

Evolution and ontogeny of electric organ discharge in African weakly electric fish genus *Campylomormyrus*: a genomic and transcriptomic perspective

Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) in der Wissenschaftsdisziplin Evolutionsbiologie

eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam

von

Feng Cheng

Potsdam, September 2023

This work is protected by copyright and/or related rights. You are free to use this work in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/?language=en

Gutachter

Prof. Dr. Ralph Tiedemann Universität Potsdam

Prof. Dr. Jason Gallant Michigan State University

Prof. Dr. Walter Salzburger Universität Basel

Published online on the Publication Server of the University of Potsdam: https://doi.org/10.25932/publishup-63017 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-630172

Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt.

Ort, Datum

Feng Cheng

Abstract

The African weakly electric fishes (Mormyridae) exhibit a remarkable adaptive radiation possibly due to their species-specific electric organ discharges (EODs). It is produced by a muscle-derived electric organ that is located in the caudal peduncle. Divergence in EODs acts as a pre-zygotic isolation mechanism to drive species radiations. However, the mechanism behind the EOD diversification are only partially understood.

The aim of this study is to explore the genetic basis of EOD diversification from the gene expression level across *Campylomormyrus* species/hybrids and ontogeny. I firstly produced a high quality genome of the species *C. compressirostris* as a valuable resource to understand the electric fish evolution.

The next study compared the gene expression pattern between electric organs and skeletal muscles in *Campylomormyrus* species/hybrids with different types of EOD duration. I identified several candidate genes with an electric organ-specific expression, e.g. *KCNA7a*, *KLF5*, *KCNJ2*, *SCN4aa*, *NDRG3*, *MEF2*. The overall genes expression pattern exhibited a significant association with EOD duration in all analyzed species/hybrids. The expression of several candidate genes, e.g. *KCNJ2*, *KLF5*, *KCNK6* and *KCNQ5*, possibly contribute to the regulation of EOD duration in *Campylomormyrus* due to their increasing or decreasing expression. Several potassium channel genes showed differential expression during ontogeny in species and hybrid with EOD alteration, e.g. *KCNJ2*.

I next explored allele specific expression of intragenus hybrids by crossing the duration EOD species *C. compressirostris* with the medium duration EOD species *C. tshokwe* and the elongated duration EOD species *C. rhynchophorus*. The hybrids exhibited global expression dominance of

- 1 -

the *C. compressirostris* allele in the adult skeletal muscle and electric organ, as well as in the juvenile electric organ. Only the gene *KCNJ2* showed dominant expression of the allele from *C. rhynchophorus*, and this was increasingly dominant during ontogeny. It hence supported our hypothesis that *KCNJ2* is a key gene of regulating EOD duration. Our results help us to understand, from a genetic perspective, how gene expression effect the EOD diversification in the African weakly electric fish.

Zusammenfassung

Die Mormyridae, eine Familie afrikanischer schwach elektrischer Süßwasserfische, zeigen eine außergewöhnliche adaptive Radiation. Eine Erklärung für die Diversifizierung dieser Gruppe stellen die artspezifischen elektrischen Organentladungen (EODs) dar. Diese werden von einem elektrischen Organ muskulären Ursprungs im Ansatz der Schwanzflosse erzeugt. Die verschiedenen EODs könnten als präzygotischer Isolationsmechanismus für die Radiation verantwortlich sein. Dennoch ist der Mechanismus hinter der EOD-Diversifizierung bisher nicht vollständig geklärt.

Ziel dieser Studie ist es, die genetische Grundlage der EOD-Diversifizierung auf der Ebene der Genexpression bei verschiedenen *Campylomormyrus*-Arten bzw. -Hybriden und während der Ontogenese zu ermitteln. Zunächst wurde erstmals das Genom der Art *C. compressirostris* in hoher Qualität sequenziert. Dies bildet eine bedeutende Grundlage für das Verständnis der Evolution der elektrischen Fische.

In der zweiten Studie wurden Genexpressionsmuster von elektrischen Organen und Skelettmuskeln bei *Campylomormyrus*-Arten bzw. -Hybriden mit unterschiedlicher EOD-Dauer verglichen. Dabei konnten mehrere Kandidatengene identifiziert werden, die potentiell Elektroorgan-spezifisch exprimiert sind, i.a. *KCNA7a, KLF5, KCNJ2, SCN4aa, NDRG3, MEF2*. Bei allen untersuchten Arten/Hybriden wies das Genexpressionsmuster einen signifikanten Zusammenhang mit der EOD-Dauer auf. Die Expression mehrerer Kandidatengene, wie beispielsweise *KCNJ2, KLF5, KCNK6* und *KCNQ5*, trägt möglicherweise zur Regulierung der EOD-Dauer bei *Campylomormyrus* bei. Bei Arten und Hybriden mit EOD-Unterschieden zeigten Kaliumkanal-Gene wie *KCNJ2* eine unterschiedliche Expression während der Ontogenese.

Zudem wurde die Allel-spezifische Expression bei Intragenus-Hybriden unter Verwendung der Arten *C. compressirostris, C. tshokwe* und *C. rhynchophorus*, die jeweils eine kurze, intermediäre bzw. lange EOD-Dauer aufweisen, untersucht. Die Hybriden wiesen eine generell dominante Expression der Allele von *C. compressirostris* in der adulten Skelettmuskulatur und im elektrischen Organ sowie im juvenilen elektrischen Organ auf. Einzig im Gen *KCNJ2* dominierte das Allel von *C. rhynchophorus*, mit zunehmender Dominanz mit fortschreitender Ontogenese. Dies stützt unsere Hypothese einer Beteiligung des *KCNJ2*-Gens an der Regulation der EOD-Dauer. Unsere Ergebnisse stellen einen wesentlichen Beitrag zum Verständnis des Einflusses der Genexpression auf die EOD-Diversifizierung bei afrikanischen schwach elektrischen Fischen dar.

Contents

Abstract	1 -
Zusammenfassung	3 -
1 Introduction	6 -
1.1 Whole genome duplication in teleost fish	6 -
1.2 Convergent evolution in electric fish	6 -
1.3 Adaptive radiation and electric organ discharges in mormyrids	8 -
1.4 Electric organ discharge in <i>Campylomormyrus</i>	9 -
1.5 Intragenus hybridization in Campylomormyrus	12 -
1.6 Aims of this study	13 -
2 Summary of articles	16 -
2.1 Summary of Article I	16 -
2.2 Summary of Article II	17 -
2.3 Summary of Article III	18 -
3 Article I (published)	21 -
4 Article II	53 -
5 Article III	121 -
6 General discussion	162 -
6.1 Genomics of Campylomormyrus	162 -
6.2 What makes the EO?	163 -
6.3 EOD duration diversification among Campylomormyrus species	164 -
6.4 EOD development during ontogeny	166 -
6.5 EOD diversification in <i>Campylomormyrus</i> hybrids	167 -
7 Conclusion	169 -
8 Reference	171 -
9 Acknowledgements	176 -

1 Introduction

1.1 Whole genome duplication in teleost fish

Whole genome duplication (WGD) events have played a crucial role in regulating the evolutionary history of many lineages (Hooper and Berg 2003; Jatllon et al. 2004; Volff 2005). Teleost fish, which constitute more than half of the extant vertebrates, contain a magnificent level of biodiversity (Volff 2005). There is now substantial evidence that a teleost-specific WGD has taken place during the early evolution of this lineage (Jatllon et al. 2004; Kasahara et al. 2007; Glasauer and Neuhauss 2014). WGD is typically followed by massive gene loss, genomic rearrangements and most importantly, genes retained in duplicate (Jatllon et al. 2004; Kasahara et al. 2007; Gundappa et al. 2022). WGD has long been recognized as a contributor to the evolution of genes with new functions, e.g. subfunctionalization (two copies split the initial function) and neofunctionalization (one copy can generate a novel function) (Hooper and Berg 2003). Although we lack evidence for the direct connection between the teleost-specific WGD and the magnificent biodiversity in teleost fish, differential neofunctionalization or subfunctionalization in duplicated genes may have been involved in the generation of fish variability, and consequently resulted in the successful radiation of teleost fishes (Hooper and Berg 2003).

1.2 Convergent evolution in electric fish

The electric fish have independently evolved the ability to generate electric fields in at least six clades in teleost and elasmobranch fish: torpedinoids, rajoids, gymnotiforms, siluriforms, uranoscopids and mormyroids (Figure 1.1; Stern 2013; Gallant et al. 2014; Carlson et al. 2019). Electric fishes have the special ability to produce and perceive electric signals, the electric organ discharge (EOD), which is used for object sensing and social communication (weak EOD, e.g.

gymnotiforms and mormyroids) or for stunning prey and warding off predators (strong EOD, e.g. torpenid rays, electric eel; Crampton 2019).

Figure 1.1 Phylogenetic tree of teleost fishes and major groups of electric fishes (Cited from Gallant *et al.* 2014).

The EOD, as signals of the nervous system, is in the realm of electricity (Bass 1986). Therefore, it can be easily comprehensible by the biophysics of ion currents. Available studies had identified several duplicated sodium and potassium channel gene copies, which are convergently expressed in electric fish clades. A striking example is the voltage-gated sodium channel gene *SCN4ab* which is still expressed in the skeletal muscle, while its paralog *SCN4aa* has radically shifted the expression to the muscle-derived electric organ (Gallant et al. 2014; Wang and Yang 2021). The shifted expression possibly promoted the evolution of a new function or even the electric organ itself (Thompson et al. 2014).

1.3 Adaptive radiation and electric organ discharges in mormyrids

Mormyrids is a clade of freshwater weakly electric fish endemic to African riverine and partially lacustrine systems (Tiedemann et al. 2010). It comprises the superfamily Mormyroidea along with the family Gymnarchidae. There are more than 180 described species in at least 20 genera in mormyrids, which account for nearly 90% of the osteoglossomorph fishes (Feulner et al. 2008).

Adaptive radiation is generally the consequences of divergent natural selection along with reproductive isolation, which interrupts gene flow across diverging lineages. Frequently, reproductive isolation is caused by geographical distance called allopatry. However, in parapatry or sympatry, adaptive radiations associated with ecological niches diversification and are often leading to significant phenotypic and ecological diversification, necessitate a reproductive isolation mechanism. Previous studies suggest that a divergent EOD used for species recognition and mate choice comprises such a mechanism in mormyrids (Arnegard et al. 2005; Carlson et al. 2011).

EOD is produced from a myogenic electric organ that is located in the caudal peduncle in the adult mormyrids (Bennett 1970; Bass 1986). It is composed of specialized electrocytes that are longitudinally stacked (Bennett 1971). The sum of the action potential, which is propagated by each electrocyte, is the externally measurable EOD (Bennett 1970; Bennett 1971; Bass 1986).

EODs are very diverse both across and within genera in mormyrids. The EOD in mormyrids has the basic function of electrolocation, and is additionally used for species communication and mate recognition (Feulner et al. 2009a; Feulner et al. 2009b; Nagel, Kirschbaum, Hofmann, et al. 2018; Nagel, Kirschbaum, Engelmann, et al. 2018). It can serve as pre-zygotic isolation mechanism and lead to environmental niches variation, or triggers speciation by sexual selection. EODs in the genus *Paramormyrops* show sexual dimorphism, which might indicate sexual selection (Arnegard et al. 2010). In the genus *Campylomrmyrus* (Fig. 1), the EODs probably promote ecological speciation, while no sexual dimorphism was found in *Campylomormyrus* so far.

Figure 1.2 Phylogenetic tree and electric organ discharges of *Campylomormyrus* species (Modified from Lamanna et al. 2016).

Campylomormyrus species are mostly distributed in Congo River system and its tributary streams (Figure 1.2). They are characterized by prominent, tubular and elongated snouts. There are 15 described species in this genus based on the morphometric measurements and EOD waveform (Lamanna et al. 2016).

Comparisons of EODs in *Campylomormyrus* revealed species-specific diversity in the shape and waveform (Figure 1.2). The EOD comprises the sum of action potentials that are produced by each

stalk and face of an electrocyte (Bennett 1970; Bass 1986). Therefore, the EOD types with different polarity and number of phases result from the geometrical diversity of the electrocytes (Bass 1986).

EOD duration can vary 100-fold across species, e.g. C. compressirostris possess a short EOD around 0.4 ms while C. rhynchophorus and C. numenius have magnificently elongated EOD over 40 ms. In the adult Campylomormyrus, short EODs occurs in the most basal clade (C. tamandua). It is considered as a plesiomorphic feature, while the long duration (including medium duration) EOD is an apomorphic (derived) feature (Kirschbaum et al. 2016). One explanation for the elongation of the EOD is associated with an increased electrocyte surface, which is assumed to increase the membrane capacitance (Bennett 1970). In two species with very elongated EOD, C. *rhynchophorus* and *C. numenius*, a special structure, so called papillae, apparently contribute to their long EOD (Paul et al. 2015; Kirschbaum et al. 2016; Nguyen et al. 2020; Korniienko et al. 2021). These papillae are surface specializations of the uninnervated anterior face of the electrocyte (Korniienko et al. 2021). Despite the geometric differences in electrocytes among some species, the mechanism of waveform diversification is still poorly understood, since species with very diverged EOD waveform can possess a similar electric organ anatomy (Paul et al. 2015), e.g. C. compressirostris and C. tshokwe (around 5 ms). Modulated ion currents (especially potassium and sodium; Figure 1.3) potentially contribute to the EOD waveform difference, since the EOD is the sum of action potentials from all electrocytes (Nagel et al. 2017). This has been preliminary testified in a voltage-gated potassium channel gene KCNA7a that might contribute to the EOD duration in Brienomyrus and Gymnarchus (Swapna et al. 2018). In addition, a gene expression comparison in the electric organ between C. compressirostris (short duration EOD) and C. tshokwe (medium duration EOD) showed an upregulation in all KCNA genes in C. tshokwe, suggesting this

voltage-gated potassium channels to be potentially involved in EOD signal divergence in *Campylomormyrus*(Nagel et al. 2017).

Figure 1.3 EOD of a single electrocyte from electric fish. (Cited from Stoddard and Markham 2008).

EOD variation in *Campylomormyrus* is not only exhibited across species, but also in different life stages (Nagel et al. 2017; Nguyen et al. 2020). A short EOD has been found in the juvenile stage of all species investigated so far. *C. compressirostris*, *C. tamandua*, and *C. tshokwe* start with juvenile EODs of identical shape and waveform during ontogeny, only *C. rhynchophorus* has same shape but twice as long as other three species (Nguyen et al. 2017). The EOD of *C. compressirostris* shows consistence over the whole length of the ontogeny. However, in the other studied species, the juvenile EODs continuously change during development until they reach the adult EOD (Nguyen et al. 2017; Nguyen et al. 2020). So far, we have only limited knowledge of how the EOD varies among species and during ontogeny. More detailed studies are therefore

needed to understand the phenotypic diversification among *Campylomormyrus* and its contribution to the observed radiations.

1.5 Intragenus hybridization in Campylomormyrus

Successful hybridization had been performed using species with different EOD shape and waveform (Kirschbaum et al. 2016). This further contributes to our understanding of the EOD variation among species and ontogenic stages (Figure 1.4).

In the different cross combination of species with short EOD and longer EOD, the hybrids consistently show long EODs, even at an early life stage. When crossing *C. tshokwe* (a medium duration EOD species, 5 ms) with two short EOD duration species (*C. compressirostris* and *C. tamandua*), the hybrids showed EOD elongation during ontogeny. This is probably due to the upregulation of genes in the adult electric organ of *C. tshokwe*, in particular voltage-gated potassium channel genes which have been hypothesized to be up-regulated in the hybrids, even during the early ontogenetic stages (Kirschbaum et al. 2016; Nagel et al. 2017).

Hybrids of *C. rhynchophorus* and other species showed an intermediate duration EOD. However, the EOD is occasionally closer to *C. rhynchophorus*, e.g. in the hybrid *C. compressirostris* x *C. rhynchophorus* (Kirschbaum et al. 2016). The pronounced surface proliferations (papillae), which characterized the two species with extremely elongated EOD (*C. rhynchophorus* and *C. numenius*), is also observed in the hybrids when *C. rhynchophorus* is one of the parents (Kirschbaum et al. 2016). However, the adult EOD in those hybrids does not reach the same long duration as in adult *C. rhynchophorus*. In hybrid *C. compressirostris* x *C. rhynchophorus*, the adult EOD is very close to a juvenile EOD in *C. rhynchophorus* in both shape and waveform (Kirschbaum et al. 2016; Nguyen et al. 2020).

$\begin{array}{c} \bigcirc \end{array}$ Parent	∂ Parent	Hybrid	
75 Cc	80/87 Ct	96	
ε 2 <u>50</u> μs	³ 250 μs	- μs s - <u>250</u> μs	
A1	A2	A3 165 mm	
80 Cts	80/87 Ct	101/104	
E 4 ms	[*] ε _ε -/ <u>250 μ</u> s		
B1	B2	B3 149 mm	
⁵² Cr (P)	80/87 Ct	67/71 P	
₽	²⁰ μs	25 <u>0</u> μs	
C1	C2	C3 98 mm	
⁸⁰ Cts	75 Cc	78/89	
E 4 ms	ε 250 μs	E lims	
D1	D2	D3 135 mm	
⁵² Cr (P)	⁷⁵ Cc	59/63 P	
s	s 25 <u>0</u> μs 20 ms	ε-	
E1	E2	E3 85 mm	
52 Cr (P)	80 Cts	65 P	
€S	$e^{-\frac{s}{20}}$	E 1 ms	
F1	F2	F3 107 mm	
52 Cr (P)	60 Cn (P)	60 P	
₽ 2 <u>0 ms</u>	€	_€ , → , , , , , , , , , , , , , , , , , ,	
G1	G2	G3 92 mm	

Figure 1.4 Intragenus hybridization in *Campylomormyrus* species. The electric organ structure of both parents and the hybrid are shown here (S. stalk; E, electrocyte; P, papillae). CC, *C. compressirostris*; Ct, *C. tamandua*; Cts, *C. tshokwe*; Cr, *C. rhynchophorus*; Cn, *C. numenius*. This figure is modified from **Kirschbaum et. al 2016**.

1.6 Aims of this study

The diversification of the EOD is a potentially important mechanism underlying adaptive radiations in *Campylomormyrus*. So far, several studies have investigated poential mechanisms of

the EOD variations at histological, electrophysiological and genetic levels in this genus (Lamanna et al. 2015; Paul et al. 2015; Nagel et al. 2017; Korniienko et al. 2021). However, the basis behind the EOD variation among species is still only partially understood, especially EOD duration diversification.

Intragenus hybrids have special EOD traits (Kirschbaum et al. 2016). Interestingly, whenever we crossed parental species between short EOD and elongated EOD, the hybrids express elongated EOD compared to the short EOD parent species. I am interested to understand why the EOD bias occurred in the intragenus hybridization. Do alles from elongated EOD parental species have higher expression than short EOD parental species?

The development of EOD in *Campylomormyrus* is also not well understood. The EOD of short duration species *C. compressirostris* exhibits no change during ontogeny, while species with elongated adult EOD show multiple different juvenile EODs untile they reach their adult EOD. What causes the consistency and change during EOD development?

The main focus of this study is on the exploration of the genetic basis of the diversification in EOD of different species/hybrids and life stages (ontogeny) in the African weakly electric fish genus *Campylomormyrus*, as well as the EOD bias in intragenus hybrids. Therefore, I started with the generation of a high quality genome in this genus. My study consists of the three following parts:

1. **Genome assembly on species** *C. compressirostris*. I generated a high quality whole genome for *C. compressirostris* using Pacbio long read sequencing and evidence-based genome annotation. Based on this, a gene family analysis was performed to explore gene family evolution in different teleost fish lineages after whole genome duplication.

- 2. Transcriptomic comparisons among different adult species/hybrids. I used mRNA sequencing technology to explore the gene expression pattern between electric organ and skeletal muscle in different adult *Campylomormyrus* species/hybrids. The gene expression pattern of species with different EOD duration was also utilized to identify genes potentially involved in the regulation of EOD waveform. In addition, allele specific expression analysis was performed to investigate the biallelic expression imbalance in the hybrids.
- 3. Gene expression pattern during ontogeny. For the purpose of identifying genes involved in the EOD development during ontogeny, I compared the gene expression of electric organs between juveniles and adults in two species and their hybrid. To further understand the phenotypic evolution during ontogeny in the hybrid, the allele specific expression was compared to explore the biallelic expression difference between juvenile and adult hybrids.

2 Summary of articles

2.1 Summary of Article I

A new genome assembly of an African weakly electric fish (*Campylomormyrus compressirostris*, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha.

Cheng, F., Dennis, A. B., Osuoha, J. I., Canitz, J., Kirschbaum, F., & Tiedemann, R. (2023). *BMC Genomics*, 24(1), 129.

A well-annotated genome in Campylomormyrus genome is imperative to understand the convergent evolution in electric fish and the adaptive radiation in mormyrids. An 862 Mb size genome was generated for the species C. compressirostris using Pacbio long read sequences. There were 34,492 protein-coding genes predicted in 1,479 contigs, which is a noteworthily higher number than in the two other available annotated Osteoglossomorpha genomes (Paramormyrops kingsleyae and Scleropages formosus). A gene family evolution analysis via the program CAFE5 was employed to analyze the gene family expansion and contraction in representative genomes from Osteoglossomorpha, Otomorpha and Euteleosteomorpha. Based on 33 teleost fish genomes, the Osteoglossomorpha showed an overall faster gene family turnover rate compared to Otomorpha and Euteleosteomorpha. In addition, Osteoglossomorpha exhibited significantly higher ratios of expanded/contracted gene family numbers compared to the other two groups. We manually curated 16 genes from the Kv1 subfamily, with two tandem duplicated gene copies of KCNA7a. The significantly higher ratios of expanded/contracted gene family numbers and the high number of Kvl subfamily genes suggested that the basal taxon Osteoglossmopha might have a faster gene family evolutionary speed. This knowledge will help to improve our understanding the evolution of electric fish and Osteoglossomorpha taxa.

Authors contribution: I performed all the lab work, the analyses and manuscript writing with the input from R. Tiedemann, A. B. Dennis, J. Canitz, F. Kirschbaum. R. Tiedemann conceived and supervised the study. J. I. Osuoha curated the *Kv1* genes with the input from me and J. Canitz. F. Kirschbaum took part of the supervision.

2.2 Summary of Article II

Gene and allele specific expression underlying the electric signal divergence in African weakly electric fish.

Cheng, F., Dennis, A. B., Baumann, O., Kirschbaum, F., Abdelilah-Seyfried, S., & Tiedemann, R. In submission at *Communications Biology*.

Electric fishes have independently evolved at least six times. The weakly electric fish clade of mormyrids is one of the most diverse family of freshwater fishes. They possess a specific myogenic electric organ (EO) derived from skeletal muscle (SM) fibers. The magnificent adaptive radiation possibly resulted from their striking divergence in electric organ discharge (EOD) among species, which is considered to contribute to pre-zygotic isolation. I sequenced the mRNA of EOs and SMs from the species *Campylomormyrus compressirostris* (0.4 ms duration EOD), *C. tshokwe* (5 ms duration EOD), *C. rhynchophorus* (40 ms duration EOD) and two cross-species hybrids *C. compressirostris* \Im x *C. tshokwe* \Im (0.5 ms duration EOD), and *C. compressirostris* \Im x *C. tshokwe* \Im (0.5 ms duration EOD), and *C. compressirostris* \Im x *C. tshokwe* \Im (0.5 ms duration EOD).

There were 1,444 genes up-regulated genes in the EO compared to SM that were shared by all five species/hybrids cohorts. Several genes, e.g. *SCN4aa*, *KCNA7a*, *SIX2a*, *HEY1* and several isoforms of sodium/potassium ATPase α and β subunits, showed convergent expression pattern in the EO of different studied electric fish lineages. The differentially expressed actin-related genes (F-actin-

related genes, unconventional myosin genes and *MEF2b*) suggested that the developmental transition in the EO might be different across mormyrids. In addition, we also identified a potential transcription factor, *KLF5*, which might drives the expression of regulating potassium channels in the EO of *Campylomormyrus*.

We made cross species comparisons among purebred species and two different tissues to investigate the gene expression relative to EOD duration variation. Three types of EOD-duration-related gene expression pattern were identified. The up-regulation of genes *KCNJ2* and *KLF5* as well as the down-regulation of genes *KCNK6* and *KCNQ5* might contribute to the increased EOD duration. The allelic imbalanced expression at the *KCNJ2* gene in hybrid *C. compressirostris* x *C. rhynchophorus*, i.e., a higher expression of the *C. rhynchophorus* allele, points towards a cisregulatory difference at the locus. It supports our hypothesis that the gene *KCNJ2* might be a powerful candidate for the EOD duration modulation.

Authors contribution: I performed RNA isolation, cDNA library preparation, gene expression and allele specific analyses, and manuscript writing with input from R. Tiedemann, A.B. Dennis, O. Baumann, F. Kirschbaum and S. Abdelilah-Seyfried. R. Tiedemann conceived and supervised this study, and provided financial and logistical support. F. Kirschbaum partially supervised the project and provided biological information about electric fish. A.B. Dennis contributed to the transcriptome analyses.

2.3 Summary of Article III

Gene and allele specific expression during electric organ ontogeny in African weakly electric fish and their hybrids.

Cheng, F., Dennis, A. B., Baumann, O., Kirschbaum, F., Domínguez, M., & Tiedemann, R. 2023. To be submitted.

Hybridization can contribute to our understanding of the evolution of complex phenotypes. The African weakly electric fish genus *Campylomormyrus* possess a myogenic electric organ (EO) to produce an electric organ discharge (EOD) which remarkably varies across species/hybrids and throughout ontogeny. The EOD of *C. compressirostris* does not change during ontogeny, while the EOD of *C. rhynchophorus* starts from a similar early juvenile EOD and reaches an elongated EOD in multiple intermediate stages. The EOD development in the hybrid across *C. compressirostris* and *C. rhynchophorus* shows early juvenile EOD identical to *C. compressirostris* and eventually reaches an EOD of intermediate length (around 4 ms) between the parental species after multiple ontogenetic stages. Interestingly, the adult EOD in the hybrid resembles a juvenile EOD of *C. rhynchophorus*, indicating the EOD development in this hybrid is closer to *C. rhynchophorus* than to *C. compressirostrs*.

We performed pairwise comparison of gene expression analysis between juvenile and adult EO of *C. compressirostris* (EOD duration 0.4 ms in juveniles and 0.4 ms in adults), *C. rhynchophorus* (EOD duration 5 ms in juveniles and 40 ms in adults) and their hybrids *C. compressirostris* $\mathcal{J} \times C$. *rhynchophorus* \mathcal{Q} (EOD duration 0.4 ms in juveniles and 4 ms in adults). Differentially expressed genes between juvenile and adult EOs were significantly enriched in "membrane", "plasma membrane" and "cytoplasm" Go Ontology terms. Candidate genes potentially contributing to the EOD development of *C. rhynchophorus* and the hybrids were identified, e.g. *ADCYAP1*, *KCNJ2*. Other up- or down-regulated potassium channel genes might also contribute to regulate the EOD development.

In addition, allele specific expression analysis was performed to investigate the allelic expression during ontogeny in hybrids. The allele specific expression showed a general dominance of the *C*. *compressirostris* allele in the hybrids at both juvenile and adult life stages. Only the gene *KCNJ2* exhibited a dominant expression of the *C*. *rhynchophorus* allele and was increasingly dominant from juvenile to adult stages. This suggests that the EOD development in hybrids could be related to the increasing allelic expression of the *C*. *rhynchophorus* allele of this gene under a scenario of an overall dominance of *C*. *compressirostris* alleles.

Author contributions: R. Tiedemann conceived and supervised this study, and provided financial and logistical support. I performed RNA isolation, cDNA library preparation, gene expression and allele specific analyses, and manuscript writing with input from R. Tiedemann, A.B. Dennis, O. Baumann, F. Kirschbaum and M. Domínguez. F. Kirschbaum partially supervised the project and provided biological information about electric fish.

3 Article I (published)

A new genome assembly of an African weakly electric fish (*Campylomormyrus compressirostris*, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha.

Feng Cheng¹, Alice B. Dennis^{1, 2}, Josephine Ijeoma Osuoha¹, Julia Canitz³, Frank Kirschbaum^{1, 4}, Ralph Tiedemann^{1,*}

 Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

2 Laboratory of Adaptive Evolution and Genomics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth & Environnment, University of Namur, Namur, Belgium

3 Senckenberg German Entomological Institute, Müncheberg, Germany

4 Department of Crop and Animal Science, Faculty of Life Sciences, Humboldt University, Berlin, Germany

Abstract

Background: Teleost fishes comprise more than half of the vertebrate species. Within teleosts, most phylogenies consider the split between Osteoglossomorpha and Euteleosteomorpha/Otomorpha as basal, preceded only by the derivation of the most primitive group of teleosts, the Elopomorpha. While Osteoglossomorpha are generally species poor, the taxon contains the African weakly electric fish (Mormyroidei), which have radiated into numerous species. Within the mormyrids, the genus *Campylomormyrus* is mostly endemic to the Congo Basin. *Campylomormyrus* serves as a model to understand mechanisms of adaptive radiation and

ecological speciation, especially with regard to its highly diverse species-specific electric organ discharges (EOD). Currently, there are few well-annotated genomes available for electric fish in general and mormyrids in particular. Our study aims at producing a high-quality genome assembly and to use this to examine genome evolution in relation to other teleosts. This will facilitate further understanding of the evolution of the osteoglossomorpha fish in general and of electric fish in particular.

Results: A high-quality weakly electric fish (*C. compressirostris*) genome was produced from a single individual with a genome size of 862Mb, consisting of 1,497 contigs with an N50 of 1,399 kb and a GC-content of 43.69%. Gene predictions identified 34,492 protein-coding genes, which is a higher number than in the two other available Osteoglossomorpha genomes of *Paramormyrops kingsleyae* and *Scleropages formosus*. A Computational Analysis of gene Family Evolution (CAFE5) comparing 33 teleost fish genomes suggests an overall faster gene family turnover rate in Osteoglossomorpha than in Otomorpha and Euteleosteomorpha. Moreover, the ratios of expanded/contracted gene family numbers in Osteoglossomorpha are significantly higher than in the other two taxa, except for species that had undergone an additional genome duplication (*Cyprinus carpio* and *Oncorhynchus mykiss*). As potassium channel proteins are hypothesized to play a key role in EOD diversity among species, we put a special focus on them, and manually curated 16 *Kv1* genes. We identified a tandem duplication in the *KCNA7a* gene in the genome of *C. compressirostris*.

Conclusions: We present the fourth genome of an electric fish and the third well-annotated genome for Osteoglossomorpha, enabling us to compare gene family evolution among major teleost lineages. Osteoglossomorpha appear to exhibit rapid gene family evolution, with more gene family expansions than contractions. The curated *Kv1* gene family showed seven gene clusters,

which is more than in other analyzed fish genomes outside Osteoglossomorpha. The *KCNA7a*, encoding for a potassium channel central for EOD production and modulation, is tandemly duplicated which may related to the diverse EOD observed among *Campylomormyrus* species.

Keywords: Campylomormyrus; Pacbio sequencing; gene family; Osteoglossomorpha, Kv1

Background

Teleost fishes comprise more than half of the vertebrate species in the world, showing a marvelous biodiversity concerning morphology, ecology and behavior [1]. It has been shown that a teleost-specific whole genome duplication (TS-WGD) had occurred in the common ancestor of all extant teleost [2–5]. Although there is no solid evidence to support the connection between the TS-WGD and the successful radiation of teleosts, the former provided enormous opportunities for gene innovation and evolution [6]. The redundant duplicated genes may be free to evolve new or related functions in the course of long-term modification and divergence, and may hence have fostered functional and phenotypic diversification in teleost fish [7].

One of the possible trajectories of diversification following gene duplication is parallel evolution among disparate taxa [8], as exemplified in the evolution of electric organs in unrelated lineages [9]. Among fish, myogenic electric organs have independently evolved at least six times, enabling the generation of electric fields, which are used for communication, navigation, and in extreme cases for predation and defense [10–14]. This electric organ-specific parallel evolution appeared both in elasmobranch fish and two unrelated teleost lineages: the Gymnotiformes from South America and the Mormyroidei from Africa [10]. The vast majority of African weakly electric fishes belongs to the Mormyridae, one of the most diverse family of freshwater fishes. They are endemic to Africa where there are at least 188 described species [15]. The genus *Campylomormyrus* comprises 15 described species, most endemic to the Congo Basin [15, 16]. As in other mormyrids, the electric organ of *Campylomormyrus* is derived from myogenic tissue and located in the caudal peduncle [17]. It is composed of specialized electrocytes which produce externally measurable electric organ discharges (EODs) [17]. The species-specific EOD displays a huge diversity in signal duration and waveform [18, 19]. However, the proximate mechanisms underlying the species divergence of EOD among species are only partially understood [20–23]. In order to better understand the evolution of this genus, a high-quality genome is imperative. Up to now, three complete genomes have been published of electric fishes of the genera *Paramormyrops*, *Electrophorus* and *Brachyhypopomus* [24–26]. Hence, our genomic knowledge is still too incomplete for a comprehensive assessment of electric fish's molecular evolution and its impact on phenotypic divergence.

Fig. 1: Photo and typical electric organ discharge (EOD, upper left corner) of the sequenced species *Campylomormyrus compressirostris.* (Photo taken by Frank Kirschbaum)

The aim of our study is to generate a high-quality genome for the African weakly electric fish species *Campylomormyrus compressirostris*, a species that produces a biphasic pulse type EOD

(Fig. 1). This genome will provide an invaluable resource for the genus *Campylomormyrus*, an established model for adaptive radiation and ecological speciation [27]. As a first step, we here use this genome to compare the evolution of gene family size in *C. compressirostris* relative to other electric fishes, and to teleost fish in general. In addition, we have manually curated and examined the important Kvl voltage-gated potassium channel genes, which is hypothesized to be involved in the diversification of the EOD signal and speciation in weakly electric fish [19].

Results

Genome assembly of Campylomormyrus compressirostris

Here we report a new genome assembly from the African weakly electric fish *C. compressirostris*. The specimen used for sequencing was artificially bred and raised at the University Potsdam, Germany. A total of 294 Gb Pacbio raw data (~294.3 billion reads) was generated. Circular consensus sequencing (CCS) produced 15.5 Gb (~1.03 million reads) high fidelity (HiFi) raw data. The produced HiFi data were analyzed based on their k-mer distribution [28] to estimate the genome size (799 Mb) and genome heterozygosity (0.96%).

Using the hifiasm assembler [29], the final assembly is 862Mb in size, and contains 1,497 contigs with a contig N50 of 1.3Mb and a GC-content of 43.69% (Table 1). The largest contig has a length of 1,399kb. The assembly also produced the set of alternate contigs (815.8Mb). The genome quality was close to that of the *Brachyhypopomus occidentalis* genome, and significantly improved compared with the two other published electric fish genomes: *Electrophorus electricus* and *Paramormyrops kingsleyae* (Table 1).

	Osteoglossomorpha		Gymnotiformes		
	C. compressirostris	P. kingsleyae	S. formosus	E. electricus	B. occidentalis
Sequencing Platform	Pacbio HiFi	Illumina	Illumina	Illumina	10
		HiSeq2000	HiSeq2000	HiSeq2000	10 x
Genome size (Mb)	862	880	779	720	540.3
Coverage	14x	83x	137.6x	55 x	46x
Complete BUSCOs	94.6%	95.0%	-	97.0%	93.8%
n contigs	1,497	4,496	-	340,589	1,435
Contig N50 (kb)	1,399	37.6	30.73	104	5,400
GC content	43.9%	43.0%	-	42.5%	44.6%
Genes Predicted	34,492	27,677	22,016	22,000	34,347

 Table 1 Comparison of available genome assemblies for 4 electric fish (Osteoglossomorpha: C. compressirostris, P.

 kingsleyae; Gymnotiformes: E. electricus, B. occidentalis) and 1 non-electric osteoglossomorph fish (S. formosus).

The integrity of the assembly was demonstrated by 94.6% Benchmarking Universal Single-Copy Orthologs (BUSCO) [30] completeness, indicating the high degree of completeness of the gene regions.

Genome annotation

Genome annotation was conducted in several steps. First, repeats were identified and masked. The repeat content was identified based on the RepeatModeler [31], and accounted in total for 27.28% (235.37Mb) of the assembled genome. Next, gene predictions were made using combined evidence from empirical transcriptomic data and protein references from the National Center for Biotechnology Information (NCBI). These were provided to the MAKER pipeline, which predicted 34,492 protein-coding genes, 280,886 exons and 246,394 introns (Table 2). The coding sequence (CDS) covers 5.3% of the genome. Over 90% of the genes have an annotation edit

distance (AED) of 0.5 or lower (Additional file 1), suggesting that they are well supported by either protein or RNA-seq evidence. The number of predicted protein-coding genes is notably higher than in the other two sequenced Osteoglossiformes fishes: *P. kingsleyae* and *Scleropages formosus* which had 27,677 and 22,016 protein-coding genes, respectively (Table 1).

Table 2 Genome annotation statistics

	Exons	Introns	Genes	CDS
Number	280,886	246,394	34,492	34,492
Longest in kb	26.4	292.8	424	534
Mean length	225	1,095	9,645	1,330
% genome covered by			38.6	5.3

Orthogroup identification in teleost fish

The gene family analyzer CAFE5 (Computational Analysis of gene Family Evolution) [32] was used to compare annotated gene content in our genome with 33 genomes of teleost fish that we selected based on contiguity and taxonomic representation (Additional file 2).

 Table 3 Number of orthogroups (OGs) with significant changes in gene number (p<0.05) among</th>

 teleosts, compared to all OGs in teleost fish. Overrepresentation of certain functions was tested with

 Fisher's exact test.

	OGs with significantly changed gene number	All OGs	P-value
Total number	368	23,613	
Number with annotation	276	20,663	
Number associated with zinc finger proteins	12	809	0.6416
Number associated with transposons	10	36	< 0.001
Number associated with immunoglobulins	10	90	<0.001
Number associated with GTPases	7	202	0.0228

Orthogroups (OGs) were clustered among the filtered peptides sequences in OrthoFinder [33]. We obtained 23,613 OGs from teleost fish by OrthoFinder, of which 402 were identified as single copy. There are 500 unique OGs in C. compressirostris, and 919 in Mormyridae (represented by *C. compressirostris* and *P. kingsleyae*). A total of 1,169 unique OGs were identified among Osteoglossomorpha, 1,134 among Otomorpha, and 2,540 among Euteleosteomorpha.

Gene and gene family expansion and contraction analysis

We estimated both expansions and contractions in gene family size across the evolutionary history of all teleosts. All the 23,613 OGs from OrthoFinder were used as input in CAFE5. CAFE5 estimated the gene family turnover rate lambda for each group of Osteoglossiforpha, Otomorpha and Euteleosteomorpha.

Based on the gene family clustering results in CAFE5, 368 OGs were significantly changed in gene numbers per family among teleost, of which 276 were annotated using the UniProt database (Table 3). From this set, OGs were repeatedly (over 5 times) associated with zinc finger protein, transposon, immunoglobulin and GTPase. We put the relative frequency of OGs with these functions into perspective of their occurrence among the 20,663 annotated OGs in total, employing Fisher's exact tests [34]. Among the OGs with significantly changed gene number contents across teleost lineages, OGs related to transposons, immunoglobulins and GTPases are significantly overrepresented. In the CAFE5 gene family analysis, the estimated gene family turnover rate lambda was larger for Osteoglossomorpha (0.0029) than for Otomorpha (0.0022) and Euteleosteomorpha (0.0022).

In order to eliminate the bias introduced by species that have undergone an additional and more recent WGD, we repeated the CAFE5 analysis without those species (i.e., excluding *Cyprinus*

Fig. 2: Inferred MRCA (most recent common ancestor) numbers of genes (green) and gene families (red) as well as the expansions (gains, +) and contractions (losses, -) in genomes of different teleost lineages. The pie charts show the gene/gene family expansions and contractions of species compared to the MRCA.

carpio and *Oncorhynchus mykiss*). With this removal, Osteoglossomorpha (0.0030) show an even larger lambda, relative to Otomorpha (0.0020) and Euteleosteomorpha (0.0019), indicating a higher gene family turnover (birth-death) rate in Osteoglossomorpha.

We compared the inferred gene and gene family change for each node, relative to its preceding node in the phylogeny. 1,556 gene families were expanded in *C. compressirostris* whereas 1,720 contracted (Fig. 2). This species gained 3,160 genes and lost 2,816 genes. The common ancestor of *C. compressirostris* and *P. kingsleyae* had 1,642 gene families expanded and 1,074 contracted, *P. kingsleyae* only had inferred expansion in 863 gene families, relative to contraction 1,484 gene families (Fig. 2).

Fig. 3: Box-and-scatter plot of gene family expansion/ contraction ratios in the groups Osteoglossomorpha, Otomorpha and Euteleostemorpha. The values above box plot are the P-values between corresponding groups from a t-test.

