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Abstract
Volatile supply and sales markets, coupled with increasing product individualization and complex
production processes, present significant challenges for manufacturing companies. These must
navigate and adapt to ever-shifting external and internal factors while ensuring robustness
against process variabilities and unforeseen events. This has a pronounced impact on production
control, which serves as the operational intersection between production planning and the shop-
floor resources, and necessitates the capability to manage intricate process interdependencies
effectively. Considering the increasing dynamics and product diversification, alongside the
need to maintain constant production performances, the implementation of innovative control
strategies becomes crucial.

In recent years, the integration of Industry 4.0 technologies and machine learning methods
has gained prominence in addressing emerging challenges in production applications. Within
this context, this cumulative thesis analyzes deep learning based production systems based
on five publications. Particular attention is paid to the applications of deep reinforcement
learning, aiming to explore its potential in dynamic control contexts. Analysis reveal that deep
reinforcement learning excels in various applications, especially in dynamic production control
tasks. Its efficacy can be attributed to its interactive learning and real-time operational model.
However, despite its evident utility, there are notable structural, organizational, and algorithmic
gaps in the prevailing research. A predominant portion of deep reinforcement learning based
approaches is limited to specific job shop scenarios and often overlooks the potential synergies in
combined resources. Furthermore, it highlights the rare implementation of multi-agent systems
and semi-heterarchical systems in practical settings. A notable gap remains in the integration of
deep reinforcement learning into a hyper-heuristic.

To bridge these research gaps, this thesis introduces a deep reinforcement learning based hyper-
heuristic for the control of modular production systems, developed in accordance with the
design science research methodology. Implemented within a semi-heterarchical multi-agent
framework, this approach achieves a threefold reduction in control and optimisation complexity
while ensuring high scalability, adaptability, and robustness of the system. In comparative
benchmarks, this control methodology outperforms rule-based heuristics, reducing throughput
times and tardiness, and effectively incorporates customer and order-centric metrics. The control
artifact facilitates a rapid scenario generation, motivating for further research efforts and bridging
the gap to real-world applications. The overarching goal is to foster a synergy between theoretical
insights and practical solutions, thereby enriching scientific discourse and addressing current
industrial challenges.





Zusammenfassung
Volatile Beschaffungs- und Absatzmärkte sowie eine zunehmende Produktindividualisierung
konfrontieren Fertigungsunternehmen mit beträchtlichen Herausforderungen. Diese erfordern
eine Anpassung der Produktion an sich ständig wechselnde externe Einflüsse und eine hohe
Prozessrobustheit gegenüber unvorhersehbaren Schwankungen. Ein Schlüsselelement in diesem
Kontext ist die Produktionssteuerung, die als operative Schnittstelle zwischen der Produktions-
planung und den Fertigungsressourcen fungiert und eine effiziente Handhabung zahlreicher
Prozessinterdependenzen sicherstellen muss. Angesichts dieser gesteigerten Produktionsdynamik
und Produktvielfalt rücken innovative Steuerungsansätze in den Vordergrund.

In jüngerer Zeit wurden daher verstärkt Industrie-4.0-Ansätze und Methoden des maschinellen
Lernens betrachtet. Im Kontext der aktuellen Forschung analysiert die vorliegende kumulative
Arbeit Deep-Learning basierte Produktionssysteme anhand von fünf Publikationen. Hierbei wird
ein besonderes Augenmerk auf die Anwendungen des Deep Reinforcement Learning gelegt,
um dessen Potenzial zu ergründen. Die Untersuchungen zeigen, dass das Deep Reinforcement
Learning in vielen Produktionsanwendungen sowohl herkömmlichen Ansätzen als auch an-
deren Deep-Learning Werkzeugen überlegen ist. Diese Überlegenheit ergibt sich vor allem
aus dem interaktiven Lernprinzip und der direkten Interaktion mit der Umwelt, was es für die
dynamische Produktionssteuerung besonders geeignet macht. Dennoch werden strukturelle,
organisatorische und algorithmische Forschungslücken identifiziert. Die überwiegende Mehrheit
der untersuchten Ansätze fokussiert sich auf Werkstattfertigungen und vernachlässigt dabei
potenzielle Prozesssynergien modularer Produktionssysteme. Ferner zeigt sich, dass Multi-
Agenten- und Mehr-Ebenen-Systeme sowie die Kombination verschiedener algorithmischer
Ansätze nur selten zur Anwendung kommen.

Um diese Forschungslücken zu adressieren, wird eine auf Deep Reinforcement Learning
basierende Hyper-Heuristik für die Steuerung modularer Produktionssysteme vorgestellt, die
nach der Design Science Research Methodology entwickelt wird. Ein semi-heterarchisches
Multi-Agenten-System ermöglicht eine dreifache Reduktion der Steuerungs- und Optimierungs-
komplexität und gewährleistet gleichzeitig eine hohe Systemadaptabilität und -robustheit. In
Benchmarks übertrifft das Steuerungskonzept regelbasierte Ansätze, minimiert Durchlaufzeiten
und Verspätungen und berücksichtigt kunden- sowie auftragsorientierte Kennzahlen. Die ent-
wickelte Steuerungsmethodik ermöglicht einen schnellen Szenarienentwurf, um dadurch weitere
Forschungsbemühungen zu stimulieren und die bestehende Transferlücke zur Realität weiter
zu überbrücken. Das Ziel dieser Forschungsarbeit ist es, eine Synergie zwischen theoretischen
Erkenntnissen und Praxis-relevanten Lösungen zu schaffen, um sowohl den wissenschaftlichen
Diskurs zu bereichern als auch Antworten auf aktuelle industrielle Herausforderungen zu bieten.
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1 Introduction
In times of increasing market uncertainties, sharp fluctuations in demand, and dynamic pro-
duction processes, production planning and control systems must guarantee reliable and robust
production processes (ElMaraghy et al., 2012a; Durão et al., 2019). Particularly in the current
economy, companies are under increasing pressure to reduce costs, leverage process potentials,
and at the same time maintain a consistently high level of product quality and production adapt-
ability to changing market conditions (Omar et al., 2019; ElMaraghy et al., 2021). In addition,
increased social responsibility and stringent sustainability regulations are becoming increasingly
important, not only in terms of reducing emissions but also in the overall utilization and reuse
of existing resources for redesigned processes and products (Jamwal et al., 2021). Therefore,
to enhance competitiveness at both local and global levels, optimal scheduling and balanced
control operations of shop-floor resources are essential to remain competitive. These must ensure
adherence to customer demands and facilitate effective resource management (Koç et al., 2022;
Geurtsen et al., 2023).

Central to this is the production planning and control domain, as illustrated in Figure 1.1.
It integrates production tasks, ranging from the long-term production program to short-term
dispatching activities (Chapman, 2006; Mönch et al., 2013; Jacobs et al., 2018). It addresses the
challenge of reconciling conflicting objectives like maximizing mean resource utilization while
maintaining low inventory levels (Lödding, 2016). In operations, orchestrating and overseeing
production processes are key, which require continuous synchronization of interdependent
processes to create optimal schedules. The process demands cohesive interaction across the
planning and control levels and timescales, to ensure a harmonized and resilient operations design
(Jacobs et al., 2018; Oluyisola et al., 2020). Based on long-term sales forecasts, production
planning progressively develops a detailed plan, setting targets from a broad strategic perspective
to a specific material requirements plan. This plan considers not only raw materials but also the
necessary machinery and workforce for scheduled product production. This aims to optimize
machine and labor utilization, ensuring a balanced production output that accounts for available
resources, capacities, and other relevant factors (Chapman, 2006; Lödding, 2016).

Production planning generally adopts a strategic or mid-term approach, while short-term pro-
duction control is more tactical in nature. This tactical aspect typically begins with scheduling
and dispatching after the order release. Both these stages are directly linked to actual production
operations, having a direct impact on the efficiency and effectiveness of the production system.
This involves making numerous decisions, but with limited decision-making values on the pro-
duction process. The execution of the production plan aims to fulfill the objectives set by the
planning phase. Given the dynamic nature of prevailing production systems, it is essential for
this execution to possess sufficient robustness and adaptability to accommodate both planned
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Figure 1.1 Production planning and control hierarchy, adapted from Mönch et al. (2013); Kuhnle (2020)

and unplanned events. Such events include planned machine maintenance but also exceptions
like sudden machine breakdowns or the processing of unexpected rush orders (Chapman, 2006;
Mönch et al., 2013; Schmidt and Nyhuis, 2021).

The early recognition and adaptation to such unexpected events and failures are crucial in
minimizing stoppages and enhancing operational excellence. This need becomes more pressing
with additional system loads resulting from continually shortening development cycles and
escalating product complexities, including the shift towards fully customized products (Monostori
et al., 2004; Sabadka et al., 2019). Moreover, the trend of shortening product life cycles not
only encompasses new product introductions but also more customer-specific configurations,
impacting production processes significantly. This trend towards a greater variety of product
specifications is illustrated in Figure 1.2 (Koren, 2010). Processes altered by the observed
increase in the amount of personalized products require quick and resilient integration. In
response, robust strategies are essential for optimizing key performance indicators. These
indicators span beyond quantitative metrics like throughput times or tardiness. They increasingly
encompass quality standards, customer satisfaction, and sustainability factors (Ghobakhloo,
2020). To satisfy these arising demands and meet emerging challenges, advanced production
technologies within the Industry 4.0 framework have been increasingly deployed in recent years
to realize flexible and adaptive production systems (Kagermann et al., 2013; Zheng et al., 2020;
Marcucci et al., 2022).

Industry 4.0, also known as the fourth industrial revolution, refers to the integration of advanced
technologies such as artificial intelligence, Internet of Things, and advanced automation mecha-
nisms into manufacturing and production processes (Kagermann et al., 2013). Although Industry
4.0 has the potential to significantly increase efficiency and productivity (Waschneck et al.,
2017; Peres et al., 2020), it also poses challenges in terms of data-efficient processing and the
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complexity and transferability of the approaches into practical concepts (Schuh et al., 2017;
Adadi, 2021; Alzubaidi et al., 2021). The progressive collection and accumulation of raw data
and the limitations of conventional algorithms in dealing with large data sets have led to an
intense discussion about the importance of data and the development of more data-efficient
algorithms (Fan et al., 2014; Adadi, 2021). This is particularly relevant given the ever-increasing
amounts of generated data. Consequently, production planning and control approaches face the
challenge of processing this data efficiently to use it for informed decision-making processes
and data-driven manufacturing analytics solutions (Schwab, 2016; Zhong et al., 2017; Tao et al.,
2018).

A promising response to these data-centric challenges in production optimization involves
employing advanced artificial intelligence technologies that support continuous learning and
adaptation in planning and control systems. As early as 1996, Liu and Dong recognized
the potential of using machine learning and artificial neural networks in production for its
significant impact. Subsequent research by scholars such as Kádár et al. (2003); Mahadevan and
Theocharous (1998); Kang et al. (2020) explored various approaches, resulting in improvements
in performance indicators like inventory management and throughput time reduction. By
analyzing the collected data from sensors and actors, an intelligent planning and control system
can discover patterns and trends that may not be immediately apparent, leveraging this insight to
make well-informed decisions that enhance overall system performance (Zhang et al., 2021).
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1.1 Motivation

Modern production environments are characterized by increasingly dynamic and cross-system
interrelationships. As ElMaraghy et al. (2009) point out, these dynamics with inherent process
uncertainties lead to increased complexities in production. In this context, it is also impor-
tant to consider the correlation between product and production complexity as described by
Wiendahl and Scholtissek (1994). The increasing complexity of individualized products and
inter-connected processes poses new challenges, especially with regard to decision-making. In
order to maintain stable production systems and to avoid order backlogs or queues, production
systems require efficient decision-making that must extend to real time.

The production control itself is directly connected to the resources on the shop-floor and manages
the system participants through direct interaction and feedback. In order to handle the system
dynamics and to guarantee learning capabilities, the control system must be able to adapt
continuously to internal and external circumstances to maximize the production efficiency,
without large ongoing efforts. In addition to the system complexity, the control design must be
able to balance a large number of input and output parameters, even in high-dimensional solution
spaces, to stabilize and optimize predefined key performance parameters. These parameters
must not be static but, like the system itself, can be dynamic and must be defined and evaluated
context-specifically (Nyhuis, 2008; Schwartz, 2014; Zhong et al., 2017).

The use of conventional control approaches, such as dispatching rules, encounters difficulties
when dealing with the aforementioned dynamics or handling large amounts of data (Csáji et al.,
2006). As such, they may not be able to cope with future flexible manufacturing processes
or require high initial and ongoing implementation and maintenance efforts (as described by
Zhou et al., 2020). They tend to be hard coded and require humans as supervisors to cope
with system dynamics and to conduct online parameter optimization. They also often assume
static environments in which not only ongoing processes are defined in advance, but also the
information about the production environment is fully known (Luo, 2020). The reduced ability
to incorporate randomly occurring and unplanned events, such as machine failures, often results
in a discrepancy between the actual and the intended planned production state (Schneeweiss,
2003), which must then be either reacted to or predicted beforehand (Ouelhadj and Petrovic,
2009). To address these challenges, online reaction and optimization techniques, benefiting
significantly from advancements in machine learning, are increasingly being applied to cope
with the inherent dynamics of manufacturing systems (Arinez et al., 2020; Bertolini et al., 2021).
Machine learning, encompassing a diverse array of algorithms, includes reinforcement learning,
which stands out due to its interactive and real-time operation capabilities, offering extensive
prospects for online optimization (Dey, 2016; Sutton and Barto, 2017). As early as 1998,
Mahadevan and Theocharous demonstrated the efficacy of reinforcement learning in inventory

4



1.1 Motivation

minimization compared to traditional Kanban systems.

Recently, the focus shifted towards deep learning, a specialized subset of machine learning
characterized by the use of multi-layer neural networks (Alzubaidi et al., 2021). This shift is
partly motivated by its successes in the Atari environments by van Hasselt et al. (2016) and
Google DeepMind’s AlphaGo (Silver et al., 2017). Deep learning enables the efficient processing
of large amounts of data and the implementation of situational actions. Despite the potential
advantages of deep learning over conventional heuristic approaches, its use has so far been
limited to certain fields of application. Especially in production control, there is a need for
deep learning based approaches to leverage adaptability and robustness (Arinez et al., 2020;
Peres et al., 2020). However, the lack of interpretability and high computational complexities of
deep learning in production continue to pose challenges that need to be overcome (Malhan and
Gupta, 2023). Against this background, the question arises as to how the increasing complexity
of optimization and the increased requirements in production can be effectively managed in
practice using data-centric and machine learning based approaches. In production control, which
is closely linked to production resources and demands quick decision-making, the inability
to undertake exhaustive re-planning after every system change thereby presents a remaining
challenge (Bueno et al., 2020; Ghaleb et al., 2020).

Given this challenge, it becomes important to explore how the escalating optimization complexity,
often too demanding for non-linear optimization methods, can be effectively addressed using
data-centric and machine learning based approaches (Bottou et al., 2018). In particular, the
division of complexity into restricted and problem-oriented segments is becoming increasingly
important for neural networks in order to effectively manage their scope and structure (Amer and
Maul, 2019). Even with neural networks, the computational effort increases exponentially with
the amount of input data, accompanied by a growing state space that represents the production at
a certain point in time and grows with each new input value. According to Bellman (1957), this
is called the Curse of Dimensionality in the field of multi-dimensional optimization problems and
raises the question of a meaningful use and processing of data. It not only requires a reduction
of the data points to be processed but also a structural analysis of the problem. By splitting the
overall problem into comprehensible (neural) sub-fragments or modules, that are limited in scale,
the overall complexity might be reduced and made more manageable (Maulana et al., 2015;
Amer and Maul, 2019).

Such decomposition of problems or optimization schemes was already analyzed in a variety of
applications, including energy systems (Kotzur et al., 2021), product development for part design
optimization in additive manufacturing (Oh et al., 2018), as well as in the scheduling domain (Hu
et al., 2021; Yonaga et al., 2022). Specifically in scheduling, the multi-objective evolutionary
algorithm is widely deployed because of its high computational efficiency (Huang et al., 2021).
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It divides an optimization problem into several discrete optimization sub-problems (Zheng et al.,
2018). This approach was applied in flow-shop scheduling (Wang et al., 2021a) and milk-run
scheduling (Zhou and Zhao, 2022), and was able to outperform existing scheduling benchmarks.
Nevertheless, an optimal decomposition, even if ideally performed in equal-sized work packages,
cannot be achieved in polynomial time. This constrains its application in real-time environments,
especially for large-scale optimization problems (Kotzur et al., 2021). However, an approach that
breaks down complexity and offers a sufficiently high degree of autonomy promises to increase
system performances (Philipp et al., 2007; Bendul and Blunck, 2019).

The motivation of this thesis is therefore grounded on the following three main focus areas.

• First, this thesis examines the potential of deep learning in production, aiming to structure
the research field and identify existing limitations. The emphasis is on deep reinforcement
learning, which combines the capabilities of neural networks with the interactive and
responsive reinforcement learning technique. While (deep) reinforcement learning is a
significant focus field, the analysis also encompasses further deep learning methodologies.
The findings from this analysis will drive the development of the problem-oriented artifact.

• Second, the thesis addresses the need for adaptive production control mechanisms. This
also aims to achieve a high degree of generalizability. The motivation is to tackle large-
scale problems through improved scalability and efficient use of a foundational knowledge
base.

• Third, the thesis aims on reducing the optimization complexity of current deep learning
based control approaches. It conceptualizes a framework that shall be based on multiple
pillars to deconstruct the overall problem complexity into smaller, more manageable
segments. This encompasses both the theoretical exploration and the practical application
of deep learning in production control, a smart factory domain that has not yet been
extensively explored or reviewed.

1.2 Research questions and objective

The development of the desired artifact with its comprehensively integrated knowledge base
should not only enable the step towards a data-driven smart factory as described by Zhong et al.
(2017) or Zhou et al. (2018), but also serve as a basis for further research. In this regard, the
planning of a research project is the first step to enable the creation of structural knowledge
and is initially reflected in the formulation of research questions (Armstrong et al., 2011; Hunt
et al., 2018). The process of formulating adequate research questions not only facilitates the
identification of attractive research topics and the guaranteed yield of scientific insights but also
serves to define the scope of research under consideration (Armstrong et al., 2011). This also
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includes the omission of possible sub-areas to focus on the essential core of the research work.

Building on the initial motivation and introductory section, this thesis primarily focuses on the
continuous optimization of predefined key performance indicators within complex production
systems through novel data-driven and autonomous control approaches. Such approaches might
leverage machine learning techniques, including deep learning, to effectively optimize control-
and data-intensive processes. The aim is to overcome the static limitations that are inherent in
conventional approaches while ensuring adequate learning ability and adaptability for various
applications. This might also involve integrating principles of autonomous agents, decentralized
decision-making, and the implementation of an adaptive organization. Another important aspect
to emphasize is that the artifact to be developed shall not resemble a common black box model.
Rather, it should enable comprehensible decision-making, which can increase user acceptance.
This leads to the central research question, which will be detailed further on.

How can a data-driven and autonomous control optimization be designed for
adaptive production systems?

From the primary research question, sub-questions can be derived for better fragmentation of
the research field and structuring of the thesis. A thorough exposition of these in-depth research
questions and an elaboration of the resulting artifact requirements is provided in Chapter 6.
Based on an extensive literature review, not only the exact research gap must be defined, but an
identification and classification of existing approaches and research streams should be made.
This facilitates the deduction of direct requirements and design indications for the research
intention, whether they are algorithm-, optimization-, or application-centered. In general terms,
the approach is not only intended to enable robust production but also to be adaptive in each
differing dimension.

The aspects of adaptability that must be addressed in the further course of this thesis can
be interpreted in a context-specific way, but they can be attributed to the basic concept of a
production environment that has to respond to internal and external requirements and disruptions.
These can be classified into separate sub-dimensions, which encompass a range of decisive
forces that influence production processes. Such forces include fluctuating procurement and sales
markets, a changing volume and type of products to be produced, modifications of particular
product specifications due to changing customer requirements, or the replacement of a product in
the portfolio, among many others (Simpson et al., 2006; ElMaraghy et al., 2021). It is therefore
necessary to consider criteria for process-, product-, technology-, and market-specific adaptability.
Its utmost expression manifests itself in extreme adaptability, which, without preventive measures
to increase resilience and robustness, would cause significant impairments in the processes in case
of major deviations in the aforementioned criteria. Resilience in this context refers to the ability
to prevent and handle disturbances, while robustness describes the ability to cope with internal
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disturbances without system adaptions (ElMaraghy et al., 2021). Adaptability, in aggregate
terms, can be defined through attributes such as system modularity, scalability, compatibility,
and universality, as suggested by Heger (2007), Wiendahl et al. (2015), and ElMaraghy and
Wiendahl (2019). Wiendahl et al. (2015) and ElMaraghy and Wiendahl (2019) additionally
emphasize system mobility, while Heger (2007) includes system collaboration in the definition.
In particular, modularity proves to be a pivotal adaptability factor, as it imposes the requirement
of independent modules that can be configured and inter-connected as needed. This modularity
affects the other characteristics mentioned and promotes adaptability overall, as discussed by
Simpson et al. (2006) or Caesar et al. (2019). Thereby, it is important to make a clear distinction
between production flexibility and adaptability, which is illustrated in Figure 1.3. Flexibility
refers to the ability to change capacitive indicators without system modifications, such as through
changed routing, scheduling, or augmentation, as discussed in VDI (2017) and Bitsch and Senjic
(2022).

Configuration 
1

Configuration 
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Configuration 
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system 
change

Structural
system 
change

Observation 
period

Change
period

Change
period

Observation 
period

Observation 
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product amount)

Level-shift
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Figure 1.3 System adaptability and flexibility measures, adapted from VDI (2017); Bitsch and Senjic
(2022)

In the remainder of this thesis, one focus will be on adaptability, emphasizing that the artifact to
be developed should not only be designed for a specific environment. An additional focus will
be on generalizability, particularly concerning the initialization, training, and re-use of potential
autonomous elements. These elements should not only operate in defined environments but also
enable knowledge transfer and long-term learning. A feasible deep learning approach, which has
often been characterized by its ability to map complex control principles in network structures,
might support the control of flexible production processes in various scenarios. The inherent
adaptability of deep learning might also be decisive to autonomously react to changing system
parameters and thus strengthen system robustness. In addition, the scalability and aforementioned
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attributes offer extended possibilities for operation and evaluation on a larger scale and also in
other problem domains. The research objective thus extends beyond the scenarios and production
environments addressed in this thesis and encompasses the ability to adapt sensitively to changing
production conditions. This supports the development of a comprehensively adaptable artifact.

However, prior to designing such an artifact, it’s necessary to define the design requirements,
building upon existing research approaches. This step aims to identify strategies to mitigate
overall problem complexity, enabling the realization of the adaptable artifact. Collectively, the
outlined research problem leads to the formulation of several sub-research questions (S-RQ),
guiding the subsequent investigations and explorations.

• S-RQ1: What requirements do production systems impose on deep learning
based control optimization methodologies?

• S-RQ2: How can the decision-making and optimization complexity of large
systems be distributed among autonomous system components?

• S-RQ3: How can a high level of control generalizability be ensured across
varying production scenarios?

By answering the formulated sub-research questions above, the cornerstones for the design
and implementation of the artifact are defined. Based on this, the artifact is constructed in an
iterative development process. This not only addresses the artifact creation but also its continuous
optimization. Subsequently, in order to evaluate the success of the research process, not only
quantitative metrics must be analyzed, but the artifact should satisfy additional customer- and
process-related target criteria. The production planning and control design framework of Bendul
and Blunck (2019) summarizes essential design criteria in Figure 1.4, which can likewise be
conceived as objectives and have to be met by the artifact accordingly. In general, Bendul
and Blunck distinguishes between design-, scheduling-, and control-related parameters. From
this, direct indicators for the formulation of the research objectives can be derived within the
production planning and control domain.

As discussed above, deep learning methodologies provide viable tools to achieve a high degree
of automation and to facilitate data management in processes with high order loads. Based on the
defined research questions and motivation, the following general research objectives according
to Bendul and Blunck (2019) shall be addressed. Beginning with the design criteria at the top
of Figure 1.4, the operations baseline is established, and basic organizational decisions are set.
The green marked lines indicate the design objectives defined for this thesis. First, within the
realm of operational flexibility, the suitability of a deep learning based control framework should
be evaluated in terms of handling multiple path alternatives and its proficiency in managing
a medium level of structural complexity. Second, in light of intricate production requisites,
the prevailing complexity should be reduced through appropriate decomposition strategies. To
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Figure 1.4 Production planning and control design framework, adapted from Bendul and Blunck (2019)

facilitate this reduction in structural complexity, the adoption of sophisticated matrix, modular, or
more advanced production models is targeted as proposed by Scholz-Reiter et al. (2011). These
models, thirdly, pave the way for inter-agent communication both within and across all system
layers. Lastly, as the design aims to refine production metrics via a deep learning-centered
approach, it’s imperative that the agents exhibit an adequate level of operational flexibility.

The control portion of the framework in Figure 1.4 determines the behavior and decision logic of
the agents and the artifact as a whole. The pursued control approach should make decisions based
on current information as a representation of the current production state and should be able to
react flexibly to unplanned incidents (5.). Past information should be integrated into the decision
logic as experience data to facilitate a sufficiently high degree of system learning behavior.
The artifact should have an average nervousness and not slip into chaotic states. Nevertheless,
decisions should be revisable on the basis of new information (6.). Finally, the agents should
reach global objectives and avoid local optima (7.). A detailed framework assessment, along
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with the derivation of feasible design requirements, is available in the transition (see Chapter 6).

In summary, the three main objectives of this thesis are listed below.

• Objective 1: Design of a performant and adaptive deep learning based produc-
tion control framework

• Objective 2: Enable a flexible key performance parameter optimization within
a broad range of production scenarios

• Objective 3: Facilitate a sufficiently high degree of scalability and generaliz-
ability to allow coping with multi-level production systems

1.3 Research methodology

The following section provides an introduction to the Design Science Research Methodology
(DSRM) by Peffers et al. (2007), which is adopted in the further course of this thesis. The
DSRM methodology seeks to structure and optimize the development of scientific-technological
artifacts for their ability to solve practical problems. In this context, an artifact describes a
technically developed solution for a constrained problem. The approach is application-oriented
and describes, on the one hand, how the solution for this problem is developed and, on the
other hand, how it is tested in order to validate and iteratively optimize its impact on the given
environment and problem. The methodology in Figure 1.5 clarifies precisely these steps as well
as the associated iterative loops and refers to the respective chapters in this thesis that focus on a
corresponding step.

Problem  
centered iteration

Objective  
centered iteration

Design & dev.  
centered iteration 

Client / context 
iteration

Identify problem  
& motivate Demonstration EvaluationDefine objectives 

of a solution
Design & 

development Communication

Chapters 1-2, 4-6 Chapter 7 Chapters 8 and 9 Chapters 10-12

Figure 1.5 Pursued design science research methodology (Peffers et al., 2007)

Concerning this thesis and the approach outlined in Figure 1.5, the process is initiated by
the identification and definition of the research problem and the accompanying motivation to
highlight the relevance of finding a solution for this specific problem. This step provides a
detailed definition of the research gap to derive corresponding solution design criteria. Based on
the composed design criteria and requirements, the artifact can be designed and developed to
be tested in the defined scope for its ability to solve the problem and to evaluate the degree of
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objective fulfillment. During the evaluation phase, a corresponding iteration back to the design
and development phase can be carried out if objectives were not met or further optimization
potentials were recognized. Finally, the results are published in subject-related journals or similar
media to disseminate the findings.

In Hevner et al. (2004), seven further guidelines summarize the objectives of a design science
research procedure, which will be referred to in the further course of this thesis and are listed
in Table 1.1. In the context of a problem-solving process, these serve as overarching objectives
to ensure coherent pursuit of the conducted research. The right column of the table lists
the corresponding equivalents from this thesis, outlining how the guidelines and associated
objectives will be accomplished and materialized. Thereby, Hevner et al. (2004) addresses
central elements of the design science research process, from the actual development (1), through
the determination of the problem relevance (2) and its evaluation (3), to the assessment of
the scientific contribution (4) and its methodological underpinning (5). Just as in the DSRM
model, this process is iteratively performed (6) and is subsequently communicated in a broad
and discipline-non-specific manner (7).

Guideline Objective Consideration in this thesis

(1) Design as
an artifact

A functional artifact (e.g., model
or construct) should be the outcome.

In this thesis, a functional and transferable
control model will be developed.

(2) Problem
relevance

The artifact should address a relevant
problem with a tech-based solution.

The relevant problem will be identified based
on a comprehensive theoretical analysis and
addressed using an innovative control approach.

(3) Design
evaluation

An evaluation must be conducted
to demonstrate its quality, efficacy
and utility within the considered scope.

The performance metrics will be assessed
in simulated scenarios, and the control will
be transitioned to a real-world testing.

(4) Research
contributions

The developed artifact must offer a
significant contribution in the
respective field of research.

The artifact will address various production
challenges, demonstrating requisite adaptability,
thereby reducing optimization complexity.

(5) Research
rigor

The design and validation must be
conducted through the use of
profound research methods.

Overarching methodologies will be used,
with sub-methodologies employed for
reviewing, taxonomy formulation, and evaluation.

(6) Design as a
search process

The search for an appropriate solution
is iterative and requires well-founded
search strategies.

Comprehensive reviews and simulations enable
iterative evaluations and refinement of research
strategies and outcomes.

(7) Communica-
tion of research

Not only specialized scholars should
be addressed through out the research
process, but also business-oriented ones.

In addition to technical parameters, financial
metrics will be considered and
managerial insights are given.

Table 1.1 Research guidelines for design science by Hevner et al. (2004) and coverage in this thesis

The described guidelines are conceived by Hevner (2007), which iteratively links the interrela-
tionships and emerging requirements between practice, research, and the considered problem
and its solution finding through three cycles. The design and development iteration, which was
described by Peffers et al. (2007) is iteratively addressed by Hevner (2007), who integrates it as
a design cycle in his information systems research framework. It serves as the inter-connective
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part of consistent evaluation and corresponding follow-up development, and vice versa. The
other successive iterations (see Figure 1.6), represent the relevance cycle and the rigor cycle,
which connect the design science research process with the practical environment and existing
knowledge base, respectively.

The central element of the design science research box in Figure 1.6 includes the design cycle,
which evaluates the artifact in terms of its objective fulfillment while constantly deriving research
and design needs. Based on the defined needs as well as the findings of empirical testing,
the artifact is continuously adapted. The relevance cycle takes into account the practical and
business-related scope of the research problem and considers the practical and business-related
subject matter of the research problem. By defining the external technical requirements, the
involved actors as well as the affected organizational structures, the application context is
specified. Through the relevance cycle, which can be supported by simulations or real-world
transfers, fundamental improvements in production performance shall be obtained in a pre-
defined environment to provide a significant added value for practical applications. The rigor
cycle, on the other hand, ensures the scientific integration of the artifact and knowledge into
the targeted research field, where the acquired knowledge can be abstracted and disseminated,
parallel to the final methodological step in Peffers et al. (2007). This can be reflected in a
comprehensive approach that combines algorithmic and organizational methods and provides
innovative perspectives on how to deal with optimization complexity. This can be embodied in a
tool, taxonomy, or equivalent framework that will support and guide future research fields.

Application domain
• People
• Organizational systems
• Technical systems
• Problems and opportunities

Build design artefacts 
and processes

Evaluate

Foundations
• Scientific theories and  

methods
• Experience and expertise
• Meta-Artefacts (design 

products and processes)

Design
cycle

Rigor cycle
• Grounding 
• Additions to KB

Relevance cycle
• Requirements
• Field testing

Environment

Design science research

Knowledge base

In this thesis, comprehensive 
evaluations will be conducted 
within both simulated and real 

settings. Beyond technical 
dimensions, organizational 

paradigms will be integrated. 
Requirements, challenges, and 
opportunities are derived from 
literature, and own analysis.

The artifact will be iteratively 
refined based on the derived 
requirements and empirical 

testing outcomes. 
This will allow for a 

continuous improvement of the 
artifact.

The objective is to develop an 
integrative approach, with both 
algorithmic and organizational 

aspects, to facilitate novel 
perspectives on control 

optimization. 
This will culminate in a tool, 

taxonomy, or equivalent framework 
to assist scholars in future research.

Contributions in this thesis:

Figure 1.6 Pursued methodology for the scientific approach (Hevner, 2007)
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1 Introduction

1.4 Thesis structure

In this chapter, the motivation and the fundamental methodology are outlined and the intended
research objectives were briefly presented. The subsequent chapters follow the structure outlined
in Figure 1.7. Chapter 2 outlines the essential principles of prevailing production systems
and research, introducing a unified approach to deep learning based optimization strategies.
It also describes two initial research gaps, which are expanded upon in subsequent chapters.
Chapter 3 provides a cumulative exposition of conducted research and discusses the contents
of the underlying publications of this thesis. This comprises the more specific methodological
foundations that constitute to an efficient and streamlined research process. The first two
publications in 4 and 5 examine the current state of research on deep learning based production
systems and seek to identify in-depth algorithmic and organizational requirements for the artifact
construction, adhering to the DSRM approach. In doing so, application domains, algorithms,
and a taxonomy for classifying deep learning approaches are presented.

In Chapter 6, based on the reviews and developed taxonomy, the specific research gap is
highlighted and design requirements for artifact construction are derived. Chapter 7 contains the
third publication with the design and development of the deep learning based control framework.
This includes the implemented control framework, the multi-agent interaction design, and the
associated training framework. Chapter 8 discusses the fourth publication with its in-depth
benchmarking results and a optimization robustness analysis. It further integrates the control
framework into a hybrid test-bed. The last publication in Chapter 9 discusses techno-financial
aspects, in particular the impact on revenues and profits, to evaluate its attractiveness from both a
technical and economic perspective.

An integrated perspective, encompassing and extending beyond the scope of this thesis, is
elaborated in the discussion in Chapter 10. In Chapter 11, the remaining research gaps are
presented and a critical evaluation of the results is given. The thesis concludes in Chapter 12.
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2 Fundamentals
This chapter provides an introduction to the fundamental principles of production systems and
their planning and control, presented in detail in Sections 2.1 and 2.2. Given the increasing
complexity and dynamics in production systems, as discussed in the introduction, Section 2.3
focuses on the basic principles of machine learning. The use of these techniques seeks to
facilitate robust and data-driven decision-making processes, which contributes significantly to
the understanding of the artifact developed in later chapters. Finally, Section 2.4 identifies initial
research gaps. This establishes the groundwork for formulating the central research problem of
this thesis and sets the scope for the comprehensive reviews in Chapters 4 and 5. The structure
of the chapter is illustrated in Figure 2.1.

Chapter 2: Fundamentals

Section 2.1: Production processes
• Examination of job-shop and matrix 

production systems
• Agent-based production

Section 2.3: Machine learning
• Basics concepts 
• Reinforcement learning
• Neural network based reinforcement learning

Section 2.2: Basics of production control
• Control mechanisms 
• Optimization models 

Section 2.4: Chapter conclusion and preliminary research gaps

Figure 2.1 Structure of the fundamentals chapter

2.1 Production process design

Production processes can be differentiated with regard to various criteria and, depending on the
exact specifications, not only have separate requirements but also necessitate their consideration
in the design of production planning and control algorithms. Table 2.1 lists some of these process
categories, which differ mainly in the volume of production and the variety of goods produced.
According to Chapman (2006), this also results in a clear differentiation of the respective
production workflow and the emerging skills of the workforce and management planning. In
repetitive processes, equipment is adapted to highly specialized operations and manpower to
standardized tasks of low complexity to achieve maximum efficiency at high volumes (Spencer
and Cox, 1995). In contrast, job-shop processes require more general-purpose equipment and
highly skilled staff to enable a wide range of processing types. A further differentiation of the
manufacturing processes can be derived from the type of customer order processing. A job-
shop is also suitable for engineer-to-order (ETO) or make-to-order (MTO) processes due to its
generalized mode of operation, whereas repetitive processes often adhere to assembly-to-order or
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make-to-stock procedures (Hayes and Wheelwright, 1984; Chapman, 2006; Helkiö and Tenhiälä,
2013).

Job-shop processes Batch processing Repetitive processes

Equipment General purpose Semi-specialized Highly-specialized
Labor skills Highly skilled Semi-skilled Low skills
Managerial approach Technical solver Team leadership Efficiency
Volume output Low Medium High
Design variety High Medium Low
Design environment ETO, MTO MTO, ATO, MTS ATO, MTS

Flow of work Variable, jumbled More defined
Highly defined

and fixed

Table 2.1 Production process categories, according to Chapman (2006)

Nowadays, decisions regarding the selection of the presented production forms become outdated
in numerous industries. Despite significant throughputs in modern repetitive and serial production
systems, there is an growing need to meet individual customer requirements and incorporate
future product generations. Yet, this poses challenges for recurrent environments like repetitive
and batch manufacturing systems (Helkiö and Tenhiälä, 2013; Hofmann and Knébel, 2013). It is
this product individuality, where job shops can demonstrate their distinct advantages, offering a
more flexible approach to meet these evolving demands.

2.1.1 Job-shop production processes

Figure 2.2 illustrates an example job-shop, where three distinct orders undergo processing across
multiple shared machines, resulting in the production of three respective products. Another order,
which would only require the already installed machines for basic processing, could simply be
added to this job-shop. In serial production, this would not be possible without further efforts,
since the machines are installed in a predefined sequence and thus structurally constrain the
process. The idea of leveraging flexible job-shop properties with batch production designed for
efficiency was already proposed by Browne et al. (1982).

The above-mentioned material flow design offers great flexibility in terms of the range of products
that can be produced, as well as the possibility of adding or removing machines, or changing
their arrangement to circumvent bottlenecks (Mason et al., 2002; Schmidtke et al., 2021). There
is also the possibility of providing a machine redundancy to increase throughputs, but also to
minimize the impact of machine breakdowns. On the other hand, the machines can be used
for a wide range of operations due to their very broad functional base and the selection of the
functionally optimal machine for a particular process step can be facilitated (Chapman, 2006).
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Machine 2 Machine 3

Machine 4 Machine 5 Machine 6

Job 1 Job 2

Job 3

Product 1Machine 1

Product 2Product 3

Figure 2.2 Exemplary job-shop process, adapted from Wang et al. (2021b)

On the other hand, the process-related flexibility results in a large number of possible routing
and control options, which makes finding the optimum significantly more difficult with large
layouts and often requires heuristic optimization algorithms. This also includes the consideration
of tool changes, which can be very high in a job-shop with many machining options, as well
as the consideration of transportation routes between processing steps. The complexity and
arising system dynamics could thereby cause inefficient workflows and low utilization rates if
production planning and control are not optimized and scaled to the actual system (Schenk et al.,
2010; Liaqait et al., 2021; Schmidtke et al., 2021).

2.1.2 Matrix production systems

In recent years, particularly within deep learning research, emphasis has not only been placed
on job-shop production but also to a limited extend on matrix-based production, due to its
particularly flexible processing capabilities (Hofmann et al., 2020; Gankin et al., 2021). A
major difference compared to the job-shop is the line independent flow control of the processes
within the system, which results in arbitrary material flows with varying cycle times. This also
circumvents a major disadvantage of sequential flow-shops, the unbalanced cycle-time due to
blocking and downtime in multi-variant production lines (Schönemann et al., 2015). Instead of
a fixed order sequence, jobs are released on a short-term basis in matrix production. With the
concept of a cycle-independent flow, matrix production tries to combine the economic advantages
of a classic flow production with the flexibility advantage of a job-shop production (Schenk et al.,
2010; Schönemann et al., 2015; Greschke, 2016).

The matrix production concept is primarily characterized by its close-meshed logistics net-
work, through which the workstations are interconnected (see Figure 2.3). The interconnected
workstations provide the basis for the deployment of autonomous logistics devices that enable
each order to follow its own individual processing path (Perwitz et al., 2022). However, the
closed-meshed structure and cycle-independent concept would not prevent machines from being
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blocked, necessitating redundant resources. It might be reasonable to equip workstations with
the same operations and capabilities to increase the availability of a workstation for processing
an order. Simultaneously, the configuration of different machines within a workstation can
significantly increase the range of functions and enable further processing without increased
transportation times (Schönemann et al., 2015; Greschke, 2016).

Workstation 1

Machine 
Type 1

Machine 
Type 2

Workstation 2

Process 3 Process 4

Process 5 Process 6

Workstation 3

Process 7 Process 8

Process 9

Workstation 4 Workstation 5

Process 5

Process 3 Process 4

Workstation 6

Process 8 Process 9

Process 6 Process 7

B
uffer

B
uffer

B
uffer

B
uffer

B
uffer

B
uffer

Workstation 7 Workstation 8

Process 8

Process 6 Process 7

Workstation 9

Process 8 Process 9

B
uffer

B
uffer

B
uffer

Output

Process 1 Process 2

Process 1 Process 2

Process 3 Process 4

Process 7

Process 5 Process 6

Input

Workstation 1

Process 1 Process 2

Process 3 Process 4

Workstation 2

Process 5 Process 6

Process 7

Workstation 3

Process 8 Process 9

Input Output

Matrix assembly

Conventional assembly

Figure 2.3 Comparison of a conventional and matrix assembly, adapted from Schönemann et al. (2015)

Figure 2.3 highlights the machine or process redundancy caused by duplicate process steps.
The obvious redundancy in this case would have to be checked in real use-cases with regard to
machine utilization. If appropriate, workstations and their allocation would need to be modified
or re-organized. Due to the loose design of the overall system, this could be done by adding
and removing workstations, thus guaranteeing adequate system scalability and resilience to
react to system changes (Hofmann et al., 2019; Trierweiler et al., 2020). This makes it possible,
for instance, to respond to fluctuating customer demands or to quickly incorporate individual
process modifications (Greschke et al., 2014). While there are advantages in term of flexibility
and adaptability, a matrix production necessitates high capital expenditures and can result in
increased space consumption due to high routing requirements. In comparison to a job-shop,
there’s reduced order flexibility, even though it handles moderate order volumes. Standardization
and streamlined processes provide a level of customization, but this comes at the cost of process
synergies.

The presented job-shop and matrix concepts primarily highlight the structural and procedural
aspects of production systems. A further dimension of flexibility and efficiency in modern
production systems is introduced through the use of agent-based concepts. These represent
another approach to leverage production logistics and offer a foundation to tackle modern

20



2.1 Production process design

challenges of process automation (Karageorgos et al., 2003; Barbati et al., 2012).

2.1.3 Agent-based systems

Logistics resources, such as autonomous mobile robots, can move between workstations along
predefined paths or even autonomously. Here, a production system is theoretically unlimited
in the definition of the number of process participants. This raises the questions of how the
individual participant of a system is, first, interacting with his environment and, second, which
position he has in the overall production organization.

2.1.3.1 Production agents and environment

With an increasing availability of distributed computation resources, already Parunak et al. (1986)
discussed the necessity of not transferring the decision-making process to a central authority,
but to allocate the intelligence to the various participating production agents. A single agent can
thereby be characterized by several properties. These are indicated in Figure 2.4 on the right and
essentially comprise, related to the individual agent, it’s reasoning, perception of the environment,
and type of actions (Balaji and Srinivasan, 2010). This thesis introduces an advanced control
approach focused on data-driven, real-time decision-making. Thereby it’s crucial for the agents
to efficiently gather and process information from their environment, especially in the dynamic
context of production control and shop-floor operations. This need is particularly evident for
deep reinforcement learning controlled agents, where learning through direct interaction with the
environment is fundamental (Zhang et al., 2022a). As these agents process information through
neural networks, their data processing capabilities become increasingly complex (Sarang and
Poullis, 2023). Consequently, the effective extraction and communication of relevant information
is crucial to their performance.

Another relevant part is the type of action and interaction with its environment. Balaji and
Srinivasan (2010) divide the interaction into the categories of communication and negotiation.
Márkus et al. (1996), in contrast, consider the agent interaction in a production context and aims
to differentiate between order and resource agents. Within the assembly domain, Seliger and
Kruetzfeldt (1999) went further in an early approach and subdivided the overall structure or
society of agents into manufacturing, transportation, and assembly agents. These were further
divided into stock, control, and negotiation agents, which negotiate vertically to the next layer
in each case and horizontally across negotiation agents. During execution, agents can thereby
understand their environment and behavior, and adapt their behavior to pursue a single or multiple
goals.
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Agent system

Protocol Agent characteristics

Perception

Goals

Adaptive

• Homogeneous
• Heterogeneous Communication

Negotiation

Architecture

Internal

Multi-agent

Reasoning Action

• Hierarchy
• Holonic
• Coalition
• Team

• KAOS
• FIPA

• Fixed

• Active
• Reactive
• Consequence-

based

• Single
• Multiple

• Complete
• Partial

• Local
• Network
• Mobile

• Blackboard
• Broker
• Mediator

Learning

Figure 2.4 Classification of agent based systems, adapted from Balaji and Srinivasan (2010)

2.1.3.2 Multi-agent based production - organization

Whereas the communication of the individual agents was considered above, they can be organized
in different structures within a multi-agent system. This is not just about the division of a task
per se, such as the three-part split in Seliger and Kruetzfeldt (1999), but about how an agent
is positioned and operates within the overall system. In this context, Weiss (2001) particularly
emphasizes the flexible and reconfigurable properties of such multi-agent based decentralized
control structures. In a more recent review, Herrera et al. (2020) further outline the relevance of
multi-agent systems for existing and planned real-world applications.

A specific differentiation of multi-agent systems is made by classifying them into hierarchical or
heterarchical structures, depending on the allocation, grouping, and interaction of agents. While
a hierarchy is characterized by a multitude of master-slave relationships, a heterarchy consists
primarily of peer-level relationships (Baker, 1998; Bongaerts et al., 2000). As listed in Table 2.2,
an intermediate option between the hierarchical and heterarchical systems can be reached through
semi-heterarchical and/ or holonic systems (Sallez et al., 2010; Borangiu et al., 2015). For these
intermediate control organizations, some approaches to multi-agent manufacturing systems have
been proposed, that attempt to exploit the distributed capabilities locally and globally to leverage
system performances. Examples are the holonic control approaches PROSA and ADACOR
for distributed manufacturing systems (Van Brussel et al., 1998; Leitão and Restivo, 2006),
ADACOR-2, a further development to enable dynamic configuration in online operation (Barbosa
et al., 2015), or Pollux, whose structure is composed of a control and a reconfiguration mechanism
to reach higher degrees of adaptation (Jimenez et al., 2017). The holonic concept, introduced
by Koestler (1970), defines a holon as an entity that is both an independent whole and part of a
larger system. These holons are characterized by a high degree of autonomy and can act both
independently and in cooperation with other entities. In contrast, the semi-heterarchical approach
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describes a control concept which combines hierarchical control elements with heterarchical
flexibility, enabling both top-down management and peer-level collaboration (Sallez et al., 2010;
Grassi et al., 2020). Later on in this thesis, a semi-heterarchical organisation is included in the
control framework, which draws on the idea of autonomous agents inside of decentralized holons
according to Fischer et al. (2003).

A detailed discussion and illustration of the concepts and their optimization potentials are
presented in Table 2.2. It clarifies that hierarchical systems are particularly suitable for the
optimization of long-term objectives due to their top-down planning and control capabilities. By
the communication of high-level objectives, these can be fragmented, monitored and coordinated
by the agents on the respective levels. In a fully heterarchical system, on the other hand,
fragmentation of goals is only possible to a limited extent due to an high decision autonomy, up
to the complete independence of the agents. This control design is more suitable for short-term
optimization. Such a framework can be described as very reactive due to the autonomy of the
operating agents but suffers from local optimization tendencies and myopic behavior due to the
lack of master-slave relationships. A semi-heterarchical system seeks to combine the advantages
of the two former organizations (Trentesaux, 2009; Sallez et al., 2010; Borangiu et al., 2015).

Aspect Hierarchical system Heterarchical system Semi-heterarchical system

Optimization
focus Long-term objectives Short-term objectives Combines long- and

short-term objectives
Planning and
control Top-down approach Decentralized

with high autonomy
Mixture of centralized and

decentralized control

Goal
fragments

High-level objectives are
fragmented, monitored,

and coordinated

Limited fragmentation due
to high decision autonomy

Combines goal fragmen-
tation and autonomous

decision-making
System
reactivity

Less reactive due to
top-down approach

Highly reactive
and resilient

Balances reactivity
with structure

Optimization
tendencies

More suited for stable,
predictable systems

Autonomous responses
in stochastic systems

Seeks to adapt to
dynamic environments

Behavioral
characteristics

Structured approach with
coordinated efforts

Myopic behavior, local
optimization tendencies

Attempts to mitigate
local optimization

Table 2.2 Organization dependent optimization, according to Trentesaux (2009); Sallez et al. (2010);
Borangiu et al. (2015)

In an early explanatory approach, the combination of hierarchical and heterarchical production
control was considered by Bongaerts et al. (2000), with cooperating agents on different layers to
ensure sufficient system flexibility. An approach that used semi-heterarchical features within a
single control structure and to establish domain-wise clustering of them has been implemented
by Borangiu et al. (2009, 2010) in the field of product-driven scheduling or by Rey et al. (2013)
in the field of flexible manufacturing control. By using a 2-layered semi-heterarchical approach,
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Borangiu et al. fulfilled different objective horizons and obtained a comparably higher resilience
and agility of the system. Rey et al. (2013) was further able to facilitate a increased control level
over the otherwise myopic behavior of the agents.

However, a reduction of system complexity is not only achieved by distributing it among several
agents but also by a breakdown into task-related and structural units. In the fundamental study
by Bertrand et al. (1990), it is described that complex manufacturing systems are typically
hierarchically divided into the levels of flow control at the top level and detailed scheduling at
the level of the production units. By the subdivision into structured units, the disadvantage is
prevented that the individual agents resemble black-boxes and only optimize their associated
subsystem (Monostori et al., 2006). The agents should rather be able to organize themselves in
such a way that they reach goals together and optimize the targeted parameters iteratively by
adaptation. This makes it necessary, however, that each agent, also on the lower levels, receives
global state information to avoid local optima (Philipp et al., 2007).

2.1.4 Section conclusion

In this section, fundamental production structures of job-shop and matrix productions, along
with the multi-agent systems and system organizations, are outlined. The presented approaches
are associated with respective advantages and disadvantages regarding production volume and
variety, which require a detailed evaluation to chose the right organizational model for a specific
use-case. In selecting the later agent-based control approach for this thesis, it is necessary to
address the requirements and objectives outlined in the introduction. These include exhibiting
high adaptability and accommodating increased order volumes and product varieties.

The trend towards a wide variety of products, extending to mass individualization, presents
a challenge due to decreasing batch sizes and volumes. A production system must be able
to manufacture a broader range of similar products despite possible lower demands for these
sub-products. This does not necessarily require new or additional machines, but flexible and
adaptive process flows. Thereby, Hayes and Wheelwright (1984) point out the relationship
between order variety and volume in Figure 2.5, while also considering the costs that would arise
from deviations from standardized procedures. It should be possible to enable certain volumes in
throughput without generating large additional efforts and costs. However, the matrix’s top right
and bottom left segments highlight the struggles, underscoring these as contemporary challenges.

With an increasing degree of freedom within the process flows, the planning and continuous
control in job-shop and matrix production systems become significantly more complex due to
the prevailing non-standardized processes and high modification rates. In multi-agent production
systems, with multiple autonomous mobile robots, a further planning and control complexity
increase can occur. In this context, efficient production planning and control concepts, including
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Figure 2.5 Hayes-Wheelwright Matrix, according to Hayes and Wheelwright (1984)

the use of multi-agent systems and advanced production organizations, can help in coping with
the rising system complexity and the quickly shifting market conditions and customer demands.

2.2 Production planning and control

The last section was about production processes and forms of organization therein. Conversely,
within such organizations, a large number of participants must be managed, which can make
centralized or decentralized decisions, but are still expected to optimize the system as a whole.
For the holistic integration of the subject matter of this thesis, the aspired production control
approach is contextualized within the general production planning and control framework. This
is where the widely used Aachener production planning and control model classifies the so-called
in-plant planning and control within the core tasks of a factory or production, as indicated in
Figure 2.6 (Luczak et al., 1998; Schuh and Kampker, 2012). In addition to the network tasks for
overarching activities shown on the left in this figure and the cross-sectional tasks such as storage
tasks shown on the right, core tasks also include strategic program planning, requirements, and
procurement planning and control. The focus of this thesis is highlighted in grey, comprising the
in-plant production planning and control domain.

Besides the Aachen model, the Y-model of Scheer (1997), and other conceptual frameworks,
Chapman (2006) condensed in-depth production planning and control activities based on the
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Figure 2.6 Aachen production planning and control model, adapted from Luczak et al. (1998); Schuh
and Kampker (2012)

information flows. In this model, the determinants of demand and given resources are embedded
as central influence parameters for production planning. Similar to the Aachen model, the flow of
information begins with strategic production planning. Based on this, the plan is detailed to the
mid-term generation of a master plan and material requirements planning (Chapman, 2006). The
production control then proceeds with the execution of the established plans, typically after order
release (Scherer, 1998; Lödding, 2016). This order release point also represents the transition
from planning to executive tasks (Zäpfel, 2001). The production control comprises operational
tasks involved on the shop floor regarding the processing of an order and includes scheduling,
dispatching, and the ongoing monitoring and tracking of orders and inventory. It is intended to
fulfill given plans and increase the actual throughput, but also to reduce costs and tardiness and
maximize production efficiency (Bertrand et al., 1990; Chapman, 2006; Schuh et al., 2012).

In job-shop, matrix or other dynamic production systems, the given flexibility and loose process
restrictions result in significantly more complex planning and shopfloor control optimization,
if compared to pre-defined process flows. Thus, it is necessary to further classify such tasks
within the control context and other preceding and subsequent tasks need to be considered in
their mutual interaction with regard to their specific responsibility and functional scope.

2.2.1 Basic concepts of production control

For the purpose of reducing the overall system complexity and dividing it into manageable frag-
ments, control problems are often structured into two levels. The top-level primarily comprises
the overall flow of goods, whereas the lower level comprises detailed adjustments within the
individual production units (Bertrand et al., 1990). The individual production control and the
dynamic production planning positioned thereon can be described as reactive closed control
loops as depicted in Figure 2.7. In these control loops the reference values derived from the
respective objectives of the planning and the production control loop are compared with the
actually reached values. If necessary, operational adjustments are made in case of deviations
from the reference values (Pritschow and Wiendahl, 1995).
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Production control loopPlanning control loop

Planning 
controller
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controller

Production 
(process)

ZPref

ZPact
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Figure 2.7 Closed loop production control model, adapted from Pritschow and Wiendahl (1995)

Given the conditions on the shop floor, the production control loop needs to be considerably
faster than the planning loop. As already indicated in the introductory section and especially in
Figure 1.1, this could mean a time-frame ranging from minutes to seconds, including real-time
capabilities (Mönch et al., 2013). In the event of unforeseen circumstances, like a machine
failure, the production control must have the capability to reallocate semi-finished orders to
alternative options promptly, ensuring robust processes and order completion without delays
(Pritschow and Wiendahl, 1995). The so-called dispatcher, which carries out production control
tasks, has the closest range of impact to production and must react as first instance to process
deviations. Thus negative effects for the total production should be contained by the dispatcher
and options for the optimization of the current production should be sought. Likewise, the
dispatcher receives immediate feedback about production, but not complete information about
the total production state as it might be available to the scheduler (McKay and Wiers, 2003).

Considering these issues, it is crucial to define dispatching strategies that improve the deci-
sion making accuracy in production control. As such, both combinatorial and continuous
approaches, including linear and non-linear methods, play a central role. Also they can be
further distinguished into linear and non-linear approaches, which also including methods such
as gradient-based search or simple methods. With the combinatorial methods, a distinction is
made between exact (such as branch-and-bound, or dynamic programming) and approximate
methods (Baker, 1998; Reddy and Nagesh Kumar, 2020). An example of an exact method is
the application of mathematical optimization to identify the optimal solution for a problem.
However, these problems are often NP-hard, leading to an exponential increase in computational
efforts as the problem size grows (Klemmt et al., 2009). In contrast to heuristics, this can result
in significantly longer computation times to generate an executable action, hindering the ability
to respond in real-time. This has already been countered by decomposition methods, but these do
not necessarily promise a fast finding of an optimal solution due to the prior splitting. In addition,
such methods have difficulty dealing with discrete event parameters and with multi-variable
environments (Coello et al., 2007). For these reasons, in-depth consideration will not be given to
mathematical optimization. Instead, the further focus will be on heuristics, which may facilitate
near-optimal decision-making and higher generalizability in operations (Fuchigami et al., 2018;
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Kallestad et al., 2023).

2.2.2 Heuristics control and optimization strategies

A heuristic defines a methodology to find an analytical and acceptable solution to a problem
despite an incomplete information set and limited system knowledge as well as a short time
horizon. In this context, the priority-rule heuristic serves as a baseline for problem-solving,
which, however, does not guarantee an optimal solution to be found. Rather, the advantage resides
in finding fast and feasible solutions even for large-scale problems, for which mathematical
optimization and other modelling methods would require significantly increased computation
times (Kolisch and Hartmann, 1999; Klemmt et al., 2009). The following sections begin with
an explanation of the basic heuristic approaches based on priority rules in Section 2.2.2.1.
Subsequently, meta-heuristic methods, which attempt to find optimal solutions within a problem
solution search space, and hyper-heuristic methods, which attempt to find a solution within a set
of heuristics, are explained in Sections 2.2.2.2 and 2.2.2.3.

2.2.2.1 Priority-rule based heuristics

Priority-rule based heuristics can be differentiated into construction and improvement heuristics.
The former starts without an initial elaborated order sequence in the case of scheduling and
adds one order per iteration to the processing list. The so-called dispatching rules such as first
in first out (FIFO), last in first out (LIFO), and other rules can be assigned to this category
and are widely applied in practice (Schneider and Kirkpatrick, 2006; Schuh and Schmidt,
2014). A heuristic serves as an approximation for finding a solution, which can satisfy given
constraints and is significantly more efficient and faster in its computation than finding an
optimal solution (Zimmermann, 2008; Epitropakis and Burke, 2018). Thus, as an example, in the
field of semiconductor job-shop processes, conventional dispatching rules are commonly used
construction heuristics, which can cope with the fast-paced and flexible manufacturing processes
(Pinedo, 2012; Waschneck et al., 2017; Nasiri et al., 2017).

The right dispatching rule significantly affects a production system’s performance. For example,
under utilizing a bottleneck resource can hinder the entire system’s efficiency, a responsibility
falling on the dispatcher who typically only plans for the immediate and next job of a machine.
This necessitates a balance between reactive dispatching and predictive scheduling approaches in
dynamic processes (McKay and Wiers, 2003). While predictive scheduling can reduce tardiness
in systems with machine failures (Mehta, 1999), finding the right parameters is challenging and
must be regularly updated for unforeseen events to maintain efficiency. Conversely, reactive
scheduling can entirely rely on dispatch rules, recalculating priorities for each order post-event
based on current production status and order details (McKay and Wiers, 2003; Ouelhadj and
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Petrovic, 2009). This necessitates the quick derivation of clear sequences for material and
product flow, taking into account resource- and order-related events as categorized by Vieira
et al. (2003) and Ouelhadj and Petrovic (2009).

• Order related: rush orders, order cancellations, due date changes, orders arriving early or
late, order priority changes, order cycle time changes, etc.

• Resource related: machine failures, operator illness, unavailability or failure of tools,
load limits, etc.

To calculate the priorities of individual orders, it is possible to use all available information about
the order and its production parameters. The exact calculation can be carried out on the basis
of pre-existing rules or on the basis of custom specifications and specific process conditions. A
non-exhaustive but thoroughly representative list of potential parameters to calculate and derive
the specific order priority is provided in the following breakdown, which was adapted from
Wiendahl (1997), Bergmann et al. (2014), and Lödding (2016).

• Order related: local/ global arrival time, local/ global processing time, due date, order
tardiness (or remaining time), externally defined order priority (rush order)

• Resource/process related: setup cost, setup time, buffer length, processing cost, storage
cost

Based on these criteria, a large number of widely used dispatching rules was embedded into
production processes, which evaluate essential operational parameters and allow quick conclu-
sions to be drawn about the priority of the orders and the corresponding order sequence. In
this context, the use of the aforementioned priorities is applied in several production tasks that
require fast responsiveness. Such tasks can be lot sizing, resource allocation, sequence design,
and order release (Selke, 2005; Herrmann et al., 2021). In these tasks, appropriate processing
and dispatch sequences are generated after the occurrence of an event described above and the
parameters mentioned. Potential target parameters can be machine-centered utilization, but
also process-centered such as the reduction of the maximum or average makespan. Further, the
evaluation can also be order-centric such as reducing the maximum or mean tardiness (Sculli
and Tsang, 1990; Pinedo, 2012; Xie et al., 2019).

Depending on the variable and objective measure under consideration, other process indicators
are prioritized. Time-based dispatching rules such as the shortest-processing-time rule, i.e.,
optimize flow times or work-in-progress levels, but neglect other important parameters such as
minimizing order tardiness (Blackstone et al., 1982; Gonzalez et al., 2010). Table 2.3 presents
a non-exhaustive overview of essential and basic dispatching rules and associated parameters.
Throughout the evaluation phase in Chapter 8, a selection of the listed dispatching rules will be
implemented for the benchmarking and validation of the developed artifact.
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Category Name Description Parameter Type

Entry-time
oriented

FIFO First in first out Global system entry/
local buffer entry

Static

LIFO Last in last out

Process-time
oriented

SPT/ LPT Shortest / longest
processing time

Local/ global order
processing time

TSPT Truncated SPT Orders above a pre-determined
time are given priority

Date oriented
EDD Earliest due date Time until the order must

be completed

ERD Earliest release date Time, when the order was
released into the system

Priority
oriented CP Customer priority Orders with the highest priority

are processed first

Setup time
oriented MST Minimum setup time Machine setup time

for the respective order Dynamic

Waiting time SWT/ LWT Shortest/ longest
waiting time

Total order waiting time in
the system

Table 2.3 Popular dispatching rules, adapted from Blackstone et al. (1982); Kaban et al. (2012);
Bergmann et al. (2014)

A further distinction is drawn by the subdivision into static and dynamic dispatching rules.
Accordingly, priority values such as the arrival time of an order into the system or the local
buffer are static and do not change accordingly (i.e. FIFO). The waiting time, on the other hand,
increases with time and must be considered again locally with each entry of a new order and may
require dynamic rescheduling (Kaban et al., 2012). In addition to basic single-parameter and
single-objective rules, other multi-parameter dispatching rules have emerged that aim to optimize
multiple parameters concurrently. As demonstrated by Le-Anh and De Koster (2005) or Paul et al.
(2018), among others, multi-parameter approaches require higher efforts for initial adjustments,
but outperform basic single-parameter rules regarding the simultaneous optimization of order
waiting times and machine utilization. In addition to multi-parameter concatenation, the coupling
of dispatching rules by mathematical operations is feasible and might lead to improvements in
performance (Durasević and Jakobović, 2019). However, the disadvantages of the static and
individualized rule design prompt the question of how to optimize the solution-finding process,
thereby justifying the transition to the more complex meta-heuristics.
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2.2.2.2 Meta-heuristics

Meta-heuristics serve as higher-level approximation strategies that control the solution process,
aiming to find near-optimal solutions by guiding lower-level heuristics. In this case, the optimal
solution is obtained by tailoring the subordinate heuristics and includes techniques such as
tabu search or simulated annealing (Jones et al., 2002). Such meta-heuristic approaches have
in common that they can be implemented as abstract problem solvers, which can be adapted
to various problems (Glover, 1977; Voß, 2008). The procedure generally initiates with the
determination of a first solution, from which the best one is selected, and then a search is made
for other possibly better ones in the vicinity of the first solution. Thereby, in simulated annealing,
the deterioration rate is continuously reduced in the course of the iterations to avoid local optima.
Nevertheless, there is no meta-heuristic that, in average, performs better than all others in every
problem. Thus, the rule selection at the beginning of the problem solution always remains,
which is also referred to as the no free lunch theorem (Wolpert and Macready, 1997). However,
one issue in multi-agent systems is a potential local optimization of the system, which may be
insufficient on a global scale. Here, random actions can contribute to breaking out of this pattern,
to discover potentially better solution spaces (Voß, 2008).

