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Abstract

The mobile-immobile model (MIM) has been established in geoscience in the
context of contaminant transport in groundwater. Here the tracer particles
effectively immobilise, e.g., due to diffusion into dead-end pores or sorption.
The main idea of the MIM is to split the total particle density into a mobile
and an immobile density. Individual tracers switch between the mobile and
immobile state following a two-state telegraph process, i.e., the residence
times in each state are distributed exponentially. In geoscience the focus
lies on the breakthrough curve (BTC), which is the concentration at a fixed
location over time. We apply the MIM to biological experiments with a spe-
cial focus on anomalous scaling regimes of the mean squared displacement
(MSD) and non-Gaussian displacement distributions. As an exemplary sys-
tem, we have analysed the motion of tau proteins, that diffuse freely inside
axons of neurons. Their free diffusion thereby corresponds to the mobile
state of the MIM. Tau proteins stochastically bind to microtubules, which
effectively immobilises the tau proteins until they unbind and continue diffus-
ing. Long immobilisation durations compared to the mobile durations give
rise to distinct non-Gaussian Laplace shaped distributions. It is accompa-
nied by a plateau in the MSD for initially mobile tracer particles at relevant
intermediate timescales. An equilibrium fraction of initially mobile tracers
gives rise to non-Gaussian displacements at intermediate timescales, while
the MSD remains linear at all times. In another setting bio molecules diffuse
in a biosensor and transiently bind to specific receptors, where advection
becomes relevant in the mobile state. The plateau in the MSD observed for
the advection-free setting and long immobilisation durations persists also for
the case with advection. We find a new clear regime of anomalous diffu-
sion with non-Gaussian distributions and a cubic scaling of the MSD. This
regime emerges for initially mobile and for initially immobile tracers. For
an equilibrium fraction of initially mobile tracers we observe an intermittent
ballistic scaling of the MSD. The long-time effective diffusion coefficient is en-
hanced by advection, which we physically explain with the variance of mobile
durations. Finally, we generalize the MIM to incorporate arbitrary immobil-
isation time distributions and focus on a Mittag-Leffler immobilisation time



distribution with power-law tail ≃ t−1−µ with 0 < µ < 1 and diverging mean
immobilisation durations. A fit of our model to the BTC of experimental
data from tracer particles in aquifers matches the BTC including the power-
law tail. We use the fit parameters for plotting the displacement distributions
and the MSD. We find Gaussian normal diffusion at short times and long-
time power-law decay of mobile mass accompanied by anomalous diffusion
at long times. The long-time diffusion is subdiffusive in the advection-free
setting, while it is either subdiffusive for 0 < µ < 1/2 or superdiffusive for
1/2 < µ < 1 when advection is present. In the long-time limit we show
equivalence of our model to a bi-fractional diffusion equation.



Abstrakt

In den Geowissenschaften wurde das „mobile-immobile model“ (MIM) entwi-
ckelt, um den Transport von Verunreinigungen in Grundwässern zu beschrei-
ben. Diese Verunreinigungen können in Sackgassenporen diffundieren oder an
Oberflächen adsorbieren. Dabei bewegen sich die Verunreinigungen effektiv
nicht. Der Grundgedanke des MIMs besteht darin, die Dichte der Verunreini-
gungen in eine Dichte aus mobilen Partikeln und eine Dichte aus immobilen
Partikeln aufzuteilen. Jedes einzelne Teilchen der Verunreinigung wechselt
dabei zwischen dem mobilen Zustand, wo es diffundiert und sich durch Ad-
vektion bewegt und dem immobilen Zustand, wo es sich nicht bewegt. Je
nach Zustand wird die Verunreinigung der mobilen oder der immobilen Dich-
te zugerechnet. Die Aufenthaltsdauern im mobilen und immobilen Zustand
folgen jeweils einer Exponentialverteilung. Dies bedeutet, dass der Wechsel
zwischen mobilen und immobilen Zustand durch einen Telegrafenprozess be-
schrieben werden kann. In den Geowissenschaften liegt der Fokus auf der
„breakthrough curve“ (BTC), was die Konzentrationskurve an einem festen
Ort definiert. Der Grundgedanke dieser Arbeit besteht nun darin, das MIM
auf biologische Systeme zu übertragen, wo beispielsweise Proteine zwischen
einem diffusiven und einem immobilen Zustand wechseln. Dabei fokussieren
wir uns auf Messgrößen, die üblicherweise in Experimenten mit einzelnen
Molekülen oder Proteinen gemessen werden. Typische Messgrößen stellen
die mittlere quadratische Verschiebung (MSD) und die Verschiebungsdichte
dar, wobei wir besonderen Fokus auf nicht-lineare MSDs und nicht-Gaußsche
Verteilungen legen. Als tragendes Beispiel für MIM in biologischen Systemen
identifizieren wir Tau Proteine, welche in Nervenzellen diffundieren und für
eine zufällige Dauer an Mikrotubuli binden, wobei sie effektiv unbeweglich
werden. In der eindimensionalen Beschreibung des Systems sind die mittleren
Bindungsdauern wesentlich länger als die durchschnittlichen Diffusionsdau-
ern. Dadurch entsteht eine exponentielle Ortswahrscheinlichkeitsverteilung
begleitet von einem Plateau im MSD auf mittleren Zeitskalen, wenn die Pro-
teine zu Beginn alle mobil sind. Für eine Gleichgewichtsverteilung an mobilen
Proteinen zu Beginn ist das MSD linear, wobei die Verteilung einer skalier-
ten Laplaceverteilung entspricht. In anderen Systemen, wie beispielsweise



biologischen Molekülen in Biosensoren, spielt Advektion eine wichtige Rolle.
Das Plateau, welches wir im MSD für lange mittlere Immobilisierungsdauern
finden, besteht auch mit Advektion. Zusätzlich finden wir ein neues Regime
mit einem anomalen Skalierungsverhalten des MSDs. Dabei wächst das MSD
kubisch unabhängig von der mittleren Immobilisierungsdauer, sofern die Ad-
vektionsgeschwindigkeit hinreichend groß ist. Für eine Gleichgewichtsvertei-
lung an mobilen Molekülen finden wir ein ballistisches Regime im MSD. Das
Langzeitverhalten vom MSD ist linear, wobei der effektive Diffusionskoeffi-
zient durch Advektion verstärkt wird. Dieser Effekt ist in der Literatur be-
kannt. Wir bieten hier aber eine physikalische Erklärung über eine Kopplung
der Advektion mit der Varianz der gesamten Aufenthaltsdauer im mobilen
Zustand. Abschließend erweitern wir das MIM, indem wir über exponenti-
ell verteilte Immobilisierungsdauern hinausgehen und beliebige Verteilungen
zulassen. Das entsprechende Modell nennen wir extended MIM (EMIM). Be-
sonderen Fokus legen wir dabei auf eine Mittag-Leffler Verteilung, die sich
durch ein Potenzgesetz ≃ t−1−µ mit 0 < µ < 1 für lange Immobilisierungs-
dauern auszeichnet. Solche Verteilungen werden in Experimenten gemessen.
Das Potenzgesetz hat zur Folge, dass der Mittelwert divergiert. Wir fitten
EMIM zu einer BTC aus einem Experiment, in dem die Konzentration von
fluoreszenter Farbe nach Durchlauf eines Aquäduktes gemessen wird. Das
gemessene Potenzgesetz der BTC kann durch MIM erklärt werden. Wir ver-
wenden die erhaltenen Fitparameter, um das MSD und die Dichten dar-
zustellen. Dabei finden wir ein lineares MSD mit Gaußscher Verteilung zu
Beginn und eine nicht-Gaußsche Verteilung im Langzeitverhalten. Im Allge-
meinen ist das MSD von EMIM mit der Mittag-Leffler Verteilung subdiffusiv
im advektionsfreien Fall. Mit vorhandener Advektion finden wir Subdiffusion
für 0 < µ < 1/2 und Superdiffusion für 1/2 < µ < 1. Im Langzeitlimes
konvergiert EMIM zu einer bifraktionelen Diffusiongleichung.
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Chapter 1

Introduction

Under a microscope the world can be seen at the length scale of a few mi-
crometres. The observed motion of, e.g., pollen appears very different from
the behaviour of, e.g., a chair, that we know from the world on the metre
scale. Ingen-Housz observed that all matter, including non-living particles,
is in continuous motion [1]. Later, Brown studied this erratic motion sys-
tematically, which is nowadays known as Brownian motion [2]. It arises from
collisions of the tracer particle with molecules from the surrounding medium,
the so-called bath. A microscopic description using classical mechanics such
as a Hamiltonian description of the tracer particle to predict the exact tra-
jectory is unfeasible due to the enormous number of interacting particles. To
illustrate, one millilitre of water contains around 3 × 1022 water molecules.
Another practical issue is the reproducibility of an experiment. Due to the
unknown initial conditions of the surrounding bath, the observed trajectories
of a tracer particle will differ from experiment to experiment. The description
developed by Einstein, Sutherland, Langevin and others overcomes this issue
by describing the bath probabilistically [3–11]. Moreover, Langevin starts
with Newton’s second law for a tracer with mass m and replaces all inter-
actions of the tracer particle with the bath particles by the effective forces
acting on the tracer particle [8],

m
d2

dt2
x(t) = −γη

d

dt
x(t) +

√
2kBTγηξ(t). (1.1)

3
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The first term on the right side is the deterministic Stokes friction force with
friction coefficient γη = 6πηr for a spherical particle, viscosity η and particle
radius r. We note that a recent study showed that similar laws hold for single
proteins on the length scale of a few nanometres [12]. Secondly, a random
thermal force ξ(t) is introduced to model random kicks of the bath particles.
If times longer than the correlation time of collisions are considered, the force
can be assumed to be delta correlated ⟨ξ(t)ξ(t+∆t)⟩ = δ(∆t) Gaussian white
noise. The angular brackets ⟨ . ⟩ denote averaging over noise realizations, i.e.
averaging over the unknown initial conditions of the bath. In the Langevin
equation (1.1) the random force has the amplitude 2kBTγη, which is propor-
tional to the Boltzmann constant kB, the temperature T , and the friction
coefficient γη, which is a characteristic of an equilibrium system. In equilib-
rium the energy obtained from random kicks of the surrounding medium is
dissipated with the friction term. If we consider timescales, when the mo-
mentum has relaxed, i.e., for t≫ m/γη, the friction term becomes dominant
over the acceleration term, and we obtain the overdamped Langevin equa-
tion dx(t)/dt =

√
2Dξ(t) with D = kBT/γη. For small spherical particles the

timescale scales as m/γη ≃ r2, rendering the overdamped Langevin equation
relevant for single particle tracking experiments of small tracers [13].

Instead of deterministic trajectories in a microscopic description we now
obtain a probability density function (PDF) p(x, t), where p(x, t)dx denotes
the probability of finding the tracer in the interval [x, x+dx] at time t. In the
overdamped limit p(x, t) follows the deterministic Smoluchowski equation

∂

∂t
p(x, t) =

[
− 1

mγη

∂

∂x
F (x) +D

∂2

∂x2

]
p(x, t), (1.2)

which can be derived from the Langevin equation (1.1) with an external
force F (x) [14, Eq. (1.23)]. In the force-free setting the resulting Brown-
ian motion is characterised by a Gaussian displacement distribution func-
tion p(x, t) = exp(−x2/4Dt)/

√
4πDt. The spread of particles is often char-

acterised by the mean squared displacement (MSD), which is the second
central moment of p(x, t). For Brownian motion it is linear and given by
⟨x2(t)⟩ = 2Dt. Langevin obtains this MSD directly from (1.1) and finds the
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same MSD for t≫ m/γη. The Gaussian PDF and the linear MSD are char-
acteristic features of Brownian motion. They naturally arise from the central
limit theorem (CLT), when the increments of the position due to collisions
with the bath meet three conditions [15]. The increments must be indepen-
dent, identically distributed, and they must have a finite mean. Physically
this implies a homogenous stationary medium, i.e., a medium constant in
space and time such that all tracers of an ensemble experience similar en-
vironments. Therefore, if non-Gaussian (nG) displacements or non-linear
MSDs are observed, then at least one of the three conditions is not fulfilled.
This further implies that a physical mechanism is present, that leads to the
breaking of one of the CLT assumptions.

In this thesis we investigate how the displacement distributions and MSDs
are affected when the tracer particles undergo intermittent immobilisations,
i.e., switch between a mobile and an immobile state. The stochastic residence
times in the mobile and immobile state lead to non-identically distributed
displacements and as a result we find nG displacements and an anomalous
scaling of the MSD at intermediate timescales. The latter refers to a scaling
of the MSD with tα. The case 0 < α < 1 is called subdiffusion, while
1 < α ≤ 2 is called superdiffusion [13].

We adapt the mobile-immobile model (MIM) known form geoscience to bi-
ological experiments [16–18,D1,D2]. The main idea of the MIM is to split the
total density of tracers ntot(x, t) into a mobile density nm(x, t), where trac-
ers are subject to advection and diffusion and an immobile density nim(x, t),
such that ntot(x, t) = nm(x, t) + nim(x, t). Tracers stochastically switch be-
tween a mobile and an immobile state and contribute either to nm(x, t) or
nim(x, t), respectively. In the MIM the transitions between nm(x, t) and
nim(x, t) are modelled with single rates, corresponding to exponential resi-
dence time distributions. In some experimental settings the splitting into
the mobile and immobile density becomes relevant, when immobile tracers
cannot be measured, for instance, because they need to enter the detector
from a groundwater spring [17,19–21]. Over the past five decades, the MIM
has been extensively explored in the scientific literature, mostly with a focus
on the breakthrough curves (BTC), which is the concentration C(x, t) with
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Figure 1.1: Sketch of a mountain stream, which is the experimental site of the
groundwater transport experiment in [27]. Modified and reprinted with permission
from [27]. Copyright 2002 by John Wiley & Sons, Inc.

units [C(x, t)] = µg/L at a fixed location over time [16,17,22–26]. A sketch of
a heterogeneous experimental site from [27] is shown in figure 1.1, where 11 g

of rhodamine are injected at a single point and the BTC is measured 306, 4m

downstream. The sketch shows part of the H.J. Andrews Experimental For-
est in Oregon, USA, where heterogeneities arise from various obstacles such
as boulders, logs and subsurface flow paths. We note in passing a model
similar to the MIM was proposed to describe charge carriers moving in pho-
toreceptors with traps [28]. The model is identical to our formulation of the
MIM for the special case of a single trap. The calculated observable in [28]
is given by the electrical current. Similar models to the MIM have been
analysed in biological contexts for experiments using fluorescence recovery
after photobleaching and fluorescence correlation spectroscopy (FCS), while
the MSD and PDF have not been analysed in this context [29, 30].

In other biological experiments the MSD is a common observable [31–34].
The MSD of the mobile, immobile and total density of the MIM have al-
ready been calculated, albeit without clearly identifying anomalous scaling
regimes [23,35,36]. The goal of this thesis is to find anomalous diffusion, i.e.
non-linear MSDs, and nG displacements in the MIM. We therefore system-
atically study the MSD in the light of anomalous diffusion and identify clear
anomalous diffusion regimes at relevant intermediate timescales and provide
physical explanations for them. In addition, we analyse the particle densi-
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Figure 1.2: Schematic of tau proteins in the axon of a neuron not to scale. Mi-
crotubules are rod-like structures, that stabilize the axon and are depicted using
blue and white spheres. Tau proteins tagged with a green fluorescent protein freely
diffuse inside the axon until they bind to a microtubule. In the bound state the
tau proteins are immobile. Switching between the two states occurs with constant
rates 1/τm and 1/τim.

ties and identify nG distributions at these timescales. The results strongly
depend on the fraction of initially mobile tracers and are different for the
advection-free case and the case with advection. Our results will be relevant
for the interpretation of experiments in a range of systems, from biosens-
ing to geophysics. As we will show, in particular, our results demonstrate
that anomalous diffusion and nG densities emerge naturally from Poissonian
switching and do not require the assumption of dedicated anomalous diffusion
mechanisms.

We apply the advection-free MIM to tau proteins in neurons and re-
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formulate it for the single-particle picture using normalized densities with∫∞
−∞ ntot(x, t)dx = 1. As schematically depicted in figure 1.2, tau proteins

diffuse freely inside the axons of neurons, where a large ratio of length to
width allows a one-dimensional description. The axon is stabilized with
microtubules, which are rod-like structures [37]. Tau proteins bind to mi-
crotubules with their four binding sites and immobilise. The function of
tau proteins is to stabilize microtubules [37]. Moreover, tau proteins losing
the ability to bind to microtubules is linked to diseases such as Alzheimer’s
disease [37]. In [38] it was shown that the motion of tau proteins can be
modelled using a MIM with focus on fluorescence recovery after photoacti-
vation (FRAP) experiments. The obtained mean immobile duration τim is
long compared to the mean mobile duration τm.

To put our results into some context, we mention a selection of estab-
lished models and experiments, that show nG displacements and anoma-
lous scaling of the MSD similar to our findings. Anomalous diffusion and
nG distributions are abundant in biological experiments. Single-molecule
tracking experiments have shown that potassium channels in human embry-
onic kidney cells have nG displacements and are subject to subdiffusion due
to transient binding to the actin cytoskeleton and the resulting immobili-
sations [39]. Other examples for nG distributions paired with (transient)
subdiffusion due to immobilisations are given by the motion of insulin gran-
ules in biological cells, lipid granules in living fission yeast cells and acetyl-
choline receptors on live cell membranes [40–42]. Furthermore, simulations
have shown nG displacements and subdiffusion of the drug doxorubicin in
a silica nanoslit [43]. In other settings a plateau is observed in the MSD
at intermediate timescales. For instance, this occurs in the case of two-
dimensional fluids confined within a random matrix of obstacles or a porous
cavity [45–47]. Additionally, plateaus in the MSD are observed in both two-
and three-dimensional isotropic Lennard-Jones binary liquids [48]. A com-
mon feature of most of the mentioned systems with a plateau is the crossover
from an exponential (Laplace) distribution to a Gaussian distribution. For
long residence times in the immobile state compared to the mobile state we
observe a plateau in the MSD paired with a transient Laplace distribution
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Figure 1.3: Schematic of the Fis DNA-binding protein inside an Escherichia Coli
bacteria not to scale. On the left a flagellum is shown and the bacterium is covered
in cilia. The cell wall is removed in the middle part of the figure. Fis slides along
the DNA and transiently binds, resulting in nG displacements, that we model with
the MIM using the transition rates 1/τm and 1/τim [49,D1]. The 3D model inside
the dashed rectangle is based on the measured crystal structure of Fis bound to
the DNA [50,51].

for the MIM [D1].

Non-Gaussian displacement distributions do not necessarily imply an
anomalous scaling of the MSD. We use the term Fickian yet non-Gaussian
(FnG) diffusion in this thesis to describe this phenomenon, which refers to an
MSD that is linear at all times paired with a nG displacement distribution.
One of the first experiments to demonstrate FnG diffusion was carried out
on colloidal beads diffusing along lipid tubes and beads diffusing through
an entangled F-actin network [52]. Other systems with FnG diffusion pose
acetylcholine receptors on live cell membranes and colloidal beads diffusing
in a matrix of micropillars [42,53]. Fis DNA binding proteins in Escherichia
Coli bacteria are subject to FnG diffusion, as well [49]. We model the dif-
fusion of Fis in this thesis, which is schematically shown in figure 1.3. The
three-dimensional rendering inside the dashed rectangle of Fis bound to the
DNA is based on the measured crystal structure [50,51]. Fis slides along the
DNA and transiently binds to the DNA, resulting in FnG diffusion, matching
the predictions from the MIM [49,D1].
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We briefly mention some models established in statistical physics to ex-
plain nG distributions. We start with models that display nG displacements
with a crossover to Gaussian displacements at long times. For instance, diffu-
sion in compartmentalized media yields PDFs with exponential tails [47]. The
MSD is linear with an intermittent subdiffusive regime, similar to the plateau
we find for the MIM [47,D1]. The second example for a theoretical model
in which the PDF crosses over from a nG distribution to a Gaussian distri-
bution is the diffusing diffusivity model [54]. Here, the diffusion coefficient
D(t) follows a stochastic process, modelling a heterogeneous medium [54].
In [54] the displacement distribution crosses over from a nG (Laplace) distri-
bution at short times to a Gaussian distribution at long times. Depending on
the initial distribution of D(t = 0), the MSD scales linearly or ballistically
≃ t2 at short times, similar to our findings for initially mobile or initially
immobile tracer particles, respectively [54, 55,D1]. A special case of the dif-
fusing diffusivity model is the jumping diffusivity model [56,57]. There, D(t)

stochastically switches between the values D− and D+. For residence times
with finite mean this results in a tent-like shape of the PDF around the origin
for short times, similar to our findings [57,D1]. In our study we additionally
find a Laplace distribution at intermediate times. For power-law distributed
residence times in both states long-time subdiffusion arises for D− → 0 [56].
The MIM can be understood in the light of diffusing diffusivity, with only
two allowed values for the diffusivity and one of the values is zero.

In [D2] we analyse the effect of advection on the anomalous scaling
regimes and nG distributions found in [D1]. This corresponds to the experi-
mental setting of biomolecules flowing in a biosensor, when the biomolecules
can specifically bind to receptors on the surface of the detector. We find that
for initially mobile tracers and long immobilisations the plateau in the MSD
persists at intermediate times also with advection present. At this point
in time the displacement distribution is similar to the Laplace distribution
found for the advection-free case. However, it falls off slower in the direction
of advection compared to the opposite direction. For sufficiently high Péclet
numbers we find a novel cubic scaling regime of the MSD, which appears for
initially mobile and initially immobile tracers. The displacement densities
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consist of a Gaussian and an additional spatially uniform tail or an exponen-
tial tail for initially mobile and initially immobile tracers, respectively. In
the long-time limit the diffusion becomes Gaussian with an effective diffusion
coefficient, that is enhanced by advection, as reported before [23, 35]. What
we achieve here is an intuitive physical explanation for this effect due to a
coupling of the advection and the variance of time spent in the mobile state.

So far, we have considered the case when the displacement densities con-
verge to a Gaussian with linear MSD in the long-time limit. Now we introduce
the continuous time random walk (CTRW), which can generate nG distribu-
tions and an anomalous scaling of the MSD also in the long-time limit. The
CTRW was initially introduced to model the motion of charge carriers in
amorphous semiconductors [58,59]. In a CTRW the tracer particles wait for
a random duration τ , called the sojourn time, followed by an instantaneous
jump with a random length ∆x. Both quantities are drawn from a transition
probability density ψ(∆x, τ). Long-time anomalous diffusion emerges if the
sojourn time distribution function ψ(τ) =

∫∞
−∞ ψ(x, τ)dx has a power-law

scaling ≃ τ−1−α for large τ with 0 < α < 1. This power-law scaling results in
a diverging mean sojourn time ⟨τ⟩ = limT→∞

∫ T
0
τψ(τ)dτ = ∞. Power-law

sojourn times occur, e.g., in heterogeneous landscapes with exponentially
distributed energy barriers [60].

In biological experiments the CTRW with power-law sojourn time dis-
tributions is applied to experiments mentioned above, e.g., lipid granules in
living fission yeast cells with α ≈ 0.8 [41], potassium channels in the plasma
membrane of kidney cells with α ≈ 0.9 [39] and the motion of a colloidal
tracer in an entangled actin filament network with α ≈ 0.33 [61]. Long trap-
ping has been observed for water molecules on the surface of cell membranes
in simulations, where the position increments are additionally correlated due
to membrane viscoelasticity [62]. The equations for CTRW are typically
solved in Fourier-Laplace space with the so-called Montroll-Weiss equation or
using a subordination approach [63]. The latter refers to using a probability
distribution of jumps for a given time [63–65]. We adapt the subordination
approach to our model, which gives insights, e.g., into enhanced diffusion
at long times due to the coupling of advection and immobilisation at long
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times [D2]. In the long-time limit CTRW dynamics with power-law sojourn
times can be described with a fractional diffusion equation [63,66,67]

∂α

∂tα
P (x, t) = − ∂

∂x

F (x)

mηα
P (x, t) +Kα

∂2

∂x2
P (x, t), for 0 < α < 1, (1.3)

where F (x) denotes an external force with the generalized friction constant
ηα with units [ηα] = secα−2. The fractional advection-dispersion equation
(1.3) is similar to the Smoluchowski equation (1.2), where the derivative
with respect to time is replaced with a Caputo fractional derivative. The
Caputo fractional derivative of order α is defined as

∂α

∂tα
f(t) =

1

Γ(1− α)

∫ t

0

∂
∂τ
f(τ)

(t− τ)α
dτ, for 0 < α < 1, (1.4)

and was initially introduced in the context of geoscience for a theory of vis-
coelasticity of the Earth’s shell [68]. For a sojourn time distribution function
≃ B1t

−1−α1 + B2t
−1−α2 with B1, B2 > 0 a bi-fractional diffusion equation

emerges in the long-time limit of CTRW [69], meaning the single fractional
derivative ∂α/∂tα in (1.3) is replaced by B1∂

α1/∂tα1 + B2∂
α2/∂tα2 . In the

long-time limit our extended model with power-law immobile residence times
follows a bi-fractional diffusion equation [D3]. We mention that in addition
to power-law tailed sojourn time distributions, distributions with finite mo-
ments have recently received attention in CTRW [70,71].

Moving on from biological systems on the micrometre scale we now go
back to geological systems, where the transport of contaminants is investi-
gated, that move through aquifers or streams on the kilometre scale. In a typ-
ical experiment the concentration of tracers C(x, t) such as Bromide is mea-
sured over time at a fixed location, which is the BTC mentioned above [19,
72–74]. Contaminants diffusing in a homogenous medium can be described
by the advection-dispersion equation (ADE), which is formally equivalent to
the Smoluchowski equation (1.2) by replacing the forcing F (x)/mη with the
advection velocity v. It has the Gaussian solution C(x, t) = C0 exp(−(x −
vt)2/4Dt)/

√
4πDt for C(x, 0) = C0δ(x), which results in a BTC with an

exponential tail for x > 0. We point out a subtle difference between the
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Smoluchowski equation (1.2) and the ADE regarding the parameter D. In
the Smoluchowski equation D is the diffusion coefficient, while it is the dis-
persion coefficient in geological settings. The dispersion coefficient accounts
for diffusion and turbulent mixing due to sheering profiles [75,76]. In contrast
to the exponential tail predicted by the ADE, the long-time limit of exper-
imental BTCs display power-law decay [19, 25, 27, 77] or power-law decay
with a cut-off [74]. The CTRW with power-law sojourn time distributions is
an established model to describe the power-law tailed BTCs of contaminants
passing through streams or aquifers [19,23,26,78–83]. Tracers immobilise e.g.,
in the hyporheic zone, which is the region with non-flowing water adjacent
to the flowing body of water in a stream [83–85]. Tracers may also effec-
tively immobilise by adsorbing on streambed biofilms [74] or by diffusing in
dead-end pores in porous media [86]. In the extended model that we propose
in [D3] we fit our model to an experimental BTC with a power-law tail. In
another experiment, called the first macrodispersion experiment (MADE-1),
bromide was injected into a heterogeneous aquifer, where long immobilisa-
tions of tracers have been observed [87,88]. Multilevel sampling wells allowed
measuring the plume profile over a distance of 300m along the flow direction.
A power-law decay of mobile mass was observed [21, 87, 88], that we model
in [D3]. A model commonly used in geoscience is the multirate mass transfer
model (MRMT), that includes multiple immobile zones with a distribution
of exchange rates [23, 25, 79, 89]. For a power-law distribution of rates the
model is called fractal MIM [21]. The total density follows a bi-fractional
diffusion equation where one exponent is unity and the other between zero
and one [21]. This fractal MIM can describe the long-time power-law decay
of mobile mass. The fractal MIM cannot be written in terms of an immobil-
isation time distribution, due to a diverging memory function at zero. We
introduce the extended MIM (EMIM) in [D3], where the model equations
are given by an integro-differential equation, that explicitly takes immobil-
isation time distributions into account. We fit the mobile mass decay and
BTC to experiments using a Mittag-Leffler (ML) trapping time density with
a power-law tail. In contrast to the MIM, we obtain anomalous nG diffusion
at long times for the EMIM. Recently, EMIM was applied to the diffusion of
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excitons in layered perovskites and transition metal dichalcogenides [90].
In a nutshell, the MIM is a relatively simple model, where the dimen-

sionless form of the MIM with advection only depends on two parameters:
the ratio τm/τim for immobilisations and the Péclet number, which decides
if the transport is advection or diffusion dominated. The research objective
of this thesis is to identify anomalous scaling regimes in the MSD and nG
displacement distribution in the MIM. Furthermore, we aim to apply it to
biological applications such as tau proteins or Fis DNA-binding proteins as
a first step [D1] and include advection as a second step [D2]. Finally, we
include non-exponential immobile residence times and analyse the effect on
the long-time behaviour [D3]. We find rich behaviour of nG diffusion and
anomalous scaling of the MSD with a strong dependence on the fraction
of initially mobile tracers, which can be chosen freely. For instance, in the
advection-free model for an equilibrium fraction of initially mobile tracers we
observe FnG diffusion, while the MSD for initially mobile tracers displays a
plateau at intermediate time scales.

To put our results into some context, we make comparisons to the mod-
els and distributions introduced above throughout this thesis starting with
a connection to the original derivation of the MSD by Langevin [8]. The
plateau in the MSD of the MIM in the advection-free setting can be ex-
plained using the line of thought from Langevin [8], where we change one
critical assumption. Langevin assumes equipartition ⟨[ d

dt
x(t)]2⟩ = kBT . This

gives d⟨x2(t)⟩/dt = 2kBT/γ = 2D in the overdamped limit t ≫ m/γ.
In contrast, in the MIM only the fraction fm(t) of all tracers is mobile,
therefore the kinetic energy is given by kBTfm(t) this gives the relation
d⟨x2(t)⟩/dt = 2kBTfm(t)/γ. This relation holds at all times for arbitrary
fractions of initially mobile tracers. If we now define an effective tempera-
ture Teff(t) = Tfm(t), it becomes apparent that on the level of the MSD the
MIM behaves the same as a cooling system for initially mobile tracers. The
fraction fm(t) is a monotonically decreasing function in this case, rendering
the MSD slower than linear. A detailed derivation is presented in Appendix
B. Next, the structure of this thesis is outlined in the synopsis.



Synopsis

The general structure of this thesis is given by the discussion of the main
results from [D1–D3] in chapters 2 and 3 followed by a summary and outlook
in chapter 4. We start with the simplest formulation of the MIM and increase
the complexity from section to section. In chapter 2 we analyse the MIM
with linear transition rates. In the first part of chapter 2 we model the one-
dimensional motion of tau proteins without advection inside the axons of
neurons, as published in

T.J. Doerries, A.V. Chechkin, and R. Metzler, Apparent anomalous
diffusion and non-Gaussian distributions in a simple mobile-immobile
transport model with Poissonian switching, J. R. Soc. Interface 19,
20220233 (2022),

which is reference [D1]. We discuss the mobile, immobile and total density of
tracer particles and the corresponding MSDs. Moreover, we consider three
fractions of initially mobile tracers, namely all tracers initially mobile, all
tracers initially immobile and an equilibrium fraction of initially mobile trac-
ers. The main features we find are FnG diffusion for an equilibrium fraction
of initially mobile tracers and a plateau in the MSD of initially mobile trac-
ers accompanied by a Laplace distribution of displacements at intermediate
timescales. Initially immobile tracers spread ballistically for short times.

My contributions to [D1] are the formal analysis, investigation, method-
ology and validation. I wrote the original draft and edited the review. More-
over, I created all figures and performed all simulations presented in this
manuscript. I performed the calculations.

In the second part of chapter 2 we include advection and explore how this

15
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affects the plateau in the MSD and the Laplace distribution found for the
advection-free setting. This is a discussion of the results published in

T.J. Doerries, R. Metzler, and A.V. Chechkin, Emergent anomalous
transport and non-Gaussianity in a simple mobile-immobile model:
the role of advection, NJP 25, 063009 (2023),

which is reference [D2]. When including advection, we aim to model the
motion of bio molecules in a biosensor, that specifically bind to receptors on
the surface. Only the bound molecules can be detected, e.g., via plasmonic
resonance, rendering this system suitable for a formulation with the MIM,
where the immobile density is modelled explicitly. For high Péclet numbers,
i.e., when advection is dominant over diffusion in the system, we observe a
cubic scaling of the MSD accompanied by nG distributions at short times.
This cubic regime emerges for long immobilisations and for short immobil-
isations, if the Péclet number is sufficiently high. The plateau observed in
the advection-free setting [D1] persists for arbitrary Péclet numbers for long
immobilisations. In the long-time limit the diffusion is normal and the dis-
placements follow a Gaussian distribution, where the diffusion coefficient is
enhanced by advection. We explain this with the coupling of advection and
the variance of total time spent in the mobile state.

My contributions to [D2] are the formal analysis including the calcula-
tions, investigation including the discovery of the cubic regime, methodology
and validation. I wrote the original draft and edited the review. Moreover,
I created all figures and performed all simulations.

In chapter 3 we consider geological systems with immobilisations, that do
not follow single rate mass transfer. This work was published in

T. J. Doerries, A. V. Chechkin, R. Schumer, and R. Metzler, Rate
equations, spatial moments, and concentration profiles for mobile-
immobile models with power-law and mixed waiting time distribu-
tions, Phys. Rev. E 105, 014105 (2022),

which is reference [D3] in this thesis. We begin in section 3.1 with a
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short review of MRMT and the fractal MIM, which are common models
in geoscience to describe power-law tailed BTCs. In [D3] we obtain exact
expressions for the moments of fractal MIM and find a crossover from normal
to anomalous diffusion for initially mobile tracers.

Due to the non-analytic behaviour of the kernel from the Caputo deriva-
tive, fractal MIM cannot be written using a proper trapping time density. To
overcome this, we present the extended mobile-immobile model (EMIM) in
section 3.2, that models tracers switching between a mobile and an immobile
state, where any probability density can be used for the immobilisation time
density. For an exponential immobilisation time density the MIM is recov-
ered, while the EMIM with a ML trapping time density with a power-law
tail ≃ t−1−µ, 0 < µ < 1, converges to a bi-fractional diffusion equation in the
long-time limit. One order is µ and the other is one. The motion of initially
mobile tracers crosses over from Brownian with linear MSD and a Gaussian
distribution to a nG distribution and anomalous scaling of the MSD in the
long-time limit. We use the EMIM to successfully fit the power-law tailed
BTC of tracers passing through a karst aquifer under the Schwartzwasser
valley, that was recorded 3500m from the injection point. The fit with the
EMIM follows the power-law decay seen in the data.

My contributions to [D3] are the formal analysis including the calcula-
tions, investigation, methodology and validation. I wrote the original draft
and edited the review. Moreover, I created all figures and performed all
simulations.

In chapter 4 we summarize our results and make concluding remarks. In
Appendix A we provide lengthy expressions and Appendices B and C provide
additional expressions and work that were not published in [D1–D3]. Finally,
in Appendix D the full manuscripts [D1–D3] are printed.
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Chapter 2

Single rate mobile/immobile
model

This chapter is concerned with the mobile/immobile model, where the tran-
sition between the mobile and immobile states occurs with constant rates.
This corresponds to the switching of a telegraph process. We introduce the
model equations in section 2.1. Then, we discuss results independent of
whether advection is present. Moreover, we show how to solve the model us-
ing Fourier-Laplace transforms in section 2.1.1 and subordination in section
2.1.2. In section 2.2 we analyse the densities and MSDs for the advection-
free case, followed by section 2.3, where we repeat the steps for the case with
advection. In section 2.4 we compare our results to the results obtained for
the CTRW with (bi-)exponential sojourn times.

2.1 Formulation of the model

The main idea of the MIM is to split the total density of tracers ntot(x, t)

into the mobile density nm(x, t) and the immobile density nim(x, t), such that
ntot(x, t) = nm(x, t) + nim(x, t) with units [ntot(x, t)] = 1/m. The dynamics

19
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is defined by the model equations

∂

∂t
nm(x, t) = − 1

τm
nm(x, t) +

1

τim
nim(x, t)− v

∂

∂x
nm(x, t) +D

∂2

∂x2
nm(x, t)

∂

∂t
nim(x, t) = − 1

τim
nim(x, t) +

1

τm
nm(x, t), (2.1)

with mean mobile residence time τm, mean immobile residence time τim,
advection velocity v and diffusion coefficient D. Equations (2.1) model a
tracer that switches between a mobile and an immobile state, where the
switching follows a Markov telegraph process [91]. Our model (2.1) can be
seen as the special case of the "multi-trapping" model for a single trap,
which was developed to describe the motion of charge carriers in dielectric
materials [28]. Models similiar to (2.1) have been used in biological settings
to explain the motion of tau proteins [38] or glucocorticoid receptors [92].
In biological contexts transport with intermittent immobilisations, such as
in the MIM, is referred to as "stick and diffuse" [30] or "reaction-diffusion"
[38, 92], where a reversible binding reaction is present. In our model (2.1)
we consider the initial conditions nm(x, 0) = f 0

mδ(x) and nim(x, 0) = f 0
imδ(x),

where f 0
m and f 0

im represent the fractions of mobile and immobile tracers at
t = 0, respectively, subject to a normalization condition of f 0

m + f 0
im = 1.

This normalization to unity corresponds to the single particle picture.
The linear rates in (2.1) correspond to exponential trapping time distri-

butions [93,94]. To demonstrate this, we formally solve for nim(x, t) in (2.1)
and plug the result into the differential equation for nm(x, t) in (2.1). This
gives the new integro-differential equation for the mobile density

∂

∂t
nm(x, t) = − 1

τm
nm(x, t) +

∫ t

0

1

τim
e−(t−τ)/τim nm(x, t)

τm
dτ + L(x)nm(x, t)

(2.2)

with the advection-dispersion operator L(x) = −v∂/∂x+D∂2/∂x2. The im-
mobilisation term remains unchanged with a linear rate 1/τm and we identify
the trapping time1 distribution γ(t) = exp(−t/τim)/τim. The physical pic-

1We use the terms "trapping time" and "immobilisation time" interchangeably, and
make a clear distinction from the "sojourn time", that we solely use for the CTRW.
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ture of expression (2.2) is as follows. In the interval [τ, τ + dτ ] the fraction
dτ/τm of mobile tracers immobilise. Later, at time t they were immobile
for the duration t − τ . This fraction of tracers is multiplied with γ(t − τ)

and the tracers are added back to the mobile density. From this it can be
seen that γ(t − τ) is the probability density to leave the immobile state af-
ter waiting the duration t − τ , i.e., being immobile for the duration t − τ .
Exponential immobilisation time densities have been measured for instance
in single particle tracking experiments in biological experiments of the Sox2
DNA-binding protein [95] and transcription factor p53 [96]. We note that a
similar expression to (2.2) can be obtained for the immobile density, which
reveals that the mobile residence times are distributed exponentially, as well.
A more general model is introduced in [97], where a tracer switches between
a state with diffusivity D− and D+. The residence times in each state follow
PDFs ψ±(t) with mean residence times ⟨τ⟩± and the fraction of tracers in
each state is in equilibrium at all times [57]. An advantage of our model
(2.1) is that we can freely choose the fraction of initially mobile tracers and
thereby expanding the range of possible experimental applications.

In geoscience an approach slightly different to ours (2.1) is commonly
used, which is defined by the set of equations [16,19,21,22,35,98]

∂

∂t
Cm(x, t) + β

∂

∂t
Cim(x, t) = L(x)Cm(x, t) (2.3a)

∂

∂t
Cim(x, t) = ω(Cm(x, t)− Cim(x, t)). (2.3b)

Instead of single particle position densities in (2.1), where the total den-
sity is normalized

∫∞
−∞ ntot(x, t)dx = 1, we have concentrations Cm(x, t)

and Cim(x, t) with units [Cm(x, t)] = [Cim(x, t)] = µg/L. The mobile mass
Mm(t) = θm

∫∞
−∞Cm(x, t)dx and immobile massMim(t) = θim

∫∞
−∞Cim(x, t)dx

follow the total normalization M0 = Mm(t) +Mim(t). The capacity coeffi-
cient β defines the ratio of the immobile to mobile pore volumes β = θim/θm.
By formally choosing M0 = 1, βω = 1/τm and ω = 1/τim we obtain the
equivalence of Cm(x, t) and nm(x, t). At the same time the immobile density
is the scaled immobile concentration nim(x, t) = βCim(x, t) for this particular
choice of parameters. Therefore, if only the mobile density is measured, it
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does not matter whether model (2.1) or (2.3) is chosen. Next, we show how
to solve the model equations (2.1) using Fourier-Laplace transforms.

2.1.1 Solution in Laplace space

We apply the Fourier-Laplace transform defined by the expression f(k, s) =∫∞
−∞ dk

∫∞
0

dsf(x, t) exp(ikx − st) to the model equation (2.1) and solve for
nm(k, s), nim(k, s) and ntot(k, s). In these expressions, the Fourier wave num-
ber k is associated to the real space distance x, while the Laplace variable
s is associated with time t. This is a common approach to solve diffusion
equations, and it is done similarly in [23,58,59,79]. In this thesis we denote
expressions in Fourier- or Laplace space solely by replacing the respective ar-
guments. Details of the calculations in Fourier-Laplace space for our model
(2.1) can be found in [D1–D3]. The relations established in Fourier-Laplace
domain presented in Appendix A can be inverted using the inverse Fourier
transform, which yields the following expressions in Laplace domain

nm(x, s) =

(
f 0
m +

f 0
im

1 + sτim

)
exp

(
vx
2D

)
√
v2 + 4ϕ(s)D

exp

(
−
√
v2 + 4ϕ(s)D

|x|
2D

)

(2.4)

nim(x, s) =
τim/τm
1 + sτim

(
f 0
m +

f 0
im

1 + sτim

)
exp

(
vx
2D

)
√
v2 + 4ϕ(s)D

× exp

(
−
√
v2 + 4ϕ(s)D

|x|
2D

)
+ f 0

im

τim
1 + sτim

δ(x) (2.5)

as functions of x and s with ϕ(s) = s[1 + τimτ
−1
m /(1 + sτim)]. By per-

forming a numerical Laplace inversion, the densities can be obtained for
any desired time and position. The n−th moment of the total density
ntot(x, t) = nm(x, t)+nim(x, t) can be obtained from the expression in Fourier-
Laplace space

⟨xn(s)⟩ = (−i)n
(
∂

∂k
ntot(k, s)

)n∣∣∣∣
k=0

. (2.6)

Expression (2.6) holds, because ntot(k, s) can be interpreted as the character-
istic function of a probability density ntot(x, s) due to the normalization [14].
We cannot directly apply expression (2.6) to the mobile and immobile den-
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sities, because in general they are not normalized. We obtain the fractions
fm(t) =

∫∞
−∞ dxnm(x, t) and fim(t) =

∫∞
−∞ dxnim(x, t) of mobile and immo-

bile tracers from Laplace inversion of nm(k = 0, s) and nim(k = 0, s). The
expressions are given by

fm(t) =
τm

τm + τim
+
f 0
mτim − f 0

imτm
τm + τim

exp
(
−[τ−1

m + τ−1
im ]t

)
, (2.7)

fim(t) =
τim

τm + τim
− f 0

mτim − fimτm
τm + τim

exp
(
−[τ−1

m + τ−1
im ]t

)
, (2.8)

with fm(t)+fim(t) = 1. The fractions of mobile and immobile tracers change
over time in general and reach the respective stationary values f eq

m = τm/(τm+

τim) and f eq
im = τim/(τm + τim) in the long-time limit t≫ τm, τim. This can be

seen in figure 2.1, where fm(t) is shown as a grey line for the parameters f 0
m =

1, τm = 1 and fim = 100 used in [D2]. Immobisations are the physical process
behind the nG displacements and anomalous scaling of the MSD, that we
discuss in the following sections. Therefore, we illustrate the immobilisations
in figure 2.1 by colouring the areas under the curve for fm(t) according to
the fraction of tracers with specific numbers of immobilisations Nim. We
obtain Nim by integrating the corresponding expressions in [30]. For t ≪
τm = 1 almost all tracers have never immobilised and the area under the
curve is coloured black. At around t = 10 the majority of mobile tracers has
immobilised once, as shown by the red area. For longer times both the mean
number of immobilisations and the variance of immobilisations increases.

In order to obtain the p−th moment of the mobile and immobile density,
we first calculate the non-normalized moments

(−i)p ∂p

∂kp
nj(k, s)

∣∣∣∣
k=0

= ⟨xp(s)⟩j,u (2.9)

with j ∈ {m, im}, where we denote the moments as unnormalized using the
subscript u. Then we calculate the Laplace inversion, which can be done
exactly for the single rate model (2.1). In time-domain we normalize the
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Figure 2.1: Semilog plot of the fraction of mobile tracers fm(t) over time shown as
a grey line for τm = 1, τim = 100 and initially mobile tracers. In the long-time limit
t≫ τm, τim the equilibrium fraction f eqm = τm/(τm + τim) is reached. The areas are
coloured according to the number of immobilisation events Nim, where the black
area corresponds to mobile tracers that have never immobilised, while the tracers
immobilised and mobilised once in the red area.

unnormalized moments (2.9) as follows

⟨xp(t)⟩j =
⟨xp(t)⟩j,u
fj(t)

, (2.10)

as was done similarly in [36]. While the fractions fj(t) of mobile and immobile
tracers are independent of advection, the moments (2.6) and (2.10) behave
differently depending on the presence of advection. Therefore, we consider
the two cases separately in sections (2.2) and (2.3), respectively. Next, we
present the subordination method, which is especially suited to solving the
model including advection.
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2.1.2 Solution using subordination

Solving the model (2.1) in Fourier-Laplace space is a direct path to obtaining
the moments and densities in Laplace space, which can be (numerically)
transformed to time-domain solutions. In this section we introduce another
approach, that does not require transforming to a conjugated variable and
gives direct insights into the physical mechanisms of the MIM.

Bochner introduced the concept of subordination [99], which involves a
process X[τo(t)]. The operational time τo has non-negative increments and
corresponds to the number of steps in many random walk contexts [100]. In
the laboratory frame the time t is measured and the increments of τo(t) follow
a known stochastic process for a given system. In our case, the stochastic-
ity arises from the stochastic immobilisations. During an immobile period
τo(t) remains constant, and it increases linearly during mobile periods. The
process X(τo) follows Brownian motion with drift and can be written as the
following Langevin equation [54,64,65,101]

d

dτo
x(τo) = v +

√
2Dξ(τo) (2.11a)

d

dt
τo(t) = i(t), (2.11b)

where ξ(τo) denotes Gaussian white noise with correlation ⟨ξ(τ)ξ(τ ′)⟩ = δ(τ−
τ ′). Equation (2.11a) corresponds to a Langevin equation of a particle subject
to a constant force and diffusion. The increments i(t) follow a two-state
telegraph Markov process with values zero and one, where the mean residence
times are given by τim and τm, respectively. The subordinator P (τo, t) gives
the probability density of the operational time τo at time t, and it is known
exactly [30, 91]. The operational time τo is equivalent to the total mobile
duration in our model. With the Gaussian propagator G(x, t) corresponding
to advection-diffusion we obtain the total density

ntot(x, t) =

∫ ∞

0

P (τo, t)G(x, τo)dτo, (2.12)

which was reported similarly in [57] for a switching diffusion process. We note
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Figure 2.2: Semilog plot of the coefficient of variation cov(t) (2.14) of the sub-
ordinator P (τo, t) for initially mobile tracers. The parameters τm = 0.16 s and
τim = 7.7 s are taken from [38] and reflect the immobilisations of tau proteins in
neurons. For short times t ≪ τm, τim and long times t ≫ τm, τim the coefficient
of variation takes on small values, suggesting a distribution close to a Gaussian
distribution. The long-time asymptote ≃ t−1/2 is shown as a dashed orange line.
For intermediate times τm ≪ t ≪ τim, cov(t) takes on higher values, implying nG
densities.



