.; Kersten, M. L.; et al.: Database ar-
chitecture optimized for the new bottleneck: Memory access. In Proceedings
of the VLDB International Conference on Very Large Data Bases. 1999,
pp. 54–65

[37] Brendle, M.; Weber, N.; Valiyev, M.; May, N.; Schulze, R.;
Böhm, A.; Moerkotte, G.; Grossniklaus, M.: SAHARA: Memory
Footprint Reduction of Cloud Databases with Automated Table Partition-
ing . In Proceedings of the International Conference on Extending Database
Technology (EDBT). 2022, pp. 1–13

[38] Brendle, M.; Weber, N.; Valiyev, M.; May, N.; Schulze, R.;
Böhm, A.; Moerkotte, G.; Grossniklaus, M.: Precise, Compact, and
Fast Data Access Counters for Automated Physical Database Design. In
Datenbanksysteme für Business, Technologie und Web (BTW) 2021: pp.
79–100

156 References

[39] Bross, J.; Richly, K.; Kohnen, M.; Meinel, C.: Identifying the Top-
Dogs of the Blogosphere. In Social network analysis and mining 2(1),
2012: pp. 53–67

[40] Bross, J.;Richly, K.; Schilf, P.;Meinel, C.: Social Physics of the Bl-
ogosphere - Capturing, Analyzing and Presenting Interdependencies within
a Single Framework . In From Sociology to Computing in Social Networks
- Theory, Foundations and Applications, Springer, Volume 1 by Lecture
Notes in Social Networks. 2010, pp. 301–321

[41] Bussieck, M. R.; Meeraus, A.: General algebraic modeling system
(GAMS). In Modeling languages in mathematical optimization, Springer.
2004, pp. 137–157

[42] Butler, H.;Daly, M.;Doyle, A.;Gillies, S.; Schaub, T.; Schmidt,
C.: The GeoJSON format specification. In Rapport technique 67, 2008

[43] Bynum, M. L.; Hackebeil, G. A.; Hart, W. E.; Laird, C. D.;
Nicholson, B. L.; Siirola, J. D.; Watson, J.-P.; Woodruff, D. L.:
Pyomo–Optimization Modeling in Python, Volume 67. Springer Science
& Business Media, 3. Edition, 2021

[44] Caprara, A.; Fischetti, M.; Maio, D.: Exact and approximate al-
gorithms for the index selection problem in physical database design. In
IEEE Transactions on Knowledge and Data Engineering 7(6), 1995: pp.
955–967

[45] Cen, L.;Kipf, A.;Marcus, R.;Kraska, T.: LEA: A Learned Encoding
Advisor for Column Stores. In Proceedings of the ACM aiDM Workshop
in Exploiting AI Techniques for Data Management . 2021, p. 3235

[46] Chae, J.; Thom, D.; Bosch, H.; Jang, Y.; Maciejewski, R.; Ebert,
D. S.; Ertl, T.: Spatiotemporal social media analytics for abnormal event
detection and examination using seasonal-trend decomposition. In Pro-
ceedings of the IEEE VAST Conference on Visual Analytics Science and
Technology . 2012, pp. 143–152

[47] Chakka, V. P.; Everspaugh, A.; Patel, J. M.: Indexing Large Trajec-
tory Data Sets With SETI . In Proceedings of the Conference on Innovative
Data Systems Research (CIDR). 2003

[48] Chasseur, C.; Patel, J. M.: Design and evaluation of storage organi-
zations for read-optimized main memory databases. In Proceedings of the
VLDB Endowment 6(13), 2013: pp. 1474–1485

[49] Chaudhuri, S.; Dageville, B.; Lohman, G.: Self-managing technology
in database management systems. In Proceedings of the VLDB Interna-
tional Conference on Very large Data Bases. 2004

[50] Chaudhuri, S.; Narasayya, V.: Self-tuning database systems: a decade
of progress. In Proceedings of the VLDB International Conference on Very
Large Data. 2007, pp. 3–14

[51] Chaudhuri, S.; Narasayya, V. R.: AutoAdmin ’What-if ’ Index Analy-
sis Utility . In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 1998, pp. 367–378

[52] Chaudhuri, S.; Weikum, G.: Self-Management Technology in
Databases. In Encyclopedia of Database Systems, Springer. 2009, pp.
2550–2555

[53] Chen, C.; Ding, Y.; Xie, X.; Zhang, S.; Wang, Z.; Feng, L.: Traj-
Compressor: An online map-matching-based trajectory compression frame-

References 157

work leveraging vehicle heading direction and change. In IEEE Transac-
tions on Intelligent Transportation Systems 21(5), 2019: pp. 2012–2028

[54] Chen, C. X.; Zaniolo, C.: SQLST: A Spatio-Temporal Data Model and
Query Language. In Proceedings of the International Conference on Con-
ceptual Modeling . Springer, 2000, Volume 1920 by Lecture Notes in Com-
puter Science, pp. 96–111

[55] Chen, K.; Zdorova, M.; Nathan-Roberts, D.: Implications of Wear-
ables, Fitness Tracking Services, and Quantified Self on Healthcare. In
Proceedings of the Human Factors and Ergonomics Society Annual Meet-
ing 61(1), 2017: pp. 1066–1070

[56] Chen, L.; Özsu, M. T.; Oria, V.: Robust and fast similarity search for
moving object trajectories. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. 2005, pp. 491–502

[57] Chen, M.; Xu, M.; Franti, P.: Compression of GPS trajectories. In
Proceedings of the IEEE DCC Data Compression Conference. 2012, pp.
62–71

[58] Chen, S.; Ooi, B. C.; Tan, K.-L.; Nascimento, M. A.: ST2B-tree: a
self-tunable spatio-temporal b+-tree index for moving objects. In Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data. 2008, pp. 29–42

[59] Chen, X.; Zhang, C.; Ge, B.; Xiao, W.: Spatio-temporal queries in
HBase. In Proceedings of the IEEE International Conference on Big Data
(Big Data). 2015, pp. 1929–1937

[60] Chen, Z.; Shen, H. T.; Zhou, X.: Discovering popular routes from tra-
jectories. In Proceedings of the IEEE ICDE International Conference on
Data Engineering . IEEE, 2011, pp. 900–911

[61] Cheng, C.; Yang, H.; Lyu, M. R.; King, I.: Where you like to go
next: Successive point-of-interest recommendation. In Proceedings of the
IJCAI International Joint Conference on Artificial Intelligence. 2013, pp.
2605–2611

[62] Cheng, Y.; Iqbal, M. S.; Gupta, A.; Butt, A. R.: Cast: Tiering
storage for data analytics in the cloud . In Proceedings of the Interna-
tional Symposium on High-Performance Parallel and Distributed Com-
puting . 2015, pp. 45–56

[63] Chou, H.-T.; DeWitt, D. J.: An evaluation of buffer management
strategies for relational database systems. In Algorithmica 1(1), 1986:
pp. 311–336

[64] Cici, B.; Markopoulou, A.; Laoutaris, N.: SORS: a scalable online
ridesharing system. In Proceedings of the ACM SIGSPATIAL Interna-
tional Workshop on Computational Transportation Science. 2016, pp. 13–
18

[65] Collet, Y.: Lz4: Extremely fast compression algorithm 2013
[66] Cudre-Mauroux, P.; Wu, E.; Madden, S.: Trajstore: An adaptive

storage system for very large trajectory data sets. In Proceedings of the
IEEE ICDE International Conference on Data Engineering . 2010, pp.
109–120

[67] Curran, K.; Furey, E.; Lunney, T.; Santos, J.; Woods, D.; Mc-
Caughey, A.: An evaluation of indoor location determination technolo-
gies. In Journal of Location Based Services 5(2), 2011: pp. 61–78

158 References

[68] Damme, P.; Habich, D.; Hildebrandt, J.; Lehner, W.: Lightweight
Data Compression Algorithms: An Experimental Survey (Experiments and
Analyses). In Proceedings of the International Conference on Extending
Database Technology (EDBT). 2017, pp. 72–83

[69] Damme, P.; Ungethüm, A.; Hildebrandt, J.; Habich, D.; Lehner,
W.: From a Comprehensive Experimental Survey to a Cost-based Selection
Strategy for Lightweight Integer Compression Algorithms. In ACM Trans.
Database Syst. 44(3), 2019: pp. 9:1–9:46

[70] Dantzig, G. B.: Linear Programming and Extensions 1963
[71] Das, M.;Ghosh, S. K.: Data-driven approaches for spatio-temporal anal-

ysis: A survey of the state-of-the-arts. In Journal of Computer Science
and Technology 35(3), 2020: pp. 665–696

[72] Das, S.; Grbic, M.; Ilic, I.; Jovandic, I.; Jovanovic, A.;
Narasayya, V. R.; Radulovic, M.; Stikic, M.; Xu, G.; Chaud-
huri, S.: Automatically indexing millions of databases in microsoft azure
sql database. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data. 2019, pp. 666–679

[73] Dash, D.; Polyzotis, N.; Ailamaki, A.: CoPhy: A Scalable, Portable,
and Interactive Index Advisor for Large Workloads. In Proceedings of the
VLDB Endowment . 2011, Volume 4, pp. 362–372

[74] Dean, J.;Ghemawat, S.:MapReduce: simplified data processing on large
clusters. In Communications of the ACM 51(1), 2008: pp. 107–113

[75] DeBrabant, J.;Arulraj, J.; Pavlo, A.; Stonebraker, M.; Zdonik,
S.; Dulloor, S.: A Prolegomenon on OLTP Database Systems for Non-
Volatile Memory . In Proceedings of the International Workshop on Accel-
erating Data Management Systems Using Modern Processor and Storage
Architectures (ADMS) 2014: pp. 57–63

[76] DeBrabant, J.; Pavlo, A.; Tu, S.; Stonebraker, M.; Zdonik, S.:
Anti-caching: A new approach to database management system architec-
ture. In Proceedings of the VLDB Endowment 6(14), 2013: pp. 1942–1953

[77] Deori, B.; Thounaojam, D. M.: A survey on moving object tracking in
video. In International Journal on Information Theory (IJIT) 3(3), 2014:
pp. 31–46

[78] Diaconu, C.; Freedman, C.; Ismert, E.; Larson, P.-A.;Mittal, P.;
Stonecipher, R.; Verma, N.; Zwilling, M.: Hekaton: SQL server’s
memory-optimized OLTP engine. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2013, pp. 1243–1254

[79] Ding, X.; Chen, L.; Gao, Y.; Jensen, C. S.; Bao, H.: UlTraMan:
a unified platform for big trajectory data management and analytics. In
Proceedings of the VLDB Endowment 11(7), 2018: pp. 787–799

[80] Dogramadzi, M.; Khan, A.: Accelerated Map Matching for GPS Tra-
jectories. In IEEE Transactions on Intelligent Transportation Systems
23(5), 2022: pp. 4593–4602

[81] Dong, X. L.; Srivastava, D.: Big data integration. In Synthesis Lectures
on Data Management 7(1), 2015: pp. 1–198

[82] Donnay, J. D.: Spherical Trigonometry . Read Books Ltd, 2011
[83] Douglas, D. H.; Peucker, T. K.: Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature.
In Cartographica: The International Journal for Geographic Information
and Geovisualization 10(2), 1973: pp. 112–122

References 159

[84] Dreseler, M.: Automatic Tiering for In-Memory Database Systems.
Dissertation, University of Potsdam, Germany, 2022

[85] Dreseler, M.; Boissier, M.; Rabl, T.; Uflacker, M.: Quantifying
TPC-H choke points and their optimizations. In Proceedings of the VLDB
Endowment 13(8), 2020: pp. 1206–1220

[86] Dreseler, M.; Kossmann, J.; Boissier, M.; Klauck, S.; Uflacker,
M.; Plattner, H.: Hyrise Re-engineered: An Extensible Database System
for Research in Relational In-Memory Data Management . In Proceed-
ings of the International Conference on Extending Database Technology
(EDBT). 3 2019, pp. 313–324