2.2.2.3 Hyper-heuristics

Unlike meta-heuristics, hyper-heuristics do not explore the problem’s solution space. Rather, they
employ a set of predefined low-level heuristics, as shown in Figure 2.8, or create new heuristic
rules from basic elements. As a top-level algorithm, the hyper-heuristic solves optimization
problems by combining underlying low-level heuristics into an effective operational sequence
(Burke et al., 2010, 2013). The term hyper-heuristic was originally defined by Cowling et al.
(2001) and it was initially implemented using a machine learning algorithm to determine an
optimal action order for the sales summit problem. In recent years, machine learning and deep
algorithms are often applied as top-level algorithms, which can flexibly adapt to the optimization
task and thus exploit their domain knowledge and the capabilities of the underlying heuristics in a
case-specific manner. This allows for a design process automation and to leverage the knowledge
of an on- or offline machine learning algorithm as an optimizer to derive near-optimal scheduling
and dispatching policies based on established and comprehensible heuristics (Cowling et al.,
2001; Burke et al., 2010, 2019; Drake et al., 2020).

2.2.3 Section conclusion

The previous section summarizes fundamental principles of planning and control optimization,
covering differnt kinds of heuristics. While priority rule-based heuristics typically focus on
optimizing a single parameter in a greedy manner, meta-heuristics offer near-optimal solutions
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Figure 2.8 Hyper-heuristics principle, adopted from Cowling et al. (2001); Swiercz (2017)

and surpass conventional heuristics in solution quality. Especially for mid- and long-term
strategic optimization tasks, meta-heuristics are well suited to generate appropriate results. In
an operating production environment, in which fast decisions up to real-time capabilities are
required, meta-heuristics and sophisticated mathematical optimization methods, would require
too much time and computation resources. Besides, they require in-depth knowledge and are
complex in initialization (Zimmermann, 2008; Rauf et al., 2020; Zhou et al., 2020).

Priority-rule based heuristics, in contrast, can be implemented quickly and are easy to understand,
but they do not provide globally optimal solutions for optimization problems and have difficulties
in adapting to other problems or problem instances (Burke et al., 2013). Nevertheless, due
to their low capacity and technical know-how requirements as well as fast response times to
find an acceptable solution, they are broadly used, also in large-scale systems (Chen and Matis,
2013). However, myopic patterns occur in such systems, which can be prevented by predictive
and global planning (Ouelhadj and Petrovic, 2009). Fine-tuned heuristics are also limited in
their ability to optimize various performance measures simultaneously (Grabot and Geneste,
1994) and imply a low degree of coordination at the global level if the information is processed
at a local scale (Uzsoy et al., 1993; Holthaus and Rajendran, 1997). In practical settings, it
has been noted that the development of advanced scheduling heuristics typically spans several
years. Conversely, evolutionary hyper-heuristics demonstrate a markedly faster development
pace (Geiger et al., 2006). For these reasons, too, hyper-heuristics were introduced that combine
low-level heuristics with top-level strategies to make selections on a problem- and scenario-
specific basis. Nevertheless, with the increasing scope of the problem, these also reach their
limits under decreasing performances (Nasiri et al., 2017).

Building on the limitations and potentials of these control approaches, it becomes clear that
exploring alternative methods, particularly those leveraging the capabilities of machine learning,
could provide a solution for autonomous production processes (Weichert et al., 2019; Kang et al.,
2020). However, machine learning methods should not be viewed exclusively as a separate
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optimization approach, it can also function as a complementary combination with meta- and
hyper-heuristics.

2.3 Basic concepts of machine learning

Machine learning approaches can be classified into the three fields of supervised, unsupervised,
and reinforcement learning as listed in Table 2.4. Whereas supervised learning algorithms
require a labeled set of data and perform task-specific classification, unsupervised learning
performs data-driven clustering based on an unlabeled set of data. In contrast, a reinforcement
learning based agent reacts to its environment on a continuous basis, issuing corresponding
instructions for action, making it highly adaptable to dynamic conditions in real-time production
environments. An RL agent learns and operates through direct interaction with its environment,
thereby effectively managing uncertainty and establishing itself as an attractive active online
optimization method for complex and unpredictable production scenarios (Dey, 2016; Sutton
and Barto, 2017; Waschneck et al., 2018). Therefore, the subsequent sections will explore the
fundamental concepts of reinforcement learning, encompassing both the basic optimization
principles and its extensions into deep reinforcement learning.

Supervised learning Unsupervised learning Reinforcement learning

Principle Task-driven Data driven Reaction driven
Input Labeled data Unlabeled data Current state-action pair
Output Classification Clustering Next action

Table 2.4 Overview of machine learning methods (Dey, 2016; Sutton and Barto, 2017)

2.3.1 Basic of reinforcement learning

Reinforcement learning is characterized by its particularly dynamic learning in interaction with
its environment. Based on recently collected and analyzed sensor data, reinforcement learning
leverages data-driven decisions, that can be made in real-time, and promotes a responsive and
adaptive system design (Han and Yang, 2020). It learns on a trial-and-error basis without
requiring a previously collected database or human guidance, and is able to flexibly adapt to
uncertain conditions (Sutton and Barto, 2017). This enables volatile and complex production
processes to be successfully managed and, in particular, enables resilient production operations
even in the case of unexpected events such as machine failures (as in Huang et al., 2020). Based
on a trial-and-error concept, the agent explores the problem space without the intervention of a
supervisor. Unaware of the consequences of its actions, the agent must learn which action to
perform in a particular state to maximize the expected rewards. This action-observation loop
of performing an action and then obtaining a new state and reward is illustrated in Figure 2.9.
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The reward itself does not only reflect the immediate action impact but also long-term related
elements in the form of future incoming rewards for potential further actions. Since every action
at time t also affects future states, the agent must be able to estimate transition effects. The
exploration-exploitation dilemma is often mentioned in this context, where a choice must be
made between exploiting the current knowledge or discovering a potentially more beneficial
(or worse) policy. It is precisely this principle of future rewards as well as the trial-and-error
principle that distinguishes reinforcement learning from other machine learning methods (Sutton
and Barto, 2017).
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Figure 2.9 Agent - environment interaction loop, adapted from Sutton and Barto (2017)

Reinforcement learning can be further distinguished into dynamic programming, Monte-Carlo
methods, and temporal difference learning. These approaches, as well as associated properties,
are listed in Table 2.5. Dynamic programming decomposes a task into small sub-tasks and
requires a perfect model of the environment. Monte-Carlo methods do not require such a model,
but they update the policy only after an entire learning episode. In contrast, temporal difference
learning combines the advantages of the previous methods and, as a model-free method, does
not require a model of the environment and is updated after each step. This flexibility makes
it possible to learn strategies through interaction with the environment without the need for
detailed prior problem or process knowledge (Sutton and Barto, 2017). For this reason, temporal
difference learning will be focused in the remainder of this thesis. In the later implementations
and evaluation, the agent will not receive a production model, as this would be inflexible and
scenario-specific. Instead, it is model-free and can deal with stochastic rewards and transitions,
as described in Mnih et al. (2015) and Sarker (2021).

Dynamic
programming

Monte-Carlo
methods

Temporal difference
learning

Needed model Perfect one None None
Policy update After every step After every episode After every step

Table 2.5 Overview of reinforcement learning methods (Sutton and Barto, 2017)
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2.3.1.1 Temporal-difference learning and value-based algorithms

An agent that operates based on temporal difference learning updates its policy p after each
action. It is assumed that the underlying problem in this thesis can be described as a Markov
decision process (Malus et al., 2020). This implies that the Markov assumption is met and that
future states only depend on the present state. Being unaware of the environment, dynamic
processes, and consequences of its actions, the agent must figure out which decision leads to the
highest possible reward in its current state. To facilitate this, the agent’s behavior is driven by its
policy, which is adjusted based on the reward signal with each action and constitutes the core of
the reinforcement learning algorithm. Depending on the state s, it determines the behavior of the
agent and outputs corresponding action instructions. The policy is thereby updated based on the
acquired experience and incrementally completes the task or adapts to a new problem (Sutton
and Barto, 2017).

At this point, a further segmentation into value-based and policy-based algorithms can be
established. As illustrated in Figure 2.10 on the right, policy-based algorithms map an explicit
representation of the actual policy and output a single action value. Thus, the policy would
be parameterized directly, which is particularly suitable for continuous action spaces (Doya,
2000). Value-based algorithms, on the other hand, exploit a discrete action space but do not
operate directly on a policy but process the output of a value function. The policy can be derived
directly from this value function, for example by selecting the action that yields the highest
value. In the further course, the focus will be on value-based algorithms due to their relevance
for pre-defined discrete dispatching action spaces and their proven superiority in planning and
control related production research, as detailed in the first publication (see Section 4). For an
exhaustive introduction into these basics, one can refer to the fundamental reinforcement learning
literature by Sutton and Barto (2017).

Value-based Policy-based

st,1

st,2

st,3

st,1

st,2

st,3

Q(st,a1)

Q(st,a2)

Q(st,a3)

at

Figure 2.10 Value- and policy-based neural networks

For value-based reinforcement learning, the reward function, as an immediate gratification, and
the value function determine the learning process and significantly affect system dynamics. The
reward function quantifies the scenario-specific reward and can be designed on the basis of
various production objectives. It could, for instance, be designed to reward fast throughput times,
but also to penalize incorrect actions. The value function does not only consider the current
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reward but also future states that are associated with a long-term evaluation horizon of the agent.
Starting from its initial state st , the agent can perform an action at and subsequently observes
a new state st+1. In that state st+1, the agent again has possible options for action that have
implications for the rewards in the states st+1+n. The value function considers those very future
rewards with their likelihood of occurrence and calculates the resulting cumulative reward. For
this reason, states with low rewards may have a high value because they promise high future
rewards, or vice versa. This is why decisions about actions should be made based on the value
function rather than on direct rewards. However, values are much more difficult to calculate
and the value function must be determined iteratively to make it more accurate with each action
performed (Sutton and Barto, 2017).

2.3.1.2 Optimization model

To clarify the implementation in Chapter 7, based on Sutton and Barto (2017), the following
subsection briefly outlines central learning mechanisms in temporal difference reinforcement
learning. One of these is bootstrapping, which allows estimating the values for future states
of a system after each step based on the prior gained experience and thereby extracted system
knowledge. Beginning with Eq. 2.1, it is indicated how the total expected and cumulative reward
G can first be calculated based on the expected rewards at a given step t. With the Monte Carlo
method, this would mean waiting until the end of the episode to calculate and update the applied
policy. In temporal difference learning, bootstrapping (as in dynamic programming) is applied
at this point, and the actual total expected reward Gt+1 is replaced by the value function as an
estimate for the next state St+1. Here g denotes the discount factor and determines the relevance
of the future estimates. g = 0 would mean that only instantaneous rewards would count, whereas
g = 1 would assign the same relevance and influence to all future rewards.

Gt = Rt+1 + g Rt+2 + g2 Rt+3 + ...

= Rt+1 + g (Rt+2 + g Rt+3 + ...)

= Rt+1 + g Gt+1

= Rt+1 + g V (St+1) Bootstrapping

(2.1)

Next, the value function estimates how beneficial it is for an agent to be in a particular state.
According to the received rewards and the estimate of the next state, the value function (see
Eq. 2.2) is adjusted by means of the temporal difference error (first line). This can be seen
as an estimate of how far the agent was mistaken with his original estimate. On the basis of
the temporal difference error, the original estimation of the value function (2.1/2.2 in Eq. 2.2)
can be adjusted accordingly. The impact of the alteration by the temporal difference error dt

in this context is also driven by the learning rate factor a . The future reward Rt+1 in this case
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corresponds to the reward received by the agent and will be denoted by r in the further course.

[1.] dt = r + g V (St+1)�V (St)

[2.1] V (St)  V (St)+a dt

[2.2] V (St)  V (St)+a [r + g V (St+1)�V (St)]

(2.2)

In either case, the goal of an agent should not only be to be able to estimate the value function
correctly or very accurately but also to maximize the received rewards over time by selecting
optimal actions. At this point, therefore, a differentiation needs to be drawn between the state-
value (see 1. in Eq. 2.3) and the action-value function. The action-value function is also called
Q-function and estimates the quality of executing an action a in a state s. Thereby, p describes
the used policy of an agent.

[1] Vp(s) = IEp [Gt
��St = s]

[2] Qp(s,a) = IEp [Gt
��St = s,At = a]

(2.3)

The state value function Vp(s) can be described as the cumulative return of rewards for a state s
considering all possible actions a. Mathematically, this is the sum of all possible action values
q(s,a) times their probability p(a

��s) for choosing the respective action in state s, as given in Eq.
2.4 below (Sutton and Barto, 2017).

Vp(s) = Â
a

p (a
��s)Qp(s,a) (2.4)

To guarantee an optimal decision-making process, the agent should follow the maximum state-
and action-value functions, which promise maximum rewards and respective state and action
values (see Eq. 2.5).

[1] V⇤(s) = max Vp(s)

[2] Q⇤(s) = max Qp(s,a)
(2.5)

In reinforcement learning , this is where the greedy policy is frequently mentioned and introduced
as a potential policy. The greedy approach explicitly reinforces the relationship mentioned in Eq.
2.5 to always execute the optimal next step that yields the highest reward. Thus, Eq. 2.4 can be
adapted accordingly, since the probabilities are no longer demanded, and the maximum action
value has the now decisive influence on the state value. This modified relationship is outlined in
the following equation.

V⇤(s) = max Qp(s,a) (2.6)
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Substituting Eq. 2.6 into 2.1, G and V can be replaced accordingly as outlined in Eq. 2.7.

Q(st ,at) = r + g max Qp(st+1,at+1) (2.7)

Eq. 2.7 represents a modified form of the Bellman equation. This results in the iterative
relationship of formula 2.2 and constitutes the following principle of Q-learning.

[1] Q(st ,at)  Q(st ,at)+ad

[2] Q(st ,at)  Q(st ,at) + a [r + g max Q(st+1,at+1) � Q(st ,at)]
(2.8)

Q-learning is a model-free, reward-based reinforcement learning approach, used to learn the
best action in a given state within a Markov decision process. Based on this Q-learning update
principle, a potential state-action Q-value table can already be iteratively updated for a specific
problem. In such conventional Q-learning, a Q-table stores all quality Q-values for executing
an action in a certain state. However, in a large or multidimensional problems, a q-table grows
quickly and becomes difficult to process (Arulkumaran et al., 2017). Therefore, deep learning
based reinforcement learning approaches have emerged in recent years in various applications
Alzubaidi et al. (2021); Gronauer and Diepold (2021). The integration of a neural network
eliminates the dependency on a Q-table and tries to combine the interactive adaptive learning
of reinforcement learning with the processing properties of neural networks (Sutton and Barto,
2017). The following section outlines how neural networks can be integrated into reinforcement
learning to represent the policy in a more compact and robust form.

2.3.2 Deep reinforcement learning

When comparing the general framework of the deep reinforcement learning algorithm in Figure
2.11 with the conventional one in Figure 2.9, there are no significant differences. The agent
continues to receive the state St and the reward Rt to determine an appropriate action. After
executing the action, the next state and reward are observed, and the agent-environment interac-
tion loop continues (Sutton and Barto, 2017). The main difference lies in the processing of the
incoming state through the neural network (van Hasselt et al., 2016).

With its first implementation in 2013, Mnih et al. demonstrated how deep neural networks can be
deployed to leverage reinforcement learning to solve high-dimensional problems with superior
performances. The neural network functions to approximate the action-value function, where
the input layer receives either a raw or pre-processed state vector. This vector is then processed
through hidden layers, culminating in the output layer, which suggests an action. In Q-learning
contexts, employing a deep neural network is known as deep Q-learning or the deep Q-network
(DQN).
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Figure 2.11 Neural network-based policy approximation in deep RL

2.3.2.1 Neural networks

Regarding the composition of such a network, there are several possible network architectures
available with highly different characteristics and possible use cases (Alzubaidi et al., 2021).
Three of the most common architectures are the (deep) feed-forward network, the recurrent
network, and the long-short-term-memory network as illustrated in Figure 2.12. In a feed-forward
network, all neighboring layers are connected and the (processed) information is only passed
forward. In this case, the neurons of the recurrent neural network also take into account past
experience in particular but suffer from a vanishing gradient that decreases exponentially with
time. Long-short-term-memory networks provide a solution to this problem by introducing
gates that help preserve information (van Veen, 2017; Sherstinsky, 2020). The neural network is
important for the performance of a reinforcement learning agent, as it enables it to recognize
complex patterns and create operating policies. Its ability to generalize and adapt to different
environments contributes significantly to the efficiency and accuracy of operational decision
making (Mnih et al., 2015; Alzubaidi et al., 2021). Thus, selecting the network type is a crucial
aspect of the reviews in Chapters 4 and 5, corresponding to Publications 1 and 2.

Deep Feed Forward Recurrent Long/ Short Term MemoryDeep feed forward NN Recurrent Long/short term memory

Figure 2.12 Types of neural network
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2.3.2.2 Algorithmic DQN peculiarities

Eq. 2.8, introduced in Section 2.3.1.2, for the update of Q-values can also be implemented in
the field of deep reinforcement learning. Referring to the DQN, the action a that promises the
maximum Q-value within the output layer is adopted. The maximum action value Q thus directly
implies the optimal strategy for the agent in a particular state s. In the output layer, each index
is assigned a fixed action, which the agent executes if selected. In contrast to Q-learning, in
which a single table entry is updated, a large number of affecting parameters are updated during
the DQN update process. This can lead to a process of the so called catastrophic forgetting,
which, although a good policy has already been learned, again ends in a poor performance of the
agent. Due to the resulting risk of instability during operation, if the online network is used for
the computation of the target and the Q-values at the same time, an additional target network is
deployed in parallel during the computation process. The target network shares the same network
structure as the online network but contains different network weights q�, as outlined in Eq. 2.9.
Li denotes the loss to update the neural network (Mnih et al., 2015). This equation utilizes the
target network to compute the temporal difference target based on the new state st+1.

L(q) = IEst ,at ,st+1,r

⇣
rst ,at + g max

a02A
Q(st+1,a0,q�)

| {z }
T D�target

� Q(st ,at ,q)

| {z }
T D�error

⌘2

(2.9)

Where:

• q : Online network parameters
• q�: Target network parameters

The online network is in turn used to determine the action to be executed by the agent and thus
to observe the occurring new state st+1 after execution. In addition, the online network is used to
calculate the action value of the state s and the action a (see Figure 2.13). If the targets were
updated continuously, the operational stability would not be positively affected. For this reason,
it is only updated every C steps to prevent unstable behavior (Mnih et al., 2015). During the
update, the weights of the online network are transferred to those of the target network, which is
also called a hard update.

For the training, an experience replay proved to be efficient, which will be implemented in the
further course of the thesis. During training not only the current/next state, action, and reward
pair is included, but with each update step, a mini-batch is retrieved from the memory. The
advantage of this batch replay is that not only current experiences are internalized on the basis
of the received state data, but also past state changes or experiences are always reconsidered.
Although the DQN in its initial form demonstrated superior performances in numerous papers,
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Figure 2.13 DQN operating with target network (Arwa and Folly, 2020)

there are different possibilities for further controlling and leveraging the learning process. On the
one hand, events considered to be particularly relevant can be prioritized within the experience
replay (Schaul et al., 2016). On the other hand, the performance of the algorithms can be
significantly improved by tuning the parameters. This training and optimization process is
explained in more detail in the third publication in Chapter 7.

2.4 Chapter conclusion and initial research gap

This chapter delved into the central elements of production processes, also focusing on their
planning and control principles. It also presents an in-depth explanation of reinforcement
learning, emphasizing its combination with deep neural networks. This introduction is essential
for laying the scientific groundwork of the thesis. The chapter concludes with a brief summary
of two identified research gaps. These gaps are discussed more thoroughly in Chapter 3 and
are addressed in the first two publications, detailed in Chapters 4 and 5, following the DSRM
approach.

Deep reinforcement learning based production systems. Deep reinforcement learning
has proven effective in a variety of research fields, including the communications sector (Luong
et al., 2019), economics (Mosavi et al., 2020), and electrical utilities (Mishra et al., 2020). Despite
these successes in related research fields, the specific application of deep reinforcement learning
in production systems remains to be reviewed and structured. This aspect is also reflected
in the reviews by Cadavid et al. (2019), Kang et al. (2020), and Arinez et al. (2020), which
explore general machine learning in production but do not concentrate on deep reinforcement
learning. In current job-shop and matrix production systems, primarily conventional rule-based
heuristics are used, which enable a fast and acceptable decision-making process, but are inferior
to advanced heuristics for global operations and multi-factorial requirements (Greschke, 2016).
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To identify appropriate dispatching mechanisms, Gonzalez et al. (2010) suggests that approaches
like dynamic rule identification could be promising.

Deep reinforcement learning, particularly, could facilitate dynamic control of problems with large
state spaces and achieve high adaptability. For practical applications, it’s a significant advantage
that neither extensive process or production knowledge nor a process model are required (Sutton
and Barto, 2017). However, a thorough exploitation of deep reinforcement learning’s potential in
production systems remains to be done and initially necessitates a detailed review. This review
should not only focus on the specific fields of application and the algorithms and parameters
used, but also highlight the resulting benefits and risks. Consequently, the first review aims to
provide a comprehensive overview of the opportunities and challenges associated with deep
reinforcement learning based production systems.

Deep learning based production optimization organisation. In addition to the applica-
tion of advanced deep reinforcement learning, the question arises as to how decision-making
production agents are structured and how they interact with each other. In Gronauer and Diepold
(2021) a comprehensive analysis of multi-agent systems employing deep reinforcement learn-
ing (DRL) is presented, highlighting an increasing emphasis on multi-agent systems. However,
various inter- and intra-organizational as well as algorithmic aspects of production agents may sig-
nificantly influence the flexibility, adaptability, and resilience of a production system. Emerging
methodologies, such as the semi-heterarchical integration of hierarchical and heterarchical sys-
tems, may improve production flexibility and scalability, as emphasized by Balaji and Srinivasan
(2010).

Concludingly, there’s a gap in focused analysis on the organization, collaboration, and training
of deep learning based production agents. With the increased use of modern concepts like swarm
intelligence and the expansion of machine interfaces and data sources, it’s crucial to understand
the deployment and collaboration of these agents. Thus, the scope of the second review extends
beyond deep reinforcement learning to include other deep learning based approaches like genetic
algorithms and simulated annealing, also focusing on their organizational integration.
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Reflecting the motivation and basics chapter, advanced production models and control mech-
anisms have recently emerged to cope with growing complexity and an increasing number of
process interdependencies. This has led to an increased use of intelligent, data-driven, and au-
tonomous approaches in production, which contribute significantly to dynamic decision-making
(Weichert et al., 2019; Kang et al., 2020; Peres et al., 2020). After outlining fundamental concepts
in the previous chapter, the following sections thoroughly describe the integrated publications in
this thesis and contextualize them in an interrelated manner in Section 3.1.

This chapter and the thesis are structured into two primary sections, each having a distinct
focus. The first section, which includes the first bundle of publications detailed in Section 3.2,
concentrates on analyzing the research field and developing a taxonomy. The aim is to foster a
comprehensive understanding and in-depth exploration of the subject area. Subsequently, the
second section, along with the second bundle of publications presented in Section 3.3, focuses
on constructing and empirically evaluating the developed artifact. This section emphasizes the
practical application and validation of the theoretical concepts established earlier

Each bundle of publications addresses specific sub-research questions within the broader context.
The first bundle of publications, focusing on S-RQ1, examines the general requirements for
complex production environments, particularly their planning and control aspects. It prioritizes
two aspects, firstly, the production-oriented structuring of the deep reinforcement learning
research field, and secondly, analyzing the organizations and agent configurations in general
deep learning based production systems. The objective is to identify specific research needs and
to derive corresponding design requirements. Building on this, the second bundle of publications
concentrates on implementing the identified requirements to address the two remaining sub-
research questions, S-RQ2 and S-RQ3. S-RQ2 targets reducing decision and optimization
complexity, incorporating insights from reviews, identifying trends, and advancing proven
concepts. This includes considering potential algorithms, flexible layouts, multi-agent concepts,
and other design elements. The objective is a non-specific scenario implementation to enhance
the generalizability of the developed control strategy, aligning with S-RQ3.

3.1 Research paradigm

In the recent past, a variety of methodologies have emerged to optimize production, many
falling under the Industry 4.0 paradigm. This shift extends beyond mere process automation and
notably incorporates autonomous operations and streamlined data management. In this context,
the enhanced computing capabilities of individual resources have become increasingly crucial.
Rather than relying solely on central or cloud computing resources, this approach involves
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distributing decision-making to enable local autonomy of single or multiple agents. As a result,
tasks across different domains can be allocated to specific agents (Bongaerts et al., 2000; Lee and
Kim, 2008; Buckhorst et al., 2022). This strategy aligns with the concept of intelligent agents,
mediators, or facilitators that autonomously make decisions based on their intrinsic (intelligent)
logic or strategy (Christensen, 1994; Cowling et al., 2001). In this field, machine learning and
deep learning oriented decision frameworks have gained traction, as outlined in reviews by Kang
et al. (2020) and Peres et al. (2020).

Building upon deep learning driven and autonomous decision-making, this thesis aims to address
the specified research questions and achieve the outlined objectives through a combined bundle
of publications. These publications are organized in a multi-layered structure, guided by the
DSRM, as depicted in Figure 3.1. The initial step of the DSRM, encompassing the general
problem identification and motivation, is covered in the introduction and therefore not included
separately. In the subsequent step, the first two publications identify a specific research gap and
collect essential information to establish the foundational requirements for the artifact design.
The third publication addresses these foundational design aspects, focusing on the design and
development of the deep learning based control framework. The fourth and fifth publications
are dedicated to the empirical evaluation of this control framework, including its application in
real-world scenarios and a comprehensive financial analysis.
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control framework for modular production systems“

Publication 2
“Neural agent-based 
production planning 

and control: 
an architectural review“
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“Deep reinforcement 
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literature review“
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“A deep reinforcement 
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requirementsBundle of publ. 2

Overall research question:
How can a data-driven and autonomous control optimization be designed for adaptive production systems?
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Figure 3.1 Elaboration of the fundamental research base
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The initial objective is to understand, frame, and structure the application of deep learning within
the production domain, with a sharper focus on deep reinforcement learning. This involves
synthesizing earlier methodologies and comparing them in depth based on their application
categories, associated algorithms, and optimization objectives. Furthermore, the integration
and orchestration of participants in a multi-agent system emerge as a central research field,
requiring thorough investigation. As such, the initial two publications of this thesis focus on
two core aspects, first, an algorithmic analysis of deep reinforcement learning, and, second, an
organizational study of deep learning based production.

The first publication highlights applications of deep reinforcement learning solutions in the
production domain, emphasizing the superiority and scope of value-based reinforcement learning
algorithms in production control and other real-time applications, such as robotics assembly. In
the second publication, a comprehensive architectural study systematically examines prevalent
deep learning based approaches, encompassing but not limited to deep reinforcement learning, in
production planning, control, and forecasting. These approaches are then categorized based on
their agent-specific and organizational structures. Using the devised taxonomy, a notable deficit
of integrated multi-agent systems is identified. Within these multi-agent systems, no embedded
approach is found that intrinsically combined multiple optimization methods within an agent.
The objective of the embedded approach is to tackle the problem at the level of an individual agent
by decomposing the whole task, thereby reducing its complexity, and subsequently identifying
an optimal solution out of the smaller solution spaces. Therefore, based on the algorithmic and
organizational review and the agent-based system taxonomy, the first two publications facilitate
the clarification of the first sub-research question S-RQ1 based on the dominant algorithms and
main agent organizations and orchestrations. These findings substantially narrow the specified
research domain and drive the development of the artifact in subsequent publications.

In the second bundle of publications, during the design, development, and evaluation phase, sub-
research questions S-RQ2 and S-RQ3 are addressed. Beginning with the third publication, a multi-
embedded agent control optimization is implemented. The modularity allows a product- and
process-bundling of resources which can be further customized. Regarding the chosen algorithm,
a sequential embedded hyper-heuristics structure is applied. This combines deep reinforcement
learning with conventional heuristics, which, among other advantages, increases the learning
speed and proactively prevents the execution of faulty actions. Furthermore, a conceptual
learning framework is developed that can reuse trained neural networks to reduce training times.
Initial testings confirm the superiority of the approach over conventional dispatching rules.

In the fourth publication, the hyper-heuristics based control approach is further optimized to
address both technical and customer-specific process parameters. Several testings demonstrated
the superiority over commonly used dispatching rules and the approach was successfully inte-
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grated into a hybrid test-bed. Both in the simulation and in the real environment, order tardiness
and throughput times were significantly reduced, with increased control stability. Training
and control robustness, in the face of volatile work-in-progress levels and machine failures, is
demonstrated, ensuring consistent and seamless management across a multi-layer system with
multiple manufacturing and distribution cells.

In the fifth publication, a techno-economical evaluation of the presented control framework is
undertaken. Thereby, financial indicators such as revenue and costs are interconnected to order
parameters to evaluate the proposed production control. Testings reveal that financial advantages
can realized with reduced delay penalties and an improved processing of rush orders. Addition-
ally, the capability of the system to incorporate tailored services was underscored, facilitating the
emergence and successful integration of novel business prospects. It is demonstrated that the
representative reward function proficiently addressed both technical and economic objectives.

3.2 Bundle of publications 1 - identification and structuring of the research gap

The first bundle of publications emphasizes the preliminary organization of the research domain,
the extraction of distinct design guidelines, and the extraction of pivotal production challenges
associated with the application of deep learning, particularly deep reinforcement learning. In this
context, a hybrid strategy is adopted. First, a theoretical construct is formulated, contributing to
the resolution of the research objectives underpinning this thesis. Second, exemplary methods
are consolidated, facilitating the refinement of the selected strategy and the conceived artifact.
Correspondingly, the initial two stages of the DSRM, the problem identification and the deduction
of artifact-oriented objectives, are initiated and addressed. The insights gained not only offer
specific, tangible benefits for the construction of the artifact but are also shared with the scientific
community. This dissemination takes the form of combined reviews of algorithms and their
applications, as well as a taxonomy for agent-based systems. The practice-oriented evaluations
also invoke the application domain from Hevner et al. (2004). Thereby, the development of the
taxonomy expands the current knowledge base, which, when combined with both the relevance
and rigor cycle, constitutes a crucial informational foundation for artifact construction.

While Xu et al. (2018), Arinez et al. (2020), and other scholars provide a comprehensive
perspective on Industry 4.0 and artificial intelligence in the production domain, there exists a
notable gap. A detailed and systematic examination of deep learning and deep reinforcement
learning within production was not thoroughly conducted. To bridge this gap and provide a
clear understanding, a tailored procedure is indispensable. This is crucial for the methodological
exploration of the subject and is detailed in Section 3.2.1. The central outcomes of this exploration
are detailed in publications 1 and 2, as summarized in Sections 3.2.2 and 3.2.3, respectively.
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3.2.1 Review methodology

A systematic review of the related literature serves to establish a scientifically sound research
basis. The objective is to clearly identify the current state of research and to allow the derivation
of potential research objectives to be addressed later in this thesis. Based on this, the review
serves to address the first DSRM step of Peffers et al. (2007) from the previous subsection. For a
detailed content analysis of the publications within the review scope, the guidelines provided by
Tranfield et al. (2003) and Thomé et al. (2016) are adopted. This not only facilitates an optimized
consolidation of conducted research to refine the latest state-of-the-art contents but also enhances
the general evaluation and classification of the publications under consideration. To conduct
both, a systematic and representative review, the eight-step approach, proposed by Thomé et al.
(2016) was deployed (see Figure 3.2).

Step 1: 
Planning and

formulating the
problem

Step 2: 
Searching the

literature

Step 3: 
Data gathering

Step 4: 
Quality 

evaluation

Step 5: 
Data analysis
and synthesis

Step 6:
Interpretation

Step 7: 
Presenting

results

Step 8: 
Updating the

review

Figure 3.2 SLR review steps, Thomé et al. (2016)

The motivation and planning of the research problem are mentioned in the introduction and will be
continued in Chapter 6. Further steps are the development of the literature database, the collection
of relevant data a the quality assessment, which is followed by the analysis, interpretation nand
presentation. For the respective SLR throughout this thesis, the same taxonomy framework,
adapted from Cooper (1988), is always applied and is illustrated in Figure 3.3.

Characteristic Categories

(1) Focus Research outcomes Research methods Theories Applications

(2) Goal Integration Criticism Central issues

(3) Perspective Neutral representation Espousal of position

(4) Coverage Exhaustive Exhaustive and selective Representative Central / pivotal

(5) Organisation Historical Conceptual Methodological

(6) Audience Specialized scholars General scholars Practitioners / politicians General public

Figure 3.3 Pursued taxonomy framework

In accordance with the introduced taxonomy, the survey primarily (1) focused on the gathering of
relevant research results and applications, with a particular focus on the current state of research
in the field of deep learning based production as well as deep reinforcement learning based
production planning and control. The overall goal (2) was to provide a coherent representation
of the results achieved, the algorithms used, and generate prospects for future research efforts,
thereby highlighting the key research questions. Each analysis is based on a neutral (3) and
exhaustive (4) examination, which takes into account all publications in the respective research
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area. Furthermore, it is intended to analyze current concepts that allow the derivation of design
goals and requirements not only for the readership but also directly for this thesis (5). The
primary target audience is specialized scholars (6), although a broader scientific and practical
community is not excluded. This is particularly reflected in the inclusion of analyses that extend
beyond technical aspects, encompassing financial ratios, resilience, and other relevant metrics.

The following subsections provide summarized reviews on the first two publications. The former
primarily focuses on exploring the modalities of deep reinforcement learning implementation,
including state and action design, as well as possibilities for reward function configurations
(Section 3.2.2). The latter aims to analyze the interactions among multiple agents, drawing
conclusions about the various implementations of such systems and their optimal interaction and
organization (Section 3.2.3).

3.2.2 Publication 1 - deep reinforcement learning based production systems

In this first publication, the applicability and performance of deep reinforcement learning in
production systems was investigated. Out of a total of 1,255 papers, 120 were identified, primarily
in the fields of production process planning, scheduling, and assembly. It is noteworthy that the
relevance of the publications, measured by their number, increased from three in 2017 to 69 in
2020.

Based on the analysis, it appears that deep reinforcement learning is already being applied in
diverse production settings, and often outperformed conventional methods, fostering a data-
driven, flexible process while minimizing implementation efforts and dependency on expert
knowledge. Deep reinforcement learning, through its inherent adaptability, learning behavior,
and real-time response capabilities, reveals a high potential to address these challenges in
assembly planning, robotics and other domains. It is emphasized that deep reinforcement
learning continuously interacts with its environment and quickly responds to received sensor
data which promotes a prompt and unbiased adaptation to system changes.

Nevertheless, the existing literature poses significant research gaps. A comprehensive scenario
coverage or detachment from specific problem scopes was often neglected which leads to a lack
of actionable guidelines. It is evident that many approaches were implemented in small-scale
and simulated contexts, and their generalizability remains unexplored. Illustratively, as a concise
example - while real-world tests were conducted in fields such as assembly, similar endeavors
are missing in production planning and control. Therefore, the prevailing emphasis on restricted
methodologies potentially decreases system efficacy, which potentially hinders the overarching
progression toward smart production systems. Also, like in Rummukainen and Nurminen (2019),
the lack of concrete implementation guidance must be criticized, which could provoke a high
dependence on standardized algorithms. Given this perspectives, four major research imperatives

48



3.2 Bundle of publications 1 - identification and structuring of the research gap

emerge, that can guide future research.

1. Reduce production optimization complexity through scale reduction

2. Prioritize the translation of simulated results to actual production settings

3. Master the creation and use of standardized, yet adaptable frameworks

4. Emphasize the advancement of methodological techniques and the incorporation of novel
training strategies

In summary, this publication exposes the significant impact and added value of deep rein-
forcement learning for its application in production environments. It is revealed that various
conventional methods, that are currently widely used in real systems, were outperformed. Never-
theless, it becomes evident that additional efforts are necessary to implement this specific form of
deep learning on a broader scale, beyond the widely considered job-shop scenarios, particularly
in production planning and control applications. This and the previous insights obtained in this
first publication are synthesized in the following working hypothesis.

Deep reinforcement learning is well-suited for handling complex and dynamic
optimization problems due to its high adaptability. However, current research
lacks a control framework that consolidates research findings and facilitates
flexible performance optimization in various production scenarios.

Beyond the solely algorithmic perspective, this publication initially highlights aspects that shed
a first light on the importance of organizational design, especially in the context of collaborative
multi-agent architectures. It is this organizational consideration that foregrounds the interaction
and collaboration of autonomous agents which will be addressed in more detail in the next
publication.

3.2.3 Publication 2 - organizational deep learning production perspectives

The previous publication highlighted the dominance, flexibility, and broad applicability of deep
reinforcement learning in the production systems. Having outlined its benefits, an extended
algorithmic focus is now given to the production planning and control domain in order to better
understand integrative approaches in this specific domain. In doing so, this publication focuses
on the classification of deep learning based approaches, their organizational composition, and
deployment of agents, together with potential benefits and challenges. In doing so, the focus
shifts from an algorithmic-based exploration to a more integrated and comprehensive review.

The obtained findings suggest that generic deep learning based agents are increasingly deployed
in versatile setups and are also increasingly adopted in embedded or multi-agent scenarios.
This not only serves to increase performance compared to conventional benchmarks but also
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to minimize dependency on human expertise through combined algorithmic and collaborative
problem-solving. To classify the different approaches, a taxonomy was devised that systematizes
the underlying concepts and compares their advantages and disadvantages. The framework
primarily differentiates between two dimensions, the number of agents and the number of
utilized algorithmic methods, which are summarized in subsequent sections.

First, the monolithic or plain approach (1) primarily focuses on implementation speed and
high optimization specification. In this case, an intelligent agent or other decision-making
instance is implemented to solve the entire problem. A fast deployment and minimal intrinsic
dependencies allow initial efforts to be significantly reduced. This efficiency enables the rapid
evaluation of prototypical use cases, from which valuable empirical values can be derived.
Despite the efficiency of this method, scaling problems can occur in large-scale implementations.
In contrast, the embedded approach (2) aims to divide optimization problems into separate
segments to either streamline their processing or increase performance. In this context, complex
problems can be subdivided into manageable subsets. The decomposition of demand forecasts
can be exemplified by segregating them into long-term and short-term components, which
are subsequently aggregated. Beyond this parallel computation, algorithms can operate in a
sequential manner, where the output of an initial algorithm serves as input for the succeeding
one. For instance, an analytical model’s prediction of a base rate can be employed as an input to
an artificial intelligence model, which is then augmented by a dynamic component. The multi-
agent approach (3), on the other hand, emphasizes the combination and interaction of multiple
agents. These agents, often having a plain intrinsic design, act as independent, autonomous
entities. Every agent receives environment data, that is consistently acquired from the associated
system without an overwhelming influx, thus facilitating streamlined processing and enhancing
adaptability and reactivity in dynamic production environments. A hybrid exploitation (4) of the
aforementioned approaches (2-3), integrating diverse organizational and interaction modalities,
could potentially compensate for the weaknesses inherent to the individual strategies.

However, no approach currently combines multi-agent systems with embedded control opti-
mization. The analysis further reveals that in multi-agent systems, intensified monitoring of the
learning behavior of the agents involved is essential to prevent simultaneous learning instabilities
and mitigate the potential negative effects resulting from the dynamic and non-stationary behav-
ior of the agents. Within more complex multi-agent systems, the prospect of sequential agent
training was analyzed. Although this sequential approach offers methodological advantages, it
probably increases the overall training duration. It proves to be a strategic need to further investi-
gate the synergistic effects of multi-agent systems to reduce optimization complexities but also
to strengthen the robustness of learning paradigms. Additionally, the challenges delineated in the
preliminary study were reconfirmed in this extended analysis within the broader deep learning
domain. Only one embedded and one multi-agent scheduling approach were implemented in
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a real or hybrid environment (Kumar and Dimitrakopoulos, 2021; Zhou et al., 2021). Hence,
future research endeavors should focus on the following pivotal aspects.

1. Systematic categorization and implementation of multi-agent based methods and selective
exploitation of their potential for dynamic and distributed control systems

2. Integration of embedded approaches to synergistically exploit their advantages, aiming to
reduce decision-making complexity.

3. Encapsulate the production system’s organization within the multi-agent system design to
further reduce decision-making complexity

It is imperative to recognize that sophisticated methodologies, including multi-agent systems,
and the organizational taxonomy should not be examined in isolation. Instead, they necessitate
an integrated execution to facilitate precision-oriented and seamless deployment. While deep
learning methodologies have manifested in impressive outcomes, most of them were realized
within constrained single-agent frameworks. Notwithstanding the trend towards systems with
larger scales, like matrix systems, the intricacies of advanced deep learning based production
systems remain largely unexplored, leading to the following working hypothesis of the second
publication.

Although there is a noticeable trend towards embedded and multi-agent systems,
it manifests an imperative need for more integrative efforts. These should
combine advanced approaches in a synergetic manner to leverage potentials
and adequately reflect the production structure, striving to minimize control
and optimization complexity.

3.3 Bundle of publications 2 - addressing the research gap

The second bundle of publications builds on the findings from the first two and aims to empiri-
cally answer the sub-research questions S-RQ2 and S-RQ3, seeking to address the hypotheses
postulated in the previous publications. In particular, it addresses the DSRM phases 3 to 5,
design and development, demonstration, and evaluation. In this regard, an iterative development
approach is proposed that, according to Hevner (2007), emphasizes the design cycle and seeks a
continuous improvement process. Drawing from literature reviews, and informed by the formu-
lated taxonomy, along with discerned research gaps and challenges, specific research imperatives
can be delineated. These directly affect the development of the artifact and, according to the
relevance cycle of Hevner (2007), have multiple implications for subsequent implementation
and application of the artifact in the simulation and real-world system.

It was found that the use of deep learning in production environments, in particular deep
reinforcement learning, can lead to significant performance improvements and high robustness
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and adaptability in a variety of applications. However, results in the field of production control,
a particularly dynamic and operation-critical discipline, were mainly achieved in simulations
with specific and restricted problem and optimization scopes. Moreover, only a few approaches
were realized in multi-agent systems, and no approach has yet been implemented in a modular
system. From an algorithmic perspective, the standard DQN is commonly employed. While it
performs well in straightforward applications, it struggles with increased state dimensions and
optimization complexities in larger systems.

The analysis identifies a notable research gap, underscoring the need to create a central deep
learning artifact that facilitates an adaptive control operation and optimization. Such an artifact
must be flexible enough to be adaptable to various performance metrics and encompass a
wide application scope. Thereby, the objective is to address the second and third sub-research
questions, the reduction of decision and optimization complexity, and the improvement of the
production systems’ generalizability. For this purpose, a control approach was designed that
takes into account the identified research gaps and prevailing system design requirements from
the first bundle of publications. This further ensures a holistic inclusion of the specifications
derived from the first sub-research question. The control and optimization complexity in this
thesis, as derived from the prior analysis, can be structured through three perspectives, a structural
(1), an organizational (2), and an algorithmic perspective (3). Subsequently, a delineation of
these perspectives is presented. This aims to secure a coherent integration and comprehensive
understanding of the artifact’s thematic classification and significance within the context of the
thesis.

Structural perspective (1): In recent years, as analyzed in the first two publications, most
deep learning approaches focused on job-shops, while matrix systems were only occasionally
considered. Although both exhibit a high degree of adaptability, i.e. by adding or re-ordering
machines, job-shops offer limited structural synergies between production resources and product
groups. In these, machines are generally arranged in a function-oriented manner, rather than
in a product-specific manner (Groover and Jayaprakash, 2016). While this leads to a high
degree of process and product individuality, it also results in low throughputs, extended transport
distances, and increased control complexities (Zhang et al., 2019). This gives rise to the potential
for modularization in order to optimize performance indicators such as throughout times or
different (Scholz-Reiter et al., 2011). These modules can be designed in a variety of ways,
with some emulating specific functionalities of a job-shop, while others integrate a variety of
functions for manufacturing large parts of product groups. Implementing these modules also
limits the scope of optimization, allowing significant scalability of the control approach through
constrained decision space within every module. This advantage is particularly evident from the
organizational perspective.
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Organizational perspective (2): Although studies such as Mayer et al. (2021) have con-
ducted an initial investigation of deep learning based control systems for a variety of machines,
a deficit can be identified in current research regarding advanced organizational structures.
Previous approaches have focused primarily on one level of organization involving machine
processes, such as sequentially arranged machines in a flow shop (Heger and Voss, 2021). A
more sophisticated approach that considers both production and distribution processes at different
levels can contribute significantly to the decomposition of process complexity and performance
optimization (ElMaraghy et al., 2012b). In this context, specific and relevant systems and target
parameters at the respective sub-levels could be used for decision-making, leading to modules
in which manufacturing-specific capacities and control policies can be efficiently applied and
bundled. By using standardized modules, collective optimal policies can be trained which, in
contrast to centralized systems, can continue to be used after system changes and do not require
re-training.

It also became apparent that only a few multi-agent systems have been implemented due to the
high control complexity. The number of agents used was also often limited, such as 5 autonomous
mobile robots in Malus et al. (2020). This emphasizes the need for an approach that distributes
complexity across both the overall organization and individual entities, thus reducing the training,
control, and optimization complexity. This could not only realize organizational benefits but
also increase scalability through the use of flexible agents. Logistical performance indicators
could be directly leveraged by adding or removing the agents. Such distributed intelligence
enables optimization at a high level of modular granularity, while still taking global objectives
into account.

Algorithmic perspective (3): The application of genetic algorithms or simulated annealing
techniques, which find near-optimal solutions, has already gained acceptance in deep learning
based production as indicated in the second publication. However, these approaches prove to be
sub-optimal for real-time environments (Rauf et al., 2020; Zhou et al., 2020). Therefore, a novel
approach is presented as the third perspective of this thesis. It addresses the combination of deep
learning methodologies and conventional heuristics, an aspect that has not yet been addressed
in deep learning based production control research. The central focus is on differentiating
potential action policies from optimal action policies to address the optimization problem
independently of the underlying process logic. While deep reinforcement learning techniques
operate adaptively in dynamic contexts, conventional algorithms address specific problems in a
precise and efficient manner. Integrating both methodologies into a hyper-heuristic offers the
potential for fundamental adaptability combined with high optimization efficiency in complex
production contexts.

A more comprehensive outline of these perspectives is given in Chapter 6, which seamlessly

53



3 Publications and research paradigm

transitions the results from the first to the second bundle of publications. The previously
mentioned perspectives are combined in this thesis in the form of an artifact that enables a
simulative evaluation of the deep learning based control approach. The control framework is
structured in multiple layers and integrates several agents, each controlled by a hyper-heuristic.

Considering the artifact construction, the methodological challenge arises of how to systemati-
cally design the control framework. This question is discussed in Section 3.3.1, followed by the
scientific publications of the artifact design in Section 3.3.2 as well as the two validation and
add-on publications in Section 3.3.3 and 3.3.4.

3.3.1 Artifact construction methodology

As an essential part of the demonstration and evaluation phase of the DSRM, the simulated control
framework is of particular importance for the research objective and the later communication. A
simulation aims to replicate a system and contains dynamic processes in a model to derive insights
that can be transferred to reality. It also permits the replication of systemic interrelationships
and allows the evaluation of new production strategies in various disciplines. Due to the defined
scope and the regulated system boundaries, process risks can be reduced and monitored, which
makes it possible to make conclusions about the efficiency of the tested strategies as early as in
an initiatory phase. This not only reduces the technical but also the financial risk by preventing
undesired developments and the inefficient use of cost-intensive real systems (Choi and Kang,
2013; White and Ingalls, 2018).

The simulation model reflects the underlying rationale and purpose of the system under consid-
eration. For instance, it allows for the analysis of material flows, the testing of consequences
to machine failures, or the evaluation of production ramp-ups through modified parameters.
In a discrete event simulation, the production system is described by a static state, which is
modified through dynamic changes, such as resource shifts, completion of a production process,
or random dynamic events such as new customer orders. The simulation iterates until a target
value, such as the predefined simulation time, is reached, after which it can provide the data
basis for conducting performance analysis. This analysis can identify bottlenecks, inefficiently
used resources, or excess inventory, and contributes to an iteratively increasing system efficiency
while adapting real-world parameters (Fowler et al., 2015; Qiao and Wang, 2021). Furthermore,
simulation allows the evaluation of system robustness through targeted disturbances and, in the
context of a cost- and expenditure-specific consideration, the estimation of system adaptability
for changed layouts (Kurinov et al., 2020; Pinho et al., 2021). This not only increases system
performance but also promotes a deeper understanding of the system, especially in systems
with numerous interdependencies in which system participants act in an increasingly synergetic
manner (Uhlemann et al., 2017; Mourtzis, 2020).
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To create such a simulation, a number of software solutions are available, including Arena,
Siemens Plant Simulation or AnyLogic. In this thesis, an exiting simulation based on the open-
source and Python-based simulation environment SimPy is used. In particular, this approach
supports the dissemination of the artifact according to the DSRM, as many researchers and
practitioners already rely on Python. The forthcoming deep learning based control artifact and
the underlying SimPy simulation are freely available, inviting for further research efforts. SimPy,
compared to alternative software, is notably lightweight yet compatible with Python libraries,
notably TensorFlow. Furthermore, with its inherent dicrete event traits, SimPy permits state
extraction for deep reinforcement learning algorithms and executes discrete actions upon process
alterations.

The SimPy framwork has already fostered applications in numerous other fields, including
telecommunications (Tinini et al., 2020), supply chain management (Pinho et al., 2021), and
many others, in which the computational efficiency of SimPy was demonstrated. Additionally,
in the field of deep reinforcement learning based production control, some approaches were
already successfully implemented using SimPy, as in Kuhnle et al. (2020), Samsonov et al.
(2022), and Schuh et al. (2023). This highlights the flexibility and suitability of SimPy as a
training environment for deep learning models. As deep reinforcement learning does not require
an existing data-set due to its learning-by-doing training, it does require the availability of a
dynamic and interactive training environment.

Rather than an exact replication of a specific system, the simulation is intended to serve as a
tool for addressing the research objectives, especially S-RQ2 and S-RQ3. This should ensure
the integration and training of the deep reinforcement learning algorithm and enable an iterative
optimization cycle. Ensuring sufficient generalizability, scalability, and transferability within the
simulation is crucial and must be considered during its design.

3.3.2 Publication 3 - a deep learning based simulation framework

The third publication represents the central control artifact design and development step and
demonstrates its control capabilities. In this phase, the developed dynamic production control
framework is integrated into a SimPy simulation. In contrast to other approaches, no specific
scenario was focused on, but the framework was designed to enable a wide range of modular
production scenarios.

The first two publications and the associated working hypotheses highlighted the need for an
integrative solution that takes into account the identified structural (1), organizational (2), and
algorithmic (3) perspectives in complexity reduction. In line with the first working hypothesis
from the first publication, a deep reinforcement learning algorithm was chosen to provide both
a real-time optimization design as well as an adaptive learning mechanism. To address the
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limitations of centralized organizations and single-stage approaches, which require a complete
re-training of the neural networks after each layout adjustment, a double-stage exploration of the
control paradigm was initiated. The focus was not primarily on optimization, but secondarily on
finding an efficient and reliable solution for the integration of the process logic. By means of
a hyper-heuristic and the definition of a set of low-level heuristics as the underlying decision
instance, it became possible to select appropriate actions already in an untrained state, without
intermediate action-masking steps. This contributes to avoiding strong fluctuations in learning
stability, especially in multi-agent systems. Although the rules may not initially be optimal, but
they are fine-tuned in their sequence during the course of training, always depending on the
current production and order states. The basic algorithmic model also offers the flexibility to
adjust a wide range of target parameters through the integration of diverse low-level heuristics
rule sets. As such, the hyper-heuristic is characterized by a high degree of adaptability to
structural changes.

According to the second publication, the hyper-heuristic is applied to multiple agents within the
modules. Each agent has its own neural network for decision-making and can retrain, evolve,
or simply apply its policy. The neural network only receives those state inputs that are relevant
to the module in which it operates. In addition, the reward function is specifically aligned to
optimize pre-defined parameters. Agents are seamlessly integrated into the framework, and
mechanisms for automatic agent generation that configure the required parameters such as state
input sizes and hidden layers are incorporated. This approach not only promotes dissemination
by minimizing coding barriers but is also the first to develop a multi-agent based and semi-
heterarchical framework that automatically differentiates between manufacturing and distribution
agents. The framework supports the integration of agents at different levels, while always keeping
the optimization scales within a manageable scope by structurally and organizationally dividing
them into modules and assigning them to different agents. As a result, during the course of all
simulations, each agent exhibited clear optimization tendencies.

In the further course of the analysis, the focus was particularly on the training process, whereby
a positive development of selected parameters, such as the reduction of lead time, was observed.
Another central topic was the explainability of the chosen actions, mainly in the context of the
considered order backlogs. Since deep learning models are often perceived as black boxes, the
structuring in discrete optimization and decision spaces allowed for increased comprehensibility.
This allowed, for instance, a detailed analysis of the actions taken when dealing with priority
orders. The robustness of the framework was demonstrated while adhering to the given optimiza-
tion parameters, especially with regard to its ability to handle both machine failures and volatile
and significantly increased order volumes.

Also for the first time in deep learning based production control, there was a focus on additional
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customer-centric optimization parameters, including the processing of priority and rush orders,
which are gaining importance in times of prime services. Such customer-centric parameters
were integrated into the reward function and merged with technical parameters to yield a single
local and global objective indicator. In an initial and truncated benchmarking, the order-specific
multi-criteria optimization was eventually confirmed. From this publication, the following
summary statement is derived, wherein CoBra signifies ControlBrain and alludes to the control
framework features rooted in deep learning.

The CoBra framework integrates structural, organizational, and algorithmic
perspectives, enabling a threefold control complexity reduction. For the first
time, multi-stage processes are integrated into a self-configurable and deep
learning based control framework. The underlying hyper-heuristic is char-
acterized not only by its robustness and explainability but also by its high
adaptability and the ability to optimize freely definable parameters.

3.3.3 Publication 4 - benchmarking and real-world transfer

The fourth publication builds upon the developed control framework with a primary objective of
extensively demonstrating and critically evaluating the artifact. Within this scope, a production
system composed of three layers, comprising the manufacturing layer and two distribution
layers, was implemented. Established dispatching rules, like the FIFO rules, presently prevalent
in the semiconductor industry, served as benchmarks. Throughout the training phase, notable
robustness was exhibited, particularly against pronounced fluctuations in WIP figures. In addition,
the achievement of improved performance was facilitated by a comparatively simple and modular
designed reward function. This function begins by normalizing all the considered influencing
variables using a min-max normalization. Following this, each variable is individually weighted
within its respective value range using powers. Consequently, outliers, like a notably delayed
product, are given more emphasis compared to the majority of the key figures that have lesser
decision criticality.

In the benchmarks, the hyper-heuristic surpassed an expanded set of benchmark rules (including
FiFo local, EDD, etc.) in nearly all categories, thereby improving average performance metrics.
Notably, tardiness was reduced by almost 40%. Beyond the performance metrics, the stability
of operational optimization was evidenced by the consistently stable rewards received. It was
evident that the rules currently in use exhibit notable variations in achieving individual and
multiple objectives. Yet, the hyper-heuristic consistently delivers high optimization results
irrespective of the order parameters. This consistency is reflected again in the substantially
higher rewards. In addition, its scalability was emphasized, adjusting a distribution agents
demands merely a fraction of the training effort in contrast to a full retraining, as observed in
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centralized control strategies.

Finally, the absence of real application scenarios, noted in the initial two publications, was
addressed. The methodology, previously executed in the simulation, was transferred to the
hybrid testing environment within the Center for Industry 4.0. This center emulated a multi-stage
production, wherein the pre-existing simulated machines were transitioned into modules. System
outputs, inputs, and storage were instituted with two operational distribution levels at the top
level. Even with the subordinate processing of less crucial orders, the high and medium-priority
orders were managed more effectively in the real setting.

The proposed hyper-heuristic control framework exhibits robustness and opti-
mization superiority over common dispatching rules, optimizing real-world
performance indicators through its decentralized decision-making.

3.3.4 Publication 5 - economic performance evaluation

Previous publications considered numerous technical process parameters but lacked an financial
evaluation. There is an interest, especially in corporate practice, in analyzing innovative solutions
from an economic perspective. This allows a more comprehensive assessment of the business
challenges of a potential integration and consequently a more accurate assessment of the overall
risk. Thereby, an advantage of deep reinforcement learning, as described in the previous
publication, is the possible integration of a wide range of metrics that are or can be directly or
indirectly linked to financial measures.

In this publication, therefore, a novel techno-financial analysis for deep learning based production
control was carried out. Customer priority and delivery urgency information were augmented
to the order entries, and revenues were dynamically calculated via base and additional fees or
penalties. Subsequent examination of the lead time and delay of these orders resulted not only
in increased revenue, but more importantly in a 6% increase in profits due to a significantly
higher rate of orders processed on time. Despite significantly higher rates of penalties on
priority and rush orders, profits from this segment increased significantly, in particular, due to a
targeted process focus on these particularly profitable orders. Particularly in times of a growing
offering of individual customer services, opportunities are opening up to identify additional
sources of revenue. However, this leads to increased process and decision complexity. Thereby,
the hyper-heuristic control framework offers an effective approach to integrate customer and
finance-oriented metrics into production with high efficiency and optimization performance.

Through the integration of techno-financial parameters into the control frame-
work, taking into account customer-centric services, additional revenue
streams and profits can be generated in an easy manner.

58



3.3 Bundle of publications 2 - addressing the research gap

In the following, the algorithmic analysis is presented in Chapter 4, succeeded by the organiza-
tional examination in Chapter 5. Following the transition detailed in Chapter 6, the artifact is
delineated in Chapter 7. It is then subjected to a technical evaluation in Chapter 8, and a financial
evaluation in Chapter 9.
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ABSTRACT
Shortening product development cycles and fully customizable products pose major challenges
for production systems. These not only have to cope with an increased product diversity but also
enable high throughputs and provide a high adaptability and robustness to process variations
and unforeseen incidents. To overcome these challenges, deep Reinforcement Learning (RL)
has been increasingly applied for the optimization of production systems. Unlike other machine
learning methods, deep RL operates on recently collected sensor-data in direct interaction with
its environment and enables real-time responses to system changes. Although deep RL is
already being deployed in production systems, a systematic review of the results has not yet
been established. The main contribution of this paper is to provide researchers and practitioners
an overview of applications and to motivate further implementations and research of deep RL
supported production systems. Findings reveal that deep RL is applied in a variety of production
domains, contributing to data-driven and flexible processes. In most applications, conventional
methods were outperformed and implementation efforts or dependence on human experience
were reduced. Nevertheless, future research must focus more on transferring the findings to real-
world systems to analyze safety aspects and demonstrate reliability under prevailing conditions.
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4.1 Introduction

Nowadays, companies must cope with mass customization and shortening development cycles
that pose major challenges for smart production facilities. They must be capable to operate in
highly uncertain market conditions and satisfy the increasingly challenging standards of product
quality and sustainability in the shortest possible time. To meet these challenges, Germany
launched the Industry 4.0 initiative in 2013 to support the development of flexible and adaptive
production systems (Kagermann et al., 2013). Although the initiative’s potential and possible
impact is huge, Xu et al. (2018) indicate that many of today’s Industry 4.0 implementations
are not yet applying corresponding advanced techniques such as machine learning. This also
becomes apparent in Liao et al. (2017), who states that while modeling, virtualization, or big
data techniques are increasingly in the focus of production research, machine learning is not.
This impression has already been countered by Kang et al. (2020), who highlighted the broad
application landscape of machine learning in modern production and their ability to reach
state-of-the-art performance. Going further into detail, our review specifically considers deep
Reinforcement Learning (RL) as an online data-driven optimization approach and highlights its
beneficial properties for production systems.

The field of machine learning consists of (semi-) supervised, unsupervised, and reinforcement
learning. Whereas supervised and unsupervised learning require a (pre-labeled) set of data, RL
differs in particular by the learning in direct interaction with its environment. It learns by a
trial-and-error principle without requiring any pre-collected data or prior (human) knowledge and
has the ability to adapt flexibly to uncertain conditions (Sutton and Barto, 2017). Considering
these flexible and desired features in modern production, our paper aims to capture the current
state-of-the-art of real or simulated deep RL applications in production systems. Besides, we
seek to identify existing challenges and help to define future fields of research.

Already in 1998, Mahadevan and Theocharous (1998) demonstrated the potential of RL in
production manufacturing and its superiority in inventory minimization compared to a Kanban
system. In recent years, since neural networks are emerging, neural network based RL reached
impressive success with Google DeepMind’s AlphaGo (Silver et al., 2017), and is now increas-
ingly being transferred to production systems. Based on recently collected sensor data, deep RL
enables online data-driven decisions in real-time and supports a responsive reaction-driven and
adaptive system design (Han and Yang, 2020). It can increase production stability and robustness
and reaches superior performances compared to state-of-the-art heuristics (as in Li et al., 2020).

However, in production related reviews, deep RL has often been considered only in the context
of other machine learning techniques as in Kang et al. (2020) or Arinez et al. (2020) and is not
mentioned in an industrial intelligence context in Peres et al. (2020), lacking in consolidation
of the already obtained results. This is also apparent in other technology fields such as energy
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(Mishra et al., 2020), process industry (Lee et al., 2018), or tool condition monitoring (Serin et
al., 2020).

In contrast, other disciplines have consolidated the obtained research findings of deep RL and
highlighted its adaptive behaviour and the ability to generalize past experiences. This includes
communications and networking (Luong et al., 2019), cyber-physical-systems (Liu et al., 2019),
economic applications (Mosavi et al., 2020), internet of things (Lei et al., 2020), object grasping
(Mohammed et al., 2020), power and energy systems (Cao et al., 2020), robotics (Khan et
al., 2020), robotic manipulations tasks (Nguyen and La, 2019), and dynamic task scheduling
(Shyalika et al., 2020), which reflects the broad range of research and underlines the ongoing
focus on implementing deep RL applications to significantly increase the adaptability and
robustness of the respecting processes.

To the best of our knowledge, this is the first attempt to capture general applications of deep
RL in production systems. We intend to provide a systematic overview of ongoing research to
assist scholars in identifying deep RL research directions and potential future applications. The
review also serves practitioners in considering possible deployment scenarios and motivate them
to transfer research findings to real-world systems. For this purpose, we attempt to answer the
following research questions.

• RQ1: What are deep RL applications in specific production system domains?

• RQ2: What are current implementation challenges of deep RL in production systems?

• RQ3: What future research needs to be conducted to address existing challenges of deep
RL in production systems?

The paper is structured as follows. Section 2 describes the basics of deep RL and gives an
overview of essential algorithms. Section 3 defines the methodology and the conceptual frame-
work that guides the literature review. Section 4 answers RQ1 based on the conducted review
and provides the basis for Section 5, which analyzes specific barriers and challenges (RQ2) and
outlines fields for future research to address these (RQ3). Section 6 discusses the results and
provides managerial insights and given limitations. Finally, a conclusion is given in Section 7.

4.2 Introduction to reinforcement learning

Reinforcement learning (RL) is a subcategory of machine learning and distinguishes itself from
supervised and unsupervised learning in particular by the trial and error learning approach in
direct interaction with its environment (Sutton and Barto, 2017). It does not need supervision or
a pre-defined labeled or unlabeled set of data and comes into consideration whenever challenges
have to be met in dynamic environments that require a real-time and reaction-driven decision-
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making process. It is able to generalize its previously learned knowledge (Wang et al., 2020) and
enables an online adaptation to changing environmental conditions by sequential decision-making
(as in Palombarine et al., 2019).

