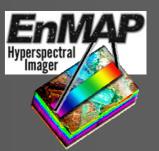
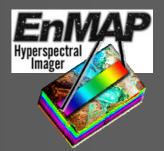
Abbildende Spektrometrie

DEFNIENS

<u>EnMAP</u>

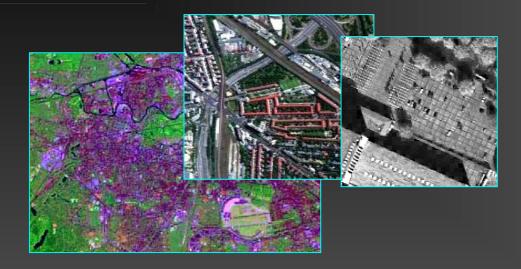

Environmental Mapping and Analysis Program



 In 2003 DLR-Agency started a selection process for a future Earth observation mission

- 15 announced; 9 different missions have been proposed
- 2 proposals have been selected for a phase A study:
 - EnMAP: Hyperspectral Mission
 - TanDEM-X: SAR Interferometry Mission
- Phase A studies for both started in September 2004
- Study duration 9 (12) month
- After finalization, DLR-Agency selects 1 proposal for a phase B/C/D in fall 2005

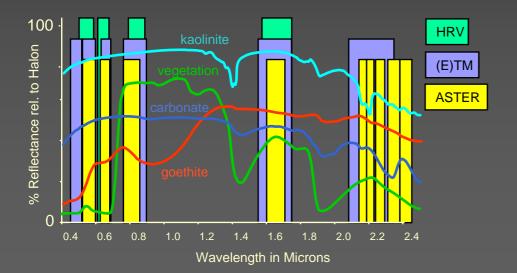
Overall Objectives


To provide high-spectral resolution observations of bio-geochemical and geophysical variables

- To observe and develop a wide range of ecosystem parameters encompassing agriculture, forestry, soil/geological environments and coastal zones/inland waters
- To enable the retrieval of presently undetectable, quantitative diagnostic parameters needed by the user community

To provide high-quality calibrated data and data products to be used as inputs for improved modeling and understanding of biospheric /geospheric processes

EO Scenario – 30 years of Tech. Development

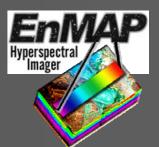


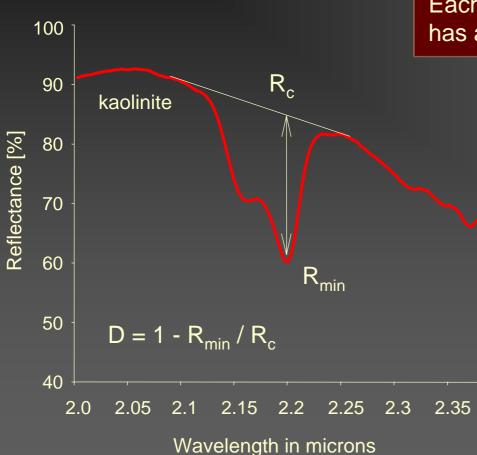
Spatial Resolution

MSS (80m) -> Quick Bird (61 cm)

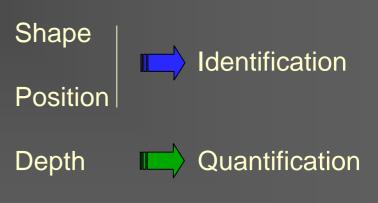
Hyperspectra Imager

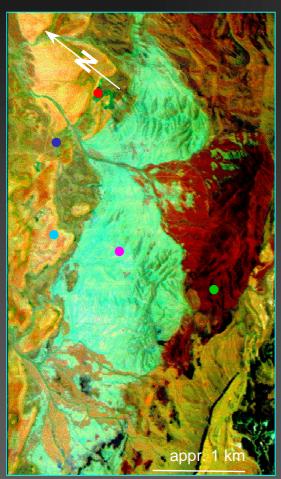
More details discernable Benefits: pattern recognition/DTMs