[87] Duan, S.; Thummala, V.; Babu, S.: Tuning database configuration pa-
rameters with ituned . In Proceedings of the VLDB Endowment 2(1), 2009:
pp. 1246–1257

[88] Dulloor, S. R.; Roy, A.; Zhao, Z.; Sundaram, N.; Satish, N.;
Sankaran, R.; Jackson, J.; Schwan, K.: Data tiering in heteroge-
neous memory systems. In Proceedings of the European Conference on
Computer Systems (EuroSys). ACM, 2016, pp. 15:1–15:16

[89] Dunning, I.; Huchette, J.; Lubin, M.: JuMP: A modeling language
for mathematical optimization. In SIAM review 59(2), 2017: pp. 295–320

[90] Dyreson, C. E.; Snodgrass, R. T.: Timestamp semantics and repre-
sentation. In Information Systems 1993: pp. 143–166

[91] Egenhofer, M. J.: Spatial SQL: A query and presentation language.
In IEEE Transactions on knowledge and data engineering 6(1), 1994: pp.
86–95

[92] Eiter, T.; Mannila, H.: Computing Discrete Fréchet Distance. White
paper, Citeseer, 1994

[93] Eldawy, A.; Levandoski, J.; Larson, P.-Å.: Trekking through siberia:
Managing cold data in a memory-optimized database. In Proceedings of
the VLDB Endowment 7(11), 2014: pp. 931–942

[94] Eldawy, A.; Mokbel, M. F.: Spatialhadoop: A mapreduce framework
for spatial data. In Proceedings of the IEEE ICDE International Confer-
ence on Data Engineering . 2015, pp. 1352–1363

[95] Erwig, M.; Schneider, M.: STQLA spatio-temporal query language. In
Mining Spatio-Temporal Information Systems, Springer. 2002, pp. 105–
126

[96] Fang, Z.; Chen, L.; Gao, Y.; Pan, L.; Jensen, C. S.: Dragoon: a hy-
brid and efficient big trajectory management system for offline and online
analytics. In VLDB Journal 30(2), 2021: pp. 287–310

[97] Färber, F.; Kemper, A.; Larson, P.-Å.; Levandoski, J.; Neumann,
T.; Pavlo, A.; et al.: Main memory database systems. In Foundations
and Trends in Databases 8(1-2), 2017: pp. 1–130

[98] Färber, F.; May, N.; Lehner, W.; Große, P.; Müller, I.; Rauhe,
H.; Dees, J.: The SAP HANA Database–An Architecture Overview . In
IEEE Data Eng. Bull. 35(1), 2012: pp. 28–33

[99] Faust, M.; Boissier, M.; Keller, M.; Schwalb, D.; Bischoff, H.;
Eisenreich, K.; Färber, F.; Plattner, H.: Footprint reduction and
uniqueness enforcement with hash indices in SAP HANA. In Proceedings
of the International Conference on Database and Expert Systems Appli-
cations (DEXA). Springer, 2016, pp. 137–151

160 References

[100] Faust, M.; Schwalb, D.; Krüger, J.; Plattner, H.: Fast Lookups
for In-Memory Column Stores: Group-Key Indices, Lookup and Mainte-
nance. In Proceedings of the International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage Architectures
(ADMS). 2012, pp. 13–22

[101] Faust, M.; Schwalb, D.; Plattner, H.: Composite Group-Keys:
Space-efficient Indexing of Multiple Columns for Compressed In-Memory
Column Stores. In Proceedings of the International Workshop on In Mem-
ory Data Management and Analytics (IMDM). 2014, pp. 42–54

[102] Fazzinga, B.; Flesca, S.; Furfaro, F.; Parisi, F.: Cleaning Trajectory
Data of RFID-Monitored Objects Through Conditioning under Integrity
Constraints. In Proceedings of the International Conference on Extending
Database Technology (EDBT). 2014, pp. 379–390

[103] Fazzinga, B.; Flesca, S.; Furfaro, F.; Parisi, F.: Offline cleaning of
RFID trajectory data. In Proceedings of the ACM SSDBM International
Conference on Scientific and Statistical Database Management . 2014, pp.
5:1–5:12

[104] Feng, Z.; Zhu, Y.: A survey on trajectory data mining: Techniques and
applications. In IEEE Access 4, 2016: pp. 2056–2067

[105] Ferguson, R. O.; Sargent, L. F.: Linear programming , Volume 19.
McGraw-Hill, 1958

[106] Fourer, R.; Gay, D. M.; Kernighan, B. W.: A modeling language
for mathematical programming . In Management Science 36(5), 1990: pp.
519–554

[107] Froehlich, J.; Krumm, J.: Route Prediction from Trip Observations.
In Society of Automotive Engineers (SAE). 2008

[108] Fuentes, A. D.; Almeida, A. C.; de Carvalho Costa, R. L.; Bra-
ganholo, V.; Lifschitz, S.: Database Tuning with Partial Indexes. In
Simpósio Brasileiro de Banco de Dados (SBBD). 2018, pp. 181–192

[109] Galić, Z.; Mešković, E.; Osmanović, D.: Distributed processing of big
mobility data as spatio-temporal data streams. In Geoinformatica 21(2),
2017: pp. 263–291

[110] Garcia-Molina, H.; Ullman, J. D.; Widom, J.: Database systems -
the complete book . Pearson Education, 2009

[111] Garus, A.; Alonso, B.; Alonso Raposo, M.; Ciuffo, B.; dellOlio,
L.: Impact of New Mobility Solutions on Travel Behaviour and Its Incorpo-
ration into Travel Demand Models. In Journal of Advanced Transportation
2022: pp. 1–24

[112] Ghemawat, S.; Gobioff, H.; Leung, S.-T.: The Google file system.
In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP). 2003, pp. 29–43

[113] Ghosh, S.; Ghosh, S. K.; Buyya, R.: MARIO: A spatio-temporal data
mining framework on Google Cloud to explore mobility dynamics from
taxi trajectories. In Journal of Network and Computer Applications (164)
2020: p. 102692

[114] Gonzalez, M. C.; Hidalgo, C. A.; Barabasi, A.-L.: Understanding
individual human mobility patterns. In nature 453(7196), 2008: pp. 779–
782

References 161

[115] Graefe, G.; Kuno, H.: Self-selecting, self-tuning, incrementally opti-
mized indexes. In Proceedings of the International Conference on Extend-
ing Database Technology (EDBT). 2010, pp. 371–381

[116] Grund, M.;Krüger, J.; Plattner, H.; Zeier, A.;Cudre-Mauroux,
P.; Madden, S.: Hyrise: a main memory hybrid storage engine. In Pro-
ceedings of the VLDB Endowment 4(2), 2010: pp. 105–116

[117] Guan, X.; Bo, C.; Li, Z.; Yu, Y.: ST-hash: An efficient spatiotemporal
index for massive trajectory data in a NoSQL database. In IEEE Inter-
national Conference on Geoinformatics (Geoinformatics). 2017, pp. 1–7

[118] Gudmundsson, J.; Horton, M.: Spatio-temporal analysis of team
sports. In ACM Computing Surveys (CSUR) 50(2), 2017: pp. 1–34

[119] Guerra, J.; Pucha, H.; Glider, J.; Belluomini, W.; Rangaswami,
R.: Cost effective storage using extent based dynamic tiering . In USENIX
Conference on File and Storage Technologies (FAST). 2011, pp. 273–286

[120] Guo, N.; Ma, M.; Xiong, W.; Chen, L.; Jing, N.: An Efficient Query
Algorithm for Trajectory Similarity Based on Fréchet Distance Threshold .
In ISPRS International Journal of Geo-Information 6(11), 2017: p. 326

[121] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual , 2021
[122] Güting, R. H.: An introduction to spatial database systems. In VLDB

Journal 3(4), 1994: pp. 357–399
[123] Güting, R. H.; Behr, T.; Xu, J.: Efficient k-nearest neighbor search on

moving object trajectories. In VLDB Journal 19(5), 2010: pp. 687–714
[124] Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Search-

ing . In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 1984, pp. 47–57

[125] Hadjieleftheriou, M.; Kollios, G.; Bakalov, P.; Tsotras, V. J.:
Complex spatio-temporal pattern queries. In Proceedings of the VLDB
Endowment 5, 2005: pp. 877–888

[126] Hagedorn, S.: Efficient Processing of Large-scale Spatio-temporal Data.
Dissertation, Technische Universität Ilmenau, Germany, 2020

[127] Hagedorn, S.;Gotze, P.; Sattler, K.-U.: The STARK framework for
spatio-temporal data analytics on spark . In Datenbanksysteme für Busi-
ness, Technologie und Web (BTW) 2017: pp. 123–142

[128] Halfpap, S.; Schlosser, R.: Workload-driven fragment allocation for
partially replicated databases using linear programming . In Proceedings of
the IEEE ICDE International Conference on Data Engineering . 2019, pp.
1746–1749

[129] Halfpap, S.; Schlosser, R.: Exploration of Dynamic Query-Based Load
Balancing for Partially Replicated Database Systems with Node Failures.
In Proceedings of the ACM International Conference on Information and
Knowledge Management (CKIM). 2020, pp. 3409–3412

[130] Hammer, M.; Niamir, B.: A heuristic approach to attribute partition-
ing . In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 1979, pp. 93–101

[131] Härder, T.; Rahm, E.: Datenbanksysteme: Konzepte und Techniken der
Implementierung . Springer-Verlag, 2013

[132] Harizopoulos, S.; Abadi, D. J.; Madden, S.; Stonebraker, M.:
OLTP through the looking glass, and what we found there. In Proceedings
of the ACM SIGMOD International Conference on Management of Data.
2008, p. 981992

162 References

[133] Hart, W. E.; Watson, J.-P.; Woodruff, D. L.: Pyomo: Modeling and
Solving Mathematical Programs in Python. In Mathematical Programming
Computation 3(3), 2011: pp. 219–260

[134] Hatwar, R. B.; Kamble, S. D.; Thakur, N. V.; Kakde, S.: A review
on moving object detection and tracking methods in video. In International
Journal of Pure and Applied Mathematics 118(16), 2018: pp. 511–526

[135] He, S.; Bastani, F.; Abbar, S.; Alizadeh, M.; Balakrishnan, H.;
Chawla, S.; Madden, S.: RoadRunner: improving the precision of road
network inference from GPS trajectories. In Proceedings of the ACM
SIGSPATIAL International Conference on Advances in Geographic In-
formation Systems. ACM, 2018, pp. 3–12

[136] Heinzl, L.; Hurdelhey, B.; Boissier, M.; Perscheid, M.; Plat-
tner, H.: Evaluating Lightweight Integer Compression Algorithms in
Column-Oriented In-Memory DBMS . In Proceedings of the International
Workshop on Accelerating Analytics and Data Management Systems Us-
ing Modern Processor and Storage Architectures (ADMS). 2021, pp. 26–36

[137] Herodotou, H.; Kakoulli, E.: Automating Distributed Tiered Storage
Management in Cluster Computing . In Proceedings of the VLDB Endow-
ment 13(1), 2019: pp. 43–56

[138] Holze, M.; Ritter, N.: Autonomic databases: Detection of workload
shifts with n-gram-models. In Proceedings of the East European Conference
on Advances in Databases and Information Systems (ADBIS). Springer,
2008, pp. 127–142

[139] Hoseinzadeh, M.: A Survey on Tiering and Caching in High-
Performance Storage Systems. In CoRR abs/1904.11560, 2019

[140] Hu, J.; Yang, B.; Guo, C.; Jensen, C. S.: Risk-Aware Path Selection
with Time-Varying, Uncertain Travel CostsA Time Series Approach. In
VLDB Journal 27, 2018: pp. 179–200