In RL, the agent learns a policy that outputs an action according to the received state as illustrated
in Figure 4.1. To achieve this, conventional RL often employs a Q-table to map the policy,
which requires discretization of state and action spaces. The Q-table lists Q-values that quantify
the action quality of performing an action in a given state, which are updated through ongoing
training of the agent. In many cases, Q-learning outperformed several conventional approaches
such as FIFO in flow production scheduling, which reduced makespan, whereby states were
described by machine runtimes and buffer occupancy, and executable actions by unit movements
(Lee and Kim, 2021). Other successful examples are the superior performance compared
to multiple scheduling approaches in an adaptive assembly process (Wang et al., 2020) by
choosing scheduling rules based on waiting queues, interval times, remaining processing time,
and processing status, or the condition-based maintenance control in Xanthopoulos et al. (2018)
that reduced costs compared to a Kanban method by authorizing maintenance actions based on
finished goods, backorders, and facility deterioration states.

action
At

state
St

reward
Rt

Rt+1

St+1
Environment

Agent

Figure 4.1 Agent-Environment Interaction; Sutton and Barto (2017)

However, the required action and state discretization impose the curse of dimensionality in
high-dimensional problem spaces, which causes an exponentially increasing table size and leads
to high iterative computational costs, low learning efficiencies, and degraded performances
(Bellman, 1957). To address this, and as proposed by Lee and Kim (2021), among others,
deep RL attempts to solve this problem by combining the advantages of RL with those of deep
learning. In deep RL, the policy is mapped by a neural network as a function approximator,
which is capable of processing large amounts of unsorted and raw input data (Lange et al., 2012).

(Deep) RL can be further classified into model-free and model-based algorithms. Model-based
algorithms such as the AlphaZero get or learn a model of the environment to predict next values
or states (Silver et al., 2017). In contrast, model-free algorithms neither learn the dynamics of
the environment nor a state-transition function (Sutton and Barto, 2017). Model-free algorithms,
as the major group in this review, can be further classified into policy-based, value-based,
and hybrid algorithms. Policy-based algorithms such as a PPO provide a continuous action
space and try to directly map a state to an action by building a representation of the actual
behavior policy (Sewak, 2019b). In contrast, value-based algorithms such as a DQN learn a
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value function for discrete action spaces to evaluate each of the potential actions (Watkins and
Dayan, 1992). Algorithms like the DDPG utilize a hybrid actor-critic structure which combines
previous methods advantages (Lillicrap et al., 2016). Other possible modifications such as a
prioritized experience replay, which takes particular account of important experiences during
updates, can be integrated into the deep RL framework (Schaul et al., 2016).

Besides basic algorithmic settings, particular consideration is required for the choice of hyperpa-
rameters. The discount factor, which determines the relevance of short-term or distant future
rewards, the learning rate, which determines the balance between learning speed and stability,
and other algorithmic as well as neural network parameters in deep RL strongly affect the final
performance. Specific considerations should also reflect the optimal design of the state/action
space and reward design. Appropriate interference between these can lead to optimal system
behavior and help in the search for optimal control strategies (Sewak, 2019a). In particular, the
reward function must be designed concerning the agent’s objective and system dynamics and
must be able to account for short- as well as long-term outcomes. For further algorithmic insights
we would like to refer to Wang et al. (2020) or Naeem et al. (2020) for an extended introduction
and in-depth analysis of (deep) RL algorithms.

Initially limited to the Atari platform in Mnih et al. (2013), deep RL is being deployed in
an increasing number of applications which benefit from its flexibility and online adaption
capabilities. Potential applications such as smart scheduling benefit from the distributed multi-
agent capabilities and collaborative properties, which could significantly increase robustness
as proposed in Rossit et al. (2019). It makes deep RL being a promising technique to improve
the performance of modern production systems and enable the transition towards industry 4.0.
However, unlike other algorithmic overviews or the general descriptions of machine intelligence
applications in production, the intersection of deep RL in different production system domains
was not specifically covered. To address this gap and highlight the benefits, an representative
review of the intersection might assist to identify individual applications, challenges, and future
fields of research.

4.3 Research methodology

This section outlines the basic literature review process of deep RL applications in production
systems. To ensure a systematic and representative review, we follow Tranfield et al. (2003) and
Thomé et al. (2016) who provide guidelines for the content analysis. This enables a consolidation
and evaluation of existing literature and provides the state-of-the-art in the focused domain at a
given time. The consolidation shall assist researchers and others to identify research gaps and
provides research incentives and managerial insights (Petticrew and Roberts, 2006).

According to the guideline proposed by Thomé et al. (2016), the systematic literature review
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(SLR) can be organized into 8 (iterative) steps. These main steps are outlined sequentially in
Figure 4.2 and will be considered in the subsequent review process.

Step 1: 
Planning and

formulating the
problem

Step 2: 
Searching the

literature

Step 3: 
Data gathering

Step 4: 
Quality 

evaluation

Step 5: 
Data analysis
and synthesis

Step 6:
Interpretation

Step 7: 
Presenting

results

Step 8: 
Updating the

review

Figure 4.2 Eight step approach to conduct a SLR

4.3.1 Review focus

The formulation of the research questions and clarification of the problem, is outlined in Section
4.1. The composition of the review team consisted of the two authors who worked through
each step separately and finally combined their work. To define the scope of the problem and
simplify the review process, the more in-depth planning relies on Brocke et al. (2009) and
follows the associated taxonomy framework by Cooper (1988), Table 4.1. The gray highlighted
cells represent the selection of underlying characteristics of this SLR and the associated goals
and foci. Following the taxonomy, this SLR focuses on presenting existing applications and

Characteristic Categories

(1) Focus Research outcomes Research methods Theories Applications

(2) Goal Integration Criticism Central issues

(3) Perspective Neutral representation Espousal of position

(4) Coverage Exhaustive Exhaustive and selective Representative Central / pivotal

(5) Organisation Historical Conceptual Methodological

(6) Audience Specialized scholars General scholars Practitioners / politicians General public

Table 4.1 Taxonomy framework of the SLR

achieved research results of deep RL in production systems (1). Its goal (2) is to present existing
research in an integrative and synthesizing manner while highlighting central future application
and maturity issues. We try to maintain a neutral perspective (3) and provide a representative
coverage of our focused content (4). The organization of the review is conceptually designed (5).
In particular, the application concept in the respective discipline shall be reflected rather than
the historical or methodological organization. Finally, we try to address a broad audience (6).
We do not explain technical details in-depth, which benefits general scholars and practitioners,
and at the same time, we try to give specialized scholars an overview of their quickly expanding
research field. Altogether, we intend to clarify the relevance of deep RL in production systems
and to provide stimuli for potential applications.
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4.3.2 Literature search

For conducting the review, we initially defined the search terms and determined the underlying
databases. The found literature is then filtered to obtain the final subset for the later in-depth
analysis.

4.3.2.1 Phase 1 - database and iterative keyword selection

The search databases utilized in our review are the Web of Science (all fields), ScienceDirect
(title, abstract or author-specified keywords), and IEEE Xplore (journals), similar to Lohmer and
Lasch (2020) or other scholars.

To ensure a representative coverage of the research literature, we defined the keywords in an
interactive process and had a rather broad focus, which comprised an algorithmic, a general, and
a more specific domain. Within the iterative process, besides production and manufacturing,
we incorporated assembly, automation, and industry as general keywords. To avoid missing
any sub-discipline, additional subsets were incorporated into the search and included quality
control, maintenance, and others as listed in Table 4.2. Because the term of deep RL is not
always mentioned, we also linked RL with artificial intelligence, deep learning, and machine
learning.

Algorithmic keywords
General
keywords

Specific
keywords

Deep RLa OR

AND

Assembly OR

OR

Logistics OR
Automation OR Maintenance OR
Industry OR Process control OR

RLa AND
Artificial intelligence OR Manufacturing OR Quality control OR
Deep learning OR Production Real-time control OR
Machine learning Tool control

a RL = Reinforcement Learning
Table 2. Defined keywords for the SLR

workings papers, pre-prints and other non-peer reviewed publications. Since significant
successes of deep RL were observed especially with Mnih et al. from Mnih et al. on,
we included papers published after 2010.
A thematic definition of the inclusion and exclusion criteria is ensured by the de-
fined research questions and taxonomy framework. Even though we try to provide a
representative review, we exclude papers that focus primarily on the development of
methodologies, theories, or algorithms. In contrast, we include papers that focus on
the application of deep RL in real or simulated production environments and seek to
leverage system performances.

3.2.3. Phase 3 - Conducting the literature search

The literature search was conducted between December 2020 and February 2021,
with the last update on Feb. 12, 2021. A summary of the whole process is given in
Figure 5 and starts with the aggregation of the articles found in the three databases.
In total, 1255 papers were collected based on the defined keywords. Duplicates were
removed and years filtered before applying in-depth thematic criteria.

Grafik anpassen. Zahlen aktualisieren
According to Thomé, Scavarda, and Scavarda (2016), to ensure a high search qual-

ity, we examined the remaining 809 papers by their title, keywords, and abstract con-
cerning the defined inclusion and exclusion criteria and the research questions with
Microsoft Excel. If possible, we already captured the applied algorithms, considered
processes, and the application objective. In this step, many papers were extracted due
to a missing production context or a non-deep RL implementation, which reduced
the number to 153 relevant papers. In the next step, we conducted a full-text review
based on the same criteria. Besides capturing the first essential information for the
later analysis, the full-text review provided the remaining 99 papers as a basis for the
subsequent backward/forward search.
Following the review structure proposed by Webster and Watson (2002), the back-
ward/forward search is an important extension to the previously conducted keyword-
based search. Similarly, Greenhalgh and Peacock (2005) underlines the importance of
this last literature search step to identify further interdisciplinary literature beyond
the self-defined scope. Whereas the backward search considers the articles cited in a
paper, the forward search includes those papers that cite the considered one. After this
final search, we found 38 more papers in scope, resulting in a total set of 137 papers.

8

Table 4.2 Defined keywords for the SLR

4.3.2.2 Phase 2 - defining inclusion and exclusion criteria

To systematically narrow the scope and ensure a high review quality, we defined several inclusion
and exclusion criteria. For quality reasons, we only considered publications from peer-reviewed
journals, proceedings, conference papers, and books (Light and Pillemer, 1984; Durach et al.,
2017). We excluded workings papers, pre-prints and other non-peer reviewed publications. We
also excluded publications that were not written in English and since significant successes of
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deep RL were especially observed with the publication from Mnih et al. (2013), we only included
papers that were published after 2010.

A thematic definition of the inclusion and exclusion criteria is ensured by the defined research
questions and taxonomy framework. Based on our target to identify industrial deep RL applica-
tions, we excluded papers that focus primarily on the development of methodologies, theories,
or algorithms without transferring the results to a production use case. Review papers were
used as appropriate to identify potential additional studies of relevance. Given the focus of our
study, we reviewed papers that address the direct application of deep RL in real or simulated
production environments and seek to leverage system performances. Only papers, that apply
deep RL methods for policy approximation were considered. In contrast, papers dealing with
conventional RL methods (i.e. a Q-table) were not reviewed.

4.3.2.3 Phase 3 - conducting the literature search

The literature search was conducted from December 2020 and a final extract was retrieved from
the mentioned databases on February 10, 2021. A summary of the whole process is given in
Figure 4.3 and starts with the aggregation of the articles found in the three databases. In total,
1255 papers were collected based on the defined keywords. Duplicates were removed and years
filtered before applying in-depth thematic criteria.

Identification Selection process

Defined
keyword

combinations

Duplicates and
time filtering

Title, keyword, 
abstract

screening

Full-text 
screening

Backward/ 
forward search:

29 add. hits Final set:
120 papers

809 141 91 

Papers identified: 1255
Web of Sience: 491

IEEE Xplore: 575
ScienceDirect: 189

Included

Defined
keyword

combinations

Duplicates and
time filtering

Title, keyword, 
abstract

screening

Full-text 
screening

Backward/ 
forward search:

29 add. hits Final set:
120 papers

809 141 91 

Papers identified: 1255
Web of Sience: 491

IEEE Xplore: 575
ScienceDirect: 189

Figure 4.3 Conducted review process

According to Thomé et al. (2016), to ensure a high search quality, we examined the remaining
809 papers by their title, keywords, and abstract regarding the defined inclusion and exclusion
criteria and the research questions. If possible, we already captured the applied algorithms,
considered processes, and the application objective. In this step, many papers were excluded due
to a missing production context or a non-deep RL implementation, which reduced the number to
141 papers. In the next step, we conducted a full-text review based on the same criteria. Besides
capturing the first essential information for the later analysis, the full-text review provided the
remaining 91 papers as a basis for the subsequent backward/forward search.

Following the review structure proposed by Webster and Watson (2002), the backward/forward
search is an important extension to the previously conducted keyword-based search. Similarly,
Greenhalgh and Peacock (2005) underlines the importance of this last literature search step to
identify further interdisciplinary literature beyond the self-defined search scope. After this final

68



4.3 Research methodology

search, we identified 29 additional papers in scope, resulting in a total set of 120 papers.

4.3.2.4 Phase 4 - data gathering

To conduct the subsequent literature analysis, we developed a concept matrix with regard to
Thomé et al. (2016) and Webster and Watson (2002), that focused on the initial research questions.
The categorization and coding of the final data set was based on the production discipline, industry
or process background including the specific application, optimization objective, applied deep
RL algorithm and neural network, benchmark results, and the application in a simulated and/or
real environment.

4.3.3 Analysis of yearly and outlet related contributions

An initial analysis based on publication years allows conclusions to be drawn about the general
research development. Figure 4.4(a) indicates a strong increase of deep RL publications in a
production context since 2018. While 3 papers were published in 2017, there were already 8 in
2018, 27 in 2019, and 69 in 2020. In 2021, 9 papers were published in January / February up to
the time of the database query. This indicates the growing relevance of deep RL in a production
context and its rising attention within the research community.

0

30

60

90

120

150

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Yearly publications Accumulated publications

(a) Yearly and accumulated deep RL publications

0

30

60

90

120

150

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Deep RL publications Non-deep RL publications

(b) Yearly deep and non-deep RL publications

Figure 4.4 Analysis of yearly deep RL publications, 2021 includes Jan./Feb.

One reason for this development could be due to Mnih et al. (2013) as described earlier, who laid
a foundation for high performance deep RL in 2013. This also becomes evident in Figure 4.4(b)
in which we compared deep and non-deep RL publications in the Web of Science database (with
keywords from Table 4.2, non-reviewed). While in 2017 1 deep RL and 26 non-deep RL papers
were published, there were 74 deep and 122 non-deep publications in 2020. While this suggests
a significant increase in both fields, it highlights the ongoing focus on neural network based RL.
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Figure 4.5 lists the most frequently cited outlets with more than three published papers from
2010 to 2021. Most papers were published in journals (92, 76%) followed by conference papers
(14, 12%) and proceedings (14, 12%). In total, the papers were accessed from 54 journals, 16
conferences, and 4 proceedings. This not only indicates the high quality of the selected papers,
but also reflects the broad application range of deep RL in various fields of production related
systems.
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Applied Soft Computing

Computers & Chemical Engineering
IEEE Transactions on Industrial Informatics

Journal of Manufacturing Systems
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Figure 4.5 Number of publications per outlet; 2010-2021

4.4 Literature analysis

To address RQ1 we first outline existing domains of deep RL applications in production systems.
Figure 4.6 contains the disciplines obtained after the final iterative review step and the respective
number of publications.

Most of the reviewed papers were published in the field of process planning followed by
scheduling, and assembly. The application landscape covers almost all relevant disciplines in a
production system and confirms the ability of deep RL to address a variety of tasks. The further
analysis is organized according to the structure indicated in Figure 4.6.

4.4.1 Process control

To circumvent a conventional model-based approach and an online adaption to continuous process
modifications, Noel and Pandian (2014) initially developed a deep RL approach to control the
liquid levels of multiple connected tanks. The controller minimized the target state difference
and adjusted inlet flow rates between multiple tanks accordingly. Whereas conventional methods
struggle to compensate for large changes in system parameters, the deep RL approach optimized
control and simultaneously reduced process fluctuations and overshoot. Spielberg et al. (2017)
and Spielberg et al. (2019) proposed a model-free controller design for single-/multiple-input
and -output processes that was applied to various application scenarios. The controller reduced
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Figure 4.6 Number of publications allocated to the production disciplines

maintenance efforts and computation costs and was capable of regulating the desired states
and set-points. Similarly, deep RL approaches in chemical-mechanical polishing (Yu and Guo,
2020) and microdroplet reactions (Zhou et al., 2017), outperformed conventional methods in
minimizing process deviations and enabled an interactive and data-driven decision making and
online process control which reduced temporal and monetary expenditures.

Deep RL outperformed 13 out of 16 conventional benchmarks and improved system perfor-
mances. To reach such performance, a reward function is required, which transforms process
targets into rewards, allowing to learn the optimal policy. The reward design can be based on
different target variables, such as real-time profits (Powell et al., 2020), cost-per-time function
(Quah et al., 2020), or similarity measures based on specified performance criteria (He et al.,
2020). The individual goal-oriented design enables a broad application in further applications
such as flotation processes to reduce non-dynamic drawbacks of model-based approaches (Jiang
et al., 2018), in laser welding to increase process repeatabilities (Masinelli et al., 2020), and
others, or in injection molding to broaden up narrow process windows of conventional methods
in ultra-high precision processes (Guo et al., 2019). A detailed list of all process control appli-
cations and related publications can be found in Table 4.3. Besides, the table lists the applied
algorithm and, if conducted, the performance result compared to conventional benchmarks. A
significant portion of the papers conducted their testings in simulated environment and only 4
papers conducted real world testings. The implementation hurdles in the area of process control
are large and require highest levels of process reliability, which prevents a rapid implementation
for research purposes in real processes.

The majority of publications (79%) utilized policy-based or hybrid algorithms, which benefit
from a continuous action space and do not require action discretization. Thus, process parameters
can be set smoothly and do not require a step-wise control approach. Beyond that, the motivation
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Application Algorithm Superiority Source

1 Batch process DDPG Superior Xu et al. (2020)
2 Brine injection process Actor-critic Superior Andersen et al. (2019)
3 Liquid moulding process DQN Superior Szarski and Chauhan (2021)
4 Chemical microdroplet reactions Actor-critic Superior Zhou et al. (2017)
5 Color fading Actor-critic Superior He et al. (2020)
6 Continuously stirred tank reactor Actor-critic - Pandian and Noel (2018)
7 Continuously stirred tank reactor DQN Comparable Powell et al. (2020)
8 Continuously stirred tank reactor Actor-critic Comparable Quah et al. (2020)
9 Interacting tank liquid level control Actor-critic Superior Noel and Pandian (2014)
10 Double dome draping Actor-critic - Zimmerling et al. (2020)
11 General discrete-time processes Actor-critic - Spielberg et al. (2019)
12 General discrete-time processes Actor-critic - Spielberg et al. (2017)
13 Goethite iron-removal process DDPG - Chen et al. (2020)
14 Hematite iron ore processing DQN/PG - Li et al. (2020)
15 Laser welding DQN - Günther et al. (2016)
16 Laser Welding Value based - Jin et al. (2019)
17 Laser welding Value based - Masinelli et al. (2020)
18 Laser Welding Actor-critic Superior Zou and Lan (2020)
19 Metal sheet deep drawing ANN-PSO/PPO - Dornheim et al. (2020)
20 Non-lin. semi-batch polymerization DQN/DPG/REI Comparable Ma et al. (2019)
21 One-stage mineral grinding Actor-Critic - Lu et al. (2016)
22 Optical lens manufacturing PPO Superior Guo et al. (2019)
23 Propylene oxide batch polymerization DQN Superior Yoo et al. (2021)
24 Rot. chemical mechanical polishing DDPG Superior Yu and Guo (2020)
25 Single-cell flotation process DDPG Superior Jiang et al. (2018)
26 Single-cell flotation process DDPG - Jiang et al. (2019)
27 Single-circuit ball mill grinding DRO Superior Guo et al. (2019)
28 Tempered glass manufacturing Actor-critic - Mazgualdi et al. (2021)
29 Well surveillance Actor-critic Superior Tewari et al. (2020)

Table 4.3 Summary of deep RL applications in process control

for applying deep RL is often an inaccurate mapping of conventional methods that cannot
adequately cope with non-linearities (Lu et al., 2016) or relies too much on error-prone expert
knowledge (Mazgualdi et al., 2021). With their adaptive and non-discretized action space, deep
RL can thus avoid waste, especially in sensitive processes, and keep processes stable, which
might be problematic with static or human-based process modeling (Andersen et al., 2019).

4.4.2 Production scheduling and dispatching

Already in 1995, Zhang and Dietterich (1995) described a neural network based job-shop
scheduling approach which demonstrated superior performance and reduced costs for manual
system design. Followed by other approaches such as Riedmiller and Riedmiller (1999) or
Gabel and Riedmiller (2007), the advantage of deep RL in production planning and control was
emphasized early on, but could not prevail, among other reasons, due to the lack of computational
resources.

4.4.2.1 Production scheduling

The complexity of production scheduling is caused by high uncertainties regarding customized
products, shutdowns, or similar. To cope with the complexities and to reduce human-based
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decisions, Lin et al. (2019) proposed a multi-class DQN approach that feeds local information to
schedule job shops in semiconductor manufacturing. Based on the edge framework, the DQN
demonstrated superior performance and reduced makespans, and average flow times. To reduce
the high setup and computational costs of conventional solutions in job-shop scheduling, Liu et
al. (2020) and Baer et al. (2019) adopted a self-learning multi-agent approach to meet local and
global production objectives and to ensure an increased adaptation to prevent rescheduling cost.
To train multiple agents Baer et al. (2019) employed a multi-stage learning strategy in which a
single agent was trained locally first, while others applied chosen heuristics. Subsequently, all
agents were trained individually and finally optimized together towards a global goal. Besides,
Baer et al. (2020) demonstrated the agent’s ability to adapt to new scenarios and proofed its
scalability. The training of 700 scheduling topologies took only twice as long as the training of
a single one. The deep RL policy learned basic task principles and modified its policy slightly
concerning the new task specifics and thereby reduced re-configuration times and costs compared
to conventional methods.

In total, 89% of the benchmarked deep RL implementations increased the scheduling performance
and reached lower total tardiness, higher profits, or other problem-specific objectives as indicated
in Table 4.4. Zhou et al. (2020) managed to minimize the completion time of all given tasks,
for random incoming orders. Similarly, Wu et al. (2020) demonstrated that deep RL based
rescheduling can operate faster and more efficiently than heuristics. The deep RL approach
reduced CPU times remarkably for the high volatile medical mask production in times of
Covid-19. Besides mask production, deep RL demonstrated superior performances in batch
processing which reduced tardiness for repair scheduling operations (Palombarini and Martinez,
2018; Palombarini and Martínez, 2019), in chemical scheduling to increase profitability and
deal with fluctuating prices, shifting demands, and stoppages (Hubbs et al., 2020), and in paint
job scheduling to minimize costs of color changeovers within the automotive industry (Leng et
al., 2020). Discipline-specific scheduling objectives were addressed by Lee et al. (2020), who
increased sustainability and minimized tardiness in injection mold scheduling, or by Xie et al.
(2019) who reduced total throughput time and lateness in single-machine processes.

From an industry perspective, the semiconductor industry is one of the most competitive and
capital-intensive. Interconnected machines must operate at full capacity, and production sched-
ules need to be continuously optimized online (Kang et al., 2020). Due to a large number of
machines and process steps, the die attach and wire bonding process poses a major challenge
that cannot optimally be solved by single heuristics. To cope with the complexities, Park et al.
(2020) feed all relevant process information such as setup status continuously into the PPO neural
network. It was able to outperform conventional heuristics such as shortest setup or processing
time and reduced total makespan and computation times after training. A further increase in
generalization was reached by Park et al. (2021) by applying a graph neural network (GNN).
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The GNN learned the basic spatial structure of the problem in form of a graph that could be
transferred to new problems and adapted its mapped policy. Thus, the GNN-PPO was not only
able to adapt to novel job shop problems, but also outperformed algorithms that were configured
scenario-specific.

Based on all reviewed papers in the field of production scheduling, 67% applied value-based al-
gorithms. These assume a discrete action space, which must be determined beforehand. However,
for scheduling-related problems, the action space can often be discretized according to possible
transition actions such as transfer or idle (Shi et al., 2020). It is noticeable that in comparison to
process control, even fewer approaches have been adopted in a real environment. In scheduling
and additionally in the subsequent dispatching and logistics section, a fast implementation of the
scheduling policies in an established production environment would be complex and increase
research efforts significantly.

4.4.2.2 Production dispatching

Personalized production has an enormous impact on the complexity of production control due to
individual product configuration options. Depending on the customer requirements, the products
must be dispatched to where they can be processed, under consideration of several technical and
logistic constraints and optimization variables (Waschneck et al., 2018).

To meet the requirements in wafer fabrication dispatching, Altenmüller et al. (2020) implemented
a single-agent DQN that processed 210 data points as a single state input (such as machine
loading status or machine setup). This enabled the DQN to meet strict time constraints better than
competitive heuristics (TC, FIFO) while reaching predefined work-in-progress (WIP) targets
as a secondary goal. Stricker et al. (2018) and Kuhnle et al. (2020) proposed a single-agent
adaptive production control system that maximized machine utilization and reduced lead and
throughput times compared to conventional methods that struggle partially known environments.
Waschneck et al. (2018) proposed a multi-agent system to meet flexible objectives within wafer
processing and enable higher flexibilities with fewer delays. Similar to Waschneck et al. (2018),
the algorithms targeted plant-wide parameters to reduce the risk of a local operation optimiza-
tion. Besides, the simulations considered complex job shop specifics such as re-entrant flows,
sequence-dependent setups, and varying processing times, reaching comparable performances
against multiple heuristics. For general production dispatching, Dittrich and Fohlmeister (2020)
introduced a multi-agent system with global performance objectives to avoid local optimization
tendencies. Although the agents received detailed local state information, they not only selected
the fastest local dispatching actions but also improved the global logistics performance. Further,
the distributed agents enabled real-time responses, a feature also emphasized by Kumar et al.
(2020) for the short-term value stream adaptation in a copper mining complex. Based on the
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current mining process and component data, the single-agent framework allowed to deliver
continuous updates regarding the latest plant status and increased the expected net present value
by 6.5%. Considering capital constraints in production, Kanban or Conwip cards are often em-
ployed to limit WIP levels. As an alternative to those conventional pull production controls and
to optimize local and global production indices in parallel, Silva and Azevedo (2019) proposed
a deep RL algorithm that balanced conflicting throughput and WIP level targets. Despite the
trade-off between these, WIP levels were reduced by 43% compared to conventional methods
through dynamic adjustments without affecting the total throughput.

A mixed-rule dispatching approach was proposed by Luo (2020) and Heger and Voß (2020) for
general job shop systems to enable a dynamic dispatching adaptation to changing production
conditions. Based on current state information, the algorithm determined which of the predefined
rules (i.e. Heger and Voß: SPT, EDD, FIFO, SIMSET) should be activated in the current situation
to reduce the mean and total tardiness. Table 4.4 briefly summarizes the reviewed literature
and contains the implemented algorithms of the respective papers and their performance results
compared to conventional methods.

4.4.3 (Intra-) Logistics

The review results for intralogistics are briefly summarized in Table 4.4. Beginning with Malus
et al. (2020), an intralogistics-related dispatching solution was implemented to meet real-time
requirements and handle a rapidly changing production by utilizing autonomous mobile robots
(AMRs). Based on the observations of the individual agents, they could negotiate with each other
and virtually raised bids for orders. Similarly, Feldkamp et al. (2020) simulated a self-regulating
modular production system. Depending on current job information, station status, and others, the
algorithm determined the optimal machine and reduced lead times compared to the benchmarked
methods. In another approach, Hu et al. (2020) implemented a mixed rule dispatching approach
that determines the dispatching rule (FCFS, STD, EDD, LWT, NV) for an automated guided
vehicle (AGV) depending on its observed state which reduced the makespan and delay ratio by
approximately 10% compared to the benchmarks.

Regarding conveyor systems, Kim et al. (2020) proposed a deep RL control to enable a faster
product distribution for a 3-grid sorting system in which all of the 9 fields and corresponding
inputs and outputs were controlled by respective agents. The pick and place of items from a
conveyor belt into baskets was investigated by Hildebrand et al. (2020). To reach a pre-defined
weight, the trays should still be filled quickly to prevent dead-locks. Without an initial parameter
tuning, which would have been necessary for conventional probability-based methods, the PPO
reached a remarkable success rate of 48% after training. A further collaborative task completion
of two robots for adaptive stacking was considered in Xia et al. (2020) which highlighted the
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flexible virtual commissioning abilities and demonstrated an above-human performance.

Scheduling

Application Algorithm Superiority Source

30 Chemical scheduling A2C Superior Hubbs et al. (2020)
31 Cloud manufacturing DQN Superior Dong et al. (2020)
32 Cloud manufacturing PG Superior Zhu et al. (2020)
33 Dynamic scheduling DQN - Zhou et al. (2020)
34 Dynamic scheduling DQN Superior Hu et al. (2020)
35 Flow shop scheduling Reinforce Superior Wu et al. (2020)
36 Job-shop scheduling DDPG Superior Liu et al. (2020)
37 Job-shop scheduling PPO Superior Park et al. (2021)
38 Job-shop scheduling DQN - Baer et al. (2020)
39 Job-shop scheduling - - Baer et al. (2019)
40 Job-shop scheduling DQN Superior Zhou et al. (2021)
41 Job-shop scheduling DDDQN Superior Han and Yang (2020)
42 Job-shop scheduling (M)DQN Superior Lin et al. (2019)
43 Lot scheduling PPO Superior Rummukainen and Nurminen (2019)
44 Mold scheduling DQN Superior Lee et al. (2020)
45 Multichip production DQN Superior Park et al. (2020)
46 Packaging line scheduling DQN Superior Chen et al. (2019)
47 Paint job scheduling Double DQN Superior Leng et al. (2020)
48 Parallel, re-entrant production DQN Comparable Shi et al. (2020)
49 Rescheduling DQN Superior Palombarini and Martinez (2018)
50 Rescheduling DQN Superior Palombarini and Martínez (2019)
51 Single machine scheduling DQN Comparable Xie et al. (2019)

Dispatching

Application Algorithm Superiority Source

52 General job-shop DQN Comparable Dittrich and Fohlmeister (2020)
53 General job-shop double DQN Superior Luo (2020)
54 General job-shop DQN Comparable Heger and Voß (2020)
55 General job-shop Reinforce Superior Zheng et al. (2020)
56 Mining materials flow PG Superior Kumar et. al (2020)
57 Wafer fabrication DQN Comparable Waschneck et al. (2018)
58 Wafer fabrication TRPO Comparable Kuhnle et al. (2020)
59 Wafer fabrication DQN Comparable Waschneck et al. (2018)
60 Wafer fabrication DQN Superior Stricker et al. (2018)
61 Wafer fabrication DQN Superior Altenmüller et al. (2020)
62 WIP bounding DQN Superior Silva and Azevedo (2019)

(Intra-) Logistics

Application Algorithm Superiority Source

63 AGV scheduling DQN Superior Feldkamp et. al (2020)
64 AGV scheduling DQN Superior Hu et al. (2020)
65 AMR dispatching TD3 Superior Malus et al. (2020)
66 Item betching into trays PPO - Hildebrand et al. (2020)
67 QoS service composition model duelingDQN Superior Liang et al. (2021)
68 Syringe filling process doubleDQN Superior Xia et al. (2020)
69 Three-grid sortation system DQN - Kim et al. (2020)

Table 4.4 Summary of deep RL applications in production scheduling, dispatching, and (intra-) logistics

4.4.4 Assembly

A significant share of the reviewed assembly-related papers focused on the peg-in-hole task (56%).
It comprises the insertion of a specific object into a hole under defined assembly conditions,
utilizing a robotic arm in most cases. To avoid large fluctuations in execution and to ensure a
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high level of safety, most papers utilized a post-processing force controller that processes the
neural network outputs (Kim et al., 2020)).

The deep RL implementation was often motivated by disadvantages of conventional algorithms
such as limited adaptability (Li et al., 2019), complex online optimization processes (Inoue et al.,
2017) or the need for re-programming in case of new tasks due to hand-engineered parameters
(Luo et al., 2018).

Beginning with hole position uncertainties, Beltran-Hernandez et al. (2020) trained a transfer
learning supported deep RL algorithm to fit a cuboid-shaped plug into a hole with 0.1mm
tolerance and reached a 100% success rate. Also, the insertion of electronic connectors (success
rate: 65%), Lan connectors (60%), and USB connectors (80%) was investigated but reached
lower success rates.

For contact-rich tasks Kim et al. (2020), Lämmle et al. (2020), and Beltran-Hernandez et al.
(2020) proposed a imitation learning supported force-regulated approach consisting of hole
approach, alignment, and insertion for the square-shaped peg assembly (tolerance: 0.1mm).
For smaller tolerances in high-precision assembly, Zhao et al. (2020) and Inoue et al. (2017)
reached success rates of up to 86.7% and 100% with tolerances of 0.02mm and 0.01/0.02mm,
respectively. Whereas Zhao et al. (2020) thereby minimized the number of required interactions,
Inoue et al. (2017) was able to significantly reduce online parameter adjustment efforts that are
required by conventional methods. The insertion of the peg into a deformable hole with a smaller
diameter was investigated by Luo et al. (2018) who utilized a force-torque controller for task
completion.

For the double peg-in-hole task and a tolerance of 0.04mm for each peg, Xu et al. (2019) reached
a success rate of 100%. In case of a changed start position, the success rate was reduced and
required re-training. Not only stiff but also dangling pegs have been investigated by Hoppe et al.
(2019), that required a contact-rich assembly. Through a combined global state space exploration
and learning by demonstration strategy, the DDPG reached a 100% success rate.The learning by
demonstration was also investigated by Wang et al. (2020), taking into account bigger arm and
fine hand motions. Assuming different peg objects with a tolerance of 4.2mm and a one-shot
demonstration, a success rate of 67% was reached. The assembly of a circuit breaker housing
was addressed by Li et al. (2019). Divided into free movement, movement under contact, and
insertion phase, the two housings with four mounting spots were assembled with success rates of
up to 88%.

Other deep RL applications included the vision-based insertion of a Misumi Model-E connector
(success rate: up to 100%, as in Schöttler et al., 2020), a long/short-term memory supported shoe-
tongue assembly (up to 97%, Tsai et al., 2020), and a space-force controller and force/torque
information supported gear-set assembly (up to 100%, Luo et al. 2019).
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A multi-component assembly sequence planning approach to increase human-robot collaboration
efficiencies was proposed by Yu et al. (2020). Assuming an adjustable desk as an example,
the scheduling process was transformed into a chessboard-shaped planning structure that was
able to complete planning significantly faster than conventional methods. Besides, to increase
planning efficiencies while obtaining better generalization, Zhao et al. (2019) combined a DQN
with curriculum learning and parameter transfer techniques. Compared to a simple DQN, this
increased the learning speed and adaptability to other environments.

Remarkably, assembly research conducted the highest number of real-world testings, and 15
out of 18 reviewed papers transferred results to reality under the prevailing conditions and on
real hardware. Deep RL based assembly research benefits from low preconditions and well-
scoped scenarios compared to the other domains, which reduces testing complexity and safety
constraints.

The summary of applications in Table 4.5 differs from the previous ones due to the lack of
compared algorithms. Only in 4 cases a benchmark was compared, which was outperformed
by the deep RL algorithm in each case. Instead, the general task itself, as well as the specific
use-case were referred for further classification.

4.4.5 Robotics

To obtain a significantly smoothed motion planning, Scheiderer et al. (2019) compensated
disadvantages of existing RL planning approaches due to time discretization. If the robot
exceeded a certain trajectory mark, the observation of the next step was triggered, and a Bézier
curve was generated that aligned smoothly with the previous one. Similarly, Li et al. (2020)
investigated the smoothing of CNC trajectories to enable high-speed machining. Based on a
high-speed x-y motion platform, a real-time smoothing could be realized, which processed a
pre-computed tool trajectory and smoothed out the path, calculated tool velocities, and emitted
servo commands. An early image-based control of servos by deep RL was proposed in Miljković
et al. (2013). The robot processed the captured images as states which were processed by a
SARSA or DQN and ejected as spatial camera velocities. Thus, high robustness and accuracy of
the control process were reached despite calibration errors and sensor noises. Following the same
structure as the assembly domain, table 4.5 summarizes the main review results and includes the
general application and the specific use case due to the lack of benchmarks.

4.4.6 Maintenance

The interaction of several linked machines in a serial production line was considered by Huang
et al. (2020). Based on a large state space that contained buffer levels, operating inputs, and fault
indicators for each machine, the algorithm made decisions about which individual machines
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Assembly

Application Use-case Algorithm Source

70 Sequence planning Building block model DQN Watanabe and Inada (2020)
71 Sequence planning Lift desk assembly As AlphaGoZero Yu et al. (2020)
72 Sequence planning Seven parts assembly process DQN Zhao et al. (2019)
73 High precision insertion Circuit breaker housing DQN Li et al. (2019)
74 High precision insertion Gear set assembly Model-based Luo et al. (2019)
75 High precision insertion Peg-in-hole DQN Inoue et al. (2017)
76 High precision insertion Peg-in-hole DQN, DDPG Li et al. (2019)
77 High precision insertion Peg-in-hole SAC Zhao et al. (2020)
78 Insertion task Peg-in-hole (contact-rich, deform.) AC Luo et al. (2018)
79 Insertion task Double peg-in-hole DDPG Xu et al. (2019)
80 Insertion task Double peg-in-hole (contact-rich) DDPG Hoppe et al. (2019)
81 Insertion task Peg-in-hole DDPG Wang et al. (2020)
82 Insertion task Peg-in-hole DDPG Lämmle et al. (2020)
83 Insertion task Peg-in-hole (cuboid) SAC Beltran-Hernandez et al. (2020)
84 Insertion task Peg-in-hole (square) DDPG Kim et al. (2020)
85 Insertion task Ring-insertion SAC Beltran-Hernandez et al. (2020)
86 Plug insertion tasks Model-E connector SAC, TD3 Schoettler et al. (2020)
87 Shoe tongue assembly Soft fabric shoe tongues DQN Tsai et al. (2020)

Robotics

Application Use-case Algorithm Source

88 Intelligent gripping Find optimal grasp position PPO Park et al. (2020)
89 Motion planning Real-time CNC traj. smoothing DQN, DDPG Li et al. (2020)
90 Motion planning Bézier curve trajectory smoothing DDPG Scheiderer et. al (2019)
91 Visual control Low-cost servo control Sarsa, DQN Miljković et al. (2013)

Table 4.5 Summary of deep RL applications in assembly and robotics

needed to be turned off at a time for service. Conventional methods often rely on the static
recommendations of machine manufacturers and do not take system dependencies into account.
In comparison, deep RL reduced the average maintenance costs by approximately 20% com-
pared to a run-to-failure strategy, 7% compared to an age-dependant, and 5% compared to an
opportunistic maintenance strategy. The same interdependencies between multiple components
with competing failure probabilities were considered by Zhu et al. (2020) to avoid static and inef-
fective maintenance limits of conventional methods in large-scale systems. In several scenarios,
the deep RL algorithm was able to reduce maintenance cost in multi-component systems without
requiring experience-based or predefined thresholds.

The issue of limited resources to perform maintenance due to insufficient monetary, technical,
and human capital was considered by Liu et al. (2020). Conventional methods only take the
success of a single maintenance mission as a success factor, but neglect possible follow-up
missions. Compared to benchmarks, deep RL thus demonstrated a 30% higher number of
successful maintenance missions. Regarding, rotary machines fault diagnosis, Dai et al. (2020)
and Ding et al. (2019) employed deep RL to detect faults from machine data at an early stage in
real environments. Whereas Dai et al. (2020) focused on the detection of faulty components such
as a cracked gear, Ding et al. (2019) focused on non-linear correlations between possible fault
conditions by measuring raw sensor signals. Both times, errors could be detected at an early
stage without the need for manual tuning efforts, expert experience, or pre-filtering of the data as
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required by conventional methods.

Despite conducting only three benchmarks, the deep RL algorithms demonstrated superior
maintenance-specific performance in all of these. Additional maintenance related publications of
deep RL in recent years are listed in Table 4.6.

4.4.7 Energy management

In modern production, not only the maximum process performance but also the energy consump-
tion and environmental impact become more crucial. To meet the challenge of greener production,
Leng et al. (2021) addressed the order acceptance in the energy- and resource-intensive PCB
fabrication under the assumption of resource constraints and environmental metrics. Compared
to conventional methods (FIFO, random forest), the deep RL algorithm was able to increase
profits and minimize carbon consumption, while optimizing lead time and cost. Considering a
steel powder manufacturing process, Huang et al. (2019) proposed a model-free control design
to optimize the energy consumption plan based on current energy costs and individual process
components (i.e. atomizer, crusher). Compared to conventional methods, which often require
a complex system model and neglect price fluctuations, the controller adjusted the production
schedule to the electricity prices, which reduced energy costs by 24%. The same objective was
addressed by Lu et al. (2020) for a lithium-ion battery assembly process which reduced electricity
costs by 10%.

An approach to enable more energy-efficient and high reliable transmissions in low latent
networks was proposed by Yang et al. (2020). Based on the channel status and other indicators,
the algorithm selected radio frequency or visible light communication. It assigned an appropriate
channel and performed the transmission power management. Thereby, energy efficiency, number
of successful services, and latency were improved and a higher fulfillment of compulsory quality-
of-service requirements was accomplished. Other applications included the single-machine
energy optimization (Bakakeu et al., 2018), blast furnace gas tank energy scheduling for steel
industry (Zhang and Si, 2020), and others as listed in Table 4.6.

A total of 4 benchmarks were carried out in the field of energy management, in which the
deep RL algorithms again outperformed conventional ones. However, no real-world testing was
conducted in the domain of energy management. Similar to previous categories, this would
have entailed extraordinarily high expenses and would have caused a significantly increased
implementation efforts at an early stage.
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4.4.8 (Process) Design

Beginning with integrated circuit design, Liao et al. (2020) addressed the global routing process,
which became a major challenge due to increased transistors densities and multiple design
constraints. To cope with the complexity, Liao et al. (2020) modeled the circuit as a grid graph
from which information was fed into the DQN router and outperformed the conventional A*
approach.

Oh et al. (2020) proposed a deep RL algorithm for the design and fine-tuning of notch filters,
which are commonly used in servo systems to suppress resonances. In complex cases, however,
the filters not only need to be deployed in large numbers but also fine-tuned manually based on
expert knowledge. The proposed notch tuning automatism avoided these and optimized several
notch filters simultaneously and successfully stabilized a belt-drive servo system. Zhou et al.
(2020) addressed the machining optimization of centrifugal impellers for a five-axis flank milling
processing. By considering aerodynamic and machining parameters, an optimized path planning
for the machine tool was developed, which reduces development time and cost.

Among the publications listed in Table 4.6, other design approaches included 2D-strip packing
to improve space utilization in Zhu et al. (2020) which reduced average gaps by 20% compared
to several benchmark algorithms, or the design of a SaaS architecture in Scheiderer et al. (2020)
which significantly reduced optimization times in heavy-plate rolling compared to manual tuning.

4.4.9 Quality control

The field of quality control is affected by the increased product diversification and must adapt
accordingly to carry out necessary component inspections. To support the workforce in quality
related tasks, cobots can contribute to more stable processes. Brito et al. (2020) addressed
the collaborative cooperation to combine the accuracy of the robot with the flexibility of the
workforce. In case of an unforeseen inspection incident, the workforce taught the robot its new
path, which was learned and reproduced by the DDPG. Unlike other methods that require an
interruption of the production process, the DDPG enabled an online adaptation and significantly
increased productivity and reduced stoppages.

Another approach for real-time quality monitoring of additive manufacturing processes was
proposed by Wasmer et al. (2019). Conventional methods often rely on temperature data or
high-resolution images, which have difficulties in reflecting the processes below the surface.
To provide further process information, the implemented algorithm took acoustic emissions as
an input for the process analysis and could thereby derive a pore concentration based quality
categorization with an accuracy of up to 82% in real testings.
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Maintenance

Application Use-case Algorithm Source

92 Condition-based maintenance Minimize cost rates in multiple stages Dou.DQN Zhang and Si (2020)
93 Machine fault diagnosis Gear root crack analysis DQN Dai et al. (2020)
94 Machine fault diagnosis Rolling bearing fault DQN Ding et al. (2019)
95 Oportunistic maintenance Minimize prod./ maint. interference PPO Kuhnle et al. (2019)
96 Real-time prev. maintenance Minimize long-run costs in serial prod. Dou.DQN Huang et. al (2020)
97 Selective maintenace Maximize maint. mission success AC Liu et. al (2020)
98 Self-diagnosis and self-repair Optimize self-repair in prod. lines DQN Epureanu et al. (2020)
99 Sensor-driven maintenance Calc. remaining useful (turbofan) DQN Skordilis et al. (2020)

Energy management

Application Use-case Algorithm Source

100 Energy system balancing Tank level scheduling DQN Zhang et al. (2020)
101 Multi-agent energy optimization CPS energy coordination AC Bakakeu et al. (2020)
102 Network resource management Energy efficient RF/VLC network DQN Yang et al. (2020)
103 PCB order acceptance Real-time order acceptance decisions DQN Leng et al. (2021)
104 Production-energy schedule opt. Single machine optimization DQN Bakakeu et al. (2018)
105 Production-energy schedule opt. Lithium-ion battery assembly DDPG Lu et al. (2020)
106 Production-energy schedule opt. Steel powder manufacturing process AC Huang et al. (2019)
107 Sustainable joint energy control Two machine, one buffer system DQN Hu et al. (2019)

(Process) Design

Application Use-case Algorithm Source

108 Clamping position optimization Milling machine SAC Samsonov et al. (2020)
109 Computer-aided process planning Constrained machining AC Wu et al. (2021)
110 Integrated circuit design Global IC routing DQN Liao et al. (2020)
111 Notch filter design Industrial servo systems DDPG Oh et al. (2020)
112 Rectangular item placement 2D Strip Packing DQN Zhu et al. (2020)
113 SaaS remote training Heavy plate rolling SAC Scheiderer et al. (2020)
114 Tool path design Geometric impeller optimization DDPG Zhou et al. (2020)

Table 4.6 Summary of deep RL applications in maintenance, energy management, and (process) design

4.4.10 Further applications

Further categories with single publications are listed in Table 4.7. These include specific topics
such as building an agent swapping framework to allow learning in a non-real-time environment
and execution in a real-time environment (Schmidt et al., 2020) or the deep RL based selection
of optimal prediction models in the semiconductor manufacturing domain to cope with demand
fluctuations and avoid shortages and overstock (Chien et al., 2020).

Quality control

Application Use-case Algorithm Source

115 In-situ quality moniitoring Subsurface dynamics analysis sim. AlphaGO Wasmer et al. (2019)
116 Quality inspection Path teaching and adaption AC Brito et al. (2020)

Further applications

Application Use-case Algorithm Source

117 Novel PLC learning/acting arch. Real-time framework - Schmidt et al. (2020)
118 Select opt. demand forecast model Semiconductor components DQN Chien et al. (2020)
119 Multi-task policy generalization Mfg. system with various tasks DQN Wang et al. (2019)
120 Investigation of malicious behaviors Function-/performance attacks DQN Liu et al. (2021)

Table 4.7 Summary of deep RL applications in quality control and further applications
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4.5 Implementation challenges and research agenda

In the previous section, the broad application base and benefits associated with the deployment
of the deep RL algorithms were highlighted. Nevertheless, there are some challenges and hurdles
that must be overcome that prevent an extensive deployment (RQ2) and need to be addressed in
future research (RQ3).

4.5.1 Implementation challenges and research gaps

The key insights of the review analysis are summarized in Table 4.8. The table is aligned in its
sequence with the previous chapter and comprises the most frequently applied algorithms and
neural networks as well as the simulation-only and superiority share (related to the conducted
benchmarks).

Production domain #Publications Most frequent
algorithm

Most frequent
neural netw.

Simulation-only
share

Superiority
(#benchmarks)

Process control 29 AC FFNN 86% 81% (16)

Scheduling 22 DQN FFNN 100% 89% (19)
Dispatching 11 DQN FFNN 100% 55% (11)
(Intra-) Logistics 7 DQN FFNN 86% 100% (5)

Assembly 18 DQN/DDPG FFNN 17% 100% (4)
Robotics 4 DQN/DDPG FFNN 75% - (0)

Maintenance 8 DQN FFNN 75% 100% (3)
Energy Management 8 DQN FFNN 100% 100% (4)
(Process) Design 7 (S)AC FFNN 71% 100% (4)
Quality Control 2 AC/AlphaGo FFNN 0% - (0)
Others 4 DQN FFNN 75% 100% (2)

Table 4.8 Summary of the key findings from the review analysis

Table 4.8 highlights some of the challenges we identified during the literature review. We
categorized those into the following 4 major and subsequent minor application challenges and
research gaps.

• Algorithm selection: After identification of a potential implementation, the question
arises which algorithm and parameters should be used for the planned scenario. Although
these have a significant impact on the resulting performance, there are no or only a few
guidelines that can assist during the selection and parameter optimization process. As
mentioned by Rummukainen and Nurminen (2019), Yoo et al. (2021), and others, this
selection is a central issue that can worsen the resulting performance and hinder the full
development of deep RL capabilities. Table 4.8 and Figure 4.7(a) demonstrate the reliance
on standard algorithms that may result from missing guidelines. A majority of the reviewed
papers implemented a DQN, although possible improvements like the doubleDQN can
significantly improve performances (van Hasselt et al., 2016). As one of the few examples,
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Li et al. (2019) thus improved success rates by 13% to 94% utilizing a DDPG for a robot
assembly process compared to a DQN. Similarly, a significantly improved performance
was reached through learning rate and batch size modifications in Baer et al. (2020).

(a) Number of implemented algorithms
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Figure 4.7 Quantitative analysis of applied algorithms and testing environments

• Further modifications: A majority of the papers utilized a common (convolutional)
neural network (85%). Only a small fraction utilized LSTM (6%) or recurrent neural
networks (1%), which can better reflect long-term experiences. Besides, only four papers
compared more than one network and six papers more than one RL algorithm, leading to a
gap in benchmarks and performance correlations. Other extensions such as a prioritized
experience replay were only applied occasionally although they might increase production
performance significantly, similar to the testings within the Atari environment (Schaul et
al., 2016).

• Transfer of results: Another major challenge is the transfer of the simulation results to
real-world scenarios. Overall, 76% of the papers have validated the proposed solution
within simulations. Only 24% of the papers conducted real-world testings, half of which
considered either a purely real-world scenario or both. The percentage in assembly was
particularly high, as 83% of tests were conducted in real or simulation-based environments.
Assembly benefits in particular from confined and segregated environments, which limit
hurdles and mitigate risks. In contrast, no real testing was carried out in production
scheduling and dispatching as indicated in Figure 4.7(b). Particularly high safety and
reliability-related entry hurdles must be met, besides high system implementation efforts,
that prevent large-scale and rapid testings in those fields. Besides, simulations only obtain
a simplified representation of the real problem. Due to the considerable differences in
complexity between the simulation and real applications, a reduced performance of the
approaches after the real-world transfer is to be expected. In particular, the implementation
into large real-world systems is rather challenging and has to cope with many unconsidered
parameters and a non-preprocessed set of data.
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• Local optimization: In addition to the aforementioned challenges, there is the risk that the
algorithms only perform local optimization (Dittrich and Fohlmeister, 2020). As discussed
by Rossit et al. (2019), smart scheduling, in particular, is composed of decentralized
structures in which multiple deep RL agents can interact and perform their tasks in the
defined task domain. This might result in potential small-scale control loops that are
optimized intrinsically and exploit local information, but neglect larger interdependencies.
Besides, a non-optimal problem-solving strategy may arise from a lack of exploration
of the state and action space, resulting in the selection of non-optimal actions and a
non-existent optimality guarantee (Spielberg et al., 2019; Guo et al., 2019).

In addition to the challenges mentioned above, others arise from exponentially growing
action and state spaces in complex production systems that require high computational
efforts or multitasking scenarios that can not be managed by a single agents (Wang et al.,
2019; Beltran-Hernandez et al., 2020). Besides, non-smooth execution due to jumps in the
policy decision can result in the inability to execute optimal actions and negatively impact
process qualities (Noel and Pandian, 2014). Last, differences in training performance (Ma
et al., 2019) or vibration during the training of complex tasks (Shi et al., 2020), can lead to
less repeatable processes and lower predictability, resulting in low reliability and raising
safety concerns.

4.5.2 Future research agenda

Although the hurdles and challenges described above do not yet enable a full-scale adoption
of deep RL in production systems, further efforts can assist in accelerating the process towards
industrial maturity. The bullet points below address the outlined challenges and provide research
colleagues and practitioners incentives for future research.

• Standardized implementation approach: Future deep RL based production research
can incorporate more insightful benchmarks by considering advanced algorithms, mod-
ifications, and parameter tuning within the same simulations. Similar to van Hasselt et
al. (2016) in the Atari environment, this could yield a significant increase in performance
without causing high adaption efforts. To assist future research, the benchmarks could ad-
ditionally serve as a basis to derive further guidance for optimization and control problems
with similar state and action spaces circumventing expert advice needed for a fast system
adoption and applicability.

The generation of prototype evaluations can also benefit from the definition of model
environments, similar to the Atari environment. Frameworks such as the SimRLFab for
production dispatching (Kuhnle, 2020) can be integrated quickly and enable algorithm
benchmarks without requiring large implementation efforts.
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• Accelerated simulation to real-world transfer: To enable a faster integration to real pro-
duction environments, the respective system requirements must be satisfied. This primarily
involves the consideration of safety-relevant parameters to avoid critical actions and threats.
In this context, a constraint-driven approach in non-deep RL was proposed by Ge et al.
(2019), in which permitted actions were limited through preliminary filtering, or by Xiong
and Diao (2021) who proposed a safety-based evaluation of policy robustness. Further
studies should approximate the simulations and frameworks to real-world conditions even
more, which includes consideration of hard real-time requirements, significant parameters,
uncertainties, and indeterminacies. Thus, by establishing a digital twin that copies reality,
hardware-in-the-loop environments (HiL), and separate training and testing sequences,
the gap between research and practical testings is narrowed and the transfer of results and
validation can be accelerated and performed with less risk. The HiL approach would enable
a real-time use of machine data and also address the data quality issue. In this context,
data pre-processing is essential and may be integrated in the simulation, but can only be
matched to reality with great efforts. The same applies to the state-action-reward design,
which must process the changed or even additional input variables and cope with unknown
process variables. The algorithms could be thoroughly investigated under real conditions
in the hybrid HiL environment, parameters optimized and the real system dynamics be-
tween input and output variables analyzed. Especially, domains that require large-scale
implementations like production scheduling, might benefit from such a step-by-step HiL
approach that anticipates transfer issues and identifies unknown disturbances at an early
stage.

• Generalizability: The ability of the agents to adapt more effectively to changing pro-
duction conditions should be considered to further optimize their learning stability and
robustness. Even though this has already been considered by learning general behaviors
instead of specific policies in Baer et al. (2020), it was also observed that small deviations
of the starting conditions led to performance reductions (Beltran-Hernandez et al., 2020).
Future research should therefore focus on methods that enable agents to adapt to different
scenarios as quickly as possible. This not only includes a particularly fast re-training
under changed conditions, but also an accelerated transfer of the adapted policy to the
real agent. Such a swift transfer could be facilitated by applying a permanently trained
agent within the digital twin and a subsequent policy transfer. Another approach to in-
crease generalizability and performance under changing conditions could be addressed by
implementations that go beyond the use of isolated deep RL solutions. Combining deep
RL with classical approaches such as scenario analysis, combined rule decisions, or task
decomposition could help circumvent common drawbacks such as low sample-efficiencies
and reduce error-proneness.
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• Handling production complexity: If the network receives too many state inputs and has
to decide on a large number of possible actions, this increases problem complexity and
significantly complicates optimal decision making. Thus, to keep large-scale production
problems manageable, they must be reduced in their dimension and problem complexity
to circumvent the curse of dimensionality. For this purpose, the complexity of whole
production systems could be decomposed by decentralized structures and allocated to
multiple agents. Having been trained to optimize specific parameters, these individual
agents can be deployed situation-dependent. Through the associated orchestration and
complexity break-down, a significantly improved scalability might be reached, since no
individual agent has to cope with the entire complexity and the exponentially growing
state and action space in large-scale applications. Local and global optimization loops
could run in parallel and minimize the risk of a local optimization.

Although Wang et al. (2019) already demonstrated such an ability of deep RL to optimize
multiple objectives utilizing generalized policies, further research should elaborate on
multitasking and leverage the generalizability of deep RL algorithms.

Besides, research should focus on transfer learning to enable agents to learn and perform
complex tasks faster and better. Thus, in multi-agent systems, single agents could benefit
from the experience gained by others and cope better with unfamiliar situations. The
development of such swarm intelligence could better exploit local and global information
and enable a flexible response and adaptation of the production system to unforeseen
incidents.

• Coordinated optimization: In distributed production systems, local optimization of
individual agents must be opposed by adjusting input variables, reward functions, and
training strategy. Agents must receive essential global and local information and should
be evaluated on individual as well as multi-agent performance criteria. This can include
maximizing the utilization of machines in the local agent environment while minimizing
the total cycle time of the overall multi-agent process. Further research could scale this
sensitivity towards multiple objectives which might be accomplished by staged training
sequences in which individual agents first find optimal local solutions and subsequently
target global objectives in a multi-agent training phase (Baer et al., 2019).

Besides, the exploration strategy of a single agent must be determined by appropriate
parameters to avoid an intrinsic local optimization. This can be remedied by specific tuning
and should be considered more in-depth in deep RL controlled multi-agent production
systems.

87



4 Publication 1 - Deep reinforcement learning based production

4.6 Discussion

Today’s production systems must cope with increasingly sophisticated customer requirements,
shorter product and development cycles, and short-term fluctuations in demand. One approach
to address these challenges in production is deep RL, which differs from other machine learn-
ing methods primarily through its online adaptability and real-time processing of sensor data.
Although other technical domains have already emphasized the benefits of deep RL, a focused
review in production systems has yet to be conducted. Our purpose was to provide a systematic
literature review of current deep RL applications in production systems and to outline challenges
and fields of future research to address these. Based on a taxonomy framework, 120 retrieved
papers from three databases were reviewed and classified according to their manufacturing
discipline, industry background, specific application, optimization objective, applied deep RL
algorithm, and neural network, heuristic benchmark results, and its application in a simulated
and/or real environment.

An application of deep RL was found in a wide range of production engineering disciplines.
Although a large portion of the applications were implemented in simulations (76%), the
superiority of deep RL driven production optimization was evident. In more than 85% of the total
comparisons, deep RL algorithms outperformed the corresponding benchmarks and increased
problem-specific performances.

4.6.1 Managerial implications

Future factories will be increasingly interconnected, products and processes will become more
complex, and development cycles will be more accelerated. To cope with these, companies
should challenge current practices and consider alternatives to minimize process risks and to fully
exploit algorithmic performances and organizational capabilities. To give a first introduction,
this literature review presents a variety of possible applications of deep RL in production systems
and helps managers to identify potential internal use cases. As a reference, the surveyed papers
can provide valuable guidance for own deep RL implementation approaches and assist in the
further selection of algorithms and parameters.

In contrast to static methods that can react to changing conditions only to a limited extent,
deep RL algorithms were able to increase productions robustness and adaptability. In most
applications, it proofed its practical relevance and not only improved technical parameters, but
in some applications increased cash flow and reduced (online) conversion costs. Through deep
RL, companies can limit the dependency on increasingly scarce human capital and leverage
data-driven operations proactively to reduce cost-intensive manual and expert-based processes.
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4.6.2 Limitations

Although the work is based on a taxonomy and methodology framework, we would like to
emphasize the existing limitations of our review. We conducted the literature search based
on three selected databases and an iterative keyword search, in which we tried to determine
essential domains, but may miss some that would have yielded relevant supplementary results.
To compensate for this bias, we conducted a forward and backward search to aggregate correlated
publications. To satisfy our claim of providing a representative review and to provide a broad
foundation, we also included proceedings and conference papers, which may cause bias compared
to other reviews. However, by ensuring peer review we sought to reduce this bias and to meet all
quality requirements. Besides, a limitation arises from the definition of a restricted review scope.
Publications from enterprise research or other domains that may have interfaces to production
were not specifically considered. Specific reviews can provide insights for the application of
deep RL in these production related environments, which we recommend and encourage.

4.7 Conclusion

It became evident that deep RL is widely used from process control to maintenance and other
domains, outperforming conventional algorithms in most cases, demonstrating its ability to
adapt to a variety of scenarios and deal with existing production uncertainties (RQ1). This not
only reduced lead times and WIP levels, reached high accuracies in assembly, or developed
robust scheduling policies, but also mitigated current drawbacks of conventional methods such
as limited adaptation capabilities, cost intensive re-optimizations, or high dependencies on
human-based decisions.

Nevertheless, some challenges still prevent widespread adoption in production systems (RQ2).
Besides missing hands-on guidelines and limited use of the available algorithm base, only a
few deep RL applications have been evaluated in reality and optimized in-depth, making further
validation mandatory. In future research (RQ3), the simulations need to be further refined
to incorporate additional uncertainties, reduce current transfer barriers, and enable real-world
applications. Additional optimization alternatives such as more powerful deep RL algorithms
that are currently less utilized, extensive elaboration on increased generalizability, alternative
training strategies, and reduction of production task complexities can be further considered to
realize more optimal performances.

The challenge remains of defining a thorough approach that will assist scholars and practitioners
through the application and optimization process, providing guidelines for deployment, and
accelerating the implementation in potential use-cases. Further research efforts on collaborative
and hierarchical multi-agent architectures, as well as the use of fleet intelligence, can further
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strengthen the application of deep RL in production systems and make it a widely applicable and
robust edge and global optimization method.

Copyright notice

This is an accepted version of the article published in:

Panzer, M., and B. Bender (2022). Deep reinforcement learning in production systems: A Sys-
tematic Literature Review. International Journal of Production Research 60 (13), p. 4316–4341.
https://doi.org/10.1080/00207543.2021.1973138

Clarification of the copyright adjusted according to the guidelines of the publisher.

Contributor roles

This paper is the result of collaborative efforts where specific responsibilities were allocated to
ensure the effective completion of the research and the preparation of the manuscript:

• Marcel Panzer: Played a pivotal role in the majority of this publication’s aspects. Respon-
sibilities included conceptualizing the research, designing and implementing the literature
analysis methodology, conducting the review, synthesizing and analyzing findings, and
primarily drafting the manuscript. Additionally, contributions were made in compiling and
refining the final manuscript during the review process.

• Benedict Bender: Played an essential role in the advancement of this review, offering
important guidance. His input involved rigorous critiques, along with providing thoughtful
feedback and recommendations. These contributions were key in refining the publication
and upholding its integrity.

The Declaration of the Co-Authors is inserted at the end of this thesis.

Publication 1 - References
Altenmüller, T., T. Stüker, B. Waschneck, A. Kuhnle and G. Lanza (2020). Reinforcement

learning for an intelligent and autonomous production control of complex job-shops under
time constraints. Production Engineering 14(3), p. 319–328. doi: 10.1007/s11740-020-00967-
8.

Andersen, R. E., S. Madsen, A. B. K. Barlo, S. B. Johansen, M. Nør, R. S. Andersen and
S. Bøgh (2019). Self-learning Processes in Smart Factories: Deep Reinforcement Learning

90



Publication 1 - References

for Process Control of Robot Brine Injection. Procedia Manufacturing 38, p. 171 – 177. doi:
10.1016/j.promfg.2020.01.023.

Arinez, J. F., Q. Chang, R. X. Gao, C. Xu and J. Zhang (2020). Artificial Intelligence in Advanced
Manufacturing: Current Status and Future Outlook. Journal of Manufacturing Science and
Engineering 142(11), p. 110804. doi: 10.1115/1.4047855.

Baer, S., J. Bakakeu, R. Meyes and T. Meisen (2019). Multi-Agent Reinforcement Learning
for Job Shop Scheduling in Flexible Manufacturing Systems. In: 2019 Second International
Conference on Artificial Intelligence for Industries (AI4I), Laguna Hills, CA, USA. doi:
10.1109/AI4I46381.2019.00014.

Baer, S., D. Turner, P. Mohanty, V. Samsonov, R. Bakakeu and T. Meisen (2020). Multi Agent
Deep Q-Network Approach for Online Job Shop Scheduling in Flexible Manufacturing. In:
2020 International Conference on Manufacturing System and Multiple Machines, Tokyo,
Japan.

Bakakeu, J., S. Baer, J. Bauer, H.-H. Klos, J. Peschke, A. Fehrle, W. Eberlein, J. Bürner,
M. Brossog, L. Jahn and J. Franke (2018). An Artificial Intelligence Approach for Online
Optimization of Flexible Manufacturing Systems. Applied Mechanics and Materials 882, p.
96–108. doi: 10.4028/www.scientific.net/AMM.882.96.

