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Abstract
Column-oriented database systems can efficiently process transactional and ana-
lytical queries on a single node. However, increasing or peak analytical loads can
quickly saturate single-node database systems. Then, a common scale-out option is
using a database cluster with a single primary node for transaction processing and
read-only replicas. Using (the naive) full replication, queries are distributed among
nodes independently of the accessed data. This approach is relatively expensive
because all nodes must store all data and apply all data modifications caused by
inserts, deletes, or updates.
In contrast to full replication, partial replication is a more cost-efficient imple-

mentation: Instead of duplicating all data to all replica nodes, partial replicas store
only a subset of the data while being able to process a large workload share. Be-
sides lower storage costs, partial replicas enable (i) better scaling because replicas
must potentially synchronize only subsets of the data modifications and thus have
more capacity for read-only queries and (ii) better elasticity because replicas have
to load less data and can be set up faster. However, splitting the overall workload
evenly among the replica nodes while optimizing the data allocation is a challenging
assignment problem.
The calculation of optimized data allocations in a partially replicated database

cluster can be modeled using integer linear programming (ILP). ILP is a common
approach for solving assignment problems, also in the context of database systems.
Because ILP is not scalable, existing approaches (also for calculating partial alloca-
tions) often fall back to simple (e.g., greedy) heuristics for larger problem instances.
Simple heuristics may work well but can lose optimization potential.
In this thesis, we present optimal and ILP-based heuristic programming models

for calculating data fragment allocations for partially replicated database clusters.
Using ILP, we are flexible to extend our models to (i) consider data modifications
and reallocations and (ii) increase the robustness of allocations to compensate for
node failures and workload uncertainty. We evaluate our approaches for TPC-H,
TPC-DS, and a real-world accounting workload and compare the results to state-
of-the-art allocation approaches. Our evaluations show significant improvements
for varied allocation’s properties: Compared to existing approaches, we can, for
example, (i) almost halve the amount of allocated data, (ii) improve the throughput
in case of node failures and workload uncertainty while using even less memory, (iii)
halve the costs of data modifications, and (iv) reallocate less than 90% of data when
adding a node to the cluster. Importantly, we can calculate the corresponding ILP-
based heuristic solutions within a few seconds. Finally, we demonstrate that the
ideas of our ILP-based heuristics are also applicable to the index selection problem.





Zusammenfassung
Spaltenorientierte Datenbanksysteme können transaktionale und analytische Abfra-
gen effizient auf einem einzigen Rechenknoten verarbeiten. Steigende Lasten oder
Lastspitzen können Datenbanksysteme mit nur einem Rechenknoten jedoch schnell
überlasten. Dann besteht eine gängige Skalierungsmöglichkeit darin, einen Daten-
bankcluster mit einem einzigen Rechenknoten für die Transaktionsverarbeitung und
Replikatknoten für lesende Datenbankanfragen zu verwenden. Bei der (naiven)
vollständigen Replikation werden Anfragen unabhängig von den Daten, auf die zuge-
griffen wird, auf die Knoten verteilt. Dieser Ansatz ist relativ teuer, da alle Knoten
alle Daten speichern und alle Datenänderungen anwenden müssen, die durch das
Einfügen, Löschen oder Aktualisieren von Datenbankeinträgen verursacht werden.

Im Gegensatz zur vollständigen Replikation ist die partielle Replikation eine kos-
tengünstige Alternative: Anstatt alle Daten auf alle Replikationsknoten zu du-
plizieren, speichern partielle Replikate nur eine Teilmenge der Daten und können
gleichzeitig einen großen Anteil der Anfragelast verarbeiten. Neben niedrigeren Spei-
cherkosten ermöglichen partielle Replikate (i) eine bessere Skalierung, da Replikate
potenziell nur Teilmengen der Datenänderungen synchronisieren müssen und somit
mehr Kapazität für lesende Anfragen haben, und (ii) eine bessere Elastizität, da Rep-
likate weniger Daten laden müssen und daher schneller eingesetzt werden können.
Die gleichmäßige Lastbalancierung auf die Replikatknoten bei gleichzeitiger Opti-
mierung der Datenzuweisung ist jedoch ein schwieriges Zuordnungsproblem.

Die Berechnung einer optimierten Datenverteilung in einem Datenbankcluster mit
partiellen Replikaten kann mithilfe der ganzzahligen linearen Optimierung (engl.
integer linear programming, ILP) durchgeführt werden. ILP ist ein gängiger Ansatz
zur Lösung von Zuordnungsproblemen, auch im Kontext von Datenbanksystemen.
Da ILP nicht skalierbar ist, greifen bestehende Ansätze (auch zur Berechnung von
partiellen Replikationen) für größere Probleminstanzen oft auf einfache Heuristiken
(z.B. Greedy-Algorithmen) zurück. Einfache Heuristiken können gut funktionieren,
aber auch Optimierungspotenzial einbüßen.

In dieser Arbeit stellen wir optimale und ILP-basierte heuristische Ansätze zur Be-
rechnung von Datenzuweisungen für partiell-replizierte Datenbankcluster vor. Mit-
hilfe von ILP können wir unsere Ansätze flexibel erweitern, um (i) Datenänderungen
und -umverteilungen zu berücksichtigen und (ii) die Robustheit von Zuweisungen
zu erhöhen, um Knotenausfälle und Unsicherheiten bezüglich der Anfragelast zu
kompensieren. Wir evaluieren unsere Ansätze für TPC-H, TPC-DS und eine reale
Buchhaltungsanfragelast und vergleichen die Ergebnisse mit herkömmlichen Ver-
teilungsansätzen. Unsere Auswertungen zeigen signifikante Verbesserungen für ver-
schiedene Eigenschaften der berechneten Datenzuordnungen: Im Vergleich zu beste-



henden Ansätzen können wir beispielsweise (i) die Menge der gespeicherten Daten
in Cluster fast halbieren, (ii) den Anfragedurchsatz bei Knotenausfällen und un-
sicherer Anfragelast verbessern und benötigen dafür auch noch weniger Speicher,
(iii) die Kosten von Datenänderungen halbieren, und (iv) weniger als 90 % der
Daten umverteilen, wenn ein Rechenknoten zum Cluster hinzugefügt wird. Wichtig
ist, dass wir die entsprechenden ILP-basierten heuristischen Lösungen innerhalb
weniger Sekunden berechnen können. Schließlich demonstrieren wir, dass die Ideen
von unseren ILP-basierten Heuristiken auch auf das Indexauswahlproblem anwend-
bar sind.
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1

Introduction

Almost all programming can be viewed as an exercise in caching.

Terje Mathisen

Column-oriented, in-memory database systems, such as SAP HANA [74] or Hy-
rise [66], are well-suited for mixed workloads, consisting of transactional and ana-
lytical queries [177, 204]. Using these database systems in enterprises has led to
the development of new interactive applications [178]. These applications attract a
growing number of users, who submit increasingly complex queries. This analytical
load can easily saturate single-node database systems.

The increasing demand for processing capabilities can be managed by scale-out
approaches, using additional database machines [62, 170]. Scale-out options differ
in terms of how the data is stored and how queries are processed. Suitable scale-
out options depend on the queried data set (e.g., its overall storage consumption)
and the workload (e.g., the read-write ratio). Structured data sets (e.g., the oper-
ational data in enterprise systems) can often be stored on a single node [178]. In
addition, analyses of real-world workloads show that read-only queries account for
the largest workload share [27, 125]. Scaling read-only queries is relatively simple
because we can execute them on replica nodes (storing snapshots) of the primary
node without violating transactional consistency: The primary node processes all
database transactions and propagates committed data modifications to the replica
nodes [90]. Such an approach is called primary replication and is a common scale-out
option for single-node database systems in practice. All major relational database
systems, e.g., SAP HANA, Oracle, IBM DB2, Microsoft SQL Server, PostgreSQL,
and MySQL, support primary replication [105, 112, 133, 200, 209, 231]. Therefore,
all queries are processed locally at the chosen replica.

Using a naive approach for primary replication, called full replication, queries
are distributed among nodes independently of the accessed data. This approach
has several drawbacks: First, all nodes have to store or potentially load all data.
Second, all nodes must apply all data modifications caused by inserts, deletes, or
updates. Finally, queries are unlikely to profit from caching effects because similar
queries are not guaranteed to be assigned to the same replica.
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1. Introduction

1.1. Query-Driven Workload Distribution

To tackle these problems, query-driven workload distribution balances the load
based on the accessed data. In this thesis, we focus on partially replicated database
clusters [102, 181] for a cost-efficient scale-out of single-node database systems as
one specific use case for query-driven workload distribution. The distribution of
queries based on the accessed data is a generally beneficial concept for optimizing
cost/performance [144], e.g., (i) in caching architectures, such as data marts [30] or
mid-tier caches [131, 146], and (ii) for operator placement in distributed database
systems [54, 223]. The core idea of query-driven workload distribution is optimizing
the data allocation (e.g., storing less data to reduce hardware costs, or improving
data caching to increase the performance) while the load can be evenly balanced,
which is crucial for resource utilization and, thus, scalability.

Partially Replicated Database Clusters

In contrast to full replication, partial replication [102, 181] lowers a cluster’s over-
all memory consumption and is, therefore, a memory-efficient implementation of
primary replication. Partial replication consists of two steps, which are typically
separated from each other to better deal with the problem complexity [169, 181].
First, the data set is partitioned horizontally and/or vertically into disjoint data
partitions/fragments. Second, the individual fragments are allocated to one or mul-
tiple nodes. The stored data of partial replicas do not have to be disjoint: For
example, to execute the same query locally at two different replicas, the replicas
must store the same data fragments.

Figure 1.1 shows an exemplary allocation input (left) and allocation with four
nodes (right). The input consists of a partitioned database with ten fragments and
a workload with five queries. For each query, the workload share (e.g., 10% for
query q1) and the accessed fragments (e.g., the four fragments 1, 2, 3, and 4 for
query q1) are given. In this introductory example, we assume read-only queries
so that load for fragment modifications caused by queries does not occur. The
allocation is a distribution of the queries’ workload shares to the nodes (e.g., the
workload shares of the queries q1 and q2 are entirely assigned to node 3). The
query distribution defines/implies the fragment allocation to the nodes: As q1 and
q2 access the fragments 1 - 6, these fragments must be stored at node 3. In contrast
to a cluster with four full replicas (storing overall 4·10 = 40 fragments), the partially
replicated database cluster stores only 14 (= 3+ 4+ 6+ 1) fragments, visualized as
non-transparent fragments. The shown allocation has the property of distributing
the overall workload evenly over the four nodes, i.e., 25% (1/4) of the overall load is
assigned to each node. Such allocations are of special interest because they enable
a linear scaling of the database load with the number of nodes.

2



1.1. Query-Driven Workload Distribution

Node 4Database

Client

1

2 43
6

5

7 98 10

5

1 2 3 4

3 4 6

97 8

108 9

1

q1

q2

q3

q4

q5

Client

q1 (100%)
q2 (100%)

25%
allocation

10%

15%

25%
30%

20%

Node 3
1

2 43
6

7 98 10

51

2
6

7 98 10

5

Node 1

1

2 43
6

7 98 10

5

Node 2

1

2 43
6

7 98 10

5

q5 (83%)

25%
q3 (100%)

25%

q4 (100%)
q5 (17%)

25%

43

Figure 1.1.: Query-driven workload distribution for a partially replicated database
cluster: The left-hand side visualizes the model input, i.e., a partitioned database
and five queries characterized by their accessed fragments and workload shares. The
objective is to minimize the replication cluster’s overall memory consumption while
balancing the load across the four nodes. Processing a query requires storing its
accessed fragments. The right-hand side illustrates an allocation with 14 fragments
overall and an even workload distribution, i.e., 25% of the workload share assigned to
each node. Transparent fragments visualize the memory savings per partial replica.
(based on [98])

Advantages. Partially replicated database clusters have several advantages com-
pared to full replication. As partial replicas only store subsets of the data, partial
replication lowers the cluster’s overall memory consumption. Further, it can re-
duce the replica synchronization costs because modifications occur only for stored
fragment subsets. We can also integrate new (partial) nodes more quickly into
the cluster because less data has to be loaded or reallocated. Because queries are
distributed among replica nodes based on the accessed data, partial replication im-
proves caching. Real-world workload analyses show that the share of frequently
accessed data is small [177, 178], resulting in possibly high memory savings for
partial replication compared to full replication.

Challenges. As the basis of partial replication, we can use known partitioning
approaches, e.g., using single columns (or column groups) for vertical, and range
partitioning for horizontal partitioning (although finding the best partitioning cri-
teria is not trivial). In contrast, the allocation step is challenging in theory (many
allocation problems are NP-hard) and practice (the number of queries and fragments
is high) [169].

Partial replication requires workload knowledge to enable an even load balancing.
Calculating efficient fragment allocations that minimize the replicas’ memory con-
sumption while evenly balancing the query load is difficult because the two goals
contradict each other: On the one hand, even load-balancing requires flexibility to
forward queries to nodes with a currently low load. On the other hand, efficient
partial replicas aim to store as little data as possible, which lowers the number of

3



1. Introduction

queries that can be processed and, therefore, the flexibility of load-balancing. In
particular, Rabl has shown that the calculation of optimal partial allocations is an
NP-hard problem [180].
Calculating partial allocations becomes even more challenging when we want to

ensure robust performance: When nodes fail or unexpected workloads occur, the load
balancing of a partial replication cluster can become skewed because the processable
queries per node are limited.
Consider the allocation in Figure 1.1: If node 4 fails, its workload share of query q5

must be taken over by the remaining nodes 1 - 3. However, with the existing
fragment allocation, only node 2 and 3 can take over the load of q5, which requires
fragment 1. Because node 2 and 3 cannot shift any of their query load to node 1,
the load balancing becomes skewed. If (instead of node 4) node 1 would fail, query
q3 could no longer be executed by the cluster until fragments are reallocated.
Similar to node failures, unexpected workloads can also lead to skewed load bal-

ancing for partial allocations. For example, if the workload share of query q3 in-
creases unexpectedly, node 1 becomes overloaded because it is the only node that
can execute query q3 and cannot pass any of its assigned load (100% of q3) to the
other nodes. Unexpected queries (e.g., q6 accessing fragments 7 and 10) could only
be executable by the cluster once fragments are reallocated.
In practice, nodes may fail and future workloads are not entirely predictable.

Thus, robust allocations that enable an even load balancing despite node failures and
workload fluctuations are desirable. Generally, the allocation of additional fragments
increases the robustness of the cluster. For example, if we allocate fragment 7 to
node 2, query q3 remains executable if node 1 fails. At the same time, if the workload
share of query q3 increases, node 2 can overtake q3’s load and shift q1’s load to node 3
and 4. Unexpected queries that access possibly unrestricted fragment sets can (only)
be executable (without ad-hoc reallocations) if all fragments are stored on a single
node (e.g., the primary node).
While the simultaneous optimization of a cluster’s robustness and memory ef-

ficiency increases the allocation complexity, the calculation time of allocation ap-
proaches must remain low to be applicable in practice. This leads to the following
allocation goals.

Allocation Goals. We summarize three goals for calculating partial allocations:

1. Flexibility for an even load balancing to ensure robust performance of the
database system, even if nodes fail or future workloads are uncertain.

2. Low memory consumption, e.g., to reduce hardware and replica synchro-
nization costs, improve caching, speed-up reallocations, and save memory for
memory-intensive execution algorithms.

3. A short calculation time to be also applicable to larger problems in practice,
for the initial allocation and if a reallocation is necessary.

4



1.2. Allocation Approach

Figure 1.2.: Allocation goals and how they are met by existing approaches:
no approach satisfies all three dimensions.

Because the calculation of optimal partial allocations is NP-hard [180], heuristic
approaches have to be used for large problem sizes. As optimization goals and
constraints for specific allocation problems differ, heuristics are often tied to specific
formulations of the allocation problem [170].
For balancing the workload in partially replicated database clusters, Rabl and Ja-

cobsen propose a greedy state-of-the-art approach [181], allocating queries to nodes
one after another, thus having a short computation time. Allocations can be greedily
extended with fragments to guarantee the executability of queries if nodes fail. How-
ever, this approach does not guarantee an even load balancing in failure cases. To
ensure an even load balancing in case of workload fluctuations, Rabl and Jacobsen
propose to calculate separate allocations for multiple representative workload distri-
butions and merge all of these allocations resulting in a robust allocation. However,
because entire nodes are merged, potential to optimize the memory consumption is
lost. The overall calculation time increases with the number of workload scenarios
being considered. We find that existing heuristics for partially replicated database
clusters have different strengths and weaknesses, but none of them fully satisfies the
three allocation goals previously listed.

1.2. Allocation Approach

This thesis’s primary goal is to develop approaches for quickly calculating memory-
efficient allocations for partially replicated database clusters that ensure robust per-
formance despite potential node failures and workload uncertainty. Figure 1.2 vi-
sualizes this goal related to full replication and the partial replication approach of
Rabl and Jacobsen [181]: Compared to Rabl and Jacobsen’s approach, we want
to calculate allocations with a better combination of robust performance and low
memory consumption. Therefore, we are willing to use slightly higher calculation
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times, i.e., a couple of seconds. Note, for our specific problem, there is no need to
calculate allocations instantly because the actual data (re)allocations require time,
too: Overall, it might be better/faster to calculate longer when we, in turn, save
(re)allocation costs. As priorities for the allocation goals might differ among users,
we want to be able to balance the three target dimensions of the problem flexibly.
To achieve our goals, it would be possible to improve and extend existing ap-

proaches. However, we find it difficult to determine how and where to adapt these
imperative approaches to simultaneously optimize robustness and memory consump-
tion, which contradict each other. For this reason, this thesis presents novel declar-
ative allocation approaches for partially replicated database clusters using integer
linear programming (ILP). ILP is an common approach for solving assignment prob-
lems, also in the context of physical database design [26, 57, 172, 184, 225]. ILP
belongs to the class of mathematical optimization (also called mathematical pro-
gramming) and is a declarative approach. We have to model the allocation problem
as a linear objective function and suitable linear constraints. Highly optimized
solvers are then used to calculate the solution based on the supplied input data.
When using mathematical optimization, the main challenge is to control the model’s
complexity by a suitable selection of the objective function and constraints. Using
linear programming restricts the model’s objective and constraints to be in linear
form, but solvers can compute allocations more quickly than for more general mod-
els, e.g., using quadratic objectives or constraints. However, solving ILP models in
their general form, in which variables are restricted to integer values, is NP-hard.
This is why, related work (e.g., [26, 181]) often uses ILP only for small problem
instances and falls back to simple (e.g., greedy) heuristics, which may work well but
can lose optimization potential, as our evaluation shows. Instead, we use ILP to
construct powerful heuristics : In particular, we use (i) a decomposition (i.e., divide-
and-conquer) approach, (ii) query clustering, and (iii) solver relaxation techniques
to reduce the complexity of individual integer linear programs.

Thesis Statement: Allocation approaches based on integer linear program-
ming can quickly calculate allocations for partially replicated database clusters with
a better mix of robust performance and memory efficiency than state-of-the-art
(greedy) approaches.

We evaluate our optimal and ILP-based heuristic programming models (i) numeri-
cally by calculating allocations for different workloads (i.e., the TPC-H and TPC-DS
benchmarks as well as a real-world accounting workload) and (ii) their end-to-end
performance using a cluster of commercial columnar in-memory database systems.

Solution Concepts

Our ILP models are tailored to calculate allocations for partially replicated database
clusters. Nevertheless, using the declarative nature of mathematical optimization,
the following individual solution concepts can also be applied to solve other problems
in the field of physical database design.
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• Heuristics using mathematical optimization. The complexity of pro-
gramming models grows with the number of variables and constraints. How-
ever, resources do not have to be allocated in a single step, i.e., with a single
mathematical program. Instead, we can decompose large problems into a tree
of multiple easier-to-solve problems that preserve the structure of the original
problem. Besides, we can also heuristically reduce the input data, e.g., using
clustering or pruning.

• Declarative extension of basic models to ensure robust performance.
Given a basic problem formulation, robustness can be considered by additional
rules. Using mathematical optimization, these rules are formulated as con-
straints. Given the declarative nature of mathematical optimization, robust-
ness constraints can be easily adapted to allocation goals. We find expressing
these extensions within a mathematical program is easier in comparison to im-
perative heuristics, for which it may be difficult to determine how and where
to adapt the algorithm without losing unforeseeable traits of optimality.

Application to the Index Selection Problem

We find these two concepts not only beneficial for the data allocation in partially
replicated database clusters but also for solving the index selection problem. The
selection of indexes is an important task, as indexes are essential for speeding
up queries on large databases. Existing index selection approaches have different
strengths and weaknesses. On the one hand, approaches based on ILP guarantee op-
timal solutions but cannot consider all combinations of indexes and broader indexes
for larger workloads [123]. On the other hand, many heuristic approaches can find
beneficial indexes with many attributes and large index combinations by step-wisely
building solutions, e.g., iteratively extending the current solution by appending an
attribute to an existing index or adding a new index [196]. However, while the
step-wise modifications of the current index selection are often locally optimal, their
greedy nature may lose optimization potential.

We demonstrate that we can combine (i) the power of ILP for solving combi-
natorial problems and (ii) the explorative nature of index selection heuristics for
evaluating broad indexes and large combinations: Index selection heuristics use cost
estimates to determine their final solution. We use the cost estimates as input of
ILP models to find overall better index selections. Further, we present an ILP-based
decomposition approach for heuristically solving large index selection problem in-
stances. Finally, instead of a single workload, we investigate the index selection
for multiple potential future workload scenarios: Using mathematical programming
enables us to extend the optimization function to consider the performance variance
of individual workload scenarios for the index selection problem.
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1.3. Contributions

In the following, we summarize the primary contributions of this thesis, list the
corresponding publications, and shortly describe the thesis author’s stake per con-
tribution. Appendix A lists all our publications.

1. Basic ILP models for calculating optimal and heuristic allocations
for partially replicated database clusters

We present basic integer linear programming (ILP) models for calculating both
optimal and heuristic fragment allocation for partially replicated database clus-
ters. The basic models calculate allocations for read-only workloads. We show
how we can scale our optimal ILP model heuristically, using a decomposition
approach, input clustering, and solver relaxation techniques. While optimal
solutions poorly scale, we can calculate optimized allocations for thousands of
query classes and hundreds of fragments in just a few seconds. Our evalua-
tions show that our solutions can almost halve the amount of allocated data
compared to state-of-the-art approaches.

This contribution is based on the following publications:

• [102] Stefan Halfpap and Rainer Schlosser. Workload-driven fragment al-
location for partially replicated databases using linear programming. In
Proceedings of the International Conference on Data Engineering (ICDE),
pages 1746–1749, 2019.

• [101] Stefan Halfpap and Rainer Schlosser. A comparison of allocation
algorithms for partially replicated databases. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE), pages 2008–2011, 2019.

Schlosser and the thesis author contributed equally to the publication [102] and
the related demonstration paper [101]. Both authors shared the publications’
conceptualization, the ILP models, conducted evaluations, and written text.
The thesis author implemented most of the evaluation platform for retriev-
ing model inputs, comparing allocation algorithms, evaluating and visualizing
allocation results, and running end-to-end experiments.

2. Model extensions for considering node failures, workload uncer-
tainty, data modifications, and reallocation costs

We present extensions of our basic models for increasing the robustness of
allocations to compensate for node failures and workload uncertainty, and
considering data modifications and reallocations. The trade-off between mem-
ory efficiency, robustness, and a short computation time can be balanced in
a targeted way. Compared to existing approaches, our solutions can improve
the throughput in case of node failures and workload uncertainty while using
even less memory, halve the amount of data modifications, and reallocate less
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than 90% data when adding a node to the cluster. Thereby, the calculation of
corresponding ILP-based heuristic solutions takes only a few seconds.

This contribution is based on the following publications:

• [104] Stefan Halfpap and Rainer Schlosser. Memory-efficient database
fragment allocation for robust load balancing when nodes fail. In Pro-
ceedings of the International Conference on Data Engineering (ICDE),
pages 1811–1816, 2021.

• [195] Rainer Schlosser and Stefan Halfpap. Robust and memory-efficient
database fragment allocation for large and uncertain database workloads.
In Proceedings of the International Conference on Extending Database
Technology (EDBT), pages 367–372, 2021.

• [103] Stefan Halfpap and Rainer Schlosser. Exploration of dynamic query-
based load balancing for partially replicated database systems with node
failures. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM), pages 3409–3412, 2020.

• [98] Stefan Halfpap. Efficient scale-out using query-driven workload dis-
tribution and fragment allocation. In Proceedings of the VLDB PhD
Workshop, 2019.

• Stefan Halfpap and Rainer Schlosser. Fragment allocations for partially
replicated databases considering data modifications and changing work-
loads. Under submission, 12 pages.

Schlosser and the thesis author contributed equally to the publications [104,
195], particularly its conceptualization, the ILP models, numerical evaluations,
and text. The thesis author implemented the state-of-the-art approaches, and
conducted the end-to-end evaluations as well as workload analyses.

Further, the thesis author wrote the first draft of the related demonstration
paper [103] and implemented the application. Schlosser supported the concep-
tualization and revised the paper.

The publication [98], which introduces our model extensions, is a contribution
to the VLDB PhD workshop.

For this thesis, we reconducted the entire evaluation for a commercial colum-
nar in-memory database system cluster and extended our model to consider
data modification costs and reallocations. The companion paper, for which
Rainer Schlosser supported the conceptualization and revised the first draft,
is under submission.

3. Optimal and heuristic ILP-based approaches for selecting indexes

To highlight our approaches’ flexibility and effectiveness, we demonstrate the
applicability of the solution concepts to the index selection problem: We
present an optimal ILP model and ILP-based heuristics for selecting database
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indexes. By lowering the computation time through our heuristic candidate
selection and decomposition approach, we can also solve more complex index
selection formulations with wider indexes, more indexes per query, or even
consider the performance variance of multiple workload scenarios.

This contribution is based on the following publications:

• [123] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlos-
ser. Magic mirror in my hand, which is the best in the land? An ex-
perimental evaluation of index selection algorithms. Proceedings of the
VLDB Endowment, 13(11): 2382–2395, 2020.

• [194] Rainer Schlosser and Stefan Halfpap. A decomposition approach for
risk-averse index selection. In Proceedings of the International Confer-
ence on Scientific and Statistical Database Management (SSDBM), pages
16:1–16:4, 2020.

• [100] Stefan Halfpap. Hybrid index selection using integer linear pro-
gramming based on cached cost estimates of heuristic approaches. In
Proceedings of the International Workshop on Simplicity in Management
of Data (SiMoD), pages 5:1–5:4, 2023.

For publication [123], the primary authors, Kossmann and the thesis author,
contributed equally, in particular to the paper’s conceptualization and original
draft. The thesis author initiated the research survey, implemented and revised
a large share of the evaluation platform (e.g., the ILP approach “CoPhy”, Au-
toAdmin, Anytime (DTA), Relaxation, and the cost evaluation), classified the
evaluated algorithms with regard to the underlying approaches, and discussed
challenges for commercial index selection tools. Jankrift implemented a proto-
typical version of the evaluation platform. Jankrift and Schlosser contributed
to the paper’s concept, and improved its material and presentation.

The thesis author co-authered [194], and contributed to the paper’s concept,
implementation, evaluation, and text. Specifically, the author co-designed the
ILP model, implemented the cost evaluation, and derived the model input.
Schlosser initiated the robustness extension and conducted the evaluation.

In this thesis, we focus on a deeper evaluation of ILP-based index selection
algorithms compared to our previous survey [123]. Further, this thesis gen-
eralizes the decomposition approach [194] for multiple indexes per query and
proposes a hybrid index selection approach using ILP based on cached cost
estimates of heuristic approaches. The hybrid approach is described in a single-
author paper [100].

1.4. Structure of Thesis

The remainder of this thesis is structured as follows: In Chapter 2, we discuss
database system scalability and replication approaches. Then, we describe the work-
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load distribution problem for partially replicated database clusters in Chapter 3. In
Chapter 4, we review related work. We present our allocation approaches in Chap-
ter 5. In Chapter 6, we evaluate our allocation models numerically and in end-to-end
experiments. In Chapter 7, we show how we can apply our ILP-based heuristics and
robustness extensions to the index selection problem. Finally, we conclude this thesis
with a summary and discussion of future work in Chapter 8.
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Background

Everything is one - except for the zero.

Wau Holland

Partial replication for database clusters is one specific scale-out approach for database
systems. In this chapter, we give a more general overview of scalability (Section 2.1)
and replication approaches (Section 2.2) for database systems. The covered aspects
are selected to (i) position the addressed system architecture in the field of diverse
scaling approaches for database systems and (ii) understand it to derive suitable
data allocation approaches.

2.1. Database System Scalability

This section presents approaches for scaling database systems with a focus on
database clusters. First, we give an overview of scaling approaches (Section 2.1.1).
The overview includes an introduction of parallel architectures (i.e., shared-memory,
shared-disk, and shared-nothing) and the terms scale-up and scale-out. Following,
we describe and compare the three parallel architectures for scaling database sys-
tems in Section 2.1.2. Finally, we explain the characteristics of a database cluster,
which is a specific form of a scale-out database system (Section 2.1.3).

2.1.1. Overview

Scalability is the property of a system to cope with an increasing amount of workload
(and data) by adding (hardware) resources [51], e.g., processors with cores and
local caches, main memory, and storage. System architectures for scaling database
systems (and in general for parallel data processing) can be classified by the way
how the processors are interconnected [170] and, thus, share hardware resources.
The shared resources affect how processors can coordinate with each other and how
they can access stored data.
Traditionally, parallel system architectures are divided into three classes [17,

62]: (i) shared-memory (see Figure 2.1a), (ii) shared-disk (see Figure 2.1b), and
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Figure 2.1.: Parallel system architectures for scaling. (based on [62])

(iii) shared-nothing (see Figure 2.1c). Despite the increased and increasing hetero-
geneity of hardware resources (e.g., by the usage of non-volatile [8, 9] and disaggre-
gated memory [121, 238] in database systems), this classification is still applicable
and used. In practice, mixtures of these architectures are common, e.g., a shared-
nothing architecture with nodes having multiple processors with shared memory.
Using this classification, the shared-disk and shared-nothing architecture follow

a scale-out approach [170], i.e., they use an increasing number of loosely coupled
processor nodes to scale. In contrast, the shared-memory architecture follows a
scale-up approach [170], i.e., it scales with more powerful, tightly coupled hardware
at a single node (e.g., using processors with more cores or higher clock rates).

2.1.2. Parallel Database System Architectures

The three parallel system architectures have different advantages and disadvantages
with regard to their performance (including extensibility/scalability), price, and
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resilience (in particular availability) [17]. This section describes and compares the
three parallel architectures under these aspects for scaling database systems.

Shared-Memory

In a shared-memory (or sometimes called shared-everything) architecture, all pro-
cessors can access the entire main memory and storage (see Figure 2.1a). One
major advantage of this architecture is the simplicity of programming because all
processors run under a single operating system and can communicate quickly via
main memory.

Further, load balancing is simple [220]: Each processor can access the entire
database and process each query. Naturally, processors can process queries in par-
allel for inter-query parallelism. Due to the quick communication via main memory,
processors can also efficiently share or steal work for processing single queries in
parallel for intra-query parallelism.

Originally, the processors’ access to the entire main memory was uniform via the
same interconnect (see Figure 2.1a) with the same latency and bandwidth. When
all processors share the same interconnect to access the main memory, this uniform
memory access (UMA) can become a performance bottleneck [214], in particular
with an increasing number of processors [65].

Non-uniform memory access (NUMA) architectures try to overcome this limita-
tion but keep the shared-memory view of all processors [87, 137]. In this subclass
of shared-memory architectures, each processor has its own local main memory.
Processors can access their local memory more efficiently than the memory of the
other processors. Overall, the differences in local and remote memory access times
are comparably small compared to the differences between memory and disk ac-
cess times. Nevertheless, the allocation of processing load and data structures to
processors and memory in a NUMA system influences the performance [29, 58, 117].

With an increasing number of processors in a shared-memory system, the in-
terconnect to ensure cache coherency efficiently becomes more complex and, thus,
expensive [220]. Further, with a growing number of processors and their speed, the
probability of conflicting accesses, which degrade the performance, increases [220].
Another disadvantage is the limited scalability of main memory on a single node
due to physical limitations for DRAM density and, thus, capacity [115, 148].

Finally, shared-memory systems offer limited resilience [220], e.g., a crashing op-
erating system affects the single node and, thus, the entire system.

As the scaling of shared-memory systems is limited, increasingly expensive, and
not particularly resilient, scale-out systems that use a shared-disk or shared-nothing
architecture have emerged. The idea is to use multiple loosely-coupled processor
nodes with their own memory that coordinate via storage or network.
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Shared-Disk

In a shared-disk architecture, processor nodes do not share main memory (see Fig-
ure 2.1b). Thus, they must coordinate via shared storage or network. The two
traditional main technologies to share disks in a cluster are network-attached stor-
age (NAS) and storage-area network (SAN) [170]: NAS offers file-based disk access
via a distributed file system protocol, e.g., Network File System (NFS). In contrast,
SAN access is block-oriented and typically via a dedicated storage network. SAN is,
thus, faster but more expensive than NAS. New shared-disk systems [16, 226] use
cloud object stores as “virtually limitless” shared storage.
Compared to a shared-memory architecture, shared-disk increases a system’s re-

silience: Increased resiliency for computing is achieved by multiple independent
processor nodes [219], which run their own operating system instances. Data and
hardware redundancy can be implemented in the shared storage, e.g., by using mul-
tiple independent disks. To avoid a performance bottleneck for accessing the shared
storage, shared-disk systems require an efficient or special interconnection network
for the storage [221].
Compared to a shared-memory architecture, the coordination between processors

is slower, as they are located at different nodes and cannot communicate via main
memory. Further, compute nodes need to pull data from the slower shared storage
for processing. Compute nodes may have local storage for caching [54]. However,
the potentially increased latency with its higher potential for transactional conflicts
and lower throughput puts shared-disk systems at a disadvantage for OLTP [12].
For OLAP, the higher latency is no deciding factor because the latency is fast enough
for interactive analytics: For OLAP, efficient usage of the parallel hardware is im-
portant, e.g., load balancing across the processor nodes. For shared-disk systems,
load balancing is easy, as nodes can access the entire data set on shared storage.
This aspect is beneficial for skewed workloads with non-uniform access frequencies
over the dataset.
Compared to shared-nothing architecture, a big advantage of shared-disk is that

the compute layer and storage layer can be scaled independently based on the de-
mand. For example, we can increase storage while simultaneously shutting down
idle compute resources. This flexibility has helped shared-disk architectures to a
new renaissance for data management in the cloud, where elasticity is a key require-
ment [12, 212]. Before, shared-nothing architectures have long been the primary
design choice for scale-out database systems [62, 211].

Shared-Nothing

In a shared-nothing architecture, processors have their own main memory and stor-
age and must coordinate via the network (see Figure 2.1c). In theory, this archi-
tecture is the most scalable, as there is no central component (The interconnection
network may be the Internet.). This scalability enables to build huge, even global-
scale, data management systems based on cheap hardware, as, for example, Google
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has shown [13]. The nodes of a shared-nothing system can be more tightly coupled
via a faster and more reliable local area network or loosely via a wide area network.
Depending on the coupling, sometimes parallel and distributed database systems
are differentiated.
Compared to shared-disk systems, shared-nothing can be said to be cheaper,

as they require no particularly efficient and, thus, expensive interconnection net-
work [221]. In addition, processing nodes store the data locally. Hence, there is no
(potentially) increased data access latency for loading data from the shared storage.
This lower latency enables shared-nothing systems to have a higher efficiency and
performance than shared-disk systems. However, the performance depends on the
load balancing, which is harder to achieve for a shared-nothing system: Processors
can only access their local storage. Data exchange via the shared interconnection
network may be limited compared to shared storage and the more tightly cou-
pled nodes of a shared-disk system [185, 236]. Hence, in contrast to a shared-disk
architecture, we must decide how to distribute the data set among the nodes in
advance [221]. This distribution limits how processing can be balanced. Hence, the
performance of a shared-nothing system may degrade significantly under skew [170].
Compared to a shared-disk architecture, the data distribution to local nodes makes

implementing elasticity more challenging [221]. For example, when new nodes are
added to the system, we must reconsider the load balancing, which may require
reorganizing the nodes’ data. Further, processing capabilities and storage capacity
cannot be scaled independently: Even if only compute is the bottleneck, the added
node affects the system’s data organization.

In general, the design of a shared-nothing system is more complex compared to
shared-disk because the database system functionality has to be implemented via
multiple nodes that share only the interconnection network [221]. There are also
more design decisions (e.g., how to distribute data over the nodes including data
replication and how to implement query processing). Since the first shared-nothing
database systems in the 1980s (e.g., Bubba [31, 47] and Gamma [60, 61]), diverse
scale-out systems have been developed.

2.1.3. Database Cluster

A database cluster is a specific form of a scale-out database system [170]. It consists
of multiple nodes that run autonomous off-the-shelf database systems [170, 186, 187,
188], which are connected by a middleware to act as a single system. In contrast,
native parallel and distributed database systems have all nodes under full control.
Most database clusters use a shared-nothing architecture, which supports database
autonomy with its independent storage better than a shared-disk architecture [169].
The middleware functionality of a database cluster can be integrated into the

autonomous database system or be implemented as an external system. The mid-
dleware controls the data distribution across nodes, query processing, including
transaction handling and load balancing, and fault tolerance [39].
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Database clusters can support inter-query and intra-query parallelism: For inter-
query parallelism, queries are routed to different nodes and processed in parallel.
Intra-query parallelism is more difficult to achieve because the autonomous database
systems are (usually) not cluster-aware [170]. Therefore, the middleware must im-
plement the following process: (i) The query is divided into suitable subqueries.
(ii) Cluster nodes can then process the subqueries in parallel. (iii) The subresults
are finally composed.

Compared to native parallel and distributed database systems, database clusters
are often cheaper and offer a simple way to scale out because they require no heavy
migration from a single-node database system [170]. For these reasons, cluster
databases have been a common architecture for the first large web or e-commerce
sites [155]. Today, all major database systems support clustering. However, for the
highest performance efficiency, native parallel and distributed scale-out database
systems are superior over database clusters because they can integrate distributed
database functionality in its core rather than as middleware on top.

2.2. Replication Approaches

In this section, we discuss data replication approaches with a focus on shared-nothing
database clusters. First, we give an overview of replication as part of the data distri-
bution process (Section 2.2.1). Following, we cover partial replication (Section 2.2.2)
as an optimization for the data distribution. Finally, we classify approaches to syn-
chronize the replicas’ data (Section 2.2.3).

2.2.1. Overview

For database systems with a shared-nothing architecture, we have to decide how to
distribute the data among the nodes. There are two techniques to distribute data
over the nodes: partitioning and replication [170]. The data distribution is coupled
to the overall system design, including the query processing across nodes.

Data Partitioning and Replication

Partitioning is the horizontal or vertical splitting of data items (e.g., relational
tables) into data fragments, the units of replication [170]. Horizontal partitioning
splits tables into subsets of rows, e.g., for scanning these subsets in parallel or storing
them at separate nodes.
Vertical partitioning splits tables into subsets of columns. It is, for example,

used in columnar database systems, such as Hyrise [66], SAP HANA [74], Vec-
torwise [240], and Vertica [128]. Columnar database systems store individual at-
tributes separately [48] and can, thus, scan them efficiently [149] without requiring
indexes [177]. Horizontal and vertical partitioning can be nested to form a hybrid
partitioning scheme.

18



2.2. Replication Approaches

Database replication means that data fragments are duplicated and stored at mul-
tiple nodes. The reasons for database replication are increasing (i) data availability
and (ii) system performance. (i) When data is stored at multiple nodes, the data
is still available when single nodes fail. (ii) When data is stored at multiple nodes,
these nodes can access the data and, thus, process queries in parallel.

Database Distribution

The database distribution is a combination of data partitioning and replication.
It is tightly coupled to the query processing model, i.e., how the query workload
is distributed across the nodes, and transactional consistency is guaranteed. Suit-
able approaches depend on the data set size, workload (e.g., the ratio of read-only
queries and OLAP vs. OLTP), and system requirements. Two common database
distribution approaches for shared-nothing systems are sharding and full replication:

• Sharding. If the overall database size is too large to be stored and processed
at a single node, it must be partitioned and distributed across nodes. A preva-
lent approach based on horizontal partitioning is storing individual fragments
at different nodes [49, 52, 60, 111, 227]. In this context, horizontal partition-
ing is commonly called sharding. The single fragments are called shards. In a
sharded system, nodes store and execute (sub)queries on individual shards.

Sharding can be combined with replication: shards are replicated and stored
at different nodes to increase their availability. The number of replicas can be
adjusted depending on the desired availability.

• Full replication. If the database fits on a single node, we can replicate and
store the entire database at each node. All nodes can access the entire database
and can process queries in parallel. This approach is called full replication and
is common for cluster database systems [181].

If a simple scaling approach is needed, we can use full replication without intra-
query parallelism across nodes, i.e., replica nodes process individual queries
locally. This approach requires no sophisticated middleware for distributed
query processing and is, thus, comparably easy to implement and use in prac-
tice. In contrast, local query processing limits the speedup for individual
(highly processing-intensive) queries.

Read-only replication. Analyses of enterprise workloads have shown that most
queries are read-only [27, 75, 125]. Further, modern database systems, such as
SAP HANA [74], Hyper [113], LeanStore [136], and Umbra [163], can achieve
high transaction rates with a single node. Combing both facts makes read-
only replication a reasonable scale-out approach [158, 175, 178, 199]. When
using read-only replication, a single (powerful) primary node handles all data
modifying queries (i.e., inserts, deletes, and updates), particularly the entire
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transaction processing. Handling transactions at a single node has the ad-
vantage of not needing cross-node coordination, which can limit the overall
transactional throughput if many conflicts occur. Replica nodes are used for
read-only queries, mainly to take over heavy-load analytical queries. Read-
only replication is, thus, a suitable choice for enterprise computing, which
requires consistency and scalability on mixed workloads [178]. However, the
scalability is limited, i.e., the suitability depends on the read-only workload
share. In Faust et al.’s analysis of a modern financial system without mate-
rialized aggregates [75], the accumulated execution time of read-only queries
(i.e., selects) was 98%.

Divergent Design Tuning. When duplicating data, we can also store this data
using different divergent designs, e.g., different partitionings for better cache
performance [2, 183] or different auxiliary structures to optimize individual
query subsets [46, 166]. There are diverse auxiliary structures for tuning,
including index [123] variants (e.g., B-trees, hash maps, or bitmaps), pruning
filters [4, 23, 89], materialized views [93, 156], caches (managed by the database
system) [68]. For example, replicas could store highly specific indices, such as
full-text search indices, which are not created on the primary node for capacity
reasons. In return, the system must take care of an optimized query routing
to nodes that can efficiently process the query and the overall load balancing.

Further, we can also use replica nodes to extend the system’s functionality
by running different database systems on the replicas. Different database
systems could support additional operators (e.g., window functions or the
skyline operator) or implement different data models (e.g., the graph model)
than the primary node [176].

Transparency of Database Distribution. An important aspect of shared-nothing
database systems is the transparency degree of the data distribution, which assesses
how much users must care about distributing the data and processing queries [170].
When full transparency is provided, the database system or middleware handles all
query distribution and processing aspects, including distributing the data, splitting
queries into subqueries for separate nodes, and synchronizing data replicas. When
only limited transparency is provided, users must take over parts of this work. For
example, they may have to (re)distribute data or route (sub)queries to nodes.