[141] Huang, L.; Wen, Y.; Guo, W.; Zhu, X.; Zhou, C.; Zhang, F.; Zhu,
M.: Mobility pattern analysis of ship trajectories based on semantic trans-
formation and topic model . In Ocean Engineering 201, 2020: p. 107092

[142] Huang, S.; Wei, Q.; Feng, D.; Chen, J.; Chen, C.: Improving Flash-
Based Disk Cache with Lazy Adaptive Replacement . In ACM Transactions
on Storage 12(2), 2016: pp. 1–24

[143] Hughes, J. N.; Annex, A.; Eichelberger, C. N.; Fox, A.; Hulbert,
A.; Ronquest, M.: Geomesa: A Distributed Architecture for Spatio-
Temporal Fusion. In Geospatial Informatics, Fusion, and Motion Video
Analytics V . 2015, Volume 9473, pp. 128–140

[144] Iliadis, I.; Jelitto, J.;Kim, Y.; Sarafijanovic, S.;Venkatesan, V.:
ExaPlan: Efficient Queueing-Based Data Placement, Provisioning, and
Load Balancing for Large Tiered Storage Systems. In ACM Transactions
on Storage 13(2), 2017: pp. 1–41

[145] Jensen, C. S.; Lin, D.; Ooi, B. C.: Query and Update Efficient B+-
Tree Based Indexing of Moving Objects. In Proceedings of the International
Conference on Very Large Data Bases (VLDB). 2004, pp. 768–779

[146] Jensen, C. S.; Tielsytye, D.; Tradilauskas, N.: Robust B+-Tree-
Based Indexing of Moving Objects. In Proceedings of the IEEE Interna-
tional Conference on Mobile Data Management (MDM). 2006, pp. 1–12

References 163

[147] Jeung, H.; Lu, H.; Sathe, S.; Yiu, M. L.: Managing evolving uncer-
tainty in trajectory databases. In IEEE Transactions on Knowledge and
Data Engineering 26(7), 2013: pp. 1692–1705

[148] Jeung, H.; Yiu, M. L.; Zhou, X.; Jensen, C. S.: Path prediction and
predictive range querying in road network databases. In VLDB Journal
19(4), 2010: pp. 585–602

[149] Jiang, H.; Liu, C.; Jin, Q.; Paparrizos, J.; Elmore, A. J.: PIDS:
attribute decomposition for improved compression and query performance
in columnar storage. In Proceedings of the VLDB Endowment 13(6), 2020:
pp. 925–938

[150] Jiang, H.; Liu, C.; Paparrizos, J.; Chien, A. A.; Ma, J.; Elmore,
A. J.: Good to the Last Bit: Data-Driven Encoding with CodecDB . In Pro-
ceedings of the ACM SIGMOD International Conference on Management
of Data. 2021, pp. 843–856

[151] Jiang, Z.; Zhang, Y.; Wang, J.; Xing, C.: A Cost-aware Buffer Man-
agement Policy for Flash-based Storage Devices. In Proceedings of the
International Conference on Database Systems for Advanced Applications
(DASFAA). Springer, 2015, pp. 175–190

[152] Jin, P.; Ou, Y.; Härder, T.; Li, Z.: AD-LRU: An efficient buffer re-
placement algorithm for flash-based databases. In Data & Knowledge En-
gineering 72, 2012: pp. 83–102

[153] Jung, J.; Jayakrishnan, R.; Park, J. Y.: Design and Modeling of Real-
Time Shared-Taxi Dispatch Algorithms. In TRB Annual Meeting . 2013,
Volume 9, pp. 1–20

[154] Jung, Y. C.; Youn, H. Y.; Kim, U.: Efficient Indexing of Moving Ob-
jects Using Time-Based Partitioning with R-Tree. In Proceedings of the In-
ternational Conference on Computational Science (ICCS). Springer, 2005,
pp. 568–575

[155] Kakoulli, E.; Herodotou, H.: OctopusFS: A distributed file system
with tiered storage management . In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2017, pp. 65–78

[156] Kallman, R.; Kimura, H.; Natkins, J.; Pavlo, A.; Rasin, A.;
Zdonik, S.; Jones, E. P.; Madden, S.; Stonebraker, M.; Zhang,
Y.; et al.: H-store: a high-performance, distributed main memory trans-
action processing system. In Proceedings of the VLDB Endowment 1(2),
2008: pp. 1496–1499

[157] Karimi, H. A.; Liu, X.: A Predictive Location Model for Location-Based
Services. In Proceedings of the ACM International Symposium on Ad-
vances in Geographic Information Systems (GIS). 2003, pp. 126–133

[158] Kazmaier, G. S.; Mindnich, T.; Weyerhaeuser, C.; Baeumges,
D.: Managing and querying spatial point data in column stores, 2021. US
Patent 10,929,501

[159] Kellaris, G.; Pelekis, N.; Theodoridis, Y.: Map-matched trajectory
compression. In Journal of Systems and Software 86(6), 2013: pp. 1566–
1579

[160] Kemper, A.; Neumann, T.: HyPer: A hybrid OLTP&OLAP main mem-
ory database system based on virtual memory snapshots. In Proceedings
of the IEEE ICDE International Conference on Data Engineering . 2011,
pp. 195–206

164 References

[161] Keogh, E.; Chu, S.; Hart, D.; Pazzani, M.: An online algorithm for
segmenting time series. In Proceedings of the IEEE International Confer-
ence on Data Mining (ICDM). IEEE, 2001, pp. 289–296

[162] Kimura, H.; Narasayya, V.; Syamala, M.: Compression Aware Phys-
ical Database Design. In Proceedings of the VLDB Endowment 4(10),
2011: pp. 657–668

[163] Koide, S.; Xiao, C.; Ishikawa, Y.: Fast Subtrajectory Similarity Search
in Road Networks under Weighted Edit Distance Constraints. In Proceed-
ings of the VLDB Endowment 13(11), 2020: pp. 2188–2201

[164] Kong, X.; Li, M.; Ma, K.; Tian, K.; Wang, M.; Ning, Z.; Xia, F.:
Big trajectory data: A survey of applications and services. In IEEE Access
6, 2018: pp. 58295–58306

[165] Kossmann, J.: Self-Driving: From General Purpose to Specialized
DBMSs. In Proceedings of the VLDB PhD Workshop. 2018

[166] Kossmann, J.; Halfpap, S.; Jankrift, M.; Schlosser, R.: Magic
mirror in my hand, which is the best in the land? An Experimental Evalu-
ation of Index Selection Algorithms. In Proceedings of the VLDB Endow-
ment 13(11), 2020: pp. 2382–2395

[167] Kossmann, J.; Kastius, A.; Schlosser, R.: SWIRL: Selection of
Workload-aware Indexes using Reinforcement Learning . In Proceedings of
the International Conference on Extending Database Technology (EDBT).
2022, pp. 2:155–2:168

[168] Kossmann, J.; Lindner, D.; Naumann, F.; Papenbrock, T.:
Workload-driven, Lazy Discovery of Data Dependencies for Query Op-
timization. In Proceedings of the Conference on Innovative Data Systems
Research (CIDR). 2022

[169] Kossmann, J.; Schlosser, R.: Self-driving database systems: a concep-
tual approach. In Distributed Parallel Databases 38(4), 2020: pp. 795–817

[170] Koubarakis, M.; Kyzirakos, K.: Modeling and querying metadata
in the semantic sensor web: The model stRDF and the query language
stSPARQL. In Proceedings of the Extended Semantic Web Conference
(ESWC). 2010, pp. 425–439

[171] Kowark, T.; Richly, K.; Uflacker, M.; Plattner, H.: Incremental,
Per-Query Ontology Matching with RepMine. In Proceedings of the Inter-
national Conference Companion on World Wide Web (WWW). 2016, pp.
215–218

[172] Kowark, T.; Teusner, R.; Richly, K.; Plattner, H.: RepMine: A
System for Transferrable Analyses of Collaboration Activities in Software
Engineering . In IEEE/ACM International Conference on Automated Soft-
ware Engineering Workshop (ASEW). 2015, pp. 78–81

[173] Kraska, T.; Beutel, A.; Chi, E. H.; Dean, J.; Polyzotis, N.: The
Case for Learned Index Structures. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2018, pp. 489–504

[174] Krish, K.; Anwar, A.; Butt, A. R.: hats: A heterogeneity-aware tiered
storage for hadoop. In IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing . 2014, pp. 502–511

[175] Krumm, J.: A markov model for driver turn prediction 2008
[176] Kumar, M.: World geodetic system 1984: A modern and accurate global

reference frame. In Marine Geodesy 12(2), 1988: pp. 117–126

References 165

[177] Lahiri, T.; Neimat, M.-A.; Folkman, S.: Oracle TimesTen: An In-
Memory Database for Enterprise Applications. In IEEE Data Eng. Bull.
36(2), 2013: pp. 6–13

[178] Lang, H.; Mühlbauer, T.; Funke, F.; Boncz, P. A.; Neumann,
T.; Kemper, A.: Data blocks: Hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. 2016,
pp. 311–326

[179] Lange, R.;Dürr, F.; Rothermel, K.: Scalable processing of trajectory-
based queries in space-partitioned moving objects databases. In Proceedings
of the ACM SIGSPATIAL International Conference on Advances in Ge-
ographic Information Systems. 2008, pp. 1–10

[180] Lasch, R.; Legler, T.; May, N.; Scheirle, B.; Sattler, K.-U.: Cost
modelling for optimal data placement in heterogeneous main memory . In
Proceedings of the VLDB Endowment 15(11), 2022: pp. 2867–2880

[181] Lassoued, Y.; Monteil, J.; Gu, Y.; Russo, G.; Shorten, R.; Mevis-
sen, M.: A Hidden Markov model for route and destination prediction. In
Proceedings of the IEEE International Conference on Intelligent Trans-
portation Systems (ITSC). 2017, pp. 1–6

[182] Laurini, R.; Paolino, L.; Sebillo, M.; Tortora, G.; Vitiello, G.:
A spatial SQL extension for continuous field querying . In Proceedings of
the IEEE International Computer Software and Applications Conference
(COMPSAC). 2004, pp. 78–81

[183] Laurini, R.; Thompson, D.: Fundamentals of spatial information sys-
tems, Volume 37 by A.P.I.C. series. Academic press, 1992

[184] Lee, D.; Chang, A.; Ahn, M.; Gim, J.; Kim, J.; Jung, J.; Choi, K.-
W.; Pham, V.; Rebholz, O.; Malladi, K.; et al.: Optimizing Data
Movement with Near-Memory Acceleration of In-memory DBMS . In Pro-
ceedings of the International Conference on Extending Database Technol-
ogy (EDBT). 2020, pp. 371–374

[185] Lee, E.; Bahn, H.: Caching strategies for high-performance storage me-
dia. In ACM Transactions on Storage 10(3), 2014: pp. 1–22

[186] Lee, J.; Muehle, M.; May, N.; Faerber, F.; Sikka, V.; Plattner,
H.;Krueger, J.;Grund, M.: High-Performance Transaction Processing
in SAP HANA. In IEEE Data Eng. Bull. 36(2), 2013: pp. 28–33

[187] Lee, J.-G.; Han, J.; Li, X.; Gonzalez, H.: TraClass: trajectory classi-
fication using hierarchical region-based and trajectory-based clustering . In
Proceedings of the VLDB Endowment 1(1), 2008: pp. 1081–1094

[188] Lee, J.-G.; Han, J.; Whang, K.-Y.: Trajectory clustering: a partition-
and-group framework . In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 2007, pp. 593–604

[189] Leis, V.; Haubenschild, M.; Kemper, A.; Neumann, T.: LeanStore:
In-memory data management beyond main memory . In Proceedings of
the IEEE ICDE International Conference on Data Engineering . 2018, pp.
185–196

[190] Lemire, D.; Boytsov, L.: Decoding billions of integers per second
through vectorization. In Software: Practice and Experience 45(1), 2015:
pp. 1–29

