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Abstract

Rapidly growing seismic and macroseismic databases and simplified access to advanced machine
learning methods have in recent years opened up vast opportunities to address challenges in
engineering and strong motion seismology from novel, datacentric perspectives. In this thesis,
I explore the opportunities of such perspectives for the tasks of ground motion modeling and
rapid earthquake impact assessment, tasks with major implications for long-term earthquake
disaster mitigation.

In my first study, I utilize the rich strong motion database from the Kanto basin, Japan, and
apply the U-Net artificial neural network architecture to develop a deep learning based ground
motion model. The operational prototype provides statistical estimates of expected ground shak-
ing, given descriptions of a specific earthquake source, wave propagation paths, and geophysical
site conditions. The U-Net interprets ground motion data in its spatial context, potentially
taking into account, for example, the geological properties in the vicinity of observation sites.
Predictions of ground motion intensity are thereby calibrated to individual observation sites and
earthquake locations.

The second study addresses the explicit incorporation of rupture forward directivity into
ground motion modeling. Incorporation of this phenomenon, causing strong, pulse like ground
shaking in the vicinity of earthquake sources, is usually associated with an intolerable increase
in computational demand during probabilistic seismic hazard analysis (PSHA) calculations. I
suggest an approach in which I utilize an artificial neural network to efficiently approximate the
average, directivity-related adjustment to ground motion predictions for earthquake ruptures
from the 2022 New Zealand National Seismic Hazard Model. The practical implementation in
an actual PSHA calculation demonstrates the efficiency and operational readiness of my model.
In a follow-up study, I present a proof of concept for an alternative strategy in which I target the
generalizing applicability to ruptures other than those from the New Zealand National Seismic
Hazard Model.

In the third study, I address the usability of pseudo-intensity reports obtained from macro-
seismic observations by non-expert citizens for rapid impact assessment. I demonstrate that
the statistical properties of pseudo-intensity collections describing the intensity of shaking are
correlated with the societal impact of earthquakes. In a second step, I develop a probabilistic
model that, within minutes of an event, quantifies the probability of an earthquake to cause
considerable societal impact. Under certain conditions, such a quick and preliminary method
might be useful to support decision makers in their efforts to organize auxiliary measures for
earthquake disaster response while results from more elaborate impact assessment frameworks
are not yet available.

The application of machine learning methods to datasets that only partially reveal char-
acteristics of Big Data, qualify the majority of results obtained in this thesis as explorative
insights rather than ready-to-use solutions to real world problems. The practical usefulness of
this work will be better assessed in the future by applying the approaches developed to growing
and increasingly complex data sets.
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Zusammenfassung

Das rapide Wachstum seismischer und makroseismischer Datenbanken und der vereinfachte Zu-
gang zu fortschrittlichen Methoden aus dem Bereich des maschinellen Lernens haben in den
letzen Jahren die datenfokussierte Betrachtung von Fragestellungen in der Seismologie ermög-
licht. In dieser Arbeit erforsche ich das Potenzial solcher Betrachtungsweisen im Hinblick auf
die Modellierung erdbebenbedingter Bodenerschütterungen und der raschen Einschätzung von
gesellschaftlichen Erdbebenauswirkungen, Disziplinen von erheblicher Bedeutung für den lang-
fristigen Erdbebenkatastrophenschutz in seismisch aktiven Regionen.

In meiner ersten Studie nutze ich die Vielzahl an Bodenbewegungsdaten aus der Kanto Re-
gion in Japan, sowie eine spezielle neuronale Netzwerkarchitektur (U-Net) um ein Bodenbewe-
gungsmodell zu entwickeln. Der einsatzbereite Prototyp liefert auf Basis der Charakterisierung
von Erdbebenherden, Wellenausbreitungspfaden und Bodenbeschaffenheiten statistische Schät-
zungen der zu erwartenden Bodenerschütterungen. Das U-Net interpretiert Bodenbewegungs-
daten im räumlichen Kontext, sodass etwa die geologischen Beschaffenheiten in der Umgebung
von Messstationen mit einbezogen werden können. Auch die absoluten Koordinaten von Erdbe-
benherden und Messstationen werden berücksichtigt.

Die zweite Studie behandelt die explizite Berücksichtigung richtungsabhängiger Verstär-
kungseffekte in der Bodenbewegungsmodellierung. Obwohl solche Effekte starke, impulsartige
Erschütterungen in der Nähe von Erdbebenherden erzeugen, die eine erhebliche seismische Be-
anspruchung von Gebäuden darstellen, wird deren explizite Modellierung in der seismischen
Gefährdungsabschätzung aufgrund des nicht vertretbaren Rechenaufwandes ausgelassen. Mit
meinem, auf einem neuronalen Netzwerk basierenden, Ansatz schlage ich eine Methode vor, um
dieses Vorhaben effizient für Erdbebenszenarien aus dem neuseeländischen seismischen Gefähr-
dungsmodell für 2022 (NSHM) umzusetzen. Die Implementierung in einer seismichen Gefähr-
dungsrechnung unterstreicht die Praktikabilität meines Modells. In einer anschließenden Mach-
barkeitsstudie untersuche ich einen alternativen Ansatz der auf die Anwendbarkeit auf beliebige
Erdbebeszenarien abzielt.

Die abschließende dritte Studie befasst sich mit dem potenziellen Nutzen der von makro-
seismischen Beobachtungen abgeleiteten pseudo-Erschütterungsintensitäten für die rasche Ab-
schätzung von gesellschaftlichen Erdbebenauswirkungen. Ich zeige, dass sich aus den Merkmalen
solcher Daten Schlussfolgerungen über die gesellschaftlichen Folgen eines Erdbebens ableiten las-
sen. Basierend darauf formuliere ich ein statistisches Modell, welches innerhalb weniger Minuten
nach einem Erdbeben die Wahrscheinlichkeit für das Auftreten beachtlicher gesellschaftlicher
Auswirkungen liefert. Ich komme zu dem Schluss, dass ein solches Modell, unter bestimmten
Bedingungen, hilfreich sein könnte, um EntscheidungsträgerInnen in ihren Bestrebungen Hilfs-
maßnahmen zu organisieren zu unterstützen.

Die Anwendung von Methoden des maschinellen Lernens auf Datensätze die sich nur begrenzt
als Big Data charakterisieren lassen, qualifizieren die Mehrheit der Ergebnisse dieser Arbeit als
explorative Einblicke und weniger als einsatzbereite Lösungen für praktische Fragestellungen.
Der praktische Nutzen dieser Arbeit wird sich in erst in Zukunft an der Anwendung der erar-
beiteten Ansätze auf wachsende und zunehmend komplexe Datensätze final abschätzen lassen.
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Chapter 1

Introduction

1.1 Earthquakes – a perpetual threat throughout human history

The terrifying and at times disastrous consequences of large earthquakes have troubled mankind
since earliest history. An impressive historic example for the awe-inspiring intimidation that
these natural events posed to early societies can be found in the bamboo annals (see Fig. 1.1),
a chronicle of ancient China, that mentions the shaking caused by a major earthquake that
occurred presumably in the 16th century B.C. close to Mount Tai in today’s Shandong province
in China (Legge, 1865).

Figure 1.1: Excerpt from the bamboo annals which is commonly considered the first report
of an earthquake in human history. The event presumably occurred at Mount Tai, China, in
the 16th century B.C. and is apparently related to the death of the then emperor Fah. Figure
modified from Legge (1865).

After this transcription, which is today considered the first ever qualitative description of an
earthquake, it took another 2,000 years until the first seismoscope, a rudimentary instrument
to detect ground shaking, was developed by the chinese philosopher Chan Heng in A.D. 132

1
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(Dewey and Byerly, 1969). Ever since, the observation of seismic waves and the examination of
the underlying processes has progressed, not least motivated by the disastrous consequences of
events such as the 1556 earthquake in the Shaanxi province, China, the deadliest earthquake to
date, causing approximately 830,000 fatalities (Kuo, 1957).

With the emergence of the elastic rebound theory (Reid, 1910) in the early 20th century and
the broad acceptance of the theory of plate tectonics in the 1960s, the theoretical foundation
for the description of earthquake formation was laid. At the center of these theories is the
concept that the Earth’s lithosphere, is divided into multiple tectonic plates that float on the
underlying, more viscous asthenosphere. Variability in the direction and speed of movement of
tectonic plates causes the accumulation of mechanical stress along the locked plate boundaries,
which eventually releases in a sudden rupture, which is accompanied by an energy release in the
form of elastic waves. With the installation of the first global network of seismic instruments,
also in the 1960s (Lay and Wallace, 1995), modern day Seismology was finally established.

Observations of seismic waves with networks like the Global Seismographic Network (GSN),
comprising 152 instruments distributed around the globe, and additional regional networks such
as KiK-net and K-net (National Research Institute for Earth Science and Disaster Resilience,
2019) covering over 1,000 observation sites in Japan for example, have made Seismology a
remarkably data rich science in recent years. In addition, both the United States Geological
Survey (USGS) and the European Mediterranean Seismological Centre (EMSC) have launched
programs to systematically collect observations of earthquake related phenomena by non-expert
citizens (Bossu et al., 2017; Wald et al., 1999), basically a return to the very same methodology
that gave us the first earthquake description in the Bamboo annals over 3,500 years ago.

The subsequent abundance of earthquake related data that we are facing today offers a wide
range of possibilities to gather new insights into the processes of the Earth’s interior system
and the resulting risks they potentially pose to modern societies. The development and proper
application of sophisticated data analysis frameworks, including also advanced technologies from
the field of machine learning, is an essential, complementary element in order to maximize
knowledge gain from large data sets.

Despite all the technological progress and the knowledge gained in the past centuries, earth-
quakes have never lost their terror. Disasters such as the recent earthquakes in February 2023
affecting Turkey and Syria, which claimed more than 50,000 lives (National Geophysical Data
Center / World Data Service, 2023), are shaking our modern society today just as they did over
400 years ago in the Shaanxi province in China. In the light of a rapidly growing world popu-
lation, the actual number of at-risk societies is expected to increase substantially in the future,
such that epicentral hits of megacities may cause up to 1 million fatalities (Bilham, 2009). Thus,
the need for seismic risk mitigation has never been greater than today.

The purpose of this thesis is to contribute to this daunting task by exploring how the abun-
dance of available data and the access to advanced methodologies such as deep learning can
be best utilized in concert with proven standards to mitigate earthquake consequences in the
future.
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1.2 Preventive earthquake disasater mitigation – Probabilistic
seismic hazard and risk assessment

Despite the considerable research efforts in the last decades regarding the precise forecasting
of future earthquakes in terms of location, magnitude, and timing, it is the prevailing opinion
among the seismological community that the occurrence of individual earthquakes is largely
unpredictable (Jordan et al., 2011). Instead, probabilistic seismic hazard assessment (PSHA)
has established as the preferred methodology to achieve long-term preparedness for earthquake-
induced ground shaking. Rather than aiming at the precise prediction of individual earthquakes,
PSHA aims to identify all earthquake ruptures that could possibly occur in the vicinity of a site
of interest. In addition, also the probability of occurence for each of these earthquake scenarios
within a given period of time (typically decades) is quantified. In a final step, the intensity
of ground shaking that would be caused by such earthquake scenarios is estimated, yielding a
probability distribution of ground shaking intensity that is to be expected in coming decades.
Such a result can subsequently be compared against the resistance of engineered structures at
the site of interest in a seismic risk assessment, and reinforcement measures can be initiated if
insufficient ability to withstand the expected shaking is attested.

Empirical ground motion models (GMMs) that predict a probability distribution of a ground
motion intensity measure (IM) given a description of an earthquake scenario (e.g., the earth-
quake’s magnitude, its distance to the site of interest, and a geophysical characterization of
the site) are an essential component in PSHA. In their classical formulation, GMMs are equa-
tion based models, the functional forms of which represent fundamental physical principles of
earthquake source scaling, wave propagation, and site amplification (Kramer, 1996b), but whose
coefficients are calibrated empirically upon observed ground motion data. Although purely
physics-based ground motion simulation is possible both from a theoretical and methodological
point of view (e.g. Graves and Wald, 2001; L. Zhao et al., 2006), limited knowledge about the
structure and the geophysical properties of the Earth’s subsurface require the empirical calibra-
tion of GMM coefficients with actual observations in most regions on the planet. When the first
GMMs were developed in the 1960s, ground motions observations were sparse, and the equations
consisted of only a hand full of free coefficients (e.g. Esteva and Rosenblueth, 1964). As data be-
came abundant and variable over the last decades, GMMs evolved into more and more complex
statistical instruments, a development that in the end could no longer achieve any significant
progress as far as model uncertainties are concerned (Douglas and Edwards, 2016; Strasser et al.,
2009), indicating that the ability of classical ground motion modeling frameworks to describe
ground motion data are increasingly being exhausted.

As a consequence, the ground motion modeling community has started to explore alternative
modeling strategies, first and foremost the relaxation of the ergodic assumption. The ergodic
assumption states that samples of ground shaking recorded over time at one specific location
follow the same distribution as samples collected at the same point in time across multiple
sites (Anderson and Brune, 1999). In practice, this assumption allows a modeler to calibrate
a GMM with a finite number of point observations sampled within a single, or across multiple
tectonic regions, and subsequently utilize it for ground motion prediction in regions tectonically
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analogous to those represented in the sampled data. In fact, however, ground motion datasets
may contain region or site specific characteristics due to geophysical properties that are either
unknown, or difficult to obtain in practice, such as the average stress drop of earthquake ruptures
within a specific tectonic setting, or the geological conditions of the subsurface underneath a site
of interest. Therefore, calibrating a GMM under the ergodic assumption with a joint dataset
containing different region- and site-specific characteristics may lead to inflation of aleatory
uncertainty that could be reduced if these characteristics were taken into account (Stafford,
2014). Such region- or even site-specific calibration of GMMs is a first step towards relaxation
of the ergodic assumption, and can considerably reduce the aleatory uncertainty provided that
a sufficiently large and dense dataset from a specific region is available.

Besides the relaxation of the ergodic assumption, also the rise of novel machine learning
techniques, especially deep learning (Lecun et al., 2015), has brought about new perspectives
to ground motion modeling in recent years. Deep learning is an increasingly popular machine
learning method that provides the opportunity to implement predictive models without actually
defining the relation between a set of predictive parameters (e.g. earthquake magnitude and
the source-to-site distance) and target parameters (e.g. a ground motion intensity measure) in
an equational form. Instead, example pairs of values of predictive and target parameters are
fed to an artificial neural network (ANN), a modeling framework designed to mimic biological
information processing (Bishop, 2006), which then autonomously adjusts its internal coefficients
(neurons) in order to map the given predictive parameters to an output that closely resembles
the desired value of the target parameter. Typical deep ANNs comprise hundreds or even
millions of neurons and are therefore prone to overfitting if no appropriate countermeasures are
taken. Therefore, a huge amount of data samples is required to ensure a stable calibration and
predictive power of the final model. If such a dataset is available, ANNs are capable of adopting
very closely subtle, non-linear nuances in datasets that might not be evident to the modeler
from classical data analysis or theoretical a priori knowledge. While the calibration of ANNs
goes along with considerable computational effort and, therefore, the necessity for advanced
computing resources, inference is highly efficient and easy to implement.

In the context of ground motion modelling, ANNs offer the opportunity to explore ground
motion data in a fully data-driven way. GMMs based on simple feed-forward ANN architec-
tures have been implemented successfully in the past (e.g. Derras et al., 2014; Dhanya and
Raghukanth, 2018; Pozos-Estrada et al., 2014), however, advanced architectures such as convo-
lutional neural networks, designed to operate on array shaped data such as images (e.g. LeCun
et al., 1989), have received little attention in the ground motion modeling community. Yet such
architectures offer interesting properties: While equation-based GMMs and simple feed-forward
ANNs consider ground motion observations as spatially independent point measurements, repre-
senting a regional ground motion dataset in its spatial context as maps and operating on it using
a convolutional neural network potentially allows the modeler to natively incorporate the spatial
context into the final GMM. The resulting model may therefore adapt to region- or site-specific
properties and can, therefore, be considered as nonergodic. Consequently, convolutional neural
networks pose a unique opportunity to join the so far independently pursued approaches of fully
data-driven modeling via ANNs on the one hand, and nonergodic modeling on the other hand.
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Another aspect in current ground motion modeling and PSHA practices that would poten-
tially benefit from refinement is the implicit way of incorporating directivity effects. Rupture
forward directivity is a kind of doppler effect that occurs when the rupture propagation along a
tectonic fault is exceptionally fast (Somerville et al., 1997). As a consequence, sites that are lo-
cated in the vicinity of tectonic faults may experience extraordinarily intense, pulse-like ground
shaking, that poses a larger seismic demand to buildings than non pulse-like shaking. Ground
motion measurements that are affected by directivity effects are a small but integral component
of most ground motion databases and are difficult to explain with GMMs that do not explicitly
take directivity into account. Consequently, the predictive uncertainty of such a GMM will be
underestimated at sites close to tectonic faults, where directivity effects are most prominent,
and overestimated at larger distances, where directivity effects are vanishing (Weatherill, 2022).

While explicit incorporation of directivity effects in ground motion modeling is realizable via
the use of directivity models such as the one by Bayless et al. (2020), extension of the PSHA
framework in this regard, although theoretically straightforward, goes along with a several hun-
dredfold increase in computational demand that would prohibit the implementation of seismic
hazard studies at regional or national scale in many cases. With the introduction of the mod-
ifier of moments approach, e.g., Donahue et al. (2019) and Watson-Lamprey (2018) suggest to
circumvent the simulation of hundreds of individual directivity scenarios that could possibly
occur on a specific rupture in a PSHA computation on the fly, and instead calculate the average
amplification pattern and its variability in the vicinity of the considered ruptures (the moment
modifiers) beforehand, as to remove this step from the actual PSHA procedure.

Because such a lookup table of amplification patterns would be impractically large to handle
in PSHA studies at regional or national scale, simplified empirical equations are fit to reproduce
the moment modifiers based on the geometric and seismic properties of ruptures. While Watson-
Lamprey (2018) demonstrated the suitability of this approach for simple rupture geometries,
accurate performance on highly complex ruptures, that are encountered more and more often in
advanced seismic source models such as the Uniform California Earthquake Rupture Forecast
v3.0 (Field et al., 2014) or the New Zealand Community Fault Model (Seebeck et al., 2023), is
questionable.

Yet again, deep learning offers promising alternatives for the implementation of the modi-
fier of moments approach that could potentially extend its applicability towards more complex
ruptures. First of all, the ability of ANNs to transfer given information into abstract features in
an extremely efficient way is an appealing feature in the light of the impractical size of moment
modifier lookup tables. Considering also the highly efficient inference, this raises the idea of uti-
lizing an ANN as an efficiently compressed and easily accessible lookup table for implementation
of the modifier of moments approach in PSHA. Furthermore, the ability of ANNs to identify
complex and subtle relations in large datasets may enable a deep learning-based model to find
meaningful relations between complicated rupture geometries and the spatial patterns of the
corresponding moment modifiers and reproduce them with greater accuracy than is achievable
via empirical equations.
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1.3 Post-event earthquake disaster mitigation – Rapid earth-
quake impact assessment and response to earthquakes

Although PSHA provides a comprehensive quantification of earthquake hazard upon which fur-
ther long-term disaster mitigation strategies can be developed, this approach cannot prevent
the occurence of individual catastrophes such as the disastrous consequences of the recent Kah-
maranmaras Earthquakes in Turkey in the near term. Therefore, also effective rapid response
to earthquakes (RRE) strategies, i.e., efficient organization and navigation of auxiliary measures
in the immediate aftermath of disastrous earthquakes, are an indispensable component in the
overall concept of earthquake disaster mitigation. Rapid earthquake impact assessment (RIA)
via frameworks such as the United States Geological Survey’s (USGS) service PAGER (Wald
et al., 2010) typically forms the basis on which authorities build their decisions in the immediate
aftermath of significant earthquakes. The PAGER methodology is a multi-step procedure where
the first step involves the analysis of seismic recordings in order to characterize the earthquake
source. Subsequently, empirical GMMs are utilized together with actual observations to esti-
mate the ground shaking across the affected area via a ShakeMap (Wald et al., 2005). Finally,
information about population density and the engineering properties of buildings are taken into
account to estimate the amount and spatial distribution of casualties and economic losses. While
the actual processing time of PAGER strongly depends on the available infrastructure in the
affected region, the average global delay between an earthquake origin time and the first avail-
able loss estimate amounts to 30min (Wald et al., 2010). Although this efficiency might be
sufficient for most practical purposes, it still leaves decision makers in an information vacuum
for a considerable period of time in which any kind of information, even if it is rudimentary and
uncertain, might be valuable.

Pseudo-intensity felt reports collected via the European Mediterranean Seismological Cen-
tre’s service LastQuake (Bossu et al., 2018b) are available rapidly after the occurence of major
earthquakes (average reporting time of 10min), and therefore present a promising option to fill
the information gap in the immediate aftermath. Pseudo-intensity felt reports are based on
macroseismic observations, i.e., observations of earthquake induced phenomena such as shatter-
ing windows, swinging ceiling lights, or damage to buildings, by non-expert citizens, who report
their experience via a smartphone application. In a second step, these observations are converted
into a pseudo-intensity value between 1 (not felt) and 12 (completely devastating) according to
the EMS-98 macroseismic scale (Grünthal, 1998). Compared to instrumental recordings of
ground shaking, uncertainties accociated with pseudo-intensities are large for multiple reasons.
First of all, the lack of expertise and potential emotional bias of earthquake witnesses may lead
to an exaggeration of the personal experience, leading to pseudo-intensity values being biased
high (Bossu et al., 2017). Furthermore, individual macroseismic observations are not considered
to be representative for the actual macroseismic intensity of an area, for which averaging over
multiple observations is crucial (Grünthal, 1998).

Despite these limitations, the general value of a rapid information source that pseudo-
intensity reports pose is widely recognized, although little benefit is derived from such in current
RRE practices. Further investigation of this so far unused potential is therefore an important
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task in the course of improving the resilience of at-risk societies to earthquakes.

1.4 The emerging relevance of Big Data in probabilistic seismic
hazard assessment and rapid response to earthquakes

According to Arrowsmith et al. (2022), Big Data Seismology is characterized by the application
of advanced machine learning (ML) algorithms for the analysis of large and complex datasets,
using specialized and high-performance computational resources. Multiple studies in recent years
have demonstrated that appropriate application of ML, especially deep learning (DL), to Big
Data can lead to scientific breakthroughs. In seismology, major breakthroughs were achieved for
example in the DL-based detection of earthquake signals in continuous, raw waveform data via
PhaseNet (Zhu and Beroza, 2019) and GPD (Ross et al., 2018). A common foundation of the
aforementioned studies, that actually brought about results of considerable practical relevance,
is the availability of data sets that can be largely characterized as Big Data in the sense of
the "5 Vs of Big Data" (Volume, Velocity, Variability, Variety, Value) (L’Heureux et al., 2017).
However, application of ML algorithms to Small Data may also grant valuable insights into the
underlying relations and structures, although the resulting models may not be readily applicable
in practice.

The previously described developments in PSHA and RRE reveal a considerable overlap
with the field of Big Data Seismology. Making a profit of the growing amounts of ground motion
records and macroseismic observations is increasingly becoming the focus of current research and
the application of DL on specialized computing hardware to further develop PSHA practices has
established in recent years. However, while the raw seismic data available at centers such as
the IRIS DMC waveform archive IRIS, 2023 (about 900TB) is indeed entering the realm of
Big Data, individual studies are usually conducted only on subsets of the same or on derived,
dimensionally reduced 1 data products. Furthermore, the Volume of data is only one among
commonly five considered criteria that describe Big Data. Therefore, careful assessment of the
actually used datasets with respect to Big Data is crucial in order to judge whether ML based
results pose experimental insights or practical solutions to real world problems.

1.5 Purpose and structure of this thesis

1.5.1 Research questions

The overarching concept of my doctoral studies was to explore novel, data focused perspec-
tives in the fields of probabilistic seismic hazard assessment and rapid response to earthquakes,
with a strong emphasis on the evaluation of deep learning methods. Rather than advancing
and challenging existing methodologies and strategies, it was my intention to open alterna-
tive perspectives on well-researched topics and to explore novel modeling approaches that may
complement traditional methods to mutual advantage. In particular, I addressed the following
research questions:

1Often only a handful of features obtained from ground motion time series are utilized, rather than the entire
time series itself. Compare section 2.1.
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Research question 1 "What are the opportunities and limitations of utilizing advanced
artificial neural network architectures for ground motion modeling in the light of rapidly growing
datasets obtained from spatially dense instrumental networks?"

Contrary to the early days of strong motion seismology when observations were
rare and the design of ground motion models heavily relied on theoretical a pri-
ori knowledge, the abundance of observations we are facing today allows us to
relax such restrictions and instead learn from actual evidence. Fully data-driven
training of artificial neural networks (ANNs) is the antithesis to hand designed
physics-inspired equations that are commonly utilized as GMMs today, because
ANN based models represent a fully impartial interpretation of ground motion
data that is free of any a priori assumptions. Breakthrough successes of basic
deep learning models in modeling complex datasets in general, and advances in
ergodic modeling of strong motion data in particular, sparked my motivation to
investigate an advanced ANN architecture, the U-Net, with respect to its poten-
tial for fully data-driven and nonergodic ground motion modeling. In chapter 3, I
present my aspirations to implement the prototype of such a model for the Kanto
region in Japan in order to learn more about the opportunities and limitations
that such an approach brings. A continuing discussion of this study in a broader
scientific context is presented in section 7.1.

Research question 2 "How can deep learning assist the implementation of explicit incor-
poration of directivity related amplification effects in probabilistic seismic hazard calculations?"

While explicit incorporation of directivity effects in PSHA calculations via ex-
tension of the hazard integral (full hypocenter randomization) is theoretically a
straightforward endeavor, the associated computational demand makes the actual
application to PSHA studies at regional or national scale infeasible. The mod-
ifier of moments approach offers an efficient alternative to the full hypocenter
randomization, one in which the mean amplification and variability in the vicin-
ity of an earthquake rupture due to varying hypocenter locations is described
via a simplified, hand-designed, and empirically calibrated equation. However,
the applicability of such simplified equations to complex rupture geometries is
a matter of debate. Compared to a simple empirical equation, ANNs offer in-
creased flexibility that could potentially lead to more accurate representations
of empirically learned spatial amplification patterns, also for complex rupture
geometries. Therefore, in chapter 4 I investigate the opportunity to store a syn-
thetically generated database of moment modifiers
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for a fix set of ruptures in the hidden layers of an ANN, such that it can be
retrieved efficiently during seismic hazard calculations. In the subsequent chap-
ter 5, I follow a different idea in which I explore an actual deep learning approach,
i.e., one in which an ANN is trained to relate earthquake rupture properties to the
spatial patterns of the moment modifiers in its vicinity. An extended discussion
of this research question is presented in section 7.2.

Research question 3 "How can we take optimal advantage of the rapid availability of
pseudo-intensity reports with regard to rapid impact assessment?"

Pseudo-intensity reports collected globally via the LastQuake service are among
the first available information sources in the immediate aftermath of an earth-
quake. While macroseismic intensity values obtained from averaging over mul-
tiple macroseismic observations are commonly used as an additional constraint
in the ShakeMap methodology, utilization of pseudo-intensity values has been
widely neglected so far. The fact that pseudo-intensity values are obtained from
macroseismic observations, suggests that the statistical and geographic properties
of collections of pseudo-intensities should be correlated with the final impact that
the corresponding earthquake has on the affected society. Chapter 6 describes an
exploratory study in which I present my attempts to firstly verify this assump-
tion, and secondly to utilize this correlation to formulate a statistical model that
allows rapid, probabilistic classification of earthquakes to cause substantial so-
cietal impact or not. An evaluation of the model using earthquakes from the
February 2023 Kahmaranmaras sequence is included as part of the continuing
discussion in section 7.3.

Research question 4 "To what extent can the studies presented within the scope of this
thesis be associated with the field of Big Data Seismology, and what are the implications for the
presented results?"

Both the application of machine learning methods on specialized hardware and
the optimal usage of rapidly growing databases are key aspects of my doctoral
studies. Subsequently, a certain proximity to the advent field of Big Data Seis-
mology cannot be denied. However, incautious association of my studies to this
field might lead to misconception of the presented results and conclusions, since
many thought processes also contradict typical Big Data principles. Therefore,
as a part of the overarching discussion of this thesis in section 7.4, I want to take
a closer look and clarify in which aspects the presented studies exhibit charac-
teristics of Big Data, and in which they do not.
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1.5.2 Structure of this thesis

In the following chapter 2, I provide a brief introduction of seismological datasets and selected
foundations and concepts from data science and earthquake disaster mitigation to facilitate
the entry into the core chapters 3 – 6. The organization of the core chapters with respect
to the scientific context is summarized in Fig. 1.2. In chapter 3 I present my first published
manuscript regarding the development of an ANN-based ground motion model for the Kanto

Figure 1.2: Organization of the core chapters 3, 4, and 6 of this thesis within the scientific
context.

basin, Japan, following the ideas outlined in research question 1. Implementation of explicit
incorporation of directivity effects in PSHA, as introduced in research question 2, is addressed
in a manuscript that is currently under review presented in chapter 4. The subsequent chapter 5
contains unpublished material regarding an alternative approach to research question 2. My
third key contribution regarding the utilization of pseudo-intensity reports for the assessment of
earthquake impact is presented in the form of a published manuscript in chapter 6. Chapter 7
contains an overarching and continuing discussion with respect to the research questions 1–3
(sections 7.1 – 7.3) and research question 4 (section 7.4), which is not addressed explicitly in the
core chapters. I close my thesis with a summary of the key conclusions in chapter 8.

1.6 Author’s contributions to publications in this thesis

The chapters 3, 4, and 6 of this thesis contain manuscripts that are either published in peer-
reviewed journals, or are currently under review of such. The content of these manuscripts
represents the essential material that forms this cumulative dissertation. In the following I will
provide a list of said publications and clarify my respective contributions.
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– Lilienkamp, H., S. von Specht, G. Weatherill, G. Caire, and F. Cotton (2022).
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H.L. designed and implemented the model evaluation presented in section 4.5.2.7.
H.L. participated in writing the manuscript, in particular sections 4.5.2.2, 4.5.2.3,
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and lead-authored the manuscript.

• Chapter 6:

– Lilienkamp, H., R. Bossu, F. Cotton, F. Finazzi, M. Landès, G. Weatherill, S. von
Specht (2023). “Utilization of Crowdsourced Felt Reports to Distinguish High-Impact
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Chapter 2

Scientific background

The purpose of this chapter is to establish the scientific context around my core studies presented
in the chapters 3 – 6. In particular, I will give an introduction to the general data types and
sets used over the course of my doctoral studies, as well as a brief explanation of the field of Big
Data Seismology and its relevance for this thesis. Special emphasis is placed on introducing the
field of deep learning, as it is used extensively throughout this thesis. Finally, I will establish an
overview on the diverse strategies for earthquake disaster mitigation and explain the connection
to my studies.

2.1 Data in seismology

Among the various data types, recordings of ground motion time series at the Earth’s surface,
i.e., seismograms or waveforms, are the primary source of information, whereby one distinguishes
low amplitude ground motion records obtained at large distances from the earthquake source
(weak motion) from large amplitude records obtained in the close vicinity of the earthquake
rupture (strong motion). Strong motion records are of particular interest for earthquake dis-
aster mitigation strategies, i.e., seismic hazard analysis, earthquake early warning, and rapid
response to earthquakes (see section 2.3.1), because they provide the most information about
the characteristics of ground motions that have the greatest potential to lead to damage.

The time series of strong motion records are seldom used for data analysis directly, but
usually only a small amount of features such as the peak ground acceleration (PGA), peak
ground velocity (PGV), and peak ground displacement (PGD) (maximum values of accelera-
tion, velocity, and displacement, respectively, obtained from the time series of ground shaking)
are extracted from the time series (e.g. Ancheta et al., 2013). Moreover, response spectral accel-
eration SA(T ), i.e., the peak absolute acceleration of single-degree-of-freedom oscillators with
eigenperiods T that are exposed to the recorded ground motion is a widely utilized feature. The
consequence of such processing is a substantial data reduction, that leads to a loss of information,
as time series with tens of thousands of samples are summarized into sets of a couple of tens of
strong motion features. Databases yielding such processed strong motion data are referred to
as flat files. The strong motion flat file provided by Bahrampouri et al. (2021) obtained from
the KiK-net accelerometer network in Japan is the data foundation for the study presented in
chapter 3 of this thesis.

13
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Figure 2.1: Temporal evolution of (a) seismic waveform databases and (b) strong motion
flat files (solid lines) / macroseismic observation databases (dashed lines). The KiK-net flat
file and the LastQuake database are utilized in chapters 3 and 6 of this thesis, respectively.
Numbers for the NGA-West2 database are obtained from the corresponding flat file (Ancheta
et al., 2014). The LastQuake database used for visualization is available via Bossu et al. (2023).
Numbers regarding the "Did you feel it?" (DYFI) database development since 2003 are obtained
graphically from Figure 6 in Quitoriano and Wald (2020). Note that DYFI reports before 2003
are neither considered in Quitoriano and Wald (2020) nor in this figure. Numbers regarding the
KiK-net flat file are obtained from the Bahrampouri et al. (2021) database. KiK-net waveform
data was downloaded from the database published by National Research Institute for Earth
Science and Disaster Resilience (2019). Numbers regarding the IRIS DMC wavefrom archive
were obtained graphically from the IRIS summary sheet available via IRIS (2023).

In addition to instrumental recordings, also macroseismic observations, i.e., observations of
effects that are caused by ground shaking, such as perception by people and animals, swinging
motion of hanging objects or damage to buildings, are an important source of information. The
traditional approach of incorporating such data is to conduct post-earthquake surveys, in which
experts collect a large amount of macroseismic observations within a limited geographical area,
and subsequently quantify the average shaking intensity in the area via a macroseismic intensity
scale such as EMS-98 (Grünthal, 1998). Nowadays, this procedure is also accomplished in a
more rapid way via internet-based services such as "Did you feel it?" operated by the United
States Geological Survey (USGS) (Wald et al., 1999).

Contrary to macroseismic intensities, pseudo-intensity values are obtained from individual
macroseismic observations made by non-expert citizens evaluated against a macroseismic scale.
Due to the lack of both expertise and spatial averaging of multiple observations, the uncertainties
associated with pseudo-intensities are large, and usage of different macroseismic scales among
different services, e.g., the EMS-98 scale in Europe or the modified mercalli scale (MMI, Wood
and Neumann, 1931) which is popular in the US, limits the compatibility of datasets. However,
collection of pseudo-intensity values in the aftermath of an earthquake via internet-based services
is efficient and such databases are among the first available sources of information. A database
of pseudo-intensities collected globally via the LastQuake service (Bossu et al., 2018b) operated
by the European Mediterranean Seismological Center (EMSC) is the data foundation for the
study presented in chapter 6 of this thesis.
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The technological progress of the last decades has led to a dense instrumentation of the
Earth’s surface with seismometers and efficient collection of macroseismic intensities and pseudo-
intensities via the internet, such that the volumes of the corresponding databases have been
growing rapidly (see Fig. 2.1), and will continue to do so in the future. Due to global databases
such as the IRIS DMC archive nowadays comprising several hundreds of terabytes of waveform
data, the term Big Data is brought into play more and more often regarding data-driven studies
in seismology. Ultimately, this has led to the advent of an entirely new sub-discipline referred
to as Big Data Seismology.