2.2.2. Partial Replication

In Section 2.2.1, we introduced the idea of divergent design tuning when duplicat-
ing all data. Another approach for optimizing the data distribution across nodes
is partial replication [170]. When using partial replication, the number of replicas
per data fragment within the cluster may differ. The idea of this approach is du-
plicating the data based on the access frequency (and availability goals). Typically,
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the majority of (OLTP and OLAP) queries access only a small subset of the overall
database [27, 79, 138, 178].
Partial replication has the following advantages: Storing less data reduces (i)

hardware costs or (ii) provides more space for efficient data processing. (i) We
can use cheaper nodes with less storage. (ii) We can use the saved storage for
static auxiliary structures (e.g., to use additional secondary indices). For in-memory
database systems, the saved storage (main memory) can also be used for memory-
intensive dynamic data structures that may be advantageous for query processing
but would be too large without replica optimizations.
Further, storing less data reduces the synchronization costs because replicas must

synchronize relevant/fewer data changes. Less synchronization costs lead to more
time for query processing. Overall less synchronization costs, in turn, enable smaller
hardware configurations, e.g., using fewer replica nodes. Finally, storing less data
improves caching and the performance because a larger (relative) data share fits into
the (different levels of) caches.

The concept of partial replication is suitable (i) for sharding and (ii) as optimiza-
tion for full replication. (i) For sharding, we can adjust the number of replicas per
data fragment based on the access frequency [151]. (ii) As optimization for full
replication when queries are processed locally, partial replicas store only subsets of
the data [181]. Partial replicas can process subsets of queries, particularly frequent
processing-intensive analytical queries while requiring less storage than a full copy
of the database.

2.2.3. Replica Synchronization

When data is duplicated and stored at different nodes, each logical data item has a
number of physical copies in the system. Hence, we must decide how physical copies
are synchronized. These design decisions include (i) where we can issue data-altering
transactions (i.e., on a single primary node, where the primary copy is located, or
anywhere) [170], (ii) when we propagate transactional changes to the other physical
copies (i.e., eagerly or lazily [90]), and (iii) the kinds of information (i.e., logical or
physical) to update physical copies. In the following, we discuss these independent
design decisions, which can be used to classify replication approaches.

Single-Primary vs. Primary-Copy vs. No-Primary

We can differentiate where to issue data-altering transactions for individual logical
data items [90, 170]. The single-primary approach allows them only on a (single)
dedicated node, called the primary node. The data changes are then propagated to
the other nodes, called replicas or secondaries.
Primary-copy, also called multi-primary, allows data-altering transactions for dif-

ferent logical data items at different nodes, but all updates of specific logical data
items must be issued at the same node [41]. We can summarize both approaches
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(i.e., single-primary and primary-copy) as centralized approaches [170]: For all logi-
cal data items, there is a dedicated central physical copy.
In contrast, for a distributed [170] or so-called update-everywhere approach, there

is no primary copy of a data item and, thus, no primary node.

The used approach influences the required coordination and scalability. Central-
ized approaches avoid coordination between nodes for transactions that affect single
data items. Single-primary avoids inter-node coordination for transaction processing
completely, but the transaction processing cannot scale beyond one node.
In contrast to single-primary, primary-copy can distribute the transaction pro-

cessing of individual logical items to different nodes and is, thus, more scalable
in theory. However, primary-copy requires inter-node coordination for transactions
that update multiple data items with different primary nodes, which may slow down
the overall transaction processing.
Using an update-everywhere approach, we can theoretically balance the load best,

but the required coordination and danger of transactional conflicts are the highest
because different physical copies of a data item can be updated at different nodes
concurrently. Optimized assignments of primary copies and transactions to nodes
can avoid transactional conflicts and increase the performance.

Eager vs. Lazy Synchronization

We can differentiate when data changes are propagated to replicas [90, 170]. Eager
replication propagates updates (individually or batched) to all replicas as part of
the transaction. When a transaction is committed, it is executed on every replica
atomically. Hence, all physical data items in the cluster are in the same state after
the end of a transaction. When using eager replication, the performance to keep
replicas in sync is important because it directly influences the transactions’ latencies.
In contrast, lazy replication postpones the synchronization of replicas, i.e., the

propagation of changes to the other nodes is not part of the transaction.

Lazy replication delivers better transaction latencies than eager approaches be-
cause it does not wait to return until all nodes are synchronized. In addition, lazy
replication can better optimize the communication between primary and replica
nodes by batching update information of multiple transactions without sacrificing
individual transaction latencies. The disadvantage of lazy replication is that mutu-
ally consistency of replicas is not guaranteed and must (if desired) be implemented
on application level. In practice, lazy database replication is often used with snap-
shot isolation as isolation level [59].

Logical vs. Physical Information

The kind of information on how to synchronize replicas can be logical or physical.
Logical updates describe data modifications on a higher level, such as SQL state-
ments. Physical updates provide lower-level information regarding the used data
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structures, for example, specifying the offsets where to insert or change values. The
size of physical update information depends on the amount of changed data, but the
speed of replaying it is usually faster than for logical updates (e.g., SQL statements)
because the queries do not have to be re-executed [234].
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3

The Workload Distribution Problem

By the time you’re done with your dissertation, you’ll have answered
questions no one ever answered (or possibly asked) before.

Peter Bailis

This chapter formalizes our workload distribution problem for partially replicated
database clusters, which we introduced in Section 1.1. We first describe the basic
problem for balancing read-only queries among database nodes in Section 3.1. In
Section 3.2, we then motivate further aspects (i.e., the calculation time, node failures,
workload uncertainty, data modifications, and reallocation costs) that must possibly
be considered for allocations in practice.

3.1. Basic Problem

In this section, we describe how we want to distribute a read-only workload among a
set of database nodes. We first explain the problem’s input in Section 3.1.1, followed
by constraints and the solution in Section 3.1.2. Section 3.1.3 concludes this section
with an example.

3.1.1. Input

Table 3.1 gives an overview of our problem’s input parameters, which we explain in
the following more detailedly.
We assume a database consisting of a number of disjoint data fragments/partitions

N , the units of replication. The fragmentation scheme (i.e., whether the database
is partitioned horizontally or vertically) and data model (e.g., relational, graph, or
object model) are not relevant to the problem. The size of fragment i is denoted
by ai, i = 1, ..., N . To derive fragment sizes in practice, database systems like
PostgreSQL provide metadata in their database catalog. Further, it is also possible
to estimate fragment sizes based on the number and internal physical representation
of data records.
Further, we assume a database cluster with K nodes/machines. These nodes store

(subsets of) fragments and execute queries. As the read-only query throughput
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Table 3.1.: Input parameters.

symbol description

N number of fragments i, i = 1, ..., N
Q number of queries j, j = 1, ..., Q
K number of nodes k, k = 1, ...,K (cluster size)
ai size of fragment i, i = 1, ..., N
qj accessed fragments of query j, j = 1, ..., Q, a subset of {1,...,N}
fj frequency of query j, j = 1, ..., Q
cj costs of processing query j, j = 1, ..., Q
C total workload costs
V overall size of all accessed fragments

can be scaled linearly with the number of nodes K, K is determined in practice
depending on the expected workload or performance goals.
Finally, we assume a set of Q (classes of) queries j, which are characterized by

used fragments qj ⊆ {1, ..., N}, j = 1, ..., Q. It may be impossible to determine
whether a query actually accesses a specific fragment before executing the query.
In these cases, the set of fragments must be specified pessimistically, containing all
possibly required fragments. Further, unknown ad-hoc queries can be modeled as
a query class accessing all fragments, i.e., q̄ = {1, ..., N}. Queries j occur with
frequency fj, j = 1, ..., Q. The costs of query j are independent of the executing
node k, k = 1, ..., K, and denoted by cj, j = 1, ..., Q. Query costs are numeri-
cal and can be modeled in several ways. Suitable metrics may differ depending on
specific database systems. The complexity of metrics ranges from easy-to-measure
and widely applicable metrics, such as the average processing time of a query, to
advanced metrics derived by cost models for specific database systems, e.g., con-
sidering memory hierarchies and access patterns for main-memory databases [150].
Using the query costs cj and frequencies fj, we can derive the overall workload costs

C :=


j=1,...,Q
fj · cj.

Using the fragment sizes ai and actually occurring queries j = 1, ..., Q : fj > 0, we
can derive the accessed data size

V :=


i∈


j=1,...,Q:fj>0 {qj}
ai.

3.1.2. Constraints and Solution

Our problem is a coupled data placement and workload distribution problem: We
want to decide (i) on which node to put which data fragments and (ii) which query
is executed at which node to which extent. Table 3.2 introduces the decision and
solution variables. In the following, we describe the decision variables, constraints,
aspects to consider, and solution variables.
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Table 3.2.: Decision and solution variables.

symbol description

xi,k fragment i is allocated to node k: yes (1) / no (0)
yj,k query j can run on node k: yes (1) / no (0)
zj,k query j’s workload share assigned to node k: ∈ [0, 1]

W overall size of all allocated fragments (memory consumption)
W/V an allocation’s normalized memory consumption (replication factor)
L a node’s workload limit

Decision Variables

To describe calculated allocations, we use the following decision variables:

• xi,k ∈ {0, 1}, i = 1, ..., N , k = 1, ..., K, are allowed to be zero or one, indicating
whether fragment i is allocated to node k (1) or not (0).

• yj,k ∈ {0, 1}, j = 1, ..., Q, k = 1, ..., K, are allowed to be zero or one, indicating
whether query j can run on node k (1) or not (0). The values yj,k can be derived
by the allocated fragments xi,k, j = 1, ..., Q, k = 1, ..., K i = 1, ..., N .

• zj,k ∈ [0, 1], j = 1, ..., Q, k = 1, ..., K, are allowed to be continuously between
zero and one, indicating the workload share of query j executed at node k.

Solution Constraints and Aspects

Several constraints and aspects have to be taken into account:

(a) A query j can only be executed at node k if all relevant fragments qi are stored
at node k. This constraint is implied by our system model.

(b) The workload must be balanced among the nodes to enable scalability (see
Section 2.1.2, shared-nothing). Otherwise, a single node would become the
cluster’s bottleneck and limit the overall query throughput.

(c) The sum of workload shares for a fixed query over all nodes must be one.

(d) The data placement should be optimized: We want to minimize the cluster’s
overall memory/storage consumption. Minimizing the memory consumption
has the following advantages (see Section 2.2.2): (1) Hardware storage costs
are reduced. (2) Data synchronization costs are reduced. (3) Data caching
is improved.

(e) The data placement problem and the workload distribution problem cannot
be decoupled and must be simultaneously solved.
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Solution Variables

The following two solution variables can be derived from the decision variables and
are our key metrics to assess the solution/allocation:

• The maximum workload limit L, 0 ≤ L ≤ 1, over all K nodes assesses the
load balancing (see (b)). If L = 1/K, the load can be evenly balanced among
the nodes.

• The replication factor W/V , where the total amount of data used

W :=


i=1,...,N,k=1,...,K
xi,k · ai

is normalized by the amount of accessed data V , assesses the overall memory
consumption (see (d)).

The simultaneous optimization of both metrics is a tradeoff: A better (lower)
maximum workload limit requires a worse (higher) replication factor (e.g., full repli-
cation enables the optimal limit L = 1/K). A better (lower) replication factor leads
to a worse (higher) maximum workload limit (e.g., storing all fragments only once
at a single node implies the worst-case limit L = 1).
In general, we can use a fixed maximum replication factor W/V or a fixed max-

imum workload limit L as input parameter and optimize the other metric. In this
thesis, we focus on allocations with an even load balancing L = 1/K, which are
usually desired in practice.

3.1.3. Running Example

Figure 3.1 visualizes an exemplary model input and solution. In Figure 3.1, we have
a database with N = 10 fragments, Q = 5 queries, and K = 4 nodes. All fragments
i have the same size, e.g., ai = 1 GB, i = 1, ..., 10.
Executing queries requires storing different subsets of fragments, e.g., query j = 1

requires the fragments q1 = {1, 2, 3, 4}. Processing query j = 1 takes c1 = 5 s (query
costs). The relative frequency value of query j = 1 with regard to the other queries
is f1 = 20. Using the overall workload costs C = 1000 s, we can derive the workload
share of query j = 1 as f1·c1

C
= 10%.

In Figure 3.1, allocated fragments are colored normally, e.g., for node k = 1,
xi,k = 1 for i = 1, 2, 3, 4. Transparent fragments are not allocated, e.g., for node
k = 1, xi,k = 0 for i = 5, 6, 7, 8, 9, 10.
Based on the stored fragments, we can derive all executable queries. For example,

node k = 1 can execute query j = 1 and j = 5, i.e., yj,1 = 1, j = 1, 5. The other
queries cannot be executed, i.e., yj,1 = 0, j = 2, 3, 4.
For the executable queries j = 1 and j = 5 of node k = 1, the assigned workload

shares are z1,1 = 1 and z5,1 = 0.5. The assigned workload shares determine a node’s
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Solution

InputDatabase (V=10)
1

7 98 10
2 43

6
5

q1 (100%)
q2 (100%)
q3 (100%)
q4 (100%)
q5 (100%)

100%

5

1 2 3 4

3 4 6

97 8

108 9

1

q1

q2

q3

q4

q5

10% 
query   fragments   workload cj x fj                  fragment sizes

≅ 5 x 20

15% ≅ 50 x 3

25% ≅ 10 x 25

20% ≅ 20 x 10

30% ≅ 6 x 50

ai = 1, i=1,…,10

% q2 (z2,2)

% q5 (z5,2)

100

33
Load 1/4

100

Load 1/4

% q4 (z4,4)
% q5 (z5,4)

100
17

Load 1/4

% q1 (z1,1)

% q1 (z5,1)

100

50
Load 1/4

Node 1 (W=4) Node 2 (W=5) Node 3 (W=6) Node 4 (W=4)

10

6
5

2 43
7 7

1
6
5

2
10

% q3 (z3,3)

y1,1=1
y2,1=0
y3,1=0
y4,1=0
y5,1=1

y1,2=0
y2,2=1
y3,2=0
y4,2=0
y5,2=1

y1,3=0
y2,3=0
y3,3=1
y4,3=0
y5,3=0

y1,4=0
y2,4=0
y3,4=0
y4,4=1
y5,4=1

x1,4=1
x2,4=0
x3,4=0
x4,4=0
x5,4=0
x6,4=0
x7,4=0
x8,4=1
x9,4=1
x10,4=1

x1,3=0
x2,3=0
x3,3=0
x4,3=0
x5,3=0
x6,3=0
x7,3=1
x8,3=1
x9,3=1
x10,3=0

x1,2=1
x2,2=0
x3,2=1
x4,2=1
x5,2=1
x6,2=1
x7,2=0
x8,2=0
x9,2=0
x10,2=0

x1,1=1
x2,1=1
x3,1=1
x4,1=1
x5,1=0
x6,1=0
x7,1=0
x8,1=0
x9,1=0
x10,1=0

7 98

11

2 43
1098

1

43
6
5

6
5

2 43
7 98 98 10

Figure 3.1.: Query-driven workload distribution for a partially replicated database
cluster: The upper part visualizes the model input. The database consists of N = 10
fragments. Q = 5 queries correspond to different workload shares. Processing a
query requires storing its accessed fragments. The objective is to minimize the
overall memory consumption of the replication cluster while evenly balancing the
load among K = 4 nodes. The lower part illustrates an example allocation with a
total replication factor W/V = 1.9 and even workload distribution with L = 1/4 of
the workload share assigned to each node.

assigned workload share, e.g., for node k = 1,


j=1,...,Q zj,k · fj ·cj
C

= 1 · 0.1 + 0 + 0 +
0.5 · 0.3 = 1/4.

The sum of workload shares for a fixed query over all nodes must be one, e.g., for
query j = 5,


k=1,...,4 zj,k = 0.5 + 0.33 + 0 + 0.17 = 1.

Overall, the solution in Figure 3.1 satisfies the constraints (a) - (c). The maximum
workload limit over all nodes is L = 1/4, which is optimal. The replication factor is
W/V = (4+ 5+ 6+ 4)/10 = 1.9, which is better than for full replication W/V = 4,
but not (yet) optimal.

3.2. Further Considerations

In practice, allocations must possibly consider further aspects, such as robustness
against node failures, robustness against uncertain workloads, data modification
costs, and reallocation costs. Further, the calculation time for allocations must
be short enough for practical applicability. Considering these factors enables the
calculation of robust allocations and adapting them in dynamic setups, in which the
workload, data, and system landscape (e.g., whether a node is running or has to
be updated) may change over time and, thus, the data allocation can be optimized.
Following, we discuss allocation aspects that may be considered in practice.
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3.2.1. Calculation Time

Calculating optimized allocations becomes more difficult with an increasing number
of fragments, nodes, and queries (see (e)). Calculation times must be low enough
for practical applicability. Limits for the calculation time depend on the specific use
case. Ideally, an approach allows flexibly trading the allocation’s quality (i.e., the
workload limit L and replication factor W/V ) and calculation time.
After the calculation, an allocation must be deployed, i.e., nodes must physically

load the data fragments. As the time for fragment deployment usually increases with
the amount of moved data, practitioners are willing to accept higher calculation
times for a quicker overall setup. For this reason, allocations do not have to be
calculated with interactive calculation times or with basically no overhead (as for
CPU caching). Nevertheless, in this thesis, we want to calculate allocations relatively
“quickly” (see Section 1.2, thesis statement), below 100 s. Further, we want to
investigate optimal solutions and how to trade larger (than 100 s) runtimes to obtain
potentially better results.

3.2.2. Node Failures

In practice, nodes might fail. In the presence of node failures, in which the load of
the failed node has to be distributed among the remaining nodes, memory-efficient
data allocations may result in load imbalances or even require reallocations. A
database cluster can support different levels of robustness in case of node failures.
Basic robust allocations ensure that (i) each fragment is stored at multiple nodes or
(ii) queries can be processed at multiple nodes [181]. Resulting allocations guarantee
that (i) all fragments are still available and (ii) all queries are still processable if
nodes fail. However, the workload distribution after node failures can be highly
skewed. Advanced robust allocations ensure that all queries are still executable in
failure cases without overloading single nodes, i.e., in any case of a node failure,
it must be possible to balance the workload between all remaining nodes evenly.
It is challenging to calculate memory-efficient allocations that guarantee an even
workload distribution in failure cases because we must consider potential failures
of all nodes, at which different subsets of fragments are allocated and at which
different subsets of queries can be executed. Sophisticated approaches are needed to
guarantee balanced workload distributions in the case of node failures, particularly
in the standard case of single-node failures.

3.2.3. Workload Uncertainty

Because applications, business processes, and workflows predefine query classes that
are sent to the database system, many workloads are predictable to a certain degree.
Nevertheless, most workloads are not perfectly predictable. In specific, the query
classes’ frequencies may fluctuate, e.g., depending on which (part of the) application
is currently most used. Further, modeled query costs (e.g., the average processing
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time) are inherently imprecise to a certain degree, e.g., because concurrently pro-
cessed queries (using the same processor caches) influence the runtime.

Data allocations are usually flexible to a certain degree: (i) If a single node can
process multiple queries, the workload shares of these queries at the node are flexible.
(ii) If queries are (in addition) processable by multiple nodes, workload shares can
also be compensated among nodes.

However, the compensation possibilities are limited. If the allocation is only
optimized for memory consumption, only a few queries are usually processable per
node (see Figure 3.1, node k = 3) and queries are often only executable by a single
node (see Figure 3.1, queries j = 1, 2, 3, 4). If the actual queries’ workload shares
deviate too strongly from the modeled one, load balancing may become skewed
and the query throughput decreases. To increase the robustness against uncertain
workloads, we can allocate additional fragments/queries to nodes. We want to ensure
an even workload distribution for multiple possible workload scenarios, which are
determined by different query subsets, frequencies, and costs. Using an increasing
number of diversified input workloads increases the load balancing flexibility and,
thus, also robustness against unknown workload deviations to a certain degree.

3.2.4. Data Modifications

As a result of inserts, updates, or deletes, data (fragments) may change over time.
These modifications must be performed at all replicas that store the affected frag-
ments by executing data modifying queries (i.e., logical replication, see Section 2.2.3)
or performing only the actual data changes (i.e., physical replication, see Sec-
tion 2.2.3). Although the workload share of data modifications is often small [27,
125], fragment modifications and synchronization cause additional costs, which must
be considered for the allocation to ensure an even load balancing.

3.2.5. Reallocation Costs

Workloads (i.e., query subsets, frequencies, and costs) or fragment sizes may change
over time. As a result, a current data allocation may not allow an even workload
distribution anymore, or a different allocation may reduce the memory consumption.
Of course, robust partial allocations that consider node failures or workload uncer-
tainty can compensate for workload changes to some extent. However, in practice,
workloads may change heavily or unexpectedly. In these situations, if a low memory
consumption despite heavily changing workloads is desired, fragment reallocations
may be preferable.

Further, we may want to elastically add nodes to (or remove nodes from) the
cluster. Then, we must decide which queries and fragments to allocate to the new
node (or which node to remove), and how to reallocate the existing nodes.

It is possible to calculate a new allocation for the changed input from scratch.
However, the new allocation could differ enormously from the current one. Then,
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the resulting reallocations would be time-consuming and, thus, costly. To avoid
costly reallocations, the current allocation can be taken into account by the al-
location algorithm. The challenge is to identify minimally invasive reallocations,
which reallocate little data but optimize the solution, i.e., the load balancing and
the memory consumption.
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Related Work

Human beings, who are almost unique in having the ability to learn from the
experience of others, are also remarkable for their apparent disinclination to do so.

Douglas Adams

Our allocation problem belongs to the class of assignment problems, which have been
studied extensively in related work. There are many variations of assignment prob-
lems and solution approaches. Thereby, solution approaches can be tightly coupled
to specific problem formulations. But, there are also problem-independent algo-
rithmic approaches for solving assignment problems. Section 4.1 gives an overview
of related assignment problems and how they differ. We summarize general opti-
mal and heuristic solution approaches in Section 4.2. In Section 4.3, we then focus
on more specific allocation approaches that have been proposed for our workload
distribution problem and related problems.

4.1. Assignment Problems

Assignment problems are omnipresent and have many real-life applications, e.g.,
in production planning, transportation and routing, and, naturally, computer and
database systems [165]. Öncan surveys a generalized assignment problem, for which
(abstract) items have to be assigned to (abstract) knapsacks under capacity con-
straints and an optimization function [165]. For specific problem formulations, items
and knapsacks relate to different things. In our problem (see Chapter 3), we have
to assign queries and fragments (items) to database nodes/machines (knapsacks).
If the items relate to data (e.g., files or fragments), the problem is often named
“allocation” instead of “assignment”. Naturally, the specific optimization goal and
the assignment constraints are more important than naming items and knapsacks
in a particular context. For example, specific assignment problems may differ in
the constraints (i) whether items can be arbitrarily split or must be assigned as a
whole, (ii) or if the assignment should also optimize the robustness, e.g., in case of
potential failures or uncertainty.
Given the constraints and optimization function, we can classify assignment prob-

lems. An important classification is whether the decision variables are continuous or
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discrete (called integer optimization or programming). Integer problem formulations
are more difficult to solve. If only some variables are restricted to integers (and the
others are continuous), the problems are called mixed integer programming (MIP)
problems. If variables are restricted to zero (0) and one (1) rather than arbitrary
integers, problems are named to be binary integer programming (BIP).

Further, optimization problems are classified by what kind of functions (e.g., lin-
ear, quadratic, exponential) are used for the constraints and optimization function.
More restricted functions (e.g., only linear) enable the application of special/faster
solution algorithms. In the field of less restricted problem formulations, convex op-
timization is an important subclass with more efficient algorithms than the general
mathematical optimization.

Many assignment problems are expressed using only linear functions. (Integer) lin-
ear optimization, called (integer) linear programming, (I)LP, is, thus, an important
subclass. How real-world problems are modeled as formalized problem descriptions
may depend on different factors.

Finally, we may classify what information about the solution of an optimization
problem we seek in practice. We may want to know (i) the value of the optimal
solution, (ii) whether a solution exists that is better than a fixed limit, or (iii) the
assignment (i.e., the values of the decision variables) for the optimal solution.

In the following Section 4.1.1, we present (classes of) selected assignment prob-
lems with integer programming formulations. Section 4.1.2 summarizes variants and
extensions of these problems.

4.1.1. Integer (Linear) Programming Assignment Problems

This section presents selected assignment problems, how they differ from our work-
load distribution problem, and how they influenced proposed solution approaches. In
our selection, we focus on assignment problems in computer science and former his-
torical examples, which inspired the later solution approaches. Öncan’s survey [165]
lists further assignments problems of a wider field.

• Warehouse Location Problem. The placement of warehouses or plants [15,
70, 76, 126] is a historically important assignment problem, for which the un-
derlying abstract activities (e.g., storing and transmitting goods) are similar
to later problems in the field of computer science. Thereby, a set of warehouses
has to be chosen to supply a set of customers with goods while minimizing
(transportation and fixed) costs. Insights when solving this older assignment
problem have naturally influenced later related problems: For example, Kuehn
et al. not only stated that the size and nonlinearities can make problem in-
stances practically infeasible to be solved optimally, but also emphasized the
value of heuristics if solution time is a criterion [126].
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• File Allocation Problem (FAP). Early data assignment problems in the
field of computer science are different variants of the file allocation prob-
lem [38, 45, 73, 147, 157]: A number of files must be placed in a network of
computers under storage, transmission, and data access constraints. Dowdy
et al. showed that specific problem formulations are diverse [64]. The main
difference when placing files instead of database relations or fragments (which
may be co-accessed) is the independence of single file accesses [5]. However,
model abstractions (e.g., simplified modeling of queuing delays [45]) of these
early assignment problems have been adapted in later problem formulations.
Further, earlier work in the context of data allocation has also shown that
solution approaches from other domains can be adapted or applied, e.g., if
problems are isomorphic [40, 182].

• Data Fragment Allocation in Distributed Database Systems. With
the development of scale-out database systems, data fragment allocation in
distributed database systems has become an important assignment problem.
Early overviews in this field summarized differences from the file allocation
problem [6, 139]: The database must be first partitioned into suitable frag-
ments. The access of data in a database system is more complex than in a
file system. For example, queries access many different subsets of fragments,
and data must be combined. Overall, fragments are not independent, and
co-location is an important factor [5, 230]. Further aspects do not have to
be considered for the FAP but distributed database systems, e.g., transaction
handling and implementing specific replication protocols [170].

Similar to the FAP, there are many specific formulations of the fragment allo-
cation problem [170], which differ in (i) optimization goals (e.g., performance,
costs, and availability) and (ii) constraints based on the (simplified) system as-
sumptions. Özsu and Valduriez present a “relatively general” allocation model
how to assign fragments to the nodes of a distributed database management
system [170] (see also the previous book edition [169]. In their description,
they mention many potentially important aspects (e.g., costs for concurrency
control) but do not present the model with every detail.

Our models share many similarities, for example, (i) minimizing storage costs
as (part of the) optimization function, (ii) binary decision variables for al-
locating fragments to nodes, and (iii) the distinction between accessed and
updated fragments.

Compared to their model, in our problem, accessed fragments have to be
stored where the query is executed. This constraint is similar to the processing
model of Rabl and Jacobsen [181], whose approach is discussed detailedly
in Section 4.3.1.

Further, we develop a linear model while their processing cost constraints
contain the nonlinear min function.
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Besides their general allocation model, Özsu and Valduriez address solution
methods [170]: Because problem formulations are often proven to be NP-hard,
a lot of research tries to find good heuristic solutions. As optimization goals
and constraints for specific allocation problems differ, heuristics are often tied
to specific formulations of the allocation problem.

4.1.2. Variants of Assignment Problems

In the previous section, we mentioned that not every assignment problem is mod-
eled using integer linear programming. In the following, we summarize important
variants of assignment problem formulations [165]:

• Nonlinear Optimization. Constraints and the optimization function may
contain nonlinearities, e.g., quadratic, exponential, min/max functions. For
example, if we want to optimize (or include the optimization of) the vari-
ance (called mean-variance optimization (MVO)) [153, 194] to consider the
dispersion (e.g., for a risk-averse optimization), we have to use a quadratic
optimization function.

• Dynamic Assignment Problems. For dynamic assignment problems [120],
the order of assignments is relevant, e.g., when tasks occur at a specific time
or jobs have a due date. An important dynamic problem in the context of
cloud computing is the assignment of virtual machines to machines of large
data centers [96, 215, 217, 224].

• Stochastic Assignment Problems. Further, there are stochastic [3, 106]
problem formulations, for which the problem contains uncertainty, e.g., the
cost of assigning a job to a machine, or the probability that a job occurs.
Also, future workloads (e.g., the frequency of queries) may be uncertain.

Of course, these variants are independent and can be arbitrarily combined. Fur-
ther, there is often a difference between real-world problems/processes and how they
are modeled to obtain a solution (as we mentioned before).

4.2. General Solution Approaches

Specific allocation problems differ in the optimization goal and constraints. Never-
theless, we can calculate the solution using similar solving techniques, e.g., integer
linear programming (or mathematical programming in general) or greedy search.
Suitable solving techniques depend not only on the targeted solution quality but
also on the problem instance (i.e., problem formulation and input sizes) and limits
for the calculation time, e.g., whether the result must be computed within a few
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seconds for an interactive application or not. Often, it is possible to trade solu-
tion quality and computation effort, i.e., we can find better solutions with more
computation time or resources. In the following, we survey different optimal (Sec-
tion 4.2.1) and heuristic (Section 4.2.2) solution approaches. Besides these solution
approaches, there are also (arguably) more general algorithmic paradigms/patterns,
e.g., divide-and-conquer and dynamic programming. Divide-and-conquer algorithms
(recursively) break a problem into subproblems, solve the subproblems individually,
and combine the subproblems’ solutions into the overall solution [50]. Dynamic pro-
gramming algorithms (recursively) break a problem into subproblems and reduce
the overall calculation time by storing and reusing subproblems’ solutions [50].

4.2.1. Optimal

Exhaustive Search. A simple and basic problem-solving technique is exhaustive
(also called brute-force) search [154]. Exhaustive search examines all possible so-
lution candidates and chooses the best. Thus, it guarantees an optimal solution if
it exists. While it is simple to implement, it is often impractical as the number of
solution candidates grows quickly with the problem instance. This effect is known
as combinatorial explosion. For most problems, there are many ways to speed up
exhaustive search, e.g., skipping invalid, obviously suboptimal, or solutions that are
identical to previously examined ones except for permutation. But (automatically)
optimizing the pruning of suboptimal solutions may be complex, cumbersome, or
impossible. Nevertheless, exhaustive search can be used as part of other (heuris-
tic) approaches.

Backtracking. A common strategy to avoid a full enumeration and prune invalid or
suboptimal solutions is backtracking [201]. Backtracking tries to step-by-step extend
a partial solution to a full solution. If the partial solution cannot be extended to
a valid or optimal solution anymore, the last step or steps are taken back. The
algorithm is simple. But the search (or pruning of suboptimal solutions) is very
systematic and not fully optimized: For example, early steps are only taken back
late. Beginning with different steps to better prune suboptimal solutions may be
faster. Overall, the order in which steps are taken is not optimized.

Mathematical Programming. Using mathematical programming, we can formal-
ize the assignment problem with a set of constraints/(in)equations and an optimiza-
tion function. Then, we can use algorithms that take advantage of the formalized
problem structure. These algorithms use a highly systematic enumeration of the
search space compared to exhaustive search. As a result, they find optimal solu-
tions relatively quickly. Sedgewick et al. state that even though the search may take
exponential time, real-world inputs are evidently not worst-case inputs [201]. As a
result, we can speed up the search significantly.
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More restricted (e.g., convex or even linear) mathematical formulations enable
faster algorithms that can quickly narrow down and find the solution. Many as-
signment problems are modeled with an (integer) linear programming formulation.
Efficient algorithms or paradigms in this field are the simplex algorithm [56], brach-
and-bound [55, 130], and interior-point methods [56]. Such algorithms are integrated
into mathematical solvers, which can be used as off-the-shelf programs to solve for-
malized problems. There are commercial (e.g., FICO Xpress [77], Gurobi [94], IBM
ILOG CPLEX [109]) and open source (e.g., GLPK [86], lp solve [18], SCIP [20])
solvers. To speed up the calculation of the actual problem, solvers typically include
a presolve phase, in which, for example, redundant constraints are removed, and vari-
ables are fixed if possible [33]. Using solvers benefits from algorithmic improvements
and hardware improvements [21] because the solvers are steadily optimized with al-
gorithmic advances, and for effective and efficient resource usage. Bixby summarized
the history and advances of (integer) linear programming [21, 22]. For example,
Bixby reported a combined improvement factor of more than 5 · 106(< 3300 · 1600)
for the CPLEX LP solver in the sixteen years from 1988 to 2004 due to algorithmic
(3300×) and machine (1600×) improvements [22].
Overall, integer linear programming remains an NP-hard problem. The increase

in computation time can be mitigated by using highly optimized solvers (and the
integrated algorithms), but it may be too high for practical use. Further, the com-
putation time for the optimal solution is (finite but) unknown in advance. Trauth
and Woolsey stated that predicting the runtime is generally impossible before trying
to solve the problem [218]. Nevertheless, the computation can be aborted to obtain
the current best-found solution. Further, it is possible to relax the problem, e.g.,
dropping the constraint that the variables should have integer values and instead
allow fractional values. The solution of the relaxed problem can be obtained faster.
Solving the relaxed problem first (in the presolve phase) provides a bounded solution
with fractional values [33]. Following, we can also abort the computation when a
sufficiently good solution with regard to the theoretical limit has been found.

In this thesis, we use mathematical programming, in particular integer linear pro-
gramming, to model and solve different data allocation and workload distribution
problems. ILP is commonly used in industry and research for various assignment
problems, also in the context of physical database optimization, e.g., index tun-
ing [57], data tiering [28, 225], and data encoding selection [26]. The application of
ILP is typically limited to obtaining optimal solutions for smaller problem instances.
Otherwise, simple greedy heuristics, which are considerably quicker, are often used
for larger problems [26, 180, 225]. In contrast, we also use mathematical program-
ming for larger problem instances by (i) exploiting a heuristic problem decomposi-
tion, (ii) using solver relaxations, and (iii) clustering of model inputs. Further, we
design and evaluate multiple versatile extensions of our integer linear model. For
our evaluation, we use one state-of-the-art commercial solver (Gurobi [94]) with a
free academic license. A performance (or feature) comparison of different solvers is
out of the scope for this thesis.
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Although the optimal solution approaches are limited to smaller problem instances
(or less complex problem formulations) [205], their solutions are useful to analytically
measure any heuristics’ performance with regard to the value of the optimization
function and calculation time [102, 195]. Further, we can analyze the structure and
properties of optimal solutions, which may help to derive heuristic approaches.

4.2.2. Heuristic Approaches

As optimally solving larger assignment problem instances may take practically too
long, we require so-called heuristic [174] approaches that find (good) solutions faster.
There is a broad range of heuristic solving techniques. Some approaches are problem-
specific, i.e., they can only be applied to specific optimization problems (e.g., the
k-opt method for the traveling salesman problem [142]). But there are also meta-
heuristics [25], which define an abstract order of steps that can be theoretically ap-
plied to arbitrary problems. The individual abstract steps of metaheuristics require
a problem-specific implementation. Naturally, the transition from problem-specific
to more algorithmic-oriented metaheuristics is smooth. Since the late 1990s and the
early 2000s, the focus of research on metaheuristics has shifted from an algorithm-
oriented to a problem-oriented point of view [24, 206, 213]: Blum et al. stated that
the focus is on solving the problem at hand in the best possible way rather than
promoting a certain metaheuristic [24]. Talbi summarized that for many optimiza-
tion problems, the best results are obtained by hybrid algorithms, which combine
different algorithmic components [213].
For an overview of some of these algorithmic concepts, we summarize prominent

metaheuristics in the following. We focus on explaining the heuristics’ core idea
rather than covering algorithmic details, variants, or implementation aspects, which
are covered in the original papers and many surveys [25, 85, 154, 174, 167]. Although
there are also other ways to classify metaheuristics (e.g., based on their origin:
nature-inspired vs. non-nature inspired, or based on their usage of search history:
memory usage vs. memory-less methods), we primarily divide the algorithms in our
overview between constructive and improving methods. For both classes, we start
with trajectory methods, which work on a single solution at a time. The name is
based on the shape of the investigated solutions over time, which is a trajectory in
the search space [25]. They are followed by population-based methods, which work
on a set of solutions, called the population [25, 85].

Constructive Methods. Constructive methods generate solutions from scratch by
adding elements rather than improving complete solutions [25, 85].

• Basic Greedy Search. Greedy algorithms make the locally optimal choice
in each iteration, i.e., the choice that looks best at the moment [50]. Greedy
search can quickly find relatively good solutions, which may then be itera-
tively refined by (trajectory or population-based) improving methods [25, 85].
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Further, other constructive methods are often based on greedy search [85].
However, greedy algorithms are conceptually simple and “may pay for that
simplicity by failing to provide good solutions to complex problems with in-
teracting parameters”, as Michalewicz and Fogel state [154].

• Look-Ahead Strategies. A look-ahead strategy [174] is one extension of
the greedy search that evaluates the current choice not only for the current
moment but also for several steps into the future. To an extreme, one could
evaluate a possible choice by generating a complete solution out of it [67].

• Ant Colony Optimization. Ant colony optimization is a population-based
method and an example of swarm intelligence, for which the solution is con-
structed by multiple (partial) solutions of so-called agents. In the case of
ant colony optimization, the agents mimic the behavior of ants, which use
pheromones to identify good paths during their forage. When an agent has
constructed a solution, the “pheromone level” of each solution element is up-
dated to reflect the solution quality. Agents in the following iteration(s) can
then use this information to find better solutions.

Improving (Local Search) Methods. Improving methods (try to) iteratively en-
hance single (trajectory-based) or multiple (population-based) solutions.

• Basic Hill Climbing. Based on an initial solution, the algorithm tries to im-
prove the solution incrementally and stops as soon as no further improvement
can be found [174]. This process corresponds to a climber that walks only
uphill in the fog and assumes to be on the top if he stays on a place where all
directions go downhill. Basic hill climbing stops at local maxima (or minima),
which may be far from optimal depending on the specific problem. But it is
simple and may provide better results than other algorithms when the time is
limited (e.g., for interactive applications).

Getting stuck in local optima is a common limitation for heuristics [81]. To
prevent this problem, common strategies use randomness (e.g., simulated an-
nealing) or memory (e.g., tabu search) [81].

• Simulated Annealing. The core idea of simulated annealing [116] to over-
come local maxima is randomly allowing intermediate solutions with worse
quality than the solution before. The probability of choosing such worse so-
lution decreases during the search and is controlled by a “cooling schedule”
that mimics the annealing process of a crystalline solid [85]. The acceptance
of worse solutions also depends on the degradation of the optimization func-
tion’s value.

• Tabu Search. To overcome local maxima (and avoid cycles), tabu search [82,
83] memorizes recently visited solutions and marks them as tabu (forbidden).
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To overcome local maxima, it also accepts worse solutions if no allowed solu-
tion is an improvement. Further, the forbidden solutions prevent cycles, i.e.,
repeatedly visiting the same intermediate solutions.

• Evolutionary Computation. Evolutionary computation algorithms are
population-based methods and use computational models of evolutionary pro-
cesses for problem solving [208]: They iteratively select and then apply a
number of operators on solutions of the current population to generate the
solutions of the next generation. Solutions are selected based on their fitness
values, e.g., the value of the objective function. Operators to produce new so-
lutions include mutations/modifications of single solutions and recombinations
(also called crossover) of two or more current solutions [25].

Besides their faster calculation compared to optimal solution approaches, Sil-
ver [205] summarizes further potential reasons for utilizing heuristic solution meth-
ods. (i) Although not obtaining optimal solutions, people are often happy for im-
provements over currently achieved results. (ii) People may prefer to understand
simpler heuristic approaches to explain their solution over complex routines with
unexplainable results and unknown calculation times. In this context, Silver cites
Woolsey and Swanson: “People would rather live with a problem they cannot solve
than accept a solution they cannot understand” [232]. (iii) Heuristics can be more
robust with regard to (slight) data or constraint changes than optimal solutions,
which require potentially expensive recalculations [14] (with unpredictable compu-
tation times). (iv) Heuristics can be used as part of optimization routines, e.g., to
generate initial solutions or to find bounds to quickly identify suboptimal solutions.

Further, the reduced calculation time compared to optimal solutions allows to use
more complex models, which may better fit the original problem. In this case, it
may be better to achieve a “reasonable (non-optimal) solution to a more accurate
model” than an “optimal solution to an incorrect or oversimplified model of the
real-world problem” [205].

However, although heuristic approaches often find (good) solutions quickly, heuris-
tics may fail to find a valid solution at all. In this case, one may not be able to
determine whether there is no feasible solution or whether the algorithm was unable
to find one. Further, it is usually impossible to assess the heuristic solution’s quality
compared to the optimal value of the objective function.

(Best-)Suitable (meta)heuristics depend on the specific problem formulation and
instance. Two key properties of heuristics are diversification and intensification [25,
84] within the solution space: Diversification is the purposely exploration of un-
charted regions of the solution space [84]. Intensification is the more thorough
search for solutions in “attractive regions” of the solution space [84]. Naturally, the
specific implementation of the metaheuristic (i.e., how well it can be adapted to fit
the problem and tuned) may also influence the choice.
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4.3. Specific Solution Approaches

After the overview of assignment problems and general solution approaches, this
section presents more specific solution approaches. We focus on approaches that have
been proposed for the workload distribution in partially replicated database clusters
and that we use in our evaluation to compare against (Section 4.3.1). Following, we
address specific related problems and approaches in Section 4.3.2.

4.3.1. Workload Distribution for Partially Replicated Database
Clusters

In this thesis, we optimize the allocation of queries and fragments to nodes of a
database cluster. Our goal is to find a good balance between robust throughput and
a low memory consumption. The optimization goal and the constraints are similar to
the work of Rabl and Jacobsen [180, 181]. In their work, they present an allocation
strategy for database clusters and discuss how to consider data modification costs,
node failures, changing workloads, and reallocations. To cope with node failures,
Hsiao and DeWitt propose an allocation strategy [108], which we can apply to our
problem. In the following, we discuss these allocation approaches and extensions.

Greedy Basic

Rabl and Jacobsen propose a greedy constructive heuristic to generate a suitable
allocation [181]. In the following, we first describe their approach. Afterward, we
explain it using our exemplary read-only workload (see Figure 4.1 and 4.2).
Initially, no queries or fragments are assigned. The heuristics assigns queries (and

the corresponding accessed fragments) to nodes in a query-by-query approach. It
starts to assign queries that account for a large workload share and access the most
data because these queries potentially cause the highest data duplication if they
are assigned late and their load, thus, has to be potentially split across multiple
nodes. In specific, the queries are sorted by the product of their workload share (i.e.,
query frequency fj × query costs cj ) and the total size of accessed fragments qj
in descending order. This sequence of queries to assign determines the (current)
allocation order. A query is assigned to the node with the largest overlap of already
allocated fragments and those accessed by the query. Nodes with no assigned queries
are, thereby, treated as if they have a complete overlap. (As a result, all nodes
usually get assigned queries and their fragments early.) If a query’s workload share
would exceed the assigned node’s load capacity, the node is filled up to its limit.
The query with its remaining workload is merged back into the list of queries and
assigned later. Nodes with an already full load capacity (i.e., L = 1/K) are not
regarded for the query assignment.
Figure 4.1 and 4.2 visualize the model input and the greedy approach from an

initial empty allocation via the intermediate allocations 1 - 6 to the solution, i.e., final
allocation. For each allocation state, the sorted queries to assign, allocated fragments
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Figure 4.1.: Greedy basic heuristic for the basic problem: distributing the
workload to K = 4 nodes. (1/2)

(colored fragments and xi,k, i = 1, ..., 10, k = 1, ..., 4), and assigned workload shares
(query load zj,k and executable queries yj,k, j = 1, ...5, k = 1, ..., 4) are given. In our
example, query j = 3 (and its three accessed fragments 7 - 9) is assigned first to
node k = 1 (see intermediate allocation 1). The processing capacity of node k = 1
is then full (L = 1/4), and the node is not further regarded in the basic algorithm.

