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Thesen zur Habilitationsschrift

Electron kinetic processes in the solar corona and wind

vorgelegt von Dr. Christian Vocks

• The plasma in the solar corona and wind is characterized by states far away from thermal
equilibrium. Solar wind electron velocity distribution functions (VDFs) deviate from simple
Maxwellian ones. They show a thermal core, an isotropic halo that can be fitted by power
laws, like kappa distributions, and an anti-sunward beam or “strahl”.

• A plasma with non-Maxwellian VDFs cannot be described by fluid models. Kinetic models,
that provide information on electron VDFs, are necessary.

• Kinetic solar wind models show that some pitch-angle scattering of electrons must occur
in order to compensate for the focusing effect of the mirror force due to the interplanetary
magnetic field geometry. Otherwise, an extremely narrow strahl would form, that is not
supported by the finite strahl widths being observed, e.g. by the Helios satellites or the
3DPlasma/WIND instrument.

• Resonant interaction with whistler waves provides sufficient solar wind electron pitch-angle
scattering, based on a wave spectrum in agreement with observed power spectra of inter-
planetary magnetic field fluctuations.

• A kinetic solar wind model, that includes the effects of Coulomb collisions and whistler
waves, is found to reproduce the observed features of solar wind electron VDFs, i.e. core,
halo, and strahl.

• Whistler wave scattering is also expected to delay the propagation of solar flare-generated
energetic electrons. But velocity-dispersion analyses of energetic electron data from satel-
lites work well under the assumption of free electron propagation.

• The late arrival of flare electrons at Earth due to pitch-angle scattering and the apparent
early arrival due to diffusion to lower electron energies just compensate each other.

• The effect of whistler waves on electron VDFs is pitch-angle diffusion in the reference frame
of the waves. In a plasma environment with high wave phase speeds, like in the solar corona,
whistler waves can lead to electron energy gain, i.e. acceleration.

• Numerical simulations of coronal loop electrons, and a whistler wave spectrum that is the
high-frequency tail of a wave spectrum discussed for coronal heating, reveal the formation
of power-law suprathermal tails of electron VDFs in the keV energy range.

• This result demonstrates that the processes of coronal heating, solar wind acceleration, and
suprathermal electron production are based on a common mechanism.

• Suprathermal electron production can be expected in the atmosphere of any star with a hot
corona, and is therefore an important process with respect to solar-stellar connections.

• Electron VDFs derived from observations or kinetic models can be investigated for plasma
instabilities by solving the complex dispersion relation.



• The quiet solar corona is capable of emitting whistler waves through the cyclotron maser
mechanism, but these waves are absorbed higher up in the solar atmosphere.

• Energetic electrons in a flaring coronal loop can produce whistler waves that are observable
from Earth as so-called fiber bursts.



Populärwissenschaftliches Abstract zur Habilitationsschrift

Electron kinetic processes in the solar corona and wind

vorgelegt von Dr. Christian Vocks

Die Sonne ist von einer 106 K heißen Atmosphäre, der Korona, umgeben. Sie ist ebenso wie der
Sonnenwind vollständig ionisiert, also ein Plasma. Magnetfelder spielen in einem Plasma eine
wichtige Rolle, da sie elektrisch geladene Teilchen an ihre Feldlinien binden. EUV-Spektroskope,
wie SUMER auf der Raumsonde SOHO, zeigen eine bevorzugte Heizung koronaler Ionen sowie
starke Temperaturanisotropien. Geschwindigkeitsverteilung von Elektronen können im Sonnen-
wind direkt gemessen werden, z.B. mit dem 3DPlasma Instrument auf dem Satelliten WIND. Sie
weisen einen thermischen Kern, einen isotropen suprathermischen Halo, sowie einen anti-solaren,
magnetfeldparallelen Strahl auf.

Zum Verständnis der physikalischen Prozesse in der Korona wird eine geeignete Beschreibung
des Plasms benötigt. Die Magnetohydrodynamik (MHD) betrachtet das Plasma einfach als elek-
trisch leitfähige Flüssigkeit. Mehrflüssigkeitsmodelle behandeln z.B. Protonen und Elektronen als
getrennte Fluide. Damit lassen sich viele makroskopische Vorgänge beschreiben. Fluidmodelle
basieren aber auf der Annahme eines Plasmas nahe am thermodynamischen Gleichgewicht. Doch
die Korona ist weit davon entfernt. Ferner ist es mit Fluidmodellen nicht möglich, Prozesse wie
die Wechselwirkung mit elektromagnetischen Wellen mikroskopisch zu beschreiben.

Kinetische Modelle, die Geschwindigkeitsverteilungen beschreiben, haben diese Einschränkungen
nicht und sind deshalb geeignet, die oben genannten Messungen zu erklären. Bei den einfachsten
Modellen bündelt die Spiegelkraft im interplanetaren Magnetfeld die Elektronen des Sonnenwinds
in einen extrem engen Strahl, im Widerspruch zur Beobachtung. Daher muss es einen Streupro-
zess geben, der dem entgegenwirkt. In der vorliegenden Arbeit wird ein kinetisches Modell für
Elektronen in der Korona und im Sonnenwind präsentiert, bei dem die Elektronen durch resonante
Wechselwirkung mit Whistler-Wellen gestreut werden.

Das kinetische Modell reproduziert die beobachteten Bestandteile von Elektronenverteilungen im
Sonnenwind, d.h. Kern, Halo, und einen Strahl endlicher Breite. Doch es ist nicht nur auf die
ruhige Sonne anwendbar. Die Ausbreitung energetischer Elektronen eines solaren Flares wird
untersucht und dabei festgestellt, dass Streuung in Ausbreitungsrichtung und Diffusion in Energie
die Ankunftszeiten von Flare-Elektronen bei der Erde in etwa gleichem Maße beeinflussen.

Die Wechselwirkung von Elektronen mit Whistlern führt in der Korona nicht nur zu Streuung, son-
dern auch zur Erzeugung eines suprathermischen Halos, wie er im interplanetaren Raum gemes-
sen wird. Dieser Effekt wird sowohl im Sonnenwind als auch in einem geschlossenen koronalen
Magnetfeldbogen untersucht.

Das Ergebnis ist von fundamentaler Bedeutung für solar-stellare Beziehungen. Die ruhige

Korona erzeugt stets suprathermische Elektronen. Dieser Prozeß ist eng mit der Koronahei-

zung verbunden, und daher in jeder heißen stellaren Korona zu erwarten.

Im zweiten Teil der Arbeit wird beschrieben, wie sich aus der Geschwindigkeitsverteilung der
Elektronen die Dämpfung oder Anregung von Plasmawellen berechnen lässt. Die Erzeugung und
Ausbreitung von Elektronenzyklotronwellen in der ruhigen Korona und von Whistlern während
solarer Flares wird untersucht. Letztere sind als sogenannte fiber bursts in dynamischen Radio-
spektren beobachtbar, und die Ergebnisse stimmen gut mit beobachteten Bursts überein.
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Chapter 1

Introduction: Why kinetic models?

1.1 The solar atmosphere

The Sun is surrounded by the corona, a hot and tenuous atmosphere. The corona is visible during
solar eclipses in white light that originates from the Sun’s visible surface, the photosphere, and is
scattered on coronal electrons and dust particles. Due to its high temperature of the order 106 K
the coronal emission is mainly in extreme ultraviolet (EUV) light and in soft X-rays. Figure 1.1
shows an image of the solar corona taken by NASA’s Solar Dynamics Observatory (SDO) in the
Fe IX line at 171 Å. A lot of structure is visible, showing density variations that are related to
different magnetic field geometries. Both closed loops and “coronal holes” are visible, the latter
being regions with lower density where magnetic field lines extend far into interplanetary space.

With this hot corona, the solar atmosphere shows a remarkable thermal structure. The Sun’s
visible surface, the photosphere, has a temperature of 5800 K. The temperature decreases with
height within the 500 km thick photosphere and reaches a minimum of about 4000 K that marks
the border to the next higher atmospheric layer, the chromosphere. The temperature gradually
rises inside the 2000 km thick chromosphere up to 8000 K. But then the temperature jumps to the
106 K coronal level across a 100 km thin and highly dynamic transition region.

If one calculates the decrease of coronal pressure with height under the assumption of hydrostatic
equilibrium, then this results in the limit of infinite solar distance in a finite pressure, that is several
orders of magnitude higher than observed pressures of the interstellar medium. The conclusion is
that the solar corona cannot be static. The Sun must drive a continuous flow of plasma, the solar

wind (Parker, 1958).

The Sun is not as quiet as it appears to be to the unaided eye. Simple white light observations
of the Sun already show sunspots. These are regions that appear darker than the surrounding
photosphere since strong magnetic fields inhibit the convection of hot gas to the photospheric
level. The number of sunspots follows an 11-year cycle with a maximum and a minimum. The
magnetic fields that form sunspots extend from the interior of the Sun into the corona. The coronal
magnetic field can build up complex structures due to the convective motion of the granulation
and supergranulation, especially in the vicinity of complex sunspot groups. Such areas are called
active regions.

3



4 CHAPTER 1. INTRODUCTION: WHY KINETIC MODELS?

Figure 1.1: The solar corona in the light of the 171 Å Fe IX line as observed by NASA’s SDO
satellite on 4 February 2011.

In the solar corona, complex magnetic field geometries can become unstable, and magnetic re-

connection can trigger a reconfiguration of the magnetic field in the corona. This leads to the
release of energy stored in the magnetic field. Flares and Coronal Mass Ejections (CMEs) are
both phenomena of such large-scale instabilities in the corona.

Figure 1.2 shows an image of a solar flare in EUV light. Flares extend over a relatively small
spatial region and are capable of accelerating electrons and ions to high energies, thus leading
to the emission of X- and γ-rays as well as non-thermal radio radiation (Karlický et al., 2004).
CMEs are formed by the release of a large bubble of coronal material into interplanetary space,
see (Schwenn, 1986) and (Aurass, 1996) for reviews. Since the coronal magnetic field is frozen
into the CME plasma, some magnetic reconnection at the footpoints of the CME is necessary in
order to separate the cloud from the Sun.
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Figure 1.2: Solar flare of 29 October 2003 as observed by the EIT instrument onboard the SOHO
satellite in the light of the 195 Å line of Fe XII. (ESA/NASA)

The non-thermal solar radio radiation is classified phenomenologically into different types, with
different underlying physical processes, see e.g. (Warmuth & Mann, 2004) as a review. For in-
stance, type II radio radiation is caused by electrons that have been accelerated at shocks (see
e.g. (Nelson & Melrose, 1985) and (Mann et al., 1995) as a review), and type III radio bursts by
beams of energetic electrons traveling along open magnetic field lines through the corona and,
sometimes, penetrating into interplanetary space (see (Suziki & Dulk, 1985) for a review as well
as (Lin et al., 1986) for further information).

How can these processes, like coronal heating and solar wind acceleration, or acceleration and
propagation of energetic particles, be described? Or, more generally: How to model the physical
processes in the solar corona and in interplanetary space? This thesis addresses these question
especially for electrons. Both electrons and ions are observed in interplanetary space, but it is
energetic electrons that lead to the emission of X-rays and radio waves in the corona and enable
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studies of their properties in a remote stellar atmosphere.

The solar corona is fully ionized due to its 106 K temperature. Such a medium is called a plasma.
The individual particles are coupled through electromagnetic forces. There is a wide variety of
plasma models with different degrees of simplification and detail. They can be broadly classified
as fluid and kinetic models.

1.2 Fluid models for space plasmas

The simplest way to model a plasma is to treat it as an electrically conducting fluid. This approach
is called Magnetohydrodynamics (MHD). The basic equations of MHD are the continuity equation

∂n

∂t
+ ∇ · (n~v) = 0 (1.1)

with full particle density, n, and flow speed, ~v. It basically states that no particles are created or
annihilated. The next equation is the momentum equation

nm
∂~v

∂t
+ nm(~v · ∇)~v = −∇p + ~j × ~B + ~F (1.2)

with average particle mass m and pressure p, current density ~j, and magnetic field ~B. ~F represents
external forces, e.g. gravity. The third equation is the energy equation

∂p

∂t
+ (~v · ∇)p + ∇ ·

(

5
3

p~v +
2
3
~q

)

= Q (1.3)

with heat flux ~q, and a heating term Q. It is noteworthy that the continuity equation for the
density n introduces the flow speed ~v. The momentum equation for ~v introduces the pressure p,
and the energy equation for p requires the heat flux ~q. In order to stop this series of equations, a
closure relation has to be introduced. This can be done e.g. by the classical Spitzer-Härm thermal
conductivity (Spitzer & Härm, 1953). It is important to note that at this point an assumption enters
the fluid description of the plasma:

~q = −κ0T 5/2∇T, κ0 = 10−11 kg m s−3 K−7/2 (1.4)

But it is not necessary to describe the plasma as a single fluid. Multi-fluid models treat the dif-
ferent particle species the plasma is composed of, e.g. protons and electrons, as separate fluids
with their own densities, velocities, and temperatures. Thus characteristic particle properties, like
gyrofrequencies in a magnetic field, can be considered.

Such fluid descriptions of plasmas are widely used for studies of the origin of the solar wind
and the physical processes in the solar corona and in interplanetary space. Many models do
exist so far, with different degrees of complexity. Examples are two-fluid models, i.e. for protons
and electrons, of coronal heating and solar wind acceleration for a given heating function, e.g.
(Hansteen & Leer, 1995), three fluid models adding a heavy ion species, He2+ or O5+, and heating
by Alfvén waves (Ofman, 2004), or four-fluid models for both minor ion species and a given
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turbulence spectrum (Hu et al., 2000). These models describe the solar wind acceleration from
the corona up into interplanetary space. The solar wind origin is also investigated by models that
focus on the plasma in coronal funnels, e.g. (Hackenberg et al., 2000; He et al., 2008).

Describing the plasma or its constituent particle species as a fluid is based on the assumption
that the electrons or ions show a collective behavior and thus are effectively coupled. Then the
whole plasma state is not far away from local thermodynamic equilibrium (LTE), and the velocity
distribution functions (VDFs) of all particle species, j, are close to Maxwellian ones,

f j(~v) =
N j

(2πv2
th, j)

3/2
exp















−
|~v − ~vD, j|2

2v2
th, j















(1.5)

with particle densities N j, drift speed ~vD, j, mass m j and temperature T j that leads to a thermal
speed vth, j =

√

kBT j/m j. But are these near-LTE assumptions met for electrons in the solar corona
and wind?

Coronal loop Coronal hole Solar wind

Density 1015 m−3 1013 m−3 5 · 106 m−3

Temperature 1.4 · 106 K 1.4 · 106 K 1.0 · 105 K

Magnetic field 0.01 T (100 G) 10−4 T (1 G) 5 nT

Thermal speed, vth,e 4600 km s−1 4600 km s−1 1200 km s−1

Plasma frequency, ωp 1.8 · 109 s−1 1.8 · 108 s−1 1.3 · 105 s−1

Electron cycl. freq., Ωe 1.8 · 108 s−1 1.8 · 107 s−1 880 s−1

Electron mean free path:

L(1 vth) 817 m 73 km 0.81 R⊙

L(5 vth) 436 km 0.06 R⊙ 2.2 AU

L(20 keV) 0.1 R⊙ 9 R⊙ 335 AU

Table 1.1: Typical plasma parameters for electrons in the solar corona and wind

Table 1.1 shows typical plasma parameters for electrons in the solar corona and wind. Den-
sities, temperatures, and magnetic fields are given for open and closed coronal magnetic field
structures, and for the solar wind near Earth. Electron thermal speeds, plasma frequencies ωp =
√

Ne e2/(me ǫ0), and electron gyrofrequencies Ωe = e B/me are also listed. The last part displays
collisional mean free paths based on Coulomb collisions of the electrons both with protons and
with other electrons. Electrons are collision-dominated if their mean free paths are short as com-
pared to other characteristic length scales. In the solar corona, thermal electrons (v = 1 vth) have
short mean free paths, they are clearly collision dominated. But in interplanetary space the mean
free path is almost a solar radius. So solar wind thermal electrons are still influenced by collisions,
but not as strongly as in the corona.
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This changes for suprathermal electrons (v = 5 vth). Coulomb collision frequencies approximately
scale as v−3. The coronal mean free paths are of the order of typical length scales like loop
diameters and coronal funnels at the coronal base. So these electrons are borderline collisionless.
In interplanetary space, suprathermal electrons are clearly collisionless. The last line of the table
shows that energetic electrons are collisionless even in the corona.

1.3 Solar wind observations

Due to the collisionless nature of space plasmas it is no surprise that spacecraft observations
of solar wind particle velocity distribution functions (VDFs) reveal strong deviations from sim-
ple Maxwellian VDFs. Helios data of solar wind protons (Marsch, 2006) show temperature
anisotropies and non-Maxwellian VDFs shaped in a way that is in agreement with expecta-
tions from resonant interaction with ion cyclotron waves. In the solar corona, strong temperature
anisotropies and preferential heating of heavy ions is found (Kohl et al., 1998) despite the higher
density there. This has motivated Vocks (2002) and Vocks & Marsch (2002) to study the coronal
heating process with a kinetic model for ions that includes the effects of Coulomb collisions and
resonant interaction with ion cyclotron waves. The model indeed finds preferred heating of heavy
ions.

Solar wind electron VDFs also show distinct deviations from Maxwellian distributions, with a
thermal core, an isotropic halo of suprathermal electrons, and a magnetic-field aligned beam or
“strahl” that is usually directed away from the Sun (Lin, 1974; Pilipp et al., 1987). Figure 1.3
shows isolines of solar wind electron VDFs as observed by EESA-Low (EESAL), one of the elec-
tron electrostatic analyzers of the 3DP experiment (Lin et al., 1995) onboard the WIND spacecraft.
EESAL measures full 3D electron VDFs with a pitch-angle resolution of 22 degrees. The isolines
have been chosen in such a way that they would form equidistant circles for a Maxwellian VDF.
The plots cover the energy range up to 1 keV. At higher energies, the VDFs become isotropic.

The four plots differ in detail due to slightly different solar wind conditions, but they share the same
basic characteristics. In all of them the thermal core and the extended halo are clearly visible. The
strahl can be identified as a distinctive anisotropic feature. This beam is limited to energies below
approximately 1 keV, and it shows a finite width well above the instrumental angular resolution.

These observations demonstrate that the core assumption of fluid models, a state close to local
thermodynamic equilibrium, is not fulfilled in the corona and in interplanetary space.

1.4 Kinetic models

The observed non-Maxwellian distributions, their origin and their role in coronal heating and solar
wind acceleration are beyond the scope of fluid models. Kinetic models are necessary to describe
the microphysics of these processes. Kinetic models are based on VDFs, i.e. the phase-space
densities, f (~r,~v, t) of the particle species under study. The assumption of a certain shape of the
VDF, e.g. being close to a Maxwellian as in fluid models, is not needed anymore. This enables
them to describe states far away from LTE.
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Figure 1.3: Isolines of the electron VDF as observed by WIND 3DP at four different dates in the
fast solar wind. The dates and solar wind speeds (vSW) are indicated in the plots. From (Vocks et
al., 2005).

But a price has to be paid for the kinetic description of a plasma: While fluid models depend only
on up to three spatial coordinates, kinetic models additionally introduce up to three velocity coor-
dinates to describe particle VDFs. This leads to considerably higher computer costs. Furthermore,
boundary conditions have to be defined at all bounds of the simulation box, not only for spatial
but also for velocity coordinates.

The basic equation of kinetic theory for space plasmas is the Vlasov equation, that reads for
electrons:

d f

dt
=
∂ f

∂t
+ (~v · ∇) f +

[

meγL~g − e(~E + ~v × ~B)
]

· ∂ f

∂~p
= 0. (1.6)

It is presented here in relativistic form, since flare-generated energetic electrons with energies up
to hundreds of keV require a relativistic treatment. The velocity coordinates, ~v, are replaced by
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momentum coordinates, ~p. ~g and ~E represent the gravitational and electric field, respectively. In
space plasmas, ~E normally corresponds to the charge-separation electric field that ensures quasi-
neutrality of the solar corona against different gravitational scale heights of protons and electrons.
~B is the background magnetic field, γL =

√

1 + p2/(mec)2 the Lorentz factor, and me the electron
rest mass. The Vlasov equation basically states that the number of electrons in a given phase-space
volume element does not change while this volume element is evolving in time.

If a diffusion process is present that scatters electrons in and out of the phase-space element, then
the Vlasov equations turns into the Boltzmann-Vlasov equation, a Fokker-Planck type equation
with a diffusion term on the right hand side:

d f

dt
=

(

∂ f

∂t

)

diff

(1.7)

One scattering mechanism is Coulomb collisions between electrons and both protons and other
electrons, since thermal electrons are not entirely collision-free, see Table 1.1. Another very
important mechanism is the resonant interaction of electrons with plasma waves. It leads to strong
scattering and diffusion, as will be demonstrated in the next chapter.



Chapter 2

Kinetic solar wind models

Generally, a kinetic solar wind model is based on the solution of a Boltzmann-Vlasov equation
(1.7), that describes the temporal evolution of a VDF f (~r, ~p, t) in the solar corona and in interplan-
etary space. The complexity of the kinetic model depends on what physical effects are considered
in the term on the right hand side of the equation. The following presentation of models follows
largely the review of Vocks (2011).

2.1 Exospheric models

The simplest kinetic models are exospheric models (Jockers, 1970; Lie-Svendsen et al., 1997)
that are based on the assumption that electrons are collisionless above a certain height in the solar
atmosphere, called the exobase. Then, solar wind electron VDFs are just described by the Vlasov
equation (1.6).

In such a model, suprathermal electrons in the corona exceed the local escape velocity, vesc, from
the Sun’s combined gravitational and electrostatic potential. Thus, they move into interplanetary
space, leading to the formation of a strahl-like structure. However, these electrons escape from the
Sun and do not return. So for negative velocities parallel to the magnetic field, v‖ < −vesc, the VDF
becomes f = 0 with a sharp cutoff, as illustrated in Fig. 2.1. The inclusion of Coulomb collisions
(Lie-Svendsen et al., 1997) results in more realistic electron VDFs with a thermal core and an
anisotropic halo resembling the strahl (Pierrard et al., 2001), as well as an improved description
of solar wind acceleration (Landi and Pantellini, 2003). But the steep phase-space gradient at
v‖ < −vesc remains, and no isotropic suprathermal halo as it is observed (Fig. 1.3) can be formed.

It is noteworthy that even for such simple models it is not sufficient to study the electron VDF
alone. The Vlasov equation (1.6) depends on the gravitational, electric and magnetic fields, ~g, ~E,
and ~B, respectively. ~g just depends on the solar distance and ~B is determined by the magnetic field
geometry, e.g. the Parker spiral. But ~E needs to be provided. Since the electrons are guided by
the magnetic field lines around which they gyrate, it is sufficient to consider only the electric field
component E‖ parallel to ~B.

This field component is the charge-separation electric field that enforces equal scale heights for
electrons and positive ions in the solar corona and wind, so that the quasi-neutrality condition of

11
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v
−v

ln f(v)

esc

Figure 2.1: Sketch of the electron VDF in an exospheric model.

equal negative and positive charge densities in the plasma is fulfilled everywhere. Any spatial
concentration of charges leads to a strong electric field that drives it away immediately. Such an
electrostatic fluctuation is called Langmuir oscillation, and its frequency is the plasma frequency
ωp that is listed in Table 1.1.

The electric field E‖ can readily be derived from the electron fluid momentum equation (1.2):

Neme
d~ve

dt
= −∇pe − Ne e E‖ + Ne me ~g (2.1)

Since the electron mass is much smaller than the proton mass, inertial effects can be neglected for
the electrons, effectively setting me = 0 in the equation above. The result is:

E‖ = −
1

Ne e
∇pe (2.2)

The potential difference between the low corona and near-Earth interplanetary space is model-
dependent, but typically of the order 1 kV. E‖ only depends on the local electron density and
pressure gradient. But by means of quasi-neutrality, Ne is coupled to the ion density. Therefore it
is not possible to have an electron-only kinetic model for the solar wind. A background model that
includes ion dynamics is needed. The inclusion of Coulomb collisions also requires knowledge of
the collision partners, which are not only electrons but also ions.

2.2 Suprathermal electrons

The lack of electrons returning to the Sun, that manifests itself as low phase-space densities for
v‖ < −vesc in exospheric models, is in strong contrast to the observations of an isotropic suprather-
mal halo distribution. However, these exospheric models are based on Maxwellian electron VDFs
in the corona. Observed solar wind VDFs can be fitted by two Maxwellians for the core and
halo. But the observations indicate higher phase-space densities for suprathermal energies above
approximately 5 vth than the halo fit provides. A better fit can be obtained with a single kappa
distribution (Maksimovic et al., 1997)

fκ(p) = Ne
Γ(κ + 1)

π3/2(2κ − 3)3/2 p3
thΓ(κ − 1/2)

(

1 +
p2

(2κ − 3)p2
th

)−(κ+1)

(2.3)
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with a “thermal momentum”, pth =
√

mekBT . This kappa distribution has power-law suprather-
mal tails ∝ p−2(κ+1). Such a fit can be further improved by a Maxwellian core and a kappa halo
(Nieves-Chinchilla and Viñas, 2008). The presence of suprathermal tails of solar wind electron
VDFs leads to the question where the electrons are accelerated. This does not have to happen
in interplanetary space. By calculating the VDF evolution back to the solar corona it is possible
to show that a coronal origin of the suprathermal tails is possible (Pierrard et al., 1999). Such
non-Maxwellian coronal electron VDFs have the interesting consequence that non-local effects
can become important, like velocity filtration (Scudder, 1992a,b), and heat fluxes different from
the classical Spitzer-Härm law, even against a temperature gradient (Dorelli & Scudder, 2003).

Exospheric models with kappa distributions yield more realistic results (Zouganelis et al., 2004)
than models based on Maxwellian VDFs, with higher solar wind speeds and electron temperatures
closer to observations. But also in these models the problem remains that no electrons with speeds
faster than the escape velocity can return to the Sun, so that still f (v‖ < −vesc)→ 0.

2.3 Electron scattering by whistler waves

This remains in contrast to observations that indicate not only an anisotropic strahl, but also an
isotropic halo. Furthermore, the interplanetary magnetic field is not homogeneous. It decreases
with solar distance in the opening field structure of the Parker spiral approximately as B ∝ r−2.
For an electron that moves through such a magnetic field both the kinetic energy, me(v2

‖ + v2
⊥)/2,

and the magnetic moment, mev
2
⊥/(2B), are conserved. As B decreases, v⊥ must also decrease,

and v‖ increase. So this “mirror force” would focus all anti-sunward moving electrons into an
extremely narrow beam. Figure 2.2 shows this beam in the kinetic solar wind model of Vocks
& Mann (2003) that included Coulomb collisions as the only scattering mechanism for electrons
leaving the Sun. The width of this beam is limited by the grid resolution of the numerical model.