2.1. FORMULATION OF THE MODEL 27

that expression (2.12) can be obtained from the expression for ntot(x, s) (2.5)
in Laplace space. From equation (2.12) it can be inferred, that a wide dis-
tribution P (τo, t) yields a nG distribution due to non identically distributed
increments consisting of a mix of Gaussians with a range of variances, while a
sufficiently sharp distributed P (τo, t) generates a Gaussian distribution. One
possible approach to obtaining P (τo, t) is to formally set v = 1 and D = 0

in the MIM (2.1) and identifying P (τo, t) with ntot(τo, t) [D2]. This is pos-
sible, because in the diffusion-free case the position x of a tracer is directly
proportional to the total mobile duration x = vτo. For v = 1 we can for-
mally identify x = τo. This allows obtaining the moments of P (τo, t) from
the moments of ntot(x, t), that we know exactly [D2]. Namely, we have

⟨τno (t)⟩ =
∫ ∞

0

τno P (τo, t)dτo = ⟨xn(t)⟩tot
∣∣∣
x=τo,v=1,D=0

. (2.13)

Now we can quantify the relative width of P (τo, t) using the coefficient of
variation [102]

cov(t) =

√
⟨[τo − ⟨τo⟩]2⟩

⟨τo⟩
(2.14)

that is a dimensionless quantity relating the standard deviation to the mean
value. In Appendix C we show that (2.14) is equal to the square root of the
ergodicity breaking parameter. The coefficient of variation (2.14) is shown
in figure 2.2 for initially mobile tracers. For the mean mobile and immobile
times the values τm = 0.16 s and τim = 7.7 s are chosen, that match the
immobilisation behaviour of tau proteins in neurons [38,D1]. The coefficient
of variation takes on small values for short times t≪ τm, τim and long times
t ≫ τm, τim. The long-time scaling ≃ t−1/2 is obtained in [D2] and shown as
a dashed orange line in figure 2.2. This implies relatively sharp distributions
of the subordinator P (τo, t) in these limits and therefore a particle density
ntot(x, t) close to a Gaussian distribution. At intermediate times τm ≤ t ≤ τim

the subordinator is not a narrow function, as demonstrated by the relatively
large value of cov(t) shown in figure 2.2. This implies nG displacements, that
we systematically study in the following section.
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2.2 Results for the advection-free model

In this section we discuss the main results of

T.J. Doerries, A.V. Chechkin, and R. Metzler, Apparent anomalous
diffusion and non-Gaussian distributions in a simple mobile-immobile
transport model with Poissonian switching, J. R. Soc. Interface 19,
20220233 (2022),

where we consider the advection-free model, i.e., we set v = 0 in the model
equation (2.1). The advection-free MIM corresponds to biological systems
with exponentially distributed immobilisations, such as synaptic vesicles in
hippocampal neurons [30], glococorticoid receptors in the nucleus [92] or
DNA binding proteins such as the tumour suppressor p53 [103–105], the
damage detection complex Rad4-Rad23 [103, 106] or the architectural DNA
binding protein Fis, that slides along the DNA and transiently binds to
it [49]. The latter is schematically depicted in figure 1.3. The motion of tau
proteins has been described with a differential equation corresponding to the
MIM (2.1) for v = 0 in [38]. Tau proteins plays a vital role in facilitating
the assembly and enhancing the stability of microtubules, thereby aiding
in the effective functioning of neurons, as schematically shown in figure 1.2
[37]. The relevance of tau proteins becomes clear from the association of
Alzheimer’s disease with reduced tau proteins binding capacity [37,107]. We
use parameters obtained in [38] for tau proteins, i.e., D = 13.9(µm)2s−1,
τm = 0.16 s and τim = 7.7 s in this section. The residence times in the
immobile state are long compared to the mobile residence times τim ≈ 48τim.
This gives rise to three time regimes that we will analyse, namely the short-
time regime t ≪ τm ≪ τim, the intermediate time regime τm ≪ t ≪ τim and
the long-time limit τm ≪ τim ≪ t. These three time regimes together with
the mobile, immobile and total density and the three fractions of initially
mobile tracers fm ∈ {0, f eq

m , 1} give a total of 27 cases, that are considered
in [D1]. Here we highlight only some results and start with the displacement
distributions.
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2.2.1 Displacement distributions

In this section we discuss asymptotic expressions of the displacement dis-
tributions. We use the term displacement distribution instead of the more
common term PDF, because the mobile and immobile densities in MIM are
not normalized. We obtain the short-time asymptote by applying the Taube-
rian theorem, which relates the short-time behaviour for t ≪ τm, τim to the
large s behaviour of the density in Laplace space for s ≫ 1/τm, 1/τim [108].
Similar results hold for the long-time limit [108]. We verify our asymptotics
with computer simulations, as shown in [D1]. In this section we start with
initially mobile tracers followed by initially immobile tracers and an equilib-
rium fraction of initially mobile tracers. For initially mobile tracers f 0

m = 1,
we obtain the Gaussian

ntot(x, t) ∼
1√
4πDt

exp

(
− x2

4Dt

)
(2.15)

in the short time limit t ≪ τm, τim. The Gaussian (2.15) corresponds to the
density of free Brownian motion. Now we relax the condition t ≪ τm to
t ≪ τim and hence allow immobilisations. As described in 2.1, the mobile
residence time distribution is an exponential distribution with mean τm. Now
two mechanisms are interacting. First, the spread of the tracers due to
the Brownian diffusion and second the immobilisations. Both mechanisms
combined yield the immobile density2

nim(x, t≪ τim) ∼
∫ t

0

exp(−t′/τm)/τm√
4πDt′

exp

(
− x2

4Dt′

)
dt′ . (2.16)

This means the increments are not identically distributed, and we obtain a
nG distribution. The integral in (2.16) can be solved analytically, revealing
that a Laplace distribution exp(−const|x|)/(2 const) emerges in the centre
|x| ≪ τim

√
D/τm, as shown in [D1]. The Laplacian shape persists wider than

the standard deviation of the distribution
√
2Dτm, rendering the Laplacian

centre pronounced. This is different from e.g., the PDF reported for CTRW
under relatively mild conditions, where exponential tails emerge far from

2Expression (2.16) can be obtained by solving the model equations (2.1) for 1/τim = 0
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the Gaussian centre [71]. To state it more precisely, at intermediate times
τm ≪ t≪ τim the Laplace distribution

ntot(x, t) ∼
1√

4Dτm
exp

(
− |x|√

Dτm

)
(2.17)

emerges. Notably, (2.17) does not depend on time. We obtain the long-time
asymptote

ntot(x, t) ∼
1√

4πD0
efft

exp

(
− x2

4D0
efft

)
(2.18)

for t≫ τm, τim using the Tauberian theorem for s≪ 1/τm, 1/τim with ϕ(s) ∼
s(1 + τim/τm), where3 D0

eff = Dτm/(τm + τim). The total density matches
Brownian motion slowed down by the fraction of mobile tracers, and it holds
for any fraction of initially mobile tracers f 0

m. In this long-time limit, the
mobile and immobile density have the same shape where the weights are given
by f eq

m and f eq
im, respectively. The occurrence of a Gaussian distribution is

expected, because all timescales are finite in the MIM with linear rates (2.1),
and we expect the central limit theorem to hold for t ≫ τm, τim. Moreover,
the relative width of the subordinator vanishes asymptotically, as shown in
figure 2.2.

Now we consider initially immobile tracers. Initially immobile tracers
remain at the origin until they mobilise. For short times t ≪ τm, τim the
tracers mobilise with the constant rate 1/τim. Once released, the tracers
behave the same as mobile tracers with a constant source at origin. This
means that in contrast to initially mobile tracers the displacements are not
identically distributed due to varying mobile durations, and we obtain a nG
distribution

ntot(x, t) ∼
2t/τim√
4πDt

e−
x2

4Dt −
|x|
(
1− erf

(
|x|√
4Dt

))

2Dτim
+

(
1− t

τim

)
δ(x), (2.19)

for t ≪ τm, τim and initially immobile tracers. We obtain the scaled Laplace

3We use D0
eff with the superscript 0 to distinguish this result for v = 0 from the more

general expression (2.25) that includes advection.
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distribution

ntot(x, t) ∼
t/τim√
4Dτm

exp

(
− |x|√

Dτm

)
+

(
1− t

τim

)
δ(x), for τm ≪ t≪ τim

(2.20)
at intermediate times, which is the same Laplace density as for initially
mobile tracers (2.15) but with growing weight t/τim and an additional narrow
peak at the origin. In the long-time limit initially immobile tracers follow
the same Gaussian (2.15) with effective diffusion coefficient D0

eff , as initially
mobile tracers.

Now we choose an equilibrium fraction of initially mobile tracers f 0
m = f eq

m .
The model equations (2.1) are linear, therefore the distributions from equilib-
rium initial conditions is the weighted sum of the results for initially mobile
and initially immobile tracers. For the timescale separation τm ≪ τim this
implies that for short to intermediate times most of the tracers are immobile
and concentrated in the delta peak at the origin, accompanied by a Gaussian
with variance 2Dt arising from initially mobile tracers. The mass of the nG
distribution arising from initially immobile tracers that have mobilised, i.e.,
(2.19) is negligible in comparison. At intermediate times ntot(x, t) is given
by the Laplacian and delta peak (2.20). In [42] the displacement distribu-
tions of acetylcholine receptors on live cell membranes was measured. It has
a distinct Laplacian shape with a delta peak at the origin, similar to the
total density at intermediate times of initially immobile tracers (2.20) up to
the coefficient t/τim. In another experiment the displacement distributions
of Fis DNA binding proteins can be fitted with two Gaussians, where the
standard deviation of one is below experimental resolution [49]. Therefore,
this distribution could correspond to the short-time total density with an
equilibrium fraction of initially mobile tracers, that consists of a delta peak
and a Gaussian distribution. Another possible explanation for this nG dis-
tribution could be given by the intermediate time distribution of the MIM
with a delta peak and a Laplace distribution.

In [57] the short-time distribution of a switching diffusion model with
diffusivities D and zero is analysed for arbitrary residence time distributions
with finite means restricted to an equilibrium fraction of tracers in state
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D. The PDF scales like ∼ C1(t) − C2|x| for small x > 0, which is called
a cusp [57]. In [D1] we report a different short-time distribution for an
equilibrium fraction of initially mobile tracers, because we focused on the
leading terms with the biggest weight. Taking all terms of ntot(x, t) into
account, i.e. the weighted sum of [D1, Eq. (4.1)] and [D1, Eq. (3.1)] gives
the same expression, as [57, Eq. (26)] in the limit τm ≪ τim. In addition to
the short-time limit we find a clear cusp in the total density at intermediate
times τm ≪ t ≪ τim in the form of a Laplace distribution. In the following
section we characterise the width of the particle densities using the MSD.

2.2.2 Mean squared displacements

We obtain exact expressions for the MSD by performing a Laplace inversion
of expressions (2.6) and (2.10). For the total density we obtain the mean
squared displacement

⟨x2(t)⟩ = 2D0
efft+ 2Dτim

f 0
mτim/τm − f 0

im

(1 + τim/τm)2

(
1− e−(τ−1

m +τ−1
im )t
)
. (2.21)

The shape of the MSD (2.21) depends on the fraction of initially mobile trac-
ers f 0

m. We start with the case of initially mobile tracers f 0
m = 1. In this case

the MSD grows linearly ∼ 2Dt, which is the same as for free Brownian motion
for short times t ≪ τm, τim. At intermediate times strong subdiffusive be-
haviour is observed, where a plateau emerges for τm ≪ t≪ τim. The plateau
arises at the same time as the Laplace distribution (2.17) with a fixed scale
parameter for τm ≪ t ≪ τim. The initially fast spread of tracers is slowed
down due to immobilisations, resulting in the plateau at intermediate times.
In the long-time limit t ≫ τm, τim the MSD grows linearly ⟨x2(t)⟩ ∼ 2D0

efft

with D0
eff = Dτm/(τm+τim), as discussed in the previous section. In the long-

time limit only the fraction τm/(τm + τim) of all tracers is mobile, therefore
the spread is slowed down. We note that a result similar to (2.21) has been
found in a two-dimensional setting restricted to f 0

m = 1 where a distribution
similar to a Laplace distribution emerges at intermediate timescales [109].

Now we show how to interpret the transition of the MSD from linear to a
plateau to linear as a cooling effect. As described in Appendix B, the MSD
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follows the expression

d

dt
⟨x2(t)⟩ = 2

kBTfm(t)

γ
= 2Dfm(t), (2.22)

exactly and we identify the effective temperature Teff(t) = Tfm(t). At short
times t ≪ τm ≪ τim the fraction fm(t) remains almost constant, yielding a
linear MSD at short times with a high effective temperature Teff ∼ T . For
t ≥ τm the number of mobile tracers rapidly decreases leading to decreasing
increments of the MSD. This gives the plateau at intermediate timescales
τm ≪ t≪ τim. In the long-time limit t≫ τm, τim the fraction fm(t) takes on
the constant value f eq

m and the MSD is linear, corresponding to the temper-
ature Teff ∼ f eq

m T ≪ T .

The transition of the MSD from linear at short times to a plateau at
intermediate times to a linear MSD at long times has been observed in
other contexts. One example is given by the diffusion of tracers in a het-
erogeneous medium with compartments, that are bounded by semiperme-
able barriers [47]. The same behaviour of the MSD was observed in a two-
dimensional experiment of tracers transiently confined in a random matrix of
obstacles [45]. Another experiment was carried out in [110], where a nanopar-
ticle diffuses in a porous cavity with repulsive particle-wall interactions. An
exponential distribution of sojourn times in these cavities was observed, that
corresponds to a release of tracers with a constant rate, as in the MIM (2.1).
Moreover, the MSD displayed linear growth at short times followed by a
plateau and close to linear long-time growth [110]. In these models the linear
MSD at short times arises due to the particle diffusing before encountering
the boundary. In our model this corresponds to tracer diffusing freely before
immobilising. The plateau arises in our model due to immobile tracers, while
it originates from moving tracers that cannot move further from the initial
position because of the confinement in [47,110]. Due to the transient nature
of the confinements, tracers travel from one compartment to another and the
MSDs grow in the long-time limit. In our model the MSD grows linearly in
the long-time limit due to the finite mean immobile time, i.e., the tracers
keep moving after an immobile period.
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Now we turn to initially immobile tracers, which yield a quadratic growth
of the MSD ⟨x2(t)⟩ ∼ Dt2/τim at short times t≪ τm, τim. The quadratic term
appears because mass is shifted from the delta peak at the origin to the mobile
density proportional to t and the diffusion time increases. This is discussed
in detail in [D1]. The quadratic growth can be understood as heating by
identifying a linearly growing effective temperature ≃ t in (2.22). A short-
time quadratic growth of the MSD emerges in another model, as well. It
has been observed for a diffusing diffusivity model, where the initial diffusion
coefficient is set to zero [55], which resembles initially immobile tracers.

For an equilibrium fraction of initially mobile tracers the MSD follows
⟨x2(t)⟩ = 2D0

efft at all times. Together with the nG distribution at short to
intermediate times this gives rise to FnG diffusion. A similar result has been
observed for a three-dimensional trapping model similar to the MIM in [111].
In another setting an experiment of colloidal beads diffusing along a linear
phospholipid bilayer tube FnG diffusion revealed, demonstrating that FnG
may be observed in experiments [52]. The MSD was observed to be linear
at all times, while the displacement distribution of tracers transitions from a
Laplace distribution to a Gaussian distribution. In contrast to our result the
variance of the Laplace distribution grows linearly in [52]. Our result is closer
to the experiments on Fis DNA-binding proteins, where the FnG is reported
[49]. The nG distribution is split into a sharp peak of immobile tracers at the
origin and a wider distribution [49]. As described above, the latter could be
explained with a Gaussian in our model in the short-time limit t ≪ τm, τim

or a Laplace distribution at intermediate timescales τm ≪ t≪ τim, that both
arise for an equilibrium fraction of initially mobile tracers [D1].

So far, we have focused on the timescale separation of long immobile
times τim ≫ τm. For short immobilisations τim ≪ τm the long-time diffusion
coefficient does not deviate from the diffusion coefficient of free Brownian
particles, because almost all tracers are mobile. Therefore, the plateau ob-
served for long immobilisation does not occur for τim ≪ τm, and the diffusion
is almost indistinguishable from Brownian motion for t ≫ τim, regardless of
the fraction of initially mobile tracers.

To summarize, we use the MIM known from geoscience to describe the
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motion of single tracers in biological experiments, where we focus on the MSD
and displacement distributions. In addition, in Appendix C, we discuss time
averaged mean squared displacements, which become relevant when only
few trajectories are obtained from experiments. We find that the TAMSDs
obtained from MIM vary significantly at intermediate measurement lengths
even for vanishing delay and equilibrium initial conditions. This matches
what has been reported before for a switching diffusion model [112]. Using
the subordination technique we are able to provide an exact distribution of
TAMSDs for short time-lags. In the next section 2.3, we consider advection
and discover anomalous diffusion and nG distributions that emerge also for
short immobilisations in contrast to the advection-free setting.

2.3 Results for the model including advection

In this section we discuss the main results of

T.J. Doerries, R. Metzler, and A.V. Chechkin, Emergent anomalous
transport and non-Gaussianity in a simple mobile-immobile model:
the role of advection, NJP 25, 063009 (2023),

which we cite as [D2]. We consider the full MIM (2.1) including advection
and we propose to model the motion of biomolecules in a biosensor in [D2].
The biomolecules bind to specific receptors in the sensor, leading to transient
immobilisations. We do not compare our model to experimental data and
we therefore use dimensionless parameters in this section to study various
parameter regimes. The MIM including advection has been analysed in geo-
science to describe the motion of tracers in porous media already in the 1960s
intensively, often in the formulation of the MIM with capacity coefficients
(2.3) [16–18,22–24,98]. It has been used to describe sorbing tracers [79,113]
and chemicals in chromatography [114]. In geoscience the observable is often
the breakthrough curve (BTC), which is the concentration of tracers at a
fixed position over time [16–19, 21, 26, 74, 76, 98]. The MSD of the MIM has
been obtained for various fractions of initially mobile tracers [23,35,36]. We
now systematically investigate the MSD and analyse how advection affects
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the plateau that is present in the advection-free case for long immobilisa-
tions. In addition, we find a new regime at intermediate timescales with a
cubic scaling of the MSD. We immediately proceed with the MSD instead of
the first moment, because the first moment is related to the second moment
of the advection-free case ⟨x2(t)⟩0 with the second Einstein relation [115]

⟨x(t)⟩ = v

2D
⟨x2(t)⟩0, (2.23)

as can be seen by evaluating the expression for the moments in Laplace space
(2.9).

As we demonstrate now, there exists a timescale before which advection
plays a negligible role. In the mobile state tracers are displaced with ∆xv = vt

due to advection and ∆xD =
√
2Dt due to diffusion. Comparing ∆xv and

∆xD gives the timescale τv = 2D/v2 before which advection plays a negligible
role. This means that for t≪ τv the system subject to advection behaves the
same as in the advection free setting in the previous section. As laid out in
the following sections, we find a novel intermediate time regime with a clear
anomalous scaling of the MSD paired with a nG displacement distribution
for times longer than τv, if τv is smaller than τm and τim.

Using τv, we define the Péclet number Pe = τm/τv = v2τm/(2D). Péclet
numbers are dimensionless numbers that indicate if a transport process is
advection- or diffusion dominated [116]. Usually it is defined as Pe = vL/D

with a typical length scale L, for which we choose L = vτm/2. The model
equations (2.1) depend on the four parameters τm, τim, v and D. We trans-
form (2.1) to the dimensionless variables t′ = t/τm and x′ = x/

√
Dτm and

obtain the equations

∂

∂t′
nm(x

′, t′) =− nm(x
′, t′) +

τm
τim

nim(x
′, t′)

−
√
2Pe

∂

∂x′
nm(x

′, t′) +
∂2

∂x′2
nm(x

′, t′) (2.24a)

∂

∂t′
nim(x

′, t′) =− τm
τim

nim(x
′, t′) + nm(x

′, t′), (2.24b)

which only depend on the ratio τim/τm and the Pe. The dependence of the
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dimensionless model (2.24) on two parameters only is worth to emphasize.
The dimensionless formulation of pure advection-diffusion without immobil-
isations depends on one parameter. Our model adds only one additional pa-
rameter τm/τim, which defines the relative length of immobilisations. There-
fore, the dimensionless model (2.24) has the minimum number of parameters
needed to cover advection and diffusion dominated transport, as well as short
and long immobilisations. In [98] the dimensionless formulation of the MIM
is presented for the approach common in geoscience (2.3), that incorporates
the capacity coefficient β instead of mean mobile and immobile durations τm
and τim.

The long-time asymptote of the densities is independent of the fraction
of initially mobile tracers and we therefore discuss it next before going to the
preasymptotic regimes that depend on this fraction.

2.3.1 Long-time asymptote

The long-time asymptote is independent of the fraction of initially mobile
tracers. Therefore, we consider it separately from the preasymptotic results
for the concentration profiles and MSDs. The long-time effective diffusion
coefficient obtained from the exact moments by limt→∞⟨[x(t) − ⟨x(t)⟩]2⟩/2t
is given by the expression

Deff = D
τm

τm + τim
+ v2

τ 2mτ
2
im

(τm + τim)3
(2.25)

and becomes v dependent, if advection is present. This result is in contrast
to the solution of the advection-diffusion equation, where v is absent in the
central moments. Expression (2.25) has been reported before [23, 35]. We
provide a physical explanation for the occurrence of advection in Deff (2.25)
here. In order to explain this effect, we discretize the advection-diffusion
process into discrete steps of size ∆xl, that follow a normal distribution
N (v∆t, 2D∆t) for some small timescale ∆t ≪ τm, τim. Each tracer per-
forms a random number of steps n, that follows a Gaussian distribution
N (µ/∆t, σ2/(∆t)2 in the long-time limit t ≫ τm, τim. Here µ and σ2 denote
the first moment and the second central moment of the subordinator obtained
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from (2.13), as described in detail in [D2]. After these n steps, the tracer is
located at x =

∑n
l=1∆xl. Using the independence of the step lengths ∆xl

and the number of steps n, we obtain the variance of positions [117]

⟨[x(t)− ⟨x(t)⟩]2⟩ = ⟨n⟩⟨[∆xl − ⟨∆xl⟩]2⟩+ (⟨∆xl⟩)2⟨[n− ⟨n⟩]2⟩

∼ 2

(
D

τm
τm + τim

+
v2τ 2mτ

2
im

(τm + τim)3

)
t (2.26)

in the long-time limit t≫ τm, τim. On the one hand equation (2.26) illustrates
that when there is diffusion without advection, the only factor influencing
the MSD is the average mobile duration. On the other hand the relation
(2.26) demonstrates that advection couples to the variance of the total mobile
durations of the tracers.

In the long-time limit t≫ τm, τim the total density follows the Gaussian

ntot(x, t) ∼
1√

4πDefft
exp

(
−(x− vefft)

2

4Defft

)
(2.27)

with the effective advection speed veff = vτm/(τm + τim). The Gaussian form
is expected from the narrow form of the subordinator at long times and is
checked with simulations in [D2]. With the expression for Deff the specific
form of veff follows directly from the Einstein relation (2.23). Next, we present
nG displacements at intermediate timescales.

2.3.2 Displacement distributions

First, we will consider initially mobile tracers in this section. We start with
long immobilisations τim ≫ τm, for good comparability with the advection-
free case in the previous section with the same timescale separation. Com-
pared to the advection-free case a new advection dominated regime emerges
for τv ≪ t≪ τm, where the total density is given by

ntot(x, t) ∼
(
1− t

τm

) exp
(
− (x−vt)2

4Dt

)

√
4πDt

+

{
1
τmv

for 0 < x < vt

0 otherwise
, (2.28)
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where the scaled Gaussian corresponds to the mobile density and the uniform
density to the immobile tracers. The physical mechanism for the uniform
part of the distribution can be understood as follows. The fraction of mobile
mass is close to unity due to t ≪ τm. This implies, that we effectively have
a Gaussian with almost constant weight translating with constant speed v.
From this mobile density tracers immobilise with a constant rate, giving rise
to the uniform immobile distribution.

At intermediate times τm ≪ t ≪ τim, initially mobile tracers follow the
density

ntot(x, t) ∼
exp

(
vx
2D

)
√
v2τ 2m + 4Dτm

exp

(
−
√
v2τ 2m + 4Dτm

|x|
2Dτm

)
, (2.29)

which is an asymmetric density with exponential decay with different con-
stants for the positive and negative x direction. The density (2.29) does not
depend on time, the same as in the advection-free case (2.17), because the
physical mechanism remains the same: Almost all initially mobile tracers
have immobilised once.

Still for initially mobile tracers, let us consider short immobilisations
τim ≪ τm, which results in Gaussian Brownian motion in the advection-
free case. By including advection, we observe a nG distribution close to the
origin for x≪ vt and v2τim ≫ D

ntot(x, t) ∼
t

τm

exp
(
− t
τim

+ x
vτim

)

vτim
, for τim ≪ t≪ τm and 0 < x≪ vt.

(2.30)
The tail approximation is only applicable in the vicinity of the origin, and
as a result, it is not normalized. This exponential tail (2.30) is similar to the
exponential tail reported in [118] for a CTRW with exponentially distributed
sojourn times and advection.

Now we turn to initially immobile tracers. For short immobilisation du-
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rations τim ≪ τm, we observe a tail similar to (2.30) given by

ntot(x, t) ∼ δ(x) exp

(
− t

τim

)
+

1

vτim
exp

(
x

vτim
− t

τim

)
for 0 < x≪ vt,

(2.31)
for v2τim ≫ D and τv ≪ t≪ τm, where an additional delta peak of immobile
tracers is located at the origin. This asymptote is valid in the advection-
dominated regime τv ≪ t≪ τim. Going to long immobilisations τim ≫ τm we
find that initially immobile tracers have the same delta peak at the origin in
the short-time limit with an additional uniform distribution of mobile tracers

ntot(x, t) ∼
(
1− t

τim

)
δ(x) +

{
1
τmv

for 0 < x < vt

0 otherwise
for τv ≪ t≪ τm,

(2.32)
in the advection dominated regime τv ≪ t ≪ τm. The appearance of the
uniform density of mobile tracers of initially immobile tracers and the simi-
larity of this term to the second term in (2.28) is no surprise. In general the
distribution of mobile tracers that were initially immobile is proportional to
immobile tracers of initially mobile tracers [D1].

At intermediate times in the immobilisation dominated regime an asym-
metric Laplace distribution with the same time-dependent weight as for v = 0

emerges. For an equilibrium fraction of initially mobile tracers, the densities
are given by the weighted sum of the results for the mobile and immobile ini-
tial tracers, due to the linearity of the system. In summary, we have found an
advection-dominated nG regime for both initially mobile and initially immo-
bile tracers. This regime emerges for short immobilisations τim ≪ τm and for
long immobilisations τm ≪ τim. In the next section we see that this regime
emerges in the MSD as well, although the lower bound of the corresponding
timespan differs in some cases.

2.3.3 Mean squared displacements

From exact expressions in time-domain we obtain the Taylor expansion for
t ≪ τm, τim. For simplicity, we only consider the MSD of the total density
here. Expressions for the mobile and immobile densities are provided in [D2].



2.3. RESULTS FOR THE MODEL INCLUDING ADVECTION 41

We start with the MSD of initially mobile tracers

⟨[x(t)− ⟨x(t)⟩]2⟩ ∼ 2Dt+
v2

3τm
t3 for t≪ τm, τim, (2.33)

which shows superballistic scaling of the MSD with a cubic exponent for τ⋆ =√
3τvτm ≪ t ≪ τm, τim regardless of the ratio τm/τim for a sufficiently high

Péclet number. In the previous section, we have seen that the distribution
for short immobilisations is different compared to the distribution of long
immobilisations. Both densities give rise to the cubic scaling of the MSD.
The physical mechanism behind the cubic scaling for initially mobile tracers
can be understood by going to the reference frame moving along the Gaussian
peak of mobile tracers with x′ = vt. From this co-moving reference frame
the immobilised tracers appear to move ballistically, which gives a quadratic
scaling of the MSD. In addition, the number of tracers that appear to be
moving ballistically grows linearly. This gives the cubic scaling of the MSD.

The MSD of initially immobile tracers scales as follows

⟨[x(t)− ⟨x(t)⟩]2⟩ ∼ Dt2

τim
+

v2

3τim
t3 for t≪ τm, τim, (2.34)

where the cubic term dominates for τv ≪ t ≪ τm, τim. This cubic regime
occurs for short and for long immobilisations for sufficiently large Péclet
numbers. Note that in the Appendix of [D2] we discuss the parameter space
where the cubic scaling emerges in detail.

Another new behaviour compared to the advection-free case in the MSD
can be observed for short immobilisations, where "advection induced subdif-
fusion" is observed. With this terminology we refer to a plateau in the MSD
for τim ≪ t ≪ τm for Pe ≫ τm/τim. This arises because initially immobile
tracers mobilise fast and are subject to strong drift. This means that for
short times the MSD grows fast (cubically, as described before). Once all
tracers are mobile, they stay mobile for t≪ τm. The spread due to diffusion
is negligible compared to the initial spread and the distribution of tracers is
translated without changing its shape significantly. Therefore, a plateau in
the MSD emerges.
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The MSD is a non-linear function of the first and second moment. There-
fore, the MSD with an equilibrium fraction of initially mobile tracers is not
simply given by a linear combination of the MSD for initially mobile and
MSD for initially immobile tracers. Moreover, the Taylor expansion of the
MSD

⟨[x(t)− ⟨x(t)⟩]2⟩ ∼ 2Df eq
m t+ v2f eq

m f
eq
imt

2 for t≪ τm, τim, (2.35)

contains a quadratic regime in the MSD for τv/f eq
im ≪ t≪ τm, τim in contrast

to FnG in the advection-free case. The ballistic regime emerges for long
immobilisations τim ≫ τm for Pe ≫ 1 and for short immobilisations τim ≪ τim

for Pe−1/2 ≪ τim/τm.
Now that we have discussed the displacement distributions and the MSD

for the MIM, we compare the results to the CTRW, which is a common model
for systems with trapping.

2.4 Comparison to the continuous time random

walk

The continuous time random walk (CTRW) was initially introduced to de-
scribe the motion of charge carriers in an amorphous semiconductor subject
to an electric field [59]. It is widely used in geoscience [19, 23, 72, 79, 86] and
biophysics [39–41, 61] to describe diffusing tracers that get trapped. The
CTRW is a two-step process. First, a tracer waits for a random duration τs,
called the sojourn time. Second, it instantaneously jumps a random distance
∆x, where in general both quantities are drawn from a transition density
ψ(∆x, τs). In Fourier-Laplace space the PDF is given by the Montroll Weiss
equation [59]

pCTRW(k, s) =
1− ψ(s)

s

1

1− ψ(k, s)
, (2.36)

with ψ(τs) =
∫∞
−∞ ψ(∆x, τs)d∆x. A prevalent feature of the sojourn time

densities is the asymptotic scaling ψ(τs) ≃ τ−1−α
s with 0 < α < 1 [13].

This leads to a PDF with infinite mean, which can occur e.g., for expo-
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nentially distributed energy pots [119]. Other examples where a diverging
mean occurs include small-scale heterogeneities in porous sand packs [78]
and the Kv2.1 potassium channel diffusing in the plasma membrane of living
cells [39]. In chapter 3.2, we introduce an extension of the MIM, that al-
lows for power-law immobilisation time distributions. For the present model
(2.1), it is more instructive to compare our results to CTRWs with sojourn
time distributions that have finite moments. Recently, (bi-)exponential so-
journ time distributions gained attention [70, 71]. The relation between the
MIM and its extensions on one hand and CTRW on the other hand has been
discussed in detail, for instance, in [23, 79, 81], mainly on a general level of
integro-differential equations. In this section, we make a direct comparison
of CTRWs with (bi-)exponential sojourn time distributions and MIM on the
level of PDFs and MSDs. In section 3.4 we extend the discussion to the so-
journ time distributions, that arise from the formal equivalence on the level
of integro-differential equations.

We start with a CTRW with an exponentially distributed sojourn time
distribution ψ(t) = exp(−t/τψ)/τψ and a Gaussian displacement distribution
λ(x) with mean µ and variance σ2. This constitutes the model analysed
in [118]. We modify the solution of this model found in [71] to account for
non-zero mean displacements µ and obtain

pCTRW(x, t) =
∞∑

j=1

(t/τψ)
j exp

(
− t
τψ

)

j!

exp
(
− (x−jµ)2

2jσ2

)

√
2πjσ2

. (2.37)

If t is of the same order as τψ, only a few number of immobilisations will
have taken place and the resulting PDF (2.37) takes on a ripple-like form
with peaks centred around x = jµ for integer values of j. This distribution
differs from a Gaussian distribution and is different from the nG distributions
with spatially uniform tails or exponential tails, that we discuss for our model
in section 2.3.2. From p(x, t) (2.37) we obtain the MSD

⟨[x(t)− ⟨x(t)⟩]2⟩ = σ2

τψ
t+

µ2

τψ
t, (2.38)
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which is linear at all times. This is in contrast to the results obtained from
our model, where the MSD deviates a lot from a purely linear MSD due
to a cubic scaling and a subsequent plateau at intermediate timescales for
τv ≪ τm ≪ τim. It is no surprise that the MSD (2.38) does not contain many
regimes, because the underlying CTRW contains a single timescale τψ only.

Next, we compare MIM to a two-state CTRW with two timescales, that
was introduced in [120]. In this CTRW it is drawn from ψ1(x, t) and ψ2(x, t)

alternatingly. The transition densities are chosen as

ψi(x, t) =
1√

4πDit
exp

(
−(x− vit)

2

4Dit

)
ψi(t), i = 1, 2 (2.39)

with average speeds vi and diffusion constants Di. In the long-time limit the
MSD is linear with the diffusion coefficient [120]

Deff =
D1τ1 +D2τ2
τ1 + τ2

+
1

2(τ1 + τ2)

[
σ2
1

(
v1 −

v1τ1 + v2τ2
τ1 + τ2

)

+ σ2
2

(
v2 −

v1τ1 + v2τ2
τ1 + τ2

)]
(2.40)

with τi =
∫∞
0
tψi(t)dt and σ2

i =
∫∞
0
t2ψi(t)dt − τ 2i , i = 1, 2. By formally

choosing D1 = D, v1 = v, D2 = 0, v2 = 0, ψ1(t) = exp(−t/τm)/τm and
ψ2(t) = exp(−t/τim)/τim, we obtain the same effective diffusion coefficient,
as in the MIM (2.25). This means that in the long-time limit the continuous
paths in the mobile state can be replaced with instantaneous jumps. For
short times the distribution is different in the MIM due to the continuous
trajectories.

The next CTRW we consider effectively mimics the mobile state of the
MIM with short jumps paired with short sojourn times. We consider the
CTRW used in [70], where the sojourn time distribution function consists of
a weighted sum of two exponential distributions

ψ(t) = pD
exp

(
− t
τD

)

τD
+ (1− pD)

exp
(
− t
τB

)

τB
, (2.41)

where τD ≤ τB and pD ∈ (0, 1). This can be interpreted as drawing from
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an exponential distribution with mean τD with probability pD and from an
exponential distribution with mean τB otherwise. We consider a Gaussian
jump length distribution function

λ(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (2.42)

with mean µ and variance σ2. Note that this is an extension of the displace-
ment distribution in [70], where only the case µ = 0 is considered. This
model can mimic the MIM, if we formally choose the parameters τB = τim,
pD = 1− τD/τm, µ = vτD, σ =

√
2DτD and τD ≪ τB, τim, τm, as we elucidate

in the following. The value of pD is close to unity. Therefore, the proba-
bility to draw from the exponential distribution with mean τD is very high.
This means that many steps will be taken with mean sojourn time τD. The
smallest timescale is τD. Therefore, the jump lengths with mean µ = vτD

and variance σ2 = 2DτD are also small. This large number of steps with
small step sizes mimics the mobile state of the MIM. With probability 1−pD
the sojourn time is drawn from exp(−t/τim)/τim with τim = τB. This corre-
sponds to the immobile state of the MIM. The probability 1 − pD directly
translates to an immobilisation rate of 1/τm. In figure 2.3 we compare the
MSD of the CTRW with a bi-exponential sojourn time density shown as disc
markers to the MIM shown as solid lines using dimensionless parameters for
demonstration purposes. For the MIM we choose the parameters τm = 1,
τim = 100, D = 1 and v = 0 or v = 10. For the CTRW we choose the
parameters τD = 2 × 10−2, τB = τim, µ = vτD and σ2 = 2DτD. The MSDs
for the advection-free case v = 0 match, as shown by the blue line and grey
markers. In the case of advection, the MSD of the CTRW shown with black
markers grows faster compared to MIM shown as an orange line for short
times t ≤ τD. As described in detail in [D2, Appendix L.3], this arises due to
the stochastic number of steps in the "mobile state" of the CTRW for a given
mobile duration. In contrast, in the discretized version of the MIM, which
we introduced in section 2.3.1, the number of steps is exactly proportional
to time in the mobile state.

So far, we have analysed the relation of the MSDs from the MIM and
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Figure 2.3: Double-logarithmic plot of the MSD with a comparison of the MIM
shown as solid lines and CTRW with a bi-exponential sojourn time distribution
shown as disc markers. The parameters of CTRW are chosen to mimic MIM. See
text for details. In the advection-free case (v = µ = 0) the MSD of MIM and
CTRW exactly overlap, as shown by the blue curve and the grey markers. In the
case with advection the MSD of CTRW grows faster for short times due stochastic
number of steps in the "mobile state" for a given mobile duration. Parameters:
τD = 10−2, τm = 1, τim = τB = 100 and D = 1. Reprinted without changes
from [D2] under the licence https://creativecommons.org/licenses/by/3.0.

https://creativecommons.org/licenses/by/3.0


47

Figure 2.4: Semilog plot of the total density ntot(x, t) of the MIM and the PDF
pCTRW(x, t) of the CTRW without advection. The CTRW has a bi-exponential
sojourn time distribution and the same parameters as in figure 2.3. The histograms
for the CTRW are obtained from simulations with 107 tracers and ntot(x, t) shown
as a solid black line is obtained from Laplace inversions of nm(x, s) + nim(x, s)
(2.4-2.5). We use τD = 2× 10−2 in panel (a) and τD = 2× 10−3 in panel (b). As a
guide to the eye a Gaussian is shown as a dashed line, which matches the centre of
the distributions. An exponential guide to the eye is shown as a dotted line. The
exponential tail only appears for the CTRW in panel (a).
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the CTRW as laid out in [D2]. A matching MSD does not imply identical
distributions, as shown in figure 2.4. For the advection-free case we use
the same parameters, as in figure 2.3 with the goal to mimic MSD using a
CTRW. The total densities of MIM are obtained from Laplace inversions of
nm(x, s)+nim(x, s) (2.4-2.5) and the position densities pCTRW(x, t) of CTRW
are obtained via simulations with 107 tracers at t = 10−1. In panel (a) we
use τD = 2× 10−2 and in panel (b) we use τD = 2× 10−3. Even though the
full MSDs match for τD = 2 × 10−2, as shown in figure 2.3, the densities of
CTRW and MIM at t = 10−1 do not match in panel (a). Both densities share
a Gaussian centre demonstrated by the Gaussian guide to the eye shown as
a dashed line. A deviation can be seen at the tails, where the CTRW follows
exponential tails as shown by the dotted lines, which are exponential guides
to the eye. These exponential tails match what has been reported in [71] for
the tails of CTRWs. In a CTRW the sojourn times are randomly drawn from
a distribution. Therefore, it may occur that few tracers jump considerably
more often than the average. These tracers move further than the majority
of tracers, leading to the exponential tails. In order to obtain a better match
of the densities of MIM and CTRW using the bi-exponential CTRW, the
variance of step numbers in the "mobile state" should be as small as possible.
As described in [D2], the mean number of steps at time t is t/τD and the
variance of step numbers is given by the same quantity. The number of steps
is narrowly distributed, if the coefficient of variation is small, i.e. the ratio of
standard deviation to mean obeys

√
τD/t ≪ 1. Therefore, the exponential

tails vanish in panel (b) for τD = 2 × 10−3 for t = 10−1 in the part of the
density shown in figure 2.4.

In conclusion, if we choose a bi-exponential sojourn time distribution
(2.41) where τD is chosen sufficiently small, the MSD and density obtained
from the CTRW match the results for the total density of the MIM. A funda-
mental difference between CTRW and the MIM persists. Namely, in CTRW
tracers are always immobile and perform instantaneous jumps. In contrast,
in MIM the trajectory is continuous and interrupted by immobilisations. Fur-
thermore, the total density is split into a mobile and an immobile density
in the MIM. This distinction might become relevant, if only one of the two
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populations can be measured. One example is given by a biosensor, where
only bound molecules are detected. The splitting of tracers into a mobile
and an immobile population is observed for the passive motion of tracers in
mucin gels [121,122] or acetylcholine receptors in live cell membrane [42].

In this section we have compared the MIM to the bi-exponential CTRW in
[70]. We continue the discussion of the relation between CTRW and the MIM
in section 3.4, where we see that this bi-exponential sojourn time distribution
naturally arises from the formal equivalence of the MIM and CTRW on the
level of integro-differential equations.
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Chapter 3

The extended mobile/immobile
model

In this chapter we discuss the main results of

T. J. Doerries, A. V. Chechkin, R. Schumer, and R. Metzler, Rate
equations, spatial moments, and concentration profiles for mobile-
immobile models with power-law and mixed waiting time distribu-
tions, Phys. Rev. E 105, 014105 (2022),

which we reference with [D3]. Here we introduce the extended MIM (EMIM).
It is an extension of the MIM in the sense that it explicitly incorporates a
residence time distribution in the immobile state, that can be chosen freely,
e.g., with a power-law tail. In section 3.1 we introduce common models used
in geoscience that go beyond single rate mass transfer to show how the EMIM
can be seen as an extension of these established models. The full model is
introduced in section 3.2, where we additionally discuss the mobile mass
decay. In section 3.3 we discuss the concentration profiles and MSD. Finally,
we dedicate section 3.4 to a discussion of the relation between CTRW and
the EMIM.

51
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3.1 Mobile/immobile models beyond single rates

In many settings particles do not mobilise with a constant rate, i.e., the
immobile residence times do not follow an exponential distribution in these
settings. An example is given by variations in aquifer properties, such as the
types of minerals, the geometry of pores or the quantity of organic material
[22]. Another example is given by power law residence times of tracers in
the hyporheic zone, which is the region of aquifers near a stream, that is in
exchange with the stream [27]. Another motivation to generalize the MIM is
to account for a mobile mass decay with a power-law tail that was measured
in the MADE-1 experiment [88]. This power-law tail cannot be modelled
with the single-rate model (2.1).

In this section we give a brief overview over common models used in geo-
science and start by introducing the multi-rate mass transfer model (MRMT)
[89] followed by the fractal MIM from [21]. These models provide motivation
for the introduction of the extended MIM introduced in [D3] and give insight
into the relation of EMIM and previously established models.

The Multirate mass transfer model

In this section we follow the steps presented in [22] and introduce the mul-
tirate mass transfer model (MRMT). In the following we show how MRMT
emerges from the physical picture of multiple immobile zones. The starting
equation for the mobile concentration cm(x, t) is given by1

∂

∂t
cm(x, t) = −

N∑

l=1

βlαl (cm(x, t)− cim,l(x, t)) + L(x)cm(x, t) (3.1)

with the advection-dispersion operator L(x) = −v∂/∂x+D∂2/∂x2. Instead
of a single immobile density, as in the MIM (2.1), we now have N immobile
zones with concentrations cim,l(x, t) with transition rates αl with l = 1, ..., N

in (3.1). The capacity coefficients βl denote the fraction of immobile volume

1We use the lower case letter c for the concentration of MRMT to distinguish the
formulas from the formulas for the EMIM in the following sections, where we use the
upper case letter C for the concentration.
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with index l to the mobile volume. Each immobile concentration follows the
rate equation

∂

∂t
cim,l(x, t) = αl (cm(x, t)− cim,l(x, t)) . (3.2)

We define the sum of all immobile concentrations cim(x, t) =
∑N

l=1 cim,l(x, t).
For the initial condition cm = c0mδ(x) and cim,l(x, t = 0) = 0 we can formally
solve each immobile concentration cim,l(x, t) and insert the result into (3.1),
leading to the expression

∂

∂t
cm(x, t) =

∫ t

0

N∑

l=1

βlαle
−αl(t−τ)∂cm(x, τ)

∂τ
dτ +

N∑

l=1

βlαle
−αltδ(x)

+ L(x)cm(x, t). (3.3)

The second sum arises from an integration by parts. Now we make the limit
N → ∞ and go from a discrete set of variables αl to a continuous variable
α. The distribution of capacities βl becomes a function β(α). Instead of the
sums we obtain integrals

∂

∂t
cm(x, t) =

∫ t

0

∫ ∞

0

β(α)αe−α(t−τ)
∂cm(x, τ)

∂τ
dαdτ +

∫ ∞

0

β(α)αe−αtδ(x)dα.

(3.4)

Now we notice that the inner integral can be understood as a Laplace trans-
form [25]

g(t) =

∫ ∞

0

b(α)αe−αtdα (3.5)

of αb(α). The function g(t) is often referred to as the "memory function"
[21,25,123]. Using g(t), the equation of motion for the mobile concentration
is given by

∂

∂t
cm(x, t) = −

∫ t

0

g(t− τ)
∂cm(x, τ)

∂τ
dτ − c0mδ(x)g(t) + L(x)cm(x, t). (3.6)

If the mobile concentration is known, the immobile concentration can be
obtained from the relation cim(x, t) =

∫ t
0
g(t − τ)cm(x, τ)dτ , which arises
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from conservation of mass [21]. The total density follows [21]

∂

∂t
ctot(x, t) = −

∫ t

0

g(t− τ)
∂ctot(x, τ)

∂τ
dτ + L(x)ctot(x, t). (3.7)

The convolution in (3.7) is called the source-sink term Γ(x, t), which is the
rate of loss or gain of mobile mass due to exchange with the immobile zones
[25]. Next, we study MRMT (3.7) for a specific choice of g(t).

Fractal MIM

In [21], a choice similar to g(t) = t−µ/Γ(1 − µ)τµ⋆ is made2 with 0 < µ < 1,
which gives rise to the bi-fractional diffusion equation

∂

∂t
cm(x, t) = τµ⋆

∫ t

0

(t− τ)−µ

Γ(1− µ)

∂cm(x, τ)

∂τ
dτ − c0m

τµ⋆
Γ(1− µ)τµ

,+L(x)cm(x, t)

(3.8)
where a Caputo fractional derivative of order µ emerges in addition to the
first derivative with respect to t [68]. This choice of g(t) together with the
equation for the total concentration (3.7) is called the fractal MIM, which
leads to power-law tails in the BTCs and mobile mass [21].

The immobile residence time distribution corresponding to MRMT (3.7)
can be obtained by rewriting the source-sink term as follows [25]

Γ(x, t) =

∫ t

0

cm(x, t− τ)
∂g(τ)

∂τ
dτ + g(0)cm(x, t)− g(t)cm(x, 0), (3.9)

where ∂g(t)/∂t can be interpreted as the immobile residence time distribu-
tion, as we describe in section 2.1 in detail. However, Γ(x, t) cannot be
rewritten as (3.9) with the choice g(t) = t−µ/Γ(1 − µ)τµ⋆ , because ∂g(t)/∂t
diverges with the power-law t−1−µ for t → 0. This leads to a diverging inte-
gral. To solve this issue we developed the extended MIM as presented in the
following section, where arbitrary residence time distributions can be used,
i.e., all distributions that are defined for t ≥ 0.

2We introduce the timescale τ⋆ here to account for the dimensions in g(t) and keep β
dimensionless.
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3.2 Formulation of the model

In [D3] we introduce the extended MIM (EMIM), defined by the set of equa-
tions

∂

∂t
Cm(x, t) = −βωCm(x, t) +

∫ t

0

γ(t− τ)βωCm(x, τ)dτ + L(x)Cm(x, t),

(3.10a)

∂

∂t
Cim(x, t) = ωCm(x, t)−

∫ t

0

γ(t− τ)ωCm(x, τ)dτ. (3.10b)

The total concentration Ctot(x, t) = Cm(x, t) + βCim(x, t) is split into the
mobile concentration Cm(x, t) and immobile concentration Cim(x, t) with
units [Cm(x, t)] = [Cim(x, t)] = µg/L. We consider the initial conditions
Cm(x, 0) =M0δ(x) and Cim(x, 0) = 0 for simplicity and because it reflects the
experimental situations in groundwater research, where the chemical is typi-
cally injected into the mobile water [19]. The capacity coefficient β is defined
by the ratio of immobile to mobile pore volume. Similar to the single-rate
MIM (2.1), only the equation for the mobile concentration is subject to ad-
vection and diffusion, as denoted by the advection-dispersion operator L(x).
Tracers immobilise with the rate βω. The residence times in the immobile
state are distributed with γ(τ). The integral in (3.10a) can be understood
the same way as described in section 2.1. The EMIM model equations (3.10)
can be seen as an extension of the non-Markovian rate equations used to de-
scribe the photoluminescence in semiconductor nanoplatelets [94]. In [D3] we
add transport to the mobile state using L(x). We note that in [79] the rate
equation for the immobile concentration (3.10b) was proposed as a balance
equation for sorbing tracers. The rate equation for the mobile concentration
(3.10a) including L(x) is new compared to the model in [79].

We consider only initially mobile tracers in [D3] and mainly focus on the
evolution of the mobile concentration in this chapter. The solution for the
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mobile concentration in Laplace space is given by [D3]

Cm(x, s) =M0

exp
(
vx
2D

)
√
v2 + 4ϕEMIM(s)D

exp

(
−
√
v2 + 4ϕEMIM(s)D

|x|
2D

)
,

(3.11)
with ϕEMIM(s) = s + βω(1 − γ(s)). Expression (3.11) is the same as for
the single-rate model (2.4), if we formally set f 0

m = M0, f 0
im = 0 and

ϕ(s) = ϕEMIM. The mobile concentration (3.11) fits the observation in
[79], that the mobile concentration is equivalent to the concentration of
non-immobilising tracers C(x, s) with a replaced argument in Laplace space
Cm(x, s) = C(x, ϕ(s)).