Spectral Resolution

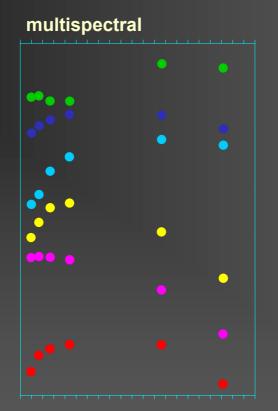

SPOT/HRV (3/5 opt. bands) -> Landsat/TM (6 opt. bands) -> ASTER (9 opt. bands)

Not sufficient for identification of most surface materials

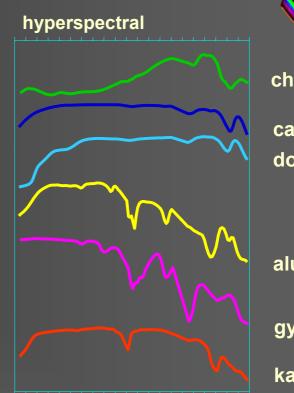

Identification – Quantification => Diagnosis

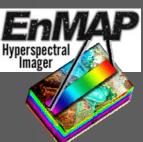

Each material on the Earth's surface has a unique spectral characteristic

Individual Absorptions of pigments, minerals, man made objects



Multi- versus Hyperspectral / Potentials



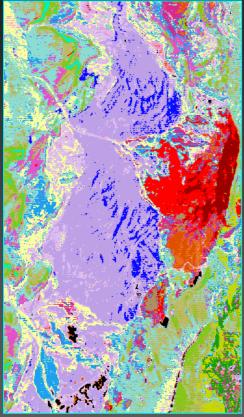

Makhtesh Ramon/Israel color composite of bands 1, 20, 48

Few fixed bands

- minimum identification
- low confidence
- field knowledge and labanalysis required

chlorite calcite dolomite

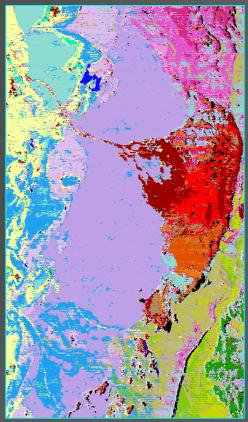
alunite gypsum kaolinite


Contiguous bands

- maximum identification
- high confidence
- data base usable
- spectral unmixing

Multi- versus Hyperspectral / Identification

INDIRECT – field knowledge


MS – 6 bands

average producer accuracy: 71%

class	1		calcite 1
OH-ind	icated		kaolinite/chert 1
class	3		dolomite 1
class	4		dolomite 2
Fe-indi	cated		Fe-sandstone
Fe-indi	cated		Fe-sandstone 2
class	7		dolomite 3
OH-ind			kaolinite 2
class			dolomite 4
OH-ind		Ξ.	kaol./gibbsite
class 1			calcite 2
OH-ind	icated		gypsum
class 1	3		calcite 3
class 1	4		calcite 4
OH-ind	icated		illite
class 1	6		pyroxene
class 1	7		arfvedsonite
OH-ind	icated		chlorite
OH-ind	icated		kaolinite 3
Fe-indi	cated		K-feldspars/Fe