For comparing the lineage-specific gene family and gene change relative to their most recent common ancestor (MRCA) of all selected teleost fishes, we summarized the gene and gene family change for every species (Fig. 2, Additional file 3) and counted the ratios of expanded/contracted gene family (as well as gained/lost gene) numbers. In most of the analyzed species, more gene families contracted than expanded, with the exception of the two species with additional, recent genome duplications: C. carpio and O. *mykiss*. Leaving these two species out, the ratio of family expansions/contractions gene was significantly higher in Osteoglossomorpha than in Otomorpha and Euteleosteomorpha (p-values of 0.036 and 0.0031 respectively, t-Test [35], Fig. 3).

Gene families and pathways with increased turnover in electric fish and Osteoglossomorpha

We assigned gene families to Kyoto Encyclopedia of Genes and Genomes (KEGG) [36] pathways to identify those pathways exhibiting a significantly (p<0.05) elevated turnover (i.e., a significantly higher number of either contracted and expanded gene families) in the two mormyrids *C. compressirostris* and *P. kingsleyae*, relative to their common ancestor. This analysis yielded 60 significantly enriched pathways (Fig. 4), of which 25 contained contracted OGs and 5 expanded OGs in *C. compressirostris*; for *P. kingsleyae*, 16 pathways comprised contracted OGs and 24

expanded ones. For the ancestor node of both mormyrid fishes, 22 pathways with elevated turnover exhibit contracted OGs and 5 expanded ones. The rich factor indicates the degree of the enrichment in the respective KEGG pathways (Fig. 4). The pathway with highest rich factor is primary bile acid biosynthesis in contracted OGs, and is nitrogen metabolism in expanded OGs.

Fig. 4: Numbers of expanded and contracted gene families in KEGG pathways with significantly elevated turnover (contraction or expansion) among *C. compressirostris* (red), *P. kingsleyae* (blue) and their common ancestor (green). The plot size represents the gene family number in the respective species. Note that non-significant values are not plotted, hence not all pathways have dots for all taxonomic groups.

To examine shared OGs, a VennDiagram [37] was created to visualize all OGs in three electric fish (*C. compressirostris*, *P. kingsleyae* and *E. electricus*) and one non-electric fish *S. formosus* from Osteoglossomorpha (Fig. 5). There were 269 enriched OGs shared among the electric fishes,

Fig. 5: Venn Diagram graph of all orthologous gene families shared/not shared among four species (C. compressirostris, P. kingsleyae, E. electricus, S. formosus).

and 411 enriched OGs shared among Osteoglossomorpha. 264 enriched OGs were only shared among mormyrids. Although this is a small dataset, it could suggest that OGs turnover patterns are more similar among phylogenetically related groups (here, osteoglossomorphs) than among species having convergently evolved an active electric sense.

KCNA gene cluster curation

The potassium voltage-gated channel subfamily A (*KCNA*, *Kv1*) encodes shaker-related voltagegated potassium channels, which are considered as a component of electric organ discharges. 16 complete *Kv1* genes, which contained both start and stop codons, were manually curated in the *C*. *compressirostris* genome (Table 4, Additional file 4). 11 of them were predicted in the annotation pipeline. Manual searches identified *KCNA3a/b*, *KCNA7b* and *KCNA10a/b*. We could not find *KCNA5a* gene, which was considered to be lost according to the available resources.

The CDS length among *KCNA* genes varied from ~1,400 bp to ~2,000 bp. We detected two *KCNA7a* gene copies in contig ptg000028l with a regional distance of ~26kb (Table 4). Genes *KCNA1a/b*, *KCNA2a/b*, *KCNA3a/b*, *KCNA4a/b*, *KCNA5b*, *KCNA6a/b* and *KCNA10a/b* have only
Gene	Contig	Start position	End position	Number of exons	Length of cds
KCNAla	ptg0003431	158,599	160,074	1	1,476
KCNA1b	ptg0006331	255,2072	2,553,541	1	1,470
KCNA2a	ptg0009621	2,034,837	2,036,324	1	1,488
KCNA2b	ptg0001351	6,635,624	6,637,102	1	1,479
KCNA3a	ptg0009621	2,057,829	2,059,386	1	1,557
KCNA3b	Ptg0001351	6,613,381	6,614,937	1	1,557
KCNA4a	ptg0006431	775,778	777,787	1	2,010
KCNA4b	ptg0003331	510,057	512,045	1	1,989
KCNA5b	ptg0006331	2,507,887	2,509,569	1	1,683
KCNA6a	ptg0006331	2,583,269	2,584,375	1	1,107
KCNA6b	ptg0002251	702,207	703,643	1	1,437
KCNA7a_l	ptg0000281	8,120,428	8,129,001	2	1,539
KCNA7a_2	ptg0000281	8,089,350	8,094,209	2	1,542
KCNA7b	ptg0006001	1,376,337	1,378,893	2	1,551
KCNA10a	ptg0009621	2,004,772	2,006,448	1	1,677
KCNA10b	ptg0001351	6,670,889	6,672,565	1	1,677

Table 4 KCNA genes information in the C. compressirostris genome

one exon, whereas *KCNA7a_1*, *KCNA7a_2* and *KCNA7b* were found to have two exons. Among the newly discovered duplications of *KCNA7a*, the exon1 of *KCNA7a_1* and *KCNA7a_2* are identical, however, there are 55 single nucleotide polymorphisms (SNPs) among them in the 855 bp of exon2. The p-distance was 0.0657 between two *KCNA7a* copies of exon2.

The phylogenetic analysis of all *Kv1* genes in BEAST v1.8.4 [38] suggests a basal position of *KCNA7a/b* genes (Fig. 6). The *KCNA1a/b* and *KCNA2a/b* form a monophyletic cluster, as do *KCNA5b* and *KCNA10a/b*, *KCNA3a/b* and *KCNA6a/b*. Those monophyletic gene clusters corroborate the hypothesis that the three clusters resulted from a complete duplication of the original cluster instead of independent tandem duplication [39].

Fig. 6: Bayesian tree of all curated Kv1 genes in C. compressirostris genome. The posterior probability value is shown on each node. Genes are also mapped to their respective contig. The following genes are linked, i.e., mapped to the same contig: I: KCNA2b, KCNA3b, KCNA10b; II: KCNA2a, KCNA3a, KCNA10a; III: KCNA1b, KCNA5b, KCNA6a; IV: KCNA7a_1, KCNA7a_1. Discussion

Genomic resources for electric fish and early teleost evolution

This is the fourth genome of an electric fish, and the third well-annotated genome for the basal teleost taxon Osteoglossomorpha. Its quality is significantly improved with regard to contig length, when compared to the existing genomes for electric fish (*P. kingsleyae*, *E. electricus* [25, 26] and the non-electric Osteoglossomorpha fish *S. formosus* [40]. Regarding the number of contigs, completeness of BUSCO matches, and GC-content, our genome is also comparable to the recently released *B. occidentalis* genome ([24]; a gymnotiform electric fish), which was generated by 10x genomics linked read sequencing (Table 1). Our new genome will provide a valuable resource for

future research on the evolution and ecology not only of electric fish, but also of the basal Osteoglossomorpha and early teleosts in general.

The draft annotation from MAKER predicted 34,492 protein-coding genes (Table 1). This is a substantially higher number than revealed in the annotations of P. kingsleyae (27,677) and S. formosus (22,016) [25] in the original publications. It had been hypothesized that mormyrid fishes may have a larger number of genes than other non-electric osteoglossiformes [25], however, gene counts could also vary due to annotation artifacts, for example if reads from single genes are erroneously annotated to two genes [25], or uncollapsed haplotypes in the assembly. The annotations we used in our CAFE5 analysis were downloaded from NCBI pipeline, which resulted in 23,862 and 23,537 genes for *P. kingsleyae* and *S. formosus*, respectively, hence not supporting a generally increased gene number in mormyrids, relative to other Osteoglossomorpha fishes. To investigate whether the larger number of genes in C. compressions is due to fragmentation of single genes in the annotation from MAKER, we mapped the CDS of C. compressirostris to the reference P. kingsleyae CDS from NCBI using MUMmer4.0 [41], allowing the C. compressirostris only map to the best hit in the reference (Additional file 5). This showed 3,076 overmapped genes in C. compressirostris that could indicate more than one gene model matching to a single gene model in *P. kingsleyae*. However, these could also be matches between similar genes and true duplications. In addition, there were an additional 10,846 and 2,939 unique genes in C. compressirostris and P. kingsleyae, respectively. These did not map between the species and suggests an excess of new and expanded genes in C. compressirostris, or lost/un-annotated genes in P. kingsleyae. This is also supported by the small subset of known genes that we looked at (i.e., the KvI genes), where we manually confirmed the genes are not overly predicted in the C. compressirostris genome annotation. It is possible that the larger gene number in C.

compressirostris (relative to the other mormyrid *P. kingsleyae*) reflects true differences among these species. Our improved assembly with longer and fewer contigs may also have facilitated annotation of more genes.

KCNA genes in C. compressirostris genome

It is generally accepted that there were two rounds of genome duplication in early vertebrate evolution, and an additional genome duplication event in the ancestor of teleost fishes [39]. These ancient duplications could be reflected in the gene tree of the *Kv1* gene family. The monophyletic clusters of (1) *KCNA5b* and *KCNA10a/b*, (2) *KCNA1a/b* and *KCNA2a/b*, and (3) *KCNA3a/b* and *KCNA6a/b* are indeed compatible with a scenario of three subsequent whole genome duplications (Fig. 6). *KCNA7a/b* genes were also identified from our genome. These genes were the only ones containing an intron, while all other *KCNA* genes are intronless. Our manual curation showed that the *KCNA7a* gene has two gene copies, which are profoundly diverged in one of its exons. They are otherwise very similar and are situated close to each other in the same contig, pointing towards a recent lineage-specific tandem duplication. The *KCNA5a* was not found in the genome. This could reflect the incompleteness of our genome, but this copy could also have been lost during evolution [39]. Gene loss in this gene family is not uncommon among teleost fish, and in some lineages such as zebrafish, pufferfish and medaka only four monophyletic clusters in the *Kv1* gene family were found [39].

Kv1 genes are hypothesized to be potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish. 13 *Kv1* genes are upregulated in the EO in the *species C*. *tshokwe* (a species with an elongated EOD) compared with skeleton muscle and *C*. *compressirostris* (a species with short EOD; [19]). While the *KCNA7b* gene is considered to be

upregulated in the skeleton muscle in mormyrids, the KCNA7a gene had is predominantly expressed in the EO [42]. This points towards one of the duplicated gene copies having evolved a new function (neofunctionalization) [43]. This might have occurred in mormyrid fishes, leading to more diverse functions among Kvl genes. In particular, the evolution of an electric organ may have exerted different selection pressures on ion channels, such that one paralog may have evolved a new function (in the EO), while the other maintains the original state. This could have fostered the retention of many KCNA genes, in comparison to other non-electric teleosts. Here, it is particularly interesting that we found Campylomormyrus to possess an additional copy of the KCNA7a gene. Not only is this gene known to be predominantly expressed in the electric organ, but expressed sequence differences in this gene have also been discussed underlying length modulation of the EOD [42]. Indeed, EOD divergence is considered a major driver of the radiation within the genus *Campylomormyrus* [18]. We found the exon 2 of the two *KCNA7a* duplicates exhibiting numerous expressed sequence variations. This exon encodes for mediating the voltagedependent potassium ion permeability of excitable membranes, and the possession of two putatively functional copies may hence have facilitated divergent EOD evolution in *Campylomormyrus*. This hypothesis, however, still awaits evaluation by functional studies.

Gene family expansion and contraction in teleost

The teleost-specific whole genome duplication has shaped the evolutionary history of many teleost lineages by providing extensive raw materials for species radiation [6]. A likely fate of many duplicated genes is also that they can become non-functional [7] as a result of lacking the selective constraint on preserving both genes. This may explain the global pattern of more contracted than expanded gene families in most teleost species. This pattern is only reversed in the two species representing Salmonidae and Cyprinidae, both having experienced an additional WGD [44, 45].

According to our CAFE5 analysis, Osteoglossomorpha appear to have a more rapid gene family turnover rate (lambda) than Otomorpha and Euteleosteomorpha (Fig. 2&3). In particular, we found a significantly higher expansion/contraction ratio in Osteoglossomorpha, relative to other teleost lineages. This is exemplary supported by the *Kv1* gene family. Eight *Kv1* gene clusters (in total of 16 genes) were curated in C. compressirostris and an additional gene duplication detected (duplicating *KCNA7a*), while in other species such as the pufferfish, medaka, stickleback and zebrafish there are only four clusters. Although this is only a single gene family, it suggests a possible scenario of subfunctionalization and neofunctionalization in particular in the lineages with an active electric sense, which may contribute to the higher turnover rate and expansion/contraction ratio in Osteoglossomorpha.

Pathway evolution in Mormyroidea

Pathway enrichment analysis is a tool to infer biologically relevant genes and biological processes from high-throughput data. The pathway of primary bile acid biosynthesis was most prone to gene family contraction in African weakly electric fish (mormyrids). This pathway takes place in the liver of vertebrates [46], where the synthesized bile acid can be conjugate with taurine or glycine before secretion via bile into the intestine. The pathway with most gene family expansion among mormyrids is nitrogen metabolism, one of the pathways for forming nitrogenous endproducts from protein degradation [47]. The expanded gene families contained within this second pathway are mostly related to carbonic anhydrases (e.g. CA12, CA4). These genes help maintaining acid-base homeostasis, regulatinge PH, and perhaps most relevantly, they play an active role in ion uptake [48]. It has been shown in mammals that genes such as carbonic anhydrases CA2 and CA4 play important roles in epithelial acid secretion and sodium uptake [48]. Although we do not know the

expression pattern of those CA genes in mormyrids, they might be involved in ion transport as well, especially of potassium and sodium, with are key to generate electric signals.

Expanded specifically in the electric mormyrids were gene families of the Wnt signaling pathway, encoding for a wide array of cellular processes including cell fate determination, motility, polarity, primary axis formation and organogenesis. It can be divided into the Planar Cell Polarity pathway and the Wnt/Ca²⁺ pathway. High turnover was also observed in the calcium signaling pathway, which is mostly contracted in both species and their common ancestor. It regulates the Ca²⁺ entering the cell from the outside. It was found to be down-regulated in the EO compared with skeleton muscle [21], which may have resulted from the contracted OGs about this pathway.

Conclusions

A new high-quality genome of an African weakly electric fish (*C. compressirostris*, Mormyridae) is reported here, representing an important contribution to understand the evolution of electric fish and Osteoglossomorpha fish genomes. Our gene family analysis relative to representatives of many teleost fish genomes reveals a more rapid turnover rate and a higher expanded/contracted gene family number ratio in Osteoglossomorpha. The functional importance of these gene families requires further investigation, but provides many avenues for understanding the unique adaptations in these fishes. We also identified most of the *KCNA* gene clusters in our genome except for *KCNA5a*. The *KCNA7a* gene was found to be tandem duplicated. *KCNA* genes are considered of prime importance in the evolution of the active electric sense in teleosts. Our exhaustive efforts to localize these genes (including detection of a novel tandem duplication) underline the potential our new genome may hold towards an improved understanding of electric fish and Osteoglossomorpha evolution.

Methods

Samples

Genomic DNA was isolated from available frozen fin clips, which had been previously taken in the course of another study from an adult *C. compressirostris* artificially bred and raised at University Potsdam, Germany. The CTAB protocol was used to obtain high molecular weight genomic DNA [49]. The concentration and quality were further verified with Nanodrop spectrophotometer and Agilent TapeStation before sequencing.

Genome sequencing

For Pacbio sequencing, a 15-kb SMRT cell DNA library was prepared and sequenced on a PacBio Sequel platform with one SMRT cell by a commercial company (Novogene). This produced 294 Gb long reads, which were used to generate the HiFi long reads using circular consensus sequencing (CCS) mode (Pacific Biosciences, USA).

De novo genome assembly

The genome size and heterozygosity was estimated by GenomeScope 2.0 [50] using a k-mer value of 32 [28]. The genome was further assembled by hifiasm [29] with the HiFi reads as input. The separated primary haplotigs were visualized in Bandage [51]. This showed that some of the contigs contains two forks, which are likely homozygous breakpoints. Therefore, the program purge_dups [52] was additionally applied for haplotig purging in the primary haplotigs. The mitochondrial DNA was separately assembled with the MitoHiFi.

We examined potential contamination using Blobtools2 [53] based on divergence in GC-content and coverage. We further assessed the presence of core, single copy and orthologous genes through BUSCO 5.3 [30] with the actinopterygii_odb10 orthologues as reference.

Genome annotation

Before annotation, we performed repeat masking in RepeatModeler 1.0.11 [31] provided in GenSAS v6.0 [54]. The soft repeat-masked sequence was used as an input in MAKER [55]. To provide EST evidence, we assembled the transcript sequences from Lamanna et al. [21] and newly genereated RNA sequence data (Feng & Tiedemann, unpubl. results) of *C. compressirostris* with Trinity [56]. 575,330 transcripts were assembled by Trinity from electric organ and skeleton muscle tissues, and they were all used as EST evidence in MAKER. In addition, 24,4298 protein sequences were collected from all vertebrate proteins in NCBI.

The soft-masked assembly was predicted in MAKER with different gene predictors in three steps. In the first round, the RNA and protein sequences were supplied as evidence, and trained with the ab initio gene predictors SNAP [57] and Augustus [58] based on BUSCO. In the second round, we created a new SNAP-HMM input file based on the first round output and repeated the run with the same parameters as in the first round. The output from the second run was further analyzed in the third round following the method in the second round. The final output of the predicted gene, exon and intron information was statistically summarized by GAG [59]. We also manually checked the *KCNA* genes (see below) to exemplary confirm annotation quality. All the CDS were used to identify conserved protein domains with InterProScan [60].

Gene family expansion and contraction analysis

In order to get an insight to the evolutionary dynamics of the genome evolution, the gene family analyzer CAFE5 [32] was used to infer expansion and contraction of gene ortholog clusters in 33 teleost fish. The species were selected such that they represent the taxonomic diversity among teleosts and include the only three available species from Osteoglossomorpha, six species from Otomorpha and 24 species from Euteleosteomorpha. A further selection criterion was genome quality, i.e. all selected representative species have a genome contig N50 over 100kb, except for that of *P. kingsleyae*, which was though retained, as it comprises the only other genome from an African electric fish (Mormyridae). We obtained the peptide sequences from those genomes in NCBI, and retained the longest isoform for each peptide. Gene families (orthogroups) were clustered among the filtered peptide sequences from all selected species in OrthoFinder [33], using an all-vs-all BLAST [38] for sequence similarity searches. Gene gain and loss in each lineage were calculated in CAFE5 with a random birth-death process model, based on the ultrametric species tree, which was generated by OrthoFinder using Fastree [61]. Taxon-specific lambda values (rates of evolutionary change) were estimated for Osteoglossomorpha, Otomorpha and Euteleosteomorpha.

In order to compare the gene family expansions and contractions relative to the most recent common ancestor (MRCA) of all selected teleost fishes, we summarized the gene and gene family change for each species and counted the ratios of expanded/contracted gene family (and gained/lost gene) numbers. A t-test was used to testify the ratios of expanded/contracted gene family numbers between Osteoglossomorpha & Euteleosteomorpha and Osteoglossomorpha & Otomorpha. Note that we only performed these two pairwise comparisons. The testing scheme is hence orthogonal and does not require a further correction [62].

We calculated the total number of orthogroups (OGs) from OrthoFinder and the number of significantly expanded and contracted OGs (P-value less than 0.05) among all species from the CAFE5 analysis. These OGs were separately blasted against the UniProt database. We further counted the OG number that showed up the most (zinc finger, transposon, immunoglobulin and GTPase) in both datasets, i.e. among all the OGs and the significantly contracted/expanded OGs. A Fisher's exact test [34] was then applied to identify significant deviations in the number of contracted/expanded OGs of each functional category, relative to the numbers of contracted/expanded OGs.

We collected the OGs inferred from electric fish and Osteoglossomorpha genomes (*C. compressirostris*, *P. kingsleyae*, *E. electricus* and *S. formosus*) and used the program VennDiagram [37] to visualize shared/unique OGs number among those four species. For *C. compressirostris*, *P. kingsleyae* and the ancestor node (as representative of Mormyridae), we performed an enrichment analysis by assigning contracted and expanded OGs to metabolic pathways using the KEGG database [36].

KCNA gene clusters curation

In total, we collected 233 *KCNA* genes sequences of teleost fishes in NCBI and blasted them against our genome. We identified each *KCNA* genes based on an e-value less than 1e-6 and the best raw score from blast output. The identified *KCNA* genes were reciprocally blasted in NCBI. After we curated all found *KCNA* genes in our new *C. compressirostris* genome, a phylogenetic Bayesian tree was built in BEAST v1.8.4 [63] using a GTR+G substitution model, a relaxed lognormal clock model, the Yule speciation model and one billion MCMC. The result was

preserved only if the effective sample size (ESS) were all over 200. 10% of the starting MCMC was used as burn in and the remainder was used to generate a phylogenetic tree.

Declaration section

Ethics approval and consent to participate

The sample was taken from a fish specimen bred and kept at the University of Potsdam in compliance with German animal welfare regulations. Sampling followed the international recognized guidelines and applicable national law (Tierschutzgesetz). The procedure was approved by the deputy of animal welfare at University of Potsdam.

Consent for publication

Not applicable.

Availability of data and materials

The genome datasets generated during the current study are available in the European Nucleotide Archive under the accession number GCA_910591475 at

https://www.ebi.ac.uk/ena/browser/view/GCA_910591475.1.

The raw sequencing reads, assembled genome, annotation as well as the KCNA genes sequences were stored in Dryad under the DOI: doi:10.5061/dryad.c59zw3rcj. Prior to publication these data are available at:

https://datadryad.org/stash/share/r9DNhYnIfU5xgBnt_zKIQID60ieImk0Ti_vHDUS9n0

Competing interests

The authors declare that they have no competing interests.

Funding

This project was funded by the University of Potsdam.

Acknowledgement

We thank Tonio Pieterek, M.Sc., who bred the fish in the aquarium. We also thank Thomas Inäbnit,

M.Sc., for help during the assembly of the mitochondrial genome.

References

1. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, et al. The medaka draft genome and insights into vertebrate genome evolution. Nature. 2007;447:714–9.

2. Volff JN. Genome evolution and biodiversity in teleost fish. Heredity (Edinb). 2005;94:280-94.

3. Jatllon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Maucell E, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004;431:946–57.

4. Gundappa MK, To TH, Grønvold L, Martin SAM, Lien S, Geist J, et al. Genome-Wide Reconstruction of Rediploidization Following Autopolyploidization across One Hundred Million Years of Salmonid Evolution. Mol Biol Evol. 2022;39:msab310.

5. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 2007;17:1254–65.

6. Glasauer SMK, Neuhauss SCF. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genom. 2014;289:1045–60.

7. Hooper SD, Berg OG. On the nature of gene innovation: Duplication patterns in microbial genomes. Mol Biol Evol. 2003;20:945–54.

8. Stern DL. The genetic causes of convergent evolution. Nat Rev Genet. 2013;14:751–64.

9. Fund M, Phy NSF, Gallant JR, Traeger LL, Volkening JD, Moffett H, et al. Evolution of Electric Organs. Science (1979). 2014;344:1522–5.

10. Wang Y, Yang L. Genomic Evidence for Convergent Molecular Adaptation in Electric Fishes. Genome Biol Evol. 2021;13:1–11.

11. Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen PH, Novina CD, et al. Genomic basis for the convergent evolution of electric organs. Science (1979). 2014;344:1522–5.

12. Lissmann HW. On the Function and Evolution of Electric Organs in Fish. J Exp Biol. 1958;35:156–91.

13. Zakon HH, Zwickl DJ, Lu Y, Hillis DM. Molecular evolution of communication signals in electric fish. J Exp Biol. 2008;211:1814–8.

14. Crampton WGR. Electroreception, electrogenesis and electric signal evolution. J Fish Biol. 2019;95:92–134.

15. Glaubrecht M, Schneider H. Evolution in action: Case studies in adaptive radiation, speciation and the origin of biodiversity. Evolution in Action: Case studies in Adaptive Radiation, Speciation and the Origin of Biodiversity. 2010;:1–586.

16. Feulner PGD, Kirschbaum F, Mamonekene V, Ketmaier V, Tiedemann R. Adaptive radiation in African weakly electric fish (Teleostei: Mormyridae: Campylomormyrus): A combined molecular and morphological approach. J Evol Biol. 2007;20:403–14.

17. Denizot JP, Kirschbaum F, Westby GWM, Tsuji S. On the development of the adult electric organ in the mormyrid fish Pollimyrus isidori (with special focus on the innervation). J Neurocytol. 1982;11:913–34.

18. Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R. Magic trait electric organ discharge (EOD): Dual function of electric signals promotes speciation in African weakly electric fish. Commun Integr Biol. 2009;2:329–31.

19. Nagel R, Kirschbaum F, Tiedemann R. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017;203:183–95.

20. Paul C, Kirschbaum F, Mamonekene V, Tiedemann R. Evidence for Non-neutral Evolution in a Sodium Channel Gene in African Weakly Electric Fish (Campylomormyrus, Mormyridae). J Mol Evol. 2016;83:61–77.

21. Lamanna F, Kirschbaum F, Waurick I, Dieterich C, Tiedemann R. Cross-tissue and crossspecies analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae). BMC Genom. 2015;16:1–17.

22. Lamanna F, Kirschbaum F, Tiedemann R. De novo assembly and characterization of the skeletal muscle and electric organ transcriptomes of the African weakly electric fish Campylomormyrus compressirostris (Mormyridae, Teleostei). Mol Ecol Resour. 2014;14:1222–30.

23. Feulner PGD, Kirschbaum F, Tiedemann R. Eighteen microsatellite loci for endemic African weakly electric fish (Campylomormyrus, Mormyridae) and their cross species applicability among related taxa. Mol Ecol Notes. 2005;5:446–8.

24. Arias CF, Dikow RB, McMillan WO, de León LF. De Novo Genome Assembly of the Electric Fish Brachyhypopomus occidentalis (Hypopomidae, Gymnotiformes). Genome Biol Evol. 2021;13:1–7.

25. Gallant JR, Losilla M, Tomlinson C, Warren WC. The genome and adult somatic transcriptome of the mormyrid electric fish paramormyrops kingsleyae. Genome Biol Evol. 2017;9:3525–30.

26. Traeger LL, Volkening JD, Moffett H, Gallant JR, Chen PH, Novina CD, et al. Unique patterns of transcript and miRNA expression in the South American strong voltage electric eel (Electrophorus electricus). BMC Genom. 2015;16.

27. Feulner PGD, Kirschbaum F, Tiedemann R. Adaptive radiation in the Congo River: An ecological speciation scenario for African weakly electric fish (Teleostei; Mormyridae; Campylomormyrus). J Physiol Paris. 2008;102:340–6.

28. Marcais G, Kingsford C. Jellyfish : A fast k-mer counter. Tutorialis e Manuais. 2012;:1–8.

29. Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170–5.

30. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol. 2021;38:4647–54.

31. Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117:9451–7.

32. Mendes FK, Vanderpool D, Fulton B, Hahn MW. CAFE 5 models variation in evolutionary rates among gene families. Bioinform. 2020;36:5516–8.

33. Emms DM, Kelly S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:1–14.

34. Upton GJG. Fisher 's Exact Test. Journal of the Royal Statistical Society. 1992;155:395–402.

35. Kim TK. T test as a parametric statistic. Korean J Anesthesiol. 2015;68:540-6.

36. Yi Y, Fang Y, Wu K, Liu Y, Zhang W. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.

37. Hanbo Chen PCB. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011;12:1–7.

38. Ye J, McGinnis S, Madden TL. BLAST: Improvements for better sequence analysis. Nucleic Acids Res. 2006;34 WEB. SERV. ISS.:6–9.

39. Hoegg S, Meyer A. Phylogenomic analyses of KCNA gene clusters in vertebrates: Why do gene clusters stay intact? BMC Evol Biol. 2007;7:1–12.

40. Li J, Bian C, Hu Y, Mu X, Shen X. Data Descriptor : A chromosome- level genome assembly of the Asian arowana , Scleropages formosus. Sci Rep. 2016;105:1–8.

41. Delcher A L., Steven S L, Phillippy A M. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics. 2003;1:10-3.

42. Swapna I, Ghezzi A, York JM, Markham MR, Halling DB, Lu Y, et al. Electrostatic Tuning of a Potassium Channel in Electric Fish. Curr Biol. 2018;28:2094–102.

43. Liu S. Evolution of Duplicate Gene Sequences, Expression Patterns, and Functions in the Brassicaceae and Other Rosids. University of British Columbia; 2011.

44. Xu P, Xu J, Liu G, Chen L, Zhou Z, Peng W, et al. The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio. Nat Commun. 2019;10:1–11.

45. Kodama M, Brieuc MSO, Devlin RH, Hard JJ, Naish KA. Comparative mapping between coho salmon (Oncorhynchus kisutch) and three other salmonids suggests a role for chromosomal rearrangements in the retention of duplicated regions following a whole genome duplication event. G3-GENES GENOM GENET. 2014;4:1717–30.

46. Russell DW, Setchell KDR. Bile Acid Biosynthesis. Biochem. 1992;31:4737–49.

47. Patrick J.Walsh TPM. Evolutionary considerations of nitrogen metabolism and excretion. Trends Endocrinol Metab. 1996;7:153–4.

48. Hiroi J, McCormick S D. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. RESPNB, 2012, 184(3): 257-268.

49. Angthong P, Uengwetwanit T, Pootakham W, Sittikankaew K, Sonthirod C, Sangsrakru D, et al. Optimization of high molecular weight DNA extraction methods in shrimp for a long-read sequencing platform. PeerJ. 2020;8:1–18.

50. Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, et al. GenomeScope: Fast reference-free genome profiling from short reads. Bioinform. 2017;33:2202–4.

51. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: Interactive visualization of de novo genome assemblies. Bioinform. 2015;31:3350–2.

52. Guan D, Guan D, McCarthy SA, Wood J, Howe K, Wang Y, et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36:2896–8.

53. Challis R, Richards E, Rajan J, Cochrane G, Blaxter M. BlobToolKit - interactive quality assessment of genome assemblies. G3-GENES GENOM GENET. 2020;10:1361–74.

54. Lee T, Peace C, Jung S, Zheng P, Main D, Cho I. GenSAS - An online integrated genome sequence annotation pipeline. In: Proceedings - 2011 4th International Conference on Biomedical Engineering and Informatics, BMEI 2011. 2011. p. 1967–73.

55. Holt C, Yandell M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform. 2011;12.

56. Grabherr MG;, Brian J. Haas, Moran Yassour Joshua Z. Levin, Dawn A. Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong Zeng, Zehua Chen, Evan Mauceli, Nir Hacohen, Andreas Gnirke, Nicholas Rhind, Federica di Palma, Bruce W. N, Friedman and AR. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2013;29:644–52.

57. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PIW. SNAP: A web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinform. 2008;24:2938–9.

58. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: A b initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34:435–9.

59. Geib SM, Hall B, Derego T, Bremer FT, Cannoles K, Sim SB. Genome Annotation Generator: a simple tool for generating and correcting WGS annotation tables for NCBI submission. Gigascience. 2018;7:1–5.

60. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: Genome-scale protein function classification. Bioinform. 2014;30:1236–40.

61. Price MN, Dehal PS, Arkin AP. FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5.

62. Sokal RR, Rohlf FJ. Biometry. The principles and practice of statistics in biological research. 2012.

63. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:1–8.

Additional files

Additional file 1:

Annotation edit distance (AED) score distributions for the *C. compressirostris* annotation by MAKER. (PNG 168kb)

Additional file 2:

Super Order	Order	Family	Species	Genome Size (mb)	Protein-coding Genes	Contig N50 (kb)	Reference/accession nr.
Osteoglossomorpha	Osteoglossiformes	Osteoglossidae	Scleropages formosus	784.5	23,537	9,102	GCF_900964775.1
Osteoglossomorpha	Osteoglossiformes	Mormyridae	Campylomormyrus compressirostris	862	34,492	1,399	this study; ERP129544
Osteoglossomorpha	Osteoglossiformes	Mormyridae	Paramormyrops kingsleyae	880	23,862	37.6	GCF_002872115.1
Otomorpha	Clupeiformes	Denticipitidae	Denticeps clupeoides	567.4	23,488	3,060	GCA_900700375.2
Otomorpha	Cypriniformes	Danionidae	Danio rerio	1,373	26,522	1,422	GCF_000002035.6
Otomorpha	Cypriniformes	Cyprinidae	Cyprinus carpio	1,680.1	43,531	1,559	GCF_018340385.1
Otomorpha	Gonorynchiformes	Chanidae	Chanos chanos	656.9	23,173	23,134	GCF_902362185.1
Otomorpha	Gonorynchiformes	Gymnotidae	Electrophorus electricus	589.4	22,304	104	GCA_013358815.1
Otomorpha	Characiformes	Serrasalmidae	Pygocentrus nattereri	1,222.1	25,548	12,899	GCA_015220715.1
Euteleosteomorpha	Anabantiformes	Anabantidae	Anabas testudineus	555.6	23,850	7,055.436	GCA_900324465.3
Euteleosteomorpha	Atheriniformes	Melanotaeniidae	Melanotaenia boesemani	865.6	24,098	9,299.978	GCA_017639745.1
Euteleosteomorpha	Batrachoidiformes	Batrachoididae	Thalassophryne amazonica	2,446.6	22,351	2,329.598	GCA_902500255.1
Euteleosteomorpha	Blenniiformes	Blenniidae	Salarias fasciatus	797.5	24,392	2,597.836	GCA_902148845.1
Euteleosteomorpha	Carangiformes	Echeneidae	Echeneis naucrates	544.2	21,288	12,371.513	GCA_900963305.2
Euteleosteomorpha	Centrarchiformes	Centrarchidae	Micropterus salmoides	963.6	27,179	1,227.323	GCA_014851395.1
Euteleosteomorpha	Chaetodontiformes	Chaetodontidae	Chelmon rostratus	644.2	22,040	16,959.746	GCA_017976325.1
Euteleosteomorpha	Cichliformes	Cichlidae	Oreochromis aureus	1,005.6	27,686	4,182.292	GCA_013358895.1
Euteleosteomorpha	Cyprinodontiformes	Cyprinodontidae	Cyprinodon tularosa	1,086.9	23,979	1,362.15	GCA_016077235.1
Euteleosteomorpha	Cyprinodontiformes	Poeciliidae	Xiphophorus couchianus	688.5	22,784	15,315.838	GCA_001444195.3
Euteleosteomorpha	Esociformes	Esocidae	Esox lucius	918.7	24,647	22,630	GCA_011004845.1
Euteleosteomorpha	Gadiformes	Gadidae	Gadus morhua	669.9	23,485	1,016	GCA_902167405.1
Euteleosteomorpha	Gobiiformes	Gobiidae	Periophthalmus magnuspinnatus	752.6	21,306	2,301.275	GCA_009829125.1
Euteleosteomorpha	Holocentriformes	Holocentridae	Myripristis murdjan	835.3	23,439	14,476	GCA_902150065.1
Euteleosteomorpha	Istiophoriformes	Xiphiidae	Xiphias gladius	691.8	21,362	5,252.707	GCA_016859285.1
Euteleosteomorpha	Kurtiformes	Apogonidae	Sphaeramia orbicularis	1,342.7	24,116	2,360.121	GCA_902148855.1
Euteleosteomorpha	Labriformes	Labridae	Cheilinus undulatus	1,173.5	23,316	16,477.222	GCA_018320785.1
Euteleosteomorpha	Perciformes	Sebastidae	Sebastes umbrosus	800.9	23,881	11,445.908	GCA_015220745.1
Euteleosteomorpha	Perciformes	Channichthyidae	Pseudochaenichthys georgianus	1,026.1	23,287	661.283	GCA_902827115.1
Euteleosteomorpha	Pleuronectiformes	Scophthalmidae	Scophthalmus maximus	538.2	21,619	25,762	GCA_022379125.1
Euteleosteomorpha	Salmoniformes	Salmonidae	Oncorhynchus mykiss	2,341.7	41,896	15,580	GCA_013265735.3
Euteleosteomorpha	Scombriformes	Scombridae	Thunnus maccoyii	782.4	24,659	26,803.536	GCA_910596095.1
Euteleosteomorpha	Spariformes	Sparidae	Acanthopagrus latus	685.1	23,786	14,880.455	GCA_904848185.1
Euteleosteomorpha	Syngnathiformes	Syngnathidae	Syngnathus acus	324.3	19,551	11,959.915	GCA_901709675.2

Information on teleost genomes used in the CAFE5 analysis. (XLSX 13kb)

Additional file 3:

Emocios	Crown	Gene Family			Gene		
Species	Gioup	Expansion	Contraction	Ratio of Expansion/Contraction	Gain	Loss	Ratio of Gain/Loss
Scleropages formosus	Osteoglossomorpha	2,253	3,018	0.74	2,763	3,390	0.82
Paramormyrops kingsleyae	Osteoglossomorpha	2,667	3,353	0.79	3,574	4,167	0.86
Campylomormyrus compressirostris	Osteoglossomorpha	3,360	3,589	0.93	5,680	5,004	1.14
Denticeps clupeoides	Otomorpha	1,821	3,156	0.57	2,222	3,483	0.64
Chanos chanos	Otomorpha	822	2,803	0.29	1,813	3,072	0.59
Danio rerio	Otomorpha	1,370	2,983	0.46	2,901	3,177	0.91
Cyprinus carpio	Otomorpha	12,830	1,676	7.66	17,607	1,754	10.04
Electrophorus electricus	Otomorpha	762	3,113	0.245	1,286	3,617	0.36
Pygocentrus nattereri	Otomorpha	1,067	2,235	0.48	2,364	2,313	1.02
Esox lucius	Euteleosteomorpha	1,321	2,848	0.46	2,191	3,191	0.69
Oncorhynchus mykiss	Euteleosteomorpha	11,678	1,858	6.29	15,430	2,025	7.62
Gadus morhua	Euteleosteomorpha	889	4,096	0.22	2,399	4,468	0.54
Myripristis murdjan	Euteleosteomorpha	868	3,176	0.27	1,796	3,342	0.54
Thalassophryne amazonica	Euteleosteomorpha	1,296	4,253	0.30	1,797	4,778	0.38
Syngnathus acus	Euteleosteomorpha	653	5,161	0.13	1,012	5,389	0.19
Sphaeramia orbicularis	Euteleosteomorpha	1,556	3,531	0.44	2,482	3,703	0.67
Periophthalmus magnuspinnatus	Euteleosteomorpha	830	4,331	0.19	1,235	4,717	0.26
Thunnus maccoyii	Euteleosteomorpha	981	2,991	0.33	2,440	3,148	0.78
Sebastes umbrosus	Euteleosteomorpha	1,088	3,351	0.32	2,001	3,572	0.56
Pseudochaenichthys georgianus	Euteleosteomorpha	1,374	4,335	0.32	2,538	4,715	0.54
Cheilinus undulatus	Euteleosteomorpha	1,004	3,661	0.27	1,756	4,062	0.43
Chelmon rostratus	Euteleosteomorpha	889	3,496	0.25	1,313	3,955	0.33
Acanthopagrus latus	Euteleosteomorpha	1,043	3,148	0.33	1,814	3,338	0.54
Micropterus salmoides	Euteleosteomorpha	2,649	3,105	0.85	4,375	3,268	1.34
Anabas testudineus	Euteleosteomorpha	1,076	3,367	0.32	2,218	3,599	0.62
Xiphias gladius	Euteleosteomorpha	715	3,660	0.20	1,033	4,216	0.25
Echeneis naucrates	Euteleosteomorpha	816	4,020	0.20	1,290	4,476	0.29
Scophthalmus maximus	Euteleosteomorpha	771	3,690	0.21	1,071	4,257	0.25
Salarias fasciatus	Euteleosteomorpha	2,173	3,961	0.55	3,407	4,358	0.78
Oreochromis aureus	Euteleosteomorpha	1,552	3,145	0.49	4,342	3,302	1.31
Melanotaenia boesemani	Euteleosteomorpha	1,184	3,454	0.34	2,463	3,699	0.67
Cyprinodon tularosa	Euteleosteomorpha	1,340	3,724	0.36	2,409	3,989	0.60
Xiphophorus couchianus	Euteleosteomorpha	1,128	3,931	0.29	1,844	4,322	0.43

Number of gene and gene family expansions and contractions compared with MRCA, and ratio of the expanded/contracted gene family (gain/loss gene) numbers. (XLSX 12kb)

Additional file 4:

Please find this file in the link: https://link.springer.com/article/10.1186/s12864-023-09196-

6#Sec22

KCNA gene sequences. (TXT 25kb)

Additional file 5:

CDS of Paramormyrops kingsleyae

MUMmer alignment between the CDS of C. compressirostris and P. kingsleyae. (PNG 2.33mb)

4 Article II

Gene and allele specific expression underlying the electric signal divergence in African weakly electric fish.