In [D3] we consider five immobile residence time distributions. First, we
choose an exponential residence time distribution

γexp(t) = ω exp(−ωt) (3.12)

with ω > 0, which renders the model (3.10) equivalent to the MIM in the
formulation used in geoscience (2.3). We use the term "exponential model"
for EMIM with immobilisation density γexp(t). Second, we consider a bi-
exponential distribution. This is a linear combination of two exponentials
(3.12) with distinct values for ω1 and ω2. We focus on the third choice for the
immobile residence time distribution, which is the Mittag-Leffler distribution

γML(t) =
(t/τ⋆)

µ

t
Eµ,µ (−[t/τ⋆]

µ) (3.13)

with 0 < µ < 1 and τ⋆ > 0. The main feature of this distribution is the
power-law tail ≃ t−1−µ, that generates a diverging mean. We use the term
"ML model" for EMIM with immobilisation density γML(t). For ML trapping
and t ≫ τ⋆, the EMIM (3.10) converges to a bi-fractional diffusion equation
(3.7), as shown in [D3, section IV]. Note, that this does not necessarily imply
a long-time limit, because the timescale 1/(βω) of the mobile residence times
may be longer than τ⋆.

In [124] a model similar to EMIM is applied. The tracer is mobile for a
fixed duration ∆t and is displaced. Afterwards a time step is draw from a
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Lévy stable distribution. The total density obtained in this way obeys the
fractal MIM in the long-time limit, as well.

A two-dimensional version of the EMIM (3.10) with immobilisation den-
sity γML(t) has been adapted in [90] to describe the diffusion of excitons in
layered perovskites and transition metal dichalcogenides.

All experimental systems have a finite size. Therefore, a largest trap-
ping time exists, which is often taken into account by tempering with an
exponential cut-off [19,23,80,86,125]. In [D3] we do this by choosing

γtemp(t) =
exp(−t/τt)γ(t)∫∞

0
exp(−τ/τt)γ(τ)dτ

, (3.14)

with the tempering timescale τt. We insert γML(t) into (3.14) and obtain the
mean

⟨t⟩ = τµ⋆ µ

τµ−1
t (1 + (τ⋆/τt)µ)

. (3.15)

The fifth immobile residence time distribution we consider is a linear combi-
nation of a ML distribution (3.13) and an exponential distribution (3.12). To
compare the dynamics induced by each immobile residence time distribution
we perform a fit of the mobile massM(t) to experimental data obtained in the
MADE-1 experiment and shown in figure 3.1 using disc markers [21, 87, 88].
The measured mobile mass monotonically decreases and does not take on an
equilibrium value. At around t = 300 d a shoulder is visible. We obtain the
mobile mas by performing numerical Laplace inversions of the expression

Mm(s) =

∫ ∞

−∞
Cm(x, s)dx =

M0

ϕEMIM(s)
, (3.16)

which agrees with the result of the non-Markovian rate equations in [94].
The results of the Laplace inversions are shown in figure 3.1 as solid lines.
In [88] the relative mobile mass is reported, which is the fraction of recovered
mass to injected mass M exp

0 in the experiment. Notably, this fraction is
higher than unity for three data points. Therefore, we use the normalized
data points Mm(t)/M

exp
0 from [88], which are dimensionless and use M0 =

M(t → 0)/M exp
0 as a dimensionless fitting parameter, as described in [D3].
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The ML model fits the data well with a value of R2 = 0.992, as shown in
panel (a). The fit follows the apparent power-law decay ≃ t−0.58 of the mobile
mass starting from around t = 100 d. This is in contrast to the mobile mass
obtained for the exponential immobile residence time distribution shown in
panel (b), which takes on a plateau value starting from t = 100 d. The mobile
mass for the truncated ML distribution in panel (c) fits the data better with
R2 = 0.994 at the cost of an additional parameter. The mobile mass for
a bi-exponential immobile residence time distribution in panel (d) does not
qualitatively change compared to the single exponential case in panel (b).
Except for the last data point it describes the data better than the single
exponential case with R2 = 0.989. The mobile mass obtained for a linear
combination of a ML density and an exponential density describes the data
best with an R2 = 0.998, as shown in panel (e). This is the only choice
of the immobile residence time distribution, that we consider that follows
the shoulder in the data. Finally, we show the mobile mass obtained from
the fractal MIM (3.8), which we obtain in the limit τ⋆ → 0. The qualitative
functional form matches that of the ML density in panel (a), the fit is slightly
worse with R2 = 0.988. We note that fits for the fractal MIM and γexp(t)

were performed in [21] with similar results.

From now on, we focus on γexp(t) (3.12) and γML(t) (3.13) as immobile
residence time distributions. These are two prototypical choices for a dis-
tribution with finite mean on the one hand and for a distribution with a
power-law tail leading to an infinite mean on the other hand. Another rea-
son to consider these two distributions is that they have less parameters than
the composite distributions. Furthermore, whenever we compare our results
with γML(t) to the results for γexp(t), we compare the EMIM to the classical
MIM used in geoscience (2.3) [16, 21,22,35,98].

In figure 3.2 we compare immobilisations of the EMIM with γexp(t) in
panel (a) to EMIM with γML(t) in panel (b). The parameters are chosen
identical to the fits in figure 3.1. In figure 3.2 the mobile mass is shown using
a grey line. The coloured areas correspond to the fraction of tracers with
a specific number of immobilisation events Nim obtained from simulations.
Moreover, the black area denotes tracers, that never immobilised and dark



3.2. FORMULATION OF THE MODEL 59

101 102 103
t [d]

1

2

4

M
m

(t)
/M

ex
p

0

(a)

R2 = 0.992

ML( )

101 102 103
t [d]

(b)

R2 = 0.924

exp( )

101 102 103
t [d]

(c)

R2 = 0.994

truncated( )

101 102 103
t [d]

1

2

4

M
m

(t)
/M

ex
p

0

(d)

R2 = 0.989

exp + exp( )

101 102 103
t [d]

(e)

R2 = 0.998

ML + exp( )

101 102 103
t [d]

(f)

R2 = 0.988

fractal MIM

Figure 3.1: Double logarithmic plot of the normalized mobile mass over time. Disc
markers show the normalized measured mobile mass in the MADE-1 experiment
[88]. All panels show fits of the mobile mass obtained from Laplace inversion of
Mm(s) (3.16) with various choices for the immobile residence time distribution. In
panel (a) the Mittag-Leffler immobile residence time distribution (3.13) is used.
It has a tµ−1 = t−0.58 tail. The exponential residence time in (b) results in a
stationary value of M(t → ∞)/M exp

0 = 0.67 with fit parameters taken from [21].
In panel (c) an ML density with exponential cut-off at τt = 12 × 103 is used.
For t ≪ τt it is similar to the ML model. In panel (d) the weighted sum of two
exponentials is used, which does not differ qualitatively from the single exponential
case in (b). The linear combination of the ML and exponential density shown in
panel (e) is the only fit that follows the "shoulder" of the data around t = 300.
Panel (f) shows the fractal MIM from [21], which is the asymptotic limit of the ML
model in the limit τ⋆ → 0. For the fit parameters obtained in [21], that are also
used here, the tail follows t−0.67.
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Figure 3.2: Double logarithmic plot of the normalized mobile mass as a function of
time. The disc markers show the normalized mobile mass obtained in the MADE-1
experiment [88]. In panel (a) the exponential immobile residence time distribution
is used with the same fit parameters, as in figure 3.1. Similar to figure 2.1, the
stacked coloured areas correspond to the fraction of tracers that have immobilised
Nim times, i.e., the black area denotes tracers that were never immobile, the dark
violet area corresponds to tracers that have immobilised exactly once and are back
in the mobile state. In panel (b) we show the same information, but for the ML
immobile residence time density and the fit parameters from figure 3.1. In panel (b)
the colours are cyclic, meaning, that starting from Nim = 5 the colours repeat. In
contrast to the exponential case in (a) tracers immobilise significantly more often.
The number of immobilisations is obtained from simulations.
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violet denotes tracers that immobilised exactly once. We proceed to compare
the immobilisation events in the exponential model to the ML model. The
most apparent difference is the significantly higher number of immobilisations
in the ML model. To accommodate this the colour-coding in panel (b) is
cyclic, meaning that Nim = 5 is shown in black and Nim = 6 is shown in
dark violet. One reason for this higher number of immobilisations when
using γML(t) is the shorter mean mobile time, which is roughly a third of
the value when using γexp(t). Another reason is that short immobilisations
are more likely with a Mittag-Leffler immobilisation time density. Namely,
for the fitted parameters the median of γML(t) is 4.7 d compared to 19 d

for γexp(t)(t). This means that short immobilisations are more likely in the
ML model. In addition, long immobilisations are more likely in the ML
model. Moreover, the 90th percentile of γexp(t) is 79 d compared to 829 d

for γML(t). The high value for γML(t) arises due to the power-law tail with
diverging mean, which also leads to an asymptotic decay of mobile tracer
numbers in contrast to the plateau value for the exp model. In conclusion, a
tracer following the dynamics of the EMIM with γML(t) compared to γex(t)
immobilises often for short times and will asymptotically be trapped for a
long time. In the following section we discuss the concentration profiles and
MSDs for the ML model.

3.3 Results for the extended mobile/immobile

model

In this section we discuss the concentration profiles and the MSD of the
EMIM for a Mittag-Leffler immobilisation duration distribution.

3.3.1 Concentration profiles

We apply the Tauberian theorem to obtain the short-time asymptotes of
the mobile and immobile concentration. Up to a factor M0 we find the
same Gaussian result of the mobile concentration as for exponential trapping
times in [D2]. The same relation holds for the immobile concentration. In
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contrast to the long-time limit of the single rate model (2.1) the long-time
asymptote of the mobile and immobile density remain non-Gaussian for a
ML immobilisation distribution. The explicit forms are obtained in [D3] and
are given by the expressions

Cm(x, t) ∼M0
βωτµ⋆ µ

v2
e
v
2D

(x−|x|)|x|t−1−µMµ

(
βωτµ⋆
v

|x|t−µ
)
, for t≫ τ⋆, 1/βω,

(3.17)
and

Cim(x, t) ∼M0
βωτµ⋆
v

e
v
2D

(x−|x|)t−µMµ

(
βωτµ⋆
v

|x|t−µ
)
, for t≫ τ⋆, 1/βω,

(3.18)
with the initially mobile mass M0 and auxiliary function of Wright type
Mµ(z) [126]. We compare the long-time asymptotes (3.17) and (3.18) shown
as grey lines with markers in figure 3.3 to the Laplace inversions of the EMIM
with various trapping time densities shown as black lines, where we formally
set M0 = 1 for simplicity. The solid black line is obtained for γML(t) (3.13),
the dashed black line is obtained from the fractal MIM (3.8) and the dotted
line corresponds to the EMIM with γexp(t) (3.12). The parameters for the
distributions are identical to the fits of the mobile mass decay measured in
the MADE-1 experiment shown in figure (3.1). For the transport of tracers
the parameters v = 0.8m/day and D = 4m2/day are chosen, as described
in [D3]. For t = 1000 d the asymptotes of Cm(x, t) (3.17) and Cim(x, t) (3.18)
display a good estimate of the ML and limit model. A notable feature of
Cim(x, t) is the cusp at the origin, which is similar to the results obtained
for the fractional advection-diffusion equation [127]. In the next section we
see that these distributions lead to long-time subdiffusive or superdiffusive
MSDs depending on the value of µ and v.

3.3.2 Mean squared displacements

We obtain the moments from the expressions in Fourier-Laplace space the
same way, as described in section 2.1.1 for MIM. Regardless of the immobil-
isation time density, the short-time asymptote of the first moment and the
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Figure 3.3: Semilog plot of the mobile concentration (left) and immobile concentra-
tion (right). The main panel (left) displays the concentrations of mobile particles at
2, 50, and 500 days after injection, while the right panel illustrates the concentra-
tions of immobile particles at the same time intervals. Black lines denote Laplace
inversions with a ML trapping time density (solid line), fractal MIM (dashed line,
called limit model in the legend) and exponential trapping time density (dotted
line). The parameters of the trapping time distributions are identical to the fitting
of the mobile mass decay depicted in figure 3.1. For short durations, all models
exhibit a mobile distribution that follows a Gaussian distribution, which becomes
increasingly skewed as time progresses. In contrast, the distribution of immobile
particles is non-Gaussian throughout the entire duration. Notably, cusps are promi-
nently observed at x = 0, which is a characteristic feature of transportation systems
with trapping times that diverge [128,129]. The long-term asymptotes, as depicted
by equations (3.17) and (3.18), are represented by the grey lines accompanied by
markers. These asymptotes estimate the ML model and fractal MIM well. We
utilize values of 0.8 m/day and 4 m2/day for the parameters v and D, respectively.
Reprinted figure with permission from [T.J. Doerries, A.V. Chechkin, R. Schumer
and R. Metzler, Phys. Rev. E 105, 014105-18 (2022).] Copyright (2023) by the
American Physical Society.
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MSD of the mobile and total concentration are linear

⟨x(t)⟩m ∼ vt for t≪ 1/βω, (3.19)

⟨(x(t)− ⟨x(t)⟩m)2⟩m ∼ 2Dt for t≪ 1/βω, (3.20)

due to Brownian motion with advection before the first immobilisation, as
shown in [D3]. We focus on the long-time asymptote of the mobile concen-
tration using the ML model, where the first moment follows

⟨x⟩m ∼ vtµ

βωτµ⋆

Γ(µ)

Γ(2µ)
for t→ ∞, (3.21)

as obtained via the Tauberian theorem in [D3]. Similar to the subdiffusive
case of CTRW [63], the first moment (3.21) is non-linear. The MSD of the
mobile density in the long-time limit is given by the expression

⟨(x(t)− ⟨x(t)⟩m)2⟩m =2DΓ(µ)
tµ

βωτµ⋆ Γ(2µ)
(3.22)

+ v2Γ(µ)
t2µ

(βωτµ⋆ )2

(
2

Γ(3µ)
− Γ(µ)

Γ2(2µ)

)
for t→ ∞.

Expression (3.22) implies subdiffusion for µ < 1/2 and superdiffusion for
µ > 1/2, which is known for systems with scale-free trapping times and
advection [59,63]. This can be explained with tracers being trapped close to
the origin, i.e., in figure 3.3 the immobile density has a visible peak close to
the origin, mobile tracers move forward and immobile tracers mobilise close
to the origin. The short-time and long-time asymptotics of the moments
obtained in [D3] including expressions (3.20-3.22) agree with the calculations
of the moments for the two-dimensional advection-free case for the EMIM
in [90]. Furthermore, the asymptotics match what has been reported before
for the fractal MIM in [130]. We note that in addition to the first and second
moment we discuss the skewness and kurtosis in [D3].

For t≫ τ⋆, the EMIM (3.10) with ML trapping density (3.13) converges
to the fractal MIM model (3.7) with g(t) = t−µ/Γ(1 − µ)τµ⋆ . In [D3] we go
beyond the asymptotes calculated in [130] and obtain exact expressions for
the first moments and MSDs of the mobile and immobile density. We present
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the results for the mobile densities here, which are given by the first moment

⟨x(t)⟩m =
vtE2

1−µ,2(−βωτµ⋆ t(1−µ))
E1−µ(−ωβτµ⋆ t(1−µ))

(3.23)

and the MSD

⟨(x(t)− ⟨x(t)⟩m)2⟩m = 2Dt
E2

1−µ,2(−βωτµ⋆ t(1−µ))
E1−µ(−βωτµ⋆ t(1−µ))

+ 2v2t2
E3

1−µ,3(−βωτµ⋆ t(1−µ))
E1−µ(−βωτµ⋆ t(1−µ))

− v2t2

(
E2

1−µ,2(−βωτµ⋆ t(1−µ)
E1−µ(−βωτµ⋆ t(1−µ))

)

)2

. (3.24)

The long-time asymptotes of the exact expressions (3.23) and (3.24) can be
obtained by rewriting the three-parameter Mittag-Leffler functions in terms
of two-parameter Mittag-Leffler functions [131] and approximating them up
to second order using [132, Eq. (6.11)]. The asymptotes obtained this way
match the asymptotes (3.21) and (3.22), respectively.

In the advection-free setting the MSD behaves similar to a cooling system
with the effective temperature Teff(t) = T0Mm(t)/M0 in the same way as
described for the MIM in Appendix B. This implies that already from the
mobile mass decay with a power-law tail tµ−1 we can deduce the long-time
scaling of the MSD from

∂

∂t
⟨x2(t)⟩ = 2KBT0Mm(t)

γM0

≃ tµ−1 for t→ ∞, (3.25)

where integrating gives the expression

⟨x2(t)⟩ ≃ tµ for t→ ∞. (3.26)

This "cooling" is similar to what is known for granular gases, where inelastic
collisions decrease the mean kinetic energy due to energy dissipation into
internal degrees of freedom, where the cooling T (t) = T0/(1 + t/τ0)

2 is used
[133–135].

In [56] a switching diffusion model is used, where the residence times fol-
low distinct power-law tailed distributions in each state. For finite residence
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times in the diffusive state and diverging mean residence times in the slow
state with D− → 0 the same scaling as (3.26) was observed in the MSD.
Long-time power-law scaling of the MSD is commonly described with the
CTRW [13,39]. In the next section we expand the discussion of the relation
between the MIM and CTRW presented in section 2.4 to include the EMIM.

3.4 Relation between our model and the con-

tinuous time random walk

We start the discussion of the relation between CTRW and the EMIM by
showing that the total density of the EMIM and MRMT are formally equiv-
alent to the PDF of the CTRW, as shown in [23, 28]. By adding the two
model equations of EMIM in (3.10) we obtain the following expression

∂

∂t
Ctot(x, t) = −v ∂

∂x
Cm(x, t) +D

∂2

∂x2
Cm(x, t), (3.27)

which is a differential equation for Ctot(x, t) that involves Cm(x, t) on the right
side. We apply the Laplace transform to (3.27) and obtain the expression

sCtot(x, s)− Ctot(x, t = 0) = −v ∂
∂x
Cm(x, s) +D

∂2

∂x2
Cm(x, s). (3.28)

From the solutions in Fourier-Lapalce space (A.2) and (A.3) we obtain the
relation

Cm(x, s) =
s

ϕEMIM(s)
Ctot(x, t), (3.29)

for initially mobile tracers. We insert relation (3.29) into expression (3.28)
and obtain

sCtot(x, s)−Ctot(x, t = 0) =
s

ϕEMIM(s)

(
−v ∂

∂x
Ctot(x, s) +D

∂2

∂x2
Ctot(x, s)

)
.

(3.30)
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Now we define M(s) = s/ϕEMIM(s)
3 and apply the reverse Laplace transform

to expression (3.30)

∂

∂t
Ctot(x, t) =

∫ t

0

M(t− t′)

(
−v ∂

∂x
+D

∂2

∂x2

)
Ctot(x, t

′)dt′, (3.31)

This expression has the same form that can be derived from CTRW and
M(t) is called memory function in geoscience [74,136]. Using MIM (2.1), the
same expression as (3.31) can be derived for ntot(x, t). The memory function
is related to the trapping time density of the CTRW ψ(t) by [28]

M(s) = sτ
ψ(s)

1− ψ(s)
(3.32)

in Laplace space with a timescale τ . Together with M(s) = s/ϕEMIM(s) this
gives the relation [28, Eq (107)]

ψ(s) =
1

1 + τϕEMIM(s)
. (3.33)

We check the normalization of ψ(s) and note that since γ(s = 0) = 1, we
have ϕEMIM(s = 0) = 0. This implies ψ(s = 0) = 1, i.e., normalization.

The relation between MRMT and CTRW has been established on the
level of M(s) and the total density before [23, 82]. Now we investigate what
this implies for the sojourn time distribution. We now choose τ such that it
is the smallest timescale of the system. In figure 3.4 ψ(τ) is shown for an
exponential immobilisation time distribution in panel (a). The sojourn time
distribution ψ(τ) can be split into two parts. The first part for τ < τ is an
exponential distribution with mean τ . The second part for t > τ behaves as
τ/τmγ(τ), i.e., the trapping time distribution of the MIM scaled by the factor
τ/τm. We interpret the shape of ψ(τ) as follows. Short waiting times drawn
from exp(−τ/τ)/τ mimic steps in the mobile state of the MIM. With prob-
ability τ/(τ + τm) a longer trapping time is drawn from γ(τ) corresponding
to trapping in an immobile zone. This means, that starting from the formal
equivalence of the MIM and CTRW on the level of the integro-differential

3Not to be confused with the mobile mass Mm(t), that is written with a subscript.
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equation (3.31), we obtain the CTRW with a bi-exponential sojourn time
distribution from [70], that we have discussed in section 2.4 for τD = τ . This
implies that we can interpret τ as the mean sojourn time in the mimiced
mobile state. As discussed in section 2.4, the timescale τ needs to be suf-
ficiently small for an equivalence. By choosing an ML immobilisation time
distribution in the EMIM we find the same splitting of ψ(τ) into two parts.
The first part of ψ(τ) follows an exponential exp(−τ/τ)/τ for small τ , as
shown in figure 3.4(b). The second part follows the power-law tail ∼ τ−1−µ

from the ML density. This suggests writing the sojourn time density as

ψ⋆(τ) =
τm

τm + τ

exp (−τ/τ)
τ

+
τ

τm + τ
γ(τ) (3.34)

with the immobilisation time density γ(τ) from the EMIM. We note that
equation (3.34) is based on the observation in figure 3.4 of numerical Laplace
inversions. In future projects it could be interesting to derive expression
(3.34) more rigorously and prove on that level that CTRW can mimic the
total density of the EMIM. The CTRW does not reproduce one of the main
features of the (E)MIM, which is the splitting of the tracer density into
mobile and immobile densities. We conclude this thesis with a summary and
outlook in the following chapter.
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Figure 3.4: Double logarithmic plot of the sojourn time density of CTRW that
mimics the MIM. In the left panel the single-rate model (2.1) is mimicked, i.e.,
ϕ(s) = s(1 + τim/τm/(1 + sτim)) is used in expression (3.33). In the right panel
EMIM with γML(t) (3.13) is used in expression (3.33). In both panels the resulting
trapping time density ψ(τ) contains two parts. The first part has an exponential
shape with mean τ that corresponds to a step in the mobile domain. The second
part follows approximately the trapping time in the immobile domain τ/τmγ(τ)
scaled by the factor τ/τm, as shown by the dotted lines.
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Chapter 4

Summary and outlook

In this chapter we will summarize the main results of this thesis and give
an outlook on possible future research directions and applications. The mo-
bile/immobile model (MIM) was typically used in geoscience to describe the
motion of contaminants in groundwater subject to advection and diffusion
already in the 1960s [16–18]. Contaminants effectively transiently immobilise
due to diffusion into dead-end pores or adsorption on surfaces. In the MIM
the immobilisation durations are distributed exponentially. This implies that
the increments of the tracers are not distributed identically at intermediate
timescales. Breaking of the central limit theorem is the result, which read-
ily implies non-Gaussian (nG) distributions in the MIM. A key assumption
of the MIM is to split the total density of tracers into a mobile and an
immobile density. In some experiments only one of the two is measured,
rendering the distinction of mobile and immobile tracers in the MIM ben-
eficial. Examples for such experiments pose geological experiments, where
contaminants move through an aquifer and effectively immobilise in pores.
Only the mobile tracers exit the aquifer and can be measured. At the site
of measurement the pores are not present and the immobile density is not
sampled. In another setting the immobile density is sampled, namely those
bio molecules, that bind to specific receptors in a bio sensor, as discussed
in [D2]. The observable in typical geoscience experiments is the contaminant
concentration over time at a fixed location, which is called the breakthrough
curve (BTC) [16, 17, 22–26]. In biophysics the mean squared displacement
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(MSD) is a typical observable, which has been calculated for the MIM be-
fore [23, 31–36]. The goal of this thesis was to identify nG displacement
distributions and anomalous scaling regimes in the MSD of the MIM. To do
so, we systematically studied the MSD and displacement distributions of the
mobile, immobile and total density of tracers. Moreover, we have considered
three fractions of initially mobile tracers, namely all tracers initially mobile,
initially immobile and an equilibrium fraction. Together with various rele-
vant time regimes this constitutes around twenty cases to be discussed, and
we therefore present only selected highlights of nG displacements and anoma-
lous scaling of the MSD here. We found clear anomalous scaling regimes at
relevant short and intermediate timescales with a strong dependence on the
fraction of initially mobile tracers.

We started with the advection-free case, which we used to model the mo-
tion of tau proteins in neurons [D1]. Single particle tracking experiments
of tau proteins tagged with a fluorescent marker revealed transient immo-
bilisations due to binding of tau proteins to microtubules [137]. A further
experiment on tau proteins obtained long binding times τim = 7.7 sec of
the tau proteins to the microtubules compared to the mean mobile duration
τm = 0.16 sec [38]. The reaction-diffusion equation used in [38] is equiva-
lent to our formulation of the MIM, which allowed us to use the results of
MIM to describe the motion of tau proteins [D1]. The displacement distribu-
tion of initially mobile tracers follows a Laplace distribution at intermediate
timescales τm ≪ t≪ τim paired with a plateau in the MSD.

Another application of the advection-free MIM pose Fis DNA-sliding pro-
teins in Escherichia Coli bacteria, that transiently bin to the DNA. In single
particle tracking experiments a Fickian yet non-Gaussian (FnG) diffusion
was observed [49]. Our model was able to give two alternative explanations
for the FnG diffusion assuming an equilibrium fraction of initially mobile
tracers. In both cases the sharp peak in the centre arises from immobile
tracers. The remaining part of the distribution may stem from the Gaussian
displacements at short timescales t ≪ τm or from a Laplace distribution at
intermediate timescales τm ≪ t≪ τim.

In [D2] we included advection and found a cubic scaling regime of the
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MSD paired with nG displacements. It persists for initially mobile and for
initially immobile tracers, regardless of the ratio τim/τm for sufficiently high
Péclet numbers Pe = v2τm/D. We systematically studied the dependence of
anomalous scaling regimes on the ratio τim/τm and Pe in Appendix of [D2]. It
would be interesting to perform single particle tracking experiments of tracer
particles in a bio sensor to confirm the predicted MSDs and nG distributions.

To describe immobilisations that are not exponentially distributed, we
introduced the extended MIM (EMIM) in [D3], which was applied to the
diffusion of excitons in layered perovskites and transition metal dichalco-
genides [90]. We restricted ourselves to the case of initially mobile trac-
ers, which led to Brownian motion with a linear MSD at short times re-
gardless of the immobilisation time distribution. Among others, we used a
Mittag-Leffler (ML) immobilisation time distribution function with a power-
law tail ≃ t−1−µ with 0 < µ < 1 and a diverging mean. We obtain an
exact expression for the mobile mass decay with a long time power-law tail
≃ tµ−1. We fitted our model to experimental data of the MADE-1 experi-
ment of bromide diffusing in a heterogeneous aquifer [88], where we obtained
µ = 0.42. In the advection-free case this results in long-time subdiffusion
≃ tµ. This could readily be deduced from the power-law decay of the mobile
mass Mm(t) due to the relation d⟨x2(t)⟩/dt = 2DMm(t)/M0. In Appendix
B we derived this expression following the steps of Langevin’s original pa-
per [8] by defining an effective temperature Teff = TMm(t)/M0. Integration of
limt→∞Mm(t) ≃ tµ−1 gave the expected MSD ⟨x2(t)⟩ ≃ tµ for the long-time
limit. In future projects it would be interesting to understand the connection
between the MIM and an effective temperature further and see if it can be
done for systems including advection, as well.

When including advection in the EMIM, we found a crossover from a
linear MSD to an asymptotic scaling ≃ t2µ, which is subdiffusive or superdif-
fusive for 0 < µ < 1/2 and 1/2 < µ < 1, respectively. The displacement
distribution crosses over from a Gaussian to a nG distribution, which per-
sists in the long-time limit. In the long-time limit mobile tracers lead immo-
bile tracers. Moreover, the first moment and second moment of the mobile
moment is a multiple of the respective total and immobile moments in the
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long-time limit. This is in contrast to the case of exponential trapping times,
where the moments of all densities overlap in the long-time limit.

The EMIM is formulated using the capacity coefficient β taking different
volumes for the mobile and immobile phase into account, as is typically
done in geoscience, e.g., for the fractal MIM [21, 22]. In the limit t ≫ τ⋆,
where τ⋆ denotes a timescale of the ML distribution, our model converges
to the fractal MIM, for which we obtain exact analytical expressions for the
first moment and non-linear MSD in terms of Mittag-Leffler functions. In
addition, we fitted the density obtained through Laplace inversions of the
EMIM to a BTC of an experiment where dye moves through karst aquifers
using an exponential and an ML immobilisation time distribution. We found
µ = 0.77 for the ML distribution, implying long-time superdiffusive spread
of the tracers and long immobilisation times. In the time regime where the
fitted BTC was measured the resulting MSDs of both immobilisation time
distributions almost coincide and display a superdiffusive MSD.

In this thesis we have analysed the MSD and nG displacements of the
MIM. The time averaged MSD (TAMSD) is another quantity that is well
suited for single particle tracking experiments or molecular dynamics simu-
lations, where only a few trajectories may be obtained [31,32,39,43,62]. The
TAMSD averages the squared increments with delay ∆ along a single trajec-
tory with length T [13]. Due to the stochastic nature of single trajectories,
the TAMSD is a random quantity. For ergodic systems such as Brownian
motion the TAMSDs converge to a deterministic function for ∆ ≪ T . In
contrast, TAMSDs obtained from a continuous time random walk (CTRW)
with power-law sojourn times remain stochastic even in the limit ∆ ≪ T

and T → ∞. In the light of the comparison of the MIM and CTRW in this
thesis it would be interesting to study the TAMSDs of the MIM. In [112]
the TAMSD is analysed for a switching model, where the diffusivity switches
between two diffusivities D1 and D2 with linear rates. In Appendix C we
reproduced the results for D1 = 0 using the subordination approach. The
subordinator is the distribution of total mobile durations at a given time in
our model. We showed that for finite T the TAMSDs do not converge for
∆ ≪ T and have a finite spread, even for an equilibrium fraction of initially
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Figure 4.1: (a) Raytracing image of a lattice model with size 512× 512× 1000 of
a multilayered silicon anode with an embedded tantalum nanoparticle scaffold for
lithium-ion batteries based on the experiment in [138]. The scale bar has a size
of 20 nm. On top of a copper plane tantalum nanoshperes with diameter 3 nm are
placed using soft deposition followed by sputtering of silicon atoms for five layers.
The resulting medium has around 15 percent of connected porosity. The pores are
shown in the panel (b), where lithium atoms can diffuse on the surface. It would
be interesting to identify dead-end pores, where the lithium effectively immobilises
and apply the EMIM as an effective one-dimensional model. Simulations by Andrés
Fernando and figure by Timo Doerries.
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mobile tracers, where the MSD is linear at all times. Moreover, we provide a
relatively simple analytical exact formula for the distribution of the TAMSD
for ∆ ≪ τm, τim, T , which is new compared to the results in [112]. This
distribution is directly related to the subordinator. It would be interesting
to investigate the TAMSDs of the MIM further and compare the results to
experimental single particle tracking data e.g. of Fis or tau proteins.

Furthermore, it might be interesting to identify immobile zones in data
of porous media and obtain the residence time distributions in the respective
zones. One example for such data is shown in figure 4.1. A stochastic lattice
deposition model of a lithium-ion battery anode corresponding to the exper-
iment in [138] is shown in figure 4.1(a). The pore structure is shown in panel
(b) of figure 4.1, where the lithium atoms can diffuse on the surface. To
answer how lithium atoms move in batteries with a typical size known from
everyday life the EMIM could provide an effective one-dimensional model.
This would require identifying effectively "immobile" dead-end pores, as was
done e.g. in [139] for sandstone using a model similar to the EMIM. An idea
to improve the methodology in [139] could be a more physical definition of
an immobile zone.

In conclusion, the MIM is suitable for systems where the population of
tracers splits into mobile and immobile populations. We found Fickian yet
non-Gaussian diffusion for an equilibrium fraction of initially mobile trac-
ers without advection. In all other cases except for short immobilisations
τim ≪ τm in the advection-free case it is subject to nG displacements and an
anomalous scaling of the MSD at intermediate timescales. These results are
relevant e.g. to provide a possible explanation of the nG distribution of Fis
DNA binding proteins in single particle tracking experiments [49,D1]. In the
EMIM the anomalous scaling of the MSD and the nG displacements persist
also in the long-time limit for power-law immobilisation time distributions.



Appendix A

Expressions in Fourier-Laplace
space

We apply the Fourier-Laplace transform

f(k, s) =

∫ ∞

−∞

∫ ∞

0

e−st+ikxf(x, t)dtdx (A.1)

to the model equations (2.1) and rearrange to obtain the expressions

nm(k, s) =

(
f 0
m + f 0

im

1

1 + sτim

)
1

ϕ(s)− ikv + k2D
(A.2)

nim(k, s) = f 0
im

τim
1 + sτim

+
τim/τm
1 + sτim

(
f 0
m + f 0

im

1

1 + sτim

)
1

ϕ(s)− ikv + k2D

(A.3)

as well as

ntot(k, s) = nm(k, s)+nim(k, s) =
fm + f 0

im
1

1+sτim

s

ϕ(s)

ϕ(s)− ikv + k2D
+f 0

im

τim
1 + sτim
(A.4)

with ϕ(s) = s[1 + τimτ
−1
m /(1 + sτim)]. Fourier inversion of (A.2) and (A.3)

gives expressions (2.4) and (2.5).
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Appendix B

Following the steps of Langevin to
obtain the MSD

In this chapter we follow the steps of Langevin [8] to obtain an expression
for the MSD of (E)MIM in the advection-free setting. We start with the
underdamped Langevin equation

m
d2x

dt2
= −γdx

dt
+ ξ(t) (B.1)

of a tracer with mass m, friction coefficient γ and a random force ξ(t) with
⟨x(t)ξ(t)⟩ = 0. We multiply (B.1) with x and obtain the expression

1

2
m
d2x2

dt2
−m

(
dx

dt

)2

= −γ
2

dx2

dt2
+ x(t)ξ(t). (B.2)

Averaging over the random force realizations we obtain

〈
1

2
m
d2x2

dt2

〉
−
〈
m

(
dx

dt

)2
〉

= −γ
2

〈
dx2

dt

〉
, (B.3)

where we used ⟨x(t)ξ(t)⟩ = 0. Now we can identify
〈
m
(
dx
dt

)2〉
/2 with the

mean kinetic energy ⟨Ekin⟩. Using the equipartition theorem ⟨Ekin⟩ = 1
2
kBT
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and a constant temperature Langevin arrives at the relation

d

dt
⟨x2(t)⟩ = 4⟨Ekin⟩

γ
+ c exp

(
− γ

m
t
)
, (B.4)

where c is a constant depending on the initial velocity. In the limit t≫ m/γ,
when the initial momentum has relaxed, the expression (B.4) simplifies to

d

dt
⟨x2(t)⟩ = 2KBT

γ
, (B.5)

which implies ⟨x2(t)⟩ = 2Dt for t≫ m/γ.
Now we modify this derivation to incorporate immobilisations. We define

the new random force ξ′(t) = ξ(t)i(t) with the indicator function i(t), which
takes on the value one if the tracer is mobile at time t and zero otherwise.
We have introduced i(t) in the context of subordination in section 2.1. Only
mobile tracers contribute to the mean kinetic energy, therefore the kinetic
energy of MIM is given by kBTfm(t)/2, where we have used the relation
⟨i(t)⟩ = fm(t). If fm(t) is a slowly varying function on the timescale of m/γ,
we can replace ⟨Ekin⟩ with kBTfm(t)/2 in equation (B.4), which eventually
gives

d

dt
⟨x2(t)⟩ = 2KBTfm(t)

γ
for t≫ m/γ (B.6)

for slowly varying fm(t). Expression (B.6) is an exact expression for (E)MIM,
valid at all timescales. In order to apply it to EMIM fm(t) needs to be
replaced with Mm(t)/M0. Integrating expression (B.6) gives the MSD in
the advection-free setting. We can interpret Teff(t) = Tfm(t) as an effective
temperature of the system due to ⟨Ekin(t)⟩ = 1

2
kBTeff(t).



Appendix C

Time averaged mean squared
displacement

In many single particle tracking experiments the time averaged mean squared
displacement (TAMSD)

δ2(∆) =
1

T −∆

∫ T−∆

0

[x(t+∆)− x(t)]2 dt (C.1)

is calculated for each trajectory with length T [13, 39, 112]. The TAMSD
averages over all squared increments with time lag ∆ and it is a random
quantity for finite T . For example, simple Brownian motion has stochastic
TAMSDs, as shown in figure C.1(a). For large ∆ the integration domain for
the TAMSD (C.1) shrinks and it is averaged over less values, increasing the
stochasticity. We define the ensemble averaged TAMSD

〈
δ2(∆)

〉
=

〈
1

T −∆

∫ T−∆

0

[x(t+∆)− x(t)]2 dt

〉
, (C.2)

which is given by 2D∆ for Brownian motion, as shown in figure C.1(a) as
a blue line. Almost all TAMSDs overlap with this averaged TAMSD for
∆ ≪ 1. The spread of the TAMSDs is often characterized using the ergodicity
breaking parameter [13, 140]

EBT (∆) = ⟨ξ2⟩ − 1, (C.3)
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Figure C.1: Double logarithmic plots of the time averaged mean squared displace-
ment (C.1) for T = 500. Panel (a) is plotted for Brownian motion, panel (b) for
MIM (τm = 1, τim = 100) and panel (c) for a CTRW with a sojourn time density
with power-law tail ≃ t−1.646. Blue lines display ensemble averaged TAMSDs.
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Figure C.2: Double logarithmic plot of the ergodicity breaking parameter (C.3).
In panel (a) Brownian motion is used, in panel (b) MIM is used with parameters
τm = 1, τim = 100 and in panel (c) a CTRW is used with a sojourn time density
with power-law tail ≃ t−1.646. The three black lines in each panel are obtained for
T =, T = and T = from left to right, respectively. Blue dashed lines in panel (a)
show 4∆/3T and expression (C.11) in panel (b).
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where the dimensionless quantity ξ = δ2(∆)/⟨δ2(∆)⟩ denotes the TAMSD
normalized by the ensemble averaged TAMSD. For Brownian motion it is
known that EBT (∆) ∼ 4∆/3T , as shown in figure C.2(a) [140]. This means
that for small ratios ∆/T the spread of TAMSDs vanishes and the TAMSDs
converge to the MSD 2D∆.

Now we consider TAMSDs of MIM for D = 1, v = 0, τm = 1 and
τim = 100 and an equilibrium fraction of mobile tracers. The MSD 2Df eq

m t

is linear at all times, as shown in chapter 2. As shown in figure C.1(b),
the TAMSDs of MIM shown as grey lines do not converge to the ensemble
averaged TAMSD shown as a blue line in the limit ∆/T → 0. A clear
spread of TAMSDs is visible for the whole range of values of shown ∆. Now
we calculate the spread of TAMSDs for small ∆, i.e., EBT (∆ → 0+). We
start by introducing the total mobile duration Tm, which is drawn from the
subordinator P (Tm, T ). We start with expression (C.1). The increments for
each trajectory are distributed according to 2D∆ in the mobile state, while
they are zero in the immobile state. Then, we only integrate over parts of
the trajectory, where the tracer is mobile. This gives

lim
∆→0+

δ2(∆) = lim
∆→0+

1

T

∫ Tm

0

2D∆dt (C.4)

∼ 1

T
2DTm∆ for ∆ ≪ T. (C.5)

From expression (C.5) we obtain the ensemble averaged TAMSD

lim
∆→0+

⟨δ2(∆)⟩ ∼ 2D

T
⟨Tm⟩∆ (C.6)

Using the fraction of expressions (C.5) and (C.6) we can obtain the distribu-
tion ϕ(ξ). First, we rewrite ξ in terms of the mobile total mobile durations
of each tracer particle Tm as follows

ξ =
δ2(∆)

⟨δ2(∆)⟩
∼ 2DTm∆/T

2D∆⟨Tm⟩/T
for ∆ ≪ T (C.7)

∼ Tm
⟨Tm⟩

for ∆ ≪ T. (C.8)
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Figure C.3: Distribution of ξ = δ2(∆)/⟨δ2(∆)⟩ for ∆ → 0+. The analytical solution
(C.9) shown as a solid line is compared to a histogram from simulations.

This gives the distribution

ϕ(ξ, T ) ∼ P (ξ⟨Tm⟩, T )⟨Tm⟩, for ∆ ≪ T, (C.9)

with the subordinator P (Tm, T ), that we introduce in chapter 2. We compare
expression (C.9) to simulations in figure C.3 for an equilibrium fraction of
initially mobile tracers, where we use ⟨Tm⟩ = f eq

m T . The full analytic expres-
sion (C.9) is relevant, as can be seen from the fact that the same distribution
was obtained numerically, e.g., in [57].

Now we calculate the ergodicity breaking parameter EB [13], which we
express using the first and second moment of the mobile duration Tm

lim
∆→0+

EBT (∆) = ⟨ξ2⟩ − 1 (C.10)

=
⟨T 2

m⟩ − ⟨Tm⟩2
⟨Tm⟩2

. (C.11)

The moments of Tm can be obtained using (2.13). In [D2] we obtain exact ex-
pressions for ⟨Tm⟩ and ⟨T 2

m⟩ for arbitrary fractions of initially mobile tracers.
We point out that expression (C.11) is the squared coefficient of variation of
the mobile durations cov(t) (2.14) considered in the main text.

The ergodicity breaking parameter EBT (∆) has a non-zero value for ∆ →
0+ in contrast to the case of Brownian motion. It takes on a plateau value
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Figure C.4: Ergodicity breaking parameter for MIM in the limit ∆ → 0+ goes to
zero with 2τ2im/(τmT ) which means for ergodicity T ≫ 2τ2im/τm.

for small ∆, as shown in figure C.2. Expression (C.11) is shown as a solid
black line in figure C.4 as a function of the trajectory length T .

We insert the asymptotic expression of ⟨T 2
m⟩ for T ≪ τm, τim, namely

limT→0 ⟨T 2
m⟩ = f eq

m T
2 this gives limT→0+ EBT (0

+) = 1/f eq
m − 1. This result

is shown as a horizontal dashed line, which overlaps with the line for (C.11).
For long trajectories T ≫ τm, τim, we obtain in the same way the asymp-
tote limT→∞EBT (0

+) = 2
τ2im
τm
T−1, which is shown as a dashed line in figure

C.4, which agrees well with the full solution (C.11). This means that the
ergodicity breaking parameter for ∆ → 0+ vanishes for long trajectories.

To conclude, on the level of TAMSDs MIM displays some features of
Brownian motion, where EBT (∆) at ∆ → 0+ decreases for long trajectories
T . Similarly to CTRW with power-law tailed sojourn time distributions,
the value of EBT (∆) remains non-zero for ∆ → 0+. For illustration, some
TAMSDs of a CTRW are shown in figure C.1(c)). As shown in figure C.2(c),
EBT (∆ → 0) remains the same for increasing T in CTRW in contrast to
MIM. The same scaling of EBT (∆), that we find, has been reported before
in [112]. In [112] a tracer particle switches between two diffusion coefficients
D1 andD2 with linear rates similar to MIM. In [112] the two-point correlation
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function was used to obtain the moments of the TAMSD. In contrast, we use
the subordination technique, which allows us to obtain not only EBT (∆),
but also the distribution of ξ. This distribution was obtained numerically
in [112] and [70], which stresses the relevance of this distribution1. We point
out the TAMSDs have a significant spread even at T = 500, which is five
times the longest timescale τim = 100 of the system.

1We note that in [70] a CTRW is used with a bi-exponential sojourn time distribution.
As described in chapter 2, this can mimic MIM for certain parameters.
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We analyse mobile–immobile transport of particles that switch between the
mobile and immobile phases with finite rates. Despite this seemingly simple
assumption of Poissonian switching, we unveil a rich transport dynamics
including significant transient anomalous diffusion and non-Gaussian
displacement distributions. Our discussion is based on experimental par-
ameters for tau proteins in neuronal cells, but the results obtained here are
expected to be of relevance for a broad class of processes in complex systems.
Specifically, we obtain that, when the mean binding time is significantly
longer than the mean mobile time, transient anomalous diffusion is observed
at short and intermediate time scales, with a strong dependence on the
fraction of initially mobile and immobile particles. We unveil a Laplace dis-
tribution of particle displacements at relevant intermediate time scales. For
any initial fraction of mobile particles, the respective mean squared displace-
ment (MSD) displays a plateau. Moreover, we demonstrate a short-time
cubic time dependence of the MSD for immobile tracers when initially all
particles are immobile.

1. Introduction
Already in the 1960s, there was considerable interest in the transport of
chemical tracers, especially pesticides, nitrates and heavy metals through
water-carrying layers of soil [1]. A typical description for such contaminant
transport was the diffusion–advection equation (sometimes called
the convective–dispersive equation) [2]

@

@t
Cðx, tÞ ¼ D

@2

@x2
Cðx, tÞ � v

@

@x
Cðx, tÞ, ð1:1Þ

where C(x, t) is the contaminant concentration at distance x after time t, v is
an advection velocity chosen as zero in the following and D is the diffusion
constant (dispersion coefficient typically measured in units of cm2 d−1).
Measurements revealed, however, that not all of the contaminant concentration
was mobile at any given time, but that a fraction could be (transiently) trapped
in stagnant volumes. Building on earlier models by Deans [3] and Coats &
Smith [4], van Genuchten & Wierenga [5] analysed the exchange between
mobile (Cm(x, t)) and immobile (Cim(x, t)) fractions. The mobile–immobile
model under advection–diffusion conditions has been investigated intensively
in the literature over the last 50 years [3,4,6–8]. Application of the mobile–
immobile model includes the advective–diffusive transport of contaminants in
the mobile domain of porous media [3,4,6–8], electrons in photoconductors [9],
chemicals in chromatography [10] and adsorbing solutes in soil [11]. In many

© 2022 The Author(s) Published by the Royal Society. All rights reserved.
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geophysical systems equations of the type (1.1) aremodified to
account for anomalous transport, in which molecular trans-
port no longer follows the linear time dependence 〈Δx2(t)〉 =
〈x2(t)〉− 〈x(t)〉2 = 2Dt of Brownian motion, but follows laws
of the type 〈Δx2(t)〉 = 2Dαt

α, for which α≠ 1 [12]. Indeed,
such transport anomalies were found on large field exper-
iments, up to kilometre scales [13,14]. In such systems, the
mobile–immobile transport model is replaced by models in
which generalized transport terms are incorporated [15,16].
This type of model, in contrast to equation (1.1), is character-
ized by non-Gaussian distributions [12].

Motivated by concrete biological examples, we here
study a seemingly simple version of the mobile–immobile
transport model, in which particles switch between a freely
diffusive phase and an immobile, stagnant phase. Even
for the Poissonian switching dynamics considered here
between the mobile and immobile phases and for biologically
relevant parameters, we demonstrate the existence of a sig-
nificant, transient anomalous–diffusive regime with
a distinct non-Gaussian displacement distribution.

In fact, various components of biological cells, including
tau proteins, synaptic vesicles in hippocampal neurons,
glucocorticord receptors, calcium-sensing proteins and tran-
scription factors at the junction of the endoplasmic reticulum
and the plasma membrane, undergo diffusion with transient
immobilization [17–24]. Another example is given by the dif-
fusion and target search of DNA-binding proteins along
DNA molecules. For instance, the core domain of the
tumour suppressor p53, the damage detection complex
Rad4-Rad23 and the architectural DNA-binding protein Fis
repeatedly attach to and detach from the DNA during the
target search [25–29]. We here focus on tau proteins,
which transiently bind to microtubules in axons of neuronal
cells and are immobilized in the bound state, as schematically
depicted in figure 1. Tau proteins stabilize microtubules that
give structure to cells [30]. Alzheimer’s disease is associated
with tau proteins losing the ability to bind to microtubules
[30,31]. This effectively destabilizes the microtubules and
leads to neurodegeneration [30,31]. Owing to the extremely
elongated shape of the axon, the motion of tau proteins can
be effectively described in one dimension [17]. If the immobil-
ization time follows an exponential distribution with mean tim
and tracers immobilize with rate t�1

m , i.e. a Poissonian
dynamics, as assumed in [17], the motion can be described
by the mobile–immobile model

@

@t
nmðx; tÞ¼� 1

tm
nmðx; tÞþ 1

tim
nimðx; tÞþD

@2

@x2
nmðx; tÞ

and
@

@t
nimðx; tÞ¼� 1

tim
nimðx; tÞþ 1

tm
nmðx; tÞ:

9>>=
>>;

ð1:2Þ

Here, nm(x, t) and nim(x, t) denote the line densities of
mobile and bound tau proteins, respectively, with physical
dimension [1/length]. The diffusion coefficient of the mobile
tracers isD. Sincewe are dealingwith a system of non-interact-
ing particles, we use a probabilistic formulation according to
which the total concentration ntot(x, t) = nm(x, t) + nim(x, t) is
normalized to unity,

Ð1
�1 ntotðx, tÞdx ¼ 1. The line densities

nm(x, t) and nim(x, t) are then the respective fractions.
Equations (1.2) were analysed in three dimensions for an equi-
librium fraction of initially mobile tracers, finding Fickian yet
non-Gaussian diffusion [32]. Accordingly, the mean squared

displacement (MSD) of the total concentration ntot grows line-
arly at all times, and under certain conditions a non-Gaussian
distribution emerges [32].