166 References

[191] Levandoski, J. J.; Larson, P.; Stoica, R.: Identifying Hot and Cold
Data in Main-Memory Databases. In Proceedings of the IEEE Interna-
tional Conference on Data Engineering (ICDE). 2013, pp. 26–37

[192] Li, R.; Feng, W.; Wu, H.; Huang, Q.: A replication strategy for a dis-
tributed high-speed caching system based on spatiotemporal access patterns
of geospatial data. In Computers, Environment and Urban Systems 61,
2017: pp. 163–171

[193] Li, R.; He, H.; Wang, R.; Huang, Y.; Liu, J.; Ruan, S.; He, T.; Bao,
J.; Zheng, Y.: Just: Jd urban spatio-temporal data engine. In Proceedings
of the IEEE ICDE International Conference on Data Engineering . 2020,
pp. 1558–1569

[194] Li, R.; He, H.; Wang, R.; Ruan, S.; He, T.; Bao, J.; Zhang, J.;
Hong, L.; Zheng, Y.: TrajMesa: A Distributed NoSQL-Based Trajectory
Data Management System. In IEEE Transactions on Knowledge and Data
Engineering 35(1), 2021: pp. 1013–1027

[195] Li, R.; He, H.; Wang, R.; Ruan, S.; Sui, Y.; Bao, J.; Zheng, Y.:
TrajMesa: A Distributed NoSQL Storage Engine for Big Trajectory Data.
In Proceedings of the IEEE ICDE International Conference on Data En-
gineering . 2020, pp. 2002–2005

[196] Li, Y.; Chow, C.-Y.; Deng, K.; Yuan, M.; Zeng, J.; Zhang, J.-D.;
Yang, Q.; Zhang, Z.-L.: Sampling big trajectory data. In Proceedings of
the ACM International Conference on Information and Knowledge Man-
agement (CIKM). 2015, pp. 941–950

[197] Li, Y.; Luo, J.; Chow, C.-Y.; Chan, K.-L.; Ding, Y.; Zhang, F.:
Growing the charging station network for electric vehicles with trajectory
data analytics. In Proceedings of the IEEE ICDE International Conference
on Data Engineering . 2015, pp. 1376–1387

[198] Li, Z.; Ji, M.; Lee, J.-G.; Tang, L.-A.; Yu, Y.; Han, J.; Kays, R.:
MoveMine: mining moving object databases. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 2010, pp.
1203–1206

[199] Liao, Z.: Real-time taxi dispatching using global positioning systems. In
Communications of the ACM 46(5), 2003: pp. 81–83

[200] Liebner, M.; Baumann, M.; Klanner, F.; Stiller, C.: Driver intent
inference at urban intersections using the intelligent driver model . In
Proceedings of the IEEE Intelligent Vehicles Symposium (IV). 2012, pp.
1162–1167

[201] Lima, A. A.; Furtado, C.; Valduriez, P.; Mattoso, M.: Parallel
OLAP query processing in database clusters with data replication. In Dis-
tributed and Parallel Databases 25(1-2), 2009: pp. 97–123

[202] Lindner, D.; Löser, A.; Kossmann, J.: Learned What-If Cost Models
for Autonomous Clustering . In Proceedings of the European Conference
on Advances in Databases and Information Systems (ADBIS). Springer,
2021, pp. 3–13

[203] Liu, J.; Zhao, K.; Sommer, P.; Shang, S.; Kusy, B.; Jurdak, R.:
Bounded Quadrant System: Error-bounded trajectory compression on the
go. In Proceedings of the IEEE International Conference on Data Engi-
neering (ICDE). 2015, pp. 987–998

[204] Liu, J.; Zhao, K.; Sommer, P.; Shang, S.;Kusy, B.; Lee, J.-G.; Jur-
dak, R.: A novel framework for online amnesic trajectory compression in

References 167

resource-constrained environments. In IEEE Transactions on Knowledge
and Data Engineering 28(11), 2016: pp. 2827–2841

[205] Liu, X.;Karimi, H. A.: Location awareness through trajectory prediction.
In Computers, Environment and Urban Systems 30(6), 2006: pp. 741–756

[206] Liu, X.; Salem, K.: Hybrid storage management for database systems.
In Proceedings of the VLDB Endowment 6(8), 2013: pp. 541–552

[207] Liu, Y.; Seah, H. S.: Points of interest recommendation from GPS tra-
jectories. In International Journal of Geographical Information Science
29(6), 2015: pp. 953–979

[208] Lomet, D. B.: Cost/performance in modern data stores: how data caching
systems succeed . In Proceedings of the International Workshop on Data
Management on New Hardware (DaMoN). 2018, pp. 9:1–9:10

[209] Long, C.; Wong, R. C.-W.; Jagadish, H.: Direction-preserving trajec-
tory simplification. In Proceedings of the VLDB Endowment 6(10), 2013:
pp. 949–960

[210] Loos, P.; Lechtenbörger, J.; Vossen, G.; Zeier, A.; Krüger, J.;
Müller, J.; Lehner, W.; Kossmann, D.; Fabian, B.; Günther, O.;
et al.: In-Memory-Datenmanagement in betrieblichen Anwendungssyste-
men. In Wirtschaftsinformatik 53(6), 2011: pp. 383–390

[211] Lou, Y.; Zhang, C.; Zheng, Y.;Xie, X.;Wang, W.;Huang, Y.:Map-
matching for low-sampling-rate GPS trajectories. In Proceedings of the
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. 2009, pp. 352–361

[212] Luo, T.; Lee, R.; Mesnier, M.; Chen, F.; Zhang, X.: hStorage-DB:
Heterogeneity-aware Data Management to Exploit the Full Capability of
Hybrid Storage Systems. In Proceedings of the VLDB Endowment 5(10),
2012: pp. 1076–1087

[213] Luo, W.; Tan, H.; Chen, L.; Ni, L. M.: Finding time period-based most
frequent path in big trajectory data. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2013, pp. 713–724

[214] Ma, L.; Van Aken, D.; Hefny, A.; Mezerhane, G.; Pavlo, A.; Gor-
don, G. J.: Query-based workload forecasting for self-driving database
management systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 2018, pp. 631–645

[215] Mahmood, A. R.; Punni, S.; Aref, W. G.: Spatio-temporal access
methods: a survey (2010-2017). In GeoInformatica 23(1), 2019: pp. 1–36

[216] Makris, A.; da Silva, C. L.; Bogorny, V.; Alvares, L. O.;
de Macêdo, J. A. F.; Tserpes, K.: Evaluating the effect of compress-
ing algorithms for trajectory similarity and classification problems. In
GeoInformatica 25(4), 2021: pp. 679–711

[217] Makris, A.; Tserpes, K.; Spiliopoulos, G.; Zissis, D.; Anagnos-
topoulos, D.: MongoDB Vs PostgreSQL: A comparative study on per-
formance aspects. In GeoInformatica 25, 2021: pp. 243–268

[218] Mandelman, J. A.; Dennard, R. H.; Bronner, G. B.; DeBrosse,
J. K.; Divakaruni, R.; Li, Y.; Radens, C. J.: Challenges and future
directions for the scaling of dynamic random-access memory (DRAM). In
IBM Journal of Research and Development 46(2.3), 2002: pp. 187–212

[219] Marcus, R.; Papaemmanouil, O.: Plan-Structured Deep Neural Net-
work Models for Query Performance Prediction. In Proceedings of the
VLDB Endowment 12(11), 2019: pp. 1733–1746

168 References

[220] Marcus, R.; Papaemmanouil, O.; Semenova, S.; Garber, S.:
NashDB: an end-to-end economic method for elastic database fragmenta-
tion, replication, and provisioning . In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2018, pp. 1253–1267

[221] Martinez, D.; Cristobal, S.; Belkoura, S.: Smart data fusion: Prob-
abilistic record linkage adapted to merge two trajectories from different
sources. In Proceedings of the SESAR 2018

[222] Masoud, N.; Jayakrishnan, R.: A real-time algorithm to solve the peer-
to-peer ride-matching problem in a flexible ridesharing system. In Trans-
portation Research Part B: Methodological 106, 2017: pp. 218–236

[223] Matthies, C.; Kowark, T.; Richly, K.; Uflacker, M.; Plattner,
H.: How Surveys, Tutors, and Software Help to Assess Scrum Adoption
in a Classroom Software Engineering Project . In Proceedings of the ACM
International Conference on Software Engineering (ICSE). 2016, pp. 313–
322

[224] Matthies, C.; Kowark, T.; Richly, K.; Uflacker, M.; Plattner,
H.: ScrumLint: Identifying Violations of Agile Practices Using Develop-
ment Artifacts. In Proceedings of the International Workshop on Coop-
erative and Human Aspects of Software Engineering (CHASE). 2016, pp.
40–43

[225] May, N.; Lehner, W.; Shahul Hameed, P.; Maheshwari, N.;
Müller, C.; Chowdhuri, S.; Goel, A. K.: SAP HANA-From Re-
lational OLAP Database to Big Data Infrastructure. In Proceedings of
the International Conference on Extending Database Technology (EDBT).
2015, pp. 581–592

[226] Mazimpaka, J. D.; Timpf, S.: Trajectory data mining: A review of meth-
ods and applications. In Journal of Spatial Information Science 13(1),
2016: pp. 61–99

[227] Mehta, P.; Kotlarski, M.; Skoutas, D.; Sacharidis, D.; Pa-
troumpas, K.; Voisard, A.: µTOP: Spatio-Temporal Detection and
Summarization of Locally Trending Topics in Microblog Posts. In Pro-
ceedings of the International Conference on Extending Database Technol-
ogy (EDBT). 2017, pp. 558–561

[228] Mehta, P.; Sacharidis, D.; Skoutas, D.;Voisard, A.: Finding Socio-
Textual Associations Among Locations. In Proceedings of the International
Conference on Extending Database Technology (EDBT). 2017, pp. 120–
131

[229] Meratnia, N.; Rolf, A.: Spatiotemporal compression techniques for
moving point objects. In Proceedings of the International Conference on
Extending Database Technology (EDBT). 2004, pp. 765–782

[230] Mikluscák, T.; Gregor, M.; Janota, A.: Using Neural Networks for
Route and Destination Prediction in Intelligent Transport Systems. In
Proceedings of International Conference on Transport Systems Telematics
(TST). 2012, pp. 380–387

[231] Moerkotte, G.: Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing . In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB). pp. 476–487

[232] Mokbel, M. F.;Ghanem, T. M.;Aref, W. G.: Spatio-Temporal Access
Methods. In IEEE Data Eng. Bull. 26(2), 2003: pp. 40–49

References 169

[233] Morra, L.; Manigrasso, F.; Lamberti, F.: SoccER: Computer graph-
ics meets sports analytics for soccer event recognition. In SoftwareX 12,
2020: p. 100612

[234] Muckell, J.; Hwang, J.-H.; Patil, V.; Lawson, C. T.; Ping, F.;
Ravi, S.: SQUISH: an online approach for GPS trajectory compression. In
Proceedings of the International Conference on Computing for Geospatial
Research & Applications. 2011, pp. 13:1–13:8

[235] Müller, I.; Ratsch, C.; Färber, F.: Adaptive String Dictionary Com-
pression in In-Memory Column-Store Database Systems. In Proceedings of
the International Conference on Extending Database Technology (EDBT).
2014, pp. 283–294

[236] Nathan, V.; Ding, J.; Alizadeh, M.; Kraska, T.: Learning multi-
dimensional indexes. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 2020, pp. 985–1000

[237] Neumann, T.; Freitag, M. J.: Umbra: A Disk-Based System with In-
Memory Performance. In Proceedings of the Conference on Innovative
Data Systems Research (CIDR). 2020

[238] Newson, P.; Krumm, J.: Hidden Markov map matching through noise
and sparseness. In Proceedings of the ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. 2009, pp.
336–343