Feng Cheng¹, Alice B. Dennis^{1, 2}, Otto Baumann³, Frank Kirschbaum^{1, 4}, Salim Abdelilah-Seyfried³, Ralph Tiedemann^{1,*}

1 Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

2 Laboratory of Adaptive Evolution and Genomics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth & Environment, University of Namur, Namur, Belgium

3 Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

4 Department of Crop and Animal Science, Faculty of Life Sciences, Humboldt University, Berlin, Germany

In the African weakly electric fish genus *Campylomormyrus*, electric organ discharge (EOD) signals are strikingly different in shape and duration among closely related species, contribute to pre-zygotic isolation and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs (EOs) and skeletal muscles (SMs; from which the EOs derive) from three species with short (0.4 ms), medium (5 ms), and long (40 ms) EODs and two different cross-species hybrids. We identified 1,444 up-regulated genes in EO shared by all five species/hybrids cohorts, rendering them candidate genes for EO-specific properties in *Campylomormyrus*. We further identified several candidate genes,

including *KCNJ2* and *KLF5*, their up-regulation may contribute to increased EOD duration. Hybrids between a short (*C. compressirostris*) and a long (*C. rhynchophorus*) discharging species exhibit EODs of intermediate duration and showed imbalanced expression of *KCNJ2* alleles, pointing towards a cis-regulatory difference at this locus, relative to EOD duration. *KLF5* is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an EOD. Unraveling the genetic basis of the speciesspecific modulation of the EOD in *Campylomormyrus* is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.

Electric fish have independently evolved six times^{1–3}. They possess a specific myogenic electric organ (EO) derived from skeletal muscle (SM) fibers except for Apteronotidae which possess an EO derived from nervous tissue⁴. Comparative genomics have unraveled this convergent phenotypic evolution to originate in part also from convergence on the molecular level: both voltage-dependent sodium and potassium channels are involved in the electric organ development and physiology. Because of the teleost-specific whole genome duplication⁵, these fish possess two copies of most genes and subfunctionalization among paralogs and differential expression between EO and SM seem to play a major role in the transition of myocytes to electrocytes. A prominent example is the voltage-gated sodium (Na_v) channel gene (SCN4a): convergently in three electrogenic taxa (Mormyridea, Siluriformes and Gymnotiformes), only one paralog (SCN4ab) is still expressed in SM, but the other one (SCN4aa) is exclusively expressed in the EO, indicating a crucial role for electrogenesis^{6–8}. The Na_v channel (SCN4aa) is regulated by FGF13a in the three electric fish lineages Siluriformes, Gymnotiformes, and Mormyroidea⁹. Differential expression of

multiple isoforms of α and β subunits of sodium/potassium ATPase is important in the EO as well^{9–11}. In addition, several transcription factors, *HEY1*, *MEF2a*, *SIX2a*, are convergently up-regulated in the EOs of those electric fishes lineages^{9,10,12}. EOs hence comprise a prime example of convergent evolution in both genotype and phenotype.

One of the electric fish clades, mormyrid fish, contains about 200 described species that are endemic to Africa. This outstanding adaptive radiation within the otherwise species-poor basal lineage of osteoglossiforms is putatively due to their species-specific weak electric signals, which is used for both electrolocation and electrocommunication^{13,14}. Divergence in electric organ discharge (EOD) is considered a major driver in the ecological (and possibly sympatric) speciation in the mormyrid genus *Campylomormyrus*, which is mainly distributed in the Congo River¹⁵.

The genus *Campylomormyrus* comprises 15 described species, which have profoundly diverged in their electric organ discharge (EOD) with regard to signal duration and waveform¹³. Those species possess either long or short, biphasic or triphasic, but always species-specific EODs, that function as a pre-zygotic reproductive isolation mechanism and are supposed to have arisen via divergent selection among closely related species¹³. In adult *Campylomormyrus*, the electric organ, confined to the caudal peduncle (Fig. 1a), is composed of specialized electrocytes¹⁶. They have a flat, disk-shaped appearance with a clear orientation toward the longitudinal body axis (Fig. 1b). Unlike skeletal muscle myocytes, electrocytes possess a number of special evaginations, called stalks, mostly on the posterior face¹⁶. These stalks are either fused into major stalks on the posterior face (Fig. 1c left) or they penetrate the electrocyte and merge at the anterior face to constitute to major stalks (Fig. 1c right). A branch of the spinal nerve forms numerous synapses with the major stalk, whether on the posterior or on the anterior face of the electrocyte, and the action potentials are propagated along the stalk system to the disc-like part of the electrocyte¹⁶. The externally measurable EOD is formed by simultaneous action potentials of all electrocytes. The shape of the EOD in *Campylomormyrus* is often associated with the penetration of the stalks¹⁷, while the structural basis of the EOD duration, which can vary 100-fold across species, is still only partially understood. A very elongated EOD (~40 ms) is produced by *C. rhynchophorus* and *C. numenius* which exhibit large foldings or evaginations on the anterior face of the electrocytes, so called papillae^{18,19}. In two species with relatively short EOD (Fig. 2a), *C. compressirostris* (0.4 ms) and *C. tamandua* (0.4 ms), many small stalks fuse into one major stalk of large diameter after their origin¹⁶. In contrast, the stalk system in species with an EOD of medium (e.g. *C. tshokwe*, 5 ms), or long duration (e.g. *C. numenius*, 40 ms) is more branched¹⁶. Apart from these difference in the stalk system, species with highly diverged EOD waveforms still show similar electrocyte geometry suggesting further core mechanisms to contribute to the observed EOD variations. Since the electrocytes generate action potentials for EOD, the distribution and repertoire of ion currents have long been considered to play a key role in EOD formation^{11,20–23}.

Sodium and potassium fluxes are considered the most important ion currents in controlling the EOD ²⁴. They are the basic requirements for generating an action potential²⁵. Consequently, abundance and properties of sodium and potassium channels are likely to profoundly influence the EOD. The potassium channels can be classified into different classes based on their structure and function: voltage-gated (K_v , includes subfamilies e.g. *shaker*-related *KCNA*, *shab*-related *KCNB*), inwardly rectifying (K_{ir}), tandem pore domain channels (K_{2p}), ligand-gated channels and calcium-activated channels (K_{ca})²⁶. Two paralogs of the *KCNA7* channel gene originate from the whole genome duplication event in teleost fish and these paralogs might have undergone subfunctionalization or neofunctionalization in mormyrids: one of them *KCNA7a* is predominantly expressed in the EO of mormyrids, while *KCNA7b* is preferentially expressed in SM²³. The K_v

Fig. 1 Electric organ and electrocyte structure in *Campylomormyrus*, and schematic illustration for potassium channels.

a Electric organ (EO) and electric organ discharge (EOD) in an adult *Campylomormyrus* fish. **b** The EO consists of four columns of electrocytes (e) which surround the vertebral column (vc), the stalk system (st) is connected to the posterior face of the electrocyte. **c** Anterior (A.) and posterior (P.) faces of electrocytes with two types of stalk system. Panel c is modified from *Gallant et al.* 2012. **d** Schematic illustration of voltage-gated potassium (K_v) channel and inwardly rectifying (K_{ir}) channel subunit. K_v channel subunit contains six transmembrane (TM) helices, a pore-forming (H5) loop, and cytosolic NH₂ (N) and COOH (C) termini. The gene *KCN7A_2* was inferred to be under positive selection and the mutation encodes the loop between TM3-4. K_{ir} channel subunit contains only two TMs.

channel contains six transmembrane helices (Fig. 1d). In KCNA7a, a non-synonymous substitution

was observed in the transmembrane helices 3-4 linker and the encoded amino acid substitution

might relate to the EOD duration difference among the mormyrid taxa *Brienomyrus* and *Gymnarchus*²³.

This study focusses on potential molecular mechanisms underlying the divergent EOD among *Campylomormyrus* species as a potential major driver of their adaptive radiation. This study takes further advantage of artificially bred hybrid electric fish. *Campylomormyrus* species hybrids often exhibit an adult EOD which is similar to the juvenile EOD from one of the parental species, and the adult EOD duration in hybrids is usually intermediate between the two parental species¹⁹. Gene

Fig. 2 Electric organ discharge (EOD) shape and duration of *Campylomormyrus* species and hybrids, and the working flow of this study.

a Species/hybrids samples used in the study and their EOD pattern. **b** Differential gene expression (DGE) analysis between electric organ (EO) and skeletal muscle (SM) for each species/hybrid to identify genes with EO-specific expression. **c** RNA-seq data clustering based on EOD duration change EO (red) and SM (blue) in F0 species. **d** Allele specific expression analysis in each hybrid set.

expression analyses in hybrids further enable assessment of allelic specific expression, relative to the expressed trait of interest (here, EOD duration). To enhance our understanding of the genetic regulation of EOD divergence among *Campylomormyrus* species, especially for the EOD duration divergence, we: 1) compared the gene expression pattern between electric organ (EO) and skeletal muscle (SM) in the three F0 species *C. compressirostris* (*com*, short and biphasic EOD), *C. tshokwe* (*tsh*, medium and biphasic EOD), *C. rhynchophorus* (*rhy*, long and triphasic EOD), and two F1 hybrids *C. compressirostris* $\stackrel{\circ}{\supset}$ x *C. tshokwe* $\stackrel{\bigcirc}{\to}$ (*com* x *tsh*, short and biphasic EOD), and *C. compressirostris* $\stackrel{\circ}{\supset}$ x *C. rhynchophorus* $\stackrel{\bigcirc}{\to}$ (*com* x *tsh*, short and biphasic EOD); 2) clustered RNA-seq data relative to the EOD duration in three F0 species to infer genes with duration-specific expression; 3) assessed biallelic specific expression for two hybrid sets (each set includes two F0 parental species and their hybrid; Fig. 2).

Results

We examined overall patterns in gene expression using a principal component analysis (PCA) based on all expressed genes (Fig. 3a). Expression profiles of SMs and EOs were broadly separated along PC1, which explained 74% of variance. The SMs profiles from all species/hybrids clustered together; however, species/hybrid-specific EOs' expression profiles were stratified along PC2 (explained 6% of variance), relative to EOD duration (Fig. 3a). The PCA hence indicates that gene expression in *Campylomormyrus* is (1) EO specific, compared with SM; (2) relates to EOD duration, enabling inference of underlying candidate genes.

Genes with EO-specific expression pattern

Differential gene expression analysis was used for pairwise comparisons between EO and SM for each species and hybrid (Fig. 2b). We identified significantly differentially expressed genes (DEGs) based on a $|\log_2 \text{ folder change } (\log_2 \text{FC})| > 1$ and a p-value < 0.05. We specifically identified genes with an EO-specific expression pattern shared among all *Campylomormyrus* species/hybrids. There were 1,444 up-regulated and 1,262 down-regulated DEGs that were shared in the comparison of EO and SM in all species/hybrids (Fig. 3b, c).

Among the DEGs up-regulated in the EO, 54 genes were related to transmembrane ion transport (Fig. 3c, Table 1, Supplementary Table 1). We identified four genes encoding sodium/potassium-ATPase α and β subunit (*ATP1a1*, *ATP1a2a*, *ATP1b1a* and *ATP1b1b*), and three *Na_v* channel genes (*SCN4aa*, *SCN4b* and *SCN1ba*). Several genes encoding for different types of potassium channels were also identified: four *K_v* channel genes (*KCNA7a_1*, *KCNA7a_2*, *KCNIP3* and *KCNQ5*), two

Fig. 3 Differential gene expression between electric organ (EO) and skeletal muscle (SM) in *C. compressirostris* (*com*), *C. rhynchophorus* (*rhy*), *C. tshokwe* (*tsh*) and hybrids *C. compressirostris* $\delta \times C$. *rhynchophorus* φ (*com* x *rhy*), *C. compressirostris* $\delta \times C$. *rhynchophorus* φ (*com* x *rhy*), *C. compressirostris* $\delta \times C$. *rhynchophorus* φ (*com* x *rhy*), *C. compressirostris* $\delta \times C$. *rhynchophorus* φ (*com* x *rhy*), *C. compressirostris* $\delta \times C$. *rhynchophorus* φ (*com* x *rhy*), *C. compressirostris* $\delta \times C$. *rhynchophorus* φ (*com* x *rhy*), *C. compressirostris* $\delta \times C$. *rhynchophorus* φ (*com* x *rhy*), *C. compressirostris* $\delta \times C$. *rhynchophorus* φ (*com* x *rhy*), *C. compressirostris* $\delta \times C$. *rhynchophorus* φ (*com* x *rhy*), *C. compressirostris* $\delta \times C$. *rhynchophorus* φ (*com* x *rhy*).

a Principal component analysis (PCA) of gene expression levels between EO and SM in 5 species/hybrids. **b** Venn Diagram graph for up (left) and down (right) regulated genes shared in 5 species/hybrids. All differentially expressed genes (DEGs) have $|\log_2(\text{fold change})| > 1$ and a p-value < 0.05. Many of the DEGs are related to "membrane" and "plasma membrane" (see Supplementary Fig. 1). **c** Volcano plot showing genes differentially expressed in EO (relative to SM) in all 5 species/hybrids. X-axis is the average $\log_2(\text{fold change})$ among 5 species/hybrids, and y-axis is the associated $-\log_{10}$ (average p-value for 5 species/hybrids). Potential candidate genes and genes with low p-value or high fold change are labeled with their name.

 K_{ir} channel genes (KCNJ2 and KCNJ9), and one K_{2p} channel gene (KCNK2). Further

transmembrane ion transport DEGs were chloride, calcium and other cation channel genes

(Supplementary Table 1). Several solute carrier family genes were also up-regulated in the EO, in particular *SLC24a2* (Table 1).

18 genes up-regulated in the EO were associated with cytoskeletal and sarcomeric protein (Supplementary Table 1). The predicted function of those genes were mainly related to F-actin dynamics and unconventional myosin activity (Table 1). A signaling gene *NDRG3* showed very high overexpression in EO (log₂FC=11.02), as well as the genes *SGK2*, *S100b* and *FGF12*. The up-regulated transcription factors in the EO included *KLF5*, *FOXL2*, *SIX2a*, *HEY1* and two myocyte-specific enhancer factors (*MEF2a* and *MEF2b*).

In the down-regulated DEGs in EO (or up-regulated in SM), 44 genes were classified into the category "cytoskeletal & sarcomeric" (Fig. 3c, Supplementary Table 2). There were 37 transmembrane ion transport genes down-regulated in EO, which were related to the ions potassium, sodium, and calcium. In contrast to the expression pattern of the two *KCNA7a* copies, five K_vI subfamily genes (*KCNA1b*, *KCNA4a*, *KCNA5b*, *KCNA6a* and *KCNA7b*) were down-regulated in the EO. This was also the case for other potassium and sodium channel genes, e.g. K_v subfamily genes (*KCNB1*, *KCNE4*, *KCNIP4*), K_{2p} subfamily genes (*KCNK4*, *KCNK7*), a K_{ca} subfamily gene (*KCNN4*), and *Nav* channel genes (*SCN3b*, *SCN4ab*). Two muscle-specific transcription factors, *MYOCD* and *MYOG*, were also down-regulated in EO (Supplementary Table 2).

We applied a Gene Ontology (GO) enrichment analysis to further examine the function of all the up- and down-regulated DEGs in EO respectively²⁷. Among the up-regulated DEGs in the EO, there were 44 significantly enriched GO terms (Fisher's exact test p-value<0.01, Supplementary Fig. 1, Supplementary

Table 1 Candidate	genes up-regulated i	in all species/hybrids in	the electric organ relative t	to sceletal muscle.
-------------------	----------------------	---------------------------	-------------------------------	---------------------

D	Blast Gene	Hightlights of Predicted Function	Gene Description	Category	Average log2FC	Average Pvalue
maker-ptg0003611-augustus-gene-	ACTR3b	F-actin dynamics / polymerization	ARP3 actin related protein 3 homolog	cytoskeletal &	3.02	3.16E-20
maker-ptg0003461-snap-gene- 25.173-mRNA-1	GSN	F-actin dynamics / polymerization	gelsolin	cytoskeletal & sarcomeric	6.70	2.7189E-50
snap_masked-ptg0000281- processed-gene-137.57-mRNA-1	MYO15a	unconventional myosin; actin-based motor protein	unconventional myosin-XV	cytoskeletal & sarcomeric	3.68	3.4002E-09
maker-ptg0010031-snap-gene-2.16 mRNA-1	- MYOle	unconventional myosin; actin-based motor protein	unconventional myosin-Ie	cytoskeletal & sarcomeric	2.63	5.7074E-05
maker-ptg0020901-augustus-gene- 35.16-mRNA-1	MYO3b	unconventional myosin; actin-based motor protein	myosin-IIIb	cytoskeletal & sarcomeric	3.75	1.4271E-07
maker-ptg0002151-snap-gene- 13 31-mRNA-1	\$100b	cytosolic Ca2+-binding protein of the EE-hand superfamily	S100 calcium binding protein B	signaling	8.14	1.0122E-22
maker-ptg0000491-snap-gene-	FGF12	possibly regulate voltage-gated	fibroblast growth factor 12	signaling	8.72	5.8498E-17
25.20-mkNA-1 maker-ptg0008381-snap-gene- 3.218-mRNA-1	NDRG3	predicted to be involved in signal	N-myc downstream-regulated gene 3	signaling	11.02	7.4446E-08
maker-ptg0015631-augustus-gene-	SGK1	serine/threonine-protein kinase	serine/threonine-protein kinase Sgk1	signaling	7.79	6.6327E-38
maker-ptg0010881-snap-gene-0.7- mRNA-1	SIX2a	target ARE promoter elements in sodium/potassium adenosine triphosphatases	SIX homeobox 2	transcription factor	3.05	1.221E-27
maker-ptg0007831-snap-gene-6.78 mRNA-1	HEYI	developing cardiac conduction pathway	hes related family bHLH transcription factor with YRPW motif 1	transcription factor	6.02	1.5325E-13
maker-ptg0017401-augustus-gene- 1.112-mRNA-1	KLF5	rebalance potassium channels	Krüeppel-like factor 5	transcription factor	8.39	5.0491E-06
maker-ptg0000081-snap-gene- 10.43-mRNA-1	MEF2a	transcriptional activator for numerous muscle-specific genes	myocyte-specific enhancer factor 2A	transcription factor	3.85	3.7818E-50
maker-ptg0012701-snap-gene- 47.16-mRNA-1	MEF2b	transcriptional activator for numerous muscle-specific genes	myocyte-specific enhancer factor 2B	transcription factor	6.92	8.4583E-68
maker-ptg0009701-augustus-gene- 2.127-mRNA-1	ATPlal	sodium/potassium-ATPase α-subunit	sodium/potassium-transporting ATPase subunit alpha-1	transmembrane ion transport	10.55	2.1894E-05
snap_masked-ptg001156l- processed-gene-0.19-mRNA-1	ATP1a2a	sodium/potassium-ATPase α -subunit	sodium/potassium-transporting ATPase subunit alpha-2	transmembrane ion transport	3.07	2.6317E-12
maker-ptg0010471-snap-gene-1.63 mRNA-1	ATPIbla	sodium/potassium-ATPase β -subunit	ATPase sodium/potassium transporting beta 1a	transmembrane ion transport	6.59	3.6325E-59
maker-ptg0005091-snap-gene-9.39 mRNA-1	ATP1b1b	sodium/potassium-ATPase β -subunit	ATPase sodium/potassium transporting beta 1b	transmembrane ion transport	4.51	2.0647E-06
maker-ptg000028l-snap-gene- 81.10-mRNA-1	KCNA7a_1	Kv channel	potassium voltage-gated channel subfamily A member 7a	transmembrane ion transport	4.60	2.5847E-11
maker-ptg0000281-snap-gene-81.8 mRNA-1	KCNA7a_2	Kv channel	potassium voltage-gated channel subfamily A member 7a	transmembrane ion transport	8.27	3.5553E-12
maker-ptg001427l-snap-gene- 13.20-mRNA-1	KCNIP3	Kv channel	calsenilin	transmembrane ion transport	5.11	0.00099357
maker-ptg0006971-snap-gene- 6.109-mRNA-1	KCNQ5	Kv channel	potassium voltage-gated channel subfamily Q member 5	transmembrane ion transport	5.94	0.00093894
maker-ptg0002651- est_gff_est2genome-gene-6.33- mRNA-1	KCNJ2	Kir channel	inward rectifier potassium channel 2	transmembrane ion transport	5.53	1.1222E-20
maker-ptg0008301-augustus-gene- 5.123-mRNA-1	KCNJ9	Kir channel	G protein-activated inward rectifier potassium channel 3	transmembrane ion transport	5.77	2.6324E-10
snap_masked-ptg0011181- processed-gene-0.13-mRNA-1	KCNK2	K2p channel	potassium channel subfamily K member 2	transmembrane ion transport	6.15	9.238E-14
maker-ptg0002531-augustus-gene- 20.10-mRNA-1	SCN1ba	Nav channel	sodium channel subunit beta-1	transmembrane ion transport	3.84	1.2983E-07
maker-ptg0011881-snap-gene-6.4- mRNA-1	SCN4aa	Nav channel	sodium channel protein type 4 subunit alpha A	transmembrane ion transport	10.98	1.2737E-11
maker-ptg002239l-snap-gene-5.5- mRNA-1	SCN4b	Nav channel	sodium voltage-gated channel beta subunit 4	transmembrane ion transport	5.34	8.1806E-47
maker-ptg0001481-snap-gene-9.4- mRNA-1	SLC24a2	calcium, potassium:sodium antiporter	solute carrier family 24 member 2	transmembrane ion transport	9.06	1.1057E-37

Table 3). Among them, the three GO terms with the highest number of DEGs were all related to the cell membrane: membrane (464 DEGs), integral component of membrane (309 DEGs) and plasma membrane (237 DEGs). There were 47 DEGs assigned to the enriched GO term "ion transport". 62 and 35 DEGs were assigned to the enriched Golgi-related GO terms "Golgi membrane" and "Golgi apparatus", respectively. In addition, there were 23 DEGs assigned to the enriched GO term "actin filament binding". There were 73 GO terms significantly enriched for DEGs down-regulated in the EO (up-regulated in SM, Supplementary Fig. 2, Supplementary Table 4). They were associated with skeletal and cardiac muscle tissue related GO terms.

Genes with expression levels related to EOD duration.

The PCA plot from transcriptome-wide gene expression showed a striking association between overall gene expression and EOD duration in all species/hybrids (PC2 in Fig. 3a; accounting for 6% of the variance in gene expression). DESeq2 provides a Likelihood Ratio Test (LRT) that compares how well a gene's read count data fit a "full model" (with independent variables) compared to a "reduced model" (without those variables). Therefore, it is well suited to explore whether there are any significant associations of gene expression levels across a series of values of an independent variable (here, EOD duration)²⁸. Specifically, we used this approach to test whether a gene's expression fits a pattern of increasing or decreasing over the different durations in two different tissues, EO and SM²⁹. In order to avoid any bias potentially stemming from distorted expression pattern in the hybrids, we only used the quantification data from the parental pure-bred (F0) species. The LRT analysis returned 1,874 significant genes using a threshold of padj < 0.05. Those genes were further sorted into groups using the degPatterns function. Each such group contained genes following a specific pattern of expression across the different duration values in the analyzed tissues EO and SM³⁰.

The degPatterns function generated 27 groups of different expression pattern in EO and SM, relative to EOD duration (Supplementary Fig. 3). To identify EOD duration-specific genes, we focused on the groups meeting the following criteria: 1) the gene expression level in EO is higher than SM in all FO species (i.e., the gene is consistently up-regulated in the EO); 2) the gene expression level in the EO shows an increasing or decreasing pattern, relative to EOD duration.

Fig. 4 RNA-seq data clustered by EOD duration (only for the 3 pure-bred species).

Increasing (Group 5 and 6) and decreasing (Group 3) expression patterns over EOD duration among electric organ (EO) and skeletal muscle (SM). The x-axis for each group represents the duration of the analyzed species: *C. compressirostris* (0.4ms), *C. tshokwe* (5ms) and *C. rhynchophorus* (40ms).

Two groups showed a consistent increasing expression pattern (groups 5, 41 genes; and 6, 239

genes) and one a decreasing expression pattern (group 3, 405 genes), relative to the EOD duration

(Fig. 4).

In the increased expression pattern groups (5 and 6), we found K_{ir} subfamily gene *KCNJ2* and the transcription factor Krüppel-like fator 5 (*KLF5*), both were found among the genes with EO-specific expression as well (Table 2). In the decreased expression group 3, there were two transmembrane ion transport genes (*KCNK6* and *KCNQ5*) and two cytoskeletal and sarcomeric genes (*ACTR3b* and *NHS*, Table 2).

Table 2 Genes with expression correlated to EOD duration.

Group	Gene ID in annotation	Gene	Hightlights of Predicted Function	Gene Description	Category
3	maker-ptg0003611-augustus- gene-0.2-mRNA-1	ACTR3b	F-actin dynamics / polymerization	ARP3 actin related protein 3 homolog B	cytoskeletal & sarcomeric
3	maker-ptg0005091-snap-gene- 4.4-mRNA-1	NHS	regulator of actin remodelling	Nance-Horan syndrome protein	cytoskeletal & sarcomeric
3	maker-ptg0019661-augustus- gene-18.42-mRNA-1	KCNK6	outward rectification in a physiological potassium gradient and mild inward rectification in symmetrical potassium conditions	potassium channel subfamily K member 6	transmembrane ion transport
3	maker-ptg0006971-snap-gene- 6.109-mRNA-1	KCNQ5	voltage-gated potassium channel	potassium voltage-gated channel subfamily Q member 5	transmembrane ion transport
5	maker-ptg0002651- est_gff_est2genome-gene-6.33- mRNA-1	KCNJ2	inwardly rectifying potassium channel	inward rectifier potassium channel 2	transmembrane transport
5	maker-ptg0017401-augustus- gene-1.112-mRNA-1	KLF5	transcription factor which might regulates potassium channel genes	krueppel-like factor 5	transcription factor

Assigning DEGs with increasing expression pattern to GO terms revealed 19 significantly enriched (Fisher's exact p-value < 0.05) GO terms (Supplementary Fig. 4, Supplementary Table 5). 18 genes were assigned to the enriched GO term "Golgi apparatus", 13 to "ion transport". Among the genes with decreasing expression pattern (group 3), 41 GO terms were significantly enriched (Supplementary Fig. 5, Supplementary Table 6). 12 of the genes were assigned to the GO term "axon guidance" which yielded the lowest p-value. There were also several enriched terms which might be functionally related to the EOD, e.g. membrane, Golgi membrane and apparatus, calcium ion binding, and ATP binding.

Allele specific expression in F1 hybrids.

Two cohorts of F1 hybrids with one short duration EOD (*com* x *tsh*) and one medium duration EOD (*com* x *rhy*) were analyzed in our study. In total, we identified fixed SNPs (homozygous in parental species) in 177 genes differentially expressed in EO and in 77 differentially expressed in SM in the hybrid *com* x *rhy*. For the hybrid *com* x *tsh*, the respective SNP numbers were 52 in genes differentially expressed in the EO and 36 in genes differentially expressed in SM (Fig. 5a). For each of these genes, we calculated the allelic read proportion of the allele stemming from the parental species *com* (as identified by the fixed SNPs), averaged over the specimens of the respective hybrid cohort. In general, most genes exhibit an equal expression of both parental alleles,

with more genes have a *com* proportion near 0.5 (Fig. 5a). Among the genes with differentially expressed alleles, alleles stemming from *com* had an overall tendency towards higher expression, compared to the alleles from *rhy* or *tsh*, in both EO and SM from two hybrid cohorts (Fig. 5a).

In order to understand the allelic expression imbalance (AEI), we counted the number of genes with more than 0.6 proportion of one parental allele proportion for all individuals in each analyzed hybrid set³¹. In total, we identified 17 and 7 genes with AEI in EO and SM of the hybrid *com* x *rhy*, respectively; 2 and 1 such genes were identified in EO and SM of the hybrid *com* x *tsh*, respectively (Supplementary Table 7). In all the genes with AEI, the allele from *com* showed a higher expression proportion, except for the gene *KCNJ2* in the hybrid *com* x *rhy* where allele expression was biased in the opposite direction (average proportion of *com* allele was 0.16, Fig. 5b). We inferred amino acid sequences from the transcript sequences of the *KNCJ2* gene from *com*, *tsh* and *rhy*. The inferred protein sequence between *com* and *tsh* were identical, but *rhy* showed

Fig. 5 Allele specific expression in electric organ (EO) and skeletal muscle (SM) among two hybrid cohorts *C. compressirostris* (*com*) x *C. rhynchophorus* (*rhy*) and *C. compressirostris* (*com*) x *C. tshokwe* (*tsh*).

a Gene density (y-axis) from two different tissues in each hybrids. The x-axis shows the expression proportion of the allele stemming from one parental species (*com*). Numbers above the bars represent the number of genes in the respective proportion ranges. **b** Proportion of two alleles from parental species in four genes related to ion transport and membrane (*KCNJ2*, *SCN4AA*, *CHRND* and *TSPAN7b*) in the EO. The x-axis represents the different individual samples of the corresponding hybrid cohort.

two amino acid substitutions at sites 60 (corresponding to the fixed SNP we identified in hybrids) and 198 (Supplementary Table 8). The amino acid substitution at site 60 was considered benign in the Polyphen2 analysis³², while the substitution at site 198 may have changed the protein function in *rhy* (inferred as probably damaging; Supplementary Table 9).

We also identified AEI in the gene *SCN4aa* in the EO of *com* x *rhy* hybrids (average proportion of *com* allele was 0.66, Fig. 5b). This proportion of the *com* allele is much higher than in the hybrid *com* x *tsh*, where the *com* allele of the *SCN4aa* only had a proportion of 0.46 in the EO. In the EO of hybrid *com* x *rhy*, AEI was identified in the gene *CHRND*, which might relate to ion channel gating (Fig. 5b). The *TSPAN6b* gene, encoding for an integral component of the plasma membrane, was also identified to exhibit a significant AEI in the EO of hybrid *com* x *tsh* (average proportion of *com* allele was 0.86, Fig. 5b).

Discussion

Convergent gene expression in different electric fish lineages.

The myogenic EO has convergently evolved six times in fishes. Even though the EOs show great differences in electrocyte morphology among independently evolved electric fish lineages, particular genes exhibit similar transcriptional expression patterns in the EO, relative to skeletal muscle⁹.

Several EO-specific candidate genes that we identified in *Campylomormyrus* were also overexpressed in the EO of other electric fish lineages, possibly indicating convergent expression pattern evolution in electric fish. This is particularly apparent in genes related to sodium and potassium currents. For instance, the Na_v channel gene *SCN4aa*, considered to be very important in regulating the sodium current to electrocytes, has been previously found overexpressed in the

EO of different electric fish lineages, i.e., Siluriformes, Gymnotiformes, and Mormyroidea other than *Campylomormyrus*⁶. The *FGF13a* that regulates this channel was consistently overexpressed in those electric fish species as well⁹. Interestingly, we identified another up-regulated ortholog (*FGF12*) in the EO which may have a similar function. In addition, multiple isoforms of sodium/potassium ATPase α and β subunits and several transcription factors (*SIX2a*, *HEY1*) were found to be convergently up-regulated in the EO among these electric fish lineages⁹, a pattern confirmed for *Campylomormyrus* in our study.

Overexpression of another transcription factor (*MEF2a*) and of the calcium binding gene *S100b* is characteristic for mormyrid EOs, i.e., *Paramormyrops*, *Brienomyrus*^{10,33}, and *Campylomormyrus* (this study). We recently found *KCNA7a* to be tandemly duplicated in *Campylomormyrus*³⁴ and *Paramormyrops* (by re-analysis of the genome provided in³³). This tandem duplication might be exclusive to mormyrid fishes, as we did not find it in available genomes neither of other electric fishes nor in *Scleropages* (a non-electric fish closely related to mormyrids; data not shown). In our study, both gene copies *KCNA7a_1* and *KCNA7a_2* were consistently up-regulated in the EO (*KCNA7a_2* showed even higher expression than *KCNA7a_1*). *KCNA7a* was inferred to be under positive selection in the transmembrane helices 3-4 linker, and is considered to relate to the differences in EOD duration among *Brienomyrus* and *Gymnarchus*²³.

The *NDRG3* gene (N-Myc Downstream-Regulated Gene 3) exhibited a remarkable overexpression in the EO of *Campylomormyrus*. Interestingly, the phosphopeptides encoded by an ortholog (*NDRG4*) were highly enriched in the EO of the strongly discharging gymnotiform electric eel (*Electrophorus electricus*)³⁵, indicating high expression level of this gene. In addition, NDRG4 has been identified in zebrafish as a novel neuronal factor essential for sodium channel clustering at the nodes of Ranvier, the only places where action potentials are regenerated³⁶. The function of
NDRG3 in the nervous system has rarely been investigated. The NDRG3 protein can interact with extracellular signal-regulated kinases $(\text{ERK1/2})^{37}$, which regulate $K_v 4.2$ in the dendrites of hippocampal CA1 pyramidal neurons^{38,39} as well as the $Na_v 1.7$ channel⁴⁰. In porcine as well as human lens, ERK1/2 is activated by the TRPV1 ion channel⁴¹, which was also overexpressed in EOs in *Campylomormyrus* (Supplementary Table 1).

Gene expression specificity in *Campylomormyrus*.

The EO in mormyrids is derived from myogenic tissue, which transitions from a motoric/sarcomeric organization of muscle fibers to a continuous tube of electrocytes parallel to the spinal cord⁴². This transition process during the ontogeny of the EO involves cell size, morphology and physiology, and is still only partially understood. Some genes encoding for sarcomeric proteins, e.g. troponin I isoforms, myosin heavy chain and tropomyosin, are overexpressed in the EO of the mormyrid *Brienomyrus brachyistius*¹⁰, providing a preliminary insight into the developmental transition from SM to EO. In the EO of Campylomormyrus, however, we rarely found those genes up-regulated. Instead, the up-regulated actin-related genes in Campylomormyrus were more related to F-actin dynamics and included several unconventional myosins (Table 1, Supplementary Table 1). The four paralogous transcription factors *MEF2a-d* are responsible for the transcriptional activation of muscle-specific genes in the early specification of skeletal muscle⁴³. Whereas MEF2a was overexpressed in the EOs of both Brienomyrus¹⁰ and Campylomoryrus, a further paralog MEF2b was overexpressed only in Campylomormyrus (our study). The difference in expression of F-actin-related/sarcomeric proteins and MEF2 transcription factors between two mormyrids genera suggests that the developmental transition in the EO might be different or, in other words, that the organization of the F-actin system in electrocytes may vary

across mormyrids. It has to be analyzed further whether these differences in the organization of the F-actin cytoskeleton concern the sarcomeric structure, the stalks of electrocytes, or both.

In addition, two paralogs of inwardly rectifying potassium channel (K_{ir}) genes *KCNJ2* and *KCNJ9* were overexpressed in EOs of *Campylomormyrus*, along with *KCNQ5* and *KCNK2*. The mechanisms regulating potassium channels expression in electric fish are still unknown. We identified one transcription factor, Krüppel-like factor 5 (*KLF5*), that showed a high overexpression in EOs. In *Drosophila*, Krüppel is involved in the regulation of potassium channel expression. In case of a loss of *Shal* (*KCND*) potassium channel in *Drosophila*, Krüppel expression is induced and up-regulates expression of *Shaker* (*KCNA*) and *slowpoke* (K_{ca}) potassium channels⁴⁴. Remarkably, *Shal* (*KCND*) potassium channel is also not expressed in our studied *Campylomormyrus* species/hybrids⁴⁴. We thus suppose that the EO differs from SM by the expression of a unique set of potassium channels that may contribute to the shape of the EO's action potential and thus the shape of the EOD signal. Moreover, we propose the *KLF5* gene to represent a transcription factor that drives the expression of regulating potassium channels in EO.

Our study has further revealed that different paralogs from the solute carrier family are active in EOs. Solute carriers form a group of membrane transport proteins located in various cellular membrane systems which transport diverse substrates including amino acids, oligopeptides, inorganic cations and anions⁴⁵. We have found several genes of this gene family overexpressed in the EO that transport inorganic cations and anions, e.g. sodium, calcium, chloride. Especially the gene *SLC24a2* was highly overexpressed in *Campylomormyrus* EOs. This is a calcium/cation antiporter localized in the plasma membrane that mediates the extrusion of one calcium ion and one potassium ion in exchange for four sodium ions⁴⁶. Overexpression of a calcium-extruding transporter in the EO indicates that regulation of the cytosolic calcium level in electrocyte differs

from that in SM. Unfortunately, we have no information yet on the distribution the *SLC24a2* protein within the electrocytes, and whether this calcium transporter is confined to a distinct region of the cell to mediate local regulation of the calcium level.

Differential gene expression with respect to EOD duration divergence among *Campylomormyrus* species.

Campylomormyrus species produce species-specific EODs; their duration varies in a 100-fold range across species. The EOD is assumed to be mediated by sodium and potassium currents across the plasma membrane²⁴. The depolarizing phase of an action potential is primarily produced by sodium influx. The repolarization phase is - along with a gradual decreasing sodium influx - affected by the orchestrated activities of delayed rectifier and inward rectifier potassium channels^{24,47}. We suppose that species producing EODs of different duration may be equipped with different channel types or channel orthologs with different properties. However, certainly other mechanisms, such as different cell morphology, may also contribute to the EOD duration diversification.

The PCA from RNA-seq data showed a clear association between the overall gene expression and the EOD duration pattern (Fig. 3a). Based on the preliminary PCA and LRT result, we identified several genes which might contribute to EOD duration diversification in *Campylomormyrus*, including the potassium channel genes (*KCNJ2*, *KCNK6* and *KCNQ5*), actin-related genes (*ACTR3b*, *NHS*), and transcription factor *KLF5* (Table 2).

The gene *KCNK5* was found to be up-regulated in *Paramormyrops* (producing a short EOD) compared to the species with an elongated EOD⁴⁸. In *Campylomormyrus*, the expression of another paralog *KCNK6* was also higher in species with short EOD. Two-pore potassium channels (K_{2p})

- 71 -

usually generate an outward potassium current and are also known as potassium leak channels. When silencing the *KCNK6* gene in the human heart, the action potential duration is prolongated⁴⁹. Another voltage-gated potassium channel gene *KCNQ5* was decreasingly expressed in elongated EOD *Campylomormyrus* species. It forms M-type potassium current, a slowly activating and deactivating potassium conductance that works in determining the subthreshold electrical excitability of neurons⁵⁰. The lower expression of both potassium channels genes in elongated EOD species will probably decrease the outward potassium current and consequently prolongate EOD repolarization.

The gene *KCNJ2* was increasingly expressed in elongated EOD species. It encodes for an inwardly rectifying potassium channel, with the greater tendency to allow potassium ions to flow into a cell rather than out of a cell⁵⁰. The inward potassium current stabilizes the resting membrane potential of the cell and modulates the cardiac repolarization processes^{50,51}. This inward rectifier channel-mediated potassium current is responsible for shaping the initial depolarization and final repolarization of the action potential in human cardiomyocytes^{52,53}.

Regarding allele specific expression, there was a tendency towards higher expression of *com* alleles in the EOs and SMs of two analyzed hybrid cohorts (Fig. 5a). However, the phenotype of the EOD waveform in each hybrid is closer to the other parental species. This points towards some genes playing key roles in regulating the EOD waveform in the hybrids. The gene *KCNJ2* showed allelic expression imbalance (AEI) in *com* x *rhy* hybrids, which was the only gene with AEI and for which the *rhy* allele was preferentially expressed (Fig. 5b). The EOD in the adult hybrids *com* x *rhy* was of intermediate duration (4 ms), and the shape and waveform resemble the subadults' EOD in *rhy*. Both the EOD phenotype and the AEI in *KCNJ2* were hence closer to the parental species with the elongated EOD, i.e., *rhy*. The expression of *KCNJ2* in the EO among the purebred

species also increased with increasing EOD duration, e.g. the expression in *rhy* is higher than in *com*. This suggests that the *KCNJ2* gene might be under cis-regulation, and it should be a powerful candidate gene involved in the regulation of EOD duration in *Campylomormyrus*.

In addition, the KCNJ2 gene in the species rhy (very long EOD) exhibits two non-synonymous substitutions, one of which predicted to cause a functionally relevant to amino acid substitution (at site 198; Supplementary Table 8, 9). Interestingly, the same substitution at site 198 is present in another species with very long EOD (C. numenius, EOD duration 40 ms), while it is absent in other Campylomormyrus species with short or medium EOD which resemble the amino acid sequence of com and tsh (Cheri, Cheng & Tiedemann, unpubl. results). C. numenius and rhy are phylogenetically close⁵⁴, such that the shared amino acid substitution could also reflect phylogenetic affinity. Nonetheless, the found amino acid substitution with inferred functional relevance could relate to the evolution of very long EODs in Campylomormyrus. Then, the KCNJ2 gene could modulate EOD duration by a combination of expression level and functional protein sequence alteration. In summary, this study identifies the KCNJ2, KCNK6 and KCNQ5 genes, possibly in combination with other genes (e.g. KLF5, ACTR3b, NHS) as strong candidates underlying EOD duration diversification in the weakly electric fish genus *Campylomormyrus*. The diverged EOD likely affect the food spectrum and are used for mate recognition. This potential dual function in disruptive natural selection and pre-zygotic reproductive isolation would rank the EOD as a "magic trait"¹⁴, which may have promoted the ecological (probably sympatric) speciation and radiation of *Campylomormyrus* in the Congo River.