Such Fickian yet non-Gaussian diffusion has been shown
to occur for the motion of colloidal beads on phospholipid
bilayer tubes, molecules at surfaces and colloids in a dense
matrix of micropillars, where the colloids can get trapped
in pockets [33–35]. Fickian yet non-Gaussian diffusion with
a finite correlation time beyond which the displacement prob-
ability density function (PDF) crosses over to a Gaussian with
an effective diffusivity arises in diffusing–diffusivity models,
in which the diffusivity of individual tracers varies stochasti-
cally over time [36–41]. Direct examples for such randomly
evolving diffusion coefficients (mobilities) are indeed
known from lipids in protein-crowded bilayer membranes
[42], shape-shifting protein molecules [43] or (de)polymeriz-
ing oligomer chains [44,45]. In other systems, an
intermittent plateau emerges in the MSD; for instance, for
two-dimensional fluids confined in a random matrix of
obstacles or a porous cavity, in which trapping in finite pock-
ets plays a key role [46–48]. We also mention plateaus in the
MSD of both two- and three-dimensional isotropic Lennard-
Jones binary liquids [49]. In most of the systems mentioned
here, the PDF crosses over from an exponential (Laplace)
PDF to a Gaussian. In the following, we explicitly show
how a Laplace distribution with fixed scale parameters
arises at intermediate time scales in our mobile–immobile
model, paired with transient anomalous diffusion.

In what follows, we consider three initial conditions: an
equilibrium fraction of mobile tracers and a scenario in
which initially all tracers are mobile or immobile. These exper-
imentally feasible situations significantly change the diffusion
at short and intermediate time scales, at which apparent
anomalous diffusion arises with slow-down and plateau-like
behaviour, or ballistic diffusion, respectively. Together with
the transient non-Gaussian displacement PDF, this behaviour
is remarkably rich, given the simplicity of the governing
equation (1.2). We individually analyse the motion of the

tau protein

microtubule

free diffusion

one-
dimensional

neuron

axon

–1

–1
unbinding with
rate tim

binding with

rate
 tm

Figure 1. Schematic of tau protein dynamics in axons of neuronal cells. Dif-
fusing tau proteins bind to longitudinally aligned microtubules inside the axon
with the rate t�1

m . Upon binding, they remain immobile for the average dur-
ation tim and unbind with the rate t�1

im . The green markers represent
fluorescent proteins attached to the tau proteins. Because of the elongated
shape of the axons, the tau protein dynamic can effectively be described in
one dimension. In our model, we assume a homogeneous binding site density.
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mobile and immobile population of tracers, made possible by
the formulation of separate densities for mobile and immobile
particles in this modelling approach. One physical incentive to
do so is that the function of the tau proteins depends on their
binding state [30]. Only bound tau proteins stabilize microtu-
bules, or transcription factors modulate gene expression
when bound to the DNA [21,30]. In some situations, only the
mobile or immobile tracers can be measured. An example is
given by combining total internal reflection fluorescence
microscopy with fluorescently labelled single-stranded DNA,
which binds to the microscope coverslip [50].

We present general results for the mobile and immobile
concentrations and the MSD for arbitrary fractions of initially
mobile tracers in §2. Sections 3–5 present concrete results and
detailed discussions for different fractions of initial mobile
particle concentrations; respectively, we start with the cases
when all tracers are initially mobile and immobile and com-
mence with an equilibrium fraction of mobile tracers. We
conclude in §6.

2. Model and general solutions
We consider the mobile–immobile model equations (1.2) for
the initial conditions nm(x, 0) = fmδ(x) and nim(x, 0) = fimδ(x),
where fm and fim denote the fractions of initially mobile and
immobile tracers, respectively, with the normalization fm +
fim = 1. This formulation is suitable for typical single-particle
tracking experiments used in biological and soft matter sys-
tems. They are also relevant for geophysical experiments, in
which point-like injection of tracers is used. In this section,
we keep the fractions fm and fim arbitrary and choose specific
values in the following three sections.

In what follows, we use the concrete parameters D = 13.9
(μm)2 s−1, tm ¼ 0:16 s and tim ¼ 7:7 s from [17] in all figures
and neglect the vanishingly small advection velocity v=
0.002 μm s−1.1 The values were obtained from experiments
using the fluorescent decay after the photoactivation technique
[17]. Let us briefly address the experimental origin of the
time-scale separation between tm and tim. From single-
particle tracking experiments of single-stranded DNA or tau
proteins, immobilization times during the particle motion
can be extracted [18,50]. The experiments for the tau proteins
in [18] provided two-dimensional information and revealed
relatively short residence times of the tau proteins on
the microtubules, when compared with mobile times [18]. By
contrast, the fluorescence decay after photoactivation (FDAP)
experiment in one dimension along the axon direction, here
denoted as the x variable, revealed long residence times and
short mobile periods: tim≈ 48tm [17]. This seeming contradic-
tion can be resolved when examining more closely the two-
dimensional trajectories in the electronic supplementary
material of [18]. Namely, the microtubules inside the axon are
aligned in parallel with the axon axis, as also shown in
figure 1. While a single binding event is short, an unbound par-
ticle quickly rebinds to a parallel, nearby microtubule after a
short distance covered by diffusion perpendicular to the axon
axis. This perpendicular motion does not contribute to the
one-dimensional motion in the x-direction and thus, while indi-
vidual binding times are relatively short, effective binding times
appear much longer in the projection to one dimension. Since
we are only interested in the one-dimensional motion, we use
the parameters of [17] and hence long immobilization times.

2.1. Mobile and immobile concentration profiles
We consider the Fourier–Laplace transform of the concen-
trations and solve for nm(k, s), nim(k, s) and ntot(k, s) in
expressions (A 1) and (A 2), in which the Fourier wavenumber
k corresponds to the distance x in real space and the Laplace
variable s is conjugated to time t; see appendix A for details.
Wedenote functions in Fourieror Laplace space solely by repla-
cing the explicit dependencies on the respective arguments. The
relations in the Fourier–Laplace domain can be Fourier-
inverted, andwe obtain the expressions in the Laplace domain,

nmðx, sÞ ¼ fm þ fim
1

1þ stim

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4fðsÞDp e�
ffiffiffiffiffiffiffiffiffiffiffi
fðsÞ=D

p
jxj, ð2:1Þ

nimðx, sÞ ¼ fm þ fim
1

1þ stim

� �

� tim=tm
1þ stim

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4fðsÞDp e�

ffiffiffiffiffiffiffiffiffiffiffi
fðsÞ=D

p
jxj

þ fim
tim

1þ stim
dðxÞ ð2:2Þ

and ntotðx, sÞ ¼
fm þ fim

1
1þ stim
s

fðsÞ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4fðsÞDp e�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4fðsÞ=D

p
jxj

þ fim
tim

1þ stim
dðxÞ, ð2:3Þ

as functions of x and s with fðsÞ ¼ s½1þ timt
�1
m =ð1þ stimÞ�.

These expressions are valid for all s and hence for all times t.
A numerical Laplace inversion then provides the densities for
any specified time. Remarkably, it turns out that the density
ofmobile tracers,whichwere initially immobile, is proportional
to the density of immobile tracers, which were initially mobile.
This can be seen by setting fm = 0 or fim = 0 in (2.1) and (2.2),
respectively. This proportionality holds for all s and hence at
all times.We obtain the long-timeGaussian limit of the full con-
centration in B.3,

ntotðx, tÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDefft

p exp � x2

4Defft

� �
, t � tm, tim, ð2:4Þ

with Deff =D/(1 + tim/tm). Note that, for asymptotic
equalities, we use the ∼ symbol. In fact, independent of the
ratio fm and fim we asymptotically obtain a Gaussian distri-
bution in which the diffusivity is reduced to the effective
diffusivity Deff. The mobile and immobile concentrations are
asymptotically equivalent to (2.4) up to a scalar feqj defined
below [16].

2.2. Moments
In general, the fractions nm and nim of mobile and immobile
tracers, initially fixed as fm and fim, change over time. To
obtain the respective numbers, we integrate the tracer den-
sities over space. This corresponds to setting k = 0 in the
Fourier–Laplace transforms nm(k, s) and nim(k, s) of the
densities. After Laplace inversion, we find

nmðtÞ ¼ tm
tm þ tim

þ fmtim � fimtm
tm þ tim

exp (� ½t�1
m þ t�1

im �t) ð2:5Þ

and

nimðtÞ ¼ tim
tm þ tim

� fmtim � fimtm
tm þ tim

exp (� ½t�1
m þ t�1

im �t), ð2:6Þ
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with nmðtÞ þ nimðtÞ ¼ 1. In the long-time limit t≫ tm, tim, the
fractions of mobile and immobile tracers reach the stationary
values feqm ¼ t m=ðtm þ timÞ and feqim ¼ tim=ðtm þ timÞ, respect-
ively. Our approach of splitting the total concentration into
mobile and immobile fractions allows us to calculate the
moments of the unbound, bound and total tau protein distri-
butions individually,

hx2ðtÞij ¼
1

njðtÞ
ð1
�1

x2njðx, tÞdx, ð2:7Þ

where j stands for m, im and tot [16]. To shorten the notation,
we use 〈x2(t)〉 = 〈x2(t)〉tot in the remainder of this work. Using
the Laplace inversion of

@2

@k2
ntotðk, sÞ

����
k¼0

¼ hx2ðsÞi, ð2:8Þ

we obtain the expression

hx2ðtÞi ¼ 2Defftþ 2Dtim
fmtim=tm � fim
ð1þ tim=tmÞ2

1� e�ðt�1
m þt�1

im Þt
� �

ð2:9Þ

for thesecondmoment. In thenext section,weconsider the initial
conditions,whenall tracers are initiallymobile. This is chosen for
didactic purposes, as this initial condition shows the plateau in

the MSD and intermittent Laplace distribution most clearly. In
§4, we consider immobile initial conditions and finally consider
equilibrium initial conditions in §5, where the effects discussed
in earlier sections are present at the same time.

3. All tracers initially mobile
We now consider the initial condition when all tracers are
mobile, i.e. nm(x, 0) = δ(x) and nim(x, 0) = 0. This initial con-
dition does not correspond to the experiment carried out by
Igaev et al. [17]. However, this situation could be realized
experimentally, e.g. by using the method of injection of
fluorescently labelled tau proteins [53]. In what follows, we
repeatedly use the time-scale separation tm≪ tim observed
for tau proteins and also relevant to other systems.

3.1. Concentration
We calculate the densities at short, intermediate and long
times. In B.1, we obtain the Gaussian

ntotðx, tÞ � 1ffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp � x2

4Dt

� �
ð3:1Þ

in the short-time limit t≪ tm, tim. The Gaussian (3.1) can be
seen in figure 2 in the top left panel. In this figure nm(x, t),
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Figure 2. Concentration profiles for mobile initial conditions. The solid black line shows ntot(x, t) and the grey striped area nm(x, t), obtained via Laplace inversion of
relations (2.1) and (2.3). Colours indicate the number of immobilization events of particles from a Brownian dynamics simulation with 5 × 106 trajectories in a
stacked histogram. The striped area denotes mobile particles and the white dotted line denotes initially mobile tracers that have not yet been immobilized up to the
indicated time t (3.2); this result almost coincides with the full concentration in the top left panel. For t = 0.5 s to 2 s, the white dashed line shows the Laplacian
(3.5); for t = 50 s and 200 s, it shows the long-time Gaussian (2.4).
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ntot(x, t) and a histogram are shown. The densities are
obtained from Laplace inversions of the expressions in
Laplace space (2.3), while the histogram is obtained from
simulations, and colours denote the number of immobiliz-
ation events Nim. Initially, all particles are mobile and
diffuse freely, as denoted by the black colouring.

The concentration of freely diffusing particles that have
not immobilized yet, i.e. have zero immobilization events
Nim = 0, is given by the PDF of free Brownian motion
multiplied by the probability of not having immobilized, i.e.

nmðx, tjNim ¼ 0Þ ¼ expð�t=tmÞffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp � x2

4Dt

� �
: ð3:2Þ

These mobile tracers immobilize with the position-dependent
rate nm(x, t|Nim = 0)/tm. Integrating from t0 = 0 to t0 = t, we
obtain in the limit t≪ tim (i.e. at short and intermediate
times) that

nimðx, t � timÞ �
ðt
0

expð�t0=tmÞ=tmffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDt0

p exp � x2

4Dt0

� �
dt0

¼ exp �jxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p� 	
ffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p � ffiffiffiffiffiffiffiffiffiffiffi

t=t m
p� �

2

� expðjxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p Þffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p þ ffiffiffiffiffiffiffiffiffiffi

t=tm
p� �

2
:

ð3:3Þ
Comparing (3.3) with the Laplace inversion of nim(x, s) (2.3)
in figure 8, we find very good agreement in the relevant
range t≪ tim.

2 For the total density, we obtain by adding
nm(x, t) (3.1) and nim(x, t) (3.3)

ntotðx, tÞ � expð�t=tmÞffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp � x2

4Dt

� �
þ nimðx, t � timÞ,

t � tim ð3:4Þ

for the full tracer density. For t≪ tm, we recover the Gaussian
(3.1) from (3.4), while for tm≪ t≪ tim the distribution is
distinctly non-Gaussian, as shown in figure 2. Up to around
t = 0.6 s, the motion of the free tracers is dominated by the
Gaussian nm(x, t|Nim = 0) (see (3.2)), which spreads like
free Brownian particles, shown as a white dotted line in
figure 2. At around t = 1.6 s, most of the tracers with Nim = 0
immobilized and the majority of mobile tracers were immobile
exactly once (Nim = 1) and transitioned back to the mobile
zone, as shown by the red area. Because of the immobilization,
these tracers havemoved less than the free particles withNim =
0 and a Laplace distribution emerges in the centre.
For x � t

ffiffiffiffiffiffiffiffiffiffiffiffi
D=tm

p
and t≫ tm, we can use the asymptotic

lim x→∞erf(x) =−limx→ ∞erf(− x) = 1 in nim(x, t≪ tim)
(equation (3.3)), and obtain from ntot(x, t) (3.4) the expression

ntotðx, tÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p exp � jxjffiffiffiffiffiffiffiffiffiffi
Dtm

p
� �

, ð3:5Þ

in the intermediate-time regime tm≪ t≪ tim. Combining
the conditions t≪ tm and x � t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D=tim

p
leads to

x � tim
ffiffiffiffiffiffiffiffiffiffiffiffi
D=tm

p ¼ 71mm, which is large compared with the
standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffi
2Dtm

p ¼ 2:1mm of the Laplace distri-
bution (3.5). This means that the distribution follows such a
Laplace shape for a large range of positions. The total concen-
tration, in turn, therefore follows a Laplace distribution with
fixed parameters. This is a pronounced deviation from a Gaus-
sian distribution. This result can also be obtained from

calculations in Laplace space, as shown in B.2. By contrast,
for times significantly longer than tim, many immobilizations
take place, as shown by the bright yellow area in figure 2,
where the distribution follows the Gaussian (2.4) with the
effective diffusivity Deff =D/(1 + tim/tm).

3.2. Mean squared displacement
From the general expression for the MSD (2.9) for immobile
initial conditions, we obtain the expression

hx2ðtÞi ¼ 2D
1þ tim=t m

tþ t2im=tm
1þ tim=tm

1� e�ðt�1
m þt�1

im Þt
� �
 �

:

ð3:6Þ
At intermediate times, the MSD (expression (3.6)) exhibits a
plateau-like behaviour with the constant MSD

hx2ðtÞi � 2Dtm, tm � t � tim, ð3:7Þ
corresponding to free Brownian particles that moved for the
duration tm. This requires the condition tm≪ tim, which is
satisfied in the tau protein case [17], with tm = 0.16 s and
tim = 7.7 s. Such plateaus are often found when tracers diffuse
in porous media or for dynamics in crowded membranes or
environments with obstacles, in which the tracer can be tran-
siently confined [38,46,48,54,55]. The MSD (3.6) is shown in
figure 3a as the black solid line.

When calculating the moments of the mobile and
immobile tracers (2.7), the time-dependent normalizations
of the tracer densities (2.6),

nmðtÞ ¼ tm
tm þ tim

1þ tim

tm e�ðt�1
m þt�1

im Þt


 �
ð3:8Þ

and

nimðtÞ ¼ tim
tm þ tim

[1� e�ðt�1
m þt�1

im ÞtÞ], ð3:9Þ

need to be taken into account, yielding the moments of the
mobile and immobile densities (2.7) [16]

hx2ðtÞim ¼ 2D

ð1þ tim=tmÞð1þ tim=tm e�ðt�1
m þt�1

im ÞtÞ

"
t 1þ t2im

t2m
e�ðt�1

m þt�1
im Þt

� �

þ 2t2im=tm
1þ tim=tm

ð1� e�ðt�1
m þt�1

im ÞtÞ
#

ð3:10Þ
and

hx2ðtÞiim ¼ 2D

1� e�ðt�1
m þt�1

im Þt
t

1þ tim=tm
1� tim

tm
e�ðt�1

m þt�1
im Þt

� �


þ t2im=tm � tim

ð1þ tim=tmÞ2
1� e�ðt�1

m þt�1
im Þt

� �#
:

ð3:11Þ
As shown in figure 3, the mobile second moment exhibits a
peak at around t = 0.6 s, followed by a plateau. This peak
arises as the density of mobile tracers initially consists of
mobile tracers that have never immobilized. Once t≫ tm,
the mobile density mainly consists of tracers that were
immobile (at least) once and mobilized, as discussed above.
Since the latter had less time to move, they have spread less
and the MSD temporarily decreases.

The immobile MSD (3.11) has the short-time behaviour
〈x2(t)〉im∼Dt for t≪ tm, tim. The factor 1

2 when compared
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with the mobile tracers arises because immobile tracers effec-
tively average over the history of the mobile tracers. Namely,
for t0 ≪ tm, tim, mobile particles immobilize with the constant
rate p(t0) = 1/tm. A particle that immobilized at time t0 before
moved for the duration t0 and thus contributes 2Dt0 to the
second moment for t > t0; see figure 4a for a schematic draw-
ing. When averaging over different mobile periods t0 and
normalizing with the fraction of immobile tracers

Ð t
0 pðt0Þdt0,

we obtain

hx2ðtÞiim � 2D

Ð t
0 t

0pðt0Þdt0Ð t
0 pðt0Þdt0

¼ 2D
Ð t
0 t

0=tm dt0

t=tm
¼ Dt,

for t � tm, tim: ð3:12Þ
As mentioned above, the long-time limits of the MSDs of all
densities remain equal to 2Defft, regardless of the fractions fm
and fim.

4. All tracers initially immobile
We now discuss the case when all tracers are immobile at
t = 0, nim(x, 0) = δ(x) and nm(x, 0) = 0.

4.1. Concentration
In B.1, we obtain the short-time behaviour

ntotðx, tÞ � 2t=timffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e�ðx2=4DtÞ �
jxj 1� erf

jxjffiffiffiffiffiffiffiffi
4Dt

p
� �� �

2Dtim

þ 1� t
tim

� �
dðxÞ, for t � tm, tim ð4:1Þ

by applying approximations for large s in Laplace space.
Expression (4.1) is shown in the left panel of figure 5 as the
black dashed line. In particular, note the distinctively non-
Gaussian shape of the distribution in contrast to the case of
mobile initial conditions. The Gaussian in equation (4.1) has
the normalization ∼2t/tim, while the second term has the
normalization ∼−t/tim, and thus the whole expression (4.1)
is normalized to unity. In B.2, we obtain the total density at
intermediate times tm≪ t≪ tim

ntotðx, tÞ � t=timffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p exp � jxjffiffiffiffiffiffiffiffiffiffi
Dtm

p
� �

þ 1� t
tim

� �
dðxÞ, ð4:2Þ

as shown in figure 5 in the top row (except for the leftmost panel)
as a black–white striped line. Compared with the mobile initial
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Figure 3. Second moments for different initial conditions on a log–log scale. In (a), all tracers are initially mobile, as in §3. After a linear growth, the second
moment 〈x2(t)〉 of all tracers (equation (3.6)) shows a plateau for tm≪ t≪ tim. The second moment of the mobile particles (equation (3.10)) in (a) has a peak
immediately before the total particle moment and the mobile particle moment reach a plateau value. Immobile tracers spread ∼Dt at short times, and the second
moment (3.11) has a plateau at intermediate times. In (b), all tracers are initially immobile, as in §4. The second moment of all tracers (equation (4.3)) grows ∼
Dt2/tim at short times, owing to the decaying number of particles located at x = 0. The immobile tracers spread ∼Dt3/(3tmtim) at short times, while the full
expression is given in equation (4.3). The mobile tracers in (b) spread exactly like the immobile tracers in (a), where all tracers are initially mobile. (c) The equili-
brium case, §5, in which the second moment grows like 2Dt/(1 + tim/tm) (equation (5.3)) for all times. The mobile and immobile moments exactly match the
moments of the total distribution with mobile and immobile initial conditions, respectively.
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Figure 4. Schematic showing the short-time behaviour of tracers for mobile (a) and immobile initial conditions (b) at three snapshots of time. In both panels, the
tracers change the mobilization state at times t01 and t02, respectively. For mobile initial conditions in (a), the number of immobile tracers grows ∼t/tm at short
times. Namely, the later a tracer immobilizes, the longer it was previously mobile. In (b), the number of mobile tracers grows ∼t/tim. Namely, the earlier a tracer
mobilizes in (b), the longer it is mobile.
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condition, the coefficient of the Laplace distribution has the
linear growth t/tim. Most tracers remain immobile at the
origin at t = 1.6 s. In B.4, we find expression (B 11) for ntot(x, t),
which is valid for t≪ tim and contains equations (4.1) and
(4.2) as limits. In figure 5, the lower panels show the transition
from the Laplace distribution to the Gaussian (2.4).

4.2. Mean squared displacement
From the general expression for the MSD (2.9), we obtain the
expression

hx2ðtÞi ¼ 2D
1þ tim=t m

t� tim
1þ tim=tm

1� e�ðt�1
m þt�1

im Þt
� �
 �

:

ð4:3Þ
The MSD (4.3) has the ballistic short-time behaviour

hx2ðtÞi � Dt2

tim
þOðt3Þ, t � tm, tim: ð4:4Þ

The Landau symbol O(·) represents higher order terms. The
ballistic behaviour at short times t≪ tim arises because the frac-
tion exp(−t/tim)∼ 1− t/tim of tracers are immobile at x = 0 and
hence do not contribute to the second moment. For t0 ≪ tm-

≪ tim, immobile particles mobilize with the constant rate
p(t0) = 1/tim. A particle that mobilized at time t0 moved for

the duration t− t0 and thus contributes 2D(t− t0) to the
secondmoment for t > t0; see figure 4a for a schematic drawing.
When integrating over different mobilization times t0, we find

hx2ðtÞi � 2D
ðt
0
ðt� t0Þpðt0Þdt0 ¼ 2D

ðt
0

t� t0

tim
dt0

¼ D
t2

tim
, t � tm � tim: ð4:5Þ

We obtain the number of free and bound tracers from the gen-
eral expression (2.6),

nmðtÞ ¼ tm
tm þ tim

1� e�ðt�1
m þt�1

im ÞtÞ
h i

ð4:6Þ

and

nimðtÞ ¼ tim
tm þ tim

1þ tm

tim e�ðt�1
m þt�1

im Þt


 �
: ð4:7Þ

This produces the normalization of the immobile moment, and
we find

hx2ðtÞiim ¼ 2Dt
1þ tm=t im

1þ e�ðt�1
m þt�1

im Þt

t im=tm þ e�ðt�1
m þt�1

im Þt

� 4Dt2im=tm

ð1þ tim=tmÞ2
1� e�ðt�1

m þt�1
im Þt

t im=tm þ e�ðt�1
m þt�1

im Þt : ð4:8Þ
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Gaussian (2.4).
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This MSD has the short-time behaviour 〈x2(t)〉im∼Dt3/
(3timtm) for t≪ tm, tim. The cubic scaling emerges as the
only immobile tracers, which are not located at the origin,
have previously mobilized and then immobilized again. The
mobile concentration grows ∼t/tim at short times t≪ tim. Inte-
grating over the time t0 spent in the mobile phase yields the
cubic scaling

hx2ðtÞiim � 2D
ðt
0

1
tm

nmðt� t0Þt0 dt0

¼ 2D
tmtim

ðt
0
ðt� t0Þt0 dt0 ¼ D

t3

3tmtim
, ð4:9Þ

where, in the first step, we took the limit t≪ tm. Since the
mobile concentration with immobile initial conditions is pro-
portional to the immobile concentration with mobile initial
conditions, 〈x2(t)〉m is equal to 〈x2(t)〉im in (3.11) with mobile
initial conditions. This can be seen in figure 3a,b. As for the
mobile initial condition considered in §3, the MSDs of all
densities grow ∼2Defft asymptotically.

5. Equilibrium initial fractions of initial mobile
tracers

In this section, we use the equilibrium values nmðx, 0Þ ¼
feqm dðxÞ and nimðx, 0Þ ¼ feqimdðxÞ as initial conditions.

5.1. Concentration profiles
From the general expressions (2.1) and (2.3) for the densities
nm(x, s) and ntot(x, s), we find that the mobile concentration of
the equilibrium case discussed here is proportional to the
total concentration for the mobile initial condition in §3 at
all times. To understand why this is true, we note that both
concentrations at all times contain mobile tracers that were
initially mobile. Moreover, from equations (2.1) and (2.3),
we see that the mobile concentration of the equilibrium
case contains initially immobile tracers, while the total con-
centration contains immobile tracers that were initially
mobile. In equations (2.1) and (2.3), the respective terms
that appear in addition to the initially mobile fractions that
are still mobile are proportional to each other at all times,
as described in §2.1. An analogous relation holds between
the immobile concentration with equilibrium initial con-
ditions and the total concentration with immobile initial
conditions, as can be seen in equations (2.1) and (2.3).

We consider the short-time approximation t≪ tm, tim for
which initially immobile tracers have not yet mobilized and
initially mobile tracers have not yet been trapped. Therefore,
we can neglect the terms with the rates t�1

m and t�1
im in (1.2)

and solve nm(x, t) and nim(x, t) separately, yielding

ntotðx, tÞ � feqmffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp � x2

4Dt

� �
þ feqimdðxÞ,

t � tm, tim, ð5:1Þ
with a Gaussian distribution describing free diffusion in
addition to a Dirac-δ distribution of initially immobile tracers
that have not yet moved. This behaviour can be seen in the
top left panel of figure 6. The same result as (5.1) can be
obtained by combining the short-time expressions for the
mobile (3.1) and immobile (4.1) initial conditions for t≪ tm,
tim, as done in equation (B 5). At short times, the total density
(5.1) behaves like the case of mobile initial conditions with

an additional delta peak. At intermediate times tm≪ t≪ tim,
we obtain

ntotðx, tÞ � t=timffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt m

p exp � jxjffiffiffiffiffiffiffiffiffiffi
Dtm

p
� �

þ 1� t
tim

� �
dðxÞ ð5:2Þ

by combining the mobile (3.5) and immobile expression (4.2),
respectively.3 In fact equation (5.2) is the same as expression
(4.2) for the case of immobile initial conditions, in the intermedi-
ate-time regime. This result is shown in figure 6, where this
approximation is compared with the full concentration from
t = 0.5 to t = 2. This result is the one-dimensional equivalent to
the findings in [32]. The lower right panels of figure 6 show
the Gaussian long-time limit (2.4) as a black–white striped line.

5.2. Mean squared displacement
The number of mobile and immobile tracers remains constant
for equilibrium initial conditions. At all times, the second
moment of all tracers (2.9) thus simplifies to

hx2ðtÞi ¼ 2D
1þ tim=tm

t: ð5:3Þ

The second moment is similar to that of a free Brownian par-
ticle, with the effective diffusion coefficient Deff =D/(1 + tim/
tm), as shown in figure 3. This is a known result from models
for Fickian yet non-Gaussian diffusion [32]. The mobile and
immobile moments, 〈x2(t)〉m and 〈x2(t)〉im, are equivalent to
themoments of the full densitywithmobile (3.6) and immobile
(4.3) initial conditions, as can be seen in figure 3. This relation
holds because the respective densities are proportional, as dis-
cussed above. The mobile and immobile moments show clear
anomalous diffusion for t≪ tim, with a quite long crossover
dynamics, as depicted in figure 3c. The mobile moment has a
plateau in the intermediate regime tm≪ t≪ tim and the
immobile moment behaves ballistically at short times t≪ tm.

In the long-time limit, all mobile and immobile second
moments grow like the moments of the total concentration,
i.e. 〈x2(t)〉m∼ 〈x2(t)〉im∼ 2Defft for t≫ tim, tm.

6. Discussion and conclusion
We considered a quite simple mobile–immobile model accord-
ing towhich tracer particles switch between a mobile diffusing
state and an immobilized state. On average, the tracers remain
mobile for the duration tm and immobile for tim. We con-
sidered the particular case, motivated by experiments on tau
proteins binding to and unbinding from microtubules in
axons of dendritic cells [17], when the two time scales are sep-
arated, tm≪ tim. We analysed three different initial conditions
with varying fractions of mobile to immobile tracers at the
origin, which can, in principle, all be realized in experiments.
The initial condition of mobile tracers can be realized by inject-
ing fluorescently labelled proteins [53]. Initially, immobile
tracers could in principle be obtained in single-particle tracking
experiments, by focusing on the tracks of immobile tracers.
Equilibrium fractions of mobile tracers naturally occur when
the tau proteins were in proximity to the microtubules for
t≫ tm, tim before the start of the data acquisition.

First, we studied the case when all tracers are initially
mobile, as described in the experiment in [53]. Second,
we assumed all tracers to be initially immobile. Third, we
considered an equilibrium fraction, corresponding to the exper-
iment in [17]. For non-equilibrium fractions of initially mobile
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tracers, we find anomalous diffusion at short and intermediate
time scales, at which initially mobile tracers display a plateau
in the MSD at intermediate times and initially immobile tracers
spread ballistically at short times. At t≪ tm and an initial equi-
librium fraction, the tracer density consists of a Gaussian and a
delta peak. Initially, mobile tracers follow a Gaussian distri-
bution at short times. When all tracers are initially immobile,
the short-time distribution consists of a delta peak and a non-
Gaussian distribution. At intermediate times tm≪ t≪ tim, the
distribution ismadeup of a Laplace distribution and adelta dis-
tribution of initially immobile tracers that have not moved yet.
The coefficients of the two distributions depend on the specific
initial conditions. We additionally obtain expressions for the
densities that are valid for the whole range t≪ tim. We stress
that the distribution is non-Gaussian at intermediate times,
regardless of the initial conditions. By contrast, the distribution
asymptotically at long times matches a Gaussian for all initial
conditions. The densities of mobile and immobile tracers with
equilibrium initial conditions match the total tracer densities
of mobile and immobile initial conditions, respectively, at all
times.Moreover, the immobile tracer density frommobile initial
conditions is proportional to the mobile tracer density from
immobile initial conditions at all times. As a special case for
equilibrium initial conditions, our model corresponds to the
one-dimensional version of the model used in [32] to describe
Fickian yet non-Gaussian diffusion. We find the same linear

MSD for all times and obtain a closed expression for the Laplace
distribution at intermediate time scales.

The model developed here is, of course, much more general.
We provided the framework for any ratio of the characteristic
time scales tmand tim, such that themodelwill beuseful for scen-
arios ranging from geophysical experiments with Poissonian
(im)mobilization statistics to molecular systems such as protein
(un)binding to DNA in nanochannel set-ups. To the best of our
knowledge, the transient Laplace distribution of tau proteins
has not been observed yet. We now discuss possible experi-
ments that could reveal the anomalous diffusion regime and
the Laplace distribution, which depend on the time scales tm
and tim. For the present analysis, we used the parameters
tm ¼ 0:16 s and tim ¼ 7:7 s for tau proteins, which were obtai-
ned from an FDAP experiment [17]. FDAP experiments do not
directly allow the observation of single-particle displacement
densities and the moments thereof. However, a single-molecule
tracking (SMT) study of tau proteins [18] with two-dimensional
trajectories of 2:2 s length was conducted, where we expect the
transient Laplace distribution to be visible in the marginal distri-
bution, given that the sample size is large enough. From SMT
experiments, the moments can be obtained, although, in [18],
the moments of the distribution were not evaluated. Another
example for a system with tim > tm is given by synaptic vesicles
[19]. In [19], fluorescence correlation spectroscopy reveals
tim ¼ ð4:2+ 0:4Þ s and tm ¼ ð2:0+ 0:4Þ s. In addition,
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Figure 6. Concentration profiles for equilibrium initial conditions. At t = 0, all tracers are at x = 0 and the equilibrium fraction tim/(tm + tim) is immobile. For a
description of the legend, see figure 2. The top left panel shows the short-time behaviour consisting of a Gaussian and a δ-distribution (equation (5.1)). At t = 1,
almost all initially mobile tracers immobilized at least once and the total concentration follows the Laplace distribution (5.2), as shown by the black–white striped
line for t = 0.5–2 s. At longer times, after several immobilizations the concentration profiles cross over to a Gaussian, as witnessed by equation (2.4), shown as a
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glucocorticoid receptors show long immobilization events with
tim ¼ 13ms compared with tm ¼ 2ms, as revealed by fluor-
escent recovery after a photobleaching experiment [20]. The
Laplace distribution cannot be observed in this experiment,
owing to the missing information on single tracers. SMT exper-
iments of the transcription factor p53 [22] show a switched
separation of time scales with tim ¼ 1:80 s and tm ¼ 8:4 s.
Here,SMTallowsustomeasure theexponentialbinding timedis-
tribution corresponding to a single binding rate, as in ourmodel.
The secondmoment ismeasured for up to 0.6 s,where longer tra-
jectories would allow for a comprehensive comparison with the
moments calculated in thiswork. For tm> tim, the Laplace distri-
butiondoesnot arise.Wenow lookat another SMTexperiment in
more detail. In [29], the architectural DNA-binding protein Fis
was observed tohave a linearMSDandanon-Gaussiandisplace-
ment distribution, as depicted in figure 7. The authors of [29]
fitted twoGaussiansto thedistributionanddeduced thepresence
of two slidingmodes of Fis on theDNA. Since themotion during
the slow slidingmode is within experimental accuracy, it is plau-
sable to assume that the non-Gaussian distribution emerges as a
result of immobilization. In figure 7, we show fits with a Laplace
distribution and aGaussian distribution in a logarithmic presen-
tation. The Laplace distribution matches the general shape with
fewexceptions around�0:4mm,while theGaussian distribution
does not capture the peak in the centre. We note that the Laplace
distribution requires a single fitting parameter, compared
with the two Gaussians with advection used in [29] requiring
five parameters. The apparent Laplace distribution and linear
MSD translate to equilibrium initial conditions in our model.

We note that (non-)exponential (im)mobilization has been
studied using a Langevin equationwith switching diffusivities
[56,57] and the continuous time random walk framework,
where the waiting time probability distribution function con-
sists of a combination of two exponentials with different
time scales [58]. It will be a topic of future research to study
the effect of a drift velocity on the pre-asymptotic behaviour
for different initial conditions, as well as what happens when
non-exponential (im)mobilization is considered in a mobile–
immobile model in connection with chemical reactions.
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Endnotes
1The slow directed motion only plays a role when very long times are
considered [17,51,52].
2Equations (3.2) and (3.3) can also be obtained by taking the limit
tim→∞ in (1.2) and solving the equations directly.
3An approximation for the whole range of t≪ tim can be obtained for
any fractions of initially mobile tracers fm by combining equations
(3.4) and (B 11) from the mobile and immobile initial conditions,
respectively. This yields equation (B 12) and is shown in figure 10.

Appendix A. General equations
Startingwith equation (1.2), we apply the Fourier–Laplace trans-
form fðk, sÞ ¼ Ð1�1

Ð1
0 e�stþikxf ðx, tÞdtdx to the rate to obtain

nmðk, sÞ ¼ fmþfimð1=ð1þstimÞÞ
fðsÞþk2D

and nimðk, sÞ ¼ tim
1þstim

fim þ t�1
m

fmþfimð1=ð1þstimÞÞ
fðsÞþk2D

� �
9=
; ðA 1Þ

as well as

ntotðk, sÞ ¼ nmðk, sÞ þ nimðk, sÞ

¼ f m þ fimð1=ð1þ stimÞÞ
s

fðsÞ
fðsÞ þ k2D

þ fim
tim

1þ stim
ðA 2Þ

with fðsÞ ¼ s½1þ timt
�1
m =ð1þ stimÞ�.

Appendix B. Asymptotics calculated in Laplace
space
We go from a short-time limit to a long-time limit.

10–1

–1.00 –0.75 –0.50 –0.25 0
x (mm)

0.25 0.50 0.75

1

displacement density of Fis after 280 ms

Laplace fit
Gauss fit

de
ns

ity
 (

1 
mm

–1
)

Figure 7. Displacement distribution of the Fis DNA-binding protein. The his-
togram depicts the data measured by Kamagata et al. [29]. The solid and
dashed lines depict fits with a Laplace and a Gaussian distribution, respect-
ively. The Laplace fit exp(− |x|/a)/2a yields a ¼ 0:27mm. The Gaussian fit
expð�x2=ð4DtÞÞ= ffiffiffiffiffiffiffiffiffi

4pDt
p

with t ¼ 0:28 s yields D ¼ 0:21mm2 s�1,
which is within the margin of error of the value ð0:19+ 0:02Þmm2 s�1

of the fast diffusion coefficient reported in [29]. The data were extracted
from the PDF file of [29].

10–1

10–2

10–3

10–4

10–5

–4 –2

analytic expression
Laplace inversion

0
x

2

10
–3 s

10 –2 s

10 –1 s

1 s

4

1

n im
 (

x,
 t)

Figure 8. Comparison of the Laplace inversion of nim(x, s) (expression (2.3))
and the analytic expression for nim(x, t) (equation (3.3)) that holds for
t≪ tim. Both overlap almost perfectly for t < tim = 7.7 s.
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B.1. Short-time limit
For t≪ tm, tim, we obtain stim≫ 1 and stim≫ 1. This yields
ϕ(s)∼ s in this limit. With (A 1) for fm = 1 and fim = 0, we
obtain the expression

nmðk, sÞ � ntotðk, sÞ � 1
sþ k2D

; ðB 1Þ

which produces the Gaussian (3.1). We now consider fim = 1
and fm = 0 and obtain the expression

ntotðk, sÞ � 1
stim

1
sþ k2D

þ 1
s
� 1
s2tim

� �
ðB 2Þ

from (A 2) in the limit stm≫ 1 and stim≫ 1. Fourier–Laplace
inversion yields the expression

ntotðx, tÞ � 1
tim

ðt
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDt0

p e�ðx2=4Dt0Þ dt0 þ ð1� t=timÞdðxÞ

for t � tm � tim: ðB 3Þ
Solving the integral in (B 3) gives the expression

ntotðx, tÞ � 2t=timffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e�ðx2=4DtÞ � jxjð1� erf jxj= ffiffiffiffiffiffiffiffi
4Dt

p� 	Þ
2Dtim

þ 1� t
tim

� �
dðxÞ, for t � tm � tim,

ðB 4Þ

where normalization is conserved. By combining expression
(B 4) for immobile initial conditions and (3.1) for mobile
initial conditions, we obtain the expression

ntotðx, tÞ � fm þ 2fimt
tim

� �
1ffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e�ðx2=4DtÞ

� fim
jxj 1� erf

jxjffiffiffiffiffiffiffiffi
4Dt

p
� �� �

2Dtim
þ fim 1� t

tim

� �
dðxÞ,

ðB 5Þ

for t≪ tm≪ tim for arbitrary fractions of initially mobile tracers.

B.2. Density at intermediate time scales
We now investigate the intermediate time tm≪ t≪ tim, corre-
sponding to stm≪ 1 and stim≫ 1. In this regime, we have

fðsÞ � t�1
m , yielding the expression

ntotðx, sÞ �
fm þ fim

1
stim

s
1ffiffiffiffiffiffiffiffiffiffiffiffi

4Dtm
p e�ðjxj= ffiffiffiffiffiffiffiDtm

p Þ

þ fim
1
s
� 1
s2tim

� �
dðxÞ ðB 6Þ

from (2.3) for the total concentration. The inverse Laplace
transform of (B 6) yields the expression

ntotðx, sÞ � fm þ fimt
tim

� �
1ffiffiffiffiffiffiffiffiffiffiffiffi

4Dtm
p e�ðjxj= ffiffiffiffiffiffiffiDtm

p Þ

þ fim
1� t
tim

� �
dðxÞ ðB 7Þ

for tm≪ t≪ tim.

B.3. Density in the long-time limit
We obtain the long-time limit t≫ tm, tim from ntot(k, s) (A 2)
using s≪ 1/tim, 1/tm and ϕ(s)∼ s(1 + tim/tim). This yields the
expression

ntotðx, tÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDefft

p e�ðx2=4DefftÞ, for t � tm, tim, ðB 8Þ

with Deff =D/(1 + tim/tm).

B.4. Density at short to intermediate time scales
Here, we analyse the regime t≪ tim. The case fm = 1 and fim =
0 is considered in §3. We consider the case fim = 1 and fm = 0
here. From n(x, s) (2.3), we obtain, with stim≫ 1 and ϕ(s)∼ s +
1/tm,

ntotðx, sÞ � stm þ 1
s2timtm

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dðsþ 1=tmÞ

p e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ1=tmÞ=D

p
jxj

þ 1
s
� 1
s2tim

� �
, for stim � 1:

ðB 9Þ

In the time domain in the limit t≪ tim, this corresponds to the
expression

ntotðx, tÞ �
ðt
0

tþ tm � t0

timtm
exp

�t0

tm

� � exp � x2

4Dt0

� �
ffiffiffiffiffiffiffiffiffi
4Dt0

p dt0 þ ð1� t=timÞdðxÞ

¼ e�ðx2=4DtÞffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e�t=tm t
tim

þ ð1� t=timÞdðxÞ

þ expð�jxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p Þffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p t=tim � jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tm

4Dt2im

r
þ tm=2tim

 !
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p � ffiffiffiffiffiffiffiffiffiffi

t=tm
p� �

2
ðB 10Þ

� expðjxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p Þffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p t=tim þ jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tm

4Dt2im

r
þ tm=2tim

 !
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p þ ffiffiffiffiffiffiffiffiffiffi

t=tm
p� �

2
: ðB 11Þ

Normalization is preserved, as can be seen by integrating (B 10)
over x. The first summand in (B 10) then resolves to t/tim. In the
limit t≪ tm, tim, we recover the short-time behaviour for ntot(x,
t) (B 4), as shown in figure 9. For tm≪ t≪ tim and

jxj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt2im=tm

q
, we recover the Laplacian intermediate

regime in (B 7) with fim = 1 and fm= 0. In figure 9, we showa ver-
ification of (B 11). For arbitrary fractions of initially mobile
tracers, we combine equation (B 11) for immobile initial
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conditions with equation (3.4) for mobile initial conditions,
as follows:

ntotðx, tÞ � e�ðx2=4DtÞffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e�t=tm fm þ fim
t
tim

� �
þ fimð1� t=timÞdðxÞ

þ fm þ fim t=tim � jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tm

4Dt2im

r
þ tm=2tim

 !" #

� expð�jxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p Þffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p � ffiffiffiffiffiffiffiffiffiffi

t=tm
p� �

2

� fm þ fim t=tim þ jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tm

4Dt2im

r
þ tm=2tim

 !" #

� expðjxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p Þffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p þ ffiffiffiffiffiffiffiffiffiffi

t=tm
p� �

2
:

ðB 12Þ

In figure 10, expression (B 12) is compared with the Laplace
inversion of the exact expression of ntot(x, s) (2.3).

–1 1
x (mm)

0

exact Laplace inversion
short- to intermediate-time approx intermediate-time approx

short-time approx

t = 5 × 10–3 s t = 5 × 10–2 s t = 5 × 10–1 s t = 1.5 s

–5 5
x (mm)

0 –10 10
x (mm)

0 –10 10
x (mm)

0

n to
t (

x,
 t)

10–1

1

10–2

10–3

10–4

10–5

Figure 9. All tracers initially immobile. Comparison of the exact Laplace inversion of (2.3), the short-time approximation (B 4), the intermediate-time approximation
(B 7) and the short- to intermediate-time approximation (B 11).

t = 5 × 10–3 s t = 5 × 10–2 s t = 5 × 10–1 s t = 1.5 s

–1 1
x (mm)

0 –5 5
x (mm)

0 –10 10
x (mm)

0 –10 10
x (mm)

0

n to
t (

x,
 t)

10–1

1

10–2

10–3

10–4

10–5

Figure 10. Total concentration ntot(x, t) for fim = 3/10 and fm = 7/10. Expression (B 12) is shown as the blue line and the Laplace inversion of ntot(x, s) (2.3) is
shown as the black line with markers. Both overlap over five decades in amplitude, for all times shown. The red marker with the grey edge at x = 0 denotes the
initially immobile tracers that have not yet moved. At short times, the distribution consists of the particles at x = 0 and a Gaussian. At t = 1 s, the distribution
follows a Laplace distribution (linear tails in the log-linear plot), on top of the particles at x = 0.
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Abstract
We analyse the transport of diffusive particles that switch between mobile and immobile states with
finite rates. We focus on the effect of advection on the density functions and mean squared
displacements (MSDs). At relevant intermediate time scales we find strong anomalous diffusion
with cubic scaling in time of the MSD for high Péclet numbers. The cubic scaling exists for short
and long mean residence times in the immobile state τim. For long τim the plateau in the MSD at
intermediate times, previously found in the absence of advection, also exists for high Péclet
numbers. Initially immobile tracers are subject to the newly observed regime of advection induced
subdiffusion for short immobilisations and high Péclet numbers. In the long-time limit the
effective advection velocity is reduced compared to advection in the mobile phase. In contrast, the
MSD is enhanced by advection. We explore physical mechanisms behind the emerging
non-Gaussian density functions and the features of the MSD.