Figure 2.2: Isolines of the electron VDF at a solar distance of 1 AU in the kinetic model of Vocks
& Mann (2003).
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Such a narrow beam is not supported by observations of finite strahl widths (Hammond et al.,
1996) and of an isotropic halo. So some mechanism must exist that scatters electrons back towards
the Sun, against the mirror force. Owens et al. (2008) have determined the amount of scattering
that is needed from Ulysses observations. Coulomb collisions are too inefficient in interplanetary
space, solar wind suprathermal electrons are collision-free.

A promising candidate for this mechanism is electron scattering by electromagnetic waves. Inter-
planetary space is not a vacuum, but filled with a spectrum of electromagnetic fluctuations (Salem,
2000; Mangeney et al., 2001). The cyclotron resonant interaction with plasma waves can be de-
scribed within the framework of quasilinear theory (Kennel and Engelmann, 1966). Linear theory
describes small fluctuations of electromagnetic fields, ~E1, and electron VDFs, f1 that change in
time harmonically as sin(ω t). It neglects terms of higher order in these fluctuations. Quasilinear
theory also considers quadratic terms ~E1 f1, that change in time as sin(ω t)2, and whose tempo-
ral average does not vanish. So quasilinear theory, unlike linear theory, describes the long-term
evolution of electron VDFs due to wave action, but is not fully self-consistent with a prescribed
dispersion and being evaluated in the zero wave growth rate limit.

The simplifying assumption of wave propagation parallel to the background magnetic field is
made, since a complicated integral in wave-vector space would occur otherwise (Marsch & Tu,
2001). The resulting diffusion equation can be written in the coordinates momentum, p, and
pitch-angle, θ:

(

∂ f

∂t

)

w

=
1

p2 sin θ

[

∂

∂p

(

αpp

∂ f

∂p
+ αpθ

∂ f

∂θ

)

+
∂

∂θ

(

αθp

∂ f

∂p
+ αθθ

∂ f

∂θ

)]

(2.4)

Marsch (1998) provides the quasilinear diffusion coefficients as

αpp =
1
τ
p2 sin3 θ v2

ph

αpθ = αθp =
1
τ
p sin2 θ vph (vph cos θ − v)

αθθ =
1
τ

sin θ (vph cos θ − v)2

, (2.5)

with wave phase speed, vph, electron speed, v = p/(meγ), and “collision frequency” associated
with the wave-electron interaction:

1
τ
=
π

4
Ω2

e

∣

∣

∣

∣

∣

∣

vph − v cos θ

vph

∣

∣

∣

∣

∣

∣

B̂ω (2.6)

B̂ω is the wave spectral energy density at the frequency ω, normalized to the magnetic field energy
density, B2/(2µ0), and Ωe is the electron cyclotron frequency, Ωe = eB/me.

The frequency of a wave that interacts with an electron with given momentum (p, θ) is determined
by the resonance condition. It reads for whistler waves, that are right-hand polarized:

ω − k‖p‖ /(meγ) = Ωe/γ. (2.7)

p‖ = p cos θ is the momentum component parallel to the background magnetic field, and k‖ is
the parallel wave vector component. The resonance condition basically states that the electron’s
gyrofrequency equals the Doppler-shifted wave frequency in the electron frame. Interaction with
left-hand polarized waves, i.e. proton cyclotron waves, is not relevant here, since this resonance
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condition reads −Ωe on the right hand side and can only be fulfilled if the electron speed v‖ exceeds
the wave phase speed by a factor that is larger than the proton-electron mass ratio. The resonance
frequencies are thus very close to the proton cyclotron frequency where wave phase speeds are
small. But these waves are strongly damped by protons. Resonance frequencies down in the MHD
range are only reached for electrons with much higher energies than discussed here.

Whistler or electron cyclotron waves are right-hand polarized waves with dispersion relation

(

c

vph

)2

= 1 +
ω2

p/Ω
2
e

(me/mp + ω/Ωe)(1 − ω/Ωe)
. (2.8)

ωp =
√

Ne e2/(me ǫ0) is the plasma frequency. It can be replaced by the electron Alfvén speed,
vA,e = B/

√
Ne me µ0, using the identity ω2

p/Ω
2
e = (c/vA,e)2. The electron Alfvén speed can be

used as a rough estimate for the whistler wave phase speed, that reaches its maximum value,
vph,max ≈ 0.5 vA, at the frequency ω = 0.5Ωe.

The main effect of resonant electron - whistler interaction is pitch-angle scattering of the electrons
in the reference frame of the waves, leading to the formation of ”kinetic shells” as in the solar
wind model of Isenberg et al. (2001) who studied the interaction of protons with proton cyclotron
waves.

Figure 2.3: Kinetic shells for electrons in plasmas with different electron Alfvén speeds (solid
lines). Isolines for a Maxwellian VDF are shown for comparison (dotted lines).

Figure 2.3 shows the kinetic shells for (a) high and (b) low electron Alfvén speeds. The waves
propagate away from the Sun, so only the half-space v‖ < 0 can interact with them. For non-
dispersive waves with frequency-independent phase speeds, the kinetic shells would just be con-
centric circles around (v‖ = vph, v⊥ = 0). Because of the dispersion relation (2.8) they deviate
from such a simple geometry. Consequently, the resonant interaction with whistler waves tends to
deform the isolines of the electron VDF in such a way that they would coincide with the resonance
shells. To demonstrate the effect of the waves, the isolines of an undisturbed Maxwellian VDF are
also plotted as dotted lines in Figure 2.3.
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High wave phase speeds, (a), are found in the solar corona. The wave-electron interaction aims
at creating an electron VDF that deviates significantly from a Maxwellian. The solar wind cor-
responds to the case of low wave phase speeds, (b). Due to the small difference between wave
and plasma reference frames the resonant interaction with whistlers mainly leads to pitch-angle
scattering of the electrons.

Since the whistler wave dispersion relation (2.8) only allows wave propagation for frequencies
below the local electron cyclotron frequency, ω < Ωe, it follows from the resonance condition
(2.7) that electrons and waves must propagate into opposite directions, k‖p‖ < 0. This requires
the existence of sunward-propagating whistler waves in order to scatter electrons, that are moving
away from the Sun, against the mirror force into an isotropic halo.

2.4 Kinetic solar wind model with whistler waves

Vocks & Mann (2003) have introduced resonant interaction with whistler waves into a kinetic
model for electrons in the solar corona and wind. The focus of the paper was on whistler waves
propagating away from the sun and their influence on coronal electron VDFs. Such a wave spec-
trum and its effects will be discussed in chapter 4.3. Due to the lack of sunward-propagating
whistlers, this model did not provide any electron scattering out of the strahl in interplanetary
space. So it developed the extremely narrow beam depicted in Fig. 2.2.

Vocks et al. (2005) then improved the model substantially by adding a whistler wave spectrum
based on observational data of interplanetary space turbulence. Since this spectrum contains waves
propagating both away from and towards the Sun, the new model did provide pitch-angle scatter-
ing of all electrons in the solar wind. The source of the wave spectrum is assumed to be a turbulent
cascade. This is a highly nonlinear process beyond the scope of the kinetic model presented here.
Furthermore, the observed wave spectrum shows little temporal variation. Therefore, the wave
spectrum is assumed to be constant in time.

2.4.1 Interplanetary whistler wave spectrum

Wave generation by a turbulent cascade will produce waves that propagate in all directions, not
only parallel to the background magnetic field, ~B. Observations and models indicate the existence
of oblique waves in the solar wind, see e.g. (Matthaeus et al., 1990) or (Leamon et al., 1998). But
the diffusion equation (2.4) applies only to waves that propagate parallel to ~B. However, the in-
clusion of obliquely propagating waves would greatly complicate the diffusion equation (Marsch,
2001) and preclude a numerical solution. On the other hand, the basic effects of quasilinear wave-
electron interaction, i.e. pitch-angle diffusion, are found by a model that only includes waves
propagating parallel to ~B. Furthermore, Bieber et al. (1994) have found that parallel waves do
most of the scattering of energetic particles, and that highly oblique waves contribute very little
to it. Thus, the exclusive consideration of whistlers propagating parallel to ~B is a strong, but not a
too strong model assumption.

The first step in defining the spectrum of sunward propagating whistlers is finding the overall
wave spectrum in interplanetary space. As a reference, the global spectrum of solar wind elec-
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tromagnetic fluctuations for frequencies from 10−6 Hz up to 105 Hz of Salem (2000) is used. It
is a collection of data from different instruments onboard the WIND spacecraft (Mangeney et al.,
2001). This frequency interval covers fluctuations from the MHD range up to electron cyclotron
waves.

These data have been gathered at a solar distance of 1 AU. Since a useful simulation box for
the kinetic model extends from the solar corona far into interplanetary space, it is necessary to
model the variation of the wave spectrum as a function of distance from the Sun. Based on the
assumption that the mechanism that generates the waves does not change significantly with solar
distance, a non-dimensional spectral function, B∗ω(x), with x = ω/Ωe, is introduced. B∗ω(x) does
not change within the simulation box. The spectral wave power can then be calculated as:

Bω =
B2

2µ0

1
Ωe

B∗ω(ω/Ωe) (2.9)

The best fit to the solar wind measurements in Salem (2000) is achieved with

B∗ω(x) = 1.5 · 10−9x−2.6 (2.10)

The wave spectrum is found to be very steep with a spectral coefficient of -2.6. For the average
solar wind conditions in Salem (2000) with a magnetic field B = 5.25 nT at 1 AU, the combination
of Eqs. (2.9) and (2.10) results in:

Bω = 1.1 · 10−22

(

ω

Ωe

)−2.6

J m−3 s (2.11)

For a frequency that is a fixed fraction x of the local electron gyrofrequency, the spectral wave
power as defined in Eq. (2.9) varies proportional to the magnetic field, as B changes with distance
from the Sun, s. But such a dependency of the wave power on B leads to an unrealistic increase
of the power towards the solar corona, and a too strong decrease at solar distances beyond 1 AU.

In order to reconcile the wave spectrum, Eq. (2.9) with observations and models of waves in the
solar wind, another factor depending on the electron number density, Ne, is introduced:

Bω =
B(s)2

2µ0

1
Ωe(s)

Ne(1 AU)
Ne(s)

B∗ω(ω/Ωe(s)) (2.12)

This assumption seems to be somewhat arbitrary. However it is not the objective of this analysis
to provide an accurate theory on the physics of wave generation in interplanetary space. The
variation of the wave spectrum with distance from the Sun as it is described by Eq. (2.12) is in
good agreement with both the model results and Helios data that are presented by Hu et al. (1999)
and the Ulysses observations of N. Lin et al. (1998), so this model spectrum is appropriate for a
kinetic study of electron diffusion in interplanetary space.

The equation (2.12) describes the total wave power Bω as it is observed in interplanetary space.
It contains contributions from many wave modes propagating in all directions. But only whistler
waves propagating towards the Sun (k‖ < 0) can fulfill the resonance condition, Eq. (2.7), with
electrons that move away from the Sun (v‖ > 0).
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It is reasonable to assume that at small frequencies only a minor fraction, that is chosen to be 1%,
of the total wave power at a given frequency, can be assigned to sunward propagating whistler
waves. The rest can be in other wave modes, propagating parallel or perpendicular to the back-
ground magnetic field, or obliquely to ~B.

This is different for frequencies above the lower hybrid frequency, ωLH =
√

ΩpΩe, with Ωp being
the proton cyclotron frequency. Since the plasma frequency, ωp, is much higher than the electron
cyclotron frequency in the solar corona and wind, no wave mode can propagate perpendicular to
the background magnetic field in the frequency interval ωLH < ω < Ωe. Only electron cyclotron /
whistler waves can propagate parallel to ~B at these frequencies. Thus the contribution of sunward
propagating whistler waves to the total wave power can increase up to 50%, with the other 50%
provided by anti-sunward propagating whistlers. In order to avoid numerical problems with a
discontinuous change of the contribution, a smooth transition is set up.

Figure 2.4: Contribution of sunward propagating whistler waves to the total wave power in in-
terplanetary space as function of the wave frequency, ω, normalized to the electron cyclotron
frequency, Ωe.

Figure 2.4 shows the fraction Bω,wh/Bω of the total wave power that is assigned to sunward prop-
agating whistler waves as a function of frequency. At low frequencies, this fraction is of the order
of 1% and increases rapidly at the lower hybrid frequency, ωLH = 0.023Ωe, towards values up to
50%.

In the kinetic calculations, the wave power of both the sunward and anti-sunward propagating
whistlers is defined as the fraction of the total wave power (2.12) that is displayed in Fig. 2.4.
This whistler wave power is used to determine the “collision frequency” 1/τ in Eq. (2.6) and to
evaluate the electron diffusion term, Eq. (2.4).

2.4.2 Proton-electron solar wind background model

It has been pointed out in Sect. 2.1 that determining the charge-separation electric field E‖ requires
a background model that includes ion dynamics. This is also true for calculating the electron-
whistler interaction, Eq. (2.4), that is based on the wave phase speed, vph from Eq. (2.8). The
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phase speed depends on the electron density through the plasma frequency or electron Alfvén
speed, and is connected to the ion density through the quasi-neutrality of the plasma. For Coulomb
collisions it is also necessary to know the densities and temperatures of the collision partners. In
an electron-proton plasma this is both electrons and protons.

Therefore, a background model including the ions is needed for the electron kinetic model. Since
the characteristic time-scales of protons and electrons differ by three orders of magnitude due to
their mass ratio, the protons cannot be treated kinetically in the same model. Instead, a fluid model
is used to describe the background plasma conditions in the solar corona and wind. This model
also enables the definition of initial and boundary conditions for the electron VDF.

The background solar wind model is a 2-fluid model for protons and electrons. It is a combination
of two models. Densities and flow speeds are calculated by the same method as in the classical
solar wind model of Parker (1958). Note that the quasineutrality and zero current conditions in the
plasma require equal number densities and flow speeds of both protons and electrons. But in con-
trast to Parker’s isothermal solar wind model, given profiles of proton and electron temperatures,
Tp(s) and Te(s), and the magnetic flux tube cross sectional area, A(s), can be handled here. The
spatial coordinate s represents the direction along the flux tube under consideration. The plasma
wave pressure is also taken into account. To calculate the proton and electron temperature profiles,
the energy equations of Hackenberg et al. (2000) are used. They include energy exchange between
the particle species due to Coulomb collisions, radiative cooling of the electrons, and heat fluxes.
The protons are heated by resonant absorption of proton cyclotron waves that enter the simulation
box with a given power law spectrum and propagate anti-sunwards.

To yield a solution that satisfies both the Parker-type model and the energy equation, an iterative
method is employed. Initially, the Parker-type model is used to generate profiles for the parti-
cle number densities, N(s), and flow speeds, vd(s) for an isothermal initial temperature profile,
Tp(s) = Te(s) ≡ T0, that is set to a typical coronal value of T0 = 106 K. Then, the energy equa-
tions for protons and electrons are solved with these profiles of N(s) and vd(s), resulting in new
temperature profiles Tp(s), Te(s) for the protons and electrons, respectively. In the next step of the
iteration, N(s) and vd(s) are recalculated with the Parker-type model that has been fed with the
new temperature profiles. Then, the energy equation is solved again with the resulting new N(s)
and vd(s), yielding new temperature profiles. Then the Parker-type model is utilized again, and so
forth. This method is iterated until the profiles for N(s), vd(s), and the temperature profiles do not
change any more with the iteration steps. This method returns profiles N(s), vd(s), Tp(s), and Te(s)
that solve both the energy equations for protons and electrons, and the continuity and momentum
equations on which the Parker-type model is based on.

Figure 2.5 shows model results for the fast solar wind. The magnetic field geometry considered
here is a coronal funnel that is open towards interplanetary space. The profile B(s) is taken from
the coronal funnel model of Hackenberg et al. (2000). It describes a magnetic structure that is
open towards the solar wind and is characterized by a rapid expansion of the magnetic flux tube in
the transition region and low corona (Gabriel, 1976). Towards the solar wind, the magnetic field
decreases radially as B ∝ r−2, with r being the distance from the solar center. The interplanetary
magnetic field geometry of a Parker spiral is also taken into account, based on an average solar
wind speed of 450 km s−1 in interplanetary space. B(s) is displayed in Figure 2.5a. Note that the
spatial coordinate, s, represents the height above the coronal base, not the distance from the solar
center. The model extends from the coronal base into the interplanetary space beyond 1 AU. The
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Figure 2.5: Background solar wind conditions for the kinetic model. Shown are: (a) the mag-
netic field, (b) particle number density for both protons and electrons, (c) flow speed, and (d)
temperatures for electrons (solid line) and protons (dashed line). Note that the spatial coordinate,
s, denotes the height above the coronal base along the magnetic flux tube under consideration, not
the distance from the solar center.

logarithmic scale for s allows a detailed look at the plasma conditions in the low corona. The rapid
expansion of the coronal funnel in the low corona is clearly visible at the left border of Figure 2.5a.
Within less than a percent of a solar radius the magnetic field decreases by a factor of 10. This
rapid expansion ceases in the corona, and in interplanetary space the magnetic field decreases as
B ∝ r−2.

Figure 2.5b shows the particle number density profile. The quasi-neutrality condition requires
equal values for protons and electrons. The density decreases from 2 ·1014 m−3 at the coronal base
to some 106 m−3 in the solar wind at 1 AU. Figure 2.5c displays the solar wind speed. It reaches
a value of nearly 700 km s−1 at 1 AU. This is reasonable, since open magnetic structures like the
coronal funnel modeled here are well known as the sources of the fast solar wind.

In Figure 2.5d, the temperatures of both protons and electrons are plotted. The protons are heated
by ion cyclotron waves and reach a maximum temperature of 2.4 · 106 K. Towards the solar wind,
both proton and electron temperatures decrease with height. Below the temperature maximum of
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the protons, the particle densities are higher and the Coulomb collisions can provide an efficient
heat exchange between protons and electrons. Thus, proton temperatures are lower there, and
equal to the electron temperatures that reach a maximum. At the coronal base, where the funnel
expands rapidly, the proton temperature shows a local maximum. This is due to the heating mech-
anism based on resonant absorption of ion cyclotron waves. The rapid decrease of the magnetic
field with height corresponds to a rapid decrease of proton cyclotron frequency and dissipation of
the wave power in this frequency range. This “frequency sweeping” mechanism leads to a high
heating rate at this location.

2.4.3 Kinetic results for solar wind electrons

The kinetic model for electrons in the solar corona and wind is based on the solution of the
Boltzmann-Vlasov equation (1.7) in the non-relativistic limit. On the right hand side the diffusion
terms both due to interaction of electrons with whistler waves and due to Coulomb collisions are
considered.

The Coulomb collisions of electrons with both electrons and protons are calculated using the Lan-
dau collision integral (Ljepojevic & Burgess, 1990). In order to yield analytic expressions for the
diffusion coefficients, Maxwellian VDFs of the collision partners are assumed. This is a good as-
sumption, since the thermal cores of both particle populations provide the largest contributions to
Coulomb collisions. The reason for this is the small number densities of particles in the suprather-
mal tails of the VDFs, and the v−3 dependency of Coulomb collision frequencies. For the protons,
a Maxwellian has to be assumed anyway, since the background model as a fluid model only yields
values for the density, drift velocity and temperature of the protons, but no information on the
VDFs themselves. For the electrons, the shape of the VDF is to be investigated, and deviations
from a Maxwellian in the tails of the distribution are expected. But the core of thermal electrons
should still be close to a Maxwellian, since they are influenced a bit by Coulomb collisions, see
Table 1.1. So the assumption of a Maxwellian VDF for the collision partners in electron - electron
collisions is not problematic.

A VDF f (~r, ~p, t) depends on three spatial, three momentum, and on the time coordinate. Since the
numerical effort to solve the Boltzmann-Vlasov equation for this f is far too high, a simplification
is necessary. This simplification is the assumption of gyrotropy. It is very reasonable, since the
electron gyroperiods are much smaller than any other characteristic time scale. This assumption
reduces the momentum coordinates ~p to two components, like absolute value and pitch-angle,
(p, θ), or the components parallel and perpendicular to the background magnetic field, (p‖, p⊥).
The spatial coordinates ~r are reduced to s, the coordinate along the magnetic flux tube.

The kinetic model presented in this chapter only covers non-relativistic energies, and the velocity
coordinates (v‖, v⊥) are used. For a gyrotropic VDF f (s, v‖, v⊥, t), the Boltzmann-Vlasov equation
(1.7) reads:
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(2.13)

Only the components of the gravitational field, ~g, and the charge separation electric field, ~E,
parallel to the background magnetic field enter the Boltzmann-Vlasov equation. The last term on
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the left-hand side of equation (2.13) arises from the mirror force influencing the electrons due to
change of the the cross sectional area, A(s) ∝ B−1(s), of the magnetic flux tube with height, s. The
quasilinear diffusion equation (2.4) takes a very simple form in the coordinates (v‖, v⊥) (Marsch,
1998):
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(2.14)

To find a solution of the Boltzmann-Vlasov equation (2.13), the temporal evolution of the electron
VDF f (s, v‖, v⊥, t) is iterated starting from an initial condition until a final steady state is reached.
This f (s, v‖, v⊥, t) is calculated against the background of the 2-fluid model for the solar corona
and wind. In a self-consistent kinetic model for the electrons, the moments, as density, Ne, flow
speed, vD, temperature, T , and heat flux, q, of the electron VDF would have to be considered in
the fluid equations to determine the charge separation electric field and the heat exchange between
protons and electrons. However, such a method would require a recalculation of the fluid model
in each time step. The computer costs for such a procedure would be forbiddingly high.

Instead, the electron VDF is calculated against the background fluid model that is computed once
and considered to be constant in time. This simplification has not too strong consequences for
the Boltzmann-Vlasov equation. The background conditions enter the kinetic model through the
electric field, the Coulomb collision parameters, and the wave propagation properties in the simu-
lation box. Replacing them by values from a background that is held constant greatly reduces the
numerical effort and just enables the calculation of electron VDFs from the coronal base up into
the solar wind.

The simulation box

The simulation box extends from the upper transition region at a temperature level of 7 · 105 K
up to 3.9 AU in interplanetary space. Due to the assumption of a gyrotropic electron VDF, the
computational domain is composed of one spatial coordinate, s, along the background magnetic
field ~B, and the two velocity coordinates, v‖ and v⊥, parallel and perpendicular to ~B, respectively.
s = 0 corresponds to the lower boundary of the simulation box in the transition region.

The spatial grid step size ∆s of the computational mesh increases from 120 km in the transition
region up to 0.62 AU at 3.9 AU. This resolves the pressure scale height in the low corona and keeps
the number of spatial grid points at a manageable level. At a solar distance of 1 AU, ∆s = 0.18
AU. The simulation results can be compared with the WIND data in Figure 1.3, that were collected
at 1 AU. In order to avoid any influence of the upper boundary of the box on the simulation results
there, the box extends much farther out into interplanetary space.

The velocity coordinates cover electron speeds up to 0.15 c. This corresponds to an electron energy
of 5.7 keV. The main objective of this model is to study the formation of the electron strahl and
halo at much lower energies E < 1 keV. This choice of the velocity range of the box prevents the
model results from being influenced by the high-speed boundaries of the box. The velocity grid
step sizes are equidistant with ∆v‖ = ∆v⊥ = 1500 km s−1. This is a considerable fraction of the
electron thermal speed, e.g. vth = 3893 km s−1 for T = 106 K. But it is not the aim of this model to
resolve the thermal core of the electron VDF accurately. Smaller ∆v would increase the computer
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costs both due the higher number of grid points, and because they require smaller time steps ∆t

in iterating toward a solution of the Boltzmann-Vlasov equation (2.13) that is stationary in time.
Since a simulation run already took more than one week with ∆v‖ = ∆v⊥ = 1500 km s−1 on a
Beowulf cluster, a reduction of the ∆v is not feasible.

Resulting electron VDFs

Figure 2.6: Isolines of the electron VDF at s = 0.96 AU for the solar wind kinetic model of Vocks
et al. (2005)

Figure 2.6 shows the resulting electron VDF at s = 0.96 AU. Due to the action of the sunward
propagating part of the whistler wave spectrum, the electron VDF displays only small pitch-angle
gradients in the range of positive v‖, and the extremely narrow beam that formed in the model
without whistlers (Figure 2.2) has disappeared. Furthermore, the spacing between the isolines of
the VDF is much smaller at low speeds v < 0.02 c than at higher speeds. v = 0.02 c corresponds to
an electron energy of 100 eV. Since the isolines would form equidistant circles for a Maxwellian
VDF, this feature can be interpreted as thermal core and an extended halo.

Figure 2.7 provides a close-up view of Fig. 2.6 for electron velocities up to 0.065 c. It enables
a comparison with the WIND data in Fig. 1.3. Instead of the narrow beam in the model without
sunward propagating whistlers, a strahl with a finite width has developed at low speeds v‖ < 0.04 c,
that is in fairly good agreement with the WIND observations in the fast solar wind, Fig. 1.3. At
higher speeds, the electron distribution tends to be more isotropic.

This result shows that whistler waves fundamentally change the shape of solar wind electron
VDFs. Despite the low spectral power of the whistlers, they can overcome the focusing by the
mirror force and isotropize the distribution. The basic effect of the resonant interaction of solar
wind electrons with whistlers is pitch-angle diffusion in the reference frame of the waves, but
since the whistler wave phase speeds are smaller than the electron thermal speed, this cannot be
discriminated from pitch-angle diffusion in the plasma frame.
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Figure 2.7: Close-up view of the isolines of the electron VDF at s = 0.96 AU.

However, there is one feature in the simulation results that is not confirmed by the WIND obser-
vations: Along the line v‖ = 0, the electron VDF in Fig. 2.7 shows a strong pitch-angle gradient.

The efficiency of the pitch-angle diffusion by resonant whistler-electron interaction depends on
the “collision frequency” 1/τ in the diffusion equation (2.4). The definition (2.6) shows that 1/τ
depends on the spectral wave power at the resonance frequency, ωres. For a given electron speed
v‖, ωres is defined by the resonance condition, Eq. (2.7). Due to the frequency dependence of the
wave phase speed, vph = ω/k‖, and thus of k‖, this is an implicit equation for ωres.

Only anti-sunward moving electrons, v‖ > 0, can fulfill the resonance condition with sunward
propagating whistlers, k‖ < 0. The smaller the electron speed, the higher the resonance frequency.
In the limit v‖ → 0, ωres approaches Ωe. The very steep wave spectrum with a spectral coefficient
of -2.6 in Eq. (2.10) then has the consequence that slow electrons interact with much less wave
power than faster electrons.