Next, query j = 2 is assigned to node k = 2 (see intermediate allocation 2); then,
query j = 4 to node k = 3 (see intermediate allocation 3); and query j = 1 to node
k = 4 (see intermediate allocation 4). For each assignment, the query load can be
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Figure 4.2.: Greedy basic heuristic for the basic problem: distributing the
workload to K = 4 nodes. (2/2)

fully assigned to the selected node. For each assignment, a new node is chosen, as
already assigned nodes have no complete fragment overlap.

After the intermediate allocation (state) 4, only query j = 5 has to be assigned.
The load capacity of node k = 1 is full. The other nodes 2 - 4 have remaining load
capacities and can be chosen for the assignment. For the next step to assign query
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j = 5, node k = 4 is chosen because it already got assigned fragment i = 1 and has,
thus, the largest overlap. As assigning the complete load of query j = 5 to node
k = 4 would exceed the load limit of node k = 4, the load of query j = 5 is split and
only assigned partly to node k = 4 up to its load limit (L = 1/4) (see intermediate
allocation 5). The rest load of query j = 5 is updated (see intermediate allocation
5) and assigned in the following. Again, it has to be split and is assigned to node
k = 2 (see intermediate allocation 6) and k = 3 (see solution).
As the final result (see Figure 4.2, solution), the workload is entirely assigned

and evenly balanced across all nodes (i.e., L = 1/4). Overall, 16(= 3 + 5 + 4 + 4)
fragments are allocated.
The algorithm runs in polynomial time and can quickly calculate allocations for

thousands of queries and hundreds of fragments and nodes. We find the heuristic
plausible and effective but identified weaknesses due to its simplicity and greedy
nature. For example, when ordering the queries, the accessed fragments are not
regarded (only their sizes). Further, the remaining queries to assign are not regarded.

Data Modification Costs

Rabl and Jacobsen’s base algorithm includes costs for logical data synchronization,
i.e., data modifying (“update”) queries are assigned to every backend that contains
referenced data [181]: For (read-only) queries to assign, the potential costs (and
additional fragments) of update queries with overlapping fragments are included. If
a read-only query is assigned to a backend, we add (i) the fragments of the related
update queries and (ii) the costs of related updates that are not already considered.
The overall costs for data modifications depend on the specific assignment of update
queries and modified fragments and are unknown in advance. Because the overall
modification costs are unknown in advance, the load capacity may have to be ad-
justed multiple times during the algorithms, which may lead to query assignments
to nodes that were previously filled up to their limits.

Greedy Extension for Node Failures

Rabl and Jacobsen propose a greedy approach to complement a basic solution to
one that considers node failures [181]: After a basic solution is found, redundant
executability of queries is tested and (if necessary) ensured in a query-by-query
process, which is similar to the approach of finding a basic solution. Queries are
sorted by the size of the fragments they access in descending order. If a query
is already executable by multiple nodes, nothing has to be done. Otherwise, the
query is assigned to the node with the largest fragment overlap of already assigned
queries, considering only the nodes that cannot already execute the query. The
thereby added load of redundant query assignments in potential failure cases is not
considered. As a result, the load balancing among nodes may be highly skewed in
failure cases. To an extreme, a single node must take over the entire workload of
the failed node and cannot pass anything of its regular workload to other nodes.
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Basic Solution 

% q2 (z2,2)

% q5 (z5,2)

100

5.5
Load 1/6

83

Load 1/6

% q1 (z1,4)

% q5 (z5,4)

100

22
Load 1/6

% q3 (z3,1) 67

Load 1/6

Node 1 (W=3) Node 2 (W=5) Node 3 (W=3) Node 4 (W=4)

10

6
5

% q4 (z4,3)

y1,1=0
y2,1=0
y3,1=1
y4,1=0
y5,1=0

y1,2=0
y2,2=1
y3,2=0
y4,2=0
y5,2=1

y1,3=0
y2,3=0
y3,3=0
y4,3=1
y5,3=0

y1,4=1
y2,4=0
y3,4=0
y4,4=0
y5,4=1

Redundant query feasibility to ensure: q1 (4 fragments), q2 (4 fragments)

1

2 43 107 982
6
5

72 43 10

6
5

7 987 98 43
6
5

98 10

1

2 43

1

Intermediate Allocation Redundant query feasibility to ensure: q2 (4 fragments)

% q3 (z3,3)
% q4 (z4,4)
% q5 (z5,4)

33
17
17

Load 1/6

Node 5 (W=5)

y1,5=0
y2,5=0
y3,5=1
y4,5=1
y5,5=1

6
51

% q5 (z5,6) 55.5
Load 1/6

Node 6 (W=1)

y1,6=0
y2,6=0
y3,6=0
y4,6=0
y5,6=1

10

6
5

7 98

11

2 432 43 7 98 10

% q2 (z2,2)

% q5 (z5,2)

100

5.5
Load 1/6

83

Load 1/6

% q1 (z1,4)

% q5 (z5,4)

100

22
Load 1/6

% q3 (z3,1) 67

Load 1/6

Node 1 (W=3) Node 2 (W=6) Node 3 (W=3) Node 4 (W=4)

10

6
5

% q4 (z4,3)

y1,1=0
y2,1=0
y3,1=1
y4,1=0
y5,1=0

y1,2=1
y2,2=1
y3,2=0
y4,2=0
y5,2=1

y1,3=0
y2,3=0
y3,3=0
y4,3=1
y5,3=0

y1,4=1
y2,4=0
y3,4=0
y4,4=0
y5,4=1

1

2 43 107 98

6
5

72 43 10

6
5

7 987 98 43
6
5

98 10

1

2 43

1

% q3 (z3,3)
% q4 (z4,4)
% q5 (z5,4)

33
17
17

Load 1/6

Node 5 (W=5)

y1,5=0
y2,5=0
y3,5=1
y4,5=1
y5,5=1

6
51

% q5 (z5,6) 55.5
Load 1/6

Node 6 (W=1)

y1,6=0
y2,6=0
y3,6=0
y4,6=0
y5,6=1

10

6
5

7 98

11

2 432 43 7 98 102

SolutionRedundant query feasibility to ensure: —

% q2 (z2,2)

% q5 (z5,2)

100

5.5
Load 1/6

83

Load 1/6

% q1 (z1,4)

% q5 (z5,4)

100

22
Load 1/6

% q3 (z3,1) 67

Load 1/6

Node 1 (W=3) Node 2 (W=6) Node 3 (W=3) Node 4 (W=6)

10

6
5

% q4 (z4,3)

y1,1=0
y2,1=0
y3,1=1
y4,1=0
y5,1=0

y1,2=1
y2,2=1
y3,2=0
y4,2=0
y5,2=1

y1,3=0
y2,3=0
y3,3=0
y4,3=1
y5,3=0

y1,4=1
y2,4=1
y3,4=0
y4,4=0
y5,4=1

1

2 43 107 98

6
5

72 43 107 987 98 43
6
5

98 10

1

2 43

1

% q3 (z3,3)
% q4 (z4,4)
% q5 (z5,4)

33
17
17

Load 1/6

Node 5 (W=5)

y1,5=0
y2,5=0
y3,5=1
y4,5=1
y5,5=1

6
51

% q5 (z5,6) 55.5
Load 1/6

Node 6 (W=1)

y1,6=0
y2,6=0
y3,6=0
y4,6=0
y5,6=1

10

6
5

7 98

11

2 432 43 7 98 102
6
5

Figure 4.3.: Greedy heuristic extension for node failures: distributing the
workload to K = 6 nodes. Redundant query feasibility is ensured, but if specific
nodes fail, single remaining nodes get overloaded.

Figure 4.3 shows this extension for a basic allocation with six nodes. The queries
j = 3, 4, 5 are already executable by multiple nodes, i.e., the nodes k = 5, 6, k =
3, 5, and k = 2, 4, 5, 6. Query j = 1 gets assigned to node 2 because it requires
only one additional fragment, i.e., fragment i = 2 (see intermediate allocation).
Query j = 2 gets assigned to node 4, which requires two additional fragments, i.e.,
fragments i = 5, 6 (see solution). To ensure redundant query executability, overall
three additional fragments are assigned. Note, no matter which node fails, each
query remains executable. However, if, for example, node 2 fails, node 4 becomes
overloaded because it is the only node that can process query j = 1 and j = 2,
which account for 10% + 15% = 25% of the workload share (1/5 = 20% of the load
are required for an even load balancing).

Chaining Approach for Node Failures

Allocations that guarantee an even workload distribution in failure cases can be
constructed by applying the chained declustering strategy to a basic solution [108]:
Nodes are chained, forming a ring. The successor of each node is its backup. In
addition to the fragments of the basic allocation, each (backup) node gets assigned
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Table 4.1.: Chained declustering scheme for K = 6 nodes with the regular load
distribution and if node k = 2 fails.

Node k (backup of node k) 1 (6) 2 (1) 3 (2) 4 (3) 5 (4) 6 (5)
Regular load R := 1/K 1/6 1/6 1/6 1/6 1/6 1/6

Shifted load if k = 2 fails / - 1R - 4/5R - 3/5R - 2/5R - 1/5R
Taken load if k = 2 fails + 1/5R / + 1R + 4/5R + 3/5R + 2/5R
Load if k = 2 fails 1/5 / 1/5 1/5 1/5 1/5

all its predecessor’s fragments. As a result, the backup can take over the complete
assigned regular load of its predecessor and pass an arbitrary share of its regular
workload to its successor. This workload-shifting potential enables an even load
balancing in single-node failure cases.
Table 4.1 shows an example with K = 6 nodes, where node k = 2 fails. The

regular load is 1/6. If node k = 2 fails, its backup node k = 3 takes over the load
and shifts 4/5 of its regular node to node k = 4. Hence, if k = 2 fails, the load of
node k = 3 is 1/6 + 1/6− (4/5 · 1/6) = 1/5. Further, node k = 4 takes over 4/5 of
the load from k = 3 and shifts 3/5 of its regular load to node k = 5. Resulting, the
load of node k = 4 is 1/6 + (4/5 · 1/6) − (3/5 · 1/6) = 1/5. Following this scheme,
the load of the nodes k = 5, 6, 1 is also 1/5 (see Table 4.1). If node k = 2 fails, the
workload can be evenly balanced. For other single-node failures, the load shifting
works similarly.

Merging Approach for Workload Uncertainty and Reallocations

Rabl and Jacobsen also describe an extension of their approach to cope with mul-
tiple workload scenarios [181]: They propose to calculate a separate allocation for
each scenario independently. Individual allocations are merged pairwise, mapping
each node of the first allocation to a node of the second allocation. Merged allo-
cations enable an even load balancing for both input allocations. The Hungarian
algorithm [127] allows calculating an optimal mapping, which minimizes the mem-
ory consumption of the merged allocation (in polynomial time). However, because
entire nodes are merged, optimization potential is lost.
The Hungarian algorithm [127] can also be used to calculate the mapping from

a current to a new allocation with the smallest reallocation costs. If the current or
new allocation should have more nodes, empty nodes (i.e., nodes without fragments)
are added, and the Hungarian algorithms can be applied.

4.3.2. Specific Related Problems and Approaches

Archer et al. address an allocation problem that is similar to our basic read-only
problem [7]. They evenly load balance queries for web search containing multiple
terms, which correspond to the fragments in our model. They use a distributed
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balanced graph partitioning tool [11] for clustering queries. By an effective query
load balancing, they reduced cache misses by about 50%. In contrast to our model,
their system is slightly different. First, data of assigned terms (fragments) can be
loaded on demand. Second, the partitioning aims to allocate terms evenly to nodes,
whereas our model does not demand an even memory balancing. Nevertheless, the
coupled data (term) and query assignment problem is similar to our problem.
In contrast, the allocation problem for replicating data tackled by Ghosh et al. [80]

has no such coupling, which significantly reduces the problem’s complexity. They
replicate fragments according to the access rate and balance the number of fragments
per node. Further, they focus on a dynamic setting [151], in which fragments and
queries change over time.
There is also a lot of research about data placement in systems with distributed

query processing [47, 92] or when allocating data without replication, e.g., when
choosing a data storage layout [2, 10, 91] or in the case of multiple storage tiers [28,
132], NUMA nodes [114, 134], or disks [143, 168] (see also Section 2.2.1). Further,
some approaches combine data partitioning and replication to reduce the number of
distributed transactions [53, 179]. In the context of parallel database systems, Li et
al. consider a system with heterogeneous cluster resources [140].
Our work focuses on using partial replication to reduce the overall memory con-

sumption. In contrast, Tashkent+[71] exploits workload-driven load balancing to
improve caching, particularly for transaction scaling.
Our workload distribution reduces the memory consumption of replicas. Workload

knowledge can also be used to optimize database nodes to process a specific subset
of queries more efficiently. We listed these other divergent design tuning options
(e.g., indices) in Section 2.2 but do not address their specific solution approaches in
this thesis.
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5

Allocation Models for the Workload
Distribution Problem

All models are wrong, but some are useful.

George Box

This chapter presents our optimal and heuristic integer linear programming-based
approaches for calculating data fragment allocations for partially replicated database
clusters (see Chapter 3). First, we describe solution approaches for the basic prob-
lem (Section 5.1), balancing read-only queries. Following, we discuss approaches to
flexibly trade computation time for memory efficiency in a targeted way, i.e., how
we can sacrifice solution quality to speed up the calculation of allocations if desired
(Section 5.2). Finally, we show extensions of our approaches to cover possibly de-
sired allocation aspects (Section 5.3), such as robustness against node failures and
uncertain workloads as well as a consideration of data modification and reallocation
costs. We shortly summarize our approaches in Section 5.4.

5.1. Solutions for the Basic Problem

In Section 1.1, we identified three allocation goals: a low memory consumption, a
short calculation time, and robust performance. In this section, we derive integer
linear programming (ILP) models to calculate allocations that enable an even load
balancing for read-only queries without optimizing robustness. First, we present
a model that minimizes the memory consumption in Section 5.1.1. As optimal
solutions are only tractable for small problem instances, we derive a decomposition
heuristic based on the optimal model to lower the calculation time in Section 5.1.2.

5.1.1. Optimal Solution

In this section, we describe a model to derive optimal allocations. Table 5.1 sum-
marizes the input parameters, decision variables, and solution variables (see also
Chapter 3 for detailed descriptions).
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Table 5.1.: Notation table for the optimal model and its adaption.

symbol description

N number of fragments i, i = 1, ..., N
Q number of queries j, j = 1, ..., Q
K number of nodes k, k = 1, ...,K
ai size of fragment i, i = 1, ..., N
qj accessed fragments of query j, j = 1, ..., Q, a subset of {1,...,N}
fj frequency of query j, j = 1, ..., Q
cj costs of processing query j, j = 1, ..., Q
C total workload costs
V overall size of all accessed fragments
L a node’s workload limit (if no penalty approach is used)
 admissible deviation of an optimal workload limit
α penalty factor for the workload limit
β incentive factor for executable queries

xi,k fragment i is allocated to node k: yes (1) / no (0)
yj,k query j can run on node k: yes (1) / no (0)
zj,k query j’s workload share assigned to node k: ∈ [0, 1]

W overall size of all allocated fragments (memory consumption)
W ∗ memory consumption of the optimal solution
W/V an allocation’s normalized memory consumption (replication factor)
L a node’s workload limit (if a penalty approach is used)

We seek to minimize the overall data redundancyW , which is the sum of all stored
fragment sizes over all nodes (i.e.,


i=1,...,N,k=1,...,K xi,k · ai), such that all nodes do

not exceed a certain workload limit L, 0 ≤ L ≤ 1. To balance the load evenly among
all cluster nodes k, k = 1, ..., K, we set L = 1/K.
Like Rabl and Jacobsen [181], we assume that the query shares z can be chosen

without regard to query frequencies and costs, which may be discrete. The decision
variables x, y, and z have to be chosen such that the objective

minimize
xi,k, yj,k ∈ {0, 1}, zj,k ∈ [0, 1],
i = 1, ..., N, j = 1, ..., Q, k = 1, ..., K


i=1,...,N,k=1,...,K

xi,k · ai (5.1)

is minimized and the following (families of) constraints are satisfied:

yj,k · |qj| ≤


i∈qj
xi,k, j = 1, ..., Q, k = 1, ..., K (5.2)

zj,k ≤ yj,k, j = 1, ..., Q, k = 1, ..., K (5.3)
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Figure 5.1.: Optimal solution of the basic problem: distributing the workload
to K = 4 nodes.


j=1,...,Q

fj · cj/C · zj,k ≤ L, k = 1, ..., K (5.4)


k=1,...,K

zj,k = 1, j = 1, ..., Q (5.5)

The constraints (5.2) guarantee that a query j can only be executed at node k
if node k stores all accessed fragments. If we want to execute query j at node
k (i.e., yj,k = 1), all accessed fragments of query j must be allocated to node k.
The cardinality term |qj| expresses the number of fragments used in query j. The
constraints (5.3) ensure that a query j can only have a positive workload share on
node k if it can be executed at node k. If yj,k = 0, then zj,k = 0 follows; if yj,k = 1, the
shares zj,k are not restricted. Note, the constraints (5.3) couple the binary variables
y and the continuous variables z in a linear way. Rabl and Jacobsen express this
coupling in a nonlinear way using an if condition, cf. equation (40) in [181]. The
constraints (5.4) ensure that no node k exceeds the workload limit L = 1/K. The
constraints (5.5) guarantee that a query’s workload shares over all nodes k sum up
to one.

In our basic model, the objective and all constraints are linear in the decision
variables. The total number of variables (N · K + Q · K binary and Q · K con-
tinuous) and the total number of constraints (2 · Q · K + K + Q) increase in the
number of fragments N , queries Q, and nodes K. Problem (5.1) - (5.5) is a mixed
integer linear programming problem and can be solved using off-the-shelf solvers
(see Section 4.2.1).

Figure 5.1 visualizes an exemplary model input with Q = 5 queries and N = 10
fragments, and an optimal solution for K = 4 nodes. The optimal replication factor
W/V for an allocation with an even load balancing (i.e., L = 1/4) is (3 + 4 + 6 +
1)/10 = 1.4. The workload share for all nodes k, k = 1, ..., 4, is L = 1/4, e.g., for
node k = 3,


j=1,...,5 zj,3 = 0.1+0.15+0+0+0 = 1/4. For all queries j, j = 1, ..., 5,

the sum of query j’s shares over all nodes k, k = 1, ..., 4, is one, e.g., for query j = 5,
k=1,...,4 z5,k = 0 + 0.17 + 0 + 0.83 = 1.
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Model Adaptions

The constraints (5.2) and (5.3) (and the objective (5.1)) do not force that yj,k = 1 if
all fragments of query j are stored on node k but zj,k = 0. To enforce yj,k = 1 in such
cases (to better interpret the values of y), we could adapt the objective as follows:


i=1,...,N,k=1,...,K

xi,k · ai −


j=1,...,Q,k=1,...,K
yi,k · β

Using this objective with a small enough β < ai, i = 1, ...N, forces the solver to set
yj,k = 1 if it is possible without allocating additional fragments.

Solvers use floating point arithmetic, which has a finite precision [218]. Due to
possible slightly imprecise calculations, it may be impossible for solvers to find a
floating point solution with a perfect/even load limit L = 1/K. To circumvent this
practical obstacle, we can configure the solver to allow minor inaccuracies [78] or
adapt our programming model as follows:

• Load Relaxation. We can allow a minor (practically insignificant) load
imbalance among the nodes and adapt constraints (5.4) with a sufficiently
small  > 0 (e.g.,  = 0.001) as follows:


j=1,...,Q

fj · cj/C · zj,k ≤ (1 + ) · 1/K, k = 1, ..., K

The deviation of L from a perfect/even load balancing with L = 1/K can be
controlled by choosing ε such that a given maximum relative deviation is not
exceeded. An absolute load deviation could also be controlled via 1/K + .
Note, load relaxations with an increasing make it possible to obtain a memory
consumption W that is smaller than W ∗, which is optimal for L = 1/K
(i.e.,  = 0).

• Penalty Approach. We can use a common penalty approach and adapt
objective (5.1): Instead of using a fixed parameter L, the workload limit is
a variable and penalized with a sufficiently large penalty factor α > 0 (e.g.,
α = 1000) in the objective while the data redundancy is normalized by the
overall size of all accessed fragments V as follows:

minimize
xi,k, yj,k ∈ {0, 1}, zj,k ∈ [0, 1], 0 ≤ L,
i = 1, ..., N, j = 1, ..., Q, k = 1, ..., K

1/V ·


i=1,...,N,k=1,...,K
xi,k · ai + α · L

By choosing α, we can weigh the tradeoff between a low memory consump-
tion (with a small α) and an even load balancing (with a large α). If the
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Figure 5.2.: Decomposition-based heuristic solution of the basic problem:
decomposing the workload to K = 2 + 2 = 4 final nodes.

penalty factor α is sufficiently large, the solution guarantees the smallest pos-
sible workload limit L∗ = 1/K. Similarly to increasing  in the load relaxation
approach, a decreasing α makes it possible to achieve W < W ∗ while the load
balancing becomes suboptimal L > L∗ = 1/K.

Using the workload limit L as a variable and fixed fragment allocations xi,k, i =
1, ..., N, k = 1, ..., K, as parameters, we can calculate the worst (highest) workload
share over all nodes for a given workload scenario. Note, fixed fragment allocations
xi,k, i = 1, ..., N, k = 1, ..., K, determine the executable queries per node yj,k (see
constraints (5.2)). When solving the ILP, the remaining variables zj,k and L are
chosen such that L is as small as possible and, thus, coincides with the worst-case
workload share over all nodes. If L = 1/K, the allocation enables an even load
balancing for the workload.

5.1.2. Decomposition-Based Heuristic

The complexity of our optimal ILP model (5.1) - (5.5) grows with the number of
fragmentsN , queriesQ, and nodesK. As a result, calculation times can get too large
(see Section 3.2.1) when considering huge workloads with hundreds of query classes,
fragments, and nodes. Effective allocations assign queries that access the same
fragments to the same node. We do not need to assign queries to nodes in a single
step. Instead, we propose a decomposition-based heuristic, which assigns queries to
nodes recursively, using multiple easier-to-solve generalized ILP subproblems. The
subproblems form a tree with K leaves: The root node corresponds to the overall
workload. The leaves correspond to the K nodes of the optimal model. Intermediate
nodes correspond to chunks of queries that access similar fragments. Figure 5.2
illustrates a decomposition of our example workload with K = 4 final nodes.
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Table 5.2.: Notation table for the decomposition-based heuristic.

symbol description

N number of fragments i, i = 1, ..., N
Q number of queries j, j = 1, ..., Q
K (overall) number of nodes k, k = 1, ...,K
B number of subnodes b, b = 1, ...B
x̄i fragment i is relevant: yes (1) / no (0)
ȳj query j is relevant: yes (1) / no (0)
z̄j query j’s workload share: ∈ (0, 1]
ai size of fragment i, i = 1, ..., N
qj accessed fragments of query j, j = 1, ..., Q, a subset of {1,...,N}
fj frequency of query j, j = 1, ..., Q
cj costs of processing query j, j = 1, ..., Q
C total workload costs
V overall size of all accessed fragments
L the load limit of leaf nodes
nb the number of represented leaf nodes per subnodes b, b = 1, ..., B
Lb the load limit of individual subnodes b, b = 1, ..., B

xi,b fragment i is allocated to subnode b: yes (1) / no (0)
yj,b query j can run on subnode b: yes (1) / no (0)
zj,b query j’s workload share assigned to node k: ∈ [0, 1]

WD memory consumption of the decomposition-based ILP heuristic

We generalize our ILP model (5.1) - (5.5) so that it can be applied in any node of
the tree to split the node’s corresponding workload into chunks of similar queries:
Consider an arbitrary (workload) node in the tree. The node’s workload is given
by the relevant fragments x̄i := 1, relevant queries ȳj := 1, and workload shares
z̄j ∈ (0, 1], i ∈ I ⊆ {1, ..., N}, j ∈ J ⊆ {1, ..., Q}. We want to split the workload
to a number of subnodes B, 1 ≤ B ≤ K. Each subnode b represents a number of
leaves (final nodes) nb, b = 1, ..., B. Hence, a subnode b has to take the workload
share Lb := nb/K, b = 1, ..., B. Table 5.2 summarizes the input parameters, decision
variables, and solution variables for our decomposition heuristic. New parameters
and variables are highlighted.

Next, we present our generalized ILP model to flexibly decompose the workload:

minimize
xi,b, yj,b ∈ {0, 1}, zj,b ∈ [0, 1],
i = 1, ..., N, j = 1, ..., Q, b = 1, ..., B : x̄i = 1, ȳj = 1


i=1,...,N,b=1,...,B:x̄i=1

xi,b · ai (5.6)
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subject to:

yj,b · |qj| ≤


i∈qj
xi,b,

j = 1, ..., Q : ȳj = 1
b = 1, ..., B

(5.7)

zj,b ≤ yj,b,
j = 1, ..., Q : ȳj = 1
b = 1, ..., B

(5.8)



j=1,...,Q:ȳj=1

fj · cj/C · zj,b ≤ Lb, b = 1, ..., B (5.9)


b=1,...,B

zj,b = z̄j, j = 1, ..., Q : ȳj = 1 (5.10)

The objective (5.6) minimizes the memory consumption over all subnodes and
corresponds to the objective (5.1) of the basic model. The constraints (5.7) and
(5.8) correspond to the constraints (5.2) and (5.3) of the basic model but consider
only relevant queries j = 1, ..., Q : ȳj := 1. The constraints (5.9) correspond to
the constraints (5.4) of the basic model but use individual load shares per subnode
Lb, depending on the number of represented leaves nb, b = 1, ..., B. The constraints
(5.10) correspond to the constraints (5.5) of the basic model but use individual
workload shares per query z̄j, j = 1, ..., Q : ȳj := 1.

Overall, the ILP model (5.6) - (5.10) can split workload subsets flexibly, i.e., it is a
generalization of the optimal model (5.1) - (5.5), for which B := K, Lb := 1/K, b =
1, ..., B, and x̄i := 1, ȳj := 1, z̄j := 1, i = 1, ..., N , j = 1, ..., Q.

When decomposing a workload using multiple ILP subproblems, we characterize
the total workload by x̄i := 1, ȳj := 1, z̄j := 1, for all i = 1, ..., N and j = 1, ..., Q.
Let the optimal solution of an ILP model (5.6) - (5.10) be denoted by x∗, y∗, and
z∗. Then, the remaining workload of each subnode b is characterized by x̄ī := 1,
ī ∈ {i = 1, ..., N : x∗

i,b = 1}, ȳj̄ := 1, and z̄j̄ := z∗j,b, j̄ ∈ {j = 1, ..., Q : y∗j,b = 1},
b = 1, ..., B. For each subnode b, the model (5.6) - (5.10) can be applied again.
From level to level, the number of relevant fragments and queries decreases. Thus,
the number of variables and constraints gets smaller (for constant B). On each
level and for each node, the number of subnodes B and their represented leaves
nb, b = 1, ..., B, can be chosen arbitrarily. This way, all integer numbers K can be
decomposed, and the final workload distribution guarantees an even load balancing,
i.e., L = 1/K.

The number of subnodes B can be used to control the problem complexity. The
smaller B, the faster is the computation (on each level), but the overall memory
consumption might increase (compared to optimal allocations). To obtain minimal
computation times, starting with B = 2 on the highest level is advantageous.
The problem complexity gets quickly smaller with each decomposition from the

root to the leaves. However, if the number of fragments and queries are large,
the ILP approach might take too long, even if the number of chunks is small. In
such cases, we could decompose large subproblems (at a tree’s root) heuristically,
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particularly using Rabl and Jacobsen’s greedy heuristic [181]; if subproblems are
sufficiently small, the ILP approach can be used henceforth (towards a tree’s leaves).
We can also use additional techniques to lower the calculation time for ILP-based
approaches, which we explain in the following.

5.2. Approaches to Lower the Computation Time

Compared to the optimal solution, our decomposition approach lowers the problem
complexity by reducing the number of nodes, and the number of queries and frag-
ments in the lower levels. We can adjust the decomposition’s chunking (i.e., the
number of decomposition levels and chunk sizes) to control the complexity of the
ILP models and, thus, the calculation time. Nevertheless, for large problem inputs,
the calculation time of our decomposition approach may still be too high to be ap-
plicable in practice – even if we use the smallest chunk sizes with many levels. The
high calculation times are because solvers guarantee (and thus have to find) optimal
solutions while the solution space of valid allocations is huge.
In this section, we discuss techniques to further lower the calculation time of

ILP-based allocation approaches. First, we explain how we can control the solver’s
calculation time in Section 5.2.1. Then, we present possibilities to restrict the solu-
tion space in Section 5.2.2.

5.2.1. Solver-Based Relaxation Techniques

ILP models can become complex for large-scale workloads: Due to the high number
of variables and constraints, the computation time of solvers becomes too large to be
applicable in practice. To speed up the computation, we can use relaxed optimality
gaps (i.e., the solver runs until a certain relaxed optimality goal can be guaranteed)
or limit the solver’s calculation time. Naturally, both approaches negatively affect
the solution quality. However, practitioners are often willing to sacrifice a small
amount of the optimal performance to obtain a fast heuristic.

Optimality Gap

One possibility to lower the solver’s computation time is to use an optimality gap.
Using the objective function, we can calculate a solution’s objective value, e.g., the
overall memory consumption. Solvers terminate when the objective value cannot be
further improved, i.e., when the optimal solution is obtained. Thereby, optimality
can be controlled with solver settings: We can set the maximum allowed relative gap
and absolute gap between the desired solution and an upper (theoretical) bound.
The solver, then, runs until a certain relaxed optimality goal can be guaranteed,
i.e., if the ratio or difference of the current objective value of the ILP problem
compared to a theoretical upper bound (e.g., derived by continuous relaxations) is
sufficiently small.
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The solver Gurobi [94] (version 9.5.2) has a default value of 10−4 for the relative
gap and 10−10 for the absolute gap. A relative optimality gap of 0.1 (10%) guarantees
a 90 - 100% solution (with regard to the objective), e.g., having an up to 10% larger
memory consumption than optimal. In return, the runtime is shorter (compared to
a solution with an optimality gap of zero) but still unknown in advance. Naturally,
a larger optimality gap leads to a smaller runtime.

In order to be able to interpret the optimality gap in terms of the memory con-
sumption W/V , we avoid using the penalty approach (see Section 5.1.1), whose
load term α · L influences the objective. We could still use the load relaxation (see
Section 5.1.1) if required.

Time Limit

Another possibility to speed up the computation is to terminate the solver before
the optimal solution is obtained, i.e., we set an upper bound (i.e., limit) for the
computation time. The solver runs until the optimal solution is obtained or the given
time limit is exceeded. In contrast to using optimality gaps, we can now control the
runtime, but the final optimality gap (i.e., solution quality) is not known.

The suitability of optimality gaps and time limits depends on whether solutions
must be computed quickly (e.g., for frequent adaptions or online settings) or whether
the quality of solutions is in focus (e.g., for offline or overnight computations). The
usage of an optimality gap and time limit can also be combined to obtain a solution
with a guaranteed performance or within a limited computation time. Such relaxed
formulations, which still ensure certain performance guarantees, allow for quick and
pragmatic solutions and can be highly beneficial, especially for practitioners.

5.2.2. Techniques to Reduce the Problem Size

The solution space is bounded by the number of decision variables x, y, and z,
which are defined over the number of fragments, queries, and nodes. With the
decomposition approach, we can lower the number of nodes via a lower number of
intermediate workload chunks.

To further reduce the solution space, we can decrease the number of decision
variables by clustering multiple queries (or fragments) to a single query (or fragment)
group. A coarser granularity of query classes (and fragments) naturally decreases the
optimization potential but also the solution space, which speeds up the calculation.

Further, we can limit the solution space by pinning a subset of fragments (or
queries) to nodes so that the corresponding input variables are fixed. We can, for
example, use an optimized basic solution as allocation input to derive an extended
robust one.

Both approaches are heuristics, which may lower the solution quality but, in
return, speed up the calculation (if desired). In the following, we describe our
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query clustering in detail. Specific approaches that build on basic or intermediate
allocations are covered in the model extensions in the following sections.

Query Clustering

Workload characteristics (e.g., the distribution of query workload shares and ac-
cessed fragments) are often skewed [27, 195]. Typically, a small share of the queries
represents the majority of the workload costs. Hence, we can directly infer an easy
and effective way to cluster queries and, in turn, reduce the complexity of the work-
load distribution problem:

(i) The majority of queries that represent only a small share of the workload can
be clustered within a set denoted by QF and fixedly assigned to a single (potential
full) replica, e.g., the primary node.

(ii) The set of remaining (costly) queries denoted by

QR := {1, ..., Q} \QF

is used as (a smaller) input for the fragment allocation problem with K nodes
(including the (full) replica of step (i)).
To determine the set of fixedly assigned queries QF , we give two approaches:

• Full Clustering Approach. We order the queries j by their workload share
fj · cj/C in increasing order, j = 1, ..., Q, i.e., query j = 1 has the smallest
and query j = Q the highest workload share. Now, we assign as many queries
with small workload shares as possible to one (e.g., the first) of the K nodes
until the accumulated workload share of those queries does not exceed 1/K,
i.e., we set zj,1 = 1 for all j ∈ QF .

The remaining queries QR must be allocated to only K − 1 nodes. We must,
therefore, adapt the remaining workload and the total workload costs C ac-
cordingly in the used allocation model (e.g., (5.1) - (5.5)). Note, the set
of fixedly assigned queries depends on the number of nodes K (i.e., QF =
QF (K)). If the workload share of the node (k = 1) with the fixed queries is
(significantly) less than 1/K, the workload share of node 1 can be filled up
with a share of a remaining query.

Summarizing, the workload distribution problem boils down to a problem with
K − 1 nodes and a highly reduced complexity (due to fewer queries).

• Partial Clustering Approach. We order the queries by their workload
share in increasing order, equal to the full clustering approach. However, we
assign only the |QF | queries with the smallest workload share to one (e.g., the
first) of the K nodes, whereby the number |QF | is sufficiently small such that
the workload share of the associated queries is significantly smaller than 1/K.
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The remaining workload QR must be allocated to the other K − 1 nodes and
the residual resources of the first cluster node (k = 1). We can directly include
this partial clustering heuristic in our ILP model via the constraints

zj,1 = 1 ∀j ∈ QF . (5.11)

Note, the constraints (5.11) imply yj,1 = 1 for all j ∈ QF and the allocation
of all required fragments to the cluster node 1. If the decomposition approach
is used, the constraints (5.11) are only used for chunks that are associated to
the leaf node k = 1.

Summarizing, one cluster node (k = 1) is not completely filled up with queries
that have small workload shares. Leaving some space on the cluster node
allows the solver to assign other data-intensive queries (with a slightly higher
workload share) to this node, which can, in turn, reduce the total replication
factor. The computation is still sped up significantly if the number of fixed
queries |QF | is chosen sufficiently large.

Summary

Using integer linear programming-based heuristics, we are flexible to trade calcu-
lation time and solution quality in a targeted way. First, we can use solver-based
relaxation settings, i.e., optimality gaps and time limits, without modifying the pro-
gramming model. Further, we can reduce the solution space by clustering queries or
fixing fragments to nodes, particularly when workloads are skewed, which is typical
for real-world workloads.
For all techniques, the memory consumption of the resulting allocation may be

larger than optimal, but the computation time becomes significantly faster. These
techniques are especially useful for larger (and skewed) input sizes and more complex
problem formulations that use extensions.
We can also combine solver-based relaxations and a query clustering heuristic,

and use them on top of our decomposition-based heuristic. Combining these three
techniques allows balancing the solution quality and computation time in a targeted
way such that optimized solutions can be computed within short and plannable
response times.

5.3. Model Extensions

So far, we calculated basic allocations, which enable an even load balancing for
read-only queries of a single fixed workload scenario, given by the number of nodes
and queries. In practice, allocations must consider further aspects (see Section 3.2),
such as node failures, workload uncertainty, data modifications, and reallocation
costs. This section presents how we can extend our integer linear programming
(ILP) models to take these aspects into account.
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5.3.1. Node Failures

In the following, we show how we compute allocations that consider node failures.
Thereby, a database cluster can support different levels of redundancy.

Redundant Fragment Availability and Query Feasibility:

• ILP-Based Feasibility Extension. Allocations may ensure that each frag-
ment is stored at multiple nodes or each query is executable at multiple
nodes [181]. We can take a basic ILP-based approach (e.g., our optimal model
(5.1) - (5.5)) and add further constraints to ensure that each fragment is stored
on multiple (e.g., at least two) nodes, i.e.,



k=1,...,K

xi,k ≥ 2, i = 1, ..., N,

or each query can be executed by multiple (e.g., at least two) nodes, i.e.,



k=1,...,K

yj,k ≥ 2, j = 1, ..., Q.

• Greedy Extension for Node Failures. For allocations that do not base
on ILP, Rabl and Jacobsen [181] propose a greedy approach to complement a
basic solution to a more robust one (see Section 4.3.1).

For both heuristics, load balancing among nodes may be highly skewed in failure
cases. To an extreme, a single node may have to take over the entire workload of
the failed node and cannot pass anything of its regular workload to other nodes.

Even Load Balancing in Failure Cases:

• Chaining Approach for Node Failures. Allocations that guarantee an
even workload distribution in failure cases can be obtained by applying the
chained declustering [108] strategy to a basic solution: Nodes are chained,
forming a ring. Each node acts as backup of its predecessor node (see Sec-
tion 4.3.1). However, chaining entire nodes may lose optimization potential.

• Adding Full Replicas. Another simple heuristic to ensure an even workload
distribution in failure cases is to use a basic solution for K −KF nodes (e.g.,
KF = 1) and add KF full replicas. The reason why this works is the following:
If the KF full replicas fail, the K −KF solution balances the load evenly by
definition. Otherwise, the remaining full replicas can take over the workload
share of any failed partial node because they can execute all queries. How-
ever, in general, using full replicas may be too costly. Hence, sophisticated
approaches are needed to guarantee a balanced workload distribution in the
case of node failures, particularly for the standard case KF = 1.

60



5.3. Model Extensions

Optimal Model

In the following, we present an ILP model to compute robust allocations that simul-
taneously optimize memory consumption and load balancing in failure cases: We
consider the case that one of the nodes k = 1, ..., K might fail. No matter which node
is affected, the optimal workload distribution without the failed node should guar-
antee not only redundant query feasibility but also an even load balancing among
the K − 1 remaining nodes.
To express the even load balancing in failure scenarios, we have to extend our

model: Recap, by L, we denote the highest workload share of all nodes in the basic
model without a failure. The limit L is determined by the allocation xi,k and the
assigned workload shares zj,k, i = 1, ..., N , j = 1, ..., Q, k = 1, ..., K.
Similar to the regular workload limit L, we introduce the emergency workload

limit L(−) for the highest (worst-case) workload share over all K − 1 remaining
nodes in the case of a potential node failure. To determine and optimize the limit
L(−), we introduce the additional variables z̃j,k(−),k(+) ∈ [0, 1], which describe the

workload share of query j on a remaining node k(+) ∈ {1, ..., K}\{k(−)} in case
node k(−) = 1, ..., K fails. Table 5.3 summarizes the input parameters, decision
variables, and solution variables for our (optimal and heuristic) ILP models that
consider node failures. New model parameters and variables are highlighted.
Next, we present our ILP formulation that allows for optimal robust solutions in

the case of single-node failures:

minimize
xi,k, yj,k ∈ {0, 1}, zj,k, z̃j,k(−),k(+) ∈ [0, 1], L, L(−) ≥ 0,

i = 1, ..., N, j = 1, ..., Q, k, k(−), k(+) = 1, ..., K, k(+) ∕= k(−)

1/V ·


i=1,...,N,k=1,...,K

ai · xi,k + α · L(−) + α/100 · L (5.12)

subject to constraints for the regular scenario:

yj,k · |qj| ≤


i∈qj

xi,k, j = 1, ..., Q, k = 1, ..., K (5.13)

zj,k ≤ yj,k, j = 1, ..., Q, k = 1, ..., K (5.14)


j=1,...,Q

fj · cj/C · zj,k ≤ L, k = 1, ..., K (5.15)



k=1,...,K

zj,k = 1, j = 1, ..., Q (5.16)

and constraints for the failure scenarios:

z̃j,k(−),k(+) ≤ yj,k(+) ,
j = 1, ..., Q
k(−) = 1, ..., K
k(+) ∈ {1, ..., K}\{k(−)}

(5.17)
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Table 5.3.: Notation table for ILP models that consider node failures.

symbol description

N number of fragments i, i = 1, ..., N
Q number of queries j, j = 1, ..., Q
K number of nodes k, k = 1, ...,K
ai size of fragment i, i = 1, ..., N
qj accessed fragments of query j, j = 1, ..., Q, a subset of {1,...,N}
fj frequency of query j, j = 1, ..., Q
cj costs of processing query j, j = 1, ..., Q
C total workload costs
V overall size of all accessed fragments
α penalty factor for the workload limit

x
(f)
i,k fragment i is fixedly allocated to node k: yes (1) / no (0)

E (optional) normalized memory budget for added data

xi,k fragment i is allocated to node k: yes (1) / no (0)
yj,k query j can run on node k: yes (1) / no (0)
zj,k query j’s workload share assigned to node k: ∈ [0, 1]

z̃j,k(−),k(+) query j’s workload share assigned to a remaining working node k(+) if node
k(−) fails: ∈ [0, 1], k(−) = 1, ...,K, k(+) ∈ {1, ...,K}\{k(−)}

x
(e)
i,k fragment i is added to node k: yes (1) / no (0)

W F∗ memory consumption of the optimal solution considering node failures
W F memory consumption of the ILP heuristic considering node failures
L a node’s workload limit

L(−) workload limit in case of a node failure



j=1,...,Q

fj · cj
C

z̃j,k(−),k(+) ≤ L(−),
k(−), k(+) = 1, ..., K
k(+) ∕= k(−) (5.18)



k(+)={1,...,K}\{k(−)}

z̃j,k(−),k(+) = 1,
j = 1, ..., Q
k(−) = 1, ..., K.

(5.19)

The objective (5.12) minimizes the replication factor W/V and uses a penalty
approach (see Section 5.1.1) for the largest workload shares L (regular case) and
L(−) (failure case). To emphasize the failure scenarios, the penalty on L(−) is chosen
much larger (e.g., ×100) than the penalty for L. The use of two penalty terms in
the objective allows to simultaneously account for both workload limits: the regular
one (denoted by L) and the emergency one (denoted by L(−)).
The constraints (5.13) - (5.16) correspond to the constraints (5.2) - (5.5) of the

basic model.
The constraints (5.17) - (5.19) ensure admissible allocations in case a node k(−) =

1, ..., K is not working. Recap, the additional variables z̃j,k(−),k(+) ∈ [0, 1] express the
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Figure 5.3.: Optimal solution that considers node failures: allowing for
changed workload distributions for different scenarios; illustration for K = 6 nodes,
a regular workload limit L∗ = 1/6 and a guaranteed worst-case workload limit (de-

noted by L
(−)∗
max ) of 1/5.

optimal workload share of query j on the remaining nodes k(+) = {1, ..., K}\{k(−)}
if node k(−) does not work. For a failure of a fixed node k(−), the constraints
(5.17) - (5.19) correspond to the constraints (5.13) - (5.16); the difference is that the
constraints (5.17) - (5.19) considerK−1 remaining nodes while the constraints (5.13)
- (5.16) consider all K nodes. Thus, the ILP model (5.12) - (5.19) simultaneously
captures the scenario without a failure and the K scenarios in which one node fails.