1. Introduction

One of the simplest equations to describe the transport of tracers in subsurface aquifers (water-bearing layers
or permeable rock or sediment) is the advection–diffusion equation [1, 2]

∂

∂t
G(x, t) = D

∂2

∂x2
G(x, t)− v

∂

∂x
G(x, t), (1)

where G(x, t) denotes the probability density function of a tracer particle, v the constant advection velocity,
and D the diffusion constant. The initial condition is G(x,0) = δ(x), corresponding to a ‘point injection’ in
geoscience. The probability density function encoded by equation (1) with initial condition G(x,0) is given
by the Gaussian

G(x, t) =
1√
4πDt

exp

(
− (x− vt)2

4Dt

)
, (2)

with similarity variable x− vt, where the first moment ⟨x(t)⟩=
´∞
−∞ xG(x, t)dx= vt and the mean squared

displacement (MSD) ⟨[x(t)−⟨x(t)⟩]2⟩= 2Dt are linear at all times. The latter does not depend on v. The
alternatively used mobile–immobile model (MIM) is a more elaborate model that takes pores into account,
where a tracer can remain immobile for an exponentially random duration [3–5]. This linear first order mass
transfer is often used to model sorbing solutes, as well [6–8]. In an MIM the concentration is split into a
mobile density nm(x, t) and an immobile density nim(x, t). In the mobile state tracers are subject to advection
and diffusion in the same way as in the advection–diffusion equation (1). MIMs have been used extensively
in geophysical systems [3, 4, 8–18]. Apart from geophysical applications, we mention two other applications,
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where motion interrupted by transient immobilisations has been studied. The first application pose
biological systems, such as potassium channels in the membrane of living cells [19] and transcription factors
[20]. Many systems such as tau proteins [21, 22], synaptic vesicles [23], complexes at the endoplasmic
reticulum [24], the drug molecule doxorubicin in silica nanoslits [25] and DNA binding proteins [26–35]
may be described in terms of an MIM, in which the residence times in the immobile state are distributed
exponentially5. The corresponding experiments were conducted in flow cells [26, 32–35] or occur in live
biological cells [27–30]. In such cellular systems advection may arise due to the action of molecular motors
causing streaming in the cytoplasm [36]. Further examples of systems with advection, where in addition
immobilisations occur, include DNA molecules in microfluidic setups and bio sensors [37, 38]. The second
application, featuring transient immobilisations concerns charge carriers in semiconductors, where a recent
focus lies on exciton diffusion in layered perovskites and transition metal dichalcogenides [39–42]. Often,
MIMs are not formulated in terms of mean residence times but with a single rate for mass exchange and a
solute capacity coefficient that takes different volumes of the mobile and immobile volume into account [3,
7, 11, 12, 43]. The moments for mobile, immobile and total density of the MIM have been calculated for
various initial conditions while including effects of advection and diffusion [6, 7, 13]. We here focus on the
densities and MSDs at relevant intermediate time scales and unveil interesting new properties in the
transport dynamics. In the short time limit initially mobile tracers behave like free Brownian tracers (2) with
an MSD∼ 2Dt. At long times the MSD is linear, with the effective diffusivity Deff containing a term
proportional to v2, that can yield Deff > D [7, 13]. This is in contrast to the solution (2) of the
advection-dispersion equation (1), in which the MSD does not depend on v. Below we provide a physical
explanation for how this enhanced effective diffusion coefficient is brought about. Another model often used
to describe the motion of tracers with immobile periods is the continuous time random walk (CTRW) [39,
44, 45], for which it was shown that exponential tails emerge in the position density [46] when a drift is
present [13, 18, 47–50]. CTRWs have also been analysed for systems with two states, characterised by two
waiting time distributions, such that a specific distribution is chosen alternatingly or randomly [51, 52]. A
similar approach to modelling motion interrupted by transient immobilisations was studied in [53]. In the
present work we consider a MIM in the formulation with mean mobile residence time τm and mean
immobile residence time τim similar to our previous work [54] in the absence of a drift. In [54], the mean
immobile residence time τim and mean mobile residence time τm are well separated, τim ≫ τm,
corresponding to the one-dimensional motion of tau proteins without advection. At intermediate times
τm ≪ t≪ τim a Laplace distribution of positions const× exp(−const|x|)/2 with fixed variance was shown to
emerge whose prefactor depends on the initial condition, and the MSD of initially mobile tracers displayed a
plateau at intermediate times. The main goal of the present work is to analyse how the Laplace distribution
and the plateau in the MSD change when advection is added. The transition from the Brownian MSD 2Dt at
short times to 2Defft implies a crossover regime, in which the MSD grows faster than linear given our finding
Deff > D. In fact, we find a sustained superdiffusive regime with a cubic anomalous diffusion exponent in the
MSD at relevant intermediate time scales. For low advection velocities we recover the model from [54].
Therefore, to highlight new features, we focus on high Péclet numbers Pe= v2τm/(2D)≫ 1. An application
of the MIM with a high Péclet number may occur for sufficiently long times in subsurface aquifers, in the
hyporheic zone or in microfluidic setups. A specific example is the motion of biomolecules in bio sensors, as
schematically depicted in figure 1. The biomolecules are inserted into a flow cell and bind to the surface
reversibly [38]. The surface is coated with receptors that specifically bind to the molecule of interest. Only the
bound molecules can be detected using e.g. surface plasmon resonance [38]. In our model we assume the
detector to be completely covered with receptors and consider concentrations well below saturation.

In the next section we introduce the model equations and show two ways to solve the model. The direct
way using Fourier–Laplace transform yields the densities in Laplace space and exact expressions for the MSD.
Additionally, we show how to solve the advection-MIM using a subordination approach, that produces a
physical explanation for the additional term in Deff due to the variance of times the tracers spend in the
mobile state. As mentioned in the following, we consider strong advection and obtain asymptotic expressions
for the density and the MSD in the presence of a clear time scale separation, i.e. τm ≪ τim or τim ≪ τm. For
clarity we focus on the detailed behaviour of the MSD of the total density, while the results for the immobile
and mobile fractions are summarised in the appendix. The dimensionless form of the model depends on the
ratio τim/τm and the Péclet number only. We use these variables in a phase diagram to analyse the anomalous
diffusion in the full parameter space including small Péclet numbers. Specifically, in section 2, we formulate
and solve our model. In section 3 we consider tracers that are initially mobile and obtain asymptotic

5 Weuse the term ‘residence times’ in themobile or immobile state to avoid confusionwith the waiting times in a continuous time random
walk.
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Figure 1. Schematic of a biosensor with flow. A tracer is inserted into the flow cell, where it is subject to advection with velocity v
and Brownian diffusion with diffusivity D in the mobile state. With the rate 1/τm it binds to receptors on the surface and
immobilises. It unbinds with rate 1/τim and continues in the mobile state.

expressions of the density functions and MSDs. Special focus is put on finding the parameter regimes where
non-Gaussian displacement distributions and anomalous scaling of the MSD emerge. In section 4 we repeat
the same analysis for initially immobile tracers. Finally, we summarise and conclude in section 5. The
appendix provides details on the calculations and additional figures of the MSDs.

2. Formulation of the model

We employ the MIM with mean mobile residence time τm and mean immobile residence time τim in an
(effectively) one-dimensional setting with position variable x,

∂

∂t
nm(x, t) =− 1

τm
nm(x, t)+

1

τim
nim(x, t)− v

∂

∂x
nm(x, t)+D

∂2

∂x2
nm(x, t)

∂

∂t
nim(x, t) =− 1

τim
nim(x, t)+

1

τm
nm(x, t), (3)

where nm(x, t) and nim(x, t) denote the line densities of mobile and immobile tracers, respectively. Advection
with velocity v and dispersion with diffusion constant D is exclusively affecting the mobile density. A single
tracer switches between the mobile state and immobile state following a two state continuous time Markov
process, i.e. it follows a Poissonian switching. The realisation (3) of the MIM corresponds to the model used
in [54] with the residence time distribution in the mobile state γ(τ) = exp(−τ/τim)/τim. We add a drift in
the mobile state here and will show that this has significant consequences. Splitting the total density
ntot(x, t) = nm(x, t)+ nim(x, t) has the advantage that not always ntot(x, t) is measured in experiments. In a
biophysics sensor as sketched in [38], solely the immobile tracers can be measured. In contrast, it is often the
mobile density that is measured in geological experiments [12, 18]. In both cases it is thus essential to model
the two densities separately. Step or delta injection into the mobile domain is common in geological
experiments [10, 12, 55–57]. Our model (3) is very similar to the MIMs used in geoscience, with the
difference that there usually the capacity coefficients and porosity, among others, are used instead of the
mean residence times [6, 7, 13]. We consider the initial condition nm(x,0) = f 0mδ(x) and nim(x,0) = f 0imδ(x)
where δ(x) denotes the Dirac-δ distribution. The factors f 0m and f 0im denote the fractions of initially mobile
and immobile tracers with f 0m + f 0im = 1, which effects the normalisation of the total density,
´∞
−∞ ntot(x, t)dx= 1. This corresponds to a single-particle picture with no interactions between the tracers,
as is the case in model (3). In this work we consider the cases when all tracers are either initially mobile
(f 0m = 1) or when all tracers are immobile (f 0im = 1). We briefly discuss an equilibrium fraction of initially
mobile tracers in appendix K. Other mixed initial conditions are comparatively uninteresting and do not
correspond to the experimental initial conditions we have in mind. The structure of this section is as follows.
In section 2.1 solutions are derived using Fourier–Laplace transforms. The solution using a subordination
approach is shown in section 2.2. In section 2.3 it is demonstrated that the dimensionless formulation of the
model (3) model depends on two parameters only. Finally, we discuss the short- and long-time behaviour in
sections 2.4 and 2.5.

2.1. Solution in Laplace space
Fourier–Laplace transform f(k, s)≡

´∞
−∞
´∞
0 f(x, t)exp(−st+ ikx)dtdx of the model equations (3) allows

solving for the densities, as shown in appendix A. Subsequent Fourier inversion of equations (A.2) and (A.3)
produces the expressions
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nm(x, s) =

(
f 0m + f 0im

1

1+ sτim

)
exp

(
vx
2D

)
√
v2 + 4ϕ(s)D

exp

(
−
√
v2 + 4ϕ(s)D

|x|
2D

)
(4)

nim(x, s) =
τim/τm
1+ sτim

(
f 0m + f 0im

1

1+ sτim

)
exp

(
vx
2D

)
√
v2 + 4ϕ(s)D

exp

(
−
√
v2 + 4ϕ(s)D

|x|
2D

)

+ f 0im
τim

1+ sτim
δ(x) (5)

as well as (see equation (A.4))

ntot(x, s) =
f m + f 0im

1
1+sτim

s

ϕ(s)exp
(
vx
2D

)
√
v2 + 4ϕ(s)D

exp

(
−
√
v2 + 4ϕ(s)D

|x|
2D

)

+ f 0im
τim

1+ sτim
(6)

with ϕ(s) = s[1+ τimτ
−1
m /(1+ sτim)]. The fraction fm(t) =

´∞
−∞ nm(x, t)dx of free and the fraction

fim(t) =
´∞
−∞ nim(x, t)dx of immobile tracers are a function of time and the expressions are given in

equation (A.8) in appendix A. From these relations we immediately deduce that the total density is
normalised, fm(t)+ fim(t) = 1. In the long-time limit, the equilibrium fraction f eqm = τm/(τm + τim) of all
tracers are mobile. We calculate the pth moment (p ∈ N) using

⟨xp(t)⟩j =
1

fj(t)

ˆ ∞

−∞
xpnj(x, t)dx, (7)

where j stands for m, im, or tot [54]. To shorten the notation, we use ⟨x2(t)⟩= ⟨x2(t)⟩tot in the remainder of
this work. The lengthy exact expressions for the MSD are given in appendix B. We will study their detailed
behaviour below and in sections 3 and 4 for specific initial conditions. The first moment ⟨x(t)⟩ is related to
the second moment ⟨x2(t)⟩0 in the advection-free setting with the second Einstein relation [58]

⟨x(t)⟩= v

2D
⟨x2(t)⟩0. (8)

This relation becomes obvious when we look at the moments in appendix B. Since ⟨x2(t)⟩0 was discussed in
[54] in detail, we focus on the MSD here.

2.2. Subordination approach
The concept of subordination was originally introduced by Bochner [59] and refers to a process X[τ(t)] with
the operational time τ (in many random walk contexts the number of jumps [44]), which has random
non-negative increments. For the operational time τ the propagator is known, in our case the Gaussian
G(x, τ) (2). Then, the subordinator relates the stochastic increases of τ to the process (laboratory) time t
measured in the real-world observation. In our model the stochasticity comes from the immobilisations,
where t increases even while τ is stalling. Assume that we know of a single tracer when it is mobile and when
it is immobile. Let i(t) be the index function that is unity if the tracer is mobile at time t and zero otherwise,
as shown in figure 2. The index function follows a two-state continuous-time Markov process (telegraph
process) with mean residence time τm in state 1 and mean residence time τim in state 0. As described in
[60–62] (compare also [63]), this allows us to write a Langevin equation of the form

d

dτ
x(τ) = v+

√
2Dξ(τ) (9)

d

dt
τ(t) = i(t), (10)

with the operational time τ , that is a random quantity, and zero-mean white Gaussian noise with correlation
⟨ξ(τ)ξ(τ +∆τ)⟩= δ(∆τ). Figure 2 shows two samples of τ(t) for τm = 1 and τim = 2 in the upper panel.
The lower panel shows the corresponding trajectory x(t) for D= 1/2 and v= 2. The propagator with this
new variable τ is given by G(x, τ) (2). In appendix D we show how to obtain the subordinator P(τ, t) and its
moments using Laplace transforms. In figure 3 we show the numerical Laplace inversion of P(τ, s) (D.12) for
three values of t and the parameters τm = 1 and τim = 1/2. In order to verify our approach, we compare the
Laplace inversion to the solution P(τ, t) obtained in [23], that is presented in appendix D. We find good
agreement between the two approaches, as shown in figure 3. In the long-time limit P(τ, t) converges to a
Gaussian with mean µ= tτm/(τm + τim) and variance σ2 = 2τ 2mτ

2
im/(τm + τim)

3t, as shown by the dashed

4
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Figure 2. Upper panel: two realisations of τ(t) for τm = 1 and τim = 2. The process time τ increases with t, whenever the tracer is
mobile and the index function i(t) is unity. The realisation corresponding to the shown indicator trace i(t) is rendered in the same
colour. For clarity, the blue line corresponding to i(t) is shifted in the y direction by−3/2. Lower panel: corresponding
trajectories x(t) for D= 1/2 and v= 2, which take on constant values whenever i(t) = 0.

Figure 3. Comparison of P(τ, t), equation (D.1) (coloured discs) with the Laplace inversion of P(τ, s) (D.12) (solid lines) and a
Gaussian with mean µ= τm/(τm + τim)t and variance σ2 = 2τ 2

mτ
2
im/(τm + τim)3t (dashed line). The crosses mark the

amplitudes of the delta peaks at x= vt and the origin for initially mobile and immobile tracers, respectively. Parameters: τm = 1
and τim = 1/2.

line following a Gaussian with that mean and variance (see the moments above). With P(τ, t) we can
eliminate τ(t) and find using the well established method of subordination [60–65]

ntot(x, t) =

ˆ ∞

0
P(τ, t)G(x, τ)dτ, (11)

where G(x, t) denotes the propagator (18) in the mobile phase. Expression (11) can be written in the form (6)
of ntot(x, s) by inserting the subordinator P(τ, s) in Laplace space. In appendix D we show how to obtain
nm(x, t) and nim(x, t) in a similar way.

2.3. Dimensionless form
Our model (3) has the four parameters τm, τim,v and D. We now show that in a dimensionless form the
model depends only on two free parameters, which significantly reduces the space of parameters we need to
consider in order to obtain a full picture of the model. Moreover, this highlights the conceptual simplicity of
the model. To this end, we define the new dimensionless variables t ′ = t/τm and x ′ = x/

√
Dτm. In these

variables the model (3) turns into the set of equations

∂

∂t ′
nm(x

′, t ′) =−nm(x
′, t ′)+

τm
τim

nim(x
′, t ′)

−
√
2Pe

∂

∂x ′
nm(x

′, t ′)+
∂2

∂x ′2
nm(x

′, t ′) (12)
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∂

∂t ′
nim(x

′, t ′) =− τm
τim

nim(x
′, t ′)+ nm(x

′, t ′), (13)

which only depends on the immobilisation ratio τim/τm and the Péclet number Pe= v2τm/(2D). The typical
length scale for the latter is given by vτm. The factor 1/2 in the Péclet number is introduced for convenience.
To see this, we note that from the Péclet number we obtain the advection time scale τv = 2D/v2, which
naturally arises from the solution to the advection-diffusion equation (2) as follows. The typical distance
travelled due to advection and dispersion is given by∆xv = vt and∆xD =

√
2Dt, respectively. Comparing

these distances gives the time scale τv = 2D/v2 = τm/Pe, after which displacements due to advection
dominate over diffusive displacements.

2.4. Short-time behaviour
In the mobile phase tracers are being propagated with the Gaussian (2). As described above the
displacements are diffusion dominated for t≪ τv. This means that the tracers follow the same density as in
the case without advection, which is described in detail in [54]. To emphasise the effects of advection we
therefore choose τv ≪ τm, τim. This defines the short-time limit t≪ τv.

2.5. Long-time asymptote
The densities of the total, mobile and immobile density are, up to a factor, the same in the long-time limit
t≫ τm, τim [5]. In absence of advection, the effective long-time diffusivity is given by Deff = Dτm/(τm + τim)

for t≫ τm, τim [54]. Tracers disperse slower compared to the model of simple diffusion advection without
immobilisation (1) with diffusivity D. We now obtain Deff by analysing the asymptotic behaviour t≫ τm, τim
of the expressions for the MSD. The exact expressions for the first and second moments are stated in
appendix B. These results provide the long-time asymptote of the MSD for all initial conditions, namely,

⟨[x(t)−⟨x(t)⟩]2⟩ ∼ 2

(
D

τm
τm + τim

+
v2τ 2mτ

2
im

(τm + τim)3

)
t, for t≫ τm, τim, (14)

where∼ denotes asymptotic equivalence with an additional spread∝ v2t compared to the case without
advection. Remarkably, the asymptotic dispersion with the new effective diffusion coefficient

Deff = D
τm

τm + τim
+ v2

τ 2mτ
2
im

(τm + τim)3
(15)

can hence even be higher than the diffusivity D in the mobile state and overcompensate the slow-down of the
spread due to immobile durations. In appendix H we explore the parameter regime that yields Deff > D. As
shown in figure H1, the increase of Deff is highest, when τm and τim are of the same order. A physical
intuition for the additional spread due to advection arises from the special case D= 0, for which x= vτ with
the mobile duration τ . Due to the stochastic switching between the mobile and immobile state, an ensemble
of tracers will have a distribution of mobile durations τ (the density P(τ, t) in section 2.2), and hence the
positions will have a finite spread. This additional spread was derived before [6, 13], albeit without a more
detailed physical justification. The anomalous transport regime at intermediate times that necessarily has to
exist to effect the crossover between the two normal-diffusive regimes, and the important physical
consequences will not be explained6. We explore the physical mechanism behind the additional dispersion
due to advection in the long-time asymptote (14) of the MSD. We start by discretising the

advection-diffusion process into discrete steps∆xi that are normally distributed∆xi
d
=N (v∆t,2D∆t),

where each step takes a small duration∆t≪ t, τm, τim. After n steps the tracer position is given by∑n
i=1∆xi = x. In the long-time limit the number of steps n follows a Gaussian n

d
=N (µ/∆t,σ2/(∆t)2), as

described in section 2.2 7. The number of steps n is independent of the steps∆xi. With the expectation value
E and the variance var we obtain the expression [66]

var(x) = E(n)var(∆xi)+ (E(∆xi))
2var(n)∼2

(
D

τm
τm + τim

+
v2τ 2mτ

2
im

(τm + τim)3

)
t, (16)

6 Later we will demonstrate that the transient anomalous diffusion regime can assume substantial time spans with an approximately
constant anomalous diffusion exponent.
7 TheGaussian distribution n

d
=N (µ/∆t,σ2/(∆t)2), that only applies in the long-time limit, in principle allows for negative numbers of

steps. However, they asymptotically vanish, because the width of the distribution vanishes compared to the mean. We quantify this using

the coefficient of variation of step numbers
√

var(n)/E(n)∼ τim(τim + τm)−1/2t−1/2 → 0 for t≫ τm, τim. Note that here
d
= means

equivalence in distribution.
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for t≫ τm, τim. Equation (16) demonstrates that in the case of diffusion without advection only the mean
mobile duration affects the MSD. In contrast, advection couples to the mean in the first moment and to the
variance of the duration that the tracers spend in the mobile state in the MSD (14).

All time scales in the model are finite, and therefore the density converges to the Gaussian

ntot(x, t)∼
1√

4πDefft
exp

(
− (x− vefft)2

4Defft

)
for t≫ τm, τim (17)

in the long-time limit with the effective diffusion coefficient Deff (equation (15)) and the effective advection
velocity veff = vτm/(τm + τim) (see appendix B.1). In the next two sections we analyse the densities and
MSDs for the specific choice of initially mobile and immobile tracers, respectively.

3. Initially mobile tracers

In this section we assume all tracers to be initially mobile. This situation corresponds to many experimental
realisations, when tracers are introduced into the system, such that they have not had a chance to immobilise.
We consider the following four aspects. In section 3.1 we assume τv ≪ τm ≪ τim, which corresponds to a
high Péclet number and long immobilisations to emphasise the effect of advection compared to [54]. In
section 3.2 we consider the density for short immobilisations and high Péclet numbers, τv ≪ τim ≪ τm. The
third section 3.3 is concerned with the MSD for which we obtain expressions for superdiffusion at
intermediate time scales arising due to advection. In the final subsection appendix I.1 we analyse for which
parameters the uncovered superdiffusive regime exists and how it is competing with the plateau regime in the
MSD found in [54] for long immobilisations in the advection-free regime.

3.1. Densities for long immobilisations
Initially mobile tracers that have not yet immobilised follow a Gaussian distribution corresponding to free
Brownian motion without advection for t≪ τm. At short times t≪ τv advection is negligible in the Gaussian
propagator and the density is the same Gaussian with mean vt≪

√
2Dt close to zero and variance 2Dt. At

intermediate times τv ≪ t≪ τm advection becomes relevant, and the mobile density takes on the
Gaussian form

nm(x, t)∼
(
1− t

τm

) exp
(
− (x−vt)2

4Dt

)

√
4πDt

(18)

with
´∞
−∞ nm(x, t)dx∼ 1− t/τm corresponding to a scaled solution of the simple diffusion advection

equation (1)8. The Gaussian (18) is shown as a dashed red line in the first two panels of figure 4, in which a
stacked position histogram from simulations is shown in which the colours denote the number of
immobilisation events Nim. The solid lines are obtained from Laplace inversion of nm(x, s), nim(x, s), and
ntot(x, s) from equations (5) and (6). We use the parameters τm = 1, τim = 100, D= 1/2 and v= 100. These
parameters are specifically chosen to be able to resolve the multiple time regimes. In the short to intermediate
time regime t≪ τm, τim, where t can be shorter or longer than τ v, the immobile density consists of tracers
that immobilised at most once. In equation (F.2) in appendix F we arrive at the asymptotic expression

nim(x, t)∼
[
1+ erf

(
vt− |x|√

4Dt

)
+ exp

(
v|x|
D

)(
erf

(
vt+ |x|√

4Dt

)
− 1

)]

×
exp

(
vx−v|x|

2D

)

2vτm
(19)

for t≪ τm, τim. The mass corresponding to (19) is
´∞
−∞ nim(x, t)dx∼ t/τm, corresponding to 10−3 in the left

panel of figure 4. This value is very small and hence the immobile density is not visible in the first panel.
The immobile density in figure 4 appears to be uniform at t= 0.1. Indeed, for τv ≪ t the short-time

density (19) approaches a uniform distribution. Using the properties of the error function we arrive at the
asymptotic uniform distribution

nim(x, t)∼
{ 1

τmv
for 0< x< vt

0 otherwise
, (20)

8 Equation (18) can be obtained by solving equation (3) for τim →∞.
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Figure 4. Semi-log stacked position histogram with overlaid Laplace inversions of the mobile and total densities (4) and (6) for
initially mobile tracers and long immobilisations τm ≪ τim. The bars of the histogram are coloured according to the number of
immobilisation events Nim. The density of initially mobile tracers has four time regimes for τv ≪ τm ≪ τim. For short to
intermediate time scales τv ≪ τm, where t can be smaller or larger than τ v the mobile density follows the Gaussian (2) with
variance 2Dt and mean vt, and the number of immobilisations Nim is zero, as shown by the black area. The blue dashed line
shows the asymptote of the immobile density (19) for t≪ τm, where t can be smaller or larger than τ v . In that domain the density
consists of the same Gaussian and an additional uniform distribution of immobilised tracers shown by the red area in the second
panel. For τm ≪ t≪ τim almost all tracers immobilised exactly once and follow a Laplace distribution (23) with different scale
parameters for the positive and negative x direction. In the long-time limit t≫ τim, after many immobilisations the density
follows the Gaussian (17) with mean vefft and effective diffusion constant Deff. See text for details. Parameters: τm = 1 τim = 100
D= 1/2 v= 100.

valid for τv ≪ t≪ τm, τim. This shape can indeed be seen in the second panel of figure 4, for which the
immobile density remains almost constant for 0< x< 10. The approximation (19) is shown as the blue
dashed line. In the same panel the Gaussian (18) is shown as the dashed red line. The total density is given by

ntot(x, t)∼
(
1− t

τm

) exp
(
− (x−vt)2

4Dt

)

√
4πDt

+

{ 1
τmv

for 0< x< vt
0 otherwise

(21)

for τv ≪ t≪ τm, τim with
´∞
−∞ ntot(x, t)dx= 1. The appearance of this regime is new, as compared to the case

without advection [54]. A physical picture for the occurrence of the uniform density of immobile tracers is as
follows. For τv ≪ t≪ τm advective transport dominates over diffusion. Indeed, the typical distance a tracer
moved due to advection is given by the mean position vt, while the typical distance travelled due to diffusion
is given by the standard deviation

√
2Dt. The mobile tracers hence move with a narrow Gaussian distribution

while a fraction of tracers immobilises with the constant rate 1/τm, which generates the uniform part of the
distribution (see figure 4 for t= 0.1).

Now we go to immobilisation dominated intermediate times τm ≪ t≪ τim. This regime is easy to analyse
when starting from the density in Laplace space. We have ϕ(s)∼ 1/τm for sτm ≪ 1≪ sτim and find the
expression

ntot(x, s)∼
1

s

exp
(
vx
2D

)
√
v2τ 2m + 4Dτm

exp

(
−
√
v2 + 4D/τm

|x|
2D

)
(22)

from ntot(x, s) (6), which in time-domain corresponds to

ntot(x, t)∼
exp

(
vx
2D

)
√
v2τ 2m + 4Dτm

exp

(
−
√
v2τ 2m + 4Dτm

|x|
2Dτm

)
, (23)

for τm ≪ t≪ τim. Expression (23) is a normalised distribution with time-independent parameters, that falls
off exponentially in the positive and negative x direction with different coefficients. It is shown in the third
panel in figure 4 for t= 10 as the grey dashed line. The density falls of quicker in the direction opposite to the
advection velocity, as expected. Noteworthily, the Laplace distribution occurs for all values of the Péclet
number, i.e. v can take on any value in the asymptote (23).
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For long times t≫ τim, we show the Gaussian (17) in figure 4 as a red dashed line for t= 104. The
Gaussian (17) contains the effective advection veff = vτm/(τm + τim) and the effective diffusivity (15), that we
obtained in section 2.5.

3.2. Densities for short immobilisations
Now we turn to the case of short mean immobile residence times, τim ≪ τm. For short times t≪ τv and
intermediate times τv ≪ t≪ τim ≪ τm the mobile density follows the same Gaussian (18) as for long
immobilisations. This can be seen in figure 5 in the first panel for t= 0.1. From simulations, we obtain
position histograms that we colour-code according to the number of immobilisations. Most tracers have not
immobilised at this time, as shown by the dominant black area that follows the Gaussian (18). The tracers
that did immobilise follow the same asymptote (19) of nim(x, t) as for long immobilisations, as depicted by
the dashed blue line. Beyond τim immobile tracers become mobile again and contribute to the mobile
density. This can be seen in figure 5 in the second panel for t= 1 by the red area in the mobile density
denoting tracers with a single immobilisation event. In figure 5, the total density appears to have an
exponential tail in the opposite direction of the advection velocity for t= 10 and t= 20 in the third and
fourth panel, respectively. We now investigate the origin of this phenomenon. For t≪ τm, the fraction t/τm
of mobile tracers is trapped for a short period τ drawn from γ(τ) = exp(−τ/τim)/τim. This is shown as the
red area in figure 5 denoting a single immobilisation. Hence, these tracers were mobile for a total period of
t− τ . We convolute this with the propagator for advection diffusion. Together with tracers that have not
immobilised this gives the total density for τm ≪ t≪ τim,

ntot(x, t)∼
(
1− t

τm

) exp
(
− (x−vt ′)2

4Dt ′

)

τm
√
4πDt ′

+
t

τm

ˆ t

0

exp
(
− (x−vt ′)2

4Dt ′

)

τim
√
4πDt ′

e−(t−t ′)/τimdt ′. (24)

The integral on the right-hand side can be solved and is given by

ˆ t

0

exp
(
− (x−vt ′)2

4Dt ′

)

τim
√
4πDt ′e−(t−t ′)/τimdt ′ ∼

exp
(
− t

τim

)

2vτim

[
exp

(
x

vτim

)
erfc

(
x− tv

2
√
Dt

)

−exp
(vx
D

)
erfc

(
x+ vt

2
√
Dt

)]
, (25)

for v2τim ≫ D with the complimentary error function erfc(x) = 1− erf(x). In appendix G we develop the full
expression of the integral (25), that is also valid for v2τim ∼ D, i.e. intermediate Péclet numbers.
Approximation (24) is shown in figure 5 as the dashed dark-yellow line and follows the density for x> 70 at
t= 10 and matches almost the entire density at t= 20. For x≪ vt and v2τim ≫ D expression (24)
simplifies to

ntot(x, t)∼
t

τm

exp
(
− t

τim
+ x

vτim

)

vτim
, for τim ≪ t≪ τmand 0< x≪ vt. (26)

This tail approximation is only valid close the origin. For this reason it is not normalised. It is shown in
figure 5 as the solid grey line. The tail overlaps with expression (24) shown as the dashed dark-yellow line.
The second exponent in expression (26) reveals that the slope of the tail does not depend on time. The slope
decreases for larger values of τim. As described in detail in section 2.5 the long-time asymptote t≫ τm of the
density follows a Gaussian with an effective advection speed and an effective diffusivity.

3.3. Mean squared displacement
In this section we analyse the MSD of the total density. In appendices E.1.1 and E.1.2 we analyse the MSD of
the immobile and mobile density, respectively. We now investigate how advection changes the MSD as
compared to the results presented in [54]. Table C1 shows a series of the total, mobile and immobile MSDs
for initially mobile and initially immobile tracers for t≪ τm, τim. In all cases, the leading order term does not
depend on v. Therefore, for short times the MSDs are equivalent to the MSD without advection.

In figure 6(a) the MSD for initially mobile tracers is shown for long immobilisations, τm ≪ τim, where
the solid black line corresponds to the total density’s MSD. In panel (b) we show the MSDs for short
immobilisations, τim ≪ τm. For comparison, we show the MSD for the case without advection in grey. It can
be seen that the corresponding MSDs with and without advection overlap for t≪ τv. After a linear
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Figure 5. Semi-log stacked position histogram with overlaid Laplace inversions of the densities for initially mobile tracers and
short immobilisations τim ≪ τm. Particle densities from Laplace inversions of equations (4) to (6) are shown as solid lines with
τm ≫ τim. The grey striped area denotes the immobile particles and the colour code denotes the number of immobilisations Nim.
The short to intermediate time asymptote (19) for t≪ τim, where t can be shorter or longer than τ v , is shown as the blue dashed
line. The asymptote (24) for intermediate times τim ≪ t≪ τm is shown as the orange dotted line and its exponential
asymptote (26) as the solid grey line. Parameters: v= 12.5, D= 1/2, τim = 1 and τm = 100.

Figure 6.Mean squared displacements of initially mobile tracers. In (a) and (b) we choose τm ≪ τim and τm ≫ τim, respectively.
The solid lines denote the MSD of the total density, while the dashed and dotted lines denote the MSDs of the mobile and
immobile density, respectively. For comparison, the same is shown in grey for the case without advection. We use the exact
expressions of the moments given in appendix B. We do not provide expressions for the MSD, but only for the (non-)normalised
first and second moments. As a guide to the eye we show the power-laws≃ t2 and≃ t3 as grey lines. In panel (a) we use the same
parameters as in figure 4. In panel (b) we use v= 200, D= 1/2, τim = 10 and τm = 2× 104.

short-time behaviour for t≪ τ⋆ the MSD crosses over to a cubic scaling for τ⋆ ≪ t≪ τm, τim. Our goal is to
quantify the cubic scaling and determine the value of τ⋆. From a series expansion of the exact expression for
the MSD (exact expressions for the moments are given in appendix B), we obtain the asymptotic MSD

⟨[x(t)−⟨x(t)⟩]2⟩ ∼ 2Dt+
v2

3τm
t3, for t≪ τm, τim . (27)

In figure E2 we compare equation (27) to the full expression of the MSD and find very nice agreement. A
cubic scaling of the MSD (27) emerges at intermediate times when the cubic term dominates over the linear
term in equation (27). This corresponds to the relation τ⋆ ≪ t≪ τm with τ⋆ =

√
3τvτm. Indeed, the cubic
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scaling of the total MSD is shown in figure 6(a) in the domain τ⋆ ≪ t≪ τm. Notably, it occurs also for
τim ≪ τm, as shown in figure 6(b). This cubic scaling is new compared to the case without advection. It lies
within the domain where we found an advection dominated regime τv ≪ t≪ τm in the previous section, in
which the density (21) consists of a uniform and a Gaussian distribution with time-dependent weights. In
figure E1 we show the MSD and choose such parameters that emphasise that the intermediate cubic scaling
can be more than a bare crossover but corresponds to a distinct anomalous regime. We now show that the
anomalous diffusion arises from this distribution. First we consider the uniform distribution ranging from

zero to vt. It has the first moment ⟨x(t)⟩im = vt
2 and the second moment ⟨x(t)2⟩= v2t2

3 with the MSD

⟨(x(t)−⟨x(t)⟩)2⟩im = v2t2

12 . This is the dominating term of the immobile density’s MSD for τv ≪ t≪ τm, τim,
as shown in figures 6(a) and (b), where the quadratic scaling can be observed. Second we recall the first and
second moments of the mobile Gaussian distribution ⟨x(t)⟩m = vt and ⟨x(t)2⟩= v2t2 + 2Dt. Now we
consider the MSD of the total density by combining the moments with the normalisations t/τm and 1− t/τm
for the uniform and Gaussian distribution, respectively. This leads to the same asymptotic MSD (27), as
obtained by the series expansion, as the following calculation shows:

⟨x(t)⟩= ⟨x(t)⟩im
t

τm
+ ⟨x(t)⟩m

(
1− t

τm

)
= vt− vt2

2τm

⟨x(t)2⟩= ⟨x(t)2⟩im
t

τm
+ ⟨x(t)2⟩m

(
1− t

τm

)
=−2

3

v2t3

τm
+ v2t2 − 2D

t2

τm
+ 2Dt

⟨[x(t)−⟨x(t)⟩]2⟩= 2Dt− 2D
t2

τm
+

v2t3

3τm
− v2t4

4τ 2m

∼ 2Dt+
v2

3τm
t3, for t≪ τm ≪ τim. (28)

The asymptotic expression is identical to what we found from the exact expressions (27). This shows indeed
that the uniform distribution and the Gaussian distribution can indeed explain the cubic scaling. The cubic
scaling of the MSD emerges for τ⋆ ≪ t≪ τm, τim. This means that for long immobilisations τm ≪ τim the
advection needs to be sufficiently large such that τv = 2D/v2 ≪ τm, as shown in figure 6(a). The cubic scaling
emerges for short immobilisations τim ≪ τm, as well. In that case the Péclet number needs to satisfy
Pe≫ 3τ 2m/τ

2
im. In appendix I we discuss the parameter regimes for which cubic scaling emerges in detail.

Now we choose long immobilisations, τim ≫ τm, and consider the intermediate immobilisation
dominated regime τm ≪ t≪ τim. In the absence of advection we found a plateau of the total MSD shown as
the grey solid line in figure 6(a). Compared to [54] we here choose a high Péclet number, v2τm/2D≫ 1, and
keep the time scale separation τm ≪ τim here. The plateau still exists at τm ≪ t≪ τim, although at a higher
value as shown by the black solid line in figure 6(a). The existence of the plateau comes as no surprise,
because the physical mechanism of the plateau remains unchanged. All tracers are initially mobile and have
immobilised for τm ≪ t≪ τim, as shown in figure 4 for t= 10. When all tracers are immobile the density
does not change and hence the MSD remains constant. Analytically, this can be seen most easily from the
expressions of the moments in Laplace space

⟨x(s)⟩= v

sϕ(s)
(29)

⟨x2(s)⟩= 2v2

sϕ2(s)
+

2D

sϕ(s)
, (30)

that we obtain from expression (A.5). For τm ≪ t≪ τim, we have ϕ(s)∼ 1/τm, which is a constant. Since the
Laplace inverse L −1[1/s] = 1 we obtain a constant MSD in this time-domain τm ≪ t≪ τim, where we
observe the asymmetric Laplace distribution (23). We emphasise that the plateau exists regardless of the
values of v and D. At long times t≫ τm, τim, τv the MSD grows linearly with the effective diffusion coefficient

Deff = D τm
τm+τim

+ v2 τ 2
mτ

2
im

(τm+τim)3
, as described in section 2.5.

4. Initially immobile tracers

In this section we consider initially immobile tracers. Experimentally, this may correspond to the situation
when tracers are released into a microfluidic setup and (part of them) allowed to bind to the sensor
receptors. Subsequently, the mobile tracers are flushed out, and then the recording is started. In section 4.1
we report the density for long immobilisations, τm ≪ τim, and high Péclet numbers. In section 4.2 we repeat
the same steps for short immobilisations, τim ≪ τm. Section 4.3 is concerned with the MSD, and in the
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Figure 7. Same as figure 4 for initially immobile tracers. The blue dashed line shows the short-time asymptote (31) and the red
dashed line the Gaussian (17) with effective diffusivity Deff. Parameters: τm = 1 τim = 100 D= 1/2 v= 100.

fourth subsection appendix J.1 we analyse for which parameters a cubic scaling of the MSD emerges at
intermediate time scales.

4.1. Density for long immobilisations
We assume long immobilisations, τm ≪ τim, corresponding to the case studied in [54]. We choose a high
Péclet number to emphasise the effect of advection, in contrast to the v= 0 case in [54]. At short times t≪ τv
the propagator for mobile tracers is the same Gaussian as for the case v= 0. Therefore, we obtain the same
short-time densities as in the v= 0 case, i.e. a δ-peak at the origin and an additional non-Gaussian
distribution.

At short to intermediate times, t≪ τm, τim, at which t can be shorter or longer than τ v, most initially
immobile tracers are concentrated at the origin and only gradually mobilise. This gives rise to the immobile
density nim(x, t)∼ (1− t/τim)δ(x). As described in detail in [54], immobile tracers that were initially mobile
follow the same density as mobile tracers that were initially immobile, equation (19), up to a factor τm/τim.
Therefore, we arrive at the total density for short to intermediate times

ntot(x, t)∼
(
1− t

τim

)
δ(x)+

exp
(
vx−v|x|

2D

)

2vτim

×
[
1+ erf

(
vt− |x|√

4Dt

)
+ exp

(
v|x|
D

)(
erf

(
vt+ |x|√

4Dt

)
− 1

)]
(31)

for t≪ τm, τim. The asymptote of the second summand corresponding to the mobile density in
expression (31) is shown in figure 7 as the blue dashed line, which nicely matches the simulations and the
Laplace inversions for t= 10−3 and t= 10−1. We note that ntot(x, t) is always normalised,
´∞
−∞ ntot(x, t)dx= 1, by construction. The same arguments as presented for initially mobile tracers explain
the uniform density that appears at intermediate time scales for τv ≪ t≪ τm, τim, corresponding to the
second panel in figure 7. In the immobilisation dominated intermediate time domain τm ≪ t≪ τim the
Laplace distribution with additional δ-peak

ntot(x, t) =
t

τim

exp
(
vx
2D

)
√
v2τ 2m + 4Dτm

exp

(
−
√
v2τ 2m + 4Dτm

|x|
2Dτm

)

+

(
1− t

τim

)
δ(x) (32)

emerges with the same scale parameter as for initially mobile tracers (23). The prefactor of the asymmetric
Laplace distribution is now t/τim, and this asymmetric Laplace distribution is shown in figure 7 as the grey
dashed line. The long-time limit does not depend on the initial conditions and follows the same density as
the initially mobile tracers, equation (17), as shown by the red dashed line in figure 7 at t= 104.
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Figure 8. Same as figure 4 for initially immobile tracers and τim ≪ τm, i.e. τm = 1, τim = 10−3, v= 500 and D= 1. The
exponential asymptote (34) for τim ≪ t≪ τm is shown as the grey dashed line for t= 10−2.

4.2. Density for short immobilisations
We now consider short immobilisations, τm ≪ τim. At short to intermediate time scales t≪ τim ≪ τm, at
which t can be shorter or longer than τ v, the same expression (31) holds as for long immobilisations. This
can be seen in figure 8, where the asymptote (31) is shown as the blue dashed line. We find excellent
agreement between the histogram based on the simulations and the density (31) for t≪ τim, τm, see the first
and second panels in figure 8 for t= 2× 10−6 and t= 3× 10−4, respectively. In contrast to the case v= 0 in
[54], a new regime τim ≪ t≪ τm emerges, that we call advection induced subdiffusion. The total density
follows an exponential distribution, as can be seen from the linear shape of the density in the semi-log plot
for t= 10−2. To explain this shape we solve the model equations (3) for the advection induced subdiffusion
regime times t≪ τm, where t can be longer or shorter than τ v. This produces the total density

ntot(x, t)∼ δ(x)e−t/τim +

ˆ t

0

e−t ′/τim

τim

exp
(
− (x−vt ′)2

4Dt ′

)

√
4πDt ′

dt ′, for t≪ τm, (33)

where the integral is identical to expression (25) for immobile tracers that were initially mobile. We obtain
the expression

ntot(x, t)∼ δ(x)exp

(
− t

τim

)
+

{
1

vτim
exp

(
x

vτim
− t

τim

)
for 0< x≪ vt

0 otherwise
, (34)

for v2τim ≫ D and t≪ τm. This comes as no surprise, as in both cases we have the same Gaussian propagator,
in which the tracers have varying immobile durations. In the case of initially mobile tracers the immobile
duration stems from an immobilisation at t> 0. In the present case of initially immobile tracers the
immobile duration arises from the slow release at the origin at t= 0. In both cases the immobile duration is
drawn from an exponential distribution with mean τim. The first term in (34) corresponds to initially
immobile tracers that have not mobilised up to time t. The second term accounts for the slow release with
rate τ−1

im exp(−t/τim) and motion in the mobile zone with advection only. The exponential distribution (34)
is shown in figure 8 at t= 2× 10−2 as the grey dashed line, and we find good agreement with the Laplace
inversion of ntot(x, s) and simulations.

4.3. Mean squared displacement
We now analyse the MSD of the total density. In appendices E.2.1 and E.2.2 we analyse the MSD of the
immobile and mobile density, respectively. We show the MSDs for long and short immobilisations in panels
(a) and (b) of figure 9, respectively. From a series expansion of the MSD at t= 0 we obtain the asymptotic
MSD at short to intermediate times,

⟨[x(t)−⟨x(t)⟩]2⟩ ∼ Dt2

τim
+

v2

3τim
t3, for t≪ τm, τim, (35)
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Figure 9.MSDs of initially immobile tracers. In (a) and (b) we choose τm ≪ τim and τm ≫ τim, respectively. The solid lines
denote the MSD of the total density, while the dashed and dotted lines denote the MSDs of the mobile and immobile density,
respectively. For comparison, the same is shown in grey for the case without advection. As a guide to the eye we show the
power-laws≃ t2 and≃ t3 as grey lines. The blue dots display the asymptote (36) for the total MSD. In panel (a) we use the same
parameters as in figure 4. In panel (b) we use v= 200, D= 1/2, τim = 10 and τm = 2× 104.

in which t can be smaller or larger than τ v. We compare the asymptote (35) to the full expression of the MSD
in figure E2(b) and find very nice agreement. At short times t≪ τv, the quadratic term dominates and we
observe the same MSD as in the case without advection. This can be seen in figures 9(a) and (b). At
intermediate times τv ≪ t≪ τm, τim the cubic term in the asymptotic MSD (35) dominates. As shown in
figure 9 the cubic scaling emerges for short and long immobilisations.

Now we go to the case of short immobilisation, τim ≪ τm, for which advection induced subdiffusion
emerges for τim ≪ t≪ τm. As described in section 4.2, the total density follows an exponential
distribution (34) and a δ-peak at the origin for τv ≪ t≪ τm. The MSD of that distribution is given by

⟨[x(t)−⟨x(t)⟩]2⟩= v2τim

(
τim − 2texp

(
− t

τim

)
− τim exp

(
−2

t

τim

))
, (36)

for τv ≪ t≪ τm and τim ≪ τm, which is shown in figure 9(b) as the blue line. From expression (36) we
recover the intermediate time asymptote

⟨[x(t)−⟨x(t)⟩]2⟩ ∼ v2t3

3τim
, for τv ≪ t≪ τim, (37)

implying the same cubic scaling for τv ≪ t≪ τim as we found from the series expansion of the full MSD (35)
for the advection dominated regime. This can be seen in the MSD in figure 9(b). The cubic scaling of the
MSD emerges in the domain τv ≪ t≪ τm, τim, which limits the parameters to τv ≪ τm, τim. In terms of the
Péclet number this implies Pe≫ 1 for long immobilisations τm ≪ τim and Pe≫ τm/τim for short
immobilisations τim ≪ τm. A detailed discussion of the parameter regimes and the coexistence of the plateau
regime is presented in appendix J.

In the advection induced subdiffusion domain the MSD (36) reaches the plateau value

⟨[x(t)−⟨x(t)⟩]2⟩ ∼ v2τ 2im, for τim ≪ t≪ τm. (38)

These two anomalous scaling regimes shown in figure 9(b), namely, the cubic scaling and the plateau
behaviour can be explained as follows. For τv ≪ t≪ τim the MSD grows due to the slow release and fast
advection, where the spread due to diffusion is negligible. When all tracers mobilised at t≫ τim, this spread
due to advection vanishes, and the distribution moves along the direction of advection without changing the
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Table 1.Main results of anomalous scaling of the MSD. In the second column the short-time asymptotes of the total density’s MSD is
shown for initially mobile and initially immobile tracers. The cubic term dominates for the time regime given in the third column, with
τv = 2D/v2 and τ⋆ =

√
3τvτm. In the fourth column the time regimes of the plateaus are given. For initially immobile tracers this

advection induced subdiffusion occurs for large Péclet numbers only.

tracers initially t≪ τm, τim cubic regime plateau regime

mobile 2Dt+ v2

3τm
t3 τ⋆ ≪ t≪ τm, τim τm ≪ t≪ τim

immobile D
τim

t2 + v2

3τim
t3 τv ≪ t≪ τm, τim τim ≪ t≪ τm for Pe≫ τm

τim

shape significantly. This explains the plateau in the MSD for τim ≪ t≪ τm. We highlight that this advection
induced subdiffusion is a new behaviour compared to the case without advection. For comparison, we show
the MSD for v= 0 in figure 9(b) as the grey solid line. It crosses over from the short-time scaling∼ Dt2/τim
to the long-time asymptote∼ 2Defft without any intermediate regime.

5. Conclusion

We analysed the densities along with the first and second moments of the MIM with exponential Poissonian
switching between the mobile and immobile states in the presence of a drift velocity v. The whole dynamic is
characterised by the mean mobile duration τm, the mean immobile duration τim and the time scale
τv = 2D/v2, which is related to the Péclet number Pe= τm/τv. For t≪ τv advection plays a negligible role
and the process is diffusion dominated, yielding the same results as in [54], where the diffusion regimes were
analysed for the advection-free case. In order to highlight the role of advection we choose τv ≪ τim, τm, for
which an advection dominated regime emerges for τv ≪ t≪ τm, τim. Relatively high Péclet numbers can be
achieved in microfluidic setups and in certain geophysical systems. The first moment is proportional to the
second moment of the advection-free model, as shown by the second Einstein relation. The second moment
of the advection-free model has been discussed in detail in [54]. Therefore, we here concentrated on the
discussion of the MSD. In general, for any fraction of initially mobile tracers and an arbitrary fraction
τim/τm, we found the same long-time behaviour for t≫ τm, τim. The total density follows a Gaussian with an

effective advection speed veff = vτm/(τm + τim) and an effective diffusivity Deff = D τm
τm+τim

+ v2 τ 2
mτ

2
im

(τm+τim)3
.

Compared to the advection v in the free phase, veff is always smaller. The effective diffusivity Deff is always
larger than the effective diffusivity in the advection-free case due to the velocity-dependent term. Specifically,
for sufficiently high Péclet numbers the effective diffusivity can significantly exceed the diffusivity D in the
mobile domain. While Deff was reported before [7, 13], we here provided a physical explanation for the
additional dispersion due to the variance of durations the tracers spent in the mobile state.

We analysed two specific initial conditions with fully mobile and fully immobile tracers in detail. For
initially mobile tracers the advection dominated regime contains two parts. In the first part,
τv ≪ t≪ τ⋆ =

√
3τvτm, the MSD grows linearly in time. In the second part of the advection-dominated

regime, τ⋆ ≪ t≪ τm, τim, the MSD grows cubically. This regime is valid for any ratio τim/τm. This can be
seen in table 1, where we summarise the main results of the anomalous scaling of the MSD.

For long immobilisations τim ≫ τm for initially mobile tracers, and in the advection dominated regime,
the density consists of a Gaussian shape of mobile tracers plus a spatially uniform distribution of
immobilised tracers. At longer times, τm ≪ t≪ τim, we recovered a plateau in the MSD of initially mobile
tracers reported in [54], regardless of the presence of advection. In this immobilisation dominated regime
the distribution follows an asymmetric Laplace distribution, which decays rapidly in the direction opposite
of the advection velocity and falls of slowly in the direction of the advection velocity. In the opposite case of
short immobilisations, τim ≪ τm, the total density follows a decreasing Gaussian shape with an increasing
exponential tail in the direction opposite of the advection velocity in the whole advection dominated regime
τv ≪ t≪ τim. This exponential tail is similar to what was found for CTRWs with advection [46].