Diffusion across v‖ = 0

Figure 2.8 displays the “collision frequency” 1/τ as a function of the electron velocity component
v‖ parallel to the background magnetic field. It can clearly be seen that 1/τ sharply drops for
v‖ < 0.01 c. The little bulge around v‖ = 0.02 c is due to the increase of the fraction of the whistler
waves to the total wave power at frequencies above the lower hybrid frequency, as it is shown in
Fig. 2.4.

The slow electron diffusion at v‖ → 0 results in a low diffusion rate across the line v‖ = 0. The
diffusion is more efficient at higher v‖ > 0. Since the whistler waves diffuse the electrons away
from the narrow beam that forms without sunward propagating whistlers, the electron phase space
density at v‖ > 0 and v⊥ > 0 is increased there. For negative speeds, v‖ < 0 the increase as
compared to the model of Vocks & Mann (2003) without interplanetary whistlers is much smaller.
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Figure 2.8: Wave-electron “collision frequency” 1/τ as a function of v‖ at s = 0.96 AU.

The lack of diffusion across the line v‖ = 0 leads to the formation of a sharp pitch-angle gradient
across v‖ = 0.

This model considers only the resonant interaction between electrons and whistler waves that
propagate either parallel or antiparallel to the background magnetic field. As mentioned above,
the consideration of obliquely propagating waves would greatly increase the complexity of the
quasilinear description and is beyond the scope of this work. It is conceivable that this simplifi-
cation is responsible for the low diffusion across v‖ = 0 and the effective separation of the two
half-spaces v‖ > 0 and v‖ < 0.

Another model assumption is the limit of sharp resonance between electrons and whistler waves,
i.e. small damping |γ| = |Im(ω)| ≪ Re(ω) implicit in quasilinear theory (Kennel and Engelmann,
1966). Bieber et al. (1994) introduce dynamical effects associated with turbulence, that provide
a finite scattering rate at a pitch-angle of 90 degrees, in order to bring the scattering theory of
energetic particles in the heliosphere into agreement with observations. Dröge (2003) further
investigates the role of resonance broadening and finds that it can strongly enhance the diffusion
across v‖ = 0. But again the inclusion of these effects would greatly increase the complexity of
the model and prevent an employment of the numerical method used here.

Thus, it is reasonable to assume that the “collision frequency” 1/τ for small v‖ is higher than it
is displayed in Fig. 2.8. In order to overcome the model artifact of small 1/τ for v‖ → 0, and to
represent the effects of diffusion mechanisms that are not considered here, some diffusion of 1/τ
along v‖ is introduced. For each grid point i of the computational mesh (1/τ)i is replaced by
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(2.15)

With a grid spacing ∆v‖ = 1500 km s−1 this corresponds approximately to a sliding average over
the curve in Fig. 2.8 with a window width of 0.01 c. It strongly reduces the sharp drop at small v‖,
but barely influences 1/τ at higher electron speeds parallel to the background magnetic field.

Figure 2.9 shows the isolines of the electron VDF at s = 0.96 AU that has been calculated under
consideration of the diffusion in 1/τ, Eq. (2.15). The diffusion has greatly reduced the pitch-angle
gradient across v‖ = 0.



26 CHAPTER 2. KINETIC SOLAR WIND MODELS

Figure 2.9: Isolines of the electron VDF at s = 0.96 AU from the simulation run including diffu-
sion in 1/τ.

The WIND observations of electron VDFs, that are displayed in Fig. 1.3, show only very small
pitch-angle gradients at v‖ = 0, indicating that the efficiency of electron diffusion at v‖ = 0 is
not much lower than at other pitch angles. In many cases observations show that there are even
slightly more electrons on the side v‖ < 0 than on v‖ > 0, resulting in an reversed pitch angle
gradient from the one in Fig. 2.9.

Pitch-angle diffusion alone tends to smooth out any pitch-angle gradient, but cannot reverse it.
Even if the effects of obliquely propagating whistlers were properly considered here, they could
not lead to such a reversal. Thus some other effects must play a role in these cases. One possibility
is the transport of electrons parallel to the background magnetic field, ~B, according to their v‖. The
electron speeds parallel to the background magnetic field are modified by the pitch-angle scatter-
ing, and the mirror force tends to push them towards positive v‖. Since the electron density varies
with solar distance along ~B, it is conceivable that these dynamics influence the pitch-angle distri-
bution of the electrons. But since the model results that are displayed in Fig. 2.9 still show some
pitch-angle gradient at small v‖ that is not in coincidence with the WIND data, the investigation
of such effects is beyond the scope of the current version of the electron kinetic model.

The isolines of the electron VDF in Fig. 2.9 show a strong anisotropy between positive and nega-
tive v‖. The isolines are extended towards higher v‖ for v‖ > 0. This anisotropy closely resembles
the strahl in the WIND observations, Fig. 1.3. The electron VDF becomes more isotropic with
increasing energy, in good agreement with the WIND observations.

These simulation results show that the inclusion of some diffusion in 1/τ(v‖) alleviates the influ-
ence of the simplifying assumption of wave propagation solely parallel to the background mag-
netic field, and leads to model results that exhibit some basic properties of solar wind electron
VDFs as they are observed in interplanetary space.

Figure 2.10 shows a cut of the electron VDF in Fig. 2.9 along the line v⊥ = 0. The figure also
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Figure 2.10: Cut along the line v⊥ = 0 of the electron VDF at s = 0.96 AU from the simulation
run including diffusion in 1/τ (solid line) and a Maxwellian VDF with the same density and
temperature (dashed line).

displays a Maxwellian VDF with the same density and temperature. The strahl in Fig. 2.9 appears
as an enhancement of the electron VDF for v‖ > 0 over the corresponding v‖ < 0. The values for
v‖ = v and v‖ = −v approach each other with increasing speed v. This is a manifestation of the
tendency of the electron VDF to become more isotropic at higher energies that has been found in
Fig. 2.9.

A comparison of the electron VDF in Fig. 2.10 with the model of Vocks & Mann (2003) without
sunward propagating whistlers shows that the whistlers not only have a strong impact on the VDF
in the velocity range v‖ > 0, but also in the range v‖ < 0. For positive v‖, the values of the VDF
are slightly reduced since electrons are scattered away from the extremely narrow beam. But for
v‖ < 0, the electron VDF now is considerably enhanced above the Maxwellian VDF, in strong
contrast to exospheric models where no electrons return towards the Sun. These results show that
the sunward propagating whistler waves, even if their energy corresponds to a small fraction of
the total wave power in interplanetary space, limit the focusing of the strahl and furthermore lead
to the formation of a halo component of the electron VDF.

Conclusions for the kinetic solar wind model

Adding an interplanetary whistler wave spectrum with waves propagating both towards and away
from the Sun to the kinetic model shows that the whistlers can influence the electron VDF at 1
AU significantly. The electrons are effectively diffused away from the extremely narrow beam for
all energies in the simulation box, despite of the low whistler wave intensity of just 1% of the
total wave power for each propagation direction. Since the resonance frequency of whistler waves
decreases with increasing electron speed, v‖, and the spectral wave power, Eq. (2.12) increases
with decreasing frequency, the pitch-angle diffusion can become so strong that beaming electron
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distributions are completely eliminated.

The simplifying model assumptions of whistler waves propagating only parallel to the background
magnetic field and the zero wave growth rate limit of quasi-linear theory lead to an artificial
separation between the two velocity half-spaces v‖ > 0 and v‖ < 0, that results in a strong pitch-
angle gradient across the line v‖ = 0, with a higher phase space density for v‖ > 0. This separation
can be reduced by introducing some diffusion of the wave-particle “collision frequency” 1/τ along
v‖.

This modification aims at addressing the effects of obliquely propagating whistlers and other ef-
fects like resonance broadening that enhance diffusion across the line v‖ = 0. It reduces the
separation between the velocity half-spaces, but it does not entirely rule out the pitch-angle gra-
dient at small v‖. Electron VDFs that have been recorded by the WIND spacecraft in the fast
solar wind show only small pitch-angle gradients in this region of velocity space, in many cases
with slightly higher phase space densities at v‖ < 0. The kinetic model presented here cannot
address this feature due to the still important simplification of considering only whistler waves
that propagate parallel to the background magnetic field.

Beside from this pitch-angle gradient at small v‖, the kinetic results are in very good agreement
with electron VDFs observed by WIND. At energies well below 1 keV, a strahl is visible both
in the simulation and spacecraft data, and at higher energies the electron distribution becomes
isotropic. The sunward propagating whistler waves lead to the formation of a halo component of
the electron VDF, as a result of the pitch-angle diffusion of the strahl population. Scattering of
strahl electrons into the halo is also found in observational studies of solar wind electron VDFs
(Maksimovic et al., 2005; Pagel et al., 2007; Štverák et al., 2009). So it has to be concluded that
scattering of electrons by whistler waves plays an important role in the evolution of solar wind
VDFs.

These results demonstrate that whistler waves can play a significant role in interplanetary space,
even for low wave power. This has strong implications on the transport of suprathermal electrons
in the solar wind. The pitch-angle diffusion caused by the waves has the tendency to isotropize
the electron VDF, and thus to compensate the focusing effect of the mirror force. Furthermore,
electrons that move anti-sunwards with v‖ > 0 can be scattered to v‖ < 0 and travel back towards
the Sun and interact with anti-sunwards propagating whistler waves in the solar wind or even in
the solar corona. The waves and the mirror force can bring them back to v‖ > 0 so that they move
away from the Sun again. Some electrons can be subject to several of such cycles.

With this kinetic model, the electron halo and strahl formation in the solar wind has been studied
under quiet solar conditions. The background conditions and the electron VDFs produced by the
model do not change in time. But energetic electrons that are emitted in solar energetic particle
events can also be affected by resonant wave-particle interaction. A study of the implications
of the whistler waves on their propagation through interplanetary space is the topic of the next
chapter.



Chapter 3

Scattering of solar energetic electrons in

interplanetary space

In the previous chapter the influence of whistler wave scattering on solar wind electron distri-
butions has been discussed for quiet solar conditions. Those results represent a stationary state.
But interplanetary space can be highly dynamic. Solar flares are well known for generating high
fluxes of energetic electrons. These electrons lead to the emission of radio waves as they traverse
the background plasma of the solar corona, and release X-rays through bremsstrahlung and ther-
mal emission when they are stopped by the ambient medium. But solar energetic electrons can
also escape from the solar corona into interplanetary space, where they are directly observed by
spacecraft (Lin, 1974). Since electrons with higher energies move with higher speeds, they arrive
earlier at the observer than those with lower energies. This velocity dispersion provides the op-
portunity to infer electron release times and travel path lengths from energy-dependent electron
arrival times as registered by spacecraft (Krucker et al., 1999; Classen et al., 2003).

However, one would expect that electron arrival times at an observer located at a solar distance
of 1 AU are influenced by scattering of the electrons by whistler waves in interplanetary space.
If the scattering modifies the arrival times significantly, this could lead to severe errors in the
path lengths and release times as yielded by a simple velocity-dispersion analysis based on the
assumption of scatter-free electron propagation.

Indeed, substantial time differences are found frequently between the electron release times that
are inferred from velocity-dispersion observations, and the onset of X-ray and radio emission that
indicates the presence of energetic electrons in the solar corona, e.g. (Krucker et al., 2007; Hag-
gerty & Roelof, 2002; Klassen et al., 2002). The release of energetic electrons into interplanetary
space seems to be delayed from 10 min to 30 min.

But on the other hand, the electron travel times in Krucker et al. (1999) and Classen et al. (2003)
are found to be inversely proportional to the electron speed. So the scatter-free assumption seems
to work well.

This raises the question of whether the energetic electrons in interplanetary space belong to the
same population that leads to coronal X-ray and radio emission in the solar corona, and if so,
whether they are stored in the solar corona prior to their release, or if they are delayed due to

29
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scattering in interplanetary space. Cane (2003) presents interplanetary type III radio burst obser-
vations, i.e. signatures of energetic electron beams (Suziki & Dulk, 1985), and argues that the
electrons are delayed in interplanetary space, while Klein et al. (2005) come to the conclusion that
the origin of delayed electron releases is the interplay between electron acceleration and injection
into different magnetic structures in the solar corona. So it is worthwhile to have a closer look at
the impact of whistler wave scattering on electron arrival times at 1 AU.

3.1 The model

In order to investigate to what extent the scattering of solar wind electrons by resonant interaction
with whistler waves in interplanetary space influences their arrival times at 1 AU, the kinetic
solar wind model from the previous chapter has been used by Vocks & Mann (2009) to study the
propagation of energetic electrons after their release in a solar flare in the lower corona.

The solar wind background model from the previous chapter and the whistler wave spectrum in
interplanetary space are unaltered. The kinetic model is based on the relativistic form (1.6) of
the Boltzmann-Vlasov equation, and uses as momentum coordinates the absolute value and pitch-
angle (p, θ) instead of the components (p‖, p⊥). The electron-whistler interaction is described by
the quasilinear diffusion equation (2.4). The resonance condition (2.7) and the requirementω < Ωe

from the whistler wave dispersion relation (2.8) result in high electron speeds being connected
with low wave frequencies. Due to the power-law spectrum (2.10) of whistlers in interplanetary
space, this has the consequence that electrons with high energies are scattered more strongly than
those with low energies.

The diffusion equation (2.4) provides an estimate of electron mean free paths. For solar energetic
electrons with energies of several 10 keV, they are typically of the order 0.8 AU. Thus, energetic
electrons can be expected to be delayed by a substantial fraction of the free-propagation time from
the Sun to 1 AU, which is e.g. 1250 s for 40 keV electrons. So delays by several minutes seem to
be possible.

The lower boundary of the simulation box is located in the corona, 40 Mm above the coronal
base. The Box extends 3 AU into interplanetary space. The lower boundary is open to electrons
that leave it with a negative momentum component p‖ < 0, while electrons with p‖ > 0 enter
it with a VDF that is provided as a boundary condition. Normally, this would be a Maxwellian
distribution with typical coronal density and temperature. But a Maxwellian distribution shows
strong phase-space gradients for higher electron energies of several 10 keV. Since they cause
numerical problems, a kappa distribution (2.3) is used instead, with a high κ = 30. Note that
this kappa distribution becomes a Maxwellian in the limit κ → ∞. At low energies there is little
difference between the kappa distribution and a Maxwellian, and the core of the VDF rapidly
thermalizes. So there is no inconsistency with the assumption of Maxwellian collision partners in
the calculation of Coulomb collision coefficients (Ljepojevic & Burgess, 1990).
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3.1.1 Solar flare electrons

The injection of solar flare electrons into the simulation box is done by modifying this lower
boundary condition. The flare electrons have a power-law distribution whose parameters are de-
rived from observations with the solar X-ray telescope RHESSI (Lin et al., 2002).

The total number density of flare energetic electrons, Nf,tot, propagating downwards from the flare
site can be derived by dividing the electron flux distribution, which is obtained from hard X-ray
(HXR) spectra, by the electron speed and the area of the thick-target interaction, i.e. the HXR
footpoint area, and integrating over all electron energies. Using RHESSI data (Lin et al., 2003),
Holman et al. (2003) have obtained values of the order of Nf,tot = 1015 m−3 for the peak of an
X-class flare. Krucker et al. (2007) have shown that the total number of electrons injected into
interplanetary space is just a small fraction of the HXR-producing ones, on average 0.2%. A value
of Nflare = 1011 m−3, which reflects the density of electrons propagating outwards in a medium-
sized flare, is thus adopted.

δ = 4 is chosen as a representative spectral index of the accelerated electron flux, see (Krucker
et al., 2007; Warmuth et al., 2009). Both rise and fall times of the electron injection profile were
taken as 1 min, which is a typical value both for HXR pulses and type III radio bursts, see Fig. 1
in (Krucker et al., 2007). The flare electron distribution has a low-energy cutoff at 20 keV, below
which the distribution is assumed to be constant.

Figure 3.1: Cut along the line p⊥ = 0 of the electron VDF at the lower boundary during the
solar flare (solid line), and Maxwellian VDF with the same density and temperature as the coronal
background (dotted line).

Figure 3.1 shows the lower boundary condition during the solar flare. Note that the half-space
p‖ < 0 is not relevant here, since these electrons do not enter the simulation box. At low energies,
the VDF is dominated by the Maxwellian, or here κ = 30, distribution of the coronal background
plasma.



32 CHAPTER 3. SCATTERING OF SOLAR ENERGETIC ELECTRONS

As the energetic electrons propagate into interplanetary space after the onset of the flare, more
energetic, i.e. faster, electrons will outpace the slower ones. The earlier arrival of more energetic
electrons at some distance from the Sun has the consequence that the electron VDF there can
become unstable to the generation of Langmuir waves, which eventually leads to the emission of
type III radio emission. These processes are basically nonlinear, so that quasilinear theory is not
applicable here. Thus, these processes are beyond the scope of this model. On the other hand,
these nonlinear processes can stabilize the electron distribution (Thejappa et al., 1999). So, not
including Langmuir wave generation in the model is a strong simplification, but not a too strong
one.

3.2 Flare electron propagation and resulting arrival times

The kinetic model is based on calculating the temporal evolution of the electron VDF inside the
box by solving the Boltzmann-Vlasov equation (1.6), and thus enables a study of flare electron
propagation. Such an approach requires the definition of an initial condition for the electron
VDF. This is provided by a kappa distribution (2.3) based on the local plasma conditions in the
background solar wind model, and κ = 30. This is close to a Maxwellian VDF, as in the lower
boundary condition. The upper boundary condition is defined in the same way. The large extent
of the simulation box over 3 AU has been chosen in order to avoid any influence of the upper
boundary on the simulation results at 1 AU. The injection of flare electrons at the lower boundary
has already been described in the previous section.

The flare electron arrival time at any height in the simulation box is defined as the time when the
spectral electron flux exceeds a threshold value of 0.01 keV−1cm−2s−1. This would correspond to
a spectral flux of 1 keV−1s−1 for a detector with an effective area of 100 cm2.

3.2.1 Beware of numerical diffusion

The numerical representation of the convection term of the gyrotropic Boltzmann-Vlasov equa-
tion, v‖∂ f /∂s, which looks rather innocuous, can have a significant influence on the simulation
results. In an earlier version of the numerical code, a simple upwind difference scheme had been
employed:

∂ fi

∂s
=















( fi − fi−1)/∆s, v‖ > 0

( fi+1 − fi)/∆s, v‖ < 0.
(3.1)

This first-order accurate scheme has the advantages of simplicity and stability, but it leads to
strong numerical diffusion. The result is a spread of the rapid increase of energetic electron fluxes
associated with the arrival of flare electrons over a wide spatial range in the model heliosphere,
thus leading to erroneous arrival times.

This numerical diffusion can be strongly reduced by using a more advanced numerical scheme.
For the study presented here, the “superbee flux limiter” has been chosen, see Yang & Przekwas
(1992) for a review. For v‖ > 0, this scheme reads for a timestep ∆t

∂ fi

∂s
=

gi+1/2 − gi−1/2

∆s
(3.2)
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with
gi+1/2 = fi + δ fi

(

1 − v‖∆t/∆s
)

/2 (3.3)

differences ∆ fi = fi − fi−1 and finally:

δ fi = (sgn(∆ fi) + sgn(∆ fi+1))×
min(|∆ fi|, |∆ fi+1|,max(|∆ fi|, |∆ fi+1|)/2)

(3.4)

where sgn(x) returns the sign of x. The equations (3.2) and (3.3) resemble the simple upwind
scheme, but the term δ fi limits the fluxes between neighboring grid points and thus keeps numer-
ical diffusion under control.

Figure 3.2: The shape of an initially rectangular pulse after convection over a distance of 4 times
its width, both for the superbee scheme (solid line) and the upwind scheme (dashed line)

Figure 3.2 demonstrates the effect of numerical diffusion and its mitigation in a simple 1D-model.
An initially rectangular pulse has been transported by 4 length units. The simple upwind scheme
has rounded the corners significantly. It can easily be seen that an “arrival time” based on the value
of the pulse exceeding e.g. 0.1 would be strongly affected by the diffusion. The more advanced
scheme, on the other hand, yields much better results, and deviations from the initial rectangular
shape are hardly visible.

3.2.2 Test run without whistler waves

In the previous sub-section it was shown that numerical artifacts might influence the calculated
electron arrival times at 1 AU. Thus, it is reasonable to test the numerical model in a simulation
run without any whistler waves first. The Boltzmann-Vlasov equation (1.7) now only has the
Coulomb collision term on the right hand side. But electrons with energies of several tens of
keV are basically scatter-free, see Table 1.1. So free propagation of flare electrons is expected,
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Figure 3.3: Difference of electron arrival times at s = 1.07 AU between the model without whistler
waves and free propagation, as function of electron energy.

resulting in arrival times calculated as path lengths along the Parker spiral divided by electron
speed.

Figure 3.3 shows the difference ∆t between the energetic electron arrival times calculated by the
kinetic model and the free-propagation times. These values have been obtained at a spatial position
of s = 1.07 AU along the Parker spiral, that corresponds to a radial distance of r = 0.95 AU from
the Sun.

A positive ∆t means that the energetic electrons in the kinetic model arrive later than expected
from free propagation. The figure shows that there is a delay of 10 s for the highest electron
energies of about 500 keV. The delay decreases with decreasing energy, and becomes negative for
energies below 30 keV.

Electrons with a kinetic energy of 500 keV have speeds of v = 0.86 c. Their travel time over a
distance of s = 1.07 AU is 618 s. So an artificial delay of 10 s in the model corresponds to an error
of 1.6% in travel time, which is fairly good. So the model has passed the free-propagation test.

The negative values of ∆t, i.e. early arrival of the flare electrons, for energies below 30 keV, are
due to Coulomb collisions. The mechanism by which scattering of electrons in momentum or
energy can lead to an early arrival of flare electrons is discussed below.

3.2.3 Pure pitch-angle diffusion

After the numerical model has been tested to yield reliable flare electron arrival times at a solar
distance of about 1 AU, the effect of electron diffusion by resonant interaction with whistler waves
is added. For typical solar wind conditions, the dispersion relation (2.8) yields whistler wave phase
speeds of the order of 1000 km s−1. This is comparable to electron thermal speeds. For energetic
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electrons with speeds that are a substantial fraction of the light speed, pitch-angle scattering in
the wave frame hardly differs from pitch-angle scattering in the plasma frame. This has already
been pointed out in the discussion of Figure 2.3b. In such a plasma, the diffusion equation (2.4) is
dominated by the coefficient αθθ.

Under the simplifying assumption of pure pitch-angle diffusion, only the term αθθ needs to be
considered in the quasilinear diffusion equation (2.4). This saves much computational effort, so it
is worth investigating whether it is applicable without altering the simulation results.

Figure 3.4: Difference of electron arrival times at s = 1.07 AU between the pure pitch-angle
diffusion model and free propagation, as function of electron energy (solid line). The model
results without whistler waves are also shown for comparison (dashed line).

Figure 3.4 shows the differences between the electron arrival times at s = 1.07 AU (r = 0.95 AU)
and the expected times based on free propagation. The results of the simulation run without
whistler waves are also plotted for comparison.

The results show that the pitch-angle diffusion delays the flare electrons considerably. For high
electron energies of 500 keV, the delay is only 5 s, but it increases with decreasing energy. It
is about 15 s for 100 keV, and 35 s for 30 keV. For energies little above 10 keV, the pitch-angle
diffusion counters the early arrival of flare electrons caused by Coulomb collisions, leading to a
delay of 60 s as compared to the whistler-free run, and to a peak of ∆t in the plot.

So the simulation run including pitch-angle diffusion by resonant interaction with whistler waves
demonstrates that the whistlers can delay electron arrival times. The maximum delay found here
is of the order of 1 min.

The energy dependence of the delay also needs some attention. The calculation of electron release
times in analyses like that of Krucker et al. (2007) is based on scatter-free electron propagation

s = v(ta − tr) (3.5)
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along the path length s. tr and ta are the electron release and arrival times, respectively. ta is
directly measured, the electron speed v depends on the energy, but both tr and s are unknown.
Solving the above equation for ta and calculating the derivative in v yields:

∂ta

∂v
= − s

v2
. (3.6)

The velocity dispersion ∂ta/∂v can be derived from satellite data and yields the path length s by
means of Eq. (3.6). Once s is known, Eq. (3.5) provides the electron release time.

The energy dependence of ∆t as shown in Fig. 3.4 alters the velocity dispersion ∂ta/∂v and thus
introduces an error into the calculation of s. This contribution can be estimated to be of the order
of 0.02 AU for electrons with an energy of 90 keV, leading to an error of 20 s in the release time.

Figure 3.5: Electron VDFs at s = 0.35 AU for four different simulation times. The isolines are
chosen in such a way that they would be equidistant for a Maxwellian VDF.

So far, only model results for the arrival times of energetic electrons at 1 AU have been presented,
but not interplanetary electron VDFs during flare electron arrival. Figure 3.5 shows the VDF at
s = 0.35 AU for four different simulation times, t. t = 0 s corresponds to the initial κ = 30
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distribution. At t = 300 s the flare electrons have arrived for electron momentum p > 0.7 mec.
The pitch-angle scattering of them can be seen clearly. At t = 500 s, the energetic electrons can
be found for p > 0.35 mec. At t = 3000 s the flare is over, but the model heliosphere is still filled
with an isotropic halo of energetic electrons. The pitch-angle scattering suppresses their escape
through the upper boundary of the simulation box, they are kept there for simulation times of
the order 105 s, i.e. for days. This result resembles the super-halo of energetic electrons that is
observed in solar wind electron VDFs even under quiet conditions (Lin, 1998).

These results are based on the model assumption of pure pitch-angle scattering. This scattering
generally inhibits the transport of electrons straight along the background magnetic field, and thus
leads to delayed arrival times at 1 AU. Diffusion along the momentum coordinate, p, has been
deemed to be negligible, since the coefficient αpp is small. However, the plots in Fig. 3.5, which
show the arrival of flare electrons, indicate strong phase-space gradients along p.

Figure 3.6: Cuts through the electron VDF at s = 1.07 AU(r = 0.95 AU) and simulation time
t = 2000 s along p‖ (solid line) and p⊥ (dashed line).

Figure 3.6 shows cuts through the electron VDF at s = 1.07 AU(r = 0.95 AU) during the arrival
of flare electrons at a simulation time of t = 2000 s. It can be seen that the phase-space density
jumps by more than 25 orders of magnitude over a momentum interval of ∆p = 0.1 mec. Since a
small diffusion coefficient, multiplied by an extreme gradient, can still yield substantial diffusion,
it is now questionable whether pure pitch-angle diffusion is appropriate for energetic electrons in
interplanetary space.