If the penalty factor α is sufficiently large, the optimal solution for node failures
guarantees the smallest possible emergency workload limit L(−)∗ = 1/(K−1),K > 1.

Figure 5.3 shows an optimal solution that considers single-node failures with
K = 6 nodes for our exemplary workload. While minimizing the overall mem-
ory consumption, the solution enables an even load balancing without any node
failure L = 1/6 and for each of the K = 6 single-node failure cases L(−) = 1/5.
In the tables of Figure 5.3, the values zj,k are shown in the columns ∅ (no node
failure). For example, if all nodes are running, the workload share of query j = 4 is
split among the nodes k = 2 (z4,2 = 50%) and k = 3 (z4,3 = 50%). The columns 1
- 6 (node k(−) = 1, ..., 6 failed) contain the values z̃j,k(−),k(+) . For example, if node

k(−) = 6 fails, the workload share of query j = 4 is split among the nodes k = 2
(z̃4,6,2 = 25%) and k = 3 (z̃4,6,3 = 75%).

The fact that even solutions of small problems, as illustrated in Figure 5.3, cannot
be easily derived manually indicates the complexity of the problem: To identify an
allocation that allows for different workload distributions and at the same time has
low data redundancy is highly challenging because K potential failures cases and
the non-failure case must be considered at the same time.

63



5. Allocation Models for the Workload Distribution Problem

Decomposition-Based Approaches

For also calculating robust allocations that enable an even load balancing in failure
cases for larger problems, we propose a decomposition-based approach: Instead of
solving the problem in a single step (i.e., with a single ILP model), we use multiple
steps, which correspond to simpler ILP models, to decrease the overall calcula-
tion time. In general, we can flexibly combine (i) our scalable decomposition-based
heuristic (see Section 5.1.2), (ii) our optimal model for node failures (5.12) - (5.19),
and (iii) optimized fragment enhancements. The specific combination of steps can
be adjusted to trade memory consumption, computation time, and the emergency
workload limit. Next, we first explain our three-step approach [104], which combines
a low memory consumption and calculation time while enabling an even load bal-
ancing for single-node failures. Following, we present a derived two-step approach
resulting in a lower memory consumption but higher calculation time.

Three-Step Approach. After a short overview of the three steps, we explain the
individual steps in more detail. Figure 5.4 illustrates the three-step approach using
the same model inputs as in Figure 5.3. Step 1 consistently splits the workload
into chunks of similar queries, accessing the same fragments. In this step, we use
our decomposition-based heuristic (see Section 5.1.2). In step 2, we compute robust
fragment allocations for individual chunks of smaller sizes such that a node failure is
compensated by the remaining nodes of the affected chunk. In this step, we use the
model for optimal solutions in failure cases (5.12) - (5.19). Based on the allocations
derived in step 2, in step 3, we compute optimal fragment enhancements to obtain
a perfect load balance over all nodes.

• Step 1: Initial Basic Decomposition. We assume a given workload char-
acterized by queries and fragments (the upper part of Figure 5.4). In step 1,
we split the workload iteratively using our basic decomposition-based heuristic
(see Section 5.1.2), forming a tree of chunks with similar queries, which access
the same fragments. From level to level, the number of relevant fragments
and queries decreases. The individual final chunks of step 1 (i.e., chunk 1 and
chunk 2 in Figure 5.4) are the input of the next step.

In Figure 5.4, we use a single iteration to split the workload into two chunks.
The top node represents the total (undivided) workload, characterized by N =
10 relevant fragments and Q = 5 relevant queries. After the split, in chunk 1
and chunk 2, there are only three relevant queries per chunk.

Compared to the optimal model that considers node failures, in step 1, we
reduce the problem complexity by using a decomposition and not taking node
failures into account.

• Step 2: Adding Robustness on the Final Decomposition Level. Based
on the chunks on the final level of step 1, step 2 derives robust allocations for
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Figure 5.4.: Decomposition-based three-step heuristic approach that con-
siders node failures: splitting the workload into chunks in step 1; compensating
potential node failures within chunks in step 2; optimal fragment enhancement in
step 3; illustration for K = 6 nodes, B = 2 chunks, a regular workload limit L = 1/6

and a guaranteed worst-case workload limit of L
(−)
max = 1/5.

nodes of individual chunks independently : We use the optimal model that
considers node failures and solve one ILP for each chunk with smaller inputs
(i.e., fewer fragments, queries, and nodes) compared to the overall workload.

Figure 5.4 shows an example of step 2 with two chunks. Besides a regular
workload distribution (cf. ∅), the solution of step 2 provides K individual
emergency load distributions for each potential node failure k(−) = 1, ..., K.
After step 2, the allocation is such that regarding a single node (for example,
node 1), the emergency load distributions are only affected for node failures
of the same chunk (k(−) = 2, 3). In such cases, e.g., k(−) = 2, the workload
distribution within the affected chunk 1 is reorganized by evenly balancing the
load between the remaining two nodes node 1 and 2 (load 1/4). The other
chunk’s nodes (i.e., node 4 - 6) retain their regular workload distribution (load
1/6). Note, the allocation after step 2 does not guarantee an optimal/perfect
load balancing in failure cases.

The chunk-based approach has properties that naturally support robust op-
timization approaches. Since the chunking clusters queries that use similar
fragments, the need for additional data to guarantee the workability in case of
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failures within one chunk is comparatively small. For example, in Figure 5.4,
the replication factor after step 2 (with increased robustness) is W/V = 2.5;
Figure 5.5 (see step 1) shows the (non-robust) basic solution, which has the
replication factor W/V = 2.1.

Compared to the optimal model that considers node failures, in step 2, we
reduce the complexity by applying the model with a smaller number of frag-
ments, queries, and nodes.

• Step 3: Fragment Enhancements for an even Load Balancing in
Failure Cases. In the final step 3, we enrich the fragment allocation derived
in step 2 to obtain a perfect load balancing over all nodes in the case of any
node failure. The goal is to use the minimal amount of additional data to
guarantee the best possible workload limit (L(−)∗ = 1/(K − 1)).

Let x
(f)
i,k ∈ {0, 1} denote the fragment allocation derived in step 2, i.e., whether

fragment i is assigned to node k (x
(f)
i,k = 1) or not (x

(f)
i,k = 0), i = 1, ..., N, k =

1, ..., K. For example, for node k = 6, x
(f)
i,6 = 1 for i = 1, 8, 9, 10 in Figure 5.4.

We consider this allocation as fixed, i.e., these fragments are also assigned to
the nodes in the final allocation. In the following ILP, we use binary decision
variables x

(e)
i,k ∈ {0, 1} to decide whether to add fragment i to node k:

minimize
x
(e)
i,k , xi,k, yj,k ∈ {0, 1}, zj,k, z̃j,k(−),k(+) ∈ [0, 1], L, L(−) ≥ 0,

i = 1, ..., N, j = 1, ..., Q, k, k(−), k(+) = 1, ..., K, k(+) ∕= k(−)

1/V ·


i=1,...,N,k=1,...,K

ai · x(e)
i,k + α · L(−) + α/100 · L (5.20)

subject to (5.13) - (5.19) (i.e., the constraints of the optimal model considering

node failures) for given x
(f)
i,k ∈ {0, 1} (i.e., the solution after step 2) where

x
(f)
i,k + x

(e)
i,k = xi,k, i = 1, ..., N, k = 1, ..., K (5.21)

and an optional constraint, in case the additional enhancements shall not
exceed a given memory budget E · V , E ≥ 0,

1/V ·


i=1,...,N,k=1,...,K

ai · x(e)
i,k ≤E. (5.22)

The ILP model of step 3 is similar to the optimal model that considers node
failures. However, it is of much lower complexity because x

(f)
i,k are given pa-

rameters (see Section 5.2.2), i.e., these fragments cannot be removed. Fur-

ther, the freedom of the enhancement variables x
(e)
i,k is limited because the
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constraints (5.21) imply x
(e)
i,k = 0 for all x

(f)
i,k = 1, i = 1, ..., N, k = 1, ..., K.

Moreover, the allocation x
(f)
i,k provides a memory-efficient starting solution

with a reliably good emergency workload limit L(−), which we discuss next
(see performance guarantees).

In step 3, comparably little data has to be assigned in total because the allo-
cations x

(f)
i,k derived in step 2 have the following beneficial properties: Assume

an arbitrary solution of step 2 with two chunks, say chunk C1 and C2. To
obtain a perfect load balancing if a node of C1 fails, the nodes of C2 have to
take additional load of C1. However, as C2 only has to be able to take some
arbitrary load of C1, it is sufficient to look for arbitrary nodes of C2 that can
be efficiently completed in this regard via additional fragments. Due to this
flexibility, typically only little additional data is necessary. Finally, for mul-
tiple chunks, it is sufficient when each chunk can take and pass enough load
to one other chunk, and all chunks are connected (see Section 4.3.1, chaining
approach for node failures).

In Figure 5.4, the enhancements of step 3 are visualized by framed/highlighted
fragments, which are added to the allocation of step 2. While to node 1, frag-
ment 7 - 9 are added, node 4 is completed by fragment 2 - 4. Due to the
enhancements, after step 3, we obtain that, whatever node fails, a perfect
workload distribution can always be achieved (L(−) = 1/5). The final repli-
cation factor W F/V = 3.1 is close to the optimal solution W F∗/V = 2.8
(see Figure 5.3).

Compared to the optimal model that considers node failures, in step 3, we
reduce the complexity by building on a comparably robust basis solution with
fixed fragments.

We summarize the interplay of the three steps: Step 1 reduces the complexity
of the initial problem using a memory-efficient workload decomposition. Exploiting
the optimal model for node failures, step 2 effectively adds robustness within the
final chunks of step 1. Finally, based on step 2’s allocation, step 3 guarantees a
perfect load balance over all nodes using optimal data enhancements.

Within step 2, computation time and worst-case limits can be balanced using
smaller or larger chunk sizes. Naturally, for large chunks, computation times can
become large because we apply the optimal model for node failures.
We can also control the complexity of the final data enhancement: (i) We can

apply step 3 to subsets/groups of chunks first (e.g., when K is large). (ii) We can
decrease the workload limit L(−) via an additional constraint in multiple steps until
the optimal limit is reached. Suboptimal workload limits reduce the minimally
required data enhancements and thus the solver’s viable solution space for reaching
the load balancing goal.

Performance Guarantees. Allocations after step 3 guarantee an even load bal-
ancing. In the following, we discuss the load balancing guarantees for allocations
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after step 2. As step 2 is based on the decomposition-based heuristic, which ensures
an even load balancing without node failures, its results concerning the worst-case
limits can be calculated analytically. The remaining nodes of an affected chunk on
the final level with nb leaves end up with a worst-case limit of 1/(nb−1) ·nb/K. All
other chunks are not affected by the node failure and, in turn, retain their workload
limit of 1/K. It follows that the highest workload share L

(−)
max that can occur after

step 2 is

L(−)
max := max

b=1,...,B
{nb/(nb − 1)} /K. (5.23)

Hence, the L
(−)
max value is better (smaller) the larger the number of nodes nb are

chosen on the final level and depends on the minimum nmin := minb=1,...,B{nb}. The
difference L

(−)
max − L(−)∗ = nmin/(nmin − 1)/K − 1/(K − 1) to the optimal solution

decreases in K and nmin.

The solutions after step 2 allow giving performance guarantees. For a given num-
ber K, the chunking can be chosen such that a targeted worst-case workload share
L
(−)
max (see (5.23)) in the case of an arbitrary node failure is guaranteed. To ef-

fectively balance computation time and performance results, it is advisable to use
a small number of chunks next to the tree’s root and large chunks for the tree’s
leaves. Finally, based on the results of step 2, the ILP model of step 3 guarantees
optimal (memory-efficient) fragment enhancements with a perfect load balancing of
L(−) = 1/(K − 1).

Two-Step Approach. For the three-step approach, base allocations x
(f)
i,k are a

prerequisite for the applicability of step 3 enhancements because without a suit-
able backbone solution, the ILP model for the optimal data enhancements can be
too complex: To an extreme, without fixing any fragments (i.e., x

(f)
i,k = 0 for all

i = 1, ..., N, k = 1, ..., K), step 3 corresponds to the optimal model that considers
node failures. Using more or less flexible (but optimized) base allocations, we can
trade calculation time for memory consumption: Fixing fewer fragments to nodes
(e.g., starting with a less robust base allocation) gives the solver more optimization
potential. Naturally, the increasing flexibility increases the computation time.

One specific approach, called two-step approach, uses a basic decomposition-based
allocation as input for the optimal fragment enhancement. The approach is visual-
ized in Figure 5.5. Compared to the three-step approach in Figure 5.4, the two-step’s
overall memory consumption is lower (W/V = 2.9 vs. W/V = 3.1), but the final
data enhancement is more complex, which is indicated by the lower (21 < 25) num-
ber of fixed fragments before the data enhancement and the higher (8 > 6) number
of added fragments during the data enhancement.
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Figure 5.5.: Decomposition-based two-step heuristic approach that considers
node failures: splitting the workload into chunks in step 1; compensating poten-
tial node failures with optimal fragment enhancements in step 2; illustration for
K = 3 + 3 = 6 nodes, a regular workload limit L = 1/6 and a guaranteed worst-

case workload limit of L
(−)
max = 1/5.

5.3.2. Workload Uncertainty

Workloads are usually not perfectly predictable: (i) For example, query frequencies
may fluctuate over time. (ii) Query costs (e.g., query execution times) may deviate
from the modeled values. (iii) Finally, unexpected query classes may be sent to the
database system.
Instead of calculating an allocation that is optimized for a single workload sce-

nario, characterized by a set of query classes j with their frequencies fj and costs
cj, j = 1, ..., Q, we can also use multiple scenarios as model input. The core idea
is finding a single, more robust allocation that enables an even load balancing for
these multiple potential workload scenarios (by assigning additional data fragments
to nodes). By using multiple scenarios as model input, we can ensure load balancing
robustness against multiple known but also unknown workload scenarios:

• Known Workload Scenarios. If potential future workloads are known, we
can use them directly as allocation input. With an increasing number of input
scenarios, the memory consumption increases.

• Unknown Workload Scenarios. Not all potential future workload scenarios
may be known, or there may be too many of them. However, by using spe-
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Table 5.4.: Notation table for ILP models that consider workload uncertainty.

symbol description

N number of fragments i, i = 1, ..., N
Q number of queries j, j = 1, ..., Q
K number of nodes k, k = 1, ...,K
S number of workload scenarios s, s = 1, ..., S
ai size of fragment i, i = 1, ..., N
qj accessed fragments of query j, j = 1, ..., Q, a subset of {1,...,N}
fj,s frequency of query j for scenario s, j = 1, ...Q, s = 1, ..., S
cj costs of processing query j, j = 1, ..., Q
Cs total workload costs for scenario s, s=1,...,S
V overall size of all accessed fragments
α penalty factor for the workload limit

xi,k fragment i is allocated to node k: yes (1) / no (0)
yj,k query j can run on node k: yes (1) / no (0)
zj,k,s query j’s workload share assigned to node k for scenario s: ∈ [0, 1]

WU memory consumption of an ILP approach considering workload uncertainty
L a node’s workload limit

cific diversified input scenarios, the resulting allocation also allows improved
load balancing for unseen scenarios that are similar to mixtures of input sce-
narios. In general, an allocation’s robustness can be increased by choosing a
larger number of diverse input scenarios. Thereby, we can smoothly choose
between allocations that are optimized against a few scenarios with a small
memory consumption and full replication, which is naturally robust against
all random workloads.

Optimal Model

In the following, we consider S potential workload scenarios. We use Q as the
overall number of potential query classes over all scenarios. Each scenario s, s =
1, ..., S, is characterized by query frequencies fj,s and associated workload costs
Cs :=


j=1,...,Q fj,s · cj. Note, in this framework, also uncertain query costs cj can

be expressed similarly by using potential scenario-based costs cj,s without increasing
the model’s complexity. We want to find a single allocation that enables an even
load balancing for all S potential workload scenarios. Compared to the basic model,
we use extended variables for the workload share zj,k,s per scenario s, s = 1, ..., S.
Table 5.4 summarizes the input parameters, decision variables, and solution variables
for our extension that considers workload uncertainty. New model parameters and
variables are highlighted.
In the following, we present our ILP formulation to calculate allocations that are

optimized for multiple potential workloads:
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Figure 5.6.: Optimal solution that considers multiple workload scenarios:
illustration for S = 3 input scenarios and K = 6 nodes. An optimal workload limit
L∗ = 1/6 for all input scenarios is ensured. Thereby, the allocation can also evenly
distribute the unseen scenario.

minimize
xi,k, yj,k ∈ {0, 1}, zj,k,s ∈ [0, 1], 0 ≤ L ≤ 1,
i = 1, ..., N, j = 1, ..., Q, k = 1, ..., K, s = 1, ..., S

1/V ·


i=1,...,N,k=1,...,K
xi,k · ai + α · L (5.24)

subject to constraints for multiple workload scenarios:

yj,b · |qj| ≤


i∈qj
xi,k, j = 1, ..., Q, k = 1, ..., K (5.25)

zj,k,s ≤ yj,k, j = 1, ..., Q, k = 1, ..., K, s = 1, ..., S (5.26)


j=1,...,Q
fj,s · cj/Cs · zj,k,s ≤ L, k = 1, ..., K, s = 1, ..., S (5.27)


k=1,...,K

zj,k,s = 1, j = 1, ..., Q, s = 1, ..., S (5.28)

The objective (5.24) minimizes the replication factor W/V and contains a penalty
term for the largest workload share L. Note, in contrast to the extension that
considers node failures, we only need a single load limit (as in the basic model)
because the number of nodes per scenario is fixed (i.e., K).
The constraints (5.25) correspond to the constraints (5.2) of the basic model, i.e.,

they guarantee that a query j can only be executed at node k if all relevant fragments
are available. The constraints (5.26) - (5.28) correspond to the constraints (5.3) -
(5.5) of the basic model but consider multiple workload scenarios. Overall, the ILP
model (5.24) - (5.28) simultaneously enables an even load balancing for S workload
scenarios. Hence, it is a generalization of the basic model, which only covers the
special case S = 1.
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Figure 5.7.: Decomposition-based heuristic approach that considers multiple
workload scenarios: illustration for S = 3 input scenarios and K = 6 nodes. An
optimal workload limit L∗ = 1/6 for all input scenarios is ensured. Thereby, the
allocation can also evenly distribute the unseen scenario.

Figure 5.6 shows an allocation for S = 3 input scenarios. While minimizing
the overall memory consumption, the solution enables an even load balancing (i.e.,
L = 1/6) for the three input scenarios. In the tables of Figure 5.6, the values zj,k,s
are shown in the columns 1 - 3. For example, the workload share of query j = 2 in
scenario s = 3 is split among the nodes k = 1 (z2,1,3 = 83%) and k = 4 (z2,4,3 = 17%).
We can also evaluate the load balancing for unseen workload scenarios, which are
not used as model input, e.g., the load of scenario s̃ = 4 could be balanced evenly
(see the columns 4 in Figure 5.6).

Decomposition-Based Approach

The presented model extension for multiple workload scenarios is compatible with
our decomposition-based heuristic (see Section 5.1.2): We can split the workload
iteratively using our extended model (5.24) - (5.28). Again, the relevant fragments
and queries decrease from level to level. In contrast to the basic decomposition ap-
proach, each chunk enables S workload distributions. The individual workload splits
are, thus, of a higher complexity for the same number of subnodes. Naturally, we
can choose a smaller number of subnodes B until it is minimal (i.e., B = 2). We can
also use the presented approaches to lower the computation time (see Section 5.2).
In particular, for our clustering approaches if S > 1, we order the queries according
to their expected workload over all scenarios s = 1, ..., S, i.e., cj/S ·


s=1,...,S fj,s.

72



5.3. Model Extensions

Table 5.5.: Notation table for ILP extensions that consider data modification costs.

symbol description

N number of fragments i, i = 1, ..., N
Q number of (read) queries j, j = 1, ..., Q
U number of update queries j̄, j̄ = 1, ..., U
K number of nodes k, k = 1, ...,K
fj frequency of (read) query j, j = 1, ...Q
cj costs of processing (read) query j, j = 1, ..., Q
m̄j̄ fragments that are modified by update query j̄,mj̄ ⊆ {1, ..., N}
q̄j̄ fragments that are only accessed by update query j̄, q̄j̄ ⊆ {1, ..., N} \mj̄

f̄j̄ frequency of update query j̄

c̃j̄,i fragment modification costs of update query j̄ for fragment i

c̄j̄ data retrieval costs of update query j̄

C total (read) workload costs
α penalty factor for the workload limit

xi,k fragment i is allocated to node k: yes (1) / no (0)
yj,k query j can run on node k: yes (1) / no (0)
zj,k query j’s workload share assigned to node k: ∈ [0, 1]
Yj̄,k update query j̄ must be executed on node k: yes (1) / no (0)

WM memory consumption of an ILP approach considering modification costs
L a node’s workload limit

5.3.3. Data Modifications

Data fragments can change over time as a result of insert, delete, and update state-
ments. Then, we have to update every node that holds these fragments. Data
synchronization comes along with costs, which we must take into account for an
even load balancing. In the following, we discuss how we can consider data modifi-
cation costs in our approach.

Optimal Model

Similar to the read queries j = 1, ..., Q, we consider a set of U data modifying
(hereinafter called simply “update”) queries j̄, characterized by modified m̄j̄ and
potentially only accessed q̄j̄ fragments, i.e., m̄j̄ ⊆ {1, ..., N}, q̄j̄ ⊆ {1, ..., N} \ m̄j̄,
j̄ = 1, ..., U . Update queries j̄ occur with frequency f̄j̄ and account for fragment
modification costs c̃j̄,i and optional data retrieval costs c̄j̄. Table 5.5 summarizes the
input parameters, decision variables, and solution variables that we use to describe
our extensions that consider data modification costs. New model parameters and
variables are highlighted.
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We can synchronize data replicas logically or physically (see Section 2.2.3). Fol-
lowing, we describe how we can extend our models to consider logical and physical
synchronization costs.

• Logical synchronization. In this case, a primary node executes all up-
date queries. Replica nodes are synchronized by re-executing relevant update
queries, which modify stored fragments. To control which update query has
to be executed at which node, we use additional binary decision variables Yj̄,k,
controlling if an update query j̄ must be executed on node k (Yj̄,k = 1) or
not (Yj̄,k = 0). Further, we extend our optimal model (5.1) - (5.5) with the
following constraints:



i∈m̄j̄

xi,k ≤ Yj̄,k · |m̄j̄| j̄ = 1, ..., U, k = 1, ..., K (5.29)

The constraints (5.29) ensure that if a modified fragment i ∈ m̄j̄ is stored (i.e.,
xi,k = 1), the corresponding update query j̄ must be executed (i.e., Yj̄,k = 1).
Thus, all modified and accessed fragments of the corresponding update query
(i.e., i ∈ m̄j̄∪ q̄j̄) must be stored, which is ensured by the following constraints:



i∈m̄j̄∪q̄j̄

xi,k ≥ Yj̄,k · (|m̄j̄|+ |q̄j̄|) k = 1, ..., K, j̄ = 1, ..., U (5.30)

Finally, we have to extend the constraints (5.4) of the optimal model to include
the costs for update queries: We add a cost term that summarizes the query
costs for all required update queries j̄, i.e.,



j=1,...,Q

fj · cj
C

· zj,k +


j̄=1,...,U

Yj̄,k ·
f̄j̄
C

· (c̄j̄ +


i∈m̄j̄

c̃j̄,i) ≤ L k = 1, ..., K. (5.31)

If desired, we could further enforce that a single primary node (e.g., k = 1)
executes all update queries (see constraint (5.32)).

• Physical synchronization. In this case, a primary node executes all update
queries and propagates relevant fragment changes to all other nodes. These
other nodes, then, update their stored fragments accordingly.

For extending our optimal model (5.1) - (5.5) to consider physical data modi-
fication costs, we replace the (family of) constraints (5.4) with a special con-
straint for the primary node (see constraint (5.32)) and constraints for the
replica nodes (see constraints (5.34)). In the following, we assume a single
dedicated primary node k = 1. At the primary node, fragment modification
costs and data retrieval costs occur for all update queries:
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Figure 5.8.: Optimal solution that considers logical modification costs.



j=1,...,Q

fj · cj
C

· zj,1 +


j̄=1,...,U

f̄j̄
C

· (c̄j̄ +


i∈m̄j̄

c̃j̄,i) ≤ L. (5.32)

Further, the primary node must store all fragments for update queries:



i∈m̄j̄∪q̄j̄

xi,1 = |m̄j̄ ∪ q̄j̄| j̄ = 1, ..., U. (5.33)

For the other nodes k = 2, ..., K, only fragment modification costs c̃j̄,i for
stored fragments (xi,k = 1) have to be considered:



j=1,...,Q

fj · cj
C

· zj,k +


j̄=1,...,U

f̄j̄
C

·


i∈m̄j̄

c̃j̄,i · xi,k ≤ L k = 2, ..., K. (5.34)

For both synchronization approaches, the total workload including updates may
exceed the overall read-only query costs C. Hence, the optimal workload limit L
may also exceed 1/K. It is difficult to determine the optimal workload limit because
it is unknown how often each update query has to be executed at final nodes or how
often each fragment is replicated. In this case, using the penalty approach with a
penalty term α ·L for the maximum workload share L in the objective is preferable.
This way, we reduce L as far as possible (with a large α) for low synchronization
costs with an even load balancing or trade a lower memory consumption for higher
synchronization costs (with a smaller α).

Figure 5.8 shows an allocation that considers costs for logical synchronization.
The update query j̄ = 1 is executed at node 1 and node 3. The additional costs for
update queries (2 · 10%) are balanced by higher read-only loads for the other nodes.
Overall, the load per node is increased by (20%/4 =)5%.
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Figure 5.9.: Optimal solution that considers physical modification costs.

Figure 5.9 shows an allocation that considers costs for physical synchronization.
The update query j̄ = 1 is executed at the primary node k = 1 for +10% execution
costs. In addition, the modified fragment i = 3 is stored at node k = 4, which
requires +5% fragment modification costs. As for physical synchronization, the
additional costs for update queries (10% + 5%) are balanced with the read-only
load. Overall, the load per node is increased by (15%/4 =)3.75%.

Decomposition-Based Approach

In our decomposition heuristic, the consideration of update queries is also possible.
In the final level (considering only leaf nodes), query update costs can be accurately
included as in the optimal model. However, in the intermediate levels, eventually
occurring query update costs (i.e., for logical synchronization: at how many final
nodes an update query has to be executed, and for physical synchronization: how
often a modified fragment is replicated) are not known. As in many real-world ap-
plications the ratio between update costs and total workload costs is small [125], this
inaccuracy is tolerable. However, to further minimize uneven workload distributions
caused by ignoring update queries for write-intensive workloads, we can modify the
constraints (5.31), (5.32), and (5.34) as follows: To account for the described uncer-
tainty, a parameter uj̄,b ≤ nb (or ui,b ≤ nb) can be used to approximate how many
leaf nodes of chunk b are affected by the update costs for query j̄ (or fragment i).
To estimate expected numbers uj̄,b (or ui,b), we can take fragment frequencies and
the number of targeted nodes nb into account.

5.3.4. Reallocation Costs

Workloads typically change over time. As a result, current optimized fragment
allocations and workload distributions must be updated by (i) reallocating data
fragments or (ii) adding or removing nodes. Because the reorganization of data is
usually time-consuming and, thus, costly, we want to consider the reallocation effort.
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Table 5.6.: Notation table for ILP extensions that consider data reallocation costs.

symbol description

N number of fragments i, i = 1, ..., N
Q number of queries j, j = 1, ..., Q
K number of nodes k, k = 1, ...,K
A number of added nodes 1 ≤ A < K
R number of removed nodes 1 ≤ R < K
ai size of fragment i, i = 1, ..., N
fj frequency of query j, j = 1, ...Q
cj costs of processing query j, j = 1, ..., Q
C total (read) workload costs
α penalty factor for the workload limit
si,k allocation state: fragment i is currently allocated at node k
ri costs when adding fragment i to node k

xi,k fragment i is allocated to node k: yes (1) / no (0)
yj,k query j can run on node k: yes (1) / no (0)
zj,k query j’s workload share assigned to node k: ∈ [0, 1]
Xk node k is used for query execution: yes (1) / no (0)

WR memory consumption of an ILP approach considering reallocation costs

Reallocation goals and costs may depend on specific systems, the data partition-
ing, and other factors. For example, one may want to minimize the added fragments
per node or the overall added fragments. Further, the reallocation of single frag-
ments may require the reorganization of complete tables (e.g., adding columns to
row stores). A survey of possible reallocation costs and reallocation goals is not
part of this thesis. In the following, we show one exemplary model that considers
reallocation costs based on an existing allocation.

Optimal Model

We assume a current allocation state characterized by the parameters si,k ∈ {0, 1},
which indicate whether fragment i is placed at node k (si,k = 1) or not (si,k = 0),
i = 1, ..., N , k = 1, ..., K. Further, we assume reallocation costs ri (if a new fragment
i is transferred to node k, i = 1, ..., N) that are independent of the allocation state of
the other fragments. In case the data of fragment i is deleted at node k, we assume
no/negligible costs. Table 5.6 summarizes the input parameters, decision variables,
and solution variables that we use to describe our extensions that consider data
reallocation costs. New model parameters and variables are highlighted.
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Figure 5.10.: Optimal solutions that consider data reallocation costs.

To consider reallocation costs and reduce the amount of overall added data, the
objective of the optimal model (5.1) - (5.5) is extended by the cost term



i=1,...,N,k=1,...,K

ri · (1− si,k) · xi,k. (5.35)

If fragment i is already allocated to node k (i.e., si,k = 1), there are no reallocation
costs independently of xi,k because (1− si,k) ·xi,k = 0. If fragment i is not allocated
to node k (i.e., si,k = 0), there are reallocation costs only if fragment i gets allocated
to node k (i.e., xi,k = 1) because (1− si,k) · xi,k depends on xi,k.
The cost term prevents that large parts of the data are reorganized while the

benefit concerning the overall memory consumption (compared to solutions that do
not consider reallocation costs) is only marginal. In the new objective term



i=1,...,N,k=1,...,K

xi,k · (ai + ri · (1− si,k))

we can prioritize a low memory consumption (ai > ri) or low reallocation costs
(ai < ri). We could also trade reallocation costs vs. load balancing: We can accept
a slight load imbalance to lower reallocation costs (or the memory consumption).

In Figure 6.13, we show two new allocations, which are based on an old alloca-
tion state and consider reallocation costs. Fragments that are added during the
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reallocation are highlighted with a bold frame. When prioritizing a low memory
consumption (see the middle allocation), we must add 5 fragments (all to node 2)
and achieve an allocation with overall 15 = 3 + 7 + 4 + 1 fragments. When pri-
oritizing low reallocation costs (see the bottom allocation), we must add fewer (4)
fragments (to node 2 and 4) but achieve an overall higher (16 = 3 + 4 + 5 + 4)
memory consumption.

Adding or Removing Nodes. Based on this model extension, we can also calculate
optimized allocations with a changed number of nodes, e.g., for elastic systems
[151, 207]. When adding a number of nodes A, 1 ≤ A < K, without stored fragments,
we set si,k = 0, i = 1, ..., N, k = K−A+1, ..., K. When removing a number of nodes
R, 1 ≤ R < K, with stored fragments, we could simply calculate new allocations
without all subsets of nodes (because we do not know which node removal offers
the greatest optimization potential) independently and take the one with the lowest
reallocation costs. Because the number of node combinations increases quickly with
the number of nodes to remove R, we can also rely on the solver’s efficiency and
integrate the decision of which node(s) to remove into our ILP model. Therefore,
we introduce new decision variables Xk, which control whether a node remains in
the cluster (Xk = 1) or is removed (Xk = 0), k = 1, ..., K. Further, we add the
following constraints:

Xk ≥ yj,k, j = 1, ..., Q, k = 1, ..., K (5.36)


k=1,...,K

Xk = K −R (5.37)

The family of constraints (5.36) ensures that no query is executable at node k
(i.e., yj,k = 0, j = 1, ..., Q) if node k is not used for query execution (i.e., Xk = 0).
The constraint (5.37) ensures that the number of used nodes is K−R (i.e., R nodes
are removed).

The reallocation of running nodes may degrade the query performance. When
adding nodes, it could be desirable to not change the fragment allocation of running
nodes. Instead, we could only extend the allocation by a node so that the load
can still be balanced. The added nodes could later be removed, and an even load
balancing would still be possible. Note, the existence of such an allocation is guar-
anteed because we can always scale a read-only workload by adding a full replica.
The following family of constraints ensures that existing nodes are not reallocated
when adding nodes:

xi,k = si,k, i = 1, ..., N, k = 1, ..., K − A (5.38)

Similarly, we could also allow that fragments of existing nodes can be removed
but not added:

xi,k ≤ si,k, i = 1, ..., N, k = 1, ..., K − A (5.39)
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Decomposition-Based Approach

We can also include reallocation costs in our decomposition-based heuristic. When
using intermediate allocations with chunks, there is a fixed relation between these
chunks and associated final nodes. Thus, the allocation states si,k of final nodes k can
be uniquely translated to intermediate allocation states si,b with chunks b. Hence,
reallocation costs can be included in objective (5.6) of the generalized decomposition-
based approach by using these chunk states si,b.

An existing allocation state restricts the possible new allocations with low real-
location costs. Because the new allocation must be similar to the old one (to have
low reallocation costs), the corresponding optimization problem is often easier to
solve than the basic model. Hence, if low reallocation costs are targeted, the limited
search space enables (i) using the optimal model even for larger problems, (ii) using
fewer decomposition steps with larger chunks, or (iii) faster calculations.

5.4. Summary

Our workload distribution problem for partially replicated database clusters can
be formulated as ILP program and, thus, solved optimally using state-of-the-art
solvers. Because ILP is not scalable, larger problems eventually become intractable.
Therefore, we propose three ILP-based heuristics, which can be flexibly combined
to lower the calculation time: (i) a decomposition approach for iteratively splitting
the workload, (ii) query clustering (in particular for a large number of queries with
small workload shares), and (iii) solver relaxations via an optimality gap or time
limit. Using ILP, we can also model varied model extensions, e.g., considering
node failures, workload uncertainty, data modification costs, and reallocation costs.
Besides presenting the optimal programming models, we discussed how to address
the extensions using our heuristics, particularly the decomposition approach.
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6

Evaluation of Allocation Models

Magic mirror in my hand, who is the fairest in the land?

Brothers Grimm

In this chapter, we evaluate our allocation models for various input parameters,
covering the standard benchmarks TPC-H and TPC-DS as well as a real-world
accounting workload. We compare our results against state-of-the-art techniques
with regard to the memory consumption, workload distribution, and calculation time
as well as the end-to-end throughput. We first describe our evaluation methodology
in Section 6.1. Following, we evaluate our basic models for read-only workloads
(Section 6.2) and model extensions (Section 6.3). We summarize our evaluation
results in Section 6.4. Finally, we discuss limitations of our approach and evaluation
in Section 6.5.

6.1. Methodology

An objective comparison of allocation approaches is challenging because the solution
quality depends on the multifaceted input parameters: The complexity of an alloca-
tion cannot be easily derived by only the number of fragments, queries, and nodes.
Of course, these numbers determine, for example, an upper limit of combinations
for an exhaustive search. But also, the accessed fragments per query, query costs,
query frequencies, and fragment sizes influence how well we can prune suboptimal
solutions or how well we can heuristically allocate queries and fragments to nodes.
Overall, the best allocation approach may depend on the specific problem in-

stance and, thus, the evaluation scenario. For this reason, we evaluate our allo-
cation approaches and extensions for multiple input parameters. In the following,
we describe our applied methodology, including (i) the selected database workloads
and how we derived model inputs (Section 6.1.1), (ii) the calculation of allocations
(Section 6.1.2), and (iii) the evaluation of allocations (Section 6.1.3).

6.1.1. Workloads

We evaluate our allocation models using three workloads of different complexities:
the two standardized analytical benchmarks TPC-H and TPC-DS as well as one real-
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world accounting workload. For all workloads, we use vertical partitioning with each
column as individual fragment: For the accounting workload, we had no other choice
because we got only access to metadata and could only derive accessed fragments on
a columnar granularity. For TPC-H and TPC-DS (and any other SQL workload),
using columnar partitioning allowed us to reliably and, thus, automatically derive
the (potentially) accessed fragments/columns based on the SQL query.

The three workloads are characterized by smaller and larger numbers of fragments
N and queries Q, resulting in different problem sizes. We focus our evaluations on
cluster sizes with 2 ≤ K ≤ 16 nodes, which correspond to the cluster sizes of our
end-to-end evaluations. Optimal allocations naturally depend on fragment sizes ai,
query frequencies fj, query costs cj, and accessed fragments qj. In the following, we
explain how we derived all model inputs.

TPC-H and TPC-DS. We set up the benchmark tables with scale factor 10 in a
cluster of commercial columnar in-memory database systems. The chosen database
system and scale factor usually have only a small effect on the complexity of allo-
cations because only the values for fragment sizes ai and query costs cj change. In
previous evaluations [104, 195], we used PostgreSQL as database system and can,
thus, compare our results for different parameters of the same workload.

The TPC-H benchmark comprises a schema with N = 61 columns and Q =
22 query templates. The more complex TPC-DS benchmark is characterized by
N = 425 columns and Q = 99 query templates. We derived fragment/column sizes
ai, i = 1, ..., N, from the database catalog. For all queries, we set fj := 1, j = 1, ..., Q,
as default to model an identical number for each query template. We modeled query
costs cj as average processing time of query j with random template parameters,
j = 1, ..., Q.

For TPC-DS, processing the queries 22, 36, 70, and 86 took exceptionally long,
including timeouts for specific template parameters. Having a few queries dominat-
ing the overall processing time makes the allocation easier: In an extreme case, all
but one replica process a single expensive query while a single replica processes the
rest of the queries. Thus, we omitted these queries in our allocations by setting the
query frequencies fj := 0, j = 22, 36, 70, 86, resulting in Q = 95 included queries
for TPC-DS.

Real-World Accounting Workload. We got access to metadata of an enterprise’s
central accounting table with N = 344 columns and a summary of a workload
trace against this table in the form of Q = 4461 query templates and statistics.
The metadata enabled us to derive all required model inputs (i.e., fragment sizes,
accessed attributes per query, query frequencies, and average query processing times)
for calculating fragment allocations using vertical (columnar) partitioning.

Table 6.1 summarizes the workloads used for the evaluation. All model inputs to
reproduce the calculation of all allocations are available online [99].
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Table 6.1.: Overview of workloads used for the evaluation.

Workload Dataset #Fragments N #Queries Q (included)

TPC-H Synthetic uniform 61 22
TPC-DS Synthetic skewed 425 99 (95)

Accounting Workload Real-world 344 4461

6.1.2. Calculation of Allocations

We calculated all allocations on a laptop with an Apple M1 Pro CPU with 8 cores and
32 GB RAM. For the calculation of all our ILP-based approaches, we implemented
the models with AMPL [78] and solved them using Gurobi [94] (version 9.5.2). For
the comparison with state-of-the-art approaches, we implemented the algorithms in
Python 3, and declare the runtimes as an upper limit (<).
For obtaining the model inputs and running the end-to-end evaluations, we used

a database cluster with 16 nodes. Each node is a virtual machine with four cores,
50 GB RAM, running SUSE Linux Enterprise Server 15 SP1 and a commercial
columnar in-memory database system. The 16 virtual machines share four Xeon
(Nehalem EX) X7560 CPUs with overall 32 physical and 64 (= 16 · 4) virtual (using
hyper-threading) cores, and 1024 GB RAM. Each virtual machine is pinned to 2
physical (4 virtual) cores. As benchmark client, we used a virtual machine with an
Intel Core i7 9xx CPU with four cores and 4 GB RAM.

6.1.3. Evaluation of Allocations

The investigated allocation problem is a macro optimization, considering a workload
in a potentially long period of time. We can evaluate allocations (i) numerically,
i.e., with regard to the memory consumption W , (maximum) load limit/share L
(over all nodes), and calculation time, as well as (ii) in end-to-end evaluations, i.e.,
how the calculated allocations perform when they are deployed on database servers
running workloads in practice.

Numerical Evaluations

Numerical evaluations are limited by the calculation time. As heuristic solutions
can often be calculated (relatively) quickly, we can conduct numerical evaluations
using multiple models and settings (e.g., different chunkings for the decomposition
approach, solver settings, and workload scenarios with regard to failed nodes and
query frequencies). Only optimal solutions eventually become intractable because
of too high calculation times.

Visualization of Allocations. We can also visualize allocation inputs and solutions
to derive structural insights and to detect an algorithm’s strengths as well as its po-
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Figure 6.1.: The application screenshot shows an allocation of our decomposition
heuristic for a cluster with six nodes running the TPC-H workload. [101]

tential for improvements. We, therefore, implemented an application to graphically
show which fragments and queries are allocated to which nodes [101]. Figure 6.1
shows an application screenshot, which visualizes an allocation of our decomposition
approach for the TPC-H benchmark using six replicas.

The workload shares of the individual queries are visualized below the navigation
bar. We can derive that the execution costs for the queries 1, 9, 18, and 21 are the
highest because their segment widths are the broadest. When hovering the mouse
over a query segment, the required fragments for the query are shown. Below the
navigation bar and the query list, the allocation result is visualized: (i) the replica-
tion factor and (ii) its comparison to an optimal allocation (if available). Further,
six segments, one for each replica node, display detailed allocation information:
(iii) assigned workload shares with regard to the queries and (iv) the allocated data
fragments. The list of workload shares shows the assigned queries and visualizes to
which extent they contribute to the replica load. For example, the TPC-H queries 1,
6, 13, and 22 are assigned to replica one. Thereby, query 1 accounts for the largest
load on this replica. The allocated fragments are visualized as hierarchical map with
nested rectangles. Rectangles with the same basic color represent fragments of the
same table. Transparently colored fragments are not stored but show the memory
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savings. The size of the rectangles corresponds to the fragment size. The 14 blue
tiles model the 14 accessed columns of the TPC-H lineitem table, which accounts
for the largest share of the data set.

End-to-End Evaluations

We also deployed allocations and executed workloads to obtain end-to-end results.
In particular, we analyzed the query throughput of allocations. Besides the load
limit/share L, the timing of queries influences the throughput of an allocation, in
particular, whether each node can be used for query processing over time. Having
batch processing or an even distribution of query loads concerning their assigned
nodes, partially replicated database clusters performs optimally, i.e., in case of an
evenly guaranteed load balancing by the model, the throughput of a cluster scales
linearly with the number of nodes. In contrast, for our end-to-end evaluations, we
use a set of query streams, simulating users. In this setting, single nodes may get
overloaded temporarily while other nodes cannot be used for query processing, in
particular in case of imbalanced workload shares.