2.2 Big Data Seismology

Arrowsmith et al. (2022) define Big Data Seismology as the field of study where large seismic
datasets obtained from increasingly dense seismometer networks are analyzed with highly spe-
cialized algorithms that make use of advanced computational resources (compare Fig. 2.2). Since
the key contributions to this thesis touch on various aspects of this discipline in one way or the
other, I want to briefly elaborate on each of the three driving factors in the following. In doing
so, I also want to lay the foundation for later discussion of research question 4 regarding the
relation of my own studies to this rather new and advent discipline.

2.2.1 Big Data

A common scheme to describe the term Big Data is the definition of a dictionary containing its
presumed key properties, such as "The 5 Vs of Big Data" (Volume, Velocity, Variety, Veracity,
Value) (L’Heureux et al., 2017). The fact that the size of such dictionaries ranges from "The
3 Vs of Big Data" (Sagiroglu and Sinanc, 2013) all the way up to "The 10+ Vs of Big Data",
indicates how vastly the perception of what Big Data actually is depends on the individual
domain-specific data challenges that are faced in various scientific disciplines and economic
sectors. In the context of this thesis, I consider "The 5 Vs of Big Data" to be an appropriate
definition, and will describe the associated properties in the following.

2.2.1.1 Volume

The key term Volume refers to challenges in data processing or analyses due to the sheer amount
of available data. One typical Volume related issue in Seismology is the identification of earth-
quake signals and the subsequent picking of seismic wave arrivals in huge amounts of continuous,
noisy waveform data. While until the 1970s this task was conducted manually by experts, the
interest in fully automated algorithms was sparked around that time (e.g. Allen, 1978), due
to the rapid growth of waveform archives (Kong et al., 2019). Today, seismic phase picking
on large data volumes is almost exclusively performed with advanced machine learning-based
picking algorithms such as PhaseNet (Zhu and Beroza, 2019) or GPD (Ross et al., 2018).
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2.2.1.2 Velocity

Figure 2.2: Visualiziation of the Big Data Seis-
mology concept from Arrowsmith et al. (2022).
The three driving factors are large, increasingly
growing seismic datasets, the application of ac-
cordingly specialized algorithms for analyses,
and the associated utilization of advanced com-
putational resources.

In the context of Big Data, the term Veloc-
ity refers to the challenge to instantaneously
process rapidly generated data. Earthquake
early warning (EEW, compare section 2.3.1) is
among the most prominent disciplines where
efficient management of rapidly generated
data is a key prerequisite. Due to the phys-
ically limited warning times of a few seconds
it is self-explanatory that any additional de-
lay due to data processing and analysis should
be avoided as a matter of urgency. Conse-
quently, EEWmight be considered a discipline
that is facing a Big Data challenge in terms
of Velocity. Another illustrative example is
the field of rapid impact assessment (RIA, sec-
tion 2.3.3), that focuses on the fast assessment
of earthquake impact on the affected society to
then organize appropriate auxiliary measures
in time. Again, efficient collection and near real-time evaluation of rapidly generated waveform
data and macroseismic observations are crucial to organize disaster management in the most
efficient way.

2.2.1.3 Variety

Challenges in data processing and analysis may also arise due to the Variety of datasets that
contain, e.g., various types of data from different locations, instrument types and formats
(L’Heureux et al., 2017). The datasets analyzed within the scope of this thesis are rather
homogeneous, and therefore exhibit a low level of Variety.

2.2.1.4 Veracity

The term Veracity refers to questions regarding the quality and reliability of data, such as the
handling of noisy records and missing values (Arrowsmith et al., 2022), but also the inherent
uncertainty of data sources itself (L’Heureux et al., 2017). For example, pseudo-intensity values
collected from non-expert citizens naturally contain large uncertainties due to the lack of averag-
ing over multiple observations from a region. On top of that, emotionally captured earthquake
witnesses may exaggerate their actual experience, adding additional uncertainty to values at
the upper end of macroseismic scales (Bossu et al., 2017). The handling of such reports is a
challenge that requires consideration of the Veracity of a given dataset.
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2.2.1.5 (Hidden) Value

According to L’Heureux et al. (2017), the extraction of Value from a dataset is more a desired
outcome of Big Data processing rather than a property of the underlying dataset itself. I agree
to this interpretation insofar as the general presence of Value in and the extraction of Value
from data are not Big Data exclusive features. For example, in the light of a well established
apparatus of physical theories, foremost the theory of elastic wave propagation, the Value of
a small dataset of high-quality seismic observations for classical tasks, such as tomography, is
obvious, and solving the corresponding inversion problem is not necessarily a Big Data challenge.

Following Arrowsmith et al. (2022), the term Value in a Big Data context does not refer to the
presence of arbitrary, but of subtle or hidden Value in a dataset, such as weak earthquake signals
hidden in high levels of ambient noise. In such cases, the reliability of a standard method such as
LTA/STA (long term average, short term average, Allen (1978)) that is based on the theoretical
consideration that earthquake signals cause short-term alterations of the power content in a
recorded time series with respect to the long term average, is limited, whereas advanced deep
learning-based models excel at retrieving such hidden Value. Adapting this perspective, one
could argue that the commonly recognized Value of pseudo-intensity datasets is actually hidden,
because there is no physical theory or standard methodology according to which Value could be
extracted. Consequently, specialized algorithms are required to extract the hidden Value from
such data and utilize it in a profitable way. I adapt this interpretation of Big Data related Value
issues for the rest of this thesis.

2.2.2 Algorithms and resources – deep learning

Among the various algorithms designed for the processing and analysis of Big Data in gen-
eral and Big Data Seismology in particular, deep learning methods, a specific type of machine

Figure 2.3: Evolution of deep learning related
publications in the geosciences. Numbers re-
fer to publications available on the portal Geo-
ScienceWorld (2023) containing the terms "Deep
learning" or "Neural Network".

learning algorithms, have experienced the
greatest popularity, owing to the numerous
scientific breakthroughs that they brought.
One prime example for the success story of
deep learning is an algorithm called AlphaFold
(Jumper et al., 2021) that addresses the Big
Data problem of protein folding, an open re-
search problem in molecular biology with ma-
jor implications for, e.g., drug development
that has been addressed for over 50 years. The
technical challenge in the protein folding prob-
lem is to determine the 3D structure of a pro-
tein from its sequence of amino-acids. While
previous modeling attempts already managed
to provide reasonable approximations of 3D
structures, the introduction of AlphaFold in 2018 and its successor AlphaFold2 in 2020 abruptly
and surprisingly improved the quality of predictions to the level where they are barely distin-
guishable from the experimentally determined structure (Callaway, 2020). Part of the huge
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success of AlphaFold can be attributed to the ability of deep learning to autonomously identify
and utilize complex, non-linear relations in large datasets that may not be recognized by expert
modelers. As a downside, however, traditional deep learning measures are black-box models
that do not grant any insights into the learned relationships, i.e., the relations that AlphaFold
utilizes to make its predictions are not evident to the modelers and therefore do not grant deeper
insights into the mechanisms of protein folding.

While the original concept of artificial neural networks (ANNs), the methodological key com-
ponent of deep learning, dates back to the 1940s (e.g. McCulloch and Pitts, 1943), and algorithms
to efficiently calibrate such models evolved in the 1980s (Rumelhart et al., 1986), deep learning
has been experiencing a renaissance in the last decade (Fig. 2.3). This large popularity can be
attributed to few recent key developments, foremost the rapidly growing amount of scientific
data (Mousavi and Beroza, 2022), but also the considerably eased access to computationally
suitable hardware and user friendly software packages. Graphical processing units (GPUs) that
were initially designed for visualization of video games turned out to be up to 20 times more effi-
cient than regular Central computing units (CPUs) in terms of calibrating deep learning models
(Lecun et al., 2015), and have nowadays evolved into the standard computational resource for
deep learning. On the software side, the dissemination of easily accessible deep learning soft-
ware packages like Tensorflow (Abadi et al., 2015) (Fig. 2.3), has enabled the utilization of deep
learning also for users without a distinct background in mathematics or computer science.

Deep learning is utilized extensively over the course of this thesis and is therefore of key
significance. Consequently, I want to give a brief introduction to the methodology in the follow-
ing, using a simplified example of a ground motion model (GMM) (compare section 2.3.2.0.1).
GMMs are semi-empirical models that describe the intensity of ground motion at a site, given,
in the simplest case, the magnitude of the corresponding earthquake and the distance between
the earthquake and the site. The following example largely follows the work of Derras et al.
(2014) and paves the way to my own study presented in section 3.

2.2.2.1 Methodology

Artificial neural networks (ANNs) evolved from the attempt to find a mathematical representa-
tion for biological information processing in brains, and are the key tool in deep learning (Bishop,
2006). The structure of a simple feed-forward artificial neural network (ANN), consisting of an
input layer xi, a number of hidden units or neurons zi, and an output unit ŷ, is depicted in
Fig. 2.4. In the following I will interpret the nodes in the input layer xi as the magnitude M
of an earthquake and the distance R between the earthquake and the observation site, and the
output node ŷ as a prediction of the corresponding ground motion intensity measure PGA. In
its final stage, according to e.g. Bishop (2006), the ANN is expected to forward-propagate a
given input pair (M , R) as follows:

ŷ =f

 5∑
j=1

W
(2)
j · zj


zj =f

(
2∑
i=1

W
(1)
ij xi

)
j ∈ [1, ..., 5],

(2.1)
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to eventually estimate a value of the corresponding PGA. Here, W (1)
ij and W

(2)
j denote the

model coefficients, or weights, that determine the values of the hidden units zi and the output
unit ŷ, depending on the values in the previous layer, respectively. The function f denotes a

Figure 2.4: Example visualization of an ANN
used for the prediction of a ground motion inten-
sity measure (PGA) given the magnitude M of
the corresponding earthquake and the distance
R of the observation site from the earthquake
source.

non-linear activation function, such as the
tanh or the Rectified Linear Unit (ReLU).
Without these non-linear transformations the
ANN would only be capable of learning linear
relations. In its initial state, the ANN’s co-
efficients W (1)

ij and W
(2)
j are random values,

such that for any given input xi, the output ŷ
would just be a random number, too, instead
of the desired PGA value. Consequently, the
ANN must be trained, i.e., the values W (1)

ij

andW (2)
j must be tweaked to provide a mean-

ingful output. To this end, a training dataset
is required that holds a large amount of PGA
observations (labels) and corresponding values
of the predictive parameters (M , R) such that
the output ŷ can be evaluated against the ac-
tual PGA value via a loss function such as the
mean squared error (MSE). Subsequently, the
derivative of the loss function with respect to
W

(1)
ij and W

(2)
j can be calculated, and coef-

ficients are updated in order to minimize the
MSE. This procedure is called backpropaga-
tion (Rumelhart et al., 1986), and is the key
step that enables the ANN to iteratively learn
the relation between (M , R) and PGA, when
applied repeatedly on a large training dataset. Modern, deep ANN architectures typically in-
volve multiple hidden layers and millions of free coefficients which allow very close adaption of
the model to subtle, non-linear relationships in the training dataset. This high flexibility comes
at the price of a tendency to overfit to the data examples in the training dataset, since the
number of coefficients in the model typically exceeds the dimensionality of the actual underlying
problem by far. To this end, a second so-called validation dataset, one that is strictly separated
from the training set, is utilized during the training procedure in order to verify the ANNs ability
to generalize to examples outside the training set. In practice, if the ANN’s ability to describe
the training data increases over time, but the performance on the validation set becomes worse
at some point, overfitting is detected and the training procedure is interrupted. At this stage
the training of the ANN is assumed to be complete and it can henceforth be utilized as a ground
motion model.

The example described here concerns a rather simple ANN architecture and refers to the
specific case of supervised regression. However, the general concepts are equally applicable
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to more elaborate architectures such as the U-Net (Ronneberger et al., 2015) introduced in
chapter 3. Although deep learning also finds application for classification and unsupervised
learning problems, such approaches are not discussed in further detail because they are not
relevant within the scope of this thesis.

2.3 Seismological contributions to earthquake disaster mitigation

2.3.1 Different strategies for different time scales

Over the course of time, four different strategies have emerged to mitigate the consequences of
earthquakes: Rapid response to earthquakes (RRE), earthquake early warning (EEW), opera-
tional earthquake forecasting (OEF), and probabilistic seismic hazard analysis (PSHA). These
four approaches address the mitigation of earthquake losses on four different time scales, rang-
ing from long term assessment of future earthquakes (PSHA), to rapid post-event assistance
measures (RRE) (compare Fig. 2.5).

Figure 2.5: Earthquake impact mitigation strategies and their application time windows.
PSHA: Probabilistic seismic hazard analysis; OEF: Operational earthquake forecasting; EEW:
Earthquake early warning; RRE: Rapid response to earthquakes. The studies presented in this
thesis are related to PSHA and RRE (highlighted in red).

A reliable short term earthquake rupture prediction or forecasting framework is one of the
great dreams in seismology, because it would give authorities the necessary scope for timely
evacuation of at-risk communities. Unfortunately, extensive and diverse research into identifica-
tion of earthquake precursors, ranging from the analysis of animal behavior (e.g. Savage, 1982;
Woith et al., 2018) to geochemical monitoring of gas emissions (e.g. Okabe, 1956), have to date
not led to any results that would make a deterministic earthquake prediction framework seem
achievable (Jordan et al., 2011).

The most promising candidates closest to this objective are time-dependent, probabilistic
forecasting models such as ETAS (epidemic type aftershock sequence), which aim at utilizing the
spatio-temporal statistics of a region’s seismicity in the past to infer the occurence of earthquakes
in the future (Ogata, 1998). Indeed, for several major earthquakes in the past, e.g., the L’Aquila
earthquake 2009 in Italy, ETAS models indicated increased probabilities of rupture a day before
the actual event (Marzocchi and Lombardi, 2009). However, despite such relative increase, the
absolute probability of an earthquake occuring within short periods given by time-dependent
earthquake forecasts typically remains low, making this type of model insufficiently reliable for
actual initiation of evacuation (Jordan et al., 2011).

Earthquake early warning utilizes the delay between an earthquake rupture and the arrival
of seismic waves at a nearby densely populated region to raise an alert shortly before the actual
onset of ground shaking (e.g. Cremen and Galasso, 2020). With warning times on the order of a
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few seconds, EEW does not provide the opportunity for sophisticated evacuation measures prior
to earthquake shaking, but grants the alerted population the chance to seek shelter under, e.g.,
tables or to move outdoors, to slow down high speed trains, and to initiate shutdown/safety
procedures for, e.g., nuclear power plants or medical surgery.

The studies presented within the scope of this thesis are essentially related to the fields of
PSHA and RRE, which are elaborated in more detail in the following paragraphs.

2.3.2 Probabilistic seismic hazard analysis

Probabilistic seismic hazard analysis (PSHA) is designed to estimate the expected long-term
seismic influence at a particular site of interest. The knowledge thus gained may considerably
increase the earthquake resilience of a region way before a significant earthquake occurs, pro-
vided that the results are implemented accordingly in carefully respected regional building codes
(Kramer, 1996a). The fundamental target of PSHA is to determine the seismic hazard, i.e., the
probability of exceeding given levels of ground motion intensity within a given time window
(typically decades), at a particular site of interest (Baker et al., 2021b). The PSHA framework
comprises two fundamental stages: Source characterization and ground motion characterization.
Source characterization deals with the identification of possible earthquake rupture scenarios
that may cause significant ground motion at the site of interest. Thereby a complete source
characterization comprises an estimation of size and location of future earthquake ruptures, as
well as the corresponding probabilities of occurrence for each individual scenario. Modern seis-
mogenic source models address this task via the use of earthquake rupture forecasts (ERFs, e.g.,
Field et al., 2014; Seebeck et al., 2023), i.e., inventories of possible earthquake ruptures across a
regional tectonic fault system that are established prior to actual PSHA calculations. In ground
motion characterization, ground motion models (GMMs) are employed to estimate the ground
shaking intensity that is effected at a site of interest, given a particular earthquake scenario.
Integration of all possible earthquake scenarios potentially relevant for a site of interest, cor-
responding occurrence rates, effected ground motion intensity, and all associated uncertainties,
eventually yields the site-specific hazard curve, i.e. a model that describes the annual rate of
exceedance of various levels of ground motion intensity. The hazard curve is the basis on which
probabilistic seismic risk calculations can subsequently be performed in order to estimate the
risk of damage/collapse of engineered structures and, ultimately, the risk of injury or loss of
life for the affected population. Although uncertainties in PSHA frameworks can be large, the
fully probabilistic description that it yields is the most expressive form of describing the seismic
hazard and is today preferred by experts in earthquake engineering and insurance agencies (e.g.
Paté-Cornell, 1994).

2.3.2.0.1 Ground motion modeling Ground motion models (GMMs) are the key tools
for ground motion characterization in PSHA. The input to a ground motion model usually
comprises a description of the earthquake source, the path between the earthquake and the
observation site, and geophysical site properties that may amplify or de-amplify the amplitude
of seismic waves. For example, a typical set of predictive parameters consists of the earthquake
magnitude M (source), the source-to-site distance R (path), and the average shear-wave veloc-
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ity in the uppermost 30m of the crust VS30 (site). Provided with such information, a GMM
predicts a probability distribution for a set of ground motion intensity measures (IMs) Y for the
respective scenario. It is important to note here that while ground motion is initially recorded
by seismometers as a time series, the derived IMs utilized in ground motion modeling, and for
other engineering seismology purposes, are scalar features, such as the peak ground acceleration
(PGA) or the response spectral acceleration SA(T ) (compare section 2.1). Following Kramer
(1996b) a GMM can be described in its basic form as follows:

log-scaled IM︷︸︸︷
lnY =

Magnitude scaling︷ ︸︸ ︷
C1 + C2M + C3M

C4 +

Geometric spreading︷ ︸︸ ︷
C5 ln[R +

Rupture extent︷ ︸︸ ︷
C6 exp(C7M)] +

Anelastic attenuation︷︸︸︷
C8R +

f(source)︸ ︷︷ ︸
Earthquake source effects

+ f(site)︸ ︷︷ ︸
Site specific amplification

+ ε · σlnY︸ ︷︷ ︸
Total variability

,

(2.2)

where the functional form is designed according to physical principles such as considerations
regarding the scaling of energy released at the earthquake source with the effected ground mo-
tion (magnitude scaling), geometric spreading, or anelastic attenuation. Here, ε is a standard
gaussian random variable and σlnY is the variability obtained from the misfit of the model mean
and the actual strong-motion observations that are used to empirically determine the coeffi-
cients Ci. Because ground motion intensity values are commonly assumed to be log-normally
distributed, GMMs are typically not formulated for the respective IM itself but for its loga-
rithm. A fundamental issue with the empirical calibration of ground motion models is the fact,
that observations close to the sources of large earthquakes are rare. On the one hand, this is
due to the rarity of large earthquakes according to the Gutenberg-Richter magnitude-frequency
distribution (Gutenberg and Richter, 1944), on the other hand it is for geometrical reasons that
the observation of shaking at large distances is more likely than at short distances, given that
sensor networks are often spatially evenly distributed. Subsequently, GMMs are usually least
constrained where the predictions are of largest engineering interest (Baker et al., 2021a). It
should be noted that the use of physics-based ground motion simulations to generate synthetic
data for the calibration of empirical ground motion models, as suggested by, e.g., Paolucci et al.
(2021) is a promising candidate to address this problem in the future, provided that the required
high quality 3D velocity models are available (Bradley et al., 2017).

Since the first suggestions of a GMM with only three empirically determined coefficients
(Esteva and Rosenblueth, 1964), modern GMMs (e.g. Abrahamson et al., 2014; Boore et al.,
2014; Campbell and Bozorgnia, 2014; Chiou and Youngs, 2014; Idrissa, 2014) have evolved into
complex statistical frameworks containing dozens of coefficients that are calibrated with large
ground motion databases such as NGA-West2 (Ancheta et al., 2014) (compare Fig. 2.6 a and b).
Despite this increase in model complexity, no significant reduction of aleatory uncertainty, i.e.,
reduction of misfit compared to actually observed data has been noted in recent years (Douglas
and Edwards, 2016; Strasser et al., 2009) (Fig. 2.6 c), a circumstance that indicates that model
uncertainties as defined in classical frameworks are nowadays well characterized. This exhaustion
of traditional GMM modeling paradigms has motivated the research into alternative approaches,
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that may allow a more detailed evaluation of what parts to the uncertainty are truly aleatory,
and which are, in principle, reducible.

Figure 2.6: Temporal evolution of ground motion modeling.
The number of published GMMs in (a) was derived from Dou-
glas (2022). The number of model coefficients shown in (b)
was derived from Fig. 2 in Bommer et al. (2010). The total
variability of GMMs over time presented in (c) was obtained
from Fig. 2 in Strasser et al. (2009). Here, the different symbols
refer to the respective type of intensity measure calculation de-
scribed in the legend. Dark grey markers indicate uncertainty
ranges for models with heteroscedastic uncertainty quantifica-
tion.

One such approach is the
waiving of the ergodic assump-
tion, a necessity for the de-
velopment of early ground mo-
tion models when the amount
of observations was small. The
ergodic assumption states that
samples of ground shaking
recorded over time at one spe-
cific location follow the same
distribution as samples col-
lected at the same point in
time across multiple sites (An-
derson and Brune, 1999). This
assumption finds expression in
equation 2.2, insofar as the pre-
dicted ground motion intensity
Y only depends on the distance
R between the source and the
observation site, and not on the
absolute site location. Relax-
ing the ergodic assumption in
ground motion modeling leads
to GMMs that more closely re-
semble the ground motion char-
acteristics of specific regions or
even observation sites where
observations of ground motion
are dense and numerous (e.g.
Landwehr et al., 2016). As
a downside, nonergodic GMMs
come with inherently large un-
certainties in locations where
observations are sparse. Due to the rapid growth of ground motion databases in recent years,
various frameworks for partially nonergodic ground motion modeling have established, e.g.,
crossed and nested mixed effects regression (MER) as suggested by Stafford (2014) and adopted
by Kotha et al. (2016, 2020), and the varying-coefficient model (VCM) as suggested by Bussas
et al. (2015) and implemented by Landwehr et al. (2016).

The observation by Douglas and Edwards (2016) and Strasser et al. (2009) regarding the
stabilization of model uncertainties in GMM development is also one of the key motivations to
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employ artificial neural networks (ANNs) to the task of ground motion modeling. As described
in section 2.2.2, ANNs excel at identifying subtle and complex non-linear relations in datasets
without any instructions regarding the corresponding equational form (Lecun et al., 2015).
This property makes ANN-based GMMs interesting baseline candidates for the development
of equation-based GMMs, because their high flexibility allows the assumption that the obtained
misfit with respect to the ground motion observations is the best possible result that is achievable
for a given set of input parameters.

Furthermore ANNs provide a convenient framework to test the predictive power of uncommon
predictive parameters for which a relation to the target ground motion IM is presumed, but
cannot be expressed in an equational form due to the lack of a physical model (Kong et al., 2019).
For example, while Ameri et al. (2017) suggest a simple linear adjustment term to account for
stress-drop in a GMM, Trugman and Shearer (2018) demonstrate how the correlation of the
stress-drop parameter with ground motion intensity can be incorporated in a GMM, without
assuming an equational form of the underlying physical relation.

One of the key insights from ANN-based GMM studies is that already basic ANN architec-
tures with few coefficients yield GMMs that closely match observed ground motion data, and
furthermore exhibit physically sound features such as magnitude scaling of distance dependency
(e.g. Derras et al., 2014).

As a downside, simple ANN-based models are usually black box models that do not grant any
insight into the relations obtained from data, such that only the validation of predictions for well-
understood scenarios might be used as an evaluation criterion. Furthermore the aforementioned
lack of ground motion observations of large events and at short distances make the corresponding
predictions of ANN-based GMMs inherently untrustworthy if no further measures such as data
augmentation or the introduction of additional physical constraints are conducted.

Recent advances in both ANN-based and nonergodic ground motion modeling sparked my
motivation to merge these two paradigms into a single GMM. The subsequent development of a
GMM prototype for the Kanto basin in Japan is presented in chapter 3 of this thesis.

2.3.2.1 Incorporation of directivity effects in ground motion modeling and PSHA

Rupture forward directivity is a phenomenon that occurs when the velocity at which an earth-
quake rupture progagates along a fault is close to that of the shear waves that are radiated
continuously during the rupture process (Somerville et al., 1997). It can therefore be considered
a doppler effect, as a result of which the radiated shear waves are compressed in space and time
parallel to the rupture propagation, which can lead to extraordinarily intense, pulse-like ground
motion at sites close to the earthquake source.

Such pulse-like signals have been observed occasionally as summarized in Yen et al. (2022),
e.g., during the 2010 Darfield, New Zealand, earthquake (Bradley, 2012) and the recent Kahra-
manmaras events in February 2023 (Gabriel et al., 2023). In the classical formulation of GMMs
(e.g. equation 2.2), amplification due to directivity effects is not considered explicitly. Conse-
quently, and because directivity is primarily observed close to seismic sources, the predictive
uncertainty of GMMs at short source-to-site distances should in principle be underestimated,
whereas uncertainty should be inflated at longer distances. However, whether the explicit incor-
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poration of directivity effects actually has a substantial practical influence on the variability of
GMMs and PSHA results is subject of current research.

A number of directivity models summarized in Spudich et al. (2013) (e.g. Bayless et al.,
2020) have been suggested to simulate spatial patterns of directivity related amplification in the
near field of large earthquakes, where amplification is assumed to depend on the earthquake’s
magnitude, the rupture geometry, the relative location of an observation site with respect to
the rupture, and the exact nucleation point of the rupture on the fault surface (the hypocen-
ter location). Incorporating such directivity models for ground motion adjustment in PSHA
calculations is theoretically straightforward, but would lead to an unaffordable increase in com-
putational demand, because the sampling from the distribution of possible hypocenter locations
would result in a several-hundredfold repetition of the actual hazard calculation. Therefore, e.g.,
Watson-Lamprey (2018) suggests to circumvent this additional computational load by estimat-
ing the mean and variability of the spatial amplification pattern of a rupture, obtained from
averaging over all possible hypocenter locations, prior to the actual hazard calculation. The
resulting so called moment modifiers may then be utilized efficiently in PSHA to modify the
"directivity neutral" predicted ground motion and, thus, explicitly consider directivity related
amplification.

The implementation of an advanced modifier of moments approach utilizing an artificial
neural network, and subsequent efficient application to the 2022 New Zealand National Seismic
Hazard Model, is a contribution to a study that was lead-managed by my colleague Dr. Graeme
Weatherill, and is presented in chapter 4 of this thesis.

2.3.3 Rapid response to earthquakes

While the previously described strategies focus on the preparation for future earthquakes, the
first key step in rapid response to earthquakes (RRE) is the assessment of the intensity and the
spatial distribution of ground shaking as well as the resulting impact on the affected communities
in near-realtime after an earthquake occurred (Fig. 2.5).

Such a well founded rapid impact assessment (RIA) is an indispensable source of information
for the authorities that are responsible for disaster management, as it may considerably assist the
decision-making process of how to organize auxiliary measures (e.g. Guérin-Marthe et al., 2021).
Although the detailed characteristics of various RIA implementations may differ considerably,
the wide majority of systems follow a similar multi-step framework, which is illustrated here
briefly using the United States Geological Survey’s (USGS) service PAGER (Wald et al., 2010)
by example.

In a first step, seismic records are utilized to infer the fundamental earthquake character-
istics, most importantly its magnitude and location. Subsequently, a ground motion model is
applied to simulate a continuous field of ground motion for the affected region, which is then
refined using macroseismic intensities (see section 2.1). The resulting product is referred to as
ShakeMap (Wald et al., 2005), which is then fed to the actual PAGER loss assessment system.
Together with information on the exposure, i.e., the number and spatial distribution of build-
ings and population, and vulnerability, i.e., the limited ability of an engineered structure to
withstand ground shaking, estimates of casualties and economic losses can be provided within
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approximately 30 minutes of any globally occuring earthquake (Wald et al., 2010).
RIA systems are most effective when operated quickly and efficiently after an earthquake,

such that timely actions can be initiated to considerably mitigate the final impact. Thereby also
rudimentary information with high uncertainty as obtained from, e.g., pseudo-intensity reports
(see section 2.1) might prove insightful if it fills the information vacuum in the very first minutes
after the shaking. Subsequently acquired information might then be incorporated successively
as to receive an increasingly more precise picture of the situation.

In a study presented in chapter 6 in this thesis, I demonstrate how pseudo-intensity reports
might be utilized exclusively to rapidly identify whether an ongoing earthquake will have a a
substantial societal impact. It can therefore be considered a contribution to the fields of RIA
and RRE.
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3.1 Abstract

We construct and examine the prototype of a deep learning-based ground motion model (GMM)
that is both fully data-driven and nonergodic. We formulate ground motion modeling as an
image processing task, in which a specific type of neural network, the U-Net, relates continuous,
horizontal maps of earthquake predictive parameters to sparse observations of a ground motion
intensity measure (IM). The processing of map-shaped data allows the natural incorporation
of absolute earthquake source and observation site coordinates, and is, therefore, well suited
to include site-, source-, and path-specific amplification effects in a nonergodic GMM. Data-
driven interpolation of the IM between observation points is an inherent feature of the U-Net
and requires no a priori assumptions. We evaluate our model using both a synthetic dataset
and a subset of observations from the KiK-net strong motion network in the Kanto basin in
Japan. We find that the U-Net model is capable of learning the magnitude-distance scaling, as
well as site-, source-, and path-specific amplification effects from a strong motion dataset. The
interpolation scheme is evaluated using a fivefold cross validation and is found to provide on
average unbiased predictions. The magnitude-distance scaling as well as the site amplification
of response spectral acceleration at a period of 1 s obtained for the Kanto basin are comparable
to previous regional studies.

3.2 Introduction

A ground motion model (GMM) relates the probability distribution of ground motion intensity
caused by an earthquake to a set of predictive parameters, for example, earthquake magnitude,
distance at which the shaking is observed, and observation site characteristics that influence
the local amplification. Commonly, GMMs are equations that are expert designed to represent
physical processes causing observable relations in strong motion data, such as decreasing ground
motion intensity with increasing distance from the earthquake source. The coefficients of these
equations are calibrated via regression analysis using observations from previous earthquakes.
The choice of the equation design, that is, which physical aspects are reflected and how, de-
pends largely on the application purpose of the model, resulting in a vast number of proposed
models over the last decades (Douglas, 2003). Although the amount of available strong motion
observations and, therefore, also the complexity of GMMs have increased significantly since the
early stages of ground motion modeling (e.g. Esteva and Rosenblueth, 1964; Trifunac, 1979),
associated uncertainties have remained stable during the past 50 yr (Douglas and Edwards,
2016; Strasser et al., 2009), indicating that the development of GMMs might benefit from the
complementary incorporation of novel conceptual and methodological modeling paradigms.

One of the new conceptual model paradigms in recent years is the waiving of the ergodic
assumption, which was previously a fundamental feature of GMMs. The ergodic assumption
states that the distribution of ground motion intensity values observed at a single location over
time converges to the same distribution of values sampled across multiple locations (Anderson
and Brune, 1999). This assumption was an indispensable feature of GMMs in the past when
strong motion observations were scarce. However, in recent years, the amount of ground motion
data and computational power increased to levels that allow for the development of more regional
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Figure 3.1: The U-Net architecture used throughout this study. The predictive parameters
for a single earthquake are provided to the U-Net as input in the form of a stack of maps. The
input is processed through the encoder and decoder branches of the U-Net, until eventually the
mean ŷ and variance σ̂2 estimators of an intensity measure (IM) are provided as output. In
the training phase, the output is evaluated against sparse measurements y of the IM that are
available for this specific earthquake. Bold black numbers indicate the number of features at the
respective locations within the U-Net. Red numbers indicate the resolution of the features. The
depicted configuration of the input corresponds to the setup used for training with data from
the Kanto basin (see section 3.5). The latitude, longitude, and depth of the event hypocenter are
denoted as late, lone, dhyp respectively, MW denotes the moment magnitude, xs and ys denote
the coordinates of each pixel in the input layer, rhyp is the hypocentral distance and zbedrock
denotes the depth to seismic bedrock. A more detailed explanation of this figure is provided in
the appendix (section 3.A.1). This figure is based on Figure 1 in Ronneberger et al. (2015).

and (partially) nonergodic models. Landwehr et al. (2016), for example, suggest a model with
spatially varying coefficients for California that takes into account the absolute locations of
earthquake source and observation sites as model parameters, leading to a significant decrease
in aleatory uncertainty compared to the previous ergodic models. Following Stafford (2014), a
similar strategy is followed by Kotha et al. (2016, 2020), who consider region-specific properties
of ground motion as a random effect in a mixed-effects regression and, consequently, provide
partially nonergodic GMMs for Europe. Recently, the problem of modeling spatial correlation of
ground motion intensity within a nonergodic framework was adressed by Kuehn and Abrahamson
(2020).

On the methodological side, another trend has arisen across many fields in recent years: fully
data-driven modeling through artificial neural networks (ANNs). ANNs have successfully been
applied to ground motion modeling in numerous studies. Derras et al. (2014, 2012) developed
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GMMs for shallow crustal earthquakes in Japan and Europe, Pozos-Estrada et al. (2014) modeled
inslab and interplate earthquakes in Mexico, and Dhanya and Raghukanth (2018) derived a
GMM from the Pacific Earthquake Engineering Research Center - Next Generation Attenuation
- West2 Project database (Ancheta et al., 2014). The big advantage of ANNs over model-
based approaches is that no a priori definition of a functional form is required. Instead, ANNs
autonomously learn the relations between predictive parameters and the target ground motion
intensity measures (IMs) from ground motion observations. Even though subjective decisions
about the specific design of an ANN may have an impact on the results, the independence
from a user-defined functional form opens up entirely new opportunities to reveal previously
unknown relations and compare the predictive power of descriptive parameters objectively (e.g.
Derras et al., 2012). Although ANNs have shown to provide excellent predictions within the
data range that was used to train them, it is also clear that predictions outside this range are
highly uncertain due to the lack of physical constraints that would allow such extrapolation.
This becomes particularly relevant regarding the persistent lack of strong motion observations
of large earthquakes at short distances (e.g. Kong et al., 2019).

Although considerable advances in both nonergodic and fully data-driven ground motion
modeling have been made in recent years, there was no attempt to merge these two, so far
isolated, concepts within the ground motion modeling community. This study aims at the
assessment of opportunities and limitations of a specific ANN architecture, the U-Net (Ron-
neberger et al., 2015), for the task of ground motion modeling. The U-Net is a well-established
architecture that bears the potential to develop GMMs that are both fully nonergodic and fully
data-driven. The U-Net was initially developed for image processing tasks such as identifying
and differentiating individual cells within tissue specimens, and has since been adopted to a vast
range of applications, such as the prediction of the strength of wireless communication signals
across maps (Levie et al., 2020), and pansharpening of satellite images (Yao et al., 2018). It is the
inherent ability to process data in the form of 2D arrays (maps) that makes this architecture es-
pecially interesting for ground motion modeling too, because it offers the opportunity to natively
operate on map data and therefore preserves the actual spatial distribution of ground motion
observations and seemlessly links it to other geospatial information, for example, lithology and
subsurface velocity structure.