Diffusion across the strong gradient in Fig. 3.6 would transport electrons to lower momentum,
i.e. to lower energy. Thus, at this lower energy, the phase-space density increases earlier than
expected from scatter-free propagation, and these electrons also move further up in the box. As a
consequence, diffusion in the momentum coordinate leads to an early arrival of energetic electrons
as compared to the scatter-free expectation. This is also the reason why non-negligible Coulomb
collisions lead to negative ∆t for energies below 20 keV in the test run without whistler waves, see
Fig. 3.3.



38 CHAPTER 3. SCATTERING OF SOLAR ENERGETIC ELECTRONS

The effect of diffusion in momentum space on the electron arrival times can be estimated as fol-
lows. A simple diffusion equation

∂ f

∂t
=

∂

∂p

(

αpp

∂ f

∂p

)

(3.7)

broadens a Gaussian distribution f ∝ exp(−p2/(2p2
0)):

∂(p0)2

∂t
= 2αpp. (3.8)

Thus, the width of the phase-space gradient in Fig. 3.6 would also be broadened if there were no
propagation effects. Replacing ∂(p0)2/∂t by v∂(p0)2/∂s and integrating from the lower boundary
(s = 0) through the simulation box up to s = 1.07 AU(r = 0.95 AU) yields a total ∆p0. The
influence of such a broadening of the phase-space gradient on electron arrival times then can be
estimated as ∆t = (ta − tr)∆p0/p.

For 60 keV electrons, this yields an early arrival of 10 s in our model heliosphere. Thus, the early
arrival of flare electrons due to diffusion in momentum space is of the same order of magnitude
as the delay due to pitch-angle scattering. In other words, pure pitch-angle diffusion is not a valid
approach, although the original diffusion equation (2.4) seems to be dominated by the pitch-angle
term, αθθ.

3.2.4 Full diffusion equation

So for solar energetic electron arrival times at 1 AU, the effect of electron diffusion along the
momentum coordinate is not negligible compared to the effect of pitch-angle diffusion. The sim-
plification of pure pitch-angle diffusion is not allowed. The full diffusion equation (2.4) has to be
implemented instead.

Figure 3.7 shows the resulting arrival times for the full diffusion model, and the previous results
for comparison. The strong delay that has been found in the pure pitch-angle diffusion model has
almost disappeared. There is only a small difference of about 5 s compared to the free-propagation
model.

This result confirms the above estimate of the influence of diffusion along the momentum coor-
dinate on the arrival times. The early arrival of flare electrons is comparable to the delay due to
pitch-angle diffusion. Thus, both parts of the full diffusion equation are capable of partly compen-
sating each other.

It is also noteworthy that the new result for the delay of energetic electrons due to scattering in
interplanetary space shows little energy dependence. The delay is rather constant, about 10 s over
a wide energy range. Thus, it has little additional impact on inferred path lengths and release times
of flare electrons.

3.2.5 Variation of the whistler wave power

All simulation results presented so far have been obtained with the whistler wave spectrum from
chapter 2.4, that attributes 1% of the total wave power measured in interplanetary space to the
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Figure 3.7: Difference of electron arrival times at s = 1.07 AU between the full diffusion model
and free propagation, as functions of electron energy (solid line). The model results for pure pitch-
angle diffusion (dashed line) and the run without whistler waves (dotted line) are also shown for
comparison.

whistlers. This choice is somewhat arbitrary, and the wave spectrum might also vary in time.
Thus, the effect of a variation of the wave power on the resulting electron delays needs to be
investigated. This can be done by multiplying the wave spectrum by a given factor and re-running
the full diffusion model.

Figure 3.8 shows the resulting electron delays at 1 AU for five different wave spectra, ranging from
no wave power up to the five-fold power as compared to the results from Fig. 3.7. It is evident that
the delays increase with increasing wave power, as one would expect for more efficient diffusion.

The energy dependence of the delays changes slightly. For low wave powers up to a two-fold
increase, ∆t increases with increasing electron energy, but for the highest wave power this relation
is reversed. So the degree to which the effects of pitch-angle diffusion and diffusion in the mo-
mentum coordinate compensate each other is not independent of energy. But even for the highest
wave power, no strong energy dependence of ∆t is found.

The maximum delay found in this parametric study is less than 30 s, even for the highest wave
intensity, and stays below 15 s for all other simulation runs.

3.3 Conclusions

In this chapter, the impact of scattering of solar energetic electrons due to resonant interaction
with whistler waves in interplanetary space has been investigated. Since the quasi-linear diffusion
equation appears to be dominated by the pitch-angle diffusion term, it seemed to be reasonable to
simplify the model accordingly.



40 CHAPTER 3. SCATTERING OF SOLAR ENERGETIC ELECTRONS

Figure 3.8: Difference of electron arrival times at s = 1.07 AU between the full diffusion model
and free-propagation, as functions of electron energy (solid line). The results after multiplication
of the whistler-wave spectrum with a factor of 0 (dotted line), 0.5 (dashed line), 2 (dash-dotted
line), and 5 (dash-dot-dotted line) are also shown.

Pitch-angle scattering leads to a delay of electron arrival times as compared to the theoretical free-
propagation time from the Sun up to 1 AU. The maximum delay found in this simulation is about
1 min. This is much less than the delays of between 10 min and 30 min that are reported in the
literature. So this result already indicates that pitch-angle diffusion cannot explain delays of tens
of minutes.

The simulated delay shows a strong energy dependence that is strongest for low energies of about
20 keV. This energy dependence can influence the derivation of release times and path lengths of
the electrons. The resulting errors have been estimated as 20 s, which is also well below 10 min.

However, the pure pitch-angle diffusion model turned out to be oversimplified. Since more en-
ergetic, i.e. faster electrons arrive earlier at a given solar distance, interplanetary electron VDFs
develop strong phase-space gradients. This leads to significant diffusion along the momentum
coordinate, i.e. in energy, despite the low diffusion coefficient in the quasilinear equation. If more
energetic electrons are scattered to lower energies in interplanetary space, this leads to an earlier
increase of the spectral flux at this lower energy at any position further away from the Sun, e.g. at
1 AU.

So diffusion in the momentum coordinate leads to earlier electron arrival times compared to pure
pitch-angle diffusion. This effect becomes clearly visible at energies of less than 20 keV. In
this energy range, Coulomb collisions are not entirely negligible, although even keV solar wind
electrons are still collision-free with mean free paths of the order of hundreds of AU. The effects
of Coulomb diffusion on electrons in the energy range of a few keV is an interesting topic for
future studies.

A simple estimate of the earlier electron arrival due to diffusion along the momentum coordinate
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shows that this effect is of the same order of magnitude as the delay due to pitch-angle scattering.
Thus, it has to be concluded that the assumption of pure pitch-angle scattering without any energy
diffusion is not applicable. Instead, a full diffusion model is needed. The results obtained with the
new model clearly demonstrate that these two effects indeed compensate each other. The resulting
electron delays hardly differ from free-propagation times.

This provides a hint as to why analyses that are based on the assumption of free propagation yield
good results, although non-negligible diffusion is present in interplanetary space. The maximum
difference to free-propagation times found in a series of model runs with different wave power is
below 30 s, even for the strongest diffusion.

All results presented here have been obtained with the same solar wind background model, and
thus with the same whistler-wave phase speeds in interplanetary space. The wave speeds are
always relatively small, of the order of electron thermal speeds, and the effect of the wave-particle
interaction on an electron distribution is pitch-angle diffusion in the wave frame. Thus, energetic
electrons will always experience strong pitch-angle scattering in the plasma frame, independent
of the exact background conditions.

But this is not the case for the diffusion component along the momentum coordinate in the plasma
frame. This component is proportional to the square of the wave phase-speed, see Eq. (2.5).
Whistler wave phase speeds are characterized by the electron Alfvén speed vA,e = B/

√
µ0Neme.

The stronger the magnetic field, and the lower the plasma density, the higher the phase speeds.

So the compensation between the delay due to pitch-angle diffusion and the early arrival due to
momentum (or energy) diffusion depends on the solar wind conditions. But nevertheless, the pure
pitch-angle diffusion model provides an upper limit on the delays of about 1 min.

The choice of the wave spectrum is somewhat arbitrary, but comparative runs with different wave
intensities show that the delays do not increase beyond 30 s, even for the strongest whistler waves.
So the main result of this model is that delays of 10 min and more cannot be caused by resonant
interaction with whistler waves in interplanetary space, unless unrealistically high values for the
whistler wave power are assumed.
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Chapter 4

Formation of suprathermal electron

distributions in the quiet solar corona

In the previous chapters it has been found that scattering of electrons by whistler waves in in-
terplanetary space plays an important role in forming solar wind electron VDFs, and that it has
significant influence on energetic electron propagation. The main effect of resonant interaction
(2.4) of electrons with whistlers is pitch-angle scattering in the reference frame of the waves. The
solar wind is a medium with relatively low whistler wave phase speeds. The maximum phase
speed of whistlers is half the electron Alfvén speed, vA,e = B/

√
µ0Neme, and it is comparable

to electron thermal speeds. So for energetic electrons there is little difference between the wave
frame and the plasma frame, the whistlers just lead to pitch-angle scattering. This has already
been concluded from Figure 2.3b, and has motivated the pure pitch-angle scattering model for
flare electrons in the previous chapter.

This is different in the solar corona, where whistler wave phase speeds are much higher. For coro-
nal conditions, typically B = 10−3 T and Ne = 1014 m−3, this results in an electron Alfvén speed
of vA,e = 0.3 c. This corresponds to the case depicted in Figure 2.3a. The whistler waves tend to
form “kinetic shells” in the electron VDF that strongly deviate from a Maxwellian distribution.

This enables electrons to considerably gain energy due to pitch-angle diffusion in the wave frame
along the kinetic shells. As an example, take an electron at the position (v‖ = −0.06 c, v⊥ = 0) in
velocity space. It can reach the position (v‖ = 0, v⊥ = 0.2 c) along its shell. This corresponds to
an energy increase from 0.9 keV to 10 keV. This acceleration mechanism was studied by Vocks
& Mann (2003) in order to find an explanation for the observed presence of suprathermal elec-
tron VDFs in the solar wind even under quiet conditions without any flare activity (Lin, 1998;
Maksimovic et al., 1997), as presented in chapter 2.2.

The lower electron energy change due to resonant interaction with whistlers in regions with lower
vA,e, i.e. towards the solar wind, has the consequence that this acceleration mechanism can only be
efficient in the solar corona. But if the fluxes of electrons in the range of several keV, as observed
in the solar wind, are generated already in the corona, two questions arise:

• Is there enough whistler wave energy in the corona to provide significant suprathermal elec-
tron fluxes?

43
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• Can electrons that have been accelerated in the corona escape into interplanetary space
without being relaxed due to Coulomb collisions?

These questions have been addressed by Vocks & Mann (2003).

4.1 Sufficient wave energy in the corona?

An efficient electron acceleration by resonant interaction with whistler waves in the solar corona
requires a sufficient supply of wave energy there. Is it reasonable to assume that these waves exist?
To address this question, one can have a look at the problem of solar coronal heating. Resonant
interaction between ions and ion cyclotron waves is discussed as heating mechanism (Cranmer
et al., 1999; Vocks, 2002; Vocks & Marsch, 2002). In these models, the waves are generated in
the transition region, with frequencies well below all ion cyclotron frequencies. They propagate
upwards in the corona, until they reach a height where the cyclotron frequencies have decreased
so far that the waves come into resonance with ions.

Ion cyclotron waves are left-hand polarized waves. If the waves are generated with frequencies
well below local ion cyclotron frequencies, there should be no preference for left-hand polar-
ized over right-hand polarized, i.e. whistler, waves. These whistler waves are not affected by
resonances with ions, but the electron resonance condition (2.7) applies to them. Of course, the
electron cyclotron frequency is about a factor mp/me higher than the proton cyclotron frequency.
Normally, the wave spectral energy decreases with increasing frequency, e.g. with a power law
∝ ω−α, with a spectral coefficient α ≥ 1. Thus, much less wave energy is available for electrons
than for protons or other coronal ions.

However, the ion cyclotron waves provide enough energy to heat the ions to coronal temperatures.
Heavy ions can reach temperatures of several 106 K (Kohl et al., 1998). For the electrons, such a
strong heating is neither needed in coronal models, nor observationally supported (Esser & Edgar,
2000). Only some suprathermal electrons are to be accelerated to higher energies. It is indeed
possible to accelerate suprathermal electrons without the bulk of thermal electrons absorbing all
the wave power and being heated. This is due to the decrease of the magnetic field, and thus the
electron cyclotron frequency, with height in a magnetic structure that is open towards the solar
wind, e.g. a coronal funnel. The mechanism is based on “frequency sweeping” (Tu & Marsch,
1997) that also plays an important role in the heating of coronal ions with ion cyclotron waves
(Vocks, 2002).

Figure 4.1 illustrates the frequency sweeping mechanism. On the ordinate, the spatial coordinate
s along a coronal magnetic field line is displayed, and thus the height above the transition region.
The abscissa represents the frequency coordinate. For two heights s1 and s2, electron VDFs in
the range v‖ < 0 are sketched. For v‖ < 0, it is possible to replace the velocity coordinate by the
resonance frequency in a unique way, using Eqs. (2.7) and (2.8). The higher the absolute value
of v‖ < 0 is, the lower is the resonance frequency. The VDFs are restricted to the local electron
cyclotron frequency Ωe, with Ωe corresponding to v‖ = 0. Now a whistler wave is considered,
with a given frequency ω, that propagates anti-sunwards through the corona. In the low corona, at
s1, its frequency is much below the electron cyclotron frequency, thus it cannot interact resonantly
with any electrons. But at a larger height, s2, the electron cyclotron frequency has decreased,
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Figure 4.1: Sketch of the frequency sweeping mechanism. A wave with frequency ω propagates
upwards in the corona and comes into resonance with electrons at a certain height. For further
details, see text.

and the wave frequency can fulfill the resonance conditions with some electrons. These are those
electrons with the highest v‖ directed towards the sun. These electrons can gain energy from the
wave in the way described above.

But the thermal bulk of electrons still does not fulfill the resonance condition with the frequency ω
at this height. So the bulk cannot absorb the wave while suprathermal electrons already are being
accelerated. Due to this preferred interaction of suprathermal electrons (v‖ < 0) with whistler
waves, electron acceleration in the corona is possible, in spite of the smaller energy supply com-
pared to that provided to the ions.

4.2 Can suprathermal tails escape from the corona?

While resonant interaction with whistler waves can add energy to an electron VDF and deform
it from a Maxwellian, Coulomb collisions have the tendency to relax it towards a Maxwellian.
Since the efficiency of Coulomb collisions depends on the density, the relaxation will be most
effective in the low corona where the acceleration mechanism is also working. Furthermore,
the v−3 dependence of Coulomb collision frequencies implies that thermal cores of VDFs can be
dominated by Coulomb collisions, whereas electrons in the suprathermal tails can cross the corona
without being relaxed.

To estimate if suprathermal tails of electron VDFs can escape into the solar wind after their forma-
tion in the corona, the relaxation process of a non-Maxwellian electron VDF under typical coronal
conditions is studied. For this test, a homogenous proton-electron plasma without external forces
is set up, with particle number density Ne = 1014 m−3 and temperature T = 106 K. As an ini-
tial condition with suprathermal tails, the electron VDF is defined as a kappa distribution (2.3)
with κ = 5. Such kappa distributions are discussed for solar coronal electron VDFs by Scudder
(1992b). The electron kinetic model is used to calculate the temporal evolution of the electron
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VDF caused by Coulomb collisions with both protons and other electrons. Any wave-electron
interaction is not considered here.

Figure 4.2: Relaxation of a kappa electron VDF under typical coronal conditions. Shown are the
electron VDF after a simulation time of 5 s (solid line), the initial distribution with κ = 5 (dotted
line), and a Maxwellian VDF (dashed line).

Figure 4.2 shows the electron VDF after a simulation time of 5 s. The initial kappa distribution and
a Maxwellian representing the thermal equilibrium state are also plotted. It can clearly be seen that
electrons with a speed v < 5 vth, with vth being the thermal velocity, have already relaxed towards
the Maxwellian VDF. But at higher speeds, the suprathermal tails of the kappa distribution are still
present. The relatively sharp transition between these two parts is due to the v−3 dependence of
Coulomb collision frequencies that implies a strong variation of relaxation times with speed. The
choice of 5 s simulation time is arbitrary, but has the following reason: Electrons with v = 5 vth

can pass a distance of 105 km, i.e. two coronal pressure scale heights, within these 5 s. Electrons
with higher speeds traverse this distance in shorter times, and from the simulation result shown in
Fig. 4.2 it follows that these times are shorter than their relaxation times. Thus, their VDFs can
preserve their shape during the passage through the corona.

The result of this simple simulation run leads to the conclusion that electrons with at least v = 5 vth

can traverse the corona from the coronal base towards interplanetary space without significant re-
laxation due to Coulomb collisions. This speed corresponds to an electron energy of 1.1 keV.
Thus, this test confirms the finding of Pierrard et al. (1999) that a coronal origin of the suprather-
mal tails, measured in the solar wind at energies of several keV, is possible.

4.3 Suprathermal electron production in the solar corona

Vocks & Mann (2003) have investigated the coronal production of suprathermal electrons by
adding resonant electron-whistler interaction to the Boltzmann-Vlasov equation (1.7). However,
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only waves propagating away from the Sun were considered in this model, but not the whistler
wave turbulence in interplanetary space. The resonance condition (2.7) and the whistler wave
dispersion relation (2.8) dictate that only electrons moving towards the Sun, v‖ < 0, can interact
with these waves. So there is no wave scattering of anti-sunward moving electrons here.

4.3.1 The model

The kinetic model is based on the non-relativistic Boltzmann-Vlasov equation (2.13) using veloc-
ity coordinates (v‖, v⊥). The simulation box extends from the transition region between chromo-
sphere and corona up to 1 AU into interplanetary space. For the velocity coordinates, a rectangular
grid in the v‖ - v⊥ - plane is used. The step sizes ∆v‖, ∆v⊥ are equidistant with ∆v‖ = ∆v⊥ =

2000 km s−1. This is a considerable fraction of the electron thermal speed vth = 3900 km s−1 at
a temperature T = 106 K, but the objective of this simulation run is not a detailed study of the
thermal bulk of the electron VDF, but to cover an energy range of 10 keV, which corresponds to
15 vth.

At each spatial position si in the simulation box, the wave spectrum is calculated. The frequency
coordinate is discretized with an equidistant spacing on a logarithmic scale, i.e. frequency posi-
tions ω j = ω0 exp( j/Nw), with ω0 being a reference frequency and Nw the number of grid points
per logarithmic decade. The frequency coordinate covers the resonance frequencies of electrons
at all grid points inside the whole simulation box, from the lowest frequencies of electrons with
high v‖ < 0 in interplanetary space to the electron cyclotron frequency, Ωe, at the lower boundary
where the resonance frequency is highest.

The whistler waves in the model plasma enter the the simulation box at the lower bound with a
given power law spectrum ∝ k−1. Only waves propagating parallel to the background magnetic
field are considered, thus k‖ = k. The waves propagate upwards inside the simulation box, and
their spectrum evolves due to the changes of wave phase speed and magnetic flux tube geometry,
and due to the resonant absorption by electrons.

The solar wind background model is the same as in chapter 2.4.2. As initial and boundary condi-
tions for the electron VDF in the simulation box, a kappa distribution (2.3) with electron density
and temperature corresponding to the background model has been chosen. The ideal choice would
have been a Maxwellian, since a kappa distribution has power-law suprathermal tails ∝ p−2(κ+1).
But for higher electron energies a Maxwellian shows steep phase-space gradients that cause nu-
merical problems. A kappa distribution turns into a Maxwellian in the limit κ → ∞. For this study,
a very high value of κ = 200 is used. This is much higher than the kappa values well below 10 in
the models of Scudder (1992a) or in the fits to Ulysses observations by Maksimovic et al. (1997),
and provides a VDF that is very close to a Maxwellian. The use of such a distribution as boundary
condition ensures that for keV energies hardly any electrons are injected into the simulation box,
and therefore avoids numerical artifacts.

4.3.2 Locations of electron acceleration

The electron acceleration mechanism by resonant absorption of whistler waves is most effective
in regions where the electron Alfvén speed is high. With the solar wind background model at
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hand, it is possible to plot the electron Alfvén speed as a function of the height coordinate in the
simulation box:

Figure 4.3: Electron Alfvén speed as derived from the background solar wind model. Note that
the spatial coordinate, s, denotes the height above the coronal base along the magnetic flux tube
under consideration, not the distance from the solar center.

Figure 4.3 displays this electron Alfvén speed. The highest values vA,e ≈ c are reached in the
coronal funnel close to the lower bound, due to the strong magnetic field there. In the low corona,
vA,e decreases rapidly and reaches a local minimum of vA,e = 0.25 c at a height of s = 0.03 R⊙
above the coronal base. Then it increases towards a local maximum of vA,e = 0.4 c at s = 0.5 R⊙.
After this maximum, vA,e strongly decreases towards interplanetary space. The reason for this non-
monotonic course is the decrease of both the magnetic field, B, and the electron number density,
Ne, with height, as can be seen from Fig. 2.5a,b. The decrease of B tends to decrease vA,e, while
the decrease of Ne increases it.

This figure leads to the conclusion that the electron acceleration is indeed strongest in the corona.
Towards interplanetary space, vA,e/c takes very small values, and the electron acceleration ceases.

4.3.3 Results

The Boltzmann-Vlasov equation (1.7) is now solved iteratively, starting with the near-Maxwellian
κ = 200 initial condition. The velocity coordinates of the simulation box cover speeds of up to
5.6 · 107 km s−1, that corresponds to an electron energy of 9.6 keV.

The whistler waves enter the simulation box at the lower bound with a spectrum ∝ k−1. The
spectral wave energy is chosen in such a way that it is coincident in the MHD regime with the
spectrum of ion cyclotron waves that has been used in the coronal heating model of Vocks &
Marsch (2002).
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Coronal electron VDFs

Starting with the initial condition, the evolution of the electron VDF has been calculated over a
simulation time of tsim = 2 · 104 s. After this time, the simulation has reached a final steady state,
and the electron VDF does not change any more.

Figure 4.4: Isolines of the electron VDF at the height s = 0.014 R⊙ (solid lines), and kinetic shells
due to resonant electron - whistler wave interaction (dotted lines).

Figure 4.4 shows the resulting electron VDF at a height of s = 9500 km (0.014 R⊙). Again, the
isolines are chosen in such a way that they would form equidistant circles for a Maxwellian VDF.
The kinetic model here is based on velocity components (v‖, v⊥). But due to gyrotropy of the
electron VDF, these are actually cylindrical coordinates that imply v⊥ ≥ 0. Negative v⊥ have
been added by the symmetry condition f (v‖,−v⊥) = f (v‖, v⊥), to make the plots more readable.
The position s = 0.014 R⊙ is located in the rapidly expanding coronal funnel, where the electron
Alfvén speed vA,e = 0.34 c is still relatively high. This situation corresponds to Fig. 2.3a. In
Fig. 4.4, the kinetic shells that the whistler waves try to establish, are also plotted as dotted lines.

The plot reveals a temperature anisotropy T⊥ > T‖. In the range v‖ < 0 strong deformations of
the isolines can be observed. They are in good coincidence with the kinetic shells, especially at
higher negative v‖. Thus, the simulation result shows the expected effect of resonant interaction
between electrons and whistler waves. It can be seen that electrons are accelerated from relatively
small, negative v‖ to high v⊥.

On the anti-sunward side, electrons can be seen that have been accelerated at lower heights, and
have been transported to v‖ > 0 by the mirror force that influences the electrons in the diverging
magnetic field geometry of the coronal funnel.

In the range of lower, sunwards electron speeds, v‖ < 0, the deformation of the isolines ceases.
This has several reasons. First, the Coulomb collision frequency increases with v−3 as the velocity
decreases. So Coulomb collisions are more capable of relaxing the electron VDF there. Another
reason can be derived from the resonance condition, equation (2.7). The resonance frequency
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approaches Ωe for v‖ → 0. The dispersion relation (2.8) yields decreasing wave phase speeds for
ωres → Ωe. Thus the acceleration mechanism becomes less efficient. A further reason for the
undisturbed isolines at v‖ → 0 can be seen from the spectrum of the whistler waves:

Figure 4.5: Wave spectral energy density at the height s = 0.014 R⊙.

Figure 4.5 displays the wave spectral energy density at s = 0.014 R⊙. The absorption of the waves
by the electrons is clearly visible. Since the resonance frequencies of electrons with v‖ → 0 is
close to Ωe, hardly any wave energy is left over for them. But electrons with higher negative v‖
can interact with waves that have not been absorbed at lower heights. This is the essence of the
frequency sweeping mechanism. The increase of the wave spectral energy density in the vicinity
of Ωe is due the abovementioned weaker wave absorption of electrons with v‖ close to 0. It is
insignificant for the kinetic results at s = 0.014 R⊙. Since the waves propagate upwards, and Ωe

decreases with height, it does also not affect the kinetic results higher up in the simulation box.

Figure 4.6 shows the electron VDF at a larger height s = 0.028 R⊙ in the corona. The VDF is now
closer to a Maxwellian, the deformation of isolines at negative v‖ is much weaker. The reason for
this can be seen from Fig. 4.3, the electron Alfvén speed passes its local minimum at s = 0.028 R⊙.
The electron acceleration process is less efficient here, the pitch-angle diffusion of electrons by
the interaction with whistler waves results in smaller deviations from a Maxwellian VDF.

With further growing height, the electron Alfvén speed increases again, and the electron accel-
eration becomes more efficient. Figure 4.7 shows the electron VDF at s = 1.06 R⊙, where the
electron Alfvén speed reaches its local maximum, see Fig. 4.3. In figure 4.7 the pitch angle diffu-
sion caused by the waves is evident again. It is also clearly visible that the electrons that have been
accelerated at lower heights are focused into the anti-sunward direction. This is due to the mirror
force related to the large-scale decrease of the coronal magnetic field, and the lack of a turbulent
whistler wave spectrum in the solar corona and wind that could provide pitch-angle scattering to
these electrons.

Note the high density of isolines on the anti-sunward side around v‖ ≈ −0.05 c and low v⊥. This is
related to a strong gradient of the electron VDF. The onset of the drop of the electron VDF with
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Figure 4.6: Isolines of the electron VDF at the height s = 0.028 R⊙.

Figure 4.7: Isolines of the electron VDF at the height s = 1.06 R⊙.

increasing negative v‖ is located at approximately v‖ = 0.04 c. This corresponds to an electron
energy of 408 eV. This is in good coincidence with the electrostatic potential drop within the
simulation box from s = 1.06 R⊙ to the upper boundary. This potential drop is calculated from the
charge-separation electric field in the background fluid model and amounts to 381 V. Electrons
with higher energies can escape into interplanetary space through the upper boundary. They do
not return, so there is a lack of electrons moving sunwards with |v‖| > 0.04 c. So the results display
a typical feature of exospheric models. The electrons inside the simulation box in this velocity
range have entered it through the upper boundary condition.