The number of benchmark streams S := 8 · K (representing users) depends on
the cluster size K. A central dispatcher maintains a query queue for each replica.
For full replication, queries from stream s are added to the queue of node k =
1 + (s− 1) mod K. For partial replication, queries are added to a queue of a node
that stores all relevant fragments to process the query (considering the costs of
queued and currently processed queries). A fixed number of connections per replica
is used to query the database, removing queries from the according queue.

For K = 16, there are 8 · 16 = 128 clients, resulting in 128 active queries at a
time. We run an experiment with each setting for 620 s, executing more than 3 000
TPC-H and 3 300 TPC-DS queries for K = 16. We started measuring the query
throughput after a 180 s warm-up phase.

Overall, the time of individual end-to-end experiments is mostly higher than the
time to obtain numerical results. We, therefore, limit our end-to-end evaluation to
selected, in our view essential, allocations, including solutions for the basic problem
and situation with node failures, in which the load balancing can become skewed
and the query throughput may drop.

Visualization of the Load Balancing. For end-to-end experiments, we log indi-
vidual query executions and implemented an application to visualize the load bal-
ancing [103]: Our application allows users to retrace and evaluate the end-to-end
performance of allocations in varying experiments, particularly situations in which
single nodes are overloaded (e.g., due to a failed node), resulting in a lower query
throughput. Figure 6.2 shows a screenshot of our application for a partially repli-
cated database cluster running the TPC-H benchmark.

The visualization consists of three parts. First, the application’s upper part shows
the current replayed scenario. It comprises (from left to right) the benchmark, the

85



6. Evaluation of Allocation Models

Figure 6.2.: The application screenshot shows a load-balancing status for running
TPC-H queries, sent via 25 streams, in a five-node cluster, allocated using the greedy
failure approach [181]. Node 1 has failed and cannot be used. Node 4 is overloaded,
having a long query queue. Nodes 2, 3, and 5 are underutilized. [103]

number of concurrent query streams, the number of cluster nodes, (if existent) node
failures, the used data allocation strategy, and (below) the workload shares of the
benchmark queries. Each query class is visualized by a segment with a specific color
tone, which is used throughout the application. The width of a segment corresponds
to the workload share (cj · fj) of the query.

Second, the left side of the application shows the workload as a set of 25 query
streams. Each stream shows the order (from right to left) in which queries are
submitted to the database cluster as a list of colored segments. Thereby, the color
indicates the query class. Queries that have already been submitted to the cluster
are shown as greyed out.

Third, the right side of the application shows allocation and load-balancing in-
formation of the replica nodes in individual boxes. Red boxes (see node 1) indicate
failed nodes, which cannot be used for load-balancing. Each box consists of two lines.
The first line summarizes static allocation information, i.e., the ratio of stored data,
executable queries, and assigned/planned workload share per query. The second
line of the box visualizes load-balancing information, i.e., currently queued queries
and queries in execution, as well as a summary of the executed query load relative
to the planned load considering the elapsed time. Thereby the executed load is cal-
culated by summing up the product of query (execution) frequencies and planned
costs. Because query execution costs may be lower than expected/modeled costs,
the executed load can be (slightly) larger than 100% (see node 4).

The status summary above the node boxes shows the data replication factor
(static), elapsed time, the executed queries per second since scenario start, and
the average cluster utilization compared to a load execution with modeled query
costs and without failures.
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6.2. Evaluation of Models for the Basic Problem

In this section, we evaluate our allocation approaches for the basic problem, i.e.,
read-only workloads without any extensions. We first evaluate the optimal model
in Section 6.2.1. Following, we present results of our decomposition-based heuristic
(Section 6.2.2) and other approaches to lower the computation time (Section 6.2.3).
Finally, we present end-to-end results and summarize our findings in Section 6.2.4.

6.2.1. Numerical Evaluation of the Optimal Solution

In the following, we evaluate the optimal model (see Section 5.1.1) for TPC-H,
TPC-DS, and the accounting workload. We compare the solution quality (i.e., an
allocation’s normalized memory consumption or short the “replication factor” W

V

(see Section 3.1.2)) with allocations of the greedy state-of-the-art approach by Rabl
and Jacobsen (see Section 4.3.1) and full replication: For different numbers of nodes
K, Table 6.2 summarizes the calculation time, the optimal replication factor W ∗

V
,

and memory savings compared to the greedy approach W ∗

WG and full replication W ∗

K·V .
All allocations achieve a perfect workload distribution L∗ = 1

K
(see Section 3.1.2).

The optimal replication factors W ∗

V
(for K > 1) are 32 - 80% lower than the repli-

cation factors for full replication K, which demonstrates the potential memory (and
thus cost) savings by using partial replication. With our setup (see Section 6.1.2),
we could not calculate optimal allocations for TPC-DS with K ≥ 12 and the ac-
counting workload with K ≥ 6 within 8 hours (see also [102, 181]). The reason
is the increasing problem size, characterized by the number of variables and con-
straints. Further, the specific constraints, characterized by the parameter values
(e.g., number of nodes K, fragment sizes ai, query frequencies fj, query costs cj,
and accessed fragments qj) influence the problem complexity because they affect
the solver’s pruning capabilities. This is why, the calculation time of the optimal
solution do not have to be monotonously increasing with the number of nodes K,
e.g., the calculation time for the accounting workload with K = 3 (2369 s) is larger
than for K = 4 (836 s).

Although the optimal solution approach is limited to smaller problems, it is ex-
tremely useful as it enables to analytically measure any heuristic’s memory con-
sumption (and calculation time). Compared to the greedy heuristic, the optimal
solution reduces the memory consumption by up to 28%, 33%, and 43% for TPC-H,
TPC-DS, and the accounting workload, respectively. Thereby, the solution quality of
the greedy approach depends on the number of nodes K, e.g., −29% < W ∗

WG < −2%
for TPC-H, −33% < W ∗

WG < −16% for TPC-DS, and −43% < W ∗

WG < −33% for the
accounting workload. Note, compared to the smaller TPC-H workload, the memory
savings of optimal solutions are larger for the more complex TPC-DS and accounting
workload. In contrast, the greedy approach is quick for all problem instances: The
calculation time of our (unoptimized) Python implementation is < 1 s for TPC-H
and DS, and only slightly higher for the accounting workload.
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Table 6.2.: Optimal solutions of the basic problem for different workloads and
cluster sizes K: calculation time, replication factor W ∗

V
, and relative memory savings

compared to the greedy approach [181] W ∗

WG and full replication W ∗

K·V .

K timeW ∗ W ∗

V
W ∗

WG
W ∗

K·V

2 0.1 s 1.358 -13.9% -32.1%
3 0.2 s 1.598 -28.3% -46.7%
4 0.6 s 1.773 -7.6% -55.7%
5 1.1 s 2.146 -19.3% -57.1%
6 1.7 s 2.461 -12.1% -59.0%
7 5.1 s 2.680 -12.3% -61.7%
8 2.6 s 2.959 -13.9% -63.0%
9 8.4 s 3.330 -12.0% -63.0%
10 8.9 s 3.481 -14.3% -65.2%
11 9.9 s 3.627 -2.3% -67.0%
12 57.5 s 4.021 -9.0% -66.5%
13 48.3 s 4.244 -11.1% -67.4%
14 326.9 s 4.474 -11.4% -68.0%
15 349.6 s 4.781 -6.8% -68.1%
16 327.4 s 5.193 -9.6% -67.5%

(a) TPC-H: N=61, Q=22, commercial database system, scale factor 10.

K timeW ∗ W ∗

V
W ∗

WG
W ∗

K·V

2 0.8 s 1.142 -16.1% -42.9%
3 2.7 s 1.278 -19.4% -57.4%
4 41.8 s 1.441 -21.0% -64.0%
5 87.0 s 1.559 -22.0% -68.8%
6 131.8 s 1.691 -30.2% -71.8%
7 227.7 s 1.749 -32.9% -75.0%
8 343.9 s 1.852 -19.7% -76.8%
9 2966.4 s 2.027 -27.9% -77.5%
10 13227.5 s 2.115 -29.0% -78.8%
11 20624.4 s 2.276 -25.8% -79.3%

(b) TPC-DS: N=425, Q=95, commercial database system, scale factor 10.

K timeW ∗ W ∗

V
W ∗

WG
W ∗

K·V

2 22.1 s 1.322 -33.9% -33.9%
3 2368.8 s 1.774 -33.2% -40.9%
4 835.8 s 2.104 -42.5% -47.4%
5 38661.1 s 2.473 -36.3% -50.5%

(c) Accounting workload: N=344, Q=4461, metadata.
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Summary: Our allocation problem can be solved optimally using ILP. However,
for increasing problem sizes, the calculation times of optimal solutions may become
too large for practical applicability. In these cases, we have to use heuristic ap-
proaches. Nevertheless, optimal solutions allow analyzing the quality of heuristics.
In our case, the optimal solutions often have a more than 25% lower memory con-
sumption than solutions of the greedy approach, particularly for the more complex
TPC-DS and accounting workload.

6.2.2. Numerical Evaluation of the Decomposition Heuristic

In this section, we illustrate the results of our decomposition heuristic (see Sec-
tion 5.1.2) using TPC-H, TPC-DS, and the accounting workload. We compare the

replication factors of our decomposition heuristic WD

V
to solutions of the greedy

state-of-the-art heuristic WG

V
and to optimal solutions W ∗

V
(if applicable). Again, all

allocations achieve a perfect workload distribution L∗ = 1
K
.

Naturally, the solution of our decomposition approach depends on the chunk-
ing, i.e., the number of decomposition levels as well as the number of chunks and
chunk sizes per level. This is why, we state the chunking for each solution of
our decomposition approach as a term: The number of summands indicates the
number of chunks (per level). The summands themselves indicate the chunk sizes,
i.e., the number of final nodes per chunk. The overall sum of all summands indi-
cates the overall number of nodes K. Figure 6.3 visualizes exemplary chunkings
for K = 2 + 1 = 3, K = 2 + 2 = 4, K = 3 + 2 = 5, K = 3 + 3 = 6, and
K = (4 + 4 + 4) + (4 + 4 + 4) = 24. For symmetric chunkings with many levels and
nodes, we state the chunking as (compact) product, e.g., K = 2 + 2 = 2 × 2 = 4,
K = 3 + 3 = 2 × 3 = 6, K = (4 + 4 + 4) + (4 + 4 + 4) = 2 × (3 × 4) = 24, and
K = ((4 + 4) + (4 + 4)) + ((4 + 4) + (4 + 4)) = 2× (2× (2× 4)) = 32.

Table 6.3, Table 6.4, and Table 6.5 summarize the results for TPC-H, TPC-
DS, and the accounting workload, respectively, using different numbers of nodes

2 + 1 2  +  2 3   +   2 3    +    3

(4      +      4      +      4) (4      +      4      +      4)+
Figure 6.3.: Visualization of chunking terms.
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6. Evaluation of Allocation Models

Table 6.3.: Decomposition-based heuristic solutions of the basic problem
for TPC-H with different cluster sizes K: chunk sizes of decomposition, calculation
time, replication factor WD

V
, and relative memory consumption compared to the

greedy approach [181] WD

WG and optimal solution WD

W ∗ .

K chunking timeWD
WD

V
WD

WG
WD

W ∗

3 2+1 0.1 s 1.598 -28.3% +0.0%
4 2+2 0.1 s 1.842 -4.0% +3.9%
5 3+2 0.2 s 2.220 -16.6% +3.4%
6 2+2+2 0.3 s 2.511 -10.4% +2.0%
7 4+3 0.3 s 2.720 -11.0% +1.5%
8 2+2+2+2 0.4 s 2.968 -13.7% +0.3%
9 3+3+3 0.3 s 3.339 -11.8% +0.3%
10 3+3+2+2 1.0 s 3.592 -11.6% +3.2%
11 3+3+3+2 1.0 s 3.627 -2.3% +0.0%
12 6+6 0.6 s 4.061 -8.1% +1.0%
13 7+6 0.8 s 4.299 -9.9% +1.3%
14 5+5+4 0.5 s 4.515 -10.6% +0.9%
15 5+5+5 0.9 s 4.791 -6.6% +0.2%
16 4+4+4+4 0.6 s 5.255 -8.5% +1.2%

3 ≤ K ≤ 16. Note, a decomposition with K = 1 + 1 = 2 nodes corresponds to
the optimal solution and is therefore omitted. For TPC-DS (see Table 6.4), we
additionally show the results of different chunkings (e.g., K = 3 + 2 + 2 = 7 vs.
K = 4 + 3 = 7) and also larger number of nodes (i.e., K = 24, 32, 48, 72, 100).

We see that using the decomposition approach, we could calculate solutions for
all K ≤ 16, even for TPC-DS and the accounting workload, for which optimal so-
lutions are limited to K < 12 and K < 6, respectively. Further, the calculation
times are significantly lower than those of optimal solutions while the memory con-
sumption WD is near-optimal for the tractable optimal solutions W ∗: Compared to
the optimal data replication factors W ∗

V
(see Table 6.2), the corresponding factors

WD

V
are only 0 - 5% larger. Compared to the replication factors of the greedy ap-

proach WG

V
, the memory consumption of our decomposition approach is better for

all investigated inputs ; for the more complex TPC-DS and accounting workload, the
replication factors can often be reduced by more than 25% and 40%, respectively.

Via the number of levels and chunks chosen, we can control the problem complex-
ity, which, in turn, makes it possible to even approach large problems. For TPC-DS,
we could reduce the problem complexity such that we could calculate allocations for
each K ≤ 100 in less than 300 s. Partitionings with larger chunks require higher
computation times but often lead to a lower memory consumption (see Table 6.4:
3+2+2 vs. 3+4 and 2×(2×(2×2)) vs. 4+4+4+4 vs. 8+8). Note, larger chunks do
not guarantee better results if the intermediate results are different.
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Table 6.4.: Decomposition-based heuristic solutions of the basic problem
for TPC-DS with different cluster sizes K: chunk sizes of decomposition, calcu-
lation time, replication factor WD

V
, and relative memory consumption compared to

the greedy approach [181] WD

WG and optimal solution WD

W ∗ .

K chunking timeWD
WD

V
WD

WG
WD

W ∗

3 2+1 2.1 s 1.278 -19.4% +0.0%
4 2+2 1.6 s 1.445 -20.7% +0.3%
5 3+2 6.2 s 1.574 -21.3% +1.0%
6 3+3 6.1 s 1.695 -30.0% +0.3%
7 3+2+2 8.9 s 1.828 -29.9% +4.5%
7 4+3 40.1 s 1.796 -31.2% +2.7%
8 3+3+2 6.0 s 1.908 -17.3% +3.0%
8 4+4 28.7 s 1.879 -18.5% +1.5%
9 3+3+3 5.1 s 2.046 -27.2% +1.0%
10 4+3+3 40.1 s 2.160 -27.5% +2.1%
11 4+4+3 31.1 s 2.337 -23.8% +2.7%
12 4+4+4 51.7 s 2.463 -23.4% -
13 4+3+3+3 34.8 s 2.599 -27.0% -
13 5+4+4 103.8 s 2.559 -28.1% -
14 4+4+3+3 27.2 s 2.664 -30.6% -
15 4+4+4+3 68.2 s 2.828 -30.8% -
15 5+5+5 105.1 s 2.781 -32.0% -
16 2×(2×(2×2)) 3.1 s 2.994 -32.3% -
16 4+4+4+4 77.4 s 2.887 -34.8% -
16 8+8 253.1 s 2.874 -35.1% -
24 2×(3×4) 22.5 s 3.861 -23.5% -
32 2×(2×(2×4)) 78.7 s 4.728 -22.9% -
48 2×(2×(3×4)) 36.4 s 6.452 -14.4% -
72 2×(3×(3×4)) 21.5 s 9.059 -8.9% -
100 2×(2×(5×5)) 132.9 s 11.242 -11.8% -
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6. Evaluation of Allocation Models

Table 6.5.: Decomposition-based heuristic solutions of the basic problem
for the accounting workload with different cluster sizes K: chunk sizes of decom-
position, calculation time, replication factor WD

V
, and relative memory consumption

compared to the greedy approach [181] WD

WG and optimal solution WD

W ∗ .

K chunking timeWD
WD

V
WD

WG
WD

W ∗

3 2+1 41.8 s 1.781 -33.0% +0.4%
4 2+2 43.0 s 2.131 -41.7% +1.3%
5 2+2+1 413.2 s 2.538 -34.6% +2.7%
6 3+3 582.9 s 2.911 -35.8% -
7 3+2+2 2679.2 s 3.411 -38.4% -
8 3+3+2 1436.1 s 3.531 -46.0% -
9 3+3+3 331.5 s 4.010 -40.8% -
10 4+3+3 4862.5 s 4.485 -42.2% -
11 4+4+3 7628.0 s 4.756 -43.5% -
12 4+4+4 3572.2 s 5.222 -44.5% -
13 4+3+3+3 36015.1 s 5.540 -46.8% -
14 4+4+3+3 14045.0 s 5.902 -45.2% -
15 4+4+4+3 10234.3 s 6.537 -40.3% -
16 4+4+4+4 7307.3 s 6.811 -37.4% -

For the accounting workload, the calculation times remain high, i.e., multiple
minutes or even hours for large cluster sizes K. We could have used a finer de-
composition (as shown for TPC-DS). However, the solutions for small cluster sizes
K indicate that the pure decomposition heuristic is not enough to obtain solutions
within seconds for the large accounting workload.

Summary: Our decomposition-based heuristic enables effective calculations for lar-
ger problem sizes. The chunk sizes can be chosen such that the computation times
are small – even for the medium-sized TPC-DS workload. Compared to the greedy
approach, solutions of the decomposition approach always reduced the memory con-
sumption: depending on the workload complexity, often by more than 10% (TPC-H),
25% (TPC-DS), and 40% (accounting workload). The memory consumption was
never more than 5% higher than optimal (for tractable optimal solution) while the
calculation time is considerably faster. Still, using the decomposition approach alone
does not enable solutions within seconds for the large-scale accounting workload.

6.2.3. Numerical Evaluation of Approaches to Lower the
Computation Time

In this section, we evaluate approaches to further lower the calculation time using
the two larger TPC-DS and accounting workloads. Particularly, we apply optimality
gaps, time limits, and query clustering to the optimal and decomposition approach.
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6.2. Evaluation of Models for the Basic Problem

Table 6.6.: Results of optimality gap approaches for different workloads and
cluster sizes K: chunk sizes of decomposition, optimality gap, calculation time,
replication factor WO

V
; calculation time relative to optimal timeWO

timeW ∗ and decomposition
timeWO

timeWD approach; memory consumption relative to optimal WO

W ∗ , decomposition WO

WD ,

and greedy approach [181] WO

WG .

K chunking opt. gap timeWO
WO

V
timeWO

timeW∗
WO

W∗
timeWO

timeWD
WO

WD
WO

WG

8 8 0.1 307.4 s 1.852 -10.6% +0.0% +5064.3% -2.9% -19.7%
8 8 0.2 58.6 s 1.859 -83.0% +0.4% +885.0% -2.6% -19.4%
8 8 0.3 39.7 s 1.878 -88.5% +1.4% +566.5% -1.6% -18.6%
8 8 0.4 16.4 s 1.957 -95.2% +5.7% +176.2% +2.6% -15.2%
8 8 0.5 9.2 s 1.972 -97.3% +6.5% +53.8% +3.3% -14.5%
16 4+4+4+4 0.1 15.7 s 2.912 - - -79.6% +0.9% -34.2%
16 4+4+4+4 0.2 6.8 s 2.982 - - -91.2% +3.3% -32.6%
16 4+4+4+4 0.3 3.3 s 3.204 - - -95.8% +11.0% -27.6%
16 4+4+4+4 0.4 2.2 s 3.240 - - -97.2% +12.2% -26.8%
16 4+4+4+4 0.5 0.9 s 3.490 - - -98.8% +20.9% -21.1%
16 16 0.4 1893.9 s 2.835 - - +2348.2% -1.8% -35.9%
16 16 0.5 102.4 s 2.847 - - +32.3% -1.4% -35.7%
16 16 0.6 24.0 s 2.880 - - -68.9% -0.2% -34.9%
16 16 0.7 5.7 s 3.139 - - -92.7% +8.7% -29.1%
16 16 0.8 3.6 s 3.545 - - -95.3% +22.8% -19.9%

(a) TPC-DS: N=425, Q=95, commercial database system, scale factor 10.

K chunking opt. gap timeWO
WO

V
timeWO

timeW∗
WO

W∗
timeWO

timeWD
WO

WD
WO

WG

3 3 0.6 48.1 s 2.103 -98.0% +18.5% +15.1% +18.1% -20.8%
3 3 0.7 35.6 s 2.182 -98.5% +23.0% -14.7% +22.5% -17.9%
3 3 0.8 29.5 s 2.182 -98.8% +23.0% -29.3% +22.5% -17.9%
3 3 0.9 14.2 s 2.222 -99.4% +25.2% -66.1% +24.8% -16.4%
3 3 1.0 3.8 s 2.222 -99.8% +25.2% -91.0% +24.8% -16.4%
8 4+4 0.6 162.2 s 3.986 - - -88.7% +12.9% -39.0%
8 4+4 0.7 141.2 s 4.504 - - -90.2% +27.6% -31.1%
8 4+4 0.8 94.9 s 4.551 - - -93.4% +28.9% -30.4%
8 4+4 0.9 51.5 s 5.196 - - -96.4% +47.2% -20.5%
8 4+4 1.0 7.7 s 5.803 - - -99.5% +64.4% -11.2%
8 8 0.8 1002.2 s 7.413 - - -30.2% +110.0% +13.4%
8 8 0.9 160.9 s 7.413 - - -88.8% +110.0% +13.4%

(b) Accounting workload: N=344, Q=4461, metadata.

Optimality Gap

In the following, we evaluate the usage of different optimality gaps for TPC-DS
and the accounting workload. We compare the potential time savings and memory
sacrifices of solutions with a set optimality gap WO against optimal solutions W ∗

(if possible) and solutions of the decomposition approach WD. Further, we compare
the memory consumption with optimality gaps WO to the greedy approach WG.
Table 6.6a shows the results for the TPC-DS workload using the optimal base model
with K = 8, 16 and the decomposition base model with K = 4 + 4 + 4 + 4 = 16
nodes. Analogously, Table 6.6b shows the results for the accounting workload using
the optimal base model with K = 3, 8 and the decomposition base model with
K = 4 + 4 = 8 nodes.
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6. Evaluation of Allocation Models

The results show that using optimality gaps can effectively and flexibly decrease
the calculation time while sacrificing the memory consumption. When using the
optimal model with a single ILP program (and usually also for the decomposition
model), a larger optimality gap decreases the calculation time, but the memory
consumption increases. Note, using a decomposition with multiple ILP programs,
the optimality gap naturally influences the intermediate results, which are the input
of subsequent ILP programs. Thus, better results with lower optimality gaps are
not guaranteed.

For TPC-DS and specific optimality gaps (i.e., (K = 8, gap 0.5), (K = 4 + 4 +
4+ 4 = 16, gap 0.2), (K = 16, gap 0.7), we could reduce the calculation time below
10 s while the memory consumption is relatively close to optimal (less than +9%)
compared to the base (optimal or decomposition) solution.

For the accounting workload and specific input settings (i.e., (K = 3, gap 0.6),
(K = 4 + 4 + 4 + 4 = 16, gap 0.6)), we could also reduce the calculation time
significantly (by more than −88%) while the increase in memory consumption is
higher (less than +19%) compared to the base (optimal or decomposition) solution.

Further, (for the selected cluster sizes K) we could calculate solutions with a 19 -
35% lower memory consumption than the state-of-the-art greedy approach in under
60 s – even for the large accounting workload. However, for K = 8 and the optimal
base model, we could not achieve a quick solution with a better memory consumption
than the greedy approach, which demonstrates a limitation when not combining
optimality gaps with other heuristics for larger problem sizes. Further, if particularly
quick solutions (e.g., in less than 10 s) for mid or large-size problems are targeted,
we find combining the decomposition approach with optimality gaps better than
using optimality gaps on the optimal model (see Table 6.6a: K = 4+4+4+4 = 16,
gap 0.2 vs. K = 16, gap 0.7).

Summary: Using optimality gaps for our ILP-based optimal and decomposition
model provides effective results that can (i) significantly reduce computation times
and (ii) yield a near-optimal memory consumption. The approach effectively bal-
ances the computation time and solution quality from a practitioner’s perspective.

Time Limit

Next, we evaluate the usage of different time limits for TPC-DS and the accounting
workload. As in the previous section, we use the optimal base model with K = 8, 16
and the decomposition base model with K = 4+ 4+ 4+ 4 = 16 nodes for TPC-DS.
For the accounting workload, we use the optimal base model with K = 3, 8 and the
decomposition base model with K = 4 + 4 nodes. Again, we compare the solutions
of time limit approaches W T against (pure) optimal W ∗ and (pure) decomposition-
based WD solutions as well as the solutions of the greedy approach. Table 6.7a and
Table 6.7b show the results for TPC-DS and the accounting workload, respectively.
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Table 6.7.: Results of time limit approaches for different workloads and clus-
ter sizes K: chunk sizes of decomposition, time limit, calculation time, replication
factor WT

V
; calculation time relative to optimal timeWT

timeW ∗ and decomposition timeWT

timeWD

approach; memory consumption relative to optimal WT

W ∗ , decomposition WT

WD , and

greedy approach [181] WT

WG .

K chunking time limit timeWT
WT

V
timeWT

timeW∗
WT

W∗
timeWT

timeWD
WT

WD
WT

WG

8 8 300 s 300.2 s 1.852 -12.7% -0.0% +4944.3% -2.9% -19.7%
8 8 150 s 150.1 s 1.852 -56.4% -0.0% +2421.4% -2.9% -19.7%
8 8 60 s 60.1 s 1.852 -82.5% -0.0% +909.0% -2.9% -19.7%
8 8 30 s 30.1 s 1.934 -91.3% +4.4% +404.9% +1.3% -16.2%
8 8 10 s 10.0 s 2.205 -97.1% +19.0% +68.8% +15.5% -4.4%
16 4+4+4+4 (5 · 32 s =) 160 s 64.3 s 2.894 - - -16.9% +0.2% -34.6%
16 4+4+4+4 (5 · 16 s =) 80 s 32.4 s 2.984 - - -58.2% +3.4% -32.6%
16 4+4+4+4 (5 · 8 s =) 40 s 16.4 s 2.984 - - -78.8% +3.4% -32.6%
16 4+4+4+4 (5 · 4 s =) 20 s 8.3 s 3.007 - - -89.2% +4.2% -32.1%
16 4+4+4+4 (5 · 2 s =) 10 s 3.8 s 3.147 - - -95.1% +9.0% -28.9%
16 16 160 s 160.1 s 2.879 - - +106.9% -0.3% -34.9%
16 16 80 s 80.1 s 2.879 - - +3.5% -0.3% -34.9%
16 16 40 s 40.1 s 2.879 - - -48.2% -0.3% -34.9%
16 16 20 s 20.1 s 2.979 - - -74.1% +3.2% -32.7%
16 16 10 s 10.1 s 3.233 - - -87.0% +12.0% -26.9%

(a) TPC-DS: N=425, Q=95, commercial database system, scale factor 10.

K chunking time limit timeWT
WT

V
timeWT

timeW∗
WT

W∗
timeWT

timeWD
WT

WD
WT

WG

3 3 600 s 600.3 s 1.859 -74.7% +4.8% +1337.4% +4.4% -30.0%
3 3 300 s 300.3 s 1.859 -87.3% +4.8% +619.1% +4.4% -30.0%
3 3 120 s 120.2 s 1.917 -94.9% +8.1% +187.9% +7.7% -27.8%
3 3 30 s 30.2 s 2.182 -98.7% +23.0% -27.7% +22.5% -17.9%
3 3 5 s 8.8 s 2.222 -99.6% +25.2% -78.9% +24.8% -16.4%
8 4+4 (3 · 300 s =) 900 s 333.9 s 3.817 - - -76.8% +8.1% -41.6%
8 4+4 (3 · 200 s =) 600 s 233.9 s 3.817 - - -83.7% +8.1% -41.6%
8 4+4 (3 · 100 s =) 300 s 134.0 s 3.924 - - -90.7% +11.1% -40.0%
8 4+4 (3 · 40 s =) 120 s 74.2 s 4.786 - - -94.8% +35.5% -26.8%
8 4+4 (3 · 20 s =) 60 s 52.1 s 4.786 - - -96.4% +35.5% -26.8%
8 4+4 (3 · 10 s =) 30 s 33.0 s 4.796 - - -97.7% +35.9% -26.6%
8 8 900 s 900.4 s 7.413 - - -37.3% +110.0% +13.4%
8 8 60 s 60.4 s 7.413 - - -95.8% +110.0% +13.4%

(b) Accounting workload: N=344, Q=4461, metadata.

Naturally, the results correspond with those of using an optimality gap. Using a
decreasing time limit, we can flexibly sacrifice the solution quality (i.e., worsen the
memory consumption) to obtain solutions more quickly. Compared to using opti-
mality gaps, we can directly influence the calculation time of single ILP programs.
For the decomposition approach, the total computation time is bounded from above
by the chosen time limit multiplied by the number of splits performed.

For large-size problems (see accounting workload with K = 8 nodes), the usage of
a time limit alone is not enough to obtain better solutions than the greedy approach.
However, we can speed up single ILP instances significantly while barely increasing
the memory consumption (see results using the optimal model: TPC-DS withK = 8

and accounting workload with K = 3, for which timeWT

timeW ∗ < −85% while WT

W ∗ <
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6. Evaluation of Allocation Models

(a) TPC-H. (b) TPC-DS. (c) Accounting workload.

Figure 6.4.: Distribution of query workload shares in decreasing order.

+5%). Combining time limits with our decomposition approach makes it possible to
calculate solutions for the large-scale accounting workload in less than a minute while
reducing the memory consumption compared to the greedy approach significantly
(e.g., WT

WG < −26% for K = 4 + 4).

Summary: The use of time limits for our ILP-based allocation approaches provides
effective results similar to those of using optimality gaps. Instead of relaxing the
memory consumption in the objective, it is possible to directly control the maximum
calculation time. Naturally, both approaches can also be combined.

Query Clustering

Finally, we evaluate our full clustering and partial clustering approach. Recap,
using the full clustering approach, we assign as many as possible queries with a low
workload share to a single node (e.g., the primary) without exceeding the maximum
load 1

K
. For the partial clustering approach, we assign fewer queries so that the

remaining load share can be used in the ILP program to assign memory-intensive
queries flexibly.
We begin this section with a short analysis of the distribution of query loads for

our three evaluation benchmarks TPC-H, TPC-DS, and the accounting workload.
Following, we analyze the full and partial clustering approach for the two larger
TPC-DS and accounting workloads.
Figure 6.4 visualizes the queries’ individual workload shares and the resulting

cumulated workload shares. We ordered the queries by their workload share fj · qj.
For TPC-H, we include all Q = 22 queries (see Figure 6.4a). For TPC-DS and the
accounting workload, Figure 6.4b and 6.4c include only the top 50 queries with the
highest workload shares for better clarity. The distribution is skewed for all three
workloads: The top 50 queries account for more than 96% of the TPC-DS and more
than 93% of the accounting workload. For TPC-H, the top half of the queries (i.e.,
Q = 11) accounts for 91%. We can exploit this skewness by fixedly assigning a large
share of queries to a single node.
Table 6.8 and 6.9 show the results of our clustering approaches for TPC-DS and

the accounting workload. The tables show the used number of fixedly assigned
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Table 6.8.: Results of query clustering approaches for TPC-DS with different
cluster sizes K: number of allocated |QR| and fixed |QF | queries, chunk decompo-

sition, calculation time, replication factor WC

V
, calculation time relative to decom-

position approach timeWC

timeWD , memory consumption relative to decomposition WC

WD , and

greedy approach [181] WC

WG .

K |QR| + |QF | chunking timeWC
WC

V
timeWC

timeWD
WC

WD
WC

WG

2 6+89 2 0.0 s 1.348 -95.8% +18.0% -1.0%
3 10+85 3 0.1 s 1.581 -97.6% +23.6% -0.3%
4 12+83 4 0.1 s 1.678 -91.3% +16.1% -8.0%
5 15+80 5 0.4 s 1.786 -93.9% +13.5% -10.7%
6 16+79 6 0.5 s 1.876 -91.5% +10.7% -22.5%
7 18+77 7 0.9 s 1.921 -97.8% +7.0% -26.4%
8 20+75 8 2.1 s 2.036 -65.0% +6.7% -11.7%
9 22+73 5+4 0.5 s 2.363 -89.4% +15.5% -15.9%
9 22+73 9 24.7 s 2.326 +384.0% +13.7% -17.2%
10 24+71 5+5 0.6 s 2.486 -98.6% +15.1% -16.6%
10 24+71 10 47.5 s 2.428 +18.5% +12.4% -18.6%
11 26+69 6+5 1.4 s 2.688 -95.5% +15.0% -12.4%
12 28+67 6+6 1.0 s 2.837 -98.1% +15.2% -11.8%
13 31+64 7+6 1.9 s 2.903 -94.6% +11.7% -18.4%
14 33+62 7+7 2.5 s 3.034 -90.9% +13.9% -20.9%
15 34+61 8+7 4.1 s 3.171 -94.1% +12.1% -22.5%
16 36+59 8+8 5.4 s 3.213 -93.0% +11.3% -27.4%

(a) Full clustering.

K |QR| + |QF | chunking timeWC
WC

V
timeWC

timeWD
WC

WD
WC

WG

2 48+47 2 0.1 s 1.142 -92.9% +0.0% -16.1%
3 48+47 3 0.3 s 1.347 -87.9% +5.4% -15.1%
4 48+47 4 0.6 s 1.531 -61.9% +5.9% -16.0%
5 48+47 5 2.0 s 1.662 -67.7% +5.6% -16.9%
6 48+47 6 6.6 s 1.795 +8.4% +5.9% -25.9%
7 48+47 7 6.7 s 1.845 -25.1% +0.9% -29.3%
8 48+47 4+4 0.7 s 1.983 -88.9% +3.9% -14.0%
8 48+47 8 47.9 s 1.964 +703.9% +2.9% -14.9%
9 48+47 5+4 1.1 s 2.132 -78.6% +4.2% -24.2%
9 48+47 9 87.4 s 2.096 +1611.0% +2.4% -25.4%
10 48+47 5+5 1.3 s 2.300 -96.8% +6.5% -22.8%
11 48+47 6+5 3.6 s 2.470 -88.5% +5.7% -19.5%
12 48+47 6+6 2.0 s 2.585 -96.1% +5.0% -19.6%
13 48+47 7+6 4.0 s 2.709 -88.5% +4.2% -23.9%
14 48+47 7+7 5.5 s 2.809 -79.7% +5.5% -26.8%
15 48+47 8+7 7.9 s 2.941 -88.4% +4.0% -28.1%
16 48+47 6+5+5 1.7 s 3.037 -99.3% +5.7% -31.4%
16 48+47 8+8 18.0 s 3.048 -92.9% +6.0% -31.1%

(b) Partial clustering.
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Table 6.9.: Results of query clustering approaches for the accounting work-
load with different cluster sizes K: number of allocated |QR| and fixed |QF | queries,
chunk decomposition, calculation time, replication factor WC

V
, calculation time rela-

tive to decomposition approach timeWC

timeWD , memory consumption relative to decompo-

sition WC

WD , and greedy approach [181] WC

WG .

K |QR| + |QF | chunking timeWC
WC

V
timeWC

timeWD
WC

WD
WC

WG

2 4+4457 2 0.0 s 1.787 -99.9% +35.1% -10.7%
3 7+4454 3 0.2 s 2.087 -99.6% +17.2% -21.4%
4 12+4449 4 0.3 s 2.690 -99.4% +26.2% -26.4%
5 16+4445 5 0.7 s 3.098 -99.8% +22.1% -20.1%
6 20+4441 6 1.7 s 3.474 -99.7% +19.4% -23.4%
7 25+4436 7 3.0 s 3.722 -99.9% +9.1% -32.8%
8 29+4432 4+4 0.6 s 4.204 -100.0% +19.1% -35.7%
8 29+4432 8 22.1 s 4.198 -98.5% +18.9% -35.8%
9 33+4428 5+4 1.0 s 4.535 -99.7% +13.1% -33.0%
9 33+4428 9 1179.5 s 4.447 +255.8% +10.9% -34.3%
10 37+4424 5+5 1.6 s 4.844 -100.0% +8.0% -37.6%
11 40+4421 4+4+3 1.4 s 4.866 -100.0% +2.3% -42.2%
12 44+4417 4+4+4 1.4 s 5.945 -100.0% +13.8% -36.9%
13 47+4414 5+4+4 1.2 s 5.716 -100.0% +3.2% -45.1%
14 51+4410 5+5+4 1.6 s 6.103 -100.0% +3.4% -43.3%
15 55+4406 5+5+5 1.8 s 6.990 -100.0% +6.9% -36.2%
16 58+4403 6+5+5 2.0 s 7.066 -100.0% +3.7% -35.1%

(a) Full clustering.

K |QR| + |QF | chunking timeWC
WC

V
timeWC

timeWD
WC

WD
WC

WG

2 100+4361 2 0.2 s 1.336 -99.2% +1.1% -33.2%
3 100+4361 3 0.5 s 1.891 -98.8% +6.2% -28.8%
4 100+4361 4 1.4 s 2.124 -96.7% -0.3% -41.9%
5 100+4361 5 3.2 s 2.492 -99.2% -1.8% -35.8%
6 100+4361 3+3 0.5 s 2.945 -99.9% +1.2% -35.1%
6 100+4361 6 64.2 s 2.932 -89.0% +0.7% -35.4%
7 100+4361 4+3 1.2 s 3.291 -100.0% -3.5% -40.6%
8 100+4361 4+4 1.2 s 3.534 -99.9% +0.1% -45.9%
9 100+4361 3+3+3 1.1 s 4.435 -99.7% +10.6% -34.5%
9 100+4361 5+4 11.5 s 4.261 -96.5% +6.3% -37.1%
10 100+4361 5+5 3.7 s 4.638 -99.9% +3.4% -40.2%
11 100+4361 4+4+3 1.2 s 4.867 -100.0% +2.3% -42.2%
12 100+4361 4+4+4 1.6 s 5.513 -100.0% +5.6% -41.4%
13 100+4361 5+4+4 1.4 s 5.641 -100.0% +1.8% -45.8%
14 100+4361 5+5+4 1.6 s 5.945 -100.0% +0.7% -44.8%
15 100+4361 5+5+5 3.3 s 6.785 -100.0% +3.8% -38.0%
16 100+4361 6+5+5 3.4 s 6.804 -100.0% -0.1% -37.5%

(b) Partial clustering.
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queries |QF | (and the number of remaining queries to assign |QR| = Q− |QF |), the
chunk decomposition, the calculation time of the clustering heuristic, and the solu-
tions’ (normalized) memory consumption WC

V
. Further, we compare the calculation

time (see timeWC

timeWD ) and memory consumption (see WC

WD ) against our decomposition-
based approach. Finally, the tables include the memory savings compared to the
greedy approach WC

WG . We summarize our results as follows.

Even for the TPC-DS workload with Q = 95 queries, the majority of queries can
be assigned to a single node: Using the full clustering approach, |QF | = 59 (for
K = 16) to |QF | = 89 (for K = 2) queries are fixedly assigned without exceeding
the load limit 1

K
. As a result, the ILP model’s complexity and, thus, calculation

time can be reduced significantly – even compared to the relatively quick decom-
position approach. As a consequence, we achieve computation times below 10 s for
cluster sizes K ≤ 8 without using a decomposition approach for the |QR| remaining
queries. For a larger number of nodes K > 8, we can combine the full cluster-
ing and decomposition approach to obtain solutions quickly. However, the memory
consumption increases by 6 - 24% compared to the decomposition approach, partic-
ularly for small K ≤ 3. Still, we achieve a 0 - 28% lower memory consumption than
the greedy approach for all K = 2, ..., 16.
The partial clustering heuristic is more flexible than full clustering and enables

better results. Naturally, the number of fixed queries can be chosen so that from one
extreme, we achieve an optimal solution (using |QF | = 0) to the other extreme, for
which we use the full clustering heuristic. With a decreasing number of fixed queries
|QF |, the memory consumption improves because the remaining allocation is more
flexible. However, the runtime is increasing due to the larger remaining problem
size. In Table 6.8b, we use |QF | = 47 (i.e., clustering half of the queries) for all
cluster sizes 2 ≤ K ≤ 16, which we found a good tradeoff with low computation
times and a low memory consumption. Overall, we achieve better allocations with a
lower memory consumption than the full clustering approach – still using less than
10 s if needed. Because of the higher complexity compared to full clustering, we
have to combine the partial clustering with our decomposition approach already for
cluster sizes K > 7 and use more chunks for K = 16 = 6 + 5 + 5 (vs. K = 8 + 8)
to achieve calculation times below 10 s. The memory consumption of the partial
clustering approach is clearly better than for full clustering. Further, the memory
consumption is close to the decomposition approach (i.e., WC

WD < +7%) and 14 - 32%
lower compared to the greedy approach.

The results for the accounting workload are overall similar, but the advantages of
clustering are larger than for the smaller TPC-DS workload. For the partial cluster-
ing heuristic, we use |QF | = 4361 clustered queries, resulting in a good tradeoff with
low computation times and a low memory consumption. As a result, we achieve
solutions for all cluster sizes K ≤ 16 in under 10 s, reducing the calculation time
by over 96% compared to the decomposition approach. Even for small cluster sizes
2 ≤ K ≤ 6, the full clustering approach reduces the memory consumption compared
to the greedy approach by 10 - 27%. Nevertheless, we find the partial clustering
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approach (as for TPC-DS) superior over full clustering: Compared to the decompo-
sition approach, partial clustering requires only < +7% more memory (for selected
chunkings, i.e., K = 6 = 3 + 3 and K = 9 = 5 + 4) while it calculates solutions in
12 s or less – recap, the decomposition approach takes over an hour for K > 9 (see
Table 6.5). Note, we can even achieve a lower memory consumption than the decom-
position approach (e.g., WC < WD for K = 4, 5, 7, 16) due to different intermediate
results or using no decomposition at all (compare chunking against Table 6.5).

Summary: If the queries’ workload shares are skewed (which is typical for real-
world workloads), it is reasonable to exploit the property that many queries can be
clustered and assigned to a single node. The remaining set of queries is smaller
and can, thus, be allocated considerably faster. For small problem sizes or when
higher calculation times are admissible, using a pure decomposition approach pro-
vides slightly better results and is, thus, still favorable. Overall, all techniques for
lowering the computation time (i.e., the decomposition approach, solver relaxations,
and query clustering) are compatible and can be flexibly combined.

6.2.4. End-to-End Evaluation and Summary

In this section, we summarize our results for the basic (read-only) problem and
study the performance of allocations against other approaches in end-to-end settings.
Figure 6.5a, 6.5c, and 6.5e visualize the memory consumption of different ILP-based
approaches, the greedy state-of-the-art approach, and full replication for TPC-H,
TPC-DS, and the accounting workload, respectively. Figure 6.5b and 6.5d show the
end-to-end query throughput of deployed allocations, running TPC-H and TPC-DS
workloads in our cluster of columnar, in-memory database instances. Recap, for
the accounting workload, we had only metadata. This is why, Figure 6.5f shows a
theoretically possible linear throughput scaling for all approaches.
For TPC-H and TPC-DS, all allocation approaches provide the same throughput

scaling (see Figure 6.5b, 6.5d). Thereby, the replication factors of the decomposi-
tion heuristic are close to optimal, whereas the memory consumption of the greedy
heuristic is comparably far off. Recap, particularly for the more complex TPC-
DS and accounting workload, the decomposition approach requires up to 35% (see
Table 6.4) and 47% (see Table 6.5) less data.
The query throughput of partial allocation algorithms scales linearly. Neverthe-

less, for the TPC-DS benchmark with more queries, full replication has a slightly
higher throughput for large cluster sizes. With increasing cluster sizes, partial repli-
cas are more and more specialized, having fewer fragments and executable queries.
Full replication is more flexible because each replica can execute every query. In
contrast, for partial replication, a few replicas may possibly have no query avail-
able while others are temporarily overloaded (see Section 6.1.3). Analyzing query
execution times and query timings, we made the following additional observations:
Partial replication can reduce query execution times. Rabl and Jacobsen explain
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(a) TPC-H: memory consumption. (b) TPC-H: end-to-end throughput.