We present our study as follows: First, we introduce the methodological adaption of the
U-Net architecture to the task of ground motion prediction. Subsequently, we present a proof of
concept using a synthetic dataset to demonstrate the functionality of our model. We then show
an exemplary application of our method to a subset of the Kiban–Kyoshin (KiK-net National
Research Institute for Earth Science and Disaster Resilience, 2019) strong motion dataset in the
Kanto basin in Japan and discuss our findings in comparison to local studies.

3.3 Methodology

The U-Net neural network architecture (Ronneberger et al., 2015) is the key component of
our proposed GMM. Similar to all supervised machine learning methods, it learns the relation
between predictive parameters and target parameters from a large number of examples that



3.3. METHODOLOGY 31

are provided to train the neural network. In ground motion modeling, the target parameter
is a ground motion IM, which can be inferred from predictive parameters such as the moment
magnitude MW and the hypocentral distance rhyp. For a more detailed overview on neural
networks we refer to the review of Lecun et al. (2015). The U-Net architecture is of particular
interest for the task of ground motion modeling, because it is designed to process data that
comes in the shape of 2D numerical arrays, that is, maps. Representing ground motion data
as maps naturally preserves the absolute locations of observations and their relative position to
each other—information that is required to develop a fully nonergodic GMM. Apart from its
technical suitability, the U-Net has already been approved in a similar application—the pathloss
prediction of wireless telecommunication signals (Levie et al., 2020).

The functionality of a U-Net operating as a GMM is depicted in Fig. 3.1. The predictive
parameters for a single earthquake event represent the input features to the U-Net and are
provided in the form of a stack of maps covering a predefined area. The input is then processed
through all the layers of the U-Net until eventually two output maps are generated. Repeated
convolution of the input maps with filter masks is the main operation within the U-Net, causing
boundary value loss. The output maps are, therefore, slightly smaller than the input maps and
cover a smaller region. Consequently, we distinguish between the U-Net input area and output
area (the latter being the actual area of interest for which IM predictions are obtained) from
here on. More details on this circumstance and a more detailed description of the implemented
U-Net architecture are given in the appendix (section 3.A.1).

If the U-Net is in an untrained state, outputs are just randomly generated maps, because
the U-Net just consists of a number of randomly initialized coefficients and has not learned the
relation between the predictive parameters and the target IM yet. However, we want the U-Net
to provide estimates of the mean ŷ and variance σ̂2 of the target IM, and therefore need to train
the U-Net on a large training dataset that contains examples of event predictive parameters and
corresponding IM observations. During training, the loss Le between the U-Net outputs and the
observations ye for an event e with Nobs observations is evaluated as the negative log likelihood
of the normal distribution:

Le =

Nobs∑
n=1

ln σ̂2e,n +
(ye,n − ŷe,n)2

σ̂2e,n
. (3.1)

The U-Net learns iteratively how to relate the input predictive parameters to the IM obser-
vations, that is, the loss is iteratively minimized through the gradient descent method Adam
(Kingma and Ba, 2015), with the gradient efficiently implemented by backpropagation (Rumel-
hart et al., 1986). By the choice of the loss function and the optimization routine, training
of the U-Net is equivalent to nonlinear least-squares regression, as it is commonly used in the
most mixed-effects models. After each epoch of training, that is, one episode of training during
which the U-Net sees all data examples in the training set, its ability to generalize to previously
unseen events in a second dataset, the validation set, is evaluated. After a number of epochs,
the loss on the validation dataset does not decrease any further, so the training is assumed to
be complete, and the U-Net can henceforth be used as a GMM. The exact technical configu-
ration of the training procedure followed throughout this study is given in the supplemental
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material S1, available to this article. Although the observations y are point-wise measurements,
the U-Net predictions ŷ and σ̂2 are continuous maps. This means first that the loss function is
only evaluated at those locations where actual observations are available, and second that the
U-Net automatically interpolates the learned attenuation relation from the observation locations
across the U-Net output area. The quality of this interpolation is examined in more detail in
the following sections.

A clean separation between training and validation data could be achieved by splitting a
strong motion dataset strictly according to both events and sites with seismic stations. However,
huge portions of the dataset would be lost, because records of “training events” on “validation
stations” and vice versa would be discarded. To address this issue, we developed the following
training strategy:

1. The data is separated into training and validation events.

2. Stations (sites where seismic stations are located) are randomly grouped into a number
Nchu of "chunks".

3. One U-Net is trained per station chunk, in which the respective station chunk is excluded
from the training procedure and the remaining four chunks are used for both training and
validation on the training and validation events, respectively. The fifth chunk is then used
to evaluate the capability to generalize to new locations after training.

4. Training of each U-Net is conducted Ninit times to sample the variability that is caused
by the random initialization of coefficients in the U-Net prior to training.

The final predictions for the mean and variance of the target IM (Ŷe and Σ̂2
e, respectively) for

the event e are subsequently obtained via ensemble averaging the mean and variance predictions
of the separate U-Nets (ŷije and σ̂ij

2

e , respectively). The ensemble prediction is then a mixture
distribution, the mean and variance of which are obtained based on the law of total expectation
and the law of total variance, respectively (Blitzstein and Hwang, 2014):

Ŷe =
1

NU
·
Nchu∑
i=1

Ninit∑
j=1

ŷije (3.2)

Σ̂2
e =

1

NU
·
Nchu∑
i=1

Ninit∑
j=1

[σ̂ij
2

e + ŷij
2

e ]− Ŷ 2
e , (3.3)

in which NU = Nchu Ninit equals the total number of U-Nets.

We note that the suggested procedure is not a classic example for the separation of training
and validation data. However, we consider this adoption to the particular challenges of strong
motion datasets an appropriate compromise between methodological accuracy and optimal data
usage.
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3.4 Proof of concept with synthetic data

Before we apply the U-Net methodology to derive a fully nonergodic GMM from real data, we
demonstrate its abilities to:

• Learn the relationship between an IM and predictive parameters (such as MW and rhyp)

• Learn site-, source-, and path-specific amplification from site and event coordinates

• Perform reasonable interpolation between observation sites

We will present the case of a synthetic dataset including measurements of an IM that depends
on hypocentral distance, magnitude, and site-specific amplification. Similar studies for datasets
containing source- and path-specific amplification are conducted alike and are provided in the
supplemental material S2.

3.4.1 Dataset generation

According to the input and output resolutions of the U-Net architecture (see the appendix in
section 3.A.1), we define two regular grids of sites for the U-Net input area (572 × 572 pixels)
and the U-Net output area (388 × 388 pixels). We choose a grid spacing of 500m, resulting in
extents of (286 km)2 and (194 km)2 for the input and output areas, respectively (Fig. 3.2 a).

Figure 3.2: Data generation setup for the synthetic experiments. (a) The geometric setup of
the area of interest and the locations of randomly sampled stations. (b) The spatial distribution
of the synthetic earthquake catalog with respect to the area of interest.

We then randomly define Ns=100 sites from the output area as observation locations with
seismic stations. We simulate Ne=1000 events with uniformly distributed moment magnitudes
5.0 ≤MW ≤ 6.5. The spatial distribution of events with respect to the U-Net input and output
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areas is presented in Fig. 3.2 b. We use the GMM by J. X. Zhao et al. (2016c) (from here on
Zhao16ASC) as the basis to simulate values of the natural logarithm of the acceleration response
spectrum at period T = 1s (ln(Sa(T = 1s))) for all pairs of events and sites on the regular grid
within the U-Net output area. Thereby, we only consider the scalings with MW and rhyp and
keep all other predictive parameters required by Zhao16ASC fixed. The synthetic dataset of
ground motion observations u follows from

u = ū(MW , rhyp) + δS2Ss + ε. (3.4)

Here ū describes the mean prediction of Zhao16ASC, δS2Ss is a predefined site-specific ampli-
fication function, and ε is a zero-mean Gaussian with a standard deviation of 0.1 that accounts
for aleatory uncertainty. The term δS2Ss is defined as the portion of the site-specific amplifica-
tion that is not captured by predictive parameters such as the shear wave velocity of the upper

Figure 3.3: The predefined spatially correlated
random field representing exp δS2Ss used in the
synthetic experiments. The black triangles indi-
cate the locations of seismic stations.

30m of the Earth’s crust (VS30) and can only
be obtained from repeated measurements at a
site (Al Atik et al., 2010). To model δS2Ss we
first initialize an uncorrelated Gaussian ran-
dom field and subsequently smooth it with an
anisotropic Gaussian kernel with zero mean
and covariance:

C =

(
σ2E 0

0 σ2N

)
, (3.5)

where the standard deviations σE and σN

scale the correlation in east-west and north-
south directions, respectively. The resulting
δS2S field is rescaled to a standard deviation
of 0.2 and presented in Fig. 3.3. The choice
of a Gaussian kernel function is in agreement
with various semivariogram analysis studies that investigate correlation of ground motion fea-
tures (e.g. Jayaram and Baker, 2009; Loth and Baker, 2013; Markhvida et al., 2018). The choice
of values of σE = 26 km and σN = 8km are in agreement with the findings of Sgobba et al.
(2021), who report an isotropic range of correlation (the distance at which only 5 % correla-
tion remain, approximately twice the standard deviation) of 25 km for δS2S . Although radial
isotropy, i.e. σE = σN , is commonly assumed in ground motion modeling for reasons of model
simplicity, we choose anisotropic δS2S as it is more realistic and to test whether the U-Net can
capture such features.

The final dataset does not contain all simulated IM values on the regular grid. Instead,
25 observations are randomly selected from the 100 station locations. The synthetic dataset
therefore consists of 25,000 records from 1000 events recorded at 100 stations.
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3.4.2 U-Net training (synthetic)

We generally follow the training procedure described in section 3.3. The synthetic dataset is
randomly split into N tr

e =800 training and Nval
e =200 validation events. The 100 stations are

separated into Nchu=5 chunks and we consider Ninit = 5 different random initializations per
chunk. The derived GMM:

Û = f(MW , rhyp, ln(rhyp), xs, ys) (3.6)

is an ensemble of 5 chunks × 5 initializations = 25 U-Nets. Parameters xs and ys denote
coordinates of each grid point in the U-Net input area. We emphasize that we use no predictive
parameter related to δS2Ss , which can subsequently only be learned as a function of xs and ys.

3.4.3 Evaluation of U-Net predictions (synthetic)

In a first step, we need to verify that our GMM has learned the fundamental scaling re-
lations of u with MW and rhyp. Because of the abstract representation of information in-
side the U-Net, we cannot disaggregate the individual scalings with the separate parame-
ters. However, the learned scaling Ûbasic of u with MW and rhyp can be approximated by:

Figure 3.4: Comparison of the prede-
fined magnitude-distance scaling ū(MW , rryp)
(dashed lines) and the estimated relation
Ûbasic(MW , rryp) (solid lines). The lines are de-
rived via binning and averaging ln(Sa(T = 1s))
predefined and predicted values for the valida-
tion events according to rhyp and MW . For this
comparison, the entire maps of Ûbasic and corre-
sponding ū values are used.

Ûbasic(MW , rhyp) = Û − δ̂S2Ss , (3.7)

where δ̂S2Ss is the approximated site am-
plification

δ̂S2Ss =
1

Nval
e

Nval
e∑
e=1

Ûe − ūe. (3.8)

In Fig. 3.4 we present the compari-
son between the predefined relationship
ū(MW , rhyp) and the estimated relationship
Ûbasic(MW , rhyp) approximated from predic-
tions for validation events. We observe an
overall good agreement indicating that the at-
tenuation relation has been learned success-
fully. In a second step we compare the esti-
mated site amplification δ̂S2Ss to the prede-
fined δS2Ss to assess whether the site ampli-
fication was learned successfully at the sta-
tion locations and interpolated with accept-
able precision across the U-Net output area.
Visual inspection of the learned site effect
δ̂S2Ss (Fig. 3.5 a) and comparison to the predefined site effect (Fig. 3.3) indicate a high similarity.
From the distribution of residuals between the predefined and the estimated site amplification
depicted in Fig. 3.5 b, one can see that at those locations where observations were made, the
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learned site amplification closely resembles the predefined one, whereas the estimations are less
precise, though unbiased, in interpolated areas. For comparison purposes we also extract the
predefined δS2Ss at station locations and perform bicubic spline interpolation to reconstruct the

Figure 3.5: (a) Estimated site amplification map δ̂S2Ss and (b) distributions of residuals
δS2Ss − δ̂S2Ss with respect to the predefined site amplification. Solid and dashed vertical lines
in (b) indicate distribution means and standard deviations (std), respectively. From the visual
comparison of (a) to Fig. 3.3 and the distribution of residuals in (b) one can see that the site
amplification is accurately retrieved at station locations. Predictions in interpolated areas are
less accurate, but seem reasonable from visual inspection and appear to be unbiased.

site amplification field. The standard deviation between this reproduction and the predefined
field amounts to 0.11, very similar to the value of 0.12 that is obtained from the U-Net reproduc-
tion δ̂S2Ss . We note that although the spatial anisotropy introduced during generation of δS2Ss
clearly emerges also in the interpolated site amplification δ̂S2Ss , no advantage over the bicubic
spline interpolation can be stated in terms of misfit to the predefined δS2Ss .

Similar studies concerning the recovery of source-location specific variations δL2Ll and path-
specific amplification δP2Psl have been conducted successfully and are presented in the supple-
mental material S2. In summary, we come to the conclusion that the proposed U-Net methodol-
ogy is capable of extracting and interpolating the scaling of an IM with magnitude and distance,
as well as site-, source-, and path-specific amplification from a strong motion dataset.

3.5 Application to the Kanto basin

In this section, we present an exemplary application of our U-Net GMM to the Kanto basin area,
Japan. We will first describe the used dataset and the U-Net training procedure, followed by
the discussion of an example prediction and a more general evaluation of the model performance
on the entire dataset.
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3.5.1 Kanto basin dataset

We chose the Kanto basin as our study area due to its high seismic activity and high station
density of the regional KiK-net strong motion network. Operating for over 20 yr, KiK-net
provides a substantial strong motion dataset necessary to constrain the U-Net methodology.

Figure 3.6: (a) Training and (b) validation events selected from the Bahrampouri et al. (2021)
database. The magenta square indicates the U-Net input area.

We use the strong motion database by Bahrampouri et al. (2021) and select a subset of records
from the Kanto basin, in total 46,191 records of Ne=2864 events (Fig. 3.6) recorded at 65
stations (Fig. 3.7). Thereby, we use records from events of all tectonic region types. The average
interstation distance of the selected KiK-net stations is about 94 km, with almost 20% of the
interstation distances being less than 50 km. We select the geometric mean of the two horizontal
components of ln(Sa(T = 1s)) as our target IM due to its wide application in probabilistic
seismic hazard analysis (PSHA). The distribution of the records with respect to MW and rhyp is
presented in Fig. 3.8. The locations of the U-Net input (572×572 pixels) and output (388×388
pixels) areas in the Kanto basin are presented in Fig. 3.7. The corresponding regular grids have
a spacing of 500m and encompass regions of (286 km)2 and (194 km)2, respectively. We use a
collection of nine predictive parameters: MW , rhyp, ln rhyp, event longitude lone, event latitude
late, hypocentral depth dhyp, coordinates of each grid point xs, and ys, and the depth to seismic
bedrock zbedrock (compare Fig. 3.1). We expect the U-Net to learn site amplification as a function
of xs, ys, and zbedrock, source-location-specific variability from lone and late, and path-specific
amplification from xs, ys, lone, and late. The zbedrock data was downloaded from the J-SHIS
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map web service (see section 3.8).

3.5.2 U-Net Training (Kanto basin)

We generally follow the training procedure described in section 3.3. We split the dataset by
events, in which events before the year 2015 are used for training and after for validation. The
65 stations are divided into Nchu=5 chunks and we consider Ninit=10 different random initial-
izations per chunk. The arrangement of stations into chunks is illustrated in the supplementary
material S3.

We derive 5 chunks × 10 initializations = 50 U-Net estimators:

ŷij = f(MW , rhyp, ln(rhyp), lone, late, dhyp, xs, ys, zbedrock)
i ∈ {1, 2, . . . , 5}
j ∈ {1, 2, . . . , 10}.

(3.9)

Figure 3.7: Station coverage of the KiK-net
network in the Kanto basin. Triangles indicate
the locations of seismic stations. The color in-
dicates the number of available strong motion
records for ln(Sa(T = 1s)) in the Bahrampouri
et al. (2021) database.

We perform ensemble averaging over all
50 U-Nets ŷij according to equations (3.2) and
(3.3) to derive the full ensemble estimator Ŷ
(compare Fig. 3.9) as our final GMM for the
Kanto basin. Because Ŷ is trained on data
from all stations in the Kanto basin, it is not
suited for evaluation of the quality of interpo-
lated values. Therefore, we also derive partial
ensemble estimators Ŷ i, which only average
over those respective 10 U-Nets for which the
same ith station chunk was excluded from the
training procedure and is used to evaluate the
ability to interpolate spatially after training.

3.5.3 Evaluation of U-Net predic-
tions (Kanto basin)

In Fig. 3.10 we present an example prediction
of our full ensemble estimator for an event
from the validation set. A comparison be-
tween the mean prediction Ŷ and the avail-
able observations y for this event is shown in
Fig. 3.10 a. From visual inspection, we notice
an overall satisfying agreement. The corre-

sponding predicted standard deviation Σ̂ is given in Fig. 3.10 b. One should recall that Σ̂ depends
on the same set of input variables as the mean prediction Ŷ , and is therefore a spatially varying
and event specific quantity. One can identify the general trend that Σ̂ is small in regions where
station density is high and spatial variability in the mean prediction is low. This distribution
indicates that the individual U-Net estimators ŷij learn the same scatter of observations
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Figure 3.8: Distribution of all KiK-net records from the Kanto basin according to (a,b) MW

and rhyp available in the Bahrampouri et al. (2021) database. The entire dataset is split into a
set of (c) training events and (d) validation events. Although all available records were used for
either training or validation, we assume that predictions from the ground motion model (GMM)
derived in this study for MW , rhyp combinations with less than 10 records in the training set
are not reliable. The white polygon in (c) indicates our suggested range for application. The
magenta polygon indicates the range for which comparison to conventional GMMs is presented
in the Discussion (section 3.6).

at station locations, but interpolate slightly differently due to their random initialization of co-
efficients. Consequently, Σ̂ can, at least, be interpreted as a comprehensible measure for the
relative confidence of the GMM in its prediction. More examples and comparisons to the pre-
dictions of the ergodic GMMs of J. X. Zhao et al. (2016a,b,c) are available in the supplementary
material S4. The comparison of predictions Ŷ with observations y from validation events is
illustrated in Fig. 3.11 and is quantified using the root mean square error (rmse=0.48 in natural
log units). The use of the negative log-likelihood loss function given in equation (3.1) provides
that Σ̂ should be a proxy for the scatter in observations at station locations. To verify the
success of this strategy, we first calculate residuals between observations from validation events
and the corresponding mean predictions of our full ensemble GMM. We then standardize these
residuals by dividing each individual residual by its predicted standard deviation:

∆̃n =
yn − Ŷn

Σ̂n

n ∈ {1, . . . , Nobs,val}, (3.10)

in which Nobs,val denotes the number of observations from validation events. If Σ̂ accurately
described the scatter in observations, then the standardized residuals ∆̃n should be standard
normally distributed.

The actual distribution of ∆̃n together with the targeted standard normal probability density
function (PDF), is depicted in Fig. 3.12. We notice that the actual standard deviation of 0.85 is
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Figure 3.9: Schematic representation of en-
semble averaging of mean predictions. The full
ensemble estimator Ŷ is derived via averaging
over all individual U-Net estimators ŷij . Partial
ensemble estimators Ŷ i are derived via averag-
ing over those subsets of U-Nets for which the
same ith station chunk was excluded from train-
ing and can thus be used to evaluate interpo-
lated predictions. Partial ensemble estimators
are required to evaluate predictions in interpo-
lated regions of the area of interest. Ensemble
averaging of individual standard deviation esti-
mators σ̂ij into partial ensembles ς̂ i and the full
ensemble Σ̂ is performed accordingly.

≈15% smaller than the targeted value of 1.
Because Σ̂n represents the denominator in
equation (3.10), this indicates an overestima-
tion of the uncertainty in predictions at sta-
tion locations.

In addition to the performance at station
locations, we also verify the model’s ability
to interpolate between stations. For this pur-
pose, we use the partial ensemble estimators
Ŷ i, for which the ith station chunk was ex-
cluded from training and can thus be used to
evaluate interpolated predictions. Each of the
five Ŷ i can be compared with the observed
data in four different categories: 1) training
events recorded on training stations, 2) val-
idation events recorded on training stations,
3) training events recorded on validation sta-
tions, 4) validation events recorded on vali-
dation stations. The rmses between observa-
tions and predictions averaged over the five Ŷ i

are presented in Table 3.1. As expected the
smallest rmse is obtained for those observa-
tions that were used during training. A sim-
ilar value is obtained for records from valida-

tion events observed at training stations, indicating successful generalization to events outside
the training dataset. The rmse increases significantly for validation stations, because these
predictions include the additional error due to interpolation. The rmse at interpolated sites
obtained from Ŷ i can be interpreted as an upper bound estimate of the corresponding rmse of
the full ensemble estimator Ŷ , because it is trained using all stations and is, therefore, better
constrained due to the higher station density. In a final step, we evaluate the precision of the
predicted standard deviations ς̂ i from the partial ensemble estimators. As for the full ensemble
estimator, we calculate standardized residuals between all observations from both training and
validation events with respect to all partial ensemble estimators:

Λ̃in =
yn − Ŷ in
ς̂ in

n ∈ {1, . . . , Nobs}, (3.11)

in which Nobs denotes the number of observations. The comparison of the distribution of Λ̃in

to the targeted standard normal PDF is depicted in Fig. 3.13. From Fig. 3.13 a, b, we conclude
that the predictive uncertainty at the training stations closely resembles the data scatter and,
therefore, represents a reliable uncertainty measure. At interpolated sites, Λ̃in is zero centered
and well described by a normal distribution (Fig. 3.13 c, d). However, we observe that the
standard deviation of Λ̃in is over 40% larger than the targeted value of 1, indicating a significant
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Figure 3.10: Example prediction of our GMM for a magnitude 5.2 validation event at lon-
gitude 140.98◦ and latitude 36.86◦. The plotted raster data and the circles in (a) show the
mean prediction Ŷ , in which the circles represent the values at exactly those locations, where
observations y (triangles) are available. The root mean square error (rmse) amounts to 0.41 in
natural log units. The raster data in (b) shows the predicted standard deviation Σ̂. The white
triangles indicate the locations of all stations in the dataset, including those that have no record
for this specific event.

Figure 3.11: Full ensemble mean predictions
Ŷ versus observations y of ln(Sa(T = 1s)) for
all records from validation events.

underestimation of the predicted standard de-
viation.This means that although the relative
tendency to assign larger uncertainties to less
constraint estimates is given, predictive un-
certainty at interpolated sites is quantitatively
only a lower bound uncertainty estimate. The
precision in Fig. 3.13 b is actually higher than
the one obtained for the full ensemble estima-
tor presented in Fig. 3.12. This is due to the
fact that when ensemble averaging over all 50
U-Nets at a specific station site, those 10 U-
Nets for which this site was in the validation
chunk contribute less well-calibrated predic-
tions.

3.6 Discussion

3.6.1 Comparison to ergodic GMMs

Because the presented U-Net methodology is a fully data-driven approach without any physical
constraints on the model design, we want to validate that the fundamental functionality of our
full ensemble estimator Ŷ is comparable to conventional GMMs. We compare our prediction for
the example event presented in Fig. 3.10, as well as the overall learned magnitude and distance
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Figure 3.12: Comparison of the distribution
of standardized residuals ∆̃n with the targeted
standard Gaussian. Solid and dashed vertical
lines indicate the empirical mean and standard
deviation (std) of standardized residuals ∆̃n, re-
spectively.

scalings to the ergodic GMMs for Japan de-
veloped by J. X. Zhao et al. (2016a,b,c) (here-
after Zhao16 GMMs). We emphasize, that the
purpose of these comparisons is not to iden-
tify superiority of one model over the other.
Instead, we want to demonstrate that the ba-
sic functionality of our model is comparable
to a conventional GMM that is derived from
a well-established and mature methodology.
A detailed, quantitative comparison would be
inappropriate for a number of reasons: first
of all, there is no standardized procedure to
compare nonergodic to ergodic GMMs, be-
cause they make fundamentally different as-
sumptions on the distribution of ground mo-
tion data. Furthermore, our model is trained
on data from the Kanto basin only, whereas
the Zhao16 models are calibrated using data
from entire Japan. Another aspect is that in

this study we do not exhaust the full power of the Zhao16 models, because we disregard its
volcanic path terms and always use rhyp instead of the suggested rupture plane distance rrup,
if 3D rupture models are available. Finally, we derive the site classes that are required as site
parameters for the Zhao16 models indirectly via conversion of the VS30 map accessed via the
J-SHIS web map service (see section 3.8), according to J. X. Zhao et al. (2015). However, we
consider this use of Zhao16 models appropriate for the qualitative comparison that we attempt.

Figure 3.13: Standardized residuals Λ̃in with respect to partial ensemble estimators Ŷ i at
(a) training station locations for training events, (b) training stations for validation events, (c)
validation stations for training events, and (d) validation stations for validation events. Solid and
dashed vertical lines indicate the empirical mean and standard deviation (std) of standardized
residuals Λ̃in, respectively.

The prediction of the Zhao16 GMM for the event presented in Fig. 3.10 is given in Fig. 3.14.
In comparison to the prediction Ŷ derived in this study (Fig. 3.10 a), we note that the range of
IM values and the large scale attenuation with distance are similar.
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Table 3.1: Average root mean square errors ± 1 standard deviation between observations y
and predictions of the five partial ensemble estimators Ŷ i.

training stations validation stations
training events 0.428 ± 0.005 0.809 ± 0.082
validation events 0.454 ± 0.003 0.821 ± 0.110

However, we also note that Ŷ adapts better to the small-scale spatial variations in the observa-
tions of the IM for this specific event. The direct comparison between Ŷ and the Zhao16 GMM
is presented in Fig. 3.15. Although our model appears as a point cloud and the Zhao16 model
as discrete lines, due to the use of continuous and discrete site parameters, respectively, we note

Figure 3.14: The raster data and the circles
show the mean IM prediction of the Zhao16
GMM for the same event presented in Fig. 3.10.
The circles represent the values at exactly those
locations, where observations (triangles) are
available. The rmse amounts to 0.65 in natu-
ral log units.

that the attenuation with distance of both
models are comparable, with our model pro-
viding a closer fit to the observations. In a
next step, we compare the average magnitude-
distance scaling learned by our model to that
of the actual observations and Zhao16 GMMs.
Because the individual scalings between in-
put and target parameters cannot be disag-
gregated for a neural network, we need to ap-
proximate them from predictions. Only events
and records within the data range that is valid
for comparison in terms of magnitude, dis-
tance, and depth to top of rupture (ztor) are
selected for comparison. The suitable data
range in terms of magnitude and distance is
given in Fig. 3.8 c. According to J. X. Zhao
et al. (2016a,b,c), limits of ztor < 25 km for
active shallow crust, ztor > 25 km for upper
mantle, ztor < 50 km for subduction interface,

and ztor < 200 km for subduction intraslab events are selected. We average predictions of the
selected training and validation events per tectonic region type along magnitude-distance bins.
The results are depicted in Fig. 3.16. Because the accuracy of this procedure depends highly
on the number of predictions within a bin, we only consider bins with more than 500 predicted
values. Predictions of our model in water covered areas are excluded. The dots representing the
observations are derived accordingly, using the same bins. For the Zhao16 predictions, we use
average magnitude and rake values obtained per tectonic region type and magnitude bin and
VS30=410m/s, which corresponds to site class SCII (hard soil) according to J. X. Zhao et al.
(2015). More details on the configuration of the Zhao16 models are given in the supplementary
material S5. For Active Shallow Crust events, predictions of our model, Zhao16, and observa-
tions provide a consistent picture (Fig. 3.16 a). Although magnitude scalings are similar between
our model and Zhao16 for upper mantle events, distance scalings significantly differ (Fig. 3.16 b).
However, our model is closer to the observations than Zhao16, indicating that our model has
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Figure 3.15: Direct comparison between our model (yellow point cloud), the Zhao16 GMM
(red lines) and observations (black crosses) for the event introduced in Fig. 3.10, 3.14. Because
of the continuous site parameters used in our model, corresponding predictions appear as a point
cloud, contrary to the 4 lines that represent predictions of the Zhao16 GMM for four different site
classes. Gray lines indicate the affiliation of observations with corresponding Zhao16 predictions
(large red markers) and Ŷ predictions (large yellow markers).

learned a Kanto basin specific distance scaling that differs from the average Japanese one.
For subduction interface events, scalings are slightly different between Zhao16 and our model
(Fig. 3.16 c). However, compared to the observations, our model provides reasonable results.
An overall good agreement of the two models and observations can be stated for subduction
intraslab events (Fig. 3.16 d). We emphasize at this stage that the predictions of our model
adapt to the tectonic region type of an event, although it was not used as a predictive parameter
during training. We, therefore, conclude that the U-Net extracted the relevant information from
the location of the event hypocenters. This feature is fundamentally different from common
GMMs that rely on the accurate classification of events into tectonic region types. Based on the
presented comparison, we conclude that our U-Net based GMM provides predictions in terms
of magnitude and distance comparable to Zhao16 — a set of models based on a well-established
and mature methodology.

In a final comparison, we evaluate the performance of our model and the Zhao16 models
on those observations from validation events that are within the validity range of both models
(Fig. 3.17). The fact that the misfit of our model and Zhao16 are of the same order of magnitude
indicates that the U-Net methodology is capable of providing reasonable GMMs.

3.6.2 Evaluation of learned site amplification

Our proof of concept demonstrated that our model is capable of providing fully nonergodic
GMMs, including site-specific, as well as source-location and path-specific amplification. Al-
though the latter two are difficult to evaluate on real data, because we cannot disaggregate the
scaling relations within a neural network, we can approximate the average learned site amplifi-
cation from the absolute site coordinates xs, and ys, and zbedrock by averaging predictions.
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Figure 3.16: Comparison between the GMM developed in this study (solid lines), observations
from the Bahrampouri et al. (2021) database (dots), and Zhao16 GMMs (dashed lines), for (a)
active shallow crust events, (b) upper mantle events, (c) subduction interface events, and (d)
subduction intraslab events. The dots depicting the data and the curves depicting our model
are derived from averaging suitable records and predictions of lnSa(T = 1s) alongMW and rhyp
bins for both training and validation events.
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In a first step we train another GMM F̂ identically to Ŷ but without using xs, ys, and
zbedrock as predictive parameters. We then approximate the site amplification ˆAmps learned by
Ŷ with

ln ˆAmps =
1

Ne

Ne∑
1

Ŷe − F̂e. (3.12)

The resulting site amplification map is depicted in Fig. 3.18. We compare this map to the
depth to bedrock map used for training, the commonly used site parameter VS30, and site
amplification of pseudo-spectral velocity at a period of 1 s (PSV(T=1s)) derived by Nakano and
Kawase (2021) (Fig. 3.19). The VS30 map was downloaded from the J-SHIS map web service (see
section 3.8). The degrees of correlation are quantified using Spearman’s ρ correlation coefficient.
From the correlation of ˆAmps with the depth to bedrock map (compare Fig. 3.19 a, d), one

Figure 3.17: Performance of our model and
Zhao16 models on the fraction of observations
from validation events suitable for comparison
(compare Fig. 3.8).

can see that the model successfully learned a
relation between depth to bedrock and the tar-
get IM. Because the outline where ˆAmps =

1 systematically follows the outline of the
Kanto basin (compare Fig. 3.19 a), we con-
clude that this relation is successfully trans-
ferred from the observation locations across
the Kanto basin. Furthermore, one can see
small-scale anomalies around seismic station
locations, indicating that the U-Net learned
a site-specific amplification from the absolute
locations of observations. The approximated
site amplification ˆAmps shows moderate cor-
relation with the commonly used site param-
eter VS30 (Fig. 3.19 b, e) and the site ampli-
fication of PSV(T=1s) (Fig. 3.19 c, f). Good
agreement between ˆAmps and amplification of
PSV(T=1 s) can be stated at KiK-net sites in

the central and eastern parts of the Kanto basin (compare Fig. 3.18). However, major differ-
ences are observable west of the Kanto basin, where the PSV(T=1 s) map consistently shows
deamplification, and our map shows a more variable picture. Reasons for this difference might
be the different data selection of Nakano and Kawase (2021). Furthermore, they used not only
the KiK-net, but also K-net and Japan Meteorological Agency (JMA) strong motion networks,
and therefore provide a more detailed map. Using the same data density in our model might
provide a more insightful comparison but is beyond the scope of this study.

3.6.3 Concerning practical application

All calculations related to this study were performed on a desktop computer with an Intel(R)
Core(TM) i9-7980XE CPU (977 GFLOPS), 128 GB of RAM and an NVIDIA RTX2080Ti GPU
(13.45 TFLOPS). With this setup, training of a single U-Net takes approximately 1.5 hr. It
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means that the presented work can be transferred to other datasets and areas of interest with
reasonable effort. The major shortcoming of the U-Net GMM methodology at the current stage
is its limited applicability to near source ground motion of large-magnitude events due to the

Figure 3.18: Estimated site amplification of
Sa(T = 1s) in the Kanto basin approximated
from averaged mean predictions Ŷ .

lack of corresponding observations. Although
all GMMs suffer from this problem, physi-
cal a priori information can be incorporated
in equation-based GMMs to overcome this
issue. An analog stabilization for the U-
Net method could be the augmentation of
strong motion datasets with predictions from
ergodic GMMs. With such a strategy, the
U-Net method would provide the same pre-
dictions as ergodic GMMs at the respective
data ranges and provide nonergodic predic-
tions where more observations are available.
A similar solution is implemented for example
by Landwehr et al. (2016), whose model con-
verges towards an ergodic backbone model in
regions where station density is low.

Unlike other commonly used interpolation approaches, such as Gaussian Process Regres-
sion (as used in Landwehr et al., 2016), the U-Net methodology provides data-driven spatial
interpolation without the need to define the type and parameters of an interpolation kernel
function. Although this functionality is convenient and grants some degree of freedom of subjec-
tive decisions by the modeler, it is yet an open question how its performance compares against
conventional interpolation techniques.

Because of the open questions discussed earlier, we currently do not consider our presented
methodology sufficiently mature for immediate application in seismic hazard and risk studies,
yet. However, potential future research paths toward answering these questions are in sight.
We are optimistic that U-Net-based fully data-driven and nonegodic GMMs can become a per-
manent, complementary element of hazard and risk studies in data-rich regions such as Japan,
Taiwan, and California in the foreseeable future.