Bakakeu, J., D. Kisskalt, J. Franke, S. Baer, H.-H. Klos and J. Peschke (2020). Multi-Agent
Reinforcement Learning for the Energy Optimization of Cyber-Physical Production Systems.
In: 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
London, ON, Canada. doi: 10.1109/CCECE47787.2020.9255795.

Bellman, R. (1957). Dynamic programming, Volume 1. Princeton, NJ, USA: Princeton University
Press. OCLC: 830865530.

Beltran-Hernandez, C. C., D. Petit, I. G. Ramirez-Alpizar and K. Harada (2020). Variable
Compliance Control for Robotic Peg-in-Hole Assembly: A Deep-Reinforcement-Learning
Approach. Applied Sciences 10(19), p. 6923. doi: 10.3390/app10196923.

Beltran-Hernandez, C. C., D. Petit, I. G. Ramirez-Alpizar, T. Nishi, S. Kikuchi, T. Matsubara
and K. Harada (2020). Learning Force Control for Contact-Rich Manipulation Tasks With
Rigid Position-Controlled Robots. IEEE Robotics and Automation Letters 5(4), p. 5709–5716.
doi: 10.1109/LRA.2020.3010739.

Brito, T., J. Queiroz, L. Piardi, L. A. Fernandes, J. Lima and P. Leitão (2020). A Machine
Learning Approach for Collaborative Robot Smart Manufacturing Inspection for Quality
Control Systems. Procedia Manufacturing 51, p. 11 – 18. doi: 10.1016/j.promfg.2020.10.003.

Brocke, J., A. Simons, B. Niehaves, K. Riemer, R. Plattfaut and A. Cleven (2009). Recon-
structing the giant: On the importance of rigour in documenting the literature search process.

91



Publication 1 - References

Proceedings of the 17th European Conference on Information Systems (ECIS).

Cao, D., W. Hu, J. Zhao, G. Zhang, B. Zhang, Z. Liu, Z. Chen and F. Blaabjerg (2020).
Reinforcement Learning and Its Applications in Modern Power and Energy Systems: A
Review. Journal of Modern Power Systems and Clean Energy 8(6), p. 1029–1042. doi:
10.35833/MPCE.2020.000552.

Chen, B., J. Wan, Y. Lan, M. Imran, D. Li and N. Guizani (2019). Improving Cognitive Ability
of Edge Intelligent IIoT through Machine Learning. IEEE Network 33(5), p. 61–67. doi:
10.1109/MNET.001.1800505.

Chen, N., S. Luo, J. Dai, B. Luo and W. Gui (2020). Optimal Control of Iron-Removal Systems
Based on Off-Policy Reinforcement Learning. IEEE Access 8, p. 149730–149740. doi:
10.1109/ACCESS.2020.3015801.

Chien, C.-F., Y.-S. Lin and S.-K. Lin (2020). Deep reinforcement learning for selecting demand
forecast models to empower Industry 3.5 and an empirical study for a semiconductor com-
ponent distributor. International Journal of Production Research 58(9), p. 2784–2804. doi:
10.1080/00207543.2020.1733125.

Cooper, H. M. (1988). Organizing knowledge syntheses: A taxonomy of literature reviews.
Knowledge in Society 1, p. 104–126.

Dai, W., Z. Mo, C. Luo, J. Jiang, H. Zhang and Q. Miao (2020). Fault Diagnosis of Rotating
Machinery Based on Deep Reinforcement Learning and Reciprocal of Smoothness Index.
IEEE Sensors Journal 20(15), p. 8307–8315. doi: 10.1109/JSEN.2020.2970747.

Ding, Y., L. Ma, J. Ma, M. Suo, L. Tao, Y. Cheng and C. Lu (2019). Intelligent fault diagno-
sis for rotating machinery using deep Q-network based health state classification: A deep
reinforcement learning approach. Advanced Engineering Informatics 42, p. 100977. doi:
10.1016/j.aei.2019.100977.

Dittrich, M.-A. and S. Fohlmeister (2020). Cooperative multi-agent system for produc-
tion control using reinforcement learning. CIRP Annals 69(1), p. 389 – 392. doi:
10.1016/j.cirp.2020.04.005.

Dong, T., F. Xue, C. Xiao and J. Li (2020). Task scheduling based on deep reinforcement
learning in a cloud manufacturing environment. Concurrency and Computation: Practice and
Experience 32(11). doi: 10.1002/cpe.5654.

Dornheim, J., N. Link and P. Gumbsch (2020). Model-free Adaptive Optimal Control of Episodic
Fixed-horizon Manufacturing Processes Using Reinforcement Learning. International Journal
of Control, Automation and Systems 18(6), p. 1593–1604. doi: 10.1007/s12555-019-0120-7.

Durach, C. F., J. Kembro and A. Wieland (2017). A New Paradigm for Systematic Literature

92



Publication 1 - References

Reviews in Supply Chain Management. Journal of Supply Chain Management 53(4), p. 67–85.
doi: 10.1111/jscm.12145.

Epureanu, B. I., X. Li, A. Nassehi and Y. Koren (2020). Self-repair of smart manufactur-
ing systems by deep reinforcement learning. CIRP Annals 69(1), p. 421 – 424. doi:
10.1016/j.cirp.2020.04.008.

Feldkamp, N., S. Bergmann and S. Strassburger (2020). Simulation-based deep reinforcement
learning for modular production systems. In: Proceedings of the 2020 Winter Simulation
Conference, p. 1596–1607.

Gabel, T. and M. Riedmiller (2007). Adaptive Reactive Job-Shop Scheduling with Reinforcement
Learning Agents. International Journal of Information Technology and Intelligent Computing.

Ge, Y., F. Zhu, X. Ling and Q. Liu (2019). Safe Q-Learning Method Based on Constrained
Markov Decision Processes. IEEE Access 7, p. 165007–165017. doi: 10.1109/AC-
CESS.2019.2952651.

Greenhalgh, T. and R. Peacock (2005). Effectiveness and efficiency of search methods in
systematic reviews of complex evidence: audit of primary sources. BMJ 331(7524), p.
1064–1065. doi: 10.1136/bmj.38636.593461.68.

Guo, F., X. Zhou, J. Liu, Y. Zhang, D. Li and H. Zhou (2019). A reinforcement learning decision
model for online process parameters optimization from offline data in injection molding.
Applied Soft Computing 85, p. 105828. doi: 10.1016/j.asoc.2019.105828.

Guo, L., H. Wang and J. Zhang (2019). Data-Driven Grinding Control Using Reinforcement
Learning. In: 2019 IEEE 21st International Conference on High Performance Computing and
Communications, Zhangjiajie, China. doi: 10.1109/HPCC/SmartCity/DSS.2019.00395.

Günther, J., P. M. Pilarski, G. Helfrich, H. Shen and K. Diepold (2016). Intelligent laser
welding through representation, prediction, and control learning: An architecture with
deep neural networks and reinforcement learning. Mechatronics 34, p. 1 – 11. doi:
10.1016/j.mechatronics.2015.09.004.

Han, B.-A. and J.-J. Yang (2020). Research on Adaptive Job Shop Scheduling Problems
Based on Dueling Double DQN. IEEE Access 8, p. 186474–186495. doi: 10.1109/AC-
CESS.2020.3029868.

He, Z., K.-P. Tran, S. Thomassey, X. Zeng, J. Xu and C. Yi (2020). A deep reinforcement
learning based multi-criteria decision support system for optimizing textile chemical process.
Computers in Industry 125, p. 103373. doi: 10.1016/j.compind.2020.103373.

Heger, J. and T. Voß (2020). Dynamically changing sequencing rules wirth reinforcement
learning in a job shop system with stochastic influences. Proceedings of the 2020 Winter

93



Publication 1 - References

Simulation Conference, p. 1608–1618.

Hildebrand, M., R. S. Andersen and S. Bøgh (2020). Deep Reinforcement Learning for Robot
Batching Optimization and Flow Control. Procedia Manufacturing 51, p. 1462 – 1468. doi:
10.1016/j.promfg.2020.10.203.

Hoppe, S., Z. Lou, D. Hennes and M. Toussaint (2019). Planning Approximate Exploration
Trajectories for Model-Free Reinforcement Learning in Contact-Rich Manipulation. IEEE
Robotics and Automation Letters 4(4), p. 4042–4047. doi: 10.1109/LRA.2019.2928212.

Hu, H., X. Jia, Q. He, S. Fu and K. Liu (2020). Deep reinforcement learning based AGVs
real-time scheduling with mixed rule for flexible shop floor in industry 4.0. Computers &
Industrial Engineering 149, p. 106749. doi: 10.1016/j.cie.2020.106749.

Hu, L., Z. Liu, W. Hu, Y. Wang, J. Tan and F. Wu (2020). Petri-net-based dynamic scheduling
of flexible manufacturing system via deep reinforcement learning with graph convolutional
network. Journal of Manufacturing Systems 55, p. 1 – 14. doi: 10.1016/j.jmsy.2020.02.004.

Hu, W., Z. Sun, Y. Zhang and Y. Li (2019). Joint Manufacturing and Onsite Microgrid System
Control Using Markov Decision Process and Neural Network Integrated Reinforcement
Learning. Procedia Manufacturing 39, p. 1242 – 1249. doi: 10.1016/j.promfg.2020.01.345.

Huang, J., Q. Chang and J. Arinez (2020). Deep reinforcement learning based preventive
maintenance policy for serial production lines. Expert Systems with Applications 160, p.
113701. doi: 10.1016/j.eswa.2020.113701.

Huang, X., S. H. Hong, M. Yu, Y. Ding and J. Jiang (2019). Demand Response Management
for Industrial Facilities: A Deep Reinforcement Learning Approach. IEEE Access 7, p.
82194–82205. doi: 10.1109/ACCESS.2019.2924030.

Hubbs, C. D., C. Li, N. V. Sahinidis, I. E. Grossmann and J. M. Wassick (2020). A deep
reinforcement learning approach for chemical production scheduling. Computers & Chemical
Engineering 141, p. 106982. doi: 10.1016/j.compchemeng.2020.106982.

Inoue, T., G. De Magistris, A. Munawar, T. Yokoya and R. Tachibana (2017). Deep reinforcement
learning for high precision assembly tasks. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vancouver, BC. doi: 10.1109/IROS.2017.8202244.

Jiang, Y., J. Fan, T. Chai and F. L. Lewis (2019). Dual-Rate Operational Optimal Control
for Flotation Industrial Process With Unknown Operational Model. IEEE Transactions on
Industrial Electronics 66(6), p. 4587–4599. doi: 10.1109/TIE.2018.2856198.

Jiang, Y., J. Fan, T. Chai, J. Li and F. L. Lewis (2018). Data-Driven Flotation Industrial Process
Operational Optimal Control Based on Reinforcement Learning. IEEE Transactions on
Industrial Informatics 14(5), p. 1974–1989. doi: 10.1109/TII.2017.2761852.

94



Publication 1 - References

Jin, Z., H. Li and H. Gao (2019). An intelligent weld control strategy based on reinforcement
learning approach. The International Journal of Advanced Manufacturing Technology 100(9-
12), p. 2163–2175. doi: 10.1007/s00170-018-2864-2.

Kagermann, H., W. Wahlster and J. Helbig (2013). Recommendations for Implementing the
Strategic Initiative INDUSTRIE 4.0 – Securing the Future of German Manufacturing Industry.
Acatech - National Academy of Science and Engineering.

Kang, Z., C. Catal and B. Tekinerdogan (2020). Machine learning applications in production
lines: A systematic literature review. Computers & Industrial Engineering 149, p. 106773.
doi: 10.1016/j.cie.2020.106773.

Khan, A.-M., R. J. Khan, A. Tooshil, N. Sikder, M. A. P. Mahmud, A. Z. Kouzani and A.-A.
Nahid (2020). A Systematic Review on Reinforcement Learning-Based Robotics Within the
Last Decade. IEEE Access 8, p. 176598–176623. doi: 10.1109/ACCESS.2020.3027152.

Kim, J.-B., H.-B. Choi, G.-Y. Hwang, K. Kim, Y.-G. Hong and Y.-H. Han (2020). Sorta-
tion Control Using Multi-Agent Deep Reinforcement Learning in N-Grid Sortation System.
Sensors 20(12), p. 3401. doi: 10.3390/s20123401.

Kim, Y.-L., K.-H. Ahn and J.-B. Song (2020). Reinforcement learning based on movement
primitives for contact tasks. Robotics and Computer-Integrated Manufacturing 62, p. 101863.
doi: 10.1016/j.rcim.2019.101863.

Kuhnle, A. (2020). SimRLFab: Simulation and reinforcement learning framework for production
planning and control of complex job shop manufacturing systems. GitHub. Accessed 20
March 2021. https://github.com/AndreasKuhnle/SimRLFab.

Kuhnle, A., J.-P. Kaiser, F. Theiß, N. Stricker and G. Lanza (2020). Designing an adaptive pro-
duction control system using reinforcement learning. Journal of Intelligent Manufacturing 32,
p. 855–876. doi: 10.1007/s10845-020-01612-y.

Kumar, A., R. Dimitrakopoulos and M. Maulen (2020). Adaptive self-learning mechanisms
for updating short-term production decisions in an industrial mining complex. Journal of
Intelligent Manufacturing 31(7), p. 1795–1811. doi: 10.1007/s10845-020-01562-5.

Lange, S., M. Riedmiller and A. Voigtlander (2012). Autonomous reinforcement learning on
raw visual input data in a real world application. In: The 2012 International Joint Conference
on Neural Networks (IJCNN), Brisbane, Australia. doi: 10.1109/IJCNN.2012.6252823.

Lee, J.-H. and H.-J. Kim (2021). Reinforcement learning for robotic flow shop schedul-
ing with processing time variations. International Journal of Production Research. doi:
10.1080/00207543.2021.1887533.

Lee, J. H., J. Shin and M. J. Realff (2018). Machine learning: Overview of the recent pro-

95



Publication 1 - References

gresses and implications for the process systems engineering field. Computers & Chemical
Engineering 114, p. 111 – 121. doi: 10.1016/j.compchemeng.2017.10.008.

Lee, S., Y. Cho and Y. H. Lee (2020). Injection Mold Production Sustainable Scheduling Using
Deep Reinforcement Learning. Sustainability 12(20), p. 8718. doi: 10.3390/su12208718.

Lei, L., Y. Tan, K. Zheng, S. Liu, K. Zhang and X. Shen (2020). Deep Reinforcement Learning for
Autonomous Internet of Things: Model, Applications and Challenges. IEEE Communications
Surveys & Tutorials 22(3), p. 1722–1760. doi: 10.1109/COMST.2020.2988367.

Leng, J., C. Jin, A. Vogl and H. Liu (2020). Deep reinforcement learning for a color-
batching resequencing problem. Journal of Manufacturing Systems 56, p. 175 – 187. doi:
10.1016/j.jmsy.2020.06.001.

Leng, J., G. Ruan, Y. Song, Q. Liu, Y. Fu, K. Ding and X. Chen (2021). A loosely-coupled deep
reinforcement learning approach for order acceptance decision of mass-individualized printed
circuit board manufacturing in industry 4.0. Journal of Cleaner Production 280, p. 124405.
doi: 10.1016/j.jclepro.2020.124405.

Li, B., H. Zhang, P. Ye and J. Wang (2020). Trajectory smoothing method using reinforcement
learning for computer numerical control machine tools. Robotics and Computer-Integrated
Manufacturing 61, p. 101847. doi: 10.1016/j.rcim.2019.101847.

Li, F., Q. Jiang, W. Quan, S. Cai, R. Song and Y. Li (2019). Manipulation Skill Acquisition
for Robotic Assembly Based on Multi-Modal Information Description. IEEE Access 8, p.
6282–6294. doi: 10.1109/ACCESS.2019.2934174.

Li, F., Q. Jiang, S. Zhang, M. Wei and R. Song (2019). Robot skill acquisition in assem-
bly process using deep reinforcement learning. Neurocomputing 345, p. 92 – 102. doi:
10.1016/j.neucom.2019.01.087.

Li, J., J. Ding, T. Chai and F. L. Lewis (2020). Nonzero-Sum Game Reinforcement Learning
for Performance Optimization in Large-Scale Industrial Processes. IEEE Transactions on
Cybernetics 50(9), p. 4132–4145. doi: 10.1109/TCYB.2019.2950262.

Liang, H., X. Wen, Y. Liu, H. Zhang, L. Zhang and L. Wang (2021). Logistics-involved QoS-
aware service composition in cloud manufacturing with deep reinforcement learning. Robotics
and Computer-Integrated Manufacturing 67, p. 101991. doi: 10.1016/j.rcim.2020.101991.

Liao, H., W. Zhang, X. Dong, B. Poczos, K. Shimada and L. Burak Kara (2020). A Deep
Reinforcement Learning Approach for Global Routing. Journal of Mechanical Design 142(6),
p. 061701. doi: 10.1115/1.4045044.

Liao, Y., F. Deschamps, E. d. F. R. Loures and L. F. P. Ramos (2017). Past, present and future
of Industry 4.0 - a systematic literature review and research agenda proposal. International

96



Publication 1 - References

Journal of Production Research 55(12), p. 3609–3629. doi: 10.1080/00207543.2017.1308576.

Light, R. J. and D. B. Pillemer (1984). Summing up: the science of reviewing research. Cam-
bridge, Mass: Harvard University Press.

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and D. Wierstra
(2016). Continuous control with deep reinforcement learning. Proceedings of 4th International
Conference on Learning Representations. arXiv: 1509.02971.

Lin, C.-C., D.-J. Deng, Y.-L. Chih and H.-T. Chiu (2019). Smart Manufacturing Scheduling
With Edge Computing Using Multiclass Deep Q Network. IEEE Transactions on Industrial
Informatics 15(7), p. 4276–4284. doi: 10.1109/TII.2019.2908210.

Liu, C.-L., C.-C. Chang and C.-J. Tseng (2020). Actor-Critic Deep Reinforcement Learning for
Solving Job Shop Scheduling Problems. IEEE Access 8, p. 71752–71762. doi: 10.1109/AC-
CESS.2020.2987820.

Liu, X., H. Xu, W. Liao and W. Yu (2019). Reinforcement Learning for Cyber-Physical Systems.
In: 2019 IEEE International Conference on Industrial Internet (ICII), Orlando, FL, USA. doi:
10.1109/ICII.2019.00063.

Liu, X., W. Yu, F. Liang, D. Griffith and N. Golmie (2021). On deep reinforcement learning
security for Industrial Internet of Things. Computer Communications 168, p. 20 – 32. doi:
10.1016/j.comcom.2020.12.013.

Liu, Y., Y. Chen and T. Jiang (2020). Dynamic selective maintenance optimization for multi-state
systems over a finite horizon: A deep reinforcement learning approach. European Journal of
Operational Research 283(1), p. 166 – 181. doi: 10.1016/j.ejor.2019.10.049.

Lohmer, J. and R. Lasch (2020). Production planning and scheduling in multi-factory production
networks: a systematic literature review. International Journal of Production Research, p.
1–27. doi: 10.1080/00207543.2020.1797207.

Lu, R., Y.-C. Li, Y. Li, J. Jiang and Y. Ding (2020). Multi-agent deep reinforcement learning
based demand response for discrete manufacturing systems energy management. Applied
Energy 276, p. 115473. doi: 10.1016/j.apenergy.2020.115473.

Lu, X., B. Kiumarsi, T. Chai and F. L. Lewis (2016). Data-driven optimal control of operational
indices for a class of industrial processes. IET Control Theory & Applications 10(12), p.
1348–1356. doi: 10.1049/iet-cta.2015.0798.

Luo, J., E. Solowjow, C. Wen, J. A. Ojea and A. M. Agogino (2018). Deep Reinforcement
Learning for Robotic Assembly of Mixed Deformable and Rigid Objects. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain. doi:
10.1109/IROS.2018.8594353.

97



Publication 1 - References

Luo, J., E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar and P. Abbeel (2019).
Reinforcement Learning on Variable Impedance Controller for High-Precision Robotic As-
sembly. In: 2019 International Conference on Robotics and Automation (ICRA), Montreal,
QC, Canada. doi: 10.1109/ICRA.2019.8793506.

Luo, S. (2020). Dynamic scheduling for flexible job shop with new job insertions by deep rein-
forcement learning. Applied Soft Computing 91, p. 106208. doi: 10.1016/j.asoc.2020.106208.

Luong, N. C., D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang and D. I. Kim (2019). Appli-
cations of Deep Reinforcement Learning in Communications and Networking: A Survey. IEEE
Communications Surveys Tutorials 21(4), p. 3133–3174. doi: 10.1109/COMST.2019.2916583.

Lämmle, A., T. König, M. El-Shamouty and M. F. Huber (2020). Skill-based Programming of
Force-controlled Assembly Tasks using Deep Reinforcement Learning. Procedia CIRP 93, p.
1061 – 1066. doi: https://doi.org/10.1016/j.procir.2020.04.153.

Ma, Y., W. Zhu, M. G. Benton and J. Romagnoli (2019). Continuous control of a polymerization
system with deep reinforcement learning. Journal of Process Control 75, p. 40 – 47. doi:
10.1016/j.jprocont.2018.11.004.

Mahadevan, S. and G. Theocharous (1998). Optimizing Production Manufacturing Using
Reinforcement Learning. In: Proceedings of the Eleventh International FLAIRS Conference,
p. 372–377.
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ABSTRACT
Nowadays, production planning and control must cope with mass customization, increased
fluctuations in demand, and high competition pressures. Despite prevailing market risks, planning
accuracy and increased adaptability in the event of disruptions or failures must be ensured, while
simultaneously optimizing key process indicators. To manage that complex task, neural networks
that can process large quantities of high-dimensional data in real time have been widely adopted
in recent years. Although these are already extensively deployed in production systems, a
systematic review of applications and implemented agent embeddings and architectures has not
yet been conducted. The main contribution of this paper is to provide researchers and practitioners
with an overview of applications and applied embeddings and to motivate further research in
neural agent-based production. Findings indicate that neural agents are not only deployed in
diverse applications, but are also increasingly implemented in multi-agent environments or in
combination with conventional methods - leveraging performances compared to benchmarks
and reducing dependence on human experience. This not only implies a more sophisticated
focus on distributed production resources, but also broadening the perspective from a local to a
global scale. Nevertheless, future research must further increase scalability and reproducibility
to guarantee a simplified transfer of results to reality.
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5.1 Introduction

Despite growing market uncertainties and increasingly complex product structures up to mass
customization, production planning and control (PPC) must enable a robust production and meet
internal and external customer requirements. Besides common key performance indicators (KPIs)
such as product quality or lead time, these increasingly include aspects of sustainability and the
ability to adapt quickly to new environmental conditions. The remarkable set of addressable
capabilities, performance measures, and environmental factors that can be significantly leveraged
through intelligent production planning and control has already been analyzed by Bueno et al.
(2020), indicating a wide range of potentials for process optimization.

To reduce system complexity, besides single-agent (SA) systems, various multi-agent (MA)
implementations have been proposed that imply collaborative, competitive, or mixed-agent
interactions (Babiceanu and Chen, 2006; Gronauer and Diepold, 2021). In addition, machine
learning (ML) is increasingly employed due to the growing capabilities of the given infrastructure
in recent years (Kang et al., 2020). ML can assist in performing multi-criteria optimization
involving local and global objectives, multiple resources, machines, and factories (Zhang et al.,
2019) that demand a continuously optimized production control and schedule (Kang et al., 2020).

However, according to Cadavid et al. (2019), 75% of potential research domains in the field of
ML-based PPC have not yet been sufficiently investigated. This also becomes apparent in the
work of Liao et al. (2017), who state that while Big Data and other disciplines are increasingly
focused on PPC-related research, ML lags behind these. This impression has already been
countered in a previous review of ours in the field of deep reinforcement learning (RL)-based
production (Panzer and Bender, 2021), but also by others such as Weichert et al. (2019), Kang
et al. (2020), and Zhou et al. (2022), highlighting the versatility of ML algorithms in various
production scenarios. Nevertheless, Weichert et al. (2019) emphasize that the integration of an
ML model for the optimization of production processes must be carried out carefully to balance
the increasing process and model complexities and ensure that appropriate decisions are made
regarding the algorithmic structure and its interaction with the environment.

As one possible ML technique, (deep) neural networks (NN) in particular are increasingly
utilized in production due to their ability to process large amounts of data in real time and map
complex non-linear interdependencies, thus avoiding the need for complex models (Cadavid
et al., 2019). Our review specifically addresses the application and embedding of NN-based
algorithms in production as a data-driven online optimization approach and highlights their
beneficial properties for production systems. Considering the flexible and scalable properties
and high performance of NNs, our contribution aims to capture the current state of the art in real
and simulated production systems. Furthermore, we want to identify existing challenges and
derive future research directions.
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Already in 1990, Rabelo et al. (1990) demonstrated the superior abilities of a hybrid scheduling
approach to combine NN-based pattern identification and expert-based constraint refinement. By
identifying scheduling task patterns, Zhou et al. (1990) adopted what Baker (1998) considered
to be a heterarchical approach to job shop scheduling - mapping scheduling operations to the
network structure. As a result of their successes, Zhang and Huang (1995) and Garetti and Taisch
(1999) summarized previous efforts and highlighted the effectiveness of NNs for handling PPC
problems. However, in recent reviews, NN-based PPC has only partially been considered in the
context of flexible job shop scheduling (Zhang et al., 2019), or just in the context of other ML
techniques (Kang et al., 2020), lacking a consolidation of NN-based PPC contributions. This
also becomes apparent in the work of De Modesti et al. (2020), who described the increased
relevance of NNs but, like Çaliş and Bulkan (2015) for job shop scheduling or Bertolini et al.
(2021) for general industrial use cases, incorporated NNs into the context of general ML.

From an organizational perspective, the potential of hierarchical production processes was
highlighted by Bitran et al. (1982). The benefits of holonic systems were further outlined, among
others, in Babiceanu and Chen (2006) and recently in Derigent et al. (2021), and was featured as
one of 6 enablers for smart manufacturing control in Rojas and Rauch (2019). Beyond that, Lee
and Kim (2008) and Monostori et al. (2014) outlined how MA systems enable robust and flexible
production, similar to Gronauer and Diepold (2021) or Herrera et al. (2020), who focused on
deep reinforcement learning as a possible implementation of MA systems and general systems
engineering. However, a focused review of the existing results of NN-based PPC and the applied
architectures has yet to be conducted.

To the best of our knowledge, this is the first attempt to capture the main findings of NN-based
applications and agent embeddings in PPC. The review should serve practitioners in identifying
potential research directions and provide incentives for implementation. We intend to highlight
performance potentials that might arise from applying NN-based PPC in practice, but also
emphasize existing challenges. For this purpose, we attempt to answer the following research
questions.

• RQ1: What are current neural network applications in PPC?

• RQ2: What are the predominant neural network-based PPC embeddings?

• RQ3: What are major challenges of the reviewed PPC implementations?

• RQ4: How can those challenges be addressed and what future fields of research emerge?

The paper is structured as follows: Section 2 describes the basics of NN-based PPC methods.
Section 3 specifies the methodology and conceptual framework of the review. Section 4 answers
RQ1 and RQ2 based on the conducted review. Section 5 outlines the corresponding taxonomy
design followed by the predominant challenges (RQ3) and future research fields (RQ4) in Section
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6. Section 7 discusses the results of the review, existing limitations, and managerial insights. A
conclusion is provided in Section 5.8. Analysis tables with detailed review information can be
found in the Appendix.

5.2 Neural network-based production planning and control

The goal of PPC is to maintain production and meet the desired technical, financial, and
organizational objectives, even given uncertainties around the markets and production itself
(Zipfel et al., 2019). Production planning refers to disciplines such as scheduling, which must
cope with multi-product environments, limited resources, and rush orders to achieve high
efficiency and cost-effectiveness. Production control, such as dispatching, on the other hand,
must execute planned actions taking into account unsteady conditions such as machine status or
varying processing times to compensate for unforeseen events and maintain stable and robust
production (Ramsauer, 1997). Related to Industry 4.0, the adoption of technologically advanced
techniques in PPC can be deployed to improve performance (Kagermann et al., 2013). In recent
years, this has included NNs in particular, which have not only experienced great success with
Google DeepMind (Silver et al., 2017) but are also increasingly implemented in production
and can prevent extensive modeling or high dependence on human experience (as in Ding et al.
(2019)).

5.2.1 Neural networks

NNs can learn (long-term) dependencies and exploit past experiences gained. The networks
learn and store experiences by updating the strength of the neural connections, which enables
real-time computations and adaptive behavior. Based on non-linear computations that mimic
the nervous system, inputs are processed and outputs are derived in the form of direct action
recommendations, classifications, or others. Besides feed-forward networks (FFNN), which
process inputs in one direction, others such as recurrent NN, long-short-term memory networks
(LSTM), or deep belief networks possess different forms of information processing and provide
certain properties and strengths (Mehlig, 2021). NNs can help to increase the performance
of ML algorithms such as (semi-)supervised, unsupervised, or reinforcement learning through
their ability to process large and stochastic data sets while still exhibiting high generalizability
(Mehlig, 2021; Arunraj and Ahrens, 2015).

5.2.2 ML-based PPC

As a data-driven optimization method, NN-based ML approaches can help not only to optimize
production schedules and control, but also to maintain robust operation of production lines.
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Whereas conventional decision rules often have problems coping with machine failures or other
dynamic and stochastic events occurring such as new order entries, intelligent agents can help
not only to reduce problem complexity by means of task decomposition but also to better deal
with the above incidents due to their learning behavior (Csáji et al., 2006; Kádár et al., 2003).
According to Baker (1998), an agent is a self-controlled software object that has its own values
and communicates with other objects. Based on this, Patel et al. (2001) attributes intelligent
properties to this agent, enabling it to interpret its perceptions and independently select actions
to pursue its specific goals and, through its learning skills, to adapt its behavior to the changing
environment (Ueda et al., 2001). Early approaches in 1995 such as Zhang and Dietterich (1995a)
and Zhang and Dietterich (1995b) demonstrated the superiority of a reinforcement learning-based
scheduling mechanism over an iterative repair-based scheduling. Having more agents available,
early MA and NN-based approaches were proposed to optimize PPC problems (Riedmiller and
Riedmiller, 1999; Monostori et al., 2004). Riedmiller and Riedmiller (1999) pursued an RL-
based dispatching approach consisting of distributed machine agents that learn local dispatching
rules and decide on which order to process, thereby outperforming heuristics while demonstrating
good generalization behavior. Monostori et al. (2004) proposed a 3-level MA scheduling scheme
consisting of order, mobile, and resource agents. Herein, mobile agents explore possible routes,
and those with the best schedule yield the final one, which significantly reduces computational
costs with increasing operation numbers compared to a branch and bound algorithm. Since a
detailed introduction of algorithms and MA systems would go beyond the scope of this paper,
we would like to refer to Aggarwal (2018) and Dorri et al. (2018), respectively.

5.2.3 MA system organization

A further differentiation of MA systems is established by classifying them as hierarchical,
heterarchical, or holonic structures, depending on their agent collaboration (Beigi and Mozayani,
2016). Whereas a hierarchy is characterized by multiple master-slave relationships, a heterarchy
predominantly consists of peer-level relationships with distributed privileges to satisfy global and
local objectives (Baker, 1998). The intermediate step between both extremes is characterized as
a holonic structure (Bongaerts et al., 2000). Agent interaction itself can be classified as either a
collaborative way to achieve a common (global) goal or a competitive way, in which each agent
tries to accomplish its own goal (Hoen et al., 2006). For further classification, we additionally
differentiate between MA, incorporated embedded, and plain NN agent designs. Plain NN
approaches employ one or more NNs using the same ML method, like target and value network
in deep Q-learning, to solve a task. Embedded approaches can consist of multiple NN-based
learning methods, but also combine NN approaches with heuristics in a construct consisting of
multiple stages. Each stage can address a sub-problem that contributes to the solution of the
whole task.
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Unlike other algorithmic or ML-focused reviews in manufacturing, applications and embeddings
of NNs in PPC have not yet been consolidated in a focused manner. To address this gap and
illustrate the diversity of existing approaches, an overview of applications and NN embeddings
can help practitioners and researchers to identify individual use-cases and highlight challenges
and fields for future research.

5.3 Methodology

The following section specifies the review methodology that is used to identify relevant NN-based
PPC publications. To ensure a comprehensive and transparent review and content analysis, we
follow the guidelines provided by Tranfield et al. (2003) and Thomé et al. (2016). Thereby,
we try to consolidate and analyze relevant research in the field at the time of the review and
provide researchers with much faster access. This will help researchers and practitioners identify
research gaps, incentivize research, and provide management insights (Petticrew and Roberts,
2006). Following Thomé et al. (2016), we have organized the systematic literature review (SLR)
into 8 (iterative) steps, from planning to updating the review, which are addressed next.

5.3.1 Review focus

The research questions to be answered and current research needs were discussed in Section 1
above. The review team consisted of the three authors of this study, who performed each step
separately and eventually merged their work. To specify the problem and scope of the review and
facilitate the collection and evaluation of contributions, the review planning is based on Brocke et
al. (2009) and follows the associated taxonomy framework of Cooper (1988), which is outlined
in Table 5.1. Cells highlighted in gray represent the selection of underlying characteristics of the
review and the associated objectives and focus areas.

Characteristic Categories

(1) Focus Research outcomes Research methods Theories Applications

(2) Goal Integration Criticism Central issues

(3) Perspective Neutral representation Espousal of position

(4) Coverage Exhaustive Exhaustive & selective Representative Central/pivotal

(5) Organisation Historical Conceptual Methodological

(6) Audience Specialized scholars General scholars Practitioners/politicians General public

Table 5.1 Pursued taxonomy framework

Concerning the presented taxonomy, the review focuses on existing applications and obtained
research outcomes and applications of NN-based PPC (1). The goal is to present existing research
in an integrative and synthesizing manner, highlighting the benefits but also the prevailing key
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challenges of the research field (2). It is intended to provide a neutral (3), representative (4), and
conceptual (5) synthesis of the scope under consideration. Finally, the review should appeal to a
broad audience (6). We refrain from in-depth algorithmic explanations or other technical details,
which benefits general scholars and practitioners while attempting to provide specialized scholars
with an overview of detailed research streams. We intend to highlight the broad application
opportunities of the deployed NN structures as a promising optimization method in production
and inspire further research and implementations.

5.3.2 Literature search

To conduct the review, we initially determined the search terms and underlying databases. The
raw literature output was then screened based on pre-defined criteria to obtain the final dataset
for the later in-depth analysis.

5.3.2.1 Phase 1 - database and iterative keyword selection

To conduct the review, we included the databases Web of Science (all fields), Scopus (article
title, abstract, keywords), and IEEE Xplore (journals) to identify relevant publications. The
keywords were defined in an iterative process and are listed in Table 5.2. Besides a keyword
category that addresses deep learning algorithms, a domain-based category was included that
covers relevant aspects of production planning and control. To obtain the intended scope of
papers, organizational keywords were not included. Terms such as Holonic or Heterarchic were
rarely mentioned and reduced the hit ratio in the search query.

Algorithmic keywords Domain keywords

Artificial intelligence OR

AND

Assembly OR AND Control OR
Deep learning OR Dispatching OR

Manufacturing OR ANDIntelligent OR
Planning ORMachine learning OR

Production AND SchedulingNeural network

Table 5.2 Keywords defined for the review

5.3.2.2 Phase 2 - defining inclusion and exclusion criteria

To define a clear review scope and systematically constrain the obtained literature set, we
established several inclusion and exclusion criteria. To ensure high quality, we only considered
publications from peer-reviewed journals, proceedings, conference papers, and books (as in Light
and Pillemer (1984)). Working papers, pre-prints, and other non-peer-reviewed publications
were not included. In addition, we considered only publications in English and, because of the
significant improvements of NN performance in recent years, those that were published after
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2010. For instance, it was not until the release of Mnih et al. (2013) in 2013 that the field of deep
RL was enabled on a large scale and with high performance in various applications. Based on the
defined research questions and taxonomy, we defined thematic inclusion and exclusion criteria.
Due to the focus on NN-based PPC applications and the subsequent analysis of the employed
organization and interactions, papers were excluded that primarily dealt with methodology
development, theory generation, or algorithms without validating them for an explicit production
use case. Other reviews were accessed to identify additional potentially relevant papers. Given
the focus, we only considered papers that address a real or simulated NN implementation in PPC
and attempt to leverage production performance. Papers that do not use NNs were not reviewed.

5.3.2.3 Phase 3 - conducting the literature search

The review process was conducted from October through December 2021, with a final data
retrieval completed on 12/29/2021. A summary of the review is outlined in Figure 5.1. Beginning
with the database extraction and the 1794 papers initially obtained, duplicates were first removed
and years filtered before applying thematic criteria.

To ensure a high review quality, we screened the remaining 708 papers by title, keywords, and
abstract according to Thomé et al. (2016) based on the inclusion and exclusion criteria and
research questions. In the next step, many papers were excluded due to a lack of production
context or missing application of NNs, reducing it to 185 papers. During the full-text review, the
remaining set was reduced to 82 and, in addition to the initial essential coding, the groundwork
was laid for the forward/backward search. Following the approach proposed by Webster and
Watson (2002), the backward/forward search is an essential extension to identify papers beyond
the initial search scope. In this last retrieval, an additional 47 papers were found, increasing the
total number of papers to be considered to 129.

Identification Selection process

Defined
keyword

combinations

Duplicates
and time 
filtering

Title, keyword, 
abstract

screening

Full-text 
screening

Back-/forward
search:

47 add. hits Final set:
129 papers

708 185 82 

Papers identified: 
1794

Web of Sience: 302
Scopus: 1054

IEEE Xplore: 438

Included

Figure 5.1 Consolidated review process

5.3.2.4 Phase 4 - data gathering

In accordance with Thomé et al. (2016) and Webster and Watson (2002), we developed a concept
matrix for the subsequent analysis based on the objectives and research questions.

The categorization and coding of the resulting dataset was based on the PPC domain and agent
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Figure 5.2 Analysis of yearly and outlet publications

configuration as the main criteria. In terms of configuration, the approaches were categorized
into plain, embedded, and MA systems. Within these categories, a selective screening for
configuration-unspecific and configuration-specific properties was conducted. For all approaches,
configuration-unspecific properties included the particular application, the optimization objective,
applied algorithms, and NNs, as well as possible benchmark results and deployment in a
simulated and/or real environment. For the embedded approaches, the type of embedding and
the supplementary implemented algorithms were further examined. In contrast, for MA systems,
the type of agent interaction and training of the agent population were additionally considered.

5.3.3 Analysis of yearly and outlet-related contributions

A preliminary analysis of publication years outlines the increased research activity of NN-based
PPC in Figure 5.2(a). Whereas a constant number of publications was observed until 2017, it has
since increased from 5 in 2017 to 31 in 2021 (the time of the last retrieval), thus highlighting the
increased relevance of NN-based PPC.

An analysis of the most frequently cited outlets with three or more published papers is given
in Figure 5.2(b). Overall, most findings were published in journals (89, 69%), followed by
proceedings (25, 19%) and conference papers (15, 12%). Altogether, contributions from 59
journals, 15 conferences, and 12 proceedings were accessed.

5.4 Analysis

To focus on fundamental developments within the defined scope, a summary of the research field
is presented first. Subsequently, the individual categories defined during the iterative analysis are
addressed to answer research questions RQ1 and RQ2. Finally, a general analysis is conducted
in Section 5.4.4.

Besides the increasing tendency for total publication numbers from Figure 5.2(a), a shift of
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research foci within the field becomes apparent in the system split shown on the left in Table
5.3. Whereas in the years 2010-2013 one MA paper was published (8%), they take up 14%
of the publications in recent years. Especially in the last year, the field of MA approaches has
grown rapidly (8 publications) and is already further along in 2021 than in previous years (3 at
the last data retrieval). We may conclude that particularly difficulties in agent communication
and collaboration are continuously addressed, and distributed learning is accessible for broader
applications.

Although most of the publications within the categorical split on the right of Table 5.3 imple-
mented plain approaches, especially in production control, one-fifth of the publications were
based on MA approaches that benefit from a resulting complexity breakdown and increased
scalability. The high embedded share within forecasting is also striking, indicating an increased
utilization of the combined benefits of the individual methods, such as fuzzy C-Means job
classification and subsequent NN cycle time prediction (as in Chen (2016)).

To ensure a consistent structure and address RQ1, the rest of the review is organized according
to the section numbers given in Table 5.3 within the categorical split. In each category, we
further classified the papers according to the agent organization, either MA, embedded, or
plain approach. In addition to production planning and production control, forecasting was
incorporated as a further subcategory following the final interactive review step as an increasingly
important production planning support tool.

Yearly split Categorical split

avg.
2010-2013

avg.
2014-2017

avg.
2018-2021

Production
planning

(4.1)

Production
forecasting

(4.2)

Production
control

(4.3)

Plain agent 6 (50%) 11 (61%) 56 (57%) 27 (49%) 23 (64%) 23 (61%)
Embedded agent 5 (42%) 5 (28%) 29 (29%) 20 (36%) 12 (33%) 7 (18%)
Multi-agent 1 (8%) 2 (11%) 14 (14%) 8 (15%) 1 (3%) 8 (21%)

Sum 12 18 99 55 36 38

Table 5.3 System and categorical split of the reviewed literature

For the subsequent sections we have truncated some terms. However, in order to facilitate
understanding of the topics addressed, please find below a list of the abbreviations and their
meanings.

5.4.1 Production planning

The objective of production planning is to exploit production resources in such a way that the
forecast is met and target parameters such as minimum cost are realized, which can comprise
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optimal utilization of resources, lot sizing, scheduling, and others (Gelders and Van Wassenhove,
1981).

5.4.1.1 Plain NN planning approaches

The category of plain NN-based approaches employs a single ML method for optimization. As
in the other planning categories, most of the papers (85%) were superior to the conventional
approaches. Hereby, a common motivation for implementation was the high computational
overheads of conventional methods, which were 1000 times smaller in flow shop scheduling
when employing a combination of unsupervised RL for training and supervised learning while
maintaining the same or better performance (Wu et al., 2020). Also in flow-shop scheduling,
Marchesano et al. (2021) demonstrated how a DQN can optimize complex production by selecting
dispatching rules as actions. By applying the same rule selection approach using a DDDQN
with PER and a DQN, respectively, Han and Yang (2020) and Lin et al. (2019) outperformed
heuristics such as FIFO or SPT in job-shop scheduling. For implementation, Lin et al. (2019)
employed a multi-class DQN that contained structured indicators for all job-shop machines and
corresponding rules for all edge devices summed up in its output layer. Other use cases were
implemented by employing an A2C RL algorithm to increase profitability (Hubbs et al., 2020), a
DQN RL approach to minimize makespan in dynamic scheduling (Hu et al., 2020), a double
DQN in rescheduling color batches to minimize change-over cost (Leng et al., 2020), or a BP
algorithm in lot sizing to minimize production, set-up, and inventory costs (Şenyiğit and Atici,
2013), among others listed in Table 5.9.

5.4.1.2 Embedded NN planning approaches

Apart from plain approaches, embedded systems leverage a combined optimization within the
internal agent structure during training and operation. In flow-shop scheduling, whereas Kumar
and Giri (2020) chose a hybrid fuzzy and NN-based approach to minimize the makespan and
reduce time-consuming efforts, Ramanan et al. (2011) proposed two approaches in which a
NN generates priorities of a scheduling action, which is subsequently optimized by a heuristic
or genetic algorithm (GA). Other superior hybrid approaches were implemented by deploying
a NN to prioritize orders and heuristics for resolving ties (Sim et al., 2020), or by splitting
the scheduling problem into sub-problems and deploying a GA in training and a convolution
two-dimensional transformation that elaborates scheduling features, thus providing a highly
generalizable approach (Zang et al., 2019). To improve slow convergences and avoid the local
optima trap in job-shop scheduling, Zhang et al. (2019) combined a particle swarm optimization
(PSO) algorithm with a NN. Particle positions were associated with weights of the NN and
performances were further leveraged by optimizing the sub-problem of machine selection and
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scheduling through elite retention and neighborhood search. Another PSO approach was pursued
by Lan et al. (2010), employing a NN to estimate the credibility objective, which is embedded
in the PSO and takes significantly less time for planning compared to using conventional
approximation methods. A virus PSO was implemented by Wen et al. (2015), using a NN
to approximate the expectation function by converting an infinite into a finite dimensional
optimization problem, thereby solving a 2-stage remanufacturing problem better than a PSO.
Another approach was to combine a NN with GA in remanufacturing to prevent the slow
convergence of the NN and calculate the target output of chromosomes (Wen et al., 2017; Zhang,
2019).

In a hybrid simulation, Sobottka et al. (2019) leveraged the NN as a meta-modeler of an industrial
bakery for a GA, reducing global energy costs by 25%. In a real copper mining complex, Kumar
and Dimitrakopoulos (2021) employed a self-play approach using a Kalman filter and Monte
Carlo tree search to train a NN, all of which benefited from each other’s interaction, improving
self-play and increasing cumulative cash flow by 12%. Further approaches of embedded NNs
are listed in Table 5.10.

5.4.1.3 Multi-agent planning approaches

To prevent the exploration problem of existing approaches in large state spaces and circumvent
the problem of gaining knowledge from stochastic production systems, Hammami et al. (2015)
introduced multiple decision agents in job-shop scheduling that chose dispatching rules to reduce
mean tardiness. Depending on the performance criterion, each agent had different embedded
NNs to choose from and might have received intervention from choice agents assisting with
choosing the optimal policy. Other decision agents were contacted as acquaintances to collect
information and were optimized concurrently with respect to a global objective.

To reduce high implementation costs of conventional approaches, Liu et al. (2020) and Baer et
al. (2019) defined local and shared global rewards to meet production goals and ensure better
process adaptation. To subsequently optimize the agents with respect to the global goal, Baer et
al. (2019) employed a multi-stage learning strategy in which a single agent was trained locally
first while others were controlled by heuristics. Furthermore, Baer et al. (2020) demonstrated
the generalizability and scalability of the MA approach, in which each agent was controlled by
a DQN RL. By learning the basic task principles and deploying a parameter-sharing training
strategy among the agents, training 700 scheduling topologies took only twice as long as training
a single one. In the case of a new scenario, the agent slightly modified its policy with respect to
the new task specifics, thus reducing reconfiguration time and cost.

Similar to the work of Baer et al. (2020), in which agents did not communicate and only perceived
each other’s actions, Park et al. (2020) and Lee et al. (2020) pursued planning approaches in
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semiconductor and mold scheduling. Both utilized a centralized DQN learning approach and let
agents exploit the same NN while benefiting from each other’s experiences. Although the agents
did not communicate directly, both approaches outperformed conventional ones and did not
need to be retrained for new scheduling scenarios. Based on Baer et al. (2020), Pol et al. (2021)
integrated a re-training phase after local-only training, in which local rewards were multiplied
by a global factor or by receiving sparse global rewards based on eligibility traces. Combined
with a policy-sharing strategy among the production agents, the local-only optimization was
outperformed.

The only real scenario of MA in production planning was implemented by Zhou et al. (2021) on
a small scale and deployed RFID for collaboration among participants to prevent inefficiencies
in centralized data processing. This enabled the participants to consider attributes from other
machines and learn from the experiences of other agents through mutual updates of manufacturing
value networks. Each participant in the scenario, such as a warehouse or drill machine, was
provided with a NN, which was activated when a job needed to be scheduled or information was
needed. The distributed NNs were trained using RL, and were superior to a central RL and a GA.

Implementations in MA-based planning were carried out with flat hierarchies to a large extent in
the reviewed papers, which have, however, outperformed conventional methods in all benchmarks
as indicated in Table 5.11.

5.4.2 Forecasting

Production forecasting can be deployed, among other opportunities, as a support tool to increase
the robustness of planning processes. Often, complex non-linear processes that require sophisti-
cated modeling and cause high computational costs motivate the use of NN-based forecasting as
in Worapradya and Thanakijkasem (2015). To avoid terminological conflicts, we categorized
each paper according to the key variable addressed.

5.4.2.1 Plain NN forecasting approaches

Plain NN-based forecasting approaches were often adopted due to existing planning uncertainties
or complex dependencies, including human factors. In garment production, Onaran and Yanık
(2020) predicted cycle time significantly better than linear regression with feature extraction,
despite high dependency on human capabilities. Likewise, in textile production, to cope with
highly fluctuating process times of different products and avoid production imbalances and the
inclusion of human estimates, Cao and Ji (2021) implemented a NN-based cycle-time prediction
and obtained a maximum error of 5%. An approach to improve holistic production control and
circumvent complex modeling due to non-linear interdependencies was proposed by Glavan
et al. (2013), who employed three NNs as black-box models to calculate cost, production, and
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quality metrics. To avoid rescheduling due to volatile electricity prices, Windler et al. (2019)
proposed a superior approach to the monthly forecast and energy cost-oriented planning. To
perform a simulative what-if analysis for production control, Huang et al. (2016) estimated the
throughput based on scheduling information, constant work in progress, and mean-time-to-repair
levels. In a real petrol mine scenario, by employing six NNs for six wells, Pham and Phan
(2016) reached superior results predicting the production rates of liquid, oil, and gas flow to
optimize the production back-allocation of each well. While the difference in throughput was
only about 2% compared to simulation, the computational effort was reduced about 100 times. A
superior flow-time prediction was implemented by Silva et al. (2017) based on job and shop status
information to estimate the due date. Based on the flow time, Karaoglan and Karademir (2017)
further estimated production costs to generate more precise price offers. Among other papers
listed in Table 5.12, Kramer et al. (2020) predicted lead times assuming constantly changing
environmental variables, which cannot be captured in regular models. Similarly, Göppert et
al. (2021) predicted makespans, which is difficult to achieve through conventional methods in
dynamic environments due to ever-changing variables such as remaining jobs states, gate queue
lengths, process duration, and others.

5.4.2.2 Embedded NN forecasting approaches

To forecast cycle times in wafer fabrication, Chen (2016) deployed multiple NNs for jobs of
different categories, which were determined by a fuzzy c-means classifier beforehand. Compared
to conventional approaches, this reduced mean absolute forecasting error by more than 38%. A
combined prediction of cycle, blockage, and starvation time in an assembly line was proposed by
Lai et al. (2018) by applying a 2-stage LSTM framework, which increased prediction accuracy by
35% compared to conventional approaches. Based on the forecasted cycle time of the first LSTM
and the historical cycle time, as well as blockage and starvation time, these two were forecasted
in the second stage. In lead-time prediction, Schneckenreither et al. (2021) in a three-stage
make-to-order flow shop and Mezzogori et al. (2019) in a 6-machine job shop outperformed
conventional approaches (1) by integrating two FFNNs, one of which predicted flow time for
bottleneck and non-bottleneck products, and (2) via NN-based LT prediction combined with
workload control to determine delivery dates. Other approaches exploited a NN-generated gross
demand forecast for subsequent scheduling algorithms to circumvent high computational cost
and unknown system dynamics Sadiq et al. (2020) or proposed a combined analytical and LSTM
approach Huang et al. (2020) to cope with arising production complexities. While the analytical
model calculates the lower bound of the product completion time, the LSTM adds aggregates
based on varying inputs in real time, thereby outperforming a plain LSTM-based approach and
other conventional ones. Worapradya and Thanakijkasem (2015) predicted the mean and standard
deviation of the system performance in a continuous steelmaking casting process by employing
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one NN for each machine group. Based on a K-means clustering of machines with similar
processes for complexity decomposition, extensive modeling could be avoided and non-linear
relationships were reflected more accurately with a computational time that was approximately
30 times lower than a Monte-Carlo simulation. Besides a deep autoencoder and NN-based order
remaining time prediction implemented by Fang et al. (2020), other approaches are listed in
Table 5.13.

5.4.2.3 Multi-agent forecasting approaches

As the only MA forecasting approach, Morariu and Borangiu (2018) implemented multiple
LSTMs to optimize production cost and subsequent scheduling according to pre-defined objec-
tives. The LSTM networks for each resource operated based on a bidding mechanism, and a
resource was subsequently assigned or not assigned to a job according to its bid or prediction of
what a job would likely cost if produced with the resource.

5.4.3 Production control

Apart from planning and forecasting, production control in particular must be capable of coping
with direct production complexities and solving optimization problems despite the inherent
dynamics and non-linear interrelationships. Although production planning already tries to
incorporate potential incidents and breakdowns on the job floor, production control must update
schedules and direct production decisions in real time to keep processes stable and adjust
decisions based on the current production state.

5.4.3.1 Plain NN control approaches

The semiconductor industry, as one of the fastest moving, was addressed with 5 publications
to handle high cost pressures and complex processes. To circumvent missing methodological
approaches, Kuhnle et al. (2021) implemented a TRPO-based RL approach to determine a
dispatching agent’s next move to minimize throughput and waiting time and maximize utilization
rates. In wafer fabrication, Altenmüller et al. (2020) implemented an agent to choose the next
operation destination with a shifting local to global reward function. While work-in-progress
levels were optimized in both phases, the local utilization ratio was optimized in the first,
followed by minimizing global time constraints in the second one.

Due to the limited capabilities of existing models to cope with dynamic system behavior,
Bergmann and Stelzer (2011) and Bergmann et al. (2014) applied a control strategy approxima-
tion approach to increase the accuracy of system reproduction and minimize manual interventions.
Luo (2020) adopted a double DQN RL to minimize total tardiness and avoid otherwise assumed
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static conditions. The state-dependent selection of dispatching rules outperformed the respective
individually applied rules. Following the same basic concept, Mouelhi-Chibani and Pierreval
(2010) and Zhao and Zhang (2021) outperformed conventional approaches using NN-based rule
selection depending on the flow- or job-shop system parameters. For this purpose, Zhao and
Zhang (2021) employed a convolutional NN, which takes matrices of processing times, and two
Boolean matrices of pending and completed operations as input to choose rules such as SPT
and LPT, and outperformed a GA in terms of machine utilization, waiting times, etc. Similarly,
in a job-store environment, deploying the production state representation as a 2-D matrix and
a dispatching policy transfer, Zheng et al. (2020) not only proved strong performance but also
increased generalizability using the transfer strategy.

Other publications listed in Table 5.14 considered, for example, short-term material flow control
in a copper mining complex to reduce costly re-optimizations and avoid unsteady updates based
on the quality and quantity of extracted materials Kumar et al. (2020), or implemented unit-cost
minimization to mitigate the disadvantage of conventional methods’ uncertain demands and long
changeovers in a dishwasher wire-rack production system Wu et al. (2016).

5.4.3.2 Embedded NN control approaches

A pure NN-based approach for job allocation and operation sequence selection to minimize
makespan and tardiness was proposed by Lang et al. (2020). Due to the generalization of the
FFNN-based allocation and LSTM-based sequencing DQN RL agents, the prediction of new
schedules was significantly faster. Another superior two-hierarchical DQN job-shop scheduling
approach was implemented by Luo et al. (2021). The controller NN determined temporary
goals for the lower DQN, which selected a dispatching rule depending on the indicated goal and
production state. Goals were defined as different reward functions that aimed at optimizing a
certain production indicator such as tardiness or machine utilization. A DQN as a hyper-heuristic
to adjust parameters of a sequencing rule reduced mean tardiness up to 5% in Heger and Voss
(2021). Kim et al. (2020) combined a NN with a heuristic to maximize machine utilization via
supervised machine buffer selection and rule-based dispatching. An overview of the reviewed
papers is given at the top of Table 5.15.

5.4.3.3 Multi-agent control approaches

To cope with the inherent dynamics in job-shop scheduling, Hammami et al. (2017) implemented
an MA system based on simultaneous learning and inter-agent information exchange to reduce
mean tardiness. Each resource was linked with a decisional agent that, to leverage decision
making, involved a choice agent for NN selection. A central DQN module for training was
used by Dittrich and Fohlmeister (2020) and Hofmann et al. (2020). In Dittrich and Fohlmeister
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(2020), the central module is optimized based on the globally defined rewards and transferred to
individual agents, which can request required local and global system information for decision
making. Hofmann et al. (2020) provides agents with immediate rewards for selected actions and
delayed rewards based on the total global cycle time achieved to increase the speed of learning.
In comparison to a rule-based and a non-coordinated strategy, this strategy, which prevented
the blocking of other agents and assigned global rewards, outperformed the previous strategies.
Another training strategy was introduced by Waschneck et al. (2018) in a wafer fabrication
job shop, which, for reasons of stability and learning speed, initially trained one NN at a time
while the other work centers were controlled by heuristics. Subsequently, each work center
was controlled by one NN respectively and the system was optimized cooperatively toward a
maximum uptime utilization as a global goal. The same training strategy was applied to minimize
cost in a car after-paint buffer control system (Gros et al., 2020). Gros et al. (2020) implemented
one NN for each, inserting and discharging from the buffer, and the agents were trained with an
iterative curriculum learning strategy in which only one agent was trained at a time to circumvent
instabilities that arise from parallel training.

An order-bidding approach for dispatching was proposed by Malus et al. (2020) for 5 autonomous
mobile robots with a common global reward to minimize tardiness. Based on the observed state,
the agent that bids the most but does not handle more than 2 orders at the same time is assigned
to the order. To decrease execution time and increase utilization efficiency, May et al. (2021)
followed an economic bidding approach in which each participant in the production system
should reach a maximum profit independently of other participants. Based on a deep RL PPO, the
global utilization efficiency after part completion and locally accepted quotes, non-value-adding
time, as well as consecutive failed quotations, could be optimized. Other MA production control
papers, besides those introduced above, are listed at the bottom of Table 5.15.

5.4.4 General analysis

The general analysis is briefly summarized in Table 5.4. Out of the 129 reviewed papers, a
total of 95% were implemented and validated in simulations. As a common outlook of the
individual papers, the transfer to reality was mentioned as a further objective to incorporate
other parameters and to be able to map complexity more accurately. Besides, with 89%, the
high share of superior approaches is conspicuous, which does not contain similarly performing
approaches. Especially the field of MA and embedded-based planning yielded impressive results
and outperformed conventional approaches in all tests.

Moreover, algorithmic deductions can be drawn on the basis of the reviewed papers. A DQN
or deep RL is mainly implemented in planning and control, regardless of the agent structure.
The learning-by-doing behavior as well as the straightforward definition of rewards, likewise the
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absence of necessity for an already existing set of data, constitute an advantage. In forecasting,
NNs are primarily trained via BP algorithms, rather than with deep RL (one approach), and most
employ an FFNN. Whereas 8 of all considered papers employed an LSTM architecture, 6 were
employed in forecasting, thus profiting from their capability to map long-term dependencies.
Nevertheless, the FFNN share (25) is decisively higher, similar to the other disciplines.

Paper
count

Simulation-only
share

Superiority
(#benchmarks)

Most freq.
NN

Most freq.
algorithm

Planning 55 95% 90% (41) FFNN DQN
Plain 27 100% 82% (22) FFNN DQN
Embedded 20 90% 100% (13) FFNN BP
Multi-agent 8 88% 100% (6) FFNN DQN

Forecasting 36 92% 95% (25) FFNN BP
Plain 23 91% 79% (14) FFNN BP
Embedded 12 92% 100% (11) FFNN BP
Multi-agent 1 100% - (-) RNN Supervised

Control 38 100% 87% (30) FFNN DQN
Plain 23 100% 94% (16) FFNN DQN/TRPO
Embedded 7 100% 86% (7) FFNN DQN
Multi-agent 8 100% 71% (7) FFNN DQN

Total 129 95% 89% (96) FFNN DQN

Table 5.4 Key statistics from the review process

Referring to MA systems, most papers defined a global objective for agent-to-agent interaction
(see Table 5.5). For this purpose, Pol et al. (2021) derived a reward factor based on the total
makespan and multiplied it by the local rewards for each agent. Waschneck et al. (2018),
on the other hand, considered the total sum of all due-date derivatives of all lots as a global
minimizing objective. Another interaction type was the direct or active system information
exchange between the agents, e.g. by information requests between machine and order agents in
Dittrich and Fohlmeister (2020) or by partial activation of agents in Zhou et al. (2021), which
subsequently provided real-time state information and became idle again when no scheduling
task was pending. The provision of agent state information in a Boolean job-agent matrix was
implemented in Liu et al. (2020). Such sharing of agent information was also referred to as
indirect interaction (Pol et al., 2021) or sensing (Baer et al., 2020), indicating that agents must
anticipate what the others might do next. A direct collaboration approach was also facilitated by
bidding (as in Malus et al. (2020)) or negotiation mechanisms (as in Shin et al. (2012)).

Another analysis examined the training patterns of MA systems. 44% of the reviewed MA papers
pursued a centralized learning approach, such as implementing a central intelligence as in Park
et al. (2020) or Dittrich and Fohlmeister (2020), and executed it in a decentralized manner. Thus,
aggregated experiences were leveraged through transfer learning or parameter sharing, making
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the experience of individual agents available to others, which enabled an increased scalability
(as in Lee et al. (2020)). Others, such as Morariu and Borangiu (2018) and Waschneck et al.
(2018), adopted a decentralized or decentralized iterative training approach, respectively. While
Morariu and Borangiu (2018) deployed LSTMs in parallel to learn machine cost patterns and
generate bids, Waschneck et al. (2018) trained one agent first, while the others were controlled
by heuristics before all were controlled by one DQN each. Additionally, reward designs were
designed accordingly, such as in Pol et al. (2021). Where agents learned to meet local goals first
in a decentralized manner, they were optimized to reach a global goal in a subsequent phase.

Interaction Training

Global
objective

Agent
exchange

Agent state
information

Bidding
mechanism

Market-based
negotiation

None Central Decentral n.a.

36% 18% 14% 9% 5% 18% 44% 37% 19%

Table 5.5 MA system interaction and training approaches

5.5 Taxonomy

We propose a taxonomy to classify the implementation of NN in production and general systems,
following the taxonomy development method of Nickerson et al. (2013). Proceeding from the
empirical-to-conceptual path, we first identified object subsets based on the employed NNs
and agent structures through our review and then condensed them into a coherent framework.
The clustering of these is integrated into Table 5.6 and describes the central dimensions for the
taxonomy creation, independent of the specific production background.

Initially, the classification is driven by the assumption that a self-contained system is considered,
which consists of clearly defined boundaries as well as input and output variables for the
optimization of the problem. Segregated multi-production or factory systems that do not interact
with each other are not included.
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Agents

Methods
> 1= 1

Single-agent

= 1

Multi-agent

> 1 

NN based method

Other method

Input Output

System

Agent

Input Output

Input Output

Input Output

Input Output

System out-/input

Inner-system out-/input

Parallel
Subsequent / iterative

(3) Multi-agent system (4) Multi embedded-agent system

(1) Plain agent system (2) Embedded agent system; i.e.:

Input Output Input Output

Task completion:

Control or training model:

Centralized Decentralized

Table 5.6 Proposed taxonomy for single- and multi-agent system interaction

Starting with the top left and with one agent and method each (1), a classical optimization
approach is described whose inputs provide parameters for optimization. In particular, its fast
implementation and few inherent interdependencies reduce initial personnel and computational
efforts. This enables prototypical use cases to be quickly evaluated for their benefits, and
experience can be gathered to clarify necessary follow-up actions and potential serial deployment.
In large systems, however, applying just one NN might imply low scalability and performance
due to the curse of dimensionality (as in Bellman (1966)). The embedded approach (2) combines
a NN-based optimization with other ML methods or heuristics. It describes an intrinsically
structured approach that breaks down the overall optimization problem and complexity into sub-
tasks. This approach can be carried out either in parallel or subsequently, e.g. by predetermining a
baseline through an analytical model, to which the NN output is added to dynamically determine
total product completion times (as in Huang et al. (2020)). Although the implementation is more
extensive in terms of effort, the advantages of the respective methods can be exploited to leverage
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the overall performance and cope with complex tasks. Additionally, available employee and
system knowledge can be utilized to enable an optimal division of tasks and derive appropriate
problem-solving strategies. While these two MA variants are more complex or costly than the
others in terms of interaction design, system requirements, and computational effort, they are
more suitable for large environments due to their improved scalability and straightforward adding
of agents.

The bottom lines of Table 5.6 (cases 3/4) describe MA approaches within a confined system.
Several plain or embedded agents of the upper line are combined and interact with each other.
The agents act as independent autonomous entities according to the definition of Patel et al.
(2001) and are provided with information from the same associated system. The respective
system inputs can be distributed and received by an agent as a collective set but can also be
specifically filtered and processed. Filtering and provisioning can be dependent on the linked
entity (e.g., a machine), and can be independent of the overall system and global states if only
local state variables are considered.