For initially immobile tracers the advection-dominated regime emerges, as well. This can be seen in
table 1, where the series expansion of the MSD is shown. Here, the cubic scaling of the MSD appears in the
whole regime τv ≪ t≪ τm, τim for any ratio of τm/τim and a sufficiently high Péclet number. This is in
contrast to the advection-free case reported in [54], where the MSD is close to the Brownian case for short
immobilisations, τim ≪ τm. For such short immobilisations the density follows a growing and drifting
exponential distribution with an additional peak of immobile tracers at the origin. For later times, we found
an advection induced subdiffusion regime τim ≪ t≪ τm for high Péclet numbers and short immobilisations.
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This regime has not been reported previously. Here, the density consists of an exponential distribution with
fixed scale parameters, where the mean is moving at a constant speed. For long immobilisations τm ≪ τim,
the density follows a spatially uniform distribution for τv ≪ t≪ τm. For completeness, we consider an
equilibrium fraction of initially mobile tracers in, which naturally occur in experiments, in appendix K,
where a ballistic scaling of the MSD emerges at intermediate times.

Now we put our work into some context. A CTRW with an exponential sojourn time distribution with
mean τ and a Gaussian displacement density with non-zero mean µ and variance σ2 was considered in [46].
This model may appear similar to our model with exponentially distributed residence times in the immobile
state and advection–diffusion in the mobile state. However, the MSD ⟨[x(t)−⟨x(t)⟩]2⟩= σ2t/τ +µ2t/τ is
linear at all times for the CTRW, as shown in appendix L.1. This contrasts the anomalous scaling at
intermediate times of the MSD found here. Another formulation of CTRW is the two-state CTRW, in which
two transition densities are considered from which steps are drawn in an alternating way [51]. In [51] the
long-time asymptotic diffusion coefficient is obtained, which matches our result for a specific choice of
parameters. We also mention the case in [52] in which a CTRW is analysed, whose waiting time distribution
function is the weighted sum of two exponentials. If one of the exponential distributions has a weight close
to unity and a mean that is significantly shorter than τm, this model generates the same MSD as the MSD of
the total density from the MIM. We stress that the MIM provides additional information in the form of
separate mobile and immobile densities. Thus the MIM is not simply the long-space-time limit of the model
in [52]. A detailed analysis of the similarities and differences between the MIM and the processes in [51, 52]
deserves a separate study.

In contrast to the advection-free case of MIM, where intermittent anomalous diffusion solely arises for
mobile tracers for long immobilisations, the anomalous transport behaviours reported here occur for both
long and short immobilisations. A condition for this anomalous behaviour is a high Péclet number, which
occurs for example in experiments with biomolecules in biosensors [38]. Short immobilisations may occur
unintentionally due to unwanted binding to the surface of a flow cell or other experimental boundaries. The
resulting transport will be anomalous at intermediate time scales, even if the tracers are only subject to
Brownian motion with drift in the mobile state. While the anomalous diffusion and non-Gaussian densities
occur at intermediate time scales only, the measurement time is finite in experiments, and the effects may
therefore erroneously appear to be an asymptotic phenomenon. In conclusion, we found a variety of
anomalous diffusion regimes and non-Gaussian displacement distributions at relevant intermediate time
scales in a simple MIM. We emphasise that the model’s simplicity is attributed to its dependency on merely
two parameters in its dimensionless representation. We finally note that persistent-intermittent anomalous
scaling behaviours of the MSD as reported here for seemingly simple Poissonian mobile–immobile dynamics
may be relevant for numerous experimental settings. Such scenarios should therefore be included in
contemporary data analysis methods by classical observables and machine learning approaches [67–69].
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Appendix A. Solving theMIMmodel in Fourier-Laplace space

We apply the Fourier–Laplace transform

f(k, s) =

ˆ ∞

−∞

ˆ ∞

0
e−st+ikxf(x, t)dtdx (A.1)

to equations (3) and obtain the expressions

nm(k, s) =

(
f 0m + f 0im

1

1+ sτim

)
1

ϕ(s)− ikxv+ k2D
(A.2)
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nim(k, s) = f 0im
τim

1+ sτim
+
τim/τm
1+ sτim

(
f 0m + f 0im

1

1+ sτim

)
1

ϕ(s)− ikv+ k2D
(A.3)

as well as

ntot(k, s) = nm(k, s)+ nim(k, s)

=
f m + f 0im

1
1+sτim

s

ϕ(s)

ϕ(s)− ikxv+ k2D
+ f 0im

τim
1+ sτim

(A.4)

with ϕ(s) = s[1+ τimτ
−1
m /(1+ sτim)]. Fourier inversion directly produces expressions (4) to (6).

From the densities (A.2) to (A.4) we obtain the pth moment (p ∈ N)

(−i)p
∂p

∂kp
ntot(k, s)

∣∣∣∣
k=0

= ⟨xp(s)⟩, (A.5)

in Laplace space. In order to obtain the mobile and immobile moments, we first calculate the
non-normalised moments

(−i)p
∂p

∂kp
nj(k, s)

∣∣∣∣
k=0

= ⟨xp(s)⟩j,u (A.6)

with j ∈ {m, im, tot}. We then normalise the moment (A.6) in the time-domain with the fractions of mobile
and immobile densities,

fm(t) =
τm

τm + τim
+

f 0mτim − f 0imτm
τm + τim

exp
(
−[τ−1

m + τ−1
im ]t

)
, (A.7)

fim(t) =
τim

τm + τim
− f 0mτim − f 0imτm

τm + τim
exp

(
−[τ−1

m + τ−1
im ]t

)
, (A.8)

which we obtain by setting k= 0 in the densities (A.2)–(A.3) in Fourier–Laplace space and calculating the
Laplace inversion.

Appendix B. Expressions of the moments

In this section we present the exact expressions of the first and second moments, which are obtained from
expression (A.6).

B.1. First moments
For mobile initial conditions we find

⟨x(t)⟩tot,f0m=1 =
v

1+ τim/τm

[
t+

τ 2im/τm
1+ τim/τm

(
1− e−(τ−1

m +τ−1
im )t

)]
, (B.1)

⟨x(t)⟩m,f0m=1 =
v

(1+ τim/τm)
(
1+ τim/τme−(τ−1

m +τ−1
im )t

)
[
t

(
1+

τ 2im
τ 2m

e−(τ−1
m +τ−1

im )t

)

+
2τ 2im/τm

1+ τim/τm

(
1− e−(τ−1

m +τ−1
im )t

)]
, (B.2)
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and

⟨x(t)⟩im,f0m=1 =
v

1− e−(τ−1
m +τ−1

im )t

[
t

1+ τim/τm

(
1− τim

τm
e−(τ−1

m +τ−1
im )t

)

+
τ 2im/τm − τim
(1+ τim/τm)2

(
1− e−(τ−1

m +τ−1
im )t

)]
. (B.3)

For initially immobile tracers we find

⟨x(t)⟩tot,f0im=1 =
v

1+ τim/τm

[
t− τim

1+ τim/τm

(
1− e−(τ−1

m +τ−1
im )t

)]
, (B.4)

⟨x(t)⟩im,f0im=1 =
vt

1+ τm/τim

1+ e−(τ−1
m +τ−1

im )t

τim/τm + e−(τ−1
m +τ−1

im )t

− 3vτ 2im/τm
(1+ τim/τm)2

1− e−(τ−1
m +τ−1

im )t

τim/τm + e−(τ−1
m +τ−1

im )t
, (B.5)

and

⟨x(t)⟩m,f 0
im=1 =

v

1− e−(τ−1
m +τ−1

im )t

[
t

1+ τim/τm

(
1− τim

τm
e−(τ−1

m +τ−1
im )t

)

+
τ 2im/τm − τim
(1+ τim/τm)2

(
1− e−(τ−1

m +τ−1
im )t

)]
. (B.6)

B.2. Secondmoments
Consider initially mobile tracers (f 0m = 1 and f 0im = 0). Then we obtain

⟨x(t)2⟩tot,f 0
m=1 =

2D

1+ τim/τm

[
t+

τ 2im/τm
1+ τimτm

(
1− e−(τ−1

m +τ−1
im )t

)]

+
v2t2τ 2m

(τm + τim)2
+

τ 2imτ
2
mv

2

(τim + τm)3

[
2t

(
2− e−(τ−1

m +τ−1
im )t τim

τm

)

−2
2τimτm − τ 2im
τm + τim

+ 2e−(τ−1
m +τ−1

im )t (2τimτm)− τ 2im
τm + τim

]
(B.7)

and

fm(t)⟨x(t)2⟩m,f 0
m=1 =

2D

(1+ τim/τm)(1+ τim/τme−(τ−1
m +τ−1

im )t)

×
[
t

(
1+

τ 2im
τ 2m

e−(τ−1
m +τ−1

im )t

)
+

2τ 2im/τm
1+ τim/τm

(1− e−(τ−1
m +τ−1

im )t)

]

+
v2t2

(τm + τim)3

(
τ 3m + τ 3ime

−(τ−1
m +τ−1

im )t
)

+
6v2tτ 2imτ

2
m

(τm + τim)4

(
τm − τime

−(τ−1
m +τ−1

im )t
)

+
6v2τ 3im(τimτ

3
m − τ 4m)

(τm + τim)5

(
1− e−(τ−1

m +τ−1
im )t)

)
, (B.8)
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along with

fim(t)⟨x(t)2⟩im,f 0
m=1 =

2D

1− e−(τ−1
m +τ−1

im )t

[
t

1+ τim/τm

(
1− τim

τm
e−(τ−1

m +τ−1
im )t

)

+
τ 2im/τm − τim
(1+ τim/τm)2

(
1− e−(τ−1

m +τ−1
im )t

)

+
2v2τim
τm



t2τm

(
τ 2m − e−(τ−1

m +τ−1
im )tτ 2im

)

2(τm + τim)3
+

tτim
(τm + τim)4

×
(
(2τimτ

3
m − τ 4m)− e−(τ−1

m +τ−1
im )tτim(τimτ

2
m − 2τ 3m)

)

+
τ 4imτ

3
m − 4τ 3imτ

4
m + τ 2imτ

5
m

(τm + τim)5

(
1− e−(τ−1

m +τ−1
im )t

)]
. (B.9)

For initially immobile tracers the moments read

⟨x(t)2⟩tot,f 0
im=1 =

2D

1+ τim/τm

[
t− τim

1+ τim/τm

(
1− e−(τ−1

m +τ−1
im )t

)]

v2t2τ 2m
(τim + τm)2

+ 2
tv2τ 2imτ

2
m

(τim + τm)3

(
1− τm

τim
+ e−(τ−1

m +τ−1
im )t

)

− 2
v2(2τ 3imτ

3
m − τ 2imτ

4
m)

(τm + τim)4

(
1− e−(τ−1

m +τ−1
im )t

)
, (B.10)

fm(t)⟨x(t)2⟩m,f 0
im=1 =

2D

1− e−(τ−1
m +τ−1

im )t

[
t

1+ τim/τm

(
1− τim

τm
e−(τ−1

m +τ−1
im )t

)

+
τ 2im/τm − τim
(1+ τim/τm)2

(
1− e−(τ−1

m +τ−1
im )t

)]

+
v2t2τm

(τm + τim)3

(
τ 2m − τ 2ime

−(τ−1
m +τ−1

im )t
)

+
2v2tτimτ 3m
(τim + τm)4

(
2τim − τm − e−(τ−1

m +τ−1
im )tτim

(
τim
τm

− 2

))

+
2v2τ 2imτ

3
m((τim − τm)

2 − 2τimτm)

(τm + τim)5

(
1− e−(τ−1

m +τ−1
im )t

)
(B.11)

and

fim(t)⟨x(t)2⟩im,f 0
im=1 =

2Dt

1+ τm/τim

1+ e−(τ−1
m +τ−1

im )t

τim/τm + e−(τ−1
m +τ−1

im )t

− 4Dτ 2im/τm
(1+ τim/τm)2

1− e−(τ−1
m +τ−1

im )t

τim/τm + e−(τ−1
m +τ−1

im )t

+ 2v2
τim
τm

[
t2τ 2m

2(τm + τim)3

(
τm + τime

−(τ−1
m +τ−1

im )t
)

+
tτim

(τm + τim)4

(
(τimτ

3
m − 2τ 4m)+ e−(τ−1

m +τ−1
im )t(2τimτ

3
m − τ 4m)

)

− 3τ 3im(τimτ
4
m − τ 5m)

(τm + τim)5

(
1− e−(τ−1

m +τ−1
im )t

)]
. (B.12)

Appendix C. Series expansion of moments

The series expansion of the MSDs is shown in table C1.
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Table C1. Short to intermediate time expansions for t≪ τm, τim of the MSD for different fractions of initially mobile tracers f 0m.

j series of ⟨[x(t)−⟨x(t)⟩]2⟩j for t≪ τm, τim

f 0m = 1

tot 2Dt− Dt2

τm
+
[
v2 +D

(
1
τm

+ 1
τim

)]
t3

3τm
−
[
2v2

(
2
τm

+ 1
τim

)
+D

(
1
τm

+ 1
τim

)2
]

t4

12τm

m 2Dt− Dt3

3τmτim
+
[
v2

12 +D
(

1
6τim

− 1
6τm

)]
t4

τmτim
+
[
3v2(τim − τm)+D

(
14− 3τim

τm
− 3τm

τim

)]
t5

60τ 2
mτ

2
im

im Dt+
[
v2

12 +D
(

1
6τim

− 1
6τm

)]
t2 +

[
v2
(
2− 3τm

τim
− 3τim

τm

)
+ 2D(τim − τm)

(
1
τim

+ 1
τm

)2
]

t4

720τimτm

f 0im = 1

tot Dt2

τim
+

v2−D( 1
τm

+ 1
τim

)

3τim
t3

m Dt+
[
v2

12 +D
(

1
6τim

− 1
6τm

)]
t2

im Dt3

3τmτim
+
[
v2

12 +D
(

1
6τim

− 1
6τm

)]
t4

τmτim

Appendix D. Details on subordination

The probability density function P(τ, t) of τ(t) =
´ t
0 i(t

′)dt ′ is calculated in [23] and reads

P(τ, t) = f 0m

∞∑

q=1

(
Puq,q−1(τ, t)+ Puq,q(τ, t)

)
+ f 0im

∞∑

q=1

(
Pbq,q(τ, t)+ Pbq−1,q(τ, t)

)
. (D.1)

Here, Puq,r(τ, t) and P
b
q,r(τ, t) denote the probability of initially mobile and immobile tracers, respectively,

to spend in total the duration τ mobile in qmobile periods. The tracer remains immobile for the total
duration t− τ in r immobile periods. The expressions for Puq,r(τ, t) and P

b
q,r(τ, t) are given by

Puq+1,q(s, t) =





1
τim

1
q!(q−1)!

(
s
τm

)q(
t−s
τim

)q−1
exp

(
− s

τm
− t−s

τim

)
for q ⩾ 1

exp
(
− s

τm

)
for q= 0

, (D.2)

Puq,q(s, t) =
1

τm

1

((q− 1)!)2

(
s(t− s)

τmτim

)q−1

exp

(
− s

τm
− t− s

τim

)
for q ⩾ 1, (D.3)

Pbq,q(s, t) =
1

τim

1

((q− 1)!)2

(
s(t− s)

τmτim

)q−1

exp

(
− s

τm
− t− s

τim

)
, (D.4)

and

Pbq,q+1(s, t) = +





1
τm

1
q!(q−1)!

(
t−s
τim

)q
exp

(
− s

τm
− t−s

τim

)
for q ⩾ 1

exp
(
− t

τim

)
for q= 0

. (D.5)

In geological experiments, typically the mobile density is measured [18]. Similarly to expression (11), we
obtain the mobile density

nm(x, t) =

ˆ t

0
Pm(t

′, t)
e−

(x−vt ′)2
4Dt ′√

4πDt ′
dt ′ , (D.6)

with the probability Pm(t ′, t) to be mobile for a total duration t
′
at time t conditioned to be in the mobile

phase at time t. From expression (D.1) we simply need to remove the terms with an additional
immobilisation to obtain

Pm(s, t) =
∞∑

q=1

(
f 0mP

u
q,q−1(s, t)+ f 0imP

b
q,q(s, t)

)
. (D.7)
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The immobile density nim(x,y, t) and Pim(s, t) can be defined analogously to expressions (D.6) and
(D.7) with

Pim(s, t) =
∞∑

q=1

(
f 0mP

u
q,q(s, t)+ f 0imP

b
q−1,q(s, t)

)
. (D.8)

The subordinator P(s, t) can also be obtained in another way, as we show now. Since i(t) follows a
telegraph process, it is easy to see that the probability density functions Pm(τ, t)≡ P(τ, t|i(t) = 1) and
Pim(τ, t)≡ P(τ, t|i(t) = 0) for the operational time obey the following set of equations

∂

∂t
Pm(τ, t) =−Pm(τ, t)

τm
+

Pim(τ, t)

τim
− ∂

∂τ
Pm(τ, t),

∂

∂t
Pim(τ, t) =

Pm(τ, t)

τm
− Pim(τ, t)

τim
, (D.9)

where Pm(τ, t) and Pim(τ, t) denote the subordinator P(τ, t) conditioned on the tracer being mobile or
immobile at time t, respectively, with P(τ, t) = Pm(τ, t)+ Pim(τ, t). Double Laplace transform
´∞
0 dt

´∞
0 dτ f(τ, t)exp(−st− uτ) = f(u, s) of P(τ, t) yields

P(u, s) =
f 0m + f 0im

1
1+sτim

s

ϕ(s)

ϕ(s)+ u
+ f 0im

τim
1+ sτim

, (D.10)

with ϕ(s) = s[1+ τimτ
−1
m /(1+ sτim)]. From P(u, s) (D.10) we obtain the first and second moments in Laplace

space

⟨τ p(s)⟩= (−1)p
∂p

∂up
P(u, s)

∣∣∣∣
u=0

, (D.11)

for p= 1 and p= 2, respectively. We do not provide the lengthy expressions in time domain here. In the
long-time t≫ τm, τim the first moment is given by ⟨τ(t)⟩ ∼ tτm/(τm + τim) and the second central moment
is given by ⟨[τ(t)−⟨τ(t)⟩]2⟩ ∼ 2τ 2mτ

2
im/(τm + τim)

3t. Laplace-inversion of P(u, s) (D.10) gives the expression

P(τ, s) =
f 0m + f 0im

1
1+sτim

s
ϕ(s)exp(−τϕ(s))θ(s)+ f 0imδ(τ)

τim
1+ sτim

, (D.12)

with the Heaviside step function θ(s).

Appendix E. Additional figures and asymptotes of the MSD

In this section we show additional figures of the MSD and develop asymptotic expressions of the mobile and
immobile densities. In figure E1 the MSD is shown in addition to the instantaneous diffusion exponent α(t)
for initially mobile tracers. For instance the cubic scaling can be seen in panels (c) and (d), where α(t) takes
on values close to three for extended periods. In figure E2 we compare the expressions obtained for
intermediate time scales to the exact expressions of the MSD.

E.1. Mobile initial conditions
We assume initially mobile tracers and obtain asymptotic expressions in sections appendices E.1.1 and E.1.2.

E.1.1. MSD of the immobile density
Now we turn to the MSD of the immobile density. A series expansion of the exact MSD produces

⟨[x(t)−⟨x(t)⟩]2⟩im ∼ Dt+
v2

12
t2, for t≪ τm ≪ τim. (E.1)

Expression (E.1) implies a ballistic scaling of the immobile MSD for 6τv ≪ t≪ τm, τim. This matches the
MSD of the uniform distribution (20) of nim(x, t) shown in figure 4 where the right border moves at a
constant speed. The immobile MSD with the ballistic scaling is shown in figure 6(a) as the dotted line.
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Figure E1.MSDs of initially mobile tracers. In (a) and (b) we choose τm ≪ τim and τm ≫ τim, respectively. The parameters are
chosen specifically to emphasise the intermediate scaling. The solid lines denote the MSD of the total density, while the dashed
and dotted lines denote the MSDs of the mobile and immobile density, respectively. For comparison, the same is shown in grey
for the case without advection. Panels (c) and (d) depict the slope α in the double-logarithmic plots from (a) and (b),
respectively. In panel (a) and (c) we use the parameters v= 2× 104, D= 1/2, τm = 1 and τim = 100. In panel (b) and (d) we use
v= 2× 104, D= 1/2, τim = 10 and τm = 2× 104.

Panel (c) depicts the anomalous diffusion exponent α, which is close to two for 6τv ≪ t≪ τm. Figure 6(a)
shows the MSD of the mobile density as a dashed black line. For almost all times t≪ τm it coincides with
2Dt corresponding to the case without advection and Brownian diffusion. The reason for this is that at
t< τm ≪ τim almost all mobile tracers have never immobilised, as shown in figure 4.

E.1.2. MSD of the mobile density
The MSD of the mobile density has the series expansion

⟨[x(t)−⟨x(t)⟩]2⟩= 2Dt+
v2

12τmτim
t4, for t≪ τm, τim. (E.2)

The short-time behaviour 2Dt dominates up to (2Dτmτim/v2)1/3, as shown in figures 6(a) and (b). The time
scale (2Dτmτim/v2)1/3 is very close to τm in panel (a) and close to τim in panel (b), therefore the t4 scaling is
not observed in figure 6. In the appendix in figure E1(a), we choose a higher Péclet number, for which the t4

scaling is distinct. After τm the MSD has a peak and decreases afterwards for some time. This can be
explained similarly to the advection free case in [54]. Up to τm, most of the mobile density consists of mobile
tracers that have never immobilised. This can be seen in the histogram for t= 0.1 in figure 4, where most of
the mobile density follows a Gaussian which is coloured black corresponding to zero immobilisation events
Nim = 0. When the mobile density mostly consists of tracers that were immobile once the MSD decreases
because the leading Gaussian peak is missing.

E.2. Immobile initial conditions
We assume initially immobile tracers and obtain asymptotic expressions in sections appendices E.2.1
and E.2.2.
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Figure E2. Verification of the asymptotes for τm ≪ τim in panels (a) and (b) and for τm ≫ τim in panels (c) and (d). The black
lines are the exact expressions, while the coloured dotted lines are the corresponding asymptotes. Parameters for (a) and (b):
v= 100, D= 1/2, τm = 1 and τim = 100. Parameters for (c) and (d): v= 200, D= 1/2, τim = 10 and τm = 2× 104. The blue
dots in (a) and (c) correspond to expression (27). The green dots correspond to expression (E.2). The orange dots correspond to
expression (E.1). In panels (b) and (d) the blue dots correspond to expression (35), the green dots correspond to expression (E.2)
and the orange dots correspond to (E.3).

E.2.1. MSD of the immobile density
From a series expansion of the immobile MSD we obtain the short to intermediate time asymptote of the
immobile population,

⟨[x(t)−⟨x(t)⟩]2⟩im ∼ Dt3

3τimτm
+

v2

12τimτm
t4, for t≪ τm, τim, (E.3)

where t can be shorter or longer than τ v. In figure E2(b) we verify this asymptote and it shows good

agreement with the full analytical solution. For a high Péclet number Pe= v2τm
2D ≫ 1 the quartic term in the

asymptotic MSD (E.3) dominates for τv ≪ t≪ τm, τim, as shown in figures 9(a) and (b).

E.2.2. MSD of the mobile density
The MSD of the mobile density with immobile initial conditions is the same as the MSD (E.1) of the
immobile density with mobile initial conditions [54]. In the long-time limit t≫ τv, τm, τim, the MSD is linear
with effective diffusion coefficient (15).

Appendix F. Calculations for long immobilisations

We consider sτim, sτm ≫ 1 in nim(x, s) (5), and find the expression

nim(x, s) =

(
1

sτm

)
exp

(
vx
2D

)
√
v2 + 4ϕ(s)D

exp

(
−
√
v2 + 4ϕ(s)D

|x|
2D

)
, (F.1)
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which corresponds in time-domain to the integral

nim(x, t)∼
1

τm

ˆ t

0
dt ′

exp
(
− (x−vt ′)2

4Dt ′

)

√
4πDt ′

(F.2)

∼
exp

(
vx−v|x|

2D

)

2vτm

[
1+ erf

(
tv− |x|√

4Dt

)
+ exp

(
v|x|
D

)(
erf

(
tv+ |x|√

4Dt

)
− 1

)]
. (F.3)

The integral (F.2) has the physical interpretation of mobile tracers following a Gaussian and immobilising
with the constant rate 1/τm.

Appendix G. Density with short immobilisations

For t≪ τm, the fraction t/τm of mobile tracers is trapped for a short period τ drawn from
γ(τ) = exp(−τ/τim)/τim. This is shown as the red area in figure 5 denoting one immobilisation. Hence,
these tracers were mobile for a total period of t− τ . We convolute this with the propagator for advection
diffusion and obtain the expression

a(x, t) =

ˆ t

0

exp
(
− (x−vt ′)2

4Dt ′

)

√
4πDt ′

e−(t−t ′)/τimdt ′

=
exp

(
− t

τim
+ vx

2D

)

2
√
v2 − 4D

τim


exp


−|x|

√
v2

4D2
− 1

Dτim


erfc



x− t

√
v2 − 4D

τim

2
√
Dt




−exp


|x|

√
v2

4D2
− 1

Dτim


erfc



x+ t

√
v2 − 4D

τim

2
√
Dt




 (G.1)

with the complimentary error function erfc(x). Note that (G.1) is also valid for v2 < 4D/τim, i.e. also for the
case without advection. The seemingly imaginary parts cancel out. Expression (G.1) can be rewritten as

a(x, t) = Im(erf( ibt−|x|√
Dt

)exp(−ib|x|/2D))− sin(b|x|/2D)/b, which is strictly positive with

ib=
√
v2 − 4D/τim, and it does not oscillate. The− sin(. . .) rather removes the oscillatory part of the

Im(exp(−ib|x|/2D)) and the error function approaches unity for large x.

Appendix H. Dependence ofDeff on the model parameters

We now analyse the dependence of the effective diffusion coefficient on the model parameters. In section 2.3
we show that only two dimensionless parameters characterise the model, namely the Péclet number and
τim/τm. We use the decadic logarithms of these parameters as the abscissa and ordinate in figure H1. The
logarithmic colour map encodes the ratio Deff/D for Deff > D. Outside that region Deff is smaller than D, as
in the case without advection in [54]. For high Péclet numbers Deff takes on high values depending on
τim/τm. Now we analyse this dependence in more detail. For D> 0 we now analyse the ratio
Deff/D= c(Pe, τm/τim), that depends on Pe and τm/τim. For c ⩾ 1 we find the expression

Pe=
c− 1

2

(
1+

τm
τim

)2

+
c

2

(
1+

τm
τim

)(
1+

τim
τm

)
, (H.1)

which is the Péclet number as a function of τim/τm. It is shown for a range of c values in figure H1 as solid
grey lines and matches the colour plot. We obtain the asymptotes

Pe∼ c
τim
2τm

, for τm ≪ τim, (H.2)
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Figure H1. Contour plot of Deff/D with the logarithm of the Péclet number Pe= v2τm/2D as abscissa and the logarithm of
τim/τm as ordinate. The colour map encodes the increase of the effective diffusion coefficient Deff (equation (15)) as compared to
the bare value D. In the white area Deff < D. The solid grey lines (corresponding to values
c ∈ {1,101/2,101,103/2,102,105/2,103,107/2,104}) are obtained from expression (H.1). The asymptotes (H.2) and (H.3) for
Deff = 2D for long and short immobilisations are shown as blue and white lines, respectively. In the domain enclosed by the
dashed line the time scale D/v2 is not smaller than τim or τm, respectively. It can be seen that Deff > D only occurs outside this
domain, i.e. when D/v2 is smaller than τm and τim.

and

Pe∼
{

τm
2τim

, for τm ≫ τim and c= 1
c−1

2(τim/τm)2
, for τm ≫ τim and c> 1

, (H.3)

from expression (H.1). The asymptote (H.2) is shown as the blue line at the top of the map in figure H1. For
the lower bound in the map we choose c= 2 and depict the asymptote Pe−1/2 as a white line in figure H1.
Both asymptotes are parallel to the exact expressions shown as grey lines.

Appendix I. Parameter regimes for anomalous diffusion for initially mobile tracers

I.1. Parameter regimes for superdiffusion
Here we analyse for which parameter regimes the cubic scaling (27) of the total MSD appears for initially
mobile tracers. First, long immobilisations are assumed in section appendix I.2 τm ≪ τim, followed by short
immobilisations in section appendix I.3.

I.2. Long immobilisations
A necessary condition for the cubic regime to emerge is that the lower bound τ⋆ of the time regime is smaller
than the upper bound τm. We define t3 as the duration between the upper and lower bound. This restricts the
parameter space in which the cubic regime appears to positive values of the time difference t3. As shown in
section 2.3, the whole parameter space can be spanned by the Péclet number Pe= v2τm/2D and the ratio
τim/τm. We use the decadic logarithm of these quantities as axis for a map in figure I1, similar to figure H1.
The border of the region with t3 > 0 in the top right of figure H1 is shown as a black dotted line. We notice
that Pe> 1 is a necessary condition for t3 > 0. We analyse the parameter space for τim > τm first and for
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Figure I1.Map with sub- and superdiffusive regimes. The y-axis is chosen as log10(τim/τm) and is an indicator for the strength of
the effect of the immobilisations on the MSD. The x-axis is the logarithm of the Péclet number Pe= v2τm/2D. Both parameters
span the full phase space, as described in section 2.3. Depending on the parameters, the MSD of the total density with initially
mobile tracers has a cubic scaling for τ⋆ ≪ τm, τim and a plateau for τm ≪ t≪ τim. We quantify the existence of the cubic scaling
with the maximum value of the anomalous diffusion exponent α for each point in the map. We show this αmax with a red colour
coding. The black dotted line shows the border of the domain where the duration of the cubic scaling is larger than zero, i.e.
t3 > 0. It has the asymptote≃ Pe−1/2 for large Péclet numbers. The black dashed line shows the contour line, at which
Deff = 100D. It has the same asymptotic scaling≃ Pe−1/2 for large Péclet numbers and short immobilisations. For short
immobilisations, i.e. negative ordinates, the shape of the read area follows the same asymptote. We quantify the existence of the
plateau with the minimum value of the anomalous diffusion exponent for each point in the map. We show this αmin with the blue
colour coding. The top left corner corresponds to the parameters discussed in [54]. In the top right corner we have a coexistence
of the cubic scaling and the plateau in the MSD. In the white area both αmax and αmin are close to unity, i.e. the MSD is close to
linear at all times.

τim < τm afterwards. Rearranging the condition τ⋆ < τm for the Péclet number reveals the lower bound
27/16< Pe independent of τim/τm. Indeed, the black dotted line for t3 = 0 is vertical in the map (I1) for
τim ≫ τm, indicating no dependence on τim/τm in that regime.

So far, we looked at the necessary condition that the lower bound for the interval of the cubic regime is
lower than the upper bound. Another approach is to analyse the instantaneous anomalous diffusion
exponent α(t). It can be obtained by calculating the slope in a double-logarithmic plot. This is shown in
figure E1(c), where α remains close to unity for t< τ⋆ and reaches the value three for τ⋆ ≪ t≪ τm, τim. The
alternative criterion for the cubic regime to exist is then simply that the maximum value of αmax is close to
three. With this definition of α(t), superdiffusive parameter regimes are shown with the red colour-coding
ranging from one to three in figure I1. This means that the more intense the red in an area is, the closer the
parameters are to the asymptotic limits in which the cubic regime emerges. We notice that the red area lies
entirely in the region with t3 > 0 and its border follows the same asymptote Pe−1/2 for τm ≫ τim. The cubic
regime appears both for Deff > D and for Deff ≲ D for long immobilisations τim ≫ τm and for Pe≫ 1, as
shown in the top right corner of the map in figure I1. For reference, a contour plot of Deff/D is shown in
figure H1. The reason for the appearance of the cubic regime regardless of the ratio Deff/D is the existence of
the plateau for τim ≫ τm, which we explain now in detail. We know that regardless of the ratio τim/τm the
MSD of initially mobile tracers has the asymptote 2Dt for short times t≪ τm, τim, τv. In the long-time limit
it has the asymptote 2Defft. The MSD of the total density is a strictly monotonic function. This means that if
Deff < D, any growth faster than linear must be compensated by a regime with a sublinear growth. This
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slower than linear growth arises for long immobilisations only and constitutes the plateau for a sufficiently
large ratio τim/τm.

I.3. Short immobilisations
Finally, we analyse the case of short immobilisations, τim ≪ τm. The same series expansion of the total MSD
holds as in the case with long immobilisations (27). The difference between the upper and lower bound of
the cubic scaling is therefore t3 = τim − τ⋆. Notably, the duration of the cubic regime is shorter as compared
to the case with long immobilisations in figure 6(a), because τ⋆ =

√
6Dτm/v2 is close to the lower bound τim

for τm ≫ τim. We emphasise that the cubic regime appears for short immobilisations, whereas for the case
without advection the MSD is close to normal, as shown by the grey line in figure 6(b). For τim ≪ τm, i.e. for

negative ordinates in figure H1, the condition τ⋆ ≪ τim simplifies to
√

D
v2τm

= (2Pe)−1/2 ≪
√
2/3 τim

τm
. This

means that for each ratio τim/τm there exists a lower bound for the Péclet number for the cubic regime to
exist. Indeed, the black dotted line on the map in figure I1 for t3 > 0 has the asymptotic scaling Pe−1/2 for
τm ≫ τim. The cubic regime appears for t3 > 0 only, i.e. only in the top right part from the black dashed line
in figure I1. In figure I1 the red colour denotes the maximum anomalous diffusion coefficient αmax. The
condition Deff > 100D has the same asymptotic regime Pe−1/2 for τm ≫ τim, as shown by the black dashed
line in figure I1. For τm ≫ τim the dark red region with αmax close to three is almost entirely contained within
this region. This means that for τm ≫ τim the cubic regime always coexists with Deff ≫ D. In contrast, we
found that the cubic regime appears regardless of the ratio Deff/D for long immobilisations.

In addition to the maximum value of the instantaneous anomalous diffusion exponent, we consider the
minimum value αmin in figure I1, in which values close to zero correspond to very slow intermediate growth,
i.e. a plateau. This allows us to analyse how the plateau at τm ≪ t≪ τim is influenced by the presence of
advection and the cubic regime. The coexistence of the cubic regime and the plateau can be seen in the MSD
in figure 6(a). The top left blue corner in figure I1 corresponds to the case considered in [54] with long
immobilisations and (almost) no advection. The blue subdiffusive area does not significantly change for
growing Péclet numbers and it overlaps with the red superdiffusive region in the top right corner of the map
in figure I1. In the lower left part of figure I1(a) white area dominates, in which diffusion is close to normal,
with both αmin and αmax close to unity. This can be seen from the solid grey line in figure 6(b).

Appendix J. Parameter regimes for anomalous diffusion with initially immobile tracers

J.1. Parameter regimes for cubic MSD and advection induced subdiffusion
In section 4.3 we found an anomalous scaling of the MSD, and now we analyse for which values of the Péclet
number and the characteristic time scales the cubic scaling of the MSD (35) emerges at intermediate times.
The cubic term dominates for τv ≪ t≪ τm, τim. This implies the time scale separation τv ≪ τm, τim. For long
immobilisations τim ≫ τm the parameter space for the cubic scaling to occur is therefore restricted to
Pe≫ 1. This can be seen in figure J1 in the top right corner, where we show the decadic logarithm of the
Péclet number as the abscissa and log10(τim/τm) as the ordinate. The red colour coding denotes the maximal
anomalous diffusion coefficient, which is close to three in that top right region. For clarity, the contour line
for αmax = 2.5 is shown. For short immobilisations, τim ≪ τm, the cubic term in the asymptote (35)
dominates for τv ≪ t≪ τim, which limits the parameter space for the cubic scaling to occur to τim

τm
≫ Pe−1.

This can be seen in the map in figure J1, where the relation 3
2Pe

−1 ≪ τim
τm

is shown as a dashed black line.
Below this line no cubic scaling is possible, meaning that for a given Péclet number the fraction τm/τim needs
to be sufficiently small.

After the cubic scaling an advection induced subdiffusion regime may emerge. The time-domain of the
subdiffusion is given by τv ≪ τim ≪ t≪ τm. Therefore, the subdiffusive regime appears only for short
immobilisations, τim ≪ τm. Furthermore, the condition τv ≪ τim translates to Pe−1 ≪ τim/τm, shown as the
dotted line in figure J1. This restricts the parameter space for the plateau. It is bound by τim ≪ τm,
corresponding to the horizontal boundary in figure J1. In the map in figure J1 we show αmin for the total
MSD as a blue colour map and observe a region with αmin < 1/2 in the bottom right corner for a high Péclet
number and short immobilisations. As a guide to the eye we show a contour line for αmin = 1/2. A
corresponding MSD is shown in figure 9(b), where a plateau occurs for τim ≪ t≪ τm. This is a new
behaviour that does not occur in the case without advection, as is shown by the grey line in figure J1 for a
small Péclet number.
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Figure J1.Map with sub- and superdiffusive regimes, same as figure I1 for initially immobile tracers. The y-axis is chosen as
log10(τim/τm) and is an indicator for the strength of the effect of the immobilisations on the MSD. The x-axis is the logarithm of
the Péclet number Pe= v2τm/2D. Both parameters span the full phase space, as described in section 2.3. Depending on the
parameters, the MSD of the total density with initially mobile tracers has a cubic scaling for τv = v2/2D≪ τm, τim and advection
induced subdiffusion for τim ≪ t≪ τm. We quantify the existence of the cubic scaling with the maximum value of the anomalous
diffusion exponent α for each point in the map. We show this αmax with a red colour coding. The black dashed line shows the
scaling≃ Pe−1 for large Péclet numbers. We quantify the existence of the advection induced subdiffusion by the minimum value
of the anomalous diffusion exponent for each point in the map. We show this αmin with the blue colour coding. The top left
corner corresponds to the parameters discussed in [54]. In the bottom right corner we have a coexistence of the cubic scaling and
the plateau in the MSD. In the white area αmax is close to two and αmin is close to unity. The white contour lines for αmax = 2.5
and αmin = 0.5 serve as a guide to the eye.

Appendix K. Equilibrium initial condition

We assume the equilibrium fractions f 0m = f eqm = τm/(τm + τim) and f 0im = f eqim = τim/(τm + τim) and
consider the MSD of the total density. It is shown in figures K1(a) and (b) as the solid black line for long and
short immobilisations, respectively. The densities are given by adding the densities for mobile and immobile
initial conditions with the corresponding equilibrium fractions as factors. The MSD is not a linear function
and does not follow a linear combination of the initially mobile and immobile MSDs. In contrast to the case
without advection in [54], the MSD is no longer linear at all times, and we observe a quadratic scaling for
τv(τm + τim)/τim ≪ t≪ τm, τim. A series expansion yields the asymptote for intermediate times t≪ τm, τim,
where t can be shorter or longer than τ v,

⟨[x(t)−⟨x(t)⟩]2⟩ ∼ 2Df eqm t+ v2f eqm f
eq
imt

2, for t≪ τm, τim. (K.1)

The quadratic term dominates over the linear term for τv
f eq
im
≪ t. This is shown in figures K1(a) and (b). In

panels (c) and (d) the instantaneous anomalous diffusion exponent is displayed, which is close to two in this
domain. Note that for long immobilisations f eqim ≈ 1. The quadratic scaling emerges for long immobilisations
τm ≪ τim for Pe≫ 1 and for short immobilisations for Pe−1/2 ≪ τim/τm.

As described in [54], the MSD of the mobile density with equilibrium initial conditions is identical to the
MSD of the total density with mobile initial conditions. We discussed this case in detail in the main text. The
same holds for the MSD of the immobile density. For an equilibrium fraction of initially mobile tracers the
density is given by the linear combination of the results for mobile and for immobile initial conditions.
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Figure K1. Same as figure 6 for equilibrium initial conditions f 0m = f eqm = τm/(τm + τim). In contrast to the case with v= 0 in
[54], the MSD of the total density (solid lines in (a) and (b)) are no longer linear at all times. A quadratic scaling emerges at
τv/f

eq
im ≪ t≪ τm, τim. The MSD of the mobile density is identical to the MSD of the total density with initially mobile tracers in

figure 6.

Appendix L. Comparison to CTRW

In this section we compare our results to three versions of CTRWs. For didactic purposes, we start in
appendix L.1 with the classical CTRW with exponentially distributed waiting times. In appendix L.2 we
compare our model to the two state CTRW [51]. Finally, in appendix L.3 we compare our model to a CTRW
in which the waiting times are drawn from a waiting time distribution containing two exponential
distributions [52].

L.1. Classical CTRW
We here compare the results obtained from the MIM (3) to a CTRW with advection and exponentially
distributed sojourn times. The relation between MIM and CTRW has been discussed in detail, for example,
in [13, 48, 70]. Let us define the sojourn time density ψ(t) = exp(−t/τ)/τ and the Gaussian displacement
density λ(x) with mean µ and variance σ2. This corresponds to the model considered in [46]. In [71] the
solution of the density function p(x, t) in this CTRW framework is given as

p(x, t) =
∞∑

j=1

(t/τ)j exp
(
− t

τ

)

j!

exp
(
− x2

2jσ2

)

√
2π jσ2

, (L.1)

for µ= 0. We incorporate the non-zero mean µ and obtain the solution

p(x, t) =
∞∑

j=1

(t/τ)j exp
(
− t

τ

)

j!

exp
(
− (x−jµ)2

2jσ2

)

√
2π jσ2

. (L.2)

Let us turn to the moments of p(x, t) (L.2). The fist moment is given by

⟨x(t)⟩=
∞∑

j=1

(t/τ)j exp
(
− t

τ

)

j!
jµ

= µ
t

τ
exp

(
− t

τ

) ∞∑

j=0

(t/τ)j

j!

= µ
t

τ
. (L.3)
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In the same way we obtain the second moment

⟨x2(t)⟩= σ2 t

τ
+µ2

t2

τ 2
+µ2

t

τ
, (L.4)

resulting in the MSD

⟨[x(t)−⟨x(t)⟩]2⟩= σ2

τ
t+

µ2

τ
t, (L.5)

which is linear at all times, in contrast the results obtained from our model.

L.2. Two-state CTRW
In this section we compare our model to the two-state CTRW introduced in [51] in which two transition
densities

fi(x, t) =
1√

4πDi t
exp

(
− (x− vit)2

4Di t

)
ψi(t), i= 1,2 (L.6)

are present with average speeds vi and diffusion constants Di. In an alternating way jumps are drawn from
f1(x, t) and f2(x, t). The long-time diffusion coefficient presented in [51] is given by

Deff =
D1τ1 +D2τ2
τ1 + τ2

+
1

2(τ1 + τ2)

×
[
σ2
1

(
v1 −

v1τ1 + v2τ2
τ1 + τ2

)
+σ2

2

(
v2 −

v1τ1 + v2τ2
τ1 + τ2

)]
(L.7)

with τi =
´∞
0 tψi(t)dt and σ2

i =
´∞
0 t2ψi(t)dt− τ 2i , i = 1,2. The long-time effective diffusion

coefficient (L.7) matches our result (15), if we formally choose D1 = D, v1 = v, D2 = 0, v2 = 0,
ψ1(t) = exp(−t/τm)/τm and ψ2(t) = exp(−t/τim)/τim.

L.3. Double exponential CTRW
In this section we compare our model to the CTRW analysed in [52], in which the waiting time distribution
function is given by the weighted sum

ψ(t) =
p

τD
exp

(
− t

τD

)
+

(1− p)

τB
exp

(
− t

τB

)
(L.8)

of two exponentials, where τB ⩽ τD and p ∈ [0,1]. The jump length distribution we consider is given by the
Gaussian

λ(x) =
1√
2πσ2

exp

(
− (x−µ)2

2σ2

)
, (L.9)

with mean µ and variance σ2. Note that in [52] λ(x) is restricted to the case µ= 0. Formally, we choose the
parameters τB = τim, τD ≪ τB, τim, and p= 1− τD/τm. We stress that this means that τD ̸= τm and τD does
not have the meaning of the mean residence time in a mobile state. By choosing τD ≪ τm and p= 1− τD/τm
close to unity there is a high probability to draw from the exponential distribution with short mean duration.
This effectively models the Brownian motion of a tracer in the mobile state. After each step, the tracer
immobilises with probability 1− p. If there was no waiting time drawn from the long exponential, on
average, there are t/τD steps at time t. This gives an effective immobilisation rate of 1/τm, which is the same
as in MIM. In figure L1 we compare the MSD of MIM for τm = 1, τim = 100, v= 0 or v= 10 and D= 1 with
simulations of CTRW with τD = 2× 10−2, τB = τim, µ= vτD and σ =

√
2DτD. We find good agreement at

all times for the advection-free case, while the CTRW yields higher values than MIM for t< τD in the case
with advection.

The reason why the MSDs are identical in the advection-free case and not in the case with advection can
be understood by considering the MSD in terms of step numbers n [66]

var(x) = E(n)var(∆xi)+ (E(∆xi))
2var(n), (L.10)

where x=
∑n

i=1∆xi, as introduced in section 2.5. We emphasise that expression (L.10) is exact. From
expression (L.10) we see that in the advection-free case E(∆xi) = 0 only the mean number of steps is
relevant for the MSD and not the variance of step numbers. Indeed, in figure L2 we show the mean number
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Figure L1. Comparison of the MSD fromMIM and CTRW with double exponential waiting time [52]. CTRW data originate
from simulations and the full expressions from B are used to evaluate the MSDs of MIM.

Figure L2.Mean number of steps and variance of step numbers for CTRW with double exponential waiting time [52] and MIM.
CTRW data originate from simulations and the full expressions from appendix B are used to evaluate the MSDs of MIM. It is seen
that both models shows perfect agreement in the drift-free case, for the specific choice of parameters indicated after
equation (L.9), whereas in the presence of a drift, the models converge only in the long time limit.

of steps E(n) (calculated by setting D= 0), where the dots for CTRW and the line for MIM overlap at all
times. Therefore, the MSDs in the advection-free case of CTRW and MIM in figure L1 are equivalent. In
contrast, in the case of advection, the variance of step numbers var(n) couples to the MSD, as can be seen in
expression (L.10). The variance of step numbers differs for t< τD. We explain this as follows. If a tracer is in
the mobile state of MIM, it will have a fixed number of steps n= t/∆t at time t. The stochasticity of step
numbers arises solely from immobilisations. By setting D= 0 we obtain a cubic short-time growth of the
variance from the short-time asymptote (27). In contrast, in the CTRW case, the number of steps is random
even in the case of a simple CTRW with only one exponential waiting time distribution, as described in
appendix L.1. It can be seen in the variance of CTRW (L.5) for σ= 0 and µ= 1, where the variance of step
numbers grows linearly. This is due to the fact that after each step a random waiting time is drawn from the
exponential distribution. Therefore, the variance of step numbers is higher for small times and hence the
MSDs of MIM and CTRW do not overlap for t< τD, as shown in figure L1. We point out that the
disagreement between the MSD of MIM and CTRW with advection lasts until≈ 3× 10−1, which is notably
larger than the chosen τD = 2× 10−2.
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We present a framework for systems in which diffusion-advection transport of a tracer substance in a mobile
zone is interrupted by trapping in an immobile zone. Our model unifies different model approaches based on
distributed-order diffusion equations, exciton diffusion rate models, and random-walk models for multirate
mobile-immobile mass transport. We study various forms for the trapping time dynamics and their effects on
the tracer mass in the mobile zone. Moreover, we find the associated breakthrough curves, the tracer density at a
fixed point in space as a function of time, and the mobile and immobile concentration profiles and the respective
moments of the transport. Specifically, we derive explicit forms for the anomalous transport dynamics and an
asymptotic power-law decay of the mobile mass for a Mittag-Leffler trapping time distribution. In our analysis
we point out that even for exponential trapping time densities, transient anomalous transport is observed. Our
results have direct applications in geophysical contexts, but also in biological, soft matter, and solid state systems.
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I. INTRODUCTION

In their original formulations of Brownian motion, Einstein
[1], von Smoluchowski [2], Sutherland [3], and Langevin [4]
assumed an isotropic homogeneous environment, and thus a
constant diffusion coefficient D. In the hydrodynamic limit,
these theories led to the standard diffusion equation (Fick’s
second law [5]) for the probability density function (PDF)
P(r, t ) to find the Brownian particle at position r at time
t [6,7]. In more mathematical terms this means that incre-
ments of Brownian motion, on a coarse-grained level [8],
are independent and identically distributed random variables
[9]. Apart from the linear time dependence 〈r2(t )〉 ∝ Dt of
the mean-square displacement (MSD), the quintessential con-
sequence of these assumptions is the Gaussian PDF of a
Brownian particle, P(r, t ) = (4πDt )−d/2 exp(−r2/4Dt ) in d
spatial dimensions [7,9]. However, already in 1926 Richard-
son concluded from measurements of the stochastic motion
of two pilot balloons in a turbulent atmosphere that the rel-
ative spreading, i.e., the diffusion coefficient for the relative
coordinate of the balloons, increases with their distance l ,
and he fitted the data with the function D(l ) = εl4/3 with
the constant ε ≈ 0.4 cm2/3/sec. [10]. Batchelor, in his work
on homogeneous turbulence, showed that the second moment
of the Richardson process can also be obtained by using the
time-dependent scaling D(t ) ∝ t2 of the diffusivity instead of
the Richardson 4/3 law [11]. Today, anomalous diffusion with
a power-law form 〈r2(t )〉 ∝ tα is known from a wide range of
systems. Based on the value of the anomalous diffusion expo-

*rmetzler@uni-potsdam.de

nent, one typically distinguished subdiffusion for 0 < α < 1
and superdiffusion for α > 1 [12–18].