3.7 Conclusions

In this study, we have presented the development of a nonergodic, fully data-driven GMM
prototype based on the U-Net neural network architecture. As such, the model is free of any a
priori choices concerning the model design itself or the interpolation scheme.

From experiments with synthetic data we found that the U-Net methodology is capable
of learning observation site, earthquake location, and propagation path-specific amplification
effects and is, thus, comparable to fully nonergodic approaches to ground motion modeling.

However, the U-Net’s fully data-driven, inherent interpolation scheme significantly eases the
use of such a model to predict continuous ground motion maps, because no a priori assumption
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Figure 3.19: Maps of (a) bedrock depth, (b) VS30, and (c) site amplification of pseudo spectral
velocity at a period of 1 s (PSV(T=1s)) estimated from Nakano and Kawase (2021). The re-
spective correlations with the approximated site amplification ˆAmps(Sa(T = 1s)) are depicted
in (d–f), quantified using the Spearman’s ρ correlation coefficient. The bold and thin black lines
in (d–f) represent the average and ±1 standard deviation for the respective data bins.

about the interpolation have to be made. In the synthetic experiments, we demonstrated that the
interpolation scheme provides unbiased predictions within acceptable error bounds, whereas from
the results of the application to real data from the Kanto basin we can state that interpolated
predictions correlate with commonly used site parameters. However, a quantitative comparison
to conventional interpolation methods is yet an open task.

From the application of our model to real observations from the Kanto basin, we have learned
that ground shaking of future earthquakes can be predicted, within acceptable errorbounds, at
those sites where observations from previous earthquakes are available. We can furthermore
state that the predictions of our model at observation sites and in interpolated regions agree on
average with the predictions of equation-based, ergodic GMMs for Japan.

However, due to data scarcity, application of our model in the near field is currently not
advised without augmenting the used strong motion dataset in this regards. Although associated
predictive uncertainties were found to provide useful information about the relative confidence of
the model in a prediction, we noticed that the absolute values of uncertainties are overestimated
at observation sites and underestimated at interpolated sites, with respect to the data scatter.

The fact that our model can be derived on a consumer-level desktop computer with a decent
GPU allows the transfer to an arbitrary area of interest with reasonable effort.
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Summarizing the main findings from this study, we come to the conclusion that U-Net-based
GMMs pose a worthwhile complementary tool to the already large and well-established pool of
GMM methods. In our opinion, the presented results indicate that U-Net-based GMMs have
the potential to become a permanent feature in seismic hazard and risk studies, complementary
to conventional GMMs, in the foreseeable future.

3.8 Data and resources

The depth to seismic bedrock (V.3.2 ESRI shapefile "Subsurface Structure" layer 30; The Head-
quarters for Earthquake Research promotion, 2021), as well as VS30 (ESRI shapefile "Site am-
plification factors", parameter "AVS"; Fujimoto and Midorikawa, 2006; Senna et al., 2013, 2019;
Wakamatsu and Matsuoka, 2013, 2020) maps for the kanto basin were downloaded from the
J-SHIS web map service available at https://www.j-shis.bosai.go.jp/map/?lang=en (last
accessed on November 26, 2021). The Bahrampouri et al. (2021) strong motion flat file was
downloaded from https://www.designsafe-ci.org/data/browser/public/designsafe.s

torage.published/PRJ-2547 (last accessed on November 29, 2021). We used NumPy (Harris
et al., 2020) and SciPy (Virtanen et al., 2020). Figures were made with Matplotlib (Hunter,
2007) and Inkscape (Inkscape Project, 2020). Tensorflow (Abadi et al., 2015) was used for deep
learning. We used QGis (QGIS Development Team, 2021) for data preparation. GMMs of J. X.
Zhao et al. (2016a,b,c) were accessed via Openquake (Pagani et al., 2014). The supplementary
material to this article encompasses the following content: S1, technical details on U-Net train-
ing; S2, documentation of complementary synthetic experiments; S3, a figure on the grouping
of station chunks in the Kanto basin; S4, example predictions from the validation dataset and
comparisons to Zhao16 models; and S5, technical details on the use of Zhao16 models.
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3.A Appendix

3.A.1 U-Net architecture

In this appendix, we provide a detailed technical description of the U-Net architecture depicted
in Fig. 3.1.

From the original U-Net, we adapt the resolution of 572 × 572 pixels for the input features,
which ensures even-sized features throughout the U-Net, a requirement for a smooth processing

https://www.j-shis.bosai.go.jp/map/?lang=en
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-2547
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-2547
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pipeline. The corresponding size of the input maps in terms of square kilometers is determined
by the spacing between pixels that can be chosen by the user. A larger resolution of input
features could be chosen to either investigate a larger area of interest or to increase the spatial
resolution. The practical limitation for the resolution is the amount of available memory on the
used graphics processing unit (GPU).

The first element of the U-Net is the encoder branch – a sequence of alternating Conv blocks
and Pooling blocks through which the input is processed (compare Fig. 3.1). Each Conv block
encompasses two convolutional layers, each followed by a tanh activation function. Features
that are fed to a convolutional layer are convolved with a number of filtermasks of size (3×3),
in which each filter mask generates one output feature. Thus, the number of features at a given
point in the U-Net equals the number of filtermasks in the previously passed convolutional layer.
We decided to reduce the number of filtermasks by a factor of 2 compared to the original U-Net
in Ronneberger et al. (2015) due to GPU memory limitations. Subsequent passing through
a nonlinear activation function (in our case the tanh) is required to learn nonlinear relations
between the predictive parameters and the target parameter. Although the original U-Net uses
the Rectified Linear Unit (ReLU) as default activation function, we observed that using the tanh

leads to more stable convergence during training in our case. The purpose of the Max pooling
blocks is to reduce the resolution of the features along the encoder branch. This is achieved via
dividing each feature into subarrays of size 2 × 2 and picking the respective maximum values,
thus, reducing its resolution by a factor of 2. This factor is adapted from the original U-Net.
Along the encoder branch, the size of the features continuously decreases, whereas the number
of features increases. It can thus be considered a feature extractor concentrating the information
given in the input layer into a number of low resolution, highly abstract features.

The second element of the U-Net is the decoder branch – a sequence of alternating up-
samplings, skip connections and Conv blocks. Upsampling operations increase the resolution
of the features via bilinear interpolation, conversely with respect to the Pooling blocks in the
encoder branch. The upsampled features are subsequently concatenated with the corresponding
features from the encoder branch, which is called skip connection. Via skip connection, the
abstract features derived in the feature extraction are combined with the less abstract features
from the encoder branch that include more spatial context. In the original U-Net architecture,
the upsampling operations are followed by convolutional layers before the skip connections. In
our setup, these layers cause significant artifacts in the final results, and, therefore, we removed
them from the architecture.

The spatial context information and the abstract features are then combined in the Conv
blocks, which eventually leads to less abstract and more practical representations of the extracted
features toward the output layer. The final Conv-out block consists of two convolutional layers
that are organized in parallel, in which the first one is followed by a linear, and the second
one by an exponential activation function. These two parallel layers provide two outputs that
we interpret as the mean and the variance of the target intensity measure (IM), respectively.
Because no padding is applied to the features during convolution operations, the resolution of
the output features is smaller (388×388) than that of the input features (572×572).
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4.1 Abstract

The proximity of shallow, fast-slipping crustal faults to urban areas may result in pulse-like
ground motions from rupture directivity contributing to increased levels of damage, even for
engineered structures. Systematic modelling of directivity within probabilistic seismic hazard
analysis (PSHA) remains challenging to implement at regional scale, despite the availability
of directivity models in the literature. In the process of developing the 2022 National Seis-
mic Hazard Model for New Zealand (2022 NSHM), we explored the feasibility and impact of
modelling directivity for PSHA at national scale using the previous generation 2010 National
Seismic Hazard Model. We identify a suitable state-of-the-art directivity amplification model
for this purpose according to a set of proposed selection criteria. The results of this analy-
sis allowed us to quantify the impact of directivity on the resulting seismic hazard maps for
New Zealand, and gain insights into the factors that contribute to the expected increases (and
decreases) in ground motion level. For the 2022 NSHM, earthquake rupture forecast (ERFs)
seismogenic source models introduced enormous challenges for directivity modelling due to the
abundance of large multi-segment/ multi-fault ruptures with complex geometries. To overcome
these challenges, we apply a machine-learning based strategy to “overfit” an artificial neural
network to capture the distributions of directivity amplification for each unique rupture in the
earthquake rupture forecast. This produces a compact representation of the spatial fields of
amplification that are computationally efficient to generate within a complete PSHA calculation
for the 2022 NSHM. This flexible and reproducible framework facilitates implementation of di-
rectivity in PSHA at regional scale for complex ERF source models and opens the possibility
of more complex characterization of epistemic uncertainties for near source ground motion in
practice.

4.2 Introduction

Strong ground motions in the near-field region of large earthquake ruptures present a significant
threat to the built environment in seismically active regions, even for buildings designed to
modern seismic resistant code standards. Such motions are often not only large amplitude owing
to their close proximity to the earthquake rupture, but they also contain pulse-like characteristics
that can produce greater seismic demands for engineered structures than non pulse-like motions
of similar amplitude (Baker, 2007; Bertero et al., 1978; Hall et al., 1995; Mavroeidis et al.,
2004). One of the principal factors that contribute to these characteristics is rupture forward
directivity, which occurs when a rupture propagates toward a site at a velocity approaching
that of the local shearwave velocity in the crust, causing the wave to arrive predominantly as
a large pulse shortly after the onset of shaking (Somerville et al., 1997). The conditions for
the phenomenon to occur at a site during earthquake shaking depend on the position of the
site with respect to the earthquake fault, the magnitude of the earthquake itself, and the speed
and direction of rupture. Forward directivity has been observed in near-source records for many
major earthquakes, such as the 1993 Landers, California, (M7.3) (Wald and Heaton, 1994),
1999 Chi-Chi, Taiwan (M7.6) (Xie, 2019), 2011 Darfield, New Zealand (Bradley et al., 2014)
and 2023 Kahramanmaras, Türkiye, (M7.8, M7.6) earthquakes (Mai et al., 2023), among many
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others.

4.2.1 Capturing directivity in PSHA

While near-source directivity effects have been well observed, and physical mechanisms con-
trolling their generation largely understood, characterization of these effects in ground motion
models used for probabilistic seismic hazard analysis (PSHA) remains limited. There are several
reasons for this, beginning with the challenge of classifying forward directivity pulse-like ground
motion records objectively (e.g. Baker, 2007; Shahi and Baker, 2014), quantifying the probability
of a record displaying pulse-like motion given the source, path and site conditions (Iervolino and
Cornell, 2008; Tothong et al., 2007), prediction of the change in amplitude of strong shaking
due to forward (and reverse) directivity and the frequency range over which this occurs, i.e.
the directivity amplification models (e.g. Abrahamson, 2000; Donahue et al., 2019; Somerville
et al., 1997; Spudich et al., 2013), and, finally, characterization of the probability distributions
that describe the aleatory uncertainty of the source and path properties relevant for directiv-
ity (e.g. Mai et al., 2005; Melgar and Hayes, 2019). Existing directivity amplification models
require further parameterization of the earthquake source and path, often requiring additional
source-to-site rupture distance metrics that are seldom computed by many PSHA software, and
their predictions of both the scale and spatial pattern of amplification remain divergent from
model-to-model (Spudich et al., 2013, 2014).

Recent developments in seismogenic fault source characterization in regions of active seis-
micity introduce a new dimension of complexity to directivity modelling in PSHA. The recent
state-of-the-art Uniform California Earthquake Rupture Forecast v3 (UCERF v3) introduced a
transformative approach to modelling earthquake recurrence on fault systems in PSHA (Field
et al., 2014), wherein seismogenic sources are represented as an inventory of possible ruptures
across a fault system and their associated probabilities of occurrence (the earthquake rupture
forecast, or ERF hereafter). The long-term probabilities of occurrence of the ruptures are deter-
mined via a large-scale inversion with respect to seismic, geological, and geodetic observations in
the region (Page et al., 2014). ERF source models permit a broader range of earthquake rupture
characteristics than most existing fault sources in PSHA. Each rupture will comprise a set of
microsegments from a fault (or several faults), permitting discontinuities in the fault surface
such as offsets and step-overs, and many ruptures may include participation of microsegments
from multiple faults with different styles-of-faulting. Such ruptures are substantially more geo-
metrically complex than those for which even recent directivity amplification models have been
designed and calibrated. Recent efforts in California to apply directivity to PSHA using UCERF
version 3.0 have been undertaken by Al Atik et al. (2023) and Mazzoni et al. (2023) to produce
seismic maps for California incorporating this phenomenon; the only such study of its kind to
address the challenges posed by ERF models and apply directivity to PSHA at regional scale.

4.2.2 Relevance for seismic hazard in New Zealand

One region where the impact of directivity in seismic hazard assessment may be particularly
relevant is New Zealand. As one of the world’s most seismically active countries, New Zealand
is host to two subduction zones at opposing ends of the country (the Hikurangi and Peysegur
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subduction zones), which are connected by a fast-slipping transform fault system capable of
producing large (M > 8) strike-slip ruptures, as shown in Fig. 4.1. Tectonic deformation is
high across much of the country’s South Island and eastern North Island, resulting in large
earthquakes not only on the faults comprising that main Alpine fault system but also on shallow
crustal faults away from this system, such as those of the 1855 Wairarapa (MW 8.25), 1931
Hawke’s Bay (MW 7.6), the 2010 Darfield (MW 7.0) and 2016 Kaikoura (MW 7.8) events. These
active shallow crustal faults present a clear threat to several major cities across the country,
some of which can be found in the near-field region of the faults and would likely experience
strong directivity effects in future earthquakes. Several records from the 2010 – 2011 Canterbury
earthquake sequence showed pulse-like features in the Christchurch basin (Bradley et al., 2014),
and may have been one of several contributing factors to the strong shaking and widespread
damage observed during the sequence.

Figure 4.1: Active faults in and around New Zealand according to the 2022 New Zealand
Community Fault Model – version 1.0 (Seebeck et al., 2023) (left), and region of application
of the NZS1170.5 near-fault factor N(T,D) with its corresponding amplification for Sa(3.0 s)
(right).

The potential threat that directivity poses to engineered structures in New Zealand has been
recognized by seismologists and engineers. The 2005 New Zealand Standard for seismic loads
(NZS, 2004) is one of the few seismic design codes worldwide to introduce an explicit factor
to increase the amplitude of the elastic design spectra at spectral periods T ≥ 1.5 s in order
to account for directivity in the near-source region of major active faults. The elastic design
spectrum for horizontal loads is multiplied by a period- and distance-dependent “near-fault”
factor, N(T,D), to be applied when the expected exceedance of the seismic design level ground
motion is less than 1 / 250 yr−1. N(T,D) > 1 for sites within 20 km of faults whose annual slip
rates, ṡ, exceed 5 mm yr−1 and are capable of producing earthquakes of magnitude MW > 7.
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It tapers from a period-dependent peak when distance from the fault, D, is less than 2 km to
N(T,D) = 1 when D > 20 km. Fig. 4.1 also shows the areas for which N(T,D) > 1 and the
corresponding level of amplification for the T = 3 s period spectral acceleration, Sa(3.0 s). This
factor is not based on a probabilistic analysis but on a reasonable engineering basis, with N(T,
D ≤ 2) calibrated considering an adverse rupture and site configuration for a MW 7.5 scenario
strike-slip earthquake (McVerry, 2003).

4.2.3 Aims of the study

Our overarching goals are to formulate explicit modelling of directivity in PSHA, to identify
and address methodological and computational challenges, and to evaluate the relevance for the
seismic hazard in New Zealand. This exploration has been undertaken within the scope of the
2022 update to the New Zealand National Seismic Hazard Model (2022 NSHM). We first aimed
to implement directivity in PSHA for New Zealand and to understand its potential impact on
seismic hazard prior to the completion of the 2022 NSHM. For this purpose, we adopted the fault
source model from the existing 2010 NSHM (Stirling et al., 2012), which allowed us to gauge
the impact of the directivity model and gain an understanding of the factors that influence its
impact on the resulting seismic hazard model. The general framework for implementation of
directivity in PSHA and considerations for model selection are found in the following section
before presentation of the results from the exploratory study using the NSHM thereafter.

Following completion of the 2022 NSHM we then aimed to assess the feasibility of implement-
ing directivity into PSHA at regional scale for a PSHA based on the new earthquake rupture
forecast source model. The 2022 NSHM is the second such model, after UCERF v3, to adopt
the fault system modelling approach that results in an earthquake rupture forecast as an input
seismic source model (Gerstenberger et al., 2022a,b). As was the case for California (Mazzoni
et al., 2023), we needed to address the issue of rupture complexity and feasibility of computation
at regional scale. Here we introduce a novel strategy that built on components of the approach
proposed by Al Atik et al. (2023) to address this problem in California but adapted them into a
machine learning based framework for efficient implementation at scale. The development and
the outcomes of this application to the 2022 NSHM are shown at the end of the paper, along-
side general considerations for implementation of directivity for complete regional scale PSHA
calculations in practice.

4.3 Modelling directivity in PSHA

4.3.1 Overview

The formulation of the probabilistic seismic hazard methodology adopted here based around
the earthquake rupture forecast (ERF) (Field et al., 2003), defined previously. This formulation,
rather than the original form from Cornell (1968) and McGuire (1976), is relevant in our case as
it is through the ERF concept that fault system seismogenic source models such as UCERF3 or
the 2022 NSHM are input into PSHA calculations. The ERF formulation for PSHA modelling
is adopted within both OpenSHA (Field et al., 2003) and OpenQuake (Pagani et al., 2014),
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the latter being the software utilized in the current work. The probability of ground motion
intensity a at a site exceeding a level A in t years, P (a ≥ A|t), is given by:

P (a ≥ A|t) = 1−
NSRCS∏

i

NRUP,i∏
j

(
1− Prupij (n ≥ 1|t)

)P (a≥A|rupij) (4.1)

where rupij is the jth rupture of NRUP,i ruptures generated by the ith seismogenic source of
NSRCS , Prupij (n ≥ 1|t) describes the probability of n=1 or more occurrences of this rupture in
time t, and P (a ≥ A|rupij) the probability of acceleration a at the target site exceeding A given
the occurence of rupij . The latter term is determined from the ground motion model (GMM),
which takes the form:

ln(Y |T ) = µ(m, r,θ, T ) + δY = µ(m, r,θ, T ) + ε · σ(T ) (4.2)

where the logarithm of ground motion spectral acceleration, Y , at period T is described by a
normal distribution with expected value µ(m, r,θ, T ) and total standard deviation σ(T ), i.e.,
ln(Y |T ) = N (µ(m, r,θ, T ), σ). Here m is the magnitude of rupij , r the distance from the
rupture to the target site and θ the set of other relevant source and site parameters to describe the
expected distribution of ground motions (e.g., hypocentral depth hD, style of faulting, shearwave
velocity averaged over the upper 30 m of the crust VS30, depth of soil sediment to a given
shearwave velocity layer Zh, etc.). A common misconception of PSHA is that it does not
account for directivity in ground motion unless the GMM itself contains an explicit term for
this phenomenon. This is not exactly the case, however, as calibration of both µ(m, r,θ, T ) and
σ(T ) for ground motions from large-magnitude earthquakes will be based on a set of observed
or simulated ground motions that will contain a proportion of pulse-like records. Directivity
can therefore be said to be captured implicitly in current PSHA practice owing to its presence
in the near-fault ground motion variability σ(T ). However, this implicit approach may not
always be adequate in application as σ(T ) is usually constrained from ground motion records
over a large range of distances and azimuths, and thus represents a mixture of pulse-like and
non pulse-like records. The predicted variability in ground motion in the near-fault region may
be underestimated, as it is reduced by averaging with records from far-field events for which
directivity effects are weaker or absent (Abrahamson, 2000). The expected variation in ground
motion around an active fault will likely be more complex, changing with magnitude, distance
and source-to-site azimuth, as well as with spectral period. Non-ergodic GMMs with spatially
varying coefficients may capture part of this complexity via repeatable path effects, although
with very few records in the near field of large magnitude earthquakes on a fault it is unlikely
to be representative of the true variability. These limitations of the implicit approach are a key
motivation for modelling directivity in PSHA using explicit predictive models of amplification
that depend on the characteristics of the earthquake rupture and the configuration of the target
sites for which ground motion is calculated (e.g. Donahue et al., 2019; Somerville et al., 1997;
Spudich et al., 2013). We refer to this as the explicit approach to modelling directivity in PSHA.
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4.3.2 Explicit directivity modelling for PSHA

In our nomenclature, explicit modelling of directivity requires modification of the ground motion
model to incorporate a near-fault directivity amplification term:

lnY (T ) = [µ(m, r,θ, T ) + ∆µdir(m, r, h,θ,θdir, T )] + ε · σdir(m, r, h,θ,θdir, T ) (4.3)

where ∆µdir(m, r, h,θ,θdir, T ) is a scenario-dependent modifying factor describing the change
in expected ground motion due to near-fault directivity, with respect to the median of the GMM
(µ(m, r,θ, T )) that represents a directivity neutral condition, and σdir(m, r, h,θ,θdir, T ) is the
modified total variability of the GMM owing to the inclusion of the directivity amplification
term. σdir should, at this stage, be reduced with respect to the original σ of the GMM, as
inclusion of ∆µdir into the expected near-source ground will reduce the corresponding aleatory
variability. h is the position of the hypocenter within the rupture plane, which we will describe
here as h = {X,Z}, where X ∈ [0, 1] is the along-strike position of the hypocentre as a fraction
of the total length L of the rupture plane and Z ∈ [0, 1] the down-dip position of the hypocenter
as a fraction of the total down-dip width W of the rupture plane. A distinction is made between
θ, the set of source, path and site parameters (excluding magnitude and distance) required
by a GMM to describe the expected ground motion at a site, and θdir the additional set of
parameters required to describe the directivity amplification, which are limited only to source
and path parameters. Depending on the complexity of the GMM in question there may be
some overlap between θ and θdir particularly regarding properties related to the dimension of
the earthquake rupture, such as fault width (W ), fault length (L) and the mechanism of the
rupture represented by its strike (φ), dip (δ) and rake (ξ). Among θdir, however, there may
also be parameters relating to the dynamic properties of a rupture, such as local direction of
slip (Rowshandel, 2018), which need to be treated as aleatory variables in the context of PSHA.

The modified GMM in equation 4.3 introduces potentially two new aleatory variables com-
pared to conventional PSHA: h and θdir. To incorporate these variables into PSHA we would
need to adapt the formulations in equation 4.1 to include integrals over their respective proba-
bility distributions fH(h) fγ(θdir). Equation 4.1 therefore becomes:

P (a ≥ A|t) = 1−
NSRCS∏

i

NRUP,i∏
j

Nh∏
k

Nγ∏
l

(
1− Ph(hk) · Pγ(θdir,l) · Prupij (n ≥ 1|t)

)P (a≥A|rupij ,hk,θdir,l) ,

(4.4)
where Ph(hk) is the probability of the h = {X,Z}k hypocenter position on the rupture from
Nh positions approximating fH(h) (such that

∑Nh
k Ph(hk) ≡ 1), and Pγ(θdir,l) the probabil-

ity of the directivity predictor θdir,l from Nγ values approximating fγ(θdir) (also requiring
that

∑Nγ
l=1 Pγ(θdir,l) ≡ 1). Following the terminology of (Donahue et al., 2019), we refer to

this complete extension of the PSHA integral as the full hypocenter randomization approach
(notwithstanding that the formulations above may randomize both the hypocenter and poten-
tially other predictors of directivity). Implementation of this approach in the PSHA calculation
results in a significant increase in computation, however, as the number of earthquake source
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scenarios is increased by a factor of Nh · Nγ . This is compounded by the additional cost of
calculating ∆µdir, σdir and potentially complex parameters within θdir itself. When attempting
to run PSHA at regional scale, which considers potentially tens of thousands of target locations,
the increased computation needed for the full hypocenter randomization approach is not just
challenging, it may become entirely prohibitive.

An alternative strategy for explicit directivity modelling in PSHA is to modify the moments
of the GMM to reflect the mean change in expected ground motion (∆µdir) and its corresponding
aleatory variability (σ′dir based on the additional distributions fH(h) and fγ(θdir). (Donahue
et al., 2019) term this approach modified moments from a randomized hypocenter (hereafter just
modified moments approach), which effectively separates fH(h) and, if necessary,fγ(θdir) from
the PSHA integral and uses the mean and variance of the amplification from given directivity
model to modify the GMM directly:

ln(Y |T ) = [µ(m, r,θ, T ) + ∆µdir(m, r, T |fh, fγ)] + ε · σ′dir(m, r, T |fh, fγ), (4.5)

and

σ′dir
2
(m, r, T |fH , fγ) = σ2(T )− σ2red(T ) + σ2fHfγ (m, r, T |fh, fγ) (4.6)

where σ2(T ) is the original variance of the unadjusted GMM, σ2red(T ) the factor by which the
original GMM variance should be reduced on account of the explicit inclusion of directivity into
the median of the GMM, and σ2fHfγ (m, r, T |fh, fγ) the additional variance in ground motion at
a given site emerging from the assumed aleatory variability in hypocenter and directivity pre-
dictor properties. The moment modifiers of the ground motion model, simply ∆µdir and σfH ,fγ
hereafter, can be fit using simpler parametric equations conditioned upon certain properties of
the source, path and site, as presented by Watson-Lamprey (2018).

The obvious advantage of the modified moments approach is that the additional compu-
tational effort is undertaken outside of the PSHA calculation, removing the need to integrate
overfH(h) and fγ(θdir) per rupture within the execution. Depending on the complexity of the
parametric model for the moment modifiers and the source, path and site parameters they may
require, if any, the additional computational costs are minimal while the overall spatial distri-
bution of the mean amplification and its impact on the total aleatory variability of the GMM
can still be captured explicitly. The potential limitations to this approach are, firstly, the re-
quirement to define separate coefficients of the model for each GMM and/or directivity model
combination, and secondly the loss of accuracy in the predictions due to the simpler parametric
approximation. The latter becomes more relevant as we consider complex earthquake ruptures
for which the spatial patterns of directivity amplification may diverge more from those implied
by the simpler parametric approximation. Ultimately, the choice of approach may depend on
the context of application and could be guided by preliminary assessments of the likely impact of
explicit integration of directivity into PSHA using the full hypocenter randomization approach
on smaller scale hazard calculations as a point of reference.
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4.3.3 Selecting directivity models for application in PSHA

Since the first general framework for inclusion of directivity in PSHA was proposed by Somerville
et al. (1997), several studies have published parametric directivity models intended for practical
application. These have evolved in the subsequent 25 years, first with an updated calibration
proposed by Abrahamson (2000), then with the development of a new directivity predictor
model based on isochrone theory (Spudich and Chiou, 2008). In addition to developing state-of-
the-art GMMs for application to shallow crustal earthquakes, the Next Generation Attenuation
(NGA) West2 project also produced a new generation of directivity models with a view to
application in PSHA. These were summarized in a report by Spudich et al. (2013) and are listed
as: Bayless and Somerville (2013)[BS13], Spudich and Chiou (2013)[SC13], Shahi and Baker
(2013, 2014)[SB13/14], Rowshandel (2013) updated in Rowshandel (2018)[R13/18] and Chiou
and Spudich (2013)[CS13]. For a full explanation and comparison of these models the reader is
referred to Donahue et al. (2019) and Spudich et al. (2013, 2014). Among these models CS13
is noteworthy due to its explicit integration into the Chiou and Youngs (2014) NGA West 2
GMM, the only such GMM to date to include an explicit directivity term. Like its predecessor
(Spudich and Chiou, 2008, 2013), CS13 is based on isochrone theory but instead introducing
the Direct Point Parameter (DPP) as a predictor of directivity.

Following the NGA West2 Directivity project comparatively few new models have emerged
for PSHA application, and usage has still been limited. Among the factors that may have
contributed to this are the additional computational demands required for their deployment, the
divergence between the models themselves, and the potential challenges and inconsistencies that
emerge from applying these models to more complex fault rupture surfaces encountered in recent
PSHA models. Two subsequent models have been developed that have taken these factors under
consideration, which have been aided by the introduction of the Generalized Coordinate System
2 [GC2] (Spudich and Chiou, 2015) to facilitate their application to complex multi-segment
ruptures (described in more detail in due course). Watson-Lamprey (2018) [WL18] developed
the moment modifier model, which is calibrated upon the mean and standard deviation of
the amplification predicted by Chiou and Spudich (2013)’s DPP and parameterized using an
efficient functional form that adopts the GC2 framework. More recently, Bayless et al. (2020)
[B20] provided a successor to BS13 that updates several of the modelling assumptions, is well
suited to multi-segment ruptures using the GC2 framework and is efficient for use in PSHA.

The summary of the available directivity models in the scientific literature serves to illustrate
that while there is currently a limited selection of models, each model has its own characteristics
that may influence its suitability for application in PSHA. Following the analogy of defining se-
lection criteria for GMMs (e.g. Bommer et al., 2010; Cotton et al., 2006), the choice of directivity
models to use should also follow clearly defined criteria that can not only guide current selection
but also help future directivity model developers construct models that meet such requirements.
At the same time, with such a limited number of models one may run the risk that stringent
criteria will eliminate all potential directivity models, and therefore aim to strike a practical
balance between accuracy and utility. The criteria we propose for directivity model selection,
which we based on the discussion provided in Donahue et al. (2019), are:

1) The directivity amplification model is derived from ground motion records appropriate to
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the tectonic environment and for the definition of horizontal ground motion compatible
with the GMMs to which it will be applied.

2) The directivity model spans a sufficient spectral period range for the application in question
and covers adequately the range of scenarios relevant for seismic hazard at the site(s).

3) The model includes appropriate tapers of amplification with magnitude and distance.

4) The model is narrowband, with the peak pulse period, tp, increasing with magnitude.

5) The model is appropriately calibrated such that the average value of the directivity predic-
tor over all azimuths represents a directivity neutral condition, i.e., the model is directivity
centered.

6) The model is applicable to multi-segment rupture surfaces and should allow for disconti-
nuities between the surfaces without singularities or discontinuities in the resulting ampli-
fication field.

7) The model should not be superseded by that found in a subsequent publication.

In the analysis presented here we have limited our focus only to the model of Bayless et
al. (2020). This model not only fulfills the stated selection criteria, but it also has several
appealing features for our purpose. It uses GC2 to allow for application to complex multi-
segment ruptures, has an efficient functional form using rupture parameters and distance metrics
frequently computed in PSHA, proposes a reduction factor for the within-event variability of the
GMM from which we can calculate σred. It is also empirically centered, based on the residual
distributions of observed ground motions. This means that it can be applied as an a posteriori
adjustment to the median and standard deviation of the GMM at the site in question after
calculation of the nonlinear site response (Jeff Bayless, personal communication). This contrasts
with CS13 and R13/18, which should be applied to the calculation of motion on bedrock prior to
application of the nonlinear site response, as is the case when implemented in the GMM of Chiou
and Youngs (2014). The latter may be preferable from a theoretic perspective as directivity is a
source and path phenomenon, but this can be challenging to implement in PSHA software as it
requires modification of each of the GMMs to which the directivity adjustment is being applied.
Further work to explore the implications of this assumption is ongoing.

4.4 Application to PSHA in New Zealand using the 2010 NSHM

4.4.1 Seismogenic source model

The 2010 National Seismic Hazard Model of New Zealand is presented in Stirling et al. (2012)
and was subsequently translated into OpenQuake by Abbott et al. (2020). The OpenQuake
implementation is utilized for the current purposes, which is known to be in good agreement
with the original version of the model. The 2010 NSHM source model comprises two types of
seismogenic source: 1) three-dimensional fault sources with characteristic earthquake recurrence
models, which are applied to shallow crustal faults as well as to ruptures on Hikurangi and
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Fiordland subduction interfaces, 2) distributed (smoothed) seismicity with exponential recur-
rence models, which characterize the background shallow crustal seismicity and the subduction
in-slab sources. Shallow crustal faults in the volcanic region of the North Island, which runs from
Tongariro National Park in the south through to the Bay of Plenty, are classified as “volcanic”
fault sources. Altogether a total of 541 faults are present in the model (shown in Fig. 4.2),
of which 333 are classified as “active shallow crust”, 11 as “subduction interface” and 196 as
“volcanic”.

The fault sources of the 2010 NSHM have some features that make them particularly well
suited as a test case for directivity implementation in PSHA. In terms of the geometry, the
fault surfaces are generally regular and topologically simple. Each fault is represented by either
a single planar rupture surface (for the smaller faults) or a multi-segment surface comprising
multiple planar segments. For the multi-segment surfaces no complexities such as offsets or
step-overs are present, and the rake and dip are constant across all segments in the rupture. A
characteristic earthquake magnitude frequency distribution is assumed for each fault such that
a single annual rate of occurrence λchar,i is assumed for the fault characteristic magnitudeMchar

(the characteristic magnitude). These conditions make the ERF for the entire fault source model
compact, with only 541 ruptures (Nrup,i = 1 for all i), and the sources themselves are assumed
time-independent so that Prupij (n ≥ 1|t) is determined using the Poissonian recurrence model:

Prupij (n ≥ 1|t) = 1− e−λchar,i·t (4.7)

Figure 4.2: Fault Sources in the 2010 NSHM (Abbott et al., 2020; Stirling et al., 2012).

One important question to address is that of the sources to which the directivity model
should be applied. The available models in the literature have been developed principally for
application to shallow faults in the crust, and while there are examples of directivity observed
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from subduction interface earthquakes (Abercrombie et al., 2017; Folesky et al., 2018), to the
author’s knowledge no models have been developed for such events that could be applied in a
PSHA context. Furthermore, while models for crustal earthquakes could in practice be imple-
mented for subduction interface sources in the current example, to do so would be to apply the
existing models to contexts and rupture sizes well outside of the range for which the models
were developed. We therefore do not apply directivity to subduction interface fault sources, but
rather only to the active shallow crust and the volcanic faults.

4.4.2 Ground motion model (GMM)

The 2010 NSHM adopts exclusively the GMM of McVerry et al. (2006), which provides alterna-
tive parameterizations for the prediction of PGA and Sa(T ) in the period range 0.075 ≤ T (s)

≤ 3.0 from earthquake shallow crustal, subduction interface and subduction in-slab regions.
This model is calibrated on strong motions recorded within New Zealand from 51 earthquakes
occurring prior to the end of 1995. However, as this data set contains few records from the near-
field regions of large faults, additional records from other regions were added to supplement the
database used for a calibration of the GMM for peak ground acceleration (PGA).

For this test case application of directivity, adoption of the McVerry et al. (2006) model,
as originally implemented, would result in several inconsistencies between the GMM and the
directivity model under consideration. The first is the definition of the horizontal component of
ground motion, for which the 2010 NSHM adopted the larger of the two as-recorded components
in the GMM, while the available directivity models have been calibrated assuming the RotD50
measure (Boore, 2010). To address this inconsistency in our comparisons McVerry et al. (2006)
is adapted by converting from the larger-horizontal component of motion to the RotD50 using
factors defined by Bradley and Baker (2015). We also adopted the magnitude-dependent weight-
ing to the McVerry et al. (2006) model described in Gerstenberger et al. (2014). This weighting
applies only to the short period motion (T ≤ 0.5 s), however, which is below the period range
to which our selected directivity model applies but relevant for the comparison of the GMM
spectra and uniform hazard spectra shown subsequently. To reflect these adaptations the model
will be referred to as McVerry et al. (2006)* hereafter.