Figure 4.8 displays the further evolution of the electron VDF in the nascent solar wind at s =
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Figure 4.8: Isolines of the electron VDF at the height s = 6.5 R⊙.

6.5 R⊙. On the anti-sunward side, the mirror force focuses the accelerated electrons to a narrow
pitch angle range. This feature resembles the “strahl” in solar wind observations (Lin, 1974;
Rosenbauer et al., 1977; Pilipp et al., 1987). On the sunward side, the temperature anisotropy due
to the electron - whistler interaction is still visible.

The focusing of the “strahl” due to mirror force continues towards interplanetary space, leading
to the extremely narrow beam shown in figure 2.2. However, the aim of this model run was not
realistic solar wind electron VDFs, but to investigate the production of suprathermal electrons in
the corona.

Suprathermal electron fluxes

Spacecraft instruments do not measure the electron VDFs directly, but electron fluxes as a func-
tion of energy. Often, the fluxes are averaged over all spatial directions to yield better statistics,
especially at higher energies, like in Lin (1998). Thus, to compare the calculated electron VDFs
with solar wind data, it is reasonable to derive the fluxes from the VDFs.

The number density of electrons within a speed interval dv and a solid angle interval dΩ around a
velocity vector ~v, with absolute value v = |~v|, is f (~v)v2dv dΩ. The flux of these electrons through
a detector with unit aperture area can then be calculated by multiplication with v:

f (~v) v3dv dΩ

Changing from the velocity coordinate, v, to the energy coordinate, E, by E = v2me/2, yields a
spectral electron flux that still depends on the direction, ~e = ~v/v:

φ(E, ~e) = f (~v =
√

2E/me · ~e)v2/me dΩ (4.1)

Averaging over all directions can be done in spherical coordinates, (θ, φ), by dΩ = dφ sin θ dθ.
The integration over the gyro-angle, φ, is trivial due to the gyrotropy of the electron VDF f (~v). It
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just yields a factor 2π. For the pitch angle, θ, the relation cos θ = v‖/v holds. This simplifies the
integration over all θ by

π
∫

0

sin θ dθ =

1
∫

−1

d(cos θ) =
1
v

v
∫

−v

dv‖

Thus, the spectral electron flux φ(E) can be calculated as:

φ(E) =
2πv

me

v
∫

−v

f

(

v‖, v⊥ =
√

v2 − v2
‖

)

dv‖ with v =
√

2E/me (4.2)

Figure 4.9: Electron fluxes at s = 1 AU that are derived from the model results presented in this
chapter (solid line), from a comparative study without whistler waves (dashed line), and from the
initial κ = 200 distribution (dotted line).

Figure 4.9 shows the electron fluxes at s = 1 AU (solid line) that have been calculated from the
model VDF. For comparison, the fluxes derived from the initial kappa distribution at s = 1 AU
are also plotted (dotted line). It can be seen that the fluxes are enhanced by several orders of
magnitude. The very small high-energy tails of the initial κ = 200 distribution play no role here.

But the whistler waves are not the only effect that forms the electron VDF in the model plasma.
The background conditions that provide densities, temperatures, and the magnetic field are in-
homogeneous and change with height. This also deforms the VDF. To identify the effect of the
whistler waves on the electron flux, the whole numerical study has been repeated without any
whistler wave activity. The resulting spectral electron flux is plotted as the dashed line in Fig. 4.9.
It is also significantly enhanced compared to the initial condition. The reason for this is the
“strahl” that also forms in such a simulation run. In the solar corona, the temperature is higher
and the electron VDF is thus broader than in the solar wind (Fig. 2.5d). Suprathermal electrons
of sufficient energy can escape the electrostatic potential and are focused towards the anti-solar
direction due to the mirror force in the large-scale decrease of the magnetic field. This process is
independent of the presence of whistler waves (Lie-Svendsen et al., 1997).
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But a comparison of the fluxes resulting from the otherwise identical simulation runs with and
without whistler waves shows that the wave action increases the electron flux in the energy range
of a few keV by several orders of magnitude. The electron spectrum is much flatter than in the
run without whistlers. At energies below 1.5 keV the fluxes resulting from the simulation runs
with and without whistler waves hardly differ. Such energies correspond to electron velocities
v < 0.075 c. This is in coincidence with the finding that the wave effect on the electrons ceases at
low speed, as it has been discussed above for the low corona, s = 0.014 R⊙, see Figs. 4.4 and 4.5.

These results demonstrate that the resonant interaction with whistler waves in the corona can in-
crease the flux of solar wind electrons in the keV energy range significantly. The model includes
no transient events like flare activity or shock waves that produce suprathermal electrons. The cal-

culations show that the quiet solar corona is capable of producing high-energetic electrons.

A more quantitative look at Fig. 4.9 shows that the fluxes at low energies around 1 keV are in very
good agreement with the observations of Lin (1998) under quiet conditions. At higher energies,
the whistler waves enhance the electron fluxes considerably compared to the model run without
waves, but the slope of the spectrum is still steeper than that observed in the solar wind. However,
the tendency is clear. One possible reason for the steeper slope are the high-velocity boundaries of
the simulation box. The computational domain is restricted to 10 keV, so boundary effects might
influence the results at energies of several keV.

Another aspect is the location of the lower boundary of the simulation box. Its position is in the
transition region at a temperature of 7.3 · 105 K, within the coronal funnel. Below this border,
in the transition region, the magnetic field strongly increases towards the sun. This leads to high
values of the electron Alfvén speed, see Fig. 4.3. But the simulation box cannot extend further
down, since the stronger Coulomb collisions would require smaller time steps in the simulation,
driving up computer costs too much.

4.4 Suprathermal electrons in a closed loop

The solar wind results in the previous section show enhanced fluxes of suprathermal electrons,
and thus demonstrate that the quiet solar corona is capable of generating them even under quiet
solar conditions without any flare activity. But these model calculations did not investigate either
whether kappa-like electron VDFs form, as observed in the solar wind (Maksimovic et al., 1997),
or how the suprathermal tails are shaped. Furthermore, the model was restricted to low electron
energies of a few keV. So a more comprehensive analysis of the electron acceleration mechanism
by resonant interaction with whistler waves in the corona requires an extension of the model to
higher energies. In the solar wind, suprathermal electrons are observed up to 100 keV (Lin, 1998),
so this energy range should be covered.

Vocks & Mann (2008) provide a more detailed analysis of the evolution of coronal electron VDFs
under the influence of resonant interaction with whistler waves. The previous model calculations
were limited to electron energies of less than 10 keV, but now suprathermal electron energies of
several tens of keV are to be studied. Furthermore, in order to avoid any influence of the high-
energy border of the computational domain on the simulation results, the simulation box should
cover energies of the order of 100 keV. The model calculations start, as in the previous section,
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with a kappa distribution. The kappa value had to be lowered to κ = 80 in order to avoid too steep
phase-space gradients at energies of 100 keV. This still ensures that it is indeed the whistlers, and
not some initial or boundary condition, that leads to suprathermal tail formation. The geometry
of the simulation box is a closed coronal loop, and not a coronal hole as in the previous section
which is open towards interplanetary space. The closed geometry has the advantage that it enables
a study focused on the physical processes in the corona, without the need to either define an upper
boundary condition for the electron VDF in the corona, or extend the model into the solar wind.

Electron energies of the order of 100 keV require the relativistic form (1.6, 1.7) of the Boltzmann-
Vlasov equation. The momentum coordinates can be described as (p‖, p⊥), the components paral-
lel and perpendicular to the magnetic field, respectively. But such a coordinate system becomes
problematic for higher electron energies and momenta, p. This is because the wave-electron inter-
action and the mirror force in a diverging magnetic field geometry both change the pitch-angles of
electrons. If the simulation box is a rectangle in (p‖, p⊥) space, then lines of constant p cross both
the high-p‖ and high-p⊥ boundaries of the box for some high p. As a consequence, this section of
the simulation box is strongly influenced by both boundaries, and the boundary conditions applied
there. This can cause numerical instabilities and renders the simulation results useless. The use of
p and the pitch-angle, θ, as momentum-space coordinates overcomes this issue.

4.4.1 Coronal loop background model

The Coulomb collisions and the whistler wave phase speeds depend on plasma background param-
eters like densities, drift velocities, and temperatures of both ions and electrons. These parameters,
as well as the magnetic field geometry, have to be provided by a background model for the coronal
loop under study.

The background model does not change during a simulation run, so electrons that are described by
the Boltzmann-Vlasov equation (1.7) can be regarded as test particles. The solution of Eq. (1.7)
again requires the definition of an initial condition for the electron VDF, which is a κ = 80 distri-
bution with the same density, drift velocity, and temperature as in the background model. This is
close to a Maxwellian and avoids any artificial insertion of suprathermal electrons into the simu-
lation box.

The coronal loop geometry, i.e. the magnetic field, B(s), and the angle ψ(s) between ~B and the
direction normal to the solar surface, is calculated from photospheric potential magnetic field
extrapolation, e.g. (Seehafer, 1978; Sakurai, 1982). The same algorithm is used as in (Aurass et
al., 2005). A photospheric dataset from the 28 Oct 2003 has been used to reconstruct the loop, but
for a region that is separated from the active region that produced the strong flare events of that
day.

The “upper” and “lower” boundaries of the simulation box, with respect to the spatial coordinate
along the loop, s, are located in the transition region. The temperature inside the loop is set to
1.4 · 106 K for both electrons and protons, and the particle number densities at the coronal base is
Ne = Np = 2 · 1015 m−3. Inside the loop, the pressure is hydrostatic, and there is no plasma flow
along the loop.

Figure 4.10 shows the loop height, magnetic field, particle number densities of both electrons and
protons, and electron Alfvén speeds as functions of s. The total length of the loop is 210 Mm,
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Figure 4.10: The coronal loop background model. Shown are loop height, z, magnetic field, B,
particle number densities, N, and electron Alfvén speed normalized to the speed of light, vA,e/c,
all as functions of the spatial coordinate, s, along the loop. Electrons and protons have the same
densities, N = Ne = Np.

its maximum height is zmax = 63.5 Mm at s = 115 Mm. The strong density gradients of the
transition region are barely visible at the s = 0 Mm and s = 210 Mm edges of the plot. The
borders of the simulation box are located at a temperature of 4 · 105 K. It clearly can be seen that
the loop is not symmetric. The magnetic field at the loop footpoints is B(s = 0 Mm) = 137 G
and B(s = 210 Mm) = 92 G, and the minimum value of B is not reached at the loop top, but at
s = 162 Mm with Bmin = 2.3 G. This also leads to high values of the electron Alfvén speed near
the footpoints, while the speed near the magnetic field minimum is very small. Therefore, electron
acceleration will be strongest close to the loop footpoints.

The whistler waves enter the coronal loop at both footpoints. Again, the waves are assumed to be a
high-frequency tail of the same wave spectrum that is discussed for coronal heating, e.g. (Cranmer
et al., 1999; Vocks & Marsch, 2002). The ion cyclotron waves discussed in these papers are left-
hand polarized, but it is reasonable to assume that not only left-hand, but also right-hand polarized
waves, i.e. whistler waves, are present. The whistler wave spectrum is set up as a power law,
Bω ∝ ω−α, with an index α = 1.3. The total wave power is chosen in such a way that the total
energy content of the full spectrum, from the 5-minute oscillations up to the electron cyclotron
frequency, corresponds to a wave energy flux density of 275 Wm−2 (Hollweg, 2006). The waves
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propagate into the loop, and the evolution of the wave spectrum due to the spatial variation of the
phase speed and the absorption by electrons is considered in the model.

4.4.2 Resulting coronal loop electron VDFs

The Boltzmann-Vlasov equation (1.7) is now solved numerically for this loop. The electron mo-
mentum range covers values up to pmax = 0.6 me c, that corresponds to energies of up to 100 keV.
The total simulation time is 80 s. This allows electrons with thermal speed to travel from one foot-
point to the other one, and back. So the time is long enough to let the numerical system “forget”
its initial condition, and indeed it is found to have reached a final steady state.

The results presented here have been obtained with a grid spacing of the momentum coordinate
of ∆p = 2000 km s−1 me. This is less than half of the thermal speed inside the loop, and fine
enough to study the formation of suprathermal VDF tails. In order to ensure that the results shown
here are indeed based on whistler-electron interaction, and are not an artifact due to numerical
diffusion in momentum space, the calculation has been re-run with a finer ∆p = 1500 km s−1 me,
since numerical diffusion strongly depends on ∆p. The results do not differ significantly.

Figure 4.11: Isoline plots of the electron VDFs close to the loop footpoints at s = 0 Mm (left) and
s = 210 Mm (right). The region with high isoline density marks the boundary between electrons
that have entered the loop at the footpoints and electrons that have been mirrored inside the loop,
as described in the text.

Figure 4.11 shows the resulting electron VDFs at both loop footpoints, s = 0 Mm (left) and
s = 210 Mm (right). The VDFs clearly demonstrate the effect of the resonant interaction with
whistler waves. At s = 0 Mm, the waves enter the loop with wavenumbers k‖ > 0, and from
the resonance condition, Eq. (2.7), it follows that only electrons with p‖ < 0 can interact with
these waves. The deformation of the VDF towards “kinetic shells” in this momentum range can
clearly be seen in the left part of the figure. At the s = 210 Mm footpoint, the whistler waves
entering the loop propagate towards smaller s. Thus, k‖ < 0, and the resonance condition requires
p‖ > 0. The corresponding “kinetic shells” can be seen in the right part of Fig. 4.11. These
deformations of initially isotropic VDFs demonstrate that electron acceleration is happening due
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to the high wave phase speeds near the footpoints. As an example, electrons are diffused from
(p‖ = −0.15 me c, p⊥ = 0) to (p‖ = 0, p⊥ = 0.3 me c), which corresponds to a 4-fold increase of
energy.

The sections of electron momentum space that are not affected by the whistler-electron interaction,
i.e. p‖ > 0 at s = 0 Mm and p‖ < 0 at s = 210 Mm, respectively, are populated by electrons that
just have entered the loop through the footpoint boundaries. Their VDFs are close to the kappa
distributions, with κ = 80 and transition region densities and temperatures, that are used as spatial
boundary conditions of the simulation box, and do not show pronounced suprathermal tails. As a
consequence, a strong phase-space density gradient develops at the boundary between these two
electron populations, that can be seen as regions with high isoline density in the figure.

Figure 4.12: Isoline plots of the electron VDFs at heights of 1 Mm above the loop footpoints. The
spacing of the isolines is the same is in Fig. 4.11, and the high isoline density between electrons
trapped inside the loop and having entered it through the footpoints is still visible.

Inside the coronal loop, the VDFs evolve further. Figure 4.12 shows that with increasing height
above the transition region, the mirror force in the widening loop (cf. Fig. 4.10 (b)) pushes the
electrons towards positive p‖ (s = 1 Mm) and negative p‖ (s = 209 Mm), respectively. These
suprathermal electrons then propagate towards the loop top region. Due to this process, some loss-
cone structures form that potentially could lead to whistler-wave excitation (Scharer & Trivelpiece,
1967; Mann et al., 1989). But considering such plasma instabilities is beyond the scope of the
model calculations presented here. The phase-space densities of the loss-cone regions are also
relatively low, so that the wave growth would be quite weak.

At the loop top, the electron VDF is more isotropic, as shown in figure 4.13. This is expected,
since the suprathermal electrons from both footpoints reach this region. The whistler-electron
interaction weakens here, since the magnetic field and thus the electron gyrofrequency barely
changes with s, and most of the spectral wave power has been absorbed further down, closer to
the footpoints. Furthermore, the effect of the whistlers is reduced to pure pitch-angle diffusion due
to the low wave phase speeds, see Fig. 4.10 (d). The VDF is not perfectly symmetric, since the
loop itself is asymmetric, see Fig. 4.10.
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Figure 4.13: Isoline plots of the electron VDFs at the loop top, s = 115 Mm. The spacing of the
isolines is the same is in Fig. 4.11.

Two components of the electron VDF can be distinguished, a thermal core and an extended halo.
The thermal core forms due to the strong Coulomb collisions in the dense coronal loop, along
with the weak local wave-electron interaction. The temperature of the core equals that of the
background model, T = 1.4 · 106 K. So it is apparent that a halo of suprathermal electrons has
formed, in excess of the thermal population.

Figure 4.14: Pitch-angle average electron VDF at the loop top, s = 115 Mm. The dotted line is a
Maxwellian VDF with the same density and temperature.

For a further study of this suprathermal tail, Figure 4.14 shows a plot of the pitch-angle average
electron VDF at the loop top, s = 115 Mm. The thermal core and the deviation of the halo
distribution from a Maxwellian VDF are clearly visible. The thermal core extends up to an electron
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momentum of about p = 0.15 me c, that corresponds to an energy of 6 keV. This is a consequence
of the high density in the coronal loop. Above this energy, the halo distribution becomes visible.
It can roughly be approximated by a double power-law. At low energies, up to about p = 0.2 me c

(10 keV), it is relatively flat, but at higher energies up to the full 100 keV, it becomes steeper.

Figure 4.15: Pitch-angle average electron VDF at the loop top, s = 115 Mm, for low energies.
The dotted line is a power-law, p−α, with α = 10.

The energy range below 10 keV is of special interest, since it allows for a direct comparison of
the simulation results with the solar wind measurements of Maksimovic et al. (1997), although
the model does not include a mechanism for electron release from the loop into interplanetary
space. Figure 4.15 shows the pitch-angle average VDF at lower energies, together with a power-
law fit, p−α, with index α = 10. According to the definition of the kappa function, Eq. (2.3), this
corresponds to a κ = 4 for suprathermal energies. The fit of the electron VDF by the power law is
very good in the momentum range p = 0.15 − 0.2 me c, that just corresponds to energies of 6 – 10
keV, which are relevant for the comparison with solar wind measurements.

The influence of the high-p boundary condition

For low energies of less than 10 keV, the suprathermal electron halo distribution starts with a
relatively small power-law index. But for higher energies above 10 keV, the slope of the VDF
becomes steeper, as shown in Figs. 4.14 and 4.15. This raises the question of why the suprathermal
electron production becomes less efficient at higher energies.

There are several potential reasons for the relatively low number of electrons at higher energies.
One is the acceleration mechanism through diffusion along “kinetic shells” itself. The energy gain
associated with the electron transport from low p‖ to high p⊥ depends on the ratio between the
wave phase speed, vph, and electron speed, v. A high vph/v leads to a strong energy gain, but with
increasing electron energy, v also increases, and the electron energy gain decreases. On the other
hand, electrons in the coronal loop are reflected by the mirror force in the converging magnetic
field geometry at the footpoints. The faster they are, the more acceleration cycles they can undergo
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in a given time interval. But electrons with sufficiently small pitch-angles are not mirrored, and
escape from the loop into the transition region and chromosphere. So faster electrons can have a
higher escape rate.

But not only the footpoints, i.e. the spatial boundaries of the simulation box, can influence the
results. At a first glance, an electron energy range of 100 keV in the simulation seems to be
enough for a discussion of the electron VDF at 10 keV. But from the “kinetic shells” in Figs. 4.11
and 4.12 it can be seen that the high-p boundary of the simulation box does influence the deep
interior of the box. The pitch-angle diffusion in the wave reference frame transports electrons
from relatively low p‖ = 0.2 me c towards the high-p boundary at a pitch-angle close to π/2. So
the boundary condition, which is an extrapolation based on the κ = 80 distribution also used as
initial condition, is directly connected to the results for 10 keV electrons. Therefore, it is necessary
to extend the range of p to avoid the boundary influence.

Figure 4.16: Pitch-angle average electron VDF at the loop top, s = 115 Mm, for low energies.
Shown are the results of simulation runs with pmax/(me c) = 0.6 (dash-dot-dot-dotted line), 0.8
(dash-dotted line), 1.0 (dashed line), and 1.2 (solid line), as well as a Maxwellian VDF (dotted
line).

Figure 4.16 shows the resulting pitch-angle average electron VDFs at the loop top for multiple
simulation runs with subsequently increased momentum ranges, pmax/(me c). For the lowest value
of 0.6, the plot is identical to Fig. 4.15. An increase to pmax/(me c) = 0.8 leads to a strong
increase of the VDF in the range p/(me c) = 0.15 − 0.25. This is in agreement with the finding
that the “kinetic shells” at the loop footpoints connect p = 0.2 me c with the high−p boundary for
pmax/(me c) = 0.6. The extension of the momentum range alleviates the influence of the boundary
condition considerably. A further extension to pmax/(me c) = 1.0 leads to an additional increase
of the electron VDF around p = 0.2 me c , but then it saturates. Increasing pmax further to 1.2 me c

does not influence the result. So it can be concluded that the simulation results for suprathermal
electrons are not affected by the boundary condition any longer for this high momentum range,
which corresponds to a maximum energy of 287 keV in the model.

A comparison of the model results for pmax/(me c) = 0.6 and pmax/(me c) = 1.2 in Fig. 4.16 shows
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that the former strongly underestimates the production of suprathermal electrons in the loop. So
the analysis of the suprathermal population from the previous sub-section should be repeated for
the pmax/(me c) = 1.2 result.

Figure 4.17: Pitch-angle average electron VDF at the loop top, s = 115 Mm, for low energies.
The dotted line is a power-law, p−α with α = 4.4.

Figure 4.17 shows this electron VDF in the same style as in Fig. 4.15, together with a power-law
fit, p−α. But here the index can be set as low as α = 4.4. This is so low that it is not possible
to calculate a corresponding κ. The term (2κ − 3) in the definition of the kappa distribution,
Eq. (2.3), requires that κ > 1.5. For high p, the kappa distribution turns into a power-law p−2(κ+1),
so that a minimum α = 5 is required for the definition of a corresponding κ. So this calculation
demonstrates that the electron VDF can develop suprathermal tails which are even stronger than
can be described by a κ distribution.

The suprathermal electron population is now much stronger as compared to Fig. 4.15, with higher
phase-space densities, and it separates from the thermal core at a lower momentum p = 0.13 me c,
which corresponds to an electron energy of about 4 keV. So the power-law fit is now valid for the
energy range of 4 - 10 keV, as compared to 6 - 10 keV in Fig. 4.15. The previous calculation did
indeed underestimate the suprathermal electron production.

Figure 4.18 shows the same electron VDF as in Fig. 4.17, together with a fit by a combined
Maxwellian and kappa distribution. The Maxwellian VDF corresponds to the background plasma
in the loop. The kappa distribution has a κ = 1.8 and a density of 3 · 10−9 times the background
electron density, Ne. This is Nκ = 3 ·106 m−3 in absolute units. The thermal momentum, pth, of the
kappa component corresponds to the background temperature, T = 1.4 · 106 K, but the fit is very
insensitive to this parameter.

This fit of the loop VDF with a combined core and kappa distribution resembles the solar wind
analysis of (Maksimovic et al., 1997). The low kappa value is in good agreement with their
results. But the electron energies where the kappa component becomes apparent are much higher
here. This is due the strong Coulomb collisions in the dense coronal loop. Electrons with energies
below 4 keV are quickly thermalized. The kink of the VDF at p = 0.13 me c clearly shows that
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Figure 4.18: Pitch-angle average electron VDF at the loop top, s = 115 Mm, for low energies.
The dotted line is a Maxwellian + kappa distribution with κ = 1.8 and density Nκ = 3 · 10−9 Ne.

the slower electrons are collision dominated. The diffusion of electrons in momentum space due
to the Coulomb collisions can also be responsible for the deviation between the electron VDF and
the combined core + kappa distribution around p = 0.12 me c.

Results with coronal funnels

The electrons in the model calculations presented here are confined to a coronal loop. If they ap-
proach a loop footpoint, they experience the mirror force in the converging magnetic field towards
the footpoint. The force arises from the conservation of magnetic momentum. If the initial pitch-
angle is sufficiently large, the electrons are reflected back into the loop. But electrons with small
enough pitch-angles can escape from the loop towards the transition region and chromosphere.

So the quality of the magnetic confinement determines what fraction of the electrons can escape
the loop at each footpoint. The pitch-angle diffusion of the electrons due to resonant interac-
tion with whistler waves complicates the picture, since it modifies the magnetic momentum, but
generally the electrons are better confined if the magnetic field converges more strongly at the
footpoints.

The electron pitch-angle diffusion in the wave reference frame, and the associated electron accel-
eration, can be seen in Fig. 4.11. Electrons with sufficiently large pitch-angles are mirrored back
into the loop, as it is evident from Fig. 4.12, that shows the electron VDFs at a slightly larger
height in the loop. These electrons move through the interior of the loop, and eventually approach
the other footpoint. There they interact with the whistler waves entering at this footpoint. The
diffusion and the mirror force in the given magnetic field geometry again determine what fraction
of them is reflected back into the loop, and what fraction leaves the loop. Those electrons that
are reflected move back towards the first footpoint, where they are again mirrored and diffused,
and so on. So electrons can undergo multiple such cycles, and be accelerated at each footpoint
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passage. This leads to an enhancement of the suprathermal tails, but eventually an equilibrium
with the losses due to imperfect magnetic confinement is reached.

This raises the question of what influence the quality of the confinement, i.e. the increase of the
magnetic field toward the loop footpoints, has on the simulation results. To investigate this, the
simulation is run again for a loop where the magnetic field increases within 4 Mm of the footpoints
to the two-fold value as compared to the previously used loop geometry.

Figure 4.19: Modified loop geometry as a function of the spatial coordinate, s, along the loop.
Shown are the new, stronger magnetic field, B (solid line), and the previously used model (dashed
line). The same increase of the magnetic field is applied to the s = 210 Mm footpoint.

Figure 4.19 shows the new magnetic field as a function of the loop length, s. For the s = 210 Mm
footpoint, a similar increase of B is applied. Such a rapid increase of the magnetic field towards
the transition region resembles a coronal funnel.

Figure 4.20 displays the simulation result for the new magnetic field geometry in the same style as
in Fig. 4.17, together with a power-law fit, p−α. The better magnetic confinement in this simulation
run might lead to the assumption that the suprathermal tails of the electron VDFs are stronger
here. But the somewhat surprising result is that they are actually weaker. The power-law index
has increased to a steeper α = 6.4, and the overall phase space density is lower.

The fit of the new electron VDF to a combined Maxwellian and kappa distribution in figure 4.21
confirms this finding. The value κ = 2.2 is in agreement with the power-law index α = 6.4 from
above, since α = 2(κ + 1) according to the definition of the kappa distribution, Eq. (2.3). The
density of the kappa population is only 10−10 of the total electron density, Ne. This is much less
than the 3 · 10−9 Ne in the previous simulation run.