[239] Nibali, A.; He, Z.: Trajic: An effective compression system for trajectory
data. In IEEE Transactions on Knowledge and Data Engineering 27(11),
2015: pp. 3138–3151

[240] Noulas, A.; Scellato, S.; Lathia, N.;Mascolo, C.:Mining user mo-
bility features for next place prediction in location-based services. In Pro-
ceedings of the IEEE International Conference on Data Mining (ICDM).
2012, pp. 1038–1043

[241] Olma, M.;Karpathiotakis, M.;Alagiannis, I.;Athanassoulis, M.;
Ailamaki, A.: Adaptive Partitioning and Indexing for In Situ Query Pro-
cessing . In VLDB Journal 29(1), 2020: pp. 569–591

[242] Österreicher, F.;Vajda, I.: A new class of metric divergences on prob-
ability spaces and its applicability in statistics. In Annals of the Institute
of Statistical Mathematics 55(3), 2003: pp. 639–653

[243] Panagiotakis, C.; Pelekis, N.; Kopanakis, I.; Ramasso, E.;
Theodoridis, Y.: Segmentation and sampling of moving object trajec-
tories based on representativeness. In IEEE Transactions on Knowledge
and Data Engineering 24(7), 2012: pp. 1328–1343

[244] Pandey, V.; Kipf, A.; Vorona, D.; Mühlbauer, T.; Neumann, T.;
Kemper, A.: High-performance geospatial analytics in hyperspace. In
Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data. 2016, pp. 2145–2148

[245] Pandey, V.; van Renen, A.; Kipf, A.; Sabek, I.; Ding, J.; Kem-
per, A.: The Case for Learned Spatial Indexes. In Proceedings of the
International Workshop on Applied AI for Database Systems and Appli-
cations(AIDB) 2020: pp. 1–9

[246] Pant, N.; Fouladgar, M.; Elmasri, R.; Jitkajornwanich, K.: A
survey of spatio-temporal database research. In Proceedings of the Asian
Conference on Intelligent Information and Database Systems (ACIIDS).

170 References

Springer, 2018, Volume 10752 by Lecture Notes in Computer Science, pp.
115–126

[247] Park, C.; Sohn, S. Y.: An optimization approach for the placement of
bicycle-sharing stations to reduce short car trips: An application to the
city of Seoul . In Transportation Research Part A: Policy and Practice
105, 2017: pp. 154–166

[248] Patel, J. M.; Deshmukh, H.; Zhu, J.; Potti, N.; Zhang, Z.;
Spehlmann, M.; Memisoglu, H.; Saurabh, S.: Quickstep: A data plat-
form based on the scaling-up approach. In Proceedings of the VLDB En-
dowment 11(6), 2018: pp. 663–676

[249] Patil, V.; Singh, P.; Parikh, S.; Atrey, P. K.: GeoSClean: Secure
Cleaning of GPS Trajectory Data Using Anomaly Detection. In Proceed-
ings of the IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR). 2018, pp. 166–169

[250] Patrou, M.; Alam, M. M.; Memarzia, P.; Ray, S.; Bhavsar, V. C.;
Kent, K. B.; Dueck, G. W.: DISTIL: a distributed in-memory data
processing system for location-based services. In Proceedings of the ACM
SIGSPATIAL International Conference on Advances in Geographic Infor-
mation Systems. 2018, pp. 496–499

[251] Patterson, D. J.; Liao, L.; Fox, D.; Kautz, H. A.: Inferring High-
Level Behavior from Low-Level Sensors. In Proceedings of the Interna-
tional Conference on Ubiquitous Computing . 2003, pp. 73–89

[252] Pavlo, A.; Angulo, G.; Arulraj, J.; Lin, H.; Lin, J.; Ma, L.;
Menon, P.;Mowry, T. C.; Perron, M.;Quah, I.; et al.: Self-Driving
Database Management Systems. In Proceedings of the Conference on In-
novative Data Systems Research (CIDR). 2017

[253] Peixoto, D. A.; Zhou, X.; Hung, N. Q. V.; He, D.; Stantic, B.: A
System for Spatial-Temporal Trajectory Data Integration and Representa-
tion. In Proceedings of the International Conference on Database Systems
for Advanced Applications (DASFAA). Springer, 2018, pp. 807–812

[254] Pelekis, N.;Kopanakis, I.; Panagiotakis, C.; Theodoridis, Y.: Un-
supervised Trajectory Sampling . In Proceedings of the European Confer-
ence on Machine Learning and Knowledge Discovery in Databases 2010:
pp. 17–33

[255] Pelkonen, T.; Franklin, S.; Teller, J.; Cavallaro, P.; Huang,
Q.;Meza, J.; Veeraraghavan, K.: Gorilla: A fast, scalable, in-memory
time series database. In Proceedings of the VLDB Endowment 8(12), 2015:
pp. 1816–1827

[256] Peng, I.; McFadden, M.; Green, E.; Iwabuchi, K.; Wu, K.; Li,
D.; Pearce, R.; Gokhale, M.: UMap: Enabling application-driven opti-
mizations for page management . In Proceedings of the IEEE/ACM Work-
shop on Memory Centric High Performance Computing (MCHPC). 2019,
pp. 71–78

[257] Peng, I. B.; Gokhale, M. B.; Youssef, K.; Iwabuchi, K.; Pearce,
R.: Enabling Scalable and Extensible Memory-Mapped Datastores in
Userspace. In IEEE Transactions on Parallel and Distributed Systems
33(4), 2022: pp. 866–877

[258] Pfoser, D.; Jensen, C. S.; Theodoridis, Y.: Novel Approaches to the
Indexing of Moving Object Trajectories. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB). 2000, pp. 395–406

References 171

[259] Phillips, D. J.; Wheeler, T. A.; Kochenderfer, M. J.: Generaliz-
able intention prediction of human drivers at intersections. In Proceedings
of the IEEE Intelligent Vehicles Symposium (IV). 2017, pp. 1665–1670

[260] Pirk, H.; Funke, F.; Grund, M.; Neumann, T.; Leser, U.; Mane-
gold, S.; Kemper, A.; Kersten, M.: CPU and cache efficient manage-
ment of memory-resident databases. In Proceedings of the IEEE Interna-
tional Conference on Data Engineering (ICDE). 2013, pp. 14–25

[261] Plattner, H.: A common database approach for OLTP and OLAP using
an in-memory column database. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2009, pp. 1–2

[262] Plattner, H.: A Course in In-Memory Data Management . Springer,
2013

[263] Plattner, H.: The impact of columnar in-memory databases on enter-
prise systems: implications of eliminating transaction-maintained aggre-
gates. In Proceedings of the VLDB Endowment 7(13), 2014: pp. 1722–1729

[264] Plattner, H.; Zeier, A.: In-memory data management: technology and
applications. Springer Science & Business Media, 2012

[265] Psaraftis, H. N.: Dynamic Vehicle Routing: Status and Prospects. In
Annals of Operations Research 61(1), 1995: pp. 143–164

[266] Psaraftis, H. N.; Wen, M.; Kontovas, C. A.: Dynamic Vehicle Rout-
ing Problems: Three Decades and Counting . In Networks 67(1), 2016: pp.
3–31

[267] Psaroudakis, I.; Scheuer, T.; May, N.; Sellami, A.; Ailamaki, A.:
Scaling up concurrent main-memory column-store scans: towards adap-
tive NUMA-aware data and task placement . In Proceedings of the VLDB
Endowment 8(12), 2015: pp. 1442–1453

[268] Psaroudakis, I.; Scheuer, T.; May, N.; Sellami, A.; Ailamaki, A.:
Adaptive NUMA-aware data placement and task scheduling for analytical
workloads in main-memory column-stores. In Proceedings of the VLDB
Endowment 10(2), 2016: pp. 37–48

[269] Quddus, M. A.; Ochieng, W. Y.; Zhao, L.; Noland, R. B.: A Gen-
eral Map Matching Algorithm for Transport Telematics Applications. In
GPS Solutions 7(3), 2003: pp. 157–167

[270] Raman, V.; Swart, G.: How to Wring a Table Dry: Entropy Compres-
sion of Relations and Querying of Compressed Relations. In Proceedings
of the International Conference on Very Large Data Bases (VLDB). 2006,
pp. 858–869

[271] Ranu, S.; Deepak, P.; Telang, A. D.; Deshpande, P.; Raghavan,
S.: Indexing and matching trajectories under inconsistent sampling rates.
In Proceedings of the IEEE International Conference on Data Engineering
(ICDE). 2015, pp. 999–1010

[272] Rasetic, S.; Sander, J.; Elding, J.; Nascimento, M. A.: A Trajec-
tory Splitting Model for Efficient Spatio-Temporal Indexing . In Proceed-
ings of the International Conference on Very Large Data (VLDB). 2005,
pp. 934–945

[273] Ratnasamy, S.; Francis, P.; Handley, M.; Karp, R.; Shenker,
S.: A scalable content-addressable network . In Proceedings of the ACM
SIGCOMM Conference on Applications, Technologies. 2001, pp. 161–172

172 References

[274] Richly, K.: Leveraging Spatio-Temporal Soccer Data to Define a Graph-
ical Query Language for Game Recordings. In Proceedings of the IEEE
International Conference on Big Data (BigData). 2018, pp. 3456–3463

[275] Richly, K.: A Survey on Trajectory Data Management for Hybrid Trans-
actional and Analytical Workloads. In Proceedings of the IEEE Interna-
tional Conference on Big Data (BigData). 2018, pp. 562–569

[276] Richly, K.: Optimized Spatio-Temporal Data Structures for Hy-
brid Transactional and Analytical Workloads on Columnar In-Memory
Databases. In Proceedings of the VLDB PhD Workshop. 2019, pp. 1–4

[277] Richly, K.: Memory-Efficient Storing of Timestamps for Spatio-
Temporal Data Management in Columnar In-Memory Databases. In Pro-
ceedings of the International Conference on Database Systems for Ad-
vanced Applications (DASFAA). 2021, pp. 542–557

[278] Richly, K.; Bothe, M.; Rohloff, T.; Schwarz, C.: Recognizing Com-
pound Events in Spatio-Temporal Football Data. In Proceedings of the
International Conference on Internet of Things and Big Data (IoTBD).
2016, pp. 27–35

[279] Richly, K.; Brauer, J.; Schlosser, R.: Predicting Location Probabil-
ities of Drivers to Improve Dispatch Decisions of Transportation Network
Companies based on Trajectory Data. In Proceedings of the International
Conference on Operations Research and Enterprise Systems (ICORES).
2020, pp. 47–58

[280] Richly, K.; Lorenz, M.; Oergel, S.: S4J – Integrating SQL into Java
at Compiler-Level . In Proceedings of the International Conference on In-
formation and Software Technologies (ICIST). Springer, 2016, Volume 639
by Communications in Computer and Information Science, pp. 300–315

[281] Richly, K.; Moritz, F.; Schwarz, C.: Utilizing Artificial Neural Net-
works to Detect Compound Events in Spatio-Temporal Soccer Data. In
Proceedings of the ACM SIGKDD Workshop on Mining and Learning from
Time Series (MiLeTs). 2017, pp. 13–17

[282] Richly, K.; Schlosser, R.; Boissier, M.: Joint Index, Sorting, and
Compression Optimization for Memory-Efficient Spatio-Temporal Data
Management . In Proceedings of the IEEE International Conference on
Data Engineering (ICDE). 2021, pp. 1901–1906

[283] Richly, K.; Schlosser, R.; Boissier, M.: Budget-Conscious Fine-
Grained Configuration Optimization for Spatio-Temporal Applications. In
Proceedings of the VLDB Endowment 15(13), 2022: pp. 4079 – 4092

[284] Richly, K.; Schlosser, R.; Brauer, J.: Enabling Risk-averse Dispatch
Processes for Transportation Network Companies by Probabilistic Location
Prediction. In Operations Research and Enterprise Systems. Springer,
2022, Volume 1623 by Communications in Computer and Information
Science, pp. 21–42