It is feasible to link several of the above forms of organization and interaction in a hybrid
manner to benefit from the advantages of both. For instance, a plain or embedded agent in
one subsystem can keep performing a specific task in some expert role without interaction.
Neighboring subsystems, on the other hand, can be designed as multi-agent systems. As such,
the system could exploit its strength in leveraging its group dynamics and take on logistical tasks
where the agents act as autonomous planners bidding on transportation orders.

In addition to the above differentiation, a distinction can be made between parallel and iterative
task completion and the applied control or training model. In parallel completion, agents are
able to work concurrently on jobs of the same category, and each agent, such as a logistics
robot, can be assigned to each job. In subsequent or iterative completion, agents can differ in
their capabilities and thus influence process chains. Rather, a set of jobs is not allocated to
different agents, for example, to increase the throughput in logistics with each additional agent,
but segments of the process chain are distributed to the appropriate agents.

In the centralized control or training of agents (lower left row), the agent shares input data
with a central intelligence instead of processing it individually. This can be facilitated by
deploying a central NN that learns through the experiences of each individual agent, rather
than having an independent NN for each agent. An intermediate step may be embodied by
a parameter sharing strategy that collects and shares relevant experiences after specific time
intervals. Compared to the other methods, initial efforts and adjustments for MA training and
interaction between decentralized agents are significantly higher during training and control
optimization. Nevertheless, this approach provides a high scalability and agents can be easily
added and benefit from all experiences without the need for costly re-training. If the agent
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is trained in a decentralized manner, it can better adapt to its specific role in the respective
subsystem and act as a kind of dedicated expert. Thus, if a system consists of procedurally
independent interacting possessors, the NN should not be shared in order to allow the specific
shaping and development of unique sills to maximize the system performance. In a parameter-
sharing or completely centralized strategy, on the other hand, agents with the same or similar
tasks benefit from all experiences and thereby optimize global performances. However, this
could suppress specific skills due to a progressive standardization of agent behavior.

As indicated in Table 5.5, the interaction between agents can adopt different forms. Based on
this, Table 5.7 summarizes the possibilities related to the specific type of inter-agent interaction
and exchanged information. The interaction between agents can be described as direct (agents
directly interact with each other) or indirect (no direct data transfer). In addition, depending on
the exchanged or mediated good, the type of exchange is considered in terms of the (processed)
state information of an agent (such as the workload), or relevance criteria. The special case of
sensing, i.e. no exchange at all, is not covered.

A direct interaction based on state information can be considered a direct form of communication.
An indirect interaction, on the other hand, is not based on any direct information exchange but,
for example, on a global goal or the sharing of global state information. The agent does not
receive information from other agents but from the system as such. One step further, agents
can exchange already processed information and negotiate with each other in a direct manner
(Table 5.7, bottom left) or place bids that are not communicated directly with each other, but are
submitted to an independent entity such as a machine or an order itself. In this context, the prior
evaluation of an order in terms of the pre-negotiation measure or bid level is interpreted as an
indicator of the order’s relevance to an agent.

The exact interaction that should be chosen for a specific application depends on the exact task
and environment. For a fast use case creation, but also the indirect communication of global
information, a global objective can optimize the system as a whole. The direct communication
of state information would rather serve the local optimization and only consider the closer
environment. Advanced mechanisms for the processing of relevant information facilitate the
joint processing of several agents’ observations and impressions. In this case, it is not the
individual agent that decides whether or not to do something, but rather other agents are involved
in the decision-making process. Thereby, processes can be designed in a more interactive and
balanced way to profit from group dynamics. Nevertheless, negotiation and bidding are more
complex in their implementation and require a thoroughly elaborated design. It is further possible
to combine the presented types of interaction. For instance, an agent can pursue a global objective
based on a DRL, but still be in contact with other agents via negotiation.
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Type of agent interaction
Direct Indirect

Exchange of ... State information Direct communication Global objective,
receive global states

Relevance information Market-based
negotiation Bidding mechanism

Table 5.7 Types of interaction in multi-agent systems

5.6 Implementation challenges and research agenda

In the previous section, the broad application base, embedding variants, and benefits of NN-based
PPC were highlighted and properties were defined in a taxonomy. However, there are still some
challenges that prevent widespread adoption and real-world deployment (RQ3) and that need to
be addressed in future research (RQ4).

5.6.1 Implementation challenges

During the review, we identified some challenges and categorized them into the following
subgroups, which are further reflected upon afterward by identifying respective research gaps.

• Transferability: Many of the above-mentioned papers examined the implemented ap-
proaches within a pre-defined simulation scope. The extent to which these are structurally
rigid and require NN adjustments in the case of modified scenarios was hardly considered.
Even though approaches like Baer et al. (2020) attempted to identify fundamental and
transferable relationships in scheduling, small changes in scenarios can cause decreasing
performances and demand large efforts of reconfiguration and retraining as well as deep
process insights. Also, Lang et al. (2020) pointed out that in DQN-based scheduling, i.e. if
a new machine or buffer location is added, it cannot be mapped directly by the prevailing
NN structure that limits adaptability and reliability in dynamic processes, especially of
plain agent approaches.

• MA training and interaction: Additional complexities in MA environments require deep
consideration during implementation and increased evaluation of the learning behavior
of each agent. Concurrent learning might lead to instabilities during training and cause
the mutual dynamic and non-stationary behavior of the agents to negatively affect the
individual, as mentioned in Malus et al. (2020). To avoid instabilities, Gros et al. (2020)
and Waschneck et al. (2018) chose an iterative approach, which must be optimally adjusted
in terms of frequency and transition to pure NN-based operation. To facilitate synergy
effects between the agents and guarantee mutual optimization, it should further be clarified
which form of interaction is selected depending on the specific scenario. Although an
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indirect communication in Baer et al. (2020) proved to be functional without direct
agent interaction, other papers integrated global states and rewards. However, advanced
negotiation and bidding mechanisms were scarce and, in summary, represent an additional
complexity dimension in addition to finding an appropriate training strategy, algorithm,
and NN parameters, which potentially impede implementation efforts.

• Handling (real) production complexity: A total of 123 papers (or 95%) were imple-
mented and evaluated solely in simulations. Although simulations are becoming more
accurate due to the inclusion of failures, noise, etc., they do not capture the full complexity
of a real system with its non-linear dependencies, human intervening factors, etc. There-
fore, the results cannot directly be transferred to reality and no general conclusions can
be drawn about the reliability and sustainability of the results in real environments where
additional influences would affect the system and agent. Such effects can lead to unstable
learning (Gros et al., 2020) or vibration during training (Shi et al., 2020). Particularly in the
field of production control, no approach was implemented due to the high implementation
and security efforts required in real operations.

• Limited diversification of NNs and algorithms: In summary, 80% of the papers em-
ployed an FFNN, which in most cases outperformed conventional approaches. Neverthe-
less, leveraged performances could be reached through the deployment of more advanced
networks such as LSTMs for capturing long-term relationships or convolutional networks,
i.e. for processing production state matrices. Furthermore, 47% of the papers employed a
BP or DQN RL, both of which are basic algorithms in machine learning. In the case of the
DQN, however, it was often inferior to a DoubleDQN, which was employed in only 2% of
the papers, even though it exhibited outstanding performance in Hasselt et al. (2016).

• Manual parameter optimization: In addition to the algorithm and NN adaptation to the
framework conditions, the search for fine-grained parameters represents a central hurdle
during implementation (Rummukainen and Nurminen, 2019) and has a tremendous impact
on the final performance (Bergmann et al., 2014; Zhou et al., 2017). In particular, Wu et al.
(2020) visually demonstrated the effects of the optimizer setting, number of NN layers,
and neurons, and their impact on performance. Still, there are no common guidelines or
rules for setting NN parameters that must be set by hand, thereby enforcing a black-box
model character. Consequently, parameter tuning not only consumes a lot of time and
causes significant computational efforts, but also requires expert knowledge in parameter
fitting, which is not always available among practitioners.
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5.6.2 Future research agenda

Although the aforementioned challenges still prevent seamless real-world and large-scale appli-
cations, they did reveal some opportunities for further research during the course of the review.
These are summarized in the following bullet points.

• Scalability: Most of the reviewed papers already revealed the capabilities of NN-based
solutions in PPC and forecasting. However, a stronger focus on MA systems could help to
cope with large-scale production environments, as indicated in Waschneck et al. (2018).
The system would not have to rely on only a single NN as in a plain agent optimization,
but could distribute the production complexity and data streams accordingly as introduced
by Wang et al. (2022) in a resource preemption environment, or by Kim et al. (2020)
in dynamic resource scheduling by deploying job weights and multi-agent sociability
aspects. Assuming that machines or others are added to a production line, agents would
not necessarily need to be retrained, but could instead rely on the same logic. Potentially
resulting scale effects, the necessity of altered global objectives, and the question of
what purposeful data provisioning should look like all still need to be investigated in
further research. Also, novel dynamic and hybrid control approaches such as the non-NN-
based hybrid hierarchical predictive and heterarchical reactive architecture, as in Pach et al.
(2014), can lead to increased scalability due to the combination of respective organizational
benefits.

• Design of NN-based MA systems: As a considered sub-area, especially research on
MA systems is not yet exhausted. Previously mentioned as a hurdle, there are still a lot
of potentials, especially in communication design, stable and reliable training methods,
and the definition of guidelines for developing MA systems. The extent to which a
centralized intelligence and parameter-sharing strategies are advantageous, or whether
fully decentralized and co-learning swarm intelligence strategies should rather be applied,
are conceptual questions that need to be clarified. The same accounts for the choice of
interaction, such as collaborative, competitive, or hybrid approaches, and how bidding
or negotiation mechanisms must be designed to enhance performance, adaptability, and
resilience. In addition, the agent’s interaction behavior in new environments, how the
adaptability of a collective set differs from that of a single agent, and how interaction
approaches can be exploited to maintain production stability are further research directions
that could accelerate a broader implementation of MA systems.

• Simplification through embedded approaches: Increasingly large state spaces and, in
general, the emergence of Big Data coupled with ever larger data streams caused by a grow-
ing amount of sensor data and system interdependencies lead to less-manageable problem
spaces. The decomposition of tasks into sub-tasks, plain and embedded approaches can
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better cope with and help to contribute to increasing algorithm performances. Further
research could focus on how holistic NN-based approaches can be enabled and optimally
deployed through sequential task sharing or parallelization of tasks. Parallelization can be
problem-centric, but also location-, strategy-, or scenario-centric, such as the bottleneck
and non-bottleneck flow time forecast in Schneckenreither et al. (2021), depending on the
specific complexity allocation.

Another non-NN-based example was presented in Minguillon and Lanza (2019) by com-
bining centralized and decentralized scheduling properties for the adjustment of degrees
of freedom. As mentioned in Schwung et al. (2021), a NN-based system can also initially
learn from established methods before applying them individually. This allows already
recognized system knowledge to be transferred and expert knowledge to be leveraged in
future applications. A collaborative application to mitigate exceptional events with the
help of human operators might be explored in more detail and can be initially realised in
learning factory environments, as discussed by Teichmann et al. (2021).

• Generalizability: The flexibility and adaptability of an approach to quickly fit to new
environments could be deepened. This would not only mitigate exceptional situations
such as machine breakdowns or large-scale events such as the Corona pandemic, but
also increase system sustainability through significantly increased resource utilization
and longer service lives, since not only would fewer machines or robots be needed, but
also necessary manual and technological adjustments that cause constant effort would
be minimized. Further research on how basic task patterns can be learned, as in Baer
et al. (2020), or the implementation of a central intelligence that prevents local skill
generation and exploitation would leverage generalizability. Such over-adaptation could be
circumvented by adequate exploration of the broader problem space or increased context
awareness to adapt more quickly and robustly to new environments and scenarios, as
already done in computer vision (Athanasopoulou et al., 2020) or nuclear mass training
(Zhao and Zhang, 2022). To achieve this within the relevant scope, Zang et al. (2019)
developed a hybrid approach with a prior problem classification before being solved
by the NN scheduler. Further investigation of NN-based optimization and adaption of
advanced analytics or heuristics could exploit both methods’ advantages. Once analytically
accurate but static knowledge is available, the NN model can be added as a dynamic
and adaptive component to generalize process knowledge. With a high accuracy and
adaptability, appropriate trade-offs between conventional and ML-based optimization
could be facilitated. Thus, by circumventing the vanishing applicability of simulations and
hard-coded algorithms, generalizability could be optimized.

• Simulation to reality transfer: To take further steps toward the implementation of real
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applications, simulations could be designed more realistically. By integrating dynamics and
non-linear parameters, implemented approaches can already be evaluated for robustness at
an early stage. A further step toward reality could be accelerated by hybrid hardware-in-
the-loop (HiL) environments, in which real elements like control units are installed and the
rest of the environment is simulated. Likewise indicated by Jones (2021), it is worthwhile
to advance the approaches to higher cognitive levels in order to circumvent existing
limitations of prevailing machine learning approaches and not only build a sophisticated
digital twin, but benefit from the strong artificial intelligence paradigm. Also, small-scale
implementations such as in Zhou et al. (2021) can help to collect initial insights before
transferring the applied methods to larger scales. At this level, further tests can be carried
out, and reliability as well as safety factors can be evaluated. Especially in forecasting,
approaches can be pre-tested in parallel to already proven methods and assist, i.e., by
conducting what-if analyses in Huang et al. (2016) for decision support.

5.7 Discussion

Today’s PPC, as well as forecasting, must increasingly cope with dynamic processes, fast-paced
product cycles, and sharp fluctuations in demand. To ensure robust and adaptive production,
NNs have been increasingly deployed in recent years since they can process large amounts of
data in real time and provide great flexibility. Although the potentials of NNs as an optimization
tool have already been indicated in other reviews, a specific review of NN-based PPC was still
missing until now. Based on a taxonomy framework, we retrieved 120 papers and subdivided
them according to their PPC application, agent configuration, applied NN and algorithm, pursued
objective, benchmark results, and other category-dependent criteria, such as interaction in MA
systems.

Although 95% of the reviewed papers were assessed in simulations, we could identify a broad
application range and superior performance in 89% of benchmarks. NN-based approaches
demonstrated their ability to cope with external interference and unpredictable events while
maintaining robust production and optimizing a variety of performance indicators. This not
only reduced lead times, costs, and manual effort, but also increased overall flexibility and
adaptability. Additionally, based on the review results, a taxonomy was defined which enables
the classification of the implemented NN approach based on the agent and method count. In
this regard, implementations are categorized into plain, embedded, and multi-(embedded) agent
systems, which differ particularly in terms of scalability, implementation effort, and prevailing
task breakdown.
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5.7.1 Managerial implications

Companies must be able to generate profits and meet customer expectations despite the chal-
lenging market conditions and increasingly complex production processes. To counteract the
disadvantages of conventional methods such as high manual effort, companies should leverage
the increasingly available machine and process data to enable data-driven analysis and opti-
mization. This review is intended to demonstrate the potential of NN-based PPC to increase
production efficiencies and minimize process risks.

The review revealed the practical relevance and superior performance of NN-based PPC, which
not only saved costs and increased production throughputs but also optimized production flexibil-
ity and robustness. The reviewed papers and defined taxonomy can serve managers as guidance
for the identification and prototypical design of company-specific implementations. A plain
approach, with minimized trade-offs, can help with rapid integration, whereas embedded and
multi-agent approaches can solve more complex and larger-scale problems, but also entail higher
implementation effort and development complexity. Through the integration of NNs in PPC
and forecasting, dependency on human experience can be reduced, and data-driven production
optimization, as well as real-time process adaption, can be facilitated.

5.7.2 Limitations

Although the review is based on a fundamental methodology for conducting the review, as well as
for creating the taxonomy, existing limitations should be mentioned. First, the review originates
from iteratively defined keywords, which were optimized in the course of the review. Also, the
retrieved database was supplemented by a forward and backward search. Yet, despite our best
endeavors, some papers may not have been identified. Further, some supplementary articles may
not have been included by the databases, although Scopus, WoS, and IEEE Xplore should cover
the most accessible articles. Lastly, we integrated proceedings and conference papers in addition
to journal articles to obtain a comprehensive literature set, which, however, may cause bias to
similar reviews.

5.8 Conclusion

This review intends to provide an outline of existing NN approaches in PPC and forecasting
and establishes a taxonomy to classify the implementations based on the number of employed
agents and intrinsically combined methods. The broad application base and superior performance
of the approaches were highlighted in a variety of different scenarios (RQ1). A multitude of
process and economic parameters could be improved, and process accuracy and flexibility were
optimized. Drawbacks of conventional methods, such as costly re-training or high dependency
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on human experience, were thereby significantly reduced.

The different types of embeddings (RQ2) were incorporated into the basic review structure
and the developed taxonomy framework. Whereas most papers employed one NN for plain
optimization, particularly since 2018 a significant increase can be observed in intrinsically
embedded approaches that combine multiple methods, including non-NN-based ones, and
MA approaches that split the task among multiple agents through complexity partitioning and
appropriate communication.

Although the combined benefits of the respective methods in embedded approaches and the
scalability and robustness of the MA approaches became apparent, the lack of guidelines still
poses a major challenge (RQ3) that leads to sophisticated design processes and manual efforts in
framework and parameter selection, as well as extensive procedures for training and interaction
design. In addition, only a limited number of different algorithms and NN types were deployed
and trials were primarily conducted in simulations.
Future research (RQ4) could focus on optimizing the generalizability and transferability of
trained agents with limited additional effort, e.g. through non-specific scenario training and
learning general tasks patterns, as well as adopting a broader range of algorithms and NNs. To
further mitigate the gap to real-world testing, simulations can be designed more realistically by
incorporating additional input and disturbance parameters and deploying hybrid environments.

Advancing embedded and collaborative MA approaches can contribute to the ability to cope
with the ever-increasing process complexity and significantly optimize production efficiency.
Although few approaches have been tested in reality, NN-based PPC provides an opportunity to
create robust and sustainable production processes and has already demonstrated its superior
capabilities. Further research and a shift to large-scale and hybrid environments can further drive
NN-based PPC solutions in manufacturing in order to benefit from simultaneous global and local
optimization opportunities in times of on-going automation and an increasing importance of
data-driven decisions in the sense of Big Data.
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AC Actor-critic algorithm Mfg. Manufacturing
A2C Advantage actor critic algorithm ML Machine learning
A3C Asynchronous advantage actor critic NEAT Neuro evolution of augmenting topologies
ADP Approximate dynamic programming NN Neural network
BP Backpropagation algorithm PER Prioritized experience replay
Conv. Convolutional neural network PPC Production planning and control
DBN Deep belief network PPO Proximal policy optimization
DDDQN Dueling double DQN PSO Particle swarm optimization
DDPG Deep deterministic policy gradient RBFN Radial basis function network
DP Dynamic programming RL Reinforcement learning
DQN Deep Q-learning RM Regression model
DRL Deep reinforcement learning RNN Recurrent neural network
GA Genetic algorithm SA Simulated annealing
GCNN Graph convolutional neural network TD3 Twin delayed DDPG
GNN Graph neural network TRPO Trust region policy optimization
HNN Hopfield network VPSO Virus particle swarm optimization
LSTM Long-short-term memory WIP Work in progress
MDP Markov-decision process

Table 5.8 List of abbreviations
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Plain planning approaches

Subtopic Algo. NN Objective Superior Application Simulation Source

1 Dynamic scheduling DQN GCNN Minimize makespan Superior Flexible manufacturing Simulation Hu et al. (2020)

2 Dynamic scheduling A2C FFNN Max. profitability Superior Continuous chemical
process Simulation Hubbs et al. (2020)

3 Dynamic scheduling DQN FFNN Minimize
completion time - General tasks,

services Simulation Zhou et al. (2020)

4 Dynamic scheduling Policy
gradient FFNN Maximize ressource

utilization Similar Cloud manufacturing Simulation Zhu et al. (2020)

5 Flow-shop scheduling DQN FFNN Maximize throughput - Flow-shop Simulation Marchesano et al. (2021)

6 Flow-shop scheduling Levenberg-
Marquardt FFNN Minimize overall

completion time - Flow-shop Simulation Rouhani et al. (2010)

7 Flow-shop scheduling REINFORCE LSTM Negative total tardiness Superior Medical mask production Simulation Wu et al. (2020)

8 Job-shop scheduling AC RNN Min. setup waste Similar Blown film extrusion Simulation Gannouni et al. (2020)

9 Job-shop scheduling HNN HNN Min. makespan - Job-shop Simulation Fnaiech et al. (2012)

10 Job-shop Scheduling DQN FFNN Minimize makespan Superior Job-shop Simulation Groth et al. (2021)

11 Job-shop scheduling DDDQN
with PER Conv. Minimize makespan Superior Job-shop Simulation Han and Yang (2020)

12 Job-shop scheduling DQN FFNN Minimize lead-time Superior Job-shop Simulation Kardos et al. (2021)

13 Job-shop scheduling PPO GNN Minimize makespan Superior Job-shop Simulation Park et al. (2021)

14 Job-shop scheduling PPO FFNN Optimize exec. time,
minimize makespan Superior Job-shop Simulation Wang et al. (2021)

15 Job-shop scheduling DQN FFNN Minimize makespan,
costs, balance workloads Superior Job-shop Simulation Zhou et al. (2021)

16 Job-shop scheduling DQN FFNN Completion time,
energy con., utilization Superior Reconfigurable

production Simulation Chen et al. (2019)

17 Job-shop scheduling DQN FFNN Minimize makespan Superior Semiconductor Simulation Lin et al. (2019)

18 Job-shop scheduling DQN FFNN Minimize completion
time, lateness Superior Single machine job-shop Simulation Xie et al. (2019)

19 Job-shop scheduling DRL GCNN Maximize
fill rate - swv11 in OR library Simulation Seito et al. (2020)

20 Lot scheduling PPO FFNN Min. waiting times,
amount, cost Superior Single machine Simulation Rummukainen et al. (2019)

21 Lot-sizing BP FFNN
Minimize production,
set-up, and inventory
costs

Superior Air supply and
maintenance centre Simulation Şenyiğit and Atici (2013)

22 Re-entrant production DQN FFNN Robustness Similar Single-product production Simulation Shi et al. (2020)

23 Rescheduling DQN Conv. Minimize tardiness Superior Semi-continuous extruders Simulation Palombarini et al.

24 Rescheduling DQN Conv. Minimize tardiness Superior Semi-continuous extruders Simulation Palombarini et al.

25 Rescheduling Double DQN Conv. Minimize
changeover costs Superior Color batching Simulation Leng et al. (2020)

26 Rush-order
rescheduling

Supervised/
BP FFNN Precision

and accuracy Similar Job-shop Simulation Madureira et al. (2014)

27 Task scheduling DQN FFNN Minimize makespan Superior Cloud manufacturing Simulation Dong et al. (2020)

Table 5.9 Plain NN based approaches in production planning
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Embedded planning approaches

Subtopic Algo. NN Objective Super. Embedding Application Simulation Source

28 Batch
scheduling RM FFNN Feasibility

accuracy Superior
NN anticipates batch feasibility for top
batch scheduler. If feasible, instructions
go to base model for final complex nesting

Metal
processing Simulation Gahm et al. (2022)

29 Flow-shop
scheduling Supervised FFNN Minimize

makespan Superior Hybrid fuzzy and NN based concept Three echelon
supply chain Simulation Kumar and Giri (2020)

30 Flow-shop
scheduling BP FFNN Minimize

makespan Superior NN optimized by Suliman heuristic (1)
and NN with GA (2)

Benchmark
flow-shops Simulation Ramanan et al. (2011)

31 Job-shop
scheduling BP FFNN Minimize

makespan Superior
Hybrid algorithm, stand-alone heuristic
combined with NN operation prioritizing
with dispatching rules

Job-shop Simulation Sim et al. (2020)

32 Job-shop
scheduling BP FFNN/

Conv. NN
Minimize
makespan Superior

Hybrid scheduler, GA for training,
then generate subproblems and scheduling
transformation for NN scheduler.

Job-shop Simulation Zang et al. (2019)

33 Job-shop
scheduling

Gradient
search Conv. NN Minimize

completion time - Conv. NN for scheduling, differential
evolution for sequence optimization Job-shop Simulation Zhao et al. (2010)

34 Job-shop
scheduling BP FFNN Minimize max.

makespan Superior PSO-based NN optimization Job-shop Simulation Zhang et al. (2019)

35 Modelling BP FFNN Accuracy Superior NN as meta-modeller for GA tuning Industrial
bakery Hybrid Sobottka et al. (2019)

36 Order
allocation Lagrangian FFNN Utility of

AM Cloud Superior Allocation and
payment network

Additive mfg.
order allocation Simulation Mashhadi et al. (2020)

37 Production
planning BP FFNN Production,

inventory cost - NN approximates credibility objective
and is embedded into PSO

6 sources/period
production Simulation Lan et al. (2010)

38 Production
planning BP FFNN Production cost - Hybrid monkey algorithm,

stochastic simulation, NN Fuel production Simulation Lan et al. (2011)

39 Production
planning SA FFNN Optimal

credibility -
Combined NN and SA algorithm
approximation for multi-product
multi-period scheduling

Furniture
manufacturing Simulation Feng and Yuan (2011)

40 Remanufacturing
scheduling BP FFNN Minimum

completion time -
Double fuzzy algorithm with
GA to prevent local optimality
and slow convergence of BP algorithm.

Crankshafts
remanufacturing Simulation Zhang (2019)

41 Remanufacturing
scheduling RBFN FFNN Minimum total

mfg. costs Superior
NN for approximating the expectation
function which converts infinite to
finite porblems for VPSO

Camshaft
remanufacturing Simulation Wen et al. (2015)

42 Remanufacturing
scheduling BP FFNN Accuracy - FFNN into GA to calculate

chromosome output
Cam-/crankshaft
remanufacturing Simulation Wen et al. (2017)

43 Rescheduling - FFNN Minimize
response time Superior Supervised dimensionality reduction,

GRNN mapping, SVM rescheduling Job-shop Simulation Wang and Jiang (2018)

44 Scheduling /
reconfiguration A2C FFNN Minimum total

tardiness cost Superior DRL (1) scheduling for job processing and
(2) reconfiguration for production mode Test instances Simulation Yang and Xu (2021)

45 Short-term
scheduling

DRL (sim.
AlphaGo) FFNN Short-term

profit Superior
MC tree search to train a NN to adapts
short-term production. NN improves
tree search strength for better experiences

Ore prodution Reality Kumar et al. (2021)

46 Single machine
scheduling BP FFNN Minimum total

weighted tardiness Superior Two-stage approach with NN problem
downscaling and metaheuristics solution Single machine Simulation Liu et al. (2015)

47 Task scheduling BP FFNN Optimal
evaluation -

3-module system with stochastic
classification, training/validation NN,
and interactive validation

Knitting
processes Simulation Baeza Serrato (2018)

Table 5.10 Embedded NN based approaches in production planning
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Multi-agent planning approaches

Subtopic Algo. NN Objective Superiority Interaction Training Application Simulation Source

48 Job-shop
Scheduling - -

Minimize
process
time

- Global objective
Iterative training of
local NN, other agents
crtl. by heuristics

Job-shop Simulation Baer et al. (2019)

49 Job-shop
scheduling DQN FFNN Minimize

makespan - None (sensing) Joint-action learning Job-shop Simulation Baer et al. (2020)

50 Job-Shop
scheduling

Asyn.
DDPG Conv. Minimize

makespan Superior Agent state
information

Central and
parallel training Job-shop Simulation Liu et al. (2020)

51 Job-shop
scheduling DQN FFNN Minimize

makespan Superior
Agent state
information,
global objective

Single NN instance Job-shop Simulation Pol et al. (2021)

52 Job-shop
scheduling

Modified
DQN FFNN Minimize

make-span Superior Agent information
exchange

Central Q-value/
decentral scheduling
network

Job-shop Reality Zhou et al. (2021)

53 Real-time
scheduling

Simulated
annealing FFNN Minimize

tardiness Superior
Agent information
exchange, global
objective

- Job-shop Simulation Hammami et al. (2015)

54 Robust
scheduling DQN FFNN Minimize

makespan Superior None Central training Semicond.
scheduling Simulation Park et al. (2020)

55 Sustainable
scheduling DQN FFNN

Minimize
process
time

Superior None Central training Mold
scheduling Simulation Lee et al. (2020)

Table 5.11 Multi-agent NN based approaches in production planning
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Plain forecasting approaches

Forecast Subtopic Algo. NN Super. Application Simulation Source

56 Cycle-time Dispatching BP FFNN - Semiconductor Simulation Chakravorty and Nagarur (2020)

57 Cycle-time Flexible mfg. BP FFNN Superior Textile mfg. Simulation Onaran and Yanık (2020)

58 Cycle-time Production
planning BP FFNN - Textile mfg. Simulation Cao and Ji (2021)

59 Cycle-time Virtual machine
prototype BP FFNN - Job-shop Simulation Jain et al. (2017)

60 Electricity
price

Energy cost
oriented planning BP FFNN Superior Electricity

price forecast Simulation Windler et al. (2019)

61 Energy cost /
consumption

Production
planning

Levenberg-
Marquardt FFNN - Rotary clinker

furnace Simulation Pusnik et al. (2014)

62 Energy
consumption

Production
planning - FFNN Superior Industrial

facility Simulation Ramos et al. (2021)

63 Failure
occurrence time

Dynamic
scheduling - FFNN Superior Pharmaceutical

factory Simulation Azab et al. (2021)

64 Flow-time Cost
estimation BP FFNN Superior Oil-/dry-type cast

resin transformers Simulation Karaoglan and Karademir (2017)

65 Flow-time Job-shop
scheduling

Levenberg-
Marquardt FFNN Superior Job-shop Simulation Silva et al. (2017)

66 Lead-time Job-shop
scheduling Supervised FFNN Superior Job-shop Simulation Kramer et al. (2020)

67 Lead-time Job-shop
scheduling - FFNN - Aluminium

extrusion Simulation Sajko et al. (2020)

68 Make-span Online
scheduling AlphaZero Conv. NN - Interconnected

assembly Simulation Göppert et al. (2021)

69 Number of
mfg. products

Feasibility
assessment - FFNN - Flywheel

production Simulation Burduk et al. (2018)

70 Liquid, oil,
gas flow

Production
back allocation BP FFNN Superior Samarang

petrol mine Reality Pham and Phan (2016)

71 Order
compl. time

Job-shop
control BP Deep belief

network Superior RFID-driven
job-shop Simulation Wang and Jiang (2019)

72 Costs, output,
quality

Black-box
modelling

Levenberg-
Marquardt FFNN - Tennessee

Eastman proc. Simulation Glavan et al. (2013)

73 Processing
times

Offline
scheduling BP RNN Inferior Parallel

machine sched. Simulation Yamashiro and Nonaka (2021)

74 Sequence
deviation Sequencing BP FFNN Inferior Automotive Simulation Stauder and Kühl (2021)

75 Time constraint
violations

Production
planning BP RNN/LSTM Similar Job-shop Simulation May et al. (2021)

76 Through-put Process ctrl. Supervised FFNN Superior Geo-metallurgy Simulation Both and Dimitrakopoulos (2021)

77 Through-put Process ctrl./
order release BP FFNN - Colour filter

fabrication Reality Huang et al. (2016)

78 WIP Production
planning - LSTM Superior Bottleneck

machine Simulation Gallina et al. (2021)

Table 5.12 Plain NN based approaches in production forecasting
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Embedded forecasting approaches

Forecast Subtopic Algo. NN Super. Embedding Application Simulation Source

79 Cycle-time Multi-job
production BP FFNN Superior

Fuzzy c-means job
classifying and NN based
prediction for each class

Semiconductor Simulation Chen (2016)

80 Cycle/ blockage/
starvation time

Bottleneck
prediction

Levenberg–
Marquardt LSTM Superior 2-staged cycle and

starvation time prediction
Underbody
assembly Simulation Lai et al. (2018)

81 Energy con.
patterns

Predictive
planning Unsupervised LSTM Superior LSTM with prior

classification and clustering Job-shop Simulation Morariu et al. (2020)

82 Gross demand Master prod.
scheduling BP FFNN Superior NN forecast for subsequent

scheduling algorithms
Kalak Refinery
System Simulation Sadiq et al. (2020)

83 Job remaining
time Rescheduling BP FFNN Superior

Deep autoencoder extracts
features, NN predicts jobs
remaining time forecast

Aeroengine
production Reality Fang et al. (2020)

84 Lead-time Make-to-order
manufacturing BP FFNN Superior Non-/Bottleneck

forecasting separation
Three-stage
flow-shop Simulation Schneckenreither et al. (2021)

85 Lead-time Workload
control - FFNN Superior

WLC based control
with NN prediction
to define delivery dates

Job-shop Simulation Mezzogori et al. (2019)

86 Load-value Production
scheduling BP FFNN -

Affinity propagation
operations clustering
with FFNN forecasting

Semiconductor Simulation Han et al. (2019)

87 Order
completion time

Production
scheduling BP FFNN Superior

NN for prediction,
GA/SA for global/
local tuning

Job-shop Simulation Hu and Zhou (2020)

88
Performance
mean/standard
deviation

Proactive
scheduling BP FFNN Superior

K-means clustering for
decomposition and
NN based perf. measures

Steelmaking
contin. casting Simulation Worapradya et al. (2015)

89 Product
completion time

Production
scheduling - LSTM Superior NN prediction w.analytical

model as baseline
Multi-product
serial production Simulation Huang et al. (2020)

90 Production
progess

Make-to-order
manufacturing BP DBN Superior 2-staged DBN based encoding

and progress prediction Job-shop Simulation Huang et al. (2019)

Multi-agent forecasting approaches

Forecast Subtopic Algo./ NN Super. Interaction Training Application Simulation Source

91 Manufacturing
cost

Production
scheduling

Supervised/
RNN; LSTM - Bidding

mechanism Decentral training General inter-
connected assembly Simulation Morariu and Borangiu (2018)

Table 5.13 Embedded and multi-agent NN approaches in production forecasting
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5.10 Supplements and detailed review tables

Plain control approaches

Subtopic Algo. NN Objective Superiority Application Simulation Source

92 Accuracy
control

Bacterial
memetic FFNN Opt. performance

measurement - Small-batch
assembly Simulation Németh et al. (2016)

93 Dispatching DQN FFNN
WIP; util. ratio (1.);
min. global time
contraints (2.)

Superior Semiconductor Simulation Altenmüller et al. (2020)

94 Dispatching TRPO FFNN Min. throughput time Superior Semiconductor Simulation Kuhnle et al. (2019)

95 Dispatching TRPO FFNN Max. utilization,
min. lead time Superior Semiconductor Simulation Kuhnle et al. (2019)

96 Dispatching TRPO FFNN
Max. utilization,
min.throughput/
waiting time

Superior/similar Semiconductor Simulation Kuhnle et al. (2021)

97 Dispatching DQN FFNN Max. utilization,
min. lead times Superior Semiconductor Simulation Stricker et al. (2018)

98 Dispatching DDDQN FFNN Min. reconfiguration,
min. makespan Superior Reconfigurable

mfg. system Simulation Tang and Salonitis (2021)

99 Dispatching MDP FFNN Min. average
cycle time - Re-entrant

production Simulation Wu et al. (2020)

100 Dispatching DP FFNN Minimize total
production cost - Re-entrant

production Simulation Zhou et al. (2017)

101 Flow control - FFNN Min. makespan, cost,
energy consumption Superior WIP bounding Simulation Danishvar et al. (2021)

102 Flow control DQN FFNN High throughput,
min. WIP Superior WIP bounding Simulation Silva and Azevedo (2019)

103 Flow-shop
scheduling - FFNN Minimize mean

tardiness Superior Flow-shop Simulation Mouelhi-Chibani et al. (2010)

104 Job-shop
scheduling BP algorithm FFNN Speed up modeling

process, raise accuracy - Job-shop Simulation Bergmann and Stelzer (2011)

105 Job-shop
scheduling BP algorithm FFNN Imitation of

dispatching rule - Job-shop Simulation Bergmann et al. (2014)

106 Job-shop
scheduling DoubleDQN FFNN Minimize total tardiness Superior Job-shop Simulation Luo (2020)

107 Job-shop
scheduling DQN FFNN Minimize

makespan Superior Job-shop Simulation Moon and Jeong (2021)

108 Job-shop
scheduling PPO FFNN Max. productivity - Job-shop Simulation Overbeck et al. (2021)

109 Job-shop
scheduling AC Cong. Min. makespan and

total delay Superior Job-shop Simulation Zhao and Zhang (2021)

110 Job-shop
scheduling REINFORCE FFNN Min. mean lateness,

tardiness Superior Job-shop Simulation Zheng et al. (2020)

111 Material flow
control Policy gradient FFNN Max. profit, min. cost,

target deviation Superior Copper mining
complex Simulation Kumar et al. (2020)

112 Modular
control PPO FFNN Max. throughput - Modular production Simulation Mayer et al. (2021)

113 Order release A3C, Q-learning FFNN Min. tardiness,
throughput time Superior Two-stage flow-shop Simulation Scheckenreither et al. (2019)

114
Production
and inventory
control

ADP FFNN Min. total cost per unit Superior
Dishwasher wire
rack production
system

Simulation Wu et al. (2016)

Table 5.14 Plain NN based approaches in production control
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Publication 2 - References

Embedded control approaches

Subtopic Algo. NN Objective Superiority Embedding Application Simulation Source

115 Dynamic
scheduling Supervised FFNN Maximize machine

utilization Superior
NN machine buffer
targeting and rule
based lot dispatching

Semicond. Simulation Kim et al. (2020)

116 Flow-shop
scheduling DQN FFNN Minimize mean

tardiness Superior
RL dynamically
adjust scheduling
k1/ k2 values

Flexible
flow-shop Simulation Heger and Voss (2021)

117 Flow-shop
scheduling NEAT FFNN Min. total tardiness

and makespan Superior GA sets NN topology/
hyper-parameters Flow-shop Simulation Lang et al. (2020)

118 Job-shop
scheduling DQN FFNN/LSTM Minimize makespan

and total tardiness Superior
Job allocation and
operation sequence
agent

Job-shop Simulation Lang et al. (2020)

119 Job-shop
scheduling DoubleDQN FFNN

Min. total weighted
tardiness and max.
machine utilization

Superior
Two-hierarchy, higher
DQN determines temp.
goal for lower DQN

Job-shop Simulation Luo et al. (2021)

120 Job-shop
scheduling DQN FFNN Optimize average

slack time Superior
3-staged release/order,
DQN scheduling and
allocation structure

Job-shop Simulation Zhao et al. (2021)

121 Job-shop
scheduling TRPO FFNN Explainability Similar

RL scheduling and
decision tree based
control abstraction

Semicond. Simulation Kuhnle et al. (2021)

Multi-agent control approaches

Subtopic Algo./ NN Objective Superiority Interaction Training Application Simulation Source

122 Goal
formulation AC/ FFNN

Maximize
profit /
utilization

Superior Market-based
negotiation GARIC framework Self-evol.

mfg. system Simulation Shin et al. (2012)

123 Job-shop
scheduling DQN/ FFNN Min. mean

cycle time Similar
Agent information
exchange, global
objective

Central DQN module
for approximator
transfer

Job-shop Simulation Dittrich et al. (2020)

124 Job-shop
scheduling SA/ FFNN Min. mean

tardiness - Agent information
exchange

Simultaneous learning
with simulated
annealing

Job-shop Simulation Hammami et al. (2017)

125 Job-shop
scheduling DQN/ FFNN Min. through-

put time Superior Agent state info.,
global objective Central DQN module Matrix

production Simulation Hofmann et al. (2020)

126 Job-shop
scheduling DQN/ FFNN Min. WIP,

max. util. Similar Global objective
While one DQN
is trained, others are
controlled by heuristics

Semicond. Simulation Waschneck et al. (2018)

127 Order
dispatching TD3/ FFNN Minimum

tardiness Superior
Order bidding
mechanism, global
objective

Concurrent learning Job-shop Simulation Malus et al. (2020)

128 Re-ordering DQN/ FFNN Min. cost and
decision time Superior None Iterative curriculum

learning
Car after
paint buffer Simulation Gros et al. (2020)

129
Routing,
dispatchting,
scheduling

PPO/
Conv. NN

Min. execution
time, max. util.
efficiency

Superior Economic bidding/
global objective -

Matrix
production
system

Simulation May et al. (2021)

Table 5.15 Embedded and multi-agent NN approaches in production control
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6 Transition - from research gap definition to prototype design
In this chapter, based on the reviews and the refined taxonomy for deep learning based multi-agent
systems outlined in Chapters 4 and 5, the detailed research scope of this thesis is established.
This addresses the DSRM design and development step as proposed by Peffers et al. (2007). The
scope and subsequent objectives define the primary design criteria for the artifact. These criteria
will direct the development of the prototype to fulfill the established objectives.

In the previous two publications, nearly 2000 publications on deep learning based production
systems are examined. From this analysis, a detailed selection is made to categorize the subject
matter and identify distinct research streams and gaps. These identified gaps are further detailed
in Section 6.1. Subsequently, Section 6.2 delineates the requirements criteria and associated
artifact design components, which will be summarized in Section 6.3. The main focus is
on developing an adaptive deep learning based control framework and its integration into an
adaptive production simulation. Section 6.4 outlines the fundamental requirements for technical
implementation.

6.1 Identification of the research gap and structuring research requirements

To address sub-research question S-RQ1, which concentrates on the requirements imposed by
complex production systems for control optimization approaches, three significant research
gaps were identified in the fields of deep learning and deep reinforcement learning. First,
a predominant reliance on the standard DQN algorithm was observed in most approaches,
which frequently served as the central decision-making mechanism, representing a singular
optimization stage both task-wise and environment-wise. Second, the approaches exhibited
limited transferability and generalizability to diverse scenarios, and third, there was an inadequate
adaptation of these methods to real-world environments, especially in production control.

In production control, particularly in dispatching, swift decision-making is crucial due to its direct
impact on the production workflow, which in turn affects process flows and performance metrics
(Lödding, 2019). The challenge is to ensure thorough evaluation of all essential information
for optimal decision-making, tailored to both process and order specifics, despite the increased
urgency and shorter response times compared to planning activities. This thesis, with its central
focus on production control and a special emphasis on order dispatching, addresses this control
complexity. To systematically define the research gap and comprehensively address the various
aspects of production control and dispatching, the identified gaps are categorized into three key
perspectives, structural (1), organizational (2), and algorithmic (3). These perspectives, along
with their inherent research gaps, are detailed below and will be further examined during the
design specification phase in Section 6.2.
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6 Transition - from research gap definition to prototype design

6.1.1 Structural perspective

From a structural perspective (1), the first publication pinpointed a predominant focus within
production planning and control in job-shops, particularly in semiconductor manufacturing,
as listed in Table 6.1. In addition to comparable deployments in chaku-chaku production, a
U-shaped job-shop, and buffer optimization, three approaches were implemented in a matrix
setup. The matrix methodologies in Hofmann et al. (2020), Gankin et al. (2021), and May et al.
(2021) share similarities, integrating principles of fully flexible line planning and fluid process
flows. Nonetheless, May et al. (2021) employed a 3x3 layout with an auxiliary machine and 15
transporters. Each of these transporters possess distinct economic bidding mechanisms, resulting
predominantly in short-term or local optimization at the prevailing job-floor level. To proactively
counteract missteps, action masking is introduced for process logic learning. To sidestep this
issue, May et al. (2021) indicates the feasibility of hybrid control mechanisms. Gankin et al.
(2021) integrates 25 workstations, with agents populating orders through the machine input
buffer. The action space is formulated based on the count of existing machine and system
inputs/ outputs, with action masking once again utilized. During training, all agents undergo
simultaneous learning but utilize a central neural network to facilitate knowledge sharing. This
raises the research gap concerning adapting the efficacy of the given strategy to alternative
environments. Lastly, in Hofmann et al. (2020), a unified neural network is designated for
all product agents, enabling each agent to select from a variety of process-machine pairings,
determined by the pre-established layout.

Production planning Production control

Application Job-shop Injection molding Job-shop Matrix Line-buffer Chaku-chaku line
Count 7 1 5 3 1 1

Table 6.1 Deep learning and multi-agent based approaches (Panzer et al., 2022; updated 2023)

None of the approaches ventured beyond the foundational concepts of job-shops or matrix
production. A distinct research gap emerges from the absence of bundling and consolidating
resources and capabilities to foster process synergies and to represent production structures like
tool clusters and grouped manufacturing resources.

6.1.2 Organizational perspective

The gap between research and applied practice described above can be further complemented by
the organizational perspective (2), particularly regarding agent orchestration and structuring. In
the realm of deep learning based optimization, single- and centralized-agents are the are the most
commonly utilized approaches for control and planning, as primarily discussed in the second
publication. This encompasses methodologies that have executed distributed decision-making

164



6.1 Identification of the research gap and structuring research requirements

but rely on a uniform shared policy for controlling all agents. Such an approach facilitates
experience sharing but restricts the evolution of specialized attributes and knowledge bases,
namely, potential expert statuses and joint process pathways. The predominantly employed
centralized decision-making entity obtains comprehensive production data, however, with every
alteration in input and output parameters, it necessitates retraining.

This causes an exponentially escalating control complexity for large scale manufacturing systems
(Duffie, 1982; Duffie and Piper, 1986), resulting in the Curse of Dimensionality (Bellman, 1957).
For illustrative purposes, consider a matrix production setup with 10x10 machines. A single
transportation agent is assigned the task of dispatching orders, specifically to identify an order
and its destination for the next processing step. Ignoring additional machine and order attributes
like machine status, current usage, current queue length in the machine’s input buffer, estimated
processing time, order tardiness, throughput time, priority, and data from other transportation
units, the theoretical state input size reaches 10,000 numbers. This number arises from combining
100 machines with 100 potential destinations for each order at one of the machines. However,
segmenting this layout into four modules, each with 5x5 machines, plus a top-level module,
results in an input of 625 for each agent, which is the results out of 25 machines times 25
potential order destinations. This translates to a theoretical complexity reduction of nearly 94%.

This static complexity, a time-independent, structural variable, must be distinguished from
dynamic process complexity (Deshmukh et al., 1998; Orfi et al., 2011). The latter results from
time-dependent, often unexpected state changes and is therefore also considered in the algorith-
mic perspective (Wu et al., 2007; Herrera Vidal and Coronado Hernández, 2021). Wiendahl
and Scholtissek (1994) also indicate that complexities arise not only from production itself, but
also from the manufactured products and are determined by several factors such as the industry,
product type and operations. The focus of further consideration is on production complexity,
assuming that the products to be manufactured comprise different types and several process
steps.

Integrating a production organization that reduces static and dynamic complexity is crucial for the
artifact in development. This organization aims to divide the production system into autonomous
decision-making units, promoting horizontal and vertical autonomy. These terms draw from
the concept of integrating horizontal networks with vertical manufacturing systems (Pérez-Lara
et al., 2020). Horizontally, this autonomy allows different product lines and manufacturing areas
to operate and decide independently, enabling flexible responses to uncertainties and reducing
complexity by managing only relevant information and processes. Vertically, it focuses on
structuring the production into distinct layers, from the shop floor to the enterprise level, ensuring
their independence. The challenge is to achieve seamless integration among these autonomous
units to sustain efficient production flow. However, integrating vertical production layers remains
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6 Transition - from research gap definition to prototype design

a significant gap in deep learning based production control research.

Beyond the top organizational model, it is crucial to define the numerous autonomous units in
terms of both quantity and interaction dynamics. Recent research still underscores the need for
more focused research on decentralized and autonomous decision-making, as noted by Zhou
et al. (2021). Additionally, the integration of autonomous agents in multi-layered production
structures is underexplored, leaving potentials in agent optimization untapped. This gap impedes
the development of optimization drivers that align with different production layers, as indicated in
the various variants of the automation pyramid (Meudt et al., 2017). A multi-level organizational
structure could emphasize domain-specific experts, who might operate more resiliently and
efficiently than generalists. These experts could be adaptable across different scenarios, such as
intra-logistics or material dispatching, enhancing system adaptability. However, this concept of
role-specific agents employed flexibly within their domains remains an inadequately researched
area.

6.1.3 Algorithmic perspective

Prior efforts evaluated production through two perspectives, a structural one emphasizing pro-
duction layout and resource amalgamation, and an organizational one for multi-layered and
multi-agent systems. From an algorithmic perspective, deep learning based production ap-
proaches have a tendency towards standard algorithms, especially standard backpropagation
(BP) and DQN, as illustrated in Figure 6.1. As indicated in the second publication, more ad-
vanced algorithms, such as genetic algorithms (GA) and simulated annealing (SA), capable of
evaluating diverse solution alternatives, found application in only 5% of cases, with none in the
production control domain. However, these evolutionary algorithms demand substantial training
duration and runtime, also referring to the review of optimization methods in Bansal (2005),
making them less suitable for real-time applications, such as dispatching tasks. Predominant
deep reinforcement learning approaches such as the DQN encounter limitations in large-scale
problems. Given the different organization layers, multiple machine and resource groups, and
multiple optimization objectives, not only computational efforts increase, but the overall problem
solvability decreases. With growing number of sub-tasks and conflicting objectives, decreasing
performance values can be forecasted. Consequently, a notable research gap is evident. It
is essential that deep reinforcement learning surpasses its prevailing limitations, integrating
its strengths with other established methods to discover and harness previously not addressed
synergies.

In summary, the confluence of structural, organizational, and algorithmic perspectives is ex-
pected to not only reduce control complexity but also to increase its adaptability. Consequently,
attributes like system scalability, generalizability, and robustness should be considered in the
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6.1 Identification of the research gap and structuring research requirements

Deep reinforcement 
learning; 52%

Figure 6.1 Algorithms in deep learning based production, extracted from the first publication

formulation of the design specifications. The following additional research gaps, previously not
emphasized, relate to broader control aspects and should be differentiated from the aforemen-
tioned perspectives. These should be distinguished from the previously mentioned perspectives.
The subsequent bullets briefly introduce these additional pillars that the developing artifact must
address.

• Real-world application: The application of deep learning based control strategies in
real-world scenarios presents a foundational challenge that remains largely unexplored. As
such, several studies, as evidenced in Baer et al. (2019); Dittrich and Fohlmeister (2020);
Gros et al. (2020); Lee et al. (2020), have emphasized the augmentation of simulation
complexity as a prospective avenue for research, aiming to bridge this existing disparity.
It underscores the importance of understanding and simplifying the real dynamics and
constraints of real-world applications when attempting to implement deep learning based
control strategies.

• Multi-objective optimization: Most methodologies concentrate on optimizing a single
objective, such as order throughput time or tardiness. Fewer methodologies considered two
objectives, especially if they may be in conflict, as demonstrated in May et al. (2021). Yet,
a comprehensive approach that assimilates more than two or three production objectives is
pending. Similarly, the incorporation of direct customer metrics, such as order priorities
and urgency ratios, has yet to be realized. This highlights the potential for advancing the
deep learning based production control by adopting a more holistic perspective.

• Multi-agent framework: The integration of an autonomous mobile robot fleet was
previously discussed by Malus et al. (2020), highlighting forthcoming organizational and
orchestration challenges. There remains a need for a deep learning based framework
that facilitates the integration and coordination of multiple agents, as discussed in earlier
sections. This framework should promote concurrent learning, ensure high performance
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6 Transition - from research gap definition to prototype design

and process stability, and foster broad dissemination. It should also be versatile across
industries, being adaptable for applications beyond production control that are grounded
in discrete event principles.

• Re-use of trained policies: A primary research focus is minimizing computational effort
during neural network training. The aforementioned organizational strategy can, in theory,
decrease network dimensions, leading to substantial economies of scale relative to central
intelligence. However, methods to simplify the transfer of trained networks to different
scenarios are still required. This would circumvent the expensive and potentially risky
process of entirely re-training of networks, preventing the omission of present process
logic.

The collective research gaps and requirements identified should be methodically converted into
design specifications for the proposed artifact. According to the DSRM approach, undergoing
object-centric iterations is crucial to ensure a optimal alignment between research requirements
and artifact design.

6.2 Definition of design specifications and artifact construction

As indicated in Antons and Arlinghaus (2022), centralized control mechanisms face constraints
with an expanding problem scope. This is evident in large-scale manufacturing networks as
presented in Wang et al. (2016) and in discrete-time production planning as discussed in Pantke
et al. (2016). A range of requirements, not exclusively within the domain of Industry 4.0, such
as just-in-time production or same-day deliveries, have intensified the dynamic decision-making
complexity. Managing such complexities is increasingly challenging for a single decision entity
(Scholz-Reiter et al., 2011; Mourtzis et al., 2019). Therefore, as also recognized in the review by
Antons and Arlinghaus (2022) on decentralized decision-making, there’s a need for innovative
control models.

To implement an autonomous control framework, it’s essential to first define preliminary con-
struction requirements. The artifact aims to explore the central research question of how a
data-driven and autonomous production control can be effectively implemented in adaptive
production systems. In pursuit of this objective, numerous approaches have underscored the
interactive and continuous learning features of deep reinforcement learning, marking it as a
notably adaptive technology within the machine learning domain. However, as highlighted in
the previous section, there remain unexplored areas requiring in-depth research. These gaps are
addressed through the combined insights of the structural (see Section 6.2.1), organizational (see
Section 6.2.2), and algorithmic (see Section 6.2.3) design perspectives. Within the framework to
be developed, a key focus is placed on reducing optimization complexity and enhancing scenario
generalization.
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6.2 Definition of design specifications and artifact construction

6.2.1 Structural perspective

Earlier studies frequently employed job-shop setups, combined with single-layer and single-agent
organizations, and a conventional DQN algorithm. Within such a framework, any modification,
based on the adaptability and flexibility criteria, referring to Figure 1.3 (VDI, 2017), necessitates a
thorough retraining of the core control model subsequent to structural adjustments. Consequently,
it is postulated that an suitable production structure should possess robust re-configuration
capacities to mirror structural modifications.

As delineated in the VDI5201 (see Figure 6.2), the aforementioned re-configuration capabilities
encompass system modifications like the addition, removal, or alteration of machine attributes.
These elements are pivotal to adaptability strategies and must be incorporated into the deep
learning control model. Over time, it becomes evident that shifts in layout also necessitate
procedural modifications in the value chain. Although prevailing job-shop or matrix models
consider such re-configurations, they frequently entail considerable coordination and routing
complexities as well as re-training endeavors, offering less flexibility for structural synergies
between shop-floor resources and products.
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Figure 6.2 System re-configuration capabilities according to VDI5201 (VDI, 2017)
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6 Transition - from research gap definition to prototype design

In contemporary production systems, structural synergies can be achieved through modular
resource bundling, tailored to specific product groups or variants. This object-oriented organiza-
tion, integrating concepts such as center, group, or cell production, enables efficient workshop
and flow production integration, a concept detailed in Reichwald and Dietel (1991) and Zäpfel
(2000).

This thesis adopts an object-oriented perspective within a flexible manufacturing framework.
Here, various groups or islands are interconnected through a standardized modules, facilitated by
autonomous logistics systems, including logistics robots, as outlined by Kellner et al. (2020).
Historically, modularity is considered from a product- or machine-centric viewpoint, emphasizing
maintenance and complexity reduction advantages, as noted by Brunoe et al. (2021). Koren et al.
(1999) introduced an early model of re-configurable manufacturing systems utilizing modular
machines like CNC machines, aimed at producing entire part families, not just individual
components.

This methodology is in line with a variant mix orientation, a concept also illustrated by Nyhuis
et al. (2021) through the modular assembly, i.e. in the assembly of the Audi A8. This modular
assembly process, characterized by its interconnections via autonomous vehicles, facilitates a
discontinuous, non-cycled production flow. For such resource and layout based modularization,
already Erixon et al. (1996) and Rogers and Bottaci (1997) highlighted its potential for optimizing
the time-to-market metric. Modrak and Soltysova (2023) further highlight the positive impact of
process modularity on lead times and process complexity. Meanwhile, Zäpfel (2000) categorizes
the concept of manufacturing cells as having higher productivity than job-shops, albeit with
reduced flexibility.

Therefore, this thesis progresses to considers the modular concept in the context of a flexible
manufacturing system. This includes organizing machine resources through a standardized
layout and interface strategy to efficiently represent product variants in production modules and
minimize process complexity. Emphasis is placed on the essential nature of flexible module
design to ensure production adaptability to varying demands. Enhanced by modular components
and plug-and-play features, this flexibility is further amplified in the simulation artifact.

When compared with job-shop and matrix manufacturing, which are favored in deep learning
based production, modularization offers distinct advantages. These include higher throughput
than job-shop production and enhanced scalability, as summarized in Table 6.2. The modular
approach effectively balances process and demand fluctuations by allowing resource and module
adjustments. In contrast to the more rigid matrix production, where material flows are less
restricted and harder to coordinate, modularization simplifies the object-oriented material flow
and path planning within modules. Incorporating object-oriented specifications enables proactive
bottleneck analysis, aiding in early detection and prevention of operational issues, like deadlocks.
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Concept Job-Shop Production Matrix Production Modular Production

Basic idea Function-oriented Matrix shaped layout Bundled ressources
Flexibility High Moderate Flexibility within modules
Scalability High High High

Layout Functional Functional and
product-centered Product-centered

Volume/ variety Low volume,
high variety

Moderate volume,
moderate variety

Higher volume,
variety based on modules

Control
complexity

Very high due to
order variability

Complex,
more predictable

Simplified due to
standardized modules

Applications Custom orders Standardized orders
with customization

Standardized orders
with customization

Table 6.2 Comparison of job-shop, matrix and modular production specifications, based on Reichwald
and Dietel (1991); Zäpfel (2000); Greschke et al. (2014); Kellner et al. (2020)

Still, in scenarios where production of a standard product are considered, a serial assembly line
still the most efficient approach (Reichwald and Dietel, 1991). However, this thesis primarily ad-
dresses the need for varying products. These products not only modify manufacturing parameters
but also require distinct resources, leading to the necessity for re-configurations.

The modular configuration of production units also facilitates a clear definition of the optimiza-
tion scope for the algorithmic control methodology. In this context, while information from
neighboring modules might be available, it’s deemed subsidiary for decision-making within a
specific module. This selective integration of information significantly reduces the required data
input for neural networks and ensures a more efficient process optimization.

6.2.2 Organizational perspective

The development of an artifact requires a flexible and modular production structure, supported
by an equally adaptable organization. This necessitates a restructured organization for clear
coordination among and within individual modules. The organization is therefore two-fold. First,
inter-modular, which involves coordination among modules, and also intra-modular, focusing
on participant arrangement within modules. Both aim to fulfill the objectives of this thesis, to
increase performance and adaptability and to reduce the system complexity.

Prior deep learning production approaches lack in strategies for advanced organizations. For
example, Mayer et al. (2021) approach considered up to 25 machines but in a single layer. This
research gap necessitates a distinct approach to structure and optimize control optimization
problems, leading to the relevance of an advanced organization. Therefore, this thesis proposes
a semi-heterarchical simulated control framework, as conceptualized by Grassi et al. (2020).
The control framework divides the system into a manufacturing layer at the shop-floor level and
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6 Transition - from research gap definition to prototype design

multiple distribution layers above (see Figure 6.3). This structure accommodates both vertical
and horizontal module configuration, integrating modules across various layers. This reduces
complexity in decision making by only integrating relevant information from respective layers or
modules, thereby fostering a distinct optimization scope. Moreover, layer-specific optimization
strategies can be developed within modules. These can target i.e. the reduction of tool changes
at the manufacturing layer, while distribution layers could aim to decrease average moving
distances. The designation of the exact terms in Figure 6.3 for the various layers were tailored to
the specific requirements of this thesis. However, these terms can alternatively be grounded in
established structuring levels, as delineated in Wiendahl et al. (2007) for resource or space view,
depending on the use-case. In the following the two-fold differentiation of manufacturing and
distribution layers is introduced.

Factory 1

Factory 2

Factory 3

Factory 4 Factory 6

Factory 5

Multi-Enterprise layer

Top-distribution/
production module 1

Module 2

Module 3

Module 2

Module 3
Mid-distribution/

work-shop 1

Manufacturing cell/ 
job-shop module 1

Manufacturing cell/ 
job-shop module 2

Buffer

Mfg. agents Storage

Machines

Enterprise layer

Production layer

Cell components

Work-shop layer

Manufacturing module layer

Manufacturing 
module layer

Distribution 
module layers

Figure 6.3 Semi-heterarchical control framework, left figure and layers adapted from Henn and Kühnle
(1999); Wiendahl et al. (2007); Sallez et al. (2010)

Distribution module layers: In these layers, efficient route planning is crucial to eliminate
unnecessary runs and minimize the distance to subsequent orders. Global objectives are more
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6.2 Definition of design specifications and artifact construction

significant, with systematic balancing needed to distribute orders and avoid high work-in-progress
inventories and increased throughput times due to bottlenecks. Lower-level modules can provide
aggregated information to simplify data flows and decision-making.

Manufacturing module layers: In contrast, the manufacturing module layers prioritize optimiz-
ing short-term indicators at the shop floor level. Priority is given to orders based on multi-criteria
relevance, considering factors like customer importance or waiting time. Tactical decisions in
process optimization include choosing between loading a machine first or using a product from
the output buffer for module transfer.

Besides the layers, the initial publications, while introducing the concept of semi-heterarchical
organization, also highlight gaps in our understanding of multi-agent systems and their man-
agement of complexity, an area not as extensively explored as single-agent systems. These
publications highlight the necessity of addressing instabilities in training arising from the dy-
namic interactions of multiple agents. Additionally, they highlight the prevalent use of centralized
intelligence in 44% of deep learning based multi-agent applications, noting its tendency to re-
quire extensive retraining and its difficulty in simultaneously managing objectives, constraints,
and interconnections. In contrast, the proposed control framework shall emphasize structural
consistency thanks to its high module locality. This design doesn’t necessitate retraining for
every minor change, and only agents impacted by direct structural modifications need retraining.
This not only simplifies decision-making but also reduces the complexity and effort required
in training. Effectively countering the Curse of Dimensionality, this method reduces overall
complexity through its organizational structure.

In summary, this thesis integrates a flexible, semi-heterarchical control framework that integrates
both vertical and horizontal structuring for optimal module coordination. This approach bal-
ances the complexity of individual layers with the overall system efficiency, enabling differing
optimization strategies for each layer to enhance the entire production and distribution process.

6.2.3 Algorithmic perspective

This sub-section begins by outlining general algorithmic specifications, followed by defining the
hyper-heuristic design, the reward function, and the training procedure, which are crucial for the
performance of the deep learning agents. As outlined in the previous sections, the production
system is divided into modules with multiple agents, categorized into semi-heterarchical layers
to simplify the control optimization. This structure aids the algorithm during both policy training
and operational phases, focusing on a generalized solution for the control task rather than specific
scenarios.

The adaptability of the organisation must be supported by the integrated algorithmic control
logic. Deep reinforcement learning, as highlighted in the first publication, excels in providing
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adaptive decision-making suitable for dynamic environments and enables real-time operations
in complex settings. However, deep reinforcement learning can face challenges in complex
production environments, such as difficulty in recognizing process relationships and adequately
mapping constraints, increasing risks during training. For example, Mayer et al. (2019) note
the occurrence of deadlocks in simulations, leading to increased throughput times. This is why
a differentiation must be met between the following two pivotal questions for the control and
dispatching process.

1. What are suitable control actions?

2. What are optimal control actions?

In the realm of production control, a two-fold approach that combines embedded methodologies
and deep learning proves advantageous. Chang et al. (2022) and Nachum et al. (2018) underscore
the efficacy of this dual-stage approach, particularly when integrating multiple machine learning
algorithms. This method surpasses conventional heuristics in performance but requires training
both deep learning components, which could be a limitation if transferability and generalizability
is reduced by the necessity to relearn process logics for each application. In contrast, conventional
algorithms, like dispatching rules, are more straightforward, targeting specific, well-structured
problems with predefined principles. In simple variants, these typically focus on optimizing a
single parameter in a set sequence, without the complexities of time-based learning or costly
adjustments.

Therefore, this thesis proposes a synergy of deep learning and conventional algorithms. The
deep learning component should focus on dynamic control optimization, while conventional
algorithms handle static objectives. Specifically, deep reinforcement learning, paired with
dispatching rules, can combine adaptability and optimization, maintaining the efficiency of
conventional methods. Deep learning orchestrates pre-defined objectives, and conventional
algorithms adhere to the given process structures. In essence, deep reinforcement learning is a
top-level heuristic for both global and local objectives, supported by low-level dispatching rules
for operational aspects.