Methods

Animals, RNA isolation, library preparation and sequencing. Three adult specimens of *C*. *tshokwe* were collected at Brazzaville/Republic of in the Congo River in 2012 and stored in

- 73 -

RNAlater in -80°C. Five adult specimens from each of the other two species (*C. compressirostris*, *C. rhynchophorus*) and two hybrids (*C. compressirostris* \Im x *C. rhynchophorus* \Im , *C. compressirostris* \Im x *C. tshokwe* \Im) were artificially bred and raised at the University of Potsdam. All specimens except for *C. tshokwe* were anesthetized by a lethal dose of clove oil, and dissected on cold 99% ethanol. Electric organ (EO) and skeletal muscle (SM) tissue from each specimen were flash frozen in liquid nitrogen, and further preserved in -80°C. In total, we collected three samples of both EOs & SMs from *C. tshokwe*, five samples of both EOs & SMs from the other four species/hybrid cohorts in this study.

The RNA isolation was performed in all the EOs and SMs samples using QIAGEN RNeasy Fibrous Tissue Mini Kit. Total RNA concentration was estimated using a NanoDrop 1000 spectrophotometer (ThermoFischer Scientific, Germany), RNA quality was checked with an Agilent Bioanalyzer 2100 (Agilent Technologies, USA). mRNA enrichment was performed by poly (A) capture from isolated RNA using NEXTflex Poly (A) Beads. Strand-specific transcriptomic libraries were built using NEXTflex Rapid Directional RNA-Seq Kit (Bioo Scientific, USA) based on the manufacturer's instructions.

Libraries were sequenced as 150 bp paired-end reads by Illumina HiSeq 4000 sequencing system at a commercial company (Novogene). Raw reads have been deposited in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (accessions number:GSE240783). We trimmed the adapter sequences and low quality reads using a 4 bp sliding window with a mean quality threshold of 25, and a minimum read length of 36 bp by Trimmomatic v0.39⁵⁵. Read quality, before and after read filtering, was measured by FastQC v0.11.9⁵⁶.

Differential gene expression analysis. The quality-filtered reads from EOs and SMs were mapped to the *C. compressirostris* genome³⁴ using RSEM⁵⁷ for gene level-quantification estimation. The

estimated counts were imported into R/Bioconductor with the tximport package, which produced count matrices from gene-level quantification by taking the effective gene length into account⁵⁸. Low count (≤ 10) and low frequency (not present in at least two replicates) genes were removed. We performed a principle component analysis (PCA) from filtered and log-transformed counts. One SM sample from *C. compressirostris* was removed from this study, as its overall gene expression showed a deviant unusual pattern in the PCA.

We forwarded the normalized count matrices to DESeq2⁵⁹ to infer expression differences among EO and SM in each species/hybrid cohort respectively. We used a false discovery rate threshold of 0.05 to correct for multiple testing. The differentially expressed genes (DEGs) were identified with $|\log_2 \text{ folder change } (\log_2 \text{FC})| > 1$ and p-value < 0.05. In order to detect the EO specific gene expression pattern, we used Venn Diagrams⁶⁰ to visualize the shared DEGs (up- and down-regulated separately) among three purebred species and two hybrid cohorts.

The shared DEGs were annotated against the NCBI *nr* database by blastx with an e-value cutoff $1e^{-10}$. In addition, the up- and down-regulated DEGs in the EO were used to perform a Gene Ontology (GO) enrichment analysis²⁷.

RNA-seq data clustering by EOD duration. The PCA plotting from log-transformed count matrices showed a clear pattern by the length of EOD (Fig. 3a). To identify genes with an expression pattern associated to EOD duration, we used DESeq2 to perform a likelihood ratio test⁶¹ (LRT in the DESeq2 package). This test compares how well a gene's count data fit a "full model" compared to a "reduced model"²⁹. Our full model was an equation: full = ~ duration * tissue. The duration is the length of the EOD in each purebred species, and tissue is the type of sample (EO or SM). The reduced model excluded the interaction between duration and tissue: reduced = ~ duration + tissue. Genes with adjust P-value (padj) < 0.05 were considered to fit the "full model".

We used the degPatterns function from the 'DEGreport' package to cluster different groups with particular expression pattern using those significant genes across samples³⁰, with time = "duration", col = "tissue".

The generated groups of different gene expression pattern across EOD duration were analyzed to identify genes with an expression pattern association with EOD duration. We hence focused on those groups fulfilling the following two criteria: 1) the gene expression level in EO is higher than SM in all F0 species; 2) the gene expression level in EO across EOD duration showed a consistent increasing or decreasing pattern.

The identified genes with increased and decreased expression relative to EOD duration were blasted against nr database using an e-value cutoff $1e^{-10}$. In addition, a GO term analysis was also performed for these genes.

Allelic specific expression analysis. The F1 hybrid contains two sets of subgenome from two parental species. Examination of allele specific expression can be applied to detect the allelic imbalance in transcription in heterozygous F1 hybrids. We only focused on transcripts of genes with biallelic SNPs fixed among the respective F0 parental species (hence, heterozygous only in F1 hybrids, homozygous in parental species).

We mapped the trimmed and filtered RNA-seq from five species/hybrids (in EOs and SMs, respectively) to the *C. compressirostris* genome using STAR v2.7.7⁶². The generated bam files were sorted according to the coordinates by SAMtools v1.15⁶³. Variant calling was performed by BCFtools v1.9⁶³ in EOs and SMs respectively, using the command "bcftools mpileup –f REFERENCE LIST_OF_BAM –Ou | bcftools call –mv –Ob –o BCFFILE", where the

REFERENCE, LIST_OF_BAM, BCFFILE were the CDS sequence name of the *C*. *compressirostris* genome, the list of bam files, and the output bcf file name, respectively.

After the variant calling, we performed the following steps to identify the fixed parental biallelic SNPs for each hybrid set. Firstly, we excluded the uncalled variants and only preserved biallelic SNPs using the command "bcftools view --exclude-uncalled -m2 -M2 BCFFILE > CALLING_AD", where the CALLING_AD was the allelic depth for the final biallelic SNPs. Secondly, we discarded SNPs where the variant calling score at QUAL field was lower than 70, and allelic depth was lower than 10 in both alleles. Finally, we obtained high quality SNPs, at which both parental species were homozygous and fixed for a different allele.

For each hybrid, we calculated the expression proportion of the allele from *C. compressirostris* in EO and SM, respectively. We calculated the average proportion and its 95% confidence limits across biological replicates (and over SNPs in case of more than one SNP per locus; Fig. 5, Supplementary Table 7). Genes with *C. compressirostris* allele proportions <0.4 or >0.6 in the transcriptomes were considered exhibiting an imbalanced expression³¹.

Data availability

Sequence data have been deposited at NCBI Gene Expression Omnibus under accession GSE240783.

References

1. Darwin, C. *The origin of species*. (The Harvard Classics, 1859).

2. Bass, A. H. Electric Organs Revisited: Evolution of a Vertebrate Communication and Orientation Organ. Electroreception. (1986).

3. Kirschbaum, F. & Formicki, K. Structure and Function of Electric Organs. in *The Histology of Fishes* 75–87 (2020).

4. Smith, G. T. Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae). *Journal of Experimental Biology* **216**, 2421–2433 (2013).

5. Glasauer, S. M. K. & Neuhauss, S. C. F. Whole-genome duplication in teleost fishes and its evolutionary consequences. *Mol. Genet. Genom.* **289**, 1045–1060 (2014).

6. Wang, Y. & Yang, L. Genomic Evidence for Convergent Molecular Adaptation in Electric Fishes. *Genome Biol Evol* **13**, 1–11 (2021).

7. Zakon, H. H. Adaptive evolution of voltage-gated sodium channels: The first 800 million years. *Proc Natl Acad Sci U S A* **109**, 10619–10625 (2012).

8. LaPotin, S. *et al.* Divergent cis-regulatory evolution underlies the convergent loss of sodium channel expression in electric fish. *Sci Adv* **8**, (2022).

9. Gallant, J. R. *et al.* Genomic basis for the convergent evolution of electric organs. *Science* (1979) **344**, 1522–1525 (2014).

10. Gallant, J. R., Hopkins, C. D. & Deitcher, D. L. Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish *Brienomyrus brachyistius*. *Journal of Experimental Biology* **215**, 2479–2494 (2012).

11. Lamanna, F., Kirschbaum, F., Waurick, I., Dieterich, C. & Tiedemann, R. Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae). *BMC Genom.* **16**, 1–17 (2015).

12. Kim, J. A., Jonsson, C. B., Calderone, T. & Unguez, G. A. Transcription of MyoD and myogenin in the non-contractile electrogenic cells of the weakly eletric fish, Sternopygus macrurus. *Dev Genes Evol* **214**, 380–392 (2004).

13. Feulner, P. G. D., Plath, M., Engelmann, J., Kirschbaum, F. & Tiedemann, R. Electrifying love: Electric fish use species-specific discharge for mate recognition. *Biol Lett* **5**, 225–228 (2009).

14. Feulner, P. G. D., Plath, M., Engelmann, J., Kirschbaum, F. & Tiedemann, R. Magic trait electric organ discharge (EOD): Dual function of electric signals promotes speciation in African weakly electric fish. *Commun. Integr. Biol.* **2**, 329–331 (2009).

15. Tiedemann R., Feulner P.G.D., K. F. *Evolution in Action: Case studies in Adaptive Radiation, Speciation and the Origin of Biodiversity* 1–586 (2010) doi:10.1007/978-3-642-12425-9.

16. Paul, C. *et al.* Comparative histology of the adult electric organ among four species of the genus *Campylomormyrus* (Teleostei: Mormyridae). *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* **201**, 357–374 (2015).

17. Gallant, J. R., Arnegard, M. E., Sullivan, J. P., Carlson, B. A. & Hopkins, C. D. Signal variation and its morphological correlates in *Paramormyrops kingsleyae* provide insight into the evolution

of electrogenic signal diversity in mormyrid electric fish. *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* **197**, 799–817 (2011).

18. Korniienko, Y., Tiedemann, R., Vater, M. & Kirschbaum, F. Ontogeny of the electric organ discharge and of the papillae of the electrocytes in the weakly electric fish *Campylomormyrus rhynchophorus* (Teleostei: Mormyridae). *Journal of Comparative Neurology* **529**, 1052–1065 (2021).

19. Kirschbaum, F. *et al.* Intragenus (*Campylomormyrus*) and intergenus hybrids in mormyrid fish: Physiological and histological investigations of the electric organ ontogeny. *J Physiol Paris* **110**, 281–301 (2016).

20. Lamanna, F., Kirschbaum, F. & Tiedemann, R. De novo assembly and characterization of the skeletal muscle and electric organ transcriptomes of the African weakly electric fish *Campylomormyrus compressirostris* (Mormyridae, Teleostei). *Mol Ecol Resour* **14**, 1222–1230 (2014).

21. Nagel, R., Kirschbaum, F. & Tiedemann, R. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes. *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* **203**, 183–195 (2017).

22. Paul, C., Kirschbaum, F., Mamonekene, V. & Tiedemann, R. Evidence for Non-neutral Evolution in a Sodium Channel Gene in African Weakly Electric Fish (*Campylomormyrus*, Mormyridae). *J Mol Evol* **83**, 61–77 (2016).

23. Swapna, I. *et al.* Electrostatic Tuning of a Potassium Channel in Electric Fish. *Curr. Biol* **28**, 2094–2102 (2018).

24. Stoddard P.K., M. M. R. Signal Cloaking by Electric Fish. *Bioscience* 58, 415–425 (2008).

25. Mehaffey, W. H., Fernandez, F. R., Rashid, A. J., Dunn, R. J. & Turner, R. W. Distribution and function of potassium channels in the electrosensory lateral line lobe of weakly electric apteronotid fish. *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* **192**, 637–648 (2006).

26. Kuang, Q., Purhonen, P. & Hebert, H. Structure of potassium channels. *Cellular and Molecular Life Sciences* **72**, 3677–3693 (2015).

27. Dennis, G. *et al.* DAVID: Database for Annotation, Visualization, and Integrated Discovery. *Genome Biol* **4**, (2003).

28. Love, M. I., Anders, S., Kim, V. & Huber, W. RNA-Seq workflow: gene-level exploratory analysis and differential expression. *F1000Res* **4**, 1070 (2015).

29. Bendjilali, N. *et al.* Time-course analysis of gene expression during the Saccharomyces cerevisiae hypoxic response. *G3: Genes, Genomes, Genetics* **7**, 221–231 (2017).

30. L Pantano. DEGreport: Report of DEG analysis. *R package version* 1(8): 10.18129 (2019).

31. Chang, H. W. *et al.* Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer. *J Natl Cancer Inst* **94**, 1697–1703 (2002).

32. Adzhubei, I. A. *et al.* A method and server for predicting damaging missense mutations. *Nat Methods* **7**, 248–249 (2010).

33. Gallant, J. R., Losilla, M., Tomlinson, C. & Warren, W. C. The genome and adult somatic transcriptome of the mormyrid electric fish *Paramormyrops kingsleyae*. *Genome Biol Evol* **9**, 3525–3530 (2017).

34. Cheng, F. *et al.* A new genome of an African weakly electric fish (*Campylomormyrus compressirostris*, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha. *BMC Genom.* **24**, 129 (2023).

35. Traeger, L. L., Sabat, G., Barrett-Wilt, G. A., Wells, G. B. & Sussman, M. R. A tail of two voltages: Proteomic comparison of the three electric organs of the electric eel. *Sci Adv* **3**, (2017).

36. Fontenas, L. *et al.* Neuronal Ndrg4 Is Essential for Nodes of Ranvier Organization in Zebrafish. *PLoS Genet* **12**, 1–24 (2016).

37. Lee, D. C. *et al.* A lactate-induced response to hypoxia. *Cell* **161**, 595–609 (2015).

38. Schrader, L. A. *et al.* ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. *Am J Physiol Cell Physiol* **290**, 852–861 (2006).

39. Gupte R P, Kadunganattil S, Shepherd A J, Merrill R, Planer W, Bruchas M R, Strack S, M. D. P. Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4. 2 by pituitary adenylate cyclase-activating polypeptide. *Neuropharmacology* **101**, 291–308 (2016).

40. Stamboulian, S. *et al.* ERK1/2 mitogen-activated protein kinase phosphorylates sodium channel Nav1.7 and alters its gating properties. *Journal of Neuroscience* **30**, 1637–1647 (2010).

41. Mandal A, Shahidullah M, D. N. A. TRPV1-dependent ERK1/2 activation in porcine lens epithelium Amritlal. *Exp Eye Res* **172**, 128–136 (2019).

42. Denizot, J. P., Kirschbaum, F., Westby, G. W. M. & Tsuji, S. On the development of the adult electric organ in the mormyrid fish *Pollimyrus isidori* (with special focus on the innervation). *J. Neurocytol.* **11**, 913–934 (1982).

43. Black, B. L. & Olson, E. N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. *Annu Rev Cell Dev Biol* **14**, 167–196 (1998).

44. Parrish, J. Z. *et al.* Krüppel Mediates the Selective Rebalancing of Ion Channel Expression. *Neuron* **82**, 537–544 (2014).

45. He, L., Vasiliou, K. & Nebert, D. W. Analysis and update of the human solute carrier (SLC) gene superfamily. *Hum Genomics* **3**, 195–206 (2009).

46. Wang, L., Shao, Z., Chen, S., Shi, L. & Li, Z. A *SLC24A2* gene variant uncovered in pancreatic ductal Adenocarcinoma by whole exome sequencing. *Tohoku Journal of Experimental Medicine* **241**, 287–295 (2017).

47. Nass, R. D., Aiba, T., Tomaselli, G. F. & Akar, F. G. Mechanisms of Disease: Ion channel remodeling in the failing ventricle. *Nat Clin Pract Cardiovasc Med* **5**, 196–207 (2008).

48. Losilla, M., Luecke, D. M. & Gallant, J. R. The transcriptional correlates of divergent electric organ discharges in *Paramormyrops* electric fish. *BMC Evol Biol* **20**, 1–19 (2020).

49. Chai, S. *et al.* Contribution of two-pore K+ channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes. *Am J Physiol Heart Circ Physiol* **312**, H1144–H1153 (2017).

50. Hibino, H. *et al.* Inwardly rectifying potassium channels: Their structure, function, and physiological roles. *Physiol Rev* **90**, 291–366 (2010).

51. Li, M. *et al.* Overexpression of *KCNJ2* in induced pluripotent stem cell-derived cardiomyocytes for the assessment of QT-prolonging drugs. *J Pharmacol Sci* **134**, 75–85 (2017).

52. Dhamoon, A. S. & Jalife, J. The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. *Heart Rhythm* **2**, 316–324 (2005).

53. Jeevaratnam, K., Chadda, K. R., Huang, C. L. H. & Camm, A. J. Cardiac Potassium Channels: Physiological Insights for Targeted Therapy. *J Cardiovasc Pharmacol Ther* **23**, 119–129 (2018).

54. Lamanna, F. *et al.* Species delimitation and phylogenetic relationships in a genus of African weakly-electric fishes (Osteoglossiformes, Mormyridae, *Campylomormyrus*). *Mol Phylogenet Evol* **101**, 8–18 (2016).

55. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

56. Andrew, S. FastQC: a quality control tool for high throughput sequence data. *Babraham Bioinformatics* (2010).

57. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinform.* 1–16 (2011) doi:10.1201/b16589.

58. Paraskevopoulou, S., Dennis, A. B., Weithoff, G. & Tiedemann, R. Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers. *Sci Rep* **10**, 1–15 (2020).

59. Love, M. I., Anders, S. & Huber, W. *Differential analysis of count data - the DESeq2 package*. *Genome Biology* vol. 15 (2014).

60. Hanbo Chen, P. C. B. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. *BMC Bioinform.* **12**, 1–7 (2011).

61. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 1–21 (2014).

62. Dobin, A. & Gingeras, T. R. Mapping RNA-seq Reads with STAR. *Curr Protoc Bioinformatics* **51**, 11.14.1-11.14.19 (2015).

63. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, 1–4 (2021).

Acknowledgements

We thank Dr. Linh Nguyen for fish breeding and raising. This project is funded by University of

Potsdam.

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Fig. 1

Supplementary Fig. 1

44 significantly enriched Gene Ontology (GO) terms with Fisher's exact test p-value < 0.01 in genes upregulated in electric organ. The number of genes is plotted for each term. The GO terms are colored by their assignment to molecular function, cellular component, or biological process.

Supplementary Fig. 2

Significantly enriched Gene Ontology (GO) terms with Fisher's exact test Pvalue < 0.01 of genes downregulated in electric organ (up regulated in skeleton muscle). The number of genes is plotted for each term. The GO terms are colored by their assignment to molecular function, cellular component, or biological process.

Supplementary Fig. 3

RNA-seq data clustering analysis based on EOD duration in electric organ (EO) and skeleton muscle (SM) of three F0 species. The x-axis for each group represents the EOD duration of the respective species: C. compressirostris (0.4ms), C. tshokwe (5ms) and C. rhynchophorus (40ms).

Supplementary Fig. 4

19 significantly enriched Gene Ontology (GO) terms with Fisher's exact test Pvalue < 0.05 for genes with increasing expression pattern over EOD duration change (Group 5 and 6). The number of genes is plotted for each term. The GO terms are colored by their assignment to molecular function, cellular component, or biological process.

Supplementary Fig. 5

Significantly enriched Gene Ontology (GO) terms with Fisher's exact test Pvalue < 0.05 in genes with decreasing expression pattern over EOD duration change (Group 3). The number of genes is plotted for each term. The GO terms are colored by their assignment to molecular function, cellular component, or biological process.

Supplementary Table 1

ID	Blast Cono	Hightlight of Prodicted Function	Cono Description	Catagory	Average	Avorago Pvaluo
maker_ptg0003611_	Diast Gene	Tightingits of Tredicted Tunction	Gene Description	Category	lug2rC	Average I value
augustus gene 0.2			APP3 actin related protein 3	cytoskalatal &		
mRNA_1	ACTR3h	E-actin dynamics / polymerization	homolog B	sarcomeric	3.02	3 1635E-20
snan masked	ACINSU	1-actin dynamics / porymerization	noniolog D	sarcomerie	5.02	5.105512-20
ntg00090/11						
processed_gene_5 5-			actin related protein 2/3 complex	cytoskeletal &		
mRNA_1	ARPC3	E-actin dynamics / polymerization	subunit 3	sarcomeric	2.01	9.689/7E-05
maker_ptg0011801_	AIG C5	r-actin dynamics / porymerization	subuiit 5	sarcomerie	2.01	J.00J47L-05
augustus_gene_			actin-related protein 2/3 complex	cytoskeletal &		
13.21-mRNA_1	ARPC5	E-actin dynamics / polymerization	subunit 5	sarcomeric	1 99	0.0035/11395
maker.ptg0020721	AM CJ	r-actin dynamics / porymerization	subuint 5	sarcomeric	1.99	0.003341393
spap gapa 6 14			capping protein regulator and	cytoskalatal &		
mPNA 1	CARMIL 1	Eactin dynamics / polymerization	myosin 1 linker 1	sarcomeric	1 0 1	0.001040325
maker ptg0006501	CARMILI	r-actin dynamics / porymerization	myösin i mikei i	sarcomeric	1.91	0.001040323
spap gapa 7.40		controls reorganization of		autoskalatal &		
mDNA 1	EDDV1	intermediate filements	aninlakin 1	cytoskeletal &	774	1 21807E 11
malcar ntg0002461	LIIKI	Intermediate manents	еріріакії і	sarcomeric	1.74	1.21007E-11
maker-pig0005401-				autoskalatal &		
mDNA 1	CSN	E actin dynamics / polymorization	colectin	cytoskeletal &	670	2 7180E 50
maker ptg0012011	GSN	r-actili dynamics / porymerization	geisonn	sarcomeric	0.70	2.7169E-30
maker-pig0012911-		unconventional myosine actin		autoskalatal &		
mDNA 1	MV014	based motor protein	unconventional myosin Id	cytoskeletal &	216	0.012805200
makar nta0011821	MIOIU	based motor protein	unconventional myösm-ta	sarcomeric	2.10	0.013893309
maker-pig0011821-				autoskalatal &		
mDNA 1	MTCC1	regulation of E actin dynamics	motostosis summesson motoin 1	cytoskeletal &	471	1.00085E 10
maltar ata0001001	M1551	regulation of F-actin dynamics	metastasis suppressor protein i	sarcomeric	4./1	1.09083E-10
maker-pig0001901-		unconventional myssin, estin		artaslatal e		
mDNA 1	MVIIIO	head motor protein	mussin 10	cytoskeletal &	1.57	2.02467E 10
IIIKINA-I molton ato0011881	мини	based motor protein	IIIy0siii-10	sarcomeric	1.57	2.9540/E-10
maker-pig0011881-				artaslatal e		
mDNA 1	MVI A	regulatory light chain of myosin	muosin light shain 4	cytoskeletal &	7 1 2	5 64502E 05
IIIKINA-I	MIL4	regulatory light chain of myosin	myösin nght cham 4	sarcomeric	1.12	3.04392E-03
shap_masked-						
pig0000281-		unconventional myssin, actin		artaslatal e		
127 57 mPNA 1	MVO15a	based motor protein	unconventional myosin VV	cytoskeletal &	2.69	2 40016E 00
15/.5/-IIIKINA-1	MIOISa	based motor protein	unconventional myosin-Av	sarcomeric	5.08	5.40010E-09
maker-pig0012911-		unconventional myogin; actin		autoskalatal &		
mDNA 1	MV014	hasad motor protein	muosin ID	cytoskeletal &	1.02	0.002762165
malar nta0010021	MIOIA	based motor protein	iliyosiii iD	sarcomeric	1.95	0.005702105
maker-pig0010031-		unconventional myosine actin		autoskalatal &		
mPNA 1	MVOL	hased motor protein	unconventional myosin Ia	sarcomeric	2.63	5 70736E 05
malcar ntg0020001	MIOIe	based motor protein	unconventional myösin-te	sarcomeric	2.03	3.70730E-03
maker-ptg0020901-		unconventional myosine actin		autoskalatal &		
25 16 mDNA 1	MVOSh	based motor protein	muosin IIIb	cytoskeletal &	2 75	1 42712E 07
55.10-IIIKINA-1	MIOSD	based motor protein	myösin-mö	sarcomeric	5.75	1.42/12E-0/
maker-pig0005091-				autoskalatal &		
mDNA 1	NUC	regulator of actin remodelling	Nanaa Horan gundroma protoin	cytoskeletal &	5 20	2 10465E 11
maker ptg0021141	INTIS	regulator of actili remodeling	Nance-Horan syndrome protein	sarcomeric	5.50	3.10403E-11
maker-ptg0021141-		manulation of autoalcalaton		artaslatal e		
mDNA 1	DADVC	regulation of cytoskeleton	nomin commo	cytoskeletal &	2 70	7 51202E 10
IIIKINA-I	FARVO	organization	parvin gamma	sarcomeric	3.70	7.51205E-19
shap_maskeu-						
piguousui-		arous linking and stabilization of		autoskalatal &		
0.22 mDNA 1	DIEC	cross-iniking and stabilization of	nlaatin	cytoskeletal &	262	9 77100E 00
7.23-IIIKINA-1 maker.ntc00001/1	FLEU	cytoskeletai intermediate maments	piecuii	sarcomeric	2.02	0.//122E-22
snan-gene 7 120		microtubule outoskeleton		cytoskalatal &		
mDNA 1	MAD741	organization	MAP7 domain containing protein 1	cytosketetai &	8 27	6 00805E 24
illNINA-1	MAF / UI	organization	wirth / domain-containing protein 1	sarcomeric	0.32	0.2000312-34
shap_maskeu-						
processed game		catalytic component of a DA	A TPase phospholipid transporting	membrana		
$18.17 \text{-mRN} \Delta_{-1}$	ATPIOA	ATPase flippase complex		organization	1 74	0.001111433
10.17-111111177-1	A11 10u	All ase inppase complex	100	organization	1./+	0.001111433

Supplementary Table 1 Genes up-regulated in all species/hybrids in the electric organ relative to sceletal muscle.

maker-ntg0002981-						
snap-gene-2.25-				membrane		
mRNA-1	ESYT1	ER-plasma membrane contact sites	extended synaptotagmin	organization	2 30	3 56639E-09
maker-ptg0003171-	LOIII	Ex plasma memorane contact sites	extended synaptotaginin	organization	2.50	5.50057E 07
snap-gene-0.11-						
mRNA-1	CALR3b	Ca2+-binding chaperone in ER	calreticulin	other	1.38	0.000700663
maker-ptg0003161-		5 - I				
snap-gene-4.241-		Ca2+-dependent, non-lysosomal				
mRNA-1	CAPN1a	cysteine protease	calpain-1 catalytic subunit	other	3.26	1.5809E-41
maker-ptg0002141-		J I I I I I I I I I I I I I I I I I I I	I I I I I I I I I I I I I I I I I I I			
augustus-gene-		Ca2+-dependent, non-lysosomal				
8.178-mRNA-1	CAPN5	cysteine protease	calpain 5	other	4.07	3.13077E-28
maker-ptg0008861-		y 1	1			
augustus-gene-			calcium regulated heat stable protein			
0.134-mRNA-1	CARHSP1	regulation of mRNA stability	1	other	3.01	2.85152E-08
maker-ptg0003161-		e ,				
snap-gene-7.47-						
mRNA-1	CRIP3	metal ion binding activity	cysteine rich protein 3	other	4.90	1.31827E-14
maker-ptg0006441-		enable metal ion binding activity	glycerophosphodiester			
snap-gene-0.4-		and phosphoric diester hydrolase	phosphodiesterase domain			
mRNA-1	GDPD4	activity	containing 4	other	4.98	3.97129E-12
maker-ptg0004051-		5	C			
snap-gene-38.13-			SPARC related modular calcium			
mRNA-1	SMOC2	secreted calcium-binding protein	binding 2	other	5.40	1.01506E-17
maker-ptg0000701-			e			
snap-gene-5.18-		scaffolding protein within caveolar				
mRNA-1	FLOT2a	membranes	flotillin-2a	other	5.77	1.81884E-53
maker-ptg0000401-						
snap-gene-14.53-		catalyzes the synthesis of N-				
mRNA-1	NAT8l	acetylaspartate acid	N-acetyltransferase 8	other	7.97	1.96623E-07
maker-ptg0001021-		5 I	5			
snap-gene-52.7-		glycosphingolipid biosynthetic	ST8 alpha-N-acetyl-neuraminide			
mRNA-1	ST8SIA5	process	alpha-2,8-sialyltransferase 5	other	9.67	6.85106E-08
maker-ptg0001201-		1	1			
snap-gene-2.54-		synaptic vesicule membrane				
mRNA-1	SYNGR3	protein	synaptogyrin-3	other	10.00	3.33741E-07
maker-ptg0001521-						
snap-gene-4.203-			zinc finger DHHC-type containing			
mRNA-1	ZDHHC23	palmitoyltransferase	23	other	6.43	5.59154E-07
maker-ptg0018271-						
augustus-gene-0.22-						
mRNA-1	FAT3	cell-cell adhesion	FAT atypical cadherin 3	other	2.72	0.001238961
snap_masked-						
ptg0001481-						
processed-gene-						
1.18-mRNA-1	FAT4	cell adhesion molecule	FAT atypical cadherin 4	other	3.97	3.45897E-11
maker-ptg0014211-						
augustus-gene-5.0-			junctional protein associated with			
mRNA-1	JCAD	cell adhesion	coronary artery disease	other	4.28	3.35791E-67
maker-ptg0014271-		Substrate-specific adapter of a				
augustus-gene-		cullin-based E3 ubiquitin-protein	potassium channel tetramerization			
38.97-mRNA-1	KCTD9	ligase complex	domain containing 9	other	1.77	3.05442E-05
maker-ptg0003611-						
snap-gene-40.32-						
mRNA-1	LAMA1	extracellular matrix protein	laminin subunit alpha-1	other	5.73	3.75043E-57
maker-ptg0001871-						
augustus-gene-						
16.29-mRNA-1	MMP28	extracellular matrix protein	matrix metallopeptidase 28	other	4.82	6.22492E-59
maker-ptg0009641-						
snap-gene-1.24-						
mRNA-1	NCAM1	cell adhesion molecule	neuronal cell adhesion molecule	other	4.84	2.16487E-24
maker-ptg0007181-						
snap-gene-13.14-		activates HECT domain-containing				
mRNA-1	NDFIP2	E3 ubiquitin-protein ligases	NEDD4 family-interacting protein 2	other	8.81	1.42211E-12
maker-ptg0008791-						
snap-gene-1.65-			transmembrane and immunoglobulin			
mRNA-1	TMIGD1	cell adhesion molecule	domain containing 1	other	9.81	1.75298E-07
maker-ptg001236l-						
augustus-gene-		tripeptide hypothalamic regulatory				
24.16-mRNA-1	TRH	hormone	thyrotropin releasing hormone	other	9.79	5.36476E-17

CTNNAL1	modulation the Rho pathway signaling	catenin alpha like 1	signaling	5.91	2.6796E-49
FGF12	regulation of voltage-gated sodium channels	fibroblast growth factor 12	signaling	8.72	5.84977E-17
HEG1	calcium ion binding activity	protein HEG homolog 1	signaling	8.38	8.41625E-14
PCP4	modulator of calcium-binding by calmodulin	calmodulin regulator protein PCP4	signaling	6.64	4.01068E-05
PVALB9	cytosolic Ca2+-binding protein of the EF-hand superfamily	parvalbumin, thymic	signaling	8.51	1.38958E-09
\$100b	cytosolic Ca2+-binding protein of the EF-hand superfamily	S100 calcium binding protein B	signaling	8.14	1.01224E-22
KL	may be involved in the regulation of calcium and phosphorus homeostasis	klotho	signaling	5.39	0.000196154
SEMA5a	ligand for receptor PLXNB3 annexin family of calcium-	semaphorin-5A	signaling	9.17	2.9895E-15
ANXA4	dependent phospholipid binding proteins	annexin A4	signaling	5.55	6.72209E-60
CAMK1d	Ca2+/calmodulin-dependent protein kinase	calcium/calmodulin dependent protein kinase ID	signaling	3.18	0.000145331
CAMK1g	Ca2+/calmodulin-dependent protein kinase	calcium/calmodulin-dependent protein kinase type 1D	signaling	4.56	0.000111371
CHRNB4	subunit alpha; nonselective cation channel	neuronal acetylcholine receptor subunit beta-4	signaling	6.28	2.08134E-05
GRIK3	ionotropic glutamate receptor	glutamate ionotropic receptor kainate type subunit 3	signaling	6.15	5.72433E-05
GRIN2a	ionotropic glutamate receptor	glutamate receptor ionotropic, NMDA 2A	signaling	6.25	0.001464578
GRINA	negative regulation of apoptotic signaling pathway	NMDA type subunit associated protein 1	signaling	3.24	7.33209E-61
ITPR1	InsP3-dependent ER Ca2+ channel	inositol 1,4,5-trisphosphate receptor type 1	signaling	4.07	9.87654E-18
NDRG3	predicted to be involved in signal transduction receptor for ATP and UTP coupled to G-proteins that activate a	N-myc downstream-regulated gene 3 protein	signaling	11.02	7.44456E-08
P2RY2	phosphatidylinositol-calcium second messenger system	P2Y purinoceptor 2	signaling	3.78	0.001473877
PIEZO2	mechanosensitive ion channel	piezo type mechanosensitive ion channel component 2	signaling	1.89	1.03736E-06
RET	receptor tyrosine-protein kinase	ret proto-oncogene	signaling	10.14	2.32382E-12
SGK1	serine/threonine-protein kinase	serine/threonine-protein kinase Sgk1	signaling	7.79	6.63267E-38
TRPV1	transient receptor potential family of ion channels; nociception	transient receptor potential cation channel subfamily V member 1	signaling	2.43	0.005919225

maker-ptg0010881-		target ARE promoter elements in		transcription		
mRNA-1	SIX2a	Na+/K+ adenosine triphosphatases	SIX homeobox 2	factor	3.05	1 22103E-27
maker-ptg0007831-	SIA2u	Na H/K + adenosite utpitospitatases	hes related family bHLH	Tactor	5.05	1.22103E-27
snap-gene-6.78-		developing cardiac conduction	transcription factor with YRPW	transcription		
mRNA-1	HEY1	pathway	motif 1	factor	6.02	1.5325E-13
maker-ptg0001491-		1 5				
augustus-gene-2.87-				transcription		
mRNA-1	ETV5	transcription factor	ETS translocation variant 5	factor	5.11	1.99403E-55
snap_masked-		-				
ptg0007371-						
processed-gene-		regulate distinct female sex		transcription		
6.55-mRNA-1	FOXL2	determining pathways	forkhead box protein L2	factor	8.52	4.14855E-07
maker-ptg0017401-						
augustus-gene-				transcription		
1.112-mRNA-1	KLF5	rebalance potassium channels	Krueppel-like factor 5	factor	8.39	5.04913E-06
maker-ptg0000081-						
snap-gene-10.43-	1/662	transcriptional activator for		transcription	2.05	2 201255 50
mRNA-1	MEF2a	numerous muscle-specific genes	myocyte-specific enhancer factor 2A	factor	3.85	3.78175E-50
maker-ptg0012701-						
snap-gene-4/.16-	MEEDL	transcriptional activator for	man for the 2D	transcription	6.02	0 450225 (0
mKINA-1 maltar ptg0002451	MEF20	numerous muscle-specific genes	myocyte-specific enhancer factor 2B	lactor	0.92	8.45855E-08
maker-ptg0005451-				transmomhrana		
mPNA 1	ANO 10	calcium activated chloride channel	anoctamin 10	ion transport	2 37	1 21702E 13
maker ptg0004061	ANOIO	calcium-activated emonde enamer	anoctanini 10	ion transport	2.37	1.21/921-15
snan-gene-3 4-				transmembrane		
mRNA_1	ANO5	calcium-activated chloride channel	anoctamin 5	ion transport	2.76	3 56495E-17
	111005	calcium-activated nonselective		ion transport	2.70	5.504751 17
maker-ntg0009791-		cation (SCAN) channel which acts				
snap-gene-12.179-		as a regulator of phospholipid		transmembrane		
mRNA-1	ANO6	scrambling	anoctamin 6	ion transport	1.82	0.000445473
maker-ptg0009701-				P		
augustus-gene-			sodium/potassium-transporting	transmembrane		
2.127-mRNA-1	ATP1a1	Na/K-ATPase α-subunit	ATPase subunit alpha-1	ion transport	10.55	2.18943E-05
snap_masked-			L.	1		
ptg0011561-						
processed-gene-			sodium/potassium-transporting	transmembrane		
0.19-mRNA-1	ATP1a2a	Na/K-ATPase α-subunit	ATPase subunit alpha-2	ion transport	3.07	2.63171E-12
maker-ptg0010471-						
snap-gene-1.63-			ATPase NA+/K+ transporting beta	transmembrane		
mRNA-1	ATP1b1a	Na/K-ATPase β-subunit	1a	ion transport	6.59	3.63255E-59
maker-ptg0005091-						
snap-gene-9.39-			ATPase NA+/K+ transporting beta	transmembrane		
mRNA-1	ATPIbIb	Na/K-ATPase β-subunit	16	ion transport	4.51	2.06472E-06
maker-ptg0009931-						
snap-gene-3.19-	47702 2	sarcoplasmic/endoplasmic	sarcoplasmic/endoplasmic reticulum	transmembrane	1.00	5 5050 45 00
mRNA-1	ATP2a2	reticulum calcium ATPase 2	calcium ATPase 2	10n transport	1.90	5./9/84E-08
snap_masked-						
ptg0009041-		saraonlasmia/andonlasmia	saraanlasmia/andonlasmia ratioulum	transmomhrana		
1 72 mDNA 1	ATD2a2h	rationlum caloium ATPase 2	sarcopiasinic/endopiasinic reticutum	ion transport	2 72	5 65072E 08
naker ntg0000841	ATF 2020	Tenedium calcium ATFase 2	calcium Alfase 20	ion transport	2.12	5.05072E-08
augustus-gene-367-		nlasma membrane calcium-	nlasma membrane calcium-	transmembrane		
mRNA_1	ATP2h1a	transporting ATPase 1	transporting ATPase 1a	ion transport	2.96	4 08993E-15
maker_ntg0000841_	1111 2014	transporting 711 ase 1	transporting ATT ase Ta	ion transport	2.90	4.007751 15
snap-gene-36.24-		plasma membrane calcium-	plasma membrane calcium-	transmembrane		
mRNA-1	ATP2h1h	transporting ATPase 1	transporting ATPase 1b	ion transport	3.66	1.07062E-27
maker-ntg0001351-	1111 2010	transporting refe use r	aunsporting rerease to	ion dansport	5.00	1.070022 27
augustus-gene-		ATPase plasma membrane Ca2+	ATPase plasma membrane Ca2+	transmembrane		
78.38-mRNA-1	ATP2b3	transporting 3	transporting 3	ion transport	5.65	1.02377E-05
maker-ptg0003471-		1 0	1 0	1		
snap-gene-10.66-			ATPase secretory pathway Ca2+	transmembrane		
mRNA-1	ATP2c1	secretory pathway Ca2+-ATPase	transporting 1	ion transport	2.14	0.000146327
maker-ptg0000321-			1 0	r		
augustus-gene-1.26-		subunit of vacuolar-type H+-	ATPase H+ transporting accessory	transmembrane		
mRNA-1	ATP6ap2	ATPase	protein 2	ion transport	1.78	2.28333E-09
maker-ptg0005011-			-	*		
augustus-gene-3.39-		subunit of vacuolar-type H+-	ATPase H+ transporting V1 subunit	transmembrane		
mRNA-1	ATP6v1f	ATPase	F	ion transport	1.48	1.99856E-09