For the McVerry et al. (2006)* GMM we do not know whether the expected motion in
the near field region of the seismic source reflects a directivity neutral condition even after
the above adjustments have been applied. Similarly, the spectral period range of the GMM
is relatively limited, meaning that the period of the pulse in large magnitude events may not
be captured in the variability of the GMM itself. Given these limitations, we also include in
our comparison the two additional GMMs that have been developed for the 2022 NSHM of
New Zealand: Stafford (2022) and Atkinson (2022), further details of which can be found in
their original publications. These additional GMMs are better suited for application with the
directivity model under consideration (here Bayless et al., 2020) as they are defined directly in
terms of RotD50 and span a sufficiently broadband period range (0.01 ≤ T (s) ≤ 10.0).

Stafford (2022) can be considered a New Zealand specific calibration of the NGA West 2
model of Chiou and Youngs (2014) using the approach of Stafford et al. (2022). The calibra-
tions applied by Stafford (2022) largely address the source stress parameter depth-scaling effects
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and the anelastic attenuation, which are unlikely to unduly bias the median GMMs for large
magnitude, short distance ruptures with respect to that of the original GMM. The assumption
of directivity centering in the median ground motion can therefore be verified in the Stafford
(2022) model owing to this inheritance from Chiou and Youngs (2014). In the original model
the median ground motion is explicitly directivity centered when the directivity adjustment
(∆DPP ) is set to zero. Scaling of Stafford (2022) and Chiou and Youngs (2014) with distance
and period (Fig. 4.3) shows that the two models are virtually identical at large magnitude and
short distances.

Figure 4.3: Comparison of median ground motion from GMMs considered for current applica-
tion to New Zealand. Attenuation with rupture distance (RRUP ) for Sa at periods T = 0.075,
0.2, 1.0 and 3.0 s (left) and scaling of spectral acceleration with period for a MW 7 strike-slip
earthquake at distances of RRUP = 5, 20, 50 and 100 km (assuming a site condition of VS30 750
m/s) (right).

While we cannot necessarily directly verify that the Atkinson (2022) model is directivity
centered as we could for Stafford (2022), the functional form of the crustal ground motion model
is based on previous work of Yenier and Atkinson (2015a,b), which itself was calibrated using
the NGA West 2 database. Both this database and the models derived from it have been
shown to be directivity centered (Donahue et al., 2019), which we tentatively assume is reflected
in the magnitude- and near-source scaling of the GMMs in the Yenier and Atkinson (2015a)
model. Atkinson (2022)’s adaption of Yenier and Atkinson (2015a) GMM for application to
New Zealand is undertaken using a database that is still limited in large-magnitude near-source
records for crustal earthquakes (Hutchinson et al., 2022). The large-magnitude near-source
records that are present in the New Zealand database are dominated by two events (the 2010
Darfield M7.1 event and 2016 M7.8 Kaikoura earthquake), for which directivity was observed
and quite predominant in the records. Nevertheless, we will for our purposes assume that with
so few records in this range the observed New Zealand data may be insufficient to de-center the
model from a directivity neutral condition.
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4.4.3 Hypocenter distribution within the rupture plane

The choice of fH(h) is generally an epistemic variable that in certain contexts may be appropriate
to include within the logic tree of the seismic hazard model. Several models for along-strike and
down-dip hypocenter distribution are available in the scientific literature (e.g. Mai et al., 2005;
Melgar and Hayes, 2019). For implementation within PSHA, the definition of fH(h) should
consider the shape of the distribution and the number of discrete points used in its approximation
within the calculation. It is generally assumed that the distributions are symmetric, meaning
that there is no preferred direction of rupture propagation; however, models may differ in terms
of the relative weight assigned to predominantly bilateral rupture propagation and unilateral
propagation. Watson-Lamprey (2018) explored several different distributions and suggest a
preferred along-strike hypocenter position model (X) for strike slip ruptures that places 0.6
weight on bilateral propagation and 0.4 on unilateral propagation with no preference for direction
of propagation. For dip-slip ruptures a more typical Gaussian distribution is assumed. We adopt
this as the preferred model for along-strike position both for strike-slip and dip slip ruptures,
which in their proposal is discretized into 10 bins (X ≈ [0, 0.1], [0.1, 0.2], ... , [0.9, 1.0]) as shown
in Fig. 4.4.

For down-dip hypocenter position Z, we use the model of Melgar and Hayes (2019), which
describes Z as a Gaussian distribution with N (µ = 0.55, σ = 0.2), which is truncated in the
range [0, 1]. For both strike-slip and dip-slip events this distribution is discretized into bins
using the Gaussian Quadrature approximation of Miller and Rice (1983). In the case of strike-
slip ruptures a three-bin approximation is used, while for dip-slip ruptures five bins are preferred.
These too are shown in Fig. 4.4. Altogether, for strike-slip faults fH(h) is approximated by 24
positions of {X,Z}, while for dip-slip earthquakes 50 are used. It is certainly arguable that
a higher resolution discretization may improve accuracy, particularly in the case of the longer
strike-slip ruptures. In a full randomization of hypocenter approach, however, this increases
computational cost, which may be prohibitive for analysis at regional scale.

Figure 4.4: Probability mass functions for hypocenter position within the rupture for strike-slip
and dip-slip earthquakes: Along-Strike (left) and Down-Dip (right).
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4.4.4 Changes in seismic hazard with explicit directivity modelling

Full probabilistic seismic hazard calculations were run for New Zealand combining the Bayless et
al. (2020) directivity model with three different GMMs for shallow crustal earthquakes: McVerry
et al. (2006)*, Stafford (2022), and Atkinson (2022). In the first instance only the crustal fault
sources are considered, meaning that background sources and subduction sources are neglected
(“crustal faults only”), while in the second instance all sources are included (“all sources”). In
the “all sources” case the McVerry et al. (2006)* GMM is run for the subduction sources, while
the GMM for the shallow seismicity sources changes as described. Directivity is applied only
to the crustal fault sources. Seismic hazard maps corresponding to the 475-year return period
(10% probability of exceedance in 50 years) and 2,475 year return period (2% probability of
exceedance in 50 years) are produced for New Zealand for multiple spectral periods in the range
0.075 ≤ T (s) ≤ 3.0; however, we show only the results for Sa(T = 3.0 s) here. Difference maps
are given in terms of the % change in ground motion for the specified probability of exceedance
when including directivity explicitly into the calculation, which can be seen in Fig. 4.5 and 4.6
for the 10% and 2% probability of exceedance in 50 years respectively. A reference rock site
condition of VS30 800 m/s is assumed throughout (with depth to the 1 km/s VS layer for the
site, Z1.0, is set to 31 m).

Increases in seismic hazard can be seen clearly around the main Alpine fault system on the
western side of the South Island, then continuing around the Hope and Clarence fault systems
that cross the northern South Island. These are the most active strike slip fault systems in the
2010 NSHM, so the increase in seismic hazard is certainly expected and the change is on the
order of around 5 – 15% at the 475-year return period and 20 – 30% for the 2,475-year return
period for Sa(3.0 s). We also see an increase at the very northern end of the Alpine fault, close to
the intersection with the Wairau and Waimea faults in the northern South Island close to Nelson
and the Tasman Bay. In the North Island there are two main regions of increased hazard: 1)
the extended fault system that runs northwest from Wellington for several hundred kilometers
and incorporates the Wellington, Wairapa, Mohaka faults, 2) the central North Island running
from south of Lake Taupo north-northeast toward Rotorua. This latter region is within the
Taupo Volcanic Zone and is characterized by dozens of smaller fault sources with characteristic
magnitudes in the range 6.0 ≤Mchar ≤ 6.5 and annual rates of occurrence on the order of 0.001
to 0.005 per year.

While largest increases in seismic hazard due to directivity can be seen close to the major
active strike-slip fault systems, the overall change is modest. When considering only the crustal
fault sources, much of the hazard in the North Island is reduced for having included explicit
modelling of directivity, while other regions see changes only on the order of less than 2 – 3%.
These percentages decrease for shorter spectral periods, reducing to barely 1 – 2% for Sa(1.0 s)
at the 475-year return period. When we include the subduction and background seismicity
sources (lower rows of Fig. 4.5 and 4.6) the influence of directivity on the hazard is more “washed
out” (particularly in the North Island), with the decreases in seismic hazard less visible owing
to the relative increase in the contributions of the background and subduction sources to the
probabilities of exceedance of ground motion at the return periods of interest here.

To view the influence of directivity across the full spectral period range, we show in Fig. 4.7
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Figure 4.5: Change in Sa(3.0 s) with a 10% Probability of Exceedance in 50 years when
including explicit directivity modelling into PSHA, considering only the 2010 NSHM crustal
faults sources (upper row) and considering all NSHM 2010 seismogenic sources (lower row).

the uniform hazard spectra (UHS) for both return periods (475 year and 2,475 year) for four
selected cities: Wellington, Christchurch, Rotorua and Hokitika. Given its relevance as a long-
period phenomenon we include the UHS for both spectral acceleration and spectral displacement
(Sd(T )). While these comparisons serve to reinforce how modest the changes are overall, each
city reveals a relevant facet of the influence of directivity.Wellington, for example, sits in the
very near-field region of the active Wellington Fault, and in close proximity to several other
active structures (e.g., Whitemans Fault, Wairarapa Fault, Ohariu Fault). The annual rates of
recurrence of nearly all the characteristic ruptures are less than 1 / 475, however, meaning that
they do not contribute to the hazard at the site for this return period. Only the reverse-slipping
Needles fault 60 km south of the city, offshore in the Cook Straight, contributes to the hazard
in Wellington at this return period, and there the directivity models slightly de-amplify shaking
(with respect to a directivity neutral condition) in this position. At the 2,475-year return period,
faults closer to the city begin to contribute to the hazard, but their contribution is complex.
Wellington lies toward the middle of the Wellington fault, a region where directivity is likely
to be neutral or de-amplifying under most of the hypocenter positions. Positive directivity
amplification may be experienced at the city from ruptures farther to the north at distances of
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Figure 4.6: As Fig. 4.5, for Sa(3.0 s) and a 2% Probability of Exceedance in 50 years.

20 – 30 km away, but then the reverse slipping Wharekauhau and Ohariu faults also contribute
to the hazard and their influence would serve to de-amplify the hazard in the Wellington Central
Business District itself. The result is a complex mix of ruptures that would individually increase
or decrease hazard in the city, the net result being only a modest overall change.

The combined influence of several faults on seismic hazard, their relative contribution to
the hazard at a site and their source-to-site configuration is illustrated well in the case of
Christchurch. The 2010 NSHM does contain the Greendale fault to the west of the city, which
was the source of the 2010 Darfield Earthquake (MW 7.1). During this earthquake directivity
was well observed in the city (Bradley et al., 2014), and as the fault strikes in a near east-
west direction then positive directivity amplification is expected at the city for all hypocenter
positions. However, the rate of occurrence assigned to the MW 7.1 characteristic earthquake
on the Greendale fault is 4.0 × 10−5/yr, much lower than even the 2,475-year return period.
Several reverse dipping faults are found to the north of the city in the Canterbury plains and
offshore in Pegasus Bay, and these are associated with a higher rate of occurrence. This places
Christchurch itself in a region of de-amplification with respect to a directivity neutral condition
under most hypocenter scenarios. Once again, the net result is a reduction in hazard, which
occurs due to the negative amplification predicted by the more active faults, combined with the
slight reduction in σ resulting from the directivity amplification model.
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Figure 4.7: Comparison of UHS using the 2010 NSHM active fault sources for Wellingon (top
left), Christchurch (top right), Rotorua (lower left) and Hokitika (lower right) for crustal faults
only: with directivity (dashed line) and without directivity (solid line).

Hokitika and Rotorua are shown in these comparisons as they sit within regions of high
positive and moderate negative amplification respectively. Hokitika sits close to the confluence
of the Alpine, Clarence and Hope Faults and is thus optimally situated for positive directivity
amplification from several ruptures with high rates of occurrence. Rotorua, meanwhile, is located
close to a cluster of active faults in the northern Taupo region but sits several kilometers from the
down-dip extent of the faults. Under most hypocenter positions it experiences de-amplification
with respect to a directivity neutral condition, which yields a reduction in hazard.

The UHS also reveal another interesting feature of the directivity model, which relates to the
period range affected. For Rotorua the greatest changes in the hazard are seen in the 2 ≤ T (s) ≤
4 range, while for Hokitika the increase is seen at much longer (T ≥ 5 s) periods. This reflects
the influence of the narrow-band amplification of the directivity model and the magnitude-
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dependence of tp. This results in amplification at shorter periods for the 6.0 ≤ Mchar ≤ 6.5
faults in the northern Taupo region, while for the larger ruptures on the Alpine, Clarence and
Hope faults the tp is significantly longer, thus affecting the longer period accelerations to a
greater degree but with a reduced impact for shorter period seismic hazard.

The results shown here illustrate several key points that are relevant in the application
of directivity in PSHA and the interpretation of the changes in hazard. The first is that in
many places the probability of exceedance of ground motion at a site may represent the net
contribution from many active faults. In each case the degree to which directivity will increase
or decrease the hazard will depend on the position of the site with respect to the rupture and the
rate of occurrence of the rupture in question. The corollary to this point is that not only is the
position of the fault important, so too is the activity rate and magnitude frequency distribution
(MFD). In the case of the 2010 NSHM the use of characteristic ruptures with no uncertainty
on magnitude results in a binary condition in which the fault either contributes to the change
in hazard at a given annual rate of exceedance if the said rate is less than λMchar

, or else the
directivity will not influence the hazard (as was the Christchurch case) regardless of whether
the position of the site is optimally situated for directivity amplification. Difference maps such
as those in Fig. 4.5 and 4.6 may change significantly were the possibility of the fault to produce
ruptures smaller than Mchar to be considered or an entirely different MFD assumed.

The second major factor influencing PSHA with directivity is of course the uncertainty in the
hypocenter position within the rupture. Whether one considers distributions assigning greater
weight to bilateral or to unilateral rupture propagation, fH(h) is assumed to be symmetric with
no specific preference for direction of propagation. Under the segmentation and characteristic
earthquake assumptions present in the 2010 NSHM this focuses the regions of positive directivity
amplification primarily to those areas just off the ends of the rupture (in the strike-slip case)
or to areas close to the up-dip projection of the rupture to the surface (in the dipping fault
case). This concentrates amplification at the ends of the characteristic rupture segments, while
minimizing or even de-amplifying it toward the middle of the ruptures where ground motions
are expected to represent a neutral or backward directivity condition under most hypocenter
positions. When integrating over this uncertainty, the impact of directivity on the resulting
PSHA is moderate compared to the more adverse deterministic scenarios.

Other factors that influence the resulting change in seismic hazard are the bandwidth of
the pulse in the directivity model and the scaling of the pulse-period with magnitude. With
most recent models being narrow-banded there is a stronger connection between the probability
density of the magnitudes for a given fault source and the period range in which most amplifica-
tion is to be expected. Fault source models pushing toward larger magnitude earthquakes will
yield directivity changes in the resulting PSHA that may only be relevant for very long period
motion. This may also have downstream consequences for seismic risk analysis, where fragility
functions for most common structural types seldom adopt such long period intensity measures
as predictors, or where the use of vector measures of ground motion such as Average Sa may
smooth out the influence of directivity even for intermediate and long-period structures.
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4.5 Applying directivity to the 2022 NSHM

4.5.1 Earthquake rupture forecast

The results of the calculations of the 2010 NSHM using directivity demonstrated that both the
geometry and the magnitude frequency distributions of the fault ruptures play an important
role in controlling the spatial trends in amplification. The radical change from the 2010 NSHM
to the 2022 NSHM by way of adopting the grand inversion approach (Field et al., 2014; Page
et al., 2014) will inevitably yield differences in the faults contributing to hazard at given return
periods. For full details on the construction of the crustal fault source model via the grand
inversion the reader is referred to Van Dissen et al. (2022). What is relevant for the application
of directivity into PSHA are some of the key assumptions made within the grand inversion and
how they change the crustal fault sources with respect to the 2010 NSHM.

The inversion fault model begins initially with the New Zealand Community Fault Model
(NZCFM v1.0 Seebeck et al., 2023), which is transformed into sub-sections (or micro-segments)
each with a length equal to half its down-dip width. This results in 2,325 sub-sections, each with
a slip rate and rake value that is constrained for the section by both geological and geodetic
observations. The complete set of sections and their styles-of-faulting are shown in Fig. 4.8.
A minimum magnitude of M6.8 is applied to the fault model, on the assumption that smaller
ruptures would have a higher likelihood of not breaking the surface; hence the paleoearthquake
record would likely be incomplete. This change alone may have a significant impact on the
spatial patterns of directivity in the Lake Taupo region, where previously the clusters of smaller,
slower slipping extensional faults with Mchar < 6.8 had been present. In the 2022 NSHM far
fewer ruptures remain in this region and those that do represent connections of ruptures across
several faults that have a lower probability of occurrence.

Given the sub-section geometries, their geological/geodetic constraints and the input mod-
elling assumptions, initial rupture sets are created by connecting sub-sections into combinations
that form plausible ruptures. These connections are subject to rules (“plausibility filters”) that
govern whether sections can rupture together, which include maximum jump (“gap”) distance,
cumulative change in rake, and coulomb stress change (Milner et al., 2022). No prior constraint
on maximum magnitude is imposed, so it is the plausibility filters that control the degree of
connectivity across sections. Application of these filters results in a rupture set of 232,906 fea-
sible ruptures, ranging from ≈ 50 km in length to nearly 1,200 km. These ruptures sets are then
input into the inversion process, where their corresponding rates of occurrence are determined
so that they satisfy constraints of target magnitude frequency distribution and recurrence inter-
vals of slip at measured sites. While more than 232,000 ruptures are input into the inversion,
the outputs yield between 600 and 1,736 ruptures with non-zero occurrence rates per logic tree
branch depending on different modelling assumptions and weighting of constraints. A total of
3,884 different ruptures are found across all 324 different logic tree branches.

The most critical feature of the ERF from the perspective of directivity modelling is the in-
creased complexity of the constituent ruptures. Without a characteristic magnitude or maximum
magnitude constraint, ruptures can accumulate sub-sections and grow significantly in size; often
entraining sections from multiple faults in the process provided they comply with the plausibility
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Figure 4.8: Complete rupture set from the 2022 NSHM earthquake rupture forecast with colors
scaled according to rake.

constraints. The resulting ERFs therefore contain some large-magnitude (M ≥ 8.0) earthquake
sources with exceptionally long lengths, usually representing ruptures connecting several fault
systems. The ruptures themselves may contain complex geometries, including offsets, step-overs,
and significant changes of strike, dip and rake. With the potential for participation of segments
from different fault systems we are likely to encounter ruptures that we would consider multi-
fault ruptures, which are distinguished in the ERF by large gaps between consecutive sections
and significant changes in dip and rake.

While complex multi-fault ruptures have been observed in New Zealand and worldwide, one
of the most notable being the 2016 Kaikoura, New Zealand, earthquake (MW 7.8), observations
of ground motion from such events are still sparse and it cannot necessarily be assumed that
existing directivity models can extrapolate to such large magnitudes and/or complex rupture
geometries. The presence of multi-fault ruptures requires a different integration process to
allow for multiple nucleation points corresponding to each of the different sub-faults each with
their own rupture surface, hypocenter distribution, magnitude and rake. This prevents us from
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being able to simply transfer to the 2022 NSHM the full randomization of hypocenters approach
that we had applied to the 2010 NSHM. As two different calculations processes are needed for
the two different fault rupture types inside of the PSHA calculation, there must exist first a
multi-fault classifier within the calculation that divides the directivity model evaluation into
different workflows depending on whether a rupture is multi-fault (with potentially multiple
individual points of nucleation) or simply multi-segment (with a single point of nucleation). The
requirement to implement such a drastic change within the PSHA calculation software would
inevitably form a barrier to deployment of the models in many cases. Instead, we have adopted
a different approach that leverages upon the strategy for directivity modelling on complex ERFs
initially proposed by Al Atik et al. (2023) but aims for computational efficiency and scalability
to allow for deployment at regional scale.

4.5.2 A machine learning based strategy for application to complex earth-
quake

4.5.2.1 Ruptures

The challenges of handling directivity models for the complex ERF source models are consider-
able and initially prohibited application of the randomized hypocenter approach in an efficient
manner at a countrywide scale. When considering seismic hazard models with multiple ERFs
on different logic tree branches this becomes intractably computationally demanding. Given the
modest influence of directivity on seismic hazard for both spectral periods and return periods
of engineering interest the cost of explicit implementation may outweigh the benefit. ERFs
also have an advantage, however, which is that they describe common and static inventory of
ruptures with non-zero occurrence rates. For each given rupture, target site, directivity model
and assumed fH(h) the mean and variance of the amplification remain static for the respective
rupture regardless of the probabilities of occurrence assigned to that rupture in each individual
logic tree branch.

Recall from section 2 that the modifier of moments method requires calibration of the mean
amplification factor and its standard deviation owing to fH(h) and fγ(θdir), i.e., the moment
modifiers ∆µdir(m, r, T |fh, fγ) and σfHfγ (m, r, T |fh, fγ). Watson-Lamprey (2018) proposed gen-
eralized model for the moment modifiers, which is parameterized into a simpler functional form.
While this may be appropriate in many contexts, there are potential limitations in the present
case. These are, firstly, the ability to reproduce sufficiently the finer resolution spatial features
of the moment modifiers using the simpler parametric functional form, and, secondly, the extent
to which this can be adapted for extremely geometrically complex and/or multi-fault ruptures.
Instead of a parametric modified moments model, we can approach the problem from a different
perspective, which is that if we have the methodology to generate the directivity amplification
fields in the complex cases we can define the spatial distribution of ∆µdir(m, r, T |fh, fγ) and
σfHfγ (m, r, T |fh, fγ) across a pre-defined mesh of sites unique to each rupture in the ERF. In a
computational sense, this takes the form of a look-up table in which given spatial distributions
of the moment modifiers can be calculated and stored in a database prior to the PSHA calcula-
tion, which can then be retrieved during the calculation for each respective rupture in the ERF
according to the unique rupture identifier. No parametric simplification of the amplification
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fields is needed, and the moment modifiers need only be calculated and stored once for a given
model configuration and can be re-used in all subsequent calculations ad infinitum.

This premise is theoretically straightforward but encounters major computational problems
for deployment in practice: data storage and bandwidth. For the ERF described in this section,
and assuming a 5 km by 5 km resolution grid of sites covering all onshore New Zealand, the
corresponding look-up table occupies approximately 1Gb on disk. Retrieval of the data from
the look-up table requires either data transfer from disk storage for each rupture or storage
in shared access memory. Either approach creates calculation bottlenecks when deployed on
smaller calculation servers and presents challenges for scalability to larger parallelized computing
infrastructures. Instead of adopting look-up tables directly, we try to compact the information
required to generate the spatial fields by over-fitting an artificial neural network to the data
contained within the look-up tables. This allows us to represent each field in a smaller number
of coefficients that can still effectively reproduce even complex fields to a sufficient level of
accuracy.

4.5.2.2 A neural network based modified moments implementation

Artificial neural networks (ANNs) are a widely used machine learning tool inspired by the struc-
ture of the human brain. Due to the usually exceptionally high number of model-coefficients
(neurons), ANNs can be considered generic templates for non-linear models that can be cal-
ibrated (trained) to solve a specific task if a large training dataset is available to learn from
(Kong et al., 2019). Thereby ANNs have been found to adapt reliably and autonomously to
complex, non-linear relations in datasets, with no need to explicitly predefine such relations in
the form of a mathematical equation (Lecun et al., 2015). For numerous tasks such as image
recognition (Krizhevsky et al., 2017), seismic phase detection in waveforms (Perol et al., 2018)
and fault detection from seismic images (Xiong et al., 2018), ANNs have been shown to reliably
outperform equation or rule-based models (Mousavi and Beroza, 2022).

4.5.2.3 Overfitting vs. generalization

Due to the large number of model coefficients, ANNs are heavily prone to overfit to data ex-
amples in the training dataset. Consequently, emphasis is usually placed on ensuring that the
relations inferred during the training also provide valid predictions for examples outside the
training dataset, by means of interrupting training as soon as overfitting is detected. The task
of modelling moment modifiers for seismic hazard calculations is, however, different to most
other use cases, since the ruptures that can be encountered within an ERF-based seismic hazard
model is fixed and known a priori. Thus, besides a generalizable machine learning based model to
generate moment modifiers within arbitrary hazard models, the development of an ERF-specific
model can be worthwhile if it is easily and efficiently deployable within the corresponding PSHA.
We therefore intentionally overfit an ANN to the amplification fields corresponding to the rup-
tures in the 2022 NSHM ERFs to obtain highly detailed reproductions of the moment modifiers
for each unique rupture, at the cost of sacrificing the ability to generalize to arbitrary earth-
quake ruptures. Intentionally overfitting an ANN to a given dataset can be considered a form of
dimensionality reduction, where the number of coefficients in the ANN architecture determines
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the dimensionality of the compressed dataset. Technically speaking, the resulting model is an
efficiently compressed lookup table that holds the moment modifiers for all the ruptures in the
2022 NSHM ERF. While the application of ANNs usually takes place in the context of deep
learning, we want to emphasize that this is not the case here, since the suggested model does not
acquire generalizable knowledge about moment modifiers in the vicinity of earthquake ruptures,
but only learns a certain set of examples “by heart”. The advantage of such a model compared
to an actual lookup table is the compressed size that enables scalability inside seismic hazard
calculations. Compared to an empirical model with an equational form, the suggested approach
promises more accurate detail in the modelled spatial amplification patterns, especially for the
geometrically complex and/or multi-fault ruptures included in the 2022 NSHM.

4.5.2.4 Generating the directivity fields for training the neural network

To develop the modifier of moments model via a neural network we need to first construct a data
set of directivity amplification fields for the available ruptures in the ERF, varying the hypocenter
position according to fH(h). We generate for each rupture NSAMP fields of amplification using
the Bayless et al. (2020) model, with each field corresponding to a different hypocentre position
sampled from fH(h). As hypocenter position is the only additional aleatory variable in the
Bayless et al. (2020) model, only fH(h) need be considered. A total of NSAMP = 250 samples
are used in the present case for each rupture in the set of 3,884 unique ruptures found across
all 324 logic tree branches of the active shallow crustal ERF. The same distribution for fH(h)

is assumed as that implemented for the 2010 NSHM; however, to allow more variability in the
hypocentre position we apply a two-step sampling process where the corresponding along-strike
and down-dip bin is selected first (as per the plots in Fig. 4.4), then within the bin X and Z are
sampled from a uniform distribution bounded by the bin edges.

ERF-based models allow for the possibility of including complex ruptures with participation
from micro-segments on different faults. Given the minimum magnitude of MW 6.8 assumed
in the 2022 NSHM, all ruptures in the ERF contain multiple microsegments. To calculate the
directivity field, a different computational process is required depending on whether the rupture
is classified as a multi-segment rupture or a multi-fault rupture. For the multi-segment case we
assume a single hypocenter distribution and generate the directivity fields directly following an
approach similar to that of the PSHA from the fully randomized hypocenter approach (albeit
with the specific hypocenter position sampled randomly from fH(h) rather than enumerating
the distinct bins). For the multi-fault case it is assumed that each participatory sub-fault to
the rupture, which itself will be multi-segment, will be associated with its own hypocenter.
To identify the multi-fault cases and generate the directivity amplification fields we use the
following procedure, which is adapted from that proposed by Al Atik et al. (2023) for use with
the UCERF3 ruptures in California.

1) A reference 2D grid of sites is first defined spanning all New Zealand and the surrounding
region at a resolution of 5 km (161◦E to 177◦W and -51◦N to -30◦N). This reference grid
has the shape 763 × 362, with each grid cell corresponding to a unique location on Earth.

2) Each rupture from the set of 3,884 unique ruptures found within the full set of ERFs
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described by the logic tree is considered in turn. For that rupture we wish to define the
directivity across an evenly spaced sub-grid of dimension 256 × 256, which is sliced from
the main grid and centered on the cell enclosing the geographic centroid of the rupture.

3) For every unique rupture found within the composite sets of ERFs from the logic tree, each
consecutive microsegment is assessed in turn. The rupture will be classified as multi-fault,
and a new sub-fault created, if all the following criteria are met: i) the change in dip angle
between consecutive fault segments is greater than 50◦, ii) the change in first quadrant
rake angle between consecutive fault segments is greater than 30◦, iii) the gap between
consecutive segments exceeds 10 km.

4) If no sub-faults are defined for the rupture, then the rupture is classified as multi-segment
and directivity fields will be generated for each sampled hypocenter in the conventional
manner.

5) If two or more sub-faults are defined then the rupture is split into NSUB faults, each of
which is characterized as an individual earthquake with its own magnitude, rake and fault
surface. The magnitude of the rupture for each sub-fault is determined by dividing the
total seismic moment of the original rupture proportionally to the rupture area of the
sub-fault. Rake for the sub-fault is taken as the mean rake from each of the participating
segments weighted by the segment area.

6) Hypocenter position is sampled independently on each sub-fault from fH(h)such that
sample i of NSAMP will contain a set of NSUB unique hypocenter positions. For each sub-
fault and its respective hypocenter, the directivity amplification parameter is calculated
for all target sites and the maximum directivity parameter from each of the sub-faults
taken to represent the directivity field at the site for the given rupture.

7) The corresponding directivity fields for each of the NSAMP hypocenter positions are stored
for each rupture in a high-density binary file (hdf5).

The outcome of this process is a set of 971,000 directivity fields from 3,884 ruptures and
250 hypocenter positions, with each directivity field represented as a 256 × 256 cell grid of
amplification according to the selected directivity model Bayless et al. (2020) and individual
spectral period. A total of 11 periods between T = 0.75 s and T = 10 s are considered. To
generate the samples for training the neural network, we calculate the mean and variance over
the 250 hypocenter realizations for each rupture ∆µdir(m, r, T |fh, rupi) and σfh(m, r, T |fh, rupi)
(here onward ∆µdir,i and σfh,i for short). This finally yields the dataset Y = {y1, y2, . . . , y3884}
where each yi is a matrix of shape (256× 256× 22). The first and second dimension in yi describe
the 5 km resolution sub-grid for each respective rupture i, and the third dimension holds the
22 data channels (moment modifiers ∆µdir,i and σfh,i at 11 periods respectively). Along with
the dataset Y we generate a corresponding vector X = {x1, x2, . . . , xNRUP } = {1, 2, . . . , 3884}
comprising the corresponding rupture IDs which are utilized as input values for the ANN in
deployment.



76 CHAPTER 4. CAPTURING DIRECTIVITY IN PSHA

4.5.2.5 Artificial neural network architecture

We implement a convolutional neural network (CNN), a type of ANN that has been designed
specifically for tasks that involve processing of matrix-shaped data, such as multi-channel images
(Lecun et al., 2015), and has since been adapted in various studies dealing with spatial data (e.g.
Lilienkamp et al., 2022; Waldeland et al., 2018; Xiong et al., 2018). The CNN architecture pro-
vides the necessary properties to capture in detail the spatial patterns of the moment modifiers.
The first layer of the ANN is designed to receive rupture identifier xi as input, whereas subse-
quent layers process the input via embedding, convolution with filter banks, and up-sampling,
to eventually generate an output ŷi of shape (256 × 256 × 22). For more details the reader is
referred to the appendix (section 4.A, Fig. 4.13 and Table 4.1).

4.5.2.6 Training

After the ANN is initialized, the generated output ŷi from any input xi is just a randomly
generated matrix. Therefore, the ANN must be trained, i.e., the coefficients in the ANN must
be calibrated to generate an output ŷi that closely resembles yi by minimizing the mean squared
error MSEi = 1

Nsites

∑
n = 1Nsites(yi,n − ŷi,n)2. Here Nsites is the number of sites on the regular

sub-grid. Following this procedure repeatedly for all samples in the training dataset eventually
leads to the ANN learning the moment modifiers Ŷ = {ŷ1, ŷ2, . . . , ŷ3884} for all rupture IDs.
More detail is provided in the appendix (section 4.A, Table 4.2). The fully trained CNN model
has a size of 5.9MB, which corresponds to a reduction in data by a factor of over 150 compared
to the corresponding lookup-tables of ∆µdir,i and σfh,i for all ruptures and spectral periods
(∼1Gb). We observe a reproduction of the original amplification fields in detail throughout the
dataset as demonstrated in the example shown in Fig. 4.9.

4.5.2.7 Evaluation of model performance

To quantify the similarity of the individual ANN predictions for rupture i, location n, and
period T (ŷi,n,T ) to the precalculated moment modifiers yi,n,T , we evaluate the distance between
the corresponding Gaussian probability density functions φ = N (∆µdir,i,n,T , σfh,i,n,T ) and the

predicted moment modifiers from the ANN φ̂ = N (∆̂µdir,i,n,T , σ̂fh,i,n,T ) via the earth mover’s
distance (EMD):

EMD(φ, φ̂) =

∫ ∞
−∞
|Φ− Φ̂| (4.8)

where Φ and Φ̂ denote the corresponding cumulative density functions. We calculate the EMD
individually for each rupture, at each grid point n that is located onshore New Zealand and each
period T for which the precalculated σfh,i,n,T is larger than 10−3. A summary of the resulting
EMDs and visualizations of individual comparisons that ease the interpretation of absolute EMD
values are given in Fig. 4.10. Over 99% of EMDs are smaller than 0.03, indicating a high level
of agreement between the distributions. Visual comparison of distributions reaching this value
indicates acceptable similarity.

In addition to the comparison of moment modifiers, we also evaluated the similarity of
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Figure 4.9: Examples of moment modifiers yi (Sa(T = 2.5 s)) (rows 2 and 4) and the cor-
responding ANN predictions ŷi (Sa(T = 2.5 s)) (rows 3 and 5) for the ruptures shown in row
1.

amplification samples obtained via consideration of all relevant ruptures (those for which σfh,i,n,T
is larger than 10−3) at a respective site. To this end, we conduct the following procedure for
each grid point onshore New Zealand:

1) Identify all ruptures producing non-zero directivity amplification for the site.

2) Draw sample S and Ŝ of size 100 from φ and φ̂, respectively, for each relevant rupture.

3) Keep drawing until a total sample size of 10,000 is achieved.

4) Draw a final sample of size 10,000 without replacement if the sample size of 10,000 is
exceeded.

5) Compare S and Ŝ via the earth mover’s distance.
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Figure 4.10: (a) Pixelwise comparison of amplification distributions from the precalculated
moment modifiers y and the corresponding ANN reproductions ŷ via the earth mover’s distance
(EMD). Example amplification cumulative distributions for EMD values at the 80th, 90th, and
99th percentiles are shown for periods of (b) 0.75 s and (c) 10.0 s. Line styles indicating the
percentiles and colors indicating the period are used consistently throughout the sub panels.