(c) TPC-DS: memory consumption. (d) TPC-DS: end-to-end throughput.

(e) Accounting: memory consumption. (f) Accounting: numerical throughput.

Figure 6.5.: Evaluation of allocations for the basic problem for TPC-H, TPC-DS,
and the accounting workload with 2 - 16 nodes: memory consumption and through-
put for full replication, the greedy basic approach, the decomposition approach, and
optimal solutions.
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this speed-up compared to full replication with better caching because nodes pro-
cess only subsets of all queries [181]. Finally, we measured variances of execution
times for queries of the same class, e.g., caused by different query template pa-
rameters. Variances can be handled by the dispatcher, which distributes queries to
the replicas dynamically with regard to the estimated costs of currently processed
queries and those in the queues.

Summary: The end-to-end evaluations correspond to the numerical results. Our
ILP-based partial allocations can scale the throughput (almost) linearly while requir-
ing less memory than the state-of-the-art greedy approach. Overall, the memory
consumption of our heuristics is close to optimal (if comparable) while we could
calculate solutions for all workloads and cluster sizes using only a few seconds.

6.3. Evaluation of Model Extensions

In this section, we evaluate our model extensions that consider node failures (Sec-
tion 6.3.1), workload uncertainty (Section 6.3.2), data modifications (Section 6.3.3),
and reallocation costs (Section 6.3.4).

6.3.1. Node Failures

This section presents our evaluation of allocation approaches that consider node
failures. For the evaluation, we use TPC-H, TPC-DS, and the accounting workload.
We evaluate cases with 3 ≤ K ≤ 16 nodes in which single nodes fail. We want to
calculate allocations that can balance the workload evenly without a node failure and
for each single-node failure. For K = 2, the solution is trivial because both nodes
have to store the same fragments. We compare our optimal and heuristic solutions
(see Section 5.3.1) against the greedy extension for node failures and the chaining
approach (see Section 4.3.1) that uses a basic greedy solution as basis allocation.
Recap, solutions of the greedy failure approach do not guarantee an even load

balancing in failure cases. We can use our ILP model (5.12) - (5.19) with a fixed
fragment allocation (that is calculated with the greedy failure approach) for calcu-
lating the maximum load that a single node has to take in failure cases, hereinafter
called “worst-case workload share”. Solutions of the chaining approach achieve a
perfect workload distribution without a failure and for each single-node failure case.
In the following, we first numerically evaluate the optimal ILP model that consid-

ers node failures. Then, we present results of our heuristic ILP-based approaches.
We conclude this section with end-to-end evaluations and a summary.

Numerical Evaluation of the Optimal Solution

For different numbers of nodes K, Table 6.10 summarizes the calculation time,
the optimal replication factor WF∗

V
, and the optimal worst-case workload share
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L
(−)
max = 1

K−1
. Further, the table compares the optimal solutions W F∗ to solutions

of the greedy failure approach WGF and chaining approach WCF with regard to
the memory consumption. We also compare the optimal worst-case workload shares
L
(−)
max with the worst-case workload shares of the greedy failure approach L

GF (−)
max .

(The worst-case workload shares of the chaining approach L
CF (−)
max are optimal, i.e.,

L
(−)
max = L

CF (−)
max .) For TPC-H with K = 4, 7, 11 nodes, we also show the results of

the optimal robust model for the worst-case workload share of the greedy failure
approach, i.e., with L

(−)
max := L

RG(−)
max (see Table 6.10a, bottom part).

We summarize the main results: The calculation time for optimal solutions that
consider single-node failures is higher compared to basic solutions (see Table 6.2),
which do not consider node failures. The reason for the higher complexity is that
suitable workload distributions for each failure case have to be found. As a result,
optimal allocations for failure cases were only tractable for TPC-H with K < 13, for
TPC-DS with K < 8, and for the accounting workload with K < 4, i.e., we could
not achieve optimal solutions for larger K with our setup and a set time limit of 8
hours. Naturally, the necessary data replication factors are also higher compared to
the basic model (see Table 6.2) because usually additional fragments are required
to ensure robustness against node failures.

Further, the results of Table 6.10 show that our optimal failure solution outper-
forms the greedy failure and chaining approach with regard to the memory con-
sumption and worst-case workload share: Compared to the greedy failure approach,
we reduce the worst-case workload share in failure cases by up to 44% (see TPC-H,

K = 11) while our memory consumption is similar (−8% ≤ WF∗

WGF ≤ +8%). Note, the
greedy failure approach can only have a lower memory consumption than the optimal
failure approach (see TPC-H, K = 4, 7, 11) if its worst-case workload share L

GF (−)
max

is worse than the optimal share L
(−)
max = 1

K−1
. Using the optimal failure model with

the worst-case workload share of the greedy failure approach (i.e., L
(−)
max := L

GF (−)
max ),

we can always calculate a solution with the same (see TPC-H, K = 4, L
(−)
max = 0.481)

or a lower (see TPC-H, K = 7, L
(−)
max = 0.248 and K = 11, L

(−)
max = 0.179) memory

consumption than the greedy failure approach. The possibility to directly control
the worst-case workload share is an advantage of ILP-based approaches because it
is impossible using the greedy failure or chaining approach.

For TPC-DS, we require up to 17% (see K = 7) less memory than the greedy
approach while in addition reducing the worst-case workload share in failure cases by
17%. Our replication factors and worst-case workload shares are lower than those
of the greedy approach for all calculated TPC-DS solutions. For the accounting
workload, we could only calculate the optimal failure solution for K = 3, for which
we require 13% less memory than the greedy approach having the same (optimal)
worst-case workload share in failure cases.

Compared to the chaining approach, the optimal failure solutions lower the mem-
ory consumption for all workloads more substantially (10% - 33% less) while pro-
viding the same worst-case workload shares.
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Table 6.10.: Optimal solutions of allocation approaches that consider node fail-
ures for different workloads and cluster sizes K: calculation time, replication factor
WF∗

V
, (optimal) worst-cast workload share for all K single-node failure cases, rela-

tive memory consumption WF∗

WGF and relative worst-cast workload share improvement
L
(−)
max

L
GF (−)
max

compared to the greedy failure approach [181], and relative memory consump-

tion WF∗

WCF compared to the chaining approach [108]. “L” indicates a solution with a
suboptimal worst-cast workload share.

K timeWF∗
WF∗

V
L(−)

max
WF∗

WGF
L

(−)
max

L
GF (−)
max

WF∗

WCF

3 0.3 s 2.358 0.500 -7.7% -0.0% -12.3%
4 0.9 s 2.554 0.333 +6.5% -30.7% -19.7%
5 4.5 s 2.773 0.250 -6.4% -21.8% -24.4%
6 50.8 s 3.074 0.200 -0.9% -30.4% -23.7%
7 182.5 s 3.460 0.167 +2.5% -32.8% -21.5%
8 478.0 s 3.680 0.143 -1.5% -42.4% -23.1%
9 1005.0 s 3.959 0.125 -3.0% -30.1% -25.8%
10 4369.0 s 4.165 0.111 -6.0% -37.9% -27.4%
11 9854.0 s 4.441 0.100 +8.0% -44.1% -15.2%
12 14433.0 s 4.617 0.091 -2.4% -34.9% -21.6%

4 L 0.6 s L 2.398 L 0.481 L -0.0% L -0.0% L -24.6%
7 L 22.6 s L 3.190 L 0.248 L -5.5% L -0.0% L -27.7%
11 L 851.0 s L 4.066 L 0.179 L -1.2% L -0.0% L -22.4%

(a) TPC-H: N=61, Q=22, commercial database system, scale factor 10.

K timeWF∗
WF∗

V
L(−)

max
WF∗

WGF
L

(−)
max

L
GF (−)
max

WF∗

WCF

3 5.5 s 2.142 0.500 -5.2% -4.2% -10.3%
4 23.8 s 2.278 0.333 -4.5% -22.6% -17.9%
5 865.9 s 2.441 0.250 -0.8% -26.4% -18.4%
6 7213.7 s 2.559 0.200 -10.8% -25.5% -28.8%
7 29484.0 s 2.690 0.167 -16.9% -16.8% -32.7%

(b) TPC-DS: N=425, Q=95, commercial database system, scale factor 10.

K timeWF∗
WF∗

V
L(−)

max
WF∗

WGF
L

(−)
max

L
GF (−)
max

WF∗

WCF

3 169.8 s 2.322 0.500 -12.6% -0.0% -22.6%

(c) Accounting workload: N=344, Q=4461, metadata.

Overall, even though optimal solutions that consider node failures are only tractable
for small problem instances, our derived solutions show the potential to improve the
quality of different heuristic approaches.
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Summary: Our ILP model can be extended to also enable an even load balancing
in failure cases. Compared to state-of-the-art approaches, (our calculated) optimal
solutions reduce the worst-case workload shares in failure cases by up to 44% and
require up to 33% less memory. As optimal solutions can only be calculated in
a reasonable amount of time for smaller problem instances, memory-efficient and
robust heuristic solutions are required.

Numerical Evaluation of ILP-Based Heuristics

In the following, we evaluate our ILP-based heuristic approaches that consider node
failures for TPC-H, TPC-DS, and the accounting workload. For different numbers
of nodes K, we summarize the used decomposition’s chunking, the calculation time,
the replication factor WF

V
, and the corresponding worst-case workload share L

(−)
max =

1
K−1

. Further, we compare our solutions W F to solutions of the greedy failure

approachWGF and chaining approachWCF with regard to the memory consumption
and worst-case workload shares of nodes in failure cases. Solutions of the chaining

approach achieve a perfect workload distribution in failure cases, i.e., L
(−)
max

L
CF (−)
max

= 1.

For TPC-H, Table 6.11 shows the results for the three-step and two-step approach.
Our solutions demonstrate that (in contrast to the optimal failure model) even large
problems can be solved quickly: the maximum calculation time of the provided two-
step approaches is 16 s for all K ≤ 16. We achieved these calculation times without
query clustering or solver relaxations (i.e., time limits and optimality gaps).

For TPC-H, the calculation time of our two-step approach (see Table 6.11b) is
quick while having a lower memory consumption than the three-step approach (see
Table 6.11a). Hence, we focus on the results of our two-step approach when com-
paring to the state-of-the-art approaches. We find that our worst-case workload
limits L

(−)
max are clearly better (up to 45% for K = 14) compared to the solutions

of the greedy failure approach, although our two-step approach requires similar or
even less memory (−7% < WF

WGF < +9%). Actually, we were able to always provide
solutions with the same or lower memory consumption than the greedy approach
when using their worst-case workload share as input, i.e., L

(−)
max := L

GF (−)
max (see Ta-

ble 6.11b, bottom part): Recap, the workload limit L
(−)
max of our approaches coincides

with the optimal lower bound L(−)∗ = 1
K−1

. Instead, the limit L
GF (−)
max of the greedy

approach is significantly worse ( L
(−)
max

L
GR(−)
max

< −20%) for most K (except K = 3) and

can be close to the worst case 2 ·L∗ (see TPC-H, K = 14, for which L
GF (−)
max = 0.140

and 2 · L∗ = 2
K

= 0.143), which reflects the case in which one node has to (i) addi-
tionally take the entire workload of the failure node ( 1

K
) and (ii) cannot pass some

of its regular workload ( 1
K
) to other nodes. Naturally, such scenarios, in which the

throughput is cut in half, are critical in practice and should be avoided.

Compared to the chaining approach, our two-step approach requires less memory
for all 3 ≤ K ≤ 16 (−27% ≤ WRD

WRC ≤ −11%) while providing the same worst-case
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Table 6.11.: Decomposition-based heuristic solutions that consider node
failures for TPC-H with different cluster sizes K: chunk decomposition, calcu-
lation time, replication factor WF

V
, (optimal) worst-cast workload share for all K

single-node failure cases, relative memory consumption WF

WGF and relative worst-cast

workload share improvement L
(−)
max

L
GF (−)
max

compared to the greedy failure approach [181],

and relative memory consumption WF

WCF compared to the chaining approach [108].
“L” indicates a solution with a suboptimal worst-cast workload share.

K chunking timeWF
WF

V
L(−)

max
WF

WGF
L

(−)
max

L
GF (−)
max

WF

WCF

3 2+1 0.1 s 2.443 0.500 -4.3% -0.0% -9.2%
4 2+2 0.1 s 2.851 0.333 +18.9% -30.7% -10.4%
5 3+2 0.3 s 3.113 0.250 +5.1% -21.8% -15.2%
6 3+3 0.3 s 3.405 0.200 +9.8% -30.4% -15.4%
7 4+3 1.1 s 3.809 0.167 +12.8% -32.8% -13.6%
8 4+4 1.5 s 4.011 0.143 +7.4% -42.4% -16.1%
9 5+4 1.7 s 4.348 0.125 +6.6% -30.1% -18.5%
10 5+5 2.2 s 4.452 0.111 +0.5% -37.9% -22.4%
11 6+5 2.0 s 4.809 0.100 +16.9% -44.1% -8.2%
12 6+6 4.9 s 5.035 0.091 +6.4% -34.9% -14.5%
13 7+6 7.0 s 5.463 0.083 +7.7% -40.3% -11.8%
14 7+7 62.7 s 5.496 0.077 +2.9% -44.9% -18.4%
15 8+7 12.2 s 5.826 0.071 +6.0% -44.6% -11.7%
16 8+8 282.9 s 6.186 0.067 +4.8% -25.5% -15.5%

(a) Three-step approach.

K chunking timeWF
WF

V
L(−)

max
WF

WGF
L

(−)
max

L
GF (−)
max

WF

WCF

3 3 0.2 s 2.376 0.500 -6.9% -0.0% -11.6%
4 4 0.8 s 2.564 0.333 +6.9% -30.7% -19.4%
5 5 1.2 s 2.804 0.250 -5.4% -21.8% -23.6%
6 6 1.8 s 3.089 0.200 -0.4% -30.4% -23.3%
7 7 5.8 s 3.479 0.167 +3.0% -32.8% -21.1%
8 8 3.9 s 3.680 0.143 -1.5% -42.4% -23.1%
9 9 9.1 s 4.068 0.125 -0.3% -30.1% -23.7%
10 10 10.3 s 4.186 0.111 -5.5% -37.9% -27.0%
11 3+3+3+2 9.9 s 4.481 0.100 +8.9% -44.1% -14.5%
12 6+6 8.1 s 4.638 0.091 -2.0% -34.9% -21.2%
13 7+6 11.5 s 5.062 0.083 -0.2% -40.3% -18.2%
14 5+5+4 16.2 s 5.283 0.077 -1.0% -44.9% -21.5%
15 5+5+5 12.5 s 5.535 0.071 +0.7% -44.6% -16.1%
16 4+4+4+4 7.6 s 5.757 0.067 -2.4% -25.5% -21.3%

4 4 L 0.6 s L 2.398 L 0.481 L -0.0% L -0.0% L -24.6%
7 7 L 5.3 s L 3.214 L 0.248 L -4.8% L -0.0% L -27.1%
11 3+3+3+2 L 1.1 s L 4.076 L 0.179 L -0.9% L -0.0% L -22.2%
15 5+5+5 L 1.2 s L 5.226 L 0.129 L -4.9% L -0.0% L -20.8%

(b) Two-step approach.
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Table 6.12.: Decomposition-based heuristic solutions that consider node
failures for TPC-DS with different cluster sizes K: chunk decomposition, calcu-
lation time, replication factor WF

V
, (optimal) worst-cast workload share for all K

single-node failure cases, relative memory consumption WF

WGF and relative worst-cast

workload share improvement L
(−)
max

L
GF (−)
max

compared to the greedy failure approach [181],

and relative memory consumption WF

WCF compared to the chaining approach [108].
“L” indicates a solution with a suboptimal worst-cast workload share.

K chunking timeWF
WF

V
L(−)

max
WF

WGF
L

(−)
max

L
GF (−)
max

WF

WCF

3 2+1 0.9 s 2.145 0.500 -5.1% -4.2% -10.1%
4 2+2 0.8 s 2.477 0.333 +3.8% -22.6% -10.8%
5 3+2 7.3 s 2.574 0.250 +4.6% -26.4% -14.0%
6 3+3 7.3 s 2.721 0.200 -5.1% -25.5% -24.4%
7 3+2+2 10.6 s 2.898 0.167 -10.5% -16.8% -27.5%
8 3+3+2 10.0 s 2.969 0.143 +8.3% -39.0% -19.1%
9 3+3+3 17.0 s 3.179 0.125 -1.6% -7.4% -22.2%
10 3+3+2+2 16.1 s 3.330 0.111 -0.6% -11.5% -26.1%
11 3+3+3+2 35.2 s 3.504 0.100 +1.2% -18.8% -24.2%
12 3+3+3+3 21.5 s 3.516 0.091 -1.4% -12.0% -25.0%
13 4+3+3+3 87.1 s 3.641 0.083 -7.0% -12.6% -27.3%
14 4+4+3+3 47.1 s 3.810 0.077 -8.6% -17.8% -29.5%
15 4+4+4+3 95.6 s 3.987 0.071 -10.4% -17.1% -29.7%
16 4+4+4+4 78.0 s 4.068 0.067 -14.7% -13.0% -35.5%

(a) Three-step approach.

K chunking timeWF
WF

V
L(−)

max
WF

WGF
L

(−)
max

L
GF (−)
max

WF

WCF

4 2+2 3.3 s 2.293 0.333 -3.9% -22.6% -17.4%
5 3+2 10.3 s 2.447 0.250 -0.6% -26.4% -18.2%

8 3+3+2 L 8.7 s L 2.700 L 0.143 L -1.5% L -0.0% L -26.4%
11 3+3+3+2 LT 60.5 s LT 3.131 LT 0.100 LT -9.6% LT -0.0% LT -32.3%

(b) Two-step approach.

workload limits. The three-step approach performs slightly worse, still providing
solutions with an 8 - 22% lower memory consumption than the chaining approach.
Compared to the greedy failure approach, the three-step approach has a higher
replication factor for K > 3, but its worst-case workload share is more than 20%
lower. To control the worst-case workload share, we prefer the two-step approach
because we can directly set the limit in the final step. In contrast, for the three-step
approach, we may have to adapt the limit in step 2, in which node-failure robustness
is already ensured on the chunk level.
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For TPC-DS, the calculation time of our two-step approach becomes relatively
high for larger cluster sizes K (i.e., multiple minutes for K > 9) due to the (more)
complex optimal data enhancement in step 2 (compared to step 3 of the three-step
approach). Hence, we focus on the three-step approach, for which Table 6.12a shows

the results. Table 6.12b shows selected results (i.e., for K = 4, 5 with L
(−)
max = 1

K−1

and for K = 8, 11 with L
(−)
max := L

GF (−)
max ) of our two-step algorithm with a lower

memory consumption than the greedy failure approach.

Naturally, the calculation times are higher than for TPC-H. Still, we were able to
calculate all three-step solutions in 96 s or less without query clustering and solver
relaxations. For all shown TPC-DS results, we only used a time limit (of 30 s for
step 2) for the two-step solution with K=11 nodes and a relaxed failure load.

We observe that our three-step solutions lower the worst-case workload limits
compared to the greedy failure approach by 4 - 39% while having a larger replication
factor only for K = 4, 5, 8, 11. For K = 4, 5, we were able to outperform the greedy
approach with regard to the memory consumption by using our two-step approach
(see Table 6.12b), still using the optimal worst-case workload limit. Using the worst-
case limit of the greedy approach, the solutions of our two-step approaches have
a lower memory consumption than the greedy failure approach (see Table 6.12b,
K = 8, 11). These results underline our model’s flexibility: By simply changing the
worst-case workload limit, we are able to tune our solutions, being more memory-
efficient while sacrificing load-balancing in failure cases.

Compared to the chaining approach (with the same worst-case workload limits),
our three-step approach requires 10 - 36% less memory for 3 ≤ K ≤ 16. We achieved
the highest load and memory improvements for K = 8 and K = 16, respectively,
for which optimal solutions were intractable. Besides the comparison to optimal
solutions, we find that these results indicate the quality of our ILP-based heuristic.

For the accounting workload, we found that the pure three-step approach requires
too high runtimes. Hence, we combined it with the query clustering approach, fixedly
assigning |QF | = 4361 queries that account for a small workload share to a single
node. There are |QR| = 100 remaining queries for distributing and ensuring load-
balancing flexibility for all single-node failure cases. Table 6.13 shows the results of
our ILP-based heuristic, combining the query clustering and three-step approach.

Using our heuristic, the maximum calculation time was 63 s for K = 10 (while
not using a time limit yet). All other solutions were obtained in 20 s or less. For the
accounting workload, the calculation times were dominated by the optimal fragment
enhancement, i.e., step 3.

With regard to the memory consumption, our heuristic solutions outperform the
greedy failure and chaining approach. In contrast to TPC-H and TPC-DS, the
solutions of the greedy approach achieve a perfect load balancing in failure cases for
allK ≤ 16 exceptK = 5. As a result, the memory savings of our ILP-based heuristic
over the greedy failure approach are significantly larger (−37% < WF

WGF < −12%).
Compared to the chaining approach, we require even 22 - 41% less memory.
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Table 6.13.: ILP-based heuristic solutions (three-step and query clustering)
that consider node failures for the accounting workload with different cluster
sizes K: number of allocated |QR| and fixed |QF | queries, chunk decomposition,

calculation time, replication factor WF

V
, (optimal) worst-cast workload share for allK

single-node failure cases, relative memory consumption WF

WGF and relative worst-cast

workload share improvement L
(−)
max

L
GF (−)
max

compared to the greedy failure approach [181],

and relative memory consumption WF

WCF compared to the chaining approach [108].

K |QR| + |QF | chunking timeWF
WF

V
L(−)

max
WF

WGF
L

(−)
max

L
GF (−)
max

WF

WCF

3 100+4361 2+1 0.4 s 2.336 0.500 -12.1% -0.0% -22.1%
4 100+4361 2+2 0.5 s 3.010 0.333 -17.7% -0.0% -24.8%
5 100+4361 3+2 1.1 s 3.284 0.250 -15.3% -1.9% -29.5%
6 100+4361 3+3 1.7 s 3.653 0.200 -19.5% -0.0% -31.3%
7 100+4361 4+3 3.3 s 4.155 0.167 -24.9% -0.0% -34.2%
8 100+4361 4+4 2.3 s 4.675 0.143 -28.5% -0.0% -36.1%
9 100+4361 3+3+3 2.8 s 5.214 0.125 -23.0% -0.0% -30.9%
10 100+4361 4+3+3 63.3 s 5.598 0.111 -27.8% -0.0% -34.4%
11 100+4361 4+4+3 8.1 s 5.939 0.100 -29.4% -0.0% -35.4%
12 100+4361 3+3+3+3 19.8 s 6.092 0.091 -35.3% -0.0% -40.2%
13 100+4361 4+3+3+3 12.9 s 6.624 0.083 -36.4% -0.0% -40.8%
14 100+4361 4+4+3+3 8.4 s 7.179 0.077 -33.3% -0.0% -38.3%
15 100+4361 4+4+4+3 4.9 s 7.415 0.071 -32.3% -0.0% -37.3%
16 100+4361 4+4+4+4 18.0 s 7.655 0.067 -29.7% -0.0% -35.7%

Summary: Our numerical evaluation shows that our extension for node failures
outperforms both existing approaches when comparing the combination of (i) memory
consumption (up to 41% better) and (ii) worst-case workload limit (up to 45% better).
Even large problems can be solved in a reasonable amount of time (< 100 s). Finally,
our memory-efficient approaches can always guarantee an optimal load balancing.
The quality of our results is based on the mutually supportive and flexible interplay of
three ILP models, (i) the memory-efficient workload decomposition, (ii) the optimal
robust model for node failures, and (iii) optimal data enhancements.

End-to-End Evaluation and Summary

In this section, we evaluate allocations that consider node failures for TPC-H and
TPC-DS in end-to-end experiments. Further, we summarize our results.
For each number of nodes K and each allocation approach, we evaluate K + 1

scenarios: one scenario without a node failure and K scenarios in which node k
failed, i.e., node k is not used for query processing. Figure 6.6e and 6.6f show the
TPC-H and TPC-DS query throughput without a failure (regular) and the measured
minimum (worst-case) performance of all failure scenarios. Figure 6.6c and 6.6d
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show the corresponding normalized numerical throughputs, which we derived from

the worst-case workload limit: For the greedy failure approach, it is L
(−)
max

L
GF (−)
max

· (K−1);

for all other approaches, it is K − 1. Normalized numerical throughputs for the
accounting workload are shown in Table 6.7b. Figure 6.6a, 6.6b, and 6.7a visualize
the memory consumption of allocations that consider node failures for the three
evaluated workloads.
The end-to-end throughput corresponds to the numerical results: For the chain-

ing, two-step, three-step, and optimal failure approach, we observe that no matter
which node fails, the throughput of these allocations remains (more or less) stable.
The stable performance indicates that for each single-node failure, the workload
can be distributed in a way that no cluster node is overloaded disproportionally.
Particularly, we avoid worst-case scenarios: Having a failed node whose workload
share can only be taken over by a single node that itself cannot offload its assigned
queries, the node’s workload share would double, resulting in a bottleneck for query
streams halving the throughput.
The worst-case throughput of the chaining, two-step, three-step, and optimal

failure approach is considerably better than the throughput of the greedy failure
approach, which may decrease significantly for specific cluster sizes K and failure
scenarios (see TPC-H for K = 11, 15 and TPC-DS for K = 8, 14). Naturally, the
end-to-end results do not perfectly match the numerical results because query ex-
ecution times may differ from modeled query costs (for example through caching
effects), which is noticeable in long-running experiments. Nevertheless, the theoret-
ical results mostly indicate which greedy solutions have a better (e.g., TPC-H for
K = 9, 16 and TPC-DS for K = 9) or worse (e.g., TPC-H for K = 11, 14, 15 and
TPC-DS for K = 8, 14) worst-case limit.
Finally, our measurements show a higher throughput of allocations that consider

node failures compared to basic solutions (see Figure 6.5b and 6.5d) in cases without
failures. By ensuring that all queries are executable by multiple nodes, allocations
become more robust with regard to inaccurate model costs and query timings be-
cause we have greater flexibility to distribute queries among cluster nodes.
The visualized memory consumptions show that our heuristic’s memory consump-

tion is near-optimal. Most importantly, our ILP-based heuristic remains tractable
for larger cluster sizes K and more complex workloads.

6.3.2. Workload Uncertainty

In the following, we compare fragment allocation approaches that consider multiple
input scenarios, e.g., for coping with workload uncertainty. We evaluate ILP-based
approaches (see Section 5.3.2) and the greedy “merge” approach (see Section 4.3.1)
numerically for TPC-H, TPC-DS, and the accounting workload. Both ILP-based
approaches and the greedy merge approach allow a flexible number of input scenarios
S ≥ 1. Each workload scenario is characterized by a query distribution, having
different query subsets and query frequencies. For workload scenario s = 1, we set
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(a) TPC-H: memory consumption. (b) TPC-DS: memory consumption.

(c) TPC-H: numerical throughput. (d) TPC-DS: numerical throughput.

(e) TPC-H: end-to-end throughput. (f) TPC-DS: end-to-end throughput.

Figure 6.6.: Evaluation of allocations that consider node failures for TPC-H
and TPC-DS database cluster with 2 - 16 nodes: memory consumption, numerical
throughput, and end-to-end throughput for the greedy failure approach, chaining
approach, heuristic ILP-based approaches, and optimal failure solutions.
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6. Evaluation of Allocation Models

(a) Accounting: memory consumption. (b) Accounting: numerical throughput.

Figure 6.7.: Evaluation of allocations that consider node failures for the account-
ing workload with 2 - 16 nodes: memory consumption and numerical throughput for
full replication, the greedy failure approach, chaining approach, heuristic ILP-based
approaches, and optimal failure solutions.

the query frequency fj,1 := 1 for all queries j = 1, ..., Q. For all other scenarios, we
use randomly generated frequencies fj,s via fj,s := if U(0, 1) < p then 1/p · U(0, 2)
else 0, i.e., each query occurs only with probability p and, on average, we have
E(fj,s) = 1, j = 1, ..., Q, s = 2, ..., S. In our evaluation, we use p = 0.75.
Recap, given the S input scenarios, our ILP-based approaches for workload un-

certainty and the greedy merge approach calculate allocations with an even load
balancing for each scenario s = 1, ..., S. We also evaluate allocations against ran-
domized “unseen” workload scenarios s̃ = 1, ..., S̃, which we generated in the same
way as input scenarios. We use our basic ILP model (5.1) - (5.5) with the penalty
approach (see Section 5.1.1) and a fixed fragment allocation for calculating the max-
imum load L̃ that a single node must take for each given unseen scenario s̃ = 1, ..., S̃
(similar to the evaluation of the greedy failure approach). The average worst-case
workload share over all S̃ unseen scenarios is denoted by E(L̃), which is bounded
from below by the best possible value 1

K
(when the load can be perfectly balanced for

each scenario). Further, we denote the expected numerical throughput by E(1/K
L̃

),
i.e., the average over all ratios of the optimal and the worst-case workload share.
All scenario-specific query distributions are available online [99]. In the following,

we first present a detailed (introductory) evaluation for TPC-DS with K = 8 nodes.
Then, we present results of all three workloads for all cluster sizes 2 ≤ K ≤ 16.

Detailed Numerical Evaluation for TPC-DS with K = 8 Nodes

In this section, we evaluate different ILP-based approaches and the greedy merge ap-
proach for an increasing number of input scenarios S ≥ 1 using TPC-DS with K = 8
nodes as a detailed representative example. We investigate the solution quality with
regard to two properties: (i) We evaluate the required memory consumption WU
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for enabling an even load balancing for a fixed number of input scenarios S. (ii) We
evaluate the load balancing of allocations against out-of-sample workloads. There-
fore, we state the difference of the average worst-case workload share over all unseen
scenarios E(L̃) and the optimal value 1

K
. Further, we derive the expected numerical

throughput E(1/K
L̃

).

For different numbers of input scenarios S ≤ 100, Table 6.14a shows the results
of ILP-based approaches, i.e., optimal (|QF | = 0, (no) chunking: 8) and heuristic
(|QF | = 0, 47 clustered queries, (decomposition) chunking: 4 + 4) solutions. Ta-
ble 6.14b summarizes the solution properties of allocations from the greedy merge
approach. Both tables list the number of input scenarios S, the allocation’s calcula-
tion time, normalized memory consumption WU

V
, the difference E(L̃) − 1

K
, and the

expected numerical throughput E(1/K
L̃

).

Using the number of fixed queries |QF | and the decomposition’s chunking, we
can (indirectly) control the calculation time. Optimal solutions do not scale but

naturally provide the lowest memory consumption WU

V
. The partial clustering and

decomposition approach are effective and allow deriving allocations for dozens of
scenarios S quickly. The required amount of data WU

V
increases with S. The increase

is monotonous for the optimal solution (and merge approach). However, it does not
have to be monotonous when using a decomposition because intermediate allocations
(which provide the input for the following splits) may differ.

Our replication factors WU

V
are significantly below K (i.e., better than full replica-

tion). Further, for the same number of input scenarios S, we achieve lower replication

factors than the greedy merge approach (e.g., WU

WGU < −35% for S = 5). The im-
provements are greater for a larger number of input scenarios S, which demonstrates
that merging entire nodes strongly increases the memory consumption and, thus,
loses optimization potential when optimizing for specific input scenarios. However,
the increasing memory consumption is not (necessarily) wasted when optimizing
against uncertain workloads. Hence, we evaluate whether the increasing memory
consumption effectively helps to improve the load balancing for unseen workloads.

If more scenarios S are taken into account, the worst-case workload shares L̃
(over unseen scenarios) decrease/improve. For TPC-DS with K = 8, considering
S = 20 (randomly chosen) scenarios were, on average, enough to obtain a fragment
allocation that is robust against various unseen workloads by achieving an optimality
gap for a node’s highest workload share of E(L̃)− 1

K
≤ 0.0076, which is by far better

than the basic S = 1 solution (with E(L̃)− 1
K

= 0.0904 for |QF | = 0) that optimizes
only for a single scenario. Naturally, the higher robustness with S = 20 is achieved
by using more data, i.e., a higher replication factor of 2.886 (in 6 s, |QF | = 47)
instead of 1.902 (|QF | = 0) when using only one scenario (S = 1). Compared to
achieving robustness via full replication (with W

V
= K = 8), this is remarkable.

Further, we can evaluate the throughput robustness against unseen workloads
for allocations of the greedy merge approach (see Table 6.14b) depending on the
amount of allocated data W

V
. For S = 2, we obtained the optimality gap E(L̃)GU −
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Table 6.14.: Approaches that consider workload uncertainty using multiple in-
put scenarios S: number of allocated |QR| and fixed |QF | queries, and chunk de-
composition for ILP-based approaches; calculation time and memory consumption
WU

V
; difference of expected E(L̃) and optimal load limit 1

K
, and expected numerical

throughput E(1/K
L̃

) for S̃ = 100 unseen workload scenarios.

|QR| + |QF | chunking S timeWU
WU

V
WU

WGU E(L̃) − 1
K

E


1/K

L̃



95+0 8 1 484.9 s 1.852 -19.7% 0.0899 0.605
95+0 8 2 2097.9 s 1.948 -30.3% 0.0782 0.649
95+0 8 3 2611.4 s 2.098 -30.8% 0.0350 0.805
95+0 8 4 5966.3 s 2.189 -36.8% 0.0326 0.818
95+0 8 5 17201.9 s 2.285 -38.4% 0.0234 0.860
95+0 4+4 1 24.1 s 1.902 -17.5% 0.0904 0.605
95+0 4+4 2 13.7 s 2.030 -27.4% 0.0717 0.670
95+0 4+4 3 12.6 s 2.241 -26.1% 0.0452 0.760
95+0 4+4 4 10.8 s 2.320 -32.9% 0.0286 0.837
95+0 4+4 5 20.9 s 2.391 -35.6% 0.0235 0.862
95+0 4+4 7 32.5 s 2.429 -40.0% 0.0148 0.909
95+0 4+4 10 77.0 s 2.483 -41.2% 0.0123 0.925
95+0 4+4 20 567.5 s 2.700 -44.7% 0.0076 0.951
95+0 4+4 30 277.7 s 2.658 -50.0% 0.0051 0.968
95+0 4+4 40 737.5 s 2.752 -50.7% 0.0041 0.975
95+0 4+4 50 663.4 s 2.801 -50.1% 0.0040 0.975
48+47 4+4 1 0.8 s 2.059 -10.7% 0.0823 0.628
48+47 4+4 2 1.0 s 2.124 -24.0% 0.0736 0.662
48+47 4+4 3 0.9 s 2.287 -24.5% 0.0471 0.751
48+47 4+4 4 1.4 s 2.418 -30.1% 0.0279 0.836
48+47 4+4 5 1.3 s 2.403 -35.3% 0.0270 0.841
48+47 4+4 7 2.4 s 2.643 -34.7% 0.0140 0.914
48+47 4+4 10 3.0 s 2.696 -36.2% 0.0155 0.904
48+47 4+4 20 6.0 s 2.886 -40.9% 0.0055 0.963
48+47 4+4 30 11.7 s 2.964 -44.3% 0.0039 0.976
48+47 4+4 40 13.6 s 2.896 -48.2% 0.0031 0.981
48+47 4+4 50 27.7 s 2.913 -48.2% 0.0023 0.985
48+47 4+4 100 45.3 s 2.989 -47.7% 0.0019 0.988

(a) ILP-based approaches.

S timeWGU
WGU

V
E(L̃)GU − 1

K
E


1/K

L̃

GU

1 < 1 s 2.307 0.0789 0.639
2 < 1 s 2.795 0.0501 0.749
3 < 1 s 3.031 0.0157 0.900
4 < 1 s 3.460 0.0053 0.963
5 < 1 s 3.712 0.0023 0.983

(b) Greedy merge approach.
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(a) Normalized throughput 1/K

L̃
for all S̃ = 100 individual unseen scenarios s̃ = 1, ..., S̃.

(b) Memory consumption W
V vs. nor-

malized average throughput E(1/K
L̃

)

over S̃ = 100 unseen scenarios.

Figure 6.8.: Evaluation of allocations considering multiple workloads for TPC-
DS with K = 8 nodes: memory consumption and throughput of S̃ = 100 unseen
workload scenarios for allocations using different numbers of input scenarios S.

1
K

= 0.0501 and replication factor WGU

V
= 2.795. Compared to that, our S =

10 solution with |QF | = 47 fixed queries provides a clearly better robustness (i.e.,
E(L̃) − 1

K
= 0.0155 < 0.0501 = E(L̃)GU − 1

K
) and requires less memory (i.e.,

WU

V
= 2.696 < 2.795 = WGU

V
). Figure 6.8a shows the corresponding individual

numerical throughput 1/K

L̃
for all S̃ = 100 unseen scenarios of these solutions and

full replication.

The better combinations of memory consumption WU

V
and robustness can be ob-

served over the full range of input scenarios S. Figure 6.8b visualizes this result:
For selected S, the figure shows the expected/average numerical throughput E(1/K

L̃
)

per memory consumption for the greedy merge approach, our ILP-based solution
with |QF | = 47, and full replication.

Naturally, the specific results depend on the specific input parameters, including
the randomized frequencies. However, using the following extensive evaluation with
different workloads and cluster sizes, we show that the overall properties remain.
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Numerical Evaluation for all Workloads and Summary

In the following, we evaluate allocation approaches for workload uncertainty for
TPC-H, TPC-DS, and the accounting workload. Figure 6.9, 6.10, and 6.11 show
the numerical throughput per memory consumption for all three workloads and
cluster sizes 2 ≤ K ≤ 16. The number of fixed queries |QF | and decomposition
can be chosen such that our approach remains applicable for larger problem sizes.
For TPC-DS and the accounting workload, we show results of our decomposition
approach with |QF | = 47 and |QF | = 4361 clustered queries. Using these numbers
of fixed queries |QF |, we could calculate all allocations with S ≤ 50 in under 60 s.

Compared to the merge approach, our approach outperforms its combinations of
memory consumption and throughput robustness against uncertain workloads for
all workloads. For TPC-H, our results are particularly better for small cluster sizes
K < 10. For TPC-H and larger cluster sizes, the merge approach works well. The
reason is that for these inputs (Q = 22,K ≥ 10), the individual scenarios’ allocations
assign only a low number of queries to nodes. Merging such nodes naturally loses
less optimization potential compared to cases with many queries per node.

For TPC-DS, we were able to find allocations with a clearly lower memory con-
sumption and/or better numerical throughput than the merge approach.

For the accounting workload, we find that the optimality gaps E(L̃)− 1
K

are, on
average, lower while the replication factors W

V
are higher for all S. In these cases,

a smaller number of input scenarios is necessary to obtain a certain throughput
robustness against unseen workloads. In particular, the merge approach already
reaches a close to optimal numerical throughput with S = 3 input scenarios.

For all workloads, we achieved a good trade-off between throughput robustness
and memory consumption by using 3 - 100 randomized input scenarios S (depending
on the targets). Further, we find our approach better for fine-tuning towards specific
targets (e.g., a specific maximum memory consumption) because merging entire
nodes may abruptly change an allocation’s property. Note, using ILP, we could
further tune the trade-off between memory consumption and load limits by using a
penalty approach, not strictly enforcing an optimal load limit for each input scenario.
Moreover, we can flexibly adjust the number of fixed queries, decomposition, and
time limits to improve the solution quality using a longer calculation time.

Summary: We find that optimizing an allocation for only a single expected workload
is not robust against unseen workloads. We can extend our basic model to calculate
memory-efficient allocations that enable an even load balancing for multiple workload
scenarios. The memory efficiency of our ILP-based approach allows for including
more scenarios within a certain memory budget than the greedy merge approach.
Further, our solutions provide better throughput robustness against unseen workloads
using the same or even less data.
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Figure 6.9.: Evaluation of allocations considering multiple workloads; TPC-H.
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Figure 6.10.: Evaluation of allocations considering multiple workloads; TPC-DS.
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Figure 6.11.: Evaluation of allocations considering multiple workloads; accounting.
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6.3.3. Data Modifications

In this section, we evaluate our allocation models that consider data modification
costs (see Section 5.3.3) for TPC-H and TPC-DS. (Recap, the accounting trace is
read-only.) We consider workloads with all TPC-H and the running 95 TPC-DS
(read) queries, which account for 90% of the overall query load. The remaining 10%
of the load comes from data modification queries, whose load is aligned to the bench-
mark’s specification. We assume update queries that affect entire tables and consider
logical data modification costs, i.e., as soon as a node stores a single data fragment
of an updated table, the modification costs for the table occur at the node, and the
node must store all table fragments. To better understand the following results,
Table 6.15 summarizes the sizes for updated tables, the corresponding modification
costs, and the share of the read-only workload accessing the updated tables.
We want to balance the workload evenly among the cluster nodes while consid-

ering data modification costs. Table 6.16 shows the solutions of our optimal model
and compares them to the greedy approach. Table 6.17 shows solutions that we
calculated using ILP-based heuristic for TPC-DS in about 10 s or less, clustering
47 workload-unintense queries to a single node and using the solver’s time limit.
Figure 6.12 visualizes the results of all approaches including full replication.
The memory consumption is considerably higher than for the read-only case (see

Figure 6.5a and 6.5c) because the updated tables are large and accessed by a large
read-only workload share (see Table 6.15) and, thus, must be replicated to many
nodes. Overall, the greedy approach offers limited advantages over full replication:
The memory consumption is at most 12% lower than for full replication. Only for
TPC-DS and the cluster sizesK = 12, 14, 16, the data modification costs are reduced
substantially (by around 30%). We find that the working principle of the greedy
heuristic (see Section 4.3.1) to repeatedly increase the load limits to account for an
even load balancing has optimization potential.
The ILP approach guarantees optimal solutions. For TPC-H, we could calculate

optimal solutions in 2 s or less (which is faster than for the read-only case (see
Table 6.2)) because the lineitem and orders tables must be replicated to many

Table 6.15.: Summary of workload tables with data modifications: table name,
relative table size, relative load of data modifications, and the load share of read
queries accessing the table.

table size modifications read share

lineitem 60% 9% 89%
orders 28% 1% 68%

(a) TPC-H.

table size modifications read share

catalog sales 29% 1.1% 57%
catalog returns 3% 0.1% 21%

inventory 10% 5.6% 12%
store sales 36% 2.3% 82%

store returns 4% 0.2% 12%
web sales 15% 0.6% 51%

web returns 2% 0.1% 11%

(b) TPC-DS.
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Table 6.16.: Optimal solutions of the model that considers modification costs
for different workloads and cluster sizes K: calculation time, replication factor WM

V
,

share of modification costs, and relative memory and modification cost savings com-
pared to the greedy approach [181] WM

WGM .