So it has to be concluded that the the electron acceleration is now much less efficient despite
the better confinement of the electrons in the loop. The reason for this is the higher magnetic
field, B, close to the loop footpoints. A higher B leads to a higher electron cyclotron frequency,
Ωe = eB/me, and thus the resonance frequencies of the electrons are also higher. Since the
whistler waves enter the simulation box with a power-law spectrum ∝ ω−1.3, there is less wave
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Figure 4.20: Pitch-angle average electron VDF at the loop top, s = 115 Mm, for low energies.
The dotted line is a power-law, p−α with α = 6.4.

Figure 4.21: Pitch-angle average electron VDF at the loop top, s = 115 Mm, for low energies.
The dotted line is a Maxwellian + kappa distribution with κ = 2.2 and density Nκ = 1 · 10−10 Ne.

power available for electron acceleration close to the loop footpoints. But the region close to the
footpoints is where the wave phase speeds are highest, and high phase speeds are necessary for
an efficient electron acceleration from low p⊥ to high p‖, cf. Fig. 4.11. The minimum value of B

in the simulation box has not been changed, so in total there is not less wave energy available for
absorption by the electrons in this simulation run than before, but most of it is shifted now further
away from the footpoints, where the acceleration is less effective.

So the weaker electron acceleration cancels the effect of the better magnetic confinement of the
suprathermal electrons inside the loop. The reason for the weak acceleration is the strong mag-
netic field at the footpoints, that leads to low wave power at electron resonance frequencies. To
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overcome this issue, another simulation run has been performed, with B reduced by half. So now
the magnetic field at the footpoints is the same as in the first simulations, Fig. 4.10 (a), and it is
reduced to half of its original value inside the loop. But this simulation also resulted in a lower
number of suprathermal electrons as compared to Figs. 4.17 and 4.18. This is due to the reduced
wave phase speeds, that decrease rapidly close to the footpoints as B is reduced. Lower wave
speeds mean less efficient electron acceleration, and even at low heights in the loop the electrons
are pitch-angle scattered, but hardly accelerated.

These studies show that the suprathermal electron population inside the loop does depend on the
loop geometry. But there is no simple recipe for strong suprathermal tails. Their formation is a
compromise between efficient acceleration, that requires a strong magnetic field for high whistler
wave phase-speeds, and available wave power, that requires a not too strong B due the power-law
nature of the wave spectrum, which provides less wave energy for higher frequencies.

4.5 Conclusions

The simulation results presented in this chapter show that the quiet solar corona is capable of pro-
ducing pronounced suprathermal tails in electron VDFs. In the open magnetic field geometry of a
coronal funnel, the resonant interaction of electrons with whistler waves is capable of increasing
the flux of suprathermal electrons in the keV energy range by several orders of magnitude, see
Fig. 4.9. This model from chapter 4.3 does not include a mechanism that scatters electrons in
interplanetary space, they are just focused into the anti-sunward direction.

But electrons are scattered in interplanetary space, as it has been demonstrated in chapter 2.4. In
this kinetic solar wind model, electrons are pitch-angle scattered out of the strahl into an isotropic
halo that includes the sunward direction. So suprathermal electrons from the corona can return to
the Sun, and undergo multiple acceleration cycles. But a kinetic model run for this would require
very long simulation times, with computer costs way too high. In order to study this effect, the
kinetic model has been run in chapter 4.4 for the closed volume of a coronal loop. The results as
shown above demonstrate that the whistler waves produce suprathermal tails that can be fitted by
a power-law, ∝ p−α. The index α can be as small as α < 3. For energies up to 10 keV, the coronal
electron VDF can also be fitted with a combined Maxwellian + kappa distribution, with κ as small
as κ = 1.8.

The magnetic field geometry also influences the efficiency of suprathermal electron production.
Since the whistler waves are assumed to have a power-law spectrum with less energy at higher
frequencies, the wave power depends on the electron resonance frequencies, that are close to the
gyrofrequency. So a stronger magnetic field leads to less efficient electron acceleration. Further-
more, the variation of the magnetic field inside the simulation box determines the range of the
whistler wave spectrum that can provide energy for electron acceleration, and a stronger variation
leads to better confinement of the suprathermal electrons in the coronal loop. So a strong varia-
tion should lead to more suprathermal electrons. But it has been found that this is not necessarily
the case. Either a strong magnetic field at the footpoints leads to less efficient acceleration there,
or a low field inside the loop turns the “kinetic shell” formation into mere pitch-angle scattering
without much electron acceleration. So a modification of the loop geometry simultaneously has
opposite effects on the electron acceleration.
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This work focuses on the acceleration process of suprathermal electrons, starting from a nearly
Maxwellian VDF. Therefore, a closed volume of coronal plasma is studied. But what are the
consequences of these results for solar wind electron VDFs?

Electrons in the fast solar wind originate from open magnetic field geometries like the coronal
funnel in chapter 2.4.2, but magnetically closed regions in the corona are the sources of the slow
solar wind. Maksimovic et al. (1997) have found pronounced kappa tails not only in fast, but also
in slow solar wind electron VDFs. So the simulation results are in agreement with observations
so far, although the model does not include any mechanism for releasing suprathermal electrons
from the loop into interplanetary space. But no magnetic confinement is perfect, although the
details of the escape mechanism can influence the relation between the VDFs of the electrons in a
closed loop and of those that escape into the solar corona. As a rough comparison between model
calculations and observations, take the density of suprathermal electrons in the model loop, which
has been found to be Nκ = 3 · 106 m−3. If this population could propagate freely into the solar
wind, and if the electron flux is conserved along a magnetic field line, then the electron density
would be reduced by the expansion factor of the magnetic field from the corona into the solar
wind. The magnetic field in the model corona is 2.4 G, and a typical solar wind magnetic field is
5 nT = 5 · 10−5 G. Thus, the solar wind suprathermal electron density would be 60 m−3. This is
much less than the 105 m−3 found by Maksimovic et al. (1997), but in the dense model loop all
electrons with energies below 4 keV are thermalized quickly by Coulomb collisions. This leads to
a reduction of the suprathermal electron population in the dense loop studied here.

For electron energies above 10 keV, the electron VDF deviates from the power-law and falls off
more rapidly, as can be seen in Figs. 4.17 and 4.20. So the superhalo component of solar wind
electron VDFs, as observed by Lin (1998), is not produced here and must have a different ori-
gin. The study on flare electron propagation in chapter 3.2.3 leads to the conclusion that these
are energetic electrons from flares that stay in the heliosphere for days. The reason for the low
number of suprathermal electrons in the range of a few tens of keV found here lies in the velocity
dependence of the acceleration mechanism. The efficiency of the acceleration by diffusion along
“kinetic shells” depends on the ratio between the wave phase speed, vph, and electron speed, v.
As v is increased, this ratio declines, and the diffusion process resembles more and more pure
pitch-angle diffusion without much energy gain for the electrons. More wave power does not
change the result very much either. As soon as the electron VDF has reached a kinetic shell form,
see Fig. 4.11, the acceleration mechanism is saturated. The resulting electron energy spectrum
is determined by the electron movement along the loop, together with the spatial variation of the
wave phase speeds, and thus of the “kinetic shells”. So the loop and magnetic field geometry
does influence the details of the result, but the qualitative picture with less efficient acceleration at
higher energies is quite robust.

The main result of this chapter is that the quiet solar corona is capable of producing suprather-

mal electrons even without any flare activity. The whistler waves responsible for that are the

high-frequency tail of a spectrum that is also discussed for coronal heating. Therefore, coro-

nal heating, solar wind acceleration, and production of suprathermal electrons are based

on a common mechanism. Since other stars than the Sun also have hot coronae, this is a

significant finding for solar-stellar connections.
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Part II

Plasma waves and instabilities
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Chapter 5

Plasma wave growth and damping rates

In the first part of the thesis a kinetic model for electrons in the solar corona and wind has been
presented. The model is based on a numerical solution of the Boltzmann-Vlasov equation, in-
cluding diffusion terms describing the resonant interaction of electrons with whistler waves. The
results of this model are electron velocity distribution functions (VDFs) that describe the phase-
space density of electrons. The interaction with whistlers shapes the electron VDFs, but the effect
of the electrons on the waves has only been considered in the models investigating suprathermal
electron production by means of an energy balance that yielded wave absorption rates.

The electron VDFs resulting from the kinetic model can strongly deviate from a simple Max-
wellian VDF. A Maxwellian is the VDF with maximum entropy for a given electron density and
temperature. So electrons with a non-Maxwellian VDF can not only absorb plasma waves, but
could also provide free energy for wave growth. Such microscopic plasma instabilities play an
important role in space and laboratory plasmas and are the subject of the second part of this thesis.

5.1 Complex dispersion relation and wave growth rates

The starting point for an investigation of plasma instabilities is the calculation of wave growth
or damping rates for a given electron VDF. Since electron energies of several tens of keV are
to be considered during solar flares, a relativistic description of the electrons is necessary, see
e.g. (Melrose, 1980).

5.1.1 Dispersion function and growth rates

The wave growth/damping rate, γ, is described as the imaginary part of the complex frequency

ω = ωr + iγ (5.1)

with ωr being the real part of the frequency, and i2 = −1. For a plane wave setup involving a factor
exp(−iωt), a negative γ corresponds to wave damping and a positive one to wave growth.

71
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Matsuda & Smith (1992) have developed a code for calculating the complex frequency, ω, that
aims for a direct solution of the dispersion relation

D(ω,~k) = 0 (5.2)

for a given wave vector, ~k. D(ω,~k) is the plasma dispersion function. The dispersion relation
yields both the wave frequency, ωr, and the growth rate, γ.

This method is based on finding a solution of the dispersion relation by varying ω for a given ~k.
Matsuda & Smith (1992) apply their program on highly unstable plasmas with γ ≈ 10−3Ωe, where
Ωe = eB/me is the electron cyclotron frequency in the magnetic field B.

In astrophysical plasmas, however, wave growth rates are often found to be much smaller, e.g. 10−8Ωe

as shown below. In such a case, the order-of-magnitude difference between γ and a wave frequency
near the electron cyclotron frequency is dangerously close to the limited numerical accuracy of a
computer, that is typically 10−8. For an accurate determination of γ in such a plasma, a different
approach is necessary.

In many textbooks on plasma physics, e.g. (Baumjohann & Treumann, 1996), a Taylor expansion
around a solution of the dispersion relation D(ω,~k) = 0 is presented:

γ(ω,~k) = − Im(D(ωr,~k))

∂Re(D(ω,~k)/∂ω)|γ=0

. (5.3)

In Eq. (5.3) the numerical accuracy of γ is determined by that of the calculation of the real and
imaginary parts of the dispersion function, and not by the ratio between γ and ωr. Furthermore,
Eq. (5.3) has the advantage that D(ω,~k) is only evaluated in the special case ω = ωr, i.e. γ = 0.
This greatly simplifies the numerical procedure for determining D(ω,~k).

For a study of microscopic plasma instabilities it is necessary to calculate the growth rate, γ, of a
wave with frequency ωr that propagates through a plasma with a given electron VDF. The angle
θ between the wave vector, ~k, and the background magnetic field, ~B is also given. Under these
constraints, the dispersion function D(ω, k~eθ) is well-defined for any wavenumber k, where ~eθ is
a unit vector that points in the direction indicated by θ. The first step is to find the wavenumber
of the wave mode under study, i.e. a zero of D(ω, k~eθ) as a function of k. Since only the case of
small γ ≪ ωr needs to be considered here, the unknown imaginary part of the complex frequency
is neglected, and ω is replaced by ωr. Then, a zero of the real part of the dispersion function is
sought:

Re(D(ωr, k~eθ)) = 0. (5.4)

It is possible that this equation has several solutions with different wavenumbers k that represent
different wave modes. In that case, the wave polarizations of the solutions and the cold plasma
dispersion relation can be used to identify the correct mode.

Once the wavenumber k and thus the wave vector ~k has been determined, the real and imaginary
parts of the dispersion function D(ω,~k) need to be evaluated. The frequency derivative of the real
part can easily be calculated by finite differences. Equation (5.3) then yields the wave growth
rate. In the next sections, the dispersion function D(ω,~k) for a given electron VDF that covers
relativistic energies is presented, and the methods of calculating the numerical values of its real
and imaginary parts are explained.
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5.1.2 Derivation of the dispersion function D(ω,~k)

The derivation of the dispersion function D(ω,~k) can be found in many textbooks of plasma
physics, e.g. (Montgomery & Tidman, 1964; Melrose, 1986). The formulae are presented here
in order to provide a self-contained description of the calculations.

The dispersion function can be written as

D(ω,~k) = det
(

c2

ω2
(~k~k − 1k2) + ǫ(ω,~k)

)

(5.5)

with the dielectric tensor
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and the matrix Sl defined as:
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The lower indices ‖ and ⊥ denote vector components both parallel and perpendicular to the back-
ground magnetic field, respectively. γL = (1− v2/c2)−1/2 = (1+ p2/(m2

jc
2))1/2 is the Lorentz factor.

The order of the resonance is denoted by l, and Jl represents the Bessel function of order l, Jl(x).
It is evaluated at x = k⊥p⊥/(q jB), while J

′

l
represents its derivative in x. The dielectric tensor

contains contributions from all particle species j in the plasma, with charge q j, rest mass m j, and
number density N j.

5.2 Computation of the dielectric tensor

The dielectric tensor with its integral over momentum space has to be evaluated for given gy-
rotropic particle VDFs, f j(p‖, p⊥). This integration is complicated by the resonance denominator
(k‖p‖ + lq jB − m jγLω)−1 that introduces a singularity for those (p‖, p⊥) that meet the resonance
condition

k‖p‖ + lq jB − m jγLω = 0. (5.8)

5.2.1 Split of the dielectric tensor

The Taylor expansion of the dispersion function D(ω,~k) in Eq. (5.3) only requires an evaluation
of the dielectric tensor in the limit γ → 0, i.e. ω→ ωr. This greatly simplifies the integration over
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momentum space in Eq. (5.6). In this limit, the factor 1/ω2 simply turns into 1/ω2
r . The resonance

denominator (k‖p‖ + lq jB − m jγLω)−1 needs some more attention. According to (Melrose, 1980),
it can be split into its real and imaginary parts:

1
k‖p‖ + lq jB − m jγLω

=
k‖p‖ + lq jB − m jγLωr

(k‖p‖ + lq jB − m jγLωr)2 + m2
j
γ2

Lγ
2
+

i
m jγLγ

(k‖p‖ + lq jB − m jγLωr)2 + m2
j
γ2

Lγ
2
.

(5.9)

In the limit γ → 0, the real part simply equals (k‖p‖ + lq jB − m jγLωr)−1, but the imaginary part
introduces the Dirac delta function:

lim
γ→0

m jγLγ

(k‖p‖ + lq jB − m jγLωr)2 + m2
j
γ2

Lγ
2
= πδ(k‖p‖ + lq jB − m jγLωr). (5.10)

Due to this split of the resonance denominator, the sums and integrals in Eq. (5.6) can be evaluated
independently for both parts. Thus, it is possible to split the dielectric tensor into a “real” and an
“imaginary” part:

ǫ = Re(ǫ) + i Im(ǫ). (5.11)

The terms “real” and “imaginary” are set in parenthesis, since the matrix Sl still contains complex
elements. The parts can be written as:
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and
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The “real” part is of Hermitian and the “imaginary” part is of anti-Hermitian structure. They
are associated with the reactive and dissipative parts of the plasma’s response to the wave field,
respectively (Melrose, 1986).

5.2.2 Evaluation of the “real” part

The “real” part of the dielectric tensor as defined in Eq. (5.12) is a complicated integral over the
whole momentum space that contains momentum derivatives of the particle VDF. It still has a
resonance denominator that leads to a singularity if the resonance condition (5.8) is met. It is very
complicated to evaluate this integral numerically for an arbitrary VDF.
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However, it can be simplified considerably. If the VDF has no short-periodic (in momentum
space) variations, the momentum derivatives can be expected to take their highest values if the
VDF f j(p‖, p⊥) itself has its highest values, i.e. within the thermal core of the VDF. Thus, the
thermal core of the distribution dominates the “real” part of the dielectric tensor. In space plasma
physics, the thermal core of a particle distribution is typically close to a Maxwellian VDF, even
in the tenuous plasma of the solar wind, see Fig. 1.3. Thus, it is reasonable to calculate Re(ǫ)
for a Maxwellian VDF that has the same particle number density and temperature as the VDF
f j(p‖, p⊥).

The fact that the thermal speed is nonrelativistic, vth ≪ c, even for electrons in the solar corona,
further simplifies Eq. (5.12). The electron thermal speed for electrons with a temperature of, e.g.,
T = 1.4 · 106 K is vth = 4600 km s−1. Thus, the thermal core and its contribution to Re(ǫ) can be
described in the nonrelativistic limit with a Lorentz factor γL = 1. This simplifies Eq. (5.12) con-
siderably, since it removes a complicated dependence on the momentum coordinate and enables
an analytic solution of the integral for a Maxwellian VDF.

Inserting a Maxwellian VDF, f j,M(p‖, p⊥) ∝ exp(−(p2
‖ + p2

⊥)/(2p2
th)), into Eq. (5.12) enables further

analytic treatment of Re(ǫ), since
(

k‖
∂ f j,M

∂p‖
+

lq jB

p⊥

∂ f j,M

∂p⊥

)

= −
f j,M

p2
th

(k‖p‖ + lq jB) (5.14)

and the corresponding factor in equation (5.12) becomes

−
f j,M

p2
th

k‖p‖ + lq jB

k‖p‖ + lq jB − m jωr
= −

f j,M

p2
th

(

1 −
m jωr

k‖p‖ + lq jB − m jωr

)

(5.15)

The momentum-space integral in Eq. (5.12) still has a singularity when p‖ meets the resonance
condition, but the integral now has the form of the well-known plasma dispersion function

Z(ζ) =
1
√
π

∫ ∞

∞

exp(−t2)
t − ζ

dt (5.16)

that yields well-defined values for all matrix elements of Re(ǫ).

5.2.3 Evaluation of the “imaginary” part

The evaluation of the “imaginary” part of the dielectric tensor, Eq. (5.13), is simplified consider-
ably by the Dirac delta distribution. The 2-dimensional integral over momentum space is reduced
to a line integral along the solution of the resonance condition, Eq. (5.8). It is noteworthy that
the geometry of the line p⊥(p‖) is that of a conic section (see e.g. Melrose Melrose (1986)). This
could be an ellipse, parabola, or hyperbola, depending on whether the wave phase speed vph is
greater, equal, or less than c cos θ, respectively, with light speed c and wave propagation angle θ
relative to the background magnetic field.

In velocity space, the corresponding line v⊥(v‖) always has the geometry of a resonance ellipse

(v‖ − v0)2

a2
‖

+
v2
⊥

a2
⊥
= 1 (5.17)
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with ellipse axes

a‖ =
ξc

√

k2
‖c

2 + l2Ω2
j,0

, a⊥ =
ξc

lΩ j,0
(5.18)

and a center location

v0 =
k‖ωrc

2

k2
‖c

2 + l2Ω2
j,0

(5.19)

Ω j,0 = q jB/m j is the electron cyclotron frequency in the non-relativistic limit, and ξ is defined as:

ξ =

√

√

l2Ω2
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‖ω

2
r c2

k2
‖c

2 + l2Ω2
j,0

(5.20)

For a given (ωr,~k), only the part of the VDF along the line p⊥(p‖) contributes to Im(ǫ). An
important consequence is that the integration path might avoid the thermal core of the VDF, and
cross a structure of the distribution that provides free energy for wave growth, e.g. a loss cone. In
that case, the integral is not affected by the much higher phase-space density of the thermal core,
and numerical errors due to the orders-of-magnitude difference between the phase-space densities
cannot occur. This is why the method presented here enables an accurate treatment of small wave
growth/damping rates.

5.3 Calculation of the dispersion function

With the numerical values for the dielectric tensor at hand, the dispersion function, Eq. (5.5), can
now be calculated easily for a given (ωr,~k) and particle VDFs f j(p‖, p⊥). Inserting the results into
Eq. (5.3) finally yields the wave growth rate.

It turns out that the imaginary part of the dispersion function, Im(D), is of first order in the “imag-
inary” part of the dielectric tensor. Thus, if the resonance line through momentum space only
traverses regions with low values of the VDF, Im(D), and by means of Eq. (5.3) the wave growth
rate, will also be low.

On the other hand, the real part of the dispersion function, Re(D), is of second order in the “imagi-
nary” part of the dielectric tensor. Since this term is small for small wave growth rates, this justifies
the use of the real part of the dispersion function as a substitute for finding a zero of the dispersion
function in Eq. (5.4) for calculating the wavenumber of the wave mode under consideration.

In the following chapters, this method will be applied on wave generation from loss-cone dis-
tributions of electrons in the solar corona. This could be either electron cyclotron maser or
whistler wave emission, depending on the ratio of plasma frequency to electron cylcotron fre-
quency, ωp/Ωe.



Chapter 6

Electron cyclotron maser emission from

solar coronal funnels

The generation of electromagnetic waves through the electron cyclotron maser mechanism is well
known as a source of planetary radio emission like Earth’s auroral kilometric radiation (Wu &
Lee, 1979) or Jupiter’s decametric radiation (Wu & Freund, 1977).

The electron cyclotron maser is based on the conversion of free energy provided by a loss cone
distribution of the electrons into X-mode plasma waves and can be active in a plasma with a
plasma frequency well below the electron cyclotron frequency, ωp ≪ Ωe (Melrose et al., 1984).
The X-mode waves are emitted nearly perpendicular to the background magnetic field (Wu & Lee,
1979; Omidi et al., 1984; Ladreiter, 1991).

The electron cyclotron maser theory has not only been applied on planetary magnetospheres, but
also on solar flares (Melrose, 1982; Conway & Willes, 2000). Energetic electrons are injected
near the looptops during the flare, propagate downwards and are mirrored in the magnetic field
geometry that converges towards the footpoints. Electrons with low pitch angles penetrate deep
into this magnetic mirror configuration. They are scattered in the cooler and denser medium of the
transition region and do not return into the loop. Thus, the electron velocity distribution function
(VDF) can form a loss cone in a flaring loop.

But it is possible that electron loss cone VDFs can be formed in the solar atmosphere also under
quiet conditions without any flare activity. Coronal funnels (Gabriel, 1976) are magnetic structures
that are open towards the interplanetary medium. They are characterized by a rapid expansion of
magnetic flux tubes in the transition region from the chromosphere towards the corona. On the
one hand, in the chromosphere and below the gas pressure is much larger than the magnetic
field energy density. Consequently, the convective motion of the supergranular cells accumulates
the magnetic field at the borders of these cells. On the other hand, in the corona the magnetic
field energy density is much larger than the gas pressure of the tenuous coronal plasma. This
configuration leads to a rapid expansion of magnetic flux tubes in the transition region.

Such a magnetic field configuration acts as a magnetic mirror for coronal electrons that move
sunwards. Electrons with small enough pitch angles penetrate deep into the funnel and reach the
cooler and denser medium of the transition region or chromosphere. This electron population is
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scattered and subsequently thermalized there. It does not return into the corona, resulting in a loss
cone distribution in the low corona.

It is shown in the next section that the condition ωp < Ωe for the electron cyclotron maser can
be fulfilled in a coronal funnel. Therefore, Vocks & Mann (2004) have addressed the question
whether the quiet sun can be a source of radio emission through the electron cyclotron maser
mechanism. There is some observational evidence for radio emission from the chromospheric
network. Kosugi et al. (1986) report higher brightness temperatures in coronal holes at a frequency
of 36 GHz that is not found at a higher frequency of 98 GHz. Gopalswamy et al. (1999) analyze 17
GHz observations and find a temperature enhancement of the chromosphere below coronal holes.
They discuss the relation between enhanced brightness temperatures and unipolar regions. Moran
et al. (2001) observed enhanced 17 GHz radio emission from magnetic field concentrations.

The observed frequencies are well above typical electron cyclotron frequencies in coronal funnels,
e.g. 560 MHz for a magnetic field of B = 0.02 T (200 G). But nevertheless, these observations
further motivate the study whether coronal funnels are capable of emitting radio waves through
the cyclotron maser mechanism even under quiet solar conditions.

Vocks & Mann (2004) have applied the kinetic model for electrons in the solar corona and wind
on the transition region and low corona to study the loss cone formation in detail. The kinetic
model yields the electron VDF for each spatial location within the computation box. With these
simulation results at hand it is possible to investigate, by means of the method presented in the
previous chapter, whether the low coronal plasma is capable of emitting X-mode waves in an
efficient way.

6.1 Electron loss-cone VDF in a coronal funnel

The electron kinetic model of Vocks & Mann (2003), as described in Sections 2.4 and 4.3, is
applied on the plasma of a coronal funnel that is located in the transition region and low corona
of the Sun. The magnetic field geometry of the coronal funnel is adopted from the coronal funnel
model of (Hackenberg et al., 2000). The kinetic model includes the effects of the gravitational
and the charge separation electric fields, the diverging geometry of the coronal funnel, as well as
Coulomb collisions.

6.1.1 The simulation box

The lower boundary of the simulation box is located in the transition region at a temperature level
of 2 · 105 K. It extends over 20 000 km into the low corona. Due to the assumption of a gyrotropic
electron VDF, the simulation box has only one spatial coordinate s along the background magnetic
field, ~B. The value s = 0 corresponds to the lower bound of the simulation box. The velocity
coordinates v‖ and v⊥ parallel and perpendicular to ~B, respectively, cover electron speeds up to
4.3 · 104 km s−1.

Figure 6.1 shows the background plasma conditions within the simulation box. The rapid ex-
pansion of the magnetic field geometry can clearly be seen in Fig. 6.1a as a strong decrease of
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Figure 6.1: Background plasma conditions for the kinetic model as functions of the height, s,
within the simulation box. Shown are (a) magnetic field, (b) number density, (c) temperature, and
(d) ratio ω2

p/Ω
2
e . Protons and electrons have the same number densities and temperatures.

the magnetic field within the lowest 5000 km. Figs. 6.1b and 6.1c show the strong density and
temperature gradients of the transition region.

In Fig. 6.1d, the square of the ratio between the plasma frequency, ωp, and the electron cyclotron
frequency, Ωe, is plotted. The plot shows that the necessary condition for the cyclotron maser
mechanism, ωp < Ωe, is fulfilled within the coronal funnel and in the lowest corona, but not at
larger heights in the corona.

6.1.2 Simulation results

The electron VDF is now computed inside this simulation box. As initial condition a Maxwellian
electron VDF with the same density and temperature as in the background condition is defined.
The temporal evolution of the electron VDF is computed until a final steady state has been reached.