1 0014271						
maker-ptg00142/l-			voltage dependent N type calcium	transmembrane		
mRNA-1	CACNAIb	calcium channel subunit	channel subunit alpha-1B	ion transport	5 1 9	2 70467E-08
maker-ntg0011821-	CACINATO	calcium channel subunit	chainer subunit aipna-1B	ion transport	5.19	2.7040712-08
snap-gene-8.79-			cyclic nucleotide-gated cation	transmembrane		
mRNA-1	CNGB1	nonselective cation channel	channel beta-1	ion transport	5.76	2.75381E-05
snap masked-		Ca2+ binding protein that is a key		F		
ptg0000841-		regulator of CRAC channel-				
processed-gene-		mediated SOCE: adaptor protein	calcium release activated channel	transmembrane		
43.23-mRNA-1	CRACR2aa	for cytoplasic dynein	regulator 2Aa	ion transport	3.67	0.001092994
maker-ptg0010691-			e	1		
augustus-gene-3.65-		subunit of ligand-gated chloride	gamma-aminobutyric acid receptor	transmembrane		
mRNA-1	GABRA1	channel	subunit alpha-1	ion transport	5.44	1.17436E-05
snap_masked-			-	-		
ptg0005091-						
processed-gene-		subunit of ligand-gated chloride	gamma-aminobutyric acid receptor	transmembrane		
7.11-mRNA-1	GABRG3	channel	subunit gamma-3	ion transport	2.78	0.000289984
snap_masked-						
ptg0021791-						
processed-gene-	GLEBE			transmembrane	0.00	
1.70-mRNA-1	GLRBB	ligand-gated chloride channel	glycine receptor, beta b	ion transport	9.03	2.58552E-29
maker-ptg0005591-		1 1 1 1 1 1 1	hyperpolarization activated cyclic			
snap-gene-2./6-	ucup	hyperpolarization-activated ion	nucleotide gated potassium and	transmembrane	2.65	1 705765 00
mRNA-1	HCN2	channel	sodium channel 2	10n transport	3.65	1./95/6E-09
maker-ptg0000281-						
snap-gene-81.10-	KCNA7a 1	voltage geted potessium channel	subfamily A momber 7a	ion transport	4.60	2 58472E 11
makar ntg0000281	KCNA/a_I	voltage-gated potassium channel	sublamily A member 7a	ion transport	4.00	2.364/2E-11
snan-gene-81.8-			notassium voltage-gated channel	transmembrane		
mRNA_1	KCNA7a 2	voltage-gated potassium channel	subfamily A member 7a	ion transport	8 27	3 55527E-12
maker_ntg0014271_	KCIVA/u_2	voltage-gated potassium enamer	sublaining A member 7 a	ion transport	0.27	5.5552712-12
snan-gene-13 20-				transmembrane		
mRNA-1	KCNIP3	voltage-gated potassium channel	calsenilin	ion transport	5 1 1	0.000993571
maker-ptg0002651-	Reivin 5	voltage gated potassium chamier	carsemin	ion transport	5.11	0.000775571
est gff est2genome-		inwardly rectifying potassium		transmembrane		
gene-6.33-mRNA-1	KCNJ2	channel	inward rectifier potassium channel 2	ion transport	5.53	1.12219E-20
maker-ptg0008301-			Ī			
augustus-gene-		inwardly rectifying potassium	G protein-activated inward rectifier	transmembrane		
5.123-mRNA-1	KCNJ9	channel	potassium channel 3	ion transport	5.77	2.63245E-10
snap_masked-			•	*		
ptg0011181-						
processed-gene-		potassium two pore domain	potassium channel subfamily K	transmembrane		
0.13-mRNA-1	KCNK2	channel	member 2	ion transport	6.15	9.23801E-14
maker-ptg0006971-						
snap-gene-6.109-			potassium voltage-gated channel	transmembrane		
mRNA-1	KCNQ5	voltage-gated potassium channel	subfamily Q member 5	ion transport	5.94	0.000938938
maker-ptg001106l-						
augustus-gene-0.48-				transmembrane		6 0 1 0 5 5 7 0 6
mRNA-1	MCOLNI	intracellular cation channel	mucolipin-1	10n transport	6.37	6.01855E-26
maker-ptg00105/1-						
snap-gene-5.24-	MCOLN2				5 (9	4 201925 06
maker ntg0002531	MCOLNS	intracentular cation channel	nuconpin-5	ion transport	5.08	4.50182E-00
maker-ptg0002331-		voltage gated sodium channel		transmambrana		
20 10-mRNA-1	SCN1ba	beta-subunit (regulatory)	sodium channel subunit beta-1	ion transport	3.8/	1 29832E-07
maker_ntg0011881_	SCIVIDU	beta-subunit (regulatory)	sourum channel subunit beta-1	ion transport	5.04	1.27052E-07
snan-gene-6 4-		voltage-gated sodium channel	sodium channel protein type 4	transmembrane		
mRNA-1	SCN4aa	alpha-subunit	subunit alpha A	ion transport	10.98	1 27373E-11
maker-ntg0022391-	Servida	ulpiu suoune	subuiit alpin II	ion dansport	10.90	1.2757512 11
snap-gene-5 5-			sodium voltage-gated channel beta	transmembrane		
mRNA-1	SCN4b	voltage-gated sodium channel	subunit 4	ion transport	5.34	8.18062E-47
maker-ptg0004771-		ion channel in the outer				
augustus-gene-1.10-		mitochondrial membrane and also	voltage-dependent anion-selective	transmembrane		
mRNA-1	VDAC1	the outer cell membrane	channel protein 1	ion transport	2.69	2.46626E-06
maker-ptg0000511-			×.	*		
snap-gene-132.157-				transmembrane		
mRNA-1	TMEM206	proton-activated chloride channel	transmembrane protein 206	ion transport	1.98	6.00534E-10
maker-ptg0013001-			-	-		
snap-gene-4.198-		Ca2+ permeable cation channel at		transmembrane		
mRNA-1	TMEM63c	ER/mitochondria contact sites	transmembrane protein 63C	ion transport	4.00	0.001858763

maker-ptg0001871-						
augustus-gene-15.2-				transmembrane		
mRNA-1	TMEM120a	mechanosensing ion channel	transmembrane protein 120A	ion transport	6.05	2.33605E-44
maker-ptg0001481-						
snap-gene-9.4-		calcium, potassium:sodium		transmembrane		
mRNA-1	SLC24a2	antiporter	solute carrier family 24 member 2	ion transport	9.06	1.1057E-37
snap_masked-						
ptg0001021-						
processed-gene-	SI CAA			transmembrane	5 (7	1 27525 11
12.40-MKINA-1	SLC4a4	sodium bicarbonate cotransporter	solute carrier family 4 member 4	ion transport	5.07	1.3/33E-11
shap_masked-						
processed_gene_3.9-				transmembrane		
mRNA-1	SLC8a1a	sodium/calcium exchanger	solute carrier family 8 member 1a	ion transport	5.01	3 00748E-13
mittari	SEcoura	probable lipid transporter that	solute currer fulling o member fu	ion dansport	5.01	5.007 IOE 15
maker-ptg0022071-		modulates cholesterol				
snap-gene-0.59-		sequestration in the late	ATP binding cassette subfamily A	transmembrane		
mRNA-1	ABCA2	endosome/lysosome	member 2	ion transport	2.21	1.89872E-10
maker-ptg0018441-		ABC transporter; translocates		1		
snap-gene-4.2-		drugs and phospholipids across the	ATP binding cassette subfamily B	transmembrane		
mRNA-1	ABCB1	membrane	member 1	ion transport	4.72	0.000481822
maker-ptg001436l-						
snap-gene-0.52-		ABC transporter of broad substrate	ATP-binding cassette sub-family G	transmembrane		
mRNA-1	ABCG2	specificity	member 2	ion transport	2.24	0.008846064
maker-ptg0003261-						
snap-gene-3.64-		1. 10		transmembrane	2.41	2 00214E 05
mRNA-1	SLC13a1	sodium:suifate symporter	solute carrier family 13 member 1	ion transport	3.41	3.99214E-05
snap_masked-						
processed-gene-		membrane transporter that exports		transmembrane		
2 22-mRNA-1	SLC17a5	free sialic acids	solute carrier family 17 member 5	ion transport	3.88	1 23265E-08
maker-ptg0014271-	5201745	free state delds	solute carrier family 17 member 5	ion dansport	5.00	1.252652 00
snap-gene-14.26-				transmembrane		
mRNA-1	SLC23a2	sodium/ascorbate cotransporter	solute carrier family 23 member 2	ion transport	2.45	3.35477E-05
snap_masked-			2	1		
ptg0018371-		calcium-dependent mitochondrial				
processed-gene-		solute carrier on the inner		transmembrane		
1.59-mRNA-1	SLC25a23	mitochondrial membrane	solute carrier family 25 member 23	ion transport	5.13	0.000247848
maker-ptg0001021-		calcium-binding mitochondrial				
augustus-gene-64.1-		carrier on the inner mitochondrial		transmembrane		
mRNA-1	SLC25a25b	membrane	solute carrier family 25 member 25b	ion transport	2.65	0.003639241
maker-ptg0001841-		sodium ion- and chloride ion-		·····		
augustus-gene-2.1-	SLC5.47	that madiatas shaling untake	solute corrier family 5 member 7	transmembrane	5.01	0.000202221
maker ntg0001751	SLC547	that mediates chonne uptake	solute carrier family 5 member 7	ton transport	5.91	0.000293221
augustus-gene-7.91-				transmembrane		
mRNA-1	SLC5a9	sodium/glucose cotransporter 4	solute carrier family 5 member 9	ion transport	2.80	6 19949E-11
maker-ptg0015871-	520047	sodium-dependent vesicular		ion dansport	2.00	01177 172 11
snap-gene-9.16-		transporter selective for proline,		transmembrane		
mRNA-1	SLC6a17	glycine, leucine and alanine	solute carrier family 6 member 17	ion transport	8.15	5.51716E-10
maker-ptg0008001-			-	*		
augustus-gene-2.11-		sodium- and chloride-dependent		transmembrane		
mRNA-1	SLC6a2	transport of norepinephrine	solute carrier family 6 member 2	ion transport	5.50	3.30148E-15
maker-ptg0010041-		sodium- and chloride-dependent				
snap-gene-4.176-		transport of taurine and beta-		transmembrane		
mRNA-1	SLC6a6	alanine	solute carrier family 6 member 6	ion transport	4.10	7.32652E-09

Supplementary Table 2

ID	Blast Gene	Highlights of Predicted Function	Gene Description	Category	Average log2FC	Average Pvalue
snap_masked- ptg0003081- processed-gene- 8.27-mRNA-1	ABI2a	regulator of actin cytoskeleton dynamics	abl interactor 2a	cytoskeletal & sarcomeric	-1.94	0.004180823
maker- ptg0005121-snap- gene-2.123- mRNA-1	ABLIM1b	binds to actin filaments and mediates interactions between actin and cytoplasmic targets	actin-binding LIM protein 1	cytoskeletal & sarcomeric	-2.88	1.69993E-09
maker- ptg0014581-snap- gene-2.2-mRNA- 1	ABRaa	muscle specific actin-binding protein; involved in skeletal muscle hypertrophy and atrophy	actin-binding Rho-activating protein	cytoskeletal & sarcomeric	-5.52	1.11159E-06
maker- ptg0014161- augustus-gene- 5.37-mRNA-1	ABRab	muscle specific actin-binding protein; involved in skeletal muscle hypertrophy and atrophy	actin binding Rho activating protein	cytoskeletal & sarcomeric	-5.37	5.05532E-07
maker- ptg0003061- augustus-gene- 0.39-mRNA-1	ACTA1	actin isoform, striated muscle	actin, alpha 1, skeletal muscle	cytoskeletal & sarcomeric	-5.17	9.36728E-19
maker- ptg0010701- augustus-gene- 5.71-mRNA-1	ACTB1	actin isoform, cytoplasmic	actin, cytoplasmic 1	cytoskeletal & sarcomeric	-1.95	0.00022477
maker- ptg0001711-snap- gene-9.31- mRNA-1	ACTC1a	actin isoform, striated muscle	actin, alpha cardiac muscle 1a	cytoskeletal & sarcomeric	-8.11	8.1603E-05
snap_masked- ptg0025191- processed-gene- 0.5-mRNA-1	ACTC1b	actin isoform, striated muscle	actin, alpha cardiac muscle 1b	cytoskeletal & sarcomeric	-4.70	0.004466918
maker- ptg0000671-snap- gene-17.2- mRNA-1	ACTC2	actin isoform, striated muscle	actin, alpha, cardiac muscle 2	cytoskeletal & sarcomeric	-7.94	0.006969056
maker- ptg0005011-snap- gene-3.13- mRNA-1	CAPZA2	F-actin binding protein	F-actin-capping protein subunit alpha-2	cytoskeletal & sarcomeric	-2.35	1.10876E-11
maker- ptg0006931-snap- gene-21.128- mRNA-1	CAPZB	F-actin binding protein	F-actin-capping protein subunit beta	cytoskeletal & sarcomeric	-1.32	9.88642E-06
maker- ptg0001961- augustus-gene- 4.0-mRNA-1	KY	cytoskeleton-associated protease required for normal muscle growth	kyphoscoliosis peptidase	cytoskeletal & sarcomeric	-7.80	0.000264434
maker- ptg0000071-snap- gene-2.65- mRNA-1	MYBPC1	thick filament-associated protein located in the crossbridge region of vertebrate striated muscle A bands	myosin binding protein C, slow type	cytoskeletal & sarcomeric	-6.60	0.000728724
snap_masked- ptg0000281- processed-gene- 83.4-mRNA-1	МҮВРС2	thick filament-associated protein located in the crossbridge region of vertebrate striated muscle A bands	myosin-binding protein C, fast-type	cytoskeletal & sarcomeric	-6.01	0.001321102
maker- ptg0003331- augustus-gene- 6.128-mRNA-1	МҮВРС3	thick filament-associated protein located in the crossbridge region of	myosin-binding protein C, cardiac- type	cytoskeletal & sarcomeric	-8.23	4.50551E-05

Supplementary Table 2 Genes down-regulated in all species/hybrids in the electric organ relative to sceletal muscle.

maker- ptg0009621- augustus-gene- 12.1-mRNA-1	МҮВРН	vertebrate striated muscle A bands binds to myosin; probably involved in interaction with thick myofilaments in the A- band	myosin-binding protein H	cytoskeletal & sarcomeric	-4.84	0.003814769
maker- ptg0000851- augustus-gene- 17.7-mRNA-1	МҮН2	unconventional myosin; actin-based motor protein	myosin heavy chain, fast skeletal muscle	cytoskeletal & sarcomeric	-8.17	5.93451E-19
snap_masked- ptg0004071- processed-gene- 2.145-mRNA-1 maker	MYH1	myosin heavy chain beta isoform expressed primarily in the heart, but also in skeletal muscles	myosin 1	cytoskeletal & sarcomeric	-8.60	4.34569E-06
ptg0001331- augustus-gene- 18.18-mRNA-1 maker-	MYL1	non-regulatory myosin light chain	myosin light chain 1	cytoskeletal & sarcomeric	-5.57	1.66255E-08
ptg0011751-snap- gene-0.158- mRNA-1 makar	MYL2	myosin regulatory light chain 2	myosin regulatory light chain 2, cardiac muscle	cytoskeletal & sarcomeric	-6.12	0.000536607
ptg0001871-snap- gene-16.83- mRNA-1	MYL2b	myosin regulatory light chain 2	myosin regulatory light chain 2B, cardiac muscle	cytoskeletal & sarcomeric	-8.19	5.84804E-05
maker- ptg0001001-snap- gene-11.24- mRNA-1	MYL4	myosin regulatory light chain	myosin light chain 4	cytoskeletal & sarcomeric	-7.66	0.001195604
maker- ptg0001351-snap- gene-52.42- mRNA-1	MYLK2	myosin light chain kinase	myosin light chain kinase 2	cytoskeletal & sarcomeric	-4.77	0.000103916
maker- ptg0004411- augustus-gene- 6.2-mRNA-1	MYO16	unconventional myosin; actin-based motor protein	unconventional myosin-XVI	cytoskeletal & sarcomeric	-4.85	0.006179819
maker- ptg0002561-snap- gene-3.25- mRNA-1	MYO18a	unconventional myosin; actin-based motor protein	unconventional myosin-XVIIIa	cytoskeletal & sarcomeric	-4.19	1.94298E-13
maker- ptg0009601- augustus-gene- 0.14-mRNA-1	MYO18b	unconventional myosin; actin-based motor protein	myosin XVIIIB	cytoskeletal & sarcomeric	-3.94	8.08729E-15
maker- ptg0001931-snap- gene-2.47- mRNA-1	MYOM1	major component of the vertebrate myofibrillar M band	myomesin 1	cytoskeletal & sarcomeric	-7.91	1.13806E-07
maker- ptg0001101- augustus-gene- 2.12-mRNA-1	MYOM2	major component of the vertebrate myofibrillar M band	myomesin 2	cytoskeletal & sarcomeric	-4.02	3.46432E-14
maker- ptg0004051-snap- gene-31.60- mRNA-1	MYOZ1	involved in linking Z-disk proteins	myozenin 1	cytoskeletal & sarcomeric	-6.71	6.15331E-07
maker- ptg0003141- augustus-gene- 4.2-mRNA-1	MYOZ2	involved in linking Z-disk proteins	myozenin 2	cytoskeletal & sarcomeric	-7.19	0.001878985
maker- ptg0001821-snap- gene-3.82- mRNA-1	MYOZ3	involved in linking Z-disk proteins	myozenin 3	cytoskeletal & sarcomeric	-6.59	0.001769106
maker- ptg001112l-snap- gene-5.13- mRNA-1	NEB	binds and stabilize F-actin in the sarcomere	nebulin	cytoskeletal & sarcomeric	-7.40	0.000736895

maker- ptg0005121-snap- gene-3.14- mRNA-1	NRAP	may be involved in anchoring the terminal actin filaments in the myofibril to the membrane	nebulin related anchoring protein	cytoskeletal & sarcomeric	-3.92	1.29313E-19
maker- ptg0021141-snap- gene-0.37- mRNA-1	PARVB	adapter protein involved in the reorganization of the actin cytoskeleton	parvin beta	cytoskeletal & sarcomeric	-5.41	3.02009E-05
maker- ptg0005721-snap- gene-14.41- mRNA-1 maker	SMYHC1	myosin heavy chain; actin- based motor protein	slow myosin heavy chain 1	cytoskeletal & sarcomeric	-7.57	0.004522565
ptg0005721- augustus-gene- 14.18-mRNA-1	SMYHC2	myosin heavy chain; actin- based motor protein	slow myosin heavy chain 2	cytoskeletal & sarcomeric	-5.20	0.001635808
ptg0001351- augustus-gene- 79.30-mRNA-1	TNNC1	component of troponin complex; regulation of muscle contraction	troponin C, slow skeletal and cardiac muscles	cytoskeletal & sarcomeric	-7.24	0.000307439
maker- ptg0001351-snap- gene-52.7- mRNA-1	TNNC2	component of troponin complex; regulation of muscle contraction	troponin C, skeletal muscle	cytoskeletal & sarcomeric	-4.81	5.01121E-11
maker- ptg0002231-snap- gene-2.48- mRNA-1	TNNI2	component of troponin complex; regulation of muscle contraction	troponin I, fast skeletal muscle	cytoskeletal & sarcomeric	-7.27	3.13868E-23
maker- ptg0004451-snap- gene-11.25- mRNA-1	TPM1	actin-binding protein; in association with the troponin complex involved in the striated muscle contraction	tropomyosin alpha-1 chain	cytoskeletal & sarcomeric	-4.81	6.55146E-15
maker- ptg0015531- augustus-gene- 0.54-mRNA-1	TPM2	actin-binding protein; in association with the troponin complex involved in the striated muscle contraction	tropomyosin beta chain	cytoskeletal & sarcomeric	-6.67	1.53935E-06
maker- ptg0015631-snap- gene-12.53- mRNA-1 maker-	ТРМЗ	actin-binding protein; in association with the troponin complex involved in the striated muscle contraction	tropomyosin alpha-3 chain	cytoskeletal & sarcomeric	-3.70	4.35071E-06
ptg0005551- augustus-gene- 11.55-mRNA-1	TTN	sarcomere organization	titin	cytoskeletal & sarcomeric	-2.95	3.70566E-07
snap_masked- ptg0001761- processed-gene- 4.104-mRNA-1	HSPB11	disassembly of the sarcomeres	heat shock protein beta-11	cytoskeletal & sarcomeric	-4.89	5.99473E-07
maker- ptg0014001-snap- gene-3.115- mRNA-1	CAPN3	muscle-specific calpain; calcium-activated non- lysosomal thiol-protease	calpain 3	other	-4.51	3.46551E-17
maker- ptg0002221-snap- gene-9.11- mRNA-1	CDH20	calcium-dependent cell adhesion protein	cadherin-20	other	-3.77	0.000127412
ptg0000611- augustus-gene- 13.21-mRNA-1	CDH26	calcium-dependent cell adhesion protein	cadherin-like protein 26	other	-2.83	0.005372135
ptg0005341-snap- gene-5.169- mRNA-1	KCMF1	E3 ubiquitin-protein ligase	potassium channel modulatory factor 1	other	-1.41	7.97951E-07
ptg0020901- processed-gene- 16.20-mRNA-1	ACOT12	fatty acid metabolic process	acyl-CoA thioesterase 12	other	-7.79	0.00346148
maker- ptg0019661-	СКМ	reversibly catalyzes the transfer of phosphate between	creatine kinase M-type	other	-8.43	5.01097E-09

augustus-gene- 10.17-mRNA-1 maker-		ATP and various phosphogens reversibly catalyzes the				
augustus-gene- 30.5-mRNA-1 maker-	CKMT1a	ATP and various phosphogens	creatine kinase U-type, mitochondrial	other	-7.81	4.06172E-07
ptg0003231-snap- gene-1.83- mRNA-1	EPN2	interacts with clathrin	epsin-2	other	-7.50	1.26567E-05
maker- ptg0002991-snap- gene-6.20- mRNA-1	GLS2B	glutaminase activity	glutaminase kidney isoform, mitochondrial	other	-7.18	1.23041E-05
snap_masked- ptg0011431- processed-gene- 2.56-mRNA-1	IGFN1	cell adhesion	immunoglobulin-like and fibronectin type III domain-containing protein 1	other	-7.80	5.98234E-36
maker- ptg0004871-snap- gene-5.15- mRNA-1	LDHA	catalyzes the conversion of L- lactate and NAD to pyruvate and NADH in the final step of anaerobic glycolysis	L-lactate dehydrogenase A chain	other	-7.47	0.000293053
maker- ptg0002541- augustus-gene- 6.0-mRNA-1	TECR	involved in both the production of very long-chain fatty acids	very-long-chain enoyl-CoA reductase	other	-7.82	0.000632574
maker- ptg0006651-snap- gene-7.139- mRNA-1 makor	МҮОС	secreted glycoprotein regulating the activation of different signaling pathways in adjacent cells	myocilin	signaling	-2.10	0.00200062
ptg0005581-snap- gene-4.101- mRNA-1	CALM3	calcium-binding EF-hand protein	calmodulin 3	signaling	-2.84	8.29055E-05
snap_masked- ptg0008691- processed-gene- 20.110-mRNA-1	PVALB2	Ca2+-binding protein of the EF-hand superfamily	parvalbumin-2	signaling	-8.61	0.000478414
maker- ptg0009741- augustus-gene- 10.59-mRNA-1	PVALB4	Ca2+-binding protein of the EF-hand superfamily	parvalbumin 4	signaling	-6.32	0.000158436
maker- ptg0028021-snap- gene-0.11- mRNA-1	PVALB7	Ca2+-binding protein of the EF-hand superfamily	parvalbumin 7	signaling	-8.33	5.15658E-05
maker- ptg0004811-snap- gene-2.8-mRNA- 1	ADRB2	beta-2-adrenergic receptor	adrenoceptor beta 2	signaling	-4.35	1.00955E-12
maker- ptg0001351- augustus-gene- 82.84-mRNA-1	GPR173	G-protein coupled receptor	probable G-protein coupled receptor 173	signaling	-8.04	0.00013504
ptg0010041- augustus-gene- 9.10-mRNA-1	SBK1	serine/threonine kinase activity	serine/threonine-protein kinase SBK1	signaling	-6.93	0.00015683
maker- ptg0002531- augustus-gene- 58.60-mRNA-1 maker	MYOCD	smooth muscle cells and cardiac muscle cells-specific transcriptional factor	myocardin	transcription factor	-3.89	1.03704E-11
ptg0000851-snap- gene-26.0- mRNA-1	MYOG	muscle-specific transcription factor	myogenin	transcription factor	-2.73	1.67587E-05
ntaker- ptg0001711- augustus-gene- 6.26-mRNA-1	ANO1	calcium-activated chloride channel	anoctamin 1	transmembrane ion transport	-3.40	1.225E-17

maker- ptg0008521-snap- gene-16.100- mRNA-1	ATP1b3a	Na/K-ATPase β-subunit	ATPase Na+/K+ transporting subunit beta 3a	transmembrane ion transport	-4.10	1.54943E-19
maker- ptg0006001- augustus-gene- 1.19-mRNA-1 maker	ATP2a1	sarcoplasmic/endoplasmic reticulum calcium ATPase 1	sarcoplasmic/endoplasmic reticulum calcium ATPase 1	transmembrane ion transport	-7.30	3.1585E-07
ptg0004741-snap- gene-6.56- mRNA-1	ATP2a2a	sarcoplasmic/endoplasmic reticulum calcium ATPase 2	sarcoplasmic/endoplasmic reticulum calcium ATPase 2a	transmembrane ion transport	-7.66	0.000724467
maker- ptg0000851-snap- gene-5.119- mRNA-1	ATP2b2	plasma membrane Ca2+ transporting ATPase 2	ATPase plasma membrane Ca2+ transporting 2	transmembrane ion transport	-2.46	0.002679005
maker- ptg0007181-snap- gene-53.80- mRNA-1	ATP5f1b	subunit of mitochondrial ATP synthase	ATP synthase subunit beta, mitochondrial	transmembrane ion transport	-1.81	2.19442E-06
maker- ptg0002371-snap- gene-5.34- mRNA-1	CACNA1s	voltage-gated calcium channel	dihydropyridine-sensitive L-type skeletal muscle calcium channel subunit alpha-1	transmembrane ion transport	-6.87	3.16021E-05
maker- ptg0000851- augustus-gene- 14.68-mRNA-1 maleor	CACNA2d1	voltage-gated calcium channel	voltage-dependent calcium channel subunit alpha-2/delta-2	transmembrane ion transport	-4.46	1.86424E-11
ptg0002021-snap- gene-1.0-mRNA- 1	CACNG1a	voltage-gated calcium channel	voltage-dependent calcium channel gamma-1 subunit	transmembrane ion transport	-4.04	4.43468E-11
maker- ptg0007631- augustus-gene- 3.165-mRNA-1	CALHM6	pore-forming subunit of a voltage-gated ion channel	calcium homeostasis modulator family member 6	transmembrane ion transport	-3.12	1.19758E-11
maker- ptg0011561- augustus-gene- 8.0-mRNA-1	CASQ1a	calcium-binding protein in SR	calsequestrin-1a	transmembrane ion transport	-7.32	4.86051E-08
maker- ptg0000211- augustus-gene- 6.30-mRNA-1	CASQ1b	calcium-binding protein in SR	calsequestrin-1b	transmembrane ion transport	-3.71	9.95212E-15
maker- ptg0006501- augustus-gene- 22.51-mRNA-1	CLCNI	voltage-dependent chloride channel; important for repolarization of skeletal muscle cells after muscle contraction	chloride channel protein 1	transmembrane ion transport	-7.56	6.86007E-07
snap_masked- ptg0006331- processed-gene- 25.11-mRNA-1	KCNA1b	voltage-gated potassium channel	potassium voltage-gated channel subfamily A member 1b	transmembrane ion transport	-6.39	6.20958E-05
snap_masked- ptg0006431- processed-gene- 7.150-mRNA-1	KCNA4a	voltage-gated potassium channel	potassium voltage-gated channel subfamily A member 4a	transmembrane ion transport	-4.05	0.000266439
snap_masked- ptg0006331- processed-gene- 25.9-mRNA-1	KCNA5b	voltage-gated potassium channel	potassium voltage-gated channel subfamily A member 5b	transmembrane ion transport	-4.65	0.001218785
snap_masked- ptg0006331- processed-gene- 26.11-mRNA-1	KCNA6a	voltage-gated potassium channel	potassium voltage-gated channel subfamily A member 6a	transmembrane ion transport	-5.40	2.72077E-12
maker- ptg0006001- augustus-gene- 13.28-mRNA-1	KCNA7b	voltage-gated potassium channel	potassium voltage-gated channel subfamily A member 7b	transmembrane ion transport	-7.39	0.000445521

maker- ptg0000721-snap- gene-0.6-mRNA-	KCNAB2	voltage-gated potassium channel	voltage-gated potassium channel subunit beta-2	transmembrane ion transport	-3.37	9.48977E-05
1 maker- ptg0000681-snap-	KCNB1	voltage-gated potassium	potassium voltage-gated channel	transmembrane	-5.58	0.006990731
gene-8.7-mRNA- 1 maker- ptg0012481-		voltage-gated potassium	subfamily B member 1	ion transport		
est_gff_est2geno me-gene-0.0- mRNA-1 maker-	KCNE4	channel	subfamily E regulatory subunit 4	ion transport	-1.99	0.002653689
ptg0003141- augustus-gene- 2.9-mRNA-1 maker-	KCNIP4	voltage-gated potassium channel	Kv channel-interacting protein 4	transmembrane ion transport	-3.20	0.000884639
ptg0013481-snap- gene-2.39- mRNA-1 maker	KCNK4	potassium two pore domain channel	potassium channel subfamily K member 4	transmembrane ion transport	-4.94	0.00032563
ptg000170l-snap- gene-11.9- mRNA-1	KCNK7	potassium two pore domain channel	potassium channel subfamily K member 1	transmembrane ion transport	-5.11	9.18843E-12
ptg0002531-snap- gene-49.55- mRNA-1	KCNN4	calcium-activated potassium channel	potassium calcium-activated channel subfamily N member 4	transmembrane ion transport	-5.04	1.88707E-11
maker- ptg0007211-snap- gene-3.11- mRNA-1	SCN3b	voltage-gated sodium channel	sodium voltage-gated channel beta subunit 3	transmembrane ion transport	-2.11	5.45393E-10
maker- ptg0009741- augustus-gene- 6.41-mRNA-1	SCN4ab	voltage-gated sodium channel	sodium channel protein type 4 subunit alpha b	transmembrane ion transport	-5.38	4.17695E-08
maker- ptg0004221- augustus-gene- 0.23-mRNA-1	SRL	Ca2+-binding protein in SR; Ca2+ buffering	sarcalumenin	transmembrane ion transport	-6.02	5.45506E-07
maker- ptg0005621- augustus-gene- 8.257-mRNA-1	TMEM38a	monovalent cation channel in the SR and nuclear membranes of skeletal muscle	transmembrane protein 38A	transmembrane ion transport	-1.77	3.0994E-08
maker- ptg0006001-snap- gene-7.69- mRNA-1	TRPM4	Ca2 +-activated nonselective monovalent cation channel	transient receptor potential cation channel subfamily M member 4	transmembrane ion transport	-4.84	1.11494E-06
snap_masked- ptg0021141- processed-gene- 2.64-mRNA-1	ABCC9	subunit of ATP-sensitive potassium channels	ATP-binding cassette sub-family C member 9	transmembrane ion transport	-3.10	3.68287E-09
maker- ptg0001811-snap- gene-1.66- mRNA-1	SLC4a7	sodium bicarbonate cotransporter	solute carrier family 4 member 7	transmembrane ion transport	-4.78	1.00112E-09
maker- ptg0003611-snap- gene-18.27- mRNA-1	SLC22a23	antiporter to transport organic ions across cell membranes	solute carrier family 22 member 23	transmembrane ion transport	-4.24	0.004015017
maker- ptg0007181- augustus-gene- 55.59-mRNA-1	SLC25a12	mitochondrial electrogenic aspartate/glutamate antiporter	solute carrier family 25 member 12	transmembrane ion transport	-3.53	1.18714E-12
maker- ptg0002301-snap- gene-5.12- mRNA-1	SLC41a1	Na+/Mg2+ ion exchanger	solute carrier family 41 member 1	transmembrane ion transport	-4.91	5.94485E-08

maker- ptg0006001- augustus-gene- 10.17-mRNA-1	SLC6a16	Na(+)- and Cl(-)-dependent neurotransmitter transporter	solute carrier family 6 member 16	transmembrane ion transport	-2.21	1.60618E-05
maker- ptg0002991-snap- gene-9.30- mRNA-1	SLC6a6b	taurine:sodium symporter	solute carrier family 6 member 6b	transmembrane ion transport	-2.58	1.66873E-11

Suppleme	ntary Table	able 3	} Significantly	nnrichad Gana Ontolomy tarme with Eichar's avart tast n-valua < 0.01 in ganas - un-ragulatad in alac	trio 7					
Term GO terms	Category	Count	t % P-value	sin intered octic ontoriogy termina with maneria exact teat private > 0.01 m beneal upmeeting tere	List Po	p Pop	Fold	Bonfei	· Benja	FDR
					Fotal Hi	ts Tota	l Enrich ent	m roni	mini	
GO:001 phosphorylation 6310	Biological Process	61	5.41 1.32E-04	IET, SI:CH2I1-195BI3.1, PFKFB2B, MOBIBA, PIK3CG, HK2, STK24B, RPS6Ka3A, RPS6Ka2, PIPSKLI, RPS6KA1, RPS6KB1B, AKT1, SI:CH2I1- 143120.2, PIM3, ERBB4B, PDGFRA, PRKCI, MAPAK3A, PRKCBB, DCLKIA, SI:DKEY-172J4.3, EPHAAA, SHPK, ACVRIBB, MAPK14A, PI4X2A, SNE, IPPK, ITPK1B, UCK2A, LTK, PRKX, TTK, CITA, PIP4K2AA, PRKCZ, PFKPA, CKMT1, PIP5K1CA, GRK6, ERBB2, TRIOA, CAMK1GB, MAPK6, SHCB, VES1, TVK2B, UMK2, PTK2AB, HIPR2, PRKACBB, ETW22, JAK2B, RPS6KAL, PRKCHA, CMPK, PI4KB, PTK7B, CDK14, CAMK1DA	944 71	8 1839	37 1.66	0.20	0.22	0.22
GO:001 peptidyl-serine	Biological	16	1.42 0.001444	rRKCI, SI:CH211-195B13.1, TTK, PRKX, TTBK1A, PRKCZ, HIPK2, PRKCBB, RPS6KA3A, RPS6KA2, RPS6KA1, RPS6KA1, RPS6KB1B, PRKCHA, 	944 12	2 1839	97 2.56	0.91	0.68	0.68
GO:009 cell-cell adhesion	Biological	19	1.68 0.001444	AINAIGG, CANNALDA DCH 14, ANNT2, NEO1A, IGSF9BA, ITGA2B, CTNND1, NRCAMA, HSPG2, TMEM47, CNTN1A, DLG2, PERP, ITGA8, CDH13, ELMO2, ITGAV, DCH 1577, COUTA	944 16	0 1839	97 2.31	0.91	0.68	0.68
GO:000 vasculature	Biological	12	1.06 0.003025	ака, пана, сопил VOTCH2, YAP1, STN1, PANK2, ANGPT2B, CYP26C1, LGALS2A, AGAP2, ENPP2, ITGB8, RAB11A, MYCA	944 82	1839	37 2.85	0.99	0.68	0.68
1944 development GO:004 nositive regulation of I.	Process Biological	¢	0 71 0 003316	RKCRR CDAD TNIP2 TNERSE19 BRCK1 S100B 1118AP1 MAP3K14A	95 106	1830	1 4 00	1 00	0.68	0.68
3123 kappaB kinase/NF-	Process)						i i	6	8
kappaB signaling		L						00	0	
GU:UUU endothelial cell 1935 proliferation	Biological Process	л	0.44 0.00338	1GA2B, 11GBV, AKHGEF ZB, HSPGZ	944 I3	1835	05./ //	1.00	0.68	0.68
GO:003 extracellular matrix	Biological	16	1.42 0.003386	ump15B, MMP17A, FBLN2, COLQ, SMOC2, COL4A2, ADAMT5L4, SI:DKEY-6N6.1, COL1A1A, ADAMT5L3, ADAMT517, MMP28, COL2A1B,	944 13	3 1839	97 2.34	1.00	0.68	0.68
0198 organization	Proce ss			ump19, ADAMTSL7, ADAMTS9						
GO:007 clathrin-dependent	Biological	9	0.53 0.003582	AP2MIA, FCHO1, DNAJC6, SGIPIA, AP2A1, GPR107	944 21	. 1839	97 5.57	1.00	0.68	0.68
2583 endocytosis	Process	ć	1 06 0 0036FB	בירסתיה גוומים גרבסכי נוגידו רסטוט ז סמכדעווים סובסגם ביני מגוויני מרסטה בסג		1001	מר ר דו	00	000	000
GU:UU/ Kuprrersvesicie 0121 development	BIOIOGICAI Process	7	8005UU.U 0U.T	AFA, MBU36, SINATUA, VOLL46, AKLO, RABSIF, UNIMI 13B5.1, ENPPC, I IOAV, OFRZZA, RABILA, A I FOV LF	44 74 70	1032	91.7 11	П.	0.08	0.00
GO:006 endoplasmic reticulum	- Biological	4	0.35 0.004022	SYTIA, ESYT2B, ESYT2A, GRAMD2AA	944 7	1839	97 11.14	1.00	0.68	0.68
1817 plasma membrane	Process									
tethering										
GO:000 protein glycosylation 6486	Biological Process	16	1.42 0.006246	5ALNT12, ST6GAL1, GALNT13, GALNT16, B3GAT2, EXT18, FUT84, ST6GALNAC5A, MGAT18, B3GNT7, ST3GAL4, ST8SIA5, ST88IA6, STT38, ARGE2, ST3GAL2	944 14	2 1839	97 2.20	1.00	0.80	0.80
GO:004 negative regulation of 3409 MAPK cascade	Biological Process	9	0.53 0.006588	OUSP4, DUSP5, SPRED28, PPEF2A, SPRED2A, DUSP7	944 24	183	97 4.87	1.00	0.80	0.80
GO:000 ion transport	Biological	47	4.17 0.006644	i.C2442, GLRBB, KCNG3, SCN4BA, SCN1BA, TTYH2, PACC1, TMEM63C, ITPR1B, ATP2C1, ATP1A3A, CHRNG, ATP1B1B, ATP2A2B, KCNQ5B,	944 61	4 1839	97 1.49	1.00	0.80	0.80
6811	Proce ss			ilc39A7, GABRD, ATP1A1A.4, SI:CH211-225P5.8, ATP6V1F, SLC13A1, SCN4AA, HEPHL1B, GABRA1, CHRNB4, SLC8A1A, KCN19, SLC11A2, ilc39A10, TRPV1, SI:DKEY-28B4.8, CNGA3A, GRIN2AA, SLC5A9, ATP6V0A1A, KCN12A, KCNK2A, SLC04A1, ATP1A2A, ATP2B1A, ATP2B3B, ACNA1BA, VDAC1, SLC4A4A, SLC4A4B, MCU, GRIA3B						
GO:003 cell projection	Biological	11	0.98 0.006953	, ATIP, SNXIOA, INTU, ARL6, CEL1, IFT122, TMEM237A, GPR22A, CCDC61, GSNA, SDCCAG8	944 79	1839	97 2.71	1.00	0.80	0.80
0030 organization	Process									
GO:000 inactivation of MAPK	Biological	ъ	0.44 0.00761	OUSP4, DUSP5, SPRED2B, SPRED2A, DUSP7	944 16	1830	97 6.09	1.00	0.80	0.80
U188 activity	Process	u	17000		31 16	1020	00 9 20	001	000	000
8593 morphogenesis	Process	n	T0/00:0 ++:0	י האינאר, האינאר, בטוט אבטוונאל, ורו גבב	q ŧ	TOT	60.0	ОО-т	0.00	0.00
GO:000 small GTPase mediated	Biological	13	1.15 0.008039	VAC3A, BCAR3, ARHGAP32A, RHOUB, DOCK4B, GDI1, DOCK7, TIAM1B, RHOF, RAPGEFL1, RHOBTB1, RHOCB, RASGEF1BA	944 10	6 1839	97 2.39	1.00	0.80	0.80
7264 signal transduction	Process									
GO:000 sultur compound 6790 metabolic process	Biologicai Process	4	0.35 0.008935	.HS16, CHS17, CHS12B, SI:CH73-62B13.1	146 ч	1835	97 8.66	1.00	0.84	0.84