[285] Richly, K.; Schlosser, R.; Brauer, J.; Plattner, H.: A Probabilistic
Location Prediction Approach to Optimize Dispatch Processes in the Ride-
Hailing Industry . In Proceedings of the Hawaii International Conference
on System Sciences (HICSS). 2021, pp. 1830–1840

[286] Richly, K.; Teusner, R.: Where is the Money Made? An Interactive
Visualization of Profitable Areas in New York City . In Proceedings of the
International Conference on IoT in Urban Space (Urb-IoT). ACM, 2016,
pp. 43–46

References 173

[287] Richly, K.;Teusner, R.; Immer, A.;Windheuser, F.;Wolf, L.:Op-
timizing Routes of Public Transportation Systems by Analyzing the Data
of Taxi Rides. In Proceedings of the International ACM SIGSPATIAL
Workshop on Smart Cities and Urban Analytics. 2015, pp. 70–76

[288] Roddick, J. F.; Spiliopoulou, M.: A bibliography of temporal, spatial
and spatio-temporal data mining research. In ACM SIGKDD Explorations
1(1), 1999: pp. 34–38

[289] Sacks-Davis, R.; McDonell, K.; Ooi, B.: GEOQL-A query language
for geographic information systems. In Technical Report 87/2, Monash
University . 1987

[290] Sagan, H.: Space-filling curves. Springer Science & Business Media, 2012
[291] Šaltenis, S.; Jensen, C. S.; Leutenegger, S. T.; Lopez, M. A.:

Indexing the positions of continuously moving objects. In Proceedings of
the ACM SIGMOD International Conference on Management of Data.
2000, pp. 331–342

[292] Sandu Popa, I.; Zeitouni, K.; Oria, V.; Barth, D.; Vial, S.: In-
dexing in-network trajectory flows. In VLDB Journal 20(5), 2011: pp.
643–669

[293] Santipantakis, G. M.; Glenis, A.; Patroumpas, K.; Vlachou, A.;
Doulkeridis, C.; Vouros, G. A.; Pelekis, N.; Theodoridis, Y.:
SPARTAN: Semantic integration of big spatio-temporal data from stream-
ing and archival sources. In Future Generation Computer Systems 110,
2020: pp. 540–555

[294] Sattler, K.-U.; Schallehn, E.; Geist, I.: Towards Indexing Schemes
for Self-Tuning DBMS . In Proceedings of the IEEE International Confer-
ence on Data Engineering (ICDE) Workshops. 2005, p. 1216

[295] Schlosser, R.; Kossmann, J.; Boissier, M.: Efficient Scalable Multi-
Attribute Index Selection Using Recursive Strategies. In Proceedings of the
IEEE International Conference on Data Engineering (ICDE). 2019, pp.
1238–1249

[296] Schlosser, R.; Richly, K.: Dynamic Pricing Competition with Unob-
servable Inventory Levels: A Hidden Markov Model Approach. In Oper-
ations Research and Enterprise Systems. Springer, 2018, Volume 966 by
Communications in Computer and Information Science, pp. 15–36

[297] Schlosser, R.; Richly, K.: Dynamic Pricing Strategies in a Finite
Horizon Duopoly with Partial Information. In Proceedings of the In-
ternational Conference on Operations Research and Enterprise Systems
(ICORES). 2018, pp. 21–30

[298] Schlosser, R.; Richly, K.: Dynamic Pricing under Competition with
Data-Driven Price Anticipations and Endogenous Reference Price Effects.
In Journal of Revenue and Pricing Management 18(6), 2019: pp. 451–464

[299] Schweizer, H.; Besta, M.; Hoefler, T.: Evaluating the Cost of
Atomic Operations on Modern Architectures. In Proceedings of the
IEEE International Conference on Parallel Architecture and Compilation
(PACT). 2015, pp. 445–456

[300] Seshadri, P.; Swami, A.: Generalized Partial Indexes. In Proceedings of
the IEEE International Conference on Data Engineering (ICDE). 1995,
pp. 420–427

[301] Shang, S.; Lu, H.; Pedersen, T. B.; Xie, X.: Finding Traffic-Aware
Fastest Paths in Spatial Networks. In Proceedings of the International

174 References

Symposium on Spatial and Temporal Databases (SSTD). 2013, pp. 128–
145

[302] Shang, Z.; Li, G.; Bao, Z.: Dita: Distributed In-Memory Trajectory
Analytics. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 2018, pp. 725–740

[303] Sherkat, R.; Florendo, C.; Andrei, M.; Blanco, R.; Dragusanu,
A.; Pathak, A.; Khadilkar, P.; Kulkarni, N.; Lemke, C.; Seifert,
S.; et al.: Native store extension for SAP HANA. In Proceedings of the
VLDB Endowment 12(12), 2019: pp. 2047–2058

[304] Sherkat, R.; Florendo, C.; Andrei, M.; Goel, A. K.; Nica, A.;
Bumbulis, P.; Schreter, I.; Radestock, G.; Bensberg, C.; Booss,
D.; et al.: Page as you go: Piecewise columnar access in SAP HANA.
In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data. 2016, pp. 1295–1306

[305] Shoval, N.: Tracking technologies and urban analysis. In Cities 25(1),
2008: pp. 21–28

[306] Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R.: The hadoop
distributed file system. In Proceedings of the IEEE Symposium on Mass
Storage Systems and Technologies (MSST). 2010, pp. 1–10

[307] Sikka, V.; Färber, F.; Lehner, W.;Cha, S. K.; Peh, T.;Bornhövd,
C.: Efficient transaction processing in SAP HANA database: the end of
a column store myth. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 2012, pp. 731–742

[308] Simmons, R. G.; Browning, B.; Zhang, Y.; Sadekar, V.: Learning to
Predict Driver Route and Destination Intent . In Proceedings of the IEEE
Intelligent Transportation Systems Conference (ITSC). 2006, pp. 127–132

[309] Snodgrass, R. T.: The TSQL2 temporal query language. Springer Sci-
ence & Business Media, 2012

[310] Song, R.; Sun, W.; Zheng, B.; Zheng, Y.: PRESS: A novel framework
of trajectory compression in road networks. In Proceedings of the VLDB
Endowment 7(9), 2014: pp. 661–672

[311] Song, Z.; Roussopoulos, N.: SEB-tree: An Approach to Index Contin-
uously Moving Objects. In Proceedings of the International Conference on
Mobile Data Management (MDM). 2003, pp. 340–344

[312] Stoica, R.; Ailamaki, A.: Enabling efficient OS paging for main-
memory OLTP databases. In Proceedings of the International Workshop
on Data Management on New Hardware (DaMoN). 2013, pp. 1–7

[313] Stonebraker, M.: Operating system support for database management .
In Communications of the ACM 24(7), 1981: pp. 412–418

[314] Stonebraker, M.: The case for partial indexes. In ACM Sigmod Record
18(4), 1989: pp. 4–11

[315] Stonebraker, M.; Abadi, D. J.; Batkin, A.; Chen, X.; Cherni-
ack, M.; Ferreira, M.; Lau, E.; Lin, A.; Madden, S.; O’Neil,
E. J.; O’Neil, P. E.; Rasin, A.; Tran, N.; Zdonik, S. B.: C-Store: A
Column-oriented DBMS . In Proceedings of the International Conference
on Very Large Data Bases (VLDB). 2005, pp. 553–564

[316] Stonebraker, M.; Kemnitz, G.: The POSTGRES next generation
database management system. In Communications of the ACM 34(10),
1991: pp. 78–92

References 175

[317] Stonebraker, M.; Weisberg, A.: The VoltDB Main Memory DBMS .
In IEEE Data Eng. Bull. 36(2), 2013: pp. 21–27

[318] Stougiannis, A.; Pavlovic, M.; Tauheed, F.; Heinis, T.; Ailamaki,
A.: Data-driven neuroscience: enabling breakthroughs via innovative data
management . In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data. 2013, pp. 953–956

[319] Strötgen, J.; Gertz, M.: TimeTrails: a system for exploring spatio-
temporal information in documents. In Proceedings of the VLDB Endow-
ment 3(1-2), 2010: pp. 1569–1572

[320] Su, H.; Liu, S.; Zheng, B.; Zhou, X.; Zheng, K.: A survey of trajectory
distance measures and performance evaluation. In VLDB Journal 29(1),
2020: pp. 3–32

[321] Su, H.; Zheng, K.; Huang, J.;Wang, H.; Zhou, X.: Calibrating trajec-
tory data for spatio-temporal similarity analysis. In VLDB Journal 24(1),
2015: pp. 93–116

[322] Su, H.; Zheng, K.; Wang, H.; Huang, J.; Zhou, X.: Calibrating tra-
jectory data for similarity-based analysis. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 2013, pp.
833–844

[323] Su, H.; Zheng, K.; Zeng, K.;Huang, J.; Zhou, X.: STMaker: a system
to make sense of trajectory data. In Proceedings of the VLDB Endowment
7(13), 2014: pp. 1701–1704

[324] Subha, S.: An Algorithm for Buffer Cache Management . In Proceedings
of the IEEE International Conference on Information Technology: New
Generations (ITNG). 2009, pp. 889–893

[325] Tailor, P.; Morena, R. D.: A survey of database buffer cache man-
agement approaches. In International Journal of Advanced Research in
Computer Science 8(3), 2017: pp. 409–414

[326] Tajalli, M.; Hajbabaie, A.: Traffic Signal Timing and Trajectory Op-
timization in a Mixed Autonomy Traffic Stream. In IEEE Transactions
on Intelligent Transportation Systems 23(7), 2022: pp. 6525–6538

[327] Tan, H.; Luo, W.; Ni, L. M.: CloST: A Hadoop-Based Storage Sys-
tem for Big Spatio-Temporal Data Analytics. In Proceedings of the ACM
International Conference on Information and Knowledge Management
(CIKM). 2012, pp. 2139–2143

[328] Tang, M.; Yu, Y.; Malluhi, Q. M.; Ouzzani, M.; Aref, W. G.:
Locationspark: A distributed in-memory data management system for big
spatial data. In Proceedings of the VLDB Endowment 9(13), 2016: pp.
1565–1568

[329] Tanuja, V.; Govindarajulu, P.: A Survey on Trajectory Data Mining .
In International Journal of Computer Science and Security (IJCSS) 10(5),
2016: pp. 195–214

[330] Tao, Y.; Papadias, D.; Sun, J.: The TPR*-Tree: An Optimized Spatio-
Temporal Access Method for Predictive Queries. In Proceedings of the
International Conference on Very Large Data Bases (VLDB). 2003, pp.
790–801

[331] Tariq, Z. B.; Cheema, D. M.; Kamran, M. Z.; Naqvi, I. H.: Non-
GPS positioning systems: A survey . In ACM Computing Surveys (CSUR)
50(4), 2017: pp. 1–34

176 References

[332] Taxi, N.; (TLC), L. C.: Trip Record Data, 2020, (Accessed: 2023-02-
01).
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.

page

[333] Teusner, R.; Richly, K.; Staubitz, T.; Renz, J.: Enhancing Con-
tent between Iterations of a MOOC–Effects on Key Metrics. In European
MOOCs Stakeholder Summit 2015: pp. 147–156

[334] Tian, Y.; Ji, Y.; Scholer, J.: A prototype spatio-temporal database built
on top of relational database. In Proceedings of the IEEE International
Conference on Information Technology: New Generations (ITNG). 2015,
pp. 14–19

[335] Toohey, K.; Duckham, M.: Trajectory similarity measures. In ACM
SIGSPATIAL Special 7(1), 2015: pp. 43–50

[336] Trajcevski, G.; Ding, H.; Scheuermann, P.; Cruz, I. F.: Bora:
Routing and aggregation for distributed processing of spatio-temporal range
queries. In Proceedings of the IEEE International Conference on Mobile
Data Management (MDM). 2007, pp. 36–43