The simulation results indeed show the formation of a loss cone. It is most pronounced in the
strong gradients of the transition region and fades away with height in the low corona. This result
is expected, since electrons that move sunwards with small pitch angles, i.e. nearly parallel to the
background magnetic field, penetrate deep into the lower transition region where the density is
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higher and the temperature is lower. They are scattered and thermalized there, while electrons
with larger pitch angles are reflected at larger heights in the magnetic mirror of the coronal funnel.
As a result, in the upper transition region and lowest portions of the corona the phase space density
of electrons moving anti-sunwards with small pitch angle is reduced compared to that of electrons
with larger pitch angles. Thus, a loss cone is formed. At larger heights in the corona, the Coulomb
collisions fill up the loss cone, so it becomes less pronounced with height.

Figure 6.2: Electron VDF at a height of s = 96 km. The electron temperature at this height is
Te = 3.88 · 105 K, and the electron thermal speed thus vth = 2420 km s−1 The isolines are chosen
in such a way that they would form equidistant circles for a Maxwellian VDF.

Figure 6.2 shows the electron VDF at a height of s = 96 km in the simulation box. This height level
is located in the transition region at an electron temperature of Te = 3.88 · 105 K, corresponding to
an electron thermal speed of vth = 2420 km s−1. The loss cone is clearly visible, but it is restricted
to speeds v‖ > 4 vth, with vth being the electron thermal speed. At lower speeds, a thermal core
dominates.

The restriction of the loss cone to higher speeds of several thermal speeds has the consequence
that only a small fraction of electron kinetic energy is available for radio wave emission. But the
total number density of the electrons, Ne = 2 · 1014 m−3, is high enough to justify the assumption
that the available free energy density is still capable of emitting significant radio wave power.

6.2 X-mode wave growth and absorption in the low corona

In the previous chapter a method has been presented for calculating plasma wave growth/damping
rates for electron VDFs that are yielded by the kinetic model. It enables an evaluation of the dis-
persion function, Eq. (5.5), and thus with Eq. (5.3) of the wave growth rates, γ. For the X-mode,
the resonance ellipse, Eq. (5.17) that describes the line integral in velocity space for the “imagi-
nary” part of the dielectric tensor, can become rather small. Therefore, it differs significantly from
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the straight line in momentum space that results from the non-relativistic resonance condition and
its resonance speed, v‖, independent of v⊥:

v‖ =
(ω − lΩe)

k‖
(6.1)

This is essential for the cyclotron maser mechanism (Wu & Freund, 1977) and the reason why a
relativistic effect is so important for electron energies of just a few keV and below, as they are
discussed here.

Figure 6.3: Electron VDF at a height of s = 96 km, as in Fig. 6.2. Shown are also a sketch of a
resonance ellipse (dashed line) and an integration path for the nonrelativistic theory (dotted line).

Figure 6.3 shows the plot of the electron VDF from Fig. 6.2 together with a sketch of a resonance
ellipse and the nonrelativistic integration path according to Eq. (6.1). The difference between
relativistic and nonrelativistic case is considerable, in the relativistic case the whole integration
path is located inside the loss cone.

Now X-mode wave growth rates, γ are determined for the transition region electron VDF obtained
by the kinetic model. The growth rates are calculated as functions of the wave frequency ω

and the angle θ between the wave vector and the background magnetic field. This requires the
determination of a wave number, k, for each (ω, θ) by the dispersion relation, Eq. (5.2). Only
waves propagating away from the sun are considered, i.e. with k‖ ≥ 0, that possibly could be
observed in interplanetary space or on Earth.

Figure 6.4 shows the dispersion relation of X-mode waves propagating perpendicular to the back-
ground magnetic field. The ratio between plasma frequency and electron cyclotron frequency has
been chosen as ω2

p/Ω
2
e = 0.25, which is a typical value for the coronal funnel, see Fig. 6.1d.

The necessary condition for cyclotron maser emission, ω2
p < Ω

2
e , is fulfilled, but not ω2

p ≪ Ω2
e

(Ladreiter, 1991). This has an important influence on the dispersion relation. The X-mode branch
does not start at ω = Ωe, but well above Ωe. Since the wave emission at the resonance of the
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Figure 6.4: Dispersion relation of the X-mode propagating perpendicular to the background mag-
netic field in a plasma with ω2

p/Ω
2
e = 0.25

order l is restricted to a small region around lΩe by the resonance condition, Eq. (5.8), no wave
generation on the fundamental mode, l = 1, is possible in the coronal funnel.

6.2.1 Wave emission at ω ≈ 2Ωe

For this reason, wave emission is only possible at the order l = 2 or higher. So the case l = 2 is
now considered and wave growth rates are calculated for the electron VDF in the coronal funnel
from Fig. 6.2.

Figure 6.5: Growth rates of X-mode waves in the coronal funnel at s = 96 km as function of wave
frequency, ω, and propagation angle, θ. Positive growth rates, γ > 0, are displayed as a greyscale
plot, and negative growth rates, γ < 0, by isolines marked with numbers that denote an exponent,
e.g. -3 corresponds to γ/Ωe = −10−3.
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Figure 6.5 displays the wave growth rates that result from this electron VDF. γ has positive values
in a small region in frequency space. This region extends over all propagation angles θ, and
the maximum values of γ increase with θ. Thus waves propagating nearly perpendicular to the
background magnetic field are generated preferredly, as it is expected for the cyclotron maser
mechanism. But as θ → 90◦, the frequency range of the wave generation region becomes very
small and falls below the differences in resonance frequency that correspond to adjacent points in
velocity space of the computational grid of the kinetic model for the electrons. This plot shows
that the electron cyclotron maser mechanism is active and can produce X-mode waves in a coronal
funnel under quiet solar conditions.

The split of the frequency space into a region with wave growth at high frequencies and into
a region with wave absorption around and below the twofold electron cyclotron frequency is a
consequence of the resonance condition, Eq. (5.8). The resonance frequency, ωres, is determined
by:

ωres = lΩe + k‖v‖ (6.2)

The higher v‖, the higher is ωres. The plot of the electron VDF, Fig. 6.2, shows that the loss
cone and thus the region in velocity space that provides free energy to the electron cyclotron
maser mechanism, is restricted to high positive v‖. This is the reason for the wave growth at
high frequencies. This wave growth region is restricted towards even higher frequencies by the
decrease of the phase space density of the electron VDF at the correspondingly high v‖.

Waves with lower frequencies ω ≈ 2Ωe interact with electrons with lower v‖, where the VDF is
close to a Maxwellian or Bi-Maxwellian. This portion of the VDF provides no energy for wave
growth. Therefore, such waves suffer relatively strong damping with |γ| > 10−3Ωe, as can be seen
in Fig. 6.5.

This wave damping at frequencies ω ≈ 2Ωe and below does not prevent the waves generated
at higher frequencies from escaping into interplanetary space. In a coronal funnel and in the
corona, the magnetic field decreases with height and thus along the path of wave propagation.
So the frequency of a wave that is generated by the cyclotron maser mechanism, and propagates
away from the sun, increases in units of the local electron cyclotron frequency. This has the
consequence that the wave leaves the region of positive γ in Fig. 6.5 towards a frequency domain
where no wave-particle interaction and thus no absorption takes place.

However, the positive γ in Fig. 6.5 are very small, with a maximum of 10−8Ωe. This is due to the
restriction of the loss cone in Fig. 6.2 to higher electron speeds of several vth. At the speeds where
the loss cone appears, the phase space density of the electrons is already small compared to the
thermal bulk. This results in only a few electrons contributing to the wave growth. So only weak
wave emission can be expected from this electron cyclotron maser.

6.2.2 Wave emission and absorption at ω ≈ 3Ωe

As a wave that has been generated by the l = 2 resonance propagates further up into the corona,
its frequency ω remains constant, but the magnetic field and thus Ωe continue to decrease. At a
certain height, the condition ω = 3Ωe is fulfilled. For waves emitted at s = 96 km, this is the case
at a height of s = 513 km.
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Now the wave interacts with the electrons through the l = 3 resonance. Since the magnetic field
and Ωe continuously vary with height, the wave successively passes layers where its frequency is
slightly below, equal to, and slightly above 3Ωe.

Figure 6.6: Growth rates of X-mode waves in the coronal funnel at s = 513 km as function of
wave frequency, ω, and propagation angle, θ. Positive growth rates, γ > 0, are displayed as a
greyscale plot, and negative growth rates, γ < 0, by isolines marked with numbers that denote an
exponent, e.g. -6 corresponds to γ/Ωe = −10−6.

Figure 6.6 shows the wave growth rates for l = 3 at a height of s = 513 km. At a first glance,
the picture looks similar to Fig. 6.5 for l = 2 and s = 96 km. At higher frequencies waves are
generated, since the loss cone in the electron VDF is still present. But due to the lower density
at s = 513 km and the lower efficiency of the wave-particle interaction at l = 3 both the wave
absorption rates as well as the wave growth rates are smaller here.

Nevertheless, the wave absorption rate at ω = 3Ωe is still some orders of magnitude higher than
the maximum wave growth rate in the l = 2 case. The wave absorption at l = 3 is much stronger
than the emission at l = 2. It follows that a wave that is emitted in the coronal funnel by the l = 2
resonance can be damped at l = 3 down to a level below the initial background fluctuation that
started growing at l = 2 through the cyclotron maser mechanism.

Figure 6.6 shows some weak wave emission at frequencies little above 3Ωe, but these waves
also will interact with the next higher, i.e. l = 4, resonance at some larger height. There, the
wave absorption again will exceed the emission at l = 3, so that these waves also cannot escape
into interplanetary space. If the electron VDF still has the loss cone at the l = 4 level, some
wave emission might be possible, but these waves are absorbed at l = 5, and so forth. The loss
cone disappears with height above the coronal funnel, and the plasma frequency, ωp, eventually
becomes larger than Ωe at a certain level, see Fig. 6.1. Since the necessary condition ωp < Ωe is
not fulfilled, no wave generation is possible above this level.

To summarize, these model calculations show that X-mode wave generation through the cyclotron
maser mechanism is possible in a coronal funnel. But higher-order resonances absorb these waves
at larger heights in the corona, so they cannot escape into interplanetary space.
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6.3 Summary

The rapidly opening magnetic structure of a coronal funnel provides the geometry of a magnetic
mirror, and the condition ωp < Ωe is found to be fulfilled in the transition region and low corona
within this funnel. So it is reasonable to suppose and worth to investigate whether the quiet solar
atmosphere is capable of generating radio waves through the electron cyclotron maser mechanism
in coronal funnels. The electron cyclotron maser mechanism is well known to be active in other
space plasmas, as it generates Jupiter’s decametric radiation (Wu & Freund, 1977) or Earth’s
auroral kilometric radiation (Wu & Lee, 1979).

The electron VDF in a coronal funnel is calculated by the kinetic model that solves the Boltzmann-
Vlasov equation for the electrons. The VDF shows the expected loss cone. The condition ωp < Ωe

is also fulfilled at the same height within the funnel, so the cyclotron maser mechanism can be
active. The question is: Is it efficient enough to produce significant wave power that could be
observed?

To answer this question, the method described in chapter 5 of deriving the wave growth rate γ from
an electron VDF is used. The application of this method on the coronal funnel plasma shows that
the electron cyclotron maser mechanism is indeed active at the resonance orders l = 2 and higher,
but the wave growth rates are small. The waves can escape from the site of their generation, but
they are absorbed at a height level where they interact with the plasma through the resonance of
next higher order. Thus, an emission of X-mode waves from coronal funnels at the borders of the
supergranular network seems not to be possible.

The reason for the low wave growth rates, that are smaller than the absorption rates at the next
higher resonance, is the low phase space density of that portion of the electron VDF that shows
the loss cone. The loss cone is restricted to higher speeds v‖ as can be seen in Fig. 6.2, so its phase
space density is much smaller than that of the thermal bulk, that is mainly responsible for the wave
absorption at the next higher resonance.

Of course the exact shape of the electron VDF depends on the coronal funnel model assumptions
and parameters. However, due to the strong dependence of the Coulomb collision frequency on
the electron velocity, that scales with v−3, it cannot be expected that it is possible to extend the
loss cone significantly towards the thermal core, and thus to enhance the wave growth rates by
modifying the funnel geometry.

In a solar flare the conditions may be different and enable more efficient wave generation through
the injection of energetic electrons from the tops of the flaring loop, as it is described by (Melrose,
1982). Thus the Sun could produce radio waves through the cyclotron maser mechanism. How-
ever, under quiet solar conditions the condition ωp ≪ Ωe for wave generation on the fundamental
mode is not fulfilled, nor is the loss cone in the electron VDF located in a region with a high phase
space density sufficiently high for efficient wave production.

So it has to be concluded that the electron cyclotron maser mechanism is not able to provide
significant radio wave emission from coronal funnels at the supergranular network, despite the
fulfillment of the necessary conditions for the cyclotron maser mechanism.
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Chapter 7

Whistler wave excitation by relativistic

electrons during solar flares

The generation of X-mode waves that has been discussed in the previous chapter requires a plasma
frequency smaller than the electron cyclotron frequency, ωp ≪ Ωe, i.e. low density and strong
magnetic fields. This condition is only met at the bottom of coronal funnels, where the magnetic
field rapidly expands towards coronal holes with low plasma density. But this is the exception in
the corona, as readily seen in Fig. 6.1d. Especially in closed structures as coronal loops, the oppo-
site criterion ωp ≫ Ωe is fulfilled. In such a plasma, a loss-cone distribution leads to the emission
of whistler rather than X-mode waves. Due to the higher density that quickly thermalizes elec-
trons below the keV energy range, see chapter 4.4.2, loss-cone distributions are less prominent in
closed loops than in coronal funnels under quiet solar conditions. But if energetic electrons are
injected into the loop during a solar flare, then loss-cones can form and whistler waves are gener-
ated. Wave packets propagating along magnetic loops are the standard model for the generation
of so-called fiber bursts that are observed in dynamical radio spectra during solar flares. Vocks &
Mann (2006) have studied this whistler wave production in detail.

7.1 Solar flare electrons

Solar flares accelerate electrons to high energies (Lin, 1974) and lead to the generation of various
types of radio emission, see e.g. Warmuth & Mann (2004) as a review. Figure 7.1 shows a hard
X-ray photon spectrum of the flare of 28 October 2003 as observed by the RHESSI satellite (Lin et
al., 2002). The photon spectrum clearly shows the presence of a nonthermal power-law component
and additionally thermal emission. Supposing thick target bremsstrahlung (Brown, 1971), an
injected electron-flux spectrum with a power-law index of typically δ = 3.8 can be derived from
the photon spectrum (for the method, see e.g. Holman et al. (2003)). Such values are typical of
solar flares, see chapter 3.1.1.

These highly energetic electrons can be trapped in coronal loops. They are mirrored at the loop
footpoints and can establish a loss-cone distribution (Croley et al., 1978). Such a distribution
is unstable and gives rise to whistler wave excitation (Scharer & Trivelpiece, 1967; Mann et al.,
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Figure 7.1: Hard X-ray photon spectrum of the flare on 28 October 2003, 11:17:00 – 11:17:20 UT,
as observed by the RHESSI satellite. The spectrum shows a thermal (dotted line) and nonther-
mal power-law component (dashed line), as well as the power-law index δ = 3.8 of the derived
electron-flux spectrum.

1989). If these whistlers nonlinearly coalescence with high-frequency plasma waves, e.g. Lang-
muir waves, into radio waves, they can be observed as fiber (or intermediary drift) bursts (Kuijpers,
1975; Mann et al., 1987; Benz & Mann, 1998; Aurass et al., 2005) in the solar radio radiation,
e.g. within type IV radio bursts.

Figure 7.2 shows fiber bursts in the dynamical radio spectrum that was recorded by the Ob-
servatory of Solar Radioastronomy of the Leibniz-Institut für Astrophysik Potsdam (Mann et
al., 1992) during the event of 28 October 2003 at the same time as the photon spectrum from
Fig. 7.1 was taken. Fiber bursts appear as stripes of enhanced radio emission in the dm-range
(≈ 400 − 800 MHz) in dynamical radio spectra. They are drifting from high to low frequencies
with (intermediate) drift rates between those of type II and type III radio bursts (Kuijpers, 1975).

In previous studies, e.g. (Scharer & Trivelpiece, 1967; Mann et al., 1989), the energetic electrons
are considered to be non-relativistic. The recent paper by Aurass et al. (2005) shows that the
whistler waves associated with fiber bursts are generated by relativistic electrons. These results
have motivated the study of Vocks & Mann (2006), which requires treating the whistler wave
excitation within a relativistic framework that is provided by the method described in chapter 5.

7.2 Whistler-wave generation in flaring loops

7.2.1 Loss cone distributions

The electrons that are injected into the magnetic loop propagate along the magnetic field lines
down to the loop footpoints. The magnetic field increases towards the footpoints, and due to
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Figure 7.2: A typical part of a patch of fiber bursts in the dynamical radio spectrum of 28 Octo-
ber 2003. The image shows the spectrum’s temporal derivative. The data were recorded by the
Observatory of Solar Radioastronomy of the Leibniz-Institut für Astrophysik Potsdam.

conservation of magnetic moment the electrons are mirrored close to the footpoint and reflected
back into the loop.

But the smaller the initial electron pitch angle, the further an electron can go down the loop
before it is mirrored. Electrons with sufficiently small pitch angles can penetrate deep into the
solar atmosphere and are scattered and thermalized in the cool and dense transition region and
chromosphere. Since these electrons are not reflected back into the corona, a loss-cone electron
distribution forms in the flaring loop. Loss-cone distributions are well known for emitting whistler
waves, as observed in the solar corona (Kuijpers, 1975), as well as in Earth’s (Helliwell, 1975),
and Jupiter’s (Xiao et al., 2003) magnetosphere.

The objective now is to calculate whistler-wave growth rates for a loss-cone distribution that is
typical of a flaring loop, and to investigate whether the wave growth is fast enough to account for
the fiber-burst observations.

The model electron VDF has two components, the thermal background plasma of the solar corona
and a hot, nonthermal component that has been produced by the flare. The background plasma
has a Maxwellian VDF, fb(p), with a temperature of Tb = 1.4 · 106 K and a density of Nb =

1.33 · 1015 m−3, which corresponds to a plasma frequency of fp = 327 MHz where fiber bursts
usually are observed (Aurass et al., 2005). The magnetic field has been set to B = 3 · 10−4 T (3 G),
in agreement with the data analysis of Aurass et al. (2005). These plasma conditions correspond
to a ratio of ωp/Ωe = 39 between the plasma frequency and the electron cyclotron frequency. Such
high values of ωp/Ωe ≫ 1 are typical of the solar corona (Vocks & Mann, 2004). The nonthermal
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Figure 7.3: Electron model VDF for a loss-cone opening angle θL = 40◦.

component of the electron VDF has a kappa distribution

fh(p) =
NhΓ(κ + 1)

(π(2κ − 3)p2
th)3/2Γ(κ − 1/2)

(

1 +
p2

(2κ − 3)p2
th

)−(κ+1)

(7.1)

that results in a power law spectrum for high energies, where pth =
√

kBThme is the “thermal
momentum” of the electrons, and Γ(x) the gamma function. For the calculations presented here, a
value κ = 4 is chosen. This choice provides strong suprathermal tails of the VDF and agrees well
with the power law coefficient δ = 3.8 that can be derived (Brown, 1971) from the electron-flux
spectrum in Fig. 7.1. The numerical values for the temperature and density of the hot component,
Th = 107 K and Nh = 1.33 · 109 m−3 = 10−6 Nb, are chosen in agreement with the RHESSI data.

Within the loss cone, the hot component vanishes. With θL being the loss cone opening angle and
∆θ the width of the transition from the loss cone to the undisturbed hot component, the total model
electron VDF is defined as:

f (p, θ) = fb(p) +
1
2

(

1 + tanh
(

(π − θL) − θ
∆θ

))

fh(p). (7.2)

The coordinate system is defined in such a way that the coordinate axis parallel to the background
magnetic field points towards the loop footpoint where the mirroring and loss-cone formation
takes place. This is why the loss cone is in the range of high pitch angles θ ≈ π, i.e. at negative p‖.
A loss-cone transition width ∆θ = 10◦ is used here.

Figure 7.3 shows the model electron VDF for a loss-cone opening angle of θL = 40◦. The thermal
core and the extended hot component are both clearly visible, as is the loss cone. The model VDF
covers electron energies up to 100 keV, that require the relativistic method for calculating wave
growth rates.
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Figure 7.4: Growth rates for whistler waves as a function of wave frequency, ωr, and propagation
angle, θ. Positive growth rates, γ > 0, are displayed as a greyscale plot, and wave damping
rates, γ < 0, by isolines marked with numbers that denote an exponent, e.g. -7 corresponds to
γ/Ωe = −10−7.

7.2.2 Whistler-wave growth rates

With this model electron VDF, it is possible to apply the method from chapter 5 to calculate the
growth rates, γ, for whistler waves as a function of wave frequency, ωr, and wave propagation
angle, θ.

Figure 7.4 displays the whistler-wave growth rates that result from the electron VDF in Fig. 7.3.
An area with positive γ, i.e. whistler-wave generation, can be seen clearly. But this area is limited
both in frequency and wave-propagation angle. The frequencies with wave growth have an upper
limit of approximately ωr,max = 0.07Ωe. The limit on the wave-propagation angle, θ < 0.15◦, is
even more restrictive. Only whistlers that propagate almost parallel to the background magnetic
field are generated.

These limits on (ωr, θ) are due to the shape of the electron VDF and the resonance condition,
Eq. (5.8). The sign of the electron charge has been considered in the definition of the dielectric
tensor in Eq. (5.6), q j = −e. For waves that propagate parallel to the background magnetic
field, the perpendicular wave number vanishes, k⊥ = 0. For these waves, only the resonance order
l = −1 provides a contribution to the dispersion function, Eq. (5.5). For l = −1, it follows from the
resonance condition, Eq. (5.8), that the momentum coordinate parallel to the background magnetic
field, p‖, is negative for an electron that is in resonance with a whistler wave with frequency ωr.
The absolute value of p‖ decreases as ωr increases. At a frequency of ωr = 0.07Ωe the resonance
momentum p‖ leaves the loss cone and enters the thermal core of the electron VDF that is clearly
visible in Fig. 7.3. Since the electron VDF is Maxwellian there, there is no free energy available
for wave growth, and the wave is strongly damped.

The resonance condition and the structure of the dielectric tensor is also the reason for the strict
limitation of the wave growth to very small propagation angles θ < 0.15◦. For k⊥ = 0, only the
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Figure 7.5: Wave growth rate, γ, as a function of the wave frequency, ωr, for waves propagating
parallel to the background magnetic field.

resonance order l = −1 contributes to the dispersion function, but for k⊥ , 0, all l = 0,±1,±2, . . .
provide a contribution. These contributions are of first or higher order in k⊥ and thus seem to be
small for small k⊥, but nevertheless they can dominate the resulting wave growth rate. For l = 0,
the nonrelativistic resonance condition simply reads v‖ = ωr/k‖ ≈ vph. Thus, an electron that
moves with the wave phase speed is in the l = 0 resonance. For the model plasma, this speed
corresponds to less than one electron thermal speed. Thus, the nonrelativistic limit may be used
here, and the wave is in resonance with the thermal core of the electron VDF.

The integration over the resonance line in momentum space that leads to the “imaginary” part of
the dielectric tensor, Eq. (5.13), now traverses the thermal core of the electron VDF for l = 0.
The phase-space density is many orders of magnitude higher than in the loss cone where the
integration path of the l = −1 resonance is located. As a result, the wave damping by the thermal
core dominates the result for the wave growth rate, γ, even for very small propagation angles
θ ≈ 0.15◦.

7.2.3 Maximum wave growth rates

Due to this influence of other resonance orders than l = −1 for wave propagation angles θ > 0,
waves that propagate strictly parallel to the background magnetic field (θ = 0) have the highest
growth rates. In order to determine the maximum growth rate, γ can be plotted as a function of
the wave frequency, ωr, for a wave propagation angle θ = 0. Figure 7.5 shows the wave growth
rate for θ = 0. For low frequencies, γ increases with ωr. At ωr = 0.063Ωe it reaches a maximum
and drops sharply at higher frequencies. This is due to the turn to negative γ at ωr = 0.07Ωe that
can be seen in Fig. 7.4.

The reason for this behavior is the above mentioned dependence of the resonance frequency on
the electron speed or momentum coordinate parallel to the background magnetic field. The higher
the wave frequency, the lower the absolute value of p‖ (p‖ < 0). Thus, the integration path in the
formula for the “imaginary” part of the dielectric tensor, Eq. (5.13), traverses regions with higher
phase-space density asωr increases. Within the loss cone, this leads to an increase in the imaginary
part of the dispersion function, and by means of Eq. (5.3) the wave growth rate increases. The
maximum of γ is reached when the resonance velocity enters the thermal core where there is no
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Figure 7.6: Maximum wave growth rate, γmax, as a function of the loss-cone opening angle, θL.

more loss cone VDF. For the model VDF, Fig. 7.3, this is the case for p‖,res = 0.1 mec. For higher
frequencies, the waves interact with the thermal core and are damped, as described in the previous
subsection.

Since the loss cone provides the free energy for whistler-wave growth, its opening angle is a
critical parameter. In a coronal loop, the angle depends on the position along the loop and the
magnetic-field structure of the loop. The results that have been presented so far have been cal-
culated for an opening angle of θL = 40◦. Figure 7.6 shows the maximum wave growth rate as
a function of the loss-cone opening angle. It is no surprise that the wave growth vanishes if the
loss cone disappears, θL → 0. With growing θL, the maximum wave growth rate increases and
reaches a maximum for θL = 41◦. For even higher θL, the maximum γ decreases. For very wide
loss cones, there is a low phase-space density in a wide area of the momentum space, p‖ < 0, and
Eq. (5.13) yields a smaller Im(ǫ) and thus γ.

The results presented in this section show that whistler-wave generation by loss-cone distributions
in flaring loops is well possible. The waves are generated with frequencies of less than one tenth
of the electron cyclotron frequency. The corresponding wave velocities are in agreement with the
observed intermediate frequency drift rates of fiber bursts (Kuijpers, 1975; Benz & Mann, 1998).
Thus, whistler waves originating from electron loss cone VDFs can lead to the emission of fiber
bursts.

Figure 7.6 also allows for a determination of the maximum wave growth rate, which is possible in
the model plasma. This maximum value is γmax = 9.1 · 10−8Ωe = 4.8 s−1. This corresponds to a
wave-growth timescale of a few tenths of a second. It is noteworthy that this result is based on the
model assumption that the hot electron component has a number density of Nh = 10−6 Nb, with Nb

being the density of the thermal background plasma. From the structure of the “imaginary” part
of the dielectric tensor, Eq. (5.13), it follows that Im(ǫ) is proportional to Nh. Since it was found
at the end of chapter 5 that the imaginary part of the dispersion function, Im(D), is of first order in
Im(ǫ), Im(D) and thus γ scale linearly with Nh. Thus, the assumption of e.g. Nh = 10−5 Nb would
result in a maximum wave growth rate of 48 s−1.
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Figure 7.7: Wave growth rate, γ, as a function of the wave frequency, ωr, for a loss-cone opening
angle θL = 40◦. The background magnetic field is B = 4 G (solid line), B = 6 G (dotted line),
B = 12 G (dashed line), B = 29 G (dash-dotted line), and B = 58 G (dash-dot-dotted line).