DIRECT – spectral features

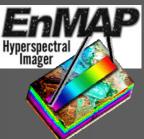
Hyperspectra Imager

HS – 72 bands

average producer accuracy: 96%

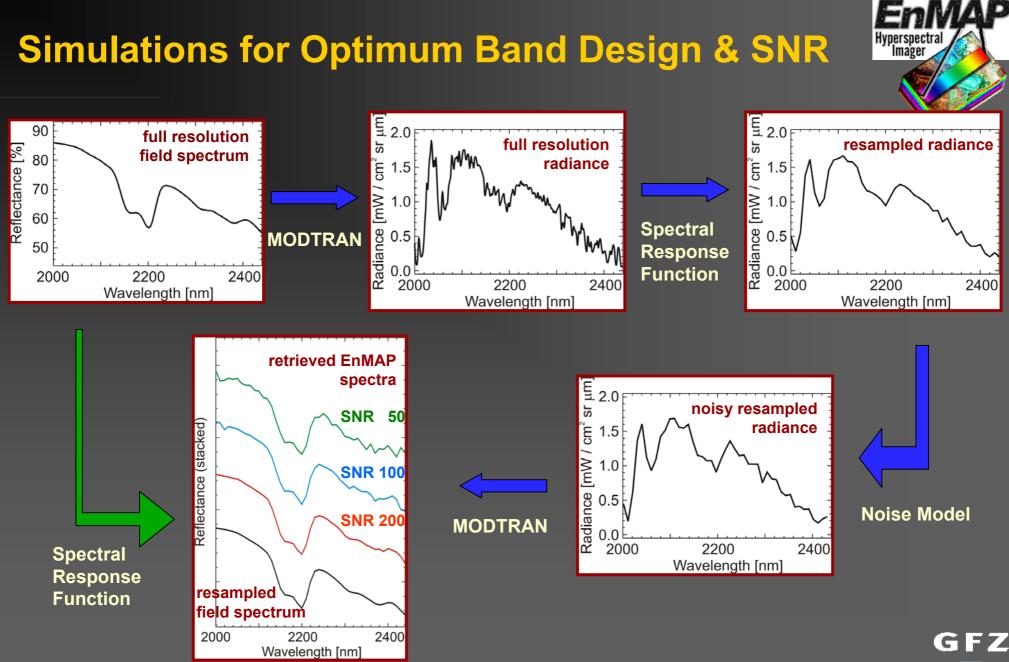
Chlorophyll-a Derived from Airborne Data (HyMap) Hyperspectral Legend: 10 20 30 40 50 60 70 80 µg/l 3 km 20.6.1999 4.9.1998 6.5.1999 .9.199

Mecklenburg Lake District



Hyperspectral Identification of Roofing Materials

HyMap RGB (14/8/3)

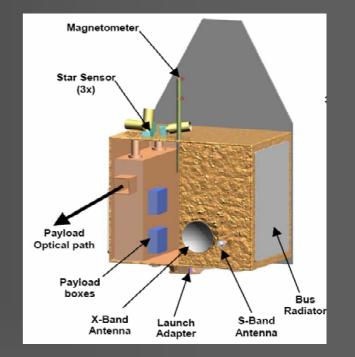

Roofing materials

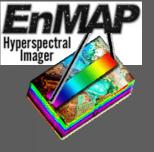
City of Dresden

Environmental Mapping and Analysis Program

EnMAP Technical Outline

Instrument Outline:

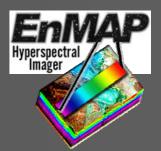

- Dedicated imaging pushbroom hyperspectral sensor mainly based on modified existing or pre-developed technology
- Broad spectral range from 420 nm to 1030 nm (VNIR) and from 950 nm to 2450 nm (SWIR) with high SNR in both spectral ranges
- High spectral resolution of 5/10 nm at SNRs >500:1 (VNIR) and >150:1 (SWIR); up to 218 channels
- Swath width 30 km at high spatial resolution of 30 m and offnadir (30°) pointing feature for fast target revisit (4 days)
- Sufficient on-board memory to acquire 1,000 km swath length per orbit and a total of 5.000 km per day (based on one ground station)

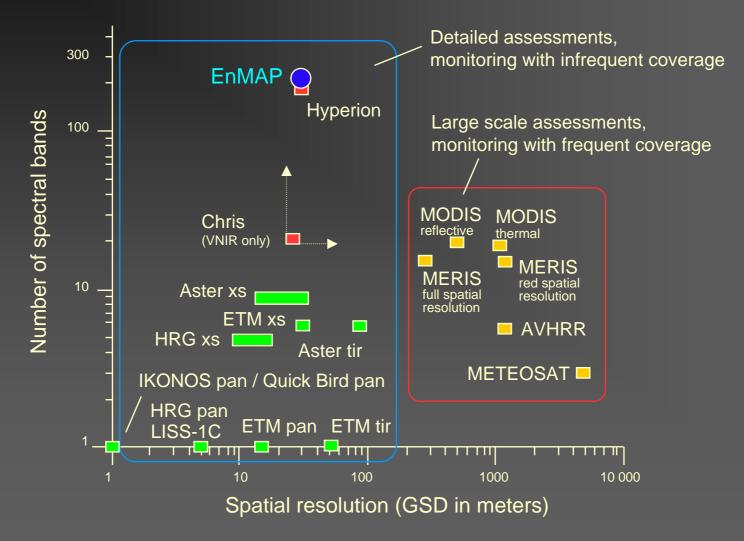

Platform:

 EnMAP will be carried by a dedicated small satellite based on existing state-of-the art bus technology

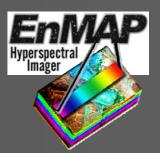
Launcher:

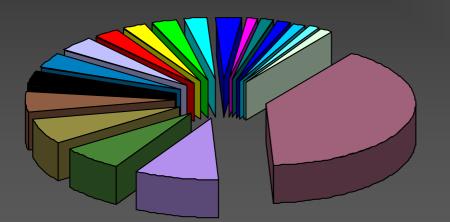
■ DNEPR, KOSMOS, Eurockot, PSLV; all compatible to EnMAP





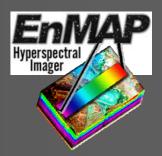
Context to present optical EO-Sensors

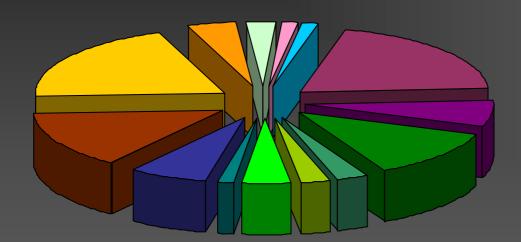

plot of spatial resolution versus number of spectral bands



Participating Countries

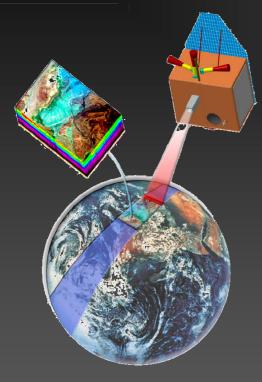
At present, scientists, research institutions, governmental agencies and companies of 19 countries support the EnMAP initiative

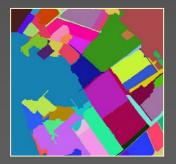



- Germany
- India
- **France**
- Israel
- **South Africa**
- Italia
- Sweden
- Hungary
- Denmark

- Canada
- Spain
- Australia
- Netherlands
- **China**
- Poland
- New Zealand
- Switzerland
- Finland

Represented Disciplines




- Agriculture/Forestry
- Biodiversity
- Ecology
- Wetlands
- Climate Change
- Water
- Soils/Landdegradation
- □ Geology/Mineralogy
- Arid Zones
- Cartography
- Urban
- **Fisheries**
- Meth. Development
- Cal./Val.

Science Program

management of agricultural and forest ecosystems

parameter extraction and modeling

Co-operative International **Network**

hazard assessment

> urban development

inland water

ARES - System Parameters (Design Specs)

- Whisk-Broom Scan Principle FOV 65° **IFOV** 2.0 mrad Oversampling 1.43 **Ground Sampling Distance** 2.5 -10 m No. of Pixel 813 No. of Bands Rad. Resolution 14 bit Co-Registration (refl.) < 0.05 Co-Registration (em.) < 0.05 < 0.1
- Co-Registration (refl. em.)

151 (121+30) pixel pixel

pixel

Wavelengths	No. of Bands	Spec. Sampl. Interval	Band-Width (FWHM)	Rad. Requirements [W m⁻² sr⁻¹ µm⁻¹]
470 - 890 nm	32	15-13 nm	15-13 nm	0.09 NER
890 - 1350 nm	29	18-16 nm	16-14 nm	0.04 NER
1360 - 1800 nm	30	16-14 nm	14-13 nm	0.03 NER
2020 - 2420 nm	30	15-13 nm	14-12 nm	0.02 NER
8.1 - 12.1 μm	30	147-131 nm	130-117 nm	0.1-0.3K NE∆T

User Network

HGFs

ARES/EnMAP User Community

Industry

Universities

KMUs

Funding Possibilities

EU DG Research Access to Research Infrastructures

DLR Base Funding

ARES/EnMAP Research Infrastructure

National Agencies

GFZ Base Funding

Commercial Partners