K timeWM
WM

V
modifications WM

WGM modifications

2 0.0 s 1.894 10.0% -2.0% 0.0%
3 0.1 s 2.782 10.0% -0.3% 0.0%
4 0.2 s 3.433 9.8% -0.6% 0.0%
5 0.2 s 4.321 9.8% -7.1% -2.0%
6 0.4 s 5.171 9.8% -1.8% 0.0%
7 0.6 s 5.821 9.7% -11.9% -2.9%
8 0.6 s 6.719 9.8% -10.1% -2.5%
9 0.7 s 7.026 8.8% -16.7% -12.2%
10 0.8 s 7.919 8.9% -14.6% -11.0%
11 0.9 s 8.525 8.9% -17.6% -10.9%
12 1.2 s 9.451 9.0% -15.0% -10.0%
13 1.2 s 10.344 9.1% -13.8% -9.2%
14 1.4 s 10.949 9.1% -17.5% -9.3%
15 1.7 s 11.985 9.1% -14.6% -8.7%
16 1.9 s 12.728 9.2% -13.4% -7.5%

(a) TPC-H: N=61, Q=22, commercial database system, scale factor 10.

K timeWM
WM

V
modifications WM

WGM modifications

2 0.1 s 1.693 6.8% -15.3% -32.5%
3 0.9 s 2.328 5.6% -22.4% -44.1%
4 3.7 s 2.899 5.0% -27.5% -50.1%
5 4.5 s 3.658 4.7% -26.7% -52.7%
6 8.0 s 3.969 5.0% -33.4% -49.6%
7 16.2 s 4.368 4.6% -36.2% -53.1%
8 16.5 s 5.310 4.6% -33.4% -53.8%
9 23.0 s 5.815 4.4% -34.7% -55.6%
10 29.4 s 6.651 4.4% -33.3% -56.0%
11 4872.3 s 6.750 4.5% -38.5% -54.9%
12 3601.9 s 7.407 4.4% -33.4% -41.5%
13 9840.2 s 8.262 4.4% -35.9% -56.0%
14 1341.6 s 8.512 4.5% -30.9% -30.6%
15 14455.0 s 9.074 4.4% -38.7% -55.5%
16 1634.4 s 9.743 4.4% -34.4% -35.6%

(b) TPC-DS: N=425, Q=95, commercial database system, scale factor 10.
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Table 6.17.: ILP-based heuristic solutions that consider modification costs
for TPC-DS with different cluster sizes K: calculation time, replication factor WM

V
,

share of modification costs, and relative memory and modification cost savings com-
pared to the greedy approach [181] WM

WGM . “C” indicates a solution using the cluster-
ing of 47 workload-unintense queries on one node, “T” indicates a solution using a
time limit.

K timeWM
WM

V
modifications WM

WGM modifications

7 CT 3.0 s CT 4.609 CT 4.8% CT-32.7% CT-51.7%
8 CT 9.1 s CT 5.159 CT 4.6% CT-35.3% CT-54.4%
9 CT 4.4 s CT 6.065 CT 4.5% CT-31.9% CT-54.4%
10 CT 10.1 s CT 6.953 CT 4.5% CT-30.3% CT-54.9%
11 CT 8.8 s CT 6.758 CT 4.5% CT-38.5% CT-54.9%
12 CT 9.7 s CT 7.458 CT 4.4% CT-33.0% CT-41.3%
13 CT 10.1 s CT 8.556 CT 4.5% CT-33.6% CT-55.2%
14 CT 10.1 s CT 9.018 CT 4.7% CT-26.8% CT-28.4%
15 CT 10.1 s CT 9.803 CT 4.6% CT-33.8% CT-53.5%
16 CT 10.1 s CT 10.000 CT 4.7% CT-32.7% CT-30.6%

(a) TPC-H. (b) TPC-DS.

Figure 6.12.: Evaluation of approaches that consider modification costs for a
database cluster with 2 - 16 nodes: memory consumption and (relative) modification
costs for full replication, the greedy approach, and ILP-based approaches.

nodes, which makes the allocation problem less complex. Compared to the greedy
approach, we decrease the memory consumption by about 15% for larger cluster
sizes while also reducing the modification costs by 10%.

TPC-DS offers greater optimization potential because the modification costs are
spread across multiple tables, which are, on average, less frequently accessed by read
queries (see Table 6.15b). The calculation time of optimal solutions is considerably
higher than for TPC-H, reaching multiple hours for larger cluster sizes. However, we
can quickly calculate near optimal solutions with our ILP-based heuristic (see Fig-
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ure 6.12b). Compared to the greedy approach, we reduce the memory consumption
by up to 39% while often halving the modification costs.

6.3.4. Reallocation Costs

Finally, we evaluate reallocation approaches numerically for (i) changing workloads
and (ii) adding a new node to the cluster using TPC-H, TPC-DS, and the accounting
workload. For both scenarios and all three workloads, we compare our ILP-based
reallocation approaches against the greedy reallocation approach (i.e., the greedy
basic approach in combination with the Hungarian algorithm (see Section 4.3.1)) and
ILP-based basic approaches, which do not consider reallocation costs, in combination
with the Hungarian algorithm.

Changing Workload

First, we evaluate reallocation approaches for changing workloads in a fixed-size
cluster. To model a workload change, we defined two workload scenarios, which
are characterized by different overlapping query subsets. For TPC-H, scenario 1
contains the queries 1 - 15, and scenario 2 contains the queries 8 - 22. For TPC-DS,
scenario 1 includes queries of the range 1 - 66, and scenario 2 includes queries of
the range 34 - 99. For the accounting workload (for which query IDs are ordered
by query load), we partition the queries into three disjoint sets using the modulo
operation; scenario 1 contains the query set {j | j mod 3 ∕= 1, j = 1, ..., Q} and
scenario 2 contains the query set {j | j mod 3 ∕= 2, j = 1, ..., Q}.
The initial allocation is optimized for workload scenario 1 and is calculated using

our ILP-based approach. We want to calculate an allocation for scenario 2 without
reallocating too much data. We compare solutions with regard to the memory
consumption W

V
of the new allocation and the amount of reallocated data

R :=


i=1,...,N,k=1,...,K
ai · (1− si,k) · xi,k, (6.1)

which is the sum of added data for scenario 2; data deletion is assumed to have
no/negligible costs. In the following tables and figures, we normalize the amount of
reallocated data R by the amount of accessed data V .

Table 6.18 compares the solutions of our optimal reallocation model and optimal
basic model to the greedy approach. Table 6.19 shows ILP-based heuristic solutions,
which we calculated for more complex TPC-DS and accounting problem instances
(with a high number of nodes K) in about 10 s or less, using our decomposition
approach, the solver’s time limit, and query clustering. Figure 6.13a, 6.13c, and 6.13e
show the results of all approaches including full replication. Figure 6.14 visualizes
exemplary allocations for TPC-DS and a cluster with K = 4 nodes.
Full replication is robust concerning workload changes and requires no realloca-

tions. However, the memory consumption is significantly higher than those of partial
replication approaches, particularly for larger cluster sizes.
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Table 6.18.: Optimal solutions of data reallocation approaches for changing
workloads for a database cluster with 2 - 16 nodes: calculation time, memory
consumption WR

V
and amount of reallocated data RR

V
for the ILP-based reallocation

approach, and relative memory WR

WGR and reallocation costs RR

RGR savings compared to
the greedy approach; for the ILP-based basic approach, calculation time, and relative
memory W ∗

WGR and reallocation costs R∗

RGR savings compared to the greedy approach.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW∗ W∗

WGR
R∗

RGR

2 0.0 s 1.322 0.322 -13.0% -17.1% 0.1 s -13.0% -17.1%
3 0.1 s 1.708 0.445 -11.5% -41.0% 0.1 s -16.3% -28.2%
4 0.1 s 2.018 0.602 -10.0% -27.6% 0.2 s -11.7% -21.4%
5 0.1 s 2.403 0.711 -2.4% -30.5% 0.2 s -9.3% -20.6%
6 0.2 s 2.720 0.784 -5.7% -19.9% 0.4 s -9.8% -17.5%
7 0.3 s 3.139 0.909 -0.2% -21.6% 0.6 s -13.4% -11.3%
8 0.3 s 3.249 1.049 -3.2% -13.6% 0.7 s -8.3% -8.1%
9 0.9 s 3.559 1.194 -3.5% -16.3% 1.1 s -7.3% -15.3%
10 0.5 s 3.815 1.178 -4.6% -20.5% 1.7 s -9.7% -12.7%
11 0.6 s 4.132 1.326 -11.6% -25.1% 2.2 s -11.6% -24.3%
12 0.8 s 4.572 1.407 -10.6% -31.0% 4.7 s -13.2% -29.4%
13 1.8 s 4.894 1.613 -6.9% -19.6% 6.4 s -10.8% -11.2%
14 2.9 s 5.156 1.649 -7.1% -26.2% 5.0 s -12.3% -21.3%
15 1.3 s 5.495 1.771 0.2% -13.7% 6.6 s -4.9% -6.7%
16 2.6 s 5.647 1.882 -11.3% -23.4% 8.6 s -12.7% -21.2%

(a) TPC-H: N=61, Q=22, commercial database system, scale factor 10.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW∗ W∗

WGR
R∗

RGR

2 0.1 s 1.029 0.148 -8.6% -52.1% 0.2 s -11.4% -31.7%
3 0.1 s 1.161 0.208 -7.0% -27.0% 0.8 s -11.6% 5.0%
4 0.1 s 1.174 0.175 -29.6% -77.2% 1.4 s -29.7% -73.9%
5 0.9 s 1.363 0.253 -25.1% -67.0% 5.2 s -29.2% -66.8%
6 1.0 s 1.500 0.366 -18.6% -53.3% 35.2 s -21.8% -50.2%
7 1.2 s 1.608 0.423 -15.9% -46.8% 16.5 s -20.1% -43.3%
8 1.7 s 1.698 0.447 -11.1% -38.4% 77.9 s -14.8% -34.0%
9 5.3 s 1.811 0.440 -22.6% -57.3% 72.2 s -26.4% -54.5%
10 2.9 s 1.961 0.497 -25.8% -57.9% 169.0 s -29.9% -49.8%
11 4.3 s 2.029 0.519 -23.8% -57.0% 152.6 s -26.8% -48.4%
12 87.1 s 2.197 0.625 -31.8% -60.4% 355.8 s -34.9% -57.4%
13 78.0 s 2.227 0.671 -18.5% -43.9% 410.3 s -21.2% -41.3%
14 72.5 s 2.491 0.761 -18.9% -44.3% 2288.5 s -24.5% -38.7%
15 72.5 s 2.510 0.788 -20.3% -45.7% 781.6 s -22.8% -34.7%
16 191.4 s 2.626 0.791 -28.5% -59.6% 2755.5 s -32.7% -52.7%

(b) TPC-DS: N=425, Q=95, commercial database system, scale factor 10.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW∗ W∗

WGR
R∗

RGR

2 9.0 s 1.549 0.315 -22.5% -58.9% 7.8 s -24.8% -64.7%
3 24.8 s 1.980 0.440 -25.5% -60.4% 103.6 s -27.1% -60.4%
4 141.7 s 2.359 0.524 -28.8% -64.7% 7184.7 s -30.0% -63.2%
5 6336.3 s 2.916 0.922 -32.4% -59.7% - - -
6 630.3 s 3.265 0.891 -29.6% -60.4% - - -
7 1378.8 s 3.550 0.953 -40.5% -71.6% - - -

(c) Accounting workload: N=344, Q=4461, metadata.
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Table 6.19.: ILP-based heuristic solutions of data reallocation approaches for
changing workloads for a database cluster with 2 - 16 nodes: calculation time,
memory consumption WR

V
and amount of reallocated data RR

V
for the ILP-based

reallocation approach, and relative memory WR

WGR and reallocation costs RR

RGR savings
compared to the greedy approach; for the ILP-based basic approach, calculation
time, and relative memory W

WGR and reallocation costs R
RGR savings compared to

the greedy approach.. “D” indicates a solution using the decomposition-based ap-
proach, “T” indicates a solution using a time limit, “C” indicates a solution using
the clustering of workload-unintense queries on one node.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW
W

WGR
R

RGR

6 1.0 s 1.500 0.366 -18.6% -53.3% D 1.1 s D-20.5% D-46.8%
7 1.2 s 1.608 0.423 -15.9% -46.8% D 1.9 s D-19.4% D-43.5%
8 1.7 s 1.698 0.447 -11.1% -38.4% D 1.9 s D-12.4% D-32.3%
9 5.3 s 1.811 0.440 -22.6% -57.3% D 1.4 s D-23.9% D-49.0%
10 2.9 s 1.961 0.497 -25.8% -57.9% D 2.8 s D-28.3% D-44.9%
11 4.3 s 2.029 0.519 -23.8% -57.0% D 3.6 s D-24.1% D-50.5%
12 T 10.0 s T 2.197 T 0.625 T-31.8% T-60.4% D 2.0 s D-32.8% D-56.4%
13 T 10.1 s T 2.311 T 0.702 T-15.4% T-41.2% D 4.0 s D-19.0% D-39.1%
14 T 10.0 s T 2.515 T 0.766 T-18.1% T-43.9% D 4.6 s D-22.8% D-37.8%
15 T 10.0 s T 2.556 T 0.788 T-18.9% T-45.7% D 4.6 s D-20.9% D-38.8%
16 T 10.1 s T 2.664 T 0.846 T-27.4% T-56.8% D 3.6 s D-29.9% D-50.2%

(a) TPC-DS: N=425, Q=95, commercial database system, scale factor 10.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW
W

WGR
R

RGR

2 C 0.1 s C 1.552 C 0.317 C-22.4% C-58.5% C 0.1 s C-23.8% C-57.8%
3 C 0.2 s C 1.938 C 0.442 C-27.0% C-60.2% C 0.2 s C-27.1% C-60.4%
4 C 0.7 s C 2.394 C 0.560 C-27.7% C-62.3% C 0.8 s C-29.1% C-58.9%
5 C 1.2 s C 2.951 C 0.932 C-31.6% C-59.3% C 5.3 s C-33.3% C-58.4%
6 C 1.7 s C 3.216 C 0.914 C-30.6% C-59.4% CD 0.3 s CD-30.9% CD-54.3%
7 C 4.5 s C 3.772 C 1.188 C-36.8% C-64.6% CD 0.6 s CD-37.2% CD-59.9%
8 C 5.1 s C 3.974 C 1.070 C-35.4% C-63.6% CD 0.5 s CD-32.8% CD-53.9%
9 CT 10.2 s CT 4.443 CT 1.273 CT-31.1% CT-56.5% CD 0.5 s CD-29.8% CD-53.5%
10 CT 10.2 s CT 5.014 CT 1.435 CT-36.8% CT-65.3% CD 1.4 s CD-36.7% CD-61.1%
11 CT 10.3 s CT 5.654 CT 1.620 CT-36.7% CT-66.8% CD 1.0 s CD-37.2% CD-63.9%
12 CT 10.3 s CT 6.163 CT 1.912 CT-31.5% CT-59.7% CD 1.1 s CD-33.3% CD-57.6%
13 CT 10.3 s CT 6.548 CT 2.135 CT-32.2% CT-57.6% CD 1.3 s CD-31.4% CD-55.3%
14 CT 10.3 s CT 6.907 CT 2.287 CT-40.4% CT-66.1% CD 1.5 s CD-40.8% CD-64.8%
15 CT 10.4 s CT 7.120 CT 2.247 CT-38.9% CT-63.8% CD 1.4 s CD-38.5% CD-63.4%
16 CT 10.4 s CT 7.681 CT 2.422 CT-37.4% CT-63.3% CD 1.2 s CD-38.1% CD-61.7%

(b) Accounting workload: N=344, Q=4461, metadata.
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(a) Changing workload, TPC-H. (b) Adding a node, TPC-H.

(c) Changing workload, TPC-DS. (d) Adding a node, TPC-DS.

(e) Changing workl., accounting workload. (f) Adding a node, accounting workload.

Figure 6.13.: Evaluation of data reallocation approaches for (i) changing work-
loads for a database cluster with 2 - 16 nodes and (ii) adding a node to a database
cluster with 1 - 15 nodes, resulting in 2 - 16 final nodes: memory consumption and
amount of reallocated data for full replication, the greedy approach, basic ILP-based
approaches, and ILP-based reallocation approaches.
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(a) Initial allocation.

(b) New greedy allocation.

(c) New ILP-based allocation minimizing the memory consumption.

(d) New ILP-based allocation minimizing the amount of reallocated data.

Figure 6.14.: Visualization of allocated data for changing workload: TPC-DS with
K = 4 nodes.

Compared to the greedy approach, ILP-based approaches are always able to find
better solutions with a lower memory consumption and less reallocated data. For
TPC-H, ILP-based approaches require up to 16% less data (for K = 3, basic model)
while reducing the amount of reallocated data by up to 41% (for K = 3, reallocation
model). For the more complex TPC-DS and accounting workload, the gains are
higher: the reallocation models produce allocations with a 7 - 32% (TPC-DS) and
22 - 41% (accounting workload) lower replication factor, and, thereby, also reduce
the amount of reallocated data by up to 77% for TPC-DS (see K = 4, optimal)
and up to 72% for the accounting workload (see K = 7, optimal). Recap, using the
reallocation model, we can reliably minimize the amount of reallocated data in the
case of changing workloads. The quality of our ILP-based allocations for complex
workloads is underlined by the fact that, for the accounting workload, the memory
consumption of the new allocations is close to the amount of reallocated data of the
greedy approach (see Figure 6.13e)
Using our basic model, which solely focuses on memory, provides similar results

and outperforms the greedy approach regarding memory consumption and reallo-
cated data for almost all problem instances: Only TPC-DS with K = 3 nodes, the
amount of reallocated data is larger than for the greedy approach. While the mem-
ory consumption of the basic model is slightly better than the reallocation model,
the reallocation costs to achieve the new allocation become slightly worse.
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We could calculate optimal reallocations faster than allocations for the basic prob-
lem because the allocation state si,k, i = 1, ..., N, k = 1, ..., K, may help the solver to
limit the solution space with minimized reallocations. Nevertheless, the optimal re-
allocation model is not tractable for increasingly complex problem instances. Using
ILP-based heuristics (see Table 6.19), we could calculate solutions for all problem in-
stances in about 10 s or less while obtaining near-optimal (if comparable/tractable)
results (see Figure 6.13c and 6.13e).

The visualized allocations in Figure 6.14 show that the new ILP-based allocations
are similar to the initial allocation, while the greedy approach reallocates much data.

Adding a Node for Increasing Workload

Second, we evaluate reallocation approaches for changing cluster sizes, particularly
when adding a node to the cluster. We assume an initial optimized allocation (cal-
culated using our ILP-based approach) that enables an even load balancing of all
TPC-H, TPC-DS, or accounting queries to partial replicas. We want to add an
additional node to the cluster to scale the workload and calculate a new allocation
while considering data reallocation costs. The ratio of the individual query frequen-
cies does not change. Again, we evaluate approaches with regard to the memory
consumption W and the amount of reallocated data R (see Equation (6.1)).

Table 6.20 and 6.21 compare optimal and heuristic ILP-based approaches with a
calculation time of about 10 s or less to the greedy approach. Figure 6.13b, 6.13d,
and 6.13f show all results including full replication. Figure 6.15 visualizes the initial
allocation with 3 and the final allocations with 4 nodes for TPC-DS.

The results are similar to those of changing workloads: ILP-based approaches out-
perform the greedy approach, and ILP-based heuristic solutions can be calculated
quickly. Again, the gains of ILP approaches over the greedy algorithm are greater
for the more complex TPC-DS and accounting workload. Looking at the specific
gains for the amount of reallocated data, we find that the advantages of ILP-based
approaches are larger, e.g., reducing the TPC-H, TPC-DS, and accounting real-
location costs by up to 62% (TPC-H, K = 9, optimal), 92% (TPC-DS, K = 16,
optimal), and 94% (accounting workload, K = 16, heuristic), respectively (while the
gains for the memory consumption are similar). The higher savings are because the
old and new workloads are similar, i.e., only the workload intensity changes. The
optimal reallocation costs are small. However, the greedy approach recalculates the
entire allocation to keep the overall memory consumption optimized. As a result, it
has to reallocate much data. Note, the (normalized) amount of reallocated data for
the greedy approach is even higher than 1, which corresponds to simply using a full
replica for the increased load. In contrast, we see that the ILP-based approaches re-
allocate significantly less data than full replication when adding a node, particularly
for the more complex TPC-DS and accounting workload.
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Table 6.20.: Optimal solutions of data reallocation approaches for adding a
node to a database cluster with 1 - 15 nodes, resulting inK = 2 - 16 final nodes: cal-
culation time, memory consumption WR

V
and amount of reallocated data RR

V
for the

ILP-based reallocation approach, and relative memory WR

WGR and reallocation costs
RR

RGR savings compared to the greedy approach; for the ILP-based basic approach,
calculation time, and relative memory W ∗

WGR and reallocation costs R∗

RGR savings com-
pared to the greedy approach.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW∗ W∗

WGR
R∗

RGR

2 0.0 s 1.406 0.491 -10.8% -17.5% 0.1 s -13.9% -12.2%
3 0.0 s 1.710 0.420 -23.4% -58.3% 0.2 s -28.3% -33.6%
4 0.1 s 1.974 0.406 2.8% -39.0% 0.6 s -7.6% -11.6%
5 0.2 s 2.220 0.448 -16.6% -57.7% 1.1 s -19.3% -53.7%
6 0.2 s 2.550 0.423 -9.0% -48.7% 1.7 s -12.1% -44.0%
7 0.3 s 2.856 0.427 -6.6% -52.5% 5.1 s -12.3% -44.9%
8 0.3 s 3.002 0.454 -12.7% -52.0% 2.6 s -13.9% -43.6%
9 0.4 s 3.375 0.429 -10.8% -61.7% 8.4 s -12.0% -48.0%
10 0.8 s 3.685 0.369 -9.3% -56.4% 8.9 s -14.3% -36.3%
11 0.8 s 3.742 0.374 0.8% -14.5% 9.9 s -2.3% -4.4%
12 1.9 s 4.070 0.559 -7.9% -36.3% 57.5 s -9.0% -28.1%
13 1.0 s 4.371 0.351 -8.4% -60.5% 48.3 s -11.1% -38.3%
14 1.6 s 4.534 0.389 -10.2% -59.6% 326.9 s -11.4% -52.6%
15 5.1 s 4.830 0.439 -5.8% -46.5% 349.6 s -6.8% -27.0%
16 1.5 s 5.290 0.633 -7.9% -46.4% 327.4 s -9.6% -33.2%

(a) TPC-H: N=61, Q=22, commercial database system, scale factor 10.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW∗ W∗

WGR
R∗

RGR

2 0.1 s 1.142 0.145 -16.1% -62.9% 0.8 s -16.1% -62.9%
3 0.2 s 1.358 0.216 -14.4% -54.5% 2.7 s -19.4% -46.5%
4 0.6 s 1.491 0.213 -18.2% -71.0% 41.8 s -21.0% -66.8%
5 2.0 s 1.629 0.187 -18.5% -76.4% 87.0 s -22.0% -62.8%
6 5.1 s 1.740 0.175 -28.1% -82.6% 131.8 s -30.2% -77.2%
7 2.7 s 1.827 0.154 -30.0% -86.1% 227.7 s -32.9% -72.6%
8 3.1 s 1.875 0.133 -18.7% -79.9% 343.9 s -19.7% -77.2%
9 14.5 s 2.098 0.218 -25.4% -82.7% 2966.4 s -27.9% -80.3%
10 58.7 s 2.225 0.184 -25.4% -82.5% 13227.5 s -29.0% -77.6%
11 58.9 s 2.302 0.213 -25.0% -80.0% 20624.4 s -25.8% -78.3%
12 87.2 s 2.465 0.172 -23.3% -83.8% - - -
13 53.5 s 2.583 0.137 -27.4% -89.5% - - -
14 71.2 s 2.671 0.143 -30.4% -89.7% - - -
15 661.7 s 2.819 0.184 -31.1% -89.0% - - -
16 838.1 s 2.942 0.163 -33.5% -91.9% - - -

(b) TPC-DS: N=425, Q=95, commercial database system, scale factor 10.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW∗ W∗

WGR
R∗

RGR

2 12.3 s 1.329 0.329 -33.6% -67.1% 22.1 s -33.9% -67.8%
3 366.2 s 1.808 0.485 -32.0% -63.6% 2368.8 s -33.2% -63.3%
4 1128.8 s 2.128 0.473 -41.8% -74.8% 835.8 s -42.5% -74.6%
5 9788.2 s 2.497 0.392 -35.6% -77.6% 38661.1 s -36.3% -76.5%
6 2371.1 s 2.801 0.340 -38.2% -83.0% - - -
7 20141.0 s 3.369 0.487 -39.1% -81.5% - - -

(c) Accounting workload: N=344, Q=4461, metadata.
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Table 6.21.: ILP-based heuristic solutions of data reallocation approaches for
adding a node to a database cluster with 1 - 15 nodes, resulting in K = 2 - 16
final nodes: calculation time, memory consumption WR

V
and amount of reallocated

data RR

V
for the ILP-based reallocation approach, and relative memory WR

WGR and

reallocation costs RR

RGR savings compared to the greedy approach; for the ILP-based
basic approach, calculation time, and relative memory W

WGR and reallocation costs
R

RGR savings compared to the greedy approach. “D” indicates a solution using the
decomposition-based approach, “T” indicates a solution using a time limit, “C”
indicates a solution using the clustering of workload-unintense queries on one node.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW
W

WGR
R

RGR

11 0.8 s 3.742 0.374 0.8% -14.5% D 1.0 s D-2.3% D-4.4%
12 1.9 s 4.070 0.559 -7.9% -36.3% D 0.6 s D-8.1% D-30.0%
13 1.0 s 4.371 0.351 -8.4% -60.5% D 0.8 s D-9.9% D-37.9%
14 1.6 s 4.534 0.389 -10.2% -59.6% D 0.5 s D-10.6% D-33.1%
15 5.1 s 4.830 0.439 -5.8% -46.5% D 0.9 s D-6.6% D-31.3%
16 1.5 s 5.290 0.633 -7.9% -46.4% D 0.6 s D-8.5% D-30.8%

(a) TPC-H: N=61, Q=22, commercial database system, scale factor 10.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW
W

WGR
R

RGR

4 0.6 s 1.491 0.213 -18.2% -71.0% D 1.6 s D-20.7% D-66.3%
5 2.0 s 1.629 0.187 -18.5% -76.4% D 6.2 s D-21.3% D-61.0%
6 5.1 s 1.740 0.175 -28.1% -82.6% D 6.1 s D-30.0% D-78.0%
7 2.7 s 1.827 0.154 -30.0% -86.1% DT 5.8 s DT-30.8% DT-74.5%
8 3.1 s 1.875 0.133 -18.7% -79.9% DT 6.0 s DT-18.5% DT-73.7%
9 T 10.2 s T 2.098 T 0.218 T-25.4% T-82.7% D 5.1 s D-27.2% D-81.5%
10 T 10.0 s T 2.225 T 0.193 T-25.4% T-81.7% DT 8.4 s DT-27.5% DT-76.9%
11 T 10.1 s T 2.300 T 0.213 T-25.0% T-80.0% DT 7.6 s DT-23.8% DT-71.1%
12 T 10.0 s T 2.473 T 0.178 T-23.1% T-83.3% DT 8.0 s DT-23.0% DT-75.2%
13 T 10.1 s T 2.598 T 0.143 T-27.0% T-89.0% DT 8.3 s DT-25.1% DT-72.2%
14 T 10.1 s T 2.673 T 0.146 T-30.3% T-89.6% DT 10.3 s DT-29.7% DT-82.8%
15 T 10.2 s T 2.838 T 0.188 T-30.6% T-88.8% DT 8.1 s DT-30.3% DT-72.4%
16 T 10.3 s T 2.951 T 0.171 T-33.3% T-91.6% DT 10.3 s DT-32.5% DT-75.1%

(b) TPC-DS: N=425, Q=95, commercial database system, scale factor 10.

K timeWR
WR

V
RR

V
WR

WGR
RR

RGR timeW
W

WGR
R

RGR

2 C 0.1 s C 1.350 C 0.350 C-32.5% C-65.0% C 0.2 s C-33.2% C-66.4%
3 C 0.6 s C 1.891 C 0.581 C-28.8% C-56.4% C 0.5 s C-28.8% C-56.4%
4 C 0.8 s C 2.242 C 0.473 C-38.7% C-74.8% C 1.4 s C-41.9% C-74.8%
5 C 1.8 s C 2.502 C 0.397 C-35.5% C-77.3% C 3.2 s C-35.8% C-75.3%
6 C 3.8 s C 3.003 C 0.470 C-33.8% C-76.5% CD 0.5 s CD-35.1% CD-75.9%
7 C 3.9 s C 3.367 C 0.523 C-39.2% C-80.1% CD 1.2 s CD-40.6% CD-79.7%
8 C 3.6 s C 3.588 C 0.343 C-45.1% C-89.0% CD 1.2 s CD-45.9% CD-87.0%
9 CT 10.3 s CT 4.240 CT 0.785 CT-37.4% CT-75.8% CD 1.1 s CD-34.5% CD-68.2%
10 CT 10.3 s CT 4.568 CT 0.758 CT-41.1% CT-79.8% CD 3.7 s CD-40.2% CD-78.7%
11 CT 10.4 s CT 4.948 CT 0.512 CT-41.2% CT-87.0% CD 1.2 s CD-42.2% CD-87.7%
12 CT 10.4 s CT 5.306 CT 0.733 CT-43.6% CT-84.3% CD 1.6 s CD-41.4% CD-79.1%
13 CT 10.4 s CT 5.564 CT 0.554 CT-46.6% CT-89.3% CD 1.4 s CD-45.8% CD-87.2%
14 CT 10.5 s CT 6.074 CT 0.569 CT-43.6% CT-89.1% CD 1.6 s CD-44.8% CD-89.9%
15 CT 10.5 s CT 6.337 CT 0.537 CT-42.1% CT-89.4% CD 3.3 s CD-38.0% CD-80.1%
16 CT 10.6 s CT 6.775 CT 0.280 CT-37.8% CT-93.6% CD 3.4 s CD-37.5% CD-90.7%

(c) Accounting workload: N=344, Q=4461, metadata.
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(a) Initial allocation.

(b) New greedy allocation.

(c) New ILP-based allocation minimizing the memory consumption.

(d) New ILP-based allocation minimizing the amount of reallocated data.

Figure 6.15.: Visualization of allocated data for adding a node: TPC-DS with
K = 4 final nodes.

For TPC-DS, we see that the reallocation model can reduce the reallocation costs
compared to the basic model for some problem instances noticeably while the mem-
ory consumption stays close to optimal (see Figure 6.13d, K = 13, 15, 16).
Again, the visualized allocations (see Figure 6.15) illustrate that the new ILP-

based allocations are similar to the initial allocation, while the greedy approach
reallocates much data. In particular, the added node has to allocate comparably
little data when using the ILP-based approaches.

6.4. Summary

In this chapter, we evaluated our ILP-based allocation approaches for TPC-H, TPC-
DS, and a real-world accounting workload. We calculated solutions for the basic
read-only problem and all our extensions, considering node failures, workload uncer-
tainty, data modification costs, and data reallocation costs. For all problem versions,
we evaluated the tractability of optimal solutions and our ILP-based heuristics.
While optimal solutions are only tractable for smaller problem instances (depend-

ing on the workload, cluster size K, and the extension’s complexity), we demon-
strated that we could calculate ILP-based heuristic solutions quickly: Specifically,
we were able to calculate heuristic solutions for all workloads, extensions, and clus-
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ter sizes in under 100 s; most provided heuristic solutions took only a few seconds.
It should be noted that we also included additional selected heuristic solutions with
higher (≥ 100 s) runtimes, e.g., when using fewer clustered queries or a decomposi-
tion with larger chunks; these solutions often provided better allocations in return.
Overall, we demonstrated that the specific decomposition (i.e., chunk sizes), number
of clustered queries, and solver relaxations could be chosen and combined flexibly,
thereby balancing solution quality (i.e., memory consumption) and calculation time.
Our evaluations show that our ILP-based heuristics provide significantly better

solutions than state-of-the-art approaches. We highlight selected top results in the
following: For the accounting workload, we could almost halve the amount of al-
located data (see Table 6.9b, K = 8). We could reduce the maximum node’s load
limit L in case of node failures by up to 45% (see Table 6.11b, K = 14) while using
less data. Our solutions that consider multiple input scenarios provide a better com-
bination of low memory consumption and high throughput against unseen workload
scenarios (see Figure 6.9 - 6.11). For TPC-DS, we could reduce the modification
costs by 55% while requiring 39% less data (see Table 6.17, K = 11). We could re-
duce the amount of reallocated data by up to 94% while the new allocation requires
38% less data (see Table 6.21c, K = 16).

6.5. Limitations of our Approaches and Evaluation

In this section, we discuss the limitations of our allocation approaches and the
conducted evaluations. Our specific results depend on the input, e.g., the (i) accessed
fragments per query and (ii) query costs:
The (i) accessed fragments per query depend on the chosen partitioning. We used

individual columns as fragments, which are also used in Rabl and Jacobsen’s pa-
per [181]. Another option would be horizontal partitioning, which is also supported
by our partition-agnostic (see Section 3.1.1) allocation models. To decide which frag-
ments are possibly accessed by which query for a horizontally partitioned system, we
can use rules of query containment research (e.g., [97]). However, the decision may
depend on the knowledge of existing data dependencies between attributes. If we
cannot guarantee that a row is not accessed by query j, its corresponding fragment
has to be added to the accessed fragments qj so that it is unambiguous to determine
all replica nodes where the query can be executed.
For obtaining (ii) query costs and running end-to-end experiments, we used a

commercial, columnar, in-memory database system in this thesis. Other database
systems would naturally lead to differing query execution costs, fragment sizes (due
to a different physical representation, also caused by encodings), and runtime be-
havior when processing queries. In our previous publications [102, 104, 195], we
evaluated our approaches for PostgreSQL (with different query costs and fragment
sizes) and obtained similar results.
For modeling query costs, we (and the greedy state-of-the-art approach [181]) use

a single floating point parameter, which cannot account for the complex execution
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behavior within database systems. In our end-to-end evaluations, we measured that
actual query execution costs may differ. However, allocations can often compensate
for these model inaccuracies because many queries are executable at multiple nodes,
which can flexibly share the actual load. Further, our extension for workload uncer-
tainty enables specifying multiple query workload shares, which are all considered
for the solution. In practice, monitoring whether modeled input parameters are
adequately accurate is advisable.
Inaccuracies of model inputs bring us to another limitation of this work. Work-

loads and data are dynamic. Hence, model inputs may change over time. While we
have not implemented this situation for an end-to-end evaluation, we argue that our
approach with its extensions (e.g., considering reallocation costs) can also be used in
dynamic environments. Therefore, we have to monitor and determine the changing
model input, quickly (see Section 5.2) calculate a corresponding reallocation (see
Section 5.3.4), and conduct the actual reallocation.
A further aspect of our allocation model and evaluation is the focus on scal-

ing the query throughput. Designing for and investigating query latencies are also
essential. The overall idea of query-driven workload distribution would stay the
same. However, query timings and dispatching gain importance because they may
lead to temporarily overloaded nodes, causing high query latencies. To decrease
the probability of situations with overloaded nodes, we can use our approaches for
increasing the load balancing’s flexibility/robustness, i.e., considering node failures
(see Section 5.3.1) and workload uncertainty (see Section 5.3.2).
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7

Applying Solution Concepts to the
Index Selection Problem

The value of an idea lies in the using of it.

Thomas Edison

Mathematical programming is a flexible approach to address versatile allocation
problems, including the index selection of a database. This chapter shows how we
can apply our solution concepts (i.e., a model decomposition, heuristic input reduc-
tion, and robustness extensions) to index selection approaches based on mathemat-
ical programming. Section 7.1 describes the index selection problem. Section 7.2
gives a short overview of index selection approaches, including those based on mathe-
matical programming. We present our ILP-based heuristic approaches to solve larger
problem instances and risk-averse model extensions in Section 7.3. Following, we
evaluate our approaches in Section 7.4. Section 7.5 concludes this chapter with a
short summary.

7.1. Index Selection Problem

Indexes are database structures to speed up database workloads by enabling quick
data retrievals without scanning the entire database. However, storing indexes re-
quires memory. As storage may be a scarce resource (in particular for in-memory
database systems) [237], there is typically a trade-off between improved performance
and increased storage consumption. Further, indexes do not always accelerate query
execution because inserts, updates, and deletes may require expensive index main-
tenance operations [88].

Because (real-world) workloads can consist of versatile queries on large schemas
with many attributes and workloads may change over, the automatic selection of
suitable indexes is an important optimization problem. However, choosing the set
of indexes to minimize the workload costs while considering storage constraints is
complex and challenging.

135



7. Applying Solution Concepts to the Index Selection Problem

7.1.1. Formalized Problem Description

We consider the problem of choosing secondary indexes for a workload with the goal
to minimize the overall workload costs, e.g., the execution time. In the following,
we formalize the index selection problem and, therefore, define the basic vocabulary
and our notation:

Workload. The workload consists of Q queries over a set of tables with overall
N attributes. Each query j is characterized by a set of attributes qj ⊆ {1, ..., N},
j = 1, ..., Q, that are accessed during query execution.

Index. An index i is characterized by an ordered set of attributes from {1, ..., N}.
A single index cannot incorporate attributes of multiple tables but is only created
on a single table. The number of index attributes is also called index width. The
necessary storage/memory consumption for an index i is denoted by mi.

Index Candidates and Index Selection. The set of indexes that are considered
and evaluated by index selection algorithms are called index candidates and denoted
by I. An index selection I∗ ⊆ I is the set of chosen indexes out of a candidate set.

Workload Costs. The costs for a query j = 1, ..., Q depend on the index selection
I∗ and are denoted by cj(I

∗). Note, a query j can be of various types and include,
e.g., selections, joins, inserts, updates, deletes. The total workload costs C for
an index selection I∗ are defined by the sum of query costs cj of all queries j,
multiplied by their number of occurrences denoted by fj, j = 1, ..., Q, i.e., C(I∗) :=

j=1,...,Q fj · cj(I∗).

Storage Constraint. We assume that the memory consumed by the selected in-
dexes must not exceed a certain budget A. The total storage consumption of a
selection I∗ amounts to M(I∗) :=


i∈I∗ mi.

Index Selection Problem. Finally, the index selection problem can be defined by
minimizing the workload costs C(I∗) while not exceeding a certain storage budget
M(I∗) ≤ A. Both the index selection I∗ as well as the index candidate set I
determine the solution quality.

Note, there are other variations of the index selection problem, differing in opti-
mization goals (e.g., fixed targeted workload costs) and constraints (e.g., limiting
the number of selected indexes) [123].
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7.1.2. Challenges

Finding the optimal set of indexes I∗ for a given workload and dataset while con-
sidering constraints is challenging for various reasons [123, 194]:

Index Candidate Selection. The number of (multi-attribute) indexes is usually
huge [123, 239]. It increases with the number of indexable attributes, the number
of columns per index, and the number of considered index types, e.g., B-trees,
hash maps, or bit maps. Usually (because of their large number and combination
possibilities), index selection algorithms cannot consider all (potentially beneficial)
indexes that could be generated from an arbitrary combination of attributes (from
the same table) that are part of the workload. To reduce the index candidate set,
many algorithms focus on (syntactically) relevant indexes that contain only columns
that appear together in at least one query or limit the index width (i.e., indexes with
many attributes are ignored). Overall, choosing index candidates from all potential
indexes is an essential part of index selection algorithms [34, 42, 57].

Index Interaction. The benefit of an index (e.g., whether it is used for a query)
depends on the presence of other indexes, known as index interaction. Thus, in-
dex benefits cannot be determined independently [198], which increases the com-
plexity of choosing suitable index candidates and selecting the best indexes out of
them significantly.

Index Benefit Evaluation. An efficient and accurate cost estimation of the work-
load with different indexes is challenging [42, 123]. Index selection algorithms must
quantify the workload costs with a given index selection and the storage consump-
tion of individual indexes. Repeatedly creating a large set of index combinations
physically and executing queries is naturally too expensive. Therefore, most index
selection algorithms only estimate index benefits, e.g., using the database system’s
optimizer and its cost model. Including the optimizer for the determination of query
costs guarantees that indexes are really used during query execution [42].
To ease this task, some database systems support hypothetical indexes [42] (also

called virtual indexes [222]), whose existence is only simulated to generate query
plans and, thus, cost estimations as if the index would actually be physically present.
Still, the resulting what-if optimizer calls require time-consuming query optimiza-
tions and may, thus, be the bottleneck for index selection approaches [173]. To
reduce the number of what-if calls during the index selection, we can use caching
and workload context information [123]. Further, one can speed up what-if calls
by exploiting that optimal query plans for different index sets often have the same
structure and only differ in the table access costs [173].
When using optimizer-based cost estimations as input for index selection algo-

rithms, the solution quality naturally depends on the cost estimation accuracy. Cost
estimations may be inaccurate [32, 63] because of cardinality misestimations [135]
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and inaccurate cost models [233]. To mitigate estimation errors, better estimation
techniques can be used, including the usage or improvement of histograms [110], sam-
pling [72, 95, 235] and sketches [190], cardinalities of query executions [69, 164, 210],
and query execution costs [63, 152]. Overall, optimizer-based cost estimations offer
a reasonable combination of speed and accuracy [123].

Potential Future Workloads and Selection Robustness. Future workloads may
be uncertain, and an index selection may have to optimize for multiple workload
scenarios [194]. In this case, the selection can optimize the expected performance
but may also include robustness considerations to mitigate the risk of a potentially
poor selection for specific workload scenarios. Overall, we may want to target an, on
average, (slightly) suboptimal selection that, in contrast, has a more stable/robust
performance (e.g., having a lower variance) for all regarded potential workloads.

7.2. Index Selection Approaches

Diverse index selection algorithms have been proposed since the 1970s [145, 171]. In
the following, we give an overview of index selection approaches. Then, we describe
the Extend algorithm [196] as an exemplary greedy index selection approach, which
we use in our evaluation. Finally, we discuss approaches based on integer linear
programming (ILP).

7.2.1. Classification of Approaches

Index selection algorithms differ in their underlying solution approaches and com-
plexity [123]: We can distinguish (i) imperative approaches that step-wisely adapt
their index selection following a set of rules and (ii) (more) declarative approaches,
e.g., using mathematical programming [36, 37, 57] or reinforcement learning [124,
129, 141, 191, 202]. Imperative approaches conceptually either start with an empty
index selection and extend their selection successively (e.g., [1, 42, 196, 222]) or start
with a large candidate set that is reduced continuously (e.g., [34, 229]). With regard
to the complexity, we identified more [34, 43] or less [229] sophisticated candidate
selections and transformations to adapt the current index selection.
There are also other dimensions to distinguish index selection algorithms [123],

e.g., whether they are (as yet) pure academical proposals [124, 196] or related to
commercial systems [1, 42, 222]. Especially the latter must consider further tuning
aspects, such as stable/robust performance, scalability (i.e., suitability for also large
problem instances), fast/time-bound selections, product integration, user interac-
tion, and joint physical design tuning [1, 44, 184, 239].
We have comprehensively described and evaluated eight index selection algorithms

along different dimensions, such as solution quality, runtime, multi-column support,
solution granularity, and complexity [123]. Our corresponding implementation of
the index selection evaluation platform is publicly available [122]. The evaluation
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allowed us to assess strengths and weaknesses, and to infer insights for selecting
indexes in general and each approach individually. We do not further discuss these
aspects detailedly in this thesis. Instead, we focus, in the following, on index selec-
tion approaches based on ILP and the greedy Extend approach in greater detail.