7.2.4 Magnetic field dependence

The results in the previous section have been calculated for a background magnetic field of B =

3 · 10−4 T(3 G) that is typical of the height within a coronal loop where the electron background
density is Nb = 1.33 · 1015 m−3, which corresponds to a plasma frequency of fp = 327 MHz where
fiber bursts are usually observed (Aurass et al., 2005). This magnetic field and plasma density
lead to a ratio of ωp/Ωe = 39 that is normal for the solar corona (Vocks & Mann, 2004).

The choice of B and therefore Ωe determines an important plasma parameter. Thus it is worth-
while to study the effect of this choice on the efficiency of the whistler-wave generation. Since the
frequency of fiber bursts corresponds to the local plasma frequency at their source region (Kui-
jpers, 1975), ωp/Ωe > 1 is a necessary condition for their generation and subsequent observation
on Earth, which imposes an upper limit on the magnetic field. On the other hand, the stability of
the magnetic loop requires that the ratio between the plasma’s thermal gas pressure and the energy
density of the magnetic field, i.e. the plasma beta, is less than unity, β < 1. This leads to a lower
limit for B. In the model plasma, β ≈ 1 for B = 3 · 10−4 T, or 3 G, so only stronger B and thus
lower ratios ωp/Ωe are studied here. Since it has been found above that the whistler-wave growth
is strongest for waves propagating parallel to the background magnetic field, only this propagation
direction is considered.

A series of calculations is performed with magnetic fields of B = 4, 6, 12, 29, and 58 G, that
correspond to ratios ωp/Ωe = 30, 20, 10, 4, and 2; see also Table 7.1 below. The electron VDF
is in all cases the one from Eq. 7.2 with a thermal background component and a hot, nonthermal
component with a loss cone that has an opening angle of θL = 40◦. The VDF has been plotted in
Fig. 7.3.

Figure 7.7 displays the growth rates of whistler waves for the different magnetic fields as functions
of the wave frequency. It is evident that the wave frequencies shift towards the electron cyclotron
frequency, Ωe, with increasing B. This is a consequence of the whistler-wave phase speed increas-
ing with B. It was noted in the previous section that the maximum wave growth rate is reached for
waves that are in resonance with electrons with a momentum of p‖ = 0.1mec. For a given p‖, the
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Figure 7.8: Maximum wave growth rate, γmax, as a function of the loss-cone opening angle, θL,
for background magnetic fields of B = 4 G (solid line), B = 6 G (dotted line), B = 12 G (dashed
line), B = 29 G (dash-dotted line), and B = 58 G (dash-dot-dotted line).

Doppler shift of the resonance frequency, ωres, decreases with increasing wave phase speed, and
thus ωres approaches Ωe as B increases.

From Fig. 7.7 it also can be seen that the maximum values of γ/Ωe only slightly decrease with B

for the first three values of B, where the limit ωp/Ωe ≫ 1 is still a valid approximation. But for
B = 29 G and even more for B = 58 G, i.e. ωp/Ωe = 2 and thus close to unity, the growth rate
drops sharply. So the whistler-wave generation mechanism seems to be less efficient for small
ωp/Ωe.

The results shown in Fig. 7.7 were obtained for a loss-cone opening angle of θL = 40◦. It is
interesting to investigate the dependence of the maximum wave growth rate on θL as B is varied.
Figure 7.8 shows these rates for the different magnetic fields as functions of the loss-cone opening
angle. It is found again that for weak magnetic fields and thus high ωp/Ωe ≫ 1 there is little
variation with B. The overall maximum of γ is reached for loss-cone opening angles in the range
θL = 40 − 50◦, and γmax/Ωe decreases slightly with B. But as soon as the limit ωp/Ωe ≫ 1 is no
longer valid, i.e. for B = 29 G and higher, γmax drops sharply. The decrease is stronger for small
opening angles, θL < 40◦, than for large angles, θL > 50◦. As a consequence, the maximum value
of γmax shifts towards higher θL.

In Figs. 7.7 and 7.8 the maximum wave growth rate has been displayed in a normalized form,
γmax/Ωe. But since Ωe is proportional to B, it is illustrative to look at the maximum wave growth
rate that is possible in the model plasma in absolute units. Table 7.1 shows the maximum values
for γmax for the different magnetic fields. For small B and correspondingly high ωp/Ωe, γmax has
values around 4.5 s−1. These numbers agree with the γmax = 4.8 s−1 that has been found in the
previous section for B = 3 G, so the increase in Ωe with increasing B compensates the slight
decrease of γmax/Ωe for small B in Fig. 7.8. It can thus be concluded that the wave growth rates
are fairly insensitive to the magnetic field of the loop. But for higher B, where ωp/Ωe approaches
unity, the maximum wave growth rate still drops with increasing B, albeit not as strongly as
indicated by Fig. 7.8. The whistler-wave generation mechanism becomes less efficient for small
ωp/Ωe.
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Table 7.1: Maximum wave growth rates, γmax, for different B

B(G) ωp/Ωe γmax(s−1)
4 30 4.2
6 20 4.8
12 10 4.5
29 4 2.8
58 2 1.2

7.3 Conclusions and summary

In this chapter the generation of whistler waves by electron loss-cone distributions, as they form in
coronal loops during solar flares, has been studied. The main objective was to investigate whether
the resulting whistler-wave growth is fast enough to account for the generation of fiber bursts as
they are observed in solar dynamic radio spectra during such events. The wave growth rates, γ,
that are caused by a given electron VDF, were determined as a function of the wave frequency, ωr,
and propagation angle, θ, towards the background magnetic field. Due to the Taylor expansion of
the dispersion function, Eq. (5.3), this method is especially appropriate for low wave growth rates,
γ ≪ ωr.

Plotting the wave growth rate as a function of ωr and θ clearly shows a region of wave growth.
Investigation of the dependence of γ on the propagation angle is especially interesting. It demon-
strates the important role of higher order resonances even for very small θ. An analytical cal-
culation that considers only the case θ = 0 cannot reveal this restriction on the whistler-wave
growth.

This result has some implications for the standard model of fiber-burst generation. If a whistler
wave has been generated with a propagation angle θ = 0, where the wave growth is strongest, it
propagates along the background magnetic field. But the loop is curved, so that a wave vector
that is initially parallel to the magnetic field will deviate from ~B some time later. But if the index
of refraction inside the loop decreases towards the lateral boundary of the loop (Kuijpers, 1975;
Roberts, 2000), the wave is refracted back towards the magnetic-field lines. Thus, the whistler
wave is forced along the loop, and the wave growth can continue for a sufficient time despite the
strong limitation to small propagation angles.

Since whistler waves that propagate along the background magnetic field with θ = 0 have the
highest growth rates, it is sufficient to study this case while looking for the maximum value of
γ in the model plasma. At low frequencies, γ increases with increasing ωr since the electron
momentum needed to fulfill the resonance condition, Eq. 5.8, decreases. In momentum space, the
resonance moves towards regions with higher electron phase-space density. But as soon as the
resonance reaches the thermal core of the VDF, the growth rate reaches a maximum value γmax

and drops sharply at higher frequencies. This course defines the maximum wave growth rate for
the given electron distribution.

The maximum value of γ that is found in the model plasma varies with the opening angle of the
loss cone. The absolute maximum is reached at 41◦, with γmax = 9.1·10−8Ωe = 4.8 s−1, where γmax

has values of more than 4 s−1 over a wide range of loss cone opening angles from 32◦ − 50◦. Since
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fiber bursts are believed to be generated by the interaction between whistlers and electrostatic
modes, their pulse duration at a fixed frequency should not be less than the growth time of the
whistler wave. Observations (Aurass et al., 2005) show pulse durations of some tenths of a second
at 327 MHz . Thus, the values of γmax indicate a whistler-wave growth that is fast enough to
account for the observed pulse durations. These values are based on the assumption that the hot,
nonthermal component of the electron distribution has a low number density Nh = 10−6 Nb, with
Nb being the density of the background electrons. A higher Nh would lead to higher growth rates.

A study of the whistler wave generation for different magnetic fields shows that the maximum
wave growth rate is fairly independent of B as long as B is small enough so that ωp/Ωe ≫ 1 is a
valid assumption. The dependence of γmax on the loss-cone opening angle also hardly depends on
B in this regime. But for higher B with ωp/Ωe ≈ 1, the growth rates decrease rapidly. However,
this finding has no implications for the wave generation in the solar corona where the condition
ωp/Ωe ≫ 1 is normally met. Thus, the wave generation does not depend critically on the actual
value of the background magnetic field. The whistler-wave growth is fast enough to account
for the observed fiber bursts over a wide range of magnetic fields and loss-cone opening angles.
This result corroborates the present model (Aurass et al., 2005) of fiber bursts as being caused by
whistler-wave packets traveling along a magnetic loop.
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Chapter 8

Conclusions

8.1 Electron kinetics in the solar corona and wind

The topic of this thesis is the pivotal role of electron kinetics for the physical processes in the
solar corona and wind. The low density of the plasma leads to weak coupling between particles,
both electrons and ions, due to Coulomb collisions, and thereby enables the formation of states
far away from local thermodynamic equilibrium and its nearly Maxwellian velocity distribution
functions (VDFs). In the solar corona, this can be observed as differential heating of ion species,
accompanied by strong temperature anisotropies. In the solar wind, in-situ observations reveal
VDFs that differ significantly from Maxwellians. Therefore, a fluid description of the plasma is
not able to provide an adequate description of the underlying physical processes.

Instead of fluid models, kinetic theory that considers electron VDFs is needed. The comparison of
simple exospheric kinetic solar wind models with observational data reveals that solar wind elec-
trons must experience some pitch-angle scattering. The conservation of magnetic momentum on
their way from the corona into interplanetary space would otherwise focus all solar wind electrons
into an extremely narrow beam. This is in contrast to the observations of a thermal core, an ex-
tended isotropic halo, and anisotropic, anti-sunward “strahl” in the solar wind. The kinetic model
presented in chapter 2.4 provides this electron diffusion by means of resonant interaction with
whistler waves. The whistler wave spectrum is based on observations of power spectra of mag-
netic field fluctuations in interplanetary space. The interaction between electrons and whistlers is
described within the framework of quasi-linear theory. The main effect of a given wave spectrum
on an electron VDF is pitch-angle scattering in the wave reference frame. This is a fundamental
process with many implications in space plasma physics, as shown in the subsequent chapters of
this thesis. The electron VDFs found by the model reproduce the typical features of observed
solar wind VDFs, i.e. the thermal core, isotropic suprathermal halo, and “strahl” directed away
from the Sun.

So scattering of electrons by plasma waves is an important process in the solar wind that shapes
interplanetary electron VDFs. But this should not only affect thermal and suprathermal electrons
in the quiet solar wind, but also the energetic eletrons that are produced and released in solar flares.
These electrons propagate through interplanetary space where they can be observed in-situ, often
by satellites at 1 AU. It is a straightforward expectation that scattering by whistler waves delays
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their arrival times at the spacecraft. Since inferred release times at the Sun are based on velocity-
dependent arrival times, one might assume that scattering could explain the time differences of
up to 10 minutes between the onset of X-ray and radio emission of a flare, that reveals energetic
electron production, and the inferred release times in the solar corona. But on the other hand, the
energy dependence of electron arrival times at 1 AU is often found to be in agreement with free
electron propagation. In chapter 3 a detailed study on the influence of whistler wave scattering
on flare electrons has been presented. The results show that pitch-angle scattering by whistler
waves can delay electron arrival times up to 1 minute. However, the whistlers also re-distribute
electrons from higher to lower energies, thereby leading to apparent early arrival of electrons
with a given energy, as compared to the free-flight arrival time. Both effects have been found to
just compensate each other under typical solar wind conditions. This result offers an explanation
why the assumption of free electron propagation in interplanetary space seems to work well in
analyzing solar energetic particle data, despite the strong scattering they encounter on their way
from the Sun to the Earth.

This electron diffusion in energy is a first hint on the importance of the difference between the
wave and the plasma reference frame. The whistler - electron interaction leads to pitch-angle
diffusion of electrons in the wave frame, with no change of electron speed, i.e. energy. But the
wave frame differs from the plasma frame by the wave phase speed. In the plasma frame, the
diffusion does change electron energies. In the solar wind with its low whistler phase speed this
was a small, but nevertheless important effect.

The energy change becomes stronger when whistler phase speeds are higher. This is the case in
the solar corona where whistlers can bring electrons from low speeds parallel to the background
magnetic field to high speeds perpendicular to it. This has the consequence that a whistler wave
spectrum can produce a suprathermal electron population even under quiet solar conditions. In
chapter 4.3 it has been studied how this effect increases the flux of suprathermal electrons in
the solar wind, and in chapter 4.4 detailed simulations of suprathermal electron production in
the almost closed plasma volume of a coronal loop have been presented. The results show that
electron acceleration takes place near the loop footpoints where wave phase speeds are highest,
while pure pitch-angle diffusion dominates near the loop top. The initially Maxwellian electron
VDF develops suprathermal tails in the energy range of several keV, that can be fitted by a kappa
distribution.

The whistler wave spectrum fed into the corona is closely related to the waves that are expected
to be responsible for coronal heating and also play a role in solar wind acceleration. So the main
result of this thesis is that the processes of coronal heating, solar wind acceleration, and suprather-
mal electron production are based on a common mechanism. It can be expected to operate in any
star that has a hot corona, not only the Sun. This kinetic process is of general significance for
solar-stellar connections.

8.2 Kinetic plasma instabilities

Kinetic models like the Vlasov code presented above provide detailed information on electron
VDFs in a plasma. They allow for a description of states far away from thermal equilibrium,
with non-Maxwellian VDFs. With electron VDFs at hand, the stability properties of a plasma
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can be investigated by calculating wave growth and damping rates. Methods of doing so are
well known, mainly by calculating the complex dispersion function of waves in the plasma. An
implementation of such a method has been presented in this thesis. It covers relativistic electron
energies and yields wave growth/damping rates as functions of frequency or wavenumber and
wave propagation direction.

As examples, instabilities related to electron loss-cone VDFs have been investigated. A loss-cone
VDF forms when electrons move sunwards in the corona. As they go down, the local magnetic
field increases. Due to the conservation of magnetic moment they are mirrored and reflected back
upwards. The smaller the initial pitch-angle of the electron, the deeper an electron can penetrate
into the lower solar atmosphere. Those with the smallest pitch-angles can reach the cooler and
denser transition region or even the chromosphere, where they are scattered and thermalized by
Coulomb collisions with the ambient plasma. Thus, they don’t return into the corona. This forms
a “loss cone” in the reflected part of the electron distribution that is characterized by a reduced
phase-space density for small pitch-angles. Loss-cone VDFs provide free energy for wave growth,
i.e. plasma instabilities.

An important parameter for this wave growth is the ratio ωp/Ωe between the plasma and electron
cyclotron frequency. Wheter it is greater or less than unity determines which wave modes are
excited.

At first, the case ωp/Ωe < 1 is studied. In such a plasma, the electron cyclotron maser mechanism
can lead to X-mode emission directed nearly perpendicular to the background magnetic field.
Such waves are well known from planetary radio emission, e.g. Jupiter’s dekametric radio bursts
or Earth’s auroral kilometric radiation. In chapter 6 it has been investigated if this also can happen
in the solar corona.

A loss-cone VDF can form under quiet solar conditions in the opening magnetic field structure
of a coronal funnel, that is located in the low corona directly above the transition region where
the magnetic field rapidly expands from the borders of supergranular cells. Near the coronal base,
the magnetic field is still strong, so that the ωp/Ωe < 1 condition is met in the lowest part of the
funnel. The loss-cone VDF there can be calculated by the kinetic model presented in the first part
of this thesis.

The results of the stability analysis show no wave generation on the fundamental mode, ω = Ωe,
since this requires ωp/Ωe ≪ 1 that is not met here. But some emission at the first harmonic,
ω = 2Ωe, has been found, although it was very weak. The X-mode wave is an electromagnetic
wave that in principle could freely propagate away from the corona and be observed on Earth.
However, as the wave propagates upward in the corona, it traverses regions with lower magnetic
field. So eventually it meets the next higher resonance condition, ω = 3Ωe, where it suffers
absorption by the thermal core of the local electron VDF. The wave damping rate there is much
higher than the growth rate in the source region, so the wave is completely absorbed. It has to
be concluded that cyclotron maser emission from the Sun cannot be observed under quiet solar
conditions.

This is different for the ωp/Ωe > 1 case. In such a plasma, an electron loss-cone VDF leads to the
emission of whistler waves. ωp/Ωe > 1 is more typical for the solar corona outside coronal fun-
nels. A loss-cone VDF there can form during solar flares, when e.g. a coronal loop is filled with
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electrons in the energy range of 10s of keV, that are not as quickly thermalized as the suprather-
mal electrons discussed in the ωp/Ωe < 1 case. Whistler waves can only propagate within their
plasma environment, so coronal whistlers cannot be directly observed from Earth. But they re-
veal their existence through so-called fiber bursts, that are fine structures in solar dynamic radio
spectra during flares, with frequency drift rates in agreement with the group velocities of whistlers
propagating through the corona. In chapter 7 a study on the growth rates of whistlers in a flare
electron VDF based on X-ray data for different magnetic fields and loss-cone opening angles has
been presented. Whistler wave growth is restricted to small angles between the wave vector and
the magnetic field, but this is not a problem since whistlers propagating in a coronal loop can be
refracted towards the loop center. The highest wave growth rates are found for intermediate loss-
cone opening angles, which is not a suprise since this maximizes the available free energy. The
maximum wave growth rates found in the plasma are suprisingly insensitive to the magnetic field.
With gamma of the order of 4 s−1, the wave growth is fast enough to account for the observed fiber
burst pulse durations of a few tenths of seconds.

These examples of loss-cone related plasma instabilities show that the combination of kinetic sim-
ulations, yielding information on electron VDFs in space plasmas inaccessible to in-situ observa-
tions, with studies of kinetic instabilities offers fundamental new insights into the micro-physical
plasma processes in stellar atmospheres and interplanetary space.



Chapter 9

Future perspectives

The combination of kinetic models based on a Boltzmann-Vlasov code with analyses of plasma in-
stabilities is a versatile tool that offers many possibilities for further investigation of space plasma
processes on a microscopic scale. It is a significant step beyond fluid descriptions of the plasma,
like MHD, and is well suited for studies of the solar atmosphere.

9.1 Solar wind models

The strongest model assumption in the kinetic solar wind model presented in this thesis is the
exclusive consideration of waves propagating parallel to the background magnetic field. It leads
to the problem of low diffusion across p‖ = 0, where the resonance frequency of electrons equals
the electron cyclotron frequency. This assumption can be overcome by the inclusion of oblique
waves. However, this leads to an integral over wave-vector space that is not practical for numerical
methods (Marsch & Tu, 2001). So alternative approaches are necessary.

Adopting the diffusion coefficients from more general plasma turbulence models seems to be
a promising avenue (Pierrard et al., 2011). These coefficients for the solar wind could e.g. be
derived from cosmic ray studies (Schlickeiser, 2002). Such an improved model can be applied on
studies of both the quiet solar wind and flare electron propagation in interplanetary space.

9.2 Solar energetic electrons

For the propagation of solar energetic electrons in interplanetary space, the influence of Coulomb
collisions on electrons with energies of just a few keV is an interesting research subject of its own.
The scattering of these electrons reduces their energy, thus leading to an apparent early arrival in
the same way as does the scattering by whistlers waves, that compensates the delay caused by
pitch-angle scattering.

An important improvement of the flare electron propagation model is the inclusion of Langmuir
waves. The interplanetary electron VDFs found in the simulation with flare electrons already being
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present at higher energies and just the thermal background at lower energies show a strong positive
slope ∂ f /∂p‖ that is unstable towards the generation of Langmuir waves. These electrostatic
waves act back on the electron VDF by effectively transporting electrons to lower energies and
eroding the region of the VDF with ∂ f /∂p‖ > 0, thus forming a plateau of constant phase-space
density. The effects of plateau formation and electron beam regeneration due to velocity dispersion
compete with each other, thereby determining the production rate of Langmuir waves.

The Langmuir waves are electrostatic oscillations that only can be observed in-situ but not re-
motely from Earch. However, they can couple to low-frequency plasma waves, leading to the
emission of electromagnetic waves that are observed as type III radio bursts (Suziki & Dulk,
1985). With such an extension, the kinetic model of flare electron propagation can be used for
detailed studies of type III radio bursts.

9.3 Plasma instabilities

Calculating the growth of Langmuir waves is just one example for studies of plasma instabilities.
The method of calculating plasma wave growth and damping rates presented in chapter 5 is a
general-purpose tool that can be applied on many space plasmas with free energy available for
wave generation. The generation of electromagnetic waves due to electron loss-cone distributions
for different plasma environments has been discussed as examples in this thesis.

Future applications include studies relevant for the particle acceleration mechanism in solar flares.
This includes the investigation of possible whistler-wave production by flare-generated protons,
or the role of ion-acoustic waves after shock-drift acceleration of protons (Miteva et al., 2007).

This tool enables estimates of the efficiency of wave generation whenever an observed or model
particle VDF is available. This is useful for a combined analysis of data from different wave-
lengths. X-ray observations, e.g. by RHESSI or the STIX imager onboard the upcoming Solar
Orbiter, reveal the existence of energetic electrons in the corona. Observations at optical wave-
lengths, e.g. with the new GREGOR telescope, show their effect on the chromosphere and pho-
tosphere, while radio maps of the Sun, e.g. by the LOFAR (LOw Fequency ARray) telescope,
allow for modeling the propagation of flare electrons and the instabilities that lead to radio wave
emission.

With these new methods and observations at hand, exciting new discoveries are waiting to be
made.
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Nieves-Chinchilla, T. and Viñas, A. F., J. Geophys. Res. 113, doi: 10.1029/2007JA012703 (2008)

Ofman, L., J. Geophys. Res. 109, 7102 (2004)

Omidi, N., Gurnett, D. A., and Wu, C. S., J. Geophys. Res., 89, 883 (1984)

Owens, M. J., Crooker, N. U., and Schwadron, N. A., J. Geophys. Res. 113, 11104 (2008)

Pagel, C., Gary, S. P., de Koning, C. A., Skoug, R. M., and Steinberg, J. T., J. Geophys. Res. 112,
4103 (2007)

Parker, E. N., Astrophys. J. 128, 664 (1958)

Pierrard, V., Maksimovic, M., and Lemaire, J., J. Geophys. Res. 104, 17021 (1999)

Pierrard, V., Maksimovic, M., and Lemaire. J., J. Geophys. Res. 106, 29305 (2001)

Pierrard, V., Lazar, M., and Schlickeiser, R., Solar Phys. 269, 421, doi: 10.1007/s11207-010-
9700-7 (2011)

Pilipp, W. G., Miggenrieder, H., Montgomery, M. D., Mühlhäuser, K. H., Rosenbauer, H., and
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Dr. H. Önel, Dr. G. Rausche, Dr. J. Rendtel, and Dr. A. Warmuth for many contributions to my
work.

Finally, I would like to thank all my friends at AIP, of whom I cannot provide a comprehensive
list here, for a great work environment.

The financial support by Deutsches Zentrum für Luft- und Raumfahrt (DLR), the Max-Planck-
Institute for Solar System Research, the Deutsche Forschungsgemeinschaft (DFG), and the Land
Brandenburg during my postdoc time is gratefully acknowledged.

113


	Title
	Imprint

	Thesen zur Habilitationsschrift
	Populärwissenschaftliches Abstract zur Habilitationsschrift
	Contents
	I Kinetic plasma theory
	1 Introduction: Why kinetic models?
	1.1 The solar atmosphere
	1.2 Fluid models for space plasmas
	1.3 Solar wind observations
	1.4 Kinetic models

	2 Kinetic solar wind models
	2.1 Exospheric models
	2.2 Suprathermal electrons
	2.3 Electron scattering by whistler waves
	2.4 Kinetic solar wind model with whistler waves
	2.4.1 Interplanetary whistler wave spectrum
	2.4.2 Proton-electron solar wind background model
	2.4.3 Kinetic results for solar wind electrons


	3 Scattering of solar energetic electrons in interplanetary space
	3.1 The model
	3.1.1 Solar flare electrons

	3.2 Flare electron propagation and resulting arrival times
	3.2.1 Beware of numerical diffusion
	3.2.2 Test run without whistler waves
	3.2.3 Pure pitch-angle diffusion
	3.2.4 Full diffusion equation
	3.2.5 Variation of the whistler wave power

	3.3 Conclusions

	4 Formation of suprathermal electron distributions in the quiet solar corona
	4.1 Sufficient wave energy in the corona?
	4.2 Can suprathermal tails escape from the corona?
	4.3 Suprathermal electron production in the solar corona
	4.3.1 The model
	4.3.2 Locations of electron acceleration
	4.3.3 Results

	4.4 Suprathermal electrons in a closed loop
	4.4.1 Coronal loop background model
	4.4.2 Resulting coronal loop electron VDFs

	4.5 Conclusions


	II Plasma waves and instabilities
	5 Plasma wave growth and damping rates
	5.1 Complex dispersion relation and wave growth rates
	5.1.1 Dispersion function and growth rates
	5.1.2 Derivation of the dispersion function D(, "017Ek)

	5.2 Computation of the dielectric tensor
	5.2.1 Split of the dielectric tensor
	5.2.2 Evaluation of the ``real'' part
	5.2.3 Evaluation of the ``imaginary'' part

	5.3 Calculation of the dispersion function

	6 Electron cyclotron maser emission from solar coronal funnels
	6.1 Electron loss-cone VDF in a coronal funnel
	6.1.1 The simulation box
	6.1.2 Simulation results

	6.2 X-mode wave growth and absorption in the low corona
	6.2.1 Wave emission at 2e
	6.2.2 Wave emission and absorption at 3e

	6.3 Summary

	7 Whistler wave excitation by relativistic electrons during solar flares
	7.1 Solar flare electrons
	7.2 Whistler-wave generation in flaring loops
	7.2.1 Loss cone distributions
	7.2.2 Whistler-wave growth rates
	7.2.3 Maximum wave growth rates
	7.2.4 Magnetic field dependence

	7.3 Conclusions and summary


	III Conclusions and future perspectives
	8 Conclusions
	8.1 Electron kinetics in the solar corona and wind
	8.2 Kinetic plasma instabilities

	9 Future perspectives
	9.1 Solar wind models
	9.2 Solar energetic electrons
	9.3 Plasma instabilities


	References
	Acknowledgements