A corresponding map of EMD values at a period of T=10 s, as well as additional information,
is presented in Fig. 4.11. Over 99% of EMD values are smaller than 0.01, and the visual compar-
isons of samples at locations where EMD ≥ 0.01 still indicate acceptable similarity. We therefore
conclude that for the purposes of applying the overfit ANN moment modifier in PSHA, its ability
to reproduce the spatial distributions of amplification and its variability from the underlying
directivity model (Bayless et al., 2020) and fH(h) is satisfactory.

4.5.3 PSHA implementation for the 2022 NSHM

To demonstrate that the neural network based modifier of moments model can be implemented
fully in practice, Fig. 4.12 shows the results of a complete PSHA calculation for New Zealand
using the 2022 NSHM source model and the Stafford (2022) GMM, both with and without
directivity, for a return period of 2,475 years and intensity measure Sa(3.0 s). For this calculation
we use the collapsed average ERF, such that the probability of one or more occurrences of rupture
i from each of the 3884 ruptures is defined by:

P̄rup,i,j(n ≥ 1|t) =

Nk∑
k=1

wk · Prup,i,j(n ≥ 1|t, k)

wk
, (4.9)

where Prup,i,j(n ≥ 1|t, k) is the probability of occurence of rupij in time t according to the kth
branch of Nk=324 logic tree branches, each with their respective weight wk . No background
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shallow crustal sources or subduction sources were included here. The implementation of the
modified moments model was done using an experimental branch of OpenQuake.

Figure 4.11: Map based comparison of amplification distributions from the precalculated
moment modifiers y and the corresponding ANN reproductions ŷ via the earth mover’s distance
(EMD). A comparison of the resulting samples per location via the EMD for the period T=10 s
is shown in (a). Cumulative distributions of EMD values per period are shown in (b). Example
samples for EMD values at the 90th and 99th percentile for the period T=10 s are shown in
(c) and (d), respectively. The locations where these samples are obtained are indicated by the
circular markers in (a). The circular markers in (a), as well as the histogram colors in (c) and
(d) refer to the colorbar in (a).

In contrast with the spatial patterns of the change in hazard from the 2010 NSHM (compare
against Fig. 4.6), the removal of segmentation in the 2022 NSHM results in a smoother, continu-
ous band of amplification along the full extent of the most active strike-slip faults. The highest
amplification (on the order of 15 – 20%) can be seen toward the central and northern end of the
Alpine fault, with the branching across the Hope, Clarence and Awatare faults in the northern
South Island now very clearly defined. Likewise on the North Island, amplification close to
the active strike slip Wellington, Wairarapa and Mohaka faults is clearly visible and now more
continuous than before, while potentially significant directivity amplification from the cluster of
normal faults close to Mount Egmont (southwest North Island) is now apparent. Elsewhere, the
changes in hazard are generally modest, with the normal faults in the Taupo region showing far
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less influence for directivity amplification than in the 2010 NSHM in the near source region and
contributing to notable reduction in hazard farther away. Similarly modest changes of < ±5%
can also be seen for other reverse faults in the southern South Island, albeit that the overall
contribution of these faults to the hazard at the 2,475-year return period is small.

Figure 4.12: Sa(3.0 s) with a 2,475-year return period modelled using the collapsed average
ERF of the 2022 NSHM and the Stafford (2022) GMM: without directivity (left), with directivity
using the modified moments model (middle) and change in hazard with explicit directivity
modelling (right).

Compared to the spatial pattern of amplification shown when using the 2010 NSHM (Fig. 4.5
and 4.6), the regions of significant increase in hazard for the 2022 NSHM (Fig. 4.12) come into
closer agreement with those regions for which N(T,D) > 1 in NZS (2004) (shown in Fig. 4.1).
While the actual increase in design ground motion when running PSHA with explicit directivity
modelling is smaller than that implied by N(T,D), the regions to which it applies are remarkably
consistent. For both the 2010 and 2022 NSHM, even in the regions of highest amplification close
to the active strike slip fault systems, the increase in hazard of 15 – 20% is less than N(T,D),
which tapers from a maximum increase in hazard 36% at D ≤ 2 km and T = 3.0 s (72%
for T = 5.0 s) to no increase at D > 20 km. This may be partly explained by the different
directivity models assumed, but it is mostly due to the influence of fH(h), for which most
rupture and hypocentre configurations will produce directivity amplification at a site that is
lower than the adverse MW 7.5 scenario on which N(T,D ≤ 2) is based (McVerry, 2003). In a
probabilistic formulation, less adverse directivity conditions, including ∆µ < 0, are more likely
and the net change in hazard is lower. Implications of this analysis for potential modifications
N(T,D) in future New Zealand seismic design codes are discussed in more detail in Weatherill
(2022).

As Fig. 4.5 and 4.6 showed for the 2010 NSHM, the impact of including explicit directivity
modelling for shallow crustal faults diminishes significantly once the background and subduction
sources are included, and though not shown here the same holds true for the 2022 NSHM.
Disaggregation of seismic hazard according to source type for Wellington using the 2022 NSHM,
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for example, showed a major contribution to hazard at long and short periods coming from
earthquakes on the Hikurangi subduction zone (Gerstenberger et al., 2022b). This would suggest
the changes in seismic hazard owing to directivity from shallow crustal fault ruptures on the
Wellington, Wairarapa and Mohaka faults shown in Fig. 4.12 would be tempered by the large
contribution of the subduction sources to hazard in this region, for which no explicit directivity
modelling is included.

As one of our main obstacles to full implementation of explicit directivity modelling for
the 2022 NSHM was computational demand, we can put the scale of the efficiency gain in
perspective. Generation of the individual directivity amplification fields for all 3,884 ruptures
using 250 hypocenter positions per rupture took almost two weeks of wall clock time (including
storing the fields) on a 120 CPU server with 800Gb RAM. The full size of the 971,000 directivity
fields for all 11 periods (and associated metadata) required ≈ 3.1Tb of disk space, with just
the moment modifiers ∆µdir,i,n,T and σfH ,i,n,T requiring 1Gb. Training the neural network
for the overfitting model required approximately 48 hours on a NVidia A40 GPU (circa 8000
epochs) and results in a model data file of 6Mb. The PSHA calculation for all New Zealand
using the collapsed average ERF for > 17,000 sites took ≈ 10 minutes to run the same CPU
server without directivity and ≈ 12 minutes with directivity applied. While ANN training was
conducted on a GPU, regular CPUs were utilized for retrieving moment modifiers in the hazard
calculations. The increase in RAM usage during the PSHA calculation was minimal. While the
longer calculation time when including directivity using the neural network modifier of moments
is inevitable, the use of this approach reduces our additional calculation time from a matter
of days/weeks per branch to just a couple of minutes, while also retaining scalability to larger
parallel computation infrastructures owing to the smaller memory allocation and data transfer.
This gain in computational efficiency may be sufficient to reverse the potentially unfavorable
cost-to-benefit ratio of including directivity explicitly in PSHA at regional scale.

4.6 Conclusions

The influence that high-amplitude, pulse-like ground motions in the near-source region of a
rupture can have on structures is well observed, but characterization of rupture directivity in
PSHA remains challenging, especially at a regional scale. To our knowledge, the implementation
of directivity following a fully randomized hypocenter approach using the 2010 NSHM for New
Zealand is only the second such regional scale application, with the Al Atik et al. (2023) efforts
for California being the first. Regional scale applications such as this not only test the limits of
the extent to which explicit directivity modelling in PSHA is feasible, but they also highlight the
various factors that can influence the change in seismic hazard, showing that the net effects may
not be so straightforward as simply increasing hazard in the near-field region of the fault. The
full impact on seismic hazard across a region will depend on both the geometrical configuration
of the faults, along with their rates of occurrence, magnitude frequency distributions and the
potential interactions of the different fault sources in a region. In complex systems of faults, the
expected patterns of amplification and de-amplification of the ground motion with respect to
the directivity neutral condition may interfere both constructively and destructively, sometimes
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varying considerably over relatively short distances. When combined with the assumption of
symmetry in the distributions of hypocenter position with the ruptures, and the magnitude-
dependence of tp that may shift amplification for larger magnitude events to periods longer than
those of engineering interest for the structure or application in question, the overall impact of
explicit directivity modelling on seismic hazard may be modest. While there still exists consid-
erable epistemic uncertainty in the directivity models, particularly for dip-slip events, and while
full hypocenter randomization incurs a significant computational cost, a justifiable argument can
be made for retaining still the implicit directivity modelling approach in probabilistic seismic
hazard and risk analysis in many cases.

Despite the radical change in the source model, the difference maps for both the 2010 NSHM
(Fig. 4.5 and 4.6) and 2022 NSHM (Fig. 4.11) are broadly consistent with one another in terms of
both the spatial pattern and degree of change in seismic hazard level. There are notable differ-
ences, such as the removal of strict segmentation resulting in a smoother pattern of amplification
along the lengths of the large fault systems in the 2022 NSHM rather than the irregular focusing
of amplification around the ends of the segments in the 2010 NSHM, but for many applications
these may not prove to be especially significant. Similarly, comparisons of the change in prob-
abilistic hazard against the deterministically calibrated NZS 1170.5 near-fault factor N(T,D)

(Fig. 4.1) show that although N(T,D) itself may be somewhat conservative in predicting higher
amplifications than the probabilistic models, the criteria for application of N(T,D) and the
distance-dependent tapering result in similar spatial patterns of amplification. If one accepts
that a degree of conservatism in this regard may be warranted for seismic design code applica-
tions, the current study based on a full PSHA including rupture directivity does not reveal a
significant shortcoming to the near-fault ground motions in current provisions.

Moving to an ERF source model introduces significant challenges for directivity modelling
in PSHA, as we have seen here in the 2022 NSHM and observed by (Al Atik et al., 2023) for
UCERF3. Ruptures contained within these ERFs can describe source scenarios quite different
from those upon which even the most state-of-the-art directivity models are based. These
can include complex ruptures with participation from multiple faults with different slip types,
along with extremely long ruptures producing earthquakes with magnitudes well above M 8.
The work shown here, and in Al Atik et al. (2023), illustrates that the next generation of
directivity models will need to consider ruptures of this nature, likely requiring constraint from
physics-based simulation given the limited number of near-fault records from observed complex
multi-fault ruptures such as 2016 Kaikoura earthquake (MW 7.8).

An important focus of our efforts in the current analysis has been directed toward feasibility
of wider implementation in PSHA, by which we refer to the general ability of hazard modelers
to be able to execute part or all of the calculations shown here for their own specific appli-
cations potentially with more limited computational resources. Though PSHA using the full
randomization of hypocenters may be considered the most desirable approach, in this case it
was computationally prohibitive for the 2022 NSHM and would have required extensive modifi-
cation of the calculation software. The potential advantages of using the modifier of moments
approach have been well documented by Watson-Lamprey (2018) and Donahue et al. (2019),
but existing approaches have focused on using closed-form parametric models to approximate
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∆µ and σfH . These may be efficient, and applicable in many contexts, but may also struggle to
capture the detailed azimuthal and distance dependent characteristics of the underlying mod-
els, particularly when the ruptures themselves are complex. The modifier of moments model
presented here, which is based on over-fitting a neural network to the mean and variance of the
amplification fields from an ERF, capitalizes on the fact that in an ERF source model all the
ruptures are known prior to the PSHA calculation. This allows us to define all the amplification
fields independently of the PSHA software, which may allow for more flexibility or detail in mod-
elling the directivity (such the multi-fault ruptures considered here), the outputs of which we
can then compact into a lower dimensional representation for input into the PSHA calculation.
While this compaction will inevitably result in some loss of accuracy, this does not necessarily
result in systematic magnitude, distance or azimuthal biases in the mean and standard deviation
of the amplification fields and allows for better replication of the amplitude and spatial pattern
of amplification in the resulting regional scale seismic hazard analysis.

Despite the developments in implementing explicit directivity modelling in PSHA that we
present here, there remain many open questions as to how it should be approached in practice.
This study and preceding ones have assumed symmetry in the distribution of hypocenter position
within the rupture, thus implying that the direction of rupture is equally probable. This is
an ergodic assumption that arises from consideration of global databases of ruptures, but for
any given fault there may be a preference for a particular direction of rupture depending on its
structure and the properties of the surrounding material (Ben-Zion and Sammis, 2003). A change
fH(h) toward an asymmetric or even exclusively uni-directional distribution would produce a
significantly different pattern of amplification around the fault in a PSHA context. Fault-specific
hypocenter distributions can be easily accommodated in PSHA using the approaches adopted
here, but how to constrain such distributions from available data and how much evidence of
preference in rupture direction is needed before a global modelfH(h) can be superseded by a
fault-specific model is unclear. Detailed dynamic modelling of rupture evolution on specific
faults will be needed to resolve this question, which will take time to develop in practice. Other
open questions influencing practical application of PSHA with explicit directivity modelling are
whether such models (or newly developed ones) can apply to other types of seismogenic sources,
such as subduction interface ruptures or earthquakes from distributed seismicity “background”
sources, and how we can constrain epistemic uncertainty in near-fault ground motions without
double counting that emerging from the GMMs. For the latter, we note that the modifier
of moments framework presented here can be adapted to accommodate scenario-specific (even
rupture-specific) epistemic uncertainties, if they can be defined by the modeler.

A final perspective we can take from this work is that we have shown that it is possible to
integrate machine learning based strategies to predict spatial characteristics of ground motion
into a full PSHA framework, and to do so with enough efficiency to run a regional scale hazard
calculations that can adapt to different computational infrastructures. Although we overfit the
neural network here to predict amplification for a fixed set of ruptures, efforts are also ongoing
to expand this to a generalized model in a “true” deep learning manner; one in which the am-
plification and its variability can be predicted for any rupture based on a tractable number of
predictive parameters normally calculated by PSHA software. For the time being we are using
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existing models from the literature to generate the spatial fields of amplification (Bayless et al.,
2020; Chiou and Spudich, 2013), but this same framework can also be transferred to consid-
eration of distributions of near-fault ground motions found in large databases of physics-based
ground motion simulations. As a data-driven, non-parametric form of directivity amplification
model, neural networks like those adopted here have the potential to form a crucial connection
between physics-based ground motion simulations and probabilistic seismic hazard modelling.
The spatial distributions of expected amplification of ground motion (and its variance) with
respect to a parametric, directivity neutral and (potentially) non-ergodic GMM (Abrahamson
et al., 2019; Landwehr et al., 2016) can be calibrated by training the neural network from a suite
of physics-based simulations for a specific fault or fault system. The neural network itself can
then predict the patterns of amplification for each rupture in an ERF, capturing the nuances
of the spatial patterns implied by the simulation data. It can also do so at a computational
cost that is not significantly greater than using a parametric GMM and is potentially scalable to
massively parallel computing infrastructures. A process such as this may prove to be a practical,
efficient and computationally scalable pathway for integration of physics-based ground motion
simulations into PSHA without the need for radical re-design of existing software.

4.7 Data and Resources

The seismic hazard model files for the 2010 NSHM and 2022 NSHM were provided by GNS
Science directly (https://nshm.gns.cri.nz/), while computation of the seismic hazard is
undertaken using a customized version of OpenQuake (Pagani et al., 2014). The OpenQuake-
compatible implementation of the Bayless et al. (2020) directivity model was verified and tested
against code provided by the authors (available for download from https://www.jeff-bayless

.com/papers/). Maps shown in this paper were constructed using both QGIS (https://qgis.org)
and Generic Mapping Tools (GMT v6) (htts://www.generic-mapping-tools.org/). To-
pography and bathymetry shown in the maps is taken from the 2023 Gridded Bathymetric
Dataset produced by the General Bathymetric Chart of the Oceans (GEBCO Bathymetric
Compilation Group 2023, 2023). Neural network training, inference, and optimization was
implemented with Tensorflow (Abadi et al., 2015), Keras (Chollet et al., 2015), and Intel Neural
Compressor (Intel®NeuralCompressor, 2023), while all other data analysis utilized the multiple
tools from the Scientific Python ecosystem (Numpy, Scipy, Pandas, GeoPandas, Matplotlib etc.)
(https://numfocus.org/)
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4.A Appendix

4.A.1 ANN architecture

The ANN architecture implemented in this study is presented in Fig. 4.13. The model input is
a scalar ID xi, i ∈ [1, 2, . . . , 3884], that uniquely identifies a rupture from the 2022 NSHM ERF
model. This ID is transformed into a 128-dimensional embedding vector, a higher dimensional
representation of the input, where the transformation procedure itself is subject to optimization
during training. In a second step the embedding vector is reshaped to a matrix of size (4 × 4 ×
8). In the following we will refer to the first two numbers as the spatial dimensions, and to the
third number as the number of channels. The following UpConv operations involve upsampling
by a factor of 2 in the spatial dimensions, and subsequent convolution with a filter bank of
size Nfil, that determines the number of channels. After each UpConv operation, the output is
processed through a Leaky Rectified Linear Unit (Leaky ReLU) nonlinear activation function.
The final step is a 2D convolution followed by a sigmoidal nonlinear activation function that
yields the output matrix. More details regarding the configuration of are given in Table 4.1.

Figure 4.13: Convolutional neural network architecture implemented in this study. The model
input is a rupture ID xi from the New Zealand 2022 NSHM. The model output ŷi is a matrix
of shape (256 × 256 × 22), where the maps of shape (256 × 256) cover a regular grid with a
resolution of 5 km, and the 22 channels provide estimates of the moment modifiers at 11 periods,
respectively.
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Table 4.1: Technical specifications of the artificial neural network utilized in this study.

ID Layer type # Filters
Filter
size Input shape Output shape Activation Comment

1 Input 1×1×1 Rupture ID

2 Embedding 1×1×1 1×1×128 Leaky ReLU Vocabulary
size of 3884

3 Reshape 1×1×128 4×4×8 Leaky ReLU

4 Conv2DTrans 128 5×5 4×4×8 8×8×128 Leaky ReLU

5 Conv2DTrans 128 5×5 8×8×128 16×16×128 Leaky ReLU

6 Conv2DTrans 64 5×5 16×16×128 32×32×64 Leaky ReLU

7 Conv2DTrans 64 5×5 32×32×64 64×64×64 Leaky ReLU

8 Conv2DTrans 32 5×5 64×64×64 128×128×32 Leaky ReLU

9 Conv2DTrans 32 5×5 128×128×32 256×256×32 Leaky ReLU

10 Conv2D 22 9×9 256×256×32 256×256×22 Sigmoid

11 Output 256×256×22 Moment
modifiers at
11 periods

4.A.2 ANN training

In a first step, the untrained ANN is fed with a random rupture ID xi, such that a random
output ŷi is generated. This output is then evaluated against the respective, precomputed
moment modifiers yi via the mean squared error loss function. Subsequently, backpropagation
is conducted in which the Adam optimization algorithm (Kingma and Ba, 2015) is utilized to
calculate derivatives with respect to all ANN coefficients, and a subsequent update of coefficients
is performed to minimize the value of the loss function. The exact configuration of the Adam
optimizer is given in Table 4.2. This procedure is repeated 8,000 times for all rupture IDs in
the dataset, such that the ANN iteratively learns to relate the given rupture IDs to the desired
moment modifiers.

Table 4.2: Configuration of the Adam optimizer used for training the ANN. One epoch is one
training period during which all data examples are utilized once for training. The batch size
of 1 indicates that the ANN coefficients are updated for each single sample. The remaining
parameters refer to the configuration of the ADAM optimizer and are explained in more detail
in Kingma and Ba (2015).

# Epochs Batch size Learning rate Optimizer β1 β2 ε̂

8000 1 1.e-04 ADAM 0.9 0.999 1.e-07



Chapter 5

Towards a Generalizing Deep Learning
Based Modifier of Moments Model for
Explicit Incorporation of Directivity in
Probabilistic Seismic Hazard Analysis

5.1 Introduction

The study presented in the previous chapter is largely concerned with the explicit incorpora-
tion of directivity related ground motion amplification in probabilistic seismic hazard analysis
(PSHA) calculations, specifically within the 2022 New Zealand National Seismic Hazard Model
(Gerstenberger et al., 2022a). My key contribution to this study was the development of an
artificial neural network (ANN) based modifier of moments model for which I, contrary to the
common practice in ANN studies, decided to intentionally overfit an ANN to learn the moment
modifiers ∆µdir and σfH for the 2022 New Zealand earthquake rupture forecast (ERF) (Gersten-
berger et al., 2022b; Seebeck et al., 2023) in great detail. As a consequence, the ANN model,
hereafter ANNovf , did not learn meaningful relations between earthquake rupture properties
and associated amplification fields, but rather learned a massively compressed representation of
a specific set of moment modifiers "by heart". In the case of a seismic hazard model operating
on a predefined ERF, this approach poses a practical, efficient, and accurate solution to the
problem of explicit incorporation of directivity in PSHA studies at regional scale. However,
when facing the situation of simulating directivity for ruptures that are not part of a precalcu-
lated inventory, e.g., in ShakeMap calculations or in non-ERF-based PSHA, the necessity of a
modifier of moments model generalizing to arbitrary rupture geometries arises. To extend the
approach to such cases, I started to explore a deep learning-based approach to derive a model
that learns meaningful relations between the geometric and seismic properties of a rupture and
the moment modifiers in its vicinity. In this chapter I present this alternative approach that
could potentially broaden the applicability of ANN-based modifier of moment models within the
engineering seismology community.
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5.2 Data

The parameters to be modeled are the moment modifiers ∆µdir and σfH in the vicinity of an
earthquake rupture, where the former describes the mean directivity related amplification at
a site from averaging over various hypocenter locations h on the rupture plane sampled from
the distribution fH(h), and the latter is the corresponding standard deviation. The moment
modifiers utilized for training and validation in model calibration in this study are a subset of
the synthetic dataset generated within the scope of section 4.5.2.4 using the Bayless et al. (2020)
directivity model. Moment modifiers were calculated on regular grids of shape 256 × 256 with a
spacing of 5 km for the Nrup = 3884 ruptures from the 2022 New Zealand ERF model. Contrary
to the study presented in chapter 4, only one period (T=10 s) is considered. Consequently, the
dataset Y = {y1, . . . , y3884} can be described as a matrix of shape (3884 × 256 × 256 × 2), where
the 2 channels contain the moment modifiers ∆µdir and σfH at a period of T=10 s, respectively.
In modeling contexts, I will refer to these precalculated moment modifiers as "targets".

A total of 9 predictive parameters describing the seismic properties of a rupture and the
relative location of a site with respect to it were utilized. The moment magnitude MW largely
determines the overall amplitude of directivity related amplification, as well as the affected
frequency band. The style of faulting indicator ISS distinguishes between primarily strike-
slip ruptures (ISS = 1), and others (ISS = 0) which produce fundamentally different spatial
amplification patterns. The GC2 coordinates gc2u and gc2t (Spudich and Chiou, 2015), the
along-strike horizontal distance of a site to the rupture ry, and the azimuth angle az of a site
with respect to the rupture’s centroid, represented by sin(az) and cos(az), describe the relative
position of a site with respect to the rupture. This information on relative site location is crucial
to grasp the direction dependence of rupture forward directivity. The Joyner-Boore distance rjb
and the rupture plane distance rrup describe the absolute distance of a site to the rupture, which
is a necessary information given that directivity effects are primarily observed in the near field
of ruptures. It should be noted that the parameters used are those from the Bayless et al. (2020)
directivity model, supplemented by rjb and rrup, and that the calculation of all parameters is
obligatory in typical PSHA calculations, such that no additional computational effort is expected
in this regard. All predictive parameters are calculated on the same regular grid used for the
moment modifiers, resulting in a predictive dataset X = {x1, . . . , x3884} of shape (3884 × 256
× 256 × 9). An example for an input xi and a target yi regarding a single rupture is shown in
Fig. 5.1.

In addition to the 2022 New Zealand ERF, also a test set with 550 generic, planar ruptures
evenly covering large magnitude, strike, and dip ranges was generated (See Fig. 5.3 e – h). The
purpose of this test set is to investigate to which degree the final model is capable of providing
reasonable moment modifiers for ruptures that are not included in the New Zealand 2022 ERF
in this form. The data generation is the same as for the ERF dataset, therefore the test set can
be described by matrices Xtest and ytest of shapes (550 × 256 × 256 × 9) and (550 × 256 × 256
× 2), respectively.
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5.3 Methodology

The aim of this study is to train an artificial neural network to provide estimates ŷi of the moment
modifiers yi for an arbitrary rupture i that is characterized by the predictive parameters xi. To
this end I employ the U-Net neural network architecture (Ronneberger et al., 2015), due to its
capability of processing data in the shape of arrays, e.g., maps, that has already been utilized
in the ground motion modeling study presented in chapter 3.

Figure 5.1: The U-Net architecture employed in this study following Ronneberger et al. (2015).
The input layer perceives the predictive parameters xi describing an earthquake rupture in the
form of 2D arrays (maps). During training, the input is propagated through the U-Net until an
output ŷi = (∆̂µdir,i, σ̂fH ,i) is generated. The model coefficients are subsequently updated to
minimize the misfit (mean squared error) between the output and the target moment modifiers
yi = (∆µdir,i, σfH ,i). Red numbers indicate the map sizes throughout the U-Net. Bold, black
numbers indicate the number of data channels. This figure is based on Figure 1 in Ronneberger
et al. (2015).

The adaption of the U-Net architecture to the task of estimating directivity related moment
modifiers of arbitrary earthquake ruptures is depicted in Fig. 5.1. Maps of the 9 predictive
parameters describing a rupture form the input xi of shape (256× 256× 9) that is received by
the input layer of the U-Net. Subsequently, this input is propagated through the architecture
until an output ŷi of shape (256 × 256 × 2) is generated, which is supposed to yield estimates
∆̂µdir,i and σ̂fH ,i of the moment modifiers yi once the U-Net has been trained. Additional details
regarding the U-Net architecture are given in Table 5.1 and in the appendix (section 5.A).

Before the U-Net can provide meaningful estimates of moment modifiers, training is required
in order to teach the U-Net how to extract the relevant information from the predictive param-
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eters and how to transform it into the moment modifiers. To this end, 80% of the examples in
the available dataset (the training dataset) are used to calibrate the U-Net coefficients, whereas
the remaining 20% of the data (the validation set) are used to ensure that the model generalizes
to data samples outside the training set, i.e., to detect and avoid overfitting. Each training
sample can be used in 4 different orientations, which effectively increases the number of training
samples by a factor of 4. The training procedure is implemented as follows:

1 Insert predictive parameters xi for an arbitrary rupture i to the U-Net

2 Process the input through the U-Net such that a (random) output ŷi is generated

3 Repeat steps 1-2 for a total of 8 ruptures (a mini data batch of size 8)

4 Evaluate the loss between the outputs and the expected moment modifier maps via the
mean squared error (MSE)

5 Employ the Adam optimization algorithm (Kingma and Ba, 2015) together with back-
propagation (Rumelhart et al., 1986) to update the model coefficients to minimize the
MSE

6 Repeat steps 1-5 for all data samples in the training set

7 Evaluate the MSE loss on the validation dataset (validation loss)

8 Repeat steps 1-7 until the validation loss does not decrease any further.

During this procedure, the U-Net iteratively learns a meaningful relation between the predic-
tive parameters and the moment modifiers. Additional details of the training procedure are given
in Table 5.2. Training of a U-Net with the specification given in Table 5.2 takes approximately 8
hours on a machine with an NVidia A40 GPU, and 192GB of RAM. The size of the final model on
disk is 2.9MB (after optimization utilizing IntelNeuralCompressor (Intel®NeuralCompressor,
2023)).

5.4 Results

A summary of the U-Net performance on the training, validation, and test sets is presented in
Fig. 5.2 where a normalized mean squared error given by:

MSE∗ =
1

2Ns

Ns∑
j=1

∆µdir,j − ∆̂µdir,j

max(|∆µdir,j |)

2

+

(
σfH ,j − σ̂fH ,j
max(|σfH ,j |)

)2

(5.1)

is used as the evaluation metric. Here, max denotes the maximum of a sample, and Ns denotes
the number of sites with non-zero amplification. For comparison purposes, the performance of
ANNovf on the validation ruptures from this study is included. Note that the term ’valida-
tion ruptures’ is somewhat misleading in the context of ANNovf , because these ruptures were
actually used for training of ANNovf . The smaller MSE∗ values on examples from the train-
ing set compared to the validation set indicates slight overfitting of the U-Net. ANNovf yields
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considerably smaller MSE∗ values on the validation ruptures which is expected, given that it
was intentionally overfit massively to these examples. The comparatively large values of MSE∗

obtained for the generic test set indicate limitations of the U-Net in terms of generalization to
simple, planar ruptures.

Figure 5.2: Cumulative frequencies ofMSE∗ scores obtained from the U-Net model (blue) and
ANNovf (grey). Solid/dashed/dash-dotted lines show performance on validation/training/test
ruptures, respectively. The green stars indicate example ruptures from the validation set at
the 80th, 90th, and 99th %iles presented in Fig. 5.4. The red markers indicate two special
cases from the validation set for which the U-Net predictions fundamentally differ from the
target moment modifiers (x-shaped marker Fig. 5.6 a–e, triangular marker Fig. 5.6 f–j). The
yellow stars indicate the remaining validation samples with MSE∗ scores beyond the 99th %ile.
The violet stars indicate example ruptures from the test set at the 50th, 80th, and 90th %iles
presented in Fig. 5.5.

A more detailed visualization of MSE∗ values as a function of moment magnitude MW and
dip angle ϕ for ruptures from the validation and test sets is presented in Fig. 5.3. Since no
systematic variation of MSE∗ with strike direction was identified, I excluded this parameter
from the analysis. The MSE∗ values obtained for ruptures from the validation set, presented in
Fig. 5.3 a and b, reveal greater variability of performance for dip slip than for strike slip ruptures,
while for both types a slight increase of MSE∗ with increasing MW must be stated. Compared
to the validation set, the average misfit on the test set, shown in Fig. 5.3 c and d, is clearly larger.
Moreover one can identify that the misfit for strike slip ruptures is in general smaller than for
dip slip ruptures. Increasing MSE∗, for MW < 6.8 is clearly visible for both dip slip and strike
slip ruptures. This is not surprising, because the minimum magnitude in the New Zealand ERF
training set is 6.8 (Fig. 5.3 e, f), and therefore the U-Net is not trained to properly handle smaller
magnitude events. Slightly increasing MSE∗ for 8.0 < MW ≤ 8.5 in the test set is also evident,
although this magnitude range is well covered in the training set. Increasing misfit for dip slip
faulting ruptures in the test set at dip angles ϕ <≈ 35◦, as seen in Fig. 5.3 c, can be explained by
the shortage of such angles in the training set (Fig. 5.3 g. Dip angles ϕ >≈ 80◦ are completely
lacking in the training set for dip slip ruptures, however, performance on such ruptures from the
test set is not worse compared to ≈ 35◦ < ϕ <≈ 80◦.

To provide a more intuitive understanding for the absolute values of MSE∗, I investigate
some example predictions at the 80th, 90th, and 99th %iles of MSE∗ values for ruptures in
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the validation set presented in Fig. 5.4. Subsequently I will focus on a similar set of example
ruptures from the test set at the 50th, 80th, and 90th %iles of MSE∗ values given in Fig. 5.5.

80% of U-Net predictions for validation ruptures reveal primarily a slightly smoothed out
appearance compared to the target moment modifiers (Fig. 5.4 a–e), whereas the actual outlines
of the amplification patterns also start to vary at the 90th %ile (Fig. 5.4 f–j). For the few cases
with MSE∗ beyond the 99th percentile, considerable misfit must be stated (Fig. 5.4 k–o). In
particular, we notice two cases for which the U-Net predictions fundamentally differ from the
targets (see red markers in Fig. 5.2 and Fig. 5.6), which are discussed in more detail in section 5.5.

The comparably large misfits for ruptures from the test set evident from Fig. 5.2 c and d
clearly emerge also in the example predictions shown in Fig 5.5. Even at the 50th %ile, the
predicted amplification patterns (Fig. 5.5 c and e are clearly disturbed with respect to the target
ones (Fig. 5.5 b and d). This observation is surprising, since the properties of the shown strike
slip rupture (MW = 8.1, φ = 85◦) are actually well covered in the training dataset (Fig. 5.3 f
and h). Systematic deviations between the predicted and target moment modifiers are evident
for the example with an MSE∗ at the 80th %ile (Fig. 5.5 f–j). The differences for this dip
slip rupture can be associated with the rather shallow dip angle of 25◦, that is not covered by
the training dataset (Fig. 5.3 g). The small magnitude of MW = 6.1 of the example strike slip
rupture at the 90th %ile (Fig. 5.5 l–o), which is not covered by the training dataset (Fig. 5.3 f),
explains the clearly observable differences between target and predicted moment modifiers for
this example. Nonetheless, it should be noted that the comparatively large MSE∗ values do
not indicate complete failure on the test set. The predicted moment modifiers, also at the 90th
%ile, still reveal considerable similarity to the targets regarding both the magnitude and the
spatial distribution. Large MSE∗ values therefore indicate lack of detail, rather than lacking
adaption to fundamental scaling relations.
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Figure 5.3: Evaluation of the U-Net performance on the ruptures from the validation and test
sets. Panels a, b and c, d show the distribution of MSE∗ with respect to MW and dip angle for
the validation and test sets, respectively. Panels e–h show the distributions of magnitudes and
dip angles in the training and test sets. Strike directions are sampled uniformly in all directions
in the test set.
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5.5 Discussion

The large MSE∗ values obtained for ruptures from the generic test set is a key result of
this study. As explained in section 5.4, lacking coverage of predictive parameters describing
the rupture properties in the training dataset partially explains this large misfit. However,

Figure 5.4: Comparison of target moment modifiers ∆µdir and
σfH (rows 2, 4) with the U-Net reproductions (rows 3, 5) for ex-
ample validation ruptures (row 1) with MSE∗ scores at the 80th,
90th, and 99th percentile (compare green stars in Fig. 5.2). The ma-
genta squares in the insets indicate the extent of the corresponding
main panels. Green lineaments highlight the surface trace of the
ruptures.

some robustness against
poor coverage in the train-
ing dataset can be inferred
from the relatively sta-
ble performance on steep
(ϕ > 80◦) dip slip ruptures
that are completely lack-
ing in the training dataset
(compare Fig. 5.3 c and g).
One possible explanation
for this observation could
be that the U-Net inferred
the general influence of
steep dip angles on the
spatial amplification pat-
terns from the available
strike-slip ruptures (com-
pare Fig. 5.3 h), and suc-
cessfully transferred this
insight to dip slip rup-
tures. Nonetheless, it
must be stated that also
in the well covered ranges
6.8 < MW < 8.5 and
50◦ < ϕ < 90◦, sub-
stantially increasedMSE∗

compared to the validation
set is evident. One key dif-
ference between the valida-
tion and the test set that
could explain this differ-
ence is the degree of geo-
metric complexity. While almost all ruptures from the 2022 NZ ERF involve at least multiple
segments, if not multi faults, even large MW > 7 events are modeled as simple planar ruptures
in the generic test set. While one might assume that the U-Net should be capable of generaliz-
ing from complex to simple geometries, it seems like a simple geometry is an unknown feature
that challenges the U-Net, which learned to predict irregular patterns along large ruptures. An
example for this behavior is the example rupture presented in Fig. 5.5 a–e.
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The misfit on the validation set are found to be considerably smaller than those for the
test set. Moreover, the misfit below the 80th %ile of MSE∗ values is caused primarily by the
slightly washed out appearance of very fine scaled and sharp features such as the criss-cross

Figure 5.5: Comparison of target moment modifiers ∆µdir and
σfH (rows 2, 4) with the U-Net reproductions (rows 3, 5) for ex-
ample ruptures from the test set (row 1) with MSE∗ scores at the
50th, 80th, and 90th %iles (compare violet stars in Fig. 5.2). Green
lineaments highlight the surface trace of the ruptures.

pattern visible in Fig. 5.4 d.
Since the there is no
reasonable explanation for
such sharp spatial feau-
tures, it might be pos-
sible that they are actu-
ally artifacts caused by,
e.g., the finite sample size
of hypocenter locations on
the rupture plane. If so,
the washed out appear-
ance might actually be a
desireable property, even
though it causes some mis-
fit in the chosen loss func-
tion. Another considera-
tion regarding the compar-
atively small MSE∗ val-
ues obtained for validation
ruptures is insufficiently
strict separation of train-
ing and validation rup-
tures, leading to underes-
timation of validation mis-
fit. For example, the over-
lap of fault segments be-
tween two ruptures in the
2022 New Zealand ERF
can be large, where only
few additional segments

might distinguish a MW = 8.0 from a MW = 8.1 rupture, that otherwise share the major-
ity of segments. If the random split of data samples assigns one of these ruptures to the training
set and one to the validation set, the two sets may end up being too close to each other to
accurately quantify a generalization misfit.