- 101 -

G0:001 membrane 6020	Cellular 464 Component	41.1 3.42E-1C	SI:DKEY-34D221, PGAP2, TWEMZOA, OLFCS1, EXTB8, COROZBA, ZFVVE28, LAMBIA, NSDHI, CHST2B, TIAMIB, BCR, BCAM, SLCSA9 SI:DKEY-34D221, PGAP2, TWEMZOA, OLFCS1, EXTB8, COROZBA, ZEYVE28, LAMBIA, NSDHI, CHST2B, TIAMIB, BCR, BCAM, SLCSA9 GRAMDIBA, CACNAIBA, MCOLNIA, PI4K2A, GRAMDIBB, FREM3, CDC425E1, RPN2, TTYH2, SGIPIA, ABCB5, MB0AT2B, HACD3, SI:DKEY-91M115, PDGFC, CH5710, ANO5B, ST3GAL4, GSGIL2B, ST3GAL2, PLXNBIB, PLXNBIA, ABCCGA, PRRT1, ABCA2, CADM3, ICMT, APCDD1L, SI:DKEY-15H8, IY, SI:CH211-286017.1, EIF5, NPTNB, MCOLNAA, TMEM237A, NMTZ, SPIREIA, PAM, RALAA, RET, ACHE, MTMR10, MTMR11, TMEM181, LYST, SI:CH221-286017.1, EIF5, NPTNB, MCOLNAA, TAMM23, SH3GLB2B, ATPLIAIA, TMEM119B, CHSTG, GHST, FHBDF1A, ELOVL2, SLC39A10, GNL1, PRSS12, FAM234B, ECRGA4, SLC0A41, ACVR1BB, TSNZAN, SEGIC3, PIGF, MGLL, PACC1, SLC16A6B, TMEM72, ADC77, PPPR3AA, CHRNG, GPPDA, MUCL3B, SLC17A5, SC3D, GABRA1, SNX21, PIXDC1, TGA2B, CXC114, KDELL, PACC1, SLC16A6B, TMEM72, ADC77, PPPR3AA, CFLI, TSPAN4A, SI:CH211-1E14, 1, SI:DKEY-122A22, QLSN11, ITGA2B, CXC114, KDELL, PACC1, SLC16A6B, TMEM72, LAPTC43, GRU12, ACC1, SLC39A3B, GPR146, SEMASA, MUCC13B, SLC17A5, SC3D, GABRA1, SNX21, PIXDC1, TGA2B, ACC114, KDELL, PACC1, SLC39A1, BAD12, LAPTC43, GRU24, FLO12, TISPAN4A, GRU25B, SICC12, RAMD3, TOMLL2, SICC1421-252A2, SICPC1411-252A3, SLC37A3, GRP13, JORN24, CRC13, SEMASA, MICG, MESOZA, SICC25A2B, GRN124, AUCC13B, SICC1271-252A3, SICN24, MADD, ROR2, SICC1471-252A3, SICPC1411-252A3, SICPC1411-252A3, SICPC34, SICC26A23, SICC14, PASC5B, SICC1471, SICC34AB, SICC1471, SICPA3A, GRC14, FLAV24, SICC37A2, OSBPI6, RAB4B, SICC437A, GRA3A, GRC74, SICP243, SICC234B, RUNDA, SICC15A11B, ADT12, CIRC33, INTRO, SICC14712-258A, SICU25, REMD3A, SICC1471, SIC33A, TRABB, LAFA3, SICC437A, GRA3A, SICC1471, SIC33A, TRABB, SICC1471, SIC33A, SICC14712-S254, SIRC4041, SIVG73A, SICC13A1, ADGRV1, FCH02, SICC44A, SICC34A, SICC34A, SICC44A, SICC434A, SICC334B, SICC434A, SICC434A, SICC434A, SICC434A, SIVG73A, SICC1341, ADG17, GRA3A, GFC23, SICH411752A, SICU14112-258A, SIA774A, SI	983 7	1112 1886	8 1.25	00 [.] 0	0.00	8.
GO:000 plasma membrane 5886	Cellular 237 Component	21 6.08E-08	PTPN5, CNNWZB, SLC23A2, SLC33A2, ZGC:165507, SCNIBA, PLEKHB2, ITPR1B, TXNDCTI, FRM D48A, ZDHHC4, NPDCL4, ST5, ERC1B, SLITRX3A, EHD1B, MISD2B, ADRAIAA, ESYT2A, EWTPD1, STGGAL1, SLCGAL7, SLC11A2, MMP15B, ADGRA3, ATT1A2A, EHHAAA, ATTP2BL4, VDAC1, PEXLIG, LRP1BB, CDS1, ZNFJ06A, ESYT2A, EWTPD1, SLCGAL7, SLC11A2, MMP15B, ADGRA3, ATT1A2A, EHTAL8, ATTP2BL4, VDAC1, PEXLIG, LRP1BB, CDS1, ZNFJ06A, ESYT1A, TIMEMB3C, FKS1, ATP2A2B, SMPD2B, OGSXL, ERB4B, DCH13, ATP1BL5, STRSIA6, ANOLOB, RHOCB, CARMIL2, TMEMB3C, FKS1, ATP2A2B, SMPD2B, OGSXL, ERB4B, DCH3B, SI:CH211-3G4F5, Z, DCH141, BAMBIA, MACF1A, AHCTF1, CG40, TENMA, AP2A1, SPE13, SCH0141, SREB4B, DCH3B, MASD25, SI:DKEY-34D22, L, SCN14B, ADG5A, HNELLI, ZDHHC4, FFR3A, MFSD2B, EHD1B, ESYT2A, ENTPL1, PRKCI, SICGA17, ACTN1, SIC11A2, TIAM1B, ADGRA3, HSFG2, BCAM, SIC5A, CGNUMCTTA, ZDHHC14, SREB2, RGMA, BR3GNT7 ZGC:165507, SI:DKEY-34D22, L, SCN1BA, CPC4, ITTYH2, RRAD, TMEMB3C, SGFP14, ATP2A2B, EPN4AA, ATP2B14, GRAMD1BA, MCCIN1A, VDAC1, PI4KA3, GRAMD1BB, LRP1BB, LOCA35EL, ESYT1A, TTYH2, RRAD, TMEMB3C, SGFP14, ATP2A, EPN4AA, ATP2B14, GRAMT, LO79B, ATP1B1B, ANO2B, GSG1L3B, STRPBG, ANO10B, RHORB, PUXNB1A, CARMIL2, YES1, CARMIL3, VASNB, APCDD11, NPTNB, MCCIN3A, AVPRIAA, BAMBIA, FAT4, SPIELIA, FRIDAB, LECA, ARLIA, VAGA, ATP2A3, EPN113, FRITA, CPTB14, ATT1A1A, MCCIN3A, WPRIAA, BAMBIA, FAT4, SPIELIA, FRIDAB, SLC39A10, TIMEM30AB, ANO6M, MMEL1, RHOF, GMIP, PRSS12, ZDHHC17, GGUOT3A, AVPRIAA, BAMBIA, FAT4, SPIELIA, FALAA, RETA, CATB, ERB4B, ATP1A1A, GUCYF, ADCY7, SBMA3B, ATP1A1A, SGC4A4, ERGAA, ECRGAA, SICO4A1, ACVR1BB, AVPRIAA, LINBA, CRIMA, ECRGAA, SICO4A1, ACVR1BB, AVPRIAA, CRIMA, SICSA, EPSISI, FPSISIA, FRAA, ATP20D1, NNTIA, GUCYF, ADCY7, SBMA3B, ATP1A3A, CHRNG, SICT3A5, SORBS2A, FESISIA, EPSISIA, ATAA, RAB44, LATAAB, GUCYF, ADCY7, SBMA3B, ATP1A3A, CHRNB, SICCAML1, SICSA7A, SORBS2A, EPSISIA, FRAA, ATP2A4, ATP1A1A, GUCYF, ADCY7, SFMA3B, ATP1A3A, CHRNB, SICSA1A, SICSA3A, SORBSA, LGABA, RAB44, LATAAB, GUCYF, ADCY7, SFMA3B, ATP1A3A, CHRNB, SICSA1A, SICSA3A, SORBS2A, EPSISIA, FRAA, CATD, AMGC1,	е 88 86	1886	8 1.38	00	0.00	8.
GO:000 Golgi apparatus 5794	Cellular 62 Component	5.5 2.02E-06	SIC4A4B, PCDHIG31, CNNM2B GALNT12, SIC35B4, GALNT13, GALNT16, PGAP2, CLSTN1, EXT1B, B4GALNT3A, ZDHHC4, RAB44, STK24B, FAM174B, SLC39A7, LARGE2, ADAM19B, PDGFRA, ST6GAL1, RHBDF1A, CHPF2, ZDHHC13, TMEM30AB, FUT8A, ZDHHC17, ST6GALNAC5A, ZDHHC14, CSGALNACT1A, SREBF2, ZDHHC8B, B3GNT7, CPTP, ZGC:162200, ERGIC3, FAM20CB, GRINAA, PI4K2A, RNF128A, TMEM230A, MY06A, PSENG, RFNG, TMEM241, AP3M2, MGAT1B, CHSY1, CHST10, ST3GAL4, ST8SIA6, ZGC:162698, ST3GAL2, AFHGAP32A, CAV3, B3GAT2, YIPF5,	983	528 1886	8 1.89	0.00	0.00	0.00
GO:000 endoplasmic reticulum 5783	Cellular 68 Component	6.03 1.89E-05	CLASF LA, LDITTC.250, MARILA, FLENTAG, LDITTC, NUDILLD, DITGUELLA, GETALUZ NRROS, PGAP2, EXTIB, ITPRIB, ACSIAA, TXNDC12, PITPNBI, ZDHHCA, CYB56ID2, KDEIR2B, ABHD12, SEC6IA1, NSDHL, CER3A, SI:DKEY- 122A22,2, SMPD2B, SLC39A7, ESYT2B, ESYT2A, CERS6, RHBDF1A, ELOVL2, ATP6AP2, LMF2A, BRINP3A.1, SRD5A.2A, TMEM30AB, PDIA8, 2DHHC14, SREBF2, PDIA4, BSCL2, RCN2, ERGIC3, CRELD2, NAT84, GRINAA, RNF128A, CERS1, NECAB3, PDXDC1, RPN2, PSEN2, HSD17B3, ATP2C1, HACD3, ORMDL2, REP3B, CALR3A, KL, SLC37A2, ICMT, SDF2L1, BNIP3, VIPF5, ACSL3B, SERPINH1B, NCK2B, ZDHHC23B, CYP51, G6PC3, TBL2, CERS2B, ZDHHC9, MGATAA, DOLPP1, PIAKB, RIC3B	983 7	⁷ 63 1886	8 1.71	0.01	0.00	0.00

- 102 -

GO:000 Golgi membrane 0139	Cellular 35 Component	3.1 1.26E-04	БАLNTI2, SLC35B4, GALNTI3, GALNT16, PGAP2, CL5TN1, PSEN2, RFNG, ATP2C1, ZDHHC4, KDELR2B, MAN2A2, CH5T10, QSOX1, LARGE2, PCSK5B, CH5T6, RHBDF1A, RIC1, CH5T7, CAV3, CH5T2B, B3GAT2, ZDHHC13, ZDHHC23B, ZDHHC14, ZBHHC14, SREBF2, ZDHHC8B, ZDHHC9,	983 331	18868 2.03	0.05	0.01	0.01
GO:000 endoplasmic reticulum 5789 membrane	Cellular 48 Component	4.26 2.51E-04	. DS1, ESYTIA, SI:DKEY-13N15. 2, DIPK1B, NRROS, SLC35B4, PGAP2, EXT1B, PSEN2, FMN2B, ITPR1B, HACD3, ZDHHC4, KDELR2B, ABHD12, EEGE1A1, CERS3A, ORMDL2, REEP3B, SC5D, SLC39A7, CALR3A, ESYT2B, ESYT2A, SLC37A2, ICMT, CERSG, RHBDF1A, SDF2L1, ELOVL2, LMF2A, ATP6AP2, YIPF5, SCDB, ZDHHC14, SREBF2, RRBP1A, CYP51, BSCL2, G6PC3, ZDHHC9, CERS2B, DOLPP1, GRAMD1BA, ERGIC3, SEC24D, PIGF, SRAMD1BB	983 529	18868 1.74	60.0	0.02	0.02
6021 integral component of 6021 membrane	Component 309 Component	27.4 0.00232	CiC23A2, SIC35B4, ZGC:165507, PGAP2, SI:DKEY-34D221, PLEKHB2, TIMEM2004, EXTLB, TXVDCT11, ITPR1B, FRM/D4BA, ZDHHC4, NPDCLA, VSDHL, STS, SUTTRX3A, ARLIQ, ESYT2A, ENTPOJ1, STGGALJ, CIFST2B, SIC11A2, MMP15B, AGRADIBB, AGOLUNIS, SGIPAJ, ABLAGA, ZPHAAG, RRAMDIBA, MCOUNIA, GRAMDIBB, AGOLUNIS, STGGALJ, STGALJ, STRT1, ABCGGA, ABCAZ, ZDMA3, TMEMB3C, SGIPAJ, MCOUNIA, GRAMDIBB, AGOLUNIS, STGGALJ, STSGALJ, STRT1, ABCGGA, ABCAZ, ZDMA3, TMEMB3C, TMEMB3C, RIATL, CD79B, CFST10, PDEGC, ANOD5B, ST3GAL4, STSRIA5, STSGAL4, STSRIA5, STSGAL4, STSRIA5, STSGAL4, STSGAL5, STGAL4, STRR1, ABCGGA, ABCAZ, ZDMA3, TMEMB6A, TMEM184, TMEM184, THEMA, TIMENA32, INEN32A, INEMM37, ADAMTSL3, ATPAAB, MOD204, TMEM32A, NCAM11, FAT4, PAM, AHCTF1, TEMA7, IITMA181, TURXIN33, SIC3CHIG1, TMEMA7, ADAMTSL3, ATPAAB, MND2B, RBB4B, ATP1AA, 4, TMEM119B, SICH21-264FS, Z, DCHS14, CH85G1D, ZCCHCG4, TMEMA7, ADAMTSL3, ATPAAB, MND2B, RBB4B, ATP1AAA, TMEM119B, SICH21-264FS, Z, DCHS14, GRB5GA, TDEHC13, SIC3PA40, TMEM32A, NCOMULA, TMEM732, NCOMULA, TMEM126, INECC3, GRINAA, DSCAML, NOCLUNA, TMEM32A, NCOMUTA, FREPAB, SICH71-264FS, Z, DCHS14, MEGTEA, ATPAA3A, GDPDAA, MMBL1, GUL1, ZDHHC17, CSGALNACTTA, ZDHHC13, SICGAJA, GUDAA, TMEM124, TMEM72, GUC7F, PPRBAA, TMEM126, MGFTEA, ATPAA3A, GDPDAA, DSMD2B, RBB4B, ATPLA1A, TMU104, MAG, B3GUTA, SICGAJA, TMEM72, GRINA, SICGAJA, TIMEM32, ADPLA2, SICH721, SBB4B, SICH71, SRB4B, SICH71, SGBALA, SICBALA, SICBALA, SICBALA, SICBALA, SICGAL, SYPL1, TMCC3B, FAM178A, MPRC5A, ADMM128, PDGFTA, SICBALA, SFMAAG, TCH114, SBCACA, TMEM722, SICGAAJ, MAGCA, ADMA19B, PDGFTA, SICMA1, MAG, B3GLCTA, SPPL1, TMCC3B, FAM178A, MPRC5A, ADMA18B, TMEM72, GUNT3A, SFMAAA, TMEM72A, CDNT41, AD742, AD711, IJGAA2, LARGZ, ADM13B, PDGFTA, SICMAA, SICMAA, TMEM724, AD711, IGFA2, AND732, SICGAAJ, AND6B, SICMAA, SICMAA, SFMAAT, TMEM724, SICGAAJ, TIATA1, IJGAA2, LARGAA, SICMAA, SICMAA, SICMAA, SICMAA, STAAA, SICMAA, SICMAA, STAAA, STAAA	983 5161 2010	1.15	0	0.13	0.12
GO:000 clathrin-coated pit	Cellular 7	0.62 0.003965	AP2M1A, HIP1RB, FCHO1, SGIP1A, MYO6A, CLTCB, AP2A1	983 30	18868 4.48	0.78	0.19	0.18
5905	Component				10100	10 0	200	
GU:UU3 extracellular matrix	Cellular 22 Component	166400.0 66.1	VKRUS, VASNB, MMP IJB, MMP IJA, ISKU, CULQ, VCANB, CU14AZ, AUAM ISL4, SI:UKEY-BNB.I, CULIAIA, AUAM ISL3, NDAMTET CI-CH211, 106H11, 2, MAND38, CO12A1B, TIMD2A, MAMD10, CI-DKEV-CED12, E, ADAMTET, 7, ADAMTET, 7, ADAMTET	983 218	18868 1.94	C8.U	17.0	0.20
GO:003 axon	Cellular 19	1.68 0.005736	AET SCN4AA, SYNM, SLC8A1A, SCN1BA, CLSTN1, ATP6AP2, ROGDI, ELAVL4, CCKA, NRCAMA, RAB11A, SHDKEY-91M115, BCR, CNTN1A,	983 179	18868 2.04	0.89	0.22	0.21
0424	Component		DIG2, NPTNB, DSCAML1, SLC5A7A					
GO:004 cell projection 2995	Cellular 31 Component	2.75 0.007957	'ACЗA, TENM4, INTU, ARL6, CLSTN1, ROGDI, ELAVL4, MYO6A, ABHDI7C, RHOBTB1, SI:DKEY-91M115, LAPTN4B, TEKT3, RHOCB, ACTR3, PDGFR4, ADGRV1, ACTN1, IFT122, PTK2AB, RHOF, ZDHHC17, BCR, DLG2, TMEM218, TMEM237A, PI4K2A, GSNA, CCDC61, MACF1A,	983 361	18868 1.65	0.95	0.25	0.25
GO.M3 autonlasmic vasicla	Collular 34	2 13 0 M8806	SDCCAG8 2013.0 колкеуталтся пеммилис волски совелов миулся писе упнигия вноге упнигия сревез рновтва клегров льзмия — о	083 750	12262 1 72	0 06	0 JE	0.75
1410	Component		cados, alexant, estructor, contractor, model, an ester, model, and the services, and expension, models, models, Cadosa, ap2m1a, tBC1D7, cLTCB, SPIRE1a, SEC24D, FLOT2A, RHOCB, CYB561, PI4K2A				64.0	24.0
GO:003 extrinsic component of	Cellular 8	0.71 0.009172	SYTIA, ESYTZB, ESYTZA, YESI, TIVKZB, STAC3, PTK2AB, GRAMD2AA	983 46	18868 3.34	0.97	0.25	0.25
1234 cytoplasmic side of plasma membrane	Component							
GO:003 intrinsic component of	Cellular 4	0.35 0.009321	SYTIA, ESYTZB, ESYTZA, GRAMDZAA	983 9	18868 8.53	0.97	0.25	0.25
1227 endoplasmic reticulum membrane	Component							

GO:001 transferase activity 6740	Molecular Function	126	11.2 3.52E-05 6 F	alntiz, Galntiz, PRDM9, Galntig, PFKFB2B, GTF2B, EXT1B, ZDHHC4, RPS6KA3A, RPS6KA2, RNF19A, RPS6KA1, AKT1, PIM3, LARGE2, B JGFRA, PRKCI, ST6GAL1, CHST2B, UBEZE3, MAP4K3A, FUT8A, RC3H2, DCLK1A, SI:CH211-256M1.8, B3GLCTA, EPHAAA, MAPK1AA, RBCK1, 4X2A, SI:CH73-62B13.1, GNE, CDS1, IPPK, UCK2A, ITPK1B, CRATA, UAP1, CITA, PIP4K2AA, PRKCZ, PFKPA, MGAT1B, PIPSK1CA, GRKG, 4X10, ST3CAI A ST8SIA5, ST18SIA5, TRIDA, CAMK1GB, ST3CA17, UAP1, CITA, PIP4K2AA, PRKCZ, PFKPA, MGAT1B, PIPSK1CA, GRK6	880	1743 17	7340 1.4	51 O.O	30.	0.0	11
GO:000 calcium ion binding 5509	Molecular Function	2	5.67 3.59E-05 A E E S S S	TY YOB, SICHT21-195B131, MOBIBA, PIKJCG, MACD, POLATA, MATA, CPTZ, CERSA, PUPKII, RYSKBB, SICHZ11-243202, BBBB, CHSTG, CHSTT, CERSG, CHFTZ, ELOVIZ, ZDHHCI7, ZDHHCI4, GSGALNACTA, STGGALNACSA, APRT, PRKBB, ZDHHCB8, KATZA, BBB1, CASTT, CERSG, CHFTZ, ELOVIZ, ZDHHCI7, ZDHHCI4, CSGALNACTA, STGGALNACSA, APRT, PRKBB, ZDHHCB8, KATZA, ET, SNED1, CAPN1A, CAPN1B, FKBP14, CETN2, PDCD6, CISTN1, CETN3, DYSF, ANXA11B, ITPR1B, EFHD2, ENPP2, EFHD1, EHD1B, DCHSIB, B SIYT2B, ESYTZA, DCHS1A, EGFL6, ACTN1, ANXA4, VWDE, SLC2SA23B, HSPG2, MYL4, VCANB, RCN2, NID1A, CDH13, CRELD1, PFEFZA, RELD2, CDH17, GSNA, LRP1BB, FBLN7, ESYT1A, NOTCH2, EPS15L1A, DIPK1B, NECAB3, SWAP70B, LDLR8, PCDH19, FBLN2, MEGFGA, OCK3, REPS2, SLITZ, CALR3A, S100B, SLC2SA23B, EDL3A, MACF1B, SMOCZ, PVALB9, FATA, PCDH1G31, KCNIP3A, UNC13BB, MACF1A,	880	739 17	7340 1.7	71 0.0	.0 0	01 0.0	11
GO:001 kinase activity 6301	Molecular Function	99	5.32 1.72E-04 <i>F</i> 2 7	RACRZAA ET, SI:CH211-195B13.1, PFKFB2B, MOB1BA, PIK3CG, HK2, STK24B, RPS6KA3A, RPS6KA2, PIP5KL1, RPS6KA1, RPS6KB1B, AKT1, SI:CH211- 13120.2, PIM3, ERBB4B, PDGFRA, PRKCI, MAP4K3A, PRKCBB, DCLK1A, SI:DKEY-17214.3, EPHA4A, ACVR1BB, MAPK14A, PI4K2A, GNE, IPPK, PK1B, UCK2A, LTK, PRKX, TTK, CITA, PIP4K2DA, PRKCZ, PFKPA, CKMT1, PIP5K1CA, GFK6, ERB22, TRIOA, CAMK1GB, MAPK6, CHKB, YES1, VK2B, LIMK2, PTK2AB, HIPK2, PRKACBB, ETVK2, JAK2B, RPS6KAL, PRKCHA, CMPK, PI4KB, PTK7B, CDK14, CAMK1DA	880	718 17	7340 1.6	55 0.1	сі m	03 0.0	33
GO:003 phosphatidylinositol	Molecular	16	1.42 1.87E-04 E	VTIA, ESVT2B, ESVT2A, ARHGAP32A, SI:CH211-195B13.1, ITPR1B, PITPNBL, SNX21, STAM, ZCCHC14, TOM112, SH3YL1, SNX10A, HIP1RB, 🛛 8	880	102 17	7340 3.0	90 0.1	4 0.	03 0.0	З
5091 binding GO:000 ribosomal protein S6	Function Molecular	L.	5 0.44 2.03E-04 6	VX7 SS6KA3A, RPS6KA1, RPS6KA1, RPS6KB1B	088	1	7340 14	07 0.1	5	03 0.0	5
4711 kinase activity	Function)			2	ì	2	5	5	5	2
GO:000 calcium-transporting	Molecular	ß	0.44 0.003246 5	:DKEY-28B4.8, ATP2B1A, ATP2A2B, ATP2B3B, ATP2C1	880	13 17	7340 7.5	88 0.9	3.0.	40 0.4	ç
GO:000 metalloendopeptidase	Molecular	15	1.33 0.003522 A	MP15B, MMELL, PAPPAA, MMP17A, PHEX, PITRM1, ADAMT5L4, ADAMT5L3, ADAMT5L7, MEP1A. 1, MMP28, MMP19, ADAMT5L7, 8	880	122 17	7340 2.4	12 0.9	40.0	40 0.4	9
4222 activity	Function		7	DAMTS9, ADAMT9B							
GO:000 nucleotide binding 0166	Molecular Function	111	9.84 0.004302 /	DCYLA, PANKZ, TAOKZA, NUBPZ, RPSGKA3A, RPSGKA1, DHXSG, AKTI, PIM3, EHD1B, PDGFRA, PRKCI, ENTPD1, UBEZE3, RAPAK3A, AARSD1, DCLKLA, SI:CH211-256M1.8, PRKAR1B, EPHA4A, ATPLA2A, ATP2B1A, MAPK14A, ROR2, PI4K2A, ABCG1, IPPK, UCK2A, PK1B, DDX5, RTEL1, DHX8, ARLG, RRAD, ABCB5, MYOGA, TUBABL3, TUBABL2, CITA, PIP4K2AA, PRKCZ, PFKPA, PIP5K1CA, GRKG, TRIOA, AMK1GB, MYH10, RHOCB, SI:OKFY-32E324, ABCC6A, ABCA2, RAB4B, YES1, MYO15AAI, EFF5, JAK2B, PRKCHA, PI4SB, CDK14, RALAA, F13B4, RET, SI:CH211-195B131, HSP90AB1, MCM77, HK2, KIF15, ARL5C, PIP5KL1, ATP2A2B, RPSGKB1B, SI:CH211-2431202, ERB84B, F1231A, AMD38, GNL1, PRKCBB, SI:DKEY-28B48, UFE2R, SI:DKECY, 172143, ACV21BB, EFETA1B, BUVRA, LTK, ATP1D0, PRKX, TTK, MAX2, AND23, AND23, AND23, AND24, AND24, AND24, AND24, AND24, AND24, AND26, AND246, DAV246, DAV246	880	1703 17	7340 1.2	80.0	0.	.0.43	Ω.
			. .	IFZLI, AUCTV, CKWII, AIFIASA, KAJUL, SICHZII-ZSYLIS.S, EKBEZ, AKT3A, IMAFKB, NIFZBA, IMAP4K4, IINK2B, IWTUIEA, FIKZAB, PK2, PRKACBB, ATP2B3B, RP56KAL, ABCGZA, CMPK, KRAS, CAMKIDA, RAN							
GO:000 N-acetylglucosamine 6-	Molecular	4	0.35 0.006 (45T6, CH5T7, CH5T28, SI:CH73-62B13.1	880	8 17	7340 9.8	35 0.9	.0 0	51 0.5	11
activity	Function										
GO:000 guanyl-nucleotide	Molecular	21	1.86 0.006592 <i>E</i>	CAR3, ARHGEFID, RICI, DOCK4B, IQSEC3A, DENND4C, RAB3IP, DOCK7, TIAM1B, RAB3IL1, ARHGEF7A, ARHGEF9B, ARHGEF7B, RAPGEFL1, 8	880	215 17	7340 1.9	9.0 0.9	.0 6	51 0.5	11
GO:005 actin filament binding	Molecular	23	2.04 0.007522 A	.brct-эциццэ, исіц, вси, имыр, іміоч, звгі, имэвства СТRЗ, МВDЗВ, МҮОІЕА, FHODI, ACTN1, МУОба, МУОІSAA, NEB, SHROOMI, ARPCSLA, CORO2BA, DUB, PSTPIPIA, SAMDI4, HIPIRB,	880	247 17	7340 1.8	33 1.0	0	51 0.5	17
1015	Function		7	RPC3, CFL2, CFL1, TWF1B, GAS2L1, CTNNAL1, MYH10, GSNA							
GO:001 palmitoyltransferase	Molecular	7	0.62 0.007671 2	ОННС8В, ZDHHC9, ZDHHC13, ZDHHC238, ZDHHC17, ZDHHC14, ZDHHC4	880	35 17	7340 3.9	94 1.0	0.	51 0.5	11
6409 activity	Function										
Suppleme Supplement	ntary Ta tary Table	ble 4	Signific	cantly 6	nriched Gene Ontology terms with Fisher's exact test p-value < 0.01 in genes do	Wn-re	zulate	id in elec	ttric orga	.u	
--	------------------------	-------	----------	-----------	--	-------	--------	------------	------------	-----------------	----------
Term GO terms	Category	Coun	t %	P-value	Genes	List	Pop P	on Fol	ld Bonfe	erro Beniamini	FDR
GO:004 skeletal muscle 8741 fiber development	Biological Process	22	2.26	1.52E-2	3 CAVIN4B, KLHL41A, MYBPC1, PYGMA, RBFOX2, SMPX, MY018AB, RBF0X1L, LGAL52A, MY018AA, SIX1B, RYR3, ACTN2B, LM0D3, RYR1B, RYR1A, NFIXA, KLHL40B, KLHL40A, KLHL41B, SMYD1B, MYF5	820	63	8397 7.8	335 2.09E		2.06E-10
GO:000 muscle contraction	Biological	20	2.06	3.14E-1	2 TMOD1, TNNIIC, MYHB, TNNI4A, TMOD4, TPM3, TPM1, TNNT3B, TNNT2A, MYOM2A, MYOM1A,	820	58 1	8397 7.7	'36 4.33E	:-09 2.16E-09	2.13E-09
6936 GO:003 myofibril assembly	r Biological	16	1.65	6.69E-1	MYOM18, LWOD3, LWOD2B, SPEGB, INNIZA, 4, INNIZE, IPMA, DESMA, INNIZA.1 L TMOD1, TMOD4, TNNT3B, ACTN2B, LMOD3, LMOD2B, TTN.2, TNNIZA,4, TTN.1, MEF2AA, MEF2AB,	820	40	8397 8.9	174 9.22E	:-08 3.07E-08	3.02E-08
0239	Process				PROXIA, CRYABA, DESMA, PGM5, SMYDIB						
GO:000 skeletal muscle	Biological	18	1.85	2.25E-C) MYOG, POPDC3, CDKN1A, DNAJB6A, MYLPFB, FHL1A, STAC3, FXR1, SYNPO2LA, SYNPO2LB, TTN.2,	820	65 1	8397 6.2	13 3.10E	E-06 7.75E-07	7.61E-07
7519 tissue develonment	Process				BAG3, TTN.1, NFIXA, CRYABA, DESMA, ITGA7, MYF5						
GO:004 sarcomere	Biological	15	1.54	6.83E-C) KLHL41A, CAPN3A, LRRC39, TFPI2, TNNT3B, TNNT2A, ACTN2B, SMYHC2, TTN.2, TNNT2E, MYH7I,	820	46 1	8397 7.3	316 9.42E	E-06 1.88E-06	1.85E-06
5214 organization	Process				DESMA, FLNCB, KLHL41B, SMYD1B						
GO:000 skeletal muscle	Biological	10	1.03	4.70E-C	7 TNNIJC, RYRIB, TNNI4A, ZMP:00000030, TNNI2A.4, TNNCIB, RYRIA, STAC3, TNNI2A.1, TCAP	820	24 1	8397 9.3	348 6.48E	E-04 1.08E-04	1.06E-04
3009 contraction	Process										
GO:006 cardiac muscle	Biological	11	1.13	1.05E-C	5 SMYHCZ, TNNIJC, MYLI3, TNNI4A, ZMP:000000930, TNNI2A.4, TNNCJB, MYH7L, TNNI2A.1,	820	33 1	8397 7.4	178 0.001	L452 2.08E-04	2.04E-04
0048 contraction	Process				TNNT2A, TCAP						
GO:000 glycolytic process	Biological	11	1.13	5.68E-(5 PFKMB, GPIB, INSRA, PGAM2, PKMA, TPI1B, ALDOAA, ENO3, ALDOAB, GAPDH, ALDOCB	820	39 1	8397 6.3	328 0.007	7795 9.78E-04	9.61E-04
		r				000	, v				
ы состати состати на состати 1866 assembly	Biological Process	-	0.72	- 4.1/E-(o MYUIBAB, IPMI3, MYUIBAA, IMUU4, IIN.I, JUUSPZ/, SMYUIB	820	T 9T	8397 9.8	ccU.U cI3	2023 U.UU038/U3	0.00627
GO:003 actin cytoskeleton	Biological	19	1.95	7.32E-C	5 PDLIM5B, PDLIM3B, PHACTR3B, ACTN3B, EHBP1L1A, EHBP1L1B, ACTN2B, SSH2A, ROCK2A, CAPZB,	820	144 1	8397 2.9	960 0.096	5053 0.01009811	0.00992
0036 organization	Process				STARD13B, DAAM2, CAPZA1B, LDB3B, XIRP1, FLNA, CORO1CA, ZGC:162952, SMTNL1						
GO:001 phosphorylation 6310	Biological Process	55	5.66	5 1.18E-(1 COQ8AA, MYLK2, DYRK4, CDKN1A, PRKAB1A, MAST2, CKMT2A, AKAP8L, CAMK2N1A, ROCK2A, EEF2K, ULK1B, MYLK4A, PLAUA, PIK3R3B, ADK8, GRK7A, PRKG1B, ADKA, ZGC:172076, HUNK, BMPR1AA, MAPKAPK3, PIK3CA, PRKCQ, MET, UCKL1B, VEGFAA, DAPK2A, RAF1A, AK1, CITA, PAK1, INSRA, ERB2, ABL1, CDKN1CA, MAP2K6, SRPK3, PDK2A, CKMB, PFKMB, CKMA, NEK6, SI:CH211- 220118, 4, NEK7, CAMK2B1, PKMA, ALPK3A, PTK2AA, AKT3A, SI:DKEY-8E10.3, MAPKAPK2A,	820	718 1	8397 1.7	0.149	9004 0.01476333	0.0145
CO.000 tricochouchic coid		c	600		PFKFB4B,SI:UKEY-36F1U.1	000	ç	0 1 2000		71331660 0 136	0.00150
6099 cycle	Process	0	70.0	- 2.0UE-L	לא הא הטרבאל, ואומיול, וטוול, טוטין, ארטל, וטווא	070	R	E.C 1600	N7C'N CO	11001200.0 4020	00000
GO:004 sarcomerogenesis	Biological	5	0.51	4.11E-C	1 ZMP:000000930, TTN. 2, TTN. 1, TCAP, SMYD1B	820	9	8397 12.	464 0.432	2339 0.04043678	0.0397
8769	Process										
GO:003 skeletal muscle	Biological	ъ	0.51	. 4.11E-(1 MYOG, CDKN1A, FHLIA, KLHL41B, MYF5	820	9 1	8397 12.	464 0.432	2339 0.04043678	0.0397
5914 cell differentiation	Process	,									
GO:005 muscle cell 5001 develonment	Biological Process	6	0.93	5.41E-(1 FXR1, CAP2B, MYH7BA, NRAP, TCAP, ACTN3B, NEB, TGFBI, ACTN2B	820	43 1	8397 4.6	96 0.525	0.04969742	0.0488
GO:004 positive regulation	Biological	9	0.62	. 6.83E-C	1 FXR1, FXR2, PCIF1, METTL5, LARP4B, LARP1B	820	17 1	8397 7.9	0.610	0.05887603	0.05781
5727 of translation	Process										
GO:000 cellular calcium	Biological	10	1.03	0.0012	ATP2AZA, RYR1B, RYR1A, ATP2B3B, HOMER1B, TNNT2A, ATP2A1, ATP2B2, RYR3, DHRS7CB	820	60 1	8397 3.7	'39 0.825	5237 0.10254246	0.10068
6874 ion homeostasis	Process										

- 105 -

GO:006 n 1061 d	uuscle structure evelopment	Biological Process	9	0.62	0.00153	PDLIM5B, PDLIM3B, LDB3B, HOMER1B, KLHL40B, KLHL40A	820 2	0 183	97 6.731	. 0.879206 0.	.11533051	0.11324
GO:003 n 3693 bi	eurofilament undle assembly	Biological Process	4	0.41	0.00159	SYNM, SI:DKEY-33C12.3, NEFMA, NEFLA	820 6	183	97 14.95	7 0.888421 0.	.11533051	0.11324
GO:000 p 6470 d	rotein ephosphorylation	Biological Process	16	1.65	0.00192	EPMZA, SI:CH211-223P8.8, PTPN4A, PTPN21, DUSP27, DUSP16, CDC25B, SSH2A, PDP1, PTPRNA, DUSP10, SI:CH211-121A2.2, DUSP22A, SI:CH211-195B15.8, DUSP13A, DUSP22B	820 1	44 183	97 2.493	0.929675 0.	.13260354	0.1302
GO:001 d 6311	ephosphorylation	Biological Process	15	1.54	0.00243	EPM2A, SI:CH2I1-223P8.8, PTPN4A, PTPN21, DUSP27, DUSP16, PTP4A3A, SSH2A, PTPRNA, DUSP10, 8 SI:CH2I1-121A2.2, DUSP22A, SI:CH211-195B15.8, DUSP13A, DUSP22B	820 1	33 183	97 2.530	0.965226 0.	.15384033	0.15105
GO:001 p 6567 u	rote in biquitination	Biological Process	32	3.29	0.00255	VCP, ANAPCIG, KLHLIS, ASB5B, PDZRN3B, UBR3, NEDD4L, KLHLI3, ASBIB, SH3RF1, ASB16, TRIM35- 31, CAND2, HERC2, ASB15B, ASB10, DCAF12, CUL3B, SI:CH73-54F23.4, SOCS3B, TRIM55B, FEM1A, KLHL21, ZBTB16A, FBXO32, UBAC1, FBXO31, SI:CH211-120G10.1, ASB2A.1, NEURL2, ASB4, TRIM54	820 4	06 183	37 1.768	3 0.970353 0.	.15384033	0.15105
GO:000 ci 7623	ircadian rhythm	Biological Process	7	0.72	0.00257	NFIL3-6, NROB2A, PER1B, CLOCKA, MITFA, NPAS2, ARNTL2	820 3	2 183	97 4.908	0.97107 0.	.15384033	0.15105
GO:006 h 0047	eart contraction	Biological Process	11	1.13	0.00284	BAG3, TTN.2, LRRC39, CRYABA, DESMA, DLST, TNNT2A, TCAP, FBXO32, SMYD1B, LIMS1	820 8	0 183	97 3.085	0.980211 0.	.161969	0.15903
GO:001 n 7148 rs tr	egative egulation of anslation	Biological Process	7	0.72	0.00302	FXR1, PAIP2B, FXR2, EIF4EBP1, CAPRINIA, EIF4EBP3L, YBX1 8	820 3	3 183	97 4.759	0.984559 0.	.161969	0.15903
GO:000 a. 7015 ol	ctin filament rganization	Biological Process	16	1.65	0.00305	TMOD1, MYO5AA, TMOD4, TPM3, TPM1, RHOBTB4, MYO16, LMOD3, TMSB, LMOD2B, TPMA, XIRP1, CORO6, BC12116, RHOAC, CORO1CA	820 1	51 183	97 2.377	0.985267 0.	.161969	0.15903
GO:003 ci 2922 rf	ircadian sgulation of gene	Biological Process	×	0.82	0.0035	NFIL3-6, BHLHE40, KDM8, CRV2, PER1B, NR1D1, CLOCKA, NPAS2	820 4	5 183	3.989	0.992016 0.	.17843311	0.1752
GO:004 n 3409 r _f N	egative egulation of IAPK cascade	Biological Process	9	0.62	0.00362	DUSP10, SI:CH211-223P8.8, SI:CH211-121A2.2, SI:CH211-195B15.8, DUSP13A, DUSP16	820 2	4 183	97 5.609	0.993297 0.	.17843311	0.1752
GO:004 p 6314 b _i	hosphocreatine iosynthetic	Biological Process	4	0.41	0.00416	CKMB, CKMA, CKMT2A, ZGC:172076	820 8	183	97 11.21	.8 0.996815 0.	.18507208	0.18172
GO:004 n 5947 rs tr tr	egative egulation of anslational ditiation	Biological Process	4	0.41	0.00416	PAIP2B, EIF4EBP1, EIF4EBP3L, YBX1 8	820 8	183	97 11.21	.8 0.996815 0.	.18507208	0.18172
GO:200 n 1243 rf ir ir si	egative sgulation of itrinsic apoptotic gnaling pathway	Biological Process	4	0.41	0.00416	MCL1A, MCL1B, BCL2L16, BCL2L1	820	183	97 11.21	.8 0.996815 0.	.18507208	0.18172

- 106 -

308118 0.18958	308118 0.18958	02872 0.22611	118873 0.227	118873 0.227	975824 0.26487	486062 0.28952	486062 0.28952	E-14 1.37E-14	E-10 6.52E-10	E-10 6.52E-10
316 0.19	316 0.19	511 0.23	763 0.23	763 0.23	955 0.26	99 0.29	99 0.29	-14 1.43	-09 6.78	-09 6.78
0.998	0.998	0.9996	0.9997	0.999	0.9999	0.9999	0.9999	1.43E-	1.99E-	2.03F.
7.011	7.011	2.639	9.971	9.971	6.232	8.974	8.974	8.597	11.407	1.440
18397	18397	18397	18397	18397	18397	18397	18397	18868	18868	5 18868
16	16	102	6	6	18	10	10	8	8	4405
820	820	820	820	820	820	820	820	827	827	827 3,
2 PFKMB, ALDOAA, ALDOAB, FBP2, ALDOCB	2 TNNT2E, TNNC1B, TNNT3B, TNNT2A, ATP2A1	8	4 TMOD1, LMOD2B, TMOD4, LMOD3	4 ZMP:000000930, LRRC39, TCAP, FBXO32	4 RBFOX2, ZMP:00000030, RBFOX1L, TCAP, NR2F2	4 ZMP:000000930, TCAP, LMOD3, SMYD1B	4 FH, MDH2, ME1, ME3	17 FHLIA, ACTN3B, RYR3, SYNPOZLA, SYNPOZLB, ZMP:00000930, BAG3, MYOZZA, MYOZZB, NRA DESMA, CASQIB, PDLIM5B, PDLIM3B, NEB, PARVB, ACTN2B, RYRIB, MYOZ3A, RYRIA, LDB3B, MAVOZIA, MAVOZAB, TCAB, TRAGA,	WITUZIA, WITUZIB, TUAR, TAWUA, LIWUJ 12 KLHL41A, CASQIB, ITPR3, JPH1A, ATP2A1, JPH1B, RYR3, TRDN, ATP2A2A, RYR1B, JPH2, RYR1A, TMFM38A KI HI 41R THR54R	12 APOBEC2B, UGP2B, IRRC14B, PRKAB1A, AGLA, CALCOCO1A, DCAF6, ZFVYE28, NR0B2A, ROCK2A HERC2, EIF2D, DUSP13A, CHACJ, KLHL41B, SMU1A, JMJD4, CAVIN4B, KLHL41A, RFX2, ARMC8, RNF123, RUFY3, ULK2, PRKC0, TTL112, HPRT1, SI:CH211-195B15,8, KLHL40B, KLHL40A, CCNO, UCK11B, ILRUN, NUMBI, ANAPC16, CAPN3A, DAPK2A, SGIP1A, PTPN4A, NEDD4L, NMD3, APBB TRIM35-31, FXR1, LDHA, FXR2, PCBP4, CMY45, MY110, NAA50, SRPK3, MY055A, CAMK2B1, PH UBAC1, ALS2B, DA2L, MAPKAPK2A, MYH7L, DUSP22A, ABLIM1A, DUSP22B, FARSB, SYNM, BTG2 DNAJB6A, SVILA, SETD3, MYLPFB, ACY1, LRRC39, RPLP0, PDZRN3B, STON2, SH3F1, SMG6, SSH2 MS12B, GY51, UCH11, KIF1B, ZGC83777, SI:CH73-54F234, MYL12.2, PLEKHO1B, CNOT6L, RBFOX1 MS12B, ARG1, MY018AA, PTGR2, TMSB, EIF4EP3L, CLOCKA, CACTIN, ACSB62, KANK2, FH, SIX1B, VCLB, ARNT2, PAK1, TTN: 2, FR2B, DESMA, MAP3R3, SI:CH211-260E23.9, MDH2, SI:CH211- SIX1B, WSB3, TACC2, TPI1B, PCMT, UMS1, FHOD1, PRUNE, CTNND1, UBE3A, IPO4, PAIP2B IMPDH1A, MSRB3, TACC2, TP11B, PCMT, UMS1, FHOD1, PRUNE, CTNND1, UBE3A, IPO4, PAIP2B
0.00462	0.00462	0.00568	0.00602	0.00602	0.00724	0.00834	0.00834	4.63E-1	6.45E-1	6.61E-1
0.51	0.51	1.23	0.41	0.41	0.51	0.41	0.41	2.67	1.54	28.6
ъ	Ŀ	12	4	4	ß	4	4	26	15	278
Biological	Process Process	Biological Process	Biological	Process Process	Biological	Process Biological Process	Biological	Component	Cellular Component	Cellular Component
GO:003 fructose 1,6-	GO:000 regulation of 6937 muscle contraction	GO:007 calcium ion 0588 transmembrane	GO:005 pointed-end actin	60:005 cardiac muscle 5008 tissue	morphogenesis GO:005 cardiac muscle cell	5013 development GO:003 skeletal muscle 0240 thin filament	assembly GO:000 malate metabolic 6108 process	otos process GO:003 Z disc 0018	GO:001 sarcoplasmic 6529 reticulum	5737 cytoplasm 5737