The MSD and the particle displacement PDF are highly
relevant quantities and they can be measured relatively
straightforwardly in modern single-particle-tracking exper-
iments [17,19]. However, they require relatively extensive
experimental setups on geological scales [20]. In a typical
geophysical field experiment, as schematically depicted in
Fig. 1(a), a solute or a fine particle substance is injected
into the site and its concentration is measured at selected
points in space as a function of time [20–24]. For Brownian
tracer particles advected with a drift velocity v, the concen-
tration profile has the shape C(r, t ) & (Dt )−d/2 exp(−[r −
vt]2/4Dt ). In many geophysical experiments the value of the
PDF is measured at a given point r0 in space, as a function of
time. This so-called breakthrough curve (BTC) at long times
then shows an asymptotic exponential decay of the tracer
concentration.

In contrast to this Brownian picture, power-law tails in the
time dependence of BTCs have consistently been reported
from the centimeter scale in the laboratory to field experi-
ments on kilometer scales [22,25]. One example for such an
experiment was reported in [22] based on the injection of
fluorescent dye into sinking surface water leading to a karst
aquifer under the Schwarzwasser valley, where BTCs were
measured up to 7400 m away from the injection point. In such
settings, the tracer motion is interrupted by immobilization
periods, e.g., in dead-end pores with negligible flow, in which
tracers are effectively trapped [24,26,27].

The continuous-time random walk (CTRW) is a
well-established model describing power-law-tailed BTCs
[22,28–32]. In a CTRW a single tracer jumps instantaneously,

2470-0045/2022/105(1)/014105(24) 014105-1 ©2022 American Physical Society
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FIG. 1. Examples for systems with MIM zones. (a) Schematic of a tracer test in a typical geophysical setting. Dye or fine particles are
injected into the mobile zone of a groundwater system or river. In our extended mobile-immobile model, which is based on [65,66], the
tracers immobilize in dead-end pores, the hyporheic zone, or biofilms for a random time τ drawn from a probability density γ (τ ) [see Eq. (1)
for details]. After the period τ the tracers move back into the mobile zone. (b) Schematic of a thin polymer film on a glass substrate with
depth-dependent glass transition temperature Tg(z). Fluorescent dye is immobile in the bulk layer but mobile in the surface layer. (Figure
was adapted from [59].) (c) Potassium channels diffuse in the plasma membrane of human embryonic kidney cells. Endocytic coat proteins
assemble at the plasma membrane and generate clathrin-coated pits, to which the channel binds upon encounter. The majority of channels
leave the pit before the clathrin-mediated endocytosis is completed. (Figure was adapted from [63].)

with variable jump lengths and waiting times drawn
from respective PDFs [33,34]. A CTRW with scale-free
power-law-distributed waiting times and jump lengths with
a finite variance was originally introduced in the description
of charge carrier motion in amorphous semiconductors
[35] and is closely connected to the quenched energy
landscape model [35–37]. When the waiting time PDF
has a power-law tail of the form proportional to t−1−µ

with 0 < µ < 1, the associated mean waiting time diverges
and anomalous non-Fickian diffusion arises [33–35]. In
the quenched trap model, power-law waiting time PDFs
are effected by exponential distributions of trap depths
[36]. In contrast, in the model developed in [38] a particle
undergoes Fickian diffusion which is interrupted by binding
to spherical traps. All traps have the same binding energy.
Using equilibrium statistics reveals that the densities of
particles inside and outside the traps are linearly coupled
with a refilling and an escape rate. This yields a linear
MSD with rescaled time t → t/(1 + λ) with a positive
parameter λ depending on the mean trapping time and trap
density. For biased transport, the case of 1 < µ < 2 with
finite mean waiting time but infinite variance still exhibits
transport anomalies [39]. A power-law waiting time PDF
(with exponential long-time cutoff reflecting the finiteness of
the system) was indeed reconstructed from the hydraulic
conductivity field in a heterogeneous porous medium
[31]. Retention of chlorine tracer in catchments was also
connected with power-law or '-distributed immobilization
times [40,41]. In the CTRW picture the PDF P(r, t ) does
not distinguish between mobile and trapped particles
[42].

Often, experiments in a geophysical setting yield in-
complete mass recovery [20,22–24]. For instance, the setup

of the first macrodispersion experiment consisted of an
array of multilevel samplers and flow meters to obtain the
plume of bromide injected into a heterogeneous aquifer
[20,43]. The total recovered mass monotonically decreased
[20]. In addition, only (or preferably) tracers that are not
immobilized may be measured, because they need to enter
the detector, e.g., from a groundwater spring [22,26,44,45].
In such situations it is thus desirable to have a model that
separates the mobile and immobile particle fractions. In order
to distinguish between mobile and immobile particles within
the CTRW a particle is defined to be mobile if it moves within
a preset time interval [29]. It follows that for an exponential
waiting time all particles are mobile for preset time intervals
sufficiently longer than the characteristic waiting time [29].

A modeling approach that explicitly separates the two
particle fractions and that is particularly popular in hydrol-
ogy modeling is the mobile-immobile model (MIM) splitting
the domain into mobile and immobile zones as depicted in
Fig. 1(a) [26,45–49]. The description in MIM-type models
typically considers one or two spatial dimensions, while tran-
sitions between the two zones occur along an eliminated
dimension. In contrast to the CTRW model, where a single
concentration profile describes all tracers, the MIM thus splits
the concentration into a mobile and an immobile concen-
tration [22,26,29,49]. Including a power-law distribution of
transition rates between the zones yields power-law tailed
BTCs. This model, called fractal MIM [45], is closely related
to bifractional differential equations. Most notably in the con-
text of this work, the MIM has been applied successfully to
geophysical systems such as groundwater aquifers, rivers, and
porous media [20–22,24,26,44,50,51]. Understanding the mo-
tion of introduced tracers in such systems is of high relevance
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to understand the dynamics of contaminants in freshwater
sources [21,22].

Figure 1(a) shows a schematic of such systems. In ad-
dition to dead-end pores, in another scenario the tracer can
immobilize in streambed (benthic) biofilms [50,52–54].
Specifically, the attenuation of endocrine disruptors in a
stream is attributed to sorption and biochemical reactions
in biofilms [55]. Likely, adding wood to streams creates
additional depositional areas for fine particles and bacteria,
effectively increasing the immobile capacity [56]. Moreover,
we mention the hyporheic zone, the region of near-stream
aquifers [24] that is important for, inter alia, microplastic
retention [57]. In addition, the hyporheic zone plays an im-
portant role in removing organic compounds from wastewater
treatment plants that enter streams [58]. The reactivity of, e.g.,
metformin, a diabetes drug, is approximately 25 times higher
in the hyporheic zone as compared to the in-stream reactivity
[58]. The removal depends on hyporheic exchange fluxes [58].
The exchange of tracers between the mobile zone of a stream
and the hyporheic zone has been studied intensively using
MIM-type approaches [21,45,50].

Importantly, applications of MIM-type models go beyond
geophysical settings. We mention that mobile and immo-
bile zones can be found in polymer systems as shown in
Fig. 1(b): A thin polymer film mounted on top of a glass
support is kept at a temperature T slightly below the bulk
glass transition temperature Tg [59]. Due to surface effects
Tg is actually a decreasing function of the height z above
the glass surface. Depending on z, the polymer is split into
an immobile bulk layer and a shallow mobile surface layer
[59–61]. Single-molecule-tracking experiments of fluorescent
dyes in the polymer film corroborate this picture [59]. A sec-
ond example is the transport of dye in crystalline microporous
coordination polymers, showing a pronounced splitting into
populations of fast, slow, and slowest fractions [62].

Another example with mobile and immobile zones stems
from biophysics and is shown in Fig. 1(c). Here the potas-
sium channel Kv2.1 diffuses in the plasma membrane of a
human embryonic kidney cell. Upon encountering a clathrin-
coated pit, the channels immobilize [63]. A small portion
of the channels in the pit is transferred inside the cell via
clathrin-mediated endocytosis [63]. The majority of channels
escape the pit and continue to diffuse. The immobilization
time statistic follows a power-law waiting time density with
scaling exponent µ ≈ 0.9 [63].

In what follows we introduce and discuss in detail the
extended mobile-immobile model (EMIM) describing the mo-
bile and immobile concentrations of a given tracer substance.
The dynamics is governed by a trapping time PDF of particles
in the immobile zone, which in contrast to the MIM is not
restricted to an exponential dynamic and is well defined in the
short-time limit as compared to the case of a power-law-tailed
PDF in the fractal MIM. We choose PDFs with and without
characteristic waiting times. Note that while the EMIM we
develop here is relevant to a broad range of systems, we will
mainly use geophysical language in what follows. The reason
is that this is the one of the most classical fields in which
MIM-type models have been applied. However, the proba-
bilistic formulation makes it easily accessible, and amenable
for modifications, in other fields.

The paper is organized as follows. In Sec. II we present
our EMIM in terms of partial integro-differential equations,
we present general expressions such as the mobile mass and
transport moments, and we present the BTCs. We obtain spe-
cific expressions for the observables in the EMIM and discuss
possible extensions in Sec. III. In Sec. IV we derive from our
EMIM bifractional models equivalent to the fractal MIM and
obtain exact expressions for the moments using these models.
A detailed comparison of the time evolution of the mobile
mass and the BTC to experimental observations is presented
in Sec. V. In Sec. VI we summarize our work and draw con-
clusions. In the Appendixes we introduce special functions,
present details of our calculations, and show additional figures
detailing the dynamics encoded in our EMIM.

II. THE EMIM

We depict the motion of tracer particles in the mobile and
immobile zones in a one-dimensional two-state model, reflect-
ing the typical situation of particles in a riverbed (or water
artery), where the coordinate x measures the distance traveled
along the river. Depending on its state, a tracer contributes to
either the mobile concentration Cm(x, t ) or the immobile con-
centration Cim(x, t ). In our model tracers are initially placed
in the mobile volume with mobile volume per unit length
θm in which their motion combines advection and diffusion,
mathematically captured by the advection-dispersion opera-
tor L(x) = −v∂/∂x + D∂2/∂x2 with the advection velocity v
[64]. When entering the immobile volume θim the tracers are
immobilized for a duration t drawn from the trapping time
PDF γ (t ), a priori of arbitrary shape. We name this model the
extended MIM, governed by the transport equations

∂

∂t
Cm(x, t ) = −βωCm(x, t ) +

∫ t

0
γ (t − τ )βωCm(x, τ )dτ

+ L(x)Cm(x, t ), (1a)

∂

∂t
Cim(x, t ) = ωCm(x, t ) −

∫ t

0
γ (t − τ )ωCm(x, τ )dτ. (1b)

Here ω denotes the mass transfer coefficient and β =
θim/θm the capacity coefficient often used in geophysical con-
texts. We highlight that this EMIM is based on the two-state,
non-Markovian kinetic rate equations for exciton trapping in
semiconductors developed in [65] to which we added the
advection-dispersion operator.

In this formulation γ (t ) indeed denotes the trapping time
PDF. As can be seen from the relation (1b), particles entering
the immobile zone at a previous time t − τ are released back
to the mobile phase with a probability γ (τ ). Using the masses

Mm(t )=θm

∫ ∞

−∞
dx Cm(x, t ), Mim(t )=θim

∫ ∞

−∞
dx Cim(x, t )

(2)
in the mobile and immobile zones, respectively, we obtain
total mass conservation

d
dt

[Mm(t ) + Mim(t )] = 0. (3)

We choose the initial condition as the sharp δ peak Cm(x, 0) =
M0/θmδ(x) and Cim(x, 0) = 0, which naturally arises in typi-
cal experiments [22,50]. Using the Fourier-Laplace transform,
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we obtain from (1) the solution

Cm(k, s) = M0

s + βω[1 − γ (s)] − ikv + k2D
(4)

for the mobile concentration, where f (k, s) =∫ ∞
−∞

∫ ∞
0 f (x, t ) exp(−st + ikx)dt dx denotes the Fourier-

Laplace transform of f (x, t ), which we solely mark by
replacing its arguments. We note that this equation has been
previously reported, although without the corresponding
equation in the time domain [66]. For the immobile
concentration we find

Cim(k, s) = ωCm(k, s)
1 − γ (s)

s
. (5)

In this two-state approach, when modeling the exchange
between the mobile and immobile zones with single-rate
first-order mass transfer, exponential long-time decay arises
in the BTCs and hence it cannot describe power-law-tailed
BTCs [45,67] (see also the discussion below). In the multi-
rate mass transfer (MRMT) model, multiple rate coefficients
are introduced [49], in which a continuous density of rates
following a power-law distribution yields the observed BTCs
with a power-law tail [45,67,68]. A distribution of rates oc-
curs in heterogeneous mixtures of layers, cylinders, spheres,
or heterogeneous porous sedimentary rock [49,69]. Often,
the cumulative function of the trapping time PDF, - =∫ ∞

t γ (τ )dτ = 1 −
∫ t

0 γ (τ )dτ [42], is used for the character-
ization [24], which can, e.g., be reconstructed from a porous
medium using x-ray microtomography [27]. If the jump length
distribution is independent of the trapping time distribution,
the total concentrations of the CTRW and MRMT approaches
are indeed equivalent [29,70]. In [45] it was shown that the
choice of the power-law form -(t ) = t−µ/'(1 − µ), with
0 < µ < 1, yields a bifractional diffusion-advection equation
called fractal MIM [45,71]. In the long-time limit of the
fractal MIM the first and second moments of the mobile
concentration scale as 〈xm〉 & tµ and 〈(xm − 〈xm〉)2〉 & t2µ,
respectively, and reveal superdiffusion for µ > 1/2 and sub-
diffusion for µ < 1/2, while the mobile particles behave like
Brownian particles with drift in the short-time limit [46]. The
choice -(t ) = t−µ/'(1 − µ), however, does not yield a finite
value for γ (0) and makes γ non-normalizable.

To circumvent this issue, we propose the EMIM (1) that
consists of rate equations for both the mobile and immobile
concentration. The trapping time in the immobile zone is
drawn from the well-defined trapping time PDF which, in con-
trast to the MIM, is not restricted to an exponential. Our model
unifies the following approaches. First, it is an extension of
the non-Markovian rate equations used to describe excitons in
semiconductors [65] to which we add an advection-dispersion
operator. A similar equation exclusively for mobile tracers
without advection was presented to describe fine particle
deposition in benthic biofilms [52]. Second, we expand the
model proposed in [72] in which a particle is mobile for a
fixed duration and immobile for a random time drawn from
a one-sided Lévy distribution; there, effectively the total con-
centration is considered and no separate equations are used for
mobile and immobile particles. Third, our model corresponds
to a model used for particle-tracking simulations [66]. In this
work it is argued that the model incorporates waiting time

PDFs, and these PDFs are included in the Fourier-Laplace
representation. Here we derive and discuss the corresponding
rate equations as functions of time and space. Fourth, our
model contains the fractal MIM [45] as a special case. When
considering the total concentration, i.e., the sum of mobile and
immobile concentrations, the fractal MIM is a special case
of distributed-order diffusion with a bimodal distribution of
fractional orders where the first order is unity and the second
ranges between zero. Moreover, we add an advective bias term
to this formulation [71].

When rewriting our rate equations in terms of the survival
probability, our model matches the MRMT model in [67].
Another set of rate equations involving the immobilization
time as a second temporal variable can be found in [73,74].
By choosing a Mittag-Leffler (ML) waiting time PDF our
model contains the bifractional solute transport models in
[45,71] in the long-time limit, including a power-law decay
of the total mobile mass, while retaining a finite value of
the memory function in the zero-time limit, γML(0). From
a physical perspective, the accumulation of immobile parti-
cles is similar to particles diffusing in an energy landscape
scattered with energetic traps with power-law trapping times
[75–77]. We note that while many studies focus on BTCs,
some work has been reported regarding the spatial tracer
plumes [20,45,78,79]. We address here the question of where
the contaminants are in space and how far they spread on
average, given a known BTC. Spatial moments of the total
concentration and their derivative, the center-of-mass veloc-
ity, were, inter alia, discussed in [29]. We distinguish here
between mobile and immobile distributions, reflecting that in
some situations, including the transport dynamics in rivers,
only the mobile particles can be detected [22,78]. In [46],
approximations for the first five moments are derived, inter
alia, for the fractal MIM including moments of the mobile
plume. Building on such concepts, from our ML waiting time
PDF, we obtain explicit expressions for the spatial moments
of the mobile, immobile, and total masses.

A. General expressions

We now present the central observables of our model that
are calculated as function of a general trapping time PDF.

1. Mobile mass

We set k = 0 in Eq. (4) to arrive at the mobile mass in
Laplace space. Moreover, we set θm = 1 as a unit volume,
without loss of generality. We then obtain

Mm(s) = M0

s + βω[1 − γ (s)]
. (6)

The long-time behavior depends on the exact form of the
immobilization time PDF, in particular, on whether we have a
finite or infinite mean immobilization time. Let us first assume
the general waiting time PDF γ f (t ) ( f denotes finite) with
a finite mean 〈τ 〉. For a small Laplace variable s it can be
approximated by γ f (s) ∼ 1 − s〈τ 〉, which yields the corre-
sponding long-time limit from (6) in terms of the constant
value

lim
t→∞

M(t ) = lim
s→0

sM(s) = M0

1 + βω〈τ 〉
, (7)
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which is consistent with [26,44,66] since βω〈τ 〉 corresponds
to the ratio of the time spent in the mobile zone to that in the
immobile zone.

For a general PDF γd (τ ) (d denotes divergent) with di-
verging mean, we consider its representation for small s with
0 < µ < 1 and τ. > 0, of the form γd (s) ∼ 1 − (τ.s)µ, where
τ. is a scaling factor, and plug it into the general expression
(6), where we look for the long-time limit using the Tauberian
theorem [80],

lim
s→0

M(s) ∼ M0

βωτµ
. sµ

s.t. lim
t→∞

M(t ) ∼ M0
tµ−1

βωτµ
. '(µ)

.

(8)
We conclude that a waiting time PDF with diverging mean
will, remarkably, yield a long-time power-law decay of the
mobile mass and thus leave no particles in the mobile zone
in the long-time limit, in contrast to a waiting time PDF with
finite mean as seen in (7).

2. Moments

From the PDF

ρ(k, s) = 1
M0

[Cm(k, s) + βCim(k, s)]

= 1
s

s + βω[1 − γ (s)]
s + βω[1 − γ (s)] − ikv + k2D

(9)

in Fourier-Laplace space we can calculate the nth moment in
Laplace space via

〈xn(s)〉 = (−i)n ∂n

∂kn
ρ(k, s)

∣∣∣∣
k=0

. (10)

We are interested in the motion of the solute in the mobile
phase, as this is the typically accessible experimental quantity
[20,22,26,43,52]. Since the mass in the mobile phase changes
over time we consider both the unnormalized and the nor-
malized moments, where normalization means dividing the
unnormalized moment (denoted by u) (10) by the mobile mass
(6) [20,81],

〈
xn

m(t )
〉
= 〈xn(t )〉uM0/Mm(t ). (11)

We start with the first moment. In the unnormalized form, we
have

〈xm(s)〉u ≡ −i
∂

∂k
Cm(k, s)

M0

∣∣∣∣
k=0

= v

{s + βω[1 − γ (s)]}2
.

(12)
The short-time behavior 〈xm(s)〉u = v

{s+βω[1−γ (s)]}2 ∼ v
s2 of this

expression can be obtained independently of the trapping
time PDF by using the Tauberian theorem for s → ∞ and
γ (s) ! 1, which yields 〈x〉u(t ) = vt for small t . This is an
expected result, since essentially all mass is mobile at t = 0,
our initial condition. We obtain

〈x(t )〉 t→0∼ 〈xm(t )〉u
t→0∼ vt . (13)

To assess the long-time behavior we need to know the specific
form of the waiting time PDF γ (t ). We will analyze the long-
time behavior for different cases below.

The unnormalized second moment can be calculated anal-
ogously,

〈
x2

m(s)
〉
u = − ∂2

∂k2

Cm(k, s)
M0

∣∣∣∣
k=0

= 2v2

{s + βω[1 − γ (s)]}3

+ 2D
{s + βω[1 − γ (s)]}2

. (14)

The corresponding normalized form 〈x2(t )〉 follows in the
time domain by multiplication with M0/Mm(t ) [Eq. (6)]. The
short-time behavior 〈x2(s)〉u ∼ 2v2

s3 + 2D
s2 of the second mo-

ment can be obtained via the Tauberian theorem for s → ∞
and the above limit form γ (s) ! 1, which yields 〈x2(t )〉u ∼
2Dt + v2t2 at short times. Since the mobile mass is ap-
proximately M0, initially we obtain Brownian motion with
advection,

〈x2(t )〉 t→0∼ 2Dt + v2t2, (15)

a result that holds for both 〈x2(t )〉u and 〈x2(t )〉 in this t → 0
limit.

From the general relation (5) between Cm and Cim and the
nth unnormalized moment (12) we obtain

〈
xn

im

〉
u = β (−i)n ∂n

∂kn

Cim(k, s)
M0

∣∣∣∣
k=0

= βω
1 − γ (s)

s
(−i)n ∂n

∂kn

Cm(k, s)
M0

∣∣∣∣
k=0

=
〈
xn

m

〉
uβω

1 − γ (s)
s

. (16)

This quantity describes the spreading of particles in the im-
mobile zone, as they progress by joining the mobile phase
and getting absorbed into the immobile zone again. In the
expression (16) we notice the factor β that appears when inte-
grating over the immobile domain, i.e., setting k = 0, because
the immobile domain is larger by this factor than the mobile
domain. In addition, we calculate the nth moment of the full
concentration using Eq. (9) for ρ(k, s),

〈xn〉 =
〈
xn

m

〉
u + β

〈
xn

im

〉
u. (17)

3. Breakthrough curves

A typical tracer experiment on the field scale records the
mobile concentration at a fixed location as a function of
time. The obtained statistic is called the breakthrough curve
[22,27,28,45,53,54]. When comparing BTCs at different sites
with different volumetric fluid discharges Q, it is convenient
to analyze the quantity C × Q/Mrecov, with the total recovered
mass Mrecov [22]. Inverse Fourier transformation of (4) yields
the concentration in the space domain,

Cm(x, s) =
exp

(
vx
2D

)
√

v2 + 4φ(s)D
exp

(
−

√
v2 + 4φ(s)D

|x|
2D

)
,

(18)
with φ(s) = s + βω[1 − γ (s)]. Its form in the time domain
requires an explicit input for φ(s) (discussed below).
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FIG. 2. Relation between different transport models. The EMIM follows from the exciton model [65] by adding the transport operator
L(x). The EMIM contains the MIM as a special case for γ (τ ) = ωe−ωτ , as shown in Sec. III A. Using the cumulative - probability function of
γ , the EMIM can be rewritten as an MRMT model, as presented in Sec. IV. Going the opposite direction requires -(0) = 1. If - ∝ τ−µ, the
MRMT model is equivalent to the fractal MIM [45]. The full concentration follows a bifractional diffusion equation. The latter arises directly
from the EMIM in the long-time limit, when the waiting time PDF asymptotically behaves like τ−1−µ. The bifractional diffusion equation is
a special case of distributed-order diffusion where instead of a continuous distribution the values one and µ for the diffusion exponents are
chosen.

III. EMIM DYNAMICS FOR SPECIFIC TRAPPING PDFS

We now obtain explicit forms for the characteristic observ-
ables in the EMIM dynamics for exponential and ML-type
trapping time density functions and discuss possible exten-
sions of our model.

A. Exponential trapping time distribution

We start with the choice of an exponential distribution for
the trapping time PDF,

γ (τ ) = ωe−ωτ , (19)

with mean 〈τ 〉 = 1/ω. The variable ω is identical to the mass
transfer coefficient from the rate equations (1). In the follow-
ing, we demonstrate three implications of this choice. First,
when choosing an exponential distribution in the EMIM the
mobile concentration reflects one state of a general Marko-
vian two-state model. Second, it follows immediately that
matching ω with the mass transfer coefficient from our rate
equations (1) is not a restriction when only considering mobile
tracers. Hence, we make this choice in (19). Third, we show
the equivalence of both EMIM rate equations with the choice
(19) in the model of [26].

To this end let us consider a general Markovian two-state
MIM with immobilization rate ω1 and remobilization rate ω2
as discussed in [65],

∂

∂t
Cm = −ω1Cm + ω2Cim + L(x)Cm,

∂

∂t
Cim = ω1Cm − ω2Cim, (20)

where we added the advection-diffusion operator L(x) to the
mobile rate equation. From (20) with the initial conditions
Cim(x, 0) = 0 and Cm(x, 0) = M0δ(x) we obtain the formal
solution [65]

Cim(x, t ) =
∫ t

0
ω1e−ω2(t−τ )Cm(x, τ )dτ. (21)

We insert this solution into (20) to find

∂

∂t
Cm(x, t ) = −ω1Cm(x, t ) + ω1

∫ t

0
ω2e−ω2(t−τ )Cm(x, τ )dτ

+ L(x)Cm(x, t ). (22)

If we now replace ω2 with ω and ω1 with βω, we recover
the mobile rate equation of the EMIM (1a) with the specific
choice (19). The rate equation for the immobile concentration,

∂

∂t
Cim(x, t ) = βωCm(x, t ) − β

∫ t

0
γ (t − τ )ωCm(x, τ )dτ,

(23)
differs from our immobile rate equation (1b) only by the factor
β. Note that the equivalence of the mobile concentrations
suffices because Cim is typically not measured. We can repeat
the same steps with the rate equations, which are equivalent
to the model proposed in [26],

∂Cm

∂t
+ β

∂Cim

∂t
= L(x)Cm, (24a)

∂Cim

∂t
= ω(Cm − Cim), (24b)

for which we obtain

∂

∂t
Cim(x, t ) = ωCm(x, t ) −

∫ t

0
ωe−ω(t−τ )Cm(x, τ )dτ. (25)

Note specifically the equivalence with both our mobile and
immobile rate equations (1), as can be seen from inserting
(25) in (24a). Equations (24) are first-order rate equations.
Therefore, we refer to the choice γ (τ ) = ω exp(−ωτ ) as the
first-order model or simply exponential model. Figure 2 visu-
alizes the relation of the EMIM to the MIM and other models.

In the long-time limit corresponding to s → 0 in Laplace
space, the mobile concentration is equal to the immobile con-
centration, as we show in the following calculation starting
from the general relation (5) between Cim and Cm:

lim
s→0

Cim(k, s) = lim
s→0

ωCm(k, s)
1 − ω

s+ω

s

= lim
s→0

ω

s + ω
Cm(k, s) = lim

s→0
Cm(k, s). (26)

Therefore, it suffices to calculate the long-time limits of the
normalized moments of the mobile concentration to obtain the
long-time limits of the moments of the immobile and full con-
centrations. Note that, due to different mobile and immobile
volumes, the respective masses differ, which, however, does
not restrict generality.
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1. Mobile mass

Inverse Laplace transformation of the mobile mass (6)
yields

Mm(t ) = M0

1 + β
(1 + βe−ω(1+β )t ), and thus

lim
t→∞

Mm(t ) = M0

1 + β
(27)

in the long-time limit, in accordance with (7) with 〈τ 〉 = 1/ω.

2. Moments

Using the general equation (12) for 〈xm(s)〉u, we obtain
the result for the unnormalized first moment in time domain
through inverse Laplace transformation,

〈xm(t )〉u = vt
(1 + β )2

(1 + β2e−ω(1+β )t )

+ v
2β

(1 + β )3ω
(1 − e−ω(1+β )t ), (28)

from which we find the long-time behavior

〈xm(t )〉u
t→∞∼ vt

(1 + β )2
. (29)

We divide (28) by the mobile mass for normalization,

〈xm(t )〉 = vt
(1 + β )

1 + β2e−ω(1+β )t

1 + βe−ω(1+β )t

+ v
2β

(1 + β )2ω

1 − e−ω(1+β )t

1 + βe−ω(1+β )t
, (30)

and find the corresponding long-time behavior

〈xm(t )〉 t→∞∼ vt
1 + β

. (31)

The normalization thus corresponds to rescaling time as
t → t/(1 + β ).

After Laplace inversion of (14) we find the unnormalized
second moment valid at all times,

〈
x2

m(t )
〉
u = 2v2

(1 + β )3

[
t2

(
1
2

+ β3

2
e−(1+β )ωt

)

+ t
3β

(1 + β )ω
(1 − βe−(1+β )ωt )

+ 3(β2 − β )
(1 + β )2ω2

(
1 − e−(1+β )ωt)

]

+ 2D
t

(1 + β )2
(1 + β2e−(1+β )ωt )

+ 2D
2β

(1 + β )3ω
(1 − e−(1+β )ωt ), (32)

and after normalizing with Mm(t ) [expression (27)], we obtain
the normalized second mobile moment

〈
x2

m(t )
〉
= 2v2

(1 + β )2(1 + βe−(1+β )ωt )

[
t2

(
1
2

+ β3

2
e−(1+β )ωt

)

+ t
3β

(1 + β )ω
(1 − βe−(1+β )ωt )

+ 3(β2 − β )
(1 + β )2ω2

(1 − e−(1+β )ωt
]

+ 2D
t

(1 + β )
1 + β2e−(1+β )ωt

1 + βe−(1+β )ωt

+ 2D
2β

(1 + β )2ω

1 − e−(1+β )ωt

1 + βe−(1+β )ωt
. (33)

In the long-time limit t , 1/(1 + β )ω we find from (32) that

〈
x2

m(t )
〉
u

t→∞∼ v2

(1 + β )3
t2 + 2D

t
(1 + β )2

. (34)

When we account for the change of mobile mass, we obtain

〈
x2

m(t )
〉 t→∞∼ v2

(1 + β )2
t2 + 2D

t
1 + β

, (35)

which, as for the first moment, corresponds to rescaling time
t → t/(1 + β ) [see the relation (69) in [45]]. In fact, the
expression (35) in terms of t/(1 + β ) is exactly the expected
combination of advection and diffusion of a Brownian particle
in a drift flow v, v2t2 + 2Dt .

In the long-time limit we obtain the second central moment
for the classical model in the form

〈(x − 〈x〉)2〉 t→∞∼ 2
D

1 + β
t, (36)

which grows linearly and corresponds to free Brownian mo-
tion with rescaled time t → t/(1 + β ). These results coincide
with those reported in [79].

3. Breakthrough curves

We finally calculate the long-time behavior of the mobile
concentration Cm(x, t ), whose interpretation at a fixed point x
is that of the BTC. Starting from the general expression (18)
for Cm(k, s), we find for a small Laplace variable s that φ ∼
s(1 + β ). Fourier-Laplace inversion to the space-time domain
yields the expected Gaussian form

Cm(x, t ) ∼ M0

1 + β

√
1 + β

4πDt
exp

(
−

[
x − vt

1 + β

]2 1 + β

4Dt

)
.

(37)
This result quantifies the concentration of a free Brownian
particle with rescaled time t → t/(1 + β ). Note that the im-
mobile concentration has the same long-time limit as shown
in (26).

B. Mittag-Leffler trapping time distribution

We now turn to the case when the characteristic trapping
time becomes infinite and, as an explicit form, choose the
generalized or two-parametric ML trapping time PDF [82,83]

γML(t ) = (t/τ.)µ

t
Eµ,µ(−[t/τ.]µ), (38)

with 0 < µ < 1 and τ. > 0. This distribution has the power-
law tail & t−1−µ that indeed produces a diverging mean. We
refer to the choice (38) as the ML model in the following. The
corresponding PDF in the Laplace domain reads [84]

γML(s) = 1
1 + (τ.s)µ

. (39)
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In Sec. IV we show that the dynamics of the total tracer
concentration in our model is a particular case of the bifrac-
tional diffusion equation [71], to which a transport term is
added, and the fractal model [45], in the long-time limit
t , τ.. We note that another common choice for a PDF with
a power-law tail is the one-sided Lévy distribution [34,65,71].
While the latter is supported formally by the generalized cen-
tral limit theorem [85], its more intricate Laplace transform
exp[−(τ.s)µ] renders analytical calculations virtually impos-
sible. As the results are expected to be very close to those of
the ML model, we use the more easily tractable ML PDF as
the basis for our further study.

1. Mobile mass decay

For the mobile mass Mm(s) [see the expression (6)], we
obtain in Appendix A that

Mm(t ) = M0e−βωt + M0βωτµ
. t

∞∑

k=1

(−1)k+1
(

t
τ

)µk

× Ek+1
1,µk+2(−βωτµ

. t ), (40)

which yields the short-time behavior

Mm(t ) ∼ M0(1 − βωt ) + M0
βωt

'(µ + 2)

(
t
τ.

)µ

+ O(tα ).

(41)
Here the first term contains the initial mobile mass and immo-
bilization with rate βω. The second term contains the lowest
order of the tracer remobilization proportional to t1+µ. The
Landau symbol O(·) here represents higher-order terms with
α = min(1 + 2µ, 2). Note that the series (40) converges rela-
tively slowly in numerical implementations.

We calculate the long-time limit of the mobile mass from
its Laplace representation. For t → ∞, corresponding to
s → 0, we can approximate γML ∼ 1 − (τ.s)µ. We plug this
form into the general expression of Mm(s) [Eq. (6)] and find
Mm(s) ∼ M0

βωτ
µ
. sµ for s - 1/τ.. Via the Tauberian theorem, we

obtain the result in the time domain,

Mm
t→∞∼ M0

tµ−1

βωτµ
. '(µ)

, (42)

in agreement with result (8).

2. Moments

We calculate the long-time limits of the moments using the
same approximation γ (s)ML ∼ 1 − (τ.s)µ for t → ∞ as for
the mobile mass asymptotes. Using the general formula (12)
for the first unnormalized moment in Laplace space, we find

〈xm〉u = i
∂

∂k
Cm(s)

M0

∣∣∣∣
k=0

= v

(s + βωτµ
. sµ)2

= v

s2 + 2βωτµ
. s1+µ + β2s2µ

s→0∼ v

β2ω2τ 2µ
. s2µ

. (43)

In the last step, we used that 0 < µ < 1. This corresponds to

〈xm〉u
t→∞∼ v

t2µ−1

β2ω2τ 2µ
. '(2µ)

. (44)

We now turn to the normalized first moment for large t → ∞
and take the quotient of (44) and (42), namely,

〈xm〉 t→∞∼
v t2µ−1

β2ω2τ
2µ
. '(2µ)

tµ−1

βωτ
µ
. '(µ)

= vtµ

βωτµ
.

'(µ)
'(2µ)

. (45)

The asymptote of the first moment is hence nonlinear, similar
to the subdiffusive CTRW case [14].

To obtain the asymptote of the first moment from the im-
mobile concentration, we start from the general relation (16)
between 〈xn

m〉u and 〈xn
im〉u for n = 1, obtaining, for s → 0,

〈xim〉u = ωβv
1

{s + βω[1 − γ (s)]}2

1 − γ (s)
s

= ωβv
τµ
. sµ−1

(s + βωτ
µ
. sµ)2

s→0∼ v
s−µ−1

βωτ
µ
.

, (46)

which in the time domain corresponds to

〈xim〉 t→∞∼ vtµ

βωτµ
. '(1 + µ)

. (47)

Note that in the long-time limit all mass is immobile and
hence we do not need to normalize the moment. This result
differs from 〈xm〉 only by the factor '(2µ)/'(µ)'(1 + µ),
which is unity for µ = 1 and larger than unity for 0 <
µ < 1. Thus, the mobile particles travel further on aver-
age than the immobile particles in the long-time limit, as it
should be.

In what follows, we restrict ourselves to the mobile mo-
ments. Calculations of higher immobile moments are fully
analogous to the mobile moments and the first immobile mo-
ment.

Let us turn to the second unnormalized mobile moment for
s → 0,

〈
x2

m

〉
u = − ∂2

∂k2

Cm(s)
M0

∣∣∣∣
k=0

s→0∼ 2D

β2ω2τ 2µ
. s2µ

+ 2v2

β3ω3τ 3µ
. s3µ

.

(48)
This corresponds, in the time domain, to

〈
x2

m

〉
u

t→∞∼ 2D
t2µ−1

β2ω2τ 2µ
. '(2µ)

+ 2v2 t3µ−1

β3ω3τ 3µ
. '(3µ)

. (49)

Let us look at the normalized second moment for long t and
take the quotient of (49) and (42), namely,

〈
x2

m

〉 t→∞∼
2D t2µ−1

β2ω2τ
2µ
. '(2µ)

+ 2v2 t3µ−1

β3ω3τ
3µ
. '(3µ)

tµ−1

βωτ
µ
. '(µ)

= 2D'(µ)
tµ

βωτµ
. '(2µ)

+ 2v2'(µ)
t2µ

β2ω2τ 2µ
. '(3µ)

.

(50)

If only mobile tracers can be observed and the waiting time
PDF does not depend on β or ω, the parameters β and ω
cannot be determined individually, because they only appear
as the product βω in the Fourier-Laplace solution (4) of
Cm(k, s) and all quantities derived therefrom. Additionally, in
the long-time limits of the ML model the parameter τ. solely
appears in the product βωτµ

. and hence cannot be determined
separately. When only the long-time behavior of the mobile
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tracers is known, it therefore makes sense to only consider the
parameter β ′

s = βωτµ
. . At intermediate times, the parameter

τ. can be obtained independently of βω, as the mobile mass
(40) shows for the ML model.

Using the asymptotes (45) and (50) of the first and second
moments, we obtain the second central moment

〈[xm(t ) − 〈xm(t )〉]2〉

= 2D'(µ)
tµ

βωτµ
. '(2µ)

+ v2'(µ)
t2µ

(βωτµ
. )2

(
2

'(3µ)
− '(µ)

'2(2µ)

)
. (51)

The expression in the large parentheses only vanishes
for µ = 1. In the long-time limit, the second central
moment hence behaves as t2µ, i.e., subdiffusively for
0 < µ < 1/2 and superdiffusively for 1/2 < µ < 1. The oc-
currence of a superdiffusive behavior in a process dominated
by a scale-free waiting time PDFs is known for subdiffusive
CTRW processes with drift [35]. The phenomenon stems
from the fact that the process has a strong memory of the
initial position, its amplitude decaying only as &t−µ. Con-
currently, the mobile particles are advected, thus creating a
highly asymmetric position PDF of the process. In fact, while
for a Brownian particle the ratio of standard deviation to mean
position decays as &t−1/2, for the subdiffusive particle the
ratio is asymptotically constant, reflecting the large particle
spread [35]. This behavior is also witnessed by the slope of
the concentration profiles discussed below.

3. Breakthrough curves

In Appendix B we calculate the long-time limit of the
mobile concentration using the special function of Wright
type Mµ (Mainardi function) [84],

Mµ(z) =
∞∑

n=0

(−z)n

n!'[−µn + (1 − µ)]
. (52)

From the general equation for Cm(x, s) [Eq. (18)] we find in
the limit s - (v2/4βωτµ

. D)1/µ for v > 0, using the Laplace
inversion (B3),

Cm(x, t ) ∼ βωτµ
. µ

v2
exp

(
v

2D
(x − |x|)

)
|x|t−1−µMµ

×
(

βωτµ
.

v
|x|t−µ

)
. (53)

For long times t , τ.( βω
v

|x|)1/µ the argument of Mµ in (53)
goes to zero. With the limit Mµ(z) ∼ 1 for z → 0, we thus
have the asymptotic scaling Cm & t−1−µ for fixed x. In the
long-time limit, we find the immobile concentration profile
using the Laplace inversion (B4),

Cim(x, t )∼βωτµ
.

v
exp

(
v

2D
(x − |x|)

)
t−µMµ

(
βωτµ

.

v
|x|t−µ

)
.

(54)

Equations (53) and (54) clearly show exponential cutoffs for
x < 0, i.e., a strong suppression against the direction of the
advection, as it should be. For x > 0 the exponential function

in Eq. (54) vanishes and a cusp emerges. Conversely, at short
times and fixed x we find a Gaussian expression of Cm.

C. Comparison of the two EMIM cases

When choosing an exponential trapping time distribution,
our model follows the dynamic equations (24) correspond-
ing to the first-order mass transfer model (24) [26]. In the
long-time limit the mobile and immobile concentrations are
equal and the mass fraction 1/(1 + β ) remains mobile. The
unnormalized and normalized moments remain unchanged
except for the rescaled time t → t/(1 + β ). In the ML model,
the diverging mean trapping time leads to different mobile
and immobile concentrations and a power-law decay of the
mobile mass. The first and second moments grow nonlinearly
and nonquadratically in time, respectively. The second cen-
tral moment shows anomalous diffusion, i.e., subdiffusion for
0 < µ < 1/2 and superdiffusion for 1/2 < µ < 1. All long-
time limiting behaviors are summarized in Table I. In
Appendix E we validate our results with particle-tracking
simulations.

D. Tempered power-law and composite models

The ML model features a diverging characteristic trapping
time. While in many cases such models reveal adequate de-
scriptions (e.g., in [40,41] in which fits with a γ function
reveal a cutoff at the very end of the experimental window)
in other cases experiments explore time ranges in which the
finiteness of the system becomes significant. A finite system
size implies a finite number of locations, e.g., pores, where the
tracers can immobilize. This implies that a finite waiting time
exists, which has been measured, e.g., for dye dispersion in a
saturated sand pack [69]. A typical approach is to introduce
an exponential cutoff in the power-law waiting time PDF of
the form [22,29,31,52,69]

γt (t ) = exp(−t/τt )
γ (s = 1/τt )

γ (t ), (55)

with the characteristic crossover time τt > 0. An interesting
case is reported in [54] for which τt increases with biofilm
growth. In Laplace space we find

γt (s) = γ (s + 1/τt )
γ (s = 1/τt )

. (56)

If we choose the ML model as a special example, the associ-
ated tempered PDF has the characteristic waiting time

〈t〉 = τµ
. µ

τµ−1
t [1 + (τ./τt )µ]

. (57)

Together with the general limit (7) of Mm(t ) we find

lim
t→∞

Mm(t ) = M0

1 + βω τ
µ
. µ

τ
µ−1
t (1+τ

µ
. τ

−µ
t )

. (58)

The assumption τt , τ. appears reasonable; therefore, the
short-time expansion of the mobile mass coincides with the
untempered ML model (41).

We now calculate an estimation of Mm(t ) for τ. - t - τt
using γt (56) and the general formula for Mm (6) in Laplace
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TABLE I. Main long-time behavior of the mobile-immobile moments with section and equation numbers. At short times, regardless of the
trapping time PDF, we have 〈xm〉 ≈ vt and 〈x2

m〉 ≈ v2t2 + 2Dt , due to Cm(x, 0) = M0δ(x) and Cim(x, 0) = 0.

Moment Long-time behavior, mobile phase Long-time behavior, immobile phase

Exponential model (Sec. III A)
Mm(t )/M0

1
1+β

[Eq. (27)]

〈x〉 vt
1+β

[Eq. (31)]

〈x2〉 2D t
1+β

+ v2t2

(1+β )2 [Eq. (35)]

〈(x − 〈x〉)2〉 2D t
1+β

[Eq. (36)]

Cm,im(x, t ) Cm,im(x, t ) = M0√
2Dt
1+β

exp[−(x − vt
1+β

)2 1
4Dt/(1+β ) ] [Eq. (37)]

ML model (Sec. III B)

Mm,im(t )/M0
tµ−1

βωτ
µ
. '(µ)

[Eq. (42)]

〈xm,im〉 v'(µ) tµ

β'(µ) [Eq. (45)] vtµ

βωτ
µ
. '(1+µ)

[Eq. (47)]

〈x2
m,im〉 tµ2D'(µ)

β'(2µ) + t2µ2v2'(µ)
β2ω2τ

2µ
. '(3µ)

[Eq. (50)]

〈(xm,im − 〈xm,im〉)2〉 tµ2D'(µ)
βωτ

µ
. '(2µ)

+ t2µv2'(µ)
(βωτ

µ
. )2 ( 2

'(3µ) − '(µ)
'2 (2µ) ) [Eq. (51)]

Cm,im(x, t ) βωτ
µ
. µ

v2 e
v

2D (x−|x|) |x|
t1+µ Mµ( βωτ

µ
.

v
|x|t−µ) [Eq. (53)] βωτ

µ
.

vtµ e
v

2D (x−|x|)Mµ( βωτ
µ
.

v
|x|t−µ) [Eq. (54)]

space,

Mm(s′) = M0

s′ − 1
τt

+ βω
(
1 − 1

1+(τ.s′ )µ − τ
µ
. τ

−µ
t

1+(τ.s′ )µ
) , (59)

where we define s′ = s + 1/τt . This definition allows us to
analyze (59) for small s′,

Mm(s′)
s′→0∼ M0

βω[(τ.s′)µ(1 + τµ
. τ−µ

t ) − τµ
. τ−µ

t ] − 1
τt

(60)

∼ M0

βωτµ
. (1 + τµ

. τ−µ
t )

1

sµ − τ
µ
. τ

−µ
t +(τt βω)−1

τ
µ
. +τ

2µ
. τ

−µ
t

(61)

and thus, after Laplace inversion [see [84], Eq. (4.10.1)],

Mm(t ) ∼ M0

βωτµ
. (1 + τµ

. τ−µ
t )

tµ−1Eµ,µ(λtµ), (62)

with λ = [τµ
. τ−µ

t + (τtβω)−1]/[τµ
. + τ 2µ

. τ−µ
t ]. Since

we have τt , τ., λ simplifies to λ = 1/τµ
. τtβω. Using

L −1{ f (s + 1/τt )} = exp(−t/τt ) f (t ), we find

Mm(t ) ∼ M0

βωτµ
. (1 + τµ

. τ−µ
t )

tµ−1Eµ,µ(λtµ), τ. - t - τt .

(63)
Another class of modification to the models considered

above arises for the case of composite systems, in which two
distinct immobile zones with different trapping time PDFs
γ1(τ ) and γ2(τ ) exist. Analogously to (1), these systems are
described by

θm

θim

∂

∂t
Cm(x, t ) = −ωCm(x, t ) +

∫ t

0
[bγ1(t − τ ) + (1 − b)

× γ2(t − τ )]ωCm(x, t )dτ

+ θm

θim
L(x)Cm(x, t ), (64a)

∂

∂t
Cim,1(x, t ) = bωCm(x, t ) −

∫ t

0
bγ1(t − τ )ωCm(x, t )dτ,

(64b)

∂

∂t
Cim,2(x, t ) = (1 − b)ωCm(x, t )

−
∫ t

0
(1 − b)γ2(t − τ )ωCm(x, t )dτ. (64c)

Here the particle immobilizes into the first immobile zone
with probability b and into the second zone otherwise. The
combination of two remobilization processes arises, for in-
stance, in intragranular diffusion processes, where mesopores
and micropores are present and the latter lead to slow diffu-
sion with γ -distributed diffusion rates [51]. We are mainly
interested in the mobile zone; consequently, we define

γ (τ ) = bγ1(τ ) + (1 − b)γ2(τ ) (65)

and consider (1a) only. All observables can be obtained by
plugging the corresponding (composite) trapping time PDFs
into the general expressions that we presented in Sec. II A and
numerically calculating the Laplace inversion (see the explicit
results in Sec. V A). We note that we calculate all Laplace
inversions using the implementation of the de Hoog method
[86] using the PYTHON package MPMATH [87].

IV. CONNECTION TO FRACTIONAL MODELS

We now proceed to show that the EMIM formalism devel-
oped here is consistent with the bifractional diffusion equation
model [71] and the fractal MIM presented in [45] in the limit
t , τ.. The relations between these models and the EMIM
are outlined in Fig. 2.

A. Connection to bifractional diffusion
equation and fractal MIM

To this end, we recall our definition of the cumulative
function of the waiting time PDF, -(t ) =

∫ ∞
t γ (τ )dτ , i.e., the

survival probability in the trapped state. Since
∫ ∞

0 γ (τ )dτ =
1, we have 1 − -(t ) =

∫ t
0 γ (τ )dτ . From here we obtain

γ (τ ) = −∂-(t )/∂t and -(s) = [1 − γ (s)]/s. Now we aim at
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rewriting the dynamic equations (1) of the EMIM in terms of
this survival probability. We start with the relation (1a) and
use integration by parts in the second term of the right-hand
side,
∫ t

0
γ (t − τ )Cm(x, t )dτ

= -(t )Cm(0) + -(0)Cm(t ) −
∫ t

0
dτ-(t − τ )

d
dτ

Cm(τ ).

(66)

Thus, our model (1a) is equivalent to

∂

∂t
Cm(t ) + βω

∫ t

0
-(t − τ )

∂Cm(τ )
∂τ

dτ

= −βω-(t )Cm(0) + L(x)Cm(x, t ). (67)

Now, for our ML model γ (s) = 1/[1 + (τ.s)µ] the survival
probability in the Laplace domain reads

-(s) = sµ−1τ
µ
.

1 + (τ.s)µ
. (68)

Thus, in our approach -(t ) = Eµ[−(t/τ.)µ] → e−t/τ. for
µ = 1. The ML function converges to unity when t → 0 and
decays as the power law t−µτµ

. /'(1 − µ) at large t . If we
only retain the long-time asymptotes we arrive at the model
in [45] in terms of the fractional Caputo derivative of order
0 < µ < 1 [88].