However, the application of deep reinforcement learning based hyper-heuristics in production
control remains under explored, as Dokeroglu et al. (2024) notes. In contrast, non-deep learning
hyper-heuristics are efficiently used in scheduling, with earlier publications like Hershauer and
Ebert (1975) and Alexander (1987) providing evidence. Current research is more focused on
deep learning based heuristics in areas such as the traveling salesman problem (Dantas et al.,
2021), vehicle routing (Qin et al., 2021), and combinatorial optimization (Zhang et al., 2022b).

Recent production advancements have applied hyper-heuristics in job-shop and flow shop
scheduling, with notable contributions from Zhang and Roy (2019), Lin (2019), Luo et al. (2020),
and Song and Lin (2021). Q-learning approaches have also been successful in specific domains
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like aero-engine blade manufacturing and semiconductor scheduling (Zhou et al., 2019; Lin
et al., 2022). The growing interest in hyper-heuristics, especially within deep learning and deep
reinforcement learning, is discussed by Wassim (2023), indicating their benefits for real-time
decision-making and efficiency.

To ensure broad generalizability in this thesis, implementing hyper-heuristic operation in produc-
tion control, as elaborated in later publications, requires standardized input data and a fixed action
space for robust learning and operation. In contrast, advanced problem-centric heuristics demand
precise calibration for each unique application. Additionally, selecting appropriate dispatching
rules for the hyper-heuristic is crucial for consistent performance, limiting the deep learning
agent to at most sub-optimal choices. The choice of dispatching rules as an action space also sets
the optimization scope and can be tailored individually. As Kuhnle (2020) suggests, the state
space should correspond with the optimization parameters, including the correlated dispatching
rules. Furthermore, configuring the reward function significantly impacts the development of the
control policy, and the training approach for the neural network must be carefully planned, as
briefly outlined in the following sections.

Reward function design: In the field of production control, addressing multi-objective
optimization spaces remains a substantial challenge. Most existing research concentrates on one
or two objective variables, revealing untapped potential, such as integrating financial parameters
through deep learning. Conventional methods often limit themselves to a narrow set of variables.
However, current industry demands require a comprehensive evaluation of various performance
metrics, including process efficiency, customer interactions, and business strategies. Simply
optimizing specific technical indicators for individual cases is inadequate in the current customer-
centric market landscape. A more effective approach is to develop a holistic and adaptable
reward system. This system should be capable of assessing and improving multiple indicators
concurrently, adhering to hyper-heuristic principles. Such a system would enable a more nuanced
and flexible approach to optimizing production processes, aligning them more effectively with
broader business objectives and market demands.

Moon and Jeong (2021) highlight the need for such an innovative and flexible reward function
that can adapt to changing production indicators. This function should not only be flexible
enough to incorporate specific goals but also dynamic enough to adjust to evolving production
conditions. It involves pinpointing key technical, job-related, and financial parameters and
integrating them effectively. Differentiating between global and local objectives and establishing
various reward dimensions is essential. Furthermore, as Wiendahl (1997) pointed out, which will
be explored more in Section 6.4, subsequent process-related evaluations will rely on standard
indicators such as throughput times, on-time delivery, and inventory levels.
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Training procedure: The standardization and preservation of neural networks within a
network stack for reuse remains an unexplored area in production control. However, in a modular
design production system, there may be modules that allow agents to utilize experiences from
other modules. We can categorize the reuse of process knowledge into three types, within
identical environments or modules (1), to similar modules (2), and restricted transfer due to
vastly different structures (3). Agents can thereby benefit from faster re-training and adaptability
to their specific roles by continuing training with transferred neural networks. This enables
agents to develop specific skills and share experiences, improving performance across system
modules by minimizing training efforts.

In the later training phases, all agents are trained concurrently, with the scoped module structure
and decentralized decision-making process inherently preventing instabilities. For the general
neural network design, similar to Mayer et al. (2021), it was recognized that the neural parameters
were less relevant than the defined state input and reward functions. Still, a grid parameter search
was conducted, exploring chosen combinations systematically. Due to the achieved complexity
and therefore also state input and output dimensions, this grid search is advantageous compared
to a random search, because it can be iteratively improved by previous findings (Paul et al.,
2019).

The training process utilizes a modified e-greedy strategy, effectively balancing exploration and
exploitation across different modules. This approach differs from certain methods as it does not
require mimic learning. Instead, it concentrates on optimization rather than process learning.
In the initial stages, a significant number of random actions are chosen to facilitate a balanced
action exploration and steady learning progression. As illustrated in Figure 6.4, the frequency of
these random actions is progressively reduced over time. This strategy is adapted from other
successful deep reinforcement learning approaches, particularly from Mnih et al. (2015).
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6.3 Artifact design summary

As outlined before, the artifact design is explored through three perspectives, structural, organiza-
tional, and algorithmic, each contributing to system performance and adaptability, as summarized
in Figure 6.5. The structural and organizational aspects focus on systemic adaptability and
scalability through a modular, semi-heterarchical multi-level, and multi-agent structure. This
approach enables the system to adapt and scale efficiently across various resources and orga-
nizational layers. The algorithmic perspective, on the other hand, concentrates on enhancing
intra-agent policies and adaptability, improving local system performance and optimization.
Global variables further optimize overall system performance. These perspectives collectively
offer a comprehensive framework for addressing the prevalent challenges and the formulated
research questions effectively.
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Figure 6.5 Summarized research gap, requirements, and specifications

In defining the research artifact, key aspects for its development were identified, aligning with the
planning and control design framework by Bendul and Blunck (2019), which includes elements
illustrated in Figure 6.6 on the right. Thereby, the artifact comprises two main components:
the SimPy simulation and the Control Brain (CoBra) framework. These elements embody the
technical methodologies and form the core of the artifact’s structure.
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SimPy simulation A previously developed SimPy simulation corresponds to the first two
levels of system planning, as shown in Figure 6.6. It creates a model of the production envi-
ronment, simulating internal operations, conditions, and agent states. This simulation allows
for flexible plant design with arbitrary paths within modules. The operational complexity (see
number 1 in Figure 6.6) can be customized, featuring multiple redundant resources both across
and within modules, enabling diverse production paths. A matrix layout without module borders
offers greater flexibility, though modules help reduce short-sighted behaviors by providing clear
process boundaries. Structural complexity (2), while inherently limited, depends on the number
of intersecting process paths, which modularization can manage and restrict.
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Figure 6.6 Design and control framework with proposed artifact elements, Bendul and Blunck (2019)

CoBra control framework The CoBra control framework, developed in the next publications,
plays a central role in integrating deep learning based control capabilities. It plays a pivotal
role in exchanging data and executing optimized dispatching actions with the simulation. This
interaction is crucial for the deep reinforcement learning cycle, significantly influencing the
development of the discrete event based simulation. CoBra covers rows three to seven in Figure
6.6, highlighting its deep learning focus. It features a semi-heterarchical controller typology,
merging hierarchical and heterarchical methods (3). The framework is designed for flexibility
and real-time control responses (4), while leveraging past made experiences without depending
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on future data (5). It manages nervousness by allocating it only within modules and in response to
changes in system states, thus avoiding effects across boundaries under limiting policy adaptation
after each step (6). In terms of competition, the agents collaborate without competing, focusing
on iterative joint processing (7).

In summary, the simulation generates process data for training, operating, and evaluating the
CoBra framework, aligning with the DSRM to facilitate iterative design and development. The
CoBra control logic is central to this structure, acting as a key decision-making entity. It not only
addresses research questions but also serves as an interdisciplinary interface, vital for the later
implementation of deep learning algorithms.

6.4 Technical implementation - low-barrier artifact design

The previous sections outlined the research foundation of the artifact, but there is the technical
aspect yet to be discussed. To effectively share this research and enable the application of its
findings, a simulation design is needed that is both accessible and applicable. To this end, the
CoBra framework, as the central deep learning based control artifact of this thesis, must be
integrated into the python based SimPy environment, previously introduced in Section 3.3.1. The
SimPy framework is used for this integration, known for its processes, events, and resources.
Processes in SimPy simulate activities like logistic robots moving from one point to another.
Events represent system changes, such as completing a task, which trigger other processes.
Resources are finite elements, like machines in use. In the following paragraphs, the basics of
SimPy, the machine learning library Keras, and simulated technical indicators for performance
evaluation are presented.

SimPy is chosen for its capabilities in handling processes, events, and resources. It effectively
simulates activities such as logistic robots moving between points (processes), system changes
like task completion (events), and finite elements like machines (resources). The ability of SimPy
to model complex production systems is well-documented, as demonstrated by Mönch et al.
(2013) or Kuhnle et al. (2019). SimPy accommodates variables like order times, setup durations,
overdue orders, varying processing times, and machine breakdowns, as well as planning factors
like adjustable order release levels for specific orders, which can lead to temporary system
congestion and work-in-progress increases. These elements can be dynamically adjusted or set
as static, for instance, through a fixed order release schedule.

Keras. The simulation is linked to the deep learning model underpinning it. To ensure this
alignment, Keras, a versatile and open-source Python library for developing and training deep
learning models, is utilized. Keras is distinguished by its compatibility with established deep
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learning libraries like TensorFlow and its efficiency on both CPUs and GPUs, meeting diverse
user requirements. It features pre-configured neural network layers, such as dense layers, and
offers a variety of optimizers like SGD and Adam. These can be extensively customized through
iterative optimization loops, providing users with the flexibility to add or modify layers and
fine-tune parameters (Chollet, 2015). The adaptability and ease of use of Keras enhance the
implementation and testing processes, enabling comprehensive customization of the simulation
model.

Quantitative performance indicator evaluation The evaluation of a developed artifact in
simulation research is a critical process. It involves assessing various performance indicators
to ensure that the research objectives are satisfactorily met. This empirical evaluation is not
merely a final step but a continuous, iterative process integral to the design cycle, as noted by
Hevner (2007). Key logistics-oriented performance criteria include utilization rates, delivery
times, schedule adherence, and inventory levels, as outlined by Wiendahl (1997) and Lödding
(2016). Particularly critical is the evaluation of tardiness and adherence to customer-related
schedules, a major criterion for delivery reliability (Mayer et al., 2016). For the later calculations,
the throughput is considered within the system scope and is calculated according to Nyhuis and
Wiendahl (2012), as illustrated in Figure 6.7.
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Figure 6.7 Breakdown of throughput time components as per Nyhuis and Wiendahl (2012):
(a) order- and (b) process step-related processing times
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In the simulation, throughput time is standardized, starting from order release and ending when
the order exits the simulated environment. It includes tool setups as necessary, with processing
times varying according to materials and specifications. Non-processing time is allocated to
machine and module buffers, as well as storage slots, while transportation time covers all
movements. Tardiness is calculated by comparing the deviation between the scheduled finishing
time, di, a random value within a predefined range, and the actual completion time, Ci. Each
order is weighted equally in this calculation, as detailed in Equation 6.1 (Brucker, 2007).

Ttd,mean =
1
n

Sn
i=1max(0,Ci�di) (6.1)

Mean tardiness, a metric representing the average delay in fulfilling orders, serves as a pivotal
benchmark for evaluation. This indicator, in conjunction with throughput time, is frequently
utilized to evaluate system performance in deep learning based production publications. The
duration of production processes and the precision of schedule adherence are critical factors that
substantially influence the total delivery time. The latter, in turn, exerts a significant impact on
the interplay between pricing and delivery timelines, which is especially relevant for the fifth
publication in Chapter 9. Thereby, Lödding (2016) demonstrates the benefits of shorter delivery
times in enhancing customer attractiveness and facilitating express manufacturing services for
a printed circuit board manufacturing company. Specifically, in the production of rigid-flex
printed circuit boards, decreasing the turnaround time from 15 days to 5 days can result in a
prices increase of up to 200% . Notably, even a modest reduction in production time, from 15 to
13 days, can lead to an increase of roughly 40% in product costs. This example elucidates the
profound influence on financial potentials that optimized production and delivery schedules can
facilitate for manufacturing companies. Certainly, it’s important to recognize that production
is just one aspect of a broader operational chain. Effective management of procurement and
development processes, and other order process stages must also be integrated, as these stages
are crucial components in the overall workflow (Lödding, 2016) .

The criteria, adaptable to specific use-cases, focus primarily on technical and quantitative
parameters, but still require a thorough analysis of qualitative factors pertinent to the research
objectives. For instance, production flexibility will be assessed by simulating fluctuations in
incoming orders to reflect unpredictable production volumes and customer demands (Zhang
et al., 2003). This involves the capability to manage varying throughput volumes and diverse
production shares within the product mix (Sethi and Sethi, 1990; Boyer, 2000). Beyond flexibility,
adaptability is defined as the system’s ability to re-configure and thereby alter its properties
(Bordoloi et al., 2009; VDI, 2017). Additionally, generalizability and scalability are key sub-
objectives. Generalizability refers to the potential to apply gathered insights and transfer the
developed artifact to different, untested environments and scenarios (Lee and Baskerville, 2003).
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Scalability involves the system’s capacity to handle increased workloads through the addition
of process-related resources (Bondi, 2000), addressing both the expansion and efficiency of
the system. For this purpose, the following publications will clarify how the aforementioned
qualitative and quantitative objectives can be effectively captured using auxiliary variables and
thus assessed through quantitative measures.
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ABSTRACT
In today’s rapidly changing production landscape with increasingly complex manufacturing
processes and shortening product life cycles, a company’s competitiveness depends on its
ability to design flexible and robust production processes. On the shop-floor, in particular the
production control plays a crucial role to cope with disruptions and maintain system stability
and resilience. To address challenges arising from volatile sales markets or other factors, deep
learning algorithms were increasingly applied in production to facilitate fast-paced operations.
In particular deep reinforcement learning frequently surpassed conventional and intelligent
approaches in terms of performance and computational efficiency and revealed high levels of
control adaptability. However, existing approaches were often limited in scope and scenario-
specific, which hinders a seamless transition to other control optimization problems. In this
paper, we propose a flexible framework that integrates a deep learning based hyper-heuristic into
modular production to optimize pre-defined performance indicators. The framework deploys
a module recognition and agent experience sharing, enabling a fast initiation of multi-level
production systems as well as robust control strategies. To minimize computational and re-
training efforts, a stack of trained policies is utilized to facilitate an efficient re-use of previously
trained agents. Benchmark results reveal that our approach outperforms conventional rules in
terms of multi-objective optimization. The simulation framework further encourages research in
deep-learning-based control approaches to leverage explainability.
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7.1 Introduction

Nowadays, companies must respond quickly to both, internal and external disruptions and adapt
their processes to remain competitive and maintain operational profitability. In this context, the
trend towards mass customization and shortening development cycles pose significant challenges
for today’s production systems. By the same measure, they must be capable of operating in highly
uncertain market conditions while satisfying many (conflicting) customer and process related
objectives, in the shortest possible time (Schmidt and Nyhuis, 2021). In this regard, the use of
advanced Industry 4.0 technologies, including the Internet of Things and artificial intelligence, is
crucial to enable a data-driven process optimization and to cope with the increasingly complex
requirements (Kang et al., 2020; Parente et al., 2020; Kapoor et al., 2021).

In recent years, simulation-based and combined hardware-in-the-loop approaches were imple-
mented to facilitate a seamless transfer of research artifacts into practice in a low-risk environment.
Especially in production planning and control, single- and multi-agent approaches were imple-
mented to manage production complexity, each with different pre-defined agent-environment
interactions (Babiceanu and Chen, 2006; Gronauer and Diepold, 2021). Regarding the produc-
tion organization, modular systems demonstrated particular benefits, as they allocate the overall
optimization task to accessible and reactive groups of agents (Sallez et al., 2010; Groover, 2019).
Modular production systems are noted for their flexibility, scalability and adaptability. Unlike
conventional production systems, which are often linear and inflexible, modules can be easily
inserted, removed or re-positioned, enabling a swift response to market changes or adaptation
requirements. Through task decomposition and distributing complexity across foundational
modules, we can expedite the implementation of intelligent control methods, as demonstrated
in Rojas and Rauch (2019); Zhou et al. (2022); Tao et al. (2023). The distributed modules
possess pre-defined process capabilities, thus ensuring a high density of coordination within and
between modules which increases responsiveness and robustness of the system through parallel
processing and intelligent agent orchestration (Groover, 2019; Herrera et al., 2020; Sallez et al.,
2010; Buckhorst et al., 2022). However, the multitude of interactions and parallel operational
activities in multi-agent systems still pose a significant challenge for a coordinated control of
shop-floor activities. The production control must handle a constantly growing number of data
sources and information flows, to make situation-specific, optimal decisions and leverage process
potentials.

To handle such complex optimization problems, machine learning techniques, particularly
deep learning algorithms, were increasingly applied in production research (Kang et al., 2020;
Samsonov et al., 2021; Oluyisola et al., 2022). Given their ability to capture complex non-linear
relationships and to process large amounts of data in real-time for multi-objective optimization,
the need for complex and rigid models is prevented. This enables the targeting of both local and
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global process variables and facilitates a continuous improvement process by leveraging both,
machine and human-related system resources (Cadavid et al., 2019; Zhang et al., 2019; Kang
et al., 2020). However, despite the potential benefits, the exploitation of machine learning in
production control is not yet fully addressed, as its adoption is rather concentrated on the field of
Big Data or other related disciplines (Liao et al., 2017; Cadavid et al., 2019). Nevertheless, it
becomes clear, notably in Weichert et al. (2019); Zhou et al. (2022), that due to the versatility
of deep learning approaches, a multitude of practical control optimization problems can be
addressed, in which fast decision-making contributes significantly to maintain process stability
(Bueno et al., 2020; Zhang and Huang, 1995; Garetti and Taisch, 1999). However, the practical
integration of a machine learning algorithm must be conducted in an objective-specific manner
and requires a dedicated deployment to balance the increasing process and model complexities
and to ensure appropriate decisions and a high process reliability (Weichert et al., 2019).

In recent years, in particular, deep reinforcement learning (RL) algorithms demonstrated superior
efficacy against other conventional or machine learning based benchmarks (Zhou et al., 2022). In
contrast to meta-heuristics, which serve as search process optimizers, deep RL offers significantly
improved real-time capabilities, performance metrics, and a higher interpretability (Zhang et al.,
2022; Grumbach et al., 2022; Kallestad et al., 2023). Based on collected sensor information,
deep RL is capable to make online data-driven decisions and enables a responsive and adaptive
control design that addresses the challenges of volatile manufacturing environments. Due to the
direct agent-environment interaction, deep RL can generalize and leverage the obtained process
knowledge to enhance production stability and performance (Arunraj and Ahrens, 2015; Mehlig,
2021). Even though the application of deep RL demonstrated outstanding performances in
various production fields, multi-agent based production control approaches were less considered,
especially in matrix- or modular-shaped production systems, as reviewed and analyzed in Panzer
and Bender (2022) and Panzer et al. (2022). Although control approaches of Gankin et al. (2021),
Mayer et al. (2021), and May et al. (2021) already indicated robust and performant multi-agent
control policies, current research lacks an adaptive approach that can address various production
scenarios and offers a high transferability to similar practical problems.

To harness the benefits of deep learning and a multi-agent-based production organization, this
paper introduces a novel control framework that facilitates the flexible adaptation of modular
production systems. By employing a hyper-heuristic control concept for varying production
objectives, our approach seeks to improve production performance and adaptability. Owing
to the hyper-heuristic based algorithmic approach, the deep RL based top-level decision entity
focuses on selecting low-level heuristics, thereby avoiding the adoption of deficient system
policies or erroneous actions. The proposed control framework is incorporated into a flexible
simulation, which accommodates a wide range of production scenarios and enables the optimiza-
tion of individual performance metrics. The simulation adheres to a modular principle, which
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decomposes the overall production task complexity into manageable fragments, resembling the
production system in its modular structure. Additionally, we distinguish between manufacturing
and distribution modules, that are responsible for shop-floor and intra-logistics activities, respec-
tively. By synergistically combining the concepts of modular production and hyper-heuristics,
we harness the strengths of both domains. This fusion allows us to achieve a dual-fold reduction,
both systemically and algorithmically, in optimization complexity.

The embedded deep learning based decision-making process leverages a module recognition and
agent experience-sharing method that facilitates the rapid creation and initiation of multi-level
production systems. The framework further aspires to progressively reduce computational efforts
for neural network training through the integration of a batch of pre-trained policies.

The remainder of the paper is organized as follows. In the next section, the basics of prevailing
simulation frameworks, deep RL, and multi-agent based production control are outlined and
the research objective is specified. Then, the conceptual design and artifact requirements are
defined and simulation results are presented and evaluated. Finally, the paper concludes with a
discussion of the framework and a conclusion that synthesizes the main findings.

7.2 Related work

This section specifically focuses on the basics of discrete-event simulations (DES) and deep
learning methods, which were increasingly applied for a wide range of production planning
and control tasks over recent years. A DES constitutes an essential link between the theoretical
concepts of adaptive and deep learning based production control concepts and their simulated
and practical implementation in modular production systems. Without a robust foundation in
DES, a framework would lack to emulate the dynamics and complexity of modular production
systems. Therefore, the following DES subsection provides an in-depth analysis of the simulation
foundations that are essential for operationalizing our approach.

Subsequently, the key concepts of deep RL as well as hyper-heuristics are introduced, which
serve as core elements of the later developed artifact. These concepts are expected to provide
significant performance improvements in production optimization through their continuous learn-
ing behavior and adaptability, enabling automated and data-driven optimization of production
decisions. The discussion continues with a review of the current state of research, specifically in
the context of integrating production control and deep RL.

Building upon the dual research gap from a DES and algorithmic perspectives, we present the
problem formulation in which we state the specific problem of our research approach. Thereby,
we outline the objectives of our approach for an adaptive and deep learning based modular
production control framework.
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7.2.1 Discrete-event based production simulation

A DES describes the development of a system based on pre-defined events and their chronological
sequencing as discrete occurrences that affect the system state (Law, 2007). In DES, events
are captured at discrete time points, and system variables are modified accordingly, allowing
for incremental and traceable progression of the simulated system over time. By incorporating
operational resources, such as machines or labor resources, system states, and process flows,
a production system can be replicated, enabling the analysis of key performance metrics and
identification of operational optimization potentials (Fowler et al., 2015; Jeon and Kim, 2016;
Mayer et al., 2021). Such analysis may include bottleneck resource evaluation, optimal machine
arrangement, or work efficiency assessment for specific system resources. Notably, this approach
facilitates the uncritical testing of prototype solutions, which can be further examined in an
intermediate hardware-in-the-loop approach until reaching satisfying real-world results.

However, simulation techniques are often applicable only for limited periods of time due to their
difficulty and specificity of implementation (Neto et al., 2020). Thereby, Mourtzis (2020) further
emphasizes the challenges of integrating artificial intelligence into these simulations. Although
the DES approaches can be manifold, the number and type of information sources necessitate
dedicated control implementation for a data-driven and optimal decision-making. To address
these hurdles, the following simulation frameworks aim to bridge the gap between advanced
planning and control theory and its practical application. These frameworks are also listed in
Table 7.1.

Apart from production planning and control practices or similar production disciplines, other
simulation approaches already delved into the creation of intelligent planning and control
frameworks. Notable sectors and problems include vehicle routing (Nazari et al., 2018), energy
supply chain management (Chen et al., 2021), or computational fluid dynamics (Pawar and
Maulik, 2021).

In the realm of production planning and control, current research is primarily focused on
simulation frameworks designed for planning purposes. A mixed-integer linear programming
(MILP) framework for the scheduling of mining operations was proposed by Manriquez et al.
(2020). An intelligent multi-agent SwarmFabSim framework was proposed by Umlauft et al.
(2022), that deploys a swarm intelligence algorithm. Other DES scheduling approaches adopted
quantum annealing (Venturelli et al., 2015), cuckoo search optimization (Phanden et al., 2019),
or genetic algorithms (Fumagalli et al., 2018) to increase the applicability of the respective
framework. A recurring feature of such approaches is potentially extended computation times,
often attributed to meta-heuristic solution methods. Other established frameworks that use
deep RL for production scheduling, like the JSSEnv (Tassel et al., 2021) or Schlably framework
(Waubert De Puiseau et al., 2023), primarily focus on job-shop scheduling or order release and
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sequencing (Samsonov et al., 2022).

Application Specific application Algorithm Author

Other applications

Vehicle routing RL Nazari et al. (2018)
Modular System design - Farsi et al. (2019)
Energy supply chain Genetic algorithm Chen et al. (2021)
Computational fluid dynamics Deep RL Pawar and Maulik (2021)
Algorithmic trading Deep RL Shavandi and Khedmati (2022)
Predictive maintenance Deep RL Rodríguez et al. (2022)
Predictive maintenance Deep RL Su et al. (2022)

Job-shop scheduling
(non-RL-based)

General scheduling Cuckoo search Phanden et al. (2019)
Mining scheduling MILP Manriquez et al. (2020)
General scheduling Quantum annealing Venturelli et al. (2015)
General scheduling Genetic algorithms Fumagalli et al. (2018)
Semiconductor scheduling Swarm intelligence Umlauft et al. (2022)

Job-shop scheduling
(RL-based)

General JSSEnv framwork Deep RL Tassel et al. (2021)
General scheduling Deep RL Samsonov et al. (2022)
General Schlably framework Deep RL Waubert De Puiseau et al. (2023)
Multi-agent job-shop Deep RL Liu et al. (2022)

Job-shop control
(single-agent)

SimPyRLFab semi-
conductor dispatching Deep RL Kuhnle et al. (2019)

General L2D framwork Deep RL Zhang et al. (2020)
Job-shop control
(multi-agent) Modular dispatching Deep RL Our Framework

Table 7.1 Overview of prevailing simulation frameworks

For dedicated production control problems, two approaches dealt with specific single-agent
DES implementations, which analyze the impact of stochastic and unpredictable variables.
Zhang et al. (2020) implemented the single-agent L2D framework by deploying a combined
deep RL and disjunctive graph representation to learn priority dispatching rules in a 3x3 job-
shop. Kuhnle et al. (2019) implemented the deep learning based production control framework
SimPyRLFab, thereby considering the prevailing semiconductor process pre-requisites. In such
DES frameworks, predefined and product-specific process sequences, machine failures, or other
non-deterministic events can be triggered, and their effects on production participants, such as
degrading production resources, warehouse inventories, or line effects, can be investigated (Law,
2007). Additionally, systemic and agent-centered relationships can be analyzed based on their
organization and interaction.

Whereas Liu et al. (2022) implemented an advanced hierarchical multi-agent scheduling frame-
work, distinguishing tasks between routing and inter-machine scheduling, other (DES) frame-
works predominantly focused on plain scheduling or single-agent production control. Notably,
these simulations did not account for multiple production layers and consistently operated on a
singular level.

Conclusively, from the DES viewpoint, there is a need for a framework that facilitates the
conceptualization and simulation of a multi-layered modular production system. Within this
framework, the optimization task is governed by a semi-heterarchical framework, facilitating the
attainment of both global and local objectives by multiple agents. The modular structure allows
for a versatile modification and change of system properties by adding or removing modules
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to meet current requirements or to cope with dynamic processes (Buckhorst et al., 2022). The
semi-heterarchical backbone provides a high integration capability of potential scenarios through
user-defined modules within a hierarchical organization. In parallel, the system is more robust
due to the structured allocation of competencies and parallel processing, as in heterarchical
systems (Valckenaers et al., 1994; Groover, 2019; Derigent et al., 2021).

A significant challenge is that current heuristics have limitations in optimizing multiple perfor-
mance measures (Grabot and Geneste, 1994) and often exhibit minimal global coordination when
processing information within local entities (Uzsoy et al., 1993; Holthaus and Rajendran, 1997).
Yet, in operational production settings that demand rapid, potentially real-time, decision-making,
approaches like meta-heuristics often underperform when compared to traditional heuristics.
These methods, due to mathematical optimization techniques, may not provide real-time deci-
sions, especially as the problem’s scope expands, leading to substantial performance declines
(Nasiri et al., 2017). Moreover, meta-heuristics necessitate profound expertise and pose chal-
lenges during initialization and modification (Rauf et al., 2020; Zhou et al., 2020). Given these
constraints, RL methods, known for swift and interactive decision-making, have gained traction
in operations and control tasks (Samsonov et al., 2021; Bahrpeyma and Reichelt, 2022; Panzer et
al., 2022).

7.2.2 Basics of (deep) reinforcement learning and hyper-heuristics

RL constitutes an interactive paradigm of machine learning, wherein a decision-making agent
selects actions for execution and thereby iteratively refines its policy to develop the process
logic. The leap to the widespread adoption of RL was primarily reached through its successful
implementation in the Atari environment, making it attractive for complex optimization problems
(Mnih et al., 2013). In particular, deep RL, with the additional integration of a deep neural net-
work that allows it to process large state variables, was adapted to a variety of data-centric online
applications. A fundamental constraint for integration is the requirement for the optimization
task or problem to adhere to the Markov property and for the decision or control process to align
with a Markov Decision Process (MDP). This is accompanied by the Markov assumption, which
states that all future production states depend only on the current state, but do not imply any
influences from the past which reflects the basic assumption of our later DES approach (Sutton
and Barto, 2017). The simulation employs a model-free, off-policy Q-learning algorithm, as
implemented by other successful benchmarks in production control (such as Esteso et al., 2022;
Panzer and Bender, 2022). Q-learning does not require a model of the environment and estimates
the value of a Q-function (Equation (1)), which assesses a potential action of an agent based on
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the Bellman equation and total accumulated expected rewards Gt .

Q(st ,at) = r(s,a)+ gmax(Q(s,a)) (1)

Gt =
•

Â
k=0

gkrt+k (2)

In this context, s represents the current state, a is the selected action, and r(s,a) summarizes the
obtained reward after executing action a in state s. g defines the discount factor (g 2 [0,1]) that
determines the relative weighting of future rewards with respect to the current reward across
steps. s0 is the subsequent state following the execution of action a, with max(Q(s,a)) being the
maximal Q-value across all feasible actions a0 in the subsequent state s0. The primary difference
between conventional deep Q-learning and its deep learning based counterpart is the latter’s use
of a neural network to approximate the Q-function. Therefore, the objective is to minimize the
loss between the estimated Q-function and the target value. The loss can be defined as the mean
squared error L(q) = E[(Q(s,a;q)� y)2] between the estimated value Q(s,a;q) and the target
value y = r(s,a)+ g;max(Q(s,a;q)). Minimizing this loss allows for the updating of neural
network parameters q to better approximate the Q function. This procedure is reiterated until the
performance converges against a defined level or a certain number of training steps is reached.
Using these, the formula for the DQN can be derived to approximate the Q-values by minimizing
the loss function using the Bellman equation as summarized in Formula (3). To further stabilize
learning and increase performance, a target network with weights q� is introduced to compute
Q(s‘,a‘) for the next states (Mnih et al., 2013, 2015; Sutton and Barto, 2017).

Q(st ,at ,q)  Q(st ,at ,q) + a [r + g max Q(s‘,a‘,q�) � Q(st ,at ,q)] (3)

7.2.3 Deep RL based production dispatching

The limited capabilities of existing models in coping with dynamic system behavior have led to
the application of various deep learning based control approaches to increase the reproduction
accuracy and to minimize manual intervention, i.e. by a control strategy approximation in
Bergmann and Stelzer (2011) or Bergmann et al. (2014). Luo et al. (2021) relied on a double
DQN RL to minimize total delays and avoided otherwise assumed static conditions. Similarly,
Mouelhi-Chibani and Pierreval (2010) and Zhao and Zhang (2021) outperformed conventional
approaches with neural network based rule selection depending on flow or job-shop parameters.
The latter used a convolutional neural network that takes matrices of processing times and two
Boolean matrices of pending and completed operations as input to select rules such as SPT and
LPT and outperformed a GA in terms of machine utilization and waiting times. In a job-shop
environment, using the production state representation as a 2-D matrix and applying transfer
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learning, the scheduling policy demonstrated strong performance and increased generalizability
(Zheng et al., 2020). However, these and other approaches, such as that of Altenmüller et al.
(2020) or Kuhnle et al. (2020), were implemented in a single-agent environment.

To facilitate a decentralized decision-making, multi-agent approaches are of particular importance
for the decomposition and allocation of the total optimization process to multiple agents and
to maximize the exploitation of individual skill sets as listed in Table 7.2. Malus et al. (2020)
suggested an order dispatch mechanism based on joint global rewards for autonomous mobile
robots to minimize delays. Hammami et al. (2017) proposed a multi-agent system based on
simultaneous learning and information sharing between agents to reduce average delays. Dittrich
and Fohlmeister (2020) and Hofmann et al. (2020) applied a centralized DQN decision module
for training. Waschneck et al. (2018) introduced a training strategy in a wafer fabrication facility
to optimize maximum uptime as a global goal. In a recent study by Sakr et al. (2021), a DQN
was utilized to minimize queue waiting and lead times in wafer production. Specifically, they
compared their approach to a prevailing heuristics strategy and found significant improvements.
Gros et al. (2020) minimized costs in a system to control a car buffer after painting operations.
Overbeck et al. (2021), on the other hand, leverage a PPO to find the best action in an automated
manufacturing system, that was designed according to the chaku-chaku principles.

However, the previous research on deep RL and multi-agent based production control primarily
focused on job-shop environments. There are some approaches in matrix and modular based
production systems as proposed by Hofmann et al. (2020), that provides agents with immediate
rewards for selected actions and delayed rewards based on the total global cycle time. This
strategy outperformed a rule-based and a non-coordinated strategy by preventing the blocking of
other agents and allocating global rewards. The simulated system comprised 10 workstations
and several AGVs that executed multiple process steps and are fully inter-connected. May et al.
(2021) followed an economic bidding approach to reduce execution time and increase utilization
efficiency. This involved two system configurations, each with 15 agents and 10 stations arranged
in a matrix structure, with different buffer sizes. Based on a PPO, the global utilization rate after
part completion and locally accepted bids, and non-value added time as well as consecutive failed
bids could be optimized. Gankin et al. (2021) implemented a first large-scale plant consisting of
25 machines arranged in a five-by-five layout, based on the approach of Mayer et al. (2021). In
this approach, an action masking mechanism was used to reduce the decision complexity of all
20 DQN based transportation resources that were being trained in parallel. The agents used the
same neural network and buffer as the decision instance for experience sharing.

In summary, Table 7.2 indicates that always one organizational layer was integrated in previous
approaches. There is no approach, that incorporates multiple layers and a semi-heterarchical
organization within a modular production system. Furthermore, the presented approaches
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predominantly rely on single dedicated algorithms, such as the DQN. However, there is a need
for an approach that leverages the advantages of deep learning techniques with conventional
methods, as discussed in Panzer et al. (2022). Another research gap concerns the predominantly
technical optimization objectives, which are rather limited in scope. Customer-centric objectives
like the processing of urgent and prioritized orders, which hold particular importance in today’s
economic landscape, were inadequately addressed.

Application Algorithm Training
strategy

Control
strategy

Agent
interaction

Objective
parameter

Orga.
levels Source

Car buffer DQN Iterative
learning Decentral - Cost/ deci-

sion time 1 Gros et al. (2020)

Chaku-chaku
line PPO Shared PPO

module Central - Utilization/
throughput 1 Overbeck et al. (2021)

SA Concurrent
learning Decentral

Agent
information
exchange

Mean
tardiness 1 Hammami et al. (2017)

Job-shop

DQN
Iterative DQN/

heuristics
learning

Decentral Global
rewards

WIP/ uptime
utilization 1 Waschneck et al. (2018)

DQN Shared DQN
module Central

Agent
information
exchange

Mean cycle
time 1 Dittrich et al. (2020)

DQN Concurrent
learning Decentral Agent state

information
Utilization,

queue waiting/
lead times

1 Sakr et al. (2023)

TD3 Concurrent
learning Decentral Order bidding

mechanism Tardiness 1 Malus et al. (2020)

DQN Shared DQN
module - Agent state

information
Throughput

time 1 Hofmann et al. (2020)

Matrix
production

DQN Shared DQN
module Central - Throughput 1 Gankin et al. (2021)

PPO - Decentral Economic
bidding

Execution time/
utilization eff. 1 May et al. (2021)

Modular
production

DQN-based
hyper-heuristic

Concurrent
learning Decentral

Agent and
cell/ order state

exchange

Process- and
customer related

parameters
> 1 Our framework

Table 7.2 Summary of deep RL based control approaches in multi-agent production systems

7.2.4 Research highlights and key contributions

In this paper, we propose a customizable simulation framework for modular production systems
that deploys multiple dispatching agents to address customer- and process-specific objectives
that can be adapted to individual scenarios. As indicated in Table 7.2, our framework uniquely
supports structuring across multiple and arbitrary organizational levels and modules. This allows
for the definition and generation of module-specific control policies, depending on the process
related requirements and optimization parameters within the differing production modules. The
modularity should allow a specific generation of local process and control knowledge that still
keeps track of multiple local and global objectives.

To control the agents, we utilize a deep learning based hyper-heuristic, that combines deep
learning with heuristics, which enables a rapid scenario generation and increases key production
indicators in terms of performance, resilience, and adaptability. For the deep learning based
decision making, the top-level heuristic does not have to learn intrinsic constraints, but can
focus on the optimization task. As evidenced in numerous studies, e.g., Liu and Dong (1996),
Kashfi and Javadi (2015), Heger et al. (2015), Shiue et al. (2018), and Zhang and Roy (2019),
the situation-dependent selection of dispatching rules can significantly reduce computation
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costs and provide an efficient tool for process optimization (Grumbach et al., 2022). The deep
learning framework is the first to facilitate an automated initialization of neural networks for
the distributed agents within the modular entities. To further increase learning performance and
operational efficiency, we deploy a module recognition and transfer learning strategy.

7.3 Simulation design

To ensure a systematic approach for reaching the defined research objectives, we adhered to the
design science research methodology as proposed by Peffers et al. (2007, referring to Figure 7.1).
As the problem identification and objective definition were dealt with in the previous section,
we proceed with constructing the research artifact. To accommodate dynamic requirements
and provide an adaptable simulation approach, it is essential to select a suitable and scalable
simulation foundation. This should seamlessly incorporate the hyper-heuristic control approach,
and facilitate a decentralized and parallel decision-making.

Problem  
centered iteration

Objective  
centered iteration

Design & dev.  
centered iteration 

Client / context 
iteration

Identify problem  
& motivate Demonstration EvaluationDefine objectives 

of a solution
Design & 

development Communication

Sections 1 & 2 Section 3 Section 4 Section 5

Figure 7.1 Pursued DSRM methodology, Peffers et al. (2007)

7.3.1 Simulation framework design

The deep learning based DES is built on a python-based simulation, developed at our chair and
the Centre for Industry 4.0. The framework enables the rapid creation of a modular production
layout with corresponding system organizations and control regulations. Incorporating the
production within the DES enables the emulation of dynamic and stochastic process parameters,
delineated in Table 7.3. Each parameter can be retrieved in its respective unit (pertaining to
distance or time) or a discrete/categorical value, such as 0 or 1, i.e. indicative for the processed
order type A/ B, respectively. Subsequently, these values undergo processing to be confined
within predefined ranges, mitigating potential outliers detrimental to neural network efficacy.
The simulation is based on the wide-spread SimPy simulation library, which is frequently applied
in the field of DES in production control research, as it was demonstrated in previous studies
(Kuhnle et al., 2020, 2021; Sakr et al., 2021).

For the control of the agents and the exploitation of deep learning mechanisms as well as
conventional approaches, a hyper-heuristic is applied. The term hyper-heuristic was first defined
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Entity Attribute Value Attribute description

Order

Time related [min] Order start time, due date, time in cell
Type related [0,1] Order type, complexity, priority
Process chain [0,1,...] Count of remaining tasks, next/ finished tasks, position
Process related [0,1] Processing, locked, picked up, in input/ same cell
Position related [m] Order distance n

Buffer/ storage Type related [n] Count of input / output buffer slots
Process related [n] Count of free slots

Machine
Tool related [0,1,...] Machine type, current tool setup (tool change costs time), next setup
Process related [min] Remaining setup time, currently manufacturing, remaining mfg. time
Failure related [0,1] Current failure, failure fixed in

Agent Position related [0,1,...] Current position, next position
Process related [0,1] In movement, remaining moving time, has task, locked item

Table 7.3 Available state parameters within the simulation framework

by Cowling et al. (2001), and initially implemented using a machine learning algorithm to find an
optimal order of a sales summit problem. In contrast to meta-heuristics, hyper-heuristics utilize a
predetermined set of low-level heuristics, rather than searching through problem solution spaces,
as illustrated in Figure 7.2. It tries to find an optimal operational sequence of the low-level
heuristics that optimally solves an optimization task within the given solution space. In recent
research, especially machine and more specifically, deep learning algorithms were proposed
to flexibly adapt to optimization tasks as top-level heuristics and exploit the capabilities of
underlying heuristics in a case-specific manner. This allows for the automation of the design
process and the utilization of the knowledge of an on- or offline machine learning algorithm as
an optimizer to derive near-optimal scheduling and dispatching policies based on the established
and comprehensible low-level heuristics (Burke et al., 2010, 2019; Drake et al., 2020).

Low-level    
heuristicsh1

h2
h3

h4

f(x)

Solution-space

Change 
solution

Evaluate

Update

Select

Top-level
heuristic

I.e. DQN
Q(s,a1)

Q(s,a2)

Q(s,a3)

Q(s,a4)

Figure 7.2 Hyper-heuristics and DQN based optimization, inspired by
Goos et al. (2001), Lorente et al. (2001)
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The simulation framework integrates the hyper-heuristic control concept through a multi-agent
organization, where the deep learning driven agents communicate with the simulation through
an order and state information exchange. Unlike a conventional single-agent approach, as
illustrated on the left in Figure 7.3, the agents have individual state vectors and can execute
independent actions that dynamically affect the processes. Within the modules, the agents can
receive information about the other agents, such as their position or order status. To prevent
local optimization tendencies, global objective variables, such as the global start time, can be
received through the order parameters. Furthermore, additional variables can be derived from
the available data set from Table 7.3, e.g. allowing the tracking of WIP (work in progress) levels
for the individual cells, based on storage, machines, and buffers occupancies. The WIP level can
in turn be utilized for operational decision-making, particularly at the upper distribution levels.

Action
at

State
st

Reward
rt

Simulation

Agent
at1,1

st1,1, rt1,1
Simulation

Agent 2
Agent 

3.1

Agent n

Agent 1
s t,3.1 

r t,3.1at2,2 st2,2, rt2,2

atn,nstn,n, rtn,n
Agent 

3.2
at,3.2

st,3.2  rt,3.2

a t,3.1

ModuleSingle-agent
system:

Multi-agent
system:

sagent,3.2sagent,3.1

Figure 7.3 Distributed decision-making and parallel processing of the dispatching agents;
left: Sutton and Barto (2017)

7.3.2 Simulation components

The given components of the base simulation are displayed in Figure 7.4, which allow for a wide
range of potential optimization tasks. In this context, the individual module elements and module
relationships can be flexibly defined. The number of elements within the cells and intermediate
buffers can be adjusted according to the scenario specifications. Regarding the organization,
the distinction between distribution and manufacturing cells is crucial, as they entail divergent
intrinsic process optimization, especially in the design of the subsequent reward functions of the
deep learning agents.

To clearly delineate the simulation boundaries, we established foundational criteria that our
approach must adhere to. For ensuring a resilient modular design, each component functions
as a unique entity, equipped with the autonomy to determine its operations. We also adopt
fully observable states that are fed to the agents, thus facilitating a decision-making via deep
learning. This underpins the ongoing learning and continuous improvement process and allows
for a plug-and-play simulation design. During a run, we assume that system parameters such as
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Figure 7.4 Descriptive manufacturing and distribution modules within the simulation

module layout and resource numbers remain unchanged throughout the simulated system.

However, our model does not presuppose a static system behavior. Instead, the system considers
external factors such as fluctuations in order volumes, variations in system parameters due to
machine malfunctions, and alterations in maintenance times. This adaptability is reflected in
its capability to manage a wide array of stochastic parameters across both process-oriented and
product-centric operations.
This also supports to maintain a realistic simulation design. The intention is to align the
behavior of the simulated agents with real-world conditions and minimize the transfer gap.
The consideration of stochastic parameters and the comprehensive set of system states, in
coherence with the flexible module and deep learning based agents, contributes to a sophisticated
production control simulation framework. This primarily supports the analysis of the different
system parameters and can help to eliminate bottlenecks. Furthermore, it evaluates the system
resilience and its ability to respond to machine failures or other unexpected occurrences.

7.4 Hyper-heuristics based control framework

The individual modules discussed in the previous section are operated by distinct dispatching
agents that take decisions based on currently received system information. For this purpose,
a set of ten heuristics is provided by the base simulation that take specific parameters into
account for decision-making and perform rather static and straightforward operations. Based
on the simulation parameters in Table 7.3, other (combined) rules can be quickly designed
and implemented. Nonetheless, in dynamic environments, the operational model must adapt
flexibly to external conditions to enable a resilient and indicator-oriented decision-making and
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optimization.

Prior to the simulation and optimization process, the distributed and intelligent agents have to be
initiated. Based on the defined requirements (as shown in Figure 7.5, on the left), a simulation is
designed that meets the scenario specifications. Using the specified manufacturing and distribu-
tion modules, an appropriate neural network is sought for an agent, using a standardized unique
network identifier, which aligns with the cell’s structural conditions. These identifiers’ properties
include the cell type (distribution, manufacturing), (intermediate) buffer and storage capacities,
and the number of machine resources. When no neural network fulfills the requirements, a new
one is generated and tailored to the module and its associated state vector, to match the desired
properties.

Module matching

Requirements 
definition

Simulation initialization

Simulation 
modelling

Machines

Agents

Module type 1

Module type n

Neur. network 1

Module type 2 Neur. network 2

… …

Neur. network n

Execution/training  

Agents Simulation

Found 
match?

Yes

No

Network generation

Module type n Generate fitting 
neural network 

Preparation Simulation generation Simulation execution

Performance 
indicator 
analysis

Better
policy?

Yes

Saving best-fit network for module n

Figure 7.5 Simulation framework with flexible module recognition

For initializing the simulation and for the use of the already trained neural networks, different
operating modes are available. On the one hand, during module detection, if a suitable neural
network is identified, it can be embedded into the respective agent and serve as the basis for
generating an optimized control policy (see case 1, Figure 7.6). In contrast, the system can
be completely re-trained to avoid bias. However, this increases the computational load and is
only necessitated when establishing a new simulation scenario (case 2). Alternatively, a purely
operational application of the neural network is possible, in which the network is not trained and
adapted (case 3). This case offers a distinct advantage in rapidly identifying suitable actions,
which is particularly important in real-world applications.

All trained networks are stored within a neural network stack, and, during training, the best-
performing networks are compared to determine the optimal control policy for each case (see

197



7 Publication 3 - A deep learning based production control framework

Figure 7.5, bottom). In addition, after each training, commencing from a pre-determined
minimum number of training steps to avoid initial instability, the moving reward average is
calculated and compared to the previous best performance. This method aims to facilitate
continuous tracking of training progress without encouraging an overestimation of performance
due to statistical anomalies.

An additional approach for transferring pre-existing knowledge involves freezing and transferring
hidden layers, that substitute the initial weights of newly generated networks during initialization.
In this case, the weights of a comparable manufacturing or distribution network are taken to
provide the policy to a network in a new layout with collective knowledge that was gained in
past simulations. This systematic storage and retrieval mechanism, enabled by the standardized
neural network stack in the center of Figure 7.6, ensures that we leverage lessons-learned from
the past, effectively optimizing and scaling the simulation process.

Agent 3.2

This approach

Tbd

Tbd 

Production site 1 Production site 3

Production site 2

Knowledge/NN stack
Agent 3.1

Agent 3.3

1

2

3

1

2
3Module match found and best-fit update

No match found and best-fit update

Module match found and operations-only mode 

Figure 7.6 Enhancing simulation scalability through a standardized neural network stack

7.4.1 Hyper-heuristics control mechanism

In prevailing approaches, varying layouts or problem scenarios, resulting in structural changes,
are associated with the creation of a new policy. Furthermore, during the initial phase of training
without action specification, also wrong actions are chosen, which might be avoided through
action masking. Often the actions were either an assignment of position (Gankin et al., 2021),
or a combined instruction of which action is to be executed on which machine (Overbeck et
al., 2021). Especially in large layouts, this quickly results in a large action space and elevated
high task complexities. Conversely, the deep RL based top-level heuristic selects a low-level
heuristic that is already possessing the process logic. As a result, the hyper-heuristic facilitates
a complexity reduction by splitting the task into a high-level optimization and a low-level
operational execution.

To implement the deep learning functions and maintain the accessibility of the SimPy simulation
framework, TensorFlow was used to enable adaptive decision-making. However, prior to utilizing
the TensorFlow framework, the deep RL control mechanism must be clarified. For this purpose,
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the following section quantifies the optimization objectives through a reward function and
subsequently defines states and action spaces.

7.4.2 Reward function design

The reward function serves to capture the degree of fulfillment of the defined objectives to
track the training success and to refine the neural network accordingly. Initially, the objectives
have to be defined first, which are then consolidated into a reward signal. In our approach,
we seek to incorporate customer-related services, particularly considering order priority and
urgency as known from Prime and other express services. In response to current trends in prime
services and evolving customer expectations, we include novel customer-centric parameters that
differentiate between priority/standard and rush/non-rush orders. In addition, we incorporate
technical standard variables like WIP levels, throughput times, and tardiness, consistent with
several other studies (Hammami et al., 2017; Waschneck et al., 2018; Hofmann et al., 2020;
Malus et al., 2020).

To account for the specifications of the individual production layers, differing total rewards are
designed for the distribution and manufacturing agents. As listed in Table 7.4, the order distance
and the global order start time are included as the individual and process-related reward Ri

fraction for the distribution agents (rewards Dist.1.1/2). Conversely, for the manufacturing cells,
the local processing start times are included as correspondence for the throughput time to avoid
dissipating WIP effects (reward Mfg.1). In addition to Ri, the common rewards Rc aggregate
general order metrics of priority, urgency, and due dates that are considered at all levels to satisfy
customer-related services, in addition to minimizing overall tardiness through a time related
reward Rdue to. All individual and general rewards are constrained within a range of -200 to 200.

Reward type Formula

Individual
rewards Ri

[M f g.1] Rlt pt = ( 1 � 2 tlt pt, max�tlt pt, n
tlt pt, max�tlt pt, min

)5 ⇤Rlt pt

[Dist.1.1] Rgt pt = ( 1 � 2 tgt pt, max�tgt pt, n
tgt pt, max�tgt pt, min

)5 ⇤Rgt pt

[Dist.1.2] Rdist = (2 tdist, max�tdist, n
tdist�tdt, min

�1)5 ⇤Rdist

Common
rewards Rc

[3] Rdue to = (2 tdt, max�tdt, n
tdt, max�tdt, min

�1)5 ⇤Rdt

[4] Rprio =

8
><

>:

200 if status of order i is prioritized
0 non-priority order, no priority order available
�200 non-priority order, priority order available

[5] Rurg =

8
><

>:

200 if order i is urgent
0 if order i is non-urgent, no urgent order available
�200 if order i is non-urgent, urgent order available

Table 7.4 Summarized reward elements for individual and common rewards
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7.4.3 State and action space design

The selection of a suitable state space design is of great importance for an efficient production
control and should be in accordance with the previously defined objectives. The state vector
should contain all essential information, which includes order due dates and urgency, local and
global processing start time, distance, and job priority. It can further contain information about
the machine’s operating status or other process information. It further includes buffer or storage
information, such as their availability or occupancy, including all necessary job information. To
ensure stable training gradients, faster training, and correct weight initialization, a min-max-
normalization is applied to the time and distance-related values to scale the state input to the
predefined and limited range between [�1,1]. Furthermore, for discrete state spaces such as
order priorities and urgencies, state inputs are normalized to [0,1], implying an input of si,prio = 0
for normal/non-rush orders, and si,prio = 1 for prioritized/rush orders.

In our study, the state vector encompasses information regarding local and global start times,
distances, due dates, and order priorities for each individual agent. When a change occurs in the
state of a module, the corresponding agent is triggered to select and execute an optimal action
based on the respective metric values for all possible positions within its module. In scenarios
involving multiple production and order metrics, the framework constructs the state vector by
concatenating the pre-defined set of metrics.

The action space design refers to the definition of potential actions that an agent can execute in
each state to determine the processing sequence. In Kanervisto et al. (2020) generic optimization
approach, the action space is discretized and only necessary actions are selected, with dispatching
rules as control heuristics that are linked to corresponding deep RL outputs. The selection of
low-level dispatching rules is a crucial step before the training and optimization procedure
and results in a representative rule set derived from benchmarks and related approaches. One
advantage is, that the action space does not grow even with large layouts, as the logic is mapped
intrinsically. This also prevents adapting the state space for new product types, because it only
affects process-related specifications at the low-level heuristics level. However, standard and
generic variables are not affected such as processing length or optimization, and customer-related
parameters such as due times or order priorities. Subsequently, the highest priority first (HP),
local and global first-in-first-out (FiFo), earliest due date (EDD), and lowest-distance-first (LDF)
rules are applied as the low-level rule set. These widely deployed dispatching rules enable a fast
order selection, which reduces the overall processing time and increases production efficiency.
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7.5 Demonstration and transfer of results

For the demonstration of the results and to facilitate an iterative optimization approach of
the simulation framework in accordance with the DSRM (Peffers et al., 2007), a case study
for the fabrication of two product groups is presented. Subsequently, the outcomes from the
training processes and operational application will enable the evaluation of performance and
other indicators, such as resilience, adaptability, and explainability.

7.5.1 Simulated case-study

For the analysis, the specification of a case-study is crucial to attain a specific benefit and to
allow the deduction of product- and process-related performance indicators. For this purpose,
we defined a three-stage system as presented in Figure 7.7, which consists of two mid-layer
distribution modules D1.1 and D1.2, each comprising two production modules.

Defined system border
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Distribution cell agent

M
at

er
ia

l f
lo

w

71

Logistics paths

Manufacturing/ QS module

1

System input/ output

Order release/
material input

Distribution modules

D1

D1.1

M1.1.1 M1.1.2 Q1.3

Finished goods

D1.2

32 44
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Figure 7.7 Simulated 3-staged modular production system for PCB and electric drive fabrication

A quality control module Q1.3 is provided in an independent additional module within the top
layer D1. The modules D1.1 and D1.2 represent specifically defined production groups in which
two types of goods are produced. This may include the production of two different kinds of
printed circuit boards (PCB). At the machines of type 1, the PCBs undergo exposure and etching
processes to establish circuit patterns and interconnections, followed by drilling procedures to
create apertures for electronic components and interconnections (machine type 2). Subsequently,
electrical interconnections are developed and electronic components are soldered to the PCBs
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at machines of type 3. For descriptive purposes, it is assumed that two distinct PCB product
groups are processed in parallel, with the first one in the D1.1, and the second one within the
D1.2 module. This process serves as a demonstration and can be arbitrarily defined for other
processes within the simulation framework. At this stage, we focus on the preliminary definition
of the process chain to ensure the accurate adoption of fabrication procedures.

The assumed processing times are listed in Table 7.5. Although the described components have
a seamless flow of material, the processes for manufacturing the varying PCBs are considered to
be segregated operations. The incoming orders are classified as priority and/or rush orders with a
20% probability for each indicator. The orders are also subject to a 20% probability of being run
through a quality assurance (QA) in module Q1.3, which takes another 2 minutes. The orders
are released at the system input and transferred to the lower production levels by the distribution
agents. Within the manufacturing cells, the orders are fed to the appropriate machines and then
forwarded back to the higher levels after all scheduled operations are completed.

Product group A
PCB - type 1

Product group B
PCB - type 2

Processing step Exposure Drilling Assembly Exposure II Drilling II Assembly II Quality check
Processing time [min.] 7 4 3 8 4 4 2
Average expected
throughput time [min.]

21.4 (w.o. QA)
26.4 (with QA)

22.0 (w.o. QA)
28.1 (with QA)

Table 7.5 Summarized processing times of both product groups; in [min.]

Table 7.6 outlines the configuration of the neural network model, detailing the number of neurons
in both input and output layers, as well as the number and size of the hidden layers, and other
additional parameters. The learning model is also specified, including the e values for the
beginning of the training phase, and a minimum e value of 0.01, which determines the rate of
random actions. A batch size of 128 was chosen to achieve a balance between learning speed
and performance. The initial parameters were retrieved from established research, particularly
the contributions of Mnih et al. (2015); Gankin et al. (2021), and subsequently refined through
iterative optimization.

Parameter Value Parameter Value

Input layer size Cell dependent (i.e. 162 for D1) Drop out ratio 0.01
Output layer size 5 (dispatch rules) Learning rate a 0.005
# hidden layers 2 Discount factor g 0.99
# neurons in hidden layers 128, 128 Learning batch size 128
Target update step 5 Minimum e 0.01
Activation function/ optimizer ReLU/ Adam e-decay 0.997

Table 7.6 Iteratively defined deep RL and training parameter settings
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7.5.2 Exemplary simulation results

All of the following calculations were carried out on an Intel Core i9-12900k CPU and 64 GB
RAM. If not other mentioned, three simulations with varying order sequences were conducted for
each metric and analysis, to provide a representative benchmark. For the introduced operational
scenarios and benchmarks, all agents (despite Q1.3) were fitted with trained neural networks
through a unique cell identifier. For the system described in Figure 7.7, 30 neural networks
(target and online) were used for a total of 15 agents respectively.

7.5.3 Training process analysis

In order to assess the training outcome, the progress of the different objectives of handling
prioritized and urgent orders over the course of the training was evaluated with regard to the
through-put times and order tardiness. As illustrated in Figures 7.8(a) and 7.8(b), all processed
orders were considered (dotted line), but also the combination of the different priorities and
urgencies. Thereby, the considerably decreasing through-put times and tardiness rates of the
higher-priority and more urgent orders, as well as their combination, becomes particularly clear.
Compared to the later benchmarks, the training was conducted under a substantially elevated
workload, as the focus was on maximizing learning outcomes rather than achieving a production
equilibrium.

It becomes evident that throughput times and tardiness rates reach their global minimum at
1600 steps, after which the throughput times experiences an upward trend again. While this
increase correlates with a surge in order quantity and diversity, the consistent tardiness observed
for combined prioritized and urgent orders underscores the system’s capacity to handle critical
orders, relegating low-priority tasks to a waiting status.

As a result, after 2000 training steps, both priority and urgent orders exhibit a tardiness of about
10 seconds (Figure 7.8(b), right). Furthermore, it becomes evident that despite receiving the
same rewards, priority orders are favored over urgent ones. This preference can be attributed to
the implemented policy. If a prioritized order is selected, it is further sorted based on the due date
if there are multiple orders that share the same priority. This process leads to an increased reward
signal and, consequently, provokes a higher agent sensitization. Conversely, for urgent orders,
no further sorting is conducted as there is often a most urgent one, resulting in no additional
reward signal. This interdependence must be considered when balancing and calibrating the
production objectives, which highlights the relevance of a proper reward function design and
weighted rewards.

In a subsequent step, the decision-making of two agents in the D1 module was analyzed to
trace the action selection back to the specific order type and to identify behavioral patterns.
This enhances the optimization explainability and facilitates the comprehension of an agent’s
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Figure 7.8 Development order throughput times and tardiness during the training process

decision-making process. Figures 7.9 and 7.10 depict the chosen actions or dispatching rules as
a function of the affected order throughout the first 1000 training steps. While the Figures in
7.9 indicate a rather balanced progression, the Figures in 7.10 exhibit a much more pronounced
action tendency. Both have in common that in the case of prioritized orders (see Figures 7.9(c),
7.9(d), 7.10(c), 7.10(d)), the high priority first rule is noticeably and comprehensible dominant.
For the second agent in 7.10(c) and 7.10(d), it quickly displays a 100% rate of choosing the HP
rule from the 400th training step onward.

In the case of urgent orders depicted in Figures 7.9(b) and 7.10(b), the earliest due date rule is
employed in approximately 80% of taken actions. However, in Figure 7.9(b), this is partially
offset by the low distance first rule, resulting in enhanced routing efficiency, especially at the
upper levels. An indifferent behavior is observed for the standard orders in Figures 7.9(a) and
7.10(a). In Figure 7.9(a), standard orders adopt a more discernible distance and due-to time-based
processing, whereas in Figure 7.10(a), no preferred action choice is evident for the distribution
agent aside from the due-to date rule. Concurrently, a clear increase in the reward signal is
observed, jumping from a moving average of 35 at the outset to 160 after 1000 training steps,
suggesting a more likely increase in the achievement of the combined rewards and objectives,
which contributes to the declining throughput times and tardiness as previously depicted in
Figure 7.8.

A further training analysis examined the different training strategies. In particular, novel modules
that were integrated into a system could initially satisfy a reasonable degree of optimization
requirements and exhibit a sufficient degree of stability despite the unavailability of a clear
control policy. Since the transfer learning strategy is intended to accelerate the learning process,
the parameters of a module similar to the D1 module were used with an increased size for the
input buffers of D1.1/D1.2 and an extended storage space. In addition, different estart values
were considered for the transfer learning-based training. Noticeably, the learning rates for the
agents with estart = 0.5 are significantly faster. Although they still encounter a 50% chance for a
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Figure 7.9 Moving average of chosen actions for a D1 module agent throughout the training process
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Figure 7.10 Moving average of a another agent in D1, emphasizing a clear trend towards explainable
action selection

random action at the beginning, they exploit prior knowledge and reach higher rewards more
quickly. Apparently, part of the existing control policy from the other agent could be used to
make training decisions more effectively, despite the change in state inputs.

205



7 Publication 3 - A deep learning based production control framework

7.5.4 Analysis of customer related indicator benchmarks

To establish a comparative benchmark against prevalent dispatching rules, the consolidated
results are listed in Table 7.7. For these benchmarks, a cumulative duration of 7200 minutes
with 2700 scheduled orders was simulated. Each time with varying order sets and the objective
to assess the modular system’s adaptability and efficacy in response to fluctuating demands.
For the analysis, the combined throughput times and the tardiness are condensed as the central
evaluation indicators for the satisfaction of customer-related objectives.

The application of deep RL-based agents demonstrates a measurable improvement in order
tardiness and throughput times for both prioritized and rush orders relative to standard orders
and conventional dispatching rules. This suggests a heightened alignment with customer-centric
parameters. Specifically, there was an observed enhancement in the processing efficiency of
intricate orders. Combined prioritized and urgent orders had a direct impact on the reduction
of tardiness by nearly �100% and throughput times of �52%, in contrast to standard orders.
When assessing standard orders within the benchmark, the hyper-heuristic exhibited increased
throughput time and tardiness. Nonetheless, these factors were considered of lesser importance
due to their relative insignificance.

The deep learning approach also offers the ability to optimize the allocation of resources
effectively. It facilitates the development of individual control schemes for each order backlog
within a module, ensuring optimal resource utilization. The inherent self-learning mechanisms
of the deep RL offer two primary advantages, they support the ongoing refinement of production
control and objective realization, and they enhance the performance of production processes
within a dynamic environment. The adaptability of the deep RL approach underscores its
potential to efficiently address diverse operational scenarios in order processing.