	27 12 18868 15.210 6.05E-05 1.37E-05 1.32E-05	27 17 1868 12.079 6.87E-05 1.37E-05 1.32E-05	27 35 18868 6.519 0.004392 7.34E-04 7.05E-04	27 1082 18868 1.624 0.009107 0.00130689 0.00126	27 26 18868 7.020 0.028884 0.00366346 0.00352	27 47 18868 4.854 0.051664 0.00589349 0.00566	27 118 18868 3.094 0.05916 0.00609766 0.00586	27 23 18868 6.944 0.107093 0.01029566 0.00989	27 19 18868 7.205 0.288791 0.02838335 0.02728	27 22 18868 6.222 0.49967 0.05320843 0.05114
33C12.3, AK1, GSTT2, UBR3, TUBA8L2, CITA, NDRG2, NPAS2, PTP4A3A, EIF3EA, NEFLA, TOB1A, BAG3, DTNBP1A, EIF4EBP1, MTUS1A, PACSIN3, MYH14, GULP1A, ZC3H15, FGF21, MAP2K6, CCDC135, KLHL21, PER1B, WWHAG2, DAO.2, YWHAG1, FBXO32, KY, COP53, IBTK, DNMBP, RNF150A, MYH7BA, CAPRIN1A, TWF2B, SERGEF, DYRK4, MYHB, DAGLA, SI:CH211-223P8.8, DOCK3, HSPB8, HSPB7, HSPB2, HSPB1, PTPN21, GLULB, LRMP, MTR, YBX1, DUSP16, LMOD3, PSME4B, ACTB2, PSME4A, CASP7, DUSP121, GLULB, LRMP, MTR, YBX1, DUSP16, LMOD3, PSME4B, ACTB2, PSME4A, CASP7, DUSP121, GLULB, LRMP, MTR, YBX1, DUSP16, LMOD3, PSME4B, ACTB2, PSME4A, CASP7, DUSP22, PATL1, EPN2, EEF1G, PIK3CA, ESPL1, AKT1S1, CRV2, TERF21P, PFDN1, TRIM54, ASP4, GAPDH, FBP2, COROICA, RBM22, CAVIN1B, METAP2B, NUAK1A, TNNT2A, SRL ASB18, ASB16, DNAJB2, SSUH2RS1, MTHFSD, FCHO1, CNR1, ASB10, SI:CH211-121A2.2, NAA25, SI:BUSM1-57F23.1, DCAF12, ARHGAP12B, TRIM55B, PYGMA, PFKMB, FEM1A, RAD23AA, ATP2B2, MYO16, BICC2, MCM3AP, NEURL2, STARD13B, SARDH, PVALB7, FBXO40.1, PVALB3, PVALB4	0.82 1.96E-07 SMPX, SPEGB, LRRC39, MYOM2A, MYOM1A, MYOM1B, LMOD3, SMYD1B	0.93 2.23E-07 ATP2A2A, RYR1B, KLHL41A, RYR1A, ATP2A1, TMEM38A, KLHL41B, RYR3, TRDN	1.03 1.43E-05 SMYHC2, MYL12.2, MYHB, MYO18AB, MYL13, MYO18AA, MYH7BA, MYH7L, MYH14, MYLZ3	7:92 2:97E-05 IPO11, UBE3A, MTR, IPO7, DUSP16, LARP1B, ZFVVE28, PSME4B, PSME4A, MAP1LC3A, MID1IP1L, ARHGDIA, EEF2L2, PGM5, CHAC1, ACY3.1, ZGC:136908, PGM1, SI:DKEY-51E6.1, USP9, ADSL, ADKB, ARG1, PDE4D, ADKA, ACOT12, AMPD1, RBP7B, LARP4B, ALDOAA, ALDOAB, IRS2B, HPRTJ, SI:CH211- 195B15.8, GAPDH, ASPA, FBP2, ZGC:64002, USP13, VCP, FH, AHCY, ANAPC16, RAF1A, AK1, STRIP2, BAG3, G3BP1, CDAB, AAMP, ZC3H15, NAA50, USP24, GPD1B, RIC1, GPIB, SI:CH211-260E23.9, OSBPL5, PLEKHA5, STAC3, RAD23AA, MTHFR, USP28, ALDOCB, MILT11, RNF146, ACOT11A, AGBL1, CASTOR2, PPP2R2BB, PFKFB4B, DUSP22A, SI:DKEY-96F10.1, ACO2, TP11B, LRCH3, DUSP22B	0.82 9.52E-O5 TNNI1C, TNNI4A, TNNI2A.4, TNNT2E, TNNC1B, TNNI2A.1, TNNT3B, TNNT2A	1.03 1.72E-04 POPDC3, RYR1B, SGCB, KCNB1, RYR1A, STAC3, DESMA, PGM5, VCLB, RYR3	1.65 1.98E-04 SVILA, MYO5AA, ARHGAP32B, VCLB, PARVB, MYO16, SYNPO2LA, SYNPO2LB, MYOZ3A, MYOZ2A, MYOZ2B, MYOZ1A, TPMA, MYOZ1B, ABLIM1A, CORO1CA	0.72 3.68E-04 SMYHC2, MYHB, MYO18AB, MYO18AA, MYH7BA, MYH7I, MYH14	0.62 0.00111 TMOD1, LMOD28, TMOD4, TNNT2A, TWF2B, LMOD3	0.62 0.00225 PDLIM5B, PDLIM3B, LDB3B, EHBP1L1A, EHBP1L1B, SMTNL1
	∞	თ	10	4	00	10	16	2	9	9
	Cellular Component	Cellular Component	Cellular Component	Component	Cellular Component	Cellular Component	Cellular Component	Cellular Component	Cellular Component	Cellular Component
	GO:003 M band 1430	GO:003 sarcoplasmic 3017 reticulum membrane	GO:001 myosin II complex 6460	G0:000 cytosol 5829	GO:000 troponin complex 5861	GO:004 sarcolemma 2383	GO:001 actin cytoskeleton 5629	GO:003 myosin filament 2982	GO:003 myofibril 0016	GO:003 filamentous actin 1941

- 108 -

0.05455885 0.05243	0.13258904 0.12742	0.13258904 0.12742	0.17157736 0.16489	.41E-10 1.38E-10	1.15E-07 4.08E-07	0.00811553 0.00798	0.01061236 0.01043	0.01204106 0.01183		0.01204106 0.01183	.01204106 0.01183 0.01204106 0.01183
0.53456 0	0.875746 0	0.881016 0	0.946641 0	1.41E-10 1	8.30E-07 4	0.024053 0	0.041562 0	0.071924 0	0.080838 0		0.080838 0
3.405	4.889	1.521	3.020	3.337	3.278	4.735	9.261	3.898	16.064		16.064
18868	18868	18868	18868	17340	17340	17340	17340	17340	17340		17340
67	28	645	68	337	247	57	17	75	7		2
827	827	827	827	771	771	771	771	771	771		771
1.03 0.00248 SMYHC2, SMYHC3, MYO5AA, MYHB, MYO18AB, MYO18AA, MYH7BA, MYH7L, MYH14, MYO16	0.62 0.00675 KLHL15, KLHL21, KLHL13, KLHL40B, KLHL40A, CUL3B	4.42 0.00689 DYRK4, FHODI, PTPN4A, TUBA8L2, PTPN2I, RHOBTB4, HSPB1, LRMP, KRT18A.1, VCLB, CITA, LMOD3, SSH2A, ACTB2, ROCK2A, MID1IP1L, CAPZB, SGCB, DCAF12, KLHI41B, RHOAC, MAP2K6, TMOD1, KLHI41A, ABI2A, TMOD4, CCDC135, TPM1, KLHL21, PARVB, TUBB4B, PTK2AA, TMSB, EPB41L3B, EPB41L3A, DNMBP, LMOD2B, TPMA, TWF2B, TACC2, GAPDH, KANK4, CORO1CA	0.93 0.00947 IGSF11, MPP1, EPB41L3B, USP53B, EPB41L3A, DNMBP, MPP7A, DESMA, LIMS1	5.14 2.02E-13 ABRAB, MYHB, SVILA, ABRAA, SETD3, SSH2A, SYNPOZLA, SYNPOZLB, CAPZB, MYO18AB, TPM3, MYO18AA, PDLIM3B, TPM1, ACTN2B, TMSB, EPB41L3B, EPB41L3A, DAAM2, MYOZ3A, TPMA, COROICA, MICAL2A, TNNTZA, ACTN3B, VCLB, SMTNL, MYOZ2A, NRAP, MYOZ2B, XIRP1, FLNCB, MYH14, FLNA, MYO5AA, PDLIM5B, PHACTR3B, NEB, PARVB, MYO16, SMYHC2, SMYHC3, MYH7BA, LDB3B, MYH7L. CAPZAIB, MYOZIA. MYOZIB, ABLIMIA, TWF2B	3.7 1.19E-09 MYHB, SVILA, FHODJ, ACTN3B, MYOM1A, VCLB, MYOM1B, CAPZB, SPEGB, NRAP, XIRPJ, MYH14, FLNA, FLNCB, TMODJ, MYO5AA, MYO18AB, TPM3, MYO18AA, TMOD4, TNNC1B, TPM1, MYOM24 NEB, MYO16, ACTN2B, SMYHC2, SMYHC3, MYH7BA, CAPZA1B, MYH7L, TPMA, CORO6, ABLIM1A, TWF2B, CORO1CA	1.23 3.50E-05 EPM2A, DUSP10, SI:CH211-223P8, SI:CH211-121A2.2, DUSP22A, SI:CH211-195B15.8, DUSP13A, DUSP27, DUSP16, DUSP28, PTP4A3A, SSH2A	0.72 6.11E-05 TMOD1, LMOD2B, TNNT2E, TMOD4, TNNT3B, TNNT2A, LMOD3	1.34 1.07E-04 ESR2A, RXRAA, RARAA, PPARDB, RORC, RXRGB, NR1D1, NR2F2, NR2F5, NR2F6B, NR2F1A, RORAA, ESRRGA	0.51 1.21E-04 MYOZ3A, MYOZ2A, MYOZ2B, MYOZIA, MYOZ1B		0.51 1.21E-04 MYOZ3A, MYOZ2A, MYOZ2B, MYOZ1A, MYOZ1B
0	0	Ω 4	0	ы 0	e Q	7	0	ώ L	0		0
ent 1	ent 6	4 ient	ent 9	ar 5	ar 3	ar -	ar 7	_ ar	ar 5		ar 5
Cellular	Cellular Compon	Cellular Compon	Cellular	Molecul Functior	Molecul Functior	Molecul Functior	Molecul. Function	I Molecul	g Molecul: Function		Molecul
GO:001 myosin complex 6459	GO:003 Cul3-RING 1463 ubiquitin ligase complex	GO:000 cytoskeleton 5856	GO:000 cell-cell junction	GO:000 actin binding 3779	GO:005 actin filament 1015 binding	GO:000 protein 8138 tyrosine/serine/th reonine phosphatase artivity	GO:000 tropomyosin 5523 binding	GO:000 RNA polymerase II 4879 transcription facto activity, ligand- activated sequence-specific	DNA bındıng GO:003 telethonin bindin£ 1433		GO:005 FATZ binding

GO:001 kinase activity 6301	Molecular Function	54	5.56	2.00E-04	COQBAA, MYLK2, DYRK4, CDKNIA, PRKABIA, MAST2, CKMT2A, AKAPBL, CAMK2NIA, ROCK2A, EEF2K, ULK1B, MYLK4A, PLAUA, PIK3R3B, ADKB, GRK7A, PRKG1B, ADKA, ZGC:172076, HUNK, BMPR1AA, MAPKAPK3, PIK3CA, PRKCQ, MET, UCKL1B, DAPK2A, RAF1A, AK1, CITA, PAK1, INSRA, ERBB2, ABL1, CDKN1CA, MAP2K6, SRPK3, PDK7A, CKMB, PFKMB, CKMA, NEK6, SI:CH211-220118, 4, NEK7, CAMK2B1, PKMA, ALPK3A, PTK2AA, AKT3A, SI:DKEY-BE10.3, MAPKAPK2A, PFKFB4B, SI:DKEY- 96F10.1	7 177	18 173	1.691	1 0.12983	9 0.01545151	0.01518
GO:001 phosphatase 6791 activity	Molecular Function	20	2.06	2.54E-04	EPM2A, SI:CH211-223P8.8, PTPN4A, PTPN21, PPTC7A, DUSP27, DUSP16, PTP4A3A, SSH2A, PDP1, PTPRNA, CTDSPL2A, DUSP10, SI:CH211-121A2.2, DUSP22A, SI:CH211-195B15.8, CTDSPLB, DUSP13A, FBP2, DUSP22B	771 1	73 173	40 2.600	0.16193	0.01766316	0.01736
GO:000 phosphoprotein 4721 phosphatase activity	Molecular Function	17	1.75	4.52E-04	EPMZA, SI:CH211-223P&8, PTPN4A, PTPN21, PPTC7A, DUSP16, CDC25B, SSH2A, PDP1, CTDSPL2A, DUSP10, SI:CH211-121A2.2, DUSP22A, SI:CH211-195B15.8, CTDSPLB, DUSP13A, DUSP22B	771 1	39 173	40 2.751	1 0.26963	8 0.02653149	0.02607
GO:000 transcription factor 3700 activity, sequence- specific DNA binding	r Molecular Function	46	4.73	4.58E-04	ESRZA, RXRAA, RARAA, CREB5B, HOXA9B, SIX1B, RORC, MAFAA, RXRGB, NPAS2, ARNTL2, NR2F6B, PBX3A, NFIXA, ZNF395A, FOXO3B, FOXO3A, CREMA, HLFA, PITX3, HOXC4A, NFIL3-6, JUND, ATF5A, PPARDB, TBX3A, RFX2, MAFBA, NFATC1, FOXN3, NR1D1, NR2F2, MITFA, NR2F5, POU3F1, MYCB, TBX15, NFATC3A, RFX6, MYCH, NFIC, CLOCKA, NR2F1A, RORAA, ESRRGA, ATF3	771 6	02 173	40 1.719	9 0.27272	5 0.02653149	0.02607
GO:001 transferase activity 6740	r Molecular Function	105	10.8	0.00104	COQ&AA, UGP2B, MYLK2, TKTB, UBE2D4, PRKAB1A, AGLA, CKMTZA, CAMK2N1A, UBE3A, ROCKZA, ULK1B, HHATLA, PIK3R3B, KCMF1, UBE2E1, BMPR1AA, MAPKAPK3, PRKCQ, HPRT1, ZGC:64002, UCKL1B, LIPT2, DAPKZA, AK1, UBR3, CITA, MOGAT3A, INSRA, ABL1, COX10, MAP2K6, NAA50, SRPK3, NEK6, GFPT2, NEK7, PCIF1, UBE2G1A, CAMK2B1, ALPK3A, CS, SI:DKEY-8E10.3, MAPKAPK2A, PFKFB4B, SI:DKEY-96F10.1, DYRK4, CDKN1A, SETD3, MAST2, PDZRN3B, AKAP8L, SETD7, MTR, CDC34A, SH3RF1, SMG6, DTWD2, GYS1, EEF2K, MYLK4A, NTMT1, PLAUA, DLAT, ZGC:162952, GRK7A, ADKB, PRKG1B, ADKA, ZGC:172076, HUNK, TRPT1, ASH1L, SIRT3, GOT2B, METTL22, PIK3CA, GOT2A, SI:CH211-269C21.2, BCAT1, GAPDH, MET, RAF1A, DLST, TGM2B, RNF2, PAK1, ERB22, METTL5, GPAT3, CDKN1CA, SMYD1B, PDK2A, CKMB, PYGMA, PFKMB, CKMA, SI:CH211-22018.4, MOCOS, PKMA, PTX2AA, AKT3A, RNF1AG, GATM, PCMT	771 1	743 173	40 1.355	0.51347	8 0.05539232	0.05444
GO:000 protein tyrosine 4725 phosphatase activity	Molecular Function	15	1.54	0.00178	EPM2A, SI:CH211-223P8,8, PTPN4A, PTPN21, DUSP16, PTP4A3A, CDC25B, SSH2A, PTPRNA, DUSP10, SI:CH211-121A2.2, DUSP22A, SI:CH211-195B15.8, DUSP13A, DUSP22B	771 1	29 173	40 2.615	0.70971	7 0.08827145	0.08675
GO:000 RNA polymerase II 0978 core promoter proximal region sequence-specific DNA binding	Molecular Function	70	7.2	0.00202	HIVEPZA, CREB5B, HOXA9B, ZBTB47B, RORC, MAFAA, RXRGB, PBX3A, ZNF648, FOXO3B, FOXO3A, CREMA, HLFA, PITX3, MYOG, TBX3A, PAX4, RFX2, SOX13, TFEB, ZBTB16A, MAFBA, ZBTB34, MITFA, POU3F1, KLF15, SOX10, EGR2B, MYCB, RFX6, MYCH, MEF2AA, KLF11B, MEF2AB, CLOCKA, DACHC, RORAA, ESRRGA, DACHD, ATF3, ESR2A, RXRAA, RARAA, SIX1B, NPAS2, ARNTL2, NR2F6B, NFIXA, HOXA10B, IRX3A, ZNF395A, HOXC4A, ZBTB18, MLXIP, JUND, SIX4B, PPARDB, NFATC1, NR1D1, NR2F2, NR2F5, KLF4, TBX15, NFATC3A, TFCP2, NFIC, BHLHE40, PROX1A, NR2F1A, MYF5	1 177	095 173	40 1.438	8 0.75429	5 0.09348039	0.09187
GO:000 creatine kinase 4111 activity	Molecular Function	4	0.41	0.00413	CKMB, CKMA, CKMTZA, ZGC:172076	771 8	173	40 11.24	45 0.94366	0.17940017	0.1763
GO:005 mitogen-activated 1019 protein kinase binding	Molecular Function	ъ	0.51	0.00578	DUSP10, MAPKAPK3, MAPKAPK2A, SI:CH211-195B15.8, DUSP16	771 1	7 173	40 6.615	5 0.98218	4 0.23623734	0.23216

- 110 -

Table 5	
upplementary	
Supple	

		Category	Count	%	P-value	Genes	List	Pop	Pop F	old	Bonfer	Benjam	FDR
							Total	Hits .	Total E	nrichment	roni	Ē	
GO:0005975	carbohydrate metabolic process	Biological	11	4.564	7.83E-05	CHST7, GNPDA2, MAN2B2, B3GAT3, GLB1, RPE, SI:DKEY-199F5.8,	205	199	18397 4	.961	0.045	0.046	0.046
		Process				SPATA20, GUSB, YDJC, HK2							
GO:0048675	axon extension	Biological	4	1.66	0.010509	IST1, UBAP1, PLXNB1B, GRNB	205	41	18397 8	.755	0.998	1.000	1.000
GO:0006914	¹ autophagy	Biological	Ŋ	2.075	0.013656	BECN1, GABARAPL2, PLEKHM1, WIPI1, MCOLN1A	205	83	18397 5	.406	1.000	1.000	1.000
		Process											
GO:0007032	endosome organization	Biological	e	1.245	0.022373	PLEKHFZ, IST1, PI4K2A	205	21	18397 1	2.820	1.000	1.000	1.000
GO:0046854	bhosphatidylinositol	Biological	4	1.66	0.03282	PIP5K1CA, IMPA1, PIK3CG, PI4K2A	205	63	18397 5	.698	1.000	1.000	1.000
	phosphorylation	Process											
GO:0006811	ion transport	Biological	13	5.394	0.041416	SLC24A2, SLC12A4, SLC10A7, SLC31A2, KCTD12.1, KCNJ2A, SFXN5B,	, 205	614	18397 1	006:	1.000	1.000	1.000
		Process				ATP6V0A1A, TCN2, ATP6V1D, PANX3, MCU, ATP6V1F							
GO:0006665	sphingolipid metabolic process	Biological	e	1.245	0.043439	ARV1, PSAP, SFTPBB	205	30	18397 8	.974	1.000	1.000	1.000
GO:0005764	i lysosome	Cellular	11	4.564	3.03E-05	ASAH1B, MAN2B2, BRI3, CT5BA, SMPD1, VPS41, PSAP, PLEKHM1,	201	186	18868 5	.551	0.005	0.005	0.005
		Component				MCOLNIA, SFTPBB, GUSB							
GO:0005794	[!] Golgi apparatus	Cellular	18	7.469	3.93E-04	ZDHHC16B, BECN1, SLC10A7, YIPF3, B3GAT3, CHPF2, ENTPD6,	201	628	18868 2	.691	0.065	0.034	0.034
		Component				SYAP1, SCOCA, FUT9A, ARV1, MGAT1B, TRAPPC6B, VPS41, SI:DKE)	<u>'</u>						
						199F5.8, EXTL3, ZGC:162698, PI4K2A							
GO:0005768	1 endosome	Cellular	11	4.564	6.34E-04	PLEKHF2, BECN1, RAB5B, RAB40C, VPS41, PLEKHM1, UBAP1,	201	270	18868 3	.824	0.103	0.036	0.036
		Component				FLOTIB, COMMD1, LAMTOR3, PI4K2A							
GO:0005829	i cytosol	Cellular	21	8.714	0.011107	BECN1, GABARAPL2, USP7, RIC1, IRS1, RPE, GSR, DNAJB1A,	201	1082	18868 1	.822	0.854	0.478	0.475
		Component				CST14A.2, PPM1AA, WIPI1, SCOCA, PRDX6, HK2, RSPH1, EIF5,							
						UBAP1, OSBPLIA, RAN, ZGC:162698, SPG21							
GO:0005773	i vacuole	Cellular	ŝ	1.245	0.018738	TMEM138, GLB1, LGMN	201	20	18868 1	4.081	0.961	0.596	0.592
GO:0031410) cytoplasmic vesicle	Cellular	8	3.32	0.020775	RAC3A, BECN1, VMA21, TBC1D7, VPS41, FLOT1B, RHOCB, PI4K2A	201	259	18868 2	899	0.973	0.596	0.592
		Component											
GO:0005581	collagen trimer	Cellular	4	1.66	0.02471	COL8A1A, COL12A1A, COL2A1B, COL4A5	201	59	18868 6	.364	0.986	0.607	0.604
GO:0005783	tendoplasmic reticulum	Cellular	15	6.224	0.032958	ZDHHC16B, PLEKHF2, BECN1, SLC10A7, TAPBPL, HSPBP1, AGPAT2,	201	763	18868 1	.845	0.997	0.709	0.704
		Component				CVP51, ARV1, ZFVVE27, SPTLC1, TRAPPC6B, VMA21, FKBP9, EXTL3							
GO:0004185	serine-type carboxypeptidase	Molecular	ŝ	1.245	6.00E-04	CTSA, SCPEP1, SI:CH211-122F10.4	176	4	17340 7	3.892	0.166	0.182	0.182
	activity	Function											
GO:0004180	 carboxypeptidase activity 	Molecular	ŝ	1.245	0.022297	CTSA, SCPEP1, SI:CH211-122F10.4	176	23	17340 1	2.851	0.999	1.000	1.000
		Function											
GO:0046961	 proton-transporting ATPase 	Molecular	ŝ	1.245	0.026095	ATP6V0A1A, ATP6V1D, ATP6V1F	176	25	17340 1	1.823	1.000	1.000	1.000
	activity, rotational mechanism	Function											
GO:0016798	hydrolase activity, acting on	Molecular	4	1.66	0.047208	MAN2B2, GLB1, SMPD1, GUSB	176	80	17340 4	.926	1.000	1.000	1.000
	glycosyl bonds	Function											

Supplementary Supplementary Ta	Table 6 ble 641 Sign	ifican.	tlv enric	led Gene Ontoloøv terms with Ficher's exact test n-value < 0.05 amonø øenes with decreasing expre	ssion relat	ive to F(D duration (Group 3).		
Term GO terms	Category	Cou	nt %	P-value Genes	List Po	p Pop	Fold	Bonfer	r Benjar	FDR
					Total Hit	s Tota	l Enrichme	nt oni	ini	
GO:0007411 axon guidance	Biological Process	12	3.72	8.12E-05 SEMA3AB, CNTN1A, SEMA6A, SEMA4D, LAMA1, NPTNB, EPHA4A, SEMA4C, EFNB2A, NRCAMA, TRIOA, DPYSL2B	271 18	2 1839	17 4.476	0.055	0.057	0.057
GO:0030198 extracellular matrix	Biological	6	2.79	7.83E-04 ADAMTS5, COL5A3A, CCDC80, ADAMTSL4, COL1A1A, COL2A1B, ADAMTS17, ADAMTS9,	271 13	3 1839	17 4.594	0.423	0.275	0.274
organization GO:0006486 protein glycosylation	Biological	6	2.79	AUAIN ISLAA 0.0012 B3GATIA, GALNT7, NUS1, GALNT14, AARS2, ST8SIA5, FUT8A, LARGE2, ST3GAL2	271 14	2 1839	17 4.303	0.569	0.280	0.280
GO:0031103 axon regeneration	Process Biological	4	1.24	0.00183 B3GAT1A, SEMA4D, LINGO1A, DPYSL2B	271 17	1839	15.973	0.723	0.295	0.294
GO:0007155 cell adhesion	Biological Process	16	4.95	0.0021 DCHSIB, PCDHI5B, EGFL6, LAMA1, PCDH19, CCN2B, CNTNIA, VCANB, EPHA4A, ITGA10, NPTNB, EFNB2A, NCAMIA, ITGB8, FBN2B, BCAR1	271 43	7 1839	7 2.486	0.771	0.295	0.294
GO:0016310 phosphorylation	Biological Process	21	6.5	0.00475 UCK2A, CHKB, MARK3B, DGKB, PFKFB2B, EIF2AK3, DGKZA, NUCKS1A, CDK7, CDK5, EPHB4A, ETNK2, EPHA4A, GRK6, CKBB, SI:CH211-243J20.2, MAP3K8, MAPK14A, TRIOA, PIK3R3B, CAMK1DA	271 71	3 1839	1.986	0.965	0.556	0.555
GO:0008045 motor neuron axon GO:0048843 negative regulation of axon extension	Biological Biological Process	A 5	1.55 1.24	0.00807 SEMA3AB, LAMA1, BICDIA, NOTUM2, NTN2 0.01447 SEMA3AB, SEMA6A, SEMA4D, SEMA4C	271 54 271 35	1835 1835)7 6.286)7 7.758	0.997 1.000	0.810 1.000	0.809 1.000
involved in axon					i					
GO:000/420 brain development	Biological Process	b	2.79	0.02468 ADGRLZA, SCGN, CNINIA, SEMA4D, LAMAI, IAUKZA, NRCAMA, PCDH19, DPYSLZB	2/1 23	31835	1/ 2.56/	1.000	1.000	1.000
GO:0050919 negative chemotaxis	Biological	4	1.24	0.02506 SEMA3AB, SEMA6A, SEMA4D, SEMA4C	271 43	1839	17 6.315	1.000	1.000	1.000
GO:0006468 protein phosphorylation	Biological Process	19	5.88	0.02577 ADAM10B, MARK3B, TAOK2A, EIF2AK3, GUCY2F, CDK7, BRSK2B, CDK5, EPHB4A, EPHA4A, GRK6, MAP3K8, MAPK14A, TRIOA, FAM20CB, NRBP2B, CAMK1DA, SI:CH211-1111.3, MARK1	271 74	1 1839	1.741	1.000	1.000	1.000
GO:0035475 angioblast cell	Biological	2	0.62	0.02914 EPHB4A, EFNB2A	271 2	1839	97 67.886	1.000	1.000	1.000
migration involved in selective angioblast	Process									
GO:0033334 fin morphogenesis	Biological	m	0.93	0.03114 FRAS1, COLIAIA, COL2AIB	271 19	1839	10.719	1.000	1.000	1.000
GO:0090630 activation of GTPase	Biological	S	1.55	0.03384 ARHGAP22, SI:CH211-288D18.1, SI:DKEY-191M6.4, SIPA1L1, AGAP3	271 83	1839	97 4.089	1.000	1.000	1.000
activity	Process	ſ	000	0,000 FILL FILL FILL FILL FILL FILL FILL F	יר ר	1001	0000	000	000 1	000 1
GO:0048013 Epinin receptor signaling pathway	Process	n	0.23	UUSISI ERTIB44, ERVBZ4, ANNAZAB	17 1/7	SCOT	060.6 //	000-T	DODU-T	DODU-T
GO:0071526 semaphorin-plexin	Biological	4	1.24	0.03885 SEMA3AB, SEMA6A, SEMA4D, SEMA4C	271 51	1839	17 5.324	1.000	1.000	1.000
signaling pathway	Process									
GO:0003404 optic vesicle	Biological	7	0.62	0.04339 EPHA4A, EFNB2A	271 3	1839	17 45.257	1.000	1.000	1.000
GO:0001756 somitogenesis	Biological	S	1.55	0.04654 CCDC80, MEF2AA, EFNB2A, MAPK14A, DLC	271 92	1839	3.689	1.000	1.000	1.000
GO:0030903 notochord	Biological	4	1.24	0.04692 COL5A3A, EGFLG, LAMA1, COL2A1B	271 55	1839	17 4.937	1.000	1.000	1.000
GO:0031012 extracellular matrix	Cellular Componen	t 13	4.02	1.29E-04 COLEC12, COL5A3A, CCN2B, ADAMTS5, VCANB, ADAMTSL4, COL1A1A, ADAMTS17, COL2A1B, FBN2B, ADAMTS9, LINGO1A, ADAMTS15A	287 21	3 1886	8 3.920	0.023	0.024	0.024

1.000 1.000

1.000

1.000

1.000 1.000

1.000

1.000

1.000 1.000 1.000 0.024

0.057

0.274

0.280

0.294 0.294

0.555

0.809 1.000

GO:0005794 Golgi apparatus	Cellular 21 Component	6.5 0.00	I51 GALNT7, ARHGAP32A, ADAM10B, GALNT14, AARS2, CLASP1A, SACM1LB, FUT8A, ZDHHC23B, B4GALNT3A, ZDHHC14, B3GAT1A, ST8SIA5, ZGC:162200, FAM20CB, BICD1A, LARGE2, GRINAA, ERGIC1, ST3GAL2, PLA2G4AB	287 62	28 18	868 2.198	0.241	0.138	0.138
GO:0016020 membrane	Cellular 129 Component	9.0 0.0	316 ADGRLZA, GALNTIA, IFITM1, DGKB, RHOT1B, OLFCS1, XYLT1, ACSL4A, TMEM263, FADS2, SI:CH211-1E14.1, TNF5F11, EHD1B, SI:DKEY-174M14.3, LARGE2, INPPA4B, SYPL2B, ADAM10B, ENTPD2A.1, SEMA6A, NUP210, ATP6AP1A, GPSM2L, FUT8A, TRIM101, SLC5A9, ADAM15, ADGRB2, EPHA4A, MADD, TMCC1B, FAM20CB, GRAMD1BB, OSBP13B, DIPK1B, WAIEZ, ABRS2, RPN2, SDC3, MTMR9, SACM1LB, PCDH19, RNF145B, HSD11B2, TMEM248, VP511, ST8SIA5, GSG1L, SCN3B, ST3GAL2, LINGO1A, NUS1, TMEM13E, NKRD22, TRPV1, SLC25A25B, FLRT1B, EPHB4A, NPTNB, LRFN1, ITGA10, SPIRE2, TSPAN5A, NCAM1A, SDK1A, LRCH4, TMEM19, MCTP1A, MACF1A, PIGS, KCNK6, TRPC6A, NRCAMA, VSIG10, B4GALNT3A, SPRED2A, SI:CH1073-291C23.2, DGKZA, CATIP, SI:DKEY-112M2.1, CPT2, EFNB2A, ITGB8, GA13ST4, TMEM119B, DCH51B, PCDH15B, EGFL6, ANO6, MMEL1, SLC39A14, ZDHHC14, RRBP1A, B3GAT1A, KCNK4A, RAP2B, EGRG4A, TMEM218, BIRC6, DLC, NAT8L, GRINAA, TNFRSF21, ERGIC1, COLEC12, GRAMD1C, LAMA1, PIP4P1A, GUCY2F, ADCY7, PP1R3AA, IGSF21A, CNTN1A, SI:CH211-2783.3, GDPD4A, KCNQ5B, GPNL7, SI:CH73-267C23.10, GPR146	287 71	112 18	868 1.192	0.777	0.488	0.488
GO:0005576 extracellular region	Cellular 27 Component	8.36 0.01	D66 LAMA1, IGFBP6B, CXCL19, OLFM3A, FGF2, HTRA1B, NTN2, CXCL18A.1, SEMA3AB, ADAMTS5, GLIPR2, ADAMTSL4, COL1A1A, ADAMTS17, ENPP2, FBN2B, NOTUM2, ADAMTS9, MARK1, ADAMTS15A, COL5A3A, CCN2B, VCANB, CCDC80, DKK3A, ECRG4A, COL2A1B	287 10	18 18	868 1.676	0.859	0.488	0.488
GO:0043231 intracellular membrane-bounded	Cellular 11 Component	3.41 0.02	417 EPN3A, HSD11B2, SPCS2, PHLPP1, HIP1RB, PDXDC1, DHRS9, EHD1B, NAT8L, RHOBTB1, OSBPL3B	287 31	18 18	868 2.267	0.989	0.885	0.885
GO:0000139 Golgi membrane	Cellular 11 Component	3.41 0.03	016 B3GAT1A, GALNT7, SLC35A1, GALNT14, AARS2, XYLT1, SACM1LB, ZDHHC23B, LARGE2, ERGIC1, ZDHHC14	287 33	31 18	868 2.185	0.996	0.886	0.886
GO:0015629 actin cytoskeleton GO:0005930 axoneme	Cellular 6 Cellular 4	1.24 0.04 1.24 0.04	89 MTSS1LA, ARHGAP32A, CATIP, HAX1, MYO5B, MACF1A 21 HYDIN, CFAP36, CFAP206, DNALI1	287 11 287 51	18 18 18 18 18 18 18 18 18 18 18 18 18 1	868 3.343 868 5.156	0.998 0.000 000	0.886 0.911	0.886 0.911
GO:0005509 calcium ion binding	Cellular 5 Molecular 24 Function	7.43 4.28	HSZ ARHGAP3ZA, SPIREZ, GPSMZL, KHUBIBI, MACFIA E-O4 DCHSIB, SNEDI, PCDHISB, DIPKIB, CALMIA, EGFL6, DGKB, RHOTIB, PDCD6, ACTN1, PCDH19, SLC25A25B, EDIL3A, SCGN, VCANB, PPP3R1B, EFHD2, ENPP2, DLC, FBN2B, EHD1B, MCTP1A, MACF1A, PLA2G4AB	250 250 73	2 18 39 17	868 3.735 340 2.253	0.139	0.150	0.150
GO:0004222 metalloendopeptidase activitv	: Molecular 8 Function	2.48 0.00	191 ADAMTSS, ADAM10B, ADAM15, ADAMTSL4, ADAMTS17, MMEL1, ADAMTS9, ADAMTS15A	250 12	22 17	340 4.548	0.488	0.323	0.323
GO:0016740 transferase activity	Molecular 40 Function	12.4 0.00	346 UBEZNB, UGP2B, UCK2A, GALNT14, AARS2, DGKB, PFKFB2B, XYIT1, B4GALNT3A, DGKZA, SI:CH211-27813.3, CPT2, GRK6, ST8SIA5, SI:CH211-243J20.2, MAP3K8, TRIOA, LARGE2, PIK3R3B, ST3GAL2, GALNT7, NUS1, CHKB, MARK3B, EIF2AK3, FUT8A, ZDHHC23B, ZDHHC14, MGAT4C, B3GAT1A, NUCKS1A, CDK7, CDK5, ETNK2, EPHB4A, EPHA4A, CKBB, MAPK14A, NAT8L, CAMKIDA	250 17	743 17	340 1.592	0.703	0.323	0.323

GO:0016301 kinase activity	Molecular	21	6.5	0.0037 UCK2A, CHKB, MARK3B, DGKB, PFKFB2B, EIF2AK3, DGKZA, NUC	CKS1A, CDK7, CDK5, EPHB4A,	250	718	17340 2.02	9 0.72	5 0.3	0.32	23
	Function			ETNK2, EPHA4A, GRK6, CKBB, SI:CH211-243J20.2, MAP3K8, MAF	PK14A, TRIOA, PIK3R3B,							
				CAMKIDA								
GO:0030215 semaphorin receptor	Molecular	4	1.24	0.01261 SEMA3AB, SEMA6A, SEMA4D, SEMA4C		250	34	17340 8.10	0 0.98	3 0.7	⁷ 9 0.77	79
GO:0045499 chemorepellent	Molecular	4	1.24	0.01473 SEMA3AB, SEMA6A, SEMA4D, SEMA4C		250	36	17340 7.70	0.99	4 0.7	⁷ .0 0.7.	79
GO:0016757 transferase activity,	Molecular	10	3.1	0.01935 B3GAT1A, GALNT7, MGAT4C, GALNT14, AARS2, ST8SIA5, XYLT1,	, FUT8A, LARGE2, ST3GAL2	250	278	17340 2.49	5 0.99	0.7.	'9 0.7.	79
transferring glycosyl	Function											
GO:0005178 integrin binding	Molecular	ъ	1.55	0.01995 CCN2B, EGFL6, ADAM15, ITGA10, ITGB8		250	72	17340 4.8:	7 0.99	9 0.7.	'9 0.7.	79
GO:0050321 tau-protein kinase	Molecular	m	0.93	0.02159 BRSK2B, MARK3B, MARK1		250	16	17340 13.0	05 1.00	0.7.	9 0.77	79
GO:0005524 ATP binding	Molecular	35	10.8	0.02225 UBE2NB, UCK2A, AARS2, DGKB, PFKFB2B, TAOK2A, GUCY2F, SN	MC4, ADCY7, DGKZA,	250	1662	17340 1.40	1 1.00	0.7.	⁷ .0 0.7.	79
	Function			SMCHD1, SI:CH211-257P13.3, GRK6, DHX15, SI:CH211-243J20.2,	. MAP3K8, TRIOA, EHD1B,							
				NRBP2B, SI:CH211-1111.3, MARK1, ACTR3, MARK3B, ENTPD2A.1	1, STARD9, EIF2AK3, CDK7,							
				BRSK2B, CDK5, EPHB4A, EPHA4A, MYO5B, CKBB, MAPK14A, CA	IMKIDA							
GO:0016758 transferase activity,	Molecular	S	1.55	0.0328 GALNT7, GALNT14, AARS2, LARGE2, B4GALNT3A		250	84	17340 4.12	9 1.00	0.1.00	0 1.00	8
transferring hexosyl	Function											
GO:0005085 guanyl-nucleotide	Molecular	∞	2.48	0.03611 PREX2, BCAR3, RABGEF1, CCDC88C, MADD, ARHGEF9B, TRIOA, I	RAPGEFL1	250	215	17340 2.58	1 1.00	0.1.00	0 1.00	8
exchange factor	Function											
GO:0005201 extracellular matrix	Molecular	ъ	1.55	0.045 COL5A3A, LAMA1, COL1A1A, COL2A1B, FBN2B		250	93	17340 3.7.	9 1.00	0 1.00	0 1.00	8
structural constituent	Function											

Supplementary Table 7 Imbalanced expressed alleles and their C. compressirostris allele proportion for all five replicates of any hybrid cohort.	