Regardless of the reasons responsible for the differing performances on the validation and
test sets, it should be noted that the determination of an acceptable misfit level of a modifier
of moments model for application in PSHA is yet an unsolved task. Possibly, the rather small
MSE∗ values obtained for validation ruptures in this study is not necessary for practical im-
plementation in PSHA, and perturbed predictions as those seen for the example in Fig. 5.5 a–e
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might actually yield acceptable hazard results.

From the comparison of the overall model performance on the validation and test sets, I come
to the conclusion that the usage of a subset of the 2022 New Zealand ERF is insufficient to train
a fully generalizing U-Net-based modifier of moments model. Consequently, introduction of both

Figure 5.6: Example validation events beyond
the 99th percentile of MSE scores for which the
predictions deviate fundamentally from the tar-
get moment modifiers (compare red markers in
Fig. 5.2).

simple, planar ruptures and additional com-
plex ruptures from various ERF models or
specific observed or modeled ruptures is a
mandatory step prior to future research ef-
forts. Furthermore, determination of the ac-
tual requirements of modifier of moment mod-
els for practical application in PSHA would be
a worthwhile endeavor.

Most of the variability in model perfor-
mance on validation ruptures can be explained
with the varying degree of detail that is cap-
tured for the individual ruptures, while the
broad scale, overall appearance of predictions
usually matches the target moment modi-
fiers well (compare Fig. 5.4). However, there
are two specific examples shown in Fig. 5.6
(red markers in Fig. 5.2) for which predictions
fundamentally differ from the target moment
modifiers, and that, consequently, deserve spe-
cial attention. The swirly pattern of the tar-
get moment modifiers for theMW = 8.1 event
shown in Fig. 5.6 a–e (red x-shaped marker in
Fig. 5.2) is unique among the ruptures in the
validation dataset (although similar examples
exist in the training dataset) and cannot be
reproduced by the U-Net. Closer inspection
of the predictive parameters for this exam-
ple reveals that this pattern is induced by the
GC2 coordinates (Fig. 5.7), where especially
the gc2t coordinate reveals an untypical pat-
tern: The zero isoline is intersecting itself and the fault outline perpendicularly where the two
rupture planes are separated, which is not in agreement with the original definition of gc2t as a
generalized strike-normal coordinate.

In fact, as discussed also in Spudich and Chiou (2015), this unreasonable behavior is seen in
case of strike discordance among the contributing rupture planes, i.e., due to the change in strike
direction by 180 ◦, caused by individual, almost vertically oriented segments, slightly dipping
in opposite directions, which also occurs in this case. While such a change in dip direction
has a significant effect on the strike direction, and therefore GC2 coordinates, any practical
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impact on rupture propagation across such segments is questionable. Therefore, this property
reveals an inherent weakness of GC2 coordinates for the sake of directivity modeling. Despite
Spudich and Chiou (2015) warning against reversing the strike direction of individual segments
to compensate this issue, due to loss of information regarding dip direction, I consider that such
a practice might be an acceptable compromise, as it leads to more reasonable spatial patterns
of moment modifiers.

Figure 5.7: GC2 coordinates in the vicinity of the MW = 8.1 rupture
presented in Fig. 5.6 a–e. Spudich and Chiou (2015) identify the unreasonable
pattern of the gc2t coordinate as a result of strike discordance among the two
rupture planes.

It is worth noticing that, despite the usage of unreasonable GC2 coordinates as predictive
parameters in this example, the actual patterns predicted by the U-Net (Fig. 5.6 c and e), al-
though quite different in comparison to the target ones, are still reasonable in predicting general
positive amplification in the near field and de-amplification in the far field. At least the near field
pattern is thereby similar to past directivity modeling attempts, e.g., in the 2005 New Zealand
Standard for seismic loads (NZS, 2004), where a plain near fault factor is employed in order
to assume directivity related amplification at short source-to-site distances. Encouragingly, this
example suggests that the U-Net model is at least to some degree robust against erroneous input
parameters and/or anomolous/esoteric ruptures for which current directivity models are poorly
constrained, insofar as it does not provide randomly disturbed moment modifiers in such cases,
but maintains at least some degree of reasonability. This robustness can be considered an ad-
vantage over equation-based modifier of moments models as suggested by e.g. Watson-Lamprey
(2018), as the strict relations defined via an equation would directly transfer erroneous input
patterns into the predicted moment modifiers. Nevertheless, this example demonstrates that
the degree of geometric complexity that the chosen input parameters can handle has certain
limitations, and that care must be taken if exceptionally complex geometries are encountered in
application.
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The second conspicuous example from the validation dataset is depicted in Fig. 5.6 f–j (com-
pare red triangle in Fig. 5.2). In this case the fundamental differences between the target moment
modifiers and the U-Net prediction are caused by the varying styles of faulting across the seg-
ments of this multi-fault rupture. In the ERF, 2 of the 4 segments are classified as strike-slip
(rake=180◦), whereas the other two are considered dip slip (rake=110◦). Since the majority of
the moment is caused by the strike-slip components, I decided to set the style of faulting indi-
cator ISS = 1, neglecting the dip slip component. Consequently, the U-Net predictions reveal
a pure strike-slip pattern that does not actually fit the target. While a redesign of the U-Net
input layer to account for varying styles of faulting within one rupture is theoretically possible,
the associated effort seems for now disproportionate, considering that multi-fault ruptures in
general and multi style-of-faulting ones in particular are rarely encountered.

For the remaining examples from the validation dataset with MSE scores beyond the 99th
percentile (yellow stars in Fig. 5.2), the U-Net predictions do not differ fundamentally from the
targets, but show considerable perturbations comparable to the example shown in Fig. 5.4 k)-
o). Taking a closer look reveals that all affected ruptures share the geometrical property of
intersecting fault segments and strike discordance due to change in dip direction from segment
to segment by about 180◦. Similar to the discussed example shown in Fig. 5.6 a–e, the validity of
GC2 coordinates in case of strike discordance is questionable, and strike reversal for individual
segments might be a solution. It should be noted that for some examples, e.g. Fig. 5.4 f–j
strike discordance does not lead to artificial patterns like those in Fig. 5.6 b and d, thus, further
research on the influence of rupture geometry on the moment modifiers is necessary.

In this study I utilized the mean squared error as the loss function during ANN training
and to rank the performance on individual examples from the validation dataset. In doing so
I generate an non-interpretable misfit mixture over the two moment modifiers ∆µdir and σfH ,
neglecting the fact that these two might actually contribute differently due to the different value
range that they cover. While the results indicate that predictions for both moment modifiers
seem to closely resemble the target ones, it might be worth to adapt a more scale-invariant
metric such as the z-score in the future.

5.6 Conclusions

In summary one can state that the U-Net-based modifier of moments model provides satisfying
estimates ŷi = (∆̂µdir,i, σ̂fH ,i) for about 90% of the ruptures in the validation subset of the 2022
New Zealand ERF. The remaining 8 ruptures show exceptional geometries or source properties
that lead to a questionable representation via the chosen set of predictive parameters that causes
substantial differences between the U-Net predictions and the (also debatable) target moment
modifiers. Particularly conspicuous are the spatial patterns of the GC2 coordinates in case
of strike discordance among individual rupture segments, however, further research must be
undertaken to uniquely identify these as the source of the deviations and to investigate the
impact of strike reversals as suggested carefully also in Spudich and Chiou (2015). Regardless
of the cause of the deviations, one can state that the magnitude of amplification and the coarse
scaled spatial patterns predicted for the affected ruptures still represent reasonable estimates of
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the moment modifiers that are not expected to disturb PSHA calculations considerably. This
holds to some degree also true for the generic ruptures from the test set, for which the broad scale
spatial amplification patterns are in rough agreement with the target moment modifiers, but for
which the reproduction of spatial details seems challenging. These insights suggest that the
training dataset should be complemented with both generic, simple ruptures as well as complex
observed and/or modeled ruptures before further experiments are conducted. Furthermore, the
results from this study suggest that the random split of ruptures from the New Zealand 2022
ERF into a training and a validation set might be insufficient, and that manual revision might
be worthwhile. From the preliminary results obtained in this study I finally conclude that with
some extensions of the presented methodology and underlying datasets, U-Net-based modifier
of moment models are promising candidates to enable the explicit incorporation of directivity
effects in PSHA calculations, similar to the approach presented in chapter 4 in the near future.

5.7 Outlook

The results presented in this study are preliminary and many open questions and tasks are yet
to be addressed. A first straightforward extension of the methodology is the incorporation of
multiple spectral periods, which will slightly increase the size of the resulting U-Net model on
disk and the demand in computational resources during training of the ANN, but is not expected
to cause any further complications. In addition, the extension of the dataset with additional
ruptures seems mandatory to ensure the U-Net’s ability to generalize to a wide range of rupture
geometries, including also simple planar ruptures that are not included in the 2022 New Zealand
ERF. The calculation of GC2 coordinates in case of strike discordance among multiple rupture
segments should be revised, and the effect of strike reversals on the resulting target moment
modifiers should be investigated in detail. This step may potentially yield more reasonable
target moment modifiers, and also fewer outliers regarding the performance of the U-Net on the
validation dataset. It should be noted that, from a technical perspective, it would also be within
range to utilize a training dataset generated via physics-based waveform simulations instead of
empirical directivity models such as the one by Bayless et al. (2020) utilized in this study. Given
the fact that actual directivity affected strong motion observations are rare and spatially sparse,
a physics-based approach might yield higher resolution and, thus, more realistic representations
of directivity related amplification fields. While the performance on the randomly determined
validation split of the available dataset gives a good first impression of the model performance,
a more sophisticated benchmark framework that systematically challenges the U-Net’s ability to
generalize to specific types of ruptures might be a desireable step before actual implementation
into existing PSHA frameworks. Finally, also an actual exemplary implementation in a PSHA
calculation as presented in the previous chapter for the ANNovf is absolutely crucial to verify that
the model’s performance is acceptable for application in Probabilistic Seismic Hazard Analysis.
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5.A Appendix

5.A.1 U-Net specifications

This sections provides a detailed description of the U-Net neural network (Ronneberger et al.,
2015) architecture employed in this study. Additional technical details supporting the following
explanations are given in Table 5.1.

The U-Net architecture (Fig. 5.1) consists of three major components: The encoder branch,
the decoder branch, and skip connections.

Within the encoder branch, the input is alternately processed through conv blocks and
pooling layers. One conv block comprises two 2D convolution layers followed by a non-linear
LeakyReLu activation function. The 2D convolutional layers consist of filterbanks that are
convolved with the respective input to the layer. The values in the filter masks pose the majority
of coefficients in the U-Net and are subject to optimization during the training phase. To avoid
boundary value loss from the convolutional operations, symmetric padding of the input maps
is conducted before every convolution. Subsequent passing through the non-linear activation
function is necessary to enable the U-Net to learn non-linear relations. Pooling layers reduce
the size of the data maps, via selecting the largest value of each 2x2 sub-matrix and discarding
the remaining values. The interaction between convolution and pooling layers leads to a highly
abstract information representation of shape 16x16x128 in the bottleneck of the U-Net. The
encoder branch is considered a feature extractor.

The decoder branch consists of alternating up-conv operations and conv blocks. An up-conv
operation comprises an up-sampling step, that increases the shape of the data maps by a factor
of 2 via bilinear interpolation, and a 2D convolutional layer.

While the input parameters are given as spatial maps of well defined quantities, the infor-
mation representation in the bottleneck of the U-Net is highly abstract, and a large portion of
the spatial context is lost. Therefore, skip connections are employed to concatenate layers in the
decoder branch with their pendants from the encoder branch in order to reintegrate this spatial
information.

The final conv-out operation is a 2D convolutional layer followed by a linear activation
function, generating an output ŷ of shape 256x256x2.
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Table 5.1: Technical specification of the U-Net architecture utilized in this study and depicted
in Fig. 5.1. A conv block as denoted in Fig. 5.1 comprises 2 Conv2D layers (compare the "Com-
ment" column). An up-conv operation as denoted in Fig. 5.1 comprises upsampling and a single
Conv2D layer. "cc" stands for concatenation.

ID Layer type # Filters Filter size Input shape Output shape Activation Comment

L1 Input 256x256x9 9 predictive
parameters

L2 Conv2D 8 (3x3) 256x256x9 256x256x8 Leaky ReLU (2x)
L3 Max Pooling 256x256x8 128x128x8
L4 Conv2D 16 (3x3) 128x128x8 128x128x16 Leaky ReLU (2x)
L5 Max Pooling 128x128x16 64x64x16
L6 Conv2D 32 (3x3) 64x64x16 64x64x32 Leaky ReLU (2x)
L7 Max Pooling 64x64x32 32x32x32
L8 Conv2D 64 (3x3) 32x32x32 32x32x64 Leaky ReLU (2x)
L9 Max Pooling 32x32x64 16x16x64
L10 Conv2D 128 (3x3) 16x16x64 16x16x128 Leaky ReLU (2x)
L11 Up-Sampling2D 16x16x128 32x32x128
L12 Conv2D 64 (3x3) 32x32x128 32x32x64 Leaky ReLU (1x)
L13 Concatenation 32x32x64 32x32x128 cc with L8
L14 Conv2D 64 (3x3) 32x32x128 32x32x64 Leaky ReLU (2x)
L15 Up-Sampling2D 32x32x64 64x64x64
L16 Conv2D 32 (3x3) 64x64x64 64x64x32 Leaky ReLU (1x)
L17 Concatenation 64x64x32 64x64x64 cc with L6
L18 Conv2D 32 (3x3) 64x64x64 64x64x32 Leaky ReLU (2x)
L19 Up-Sampling2D 64x64x32 128x128x32
L20 Conv2D 16 (3x3) 128x128x32 128x128x16 Leaky ReLU (1x)
L21 Concatenation 128x128x16 128x128x32 cc with L4
L22 Conv2D 16 (3x3) 128x128x32 128x128x16 Leaky ReLU (2x)
L23 Up-Sampling2D 128x128x16 256x256x16
L24 Conv2D 8 (3x3) 256x256x8 256x256x8 Leaky ReLU (1x)
L25 Concatenation 256x256x8 256x256x16 cc with L2
L26 Conv2D 8 (3x3) 256x256x16 256x256x8 Leaky ReLU (2x)
L27 Conv2D 2 (1x1) 256x256x8 256x256x2 linear (1x)

L28 Output 256x256x2

Maps of
moment
modifiers
at T=10 s

Table 5.2: Training configuration adopted in this study. Training is conducted for 1000 epochs,
i.e., training cycles during which all training samples are used once. Coefficients are updated
based on the misfit obtained from 8 training samples (mini batches of size 8). MSE - mean
squared error. Remaining parameters refer to the configuration of the Adam optimizer (Kingma
and Ba, 2015).

# Epochs Batch size Loss function Learning rate Optimizer β1 β2 ε

1000 8 MSE 1.e-04 Adam 0.9 0.999 1.e-07
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6.1 Abstract

Rapid assessment of an earthquake’s impact on the affected society is a crucial step in the early
phase of disaster management, navigating the need for further emergency response measures. We
demonstrate that felt reports collected via the LastQuake service of the European Mediterranean
Seismological Center can be utilized to rapidly estimate the probability of a felt earthquake
being high impact rather than low impact on a global scale. Our data-driven, transparent, and
reproducible method utilizing Bayes’ theorem and kernel density estimation provides results
within 10min for 393 felt events in 2021. Although a separation of high- and low-impact events
remains challenging, the correct and unambiguous assessment of a large portion of low-impact
events is a key strength of our approach. We consider our method as an inexpensive addition to
the pool of earthquake impact assessment tools, one that is fully independent of seismic data and
can be utilized in many populated areas on the planet. Although practical deployment of our
method remains an open task, we demonstrate the potential to improve disaster management
in regions that currently lack expensive seismic instrumentation.

6.2 Introduction

An urgent question that decision makers and emergency response operatives are facing in the
immediate aftermath of felt earthquakes is whether considerable impact on the affected pop-
ulation is to be expected or not. Although a sophisticated answer to this question is crucial
to successful long- term disaster management, a preliminary characterization of the situation
based on rapidly available, though crude, information in the very first minutes after an earth-
quake is equally important, because it can determine whether emergency response measures will
be initiated or relinquished in the first place.

Rapid impact assessment systems such as PAGER (Jaiswal et al., 2010; Wald et al., 2010)
are based on the ShakeMap methodology (Wald et al., 2005) and typically provide the first
quantitatively reliable estimate of expected impact such as financial losses, destroyed and dam-
aged buildings, and number of casualties. The ShakeMap methodology requires a description
of the earthquake source, ground acceleration data from a dense strong-motion network, and/or
macroseismic intensity observations collected, for example, via the “Did You Feel It?” service of
the U.S. Geological Survey (Wald et al., 1999). Consequently, it takes on average 30min until
a first impact assessment is available after an earthquake (Wald et al., 2010), although in rare
cases this number can be as low as 5min if a dense, regional real-time strong-motion network is
operated (e.g. Poggi et al., 2021).

Complementary to this indispensable framework, we suggest an approach in which we cir-
cumvent the intermediate step of a ShakeMap and classify an earthquake as either high impact
or low impact solely based on the reported level of shaking inferred from felt reports collected
globally by the European Mediterranean Seismological Centre’s service LastQuake (Bossu et al.,
2017, 2018b). Because LastQuake felt reports are collected numerously and fast via websites,
and a smartphone application (50% of felt reports are collected within 10min after an event),
our method is independent of seismic instrumentation and can provide a rapid, preliminary
characterization of the situation before more sophisticated and quantitatively reliable estimates
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from ShakeMap-based approaches are available. Furthermore, results of our model may still
serve as an independent control mechanism, in which large deviations between our results and
later approaches could indicate under- or overestimation by either of the methods. Although
independence of seismic data makes our method applicable in poorly instrumented regions, a
technology-affine and participating population is a limiting necessity.

We use a dataset comprising over 1.5 million globally collected felt reports from over 10,000
earthquakes of any magnitudes between 2014 and 2021. Our easily comprehensible method
utilizes Bayes’ theorem and kernel density estimators (KDEs), and is therefore fully data driven,
transparent, and reproducible. We discuss our model using well-reported validation earthquakes
from 2022, that is, earthquakes that occured in 2022 and have not been used to calibrate the
model and therefore allow an estimation of the model performance on future earthquakes.

6.3 Data and processing

Over 1.5 million felt reports collected globally from over 10,000 felt earthquakes (i.e., earthquakes
with at least 10 felt reports) between 2014 and 2021 form our data foundation (Bossu et al.,
2023). One felt report comprises a pseudointensity value that quantifies the level of shaking,

Figure 6.1: Example collection of felt reports
from the MW 5.7 event on 22 April 2022 in
Bosnia and Herzegovina. Large pseudointensi-
ties overlay small ones. The first 50 reports over-
lay later ones.

the timing, and the report location. We
use the term pseudointensity, because the re-
ported value is inferred from mapping a sin-
gle macroseismic observation to the EMS-98
macroseismic scale (Grünthal, 1998), whereas
a true, quantitatively reliable macroseismic in-
tensity would be obtained from averaging mul-
tiple observations across a region. Reliable in-
formation can only be obtained from felt re-
ports when collected in large numbers and if
pseudointensity values are averaged spatially.
Because the magnitude of an event might be
unknown by the time when first felt reports
are available, and because we focus on the im-
pact rather than the physics of earthquakes,

we include earthquakes of any magnitude. An example collection of felt reports for the MW 5.7
event in Bosnia and Herzegovina on 22 April 2022, comprising 14,000 felt reports, the first 50
of which were collected within 95 s, demonstrates the capability of the LastQuake collection
procedure to meet the preceding requirements (Fig. 6.1).

The key goal of this study is to develop a probabilistic model that classifies an earthquake as
either high impact or low impact based on felt reports rapidly after an event. We briefly outline
here the dataset preparation, and additional details are found in the supplemental material
S1. In a first step, we transform felt reports into representative features such as the average
pseudointensity Ī or the average distance R̄ of reporting locations to the barycenter (their
geometric centroid). A list of all considered features is provided in Table S1, available in the
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Figure 6.2: Geographical distribution of (a) events and (b) felt reports in the processed
LastQuake database. Small dt50 overlay large dt50 in panel (a). The distributions of dt50,
magnitude (mixed types), and reported pseudointensities are given in panels (c), (d), and (e),
respectively. The histogram in panel (c) comprises 94% of events; for the sake of clarity, we
refrained from visualizing the remaining 6% of events with 120 ≤ dt50 ≤ 720min.

supplemental material to this article. To assure rapid availability and accuracy of the pre-
dictive features, we derive them from the first 50 felt reports that are available for an earthquake
and remove the event from the database if it has fewer reports. In a second step, we label earth-
quakes as high impact or low impact based on impact measures that are documented in the
NCEI/WDS Global Significant Earthquake Database (GSED), the Emergency Events Database
(EM-DAT), and the Earthquake Impact Database (EID, see Data and resources). We define an
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Figure 6.3: Distribution of high-impact (red)
and low-impact (blue) events with respect to Ī
and R̄.

event as high impact if it caused at least one
of the following impacts:

• at least 1 destroyed building;

• at least 50 damaged buildings;

• at least 2 fatalities;

• any documented financial losses.

These rather small threshold values reflect our
intention to distinguish the majority of felt
earthquakes that have no impact on the so-
ciety from the minority of events that do.
Although focusing on the most devastating
events might be an equally interesting strat-
egy, the necessity for a considerable amount of

data examples in both the classes to obtain stable modeling results led us to choose the adopted
scheme. By choosing a threshold value of two fatalities instead of one, we avoid classifying a
considerable amount of earthquakes as high impact, in which single people died due to incidents
that happened during, but cannot directly be related to an earthquake (e.g. Nievas et al., 2020;
Shoaf et al., 1998).

The final database comprising 254 high-impact and 1994 low-impact events is summarized
in Fig. 6.2. The geographic distribution of events and felt reports in Fig. 6.2 a, b reveals the
global utilization of the LastQuake service, albeit with a substantial bias toward Europe, in
which ∼75% of felt reports are collected. The distribution of durations to collect 50 felt reports
dt50 (Fig. 6.2 c) shows that for over 1000 events the required data are collected within 10min,
emphasizing the efficiency of felt report collection via LastQuake. The distribution of events
according to the features Ī and R̄ is depicted in Fig. 6.3. Despite the overlap of the two types of
events, visual inspection indicates differing underlying distributions for high- and low- impact
events. We identify the trend that larger impact is expected for strong shaking felt over large
areas. This reason- able finding is in agreement with the conclusions of, for example, Atkinson
and Wald (2007).

6.4 Probabilistic classification of earthquakes

We derive a probabilistic model providing the probability p of an earthquake being high impact
(H), rather than low impact (L), given its features X derived from felt reports. In the following,
we consider the case in which X comprises two predictive parameters X2D = (ln Ī , ln R̄), in
which ln denotes the natural logarithm.

The desired posterior probability p(H|X2D) is calculated via Bayes’ theorem:

p(H|X2D) =
f(X2D|H)p(H)

f(X2D)
, (6.1)
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in which f(X2D|H) and f(X2D) denote the densities of the likelihood and the marginal, respec-
tively. We estimate the prior p(H) probability of occurrence of a high-impact event from the
numbers NH and NL of high-impact and low-impact events in our database, respectively:

p(H) =
NH

NH +NL
. (6.2)

We infer the likelihood f(X2D|H) (and alsof(X2D|L)) from data. Visual inspection of
Fig. 6.3 suggests to model f(X2D|H) and f(X2D|L) as bivariate Gaussians; however, Kolmogorov-
Smirnoff tests indicate that normality cannot be assumed for most predictive features (see Fig.
S4 in the supplemental material). We therefore choose kernel density estimation (KDE) with
Gaussian kernels to estimate f(X2D|H) and f(X2D|L). When fitting a KDE to data, optimal
choice of the kernel bandwidth h is crucial. To ensure smoothness of the resulting density func-
tions, we first generate the density function of a bivariate Gaussian m̂gauss from the mean and
covariance of the data. We then select the bandwidth hg that leads to a density function gen-
erated from the KDE m̂hg that is most similar to that of the Gaussian in terms of mean-squred
error:

hg = min
h

Nx∑
i=0

Ny∑
j=0

[m̂h(xij)− m̂gauss(xij)]
2. (6.3)

Nx = Ny = 50 denotes the horizontal and vertical dimensions of the regular grid xij on which
the densities are compared (the grid spans exactly the value range of the predictive parameters).
This way we ensure a smooth shape of the estimated density and simultaneously account for the
non-Gaussian properties of the data.

The marginal f(X2D) is modeled as a mixture of f(X2D|H) and f(X2D|L):

f(X2D) = (f(X2D|H) ·NH + f(X2D|L) ·NL) · C, (6.4)

in which C is a normalization constant:

C =
1

NH +NL
. (6.5)

The posterior p(H|X2D) is presented in Fig. 6.3. We additionally calculated alternative so-
lutions for p(H|X2D), in which we modeled the likelihoods in equation (6.1) as (1) bivariate
gaussians and (2) with an alternative KDE approach in which we optimize the kernel bandwidth
in a leave-one-out cross-validation procedure to maximize the likelihood of the data. Visualiza-
tions of resulting likelihoods, posteriors, and uncertainty estimates derived from bootstrapping
with 5,000 draws are given in Fig. S5 in the supplemental material.

6.5 Results

Confirming the previous interpretations, the posterior presented in Fig. 6.4 suggests that the
stronger the shaking and the larger the area over which the shaking is felt, the more likely it
is for an earthquake to be of high impact. The posterior p(H|X2D) provides fairly low values
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Figure 6.4: Visualization of the posterior probability p(H|X2D) of an earthquake being high
impact, given the average reported pseudointensity Ī and the average barycentral distance R̄
obtained from its collection of felt reports. Transparent markers represent events between 2014
and 2021 that were used to calibrate the model, in which the classification into high- and low-
impact events is based on the impact databases from GSED, EM-DAT, and EID (see section 6.8).
Opaque markers represent validation events from 2022 in which the IDs correspond to those in
Table 6.1.

where the density of high-impact events is high and only exceeds the value of 0.5 occasionally.
This is caused by the small value of the prior p(H) (equation 6.2), that is, as the vast majority of
∼92% of felt earthquakes are actually low impact (see the supplemental material S1). Although
the orientations of isolines of p(H|X2D) in Fig. 6.4 seem reasonable where data density is large,
considerable influence of individual data samples is obvious in regions where data density is low,
indicating slight overfitting of the KDEs to the data.

For validation purposes, we applied our model to a selection of well-recorded validation
earthquakes from 2022 (see Fig. 6.4; Table 6.1). We notice that high-impact events are generally
assigned higher values of p(H|X2D) compared with low-impact events. Distinct and accurate
classification is seen for the low-impact events from Croatia (E01) and California (E02). The
intermediate values of 0.07 ≤ p(H|X2D) ≤ 0.50 assigned to events E03–E10 indicate a nonnegli-
gible chance of impact that would be difficult to interpret in a real-time operation of the system.
Also the comparatively large value of p(H|X2D) = 0.68 assigned to the event from Japan (E11)
is ambiguously interpretable. We notice that the high-impact events from Sumatra (E04) and
Nepal (E05) are assigned relatively small values compared to their impact, whereas the event
from Chile (E06) with a slightly larger value is actually of low impact.
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6.6 Discussion

6.6.1 Modeling decisions

We conducted a fully data-driven modeling approach via the use of kernel density estimators. As
expected, the resulting posterior probability p(H|X2D) is poorly constrained where data density
is low (e.g., wiggles in isolines in Fig. 6.4), which is reflected by increased uncertainty estimates
in these regions (compare Fig. S5 in the supplemental material). Fig. S5 shows that even though
normality of predictive features is formally not given, assuming bivariate gaussian distributions
still leads to a useful and even more reasonable (straight isolines) model that might be more
applicable in a practical implementation of our model.

Table 6.1: Validation Events from 2022, Impact Data from GSED and Earthquake Impact
Database (EID). Abbreviations L and H in the column “True Class” refer to low impact and
high impact, respectively.
∗ – EID, Earthquake Impact Database. † – GSED, Global Significant Earthquake Database.

ID Date
(yyyy/mm/dd) Region Magnitude dt50 (s)

Number
of
Reports

Impact True
Class

P (H|X2D)

E01 2022/06/18 Croatia ML 2.7 37 5,358 – L <0.01

E02 2022/01/30 California MW 4.1 96 570 1 damaged∗ L 0.02 ± 0.01

E03 2022/09/10 France/
Germany ML 4.7 109 1,845 22 damaged∗ L 0.07 ± 0.03

E04 2022/02/25 Sumatra MW 6.2 424 1,267 11 dead,
103 destroyed† H 0.11 ± 0.03

E05 2022/07/31 Nepal mb 5.1 595 123 3 destroyed,
475 damaged∗ H 0.12 ± 0.04

E06 2022/08/18 Chile mb 5.5 154 334 – L 0.13 ± 0.01

E07 2022/02/13 Armenia ML 5.4 183 1,333 80 damaged† H 0.28 ± 0.04

E08 2022/04/22 Bosnia and
Herzegovina MW 5.7 96 14,087 1 dead,

350 damaged† H 0.28 ± 0.05

E09 2022/10/05 Iran MW 5.6 463 292 ∼75 destroyed† H 0.33± 0.07

E10 2022/06/21 Afghanistan MW 5.9 492 154 1,150 dead,
3,000 destroyed† H 0.41 ± 0.08

E11 2022/03/16 Japan MW 7.3 741 133 4 dead† H 0.68 ± 0.14

6.6.2 Interpretation of the posterior

The most interesting property of our model is that 39% of low-impact events in the calibration
dataset and not a single high-impact event fall in the region in which p(H|X2D) < 0.01 (Fig. 6.4).
Consequently, considerable impact can almost certainly be ruled out for future earthquakes
with similar appearance. Bearing in mind that these events are still largely felt and may cause
considerable public anxiety (e.g. Becker et al., 2019; Casey et al., 2018), the ability to comfort
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the affected population in these cases is a key strength of our methodology.

For few earthquakes with 0.5 < p(H|X2D) ≤ 0.93, the analysis suggests that the occurrence
of impact is more likely than its absence, although uncertainties are still large in most cases.

The overlap of high- and low-impact events, and the subsequent small-to-medium values of
the posterior p(H|X2D) (Fig. 6.4) raise the question of how to utilize modeling results for 0.01
< p(H|X2D) < 0.5. One possible solution would be to introduce a traffic light system that
suggests a decision maker to not take any further action at low p(H|X2D) (green), to suggest
further investigations at intermediate levels of p(H|X2D) (yellow), or to raise an alert at large
p(H|X2D) (red). Because the exact thresholds that define the boundaries between “green”,
“yellow”, and “red” events would largely depend on the intended use case, we will not suggest
any particular values.

6.6.3 Performance and applicability

Because of the exclusive selection of events with at least 50 reports, our suggested methodology
is applicable to ∼ 22% of 2746 felt earthquakes in 2021, in which for ∼ 14% (393 events) a
result can be obtained within 1 min. We expect these numbers to increase over time according
to the increasing usage of the LastQuake service (the number of reported earthquakes with 4
≤ M ≤ 5 increased on average by 23% per year from 155 in 2014 to 646 in 2021). Because
every smartphone user is a potential contributor of felt reports, we are still far from what could
possibly be achieved once the value of dense and inexpensive felt report collection is properly
acknowledged and encouraged by governments and emergency response operatives. Admittedly,
our model will be of minor impact in regions where dense real-time strong-motion networks and
automatized impact assessment are already in place, as is the case in the Friuli Venezia Giulia
region in Italy, for example (Poggi et al., 2021). However, the MW 5.9 event in Afghanistan
on 22 June 2022 (E10) in Table 6.1 is a striking example of the potential impact that our
model could have in remote regions that lack seismic instrumentation. The required amount
of 50 reports was in this case collected within about 8min, and even though the corresponding
p(H|X2D) = 0.41 does not unambiguously hint at the extreme impact of this event, at least the
considerable probability of impact could have been noticed rapidly after the earthquake. In such
regions, promoting the low-cost usage of LastQuake might be a worthwile option as long as the
installation of strong-motion instruments is infeasible.

6.6.4 Geographic and operational prerequisites

The validation events from Sumatra and Nepal (E04 and E05 in Table 6.1) are assigned rela-
tively small values of p(H|X2D) ,despite their considerable impact. In the first case, only few felt
reports were issued from Sumatra, whereas the majority were submitted from Kuala Lumpur,
Malaysia, some 400 km away, causing distorted distributions of pseudointensities and barycen-
tral distances. In Nepal, our approach suffers from the inaccessibility of LastQuake in China
(Bossu et al., 2018b), causing a lack of reports beyond the Chinese border. These two cases
emphasize the necessity of active participation of LastQuake users, on the one hand, and the
transnational collection of felt reports, on the other hand. Furthermore, the Nepal case indicates
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limited applicability to coastal regions, where the azimuthal distribution of felt reports is like-
wise highly nonuniform. The validation events in Afghanistan (E10) and at the French–German
border (E03) are two counterexamples where reports were successfully derived across borders be-
tween Afghanistan and Iran, and Germany and France, respectively. Subsequently, the derived
p(H|X2D) is equally valid for all affected countries.

6.6.5 Outlook

For the sake of interpretability, we utilize only two predictive parameters to describe an earth-
quake. However, the simple formulation of the modeling task in equation (6.1) allows for a
straightforward extension to additional parameters obtained from felt reports or other sources,
such as population density data products. Additional crowdsourced datasets, such as the one
collected by the earthquake network initiative (EQN, Bossu et al., 2022), could contribute more
information and improve modeling results. With the database of felt reports increasingly grow-
ing in coming years, also calibration of our model to specific continents or regions will be within
reach in the near future.