7.5.5 Evaluation of adaptability and resilience

To conduct a thorough evaluation of the framework’s adaptability, we analyzed the learned
control policy, first, from a structural-related perspective, and second, from an order-related
perspective. The former refers to the responsiveness to a changing production environment
through additional manufacturing modules, processes, and technologies or products. By adopting
the hyper-heuristic approach, the deep learning component is able to strip down arising changes
such as new products to a straight-forward process level that did not affect the top-level decision-
making logic and process optimization. Similarly, the response to a malfunctioning machine
was compensated by the rule-based decision-making process while the optimization process
continued within the redefined context. Only the structural change of a system or re-scaling
system components in scope, which goes along with a changed state vector, requires a re-training
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Total Hyper-heuristic Earliest due date FiFo global FiFo local
Processed orders [# ] 2576 2566 2567 2581
Throughput time [min] 131,2 131,7 132,1 133,0
Tardiness [min] 37,8 37,2 38,7 37,5
WIP [# ] 40,1 38,8 42,0 39,0

Throughput time
order type split

Standard
order

Rush
Order

Standard
order

Rush
Order

Standard
order

Rush
Order

Standard
order

Rush
Order

Standard [min] 149,7 115,3 140,7 98,8 132,6 131,4 133,5 132,2
Priority [min] 87,7 71,5 140,3 98,6 131,6 129,1 132,4 130,3
Standard 1 -23% 1 -30% 1 -1% 1 -1%
Priority -41% -52% 0% -30% -1% -3% -1% -2%

Tardiness
order type split

Standard
order

Rush
Order

Standard
order

Rush
Order

Standard
order

Rush
Order

Standard
order

Rush
Order

Standard [min] 51,7 24,1 43,1 15,8 39,2 37,4 38,1 36,5
Priority [min] 5,0 0,7 42,2 16,1 38,2 37,6 36,8 36,5
Standard 1 -53% 1 -63% 1 -5% 1 -4%
Priority -97% -100% -2% -63% -2% -4% -3% -4%

WIP
order type split [#]

Standard
order

Rush
Order

Standard
order

Rush
Order

Standard
order

Rush
Order

Standard
order

Rush
Order

Standard 28,1 7,4 25,5 6,7 27,7 7,3 25,8 6,8
Priority 3,7 1,0 5,2 1,4 5,6 1,5 5,2 1,4

Table 7.7 Control optimization and benchmark against conventional heuristics

of the control policy, but only for the directly impacted and neighboring/upstream sub-systems.
Due to the decentralized control paradigm, alterations such as the addition of a machine have a
limited impact on other sub-systems. Only for the initial training, in which all agents are trained
concurrently, the training takes significantly longer compared to a re-training of individual parts.
For our case study, this resulted in a re-training time span of approximately 16 hours against
3 hours for training the M1.1.1 module. Another strategy allowed all but one of the agents in
a module to be controlled by a heuristic. As a result, the training time for a single agent was
notably reduced to 1.5 hours, allowing for an efficient transfer of acquired knowledge to the
remaining agents after completing the training process.

With respect to the structural modifications, the control design effectively stabilized the system
loads and improved resilience, as detailed in Table 7.8. Observations from the lower section
reveal that the control approach consistently enhanced the handling of prioritized orders, even
with an increase in system load from 2400 to 2800 orders.

The WIP numbers in Table 7.8 should be contextualized with order quantities since the scheduled
order entries lead to the entry of significantly fewer prioritized and urgent orders (20% for each
order property). Statistically, in the case of 2800 orders with a 45.6 WIP, 1.8 combined prioritized
and urgent orders should be released (4%). Yet, the data indicates a WIP of only 1.3 orders,
indicating a 28% reduction. In comparison to the tardiness observed for the 2700 episodes,
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High-load scenario Mid-load scenario Low-load scenario
Scheduled orders 2800 2700 2600 2500 2400
Split analysis: WIP Tardi. TPT WIP Tardi. TPT WIP Tardi. TPT WIP Tardi. TPT WIP Tardi. TPT
Total 45,6 43,9 144,3 37,5 33,1 124,0 31,5 27,6 103,9 18,6 9,5 73,8 11,8 0,4 34,9

Non-prio/-urgent 31,3 56,9 159,3 26,0 43,4 138,1 21,9 35,9 114,5 12,7 12,9 81,7 7,8 0,6 35,5
Non-prio, urgent 8,3 30,5 129,5 6,9 23,1 110,9 5,8 18,1 91,1 3,4 5,5 63,5 2,1 0,0 34,5
Prio, non-urgent 4,8 14,2 111,2 3,7 8,9 91,2 3,0 8,9 81,7 2,0 1,8 57,8 1,5 0,0 33,2
Prio & urgent 1,3 5,3 94,3 1,0 5,5 82,8 0,8 3,1 68,7 0,6 0,2 46,5 0,4 0,0 32,6
Relative:
Non-prio/-urgent 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Non-prio, urgent -74% -46% -19% -74% -47% -20% -74% -50% -20% -73% -57% -22% -73% -94% -3%
Prio, non-urgent -85% -75% -30% -86% -79% -34% -86% -75% -29% -85% -86% -29% -81% -94% -7%
Prio & urgent -96% -91% -41% -96% -87% -40% -96% -91% -40% -96% -98% -43% -95% -100% -8%

Table 7.8 Assessment of system resilience against fluctuating order loads

the tardiness decreased from 5.5 seconds to 5.3 seconds at the 2800-episode mark. While this
decrease could be incidental, it also underscores the control design’s efficiency in processing
orders of higher importance. In essence, the analysis underscores that under conditions of high
system load (e.g., with 2700/2800 scheduled orders), the increased scope of operational action
enlarges the optimization range for deep learning agents, thereby compensating for the elevated
WIP and resulting throughput times.

7.6 Framework discussion

In contemporary markets, characterized by fluctuating sales and supply conditions, it is essential
to pursue ongoing process adaptation and optimization to maintain a competitive edge. For this
purpose, simulations are increasingly recognized as instrumental to evaluate the effectiveness of
(intelligent) production control strategies, including those that leverage system intelligence, and
for preemptively evaluating potential real-world scenarios. In the present study, we attempted to
synergize the comprehensive flexibility inherent to a simulation framework – suited for diverse
production scenarios – with the resilient performance and adaptability characteristic of a deep
RL-based hyper-heuristic.

Our results demonstrate that by defining a simple reward function paired with a defined action
space, we were able to optimize pre-defined objectives and outperform widely applied dispatching
rules. The definition of differing distribution and manufacturing levels facilitated the simulation
of large-scale systems, segmenting them into modules, to decompose and manage the overall
system complexity. The adoption of a decentralized agent control and the modularization of the
entire production system also offer great potential for re-using trained agents, since changes in
the production system do not affect the entire system, but only individual sections.

The developed framework aims to minimize the transfer gap through the automated initiation of
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the production system combined with the integration of various operation modes. This integration
not only supports comprehensive re-training but also promotes selective and efficient utilization
of individual policies, potentially resulting in faster and improved simulation outcomes. The
incorporation of the modularization concept from the foundational simulation framework into
the intelligent control strategy suggests enhanced transferability to diverse practical applications.

7.7 Conclusion

In this paper, we introduced a flexible simulation framework for modular production systems
that is based on a novel module and neural network recognition mechanism and a stack of trained
neural networks to increase simulation efficiency and adaptability. By integrating a deep RL
based top-level heuristic and process constraint mapping through low-level dispatching rules, the
framework enables the optimization of various target parameters within a multi-agent production
system. The hyper-heuristic control mechanism facilitated the primary utilization of deep RL
for optimization purposes, thereby promoting resilient and stable processes, even during the
initial training. Both, distribution and manufacturing/shopfloor levels, were implemented and
optimized regarding key performance indicators by using a concurrent learning paradigm. By
leveraging the synergy between the flexible simulation framework and the adaptive control
concept, requirements of customer-centric production services and process target indicators can
be freely defined.

In a representative evaluation, we demonstrated the multi-objective optimization performance of
the control framework. Prioritized and urgent orders were processed with reduced throughput
times and tardiness than standard orders, leading to accelerated response times to external disrup-
tions, such as increased order loads. Particularly in today’s demanding market environments, this
contributes to maintaining a company’s competitiveness. Furthermore, the framework reached
a more balanced optimization, as parameters were dynamically assessed, allowing a scenario-
specific emphasis on individual objectives and an assessment of explainability for the chosen
action.

The presented framework leverages a structural and process-related adaptability, thus providing
a flexible response to order fluctuations and facilitating the targeted processing of arbitrary
order types and quantities. Further, the influence of incoming orders and machine bottlenecks
on WIP can be systematically examined. Within the field of complex manufacturing, our
framework employs both, a structural modularization and an algorithmic hyper-heuristic, for
system complexity decomposition. The decentralized decision-making further helped to reduce
optimization complexity and enabled coping with the surging information volumes and ever-
increasing customer requirements. This not only streamlines operational processes but also
ensures a high data management efficiency. Given its inherent adaptability, the framework

209



7 Publication 3 - A deep learning based production control framework

remains efficient for a wide range of potential scenarios and motivates further research of
intelligent control strategies in modular production systems.

Such future research endeavors might focus on examining the quantification of reward compo-
nents and their weighted correlation to the attainment of desired objectives. We also foresee a
focus on the practical transfer of these methodologies to real-world settings and the integration of
advanced agent collaboration techniques. Additionally, weaving in a techno-economical analysis
will be pivotal to ensure cost-effectiveness and operational efficiency in modular production
systems
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ABSTRACT
In nowadays production, fluctuations in demand, shortening product life-cycles, and highly
configurable products require an adaptive and robust control approach to maintain competi-
tiveness. This approach must not only optimize desired production objectives but also cope
with unforeseen machine failures, rush orders, and changes in short-term demand. Previous
control approaches were often implemented using a single operations layer and a standalone deep
learning approach, which may not adequately address the complex organizational demands of
modern manufacturing systems. To address this challenge, we propose a hyper-heuristics control
model within a semi-heterarchical production system, in which multiple manufacturing and
distribution agents are spread across pre-defined modules. The agents employ a deep reinforce-
ment learning algorithm to learn a policy for selecting low-level heuristics in a situation-specific
manner, thereby leveraging system performance and adaptability. We tested our approach in
simulation and transferred it to a hybrid production environment. By that we were able to
demonstrate its multi-objective optimization capabilities compared to conventional approaches in
terms of mean throughput time, tardiness, and processing of prioritized orders in a multi-layered
production system. The modular design is promising in reducing the overall system complexity
and facilitates a quick and seamless integration into other scenarios.
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8.1 Introduction

With growing challenges of fluctuating demand, market volatility, and increasingly complex
manufacturing processes, there is a strong need for a resilient and adaptable production control
(Kapoor et al., 2021). The production control must not only cope with unforeseen machine
failures while managing high product individualization levels and dynamic processes, but
also handle large amounts of data under sustainable matters which requires a sensible data
collection and processing (Tao et al., 2018; Bueno et al., 2020). To cope with these challenges,
companies must seize the opportunity to implement control approaches that can cope with
varying production conditions and facilitate ongoing optimization of performance indicators to
increase competitiveness (Lee et al., 2018; Grassi et al., 2020; Parente et al., 2020).

Recent advancements in cyber-physical systems, the industrial internet of things, and other
related technologies already facilitated a widespread data collection and processing in production
systems (Lee et al., 2015, 2016; Lass and Gronau, 2020; Ritterbusch and Teichmann, 2023).
By leveraging the Industry 4.0 principles, these technologies can unlock significant process
potentials and competitive advantages (Parente et al., 2020). In production control practice,
however, conventional algorithms are often applied, such as the First-in-First-out rule (FiFo),
which do not guarantee global optimality while others are hard-coded and layout specific (Mönch
et al., 2013; Kuhnle et al., 2021), which do not meet recent demands regarding flexibility.

A recent approach to process large amounts of input data, deep reinforcement learning (RL), was
increasingly applied in production control in recent years (Sutton and Barto, 2017; Samsonov
et al., 2021; Panzer and Bender, 2022). Deep RL is characterized by its interactive, trial-and-
error learning principle and often demonstrated superior performance compared to conventional
production control approaches. Its online optimization and direct data processing capabilities
make it particularly well-suited for real-time decision making in fast-paced applications, setting
it apart from other AI-based methods that may require longer computation times (Chang et al.,
2022). Despite the considerable attention paid to deep RL-based single-agent systems, multi-
agent-based systems have received comparatively less attention due to the significant challenges
associated with agent orchestration and communication design (Panzer and Bender, 2022). Yet,
they can assist in achieving both, local and global, performance objectives and develop robust
control policies (Tampuu et al., 2017).

To combine the advantages of deep RL and multi-agent-based systems to cope with recent
demands, this paper proposes a novel hyper-heuristics based control approach for modular
multi-agent production systems that utilizes both, distributed resources and deep RL. The hyper
heuristic is applied for control optimization that utilizes deep neural networks for selection of
low-level heuristics. Each agent deploys its own neural networks, tailored to its specific modular
production environment which is transferable to similar systems. To leverage adaptability and
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scalabilty, our further motivation is to implement the approach within a semi-heterarchical
production to cope with the prevailing organizational challenges of multi-layered production
systems. The key contribution is an adaptive control approach that combines a deep learning
based control with a adaptive and scalable production organization that optimizes pre-defined
production performance indicators. The approach is designed to handle spontaneous events, such
as machine failures and rush orders, while ensuring stability and facilitating a seamless transition
to real-world production scenarios.

The remainder of the paper is organized as follows: In Section 8.2, basics of deep RL and
multi-agent based production control are outlined and the research objective is specified. The
conceptual design and artifact requirements are defined in Section 8.3. Results are outlined and
evaluated in Section 8.4, and transferred to a real test-bed in Section 8.5. A discussion is outlined
in Section 8.6 and a conclusion is given in Section 8.7.

8.2 Problem statement

This section first discusses the basics and organizations of modular and matrix production
systems and elaborates on the principles of (deep) RL. Finally, results of a systematic literature
review of the combination of these in decentralized and multi-agent based production control is
conducted for defining the specific research objectives.

8.2.1 Modular and semi-heterarchical production systems

Nowadays, adaptability is vital in production systems to handle machine failures, rush orders,
and other disruptions. To cope with such internal and external disruptions, modular production
systems were designed and often validated in simulated approaches (May et al., 2021). Such
modular systems allow individualized production processes through line-less control and the
ability to define arbitrary production flows by using automated guided vehicles, which enable a
detached process execution (Bányai, 2021; May et al., 2021; Mayer et al., 2021). This flexibility
leads to higher use of resources through sharing strategies, shorter transportation routes, and
reduced buffer stocks, as in Schenk et al. (2010) or Greschke et al. (2014). However, despite
its advantages, modular production approaches suffer from an increased control complexity
due to the highly flexible operation of manufacturing modules and the large control solution
space (Schenk et al., 2010; Schmidtke et al., 2021). The increased number of potential process
paths leads to large actions spaces that raises optimization complexity and a proper extraction of
relevant information through a neural network gets more complex.

With this regard, previous research emphasized the importance of decentralizing decision-making
among production agents, allowing them to make decisions based on their specific task and

223



8 Publication 4 - A hyper-heuristics based modular production control

available resources to leverage their reasoning, perception, and action capabilities (Parunak
et al., 1986; Balaji and Srinivasan, 2010). Weiss (2001) particularly emphasizes the flexible
and re-configurable properties of multi-agent structures as conventional decentralized control
approaches. In a more recent review, Herrera et al. (2020) further emphasizes the relevance of
multi-agent systems for existing and planned real-world applications. A specific differentiation
of such multi-agent systems is established by sub-dividing them into organizational forms,
depending on the allocation, grouping, and interaction of the agents. While a hierarchy is
characterized by a multitude of fixed master-slave relationships, a heterarchy consists primarily
of peer-level relationships with distributed privileges to fulfill global and local objectives (Baker,
1998; Bongaerts et al., 2000). Hierarchical systems are rather static, whereas heterarchical
organizations suffer from local optimization tendencies and myopic behavior due to the lack of
master-slave relationships (Sallez et al., 2010).

A semi-heterarchical production system seeks to combine the advantages of both hierarchical and
heterarchical concepts. It achieves a high integrity of the sub-components through its hierarchical
structure (Valckenaers et al., 1994) while maintaining a high reactivity and robustness through the
distribution principle within the heterarchical systems (Groover, 2019). The semi-heterarchical
concept simultaneously enables both, long-term and short-term objectives to be reached, and
allows the corresponding parameters to be optimized (Sallez et al., 2010). Implementations of
this concept were made by Grassi et al. (2020) and Grassi et al. (2021) in different production
levels. This facilitates a multi-agent system that enables the allocation of agents based on their
functional scope. The semi-heterarchical concept was further implemented within a single
control structure and by establishing domain-wise clustering by Borangiu et al. (2009) and
Borangiu et al. (2010) in the field of product-driven scheduling and by Zambrano Rey et al.
(2013) in the field of flexible manufacturing control. By using a 2-layer approach, Borangiu et al.
(2010) fulfilled different objective horizons and obtained a comparably higher robustness and
agility of the system. Through the semi-heterarchical approach, Zambrano Rey et al. (2013) was
further able to achieve control over the otherwise myopic agent behavior.

8.2.2 Deep reinforcement learning based hyper-heuristic

To cope with the dynamic control requirements and allow for an adaptive control deep RL was
implemented in production control approaches (Bahrpeyma and Reichelt, 2022; Esteso et al.,
2022). It made the leap to competitiveness especially with its successful implementation to
the Atari environment, and has since become increasingly appealing for complex optimization
problems (Mnih et al., 2013). Due to its particularly interactive learning strategy and the neural
network’s ability to process large state inputs, deep RL can be tailored to a variety of data-centric
online applications (Baer et al., 2020). As indicated in recent reviews, particularly value-based RL
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approaches were widely deployed in production control and demonstrated superior performances
(Bahrpeyma and Reichelt, 2022; Panzer et al., 2022).

To facilitate the fundamental integration capability of deep RL to production control, the problem
under consideration must satisfy the Markov property and correspond to a Markov Decision
Process (MDP). Besides the rigid definition of the considered scope, the Markov assumption
must be met, which implies that all future production states only depend on the current state. This
constitutes the underlying assumption of our approach and of the later designed discrete-event
based simulation (Sutton and Barto, 2017). Q-learning is a variant of RL, which is a model-free,
off-policy RL algorithm that exploits a action- or Q-value function. The Q-value function, see
Equation (1), is typically defined based on an agent’s expected cumulative reward in Equation
(2), which follows its current policy, derived from the Bellman equation (Bellman, 1957).

Q(st ,at) = r + g max(Q(st+1,at+1)) (1)

Gt =
•

Â
k=0

gkrt+k (2)

In following functions Q(st ,at) resembles the Q-value for a state st and action at at a certain
time t. r is the immediate reward received after taking action a in state st , g is the discount factor,
and max(Q(st+1,at+1)) is the maximum Q-value over the next states st+1 and actions at+1 that
can be executed from state st+1 (Sutton and Barto, 2017).

Whereas in conventional Q-learning a table is used to map Q-values, deep RL exploits a deep
neural network to function approximator to map the policy of an agent, which is frequently
updated based on past made experiences. The neural network enables the agent to learn from
high-dimensional and complex input data such as raw sensory information. It can handle non-
linear and non-convex environments better than traditional RL, allowing it to be more accurate
and efficient in learning. During learning process, often a batch replay is used, which iteratively
trains and fits the network based on the stored batch data. The neural network, also known as
the Q-network, takes the current state st of the agent as input and outputs a Q-value for each
possible action at . The Q-network is trained to minimize the difference between the predicted
Q-values and the target Q-values, which are calculated using the above mentioned Bellman
equation. Thereby, Equation (3) is utilized for updating the weights of the Q-network in deep
Q-learning (DQN), wherein w represents the weights of the Q-network, a denotes the learning
rate, and E signifies the loss function, defined as the mean squared error between the predicted
Q-values and the target Q-values, as shown in Equation (4).

w = w�a Ow(E) (3)

E = (Q(s,a)� (r + g max(Q(st+1,at+1))))
2 (4)
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The DQN equation is derived by combining Equations (1)-(4), where the Q-network is trained
to approximate the Q-values by minimizing the loss function using the Bellman equation, as
summarized in Equation (5). To further stabilize learning and performance, a target network
with weights q� is introduced and used to calculate Q(st+1,at+1) for the next states (Mnih et al.,
2013; Mnih et al., 2015).

Q(st ,at ,q)  Q(st ,at ,q) + a [r + g max Q(st+1,at+1,q�) � Q(st ,at ,q)] (5)

Building up on deep RL, a hyper-heuristic is an optimization model that utilizes a machine or
deep learning algorithm such as the DQN to learn a high-level policy for selecting and adapting
low-level policies. Due to the deep learning algorithm, the hyper-heuristic possess the capability
to adapt to specific optimization tasks, and thus effectively utilize the inherent capabilities and
process logic’s of low-level heuristics. This enables an automation of the design process, and
allows for the utilization of knowledge from online machine learning algorithms as an optimizer,
resulting in the derivation of near-optimal scheduling and dispatching policies, which are based
on established and more comprehensible low-level heuristics (Burke et al., 2010, 2019; Drake et
al., 2020). During operation, the smart agent is trained to select one suitable heuristic from a
pre-defined set depending on the received production state. The objective of a deep RL based
hyper-heuristic is to improve the performance of the underlying optimization problem by utilizing
the strengths and process implications of multiple low-level heuristics as illustrated in Figure 8.1
(Van Ekeris et al., 2021; Zhang et al., 2022).

Top-level
hyper-heuristic

Low-level
heuristics

h1

h2

h3

h4

h5

f(x)

Solution-space

Change solution

EvaluateUpdate

Select

Figure 8.1 Hyper-heuristics based optimization approach (Cowling et al., 2001; Swiercz, 2017)

8.2.3 Deep RL and multi-agent based production control

Prevailing approaches in multi-agent based production control already try to leverage deep RL
to benefit from a decentralized and online decision making and optimization process. To get a
comprehensive overview of the research field and trends, we searched the databases Scopus and
WebofScience to identify relevant scientific papers.

Several studies have explored different approaches to improve production performance indicators
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such as utilization rates or order tardiness. Malus et al. (2020) proposed an order bidding
mechanism for autonomous mobile robots that utilized a joint global reward to minimize delays,
optimizing global utilization efficiency upon part completion and locally accepted bids. The
agents could bid between 0 and 1 based on their respective states and proximal policy optimization
(PPO) output, and the order with the highest bid was assigned for the dispatch task. The PPO
ensured updates of the policy of not being too large, thus providing a balance between policy
exploration and exploitation, making it more sample-efficient and stable compared to other RL
algorithms (Schulman et al., 2017). To cope with the dynamics of inherent order scheduling,
Hammami et al. (2017) proposed an multi-agent system based on simultaneous learning and
information sharing between agents to reduce average delay. Decisional agents, responsible
for overall decision-making process and order dispatching, were associated with choice agents
that selected the best neural network for the decisional agent based on the desired performance
optimization criteria. In the dispatching approaches conducted by Dittrich and Fohlmeister
(2020) and Hofmann et al. (2020), a centralized DQN decision module was employed for training
purposes. This central module functioned as a repository for storing and updating the dispatching
policy among all agents, and provided the current control policy upon request. Dittrich and
Fohlmeister (2020) created a job shop with three process steps (turning, milling, and assembly),
where agents could access local and global information to allocate orders to machine within
a machine group to optimize mean cycle time. These agents could request necessary local
and global system information to facilitate informed decision-making which was facilitated
by globally defined rewards, which were then propagated to individual agents. Other studies
focused on different training strategies to improve production control. Waschneck et al. (2018)
implemented a strategy where one network was trained at a time for stability and learning speed
reasons, and subsequently each wafer manufacturing workstation was controlled by one neural
network at a time to optimize for maximum uptime utilization as a global goal. The network
input comprised all possible lot positions and an idle option, while the network output included
machine states (capacity, availability, etc.) and job states (type, progress). To optimize the
product sequence in car manufacturing, Gros et al. (2020) used an iterative learning strategy
to prevent instabilities caused by parallel training of several agents, determining the output
sequence of cars to a buffer after finishing paint jobs. This minimized costs caused by inefficient
car sequences and non-balanced flow of goods in subsequent manufacturing processes. Overbeck
et al. (2021) utilized PPO agents and hyper-parameter tuning, to determine the optimal action
in an automated assembly system adhering to Chaku-Chaku principles, where workers were
tasked with loading machines and transporting orders. An evaluation in a real assembly cell
for automotive parts demonstrated an improvement in decision quality over time and a more
produced parts.

The aforementioned approaches primarily dealt with control problems in conventional job shops.
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Initial approaches in matrix systems were proposed by Gankin et al. (2021), May et al. (2021),
and Hofmann et al. (2020). In Hofmann et al. (2020), agents received immediate rewards after
each operational step for a chosen action and a delayed reward based on the total global cycle
time after an order was completed, which accelerated the learning process and reduced order
throughput times. The simulated system featured 10 workstations and several autonomous guided
vehicles (AGVs) that could perform multiple process steps and were fully flexibly interconnected.
Meanwhile, May et al. (2021) implemented an economic bidding approach to increase utilization
efficiency in a matrix-structured production system. The approach to maximized the operational
profit for each agent independently and optimized the execution time and resource utilization
efficiency against conventional heuristics. Gankin et al. (2021) introduced a first large-scale
matrix layout comprising 25 machines, which was based on the modular approach developed by
Mayer et al. (2021). Two distinct product types were manufactured, each involving 13 process
steps. To reduce decision complexity, an action masking mechanism was implemented for
preventing the selection of incorrect actions as each process step could be performed only at
specific machines. All 20 transport units were trained in parallel as DQN agents, and the same
neural network and buffer were used as the central decision instance and to facilitate experience
sharing between the agents.

8.2.4 Problem formulation and contribution

From the previous literature set, several performant applications can be observed, however, most
approaches are rather specific, such as the wafer fabrication or the car paint buffer re-ordering.
A more scalable and adaptive approach is given with the matrix approaches of Mayer et al.
(2021) or Gankin et al. (2021). However, these assume a matrix structure and are less focused
on the clustering of production units, and, in case of Gankin et al. (2021), exploit a central
decision entity. Also, all mentioned approaches deploy a single-staged control organization at
the operations level. In addition to the application and organization scope, which is summarized
in Table 8.1, the algorithmic approaches are often self-contained AI algorithms.

Table 8.1 highlights three fields of potential research in production control, algorithmic (1),
organizational (2), and optimization opportunities (3). The algorithmic field (1) currently lacks a
deep RL based hyper-heuristics approach, which operates at a higher level and can quickly select
lower-level heuristics, as opposed to meta-heuristics that serve as search process optimizers or
general guidelines (Bányai, 2021). Previous research indicated that a deep RL-based hyper-
heuristic can outperform population-based meta-heuristics, such as genetic algorithms, in terms
of performance and interpretability (Zhang et al., 2022; Kallestad et al., 2023). Additionally,
hyper-heuristics have benefit from fast computation of operations, as in Chang et al. (2022); Liu
et al. (2020), making them particularly suitable for real-time environments.
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Table 8.1 Deep RL based multi-agent approaches in production control
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Regarding the organizational design (2), our approach deploys shopfloor and distribution layers
to facilitate modular and semi-heterarchical production processes. The use of a deep RL-based
multi-agent system is emphasized due to its collaborative possibilities and the ability to cope with
larger systems requirements (Tampuu et al., 2017). Despite the current focus on single-agent
environments (Esteso et al., 2022), our approach takes advantage of a distributed and semi-
heterarchical agent organization and manages system complexity by decomposing the overall
complexity into respective fragments of only processing relevant information. The approach
will be applied in a modular production environment that allows pre-defined tool bundling and
configuration of machine groups, similar to real production. The modularity aims to exploit
product-specific machine synergies while reducing coordination complexity and increasing
scalability. This aligns with the requirement for a common modeling approach, as articulated by
Mourtzis (2020), which is supported by the proposed standardized production modules within
the underlying simulation framework. Consequently, the simulation can serve as an evaluation
tool for our deep learning control framework prior to its deployment in the intended (hybrid)
real-world environment, functioning as an progressive Industry 4.0 test-bed, as emphasized by
de Paula Ferreira et al. (2020) and de Paula Ferreira et al. (2022).

Regarding the optimization task (3), various approaches were proposed to optimize one or two
objectives such as tardiness, throughput, or utilization. However, two variables that were not
yet explored are order priority and urgency. Especially in modern production with customer-
oriented services, order priority and urgency directly affect resource allocation and operational
efficiency, to meet customers needs. Prioritized or premium customer groups as well as rush
orders represent a significant source of revenue, and require a flexible production control that can
adapt to fluctuating demands. To address this order features effectively, a combined measure or
reward function is designed, that balances the prioritization of orders according to the pre-defined
objectives of mean throughput-time, tardiness as well as order priority and urgency.

To the best of our knowledge, this is the first approach of a hyper-heuristics based production
control in a modular production system. We seek to leverage production performance and control
production complexity through a layered approach to enable a robust and adaptive control.
Furthermore, this will be the first approach that transfers a control approach of deep RL based
hyper-heuristics control to a real application.

8.3 Conceptual design

To ensure a systematic approach for reaching the research objectives, we followed the design
science research methodology according to Peffers et al. (2007), see Figure 8.2. The first two
steps of problem identification and objectives definition were addressed in the previous sections,
which are now followed by constructing the research artefact as the third step. To satisfy the
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emerging dynamic requirements and deliver an adaptable and scalable simulation approach,
an appropriate simulation framework must first be chosen. The framework should seamlessly
integrate the hyper-heuristic control approach, to enable decentralized decision-making and
leverage production performance.

Problem  
centered iteration

Objective  
centered iteration

Design & dev.  
centered iteration 

Client / context 
iteration

Identify problem  
& motivate Demonstration EvaluationDefine objectives 

of a solution
Design & 

development Communication

Sections 1 & 2 Section 3 Section 4 Section 5

Figure 8.2 Pursued DSRM methodology (Peffers et al., 2007)

8.3.1 Simulation approach

To implement the simulation, the production simulation framework CoBra, developed at our
research department, was utilized. CoBra is based on the SimPy simulation library, commonly
used in the field of discrete-event production simulation, as done in previous works, e.g., Kuhnle
et al. (2020, 2021); Liu et al. (2022). This tool enables the rapid creation of modular production
environments, and supports the arbitrary design of production processes and control rules. A
key requirement is the ability to seamlessly transfer the approach to a real environment. To
achieve this, real-world requirements such as machine failures, maintenance efforts, randomly
determined order sequences, and other process-dependent parameters were incorporated into
the simulation. However, considering all the information for decision-making is impractical,
necessitating a systematic construction of the state vector that is used for feeding the neural
network, as outlined in Section 8.3.2.1.

In our approach, the modular production system consists of entities or groups of distributed
autonomous agents, referred to as manufacturing (1) and distribution (2) modules (Giret and
Botti, 2004). The agents operate in parallel, making decisions based on the information they
individually receive, thereby reducing the need for a centralized control model. The base/bottom
layer is composed of several manufacturing agents, that are responsible for the processing of
goods (refer to the bottom of Figure 8.3). These agents serve in modules that are typically
specialized in conducting specific manufacturing processes, such as welding or assembly. The
upper layers consist of distribution modules, that are responsible for the production coordination
and distribution of goods (see top three layers in Figure 8.3). All agents can work in collaboration
with other agents to process intermediate products. They have the capability to make decisions
based on a shared policy and the individually received information. This facilitates the system’s
adaptability to adapt to changing production conditions in a flexible and efficient manner. The
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CoBra framework effectively enables the conceptual design of such semi-heterarchical systems
up to a fully matrix-like production, that can be controlled by either deep learning based or
conventional approaches. During the simulation, all agents are trained concurrently based on the
obtained rewards, following the epsilon-greedy strategy. This facilitates an exploration of the
action space and potential policies and provides a broad database for the batch replay.
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Figure 8.3 Projected multi-agent and semi-heterarchical system; right: adapted from Sallez et al. (2010)

Illustration of our modular production system organized into hierarchical layers, with manu-
facturing layer/shop-floor at the bottom and distribution layers for logistics activities at higher
levels. Each layer comprises multiple interconnected modules, following a semi-heterarchical
organization

8.3.2 Variable hyper-heuristic design

The development of a hyper-heuristic involves multiple steps that address the third step of
the DSRM methodology (Peffers et al., 2007). Following problem identification and objective
definition, the hyper-heuristic must be designed in compliance with system constraints, available
information, and the performance indicators that require optimization. To enable an adaptive
and online decision-making, and maintain the accessibility of the CoBra and SimPy simulation
framework, TensorFlow was used for implementing deep learning functionalities. Based on
that, the state vector design is first dealt with (see Section 8.3.2.1), that represents the current
production state and also the system’s interface that allows the hyper-heuristic to access the
essential information for the decision making process. Second, in Section 8.3.2.2, lower-level
heuristics are identified and the action space vector is constructed that addresses specific key
performance criteria. Finally, in Section 8.3.2.3, the training and reward mechanisms are
considered, which have an crucial impact on the learning process and system performance.
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8.3.2.1 State space design

The state space design is an crucial step towards achieving an efficient and performant production
control and should correlate to the targeted rewards and overall objectives (Kuhnle et al., 2020).
The challenge is to select a state-set that contains all the essential information while avoiding the
inclusion of unnecessary inputs. This may include general order information such as priorities,
as well as process-related information pertaining to order throughput times or current tardiness.
Machine information, including their operational status, maintenance needs, and current setup,
could also be taken into account for specific scenarios if necessary. The state vector in our
approach integrates buffers, storage, machine and agent order information, such as occupation
type, along with associated order details, granting the specific agent’s access to a comprehensive
module state and global processing information, thereby facilitating situation-dependent decision-
making.

Following other approaches (Kuhnle et al., 2021; Overbeck et al., 2021), we apply a min-
max-normalization for the various state inputs to scale the gathered values within a predefined
and constrained range. This should leverage the performance of the neural network and not
only enables a smoother mapping between states and actions while mitigating outliers and
disproportionate input variables.

For time-related state inputs, the normalization results in a state value range of [�1,1] for each
order n out of all processable orders o within the respective module, as denoted in Equation (6).
A processable order is defined by its feasibility of having one or more possible subsequent steps,
i.e., when the input buffer of the machine with the next needed processing step is unblocked, or
when the order can be transported from module input to an available storage slot. Concerning
the part of Equation (6), sn,t pt is calculated individually for each order concerning their global
systemic and local module start time. For the discrete state space of order priorities, the state
inputs are discretized to [0,1], signifying an input of sn,prio = 0 for normal orders, 0.5 for
prioritized orders, and 1 for high-priority orders. This is intended to ensure more stable gradients,
faster training, and correct weight initialization.

[1] sn,t pt = ( 1 � 2
tt pt, max� tt pt, n

tt pt, max� tt pt, min
)

[2] sn,due_to = (2
tdt, max� tdt, n

tdt, max� tdt, min
�1)

[3] sn,prio =

8
><

>:

0 i f prion = 0
0.5 i f prion = 1, (prioritized order)
1 i f prion = 2, (high priority order)

(6)

The resulting state vector St , which is used as the input for the neural networks in subsequent
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processes, was derived from iterative testing and consistent mapping to targeted production
performance indicators, which encompass the order throughput time, tardiness, and order
priorities. To achieve this, the due date, local and global start time, and priority of all processable
orders o at each available slot are concatenated, as outlined in Equation (7). For orders that are
blocked or reserved by other agents, undergoing processing by a machine, or situated in input
buffers, the state input for each metric (st pt,_due_to,_prio) is assigned a value of 0 to maintain a
constant state size. Additional module positions in Equation (7) correspond to those depicted in
Figure 8.3.

stpt local

(1, 0.8, -0.2, …, 0, 0, -0.5,
Cell input 
buffer slots

Further module 
positions

Storage slots
+ stpt global + sdue to+ sprio )St = 

(7)

8.3.2.2 Action space design

The action space design refers to the process of defining the set of possible actions that the deep
RL agent can take at any given state and defines the manufacturing sequence. With the generic
optimization approach according to Kanervisto et al. (2020), the objective is not a maximum
number of actions, but a discretization of the action space and the selection of genuinely necessary
actions. The former is given by the set of dispatching rules as control heuristics and the linking
of each with a corresponding deep RL action. Dispatching rules can be deployed as low-level
heuristics as they provide a quick and efficient selection of the next job to be processed, thereby
reducing overall processing time and increasing the overall efficiency of the production process.
Even though there are various dispatching rules available, some might be less effective, since
they do not affect the desired performance parameter. Nevertheless, the idea of providing a wide
range of production strategies can make it easier to tailor subsequent production scenarios and
its specific optimization problem and constraints.

The selection of low-level dispatching rules is a crucial step before the training and optimization
procedure and results in a representative rule-set that was derived from benchmarks and related
approaches (Tay and Ho, 2007; Kaban et al., 2012; Bergmann et al., 2014; May et al., 2021).
Also, due to the pre-defined set of dispatching rules, the action space does not increase with
large layout sizes and there is no need to introduce masked actions for learning as the logic is
mapped intrinsically. In the further course, we apply the local and global first-in-first-out (FiFo),
shortest processing time (SPT), earliest due date (EDD) and highest priority (HP) dispatching
rules as the low-level rule-set. The local and global FiFo rule determine the next order, out of the
processable order set o, based on their local or global processing start time. The SPT rule selects
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an order based on the time required to complete the remaining process step, which particularly
beneficial in resource-constrained scenarios. The EDD rule selects an order based on the its due
date, to meet tardiness objectives and the HP rule selects orders with a higher priority first.

8.3.2.3 Reward function design

The reward function is a fundamental component of the deep RL algorithm as it provides a
scalar feedback signal to the agent, guiding its behavior towards maximizing the cumulative
reward (Sutton and Barto, 2017). In the context of hyper-heuristics based production control
and multi-objective optimization, the reward function is utilized to evaluate the performance
of different low-level heuristics and guide the agent’s selection towards a situation–specific
and optimal control policy. To capture the desired performance criteria is crucial for the task
completion and significantly affects system dynamics.

Based on the optimization criteria of throughput time, tardiness, and respective order priorities
and urgencies, we derived a combined reward function that can be transferred to other scenarios.
For this purpose, the total reward Rtotal = ÂRi for the chosen order n is composed of the
mentioned optimization criteria i according to Equation (8). Normalizing the total return proved
to be negative in the later tests. Although an optimal total return can be calculated for each state,
it fluctuates and is complex to interpolate in between.

Rtotal = Rt pt local +Rt pt global +Rdue to +Rprio (8)

The rewards for the throughput time RT PT local and RT PT global are a measure of how long it takes
for a order to be completed from start to finish and can be used to prioritize policies that support
faster completion times within a single module or the whole system. The tardiness-related
reward, Rdue to, reflects the delay in completing an order, incentivizing the algorithm to prioritize
solutions that minimize delays and achieve earlier completion times. Priority related rewards
Rprio are used to assign different levels of relevance to the orders to prioritize orders with a higher
priority orders first. The deep RL algorithm takes the rewards and penalties that are outlined in
Equation (9) to adjust its decision-making process and improve the performance over time. To
emphasise positive and negative actions, we normalized and raised the evaluation parameters
in the respective range to calculate the reward with respect to the specific maximum reward
Rdt ,Rt pt ,Rprio,1/2.
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[1] Rn,t pt = ( 1 � 2
tt pt, max� tt pt, n

tt pt, max� tt pt, min
)5 ⇤Rt pt

[2] Rn,due to = (2
tdt, max� tdt, n

tdt, max� tdt, min
�1)5 ⇤Rdt

[3] Rn,prio =

8
><

>:

0 i f prion = 0
Rprio,1 i f prion = 1, (prioritized order)
Rprio,2 i f prion = 2, (high priority order)

(9)

The variable Rt pt represents throughput time and can be defined separately for global and local
measures. Additionally, Rprio has a constraint that ensures its values are greater than zero,
specifically 0 < Rprio,1 < Rprio,2. The testings under consideration involve rewards for orders
and utilize the values Rdt = 100, and for both local and global Rt pt = 100. The rewards were
iteratively determined through a sensitivity analysis and can be modified depending on the
objectives. In the case that a higher-priority order is selected, it will receive a reward of either
Rprio,1 = 100 or a significantly increased Rprio,2 = 500. Conversely, selecting a regular order
when a high-priority order is available, this will result in a penalty.

8.4 Demonstration

In accordance with the DSRM demonstration step (Peffers et al., 2007), we will present the
simulation pre-requisites in Section 8.4.1) and analyze its performance regarding the fulfillment
of the pre-defined optimization performance criteria and conduct benchmark against conventional
heuristics in Section 8.4.2.2. The results will facilitate making in-depth conclusions about the
potential benefits and limitations of using deep RL as a top-level policy in multi-agent and
multi-objective production control. The computations were carried out on a Intel Core i9-12900k
CPU and 32GB of RAM. For each performance indicator, several simulations were run to obtain
a representative set for training and benchmarking purposes.

8.4.1 Experimental settings

The simulation approach involves a CoBra model to emulate the behavior of the agents within
the manufacturing system. The simulated system contains 3 layers for distributing orders and
respective materials within the manufacturing system to fulfil machining steps at the distributed
resources. The top distribution module D1 resembles the high-level control module, overseeing
the operation of the mid-layer modules and system in- and output. Below, there are 2 mid-
layer distribution modules D1.1/D1.2 that control the flow of goods between the underlying
manufacturing modules. Each manufacturing module possesses specific process capabilities, and
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there are 2 manufacturing mid-layer modules as illustrated in Figure 8.4 (M1.1.1/2; M1.2.1/2).
The distances within and between the modules are determined based on 1 meter base heights and
widths, with a distance between modules of 1 meter and a safe distance of 0.4 meters for the
agents, respectively autonomous vehicles. The outer dimensions of the high-level distribution
module are 13 meters in width and 6 meters in height. The speed of the agents is set to 0.5 meters
per second, with a pick-up and unloading time of 0.1 minutes.

Defined system border
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Finished goods

Figure 8.4 Simulated three-layer modular production system

The conducted simulations indicate that in the case of less complex modules, which i.e. contain a
single machine and few add-on positions (as M1.2.1 or M1.2.2), a heuristic control mechanism is
similar in effectiveness compared to utilizing a dedicated hyper-heuristic. Conversely, in cellular
systems with larger state spaces and more complex dynamics and interactions, the deep RL
approach proves to be superior. As a result, a hybrid approach, which employs both, heuristics
and deep learning based hyper-heuristic was implemented. Due to the system modularity, this
approach allows to leverage the advantages of both control approaches. For the smart modules,
varying input layers were incorporated according to the module state space. The distribution
agents in D1,D1.1 and D1.2 deploy 88, 84 and 52 neurons for the input layer, and agents in
M1.1.1 and M1.1.2 deploy 80 and 60 neurons. In total, 20 neural networks are trained for the 10
deep learning based agents, with each agent deploying one online and one target network. The
agents in the manufacturing modules M1.2.1 and M1.2.2 are controlled by a FiFo rule, following
its benchmarking results in Balaji and Srinivasan (2010) or Kaban et al. (2012). The iteratively
optimized algorithmic parameters were initially related to similar approaches (as in Gankin et
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al. (2021)) and are listed in Table 8.2. A batch size of 128 was deployed as a balance between
training performance and computational efficiency. Batch sizes smaller than 128 resulted in
decreased performance, especially for rush and high-priority orders, due to limited exploitation
of solution spaces and prioritization. Conversely, larger batch sizes resulted in significantly
increased training times.

Parameter Value

Batch size 128
Neurons in hidden layers 128/64
Learning rate a 0.005
Discount factor g 0.98
Drop out ratio 0.01
Target update step 5
Minimum e 0.01
e-decay 0.997

Table 8.2 Parameter settings for the deep RL agents

The simulation seeks to represent a real production scenario with stochastically varying urgency
and priority of orders, where the number of orders processed depends on the pre-defined system
load. The order sequence is randomly determined based on the order frequency (see Table 8.3,
left). The order urgency is reflected in the due to time, with 20% of orders designated as rush
orders, receiving a due to time Tdt,n, which is the sum of the order release time Trelease,n, the
predicted processing time Tproc,n, assuming a low system load (see Table 8.3, right), and a load
dependent factor Tload . The remaining orders (80%) are classified as standard orders, with an
additional random distributed time buffer Tbu f f er between 30 and 60 minutes. Orders are further
categorized as high-priority (10%, i.e. for a highly valuable customer), prioritized (15%), or
standard orders (75%).

The simulation comprises two types of orders, steel shafts (1.) and aluminum shafts (2.).
The processing steps, times, and order frequencies for each type and value-added service (e.g.
labelling) are listed in Table 8.3, accounting for the unique properties of steel and aluminum,
such as their strength, weight, and durability, that affect processing times. The value-added
services, including labelling, coating, and packaging, can increase throughput time through
additional steps. Process steps progress from left to right and are completed at the machine with
the corresponding number in brackets, as pointed out in Figure 8.4. The time for a machine
tool-set exchange between product groups and the time required to load and release an item is
0.5 minutes each. Machine failures occur at an average rate of 4 per 1000 minutes and have a
stochastic duration with a repair time ranging from 10 to 20 minutes.
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Processing time (at machine)

Order type Order
frequency Milling Grinding Value-added-service Avg. throughput time w.

transportation (low-load)

Steel
shaft

1.1 13% 8 (1) 4 (2) - 18.9
1.2 34% 8 (1) 4 (2) Labelling/ packaging: 4 (6) 26.6

Aluminium
shaft

2.1 13% 3 (3) 3 (4) - 13.8
2.2 40% 6 (3) 6 (4) Coating/ packaging: 4 (5) 21.5

Table 8.3 Order type specifications with associated processing times [min.] and sequences

8.4.2 Experimental results

In Section 8.4.2.1, a high-load scenario was adapted during training process with a maximum
system congestion, which increases task complexity of order selection and allows the mapping
of a substantial number of state-action pairs for later operation. This implies an infinite number
of planned orders and immediate order release to the input buffer throughout the whole training
process. This scenario presents challenges to learn effective strategies to maintain control
performance and efficiency in terms of order allocation and system management. In Section
8.4.2.2, a normal load scenario was adapted that reflects a real processing equilibrium for
benchmarking purposes. In Section 8.4.2.3, the scalability and robustness of our approach are
trial to ensure stability and efficiency during operation, thereby confirming its reliability for
real-world applications. For conducting the performance analysis, the mean tardiness (Ttd,mean =
1
n Sn

i=1max(0,Ci�di)), and the mean global throughput time (Tt pt,mean = 1
n Sn

i=1Tt pt,i), for all
n orders, were considered. A particular emphasis is put on the interconnected order indicators,
regarding their priority and urgency.

8.4.2.1 Training process

Incorporating the comparative analysis of the hyper-heuristic approach against conventional
heuristics within the training process, as depicted in Figure 8.5, we observe that the hyper-
heuristic outperforms these traditional rules in terms of the received rewards. Despite of the
initial random rule selection at the beginning of the training phase (with e = 1, see left side in
Figure 8.5), the hyper-heuristic demonstrates performance levels close to those of traditional
dispatching rules at the start of the training. It maintains a functional policy that complies
with process requirements which results in a working policy right from the start of training,
without the need for action masking or other acceleration mechanisms. As the training process
progresses, the optimization criteria are increasingly satisfied, leading to continuous learning
and performance enhancements. This trend highlights the progressive performance convergence
of the approach.

Upon completion of the training, the hyper-heuristic achieved a moving average score of 200,
a significant improvement over conventional heuristics such as FiFo local (-50), EDD (-78),
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and high priority rule (-207). This demonstrates the superiority of the deep learning based rule
selection approach within the hyper-heuristic framework, which has significantly exploited its
optimization potential compared to conventional heuristics.
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Figure 8.5 Moving average of obtained rewards for the top-layer D1 agent

Figure 8.6 illustrates a throughput time related performance analysis of the hyper-heuristic,
which is crucial for evaluating the true effectiveness of our approach. The results indicate a
significant decrease in throughput time as the simulation progresses, which can be attributed to
higher utilization rates despite the capacity limitations that restrict the simultaneous processing
of orders at a machine. Regarding standard priority orders, the throughput time decreases by
43% and 51%, 59% for prioritized and high-priority orders. In contrast to the conventional
rules, a noticeable decrease in fluctuations is observed with an increasing number of episodes,
indicating that the deep RL algorithm is trending towards its optimal policy. Additionally, the
analysis indicates that higher-priority orders have significantly faster throughput times compared
to standard orders. Specifically, high-priority orders have a throughput time of 74.1 minutes,
representing a 32.6% lower throughput time compared to standard orders, while prioritized
orders exhibit a throughput time of 89.3 minutes, corresponding to an 18.7% decrease with a
throughput time of 109.9 minutes. The green dotted line indicates the average Work-In-Progress
(WIP) level. Despite a slight increase in throughput times as WIP levels rise, the robustness of
control and optimization is evident with the occurring WIP peaks in Figure 8.6.

8.4.2.2 Benchmark results

In this Section, we conducted a benchmarking scenario that encompassed a simulation range of
7200 minutes, corresponding to three 8-hour shifts over a period of 5 days. The order amount of
2800 was iteratively determined to be near the system equilibrium. Unlike the training mode,

240



8.4 Demonstration

Folientitel  
Zweite Zeile

Quelle:
41

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

Standard order Prioritized order High-priority order

Th
ro

ug
hp

ut
 ti

m
e 

[m
in

]

Data point
WIP level

0

7

14

21

28

35

42
W

IP level

Figure 8.6 Moving average of throughput times related to order priorities

in which batch replay is required, the trained agents are now applied in an operational mode.
To facilitate comprehensive analysis, we included a random rule in addition to the average
benchmarks, which are summarized in Table 8.4. The left column of the table presents the hyper-
heuristics results, while the rightmost column lists comparison indicators of the hyper-heuristic
approach with the average of the individual dispatching rules (improved values are highlighted in
green, worsened in red). The inclusion of the random rule allows for a more thorough evaluation
of the other rules performances.

The results demonstrate that the summarized order values in the upper part were all improved
using our approach. The mean tardiness was reduced by nearly 39.5% and the throughput was
increased by 1.4%. In the individual benchmark comparison, the throughput time is comparable
to the local FiFo rule, but priority-related indicators are improved. The order priority-related
performance indicators are listed in the lower part for standard (0), prioritized (1) and high-
priority (2) orders. With our approach, high priority orders were delivered with 60.8% reduced
tardiness, and with a shorter throughput time. In contrast, both FiFo rules, as the most commonly
used ones, performed worse regarding total order indicators compared to the proposed hyper-
heuristic.

However, it was expected that rules that are specifically designed to optimize a particular indicator
would perform better in that specific case. For instance, the SPT rule indicates shorter throughput
times and the lowest work in progress levels, but it produced 78 fewer orders due to the blocking
of buffers and storages by orders with additional process steps that are scheduled with higher
throughput times. This led to a considerably high tardiness for these orders of 21.5 minutes.
Consequently, all orders that comprised value-added services had to wait for orders with fewer
remaining processing time. The mean tardiness was lowest with the EDD rule, which optimizes
based on order due dates. However, none of the conventional dispatching rules were performing
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Table 8.4 Multi-objective optimization benchmark incorporating order priorities
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in combined measures and multi-objective view.

In the following, we compare the hyper-heuristic approach with individual dispatching rules in
relation to the order priorities. In this regard, the hyper-heuristic outperformed the FiFo, EDD,
and SPT rules, particularly for prioritized and high-priority orders. Specifically, for prioritized
and high-priority orders, the hyper-heuristic reduced throughput by almost 7% to 83.6 minutes,
and 20% 73.3 minutes, respectively, compared to the average time of the previously mentioned
rules. Individually, the HP rule performed best for prioritised and high-priority orders, but
had a 13.5% higher throughput time for standard orders than our approach, which account for
75% of the total order-set. Although the higher-priority orders are completed with a minimum
mean tardiness with the HP rule, this leads to longer processing times for the much larger set
of standard orders. Despite the hyper-heuristic’s slightly poorer performance in the prioritized
order class, it still outperformed the other rules from a multi-objective perspective. Additionally,
the hyper-heuristic produced 2.7% more high-priority orders than the HP rule.

For a further analysis, we included Table 8.5 which demonstrates the relationship between
order urgencies and priorities for the optimization of throughput times. The table includes a
comparison of the corresponding throughput times with a high-priority and rush order as the base
value in the lower section. As previous results indicate, the global FiFo and random rules were
less performant compared to other the benchmarks, which is why they are excluded in further
analysis.

Hyper-heuristic FiFo local EDD HP

Total orders
Rush
order

Standard
order

Rush
order

Standard
order

Rush
order

Standard
order

Rush
order

Standard
order

High priority 72.1 73.6 90.0 90.7 59.1 96.3 45.1 43.9
Prioritized 72.5 86.2 86.2 90.4 56.1 98.6 44.0 44.6
Standard 87.1 88.6 87.5 88.7 57.5 96 93.8 90.9
In relation to high-priority and rush orders
High priority 1 2.1% 1 0.8% 1 62.8% 1 -3%
Prioritized 0.6% 19.5% -4.2% 0.4% -5.2% 66.8% -2% -1%
Standard 20.8% 22.8% -2.7% -1.4% -2.8% 62.6% 108% 101%

Table 8.5 Order urgency and priority dependent optimization of throughput times [min.]

One notable finding is the significant increase in throughput times of the hyper-heuristic (Table
8.5, left) for low prioritized and non-rush orders. The development is progressive, with a clear
22.8% increase from the highest to the lowest urgency and priority class. This suggests that non
time-critical orders are processed at higher throughput times. However, due to the high priority
relevance within the reward function, the increase is observable, but rather small with 2.1%. On
the other hand, the EDD rule, as a single-criterion rule, only optimizes one criterion, which is
the due date, equally for all priorities. Similarly, the HP rules also indicates a similar pattern for
priorities, in which rush orders were processed 3% or 1% slower. The hyper-heuristic approach
appears to be the more effective in optimizing combined urgency and priority measures. While
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the EDD and HP rules may be suitable for constrained optimization, they may not perform well
in stand-alone operation.

8.4.2.3 Analysis of optimization robustness and scaleability

In addition to analyzing the performance of our approach, we also evaluated its robustness and
scalability. It is essential to ensure that the approach can operate efficiently and reliable, even
with increased order volumes, to guarantee long-term effectiveness. Previously, we demonstrated
the control efficiency of our approach with increasing WIP levels in Figure 8.6. Now, we evaluate
the robustness of our approach by measuring the rewards received during operation, which
serve as an indicator of how well the desired production objectives were fulfilled. As illustrated
in Figure 8.7, the received rewards of each dispatching rule were analyzed, with the random
rule serving as the lower benchmark. The rewards of conventional rules exhibit significant
fluctuations in both, short-term and long-term rewards. Despite occasional near-parity with
the hyper-heuristic, on average, conventional rules were less robust than the hyper-heuristic in
fulfilling the multiple defined optimization objectives.
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Figure 8.7 Moving average of agent rewards for the D1 distribution module

Table 8.6 summarizes the statistical values obtained from our robustness analysis. It can be
observed that the hyper-heuristic approach achieved good performance in terms of robustness,
which is in line with our earlier findings. However, the performance of the HP rule was
surprisingly poor, which can be explained by the pre-defined rewards. Although its policy of
favoring higher prioritized orders was followed, the larger amount of neglected standard orders
led to a corresponding deterioration in performance. This trend is reflected in the decreasing
reward trend, as the tardiness of the orders in the modules continued to increase over time
(as indicated in Figures 8.5/8.7) which results in poor tardiness and throughput values and
respective negative rewards. This highlights the importance of considering combined objectives,
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as neglecting standard orders, although being less valuable per order, can have a detrimental
effect on optimization objectives. Therefore, it is crucial to find a balance between prioritizing
high-priority orders and ensuring that standard orders are also processed efficiently.

Hyper-heuristic FiFo local Earliest due date High-priority Random
Arithmetic

mean [-] 178.8 49.2 -24.1 -156.9 -193.2

Standard
deviation [-] 21,2 60,9 85,5 59,8 84,6

Table 8.6 Summary of reward mean and standard deviation

The scalability of our approach is supported by the assumption of decentralized decision-making
and the small state spaces of the neural networks that are used for action calculation. Due to the
modular layout, also the overall task complexity was broken down among the agents which could
thereby deploy compact neural networks. As a result, all agent computations were carried out in
real-time, taking less than 0.01 seconds. We distinguish between the cases of pure training and
the change of production organization during operation. Thereby, adding a new manufacturing
module does not require the re-training of the entire system, as it would be the case with a central
control instance. Instead, only the affected module and its overlying distribution module would
need to be trained. Furthermore, if an identical manufacturing module is added, the logic can
be learned via transfer learning, which reduces the training time to just training the overlying
distribution module. Although training our scenario for 10,000 simulated minutes required
approximately 36 hours (due to the iterative calculation), re-training a new network for a new
module takes only a fraction of this time. Re-training the D1.2 layer (see Figure 8.4) after an
additional manufacturing module was added took only about 4 hours. From an organizational
perspective, the scalability of our is not dependent on the complexity of the layout, as it can be
broken down into sub-modules. Thus, our approach can be extended to more complex systems
without requiring a complete overhaul of the existing training model. This scalability feature,
combined with the real-time processing capabilities, leads to an suitable option for transferring it
into a real production system.

8.5 Simulation to reality transfer

The transfer of the evolved and simulated approach was further deployed within the Center for
Industry 4.0 and validated using its modular manufacturing system. Figure 8.8 contains the real
production environment (1), the updated simulation model (2), and the corresponding layout
(3). The manufacturing cells are projected into the available machine cubes (numbers 1-5), and
the input and output buffers are located within these. The real layout is similar to the simulated
layout, with an additional robot manufacturing cell (see cell 4) and an additional storage slot in
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the distribution cell to use the full storage capacity of the real environment (see number 8). For
the transport of an order on the distribution level, the load carrier cubes are used as autonomous
agents (9). If such a cube arrives at one of the machine cubes (1-5), an order is placed or picked
up there and can then be transported to the next machine cube or to the system output. In the
system input (6) and output (7), orders are generated (including the buffer capacity) and collected
or deposited by the autonomous load carriers. The transfer of deep learning based instructions
from the simulated agents to the real-world logistics elements was conducted by implementing
the simulated system’s logic into the workload carriers. The instructions of the neural network
were processed by the FabOS (factory operating system, Lass and Gronau (2020)). The action-set
and state-vector remained consistent, with only the destinations being modified.

Since the agents are the bottleneck of this simulation due to their low speed, we based the
performance evaluation on a fixed period of 5 hours. The path of the load carriers from one
location to another is determined by the FabOS to avoid collisions and blockages. Due to time
restrictions, the operation was carried out on the basis of previously trained agents. Control
decisions were made after examining the status of new orders, after arriving at a destination,
and after any changes in the system, when the agents had no assigned task. The results of the
real test are listed in Table 8.7 and are compared against the FiFo local dispatching rule, due
to its performance, but also its wide-spread use in real production systems. The best values are
indicated in bold letters.

Although there was a slight decrease of one unit in throughput when compared to simulation
performance, it is important to note that this may be attributed to the rather short duration
of the conducted testing. Conversely, there was a 1.7% reduction in throughput time while
maintaining a comparable level of tardiness for the total order-set. Additionally, higher-priority
orders were processed more frequently and with an average tardiness that was 90% lower than
that of lower-priority orders.

Hyper-heuristic FiFo local
Comparison

(FiFo as base)

Scope/ order priority Total 0 1 2 Total 0 1 2 Total 0 1 2

Total throughput [#] 121 92 17 12 122 95 16 11 -0.8% -3.2% 6.3% 9.1%
Throughput time [min.] 56,9 59,4 55,4 51,5 57,9 56,8 67,6 53,6 -1.7% 4.6% -18.0% -3.9%

Mean tardiness [min.] 9,8 12,8 1,6 1,1 9,8 9,4 13,9 14,1 0.0% 36.2% -88.5% -92.2%

Table 8.7 Performance benchmark within the hybrid production environment
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Figure 8.8 Testing setup of the hyper-heuristic within the hybrid production environment
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8.6 Discussion

Today’s production systems must cope with increasingly demanding customer requirements,
shorter product and development cycles and short-term fluctuations in demand. One approach
to address these challenges in production control is deep RL as a data-driven optimization tool,
which differs from other machine learning methods mainly in its online adaptability and real-time
processing of sensor data. In our approach, we have demonstrated the superior performance of
deep RL compared to conventional rules that are still in widespread use. We also transferred
our approach into a hybrid production environment, highlighting is real-world capabilities. It
becomes clear that deep RL can master the link between input states, optimisation goal and the
derivation of necessary actions and can help to achieve individual production goals. A multi-level
system with distributed production resources was considered, which is composed of agents
with different tasks. This is intended to cover different industry backgrounds and maximise
transferability to specific applications.

Managerial insights The increasing connectivity of future factories and the growing com-
plexity of products and processes require accelerated corporate adaptation cycles, especially
in manufacturing. To meet these challenges, companies are well-advised to consider more
sophisticated approaches to increase flexibility, mitigate process risks, and maximize production
robustness. However, in addition to sustaining processes, it is also important to fully exploit
competitiveness through the deliberate use of new algorithmic approaches and organizational
capabilities. By using hyper heuristics, companies can limit their dependence on scarce human
capital and proactively use data-driven operations to reduce costly manual processes. In contrast
to conventional approaches, which can only react to changing conditions to a limited extent, the
modular framework presented in our approach has a significantly higher transferability and can
be adapted according to market requirements. In addition, the defined objectives were achieved
in a combined manner more effectively, which increases cash flow and can reduce conversion
costs. Furthermore, additional services such as rush orders and prioritized orders were integrated,
which not only enable additional cash flow, but also integrate customer-oriented services on the
shop floor.
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8.7 Conclusion

This paper presents a novel hyper-heuristic based control approach for modular designed holonic
production systems. Holons were modeled as autonomous manufacturing entities, providing
high adaptability in a semi-heterarchical structure. Unlike previous multi-agent approaches that
were limited to a single operational level or that implemented confined deep learning techniques,
we deployed dispatching rules for facilitating a deep learning based performance optimization.
Each agent within the production system had its own control policy and shared experiences
with agents within the same cell. The differentiated contemplation of manufacturing agents
at the shop-floor layer and the use of distribution agents within the upper transport layers was
emphasized.

The control approach targeted several parameters for optimization, including global throughput
time, adherence to due dates, and the processing of rush and prioritized orders. Simulations
and real-world scenarios demonstrate the superiority of the hyper-heuristic approach in multi-
objective optimization of average throughput time, total throughput, and tardiness. Prioritized
and rush orders, which often emerge in practice, were processed with better performance than
with dedicated dispatching rules. Likewise, not only were more orders processed within the real
environment, but the existing rule-set was outperformed with regard to the defined performance
indicators.

The hybrid and decentralized hyper-heuristic control approach integrates both, deep learning
based and conventional elements, to facilitate a scenario-specific process optimization. Whereas
the holonic approach allows for an easy adoption of new resources and processes, the hyper-
heuristic prevents the selection of misleading actions by leveraging the rule-set integrated process
logic. It resembles a self-configuring system that automatically adapts to changing production
conditions without human intervention and leverages system scaleability. The addition of a cell
does not necessitate re-training of the entire system which leverages utilization efficiency. The
distributed resources further avoid the need for large state and action spaces, as the modules and
associated state or action parameters have a pre-defined scope.

Future research should focus on reducing the training effort required for comparable modules
through the use of parameter learning strategies and the freeze and transfer of network layers to
differing cells for faster scenario adoption. Moreover, to better adapt to varying environmental
conditions, agents should be assigned specific action spaces based on cell objectives and levels,
which can be kept variable, allowing different strategies to be executed. This will allow for an
hybrid operational model, avoiding the prevalent pre-training in a digital twin, which further
leverages production performances and adaptability. Future research should also target bridging
the gap between the real-world and simulated environments, which will ultimately reduce
operational barriers.
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ABSTRACT
In times of increasingly complex production processes and volatile customer demands, the
production adaptability is crucial for a company’s profitability and competitiveness. The ability
to cope with rapidly changing customer requirements and unexpected internal and external events
guarantees robust and efficient production processes, requiring a dedicated control concept at
the shop floor level. Yet in today’s practice, conventional control approaches remain in use,
which may not keep up with the dynamic behaviour due to their scenario-specific and rigid
properties. To address this challenge, deep learning methods were increasingly deployed due to
their optimization and scalability properties. However, these approaches were often tested in
specific operational applications and focused on technical performance indicators such as order
tardiness or total throughput. In this paper, we propose a deep reinforcement learning based
production control to optimize combined techno-financial performance measures. Based on pre-
defined manufacturing modules that are supplied and operated by multiple agents, positive effects
were observed in terms of increased revenue and reduced penalties due to lower throughput times
and fewer delayed products. The combined modular and multi-staged approach as well as the
distributed decision-making further leverage scalability and transferability to other scenarios.
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9.1 Introduction

In today’s emerging economy, production systems are increasingly exposed to external and
internal pressures and must adapt to shifting demands, volatile supply markets, and increasing
customer requirements such as shortening delivery times. These influences, combined with
growing product complexity, necessitate the implementation of a robust production control that
effectively monitors and optimizes central operational process parameters, such as order tardiness
or throughput times. Furthermore, this system should facilitate the integration of customer-
centric services to cope with the prevalence of an increasingly large number of customized
individual product offerings that drive mass customization. These come along with the emergence
of customer related add-on services and process related supplementary services, including
maintenance, repairs, and ongoing modifications of the production system, which substantially
heightened the demand for an effective and robust shop-floor control.