7.2.2. The Greedy Extend Approach

The Extend approach of Schlosser et al. [196] is an imperative approach. The al-
gorithm starts with an empty index selection and iteratively either adds or extends
one index. The action is chosen greedily based on the highest ratio of cost benefit
per storage.
Initially (given an empty index set), we choose the single-attribute index with the

highest cost reduction per storage. Afterward, there are generally two options: either
we add a new single-attribute index, or we extend an existing index by appending
an attribute. The algorithm terminates if we reach the storage budget or we cannot
further improve the selection.
This procedure accounts for index interaction as in each step, the effect of already

chosen indexes is considered [123]. Originally, Extend does not limit the index width.
But, it can be adapted to limit the index width [123] to solve more restricted index
selection problems.

7.2.3. Approaches Based on Integer Linear Programming

Integer linear programming-based approaches guarantee optimal solutions but are
generally not scalable. For practicable runtimes, we have to control the problem
complexity. Naturally, the resulting problem simplifications might lead to subopti-
mal solutions for the unrestricted problem (see Section 4.2.2). Different ILP-based
approaches differ in how they reduce the problem complexity.

Caprara et al. restrict the solution space by allowing only a single index per
query [36, 37]. Thus, query accelerations with simultaneously applied indexes are
not taken into account.

In contrast, Dash et al. consider multiple indexes per query (see also [172])
and multiple query plans that the optimizer can choose depending on existing in-
dexes [57]. Naturally, the possibility of multiple query plans increases the problem
complexity. This is why, we have to limit the number of index candidates (e.g., by
limiting the index width) or admitted plans.

In the following, we describe our ILP formulation for the index selection prob-
lem [123]. We consider different index combinations/optionsK, which can be applied
to queries. Each of these index combinations is a subset of index candidates, i.e.,
k ⊆ I, k ∈ K. The empty combination k = {} is one of the considered combinations
(i.e., {} ∈ K) and describes the option that no index is applied to a query. The
costs of a query j using the index combination k are denoted by cj,k. Recap, query
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frequencies are denoted by fj, j = 1, ..., Q; we use mi for the storage consumption
of an index i ∈ I, and A for the index storage budget (see Section 7.1.1).
To describe an index selection I∗ ⊆ I, we use the following decision variables:

• xi ∈ {0, 1}, i ∈ I, are allowed to be zero or one, indicating whether an index
i is selected (1) or not (0).

• yk ∈ {0, 1}, k ∈ K, are allowed to be zero or one, indicating whether an index
combination k is applicable (1) or not (0). The values yk can be derived by
the selected indexes xi, k ∈ K, i ∈ I.

• zk,j ∈ {0, 1}, k ∈ K, j = 1, ..., Q, are allowed to be zero or one, indicating
whether an index combination k is actually used (1) for query j or not (0).

The variables x, y, and z must be chosen such that the objective

minimize
xi, yk, zk,j ∈ {0, 1}, i ∈ I, j = 1, ..., Q, k ∈ K


j=1,...,Q,k∈K

fj · cj,k · zk,j (7.1)

is minimized and the following (families of) constraints are satisfied:


k∈K

zk,j = 1, j = 1, ..., Q (7.2)


i∈k
xi ≥ |k| · yk, k ∈ K (7.3)

zk,j ≤ yk, j = 1, ..., Q, k ∈ K (7.4)


i∈I
mi · xi ≤ A. (7.5)

The objective (7.1) minimizes the overall workload costs, which are the sum of
all query costs with the used index combinations. The family of constraints (7.2)
guarantees that a unique index combination/option k is used for each query j. The
constraints (7.3) ensure that an index combination k is only applicable if all its
indexes are selected. Note, the empty combination is always applicable (as |{}| = 0
always allows y{} = 1), i.e., each query can be executed without indexes. The
constraints (7.4) guarantee that an index combination k is only used for a query if
it is applicable. The constraint (7.5) ensures that the index sizes mi of all selected
indexes do not exceed the memory budget A.

Approaches like (7.1) - (7.5) guarantee optimality but do not scale because the
problem complexity strongly increases in the number of queries Q and index com-
binations |K| (and, thus, index candidates |I|). Hence, solver-based approaches are
either not applicable to larger problem instances or potentially lead to suboptimal
selections due to reduced candidate sets [196].
Further, the ILP formulation (7.1) - (7.5) requires all cost coefficients cj,k. Hence,

another disadvantage of solver-based index selection approaches may be the high
number of required cost estimations for different index combinations [57, 123, 173].
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7.3. Heuristic and Risk-Averse Index Selection Using
Mathematical Programming

ILP formulations guarantee optimal solutions but may require too high runtimes,
especially when considering large index candidate sets or more complex risk-averse
selections over multiple potential future workload scenarios. In Section 7.3.1 and
7.3.2, we present two approaches for heuristically selecting indexes while still lever-
aging the power of mathematical solvers. Following, we explain how we can obtain
robust index selections by considering the performance variance of potential work-
loads in Section 7.3.3.

7.3.1. Hybrid Approach

ILP models like (7.1) - (7.5) guarantee optimal solutions for the given input. How-
ever, for larger workloads, the corresponding problem instances become quickly too
large to solve optimally for two reasons: First, with an increasing number of queries
Q, indexes |I|, and index combinations |K|, the ILP solver’s calculation time be-
comes too high. Second, the ILP formulation (7.1) - (7.5) requires all cost coefficients
cj,k, which may require costly estimations.
For this reason, common ILP-based approaches limit the index width or the num-

ber of indexes per query. However, for complex workloads, broad indexes and index
combinations with many indexes may be beneficial [123].
Our previous evaluation of index selection algorithms has shown that many exist-

ing approaches consider wide indexes and combinations with many indexes using a
reasonable number of cost estimates. As current ILP solvers can often quickly calcu-
late problem instances with thousands of index combinations, our idea is to use the
estimates that are conducted while running existing heuristic approaches as input
for the ILP model (7.1) - (7.5). Thereby, we could also preprocess or combine the
input of multiple heuristics or different settings. In this process, our approach can
improve the index selection by (i) a better selection of indexes based on thousands
of cost estimates and (ii) a larger number of cost estimates.
The conducted number of cost estimates of a single heuristic is often small enough

to quickly solve the resulting ILP problem optimally. However, with an increasing
number of cost estimates (e.g., when using an increasing number of heuristics as
input), selecting optimal indexes in a single step (i.e., using a single ILP program)
may take practically too long. Following, we propose a general decomposition-based
heuristic for selecting indexes using ILP.

7.3.2. Decomposition-Based Heuristic

A major problem of index selections is the potentially huge number of index can-
didates and, thus, combinations. However, limiting this number strongly upfront
may lead to a poor overall selection. As the selection of optimal indexes in a single
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step (i.e., using a single ILP program) may take practically too long, we propose to
heuristically decompose the problem. In the following, we first describe our three-
step approach for the index selection problem. Afterward, we discuss the approach
and tuning possibilities.

Three-Step Approach for the Index Selection Problem

• Step 1: Dividing Index Combinations into Subsets. We divide all index
combinations into smaller subsets, which may or may not (see [194]) overlap.
By diving all index combinations instead of all index candidates, we ensure
that each combination is part of at least one subset. The number of subsets
(called chunks), the chunk size (i.e., the number of index combinations per
chunk), and the allocation of index combinations to chunks are tunable.

The option to apply no index is part of all chunks so that we (i) ensure not
violating the budget because we can always select no index and (ii) do not se-
lect useless index combinations that are not better than applying no index. In
addition, we could optionally add the option to apply single-attribute indexes
for all chunks so that we do not select useless multi-attribute index combi-
nations that are not better than applying the single-attribute index with the
same leading attribute.

• Step 2: Solving the Index Selection for Subsets of Combinations. We
solve the index selection problem (7.1) - (7.5) for all chunks independently and
note the selected index combinations. The applied memory budget is tunable,
e.g., identical with the overall memory budget A (see [194]).

• Step 3: Solving the Index Selection for the Selected Index Combi-
nations in Step 2. We solve the index selection problem (7.1) - (7.5) with
the union over all noted index combinations per chunk.

The key ideas of step 1 and step 2 are solving the index selection problem with
smaller inputs (i.e., combination subsets) and excluding index combinations that are
dominated by others. In step 3, the best selection of the best index combinations of
the individual subsets is calculated.
The subproblems’ complexity in step 2 can be controlled by choosing the chunks’

sizes. Larger chunk sizes increase the selection complexity for individual chunks, but
more index interaction can be taken into account. Further, the complexity of step 3
increases with the number of chunks because we select one combination for each
chunk and query for the final selection. The applied memory budget A in step 2
allows for tuning what kind of index combinations are selected for step 3. Larger
budgets may lead to an increasing number of memory-intensive index combinations,
of which only a few can be selected in the final step 3. Too small budgets may filter
out promising index combinations and, thus, lead to worse final results.
In case the candidate set after step 2 is too large, we could also repeatedly apply

step 1 and 2 to reduce the number of index combinations [194].
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The decomposition approach (step 1 - 3) is a general version of our previous
proposal [194], for which we assumed a single index per (sub) query and disjoint
candidate subsets in step 1. Assuming a single index per query makes a partition-
ing of index candidates into disjoint subsets a reasonable choice because we cannot
miss opportunities that only arise when multiple indexes exist simultaneously. Fur-
ther, non-overlapping chunks lead to non-overlapping selections in step 2 and, thus,
potentially more diverse candidates for the final selection in step 3. In contrast,
overlapping chunks better allow for considering index interactions when multiple in-
dexes are applied simultaneously to a query. To assign indexes to chunks in step 1,
we can use workload information. For example, by collecting similar indexes within
chunks, we could early address index interaction more effectively [194].

7.3.3. Risk-Averse Index Selection for Multiple Workloads

Future workloads may be uncertain and be modeled as a set of potential workload
scenarios. We consider S potential workload scenarios with probabilities Ps, s =
1, ..., S and


s=1,...,S Ps = 1. A workload scenario s is characterized by a set of

queries j, which occur with given frequencies fj,s, j = 1, ..., Q, s = 1, ..., S, within
a certain time frame. Regarding a suitable index selection, such scenarios allow
for optimizing the expected performance (risk-neutral) or more robust (risk-averse)
objectives, which aim for a more stable performance across the individual scenarios.
For optimizing the expected performance for multiple workload scenarios, we only
have to adapt the optimization function (7.1) as follows:

minimize
xi, yk, zk,j ∈ {0, 1}, i = 1 ∈ I, j = 1, ..., Q, k ∈ K, s = 1, ..., S


s=1,...,S

Ps ·


j=1,...,Q,k∈K
fj,s · cj,k · zk,j (7.6)

Optimizing the expected performance for multiple workload scenarios as above
does not increase the complexity of our ILP formulation because we can compute
the expected frequencies upfront.

However, optimizing the expected/average performance may lead to widely vary-
ing performances for individual scenarios. For example, single scenarios could have a
poor performance and still not benefit from indexes at all. Of course, other scenarios
would, in contrast, benefit from indexes strongly. But in practice, a stable perfor-
mance and avoiding poor performances for individual scenarios may be important.

One approach to achieve a more stable performance is considering the variance
(of workload costs for the individual scenarios), called mean-variance optimization
(MVO) [194]: MVO can balance the expected performance and performance devia-
tions. Based on the workload costs for all individual scenarios

Cs(z) =


j=1,...,Q,k∈K
fj,s · cj,k · zk,j, s = 1, ..., S, (7.7)
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the expected workload costs of an index selection (determined by z) are given by

EC(z) =


s=1,...,S
Ps · Cs(z) (7.8)

and the associated variance of workload costs amounts to

V C(z) =


s=1,...,S
Ps · (Cs(z)− EC(z))2. (7.9)

The trade-off between expected costs EC and the variance V C can be modeled
by the extended objective

minimizex,y,z MVO(z) = EC(z) + α · V C(z) (7.10)

using a penalty parameter α ≥ 0. The penalty term in the objective provides an
incentive to avoid large deviations in potential workload costs by selecting indexes
such that queries of comparably heavy workload scenarios are sped up [194]. The
decision variables and the constraints (7.2) - (7.5) remain unchanged. For α = 0,
we obtain the linear risk-neutral model (7.6) subject to (7.2) - (7.5). For α > 0, we
have a (more complex) binary quadratic problem (BQP), which still can be solved
using standard solvers as long as the problem is sufficiently small. Recap, a suitable
problem complexity can be achieved by applying our heuristic approaches to the
BQP formulation (7.10) subject to (7.2) - (7.5).

MVO aims for a stable performance across all scenarios. Unfortunately, it, thereby,
also avoids particularly cheap individual scenario costs. Therefore, we do not solely
optimize the variance but also the expected performance. Another possibility to
increase robustness but not penalize cheap scenarios is optimizing the index benefit
per scenario using monotonically increasing concave functions, e.g., a logarithmic or
exponential utility function [19, 197]. Further, one could also take the worst-case
performance over all scenarios into account by using a penalty approach [197, 228].
In the following, we do not further focus on MVO alternatives.

7.4. Evaluation

In this section, we evaluate index selection algorithms for analytical TPC-H and
TPC-DS workloads. After describing the experimental setup (Section 7.4.1), we
first compare the greedy Extend [196] and our basic optimal ILP-based algorithm
regarding the quality of the identified solutions and their corresponding calcula-
tion time for different storage budgets. Afterward, we evaluate our hybrid and
decomposition ILP heuristics in Section 7.4.3. Finally, we show the effect of our
risk-averse approach to optimize the cost variance of multiple workload scenarios
(see Section 7.4.4).
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7.4.1. Experimental Setup and Determining Model Inputs

All index selection experiments were executed on an Apple M1 Pro CPU with 8
cores and 32 GB RAM. We chose PostgreSQL as database system for the evaluation
because it exposes an interface to retrieve cost estimates for hypothetical indexes,
which are the basis for many (including our evaluated) index selection algorithms.
To obtain the model inputs, we set up a PostgreSQL 14.5 database system with the
extension HypoPG [189] (version 1.3.1). HypoPG enables the creation, deletion, and
size estimation of hypothetical indexes. Using PostgreSQL’s EXPLAIN command, we
can inspect query plans with arbitrary hypothetical index selections. Thereby, we
can determine the used indexes and the plan’s estimated total execution costs, which
we use as model inputs cj,k, j = 1, ..., Q, k ∈ K, i.e., the costs for a query j using
index combination k. Naturally, the query cost estimates may be inaccurate (see
Section 7.1.2), but they provide a consistent and reasonable input for comparing
the algorithms [123].

We loaded TPC-H and TPC-DS tables with scale factor 10. We used PostgreSQL’s
ANALYZE command to ensure up-to-date statistics, which are used for query cost
estimations and for storage consumption predictions of indexes.

As in our previous evaluation [123], we excluded the queries 2, 17, and 20 for
TPC-H and the queries 4, 6, 9, 10, 11, 32, 35, 41, and 95 for TPC-DS because their
estimated costs in PostgreSQL were orders of magnitude higher than those of the
other queries: Without the exclusion, these queries would dominate the costs of the
entire workload. Hence, the index selection would be less complex because an index
that decreases the costs of at least one of these queries would always significantly
outperform indexes for other queries [123].

We evaluate index selection algorithms for read-only workloads. Thus, index
maintenance costs are not taken into account. Furthermore, we used PostgreSQL’s
default index type, a non-covering B-tree, which is supported by HypoPG.

The quality of an index selection algorithm depends on the specific evaluation sce-
nario, e.g., the model input, constraints, and algorithm’s configuration [123]. Com-
pared to our previous evaluation [123], our goal is not a broad evaluation of many
algorithms. Rather, we focus on a deeper evaluation of ILP-based index selection
algorithms for different problem settings (given by the considered index combina-
tions/options) to outline (i) their strengths and weaknesses in greater detail and
(ii) the effect of our heuristic ILP approaches. For a comparison to solutions of
state-of-the-art approaches, we selected the greedy Extend [196] algorithm because
its solutions were among the bests for different workloads and storage budgets [123].
We use the Extend implementation from our previous evaluation [123]. We imple-
mented the ILP models in AMPL [78] and used Gurobi 9.5.2 [94] as solver. In this
context, we extended our open-source evaluation platform [122] with the capability
to export the conducted cost estimates and solve ILP models heuristically with our
decomposition approach.
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7.4.2. Risk-Neutral Optimal Approach

In this section, we compare the greedy Extend [196] algorithm and our basic optimal
ILP-based algorithm (see (7.1) - (7.5)) for different index storage budgets ranging
from 500 MB to 15 GB and different algorithm settings that restrict the index width
(for Extend and the ILP formulation) and maximum number of applied indexes per
query for the ILP formulation. Recap, Extend does not limit the number of indexes
per query by its operating principle (see Section 7.2.2). For ILP-based solutions,
we have to restrict the index width and number of index combinations to limit the
number of (costly) what-if calls and the ILP model’s complexity.
For all ILP solutions, we first show the results as reported by the solver, which

are limited by the number of indexes per query. Because the solver guarantees
optimal solutions for the restricted problem, these solutions become better with an
increasing budget. Further, we apply and evaluate the solver’s solutions to obtain
the corresponding actual results, which are not limited by the number of indexes
per query anymore. Compared to the results of the restricted problem, the actual
results may, thus, be better. Note, because these improvements are not considered
by the solver, solutions for larger budgets do not have to become better. Besides the
solution quality (i.e., the relative workload cost compared to the processing costs
without indexes), we report the algorithms’ runtime. For ILP-based approaches, we
also state the time share of the input generation, including all what-if estimations.

The complexity and, thus, runtime of Extend and especially the ILP-based ap-
proach increases with the number of queries, indexes, and combinations. For all
experiments, we consider (syntactically) relevant indexes and combinations that
contain only columns and indexes that appear together in at least one query. In
particular for the more complex TPC-DS workload, considering only relevant combi-
nations reduces the runtime significantly compared to a full enumeration. ILP-based
approaches require all model inputs by means of relatively expensive what-if opti-
mizer calls for these indexes. As a result, for more complex settings, the number
of what-if calls and, thus, runtime becomes eventually too large. For this reason,
we limit (i) the index width for ILP-based approaches to 2, and (ii) the maximum
number of indexes per query (for the what-if calls) to 2. Further, with an increasing
number of indexes and index combinations, the solver time increases heavily. Conse-
quently, the optimal ILP approach with complex settings (e.g., with an index width
of 2 and 2 indexes per query) was not solvable within 8 h for the larger TPC-DS
workload anymore. Thus, TPC-DS results for the ILP-based approach with these
settings are not presented but only the time for the input generation. We evaluate
the greedy Extend approach up to an index width of 3. Figure 7.1 shows the result.

TPC-H Results

For TPC-H, workload costs (see Figure 7.1a) for different algorithms and settings
are similar up to an index storage budget of 4 GB. For larger budgets, more complex
settings, i.e., (greedy and ILP) approaches with a maximum index width of 2 and
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(a) TPC-H (SF10): Solution quality. Cost
relative to processing without indexes.

(b) TPC-DS (SF10): Solution quality.
Cost relative to processing without indexes.

(c) TPC-H (SF 10): Observed runtime. (d) TPC-DS (SF 10): Observed runtime.

Figure 7.1.: Index selection results for the greedy Extend and the basic optimal
ILP-based approach with different settings.

3, find better index selections. For budgets over 7.5 GB, the ILP approach with a
maximum index width of 2 and up to 2 indexes per query finds the best solutions.
Note, despite potentially more indexes per query and a greater maximum index
width of 3, Extend could not find better solutions.

Comparing the ILP model and actual results, we find that they are mostly close
to each other. Only for the model with an index width of 2 and 1 index per query,
the actual results deviate more strongly (for a storage budget of 8.5, 13.5, 14, 14.5,
and 15 GB): As the ILP solutions of the model with index width 2 and 2 indexes
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per query show, there are beneficial combinations that are, in this case, missed by
the simpler model but whose effects occur in the actual results.

Regarding the calculation time, the best ILP solutions come with the price of the
highest runtimes with up to 95 s, while each Extend solution was obtained in under
6 s (see Figure 7.1c). The major part (i.e., 61 s) of the ILP runtime was required
for the model’s input generation.

TPC-DS Results

For the more complex TPC-DS workload, the cost results (see Figure 7.1b) are more
diverse for the different algorithms and settings. Index selections with wider indexes
or multiple indexes per query are already noticeably better for budgets of 1 GB. For
larger budgets over 4 GB, the best solutions contain combinations with wide and
more than two indexes per query, which would practically take too long to calcu-
late using the optimal ILP approach. Thus, the greedy Extend algorithm is better
suitable for complex index selection problems compared to the optimal ILP-based
approach. Comparing the ILP model and actual results, we find that they signifi-
cantly deviate from each other. The reason for this is that using multiple indexes per
query is highly beneficial for TPC-DS. These (beneficial) multi-index combinations
are not considered by simpler models, but their effects are, then, noticeable in the
actual results.

Summary: Simple index selection formulations with a limited index width and max-
imum number of indexes per query can be solved optimally using ILP. For the simpler
TPC-H workload, these (limited) ILP formulations could find better solutions than
the greedy Extend approach. However, for the more complex TPC-DS workload and
larger budgets, the best (found) solutions consist of index combinations with wide
indexes and require multiple indexes per query, which was not tractable using an op-
timal ILP approach anymore. In this case, the greedy Extend approach [196] provided
the best results.

7.4.3. Risk-Neutral Heuristic Approaches

In this section, we evaluate our hybrid and decomposition ILP heuristics (see Sec-
tion 7.3.2) for selecting indexes. On the one hand, we evaluate our hybrid heuristic
based on the conducted cost estimates of the greedy Extend approach with an index
width of 2 and 3. For our hybrid heuristic, we use Extend ’s cached estimates for
the largest budget (15 GB), which contains the most entries. On the other hand,
we evaluate how the decomposition heuristic influences the solution quality (i.e., the
solution’s overall workload costs) and runtime compared to the optimal ILP formu-
lation. In this context, we also evaluate more complex index selection formulations
with wider and more indexes per query for TPC-DS, for which the optimal solution
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(a) TPC-H (SF10): Solution quality. Cost
relative to processing without indexes.

(b) TPC-DS (SF10): Solution quality.
Cost relative to processing without indexes.

(c) TPC-H (SF 10): Observed runtime. (d) TPC-DS (SF 10): Observed runtime.

Figure 7.2.: Index selection results for the greedy Extend and ILP-based decom-
position approach with different settings.

took practically too long (see Section 7.4.2). When using the decomposition ap-
proach, we included the option to apply all single-index combinations to all chunks.
Figure 7.2 shows the result.

TPC-H Results

Our hybrid approach, applying ILP on the cost estimates of the greedy Extend
approach, improves the index selection noticeably for TPC-H with storage budgets
over 7.5 GB (see Figure 7.2a). The corresponding results were obtained in under
10 s (see Figure 7.2c). Applying our decomposition approach (using 2 chunks) on
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top of the hybrid approach could decrease the maximum overall runtime to under
7 s without affecting the solution quality noticeably.

Following, we compare the decomposition approach (using 5 chunks) against the
optimal solution for TPC-H with an index width of 2 and 2 indexes per query. The
option to apply no index and 92 fixed combinations with a single index per query are
considered for each chunk. The decomposition heuristic provides the same solution
quality while the solver’s runtime is, in some cases, significantly faster, e.g., 8 s vs.
34 s for a budget of 7 GB. The time of the input generation is not influenced and
took 61 s. The decomposition heuristic calculates 6 = 5 + 1 ILP model instances
(one for each of the five chunks and one to determine the final solution), which took
at most overall 8 s (for a budget of 7 GB). For some budgets (e.g., 12.5, 13, 14.5,
15 GB), the decomposition heuristic took longer than the optimal solution, but it
provided more stable calculation times.

TPC-DS Results

As for TPC-H, our hybrid heuristic also improves the index selection compared to the
greedy Extend approach for TPC-DS. In contrast to TPC-H, we see improvements
for all storage budgets (see Figure 7.2b). While the maximum runtime of Extend
with an index width of 2 and 3 is about 5 and 8 minutes, respectively, the ILP
solver’s calculation time for our hybrid heuristic accounts for up to 14 (index width
2) and 75 (index width 3) minutes on top (see Figure 7.2d). Using our decomposition
approach on top, we could reduce the maximum solver time from 14 to 4 minutes
for an index width of 2 and from 75 to 14 minutes for an index width of 3 while
barely affecting the solution quality.

Following, we evaluate the decomposition heuristic for an index width of 2 and
2 indexes per query using 100 chunks (with 1 no-index + 1065 single-index fixed
combinations). Recap, we were not able to practically calculate solutions for an
index width of 2 and 2 indexes per query with the optimal model. Using our decom-
position heuristic, it is possible, although the required time for the input generation
(almost 2 hours) and calculating the ILP model (20 - 79 minutes) remains overall
higher than for the greedy Extend and hybrid approach. In return for the high
calculation time, the solutions’ quality of the decomposition approach is better than
those of the greedy approach. However, the hybrid approach outperforms the pure
decomposition heuristic for most budgets. Only for a budget of 3.5 and 13.5 GB, the
pure decomposition heuristic provides slightly better results. We found (for example
comparing the model and actual ILP decomposition results) that the best solutions
benefit from applying more than two indexes per query.

Summary: Our hybrid ILP heuristic can improve the index selection over the
greedy Extend approach for TPC-H and TPC-DS. Our decomposition heuristic en-
ables to reduce the solver time while we barely noticed a drop in the solution quality in
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(a) Index cost savings per query. (b) Index sizes.

Figure 7.3.: TPC-H (SF10): Visualized ILP input (max width:1, max indexes
per query: 1) for indexes with more than 0.1% cost savings based on the overall
workload costs.

our experiments. When reducing the calculation time, we can also solve more com-
plex index selection formulations with wider indexes and more indexes per query.
As a result, our pure ILP decomposition approach could find a better index selection
than the greedy Extend approach for the more complex TPC-DS workload. However,
with an increasing number of indexes and indexes per query, the problem complexity
increases stronger than we can soften it with our decomposition approach. Therefore,
a combination of our hybrid and decomposition approach is advisable.

7.4.4. Risk-Averse Mean-Variance Optimization

In this section, we evaluate our BQP-based risk-averse approach (see Section 7.3.3)
for the index selection problem. We have previously shown how we were able to
reduce the calculation time and, thus, calculate robust index selections for TPC-
DS [194]. In this section, we want to demonstrate the effects of using mean-variance
optimization (MVO). To better understand the BQP solver’s index selection, we
use the less complex TPC-H benchmark and allow only indexes of width 1 and
a single index per query. Further, for simplicity, we use only model results and
neglect possible improvements of actual results (by applying an increasing number
of indexes per query that are not covered by the model input). Figure 7.3 visualizes
the cost savings and index sizes of all significant indexes that save more than 0.1%
of the overall workload costs.

There are six indexes (i.e., index 1,..., index 6), which have a (significant) effect
on nine queries and whose sizes range from 0.21 to 1.57 GB. Indexes have an effect
on different queries. In the following, we assume an index budget of 4 GB. We
want to optimize the index selection for S = 10 different workload scenarios. The
probability Ps of all scenarios and the expected frequency fj,s of all queries is the
same, i.e., Ps = 1/10, s = 1, ..., 10 and


s=1,...,S fj,s = 10, j = 1, ..., Q. Recap,
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Figure 7.4.: Index selection results for the basic (i.e., optimizing expected costs)
and risk-averse (including mean-variance) ILP-based approach for TPC-H (SF 10)
and a budget of 4 GB; max index width: 1, max indexed per query: 1.

when optimizing the expected workload costs, the individual query frequencies per
scenario fj,s do not matter.
For this small problem instance, we can manually determine the optimal solution

that optimizes the expected costs: Index 1 (3.5 + 7 + 7.5% savings) and index 2
(2.1 + 2.1% savings) dominate the cost savings and leave 0.86 = 4 − (1.57 + 1.57)
of the assumed 4 GB budget; For the remaining budget, we can select any two of
the indexes 3 - 5; Choosing index 3 (1% savings) and index 4 (0.9% savings) is
best because index 5 saves only 0.8% for query 9 (for query 21, we use the better
index 1). Note, selecting index 5 instead of index 4 (or 3) would only slightly worsen
the overall cost savings, but could be a viable option, e.g., when we want to optimize
the performance of a potential workload peak caused by query 9.
In the following, we assume a skewed workload frequency over the 10 scenarios

for query 9, which would benefit from selecting index 5. We assume fj,s = 1 for
scenario s = 1, j = 1, ..., Q. Query 9 does not occur in the scenarios 2 - 9, i.e., fj,s =
0, j = 9, s = 2, ..., 9. Query 9 dominates in scenario 10, i.e., fj,s = 9, j = 9, s = 10.
Further, scenario 10 has the highest workload costs without indexes. Additionally,
we only vary the query frequencies of queries that are not (significantly) affected by
indexes (i.e., query 1, 3, 5, 6, 7, 10). The scenario probabilities Ps and expected
frequencies fj,s for each query are still the same.
We investigate the influence of MVO for this index selection problem. Figure 7.4

shows the expected workload costs and costs for each of the ten scenarios when
(i) using no indexes, (ii) optimizing the expected costs, and (iii) considering the mean
variance. The solutions for optimizing the expected and including mean variance
differ in the selection of index 4 (which saves overall more costs for query 11) and
index 5 (which reduces the costs of the peak workload scenario 10 caused by query 9).
Compared to the workload costs without indexes, both ILP-based approaches

reduce the (expected and individual scenarios’) workload costs. Optimizing the
expected costs is slightly better (0.9% larger cost savings) than the MVO inclusion
for scenario 2 - 9, in which query 9 does not occur, but index 4 can speed up query 11.
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7.5. Summary

The savings for scenario 1 and the expected costs are 0.1%, which we regard as
practically insignificantly. In contrast, the mean-variance inclusion softens the peak
scenario 10 and, thus, provides an overall more robust performance.

Summary: Using mathematical programming enables us to extend the optimization
function to consider the performance variance of individual workload scenarios for
the index selection problem. As a result, the performance of all scenarios is similar,
and we can weaken cost peaks of individual workload scenarios. Considering the
variance increases the complexity of the program because the optimization function
is quadratic instead of linear. However, the BQP is compatible with our heuristic
approaches: This way, we can keep the number of input combinations for individual
programs low to reduce the overall calculation time effectively.

7.5. Summary

Selecting secondary indexes is essential to speed up complex database workloads.
Among various selection approaches, we can use mathematical programming to find
suitable indexes. Mathematical programming guarantees optimal solutions for the
modeled problem. Thus, it is naturally well-suited for small problem instances, e.g.,
out-performing state-of-the-art greedy approaches for TPC-H workloads.
For larger problems, the input generation and solver time become increasingly

time-intensive and eventually practically unfeasible. Instead of naively retrieving
query costs for each index combination (as pure ILP approaches), we can use our
hybrid index selection approach, which uses the conducted cost estimates of exist-
ing heuristic selection approaches as input for ILP. Further, using a decomposition
approach, we can decrease the solver time by first “prefilter” overall good index com-
binations from smaller candidate subsets. The final indexes are then selected from
the best combinations. Using our ILP heuristics, we could also find better indexes
than state-of-the-art approaches for larger TPC-DS workloads, for which the best
selections contain wide indexes and require multiple indexes per query. Further, by
reducing the calculation time, we can tackle not only larger problem instances but
also more complex formulations, e.g., considering the variance of multiple potential
future workloads.
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Conclusion

There is much to do, and I am busy, very busy.

Wilhelm Röntgen

In this chapter, we conclude this thesis with a summary of our contributions while
reflecting on our thesis statement:

Allocation approaches based on integer linear programming can quickly calculate
allocations for partially replicated database clusters with a better mix of robust per-
formance and memory efficiency than state-of-the-art (greedy) approaches.

Further, we outline opportunities for future work.

8.1. Summary

In this thesis, we developed ILP-based allocation approaches for partially replicated
database clusters. We introduced programming models for the basic read-only prob-
lem and extensions to cope with node failures, workload uncertainty, data modifica-
tions, and reallocations. Because ILP is not scaleable, we proposed three heuristics,
which can be flexibly combined to balance the solution quality and calculation time:
(i) decomposing a single complex ILP into multiple easier-to-solve subprograms,
(ii) clustering queries with minor workload shares, and (iii) using solver’s optimality
gap or time limit. We evaluated our allocation models for three workloads, which
comprise thousands of query classes and hundreds of data fragments, and compared
them to state-of-the-art approaches, mainly the greedy approach proposed by Rabl
and Jacobsen [181]. While the results naturally depend on the specific input, we
could calculate allocations with a significantly lower memory consumption, requiring
up to 46% less data compared to the greedy state-of-the-art approach while equally
balancing the workload. Further, our allocations reduce the maximum workload
share of nodes in case of failures or uncertain workloads, which results in a higher
query throughput as our end-to-end evaluations show.

We also investigated ILP approaches for selecting database indexes, particularly
based on the optimizer’s cost estimates. Optimal solutions are only tractable for
small problem instances. In other cases, we must limit the index width or the
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maximum number of applicable indexes per query. If the calculation time becomes
too high, we can (i) use existing index selection approaches for the ILP’s input
generation and (ii) decompose the problem by first preselecting index combinations
out of smaller input subsets and finally computing the result based on selected
combinations per subset. Using our hybrid and decomposition approach, we can also
solve more complex index selection formulations with wider indexes, more indexes
per query, or even consider the performance variance of multiple workload scenarios.
As a result, we could calculate comparable and even better results than the greedy
Extend algorithm [196], which has shown good results for various inputs [123].

8.2. Future Work

We covered many aspects of ILP-based heuristics for partially replicated database
clusters and selecting indexes. However, we still see several possibilities for future
work in this research area:

Combination of extensions and automatic tuning. In this thesis, we addressed
allocation extensions for partially replicated database clusters individually. For ILP-
based heuristics, future work could investigate how to combine them while balanc-
ing solution quality and calculation time. Likewise, automatically tuning ILP-based
heuristics to lower the computation time is challenging (i.e., deciding on a good
combination of decomposition, chunking, and solver relaxations). Recap, it is diffi-
cult (or impossible) to predict an ILP’s runtime (without setting the solver’s time
limit). Hence, finding a suitable chunk decomposition and clustering for a bounded
computation time is also difficult. Future work could investigate how to handle
situations with limited calculation times, e.g., starting with a quick solution first.

System integration. Besides aspects regarding the allocation’s calculation, there
are further challenges when using partially replicated database clusters (see Sec-
tion 6.5): We have to cope with inaccuracies of the model input, also due to changing
workloads and underlying data. We think that robustness extensions (e.g., consid-
ering node failures and uncertain workloads) are essential for allocations in practice.
In this context, further end-to-end evaluations (also for different database systems)
can help to find and quantify potential model inaccuracies, which may also demand
additional model extensions. Depending on the database systems used, model adap-
tions may be required (e.g., to better match the system’s reallocation costs or to
incorporate distributed query processing). Finally, in practice, we have to moni-
tor the system for input changes, reevaluate current allocations, and, if necessary,
reallocate data.

Index candidate selection. We see optimization possibilities for our hybrid index
selection approach. We could evaluate multiple index selection algorithms for a
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diverse candidate generation and investigate which specific heuristics or adaptions to
use to generate the ILP model’s input. Our index selection evaluation platform [122]
facilitates such studies.

Index selection in practice. In this thesis, we evaluated index selection algorithms
for static read-only analytical workloads based on cost estimates. Bringing our find-
ings to practice poses some challenges for future work. First, we must handle inaccu-
rate cost estimates, e.g., by using learned index benefits [203] or adjusting selections
based on actual measurements. Further, future work can investigate transactional
workloads, incorporating index maintenance costs. Finally, we must deal with index
reconfigurations for changing workloads [192, 193], performance robustness of the
workload [184], and joint tuning with other physical design aspects [44, 123].

Overall, database system optimization remains a large and exciting research area,
and we are happy to contribute to this field.
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List of Publications

Our thesis’ main contributions have been published at the international confer-
ences CIKM, EDBT, ICDE, SSDBM, and VLDB. We further contributed to the
field of columnar in-memory database systems [66], replication systems and middle-
ware [107, 119, 199], data-driven what-if analyses [35, 118] and available-to-promise
checks [216], and cached/materialized aggregates [159, 160, 161, 162]. In the follow-
ing, we list all our publications ordered by date from newest to oldest and highlight
the publications that are closely related to this thesis.

• Stefan Halfpap and Rainer Schlosser. Fragment allocations for par-
tially replicated databases considering data modifications and chang-
ing workloads. Under submission, 12 pages.

• Stefan Halfpap. Hybrid index selection using integer linear pro-
gramming based on cached cost estimates of heuristic approaches.
In Proceedings of the International Workshop on Simplicity in Management
of Data (SiMoD), pages 5:1–5:4, 2023.

• Peter Boncz, Yannis Chronis, Jan Finis, Stefan Halfpap, Viktor Leis, Thomas
Neumann, Anisoara Nica, Caetano Sauer, Knut Stolze, Marcin Zukowski.
SPA: Economical and workload-driven indexing for data analytics in the cloud.
In Proceedings of the International Conference on Data Engineering (ICDE),
pages 3740–3746, 2023.

• Stefan Halfpap and Rainer Schlosser. Memory-efficient database
fragment allocation for robust load balancing when nodes fail. In
Proceedings of the International Conference on Data Engineering (ICDE),
pages 1811–1816, 2021.

• Rainer Schlosser and Stefan Halfpap. Robust and memory-efficient
database fragment allocation for large and uncertain database work-
loads. In Proceedings of the International Conference on Extending Database
Technology (EDBT), pages 367–372, 2021.

• Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlos-
ser. Magic mirror in my hand, which is the best in the land? An
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experimental evaluation of index selection algorithms. Proceedings of
the VLDB Endowment, 13(11): 2382–2395, 2020.

• Stefan Halfpap and Rainer Schlosser. Exploration of dynamic query-
based load balancing for partially replicated database systems with
node failures. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM), pages 3409–3412, 2020.

• Rainer Schlosser and Stefan Halfpap. A decomposition approach for
risk-averse index selection. In Proceedings of the International Conference
on Scientific and Statistical Database Management (SSDBM), pages 16:1–16:4,
2020.

• Stefan Halfpap. Efficient scale-out using query-driven workload dis-
tribution and fragment allocation. In Proceedings of the VLDB PhD
Workshop, 2019.

• Stefan Halfpap and Rainer Schlosser. Workload-driven fragment al-
location for partially replicated databases using linear programming.
In Proceedings of the International Conference on Data Engineering (ICDE),
pages 1746–1749, 2019.

• Stefan Halfpap and Rainer Schlosser. A comparison of allocation
algorithms for partially replicated databases. In Proceedings of the
International Conference on Data Engineering (ICDE), pages 2008–2011, 2019.

• Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck, Matthias
Uflacker, and Hasso Plattner. Hyrise re-engineered: An extensible database
system for research in relational in-memory data management. In Proceedings
of the International Conference on Extending Database Technology (EDBT),
pages 313–324, 2019.

• Stefan Klauck, Max Plauth, Sven Knebel, Marius Strobl, Douglas Santry, and
Lars Eggert. Eliminating the bandwidth bottleneck of central query dispatch-
ing through TCP connection hand-over. In Proceedings of the Conference
Datenbanksysteme für Business, Technologie und Web (BTW), pages 97–106,
2019.
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[138] Justin J. Levandoski, Per-Åke Larson, and Radu Stoica. Identifying hot and
cold data in main-memory databases. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 26–37, 2013.

[139] K. Dan Levin and Howard Lee Morgan. Optimizing distributed data bases: a
framework for research. In AFIPS Conference Proceedings, volume 44, pages
473–478, 1975.

[140] Jiexing Li, Jeffrey F. Naughton, and Rimma V. Nehme. Resource bricolage for
parallel database systems. Proceedings of the VLDB Endowment, 8(1):25–36,
2014.
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den angegebenen Mitteln angefertigt worden ist. Die Stellen der Arbeit, die anderen
Werken im Wortlaut oder dem Sinn nach entnommen sind, sind durch Angaben und
Quellen kenntlich gemacht.

Potsdam, 27. April 2023

Stefan Halfpap

185


	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1. Query-Driven Workload Distribution
	1.2. Allocation Approach
	1.3. Contributions
	1.4. Structure of Thesis

	2 Background
	2.1. Database System Scalability
	2.1.1. Overview
	2.1.2. Parallel Database System Architectures
	2.1.3. Database Cluster

	2.2. Replication Approaches
	2.2.1. Overview
	2.2.2. Partial Replication
	2.2.3. Replica Synchronization


	3 The Workload Distribution Problem
	3.1. Basic Problem
	3.1.1. Input
	3.1.2. Constraints and Solution
	3.1.3. Running Example

	3.2. Further Considerations
	3.2.1. Calculation Time
	3.2.2. Node Failures
	3.2.3. Workload Uncertainty
	3.2.4. Data Modifications
	3.2.5. Reallocation Costs


	4 Related Work
	4.1. Assignment Problems
	4.1.1. Integer (Linear) Programming Assignment Problems
	4.1.2. Variants of Assignment Problems

	4.2. General Solution Approaches
	4.2.1. Optimal
	4.2.2. Heuristic Approaches

	4.3. Specific Solution Approaches
	4.3.1. Workload Distribution for Partially Replicated Database Clusters
	4.3.2. Specific Related Problems and Approaches


	5 Allocation Models for the Workload Distribution Problem
	5.1. Solutions for the Basic Problem
	5.1.1. Optimal Solution
	5.1.2. Decomposition-Based Heuristic

	5.2. Approaches to Lower the Computation Time
	5.2.1. Solver-Based Relaxation Techniques
	5.2.2. Techniques to Reduce the Problem Size

	5.3. Model Extensions
	5.3.1. Node Failures
	5.3.2. Workload Uncertainty
	5.3.3. Data Modifications
	5.3.4. Reallocation Costs

	5.4. Summary

	6 Evaluation of Allocation Models
	6.1. Methodology
	6.1.1. Workloads
	6.1.2. Calculation of Allocations
	6.1.3. Evaluation of Allocations

	6.2. Evaluation of Models for the Basic Problem
	6.2.1. Numerical Evaluation of the Optimal Solution
	6.2.2. Numerical Evaluation of the Decomposition Heuristic
	6.2.3. Numerical Evaluation of Approaches to Lower the Computation Time
	6.2.4. End-to-End Evaluation and Summary

	6.3. Evaluation of Model Extensions
	6.3.1. Node Failures
	6.3.2. Workload Uncertainty
	6.3.3. Data Modifications
	6.3.4. Reallocation Costs

	6.4. Summary
	6.5. Limitations of our Approaches and Evaluation

	7 Applying Solution Concepts to the Index Selection Problem
	7.1. Index Selection Problem
	7.1.1. Formalized Problem Description
	7.1.2. Challenges

	7.2. Index Selection Approaches
	7.2.1. Classification of Approaches
	7.2.2. The Greedy Extend Approach
	7.2.3. Approaches Based on Integer Linear Programming

	7.3. Heuristic and Risk-Averse Index Selection Using Mathematical Programming
	7.3.1. Hybrid Approach
	7.3.2. Decomposition-Based Heuristic
	7.3.3. Risk-Averse Index Selection for Multiple Workloads

	7.4. Evaluation
	7.4.1. Experimental Setup and Determining Model Inputs
	7.4.2. Risk-Neutral Optimal Approach
	7.4.3. Risk-Neutral Heuristic Approaches
	7.4.4. Risk-Averse Mean-Variance Optimization

	7.5. Summary

	8 Conclusion
	8.1. Summary
	8.2. Future Work

	Appendix A List of Publications
	Bibliography