6.7 Conclusions

In this study, we have presented the development of a data-driven, probabilistic model to rapidly
distinguish high-impact from low-impact earthquakes based on LastQuake felt reports. For
14% of 2,740 felt earthquakes in 2021, our model could have provided a classification estimate
within 10min of the event. The key strength of our model is the ability to correctly classify a
large portion of 39% of low-impact events with high confidence, such that urgent necessity for
comprehensive emergency measures can be ruled out reliably and rapidly after such an event.
Active participation of LastQuake users is a key prerequisite for the proper functionality of
our model. If reports are collected numerously and fast, our model might be among the first
available information sources to independently characterize the situation after a felt earthquake.
Our inexpensive and easily implementable approach could be an effective option to potentially
improve rapid response in regions where the installation of strong-motion networks in the near
future is unlikely or unaffordable.

6.8 Data and resources

Earthquake impact data used in this study was derived from the Global Significant Earth-
quake Database (GSED) of the National Geophysical Data Centre and the World Data Service
(NGDC/WDS) provided by the National Centers for Environmental Information (NCEI) avail-
able at https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.no
aa.ngdc.mgg.hazards:G012153; the International Events Database (EM-DAT) of the Univer-
sité Catholique de Louvain, Belgium, available at https://public.emdat.be/; the Earthquake
Impact Database (EID) available at https://erdbebennews.de/earthquake-impact-databa
se-2021/. All impact sources were visited last on 26 October 2022. The U.S. Geological Survey’s
earthquake catalog was available at https://earthquake.usgs.gov/earthquakes/search/ to

https:// www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id= gov.noaa.ngdc.mgg.hazards:G012153
https:// www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id= gov.noaa.ngdc.mgg.hazards:G012153
https://public.emdat.be/
https://erdbebennews.de/earthquake-impact-database-2021/
https://erdbebennews.de/earthquake-impact-database-2021/
https://earthquake.usgs.gov/earthquakes/search/
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fill gaps in the EM-DAT database. The python code developed within the scope of this study
is available at https://git.gfz-potsdam.de/lilienka/lq_impact. All websites were last
accessed in January 2023. The supplemental material to this article contains two additional
texts, five figures, and two tables providing details concerning the data processing and modeling
decisions.
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Chapter 7

Discussion

The purpose of this chapter is to embed the studies and research questions (compare section 1.5.1)
presented in this thesis in a broader scientific context. The research questions 1–3 concerning
the suitability of artificial neural networks (ANNs) for ground motion modeling, the ANN as-
sisted explicit incorporation of directivity in PSHA, and the optimal usage of pseudo-intensity
reports in RRE are primarily addressed in the core studies of my thesis presented in chapters 3
– 6. However, for the sake of clarity, I have refrained from an exhaustive elaboration of some
noteworthy, though uncritical aspects, which I would like to pick up in the following sections 7.1
– 7.3. Special emphasis is put on the subsequent discussion of research question 4, regarding the
association of my studies to the field of Big Data Seismology, presented in section 7.4, as it has
not been addressed explicitly in the core chapters.

7.1 Opportunities and limitations of the U-Net-based
ground motion model

7.1.1 Groundbreaking advancements in ground motion modeling through
ANNs?

No matter how cautiously and critically one approaches the topic of deep learning, bearing in
mind breakthroughs like AlphaFold (section 2.2.2), there is always a glimmer of hope that the
application of an ANN to a known problem could lead to breakthrough advances over earlier,
more conventional modeling approaches. For the case of ground motion modeling, this would
manifest in the form of dramatically reduced misfit between ground motion observations and
predictions, i.e., considerably reduced aleatory uncertainty of ground motion models (GMMs)
that has been found nearly unchanged for decades (e.g. Douglas and Edwards, 2016; Strasser
et al., 2009). Indeed there is some evidence, such as the observation of spatial correlation of
ground motion residuals (e.g. Loth and Baker, 2013), that a certain portion of what is currently
considered aleatory uncertainty might actually be attributed to mechanisms that are not yet
implemented in GMMs. However, one should bear in mind that the approach of empirical
ground motion modeling itself is actually a massive simplification of the underlying physical
processes, because the complexities of the source, path, and shallow geological properties of
the site are not captured appropriately in the formulation of empirical ground motion models.
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Therefore, it is to be expected that the aleatory uncertainty of GMMs will remain substantial,
even if additional, previously unconsidered mechanisms and parameters are included. This
deliberation has been confirmed by several studies in the literature (e.g. Derras et al., 2014;
Dhanya and Raghukanth, 2018; Pozos-Estrada et al., 2014), where the authors could achieve
GMM performance comparable to previous studies with relatively little effort and simple ANN
architectures, but no advancement per se could be stated in terms of misfit. The results of my
study regarding the development of an ANN-based, nonergodic GMM for the Kanto basin in
Japan (chapter 3), are no exception in this regard, as the comparison to the GMMs by J. X. Zhao
et al. (2016a,b,c) revealed comparable performance, insofar as one can compare these models
at all due to their fundamentally different modeling approaches (nonergodic vs. ergodic). In
summary I come to the conclusion that deep learning-based ground motion models will most
likely not lead to a dramatic reduction in aleatory uncertainty in the future, and that coming
studies in this direction should rather focus on the promising explorative properties that are
discussed in the following paragraphs.

7.1.2 U-Net compared to other nonergodic modeling frameworks

The opportunity of (partially) waiving the ergodic assumption in ground motion modeling due
to the abundance of strong motion data collected in the last years has put forth a number of
modeling frameworks, the most prominent of which are linear (Abrahamson and Youngs, 1992)
and non-linear (e.g. Kotha et al., 2016, 2020) mixed effects regression (MER), and the varying-
coefficient model (VCM) based on gaussian process regression (Bussas et al., 2015; Landwehr
et al., 2016). As an additional contribution to the pool of modeling frameworks, it is reasonable
to compare some properties of the U-Net-based approach presented in chapter 3 to such previous
concepts. Thereby I want to focus on the properties of the frameworks rather than specific model
implementations.

As a consequence of treating the problem of ground motion modeling as an image processing
task via the usage of a U-Net convolutional neural network, the information used to predict an
IM is not limited to the set of predictive parameters at the target site, but also includes, for
example, geological characterization in its vicinity. Methodologically, this is achieved via the use
of finite sized filter masks, and the max-pooling operations in the U-Net (compare Fig. 3.1), that
increase the size of the geographic area covered by the filter masks in the deeper layers of the
U-Net. Considering the usage of site-parameters such as the depth to seismic bedrock, VS30, or
the thickness of a sedimentary layer, this means that, the 3D geological structure in the vicinity
of a site is taken into account when predicting ground shaking. While the practical usefulness
of this property is to be investigated in more detail in the future, I want to emphasize that, to
my knowledge, the U-Net approach is the only GMM framework so far that natively provides
such functionality without additional effort.

One property that distinguishes the VCM and the U-Net on the one hand, and the MER
framework on the other hand is the way that the moderation of the ergodic assumption is
achieved. While both VCM and U-Net introduce the absolute, continuous coordinates of indi-
vidual sources and sites as predictive parameters, the MER framework allows the introduction
of random effects, i.e. adjustments of model coefficients, at different scales, ranging from re-
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gional adjustments according to tectonic setting or country (e.g. Kotha et al., 2016), to local
calibration for individual station and earthquake locations (e.g. Kotha et al., 2020). Contrary
to the VCM and the U-Net, if random effects are inferred in MER at a local level, e.g., station
wise adjustments for site amplification, they cannot be simply transferred to locations other
than those present in the training dataset. The development of an external, spatial correlation
model, a native component of the VCM and the U-Net frameworks, would be necessary in this
case.

A key feature that sets the U-Net approach aside from previous frameworks is the indepen-
dence of any a priori defined functional form. While this fully data-driven method prohibits the
introduction of theoretical knowledge to a ground motion model, it offers a fully objective per-
spective on the problem, which might lead to the identification of potentially existing, previously
unconsidered systematic relations in strong motion datasets. Furthermore, being both indepen-
dent of an equation and nonergodic, the U-Net framework is the first to offer the opportunity
of investigating the predictive power of untypical predictive parameters, for which no closed
form, physics-based description is available, in a nonergodic framework. Such novel relations
or powerful predictive parameters could be identified via a considerable reduction in aleatory
variability when compared to a different model with a comparable degree of ergodicity. However,
the actual physical reasoning from such a relation would not be obvious to the modeler, because
the coefficients of an ANN lack physical interpretability such that more detailed research would
be required.

Another consequence related to the two previously discussed aspects is the fact that the
U-Net framework assumes all relations in a strong motion dataset as dependent on both source
and site coordinates, i.e., the U-Net-based GMM is fully nonergodic. In comparison, both the
VCM and MER frameworks allow for the selection of individual terms in the GMM that shall
be considered nonergodic (e.g. anelastic attenuation in Kotha et al. (2016)), whereas other
terms can be chosen to remain ergodic (e.g. magnitude scaling in Landwehr et al. (2016)) if
severe underdetermination of the resulting model is expected otherwise. Subsequently, it is
reasonable to assume that a U-Net-based GMM will be insufficiently constrained outside the
core range of the training dataset. While the precise impact on the predictive performance
can be approximated provisionally from the application to a validation dataset, the possibility
of obtaining completely unreasonable predictions for certain earthquake scenarios can never be
ruled out. Consequently, when compared to the VCM and MER approaches, which fall back
to an ergodic backbone model if evidence from data is lacking, great care must be taken when
considering the application of a U-Net-based GMM in PSHA.

Finally, the practicality of the frameworks in terms of computational efficiency varies con-
siderably. The necessity to invert a covariance matrix of shape (ND ×ND), where ND denotes
the number of observations in a dataset, leads to demand in computational resources scaling
with ND

3, posing a severe computational challenge to the calibration of a VCM given a large
dataset (Seeger, 2004). While various approximating methods have been suggested to reduce
the computational load, utilization of high-performance computing equipment is indispensable
when developing a VCM at regional scale. In contrast, models based on the MER and the U-Net
frameworks can be calibrated on a decent desktop computer with a consumer-end GPU (for the
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U-Net approach) within a reasonable amount of time.
In summary, I do consider the MER and the VCM frameworks to be the best options for

application in PSHA due to the superior control that they grant to the modeler in terms of
choosing the degree of nonergodicity, and the physical interpretability of the model coefficients.
However, the U-Net-based approach offers some interesting explorative features regarding the
assessment of novel parameters and the exploration of large datasets, as well as the incorporation
of predictive information from the spatial vicinity of the target site.

7.1.3 Future perspectives

The key prerequisite for the successful training of a U-Net-based GMM is a large ground motion
dataset recorded by a dense strong motion network operated over a long period of time in a
seismically active region. While KiK-net is one of the most dense strong motion networks on
the planet, I found that the misfit of the U-Net GMM in locations between training stations is
still considerably increased compared to the training sites, and that the associated uncertainty
is underestimated. Therefore, even higher station density would be a desireable feature. In
the Kanto basin, and also in the rest of Japan, one possible option to achieve this would be
to incorporate the equally dense K-net network. While a comprehensive flat file containing
observations from both KiK-net and K-net over the entire operation time is not yet available,
work is currently in progress to provide such a database (Sebastian von Specht, Karina Loviknes,
personal communication), such that a substantial update of the suggested U-Net model is within
reach in the near future.

Another possible future use case for U-Net-based GMMs is currently arising from the de-
velopment of low-cost instruments based on MEMS (Micro-Electro-Mechanical-Systems, e.g.,
Holland, 2003) and the targeted deployment in huge numbers at city scale. For example, future
plans for the instrumentation of the city of Tokyo encompass the deployment of 2,000 MEMS
sensors in 1,000 different locations (Danijel Schorlemmer, personal communication). With such
a high station density, interpolation between observations sites might not be a severe problem
anymore.

In addition, the dense instrumentation of urban areas opens up new possibilities with regard
to the investigation of the influence of urbanization on seismic wavefields. Utilizing data products
such as land-use maps or maps of buildings and infrastructure as predictive parameters for a
GMM is an easy to implement option in the U-Net framework as I demonstrated with the usage
of the rather untypical site parameter "depth to bedrock" in my study. Since a theoretical model
for such interaction is not in sight as of today, the U-Net offers a unique future opportunity in
this regard.

While the necessity of spatial density of strong motion sensors can be addressed with the
installation of more instruments, the lack of observations from large magnitude earthquakes
due to limited observation times is a more persistent problem, that cannot be solved within
the coming decades. However, the acquisition of a substantial dataset of low- to medium sized
earthquakes from extremely dense low-cost networks that are deployed today might be achievable
within few years, and therefore allow first experiments regarding the development of GMMs for
urban areas in the near future. Although such a model would not be suitable for application
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in PSHA, for the numerous reasons outlined above, I see the potential that such experiments
will lead to insights that might subsequently influence the development of more conventional,
equation-based GMMs. In summary I come to the conclusion that while U-Net-based GMMs
will most likely not find entry into the realm of PSHA in the near future, this explorative way
ground motion modeling is an appealing option to support the development of robust ground
motion models in the long term.

7.2 ANN assisted incorporation of directivity effects in PSHA

7.2.1 Universality vs. reliability

In chapters 4 and 5 I have explored two different strategies for the explicit incorporation of rup-
ture forward directivity in PSHA calculations via the utilization of ANNs. The first one is based
on an overfitting approach that aims at a very accurate representation of a fix set of moment
modifiers for ruptures from the 2022 New Zealand ERF model, and the second one targets a
more universal model that is capable of predicting moment modifiers from representations of
arbitrary earthquake ruptures. Although the latter approach seems to be the superior one, due
to its universal applicability to arbitrary ruptures, I want to emphasize here that I consider the
two approaches actually equivalent solutions for two different types of problems. Admittedly, a
model that is capable of generalizing without restrictions to arbitrary rupture geometries could
be considered the ultimate goal of this research efforts. However, as outlined, e.g., in section 5.5,
unforeseen challenges such as the limitation of a model to generalize to ruptures, the predic-
tive properties of which are principally well represented in the training set, but have a simpler
parameterization, can never be ruled out. Therefore, the guaranteed functionality and full con-
trol over moment modifiers granted by the overfitting approach might be considered worth the
considerable, though manageable, effort to generate ERF specific training datasets for PSHA
studies at regional scale. On the other hand, there are use cases such as Shakemap calculations
or seismic hazard models without a fix inventory of earthquake ruptures, for which the less
accurate modeling via the generalizing approach and the limitations regarding generalization
might be acceptable in order to achieve explicit incorporation of directivity effects at reasonable
efforts. I therefore conclude that both approaches are worth pursuing in future research.

7.2.2 Relation between ANNovf and U-Net

While the ANN architecture used for the overfitting approach (ANNovf ) and the U-Net archi-
tecture used for the generalizing approach seem to be unrelated at first glance, ANNovf can
actually be interpreted as the decoder branch of a U-Net. The convolutional layers in the bot-
tleneck of a U-Net contain a highly abstract, and compressed representation of the information
provided in the input layer, which is subsequently decoded in the decoder branch to derive maps
of moment modifiers. In the same way, one may consider the rupture ID given as the input to
(ANNovf ) to be an extremely compressed representation of an earthquake rupture, that is then
decoded by (ANNovf ) to derive the corresponding moment modifiers. Of course this comparison
is slightly misleading, because a rupture ID does not provide any actual rupture characteristics,
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and the overfitting strategy leads to made up pseudo-relations, but from a technical point of
view this is how the design of ANNovf was inspired.

7.2.3 Integration of modifier of moments model and a GMM

The U-Net architectures utilized in chapter 3 for the sake of ground motion modeling and in
chapter 4 for the sake of directivity modeling are conceptually identical, which opens up an
opportunity to actually integrate ground motion modeling and explicit incorporation of direc-
tivity into a single computing step within a PSHA calculation. Integration of, e.g., the Stafford
(2022) GMM utilized for PSHA calculations in chapter 4 into the modifier of moments model
would basically require two modifications: The first one concerns the generation of the training
dataset described in section 4.5.2.4, where instead of the moment modifiers, the actual modified
moments, i.e., (µ+ ∆µdir, σdir) (compare section 4.3.2 and equations 4.3, 4.4) would have to be
generated. The second modification concerns the input layer of the U-Net, where three addi-
tional channels would have to be included (the depth to the top of rupture zTOR, the depth at
which the shear wave velocity adapts a value of 1 km/s Z1.0, and VS30) to complement the set
of input parameters to the Stafford (2022) GMM. Subsequent training of a U-Net with this syn-
thetic dataset would then lead to the simultaneous adaption of both the Stafford (2022) GMM
and the moment modifiers, which could then efficiently be generated in a single step in a PSHA
calculation.

7.3 Utilization of pseudo-intensity reports for rapid impact as-
sessment

7.3.1 Performance on earthquakes from the Kahramanmaras sequence in
February 2023

TheMW 7.8 andMW 7.5 earthquakes from the Kahramanmaras sequence occuring on February
6th 2023 close to Pazarcik and Elbistan (Turkey) were the by far most incisive events over
the course of my doctoral studies. The resulting 56,000 casualties and over 87 billion dollars of
economic loss in Turkey and Syria places this sequence among the 5 most destructive earthquakes
of the 21st century, the others being Sumatra 2004 (MW 9.1, over 225.000 dead (Tsunami)),
Kashmir 2005 (MW 7.6, over 75.000 dead), Sichuan 2008 (MW 7.9, over 85.000 dead), and Haiti
2010 (MW 7.0, over 310.000 dead)(data from National Geophysical Data Center / World Data
Service, 2023).

Occuring close in time with the publication of our study in chapter 6, the Kahramanmaras
earthquakes represented, from a scientific perspective, a rare opportunity to test the performance
of our model on an extremely ’high-impact’ earthquake. The collections of pseudo-intensities
for the two events are presented in Fig. 7.1, whereas the characterization in terms of average
pseudo-intensity Ī and average distance to the barycenter R̄ together with the classification
results according to our model are presented in Fig. 7.2. The assigned probabilities of being
high impact (P (H|X2D) = 0.68 and P (H|X2D) = 0.51 for the Pazarcik and Elbistan events,
respectively) are among the largest compared with the earthquakes from the training dataset,
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Figure 7.1: LastQuake pseudo-intensities collected during the Kahramanmaras earthquake
sequence on Feb. 6th 2023. Large pseudo-intensities overlay small ones. The first 50 reports
overlay later ones. Magenta lines represent finite fault solutions from U.S. Geological Survey
(2023a,b).

and reasonably suggest that the events are more likely ’high-impact’ than ’low-impact’. However,
in the light of the extraordinarily disastrous consequences that these earthquakes finally had
and the low impact thresholds that we defined to consider an earthquake as ’high-impact’, these
results are not fully satisfactory. As pointed out in section 6.5,

Figure 7.2: Probabilistic classification of the Kahmaranmaras earthquakes (compare Fig. 7.1)
of being ’high-impact’ according to our model presented in chapter 6.

the small absolute values of P (H|X2D) = 0.68 and P (H|X2D) = 0.51 can be explained with the
severe imbalance of ’high impact’ and ’low impact’ events in the training database, that basically
leads to typical ’high-impact’ events being more likely ’low-impact events with untypically large
Ī and R̄. However, the values for Ī and R̄ are also not outstanding compared to the training
events with significantly smaller impact. I identified two possible reasons why the values Ī and R̄
are actually smaller than one would expect. First of all, from Fig. 7.1, one can see that the first
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50 reports utilized to characterize the events barely sample the strongest affected regions in the
close vicinity of the earthquake rupture, thus, leading to the average reported pseudo-intensity
Ī biasing low. This so called doughnut effect (Bossu et al., 2018a), is also visible if all available
reports are considered, especially for the Elbistan event. The second reason could be the sparse
availability of pseudo-intensity reports from Syria, Iraq, and Jordan, potentially leading to the
average distance to the barycenter R̄ being biased low. As discussed already in section 6.6.4,
both issues are already well known and motivate ongoing research to identify predictive features
that are less affected by such geographic distortions.

Finally it should be noted that the Kahramanmaras earthquakes are actually not prime
examples for the profitable usage of our model. The disastrous impact in a densely popu-
lated and urbanized region was obvious from the beginning, thus, the probabilistic evaluation
whether these events have been ’high-impact’ would have been superfluous in practice. As a
counterexample, I would like to refer again to the MW 5.9 event that occured on June 22nd in
Afghanistan discussed in section 6.6.3, where the event hit a sparsely populated rural area where
the occurence of severe impact was unclear for several hours after the event.

7.4 Connection of this thesis with Big Data Seismology

7.4.1 U-Net-based ground motion model

The development of a deep learning-based GMM for the Kanto region in Japan (chapter 3)
reveals two key features that let this study appear as a contribution to Big Data Seismology.
For one, there is the utilization of an advanced ANN architecture (U-Net), that is trained on
consumer-end, though deep learning optimized, computational resources. The second aspect
is the fully data-driven approach in which the Value is extracted from data, one in which we
pretend to not have any theoretical knowledge on ground motion modeling and thus consider
the Value to be "hidden". In discarding all the theoretical knowledge that has been acquired on
the topic of ground motion modeling in the last decades, we adopt a Big Data perspective that
considerably differs from that of studies that choose well established equation-based modelling
approaches, such as those by J. X. Zhao et al. (2016a,b,c) that were used for comparative
purposes. Starting from this perspective, the Bahrampouri et al. (2021) dataset was chosen due
to the density and long-term operation of the underlying KiK-net strong motion network that is
absolutely crucial to at least partially constrain the comparatively large amount of coefficients in
the U-Net. Therefore, one can also state that the selection of the dataset was Big Data inspired.

However, when evaluating the Bahrampouri et al. (2021) database objectively, it exhibits
very little Big Data characteristics. The flat file including all metadata has in fact a size of about
15 gigabytes, and is therefore easily manageable on a decent laptop or desktop computer. This
rather small Volume does not prevent the application of traditional modeling frameworks such as
mixed effects regression, and the application of advanced algorithms such as deep learning is not
necessary from a technical perspective. Rapid processing of records from ongoing earthquakes
is also not critical, since there is not much value in updating modern GMMs with few records
from a specific earthquake, therefore Velocity is also not a challenging aspect when processing
utilizing this type of data. Furthermore, all issues regarding Veracity have been addressed in
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the previous strong motion processing (Bahrampouri et al., 2021), such that the data quality or
missing values do not play a role at this stage. On top of that, the flat file is highly structured,
very easily accessible, and contains a manageable amount of well defined parameters (strong
motion features), thus, one has to state low Variety. In summary, one can state that the strong
motion flat file is actually a prime example for a small dataset.

One should mention that a different picture emerges for the underlying waveform database
the flat file is obtained from. With a size of ∼1 terabyte, manual identification and inspection
of earthquake signals becomes infeasible (Volume issue) and a small scale server is a worthwhile
computational option to conveniently manage the required automated processing steps. Strong
motion processing involves a number of typical Veracity issues that need to be solved in an
automatic way. For example, strong motion instruments in KiK-net do not acquire continuous
waveforms, but are triggered by exceedance of a certain ground acceleration threshold, which
sometimes leads to missing bodywaves in the seismograms. Automatic evaluation of the signal
to noise ratio and the detection of phase arrivals from multiple earthquakes are additional typical
Veracity issues in strong motion processing.

In summary, I follow that the presented study is an example for the application of an ad-
vanced deep learning method on a small dataset. The choice to utilize an ANN was motivated
by curiosity how the results would compare to those of a traditional modeling approach, and
not because the dataset suggested this to be the most appropriate modeling choice to derive a
ready-to-use, robust GMM, at the present data situation. In my opinion, the severe limitations
regarding the applicability of our model in PSHA is a direct consequence of this circumstance,
and highlights the fact that this is not a Big Data Seismology study in the strictest sense. How-
ever, this might change for similar studies in the future: The installation of extremely dense
networks of low-cost sensors in urban areas as planned currently, e.g., with 2,000 sensors for the
city of Tokyo (Danijel Schorlemmer, Personal Communication), might lead to rapidly growing
strong motion flat files in seismically active areas and therefore shift the available data Volumes
towards Big Data dimensions. Furthermore, in areas such as Tokyo, also the urbanization itself
interacting with seismic wavefields should be considered in an eventual GMM derived from such
datasets. Since theoretical modeling of such interaction is not in sight, the fictional Big Data
perspective on the Value of ground motion data adopted in this study might in fact be a realistic
one for incorporation of, e.g., land-use data in GMMs for urban areas in the future.

7.4.2 Explicit incorporation of directivity in PSHA

Both studies regarding the incorporation of explicit modeling of rupture forward directivity in
Probabilistic Seismic Hazard Assessment (PSHA) presented in chapters 4 and 5, make extensive
use of artificial neural networks. While in chapter 4 an ANN is adopted for the uncommon task
of compressing and storing a database for efficient retrieval in its hidden layers, in chapter 5
I present a more traditional usage in which a U-Net ANN is trained to learn how to predict
average site amplification and its variability in the vicinity of an earthquake rupture, given its
geometric and seismic properties.

The database underlying both studies is synthetically generated, comprises only two target
parameters, and takes up a size of approximately 40 gigabytes on hard disk, therefore, no
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challenges regarding Volume or Variety can be stated. Synthetic generation of a dataset grants
optimal control and knowledge of the final outcome, thus, challenges in terms of Veracity and
Velocity do not exist.

In chapter 4, we utilize the ANN to learn the samples from the dataset "by heart", i.e., we
suggest a purely technically motivated procedure to efficiently compress a dataset on hard disk
and make it easily accessible during PSHA calculations. Thus, one can state that no Value is
extracted from the data. The study presented in chapter 5 is, however, a different case, one in
which the U-Net ANN is trained to actually learn a meaningful relation between the earthquake
rupture properties and the directivity related, spatial amplification patterns in their vicinities.
This endeavor may be considered an aggregation of Value in the sense of Big Data, since no
physical theory is available to model the relations in question, yet, and therefore the Value of
the dataset is ’hidden’.

Considering the above thoughts, I come to the conclusion that, despite the Big Data style
aggregation of Value in chapter 5, the operation on a small, synthetically generated dataset, and
the unconventional usage of an ANN in chapter 4 prohibits the consideration of the directivity
related studies in this thesis as contributions to Big Data Seismology.

7.4.3 Utilization of pseudo-intensity reports for rapid impact assessment

Among the various databases utilized within the scope of this thesis, the database acquired
via the LastQuake service is in my opinion the most interesting one with regard to Big Data.
While only the numerical data in the form of reported pseudo-intensity values are utilized in
this thesis, the service offers also the opportunity to submit short text messages and photos
characterizing the post-earthquake situation. Joint analysis of these three datatypes may be
considered a challenge in terms of Variety. Non-expert citizens should not be considered cal-
ibrated instruments, and the perception of ground shaking varies significantly from person to
person. Especially at high levels of shaking, personal experiences are potentially emotionally
biased, leading to increased uncertainties at the upper end of the macroseismic scale. Subse-
quently, pseudo-intensities do not provide a high degree of Veracity. Also Velocity plays an
important role in the light of real-time usage of LastQuake data for Earthquake Early Warning
or Rapid Response to Earthquakes: Processing the abrupt onset of incoming reports after an
earthquake, on the fly identification of outliers, assigning reports to the correct earthquake, and
yielding the product to subsequent steps, e.g., Shakemap, is a pipeline of significant complexity,
the efficient implementation of which is crucial.

While the confrontation with Big Data challenges is consequentially inevitable for potential
follow-ups of my study presented in chapter 6, I want to clarify that only the pseudo-intensity
values, and a fixed version of the database (2014–2021) were considered so far, ignoring the
Velocity and Variety challenges as far as my study is concerned. The limited Veracity, how-
ever, was considered both in the data selection (removing intensities greater than 10), and,
perhaps more importantly, in the selection of the modeling target: While high quality seismic
observations and macroseismic intensities offer a data quality that enables actual quantification
of expected economic losses and number of casualties via loss assessment frameworks such as
PAGER, with the classification into ’high-impact’ and ’low-impact’ events, we chose a rougher
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modeling target according to the limited Veracity of pseudo-intensities. Relating collections of
LastQuake pseudo-intensities to the impacts of earthquakes is a previously non-attempted task
for which no theoretical model is available. Subsequently, one may consider that the Value that
we gather with our fully data-driven methodology is ’hidden’ in the LastQuake database, adding
a glimpse of Big Data to this study. On the other hand, I must state that the Volume of the
utilized database is actually very small (∼ 150 megabytes), a fact that may, however, change
when incorporating also the text messages and photos.

Again, while revealing some Big Data Seismology typical aspects, the presented study shows,
in my opinion, primarily characteristics of a classical, statistical work on a small dataset, yielding
a proof of concept that may enable similar, but more sophisticated follow-up studies in the future.
Incorporating photos and text messages, and potentially additional data sources as suggested in
section 6.6.5, may then truly move this kind of study in the realm of Big Data in the future.

7.4.4 Summary

Seismology is evidently entering the era of Big Data, increasingly facing datasets revealing
Big Data characteristics and relying on advanced algorithms for processing and gathering new
insights. Especially on the methodological side, I have often come into contact with this devel-
opment during my studies, in particular regarding the utilization of ANNs and the data-centric
perspectives that I took on the addressed research questions. However, I would characterize the
analyzed datasets primarily as Small Data according to the limited overlap with the proper-
ties known as "The 5 Vs of Big Data". As a consequence of applying advanced algorithms to
Small Data, the results presented in this study are explorative, and represent foremost proofs of
concepts the value of which will become clear in the course of time.

However, it is a common property of all databases considered in this thesis, that they will
most likely develop into Big Data in the foreseeable future. The deployment of large and dense
seismic networks of classical high-quality seismometers but also emerging new instruments such
as low-cost micro electro mechanical systems (MEMs) (e.g. Holland, 2003) or fibre-optic cables
for usage in distributed acoustic sensing (DAS) (e.g. Lindsey and Martin, 2021), is in large swing
and will lead to a rapid increase in the Volume and Variability of future seismic databases.
Moreover, incorporation of various types of crowdsourced data will also lead to more variable,
but also potentially less reliable databases in terms of Veracity. The insights gained from this
thesis may therefore represent the fundament to develop stable and practical solutions upon in
the years to come.
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Chapter 8

Conclusions and outlook

The key concept of my thesis was to take data centric prespectives on various challenges regarding
seismological contributions to mitigation of earthquake consequences in the fields of probabilistic
seismic hazard assessment and rapid response to earthquakes. The exploration of the potential
benefits from novel algorithms, primarily deep learning, was thereby a key focus. My doctoral
studies have lead me to the following key conclusions:

The U-Net neural network architecture allows the computationally efficient implementation
of fully data-driven, nonergodic ground motion models. The key property that sets this novel
approach aside from previous attempts is the fact that no a priori assumptions of any form
are introduced during the model calibration and, thus, the resulting model can be considered
a fully objective interpretation of strong-motion data. From the practical implementation of
a prototype model for the Kanto region, Japan, I found that the overall scalings of ground
motion intensity with magnitude and source-to-site distance were adopted successfully, and that
predictions are comparable to those from well established modeling frameworks. However, the
applicability of the model to large magnitude earthquakes and short source-to-site distances is
limited due to the highly nonuniform distribution of strong motion datasets. While previous
methods like the varying-coefficient model and non-linear mixed-effects regression have been
identified as the more suitable options for standard PSHA, I see the future potential of the
U-Net method primarily in supporting development of equation-based ground motion models,
given the ability to include also atypical characteristics of ground motion for which closed-form
physical equations cannot be constructed.

I have shown that artificial neural networks can be utilized to incorporate explicit modeling
of directivity into PSHA calculations. In a first step I have demonstrated, both conceptually
and in a practical PSHA application in a New Zealand case study, that a database of moment
modifiers, i.e., ground motion adjustment terms accounting for the average influence of rupture
forward directivity, can be stored inside an artificial neural network, such that it is both easily
distributable and efficiently retrievable for thousands of ruptures in a PSHA calculation. In an
alternative approach, I started to explore the possibility to train an ANN such that it learns
meaningful relations between geometric and seismic properties of arbitrary ruptures on the
one hand, and the corresponding moment modifiers on the other hand. The preliminary results
indicate that such a model is clearly within reach, but that considerable extension of the training
dataset is a necessary step before application in PSHA can be suggested.
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Our study of LastQuake pseudo-intensity report collections revealed considerable correlation
between the statistical properties of such and the severity of societal impact of the corresponding
earthquake. I demonstrated that this correlation can be used to formulate a probabilistic model
that is capable of assigning a probability of an earthquake to have considerable societal impact
within minutes of the origin time. While the unambiguous classification of high-impact events
turned out to be a challenging task, I identified the ability to reliably assign small probabilities
of impact to low-impact earthquakes as a key strength of the model. Furthermore I come to
the conclusion, that the task of moving the suggested model into practical application cannot
be solved solely from the seismological perspective, but that social scientists, authorities, and
disaster managers must be incorporated in the next steps.

Despite the extensive use of deep learning, and the adaption of data-centric perspectives
on modeling problems, the datasets utilized in this thesis are in many respects representatives
of Small Data, leading to the categorization of the studies presented in this thesis more to-
wards classical rather than Big Data Seismology. As a consequence, the majority of the results
presented are to be understood as proofs of concepts whose significance for the mitigation of
earthquake disasters are expected to unfold in the foreseeable future as the size and complexity
of the datasets concerned increase.

Among the various open questions that arose over the cause of my doctoral studies, I iden-
tified the following as the most promising ones to invest further research into:

The U-Net ground motion modeling framework poses a unique opportunity to investigate the
influence of incorporating not only the geophysical site properties at a specific site of interest,
but also in its vicinity, into the prediction of ground motion intensity measures. This unique
property potentially allows for the incorporation of the 3D subsurface structure in empirical
ground motion modeling and therefore poses, in my opinion, a promising opportunity to improve
ground motion models in the future.

While the suitability of the deep learning approach for linking the average effect of rup-
ture forward directivity in the vicinity of an earthquake rupture to its geometrical and seismic
properties has been demonstrated, a fully operational model for usage in arbitrary seismic haz-
ard models and rupture geometries is yet to be established. The generation of the required
additional synthetic datasets of moment modifiers is in my opinion the critical next step that
seems achievable with reasonable effort in the near future. An ANN trained on such an extended
dataset would enable the applicability of the resulting model to use cases, where no fix inventory
of earthquake ruptures is available, e.g., ShakeMap calculations or non ERF-based PSHA. Such
a model would, therefore, considerably ease the cost of explicit incorporation of directivity for
the entire engineering seismology community.

Following the demonstration of how the correlation between statistical properties of pseudo-
intensity collections and earthquake impact severity can be utilized in a statistical model to
predict the impact of an earthquake, incorporation of additional datasets such as macroseismic
intensities from "Did you feel it?" (Wald et al., 1999), or smartphone-based ground motion
records from the EQN service (Bossu et al., 2022), as well as refined interpretation of modeling
results in the form of a traffic light system are among the next steps. The practical implemen-
tation of such an improved framework might potentially be a valuable extension to previously
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established rapid impact assessment methodologies, especially in remote regions of the planet
that currently lack expensive seismic instrumentation.

With regard to the overarching question of the potential of data-centric perspectives and the
application of machine learning methods in ground motion modelling and RIA, I come to the
conclusion that the insights gained today from the investigation of yet small datasets provide
the foundation for profitable, appropriate usage in the future, when large, diverse datasets will
actually pose challenges to the application of conventional approaches.
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