For the specific choice -(t ) = ωe−ωt the fractal model in
[45] leads to the classical mass transfer model (24a). Note that
this choice is equivalent to our exponential model with γ (t ) =
ωe−ωt . It leads to the linear retardation factor (1 + β ) [45] and
the dynamic equation

(1 + β )
∂Ctot

∂t
= L(x)Ctot, Ctot (x, 0) = θmCm,0(x) (69)

for the total concentration that we also found in the long-time
limit of our exponential model. In this sense our approach
is fully consistent with the fractal MIM developed in [45].
However, in our EMIM formulation the trapping time distri-
bution γ (t ) is a proper PDF including the case of PDFs with
diverging mean; in particular, no divergence at γ (0) occurs.

We proceed to analyze the connection of the EMIM to the
bifractional diffusion equation. In the long-time limit we can
rewrite the total concentration (9) using a ML PDF and the
approximation γ (s) = 1 − τµ

. sµ to obtain

sCtot (k, s) − M0 + βωτµ
. sµCtot (k, s) − M0βωτµ

. sµ−1

= (ikv − k2D)Ctot (k, s). (70)

We can now identify a first-order derivative and a Caputo
fractional derivative, yielding in the time-space domain

∂Ctot

∂t
+ β ′

s
∂µCtot

∂tµ
= L(x)Ctot, (71)

which is a bifractional diffusion equation, as discussed in
[71,72,89] and reported in [45] for θmCm,0(x) = Ctot (x, 0),
with a generalized transport operator L(x).

B. Analytical forms of the transport moments

For a small Laplace variable s the Laplace transform of
the ML PDF behaves like γ (s) ∼ 1 − τµ

. sµ. Plugging this
limiting form into the Fourier-Laplace transform of the mobile
concentration (4), we find

Cm(k, s) = M0

s + βωτµ
. sµ − ivk + k2D

. (72)

We call this asymptotic form the fractal model, which co-
incides with the model analyzed in [45,71,72], as discussed
above. We note that even though our model includes the frac-
tal model in the limit t , τ., the bifractional models are full
models valid for all t on their own. Therefore, we calculate the
mobile mass and the moment for all t and not only in the limit
t → ∞. The advantage of the ML model is that the trapping
PDF (38) is well defined in the limit t → 0.

To find the mobile mass using the fractal model, we set
k = 0 in Cm(k, s) in Eq. (72) and use the properties of the ML
function [see [84], Eq. (3.7.8)], yielding

Mm(t ) = M0E1−µ(−βωτµ
. t (1−µ) ). (73)

For the unnormalized first moment we use the fractal model
and the general formula (12) for 〈xm(s)〉u to find

〈xm(s)〉u = v

[s + βω(τ.s)µ)2
= vs−2µ

(s1−µ + βωτµ
. )2

, (74)

which we transform to time domain using [see [90], Eq. (2.5)]

〈xm(t )〉u = vtE2
1−µ,2(−βωτµ

. t (1−µ) ). (75)

Dividing the unnormalized first moment (75) by the mobile
mass (73) normalizes the first moment,

〈xm(t )〉 =
vtE2

1−µ,2(−βωτµ
. t (1−µ) )

E1−µ(−ωβτµ
. t (1−µ) )

. (76)

We plug the fractal model with γ (s) ∼ 1 − (τ.s)µ into the
general relation (16) between 〈xn

m〉u and 〈xn
im〉u for n = 1,

obtaining

〈xim〉u = ωβv
1

{s + βω[1 − γ (s)]}2

1 − γ (s)
s

= ωβv
τµ
. sµ−1

(s + βωτµ
. sµ)2

. (77)

In the time domain we find, using (77) and Eq. (2.5) in [90],
that

〈xim〉u = ωβτµ
. t2−µE2

1−µ,3−µ(−βωτµ
. t1−µ). (78)

Dividing by the immobile fraction mass Mim(t )/M0 = 1 −
Mm(t )/M0 yields the normalized first moment

〈xim〉 =
ωβτ

µ
. t2−µE2

1−µ,3−µ(−βωτ
µ
. t1−µ)

1 − E1−µ(−βωτµ
. t (1−µ) )

. (79)

Consider next the unnormalized second moment obtained
via the second derivative of Cm(k, s) in Eq. (72),

〈
x2

m(s)
〉
u = 2D

(s + βωτµ
. sµ)2

+ 2v2

(s + βωτµ
. sµ)3

= 2Ds−2µ

(s1−µ + βωτµ
. )2

+ 2v2s−3µ

(s1−µ + βωτµ
. )3

, (80)
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which we transform back to the time domain using Eq. (2.5)
in [90],

〈x2
m(t )〉u = 2DtE2

1−µ,2(−βωτµ
. t (1−µ) )

+ 2t2v2E3
1−µ,3(−βωτµ

. t (1−µ) ). (81)

With the mobile mass (73) we normalize (81) to

〈
x2

m(t )
〉
= 2Dt

E2
1−µ,2(−βωτµ

. t (1−µ) )

E1−µ(−βωτµ
. t (1−µ) )

+ 2t2v2
E3

1−µ,3(−βωτµ
. t (1−µ) )

E1−µ(−βωτ
µ
. t (1−µ) )

. (82)

We find the second central moment of the fractal model by
using relations (76) and (82),

〈[xm(t ) − 〈xm(t )〉]2〉 = 2Dt
E2

1−µ,2(−βωτµ
. t (1−µ) )

E1−µ(−βωτµ
. t (1−µ) )

+ 2v2t2
E3

1−µ,3(−βωτµ
. t (1−µ) )

E1−µ(−βωτµ
. t (1−µ) )

− v2t2
(E2

1−µ,2(−βωτµ
. t (1−µ) )

E1−µ(−βωτµ
. t (1−µ) )

)2

.

(83)

We note that the asymptotics of the moments presented in
this section can be obtained by rewriting the three-parametric
ML functions in terms of two-parametric ML functions with
Eq. (2.4) in [90] and approximating them up to second order
with Eq. (6.11) in [91]. These limits match our results for the
EMIM ML model in Sec. III B in Eqs. (42), (45), and (50) and
what has been reported previously [46].

V. COMPARISON TO EXPERIMENTS

We apply our model to two different experimental data sets
that we discuss in detail. The study reported in [22] probes
fluorescent dye in an alpine karst aquifer in the Hochifen-
Gottesacker area (Austria). The dye was injected into actively
sinking surface water and measured at two karst springs up to
7400 m away [22]. We show the resulting BTC of the data set
IP Gb (2) in Fig. 5. It was measured 3500 m downstream from
the injection point and was previously reported in [22,92].
Our aim is to obtain the moments of the mobile concentra-
tion from this BTC, because BTCs are commonly measured
while moments provide important additional information on
the transport dynamics [22,27,31,54,69].

One crucial idea of our model is the division into mobile
and immobile particles. However, the tracers are not detected
while moving through the karst aquifer and hence we cannot
directly compare our predicted mobile mass decay to exper-
iments that only measure BTCs. Therefore, we consider a
second experiment where the tracer concentration profile is
measured. This experiment is the first macrodispersion exper-
iment (MADE-1) [20,43]. The authors of this study realized a
48-h pulse injection of bromide into a heterogeneous aquifer
near Columbus, Mississippi (USA). A network of multilevel
sampling wells covering around 300 m along the flow di-
rection with approximately 6000 sampling points allowed
the observation of the plume profile at eight snapshots up

FIG. 3. Fraction of measured mass in the MADE-1. Data points
are taken from [45], extracting the data from the PDF paper file.
(a) The fractal MIM is fitted to the data; the parameters are βs =
0.08 d−0.67 and µ = 0.33 with an initial mobile mass of 5, as ob-
tained in [45]. For the ML model (38) we choose µ = 0.33 and
βωτµ

. = 0.08 dµ−1 such that both the ML and fractal models yield
the same long-time asymptotic behaviors. The asymptote does not
depend on the ratio βω/τµ

. , for which we choose 1/10, 1/5, and
10 from top to bottom. This ratio affects the short-time behavior
&exp(−ωβt ). Small values of τ. lead to an early asymptotic be-
havior and hence a match with the fractal model appears sooner.
(b) The exponential model, ML model, and fractal MIM are fitted
individually to the data. The asymptotic power law of the ML EMIM
has a different exponent of µ − 1 = 0.42 − 1 = −0.58 compared to
the fractal model with µ − 1 = 0.33 − 1 = −0.67. The exponential
model has the parameters β = 6, M0 = 4.7, and ω = 0.003 d−1, as
obtained in [45]. The associated parameters of the remaining models
are listed in Table II. Note that “d” represents “day” in SI units.

to 594 d after injection. Using linear interpolation between
sampling points, the authors obtained the total measured mass
by integrating over all three spatial dimensions. The total
recovered mass exceeded the initial input mass, which the
authors explained by a “spurious hydraulic connection among
[the sampling stations]” or higher concentrations in regions
with higher hydraulic conductivity and subsequent inaccurate
linear interpolation [20]. Nevertheless, a power-law tail was
clearly observed in the decay of recovered mass, as demon-
strated in [45]. In addition to the mobile mass, the authors
obtained the moments of the tracer distribution in the MADE-
1 [20]. Notably, the plume consisted of a virtually stationary
distribution with a slowly decaying shoulder [20].

A. Mobile mass

Figure 3 shows the measured mobile mass decay of the
MADE-1 [20] as circles. In Fig. 3(a) we show the best fit
of the fractal MIM from [45] (see Sec. IV) along with our
ML model. For the latter we do not fit the data but choose
the model parameters such that the ML model has the same
asymptotic long-time behavior as the fractal model. This is
achieved for the parameters µ = 0.33, βωτµ

. = 0.08 daysµ−1,
where in SI units “d” stands for “days”, and M0 = 5 for
the mobile mass. For the ML model we show the numerical
Laplace inversion of the mobile mass in Laplace space (6)
using γML. At short times all models are dominated by the
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TABLE II. Fit parameters and coefficient of determination of fits to Mm(t ) from Figs. 3(b) and 4. The parameters β and ω only appear as a
product in the mobile concentration and hence cannot be determined separately.

Model M0 µ βω (d−1) τ. (d) τt (d) ω1 (d−1) ω2 (d−1) b R2

ML 4.833 0.417 0.060 9.549 0.992
truncated 4.726 0.226 0.913 0.934 11530 0.994
ML+exp 4.2 0.104 0.0227 25.18 0.0052 0.56 0.998
exp+exp 3.78 0.01983 0.00182 5713 0.61 0.989

identical initial value M0; hence the ML and fractal models
differ only at intermediate timescales of around 50 d. Note
that as long as the product βωτµ

. remains constant, the same
long-time limit is reached. Therefore, we can choose different
ratios βω/τµ

. . From top to bottom we use in Fig. 3 the values
1/10, 1/5, and 10. A small ratio will decrease the initial decay
&exp(−βωt ), while a large ratio corresponding to small τ.

leads to earlier appearance of the asymptotic behavior, and for
the ratio 10, the ML model coincides with the fractal model.

In Fig. 3(b) we show a fit with our model (27) with an
exponential trapping time distribution with β = 6, M0 = 4.7,
and ω = 0.003 108 11 d−1. These parameters correspond to a
fit to the data shown in [45], where a model matching (24) was
used. The fit does not describe the data well, because it reaches
the steady-state value (27), in contrast to the continued decay
shown by the data. In addition, we show fits of both the fractal
and ML models to the MADE-1 data. Both models describe
the data well, as demonstrated by the coefficient of determina-
tion R2 = 0.992 (we calculate all coefficients of determination
using the PYTHON module SCIKIT LEARN [93]). In Table II we
show the fit parameters, observing no significant difference in
goodness of fit between the ML and fractal models. We note,
however, that µ differs: It is 0.33 for the fractal model and
0.42 for the ML model. This observation demonstrates that
the fully quantitative behavior of the seemingly very similar
models is indeed notably different.

Figure 4 shows fits using our extended models from
Sec. III D to the MADE-1 data [20,45]; see Table II for
the fit parameters. First we consider the composite model
with two exponential terms γ (τ ) = bω1 exp(−ω1τ ) + (1 −
b)ω2 exp(−ω2τ ) with 0 < b < 1. The result is shown by the
dotted line, which quantitatively behaves quite similarly to
the exponential model. It approximates all but the last data
point well with a coefficient of determination of R2 = 0.988,
which is notably worse than all models containing power-law
waiting times (see Table II). This indicates the necessity of
including long-tailed trapping time PDFs for these data. Of
course, adding additional exponentials would improve the fit,
however, at the cost of a larger number of fit parameters.

The second composite form that we consider reads, in
Laplace space,

γ (s) = b
1 + (τ.s)µ

+ (1 − b)
ω1

ω1 + s
(84)

and corresponds to the combination of an exponential and
an ML trapping time PDF. In Fig. 4 the orange dash-dotted
line shows the best fit using this model, with a coefficient of
determination of R2 = 0.998. In fact, this is the only model
considered here capable of reproducing the apparent shoulder
in the data around 200 d. Concurrently, the long-time behavior

exhibits a scaling exponent µ that is significantly different
from the pure ML model. We highlight that both the trun-
cated ML model (55) with R2 = 0.993 and the combination
of the ML and exponential model (84) with R2 = 0.998 fit the
data better than the ML model alone (R2 = 0.992). This in-
dicates that the data indeed encode finite-size effects needing
a tempering of the power-law tail of the trapping time PDF.
However, we stress that we fit to seven data points only and
the extended models have more parameters than the ML or
exponential model. Therefore, the extended models might be
subject to overfitting. Improved data will be needed to be more
accurate in this interpretation.

B. Breakthrough curves

In Fig. 5 we show the BTC of the IP Gb (2) experiment,
in which fluorescent dye travels in the underground aquifer
in the Schwarzwasser valley [22]. All fit parameters are listed
in Table III. A fit using the ML trapping time PDF describes
the data well with R2 = 0.990. The fractal model describes
the data equally well with the same R2 = 0.990. Its peak
is slightly higher than that of the ML model. The classical
model fails to describe the power-law decay at long times
and hence yields the notably worse value R2 = 0.940, with

FIG. 4. Fitted extended models. The tempered ML model
γ ∗

ML(s) = [1 + (τ./τt )µ]/[1 + (τ.s + τ./τt )µ] (solid line) and two
combinations of γ are fitted to the experimental mobile mass de-
cay of the MADE-1 [20]. At around 900 d, the deviation from the
power-law trend is visible in the tempered model. The combination
of two exponential functions (dotted line) behaves quite similarly
to the pure exponential model in Fig. 3. Combining the ML and
exponential models yields the orange dash-dotted line. It is the only
model considered capable of describing the shoulder of the data at
around 300 d. The fit parameters are given in Table II.
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FIG. 5. Fits to the BTC for fluorescent dye measured 3500 m
downstream from the injection point in the Schwarzwasser experi-
ment [22,92]. The solid line shows a fit using the ML model with
R2 = 0.990 and the dashed line a fit using the fractal model with
R2 = 0.990. Both differ mainly in the peak height. An exponen-
tial trapping time PDF yields a significantly worse fit (R2 = 0.940)
with an additional shoulder and an exponential decay instead of the
power-law decay at long times. [Data were taken from [22], IP Gb
(2).] The fit parameters are listed in Table III.

an unlikely high fit value for the diffusion coefficient, Dexp =
9527 m2/h, and a considerably lower vexp = 94.9 m/h. In this
model, the tracers diffuse very fast while the advection is
slow. This way, the exponential fit compensates for the lack
of the power-law decay. Note also the exponential decay in
the fit of the exponential model and the fact that it completely
misses the short-time behavior. We conclude that power-law
tails introducing a wide range of timescales appear necessary
for a proper description of the experimental data. We use the
parameters from the fits to the BTC for the remainder of this
work.

C. Concentration profile

Next we focus on the spatial distribution of the solute,
i.e., the plume profiles. In Fig. 6 we show the concentrations
corresponding to the BTC fits in Fig. 5. We logarithmically
present the Laplace inversion of the mobile concentration (18)
in the top row for the ML model (solid line), the fractal model
(dotted line), and the exponential model (dash-dotted line).
The left column shows the short-time behavior 1 min after
injection. The ML and fractal models show a comparatively
narrow bell-shaped behavior, while the exponential model
already exhibits a considerable spread due to its high value
of D. At intermediate times of 30 h (middle column) all
mobile concentrations are increasingly skewed to the right and

TABLE III. Fit parameters and coefficients of determination for
the BTCs shown in Fig. 5. The parameters β and ω only appear as a
product in the mobile concentration of the ML and fractal model and
hence cannot be determined separately.

βω ω v D
Model M0 µ (h−1) (h−1) τ. (h) (m/h) (m2/h) R2

ML 155.7 0.737 0.406 0.922 151.4 35.2 0.990
limit 242.8 0.771 0.841 1.00 232.9 21.8 0.990
exp 96.3 0.006 0.011 94.9 9527.0 0.940

FIG. 6. Logarithmic representation of the concentration profiles
of the mobile and immobile particles 1 min, 30 h, and 200 h af-
ter injection from the left to the right panels, respectively. Note
the different ranges of the horizontal axes for each delay time.
At short times all models yield a Gaussian mobile distribution,
which is increasingly skewed at later times. The diffusion coefficient
Dexp = 9527 m2/h of the exponential model is exceptionally high
compared to that of the ML model (DML = 35.2 m2/h) and of the
fractal model (Dlimit = 21.8 m2/h). Thus the concentration of the
exponential model has spread significantly further than the other
models at shorter times. The immobile particle fraction has a non-
Gaussian distribution at all times and has cusps at x = 0, which are
typical transport features for systems with diverging waiting times
[14,35,71]. The parameters of all models correspond to the fit to the
BTC in Fig. 5. The BTC was measured at 3500 m, as marked by the
vertical line. See Table III for fit values.

are significantly non-Gaussian (note the different ranges of
the horizontal axes for different t). The vertical line denotes
the position at which the experimental BTC was measured
(3500 m downstream from the injection point). Quick decays
to zero concentration around 0 and 4000 m characterize the
skewed limit and ML model concentrations. At 200 h, the
difference between the three models is quite small. At the
measurement position, the limit and ML model are particu-
larly similar.

The immobile concentrations in the bottom row of Fig. 6
are pronouncedly non-Gaussian at all times. We obtain them
by taking a numerical Laplace inversion of the mobile concen-
tration (18) plugged into the general relation (5) between the
mobile and immobile concentration. At t = 1 min the fractal
model’s immobile concentration is one order of magnitude
higher than that of the ML model. In addition, the peak of the
ML model is close to x = 0 m, while the peak of the fractal
model is around x = 5 m. At 30 h the ML and fractal models
are very similar, have a sharp rise from zero to approximately
10−3 at 0 m, and show a peak around 3000 m. In contrast,
the exponential model has its peak close to 0 m and falls off
monotonically in both directions. At 200 h the ML and fractal
models almost coincide and have qualitatively the same shape
as for 30 h, although they have spread up to 22 km. Notably,
the exponential model has a similar concentration. In the next
section we characterize these concentrations further in terms
of their first and second moments.
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(a) (b)

FIG. 7. Comparison of the normalized (〈xm,im〉), unnormalized
(〈xm,im〉u), and total (〈x〉) first moments for the mobile and immobile
tracers on a double-logarithmic scale using (a) the ML model and
(b) the exponential model. In both panels, both 〈xm〉u and 〈xm〉 are
a good approximation for 〈x〉 at short times, due to the high mobile
fraction. The same holds for long times for the immobile moment. In
the ML model, the first moment of the mobile particles has the same
power-law behavior &tµ as the immobile tracers but with a larger
coefficient. The black solid line shows the asymptote (45) of 〈xm〉 as
a guide to the eye. The parameters correspond to the fit to the BTC
in Fig. 5 as listed in Table III.

D. Moments

We show the first moment 〈x〉 in Fig. 7 with parameters
corresponding to the fit of our model to the BTC in Fig. 5. In
addition to 〈x〉 we show the first moment of the mobile and
immobile tracers 〈xm〉 and 〈xim〉, respectively. For the expo-
nential model we use the analytic expressions (28) for 〈xm〉u
and (30) for 〈xm〉. All remaining first moments are obtained
through Laplace inversion of the general expressions (12) for
〈xm〉u and (16) for 〈xim〉u. Subsequent normalization with the
mobile mass (40) yields 〈xm〉 and 〈xim〉 for the ML model.

The first moment 〈x〉 of the total mass in Fig. 7 demon-
strates a crossover from linear to power-law (&tµ) scaling in
time when using the ML model. At short times it matches
〈xm〉 and 〈xm〉u, while coinciding with 〈xim〉 and 〈xm〉u at long
times, as expected by the immobilization of all tracers in the
long-time limit. The moments 〈xm〉 and 〈xim〉 have the same
long-time power-law behavior, albeit with different coeffi-
cients. The black solid line in Fig. 7(a) shows the long-time
limit of 〈xm〉 using the ML model as given by the expression
(45). In contrast, the center of mass of the mobile plume
of the ML model is ahead at all times after injection. In
Fig. 11 the described behavior is easier to discern with a
significantly lower µ = 0.33. We use the parameters of the fit
to the mobile mass in [45] of Fig. 3 along with v = 0.8 m/d
and D = 4m2/d. The advection speed v was measured in the
experiment and D is our estimate. In the time interval in which
the BTC data were collected, the first mobile moments almost
coincide and grow nonlinearly &tµ, including the exponential
model, as shown in Fig. 8.

In Fig. 9 we show the second moments correspond-
ing to the BTC fits from Fig. 5. We obtain the moments
through Laplace inversion of the general expressions (14) for
〈x2

m(s)〉u and (16) for 〈x2
im〉u after normalization with Mm(t )

(a) (b)

FIG. 8. First (〈xm〉) and second [〈(xm − 〈xm〉)2〉] central mo-
ments. In (a) we show the first mobile moment using the exponential
and ML model (see Fig. 7 for details). In (b) the second central
moment of the ML and exponential models scales like 2Dt at short
times. The exponential model is linear in the long-time limit as well.
The ML model grows &t2µ for t > 10 h. The parameters of both
models in both panels are taken from the fit to the BTC in Fig. 5
and are listed in Table III. In the shaded regions corresponding to
the time window in which the data of the fitted BTCs were taken, the
exponential model displays apparent anomalous diffusion and almost
coincides with the power-law from the ML model.

or Mim = M0 − Mm [obtained from the general expression (6)
for Mm(s)]. The second moment of the total concentration
obtained from the general expression (17) for 〈xn〉 agrees with
〈x2

m〉 for both the ML and exponential order models at short
times as almost all tracers are mobile at this time. In contrast
to the ML model, the first-order model shows a crossover from
linear to quadratic behavior. Around 1000 h, 〈x2〉 and 〈x2

im〉
coincide and grow proportionally to t2µ. The second mobile
moment has the same power-law growth, albeit with a higher
prefactor, as demonstrated by the long-time limit (50) of 〈x2

m〉

(a) (b)

FIG. 9. Comparison of the normalized (〈x2
m,im〉), unnormalized

(〈x2
m,im〉u), and total (〈x2〉) second moments for the mobile and

immobile tracers on a double-logarithmic scale. All models yield
〈x2(t )〉 = 〈x2(t )〉u ≈ 2Dt at short times. (a) At long times the ML
model show anomalous diffusion 〈x2〉 & t2µ, i.e., superdiffusion for
1/2 < µ < 1. (b) The exponential trapping time PDF leads to the
long-time growth v2t2/(1 + β )3 and v2t2/(1 + β )2 of 〈x2

m〉u and 〈x2
m〉,

respectively. The black solid line shows the asymptote (50) of 〈x2
m〉

as a guide to the eye. The parameters are the same as in Fig. 3(a).
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shown as a black solid line. In the exponential model, all
normalized second moments grow quadratically and overlap
around 1000 d, as expected by the equivalence of Cm and
Cim [Eq. (26)] at long times. Figure 8 shows the first and
second central moments of the mobile concentration, the latter
of which is obtained via 〈(xm − 〈xm〉)2〉 = 〈x2

m〉 − 〈xm〉2. Note
that only the analysis of normalized second central moments
is meaningful; therefore, we do not explicitly study the second
central moment of the unnormalized moments. At short times,
both the ML (solid line) and exponential (dash-dotted line)
models grow linearly. The prefactor D of the latter is two
orders of magnitude larger and the linear regime lasts until
around 10 h. The ML model yields linear growth up to 6 min
and transitions to the power law t2µ after a transient growth
proportional to t2.3 around 30 min. In the range from 20 to
300 h we fitted our models to the BTCs as shown in Fig. 5. In
this range, which we highlight by the shaded areas in Fig. 8
(and only in this range), the first and second central moments
of the two models almost coincide. Hence, the exponential
model can show transient anomalous diffusion. This is a re-
markable result. Outside this time window at longer times
the moments demonstrate distinct differences. The exponen-
tial model shows normal diffusion with 〈(xm − 〈xm〉)2〉 & t ,
while the mobile particles in the ML model spread faster with
〈(xm − 〈xm〉)2〉 & t2µ.

Here we analyzed anomalous diffusion using the first
and second moments, while higher moments can reveal
non-Gaussianity properties of the concentration profile. In
Appendix D we calculate the skewness and kurtosis. These
clearly show that after short times both the mobile and
immobile concentrations are non-Gaussian when using the
ML model. For t → ∞, we find that the skewness and
kurtosis only depend on µ. Notably, both appear to be dis-
continuous at µ = 1 and jump to their respective Gaussian
values.

VI. CONCLUSION

We introduced and discussed the extended mobile-
immobile model for tracer motion in which the residence time
in the immobile domain is drawn from a general trapping time
PDF γ (t ). The mobile times were chosen to always follow an
exponential distribution. A system with an exponential trap-
ping time PDF could then be rewritten in terms of a classical
first-order mass transfer model [26]. We considered the initial
condition when all particles are mobile after a pulse injection.
This leads to a Gaussian mobile plume at short times for
any γ (t ). At intermediate times particles in the mobile phase
are trapped in the immobile zone following an exponential
trapping time PDF which renders the mobile concentration
non-Gaussian and the moments grow nonlinearly. The second
central moment exhibits an apparent anomalous diffusion in
this time regime. In the long-time limit the mobile and immo-
bile concentrations coincide and we recover normal diffusion
with a rescaled time t/(1 + β〈τ 〉ω), where β denotes the ratio
of immobile to mobile volume, 〈τ 〉 represents the average im-
mobilization time, and ω in time stands for the mass transfer
coefficient.

When using a scale-free trapping time PDF with power-law
tail &t−µ−1 with 0 < µ < 1 and diverging mean waiting time,

such as the ML PDF considered here, all tracers immobilize
eventually with a long-time power-law decay &tµ−1 of the
mobile mass. Our model with a ML PDF contains the fractal
MIM from [45] and the bifractional diffusion model from
[71,72,89] for specific choices of the scaling exponents as
special cases. We found analytical results up to the second
moment in this special case that hold for all times. Our
ML model showed good fit results to the mobile mass de-
cay of the MADE-1 [20]. In addition, we considered two
extensions of the immobilization time PDF γ (τ ). First we
introduced an exponential tempering to analyze truncation
effects. Second we considered a weighted sum of an ML
PDF and an exponential PDF. Both modifications yielded
even better fit results than the ML model alone. While these
extended forms involve additional model parameters, their
better fit indicates that cutoffs in the power-law trapping
time density reflect better the physical situation, i.e., the
system appears to show finite-size effects, similar to those
obtained in trapping time PDFs in the conductivity study
[31].

The ML model yielded a good fit to the BTC (R2 =
0.990) of tracers in karst aquifers from [22]. This al-
lowed us to obtain model parameters including the advection
velocity and dispersion coefficient in the mobile zone.
Subsequently, we calculated the moments of the mobile
distribution and accounted for time-dependent normaliza-
tions. We found temporally nonlinear mass transport 〈x〉 &
tµ and anomalous diffusion 〈(x − 〈x〉)2〉 & t2µ in the long-
time limit. Concurrently, the concentration crossed over to
a non-Gaussian immobile concentration. Mobile tracers led
the immobile tracers in this long-time limit. We character-
ized the non-Gaussianity using the skewness and kurtosis, of
which the long-time limit only depends on µ, as shown in
Appendix D.

Notably, a fit to the BTC with an exponential model
matched the data quite reasonably (R2 = 0.940) but yielded
an unlikely high diffusion constant. Nevertheless, the mo-
bile concentration profiles appeared reasonably similar for
t = 30 h and almost matched for t = 200 h. The exponential
model showed transient anomalous diffusion in this time win-
dow, and the second central moment almost coincided with
the ML model. It is remarkable that the exponential and ML
models have a fundamentally different long-time behavior but
yield very similar first, second, and second central moments
in the intermediate time window, where the BTC measure-
ments were taken. In fact, our analysis demonstrated that
from experimental data it is rather tricky to distinguish even
fundamentally different models based on transport moments.
The mobile mass, BTC, and concentration profile are much
better suited for this purpose. However, once fitted to the data,
the moments demonstrate the massively different transport
efficiency at long times. Such knowledge is of high relevance,
e.g., to study the environmental impact of chemicals released
into rivers or aquifers. The existence of long retention times
may be underestimated by fits to exponential models and thus
neglect potentially dangerous leakage of chemicals at much
longer times.

The situation is quite different in other systems in which
more extensive data are available, such as from simulations
or single-particle-trapping experiments in live biological cells
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or complex liquids. In such systems the moments can be
efficiently extracted and compared to different models. There,
particles can undergo diffusion with intermittent immobiliza-
tion as well. An example could be proteins diffusing in the
bulk cytoplasm of a live cell with intermittent binding to
membrane receptors. In fact, three-dimensional trajectories of
mRNA particles in yeast cells have been observed to switch
between diffusive, directed, and confined motion as well as
becoming stationary [94], similar to amoeboid motion on
surfaces [95]. Single-molecule tracking of signaling proteins
reveals intermittent dynamics during which proteins effec-
tively immobilize on activation [96]. Membrane proteins and
proteins in the cell nucleus have been observed to split into
mobile and immobile populations [63,97,98]. We mention
molecular dynamics simulations of drug molecules in a water
layer confined in a silica slit unveiling intermittent immobi-
lization due to surface adsorption with power-law-distributed
trapping times [99]. Similar waiting time distributions are ob-
served in the short-time motion of lipid granules in live yeast
cells [100]. In fact, for systems with power-law-distributed
immobilization times or diffusion with strongly position-
dependent diffusivity populations, splitting is a salient feature
[75,76,101].

The MIM can also be thought of as a special case of
switching diffusion, when a particle intermittently under-
goes different modes of transport within a single trajectory
[102–104]. When adding an advection-diffusion operator to
the immobile concentration of the EMIM a switching dif-
fusion process could be obtained. In [102,103] a single
particle switches between states with different diffusivities
with fixed rates. If the observation time is small compared
to the mean residence time, transport anomalies arise. Ex-
amples for switching diffusion include quantum dot tracers
in the cytoplasm of mammalian cells which switch between
different mobilities [105]. Molecular dynamics simulations
show that conformal changes of proteins induce fluctuations
of the protein diffusivity [106]. A simple model of particles
that can aggregate and separate shows similar behavior [107].
Polymers change diffusivity during (de)polymerization due
to varying chain lengths leading to transient non-Gaussian
displacement PDFs [104]. Switching behavior is also seen in
potassium channels and nonintegrin receptors in living cell
membranes [108,109] as well as for lipid motion in molecular
dynamics simulations of protein-crowded bilayer membranes
[110]. Similar population splitting is observed in the passive
motion of tracers in mucin gels [111,112] or acetylcholine
receptors in live cell membrane [113]. Population splitting
into fractions with different diffusivities was also observed
for individually labeled lipids in the phospholipid membrane
and of H-Ras proteins at the plasma membrane [114,115].
Moreover, G proteins have been observed to switch be-
tween states with different diffusivities due to conformational
changes and increased immobilization after interaction [116].
These cases of molecular transport can represent scenarios
in which our EMIM or its extensions can provide relevant
insight into population splitting between mobile and immo-
bile particle fractions and their respective transport dynamics.
Moreover, the breakthrough curves discussed here can be
used to deduce the first-passage dynamics to some reaction
center.

Our model is a starting point to describe molecular re-
actions of anomalously diffusing tracers, such as reactions
occurring in mobile and immobile zones in rivers or reac-
tions of molecules or tracers in biological cells. Recently,
reaction-subdiffusion systems have been analyzed using the
Fokker-Planck-Kolmogorov equation [117]. With our model
it is possible to model reactions that only occur when the par-
ticles immobilize and to find explicit equations for the reaction
products. We believe that the EMIM presented here pro-
vides a flexible and unified description for mobile-immobile
transport.
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APPENDIX A: MOBILE MASS USING
THE ML TRAPPING TIME PDF

We calculate the mobile mass (6) for the concrete ML form
of the trapping time PDF. In Laplace space we find

Mm(s) = M0

s + ωβ
[
1 − 1

1+τ
µ
. sµ

] (A1)

= M0(1 + τµ
. sµ)

s(1 + τ
µ
. sµ) + ωβτ

µ
. sµ

(A2)

= M0(1 + τ
µ
. sµ + βωτ

µ
. sµ−1) − M0βωτ

µ
. sµ−1

s(1 + τ
µ
. sµ + βωτ

µ
. sµ−1)

(A3)

= M0

s
− M0βωτµ

.

sµ−2

τµ
. sµ + βωτµ

. sµ−1 + 1
. (A4)

Now we use the geometric series for s1−µ < τµ
. s + βωτµ

. ,

1
τµ
. sµ + βωτµ

. sµ−1 + 1

= s1−µ

τ
µ
. s + βωτ

µ
.

1

1 + s1−µ

τ
µ
. s+βωτ

µ
.

(A5)

= s1−µ

τµ
. s + βωτµ

.

∞∑

k=0

(−1)k sk(1−µ)

(τµ
. s + βωτµ

. )k
(A6)

=
∞∑

k=0

(−1)k

τ
µ(1+k)
.

sk(1−µ)+(1−µ)

(s + βω)k+1
(A7)

= 1
sτµ

. (s + βω)
+

∞∑

k=1

(−1)k (−1)k

τµ(1+k)

sk(1−µ)+(1−µ)

(s + βω)k+1
. (A8)
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We use the Laplace inversion [Eq. (2.5) in [90]] and (A8) to
transform (A4) to the time domain

Mm(t ) = M0 − M0βωτµ
.

[
1

βωτµ
.

(1 − e−βωt )

+ M0e−βωt
∞∑

k=1

(−1)k+1 tµk+1

τµ(k+1)
Ek+1

1,µk+2(−βωt )

]

= M0e−βωt+N0βωt
∞∑

k=1

(−1)k+1
(

t
τ

)µk

× Ek+1
1,µk+2(−βωt ). (A9)

According to Gorenflo et al. [see [84], Eq. (5.1.54)], E δ
1,β (z) =

1
'(β ) 1

F1(δ,β, z) and thus from (A9),

Mm(t ) = M0e−βωt + M0βωt
∞∑

k=1

(−1)k+1

'(µk + 2)

(
t
τ.

)µk

× M(k + 1, µk + 2,−βωt ), (A10)

where 1F1(a, b, z) ≡ M(a, b, z) is the Kummer function [84].

APPENDIX B: LONG-TIME CONCENTRATION PROFILE

Consider the fractal model. We approximate Cm(x, s)
[Eq. (18)] using

√
1 + z ∼ 1 + z/2 in the exponential and

FIG. 10. Concentrations of mobile and immobile particles 2, 50,
and 1000 d after injection in the main and right panels, respectively.
The parameters of all models correspond to the fit to the mobile mass
decay shown in Fig. 3. At short times all models yield a Gaussian
mobile distribution, which is increasingly skewed for later times.
Immobile particles have a non-Gaussian distribution at all times.
Cusps are clearly visible at x = 0 and are a typical transport feature
for systems with diverging trapping times [14,35]. The long-time
behaviors (B6) and (B7) are shown by the gray lines with markers.
The root at x = 0 for the mobile concentration is an artifact of our
approximation (see the text). We use 0.8 m/d and 4 m2/d for v

and D, respectively. The parameters of the ML model can be found
in Table II. The parameters for the classical and fractional model
correspond to a fit in [45] to the mobile mass decay of the MADE-1,
as can be seen in Fig. 3 together with the parameters [45].

√
1 + z ∼ 1 in the first fraction for z = 4φ(s)D/v2 - 1,

Cm(x, s)
s→0∼ evx/2D

v
e−(v/2D)[1+2φ(s)D/v2]|x| (B1)

s→0∼ 1
v

e(v/2D)(x−|x|)e−βωτ
µ
. sµ(|x|/v), (B2)

by using φ(s) = s + βωτµ
. sµ ≈ βωτµ

. sµ for small s. In [84],
Sec. 7.5, we find the Laplace transform pairs

L −1{e−csµ} = cµ
tµ+1

Mµ(ct−µ), (B3)

L −1{sµ−1e−csµ} = 1
tµ

Mµ(ct−µ) (B4)

for c > 0, with the auxiliary function of Wright type

Mµ(z) =
∞∑

n=0

(−z)n

n!'[−µn + (1 − µ)]
. (B5)

This yields the long-time limit of the mobile concentration

Cm(x, t ) ≈ βωτµ
. µ

v2
e(v/2D)(x−|x|)|x|t−1−µMµ

(
βωτµ

.

v
|x|t−µ

)

(B6)

FIG. 11. Comparison of the normalized (〈xn
m,im〉), unnormalized

(〈xm,im〉u) and total nth-order (〈xn〉) moments, for (a) and (b) n = 1
and (c) and (d) n = 2 with double-logarithmic scales, using (a) and
(c) the ML model and (b) and (d) the exponential model. For both
models, both 〈xm〉u and 〈xm〉 are a good approximation for 〈x〉 for
short times, due to the high mobile fraction. The same holds for long
times for the immobile moment. In the ML model, the first moment
of the mobile particles has the same power-law behavior (propor-
tional to tµ) as the immobile tracers but with a larger coefficient. The
parameters are the same as in Fig. 3(a) and are given in Table II.
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and the long-time limit of the immobile concentration using
Cim(x, s) = ω 1−γ (s)

s Cm(x, s) with γ (s) ≈ 1 − τµ
. sµ,

Cim(x, t ) ≈ βωτ
µ
.

v
e(v/2D)(x−|x|)t−µMµ

(
βωτ

µ
.

v
|x|t−µ

)
. (B7)

In Fig. 10 we show these approximations. Notice that at
t = 1000 d, these approximations, shown as a gray line with
markers, indeed estimate quite well the results obtained from
the inverse Laplace inversion. Note also how the factor |x|
and finite value of Mµ(0) = 1/'(1 − µ) lead to a dip to zero
at x = 0 for this approximation. This is an artifact of our
approximation of Cm(x, s) [Eq. (B2)], as it does not depend
on s for x = 0.

APPENDIX C: ADDITIONAL PLOTS OF MOMENTS

We show additional plots of the first and second moments
in Fig. 11. Figures 11(a) and 11(c) show our model using an
ML trapping time PDF and Figs. 11(b) and 11(d) using an
exponential trapping time PDF. The former demonstrates a
transition from normal Brownian to anomalous behavior.

APPENDIX D: SKEWNESS AND KURTOSIS

Similarly to (14), we calculate the third and fourth unnor-
malized moments

〈
x3

m(s)
〉
u = −i

∂3

∂k3

Cm(k, s)
M0

∣∣∣∣
k=0

= 12Dv

{s + βω[1 − γ (s)]}3

+ 6v3

{s + βω[1 − γ (s)]}4
,

〈
x4

m(s)
〉
u = ∂4

∂k4

Cm(k, s)
M0

∣∣∣∣
k=0

= 24D2

{s + βω[1 − γ (s)]}3

FIG. 12. (a) Skewness and (b) kurtosis for the ML model. Limits
are calculated with the derivatives (D1) in Fourier space. Small
numbers next to the lines indicate the values of β. Crosses mark the
corresponding values for β = 0.08 obtained from the plume profile
(18) after numerical Laplace inversion. The remaining parameters
are the same as in Fig. 3(a), i.e., we have µ = 0.33, ω = 1 d−1, and
τ. = 1 d.

FIG. 13. Long-time limits of the skewness (D2) and kurtosis
(D3) that only depend on µ and the sign of v (chosen positive
here) for the ML and fractal models. The expressions for µ < 1
diverge for µ → 1. For µ = 1, we have µ̃3,m = 0 and µ̃4,m = 1. Gray
lines indicate these values. Black solid lines indicate the kurtosis
for finite t = 500, 200, 100 from top to bottom. They all reach the
Gaussian value of 3 at µ = 1 and are continuous. The skewness for
finite t = 500, 1000, 2000 shows black solid lines ending at zero for
µ = 1. They are continuous as well. Black lines were obtained from
the asymptotic expressions of the moments for β = v = D = 1.

+ 72Dv2

{s + βω[1 − γ (s)]}4

+ 24v4

{s + βω[1 − γ (s)]}5
. (D1)

When dividing by the fraction of mobile mass, we can calcu-
late the skewness

µ̃3,m =
〈(

xm − 〈xm〉
√

〈(xm − 〈xm〉)2〉

)3〉
(D2)

(a) (b)

FIG. 14. Validation of our results with particle-tracking simu-
lations. Square symbols denote values obtained from simulations
using the method proposed in [66]. (a) For the exponential model
we use our analytical results and (b) for the ML model we compare
the simulations results to Laplace inversions of (12) and (14). The
parameters are the same as in Fig. 3(a).
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and kurtosis

µ̃4,m =
〈(

xm − 〈xm〉
√

〈(xm − 〈xm〉)2〉

)4〉
(D3)

of the mobile solutes. Using (5), we obtain the skewness and
kurtosis for the immobile plume.

A normal distribution in one dimension has skewness 0
and kurtosis 3. Deviations from these values characterize
non-Gaussianity. Figure 12 shows the skewness and kurtosis
using the ML model for different values of β for ωτ. = 1.
The mobile plume shows no initial skewness, as expected by
the short-term Gaussian distribution. Small values of β yield
negative skewness for intermediate timescales, i.e., a leading
edge of the mobile plume profile. In [45] negative skewness is
found for small β as well. We find that the long-time limit of
the skewness is independent of β and positive for µ ! 0.73.
In addition, we numerically find positive skewness for inter-
mediate times when decreasing v and leaving all remaining
parameters constant for µ = 0.33 and β = 0.01.

The long-time limit is independent of β and positive for
the chosen µ = 0.33. This corresponds to a leading tail of the
mobile plume profile. The immobile distribution has positive
skewness at all timescales and is nonmonotonic for β = 0.02.

To verify our results, we additionally calculate the skewness
and kurtosis from the plume profile (18) for β = 0.08. The
resulting crosses in Fig. 12 show good agreement.

The kurtosis measures how much of a distribution is con-
centrated in the tails. As Fig. 12 shows, the mobile distribution
starts at 3 and has minima at intermediate times below this
value for β = 0.02 and 0.08.

We calculate the long-time limits

〈
x3

m

〉
≈

12Dvt3µ−1

β3'(3µ) + 6v3t4µ−1

β4'(4µ)
tµ−1

β'(µ)

(D4)

and

〈
x4

m

〉
≈

24D2t3µ−1

β3'(3µ) + 72Dv2t4µ−1

β4'(4µ) + 24v4t5µ−1

β5'(5µ)
tµ−1

β'(µ)

(D5)

by using the Tauberian theorem. These results match earlier
results found in [46]. We plug these into (D2) and (D3). For
µ = 1 we find µ̃3 = 0 and µ̃4 = 3, which match the normal
distribution for µ = 1 found in [45]. The long-time limits of
the skewness only depend on µ and the sign of v, which we
assume to be positive, here

lim
t→∞

µ̃3 = −
2
√

'(3µ)
'(µ) [12

√
π'(µ)'(2µ)3'(4µ) − 12

√
π'(2µ)4'(3µ)]

[2'(2µ)2 − '(µ)'(3µ)]3/2
[
4
√

π'(2µ)'(4µ) − 16µ'(µ)'(3µ)'
(
2µ + 1

2

)]

−
2
√

'(3µ)
'(µ)

[
16µ'(µ)3'(3µ)2'

(
2µ + 1

2

)
− 4

√
π'(µ)2'(2µ)'(3µ)'(4µ)

]

[2'(2µ)2 − '(µ)'(3µ)]3/2
[
4
√

π'(2µ)'(4µ) − 16µ'(µ)'(3µ)'
(
2µ + 1

2

)]

−
2
√

'(3µ)
'(µ)

{
−3'(µ)'(2µ)2'(3µ)

[
16µ'(µ)'

(
2µ + 1

2

)
− 2

√
π'(3µ)

]}

[2'(2µ)2 − '(µ)'(3µ)]3/2
[
4
√

π'(2µ)'(4µ) − 16µ'(µ)'(3µ)'
(
2µ + 1

2

)] , (D6)

while the long-time limit of the kurtosis only depends on µ,

lim
t→∞

µ̃4 = −3'(3µ)[8'(µ)'(2µ)3'(3µ)'(5µ) − 8'(2µ)4'(3µ)'(4µ)]
'(µ)['(µ)'(3µ) − 2'(2µ)2]2'(4µ)'(5µ)

− 3'(3µ)['(3µ)'(4µ)'(5µ)'(µ)3 + 4'(2µ)2'(4µ)'(5µ)'(µ)2]
'(µ)['(µ)'(3µ) − 2'(2µ)2]2'(4µ)'(5µ)

. (D7)

Figure 13 shows the limiting values. The skewness takes
positive values for µ < 0.73, i.e., the mobile plume has a
leading tail, and negative values otherwise. The kurtosis is
always higher than 3 except for 0.56 < µ < 0.84, meaning
that for 0.56 < µ < 0.84 more mobile particles are within
the standard deviation than for a normal distribution and thus
effect a pronouncedly non-Gaussian distribution.

We note the apparent discontinuity of the long-time limits
of the skewness (D6) and kurtosis (D7), as shown in Fig. 13.
Note that we get finite values of the kurtosis for finite t , as
evidenced by Fig. 13. A more detailed analysis of this property
is beyond the scope of the present work.

APPENDIX E: SIMULATION

We implement a particle-tracking simulation using the
space-domain method [66], in which the particle makes
a jump 1x drawn from the jump length PDF λ(x)
in the fixed time 1t [66]. After each jump the parti-
cle immobilizes for a duration drawn from ψ (t ) with
probability 1 − exp(−ωβ1t ). For a waiting time PDF
with the tail ψ (t ) ∝ 1/t1+µ we use the method proposed
by Kleinhans and Friedrich [118]. Results for the mo-
bile mass and the first and second moments are shown
in Fig. 14.
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Erratum: Rate equations, spatial moments, and concentration profiles for mobile-immobile models
with power-law and mixed waiting time distributions [Phys. Rev. E 105, 014105 (2022)]

Timo J. Doerries, Aleksei V. Chechkin, Rina Schumer, and Ralf Metzler

(Received 2 February 2022; published 14 February 2022)

DOI: 10.1103/PhysRevE.105.029901

We found that Eqs. (34)–(37) of this paper describing the long-time behavior of our model with an exponential waiting time
distribution require the inequality v2 β

(1+β )2ω
� D to hold. When this inequality is not satisfied, we obtain that the second central

moment has the limiting form

〈(x − 〈x〉)2〉 ∼ 2

(
D

1 + β
+ v2β

(1 + β )3ω

)
t for t (1 + β )ω � 1, (1)

with the effective diffusivity Deff = D
1+β

+ v2 β

(1+β )3ω
. Note that Eq. (36) of the paper should be replaced by Eq. (1). We calculated

the asymptotic values of the skewness and kurtosis of the concentration profile Cm(x, s) of the mobile phase via the third and
fourth moments and obtain the values zero and three, respectively. This implies that Cm(x, t ) can be approximated with a Gaussian
concentration profile,

Cm(x, t ) ∼ 1

1 + β

1√
4πDefft

exp

(

−
[
x − vt

1+β

]2

4Defft

)

for t (1 + β )ω � 1, (2)

at long times. In Fig. 1 the Laplace inversion of the exact expression for Cm(x, s) is shown along expression (2) at long times.
Both show good agreement, in contrast to a Gaussian in which the velocity contribution is missing in the effective diffusivity.
The conclusion for the long-time behavior in the paper, thus, changes because the concentration profile does not correspond to
that of a free Brownian particle with rescaled time. In the general case, due to the combination of immobilization events and
transient advection, the particles asymptotically spread faster. We emphasize that this effect only occurs for appreciable values
of v.

FIG. 1. Long-time behavior of the mobile concentration Cm(x, s). The gray line with circle symbols is obtained from Laplace inversion of
Eq. (18) of the paper using the exact expression for γ (s). The solid black line shows Eq. (2). It matches the exact Laplace inversion result over
two orders of magnitude. Both functions agree well with simulations results shown as squares. The dashed line shows the long-time behavior
(37) of our paper for v2 β

(1+β )2ω
� D. We here used the parameters from Table III. For these parameters the inequality does not hold.
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