[337] Trasarti, R.; Guidotti, R.; Monreale, A.; Giannotti, F.: MyWay:
Location prediction via mobility profiling . In Information Systems 64,
2017: pp. 350–367

[338] Treiber, M.; Kesting, A.: Traffic Flow Dynamics. In Traffic Flow
Dynamics: Data, Models and Simulation 2013: pp. 983–1000

[339] Tsubouchi, Y.; Wakisaka, A.; Hamada, K.; Matsuki, M.; Abe, H.;
Matsumoto, R.: HeteroTSDB: An Extensible Time Series Database for
Automatically Tiering on Heterogeneous Key-Value Stores. In Proceed-
ings of the IEEE Annual Computer Software and Applications Conference
(COMPSAC). 2019, Volume 1, pp. 264–269

[340] Ungureanu, C.; Debnath, B.; Rago, S.; Aranya, A.: TBF: A
memory-efficient replacement policy for flash-based caches. In Proceed-
ings of the IEEE International Conference on Data Engineering (ICDE).
2013, pp. 1117–1128

[341] Valdés, F.; Güting, R. H.: A framework for efficient multi-attribute
movement data analysis. In VLDB Journal 28(4), 2019: pp. 427–449

[342] Valentin, G.; Zuliani, M.; Zilio, D. C.; Lohman, G. M.; Skelley,
A.: DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own
Indexes. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE). 2000, pp. 101–110

[343] Van Aken, D.; Yang, D.; Brillard, S.; Fiorino, A.; Zhang, B.;
Bilien, C.; Pavlo, A.: An inquiry into machine learning-based automatic
configuration tuning services on real-world database management systems.
In Proceedings of the VLDB Endowment 14(7), 2021: pp. 1241–1253

[344] Vanderbei, R. J.: Linear Programming – Foundations and Extensions.
Springer, 2014

[345] Vermeij, M.; Quak, W.; Kersten, M.; Nes, N.: MonetDB, A Novel
Spatial Column-Store DBMS . In Proceedings of the Free and Open Source
for Geospatial (FOSS4G) Conference. 2008, pp. 193–199

[346] Vieira, M. R.; Bakalov, P.; Tsotras, V. J.: Querying Trajectories
Using Flexible Patterns. In Proceedings of the International Conference
on Extending Database Technology (EDBT). 2010, pp. 406–417

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

References 177

[347] Vlachos, M.; Kollios, G.; Gunopulos, D.: Discovering Similar Mul-
tidimensional Trajectories. In Proceedings of the IEEE International Con-
ference on Data Engineering (ICDE). 2002, pp. 673–684

[348] Vogel, L.; Leis, V.; van Renen, A.; Neumann, T.; Imamura, S.;
Kemper, A.: Mosaic: a budget-conscious storage engine for relational
database systems. In Proceedings of the VLDB Endowment 13(12), 2020:
pp. 2662–2675

[349] Wang, D.; Miwa, T.; Morikawa, T.: Big trajectory data mining: a
survey of methods, applications, and services. In Sensors 20(16), 2020: p.
4571

[350] Wang, H.; Su, H.; Zheng, K.; Sadiq, S.; Zhou, X.: An Effective-
ness Study on Trajectory Similarity Measures. In Proceedings of the Aus-
tralasian Database Conference (ADC). 2013, pp. 13–22

[351] Wang, H.; Varman, P.: Balancing Fairness and Efficiency in Tiered
Storage Systems with Bottleneck-Aware Allocation. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST). 2014, pp.
229–242

[352] Wang, H.; Zheng, K.; Jeung, H.; Bracher, S.; Islam, A.; Sadiq,
W.; Sadiq, S.; Zhou, X.: Storing and Processing Massive Trajectory
Data on SAP HANA. In Proceedings of the Australasian Database Con-
ference (ADC). 2015, pp. 66–77

[353] Wang, H.; Zheng, K.; Xu, J.; Zheng, B.; Zhou, X.; Sadiq, S.:
SharkDB: An In-Memory Column-Oriented Trajectory Storage. In Pro-
ceedings of the ACM International Conference on Information and Knowl-
edge Management (CIKM). 2014, pp. 1409–1418

[354] Wang, J.; Trummer, I.; Basu, D.: UDO: Universal Database Opti-
mization Using Reinforcement Learning . In Proceedings of the VLDB
Endowment 14(13), 2021: p. 34023414

[355] Wang, S.; Bao, Z.;Culpepper, J. S.;Cong, G.: A survey on trajectory
data management, analytics, and learning . In ACM Computing Surveys
(CSUR) 54(2), 2021: pp. 1–36

[356] Wang, S.; Cao, J.; Yu, P. S.: Deep Learning for Spatio-Temporal Data
Mining: A Survey . In IEEE Transactions on Knowledge and Data Engi-
neering 34(8), 2022: pp. 3681–3700

[357] Wang, X.; Ma, Y.; Di, J.; Murphey, Y. L.; Qiu, S.; Kristinsson,
J.; Meyer, J.; Tseng, F.; Feldkamp, T.: Building Efficient Probability
Transition Matrix Using Machine Learning from Big Data for Personal-
ized Route Prediction. In Proceedings of the INNS Conference on Big
Data. 2015, pp. 284–291

[358] Wang, Y.; Zheng, Y.;Xue, Y.: Travel Time Estimation of a Path Using
Sparse Trajectories. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining . 2014, pp. 25–34

[359] Wang, Y.; Zhu, Y.; He, Z.; Yue, Y.; Li, Q.: Challenges and Oppor-
tunities in Exploiting Large-Scale GPS Probe Data. In HP Laboratories,
Technical Report HPL-2011-109 2011: pp. 1–10

[360] Wang, Z.; Long, C.; Cong, G.: Trajectory Simplification with Rein-
forcement Learning . In Proceedings of the IEEE International Conference
on Data Engineering (ICDE). 2021, pp. 684–695

178 References

[361] Weisgut, M.: Experimental Index Evaluation for Partial Indexes in Hor-
izontally Partitioned In-Memory Databases. In Proceedings of the GI-
Workshop Grundlagen von Datenbanken (GvDB). 2021

[362] Westmann, T.; Kossmann, D.; Helmer, S.; Moerkotte, G.: The
implementation and performance of compressed databases. In ACM Sig-
mod Record 29(3), 2000: pp. 55–67

[363] Willhalm, T.; Popovici, N.; Boshmaf, Y.; Plattner, H.; Zeier,
A.; Schaffner, J.: SIMD-scan: ultra fast in-memory table scan using
on-chip vector processing units. In Proceedings of the VLDB Endowment
2(1), 2009: pp. 385–394

[364] Wu, E.; Madden, S.: Partitioning Techniques for Fine-Grained Index-
ing . In Proceedings of the IEEE International Conference on Data Engi-
neering (ICDE). 2011, pp. 1127–1138

[365] Xiao, Z.; Wang, Y.; Fu, K.; Wu, F.: Identifying Different Transporta-
tion Modes from Trajectory Data Using Tree-Based Ensemble Classifiers.
In ISPRS International Journal of Geo-Information 6(2), 2017: p. 57

[366] Xie, D.; Li, F.; Yao, B.; Li, G.; Zhou, L.; Guo, M.: Simba: Efficient
in-memory spatial analytics. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data. 2016, pp. 1071–1085

[367] Xie, X.; Mei, B.; Chen, J.; Du, X.; Jensen, C. S.: Elite: an elastic
infrastructure for big spatiotemporal trajectories. In VLDB Journal 25(4),
2016: pp. 473–493

[368] Xie, Z.; Wang, H.; Wu, L.: The improved Douglas-Peucker algorithm
based on the contour character . In Proceedings of the International Con-
ference on Geoinformatics. 2011, pp. 1–5

[369] Xu, Z.; Li, Z.; Guan, Q.; Zhang, D.; Li, Q.; Nan, J.; Liu, C.; Bian,
W.; Ye, J.: Large-scale order dispatch in on-demand ride-hailing plat-
forms: A learning and planning approach. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery & Data Min-
ing . 2018, pp. 905–913

[370] Yang, B.; Guo, C.; Ma, Y.; Jensen, C. S.: Toward personalized,
context-aware routing . In VLDB Journal 24(2), 2015: pp. 297–318

[371] Ye, N.; Wang, Z. Q.; Malekian, R.; Lin, Q.; Wang, R. C.: A Method
for Driving Route Predictions Based on Hidden Markov Model . In Math-
ematical Problems in Engineering 2015: pp. 1–12

[372] You, S.; Zhang, J.; Gruenwald, L.: Spatial Join Query Processing in
Cloud: Analyzing Design Choices and Performance Comparisons. In Pro-
ceedings of the International Conference on Parallel Processing Workshops
(ICPPW). 2015, pp. 90–97

[373] Yu, J.; Wu, J.; Sarwat, M.: Geospark: A cluster computing framework
for processing large-scale spatial data. In Proceedings of the ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems. 2015, pp. 70:1–70:4

[374] Yuan, J.; Zheng, Y.; Xie, X.: Discovering regions of different functions
in a city using human mobility and POIs. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery & Data Min-
ing . 2012, pp. 186–194

[375] Yuan, N. J.; Zheng, Y.; Xie, X.; Wang, Y.; Zheng, K.; Xiong, H.:
Discovering urban functional zones using latent activity trajectories. In

References 179

IEEE Transactions on Knowledge and Data Engineering 27(3), 2014: pp.
712–725

[376] Yue, Z.; Zhang, J.; Zhang, H.; Yang, Q.: Time-Based Trajectory Data
Partitioning for Efficient Range Query . In Proceedings of the DASFAA
International Workshop on Big Data Management ad Service (BDMS).
2018, pp. 24–35

[377] Zacharatou, E. T.: Efficient Query Processing for Spatial and Tem-
poral Data Exploration. Dissertation, Ecole Polytechnique Fédérale de
Lausanne, 2019

[378] Zaharia, M.; Xin, R. S.; Wendell, P.; Das, T.; Armbrust, M.;
Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin,
M. J.; et al.: Apache spark: a unified engine for big data processing .
In Communications of the ACM 59(11), 2016: pp. 56–65

[379] Zhang, D.; Ding, M.; Yang, D.; Liu, Y.; Fan, J.; Shen, H. T.: Tra-
jectory simplification: an experimental study and quality analysis. In Pro-
ceedings of the VLDB Endowment 11, 2018: pp. 934–946

[380] Zhang, H.; Andersen, D. G.; Pavlo, A.; Kaminsky, M.; Ma,
L.; Shen, R.: Reducing the Storage Overhead of Main-Memory OLTP
Databases with Hybrid Indexes. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2016, pp. 1567–1581

[381] Zhang, H.; Chen, G.; Ooi, B. C.; Tan, K.-L.; Zhang, M.: In-memory
big data management and processing: A survey . In IEEE Transactions on
Knowledge and Data Engineering 27(7), 2015: pp. 1920–1948

[382] Zhang, J.; Liu, Y.; Zhou, K.; Li, G.; Xiao, Z.; Cheng, B.; Xing, J.;
Wang, Y.; Cheng, T.; Liu, L.; et al.: An End-to-End Automatic Cloud
Database Tuning System Using Deep Reinforcement Learning . In Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data. 2019, pp. 415–432

[383] Zhang, L.; Yi, J.: Management Methods of Spatial Data Based on Post-
GIS . In Proceedings of the Pacific-Asia Conference on Circuits, Commu-
nications and System. 2010, pp. 410–413

[384] Zhang, N.; Zheng, G.;Chen, H.;Chen, J.;Chen, X.: HBaseSpatial: A
Scalable Spatial Data Storage Based on HBase. In Proceedings of the IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). 2014, pp. 644–651

[385] Zhang, R.; Xie, P.; Wang, C.; Liu, G.; Wan, S.: Classifying Trans-
portation Mode and Speed from Trajectory Data via Deep Multi-Scale
Learning . In Computer Networks 162(C), 2019: p. 106861