To cope with the growing amounts of data and the increasing optimization complexity, in recent
years, an increasing number of Industry 4.0 and machine learning-driven approaches were
deployed to improve process planning and control (Lee et al., 2016; Lass and Gronau, 2020).
The pertinent use of these technologies can lead to a significant exploitation of given process
potentials that cannot be leveraged with conventional tool-sets (Grassi et al., 2020; Parente et al.,
2020). However, machine learning approaches were only used to a limited extent in practical
use-cases, as conventional production control strategies, such as First-in-First-out (FiFo) or
Earliest-Due-Date (EDD) rules, continue to be predominantly applied in production control
(Kuhnle et al., 2021). Nevertheless, current approaches highlight the potential of using deep
learning, in particular deep reinforcement learning (RL), due to their high adaptability and
optimization performance (Samsonov et al., 2021). Deep RL is characterized by its interactive
and trial-and-error-based learning with its environment (Sutton and Barto, 2017), thereby meeting
global and local objectives in multi-agent systems (Tampuu et al., 2017). Its performance, which
often outperformed other conventional methods, is primarily attributed to its high adaptability
and responsiveness, which enables a rapid decision making in diverse and dynamic environments,
compared to meta-heuristics and other machine learning methods (Panzer et al., 2022). These
characteristics make deep RL particularly attractive for production control, where real-time
decisions need to be made about the disposition of products and intralogistics processes (Chang
et al., 2022).

In practice, most deep RL based control approaches were implemented in job shop systems,
however, only a few approaches were conducted on flexible and modular production systems.
Concerning the control optimization, operational parameters such as lead time or machine
utilization were mainly optimized, but there was no approach that addressed a combined techno-
financial optimization (Panzer and Bender, 2022). Thus, there is a need for a reactive control
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approach that not only controls multiple agents in a re-configurable modular production system,
but simultaneously leverages customer-centric requirements and objective parameters for its
intelligent decision-making process. In this paper, we present a novel deep learning based
control approach that combines the adaptability of deep RL in conjunction with a modular
production system. It focuses on the optimization of customer-centric services as well as
technical performance indicators to leverage adaptability and profitability for the control of
multiple agents.

The remainder of this paper is structured as follows. The next Section outlines the basics of
modular production and deep RL. In section 9.3, the discrete event-based (DES) simulation
framework is presented in detail, explaining how agents are trained and rewarded, while opera-
tions are conducted. Section 9.4 presents optimization results from a test study. Finally, section
9.5 provides a conclusion about achieved milestones and summarizes the main findings.

9.2 Related work

The adaptability of a production system is predicated not solely on its control mechanisms, but
also on the re-configurability of the system components and their ability to generate new system
competencies from existing process elements. In this context, modular production systems were
frequently utilized in control research, an aspect we focus in the following section (May et al.,
2021).

9.2.1 Modular production systems

Modular production systems are characterized by their ability to define almost arbitrary process
flows, similar to those known from matrix systems that feature a product flow independent
system control. Frequently, autonomous guided vehicles (AGVs) are used to facilitate such
flexible production (as in Mayer et al. (2021)), to leverage shared control experience in intelligent
control approaches, and to increase utilization and reduce buffer inventories (Greschke et al.,
2014). However, the increased optimization space associated with free process flows requires
dedicated control strategies that take advantage of the increasing amounts of data collected by
distributed machine sensors, smart products, or AGVs. In this context, previous approaches
often deployed decentralized control frameworks that allow the optimization problem to be
divided among multiple agents within modules, thus leveraging the capabilities of individual
resources in the overall system (Balaji and Srinivasan, 2010). Our DES framework further adopts
a semi-heterarchical control approach that combines the flexibility and high local reactivity
of a heterarchical production concept with the long-term optimization capabilities of a more
centralized hierarchical production control (Bongaerts et al., 2000; Groover, 2019). In this way,
global objectives, which specifically include customer-related metrics such as order tardiness,
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are taken into account that enhance reliability, and increase overall efficiency. Simultaneously,
local technical parameters can be considered such as buffer stocks or machine uptime rates to
reduce bottlenecks.

9.2.2 Deep reinforcement learning

To reach the adaptability of the modular production system within the control framework, it
is imperative to encapsulate it within the algorithmic model. Therefore, deep RL algorithms,
which are capable of executing real-time decisions predicated on current system information,
were often used in dynamic control tasks. In deep RL, the control policy of a deep RL agent is
represented by the neural network and is perpetually updated on previously made experiences.
The DQN algorithm, which is deployed in this study, utilizes a Q-value, that represents an
indicative measure of success for the execution of an action at in a state st , and is computed
based on the Bellman equation, considering the cumulative rewards that can be expected from
that state onward (Bellman, 1961; Mnih et al., 2013).

Throughout the learning process, the weights of the neural network are updated based on the
actual observed state transitions towards st+1, beginning from st on the basis of the selected
action at , as indicated in Equation 9.1. To circumvent unstable learning behavior, the learning
rate, denoted as a , modulates the speed of the learning process, thereby facilitating an iterative
learning mechanism predicated on the received rewards and resulting Q-values of the subsequent
state st+1. Moreover, we employ an online network and a target network, denoted by weights
q and q� respectively, with prescribed update cycles to stabilize the DQN learning process as
further outlined in Sutton and Barto (2017).

Q(st ,at) (1�a)Q(st ,at)+a(r + g Q
max

(st+1,at+1)) (9.1)

9.2.3 Deep reinforcement learning-based production control

Although there were some integration approaches of deep RL in production control, only a few
have focused on multi-agent based production control in modular production (Panzer and Bender,
2022). To find such, we searched the databases Scopus and WebofScience.

In non-modular production, some strategies were explored to improve production performance
indicators, such as utilization rates or order delays. Malus et al. (2020) introduced an order
bidding mechanism for autonomous mobile robots, based on a proximal policy optimization
(PPO). Agents could place bids between 0 and 1, with the order acquiring the highest bid being
chosen for the dispatching operation. Hammami et al. (2017) proposed a multi-agent system
based on simultaneous learning and information dissemination between agents to reduce average
order delays. Decision agents were connected to selection agents, which selected the best neural
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network for the decision agent. Dittrich and Fohlmeister (2020); Hofmann et al. (2020) utilized
a central DQN decision module for training purposes, which stored and updated the disposition
policies of all agents and made them available upon request. Waschneck et al. (2018) trained
separate neural networks for wafer fabrication stations to optimize maximum uptime utilization.
Gros et al. (2020) leveraged an iterative learning strategy to optimize product sequencing
in automotive production, thereby reducing costs associated with inefficient car sequencing.
Overbeck et al. (2021) employed PPO agents and hyper-parameter tuning to determine the
optimal action in an automated assembly system, resulting in an increased number of parts
produced.

The aforementioned approaches focused mainly on production control in conventional job-shop
systems. In contrast, Gankin et al. (2021) suggested a large-scale matrix layout based on a
modular approach. The production system comprised 25 stations and 20 units and produced
two different product types, each with 13 process steps. An action masking mechanism was
used to reduce decision complexity. A shared DQN and buffer were used as the decision-making
authority, facilitating experience sharing among agents. May et al. (2021) implemented an
economic bidding approach to increase utilization efficiency in a matrix-structured production
system. The approach maximized operational profit for each agent independently and optimized
execution time and resource utilization efficiency compared to conventional heuristics. Hofmann
et al. (2020) simulated matrix system with 10 workstations and multiple AGVs. Agents received
immediate rewards after each process step and delayed rewards based on the global cycle time
after completing an operational step which accelerated the learning process and reduced job
cycle times.

These approaches revealed initial advancements in the application of deep RL in matrix and
modular systems, by using economic bidding mechanisms, and the use of global rewards to
improve utilization efficiency and reduce lead times. However, the consideration of combined
techno-financial performance indicators in a flexible modular environment is still pending and
will be addressed in this paper.

9.3 Proposed algorithm - a deep RL control framework

The structure of the adopted modular production approach necessitates a production control
system that is equally modular, exhibiting both, high flexibility and robustness. Therefore, the
simulation framework distinguishes between two types of agents, manufacturing and distribution
agents. The former are responsible for supplying orders to machines and managing the local
operations, while the latter are tasked with intra-logistics operations and distributing orders
between modules. Strategic decisions and coordination, particularly those concerning multiple
modules, are made by a higher-level distribution agents, that reflect a more hierarchical control
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to manage inter-module dependencies and to ensure that the overall objectives are met. The
semi-heterarchical concept of our framework allows to adapt to dynamic changes in real-time,
while still maintaining an overall coordination to optimize the whole system’s productivity and
efficiency. This balance between local autonomy and global control is key to achieving a robust,
flexible, and efficient production system.

Fig. 9.1 illustrates the modular production system, encompassing two manufacturing modules
M1.1/M1.2, a quality assurance station Q1, and the high-level distribution module D1. In the
subsequent simulated scenario, two order groups 1 and 2 are manufactured on the machines
within the respective modules M1.1 and M1.2. The DES is predicated on pre-defined events,
satisfying the Markov property and enabling a precise calculation of pre-established production
states and potential state transitions. Every agent is equipped with one online and one target
network and possesses the capability to dispatch a variety of products from a pickup point to a
predetermined destination. These destinations could include a machine, a module storage area,
or a transfer buffer between two modules. Thereby, each order has specific global and local
process information that, cumulatively, constitute the state space of an agent. Each agent receives
an individual state for decision-making, enabling an optimal and situation-dependent dispatching
process. The resulting data set, which stores past-made state transitions, respectively chosen
actions, and rewards, st ,st+1,at ,rt , is stored in a batch. This batch then serves as the training
basis during the batch replay and facilitates a continuous policy update.

Defined production system

X

Storage

Input-/ Output buffer

Machine of a certain type x

Manufacturing module agent

Distribution module agent
21

Logistics paths

Mfg./Distribution module

1

System input/ output

System input

3 544 6 7

Q1

D1

M1.1 M1.2

System output

Figure 9.1 Simulated modular production system

9.3.1 Agent state space

Prior to each dispatching decision, the agents receive a tailored state according to the type and
size of their module along with its constituent module resources. For the state space calculation, a
min-max normalization is employed to harmonize the input parameters and stabilize the learning
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process. This method constraints continuous process information inputs within the range of
[�1,1]. This makes it possible for the agent to still derive insights regarding the urgency or
waiting time of an order at any given production state. For discrete values like order priority or
urgency, discrete variables are utilized as indicated in Table 9.1. The variables are computed for
each available space within an agent’s respective module, containing information about the other
agents as well, and are concatenated into an overall vector, which is then inputted into the neural
network.

State Notation Description

Throughput
time - local st ptg Order entry timestamp - system

Throughput
time - local st ptl Order entry timestamp - module

Due date sdd Point of time, at which an order is due

Priority sprio
Order priority is determined by a binary variable,
where sprio = 0/1 indicates a non-/ priority order

Urgency surg
Order urgency is determined by a binary variable,
where surg = 0/1 indicates a non-/ urgent order

Table 9.1 Production state parameters

9.3.2 Agent action space

The DQN, as a value-based RL algorithm, features a discrete action space wherein the Q-values
represent the success estimate for each action. The discrete action a = argmaxaQ(st ,a), that
offers the highest Q-value, is executed with a probability of 1�e . The epsilon factor e decreases
with each training step and enables a sufficient exploration during the beginning of the training
process. The defined actions should enable an efficient order processing and to fulfil local
and global objectives such as reducing local buffer stocks and global order through-put time
or tardiness. To achieve this, the deep RL agents select the most appropriate action from a
set of dispatching rules that consists of a FiFo rule on a global or local scale, a EDD, and a
High-Priority (HP) rule. This approach offers the advantage of mapping the process logic into the
low-level rule-set, thereby circumventing the need of an agent to learn process interdependencies
and system constraints. This can reduce the optimization complexity and accelerate the learning
process towards the optimal control policy. Each agent employs the same set of rules and carries
out its actions individually, based on the intrinsically developed policy.
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9.3.3 Designing the reward function

The design of the reward function is crucial for the learning performance indicators and should
align with the set objectives of optimizing technical and financial parameters. It’s noteworthy
that these objectives can conflict with each other, necessitating a reliable reward design that can
be accurately modeled in the DES. For this purpose, we developed a combined reward function
that was derived from the optimization criteria of optimizing order tardiness and throughput, and
the additional services offered for urgent and priority orders. This function is generic and can
be adapted to other scenarios. The total reward is calculated by the sum of the partial rewards
rges = Âri for a given order. The individual optimization criteria ri are equally weighted in
subsequent testings but can be adjusted to specific scenarios. A cumulative reward of ri = 200 is
given for selecting the order with the longest waiting time in the system/module, with the most
urgent due date, or a high priority or urgency, respectively. In contrast, ri =�200 is assigned, if
the order with the poorest metric is chosen. In cases where the order lies between the worst and
best options for continuous metrics (such as throughput time), a linear relationship is established,
i.e. resulting in a reward of 0 when the selected order is precisely between the worst and best
possibilities.

9.4 Simulation results and analysis

The following section provides a detailed description of the simulated scenario, that was used
to conduct the techno-financial analysis. The calculations were performed on an Intel Core
i9-12900k CPU with 32GB of RAM. Unless specified otherwise, three simulation runs were run
for each metric.

9.4.1 Experimental settings

The simulated system was previously visualized in Fig. 9.1. A total of 8 dispatching agents
were applied in the production system, each of which was controlled by two neural networks.
Relevant network parameters were transferred from Mnih et al. (2013). The techno-financial
process parameters pertaining to the production of the two order groups are listed in Table
9.2. The order groups consist of two distinct types of steel shafts, with varying characteristics
between group 1 and 2. Each base order undergoes milling/grinding and hardening processes
throughput the manufacturing process. Additionally, an supplementary labelling service is
available for each group and there is a 10% probability for a quality check. Further, there is a
25% probability of an order being classified as a rush or priority order. A rush order may be
directly requested by customers or is critical for the operation of neighboured systems. A priority
order is not necessarily related to time urgency but for other reasons such as the order value or

266



9.4 Simulation results and analysis

business considerations like the strategic customer importance. The remaining order parameters,
including the due date or system events such as machine failures, are stochastic parameters and
are determined randomly.

Order
Type 1.1 Type 1.2 Type 2.1 Type 2.2

Order frequency 30% 20% 30% 20%

Machining steps 1!2 1!2!3 4!5 4!5!6

Add. services - Labelling - Labelling
Processing times [sec.] 19.2 24.4 26.6 34.3

Revenue [$] 100 110 150 160
Proc. cost [$] 60 65 85 90

Table 9.2 Experimental order settings for simulation

The sales data and unit costs provided in Table 9.2 were used to compute the key financial
indicators. Additional sales and corresponding penalty costs resulting from priority and urgent
orders were calculated using constant fees or penalties. Specifically, a fee of $30 was applied
for priority processing, $30 for urgent service, and $50 for combined processing. Regarding
order tardiness, the penalty for standard orders amounted to $0.2 per minute of tardiness, while
rush orders incurred a penalty of $0.5 per minute of tardiness. For prioritized orders, the penalty
escalated to $2 per minute. These various amounts were aggregated to yield a final profit.

9.4.2 Experimental results

The assessment of training efficacy and the achievement of the desired performance objectives
can be initially analyzed on the basis of the earned rewards. Fig. 9.2 displays the learning
curve, which indicates a significant upward trend in the obtained reward signals. Notably, the
performance, which was initially modest, not only exhibits consistent improvement over time,
but there are also significantly reduced fluctuations in performance.

As a benchmark, we employed the EDD rule as well as the widely used global FIFO rule, similar
to comparable approaches as discussed in Popper and Ruskowski (2022). As summarized in the
Tables 9.3 and 9.4, our approach was able to improve the financial and technical indicators of
customer-centric order processing. Specifically, the imposition of service fees in the form of
penalties has been significantly reduced, leading to a notable 6% increase in total profit. This not
only opens up opportunities for more intricate multi-objective optimization strategies, but also
integrates pertinent customer-centric services that have the potential to increase revenues from
additional services when being appropriately integrated into shop-floor operations.
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Figure 9.2 Reward progression of a deep RL agent during the training phase

Deep RL EDD FiFo global

Total revenue $55856,7 $55766,7 -0,2% $55526,7 -0,6%
Thereof service $5110,0 $5066,7 -0,8% $4980,0 -2,5%

Processing cost $29293,3 $29266,7 -0,1% $29180,0 -0,4%
Service penalties $1915,2 $3233,7 68,8% $3339,9 74,4%

Profit $24648,1 $23266,3 -6,3% $23006,8 -7,3%

Table 9.3 Summary of key financial indicators

Table 9.4 provides a comprehensive breakdown of throughput times Tt pt and tardiness rates Ttardi

for the different order classed. The obtained metrics indicate a significant improvement in the
processing of priority, rush, and combined orders. However, it also reveals a slight increase
in order throughput times and tardiness for standard orders, as expected. This analysis clearly
reveals that in particular the priority and combined urgent-priority orders, represented in the
lower rows of the table, were processed significantly faster with a throughput time of 57.9 and
70.8 seconds and with a highly reduced tardiness of 7.8 and 0.6 seconds. Compared to the EDD
and FiFo rules, this also yields in the aforementioned optimized financial metrics. However, it
is also clear that the standard orders in the first row exhibited slower processing, resulting in a
slightly increased tardiness of 18.9 seconds compared to 15.5 seconds with the global FiFo rule.
However, given the lower individual order significance, this increased tardiness is less critical.

Notable improvements in the indicators of combined order metrics were achieved, which may
be less attainable with conventional rules. In addition, individual performance indicators can
be further adjusted to accommodate specific production conditions through a scenario-specific
reward weighting, which facilitates the development of use-case optimal policies. The modular
production further facilitates the generation of transferable knowledge across different scenarios,
resulting in significant savings in computation resources. Moreover, this approach capitalizes on
shared knowledge and eliminates the need for system re-training in each instance, thus enabling
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Deep RL EDD FiFo global

Priority Urgency Tt pt Ttardi Tt pt Ttardi Tt pt Ttardi

Non-prio Standard 83,0 18,9 81,9 18,5 77,0 15,5
Urgent 75,7 7,7 71,5 4,8 86,9 17,8

Prio Standard 70,8 7,8 82,0 18,7 74,3 13,0
Urgent 57,9 0,6 61,0 3,1 69,9 9,8

Table 9.4 Summary of key technical indicators [sec.]

the utilization and exploitation of existing knowledge.

9.5 Conclusion

In times of increased market fluctuations and production complexities, production control
approaches must effectively address the increased dynamic requirements. To accommodate a
high degree of adaptability to varying fabrication processes, modular production approaches
were increasingly implemented, although they entail a high degree of control complexity. In
this study, we addressed the increased control complexity by deploying a deep RL based control
framework with multiple dispatching agents. We conducted a techno-financial optimization of
the production processes to mitigate the challenges posed by the complex operational production.

The multiple DQN based agents were trained based on concurrent learning and were able to
process priority and rush orders significantly faster and with less tardiness. Based on a pre-
defined multi-objective reward function, not only technical key indicators were improved, but
the deep learning control also led to substantial reductions in tardiness penalties, resulting in
increased profits. Conventional rules were significantly outperformed, thus fostering an incentive
for the integration and optimization of the presented deep learning based control approach to
facilitate the integration customer-centric services.

The incorporation of the desired objectives into a representative reward function offers a promis-
ing approach to simultaneously address multiple technical and financial objectives in production
systems. The decentralized modular control approach further enables an easy adoption of new
resources and processes. Future research should focus on improving operational performance by
reducing training efforts and bridging the gap between real-world and simulated environments.
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10 Discussion
This chapter presents a comprehensive analysis of the research outcomes. The findings reveal
a broad application range for deep learning in production research. However, in the realm of
production control, there is a predominant reliance on job-shop scenarios, as highlighted in
publications 1 and 2 (Chapters 4, 5). The identified gaps and derived requirements in current
methodologies informed the development of a deep learning based production control artifact, as
detailed in publications 3 to 5 (Chapters 7, 8, 9).

The subsequent sections commence with an integrative analysis of the research outcomes in
Section 10.1. Following this, Section 10.2 addresses the transferability of these findings and
their broader implications for academic scholars as well as for practitioners and managerial
stakeholders.

10.1 Integration of the results

This thesis focuses on creating an adaptive production control framework. It prioritizes rapid
decision-making across various objectives, robust processes, and adaptability to system changes
and disruptions. Conventional optimization methods, like meta-heuristics, are often challenged by
the condensed nature of real-time control problems. Deep reinforcement learning demonstrated
promising results in complex job-shop systems, but its use has been mainly limited to single-
agent and centralized systems, or specific configurations. To address this gap, the following
sections answer the formulated research questions. It starts with an examination of the established
requirements in Section 10.1.1, proceeds to evaluate production complexity in Section 10.1.2,
and examines the framework’s generalizability in Section 10.1.3. Ultimately, it integrates these
insights to tackle the primary research question in Section 10.1.4.

10.1.1 Requirements for deep learning based control optimization methodologies

In the initial set of publications, the significant opportunity presented by integrating deep
learning into production systems was emphasized, particularly in the context of autonomous
and decentralized production processes. Understanding the unique requirements and challenges
specific to these systems is crucial to fully leverage the potential of deep learning based production
approaches. This leads to the formulation of the first sub-research question, S-RQ1.

S-RQ1: What requirements do production systems impose on deep learning
based control optimization methodologies?

In the first publication (see Chapter 4), the focus was on algorithmic analysis, revealing deep
learning’s effectiveness in production applications, especially deep reinforcement learning for
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complex optimization challenges. However, it highlighted a research gap in applying these
methods beyond traditional job-shop or matrix production models, pointing to a need for better
resource integration and optimization. The second publication (see Chapter 5) provides a
comprehensive view of organizational aspects, noting a dominance of single-layer and single-
agent systems. Based on the results of this first bundle of publications, this thesis categorizes
the requirements for novel control optimization methodologies into structural, organizational,
and algorithmic aspects, extensively discussed in Section 6.1, which significantly influenced the
thesis’s direction.

First, from a structural perspective, these systems require a high degree of adaptability and
robustness, similar to the flexibility observed in dynamic and complex job-shop and matrix
production structures. This includes the ability to withstand fluctuations in internal and external
parameters, such as order sizes or system interruptions. However, there’s an need for resource
consolidation. Unlike the rather low productivity of job-shop and matrix production structures,
novel methodologies in deep learning based research should allow coping with modular designed
production systems that bundle and group resources. This approach entails the use of standardized
and object-oriented modules to leverage throughput performance and system efficiency.

Second, organizational requirements for complex scenarios increasingly focus on shifting from
single-agent, centralized systems to decentralized, multi-agent structures. This shift, underscored
in recent research like Zhou et al. (2021), is critical for managing task complexity, enhancing
scalability, and responsiveness in large-scale production. However, integrating deep learning
based production agents in multi-layered structures is still under explored, limiting the opti-
mization potential of these agents. Such integration requirements are essential for aligning
optimization strategies with various production layers, and require not only defining the quantity
and interactions of autonomous agents but also leveraging the expertise of domain-specific
specialists. These specialists, more adaptable and efficient than generalists, play a key role in
enhancing system adaptability across various operational areas like intra-logistics or material
dispatching.

Third, from an algorithmic perspective, deep learning based control approaches predominantly
utilized deep reinforcement learning. These facilitated real-time control decisions and handled
multi-criteria decision-making. Despite this capability, optimization was generally confined
to one or two parameters, with only rare cases extending to three. This indicates a need for
broader evaluation scopes, incorporating customer-centric metrics into the reward function
and evaluation, beyond technical performance indicators. The structural and organizational
requirements of dynamic systems like job-shops, marked by high flexibility and adaptability,
also demand the deep learning control approaches for rapid adaption to new environments. This
includes dealing with a wide array of influencing factors such as product diversity, machine
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type variations, and other complex elements, necessitating standardized input parameters. Also,
coping with the increased complexity in optimization not only requires decentralized multi-agent
structures but also intra-agent embedded optimization strategies that break down the overall task
into manageable sub-tasks. Ensuring robust models is crucial, as agents must adeptly adjust to
fluctuating production parameters, facing the challenge of choosing appropriate actions from
a vast array of possibilities. This highlights the intricate control and optimization challenges
inherent in deploying and fine-tuning deep learning methodologies in complex production
systems.

10.1.2 Managing decision-making and optimization complexity

Production system complexity has been extensively studied in various research works. Lödding
(2016) highlights material flow complexity as emerging from interactions between process steps
and their return flows. ElMaraghy et al. (2012b) takes a broader view, considering manufacturing
systems’ complexity alongside factors from product design and market perspectives. This in-
cludes differentiating between static and dynamic complexity. The overarching insight from these
studies is that minimizing complexity is one key to enhance system performance. Kuhnle (2020)
presents a nuanced perspective on complexity in production control, focusing on the decision-
making process regarding production orders and their allocation to specific devices. Notably,
prior studies have incorporated deep-learning algorithms in addressing optimization complexity.
This predominantly algorithm-centric implementation approach leads to the formulation of the
second sub-research question.

S-RQ2: How can the decision-making and optimization complexity of large
systems be distributed among autonomous system components?

In addressing the distribution of decision-making and optimization complexity for large man-
ufacturing systems, this thesis adopts structural, organizational, and algorithmic complexity
perspectives, as illustrated in Figure 10.1. From a structural perspective, the adoption of adaptable
techniques is imperative to meet evolving consumer demands and technological advancements
(Boyer, 2000; Bordoloi et al., 2009). This thesis emphasizes the need to balance core processing
synergies with the ability to adapt to systemic changes. A key aspect of this strategy is using
standardized production modules to capitalize on deep learning driven control and operational
efficiencies. The proposed modular system facilitates an approach between the widely adopted
flow-shop and job-shop processes. By segmenting the system into discrete, manageable modules,
localized decision-making is enabled, effectively containing complexity within defined module
boundaries. This modular approach ensures adaptability and scalability without proportionally
increasing the optimization complexity for the individual agents. Nonetheless, the emphasis
on structural hardware components presents challenges in adaptability and incurs significant
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costs, underscoring the necessity for a strong focus on organizational and algorithmic strategies,
especially in optimizing existing systems in brown-field approaches.

In this thesis, an object-oriented modular 
production approach is employed to 
integrate structural elements in production 
systems, aligning with organizational and 
algorithmic design and adhering to specific 
product types and volumes amidst a trend 
towards greater customization.

This thesis employs a semi-heterarchical 
framework to define organizational and 
orchestration structures. It achieves a 
balance between full adaptability and pre-
defined module structures across multiple 
layers, incorporating both manufacturing 
and distribution agents and modules.

This thesis adopts a hyper-heuristic 
embedded task split approach for control 
optimization and dispatching processes, 
utilizing deep reinforcement learning for its 
interactive and robust performance, 
complemented by dispatching rules to 
ensure process adherence.

 

Deep learning 
control complexity

Structural 
perspective

Organizational
perspective

Algorithmic
perspective

Figure 10.1 Threefold reduction in optimization and control complexity with proposed elements

From the organizational perspective, this thesis emphasizes the critical role of coordinated opti-
mization in large systems, a decision between structured, hierarchical systems and heterarchical,
flexible systems, or a hybrid of both for enhanced proactiveness planning and responsiveness.
It highlights the necessity for operational agents to assimilate both global and localized data
streams and reward mechanisms into their decision-making policies. Evaluations of these agents
are proposed to be on an individual basis while incorporating multi-agent and multi-criteria
performance metrics, with scalability being a paramount concern. The thesis proposes the use
of multi-agent systems to efficiently distribute control complexity across individual agents or
groups of agents within large production systems. A semi-heterarchical organization is proposed
for the specification of inter- and intra-modular or resource-based organization, which confines
complexities to independent modules, allowing heterarchical and autonomous dependencies,
which prevents escalating complexities due to specific task allocation. This approach significantly
reduces the state and action spaces for deep learning agents and simplifies data processing and
neural network learning in the proposed manufacturing and distribution modules and layers.

From an algorithmic perspective, this thesis identifies a prevalent reliance on basic deep learning
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techniques, while the benefits of embedded methods in reducing optimization complexity have
not been exploited in production control. In large systems, where the control state space
experiences exponential growth, segmenting complex tasks becomes increasingly essential. This
issue is particularly emphasized in the second publication, highlighting embedded techniques
in simplifying complex control tasks (see Chapter 5). Thereby, a single complex control
task can be divided into distinct sub-tasks, executable either serially or in parallel. Although
control decomposition is utilized in other fields, its extensive application in deep learning
based production is limited. This thesis specifically addresses this by splitting task complexity
into optimization and operational tasks using a hyper-heuristic approach. While the deep
reinforcement learning based top-level heuristics enhances system performance, the allocation
of control complexity to a decoupled low-level heuristic achieves robust operation, effectively
reducing deadlocks and non-learning behavior. This approach, although it confines the solution
space to predefined heuristics, also enhances the explainability of action choices and can be
finely tuned for specific applications.

In addressing the complexities of large production systems, this thesis emphasizes the need
to not only consider stand-alone perspectives but also their interconnections. For instance, it
proposes a modular control structure for segmenting production complexity. However, it must be
acknowledged that this approach may not suit all company use-cases. For instance, in systems
with a linear flow-shop for manufacturing standardized products, a semi-heterarchical control
might prove less efficient than a hierarchical planning system, thus requiring alternative strategies
for reducing complexity. This highlights the necessity of an integrated approach that combines
structural, organizational, and algorithmic perspectives to manage system complexity effectively.

10.1.3 Generalizability of the developed control framework

The management of complexity in production systems is closely related to the final sub-research
question (S-RQ3). Within this framework, the system generalizability, similar to complexity, is
not determined by a singular variable. Instead, it was addressed from the interplay of various
production resources and integrated into the proposed CoBra control framework.

S-RQ3: How can a high level of control generalizability be ensured across
varying production scenarios?

The CoBra framework’s systemic generalizability is primarily attributed to its modular and
semi-heterarchical design. The manufacturing and distribution layers enable the framework to
be scaled from a single manufacturing module to an entire factory. This is crucial for a holistic
process management, including machine occupancy, downtime, and work-in-process balancing.
The semi-heterarchical organization enhances generalizability by leveraging a multi-layered
production with decentralized decision-making. This allows for the addition and modification of
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modules at respective levels without disrupting the overall system, ensuring responses to varying
manufacturing environments. Central to each module is the use of deep reinforcement learning,
which continuously refines control strategies of the autonomous agents.

This integration of deep learning with conventional rule-based methodologies forms a hyper-
heuristic approach, as defined by Cowling et al. (2001). Its hybrid strategy aims to prevent initial
and ongoing process disturbances and instabilities for new production scenarios or products,
addressing training and operational limitations, such as dead-locks. Additionally, the hyper-
heuristic is generalizable across various production contexts. It incorporates adaptable reward
functions and flexible action spaces, which are based on widely-used dispatching rules. By
segmenting tasks, agents have standardized state and action spaces, which can be further tailored
to specific requirements, enhancing process efficiency.

In summary, the holistic generalizability of the CoBra control framework is characterized by its
structural, organizational and algorithmic features. It supports diverse modular layouts and allows
for rapid expansion and adjustments in agent, layer, and module count. The modular design
not only facilitates the reuse and modification of trained networks but also enables automated
network generation for quick scenario adaptation.

10.1.4 Answering the central research question

The answers to the sub-research questions facilitate to address the central research question of
this thesis.

How can a data-driven and autonomous control optimization be designed for
adaptive production systems?

Previous research in deep learning based production control has predominantly focused on
single-agent systems and standard deep reinforcement learning algorithms. These methods often
require retraining for new systems or scenarios and struggle with capturing the logic of large,
complex systems, sometimes necessitating action masking to determine permissible actions.
Moreover, there has been a bias towards studying job-shop and matrix production systems,
known for their adaptability but limited productivity.

This thesis introduces a control framework tailored for dynamic production environments. Cen-
tral to this framework is its integration into a modular production concept, supported by a
semi-heterarchical production organization. This approach effectively tackles the scalability
challenges often encountered in centralized and single-agent systems. It does so by using
manufacturing and distribution modules that enable task-specific process optimization. Ad-
ditionally, the approach facilitates plug-and-play simulation configuration, allowing for more
flexible and scalable solutions in various operational contexts. Drawing from advancements
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in deep learning, the framework uses deep reinforcement learning for real-time, autonomous
decision-making and optimization. The continuous training further enables ongoing improvement
through feedback and data-driven policy refinement. When embedded within a hyper-heuristic
framework, this learning component effectively adapts to various production challenges, like
machine breakdowns, fluctuations in demand, and changing order parameters. Performance
testings indicate improvements in multi-objective optimization, encompassing both technical
and customer-specific parameters. The hyper-heuristic also improves explainability through
standardized action spaces based on common dispatching rules, avoiding the common black-box
problem.

The results of this thesis meet the initial objectives outlined in the introductory section, to
create an adaptive and performing control framework. The framework is integrated into various
scenarios, thereby outperforming common dispatching rules. A key component in achieving
this is the reward function of the deep reinforcement learning algorithm, which effectively
integrates and prioritizes various order and process metrics. This component is adaptable to
different agent types, thereby fulfilling the second objective of facilitating flexible multi-objective
optimization. The last objective, achieving scalability and generalizability, is realized through a
structured, multi-agent, and multi-layered approach. In this approach, optimization is conducted
using standardized modules, which helps maintain consistent states across diverse scenarios
and restricts the exponential expansion of state spaces. These states are managed by the hyper-
heuristic system, employing clear and consistent dispatching rules for effective operation.

10.2 Transferability of the results

The thesis presents findings that can hold relevance in both scientific and practical domains,
offering a detailed analysis and interpretation. It contributes to the field by addressing a research
gap with theoretical foundations and a practical artifact. The insights provided are useful for
understanding economic metrics and business applications. By taking a holistic approach,
the research aims to facilitate the application of its results in diverse contexts, enhancing the
overall comprehension and utility of the knowledge acquired. In the following, the overall
research contribution is summarized in Section 10.2.1. Subsequently, a potential research
transfer procedure is proposed and the control concept is classified within a broader planning and
control context in Section 10.2.2. Finally, managerial insights are presented in Section 10.2.3.

10.2.1 Research contribution

Recent studies indicated a growing interest among researchers in structuring complex system
landscapes, focusing on their interdependencies and architectures. This interest is particularly
evident in production environments, where dynamic processes are increasingly benefiting from
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deep learning based optimization methodologies. However, translating these theoretical methods
into practical solutions remains a challenge for both generalists and specialists. While current
research reveals dedicated approaches, their integration into a broader context was limited.
Therefore, it’s vital that these approaches are not only effective but also beneficial to applied
research. To aid in this, a taxonomy has been proposed to help researchers identify suitable
algorithmic strategies and choose between single-agent or multi-agent models, and between
serial or parallel embedded algorithms for process optimization and complexity reduction.

This thesis further proposes a production control framework that incorporates deep learning
methodologies in an accessible manner. The framework introduces a multi-layered, embedded
approach to deep learning based production control. It connects organizational, structural, and
algorithmic perspectives and is divided into a top-level optimization component and a low-level
process component for robust training and ongoing optimization. Thereby, a special focus of this
thesis was on addressing the control optimization problem and reaching a threefold reduction of
its complexity. The control framework extends beyond technical parameters to include order-
related aspects, marking a step towards the development of intelligent products with autonomous
process navigation. The integrated hyper-heuristic algorithm optimizes conflicting objectives
and enhances decision-making transparency, addressing the common black-box issue in deep
learning. The approach further indicates robustness against order-induced variations. Validating
the hybrid scenario implications was crucial, with performance metrics observed in simulations
confirmed in an actual application.

A qualitative categorization between the research and practice can be proposed based on the
first bundle of publications and the relationship between product diversity and volume proposed
by Koren (2010). Therefore, Figure 10.2 expands on the initial Figure 1.2 of Koren (2010)
and proposes an integration of the reviews findings. As indicated by Koren (2010), there’s an
increasing trend towards individualization, enabling parts of individualization, also known as
mass customization, through line flows and robotics, thus achieving moderate variety. In contrast,
deep learning based production control research, as emphasized in the first two publications,
is often applied to job-shop scenarios. While being highly adaptive, these job-shops exhibit
limited productivity and may not adequately map required production volumes, as indicated
in Figure 10.2. Despite these differences, current research pursues highly adaptive control
approaches from a structural perspective, in contrast to practice, which focuses on efficiency and
optimized productivity. Modular systems, as suggested by Reichwald and Dietel (1991); Zäpfel
(2000); Kellner et al. (2020), can be used to achieve synergies and potential throughput increases,
categorized by lower variety but higher volume. This research trajectory could lead to closer
alignment with real-world production scenarios, suggesting a shift towards larger volumes with
less variety. However, this is an assumption, and a validation of this trajectory in comparison to
other strategies must be subject to future research, as outlined in Section 11.2.
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2000

1980

1955

Product variety

Product volume 
per variant

Line flows, 
robotics

assembly 

Job-shops

Proposed modular process -
publications 3-5 

Focus of current 
deep learning 
based production 
control research - 
publications 1 and 2

2020

Personalized production

Mass customization

Mass production

Assumed trajectory 
for modular and 

job-shop processes 

Trajectory according 
to Koren (2010) 

Figure 10.2 Production variety and volume - deep learning research and industry with own classification,
the left trajectory is adapted from Koren (2010), while the dotted line resembles the proposed

trajectory

10.2.2 Research transfer to operational practice

Transitioning a theoretical framework into practical application necessitates the creation of an
integrative process model. The control framework proposed in this thesis was transferred to
the Center for Industry 4.0. The adaptability of this framework to various real-world settings,
leveraging the merits of hyper-heuristics, becomes a point of inquiry. An iterative four-step
procedure model is suggested, detailed further by sub-steps in Figure 10.3. Each sub-phase is
elaborated upon, supplemented by representative questions and focal points. Also, examples
linking directly to the discussed framework are discussed.

Converging and integrating simulation results into operations necessitates thorough preliminary
analysis. The initial focus is on evaluating product parameters, as indicated in point 1.1 of Figure
10.3, going beyond just production quantity and variety specifications. A detailed requirements
definition and review of sub-variants and corresponding processes is pivotal since foundational
decisions for ensuing simulations depend on these insights. The correlation of product and
process directly influences the required optimization complexity. Hence, factoring in process
steps, their duration, and potential challenges during modeling is vital for practical application.
The product thus acts as the starting point for an in-depth process analysis, which is essential
for defining all structural, organizational, and algorithmic framework conditions. Concurrently,
an analysis of extant process data (1.2) determines the available, pertinent data and any further
data collection needs, like product-specific machine failure rates, which can serve as auxiliary
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Figure 10.3 Integrative and interactive process model for the framework implementation
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quantitative process data.

Subsequent to this foundational analysis and consideration of broader structural parameters,
the attention shifts towards examining pre-existing stipulations for the simulation design and
development (2), especially in the brownfield sector. Often, these stipulations can limit full
process overhauls both technically and financially. This necessitates a comprehensive structural
analysis of the system levels under consideration, systematically illustrated in Figure 10.4.

The system levels in Figure 10.4 are adapted from the management and communication levels
as per Langmann (2010). It’s crucial to note that not every system can consistently apply the
same production control as proposed in this thesis, which resembles a limitation in terms of
transferability. Within this scope, the systemic intersection where planning activities end and
operational control begins, is typically termed the order release point, or operational equilibrium,
as indicated on the left in Figure 10.4. In horizontal perspectives, on the integration of information
within supply chain networks, such an equilibrium is less achieved due to the systems being less
connected. This issue is further compounded by additional vertical planning complexities in
the operational equilibrium. Owing to the escalating complexity of planning and the expense
associated with planning data generation and preparation, providing error-free planning data
becomes highly expensive. This often leads to the generation of non-executable production
schedules (Lödding, 2016; Mayer et al., 2016; Lödding, 2019).

The challenges in planning and execution are continued in the critical distinction between
either centralized or decentralized planning and control systems (Leitão and Restivo, 2006;
Meissner et al., 2017). This distinction is then further manifested in either hierarchical or
heterarchical organizations (Sallez et al., 2010). Also, in current research on deep learning
based production, the equilibrium or the lack thereof between planning and control, as well
as between hierarchical and heterarchical, and centralized and decentralized organization, has
been assessed predominantly from one perspective (see Chapters 4, 5, Publications 1 and 2).
Consequently, it becomes imperative to leverage deep learning based methodologies from their
constrained contexts and situate them within a broader planning and control framework. Rigorous
analysis of this operational equilibrium could facilitate optimal control adaptability grounded
in structure while preserving planning proficiency in deep learning based systems, thereby
demarcating decision boundaries in deep learning driven production and ensuring manageable
complexity. This methodology not only mitigates the escalating Curse of Dimensionality in
complex production systems, but also addresses the structural control complexity as delineated
in Duffie (1982) or Duffie and Piper (1986). The latter suggests an exponential increase in
complexity as a function of system size, emphasizing the need for advanced and potentially
modular production control strategies. This is also a part of the future research directions
discussed in Section 11.2.
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Figure 10.4 Taxonomy of deep learning model integration capabilities

In a modular, multi-layered production system, the boundaries between modules and layers can
be flexibly defined. This allows for a operational equilibrium of control and planning between
different layers of modules. For example, in Figure 10.4 on the left, this equilibrium is depicted
between the first and second module layers. In the first layer, there can be a focus on planning
activities , while the layers below can utilize real-time optimization control methods, as proposed
in this thesis. This decentralized system enables multiple agents to reduce decision complexity
and incorporate specialized optimization and operational knowledge. At higher levels, the
centralized planning is responsible for long- to medium-term optimization, considering network
and intra-logistics effects like batch tasks. Lower module layers then handle reactive control
tasks.

However, this clear differentiation between module layers poses challenges in other production
concepts, such as serial production or job-shops. For instance, serial productions, with production
schedules planned days in advance, analogous to the Perlenkette approach in automotive manu-
facturing (Weyer, 2002; Herlyn, 2012), might leave only a limited space for control optimization,
as indicated by the green dotted line at the bottom. Given the complexity of automotive products,
supply orders would need pre-scheduling several days ahead, followed by just-in-time execution.
Consequently, businesses must establish the operational equilibrium considering their products
and holistic ecosystem information. In contrast, job-shops, often one-layered as analyzed in the
first bundle of publications, can allow a broader control scope. Simultaneously, job-shop systems
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could also rely on fully planned operations, which would changed the dotted line to the bottom
in Figure 10.4.

Each scenario impacts the system and the equilibrium between production control and planning
differently, as shown by the arrows on the left side in Figure 10.4. The transition from centralized
to decentralized principles also plays a significant role in decision-making for both single-agent
and multi-agent systems. In this context, the ADACOR reference architecture for holonic systems
suggests designing a system that is as decentralized as possible, yet as centralized as necessary
(Leitão and Restivo, 2006). Therefore, the equilibrium must be set individually, giving modular
or grouped production systems more flexibility in determining and establishing such a systemic
equilibrium.

Beyond the planning and control levels, one can expand perspectives to both the CPS at the
bottom and the organizational level at the top. This encompasses both microscopic aspects, like
robotics control, and macroscopic ones, including analysis of the entire corporate structure with
its suppliers and customers. A bottom-up approach, moving from higher levels to the shop floor,
brings increased specificity. In contrast, a top-down perspective broadens the solution range, with
rising control complexity. The effectiveness of this complexity varies. As specificity intensifies,
such as in individual assembly processes, localized solutions become more appealing.

Referring back to the design and development process depicted in Figure 10.3, following the
initial structure and inherent organization definition, there are critical steps within the conceptual
procedure model that demand systematic execution for building the simulation (2). A primary
task entails converting relevant process and order data into the states and the reward function.
Moreover, integrating product processes is crucial, ensuring the incorporation of previously
identified processing data. Post-integration, the automated training phase commences, detailing
the neural network specifics and seeking appropriately trained matches. Within this framework,
analytical tools are incorporated for process performance evaluation and benchmarking. These
tools facilitate comparisons with various standards and historical data, like previously recorded
throughput times.

The next step (3), transferring the devised model into a real-world context, is pivotal. While
various approaches might be suitable for this transition, a gradual implementation with consistent
evaluation and monitoring is advised. Ideally, the agent should obtain data from the real system
that mirrors what it garnered during simulation, indicating a direct equivalence in the logistic
process definition. An illustrative application is seen with autonomous mobile robots. They can
receive, aggregate, and compile system data, with the control framework filtering and relaying
only pertinent information to the neural network. Based on the particularly efficient Pandas
data-frames used in the simulation, real-time decision-making is enabled.

In the last step (4), to guarantee the approach’s efficacy, ongoing refinement of the model is
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essential for a continuous improvement process. This phase encompasses routine benchmarking
to maintain the model’s relevance and efficiency. It involves recurrent navigation through the
iterative product- and process-centric loops, aiming to maintain a robust model. The adaptation
of models in Figure 10.3 becomes essential as soon as the system conditions change in such a
way that either a major or minor adaptation of the control policy is required, which necessitates
re-training efforts. In the case of a major product change, it is required to run through the
entire process again through the product-centered iteration. This is because the majority of
processes are affected by such changes through the introduction of new manufacturing processes
or the adaptation of process chains. In this context, a re-evaluation of the structural conditions
is required, and the modules must be adapted at the manufacturing and distribution levels.
This contrasts with process-centered iteration. If the structural conditions remain constant and
only minor modifications need to be made, Process-Centered Iteration allows intra-modular
adjustments that only cause reduced re-training efforts. Such changes may include, for example,
the introduction of an additional process step, the implementation of a sub-product, or the
addition of another quality assurance level.

10.2.3 Managerial insights

Scientific discussions have frequently highlighted the potential for the proposed approach to
be effortlessly integrated into real-world applications (Mohammed et al., 2020). Given the
current economic landscape, there is an increasing need for managers to enhance cost and
usage efficiency in manufacturing companies through novel control approaches which requires
evaluating a diverse set of strategies. As data accumulation continues to expand across various
sources, deriving meaningful insights and best practices from this data can position companies
advantageously for future challenges (Horng et al., 2020).

As production systems become more interconnected, it leads to the evolution of novel business
models. Concurrently, the fastening product cycles necessitate systems to exhibit heightened
adaptability. Factors like 24-hour deliveries, bespoke customer demands, and loyalty programs
can enhance sales and improve customer retention, but they require proficient control and
oversight (Alshurideh et al., 2020; Kim et al., 2021). An expanded parameter set can amplify
the complexities involved in process management and optimization as indicated throughout
the techno-economical evaluation. Conventional algorithms, requiring manual calibration, may
soon be inadequate for expansive systems, potentially binding companies to specific software
vendors. To circumvent this, companies should consider strategies that boost process adaptability,
diminish process variability, and improve production robustness. It’s pivotal for these entities to
regard emerging technologies as an integral facet of their future system strategy. Particularly
regarding deep learning, often misconstrued as a black box, it’s crucial to assess and substantiate
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its efficacy through tangible outcomes.

In the production context, deep reinforcement learning demonstrates its efficacy as a tool for
process optimization across diverse application areas. Its inherent adaptability and robustness
contribute to decreased operational costs, increased uptime, and substantially reduced manual
process interference. In this thesis, by employing hyper-heuristics, there was an observed
profit increase of approximately 7% in the investigated scenario. Additionally, service penalties
decreased by as much as 40%. Notably, when benchmarked with conventional rules, the tardiness
of critical orders witnessed a 100% reduction in specific instances. Therefore, through deep
reinforcement learning, there’s potential for in-depth analysis and optimization of both customer-
centric parameters and on-site operational procedures.

The framework’s reward and optimization function provide considerable flexibility for the control
objectives and can be tailored using various parameters or weightings, contingent on the business
and process model. The linear reward function facilitates the inclusion of conflicting objectives
that necessitate explicit trade-offs and objective balancing. Different process management
strategies can further be implemented at distinct levels.

For the realization of the suggested approach, the operational equilibrium was outlined, facili-
tating a nuanced distinction between planning and control tasks. To authenticate the viability
and effectiveness of this equilibrium, simulation methods, such as the aforementioned CoBra
framework, can represent cost-efficient evaluation tools. By utilizing these simulations, busi-
nesses can gain preliminary insights and pinpoint viable application areas. It’s worth highlighting
that both the simulation and the foundational neural models of the control framework are open
source, further lowering barriers for first-time users. For the tangible translation and assessment
of this theory into industrial practices, initiating pilot studies is advised. These studies aim to
evaluate the value-added and relevance of deep reinforcement learning within specific scenarios.
Concurrently, active participation from management is paramount, their involvement is pivotal
in initiating organizational shifts and facilitating the adoption of pioneering technologies.
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11 Summary
In this thesis, the emphasis was on the development of a deep learning based production control
framework. This framework should not only be highly adaptable but should also facilitate the
improvement of key performance indicators such as throughput times or tardiness. According to
the VDI5201 definition, an adaptive system should efficiently execute systemic changes with
minimal effort, enabling it to continuously adapt to evolving external and internal conditions,
thereby enhancing company competitiveness (VDI, 2017). Such adaptations encompass the
system responsiveness to machine breakdowns, the flexibility in the face of fluctuating order
volumes, or the incorporation of system functionalities and capacities.

In the first bundle of publications, the field of deep learning based production was analyzed
and structured. It was observed that while deep learning made substantial advancements in
recent years, it was primarily applied to constrained problem domains. To date, there’s a notice-
able absence of comprehensive frameworks for multi-agent systems. Additionally, a taxonomy
was proposed to classify deep learning production methodologies, offering a transparent rep-
resentation of both the arrangement of the agents involved and the foundational algorithmic
structure.

Based on these findings, specific requirements are identified, which are subsequently converted
into design specifications for a technical artifact, adhering to the DSRM approach, in the second
bundle of publications, encompassing publications three to five. An iterative development process
was employed, leveraging system structure, organization, and algorithm as a threefold foundation
for leveraging system adaptability.

The detailed findings are incorporated into a deep learning based production control framework.
The simulated control framework varies across multiple levels and agents, each controlled by a
hyper-heuristic that embeds a deep reinforcement learning algorithm with dispatching rules. The
modular components offer flexibility in configuration and adaptation, facilitating the creation of
systems with diverse sizes and capacities. Due to the standardization of the modules and agents,
neural networks can be re-used or trained for new modules. The neural networks are stored in a
stack accessible to all agents. It can be specifically defined for each production agent whether
specific networks should be reused. If not, the control framework automatically creates new
neural networks to be integrated into the corresponding agents. This guarantees not only a high
degree of scenario adaptability but also rapid transitions without compromising the foundational
knowledge base.

Individual agents, like distribution and manufacturing agents, undergo parallel training and
optimization for specific performance indicators. Results show that the deep learning based
control framework outperforms traditional dispatching rules used in the industry, enabling
multi-objective optimization. Improvements are observed in technical indicators such as work-
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in-progress rates, order indicators like throughput times, and economic indicators, including
profit. The optimization strategy also shows robustness in handling varying order volumes. The
integration of deep reinforcement learning enables real-time control during operational mode
without straining computational resources. Additionally, the developed technology undergoes
practical evaluation in a real-world environment, specifically at the Center for Industry 4.0.

While this thesis addresses the underlying research questions, it’s important to acknowledge its
limitations for a balanced evaluation. These limitations, detailed in Section 11.1, lead to fields
for future research, that are further elaborated in Section 11.2.

11.1 Critical appraisal of the thesis

In this thesis, a deep learning based control framework was designed to optimize production
processes. Tailored to address pivotal research queries, it’s imperative to consistently conduct a
critical evaluation of both the developed artifact and its derived outcomes.

First, during the design and evolution phase of the control framework, efforts focused on expand-
ing and deepening its scope. Although the framework does not fully represent real conditions or
a complete digital twin, this limitation is intentional. It incorporates only aspects relevant to the
specific problem and scope, thus reducing optimization complexity and implementation efforts.
This constrained modular approach, however, may limit the framework’s applicability to other
productions areas, such as serial production lines. Therefore, it is important to contextualize the
simulations and evaluations within the given scientific and practical contexts. While the frame-
work could be applied in different industries, implementing a modular and semi-hierarchical
structure isn’t always feasible. Also, as highlighted by Heger (2007), Wiendahl et al. (2015),
and ElMaraghy and Wiendahl (2019), further adaptability factors such as scalability, modularity,
compatibility, mobility, and universality are critical, especially in brownfield scenarios. There-
fore, future developments should also respect and include elements like conveyor systems, that
are widely used in practice, in addition to autonomous mobile robots. Also, many companies
use specialized software for production simulations, and while the adaptability of the control
framework presented in this thesis is notable, its transferability to such systems needs further
exploration.

Second, when examining performance from the perspective of key indicators, it’s beneficial
to consider additional evaluative parameters for a more in-depth understanding. One of such
parameters can be the optimal modularity factor. While these parameters offer valuable insights
into networked systems, their focus is less algorithmic, as highlighted by Newman and Girvan
(2004). In terms of benchmarking and optimization evaluation, more exhaustive indicators and
interconnected perspectives, such as the production operating curve, that combines work-in-
progress levels, throughput times, and capacity utilization (Nyhuis and Wiendahl, 2012), require
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further analysis, both in simulations and hybrid testing at the Center for Industry 4.0. Nyhuis
and Wiendahl (2012) also discusses the flow rate as a central process metric. Referring to this
flow rate and the data from the fifth publication, specifically Tables 9.4 and 9.5, for all orders, an
average minimum throughput time of 25.5 seconds was observed, transportation times included.
For prioritized rush orders, the average unweighted flow rate is approximately 2.3, derived from
an average unweighted throughput time of 57.9 seconds. For regular orders with a throughput
time of 83.0 seconds, the flow rate is around 3.2, which appears reasonable when compared
to the metric for prioritized rush orders. However, it is crucial to benchmark these metrics
against industry standards to ensure they are contextualized within the specific application under
consideration. This is important to accurately assess the system’s efficiency and competitiveness
in a real-world industrial context.

Third, in the context of the deep learning control framework, it’s important to acknowledge the
data-intensive training and operation process. This brings up the crucial question, if there is
sufficient data to integrate the control framework into real applications. In real environments,
according to Lödding (2019), there is often a gap between the data used for planning and the
actual manufacturing system, which would also represent a central implementation hurdle for
the developed framework. Also, further evaluations focusing on control reliability and safety
would be crucial to uncover any unexpected behaviours, potential errors, or anomalies not
identified in this thesis. Regarding the choice of the hyper-heuristics top-level component, a
deep Q-Network was selected due to its impressive results. Although overfitting was not an
issue in this study, further learning and operational investigations are necessary, particularly to
further enhance stability and to prevent worst-case behaviors such as catastrophic forgetting
(during training phases). From a broader control perspective, this thesis focuses only on control
activities that enable adaptive behavior and real-time responses. However, it falls short in
incorporating planning capabilities for medium- to long-term optimization. Therefore, while
deep reinforcement learning can integrate mid- to long-term goals into the reward function,
planning approaches might be more suitable for strategic operations. This planning limitation is
addressed in detail in the future research section.

11.2 Fields for future research

Based on the conducted research and the formulated limitations, there are potential fields of
research that warrant deeper exploration in the future. These are presented in the bullets below.

• Structural and process perspective - enhancing the framework:
First, the potential for detailed simulation of support processes is a key area for future
exploration. This also includes containers with homogeneous or fluid substances like
plastics, as well as modeling complex assembly processes with diverse, product-dependent
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sequences, and handling batch processes and re-entrant flows. Additionally, the framework
can be improved with more structural details, surpassing the capabilities of methods in the
second bundle of publications. Compared to the publications in the second bundle, further
refinements and extensions were already made accessible and tested, offering a broader
scope for two-dimensional design. This is illustrated in Figure 11.1, which is seamlessly
integrated into the automated neural network generation and control optimization process
within the CoBra framework.
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Figure 11.1 Extended simulation framework

Second, a vital field for future research is the layout and process optimization. Although
less explored in this thesis, using the existing simulation tool and overlaying control
framework for targeted layout optimization can enhance process efficiency and routing.
Integrating layout optimization strategies, particularly by analyzing production bottlenecks
and logistics routes, offers substantial potential to leverage both the efficiency and effec-
tiveness of simulated production processes. This approach emphasizes the importance of a
comprehensive optimization strategy, aiming at maximizing system performance through
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focused but integrative optimization efforts. The layout optimization also encompasses
comparisons and benchmarks between job-shop processes and modular system designs,
aimed at validating their respective strengths and potential synergies.

Third, it’s important to recognize that the control framework’s application extends beyond
just modular production. Its flexible design allows for use in various contexts, not only in
production settings but also in solving computational challenges like real-time scheduling
and vehicle routing. Its adaptability to other intra-logistics problems, such as warehousing,
is a key feature. The framework’s ability to control systems defined by discrete events
broadens its potential uses beyond its initial production focus. With suitable modifications,
the framework can be adapted for various scientific and technical fields, underscoring its
interdisciplinary value.

• Organizational perspective - interdisciplinary approach:
Integrating additional planning activities into the order release and ongoing planning
process presents a notable opportunity to connect production planning and control more
effectively. This area, particularly the balance between these elements, has been largely
overlooked in existing deep learning based production research. Figure 10.4 suggests
an equilibrium that merits further investigation, potentially leading to a dynamic model
that encompasses these considerations. Additionally, the shift from centralized planning
to decentralized control, both within and between companies, has not been extensively
studied, as indicated by Mayer et al. (2016). This transition is crucial for achieving a
balance between long-term global optimization and short-term local responsiveness, a
concept yet to be fully explored in current research.

The concept of a fluid organization and system boundaries might be beneficial in the
context of the operational equilibrium. This idea is represented in the matrix production
system shown in Figure 11.2. The system is modular, aligning with the Divide and Conquer
principle by ElMaraghy et al. (2009), which advocates for dividing a whole system into
multiple manageable units. This modularization also draws inspiration from modern
warehouse intralogistics, such as those in Amazon Robotics fulfillment centers. In this
setup, agents (or robots) can adjust their actions based on their location and move between
different virtual areas and distribution modules within the organization, as illustrated by
the colored modules in Figure 11.2.

Future research should investigate the feasibility and efficiency of robots moving in and
out of these modules in a semi-heterarchical control layout. In this design, robots would
have the autonomy to switch policies, potentially eliminating stops at input-output buffers
and enabling continuous transport. However, this approach might lead to occasionally
empty modules and reduced process efficiency. To address this, the reward function for
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the system should include considerations for module occupancy, penalizing situations
where a module remains empty. This approach underscores the complex interplay between
planning and control. Medium-term planning, informed by upcoming order volumes,
could strategically influence module occupation and utilization. This expands the scope of
planning from just managing transitions and order releases to also include medium-term
capacity control and reward parameter adjustments.

• Algorithmic perspective:
Expanding on the prior mentioned operational equilibrium, incorporating planning ca-
pabilities into the top distribution modules is a significant advancement not previously
addressed in this thesis. This leads to the development of a deep learning algorithm that
acts as a master algorithm or as a prior predictive planning tool. This algorithm would
adjust its overarching strategy according to the overall state of production, thereby modi-
fying real-time operations in anticipation of future needs. This also supports the matrix
fusion concept, invented by Siegert et al. (2018). This approach could improve the balance
or fusion of planning and control, especially within the lower modules. For instance,
during periods with high levels of work-in-progress, the planning strategy could shift
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to prioritize overall throughput and throughput time in the deep reinforcement learning
reward function, rather than focusing on specific order prioritization. This strategic shift
aims to achieve mid- to long-term global objectives, addressing the dilemma of process
planning as described by Gutenberg (1971) and Nyhuis and Wiendahl (2012). It goes
beyond the tactical scope of hyper-heuristics, introducing a wider strategic perspective.

Additionally, the development of intermediate-level algorithms, like those based on a
factor model, offers further potential for strategic policy generation. A relevant example
is the genetic algorithm for creating suitable neural networks, as explored by Lang et al.
(2020). It’s important to note that the optimal use of such algorithms would be during
the configuration and training phase, rather than in real-time operations, due to the high
operational costs of real-time creation and optimization. Keeping computational demands
and calculation times manageable is crucial for enabling feasible decentralized and real-
time decision-making.

From a broader perspective, this thesis highlights the further need for effective transfer of
scientific research into practical applications, particularly in the realm of hybrid model factories.
Future initiatives should therefore concentrate on enhancing this transfer and implementation
process. A gradual rollout strategy is recommended, prioritizing continuous access to essential
information for detailed evaluations.
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12 Conclusion
In the current production landscape, companies are confronted with continuously increasing
requirements such as shorter product life cycles, increasingly complex technical processes, and
fluctuating procurement and sales markets. For this reason, innovative new control approaches are
needed to remain competitive. The objective is to reduce manual intervention and minimize the
need for expert knowledge through data-driven manufacturing processes that allow continuous
process monitoring, learning, and optimization. Within this context, the integration of Industry
4.0 concepts and other advanced industrial technologies gained prominence in recent years.

In this thesis, a production control framework based on deep learning is developed, following
the DSRM approach by Peffers et al. (2007) and the iterative design process that incorporates
the relevance and rigor cycles as proposed by Hevner (2007). The objective is not only to meet
specific use-case requirements, but to structure and systematically reduce the inherent control
complexity. A two-staged approach is adopted to ensure a comprehensive analysis. First, this
thesis contributes to a deeper penetration and structuring of deep learning based production
research, focusing on production planning and control. Second, it presents an adaptive and
self-configuring control framework based on deep reinforcement learning. This framework serves
as a tool to implement a widely applicable system for various modular production scenarios.

As part of the first fundamental research phase, specific studies are conducted to analyze the
prevailing research field of deep learning based production systems. Thereby, deep reinforcement
learning is identified as particularly suitable for the dynamic and continuously evolving domain
of production control. This technique is characterized by its interactive learning capabilities
and, in contrast to other deep learning methods, requires comparatively few computational
resources in operational mode whole being significantly faster in calculation. In addition to
the superior performances achieved so far, this emphasizes its suitability for its deployment
in real-time systems. Subsequently, employing a novel organizational algorithmic taxonomy,
existing approaches are investigated regarding their combined use in terms of agent composition
and orchestration. In these studies, it is further emphasized that modular production systems
based on deep learning and advanced organizational methodologies, such as multi-layered or
multi-agent based production systems, garnered minimal attention in prior research, both in
individual and combined analyses.

In this thesis, standardized control and processing modules are exploited to ensure scalability
and to limit the optimization space. These modules, configurable and modifiable with integrated
resources, facilitate direct systemic changes and procedural adjustments. Their design reduces
the need for large state spaces, thus decreasing structural and dynamic process complexities.
The modules are organized in semi-heterarchical manufacturing and distribution layers, that
can be designed for different performance indicators and trained with distinct reward functions,

299



12 Conclusion

supported by a standardized neural network stack for knowledge transfer and automated network
generation. The holistic approach integrates structural, organizational, and algorithmic elements,
postulating that a comprehensive reduction in production control complexity necessitates the
simultaneous consideration of all three aspects. This thesis leverages a deep reinforcement
learning algorithm by using a hyper-heuristic that differentiates between optimization and
operation activities. This hybrid and decentralized approach merges a deep learning based
top-level heuristic with low-level dispatching rules. The deep reinforcement learning component
leverages control optimization, learning, adaptability, and scenario-specific process optimization.
In parallel, conventional rules provide consistent process adherence and reliability.

The conducted simulated and real evaluations confirm the performance of the control concept for
multi-objective optimization. The framework exhibit a structural and procedural adaptability
that enables it to react flexibly to order fluctuations and to handle varying order quantities.
It also reveals a high degree of robustness in optimization, especially in the face of varying
work-in-progress levels and order quantities. The framework also enables balanced optimization
by dynamically evaluating optimization parameters. Prioritized and urgent jobs thus exhibit
significantly shorter throughput times and lower tardiness than standard orders, which contributes
to improved response times. This leads to a scenario-specific focus on pre-defined objectives,
which can also be economic in nature. The application of conventional rules also helps to elevate
the explainability of the chosen actions, mitigating the typical characterization of deep learning
methods as black-box approaches.

Finally, this thesis highlights the capabilities of deep learning in optimizing performance indica-
tors in modular production systems while ensuring system adaptability and robustness. However,
it is observed that such applications are notably sparse in the broader field of deep learning based
production. The provided framework aims to be a foundational tool for researchers and industry
professionals, assisting them in exploring the potential of deep learning in production control and
designing their own application scenarios. Given the industrial advancements and the Industry
4.0 capabilities, combined with the evident gaps in real-world implementations, there’s a growing
imperative for both research and industry to explore the full scope and applicability of deep
learning in complex and large-scale production environments and to transfer novel approaches
into operational practice.
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