[386] Zhang, X.; Chang, Z.; Li, Y.; Wu, H.; Tan, J.; Li, F.; Cui, B.: Facil-
itating Database Tuning with Hyper-Parameter Optimization: A Compre-
hensive Experimental Evaluation. In Proceedings of the VLDB Endowment
15(9), 2022: pp. 1808–1821

[387] Zhang, X.; Li, W.; Zhang, F.; Liu, R.;Du, Z.: Identifying Urban Func-
tional Zones Using Public Bicycle Rental Records and Point-of-Interest
Data. In ISPRS International Journal of Geo-Information 7(12), 2018:
pp. 459–474

[388] Zhang, X.; Xie, L.;Wang, Z.; Zhou, J.: Boosted Trajectory Calibration
for Traffic State Estimation. In Proceedings of the IEEE International
Conference on Data Mining (ICDM). 2019, pp. 866–875

180 References

[389] Zhang, Z.; Huang, K.; Tan, T.: Comparison of Similarity Measures for
Trajectory Clustering in Outdoor Surveillance Scenes. In Proceedings of
the International Conference on Pattern Recognition (ICPR). 2006, pp.
1135–1138

[390] Zhang, Z.; Jin, C.;Mao, J.;Yang, X.; Zhou, A.: TrajSpark: A Scalable
and Efficient In-Memory Management System for Big Trajectory Data. In
Proceedings of the International Joint Conference on Web and Big Data
(APWeb-WAIM). 2017, pp. 11–26

[391] Zhao, L.; Jin, P.; Zhang, L.;Wang, H.; Lin, S.: Developing an Oracle-
Based Spatio-Temporal Information Management System. In Proceedings
of the International Conference on Database Systems for Adanced Appli-
cations (DASFAA). 2011, pp. 168–176

[392] Zhao, Y.; Shang, S.; Wang, Y.; Zheng, B.; Nguyen, Q. V. H.;
Zheng, K.: REST: A Reference-based Framework for Spatio-temporal
Trajectory Compression. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining . 2018, pp.
2797–2806

[393] Zheng, B.;Wang, H.; Zheng, K.; Su, H.; Liu, K.; Shang, S.: Sharkdb:
An In-Memory Column-Oriented Storage for Trajectory Analysis. In
World Wide Web 21(2), 2018: pp. 455–485

[394] Zheng, K.; Zheng, Y.; Xie, X.; Zhou, X.: Reducing Uncertainty of
Low-Sampling-Rate Trajectories. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE). 2012, pp. 1144–1155

[395] Zheng, Y.: Trajectory data mining: an overview . In ACM Transactions
on Intelligent Systems and Technology (TIST) 6(3), 2015: pp. 1–41

[396] Zheng, Y.; Zhou, X.: Computing with spatial trajectories. Springer Sci-
ence & Business Media, 2011

[397] Zhou, J.; Tung, A. K.; Wu, W.; Ng, W. S.: A ”semi-lazy” approach to
probabilistic path prediction. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining . 2013, pp.
748–756

[398] Zhou, X.; Chai, C.; Li, G.; Sun, J.: Database Meets Artificial Intelli-
gence: A Survey . In IEEE Transactions on Knowledge and Data Engi-
neering 34(3), 2020: pp. 1096–1116

[399] Zhu, L.; Holden, J. R.; Gonder, J. D.: Trajectory Segmentation Map-
Matching Approach for Large-Scale, High-Resolution GPS Data. In Trans-
portation Research Record 2645(1), 2017: pp. 67–75

[400] Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; Dey, A. K.: Maximum
Entropy Inverse Reinforcement Learning . In Proceedings of the Conference
on Artificial Intelligence (AAAI). 2008, pp. 1433–1438

[401] Ziebart, B. D.; Maas, A. L.; Dey, A. K.; Bagnell, J. A.: Navi-
gate Like a Cabbie: Probabilistic Reasoning from Observed Context-Aware
Behavior . In Proceedings of the ACM International Conference on Ubiq-
uitous Computing (UbiComp). 2008, pp. 322–331

[402] Zilio, D. C.; Rao, J.; Lightstone, S.; Lohman, G.; Storm, A.;
Garcia-Arellano, C.; Fadden, S.: DB2 Design Advisor: Integrated
Automatic Physical Database Design. In Proceedings of the International
Conference on Very Large Data Bases (VLDB). 2004, pp. 1087–1097

References 181

[403] Zimányi, E.; Sakr, M. A.; Lesuisse, A.: MobilityDB: A Mobility
Database Based on PostgreSQL and PostGIS . In ACM Transactions on
Database Systems 45(4), 2020: pp. 19:1–19:42

[404] Zukowski, M.; Boncz, P. A.; Nes, N.; Héman, S.: MonetDB/X100-A
DBMS in the CPU Cache. In IEEE Data Eng. Bull. 28(2), 2005: pp.
17–22

[405] Zyner, A.; Worrall, S.; Ward, J. R.; Nebot, E. M.: Long Short
Term Memory for Driver Intent Prediction. In Proceedings of the IEEE
Intelligent Vehicles Symposium (IV). 2017, pp. 1484–1489

Eigenständigkeitserklärung
Declaration of Authorship

Hiermit versichere ich an Eides statt, dass die vorliegende Arbeit bisher an keiner
anderen Hochschule eingereicht worden ist sowie selbständig und ausschließlich
mit den angegebenen Mitteln angefertigt worden ist. Die Stellen der Arbeit, die
anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, sind durch
Angaben und Quellen kenntlich gemacht.

Potsdam, 31. März 2024

Keven Richly

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Business Impact of Spatio-Temporal Data Mining Applications
	1.2 Challenges of Spatio-Temporal Data Management
	1.2.1 Optimization Capabilities of Modern Database Systems
	1.2.2 Research Context

	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Spatio-Temporal Data Mining
	2.1.1 Data Collection and Characteristics of Spatio-Temporal Data
	2.1.2 Preprocessing
	2.1.3 Data Management
	2.1.4 Query Processing
	2.1.5 Data Mining and Applications

	2.2 Aspects of Spatio-Temporal Data Management
	2.2.1 Data Layouts for Trajectory Data
	2.2.2 Data Partitioning
	2.2.3 Compression
	2.2.4 Time Awareness
	2.2.5 Data Placement and Tiering
	2.2.6 Index Structures
	2.2.7 Data Access and Interoperability

	2.3 Columnar In-Memory Data Management Systems
	2.3.1 Storage Concepts of In-Memory Column Stores
	2.3.2 Hyrise: A Relational Columnar In-Memory Research Databases

	2.4 Summary

	3 Related Work
	3.1 Spatio-Temporal Data Management Systems
	3.2 Database Optimizations Based on Data and Workload Characteristics
	3.2.1 Compression Scheme Selection
	3.2.2 Index Tuning
	3.2.3 Data Tiering Decisions
	3.2.4 Joint Tuning Approaches
	3.2.5 Storage Concepts for Timestamps

	3.3 Summary

	4 Optimizing Passenger Dispatch Decisions of Transportation Network Companies
	4.1 Improving Dispatch Decisions by Probabilistic Location Predictions
	4.1.1 Limitations of Status Quo Dispatch Processes
	4.1.2 Dispatch Decisions Based on Probabilistic Location Predictions
	4.1.3 Approaches to Predict the Locations of Drivers

	4.2 Probabilistic Location Prediction Algorithm
	4.2.1 Spatio-Temporal Data Preprocessing
	4.2.2 Identification of Potential Locations
	4.2.3 Route Probability Calculation
	4.2.4 Location Extrapolation on Road Segment Candidates

	4.3 Evaluation of Location Prediction Algorithm
	4.3.1 Dataset
	4.3.2 Accuracy of the Predicted Locations
	4.3.3 Runtime of the Prediction Algorithm

	4.4 Risk-Averse Dispatch Strategies
	4.5 Summary

	5 Workload-Aware Joint Table Configuration Optimizations for Spatio-Temporal Data
	5.1 Implications of Configuration Decisions on Query Performance and Memory Footprint
	5.2 Optimizing Table Configurations for Spatio-Temporal Workloads
	5.2.1 Leveraging Fine-Grained Database Optimizations to Reflect Spatio-Temporal Access Patterns in the Data Management Layer
	5.2.2 Process Overview

	5.3 A Linear Programming Approach to Compute Joint Index, Sorting, and Compression Configurations
	5.3.1 Problem Definition
	5.3.2 General Model with Chunk-Based Configuration Dependencies
	5.3.3 Segment-Based Cost Estimation
	5.3.4 Special Case: Segment-Based Model with Sorting Dependencies
	5.3.5 Heuristic Solution: Independent Segment Effects
	5.3.6 Database-Specific Configuration Constraints

	5.4 Integrating Data Tiering Decisions into the Table Configuration Optimization Process
	5.4.1 Problem Definition
	5.4.2 General Model with Chunk-Based Configuration Dependencies
	5.4.3 Segment-Based Cost Estimation
	5.4.4 Segment-Based Model with Sorting Dependencies
	5.4.5 Segment-Based Model with Independent Segment Effects
	5.4.6 Database-Specific Configuration Constraints

	5.5 Enhancements of the Segment-Based Models
	5.5.1 Minimal-Invasive State-Dependent Reconfiguration with Consideration of Modification Costs
	5.5.2 Robust Configuration Selection for Different Potential Workload Scenarios

	5.6 Summary

	6 Memory-Efficient Storing of Timestamps in Columnar In-Memory Databases
	6.1 Problem Definition
	6.2 Data Layouts for Timestamps in Columnar Databases
	6.2.1 Standard Data Layouts for Timestamps
	6.2.2 An Attribute Decomposition Approach to Store Timestamps
	6.2.3 Impact of Different Compression Techniques on the Memory Consumption and Query Performance

	6.3 Workload-Aware Optimizations to Store Timestamps in Columnar In-Memory Databases
	6.3.1 Workload-Driven Combined Data Layout and Compression Scheme Optimization
	6.3.2 Optimized Compression Scheme Selection for Multiple Column Data Layouts

	6.4 Summary

	7 Evaluation
	7.1 Experimental Setup
	7.1.1 Dataset
	7.1.2 Workloads

	7.2 Comparison of the Accuracy, Performance, and Scalability of the Linear Programming Models
	7.2.1 Predicted vs. End-to-End Results of the Linear Programming Models
	7.2.2 Comparison of the Linear Programming Models Against a Rule-Based Heuristic Approach
	7.2.3 Impact of Fine-Grained Configurations
	7.2.4 Scalability of the Linear Programming Approach

	7.3 Linear Programming Approach with Tiering Decisions
	7.3.1 End-to-End Results of the Linear Programming Models
	7.3.2 Comparisons Against Rule-Based Tuning Heuristics
	7.3.3 Comparisons Against Existing Approaches
	7.3.4 Detailed Configuration Analysis
	7.3.5 Scaling of the Linear Programming-Based Approach

	7.4 Model Extensions of the Linear Programming Approach
	7.4.1 Extension: Reconfiguration Costs
	7.4.2 Extension: Robust Configuration Selection
	7.4.3 Computation Time Impact of the Model Extensions

	7.5 Impact of Optimized Timestamp Storage Layouts for Spatio-Temporal Data
	7.5.1 Heuristic Approach for the Combined Data Layout and Compression Scheme Selection
	7.5.2 Optimized Compression Scheme Selection for Timestamps Stored in the Multiple Columns Data Layout

	7.6 Discussion
	7.7 Threats to Validity
	7.8 Summary

	8 Conclusion
	8.1 Future Work
	8.1.1 Improving the Integration of Lossy Compression Techniques
	8.1.2 Adjustments of the Fine-Grained Optimizations Concept for Further Application Scenarios

	8.2 Summary

	List of Figures
	List of Tables
	Acronyms
	A Appendix
	A.1 Permission of Reuse of Publications
	A.2 Benchmark Workloads
	A.3 Publications

	References