łybrid ohort	Tissu	e SNPs ID	Pr Gene ID in Annotation rt	opo l ion 1 t	Propor tion 2	Propol tion 3	· Propor tion 4	Propor tion 5	Average Proportion (95% Confidence Limits)	Gene	Hightlights of Predicted Function	Gene Description
om x hy	EO	1665681	maker-ptg000267I-snap-gene- 2.67-mRNA-1	64 (0.63	0.64	0.7	0.67	0.66 (0.62-0.369)	ANKRD12	ankyrin repeats-containing cofactor	ankyrin repeat domain 12
om x hy	EO	681658	maker-ptg000082I-snap-gene- 0. 20.7-mRNA-1	64 (0.61	0.74	0.68	0.73	0.68 (0.61-0.75)	ARL13b	cilium-specific protein	ADP ribosylation factor like GTPase 13B
om x hy	EO	2982031	maker-ptg000598I-snap-gene- 0. 2.10-mRNA-1	65 (0.79	0.81	0.68	0.67	0.72 (0.63-0.81)	CDH15	calcium-dependent cell adhesion protein	cadherin 15
om x hy	В	1098949	maker-ptg000160I-snap-gene- 11.44-mRNA-1	86 (0.82	0.79	0.81	0.79	0.82 (0.78-0.85)	CHRND	opening of an ion-conducting channel across the plasma membrane.	cholinergic receptor nicotinic delta subunit
om x hy	EO	4997264	maker-ptg0015361-augustus- gene-4.34-mRNA-1	61 (0.61	0.79	0.6	0.64	0.65.(0.60-0.71)	COLEas	cell-binding notein	niada 5 chala VI anna 3 chain
om x hy	EO	4997265	maker-ptg0015361-augustus- gene-4.34-mRNA-1	61 (0.62	0.8	0.6	0.64				
om x hy	В	4531902	maker-ptg001236I-augustus- gene-26.64-mRNA-1	71 (0.75	0.79	0.74	0.66			معتملهميم لمعلماهم بمعلمهم المستعلمينين	cysteine rich with EGF like
om x hy	B	4531904	maker-ptg0012361-augustus- gene-26.64-mRNA-1	81 (0.6	0.65	0.89	0.7	(F1.0-10:0) E1.0	CREEVI	epideriiiai glowrii i actor -related proteriis	domains 1
om x hy	В	1396998	maker-ptg0002161-augustus- gene-4.4-mRNA-1	67 (0.6	0.64	0.61	0.6	0.62 (0.59-0.66)	DAG1	laminin and basement membrane assembly	dystroglycan 1
om x hy	ЕО	4392819	snap_masked-ptg001165 - processed-gene-0.145-mRNA- 0. 1	65 (0.74	0.67	0.77	0.74	0.71 (0.65-0.78)	DCAF6	ligand-dependent coactivator of nuclear receptors	DDB1 and CUL4 associated factor 6
om x hy	EO	837824	maker-ptg000110I-snap-gene- 11.31-mRNA-1	67 (0.61	0.71	0.61	0.61	0.64 (0.58-0.70)	DST	cytoskeletal linker protein	dystonin
om x hy	B	3404159	maker-ptg000729I-snap-gene- 5.79-mRNA-1	76 (0.8	0.7	0.69	0.84		Caalva	aboration and increases	ectonucle otide
om x hy	EO	3404158	maker-ptg000729I-snap-gene- 5.79-mRNA-1	73 (0.67	0.68	0.7	0.84	(c/ .0-60-0) +/ .0			pyropriospriatase/priosprioureste rase 2
om x hy	EO	3813376	maker-ptg000876I-snap-gene- 1.7-mRNA-1	99	0.67	0.71	0.63	0.6	0.65 (0.60-0.71)	HOXC11a	multicellular organism development and regulation of transcription	homeobox C11a
om x hy	EO	1651431	maker-ptg0002651- est_gff_est2genome-gene-0. 6.33-mRNA-1	5	0.18	0.13	0.14	0.12	0.16 (0.11-0.20)	KCNJ2	allow potassium to flow into a cell rather than out of a cell, probably participates in establishing action potential waveform	inward rectifier potassium channel 2
om x hy	EO	768530	snap_masked-ptg0001001- processed-gene-4.104-mRNA- 0. 1	81 (0.69	0.77	0.88	0.77			structural component of striated muscles which	obscurin, cytoskeletal calmodulin
om x hy	ЕО	768526	snap_masked-ptg0001001- processed-gene-4.104-mRNA- 0. 1	62 (0.62	0.6	0.67	0.68	U. / I (U.04-U. / 8)	UBSCN	plays a role in myofibrillogenesis	and titin-interacting RhoGEF

- 115 -

palmdelphin	paroxysmal nonkinesigenic dyskinesia	sodium channel protein type 4	subunit alpha A	tetraspanin 7b	uveal autoantigen with coiled-	coil domains and ankyrin repeats	phospholipid phosphatase 3	heat shock protein 90 alpha family class a member 1	myosin XVIIIA	E3 ubiquitin-protein ligase TRIM63	cholinergic receptor nicotinic delta subunit	obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF	calsequestrin-1a	xin actin-binding repeat- containing protein 1
regulation of cell shape	regulation of myofibrillogenesis	lowerd codium do hours	VOLGE BALCU SOUTHIN CLARING	integral component of plasma membrane	modulates isoactin dynamics to regulate the	growth and motility	membrane glycoprotein at the cell plasma membrane	inducible molecular chaperone	unconventional myosin	muscle-specific rING finger protein	opening of an ion-conducting channel across the plasma membrane	structural component of striated muscles which plays a role in myofibrillogenesis	skeletal muscle specific member of the calsequestrin protein	protect actin filaments during depolymerization
DALMD	PNKD		00.444	TSPAN7b			EddTd	HSP90aa1	MY018a	TRIM63	CHRND	OBSCN	CASQ1a	XIRP1
0.78 (0.64-0.92)	0.69 (0.60-0.78)	0 66 10 61 0 60)		0.86 (0.79-0.93)	(10 0-22 0) 18 0	(10.0-10.0) +0.0	0.67 (0.61-0.72)	0.67 (0.61-0.72)	0.68 (0.59-0.78)	0.71 (0.63-0.79)	0.76 (0.68-0.84)	0.79 (0.71-0.87)	0.92 (0.90-0.94)	0.79 (0.73-0.85)
0.73	0.76	0.69	0.63	0.86	0.9	0.87	0.68	0.64	0.6	0.72	0.83	0.75	0.92	0.81
0.9	0.67	0.69	0.66	0.92	0.9	0.9	0.67	0.68	0.8	0.64	0.69	0.84	0.95	0.78
0.68	0.63	0.61	0.67	0.78	0.82	0.77	0.67	0.61	0.65	0.79	0.7	0.83	0.92	0.73
0.9	0.78	0.63	0.68	0.85	0.71	0.68	0.6	0.67	0.7	0.75	0.8	0.7	0.9	0.86
maker-ptg0002541-augustus- gene-4.109-mRNA-1	maker-ptg000548I-snap-gene- 0.90-mRNA-1	maker-ptg001188I-snap-gene- 6.4-mRNA-1	maker-ptg001188I-snap-gene- 6.4-mRNA-1	maker-ptg0005091-augustus-0.91 gene-3.41-mRNA-1	maker-ptg001586I-snap-gene- 1.60-mRNA-1	maker-ptg001586I-snap-gene- 1.60-mRNA-1	maker-ptg000959I-snap-gene- 7.19-mRNA-1	maker-ptg000051l-snap-gene- 6.91-mRNA-1	maker-ptg001394I-snap-gene- 3.24-mRNA-1	maker-ptg001619I-snap-gene- 1.135-mRNA-1	maker-ptg000160I-snap-gene- _{0.8} 11.44-mRNA-1	snap_masked-ptg0001001- processed-gene-4.104-mRNA- 0.84 1	maker-ptg001156I-augustus- 0.91 gene-8.0-mRNA-1	maker-ptg000413I-snap-gene- 0.77 5.117-mRNA-1
1624861	2766503	4446575	4446574	2670824	5058039	5058040	3177368	305826	3786101	4016401	862477	606006	3426233	1814167
EO	EO	EO	EO	EO	EO	B	SM	SM	SM	S	SM	SM	SM	SM
com x rhy	com x rhy	com x rhy	com x rhy	com x tsh	com x tsh	com x tsh	com x rhy	com x rhy	com x rhy	com x rhy	com x rhy	com x rhy	com x rhy	com x tsh

- 116 -

Supplementary Table 8

S	upplementary Table 8 Sequence information of <i>KCNJ2</i> transcripts in all pure-bred individuals
com 1	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG GGTAGTGTGGCGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC AGCAATGGTGATGGCAAGGTGAACATGTGGCAGCCGGTGCCATGTCGTTCGT
com 2	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG GGTAGTGTGCGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC AGCAATGAGCGAGAAAGGCCAGCGGCACATGTGGCCCCATGTCGTTTCGTCAAGAAGGATGGACACTGCAACGTGCAACGTGCACATCATC AACATGAGCGAGAAAGGCCAGCGCTACATAGCCGACATCTTCACCACCTGCGTGGACATCCGTTGGCGATGATAATCATCTTC TGCTTGACTTTTGTGCTTTCATGGTTGTTCTTTGGCTATGTGTTCTGGCTGG
com 3	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG GGTAGTGCGGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC AGCAATGGTGATGGCAAGGTGAACATGTGGCAGCCGGTGCCATGTCGTTCGT
com 4	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG GGTAGTGTGCGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC AGCAATGGTGATGGCAAGGTGAACATGTGGCAGCCGGTGCCATGTCGTTTCGTCAAGAAGGATGGACACTGCAACGTGCAACTCATC AACATGAGCGAGAAAAGGCCAGCGCGCACATAGGCGCACGTGCCATGTCGTTCGT

com 5	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG GGTAGTGTGCGGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC AGCAATGGTGATGGCAAGGTGAACATGTGGCAGCCGGTGCCATGTCGTTGTCGTCAAGAAGGATGGACACTGCAACGTGCAACATCATC AACATGAGCGAGAAAGGCCAGCGCTACATAGCCGACATCTTCACCACCTGCGTGGACATCCGTTGGCGATGATAATCATCTTC TGCTTGACTTTTGTGCTTTCATGGTTGTTCTTTGGCTAGTGTGTTCTGGCGGGGCCTTCTTCTATGGTGACTTGGGGAATAGCTCCCAG CAGTGTGTCTCCAATGTCAACAGCTTCATGGCAGCCTTCCTCTTCTCTGTGGAGACACCACCACTATTGGCTATGGTTACCACCATGT GACAGAAGAGTGCCCCATCGCTGTCTTTATGGTGGTTTTCCAGTGCATTGTTGGCTGCATCATCGACGCCTTCATCATTGGTGCCGTCA TGGCCAAGATGGCCAAGCCCACGAAGCGCAATGAAACCCTGGTGTTTAGCCACAACGCTACAATAGCAATGCGGGACGGCAAGCTA TGCCTGATGTGGCGAGTTGGCAACCTACGCAAAAGCCACCTGGTGGAGGCCCACGTGAGGGCCTAGCTACTCAAGTCCCGGACCACC GCCGAGGGGGAGTTTATCCCCCTAGACCACGTAGATATTGATGTGGGGCTTTGACACTGGCGTAGACCGGATCTTCCTTGTTTCCCCCA TCACCATTGTCCATGAGATCAACGAGGACAGTCCCTTCTATGATATGAGCAAGCA
tsh 1	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG GGTAGTGTGGCGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC AGCAATGGTGATGGCAAGGTGAACATGTGGCAGCCGGTGCCATGTCGTTTCGTCAAGAAGGATGGACACTGCAACGTGCAATGGCCAC AACATGAGCGAGAAAGGCCAGCGCTACATAGCCGACATCTTCACCACCTGCGTGGACATCCGTTGGCGATGGATG
tsh 2	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG GGTAGTGTGCGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC AGCAATGGTGATGGCAAGGTGAACATGTGGCAGCCGGTGCCATGTCGTTCGT
tsh 3	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG GGTAGTGTGCGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC AGCAATGGTGATGGCAAGGTGAACATGTGGCAGCCGGTGCCATGTCGTTCGT
rhy 1	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG GGTAGTGTGCGGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC AGCAGTGGTGATGGCAAGGTGAACATGTGGCAGCCGGTGCCATGTCGTTTCGTCAAGAAGGATGGACACTGCAACGTGCACATCATC AACATGAGCGAGAAAGGCCAGCGCTACATAGCCGACATCTTCACCACCTGCGTGGACATCCGTTGGCGATGGATG

	GALAGAAGAGIGEECCATEGEIGTETTTATOGIGGITTTECAGIGEATIGTTGGEIGEATCATEAACGECTTCATEATIGTGGEOTCA
	TGGCCAAGATGGCCAAGCCCACGAAGCGCAATGAAACCCTGGTGTTTAGCCACAACGCTACAATAGCAATGCGGGACGGTAAGCTA
	TGCCTGATGTGGCGAGTTGGCAACCTACGCAAAAGCCACCTGGTGGAGGCCCACGTGAGGGCTCAGCTACTCAAGTCCCGGACCACC
	GCCGAGGGGGGGGGGGGTTTATCCCCCCTAGACCACGTAGATATTGATGTGGGGCTTTGACACTGGCGTAGACCGGATCTTCCTTGTTTCCCCCA
	TO A CONTRACTOR A CALCA A COACA A COOCTION A TO A TO A COAL A COACA A TOTO A CALCART A TO A
	CATCCTGGAGGGCATGGTAGAAGCCACGCCATGACAACCCAGTGTCGCAGTTCCTAGCAGGGGAGATCCTCTGGGGGACACTG
	CTTCGAGCCTGTACTCTTTGAGGAGAAGAACTACTACAAGGTCGACTACTCTCATTTCCACAAAACCTACGAGGTGCCGAGCACTCCG
	CTATGTAGTGCGCGGGGAGCTTGCTGAAAAGAAGGATAATGAGTCCAGCTCTAACTCTTTTTGCTATGAGAATGAAGTGGCGATGATG
	GACAAAGAGGAGGAGGAGGACAAAAAGCGAGTGCAGCAATGATGGGAGCAGTTCACAAAAGGCTTCAGAGTTGGGGCCCCAATCTCTT
	CATGACGTTTAGACGAGATCTGAGATTTGA
rhy 2	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG
111 <i>y</i> =	GGTAGTGTGCGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC
	AGC AGTGGTGATGGC A AGGTG A AC ATGTGGC AGC CGGTGC C ATGTCGTTTCGTC A AGA AGG ATGG A CATGC A ACGTGC AC ATC ATC
	TGCTTGACTTTTGTGCTTTCATGGTTGTTCTTTGGCTATGTGTTCTGGCTGG
	CAGTGTGTCTCCAATGTCAACAGCTTCATGGCAGCCTTCCTCTTCTCTGTGGANACGCAGACCACTATTGGCTATGGTTACCACCATGT
	GACAGAAGAGTGCCCCATCGCTGTCTTTATGGTGGTTTTCCAGTGCATTGTTGGCTGCATCATCAACGCCTTCATCATTGGTGCCGTCA
	TEGEC A A GATEGEC A A GECE A CECE A ATGA A A CECTEGTETTA GEC A CA A CECTA CA ATA GEA A TECEGEGA CECTA A ACCTA
	IGECIGAIGIGGEGAGIIGGEAACEIAEGEAAAAGEEAEEIGGIGGAGGEEEAEGIGAGGGEIEAGEIAEIEAAGIEEEGGAEEAEE
	GCCGAGGGGGGGGGTTTATCCCCCTAGACCACGTAGATATTGATGTGGGCTTTGACACTGGCGTAGACCGGATCTTCCTTGTTTCCCCCA
	TCACCATTGTCCATGAGATCAACGAGGACAGTCCCTTCTATGATATGAGCAAGCA
	CATCCTGGAGGGCATGGTAGAAGCCACAGGCATGACAACCCAGTGCGCAGTTCCTACCTGGCAGGGGAGATCCTCTGGGGGACACTG
	CTTCGAGCCTGTACTCTTTGAGGAGAGAGAAGAACTACTACTACAAGGTCGACTACTCTCATTTCCACAAAAACCTACGAGGTGCCGAGCACTCCG
	CTATGTAGTGCGCGGGAGCTTGCTGAAAAGAAGGATAATGAGTCCAGCTCTAACTCTTTTTGCTATGAGAATGAAGTGGCGATGATG
	GACAAAGAGGAGGAGGAGGACAAAAGCGAGTGCAGCAATGATGGGAGCAGTTCACAAAAGGCTTCAGAGTTGGGGCGCAATCTCTT
	CATGACGTTTAGACGAGAATCTGAGATTTGA
1 0	
rhy 3	
-	GGTAGTGTGCGGGCCAGCCGCTACAGCGTCGTGTCCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCAC
	AGCAGTGGTGATGGCAAGGTGAACATGTGGCAGCCGGTGCCATGTCGTTTCGTCAAGAAGGATGGACACTGCAACGTGCACATCATC
	AACATGAGCGAGAAAGGCCAGCGCTACATAGCCGACATCTTCACCACCTGCGTGGACATCCGTTGGCGATGGATG
	TGCTTGACTTTTGTGCTTTCATGGTTGTTCTTTGGCTATGTGTTCTGGCTGG
	CAGIGIGICICCAAIGICAACAGCIICAIGGCAGCCIICCICICICI
	GACAGAAGAGTGCCCCATCGCTGTCTTTATGGTGGTTTTCCAGTGCATTGTTGGCTGCATCATCAACGCCTTCATCATTGGTGCCGTCA
	TGGCCAAGATGGCCAAGCCCACGAAGCGCAATGAAACCCTGGTGTTTAGCCACAACGCTACAATAGCAATGCGGGACGGTAAGCTA
	TGCCTGATGTGGCGAGTTGGCAACCTACGCAAAAGCCACCTGGTGGAGGCCCACGTGAGGGCTCAGCTCAAGTCCCGGACCACC
	TCACCATIGICCATGAGATCAACGAGGACAGICCCTTCTATGATATGA
	CATCCTGGAGGGCATGGTAGAAGCCACAGCCATGACAACCCAGTGTCGCAGTTCCTACCTGGCAGGGGAGATCCTCTGGGGACACTG
	CTTCGAGCCTGTACTCTTTGAGGAGAAGAACTACTACAAGGTCGACTACTCTCATTTCCACAAAACCTACGAGGTGCCGAGCACTCCG
	CT A TGT A GTGC GC GG G A GCTTGCTG A A A A G A A GG A T A A TG A GTCC A GCTCT A A CTCTTTTTGCT A TG A G A A TG A A GTGGC G A TG A T
	GACAAAAAAGAGGAGGACGAAGGAGGAGGAGGAGGAGGAG
	CATGACGITITAGACGAGAATCIGAGATITIGA
rhy A	ATGAATGTCCAAAACTGTTCCTCAGAAGGTTCTTCCAAAAACTTTTCCAAGGCAGCAGAAGTGAAGCCCTCATCAGCAGAAGCGATG
IIIy 4	GGT A GTGTGCGGGCC A GCCGCCT A C A GCGTCGTCGTCCTCC A A A GT A G A TGGCCTC A A GTTGGCC A C TGTGGCC GTGTCC A A TGGCC A C
	AACATGAGCGAGAAAGGCCAGCGCTACATAGCCGACATCTTCACCACCTGCGTGGACATCCGTTGGCGATGGATG
	TGCTTGACTTTTGTGCTTTCATGGTTGTTCTTTGGCTATGTGTTCTGGCTGG
	CAGTGTGTCTCCAATGTCAACAGCTTCATGGCAGCCTTCCTCTTCTCTGTGGAAACGCAGACCACTATTGGCTATGGTTACCACCATGT
	GACAGAAGAGGGCCCCATCGCTGTCTTTATGGTGGTTTTCCAGTGCATTGTTGGCTGCATCATCAACGCCTTCATCATTGGTGCCGTCA
	TGCCIGATGIGGCGAGIIGGCAACCIACGCAAAAGCCACCIGGIGGAGGCCCACGIGAGGGCICAGCIACICAAGICCCGGACCACC
	GCCGAGGGGGGGGGGTTTATCCCCCTAGACCACGTAGATATTGATGTGGGCTTTGACACTGGCGTAGACCGGATCTTCCTTGTTTCCCCCA
	TCACCATTGTCCATGAGATCAACGAGGACAGTCCCTTCTATGATATGAGCAAGCA
	CTICGAGCCIGIACICITIGAGGAGAAGAACIACIACAAGGICGACIACICICATIICCACAAAACCIACGAGGIGCCGAGCACICCG
	CTATGTAGTGCGCGGGGAGCTTGCTGAAAAGAAGGATAATGAGTCCAGCTCTAACTCTTTTTGCTATGAGAATGAAGTGGCGATGATG
	GACAAAGAGGAGGACGAGGACAAAAGCGAGTGCAGCAATGATGGGAGCAGTTCACAAAAGGCTTCAGAGTTGGGGCGCAATCTCTT
	CATGACGTTTAGACGAGAATCTGAGATTTGA
1 7	
rhy 5	
•	GGGTAGTGTGCGGGCCAGCCGCTACAGCGTCGTCGTCTCCAAAGTAGATGGCCTCAAGTTGGCCACTGTGGCCGTGTCCAATGGCCA
	CAGCAGTGGTGATGGCAAGGTGAACATGTGGCAGCCGGTGCCATGTCGTTTCGTCAAGAAGGATGGACACTGCAACGTGCACATCAT
	CAACATGAGCGAGAAAAGGCCAGCGCTACATAGCCGACATCTTCACCACCTGCGTGGACATCCGTTGGCGATGGATG
	CTGCTTGACTTTTGTGCTTTCATGGTTGTTCTTTGGCTATGTGTTCTGGCTGG
	GIGACAGAGAGIGCCCCATCGCIGTCTTTATGGIGGTTTTCCAGIGCATTGTTGGCTGCATCATCAACGCCTTCATTGGTGCCGT
	CATGGCCAAGATGGCCAAGCCCACGAAGCGCAATGAAACCCTGGTGTTTAGCCACAACGCTACAATAGCAATGCGGGACGGTAAGC
	TATGCCTGATGTGGCGAGTTGGCAACCTACGCAAAAGCCACCTGGTGGAGGCCCACGTGAGGGCTCAGCTACTCAAGTCCCGGACCA
	CCGCCGAGGGGGGGGGGGGGGGGCTTTATCCCCCCTAGACCACGTAGACCACGGGCTTTGACACCACGGCGCGCGAGCCGGATCTTCCTTGTTTCCCC
	LGTCATCCTGGAGGGCATGGTAGAAGCCACAGCCATGACAACCCAGTGTCGCAGTTCCTACCTGGCAGGGGAGATCCTCTGGGGGACAC

Supplementary Table 9

Supplementary Table 9 Prediction of impact of two amino acid substitutions inferred from KCNJ2 transcripts of *com. tsh* and *rhv*.

						ton ana my .	
Site(aa)	сот	tsh	rhy	Score	Sensitivity	Specificity	Prediction
60	Ν	Ν	S	0,223	0,91	0,88	Benign
198	D	D	Ν	0,983	0,74	0,96	Probably damaging

5 Article III

Gene and allele specific expression during electric organ ontogeny in African weakly electric fish and their hybrids

Feng Cheng¹, Alice B. Dennis^{1, 2}, Otto Baumann³, Frank Kirschbaum^{1, 4}, Marisol Domínguez¹, Ralph Tiedemann^{1,*}

1 Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

2 Laboratory of Adaptive Evolution and Genomics, URBE, Institute of Life, Earth & Environment, University of Namur, Namur, Belgium

3 Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

4 Department of Crop and Animal Science, Faculty of Life Sciences, Humboldt University, Berlin, Germany

Abstract

Hybridization can act as a catalyst for rapid phenotypic evolution by introducing novel allelic combinations, which can affect hybrid phenotype through changes in gene expression. The African weakly electric fish use their muscle-derived electric organ to produce an electric organ discharge (EOD) for electrocommunication and electrolocation. The EOD in the genus *Campylomormyrus* and cross-species hybrids is usually species/cross-specific and varies during ontogeny. We

compared the gene expression patterns and allele specific expression between juvenile and adult individuals in *C. compressirostris* (EOD duration 0.4 ms in juvenile and 0.4 ms in adult), *C. rhynchophorus* (EOD duration 5 ms in juvenile and 40 ms in adult) and their hybrids (EOD duration 0.4 ms in juvenile and 4 ms in adult). Differentially expressed genes between juveniles and adults were highly enriched in "membrane", "plasma membrane" and "cytoplasm" Go Ontology terms. We detected several potassium channel-related genes (e.g. *KCNJ2*, *ADCYAP1*) that are potentially involved in the EOD development during ontogeny. The alleles from *C. compressirostris* generally show dominant expression in the hybrid at juvenile and adult life stages. *KCNJ2* is the only gene that exhibits allelic dominance of the *C. rhynchophorus* allele, and has an increasing expression during ontogeny in this allele. This suggests that the EOD development in hybrids could be related to the increasing allelic expression of the *C. rhynchophorus* allele under the scenario of overall dominance of *C. compressirostris* alleles. Our study sheds light in the evolution of the electric organ discharge in electric fishes and on the potential role of introgressive hybridization in complex phenotypic traits.

Key words: *Campylomormyrus*, hybrid, EOD, allele specific expression, gene expression, ontogeny.

INTRODUCTION

Successful hybridization is a rare phenomenon among animals, but hybrids have played an important role in understanding vertebrate evolution (Burke and Arnold 2001), e.g. the emergence of complex phenotypes. Interspecific hybrids result from the mating between closely related species, and contain different 'parental genomes' within the same nucleus, referred to as subgenomes. Before the subgenomes become united in the hybrid, each of them has had an

independent evolution (Comai 2005; Schiavinato et al. 2021). The phenotypes in hybrids may range from intermediate forms to transgressive novel traits (Janko et al. 2021). This is occasionally associated with the function of the two subgenomes, in which segments in one subgenome could be selectively reduced or even eliminated causing considerable changes in hybrids (Burke and Arnold 2001; El-mihoub et al. 2006; Janko et al. 2021).

One possible way to understand subgenome evolution is to detect the allele specific expression or the imbalance between the expression levels of the alleles from the parental species in the hybrids (Crowley et al. 2015; Shao et al. 2019). Allele specific expression has been identified in hybrids and polyploids of many animals and plants (Quinn et al. 2014; Crowley et al. 2015; Boutet et al. 2016; Knowles et al. 2017; Cooper and Shaffer 2021; Zhang et al. 2023). In the fish hybrid of *Megalobrama amblycephala* and *Culter alburnus*, the genome-wide transcriptional analysis revealed that the asymmetric expression of alleles could counteract deleterious effects of the subgenomes, and hence improve the adaptability of novel hybrids (Ren et al. 2019).

The African weakly electric fish (Mormyridae) possess a "magic trait" to produce and perceive electric signals (Feulner et al. 2009). Mormyrids use their electric organ to generate electric organ discharge (EOD) for objects sensing and electrocommunication in a social context. The larval electric organ is found in the deep lateral muscle while the adult electric organ is located in the caudal peduncle (Nguyen et al. 2017). The EOD is mainly species-specific and varies in shape and waveform. Among adult *Campylomormyrus*, the short duration EOD represents the ancestral state (plesiomorphic) while the long duration EODs (including medium) are considered as derived (apomorphic) features (Kirschbaum et al. 2016).

The EOD in mormyrids is a compound action potential from the simultaneously firing electrocytes (Mills and Zakon 1991). The depolarization and repolarization phases of an action potential are

mediated by multiple, interacting, inward and outward ion currents (Stoddard 2008; Jeevaratnam et al. 2018). In *Campylomormyrus*, the diverged EOD waveform might relate to the strength of potassium currents (Cheng et al. 2023a). The inwardly rectifying potassium channel, which is encoded by gene *KCNJ2*, possibly regulates the action potential duration with higher expression in elongated EOD species (Cheng et al. 2023a). In addition, the voltage-gated potassium channel gene *KCNA7a*, which mediates outward potassium currents, also potentially contribute to the EOD duration in weakly electric fish, as has been found in *Gymnarchus* and *Brienomyrus* (Swapna et al. 2018).

EOD variation not only exists in different species, but also in different life stages. Developmental change in electrocytes includes cell growth, formation of papillae (in *C. rhynchophorus*, *C. numenius* and hybrid *C. compressirostris* x *C. rhynchophorus*) and other structural features (Nguyen et al. 2020; Korniienko et al. 2021). Previous investigations on the ontogeny of the EOD in genus *Campylomormyrus* species showed that *C. compressirostris*, *C. tamandua*, *C. tshokwe*, *C. rhynchophorus* share short duration EODs in the early juvenile stage (Kirschbaum et al. 2016; Nguyen et al. 2017; Nguyen et al. 2020; Korniienko et al. 2020; Korniienko et al. 2021). In *C. compressirostris*, the EOD stays consistent during development, while other studied species undergo multiple alterations until they reach the adult EOD. Developmental EOD variation was also found in other mormyrid species, e.g. *Mormyrops* and *Paramormyrops* (Nguyen et al. 2020).

Successful breeding experiments have been performed in *Campylomormyrus* species. They encompass also in interspecific hybrids, although hybrids are rarely be found in the natural habitat (Kirschbaum et al. 2016; Nguyen et al. 2017; Nguyen et al. 2020). Taking advantage of this, we are able to observe the EOD variation in purebred species and hybrids during ontogeny. In most cases, hybrids show an intermediate EOD phenotype compared to their parent species

(Kirschbaum et al. 2016). *Campylomormyrus* hybrids also start with similar short duration juvenile EOD, and reach an adult EOD after several changes in juvenile stages (Kirschbaum et al. 2016). However, the apomorphic feature (medium and long duration EOD) is always dominant over the plesiomorphic (short duration EOD) trait (Kirschbaum et al. 2016). The adult EOD of hybrid *C*. *compressirostris* x *C. rhynchophorus* is similar to the EOD of 6 cm sized juveniles of *C. rhynchophorus* (Kirschbaum et al. 2016).

Fig. 1 Electric organ discharge (EOD) of studied *Campylomormyrus* species and hybrids and working flow in this study.

a Species/hybrids samples used in the study have EODs with different duration and shape. **b** Differential gene expression (DGE) analysis between juvenile and adult for each species/hybrids. **c** Allelic specific expression analysis in adult and juvenile hybrids. Only the homozygous bialleles in F0 were preserved and the allelic depth was counted for allelic specific expression in two life stages of the hybrids.

This study focuses on the gene expression in juvenile and adult weakly electric fish in both purebred species and hybrids. Our objective is to address the role of hybridization-derived genetic architecture on the expression of complex phenotypes by identifying genes contributing to EOD development during the ontogeny of parental species, as well as unravelling allele specific expression during hybrid development. We included two life stages samples (adult and ~ 7 cm juvenile) from two F0 species and their F1 hybrid in *Campylomormyrus* (Fig. 1a): *C. compressirostris* (*com*, 0.4 ms short and biphasic adult EOD, 0.4 ms short and biphasic juvenile EOD), *C. rhynchophorus* (*rhy*, 40 ms long and triphasic adult EOD, 5 ms medium and biphasic juvenile EOD), and their hybrid *C. compressirostris* $\stackrel{\circ}{\supset}$ x *C. rhynchophorus* $\stackrel{\circ}{\downarrow}$ (*com* x *rhy*, 4 ms medium and biphasic adult EOD, 0.4 ms short and biphasic juvenile EOD).

RESULTS

The overall gene expression patterns from both juvenile and adult RNA-seq were analyzed by principal component analysis (PCA, Fig. 2a). This PCA plot preliminary supported a distribution

Fig. 2 Differential gene expression analysis of the comparison between adult and juvenile species/hybrids.

a Principal component analysis (PCA) of gene expression levels in all juvenile and adult species/hybrids. **b** Venn Diagram graph for differentially expressed genes (DEGs) between juvenile and adult shared in three species/hybrids. All DEGs have $|\log 2(\text{fold change})| > 1$ and p-value < 0.05. pattern based on EOD duration in PC1, which explained 35% of variation. The expression pattern from both adult and juvenile *com* samples were clustered together, corresponding with the EOD consistency during the development in this species. In contrast, the adult EODs in the *rhy* and F1 hybrid exhibit shape variation and duration elongation compared with juvenile EODs, and there is a separation between juvenile and adult RNA-seq data of these species in the PCA plot.

Genes relative to electric organ development during ontogeny

We performed gene expression pairwise comparisons between adult and juvenile electric organ for each species and the hybrids separately (Fig. 1b). We specifically looked at the differentially expressed genes (DEGs) that overlapped among different species/hybrids (Fig. 2b). In *rhy* and the hybrid *com* x *rhy*, the EOD went through shape change and duration elongation from juvenile to adult, while EOD stayed constant in *com*. Therefore, we focused on three sets of DEGs: set A contains the shared DEGs only in *rhy* and the hybrids, representing the DEGs potentially associated to EOD change during ontogeny; set B contains the DEGs uniquely in *com*, representing the DEGs corresponding to an EOD consistency during ontogeny; set C contains the DEGs shared in all species and hybrid, representing the DEGs corresponding to general electric organ development. In total, we identified 1,064 DEGs for set A, 1,270 for set B and 358 from for C (Supplementary Table 1). We blasted all the DEGs against the *nr* database at the National Center for Biotechnology Information (NCBI). Three sets of DEGs were significantly enriched in "membrane", "plasma membrane", "cytoplasm", and "extracellular space/matrix/region" Gene Ontology (GO) terms (Supplementary Table 2, 3, 4).

In set A, the signaling genes *ADCYAP1* showed high overexpression in the adult electric organ. A cytoskeletal and sarcomeric gene *FILIP1* was slightly up-regulated in the adult electric organ. We also found five potassium channel genes (two copies of *KCNA7a*, *KCNH8*, *KCNC1* and *KCNC2*)

Gene D in annocation Gene Highingho of reduction Game D in annocation Gene D control Game D control augustus-gene-0.54-mRNA-1 DCCNAP1 activation of adenylate replace activity, may cause reduction adenylate replace activity in propertide 1 stand augustus-gene-0.121-mRNA-1 RUD3 modulates the delayed rectifier voltage-gated potassium contrage-gated channel subfamily S member 3 transm augustus-gene-0.121-mRNA-1 KCNG2 form M-type outward postisium contrant when depolarization portassium voltage-gated channel subfamily S member 3 transm augustus-gene-3.11-mRNA-1 KCNG2 voltage-dependent potassium in opermeability of excitable i potassium voltage-gated channel subfamily A member 7 transm stop gene-81.10-mRNA-1 KCNG2 voltage-dependent potassium in opermeability of excitable i potassium voltage-gated channel subfamily A member 7 transm stop gene-13.16-mRNA-1 KCNG3 voltage-dependent potassium contrant potassium voltage-gated channel subfamily M member 7 transm stop gene-13.16-mRNA-1 KCNG3 voltage-dependent potassium contrant potassium voltage-gated channel subfamily M member 7 transm stop gene-20.28-mRNA-1 KCNG3 voltage-dependent potassium contrant cotassium contrage-gated channel subfamily M member 8 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>log2F</th><th>U</th></t<>								log2F	U
I.G. mRNA-1 ACXAP1 activation of adenylate cyclase activity, may cause reduction adenylate cyclase activating protein 1 signali 1.121-mRNA-1 KCXAP1 activation of adenylate cyclase activity, may cause reduction adenylate cyclase activating protein 1 signali 1.121-mRNA-1 KCVD26 from M-type outward potassium current whole optassium of pacasium whate-gated channel subfamily KT member 5 transm mRNA-1 KCVD26 from M-type outward potassium ion permeability of excitable potassium whate-gated channel subfamily A member 7a transm mRNA-1 KCVD2 allow potassium ion permeability of excitable potassium whate-gated channel subfamily A member 7a transm mRNA-1 KCVD2 voltage-dependent potassium ion permeability of excitable potassium whate-gated channel subfamily A member 7a transm mRNA-1 KCVD2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily A member 7a transm mRNA-1 KCVD2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily M member 7a transm mRNA-1 KCVD2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily M member 7a transm mRNA-1 KCVD2		lotation	Gene	Hightlights of Predicted Function	Gene Description	Category	com	rhy	com x rhy
-0.121-mRNA-1 <i>F(LP1</i> acting through a filamin-A/F-actin axis filamin-A/interacting protein 1 octosis -0.121-mRNA-1 <i>KCUS3</i> modulates the delayed rectifier voltage-gated dramel subfamily K member 3 transm 83-mRNA-1 <i>KCUS3</i> from M-type outward potassium voltage-gated dramel subfamily K member 3 transm -0.121-mRNA-1 <i>KCU32</i> low prassium for flow into a cleptohabily participates in invaried rectifier potassium voltage-gated dramel subfamily K member 7 transm -6.111-mRNA-1 <i>KCU37</i> voltage-dependent potassium ion permeability of excitable potassium voltage-gated dramel subfamily A member 7a transm 10-mRNA-1 <i>KCU470_2</i> voltage-dependent potassium ion permeability of excitable potassium voltage-gated dramel subfamily A member 7a transm 10-mRNA-1 <i>KCU470_2</i> voltage-dependent potassium ion permeability of excitable potassium voltage-gated dramel subfamily A member 7a transm 10-mRNA-1 <i>KCU470_2</i> voltage-dependent potassium ion permeability of excitable potassium voltage-gated dramel subfamily A member 7a transm 10-mRNA-1 <i>KCN470_2</i> voltage-dependent potassium voltage-gated dramel subfamily A member 7a transm 10-mRNA-1 <i>KCN470_2</i> soldum/potastint repolarization pot	maker-ptg001479l-augustus-gene	-0.6-mRNA-1	ADCYAP1	activation of adenylate cyclase activity, may cause reducti	on adenylate cyclase activating polypeptide 1	signaling	•	8.95	5.56
B3-mRNA-1 KCN33 modulates the delayed rectifier voltage-gated potassium voltage-gated channel subfamily KQT member 3 transm -3.11-mRNA-1 KCN3 from M-type outward prassium to flow into a cell; probably participates in invarted rectifier potassium voltage-gated channel subfamily KQT member 7 transm -3.11-mRNA-1 KCN370_2 voltage-dependent potassium ion permeability of excitable to potassium voltage-gated channel subfamily A member 7a transm B-mRNA-1 KCN370_2 voltage-dependent potassium ion permeability of excitable to potassium voltage-gated channel subfamily A member 7a transm 10-mRNA-1 KCN370_2 voltage-dependent potassium ion permeability of excitable to potassium voltage-gated channel subfamily A member 7a transm 10-mRNA-1 KCN370_2 voltage-dependent potassium ion permeability of excitable to potassium voltage-gated channel subfamily A member 7a transm 10-mRNA-1 KCN370_2 voltage-dependent potassium ion permeability of excitable to potassium voltage-gated channel subfamily A member 7a transm 10-mRNA-1 KCN370_2 voltage-dependent potassium in permeability of excitable to potassium voltage-gated channel subfamily A member 7a transm 20-4-mRNA-1 KCN17 avoltage-gated channel subfamily A member 7a transm 20-4-mRNA-1	maker-ptg000881l-augustus-gene	-0.121-mRNA-1	FILIP1	acting through a filamin-A/F-actin axis	filamin-A-interacting protein 1	cytoskeletal & sarcomeric	•	1.66	1.06
-3.11-mR.N-1 KCNGsa form M-type outward potassium current when depolarizatic potassium voltage-gated channel subfamily KGT member 5 transmeration =	maker-ptg000335l-snap-gene-16.	83-mRNA-1	KCNS3	modulates the delayed rectifier voltage-gated potassium	ch potassium voltage-gated channel subfamily S member 3	transmembrane ion transport	÷	4.07	6.07
enome-gene 6.33-mRNA-1 KCV/2 allow potassium to flow into a cell; probably participates in inward rectifier potassium channel 2 transm 8-mRNA-1 KCV/2 voltage-dependent potassium ion permeability of excitable (potassium voltage-gated channel subfamily A member 7a transm 10-mRNA-1 KCMA72, 2 voltage-dependent potassium ion permeability of excitable (potassium voltage-gated channel subfamily A member 7a transm 10-mRNA-1 KCMA72, 1 voltage-dependent potassium ion permeability of excitable (potassium voltage-gated channel subfamily A member 7a transm 1-0-mRNA-1 KCMA72, 2 voltage-dependent potassium ion permeability of excitable (potassium voltage-gated channel subfamily H member 7a transm 1-0-mRNA-1 KCVC2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily H member 7a transm 2-55-mRNA-1 KCVC3 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily M member 1 transm 2-5-mRNA-1 KCVC3 regulation of the fast action potential repolarization potassium rintersporting kitabamily C member 1 transm 2-4-mRNA-1 KCVC1 deparation potassium voltage-gated channel subfamily M member 1 transm 4	maker-ptg000878l-augustus-gene	2-3.11-mRNA-1	KCNQ5a	form M-type outward potassium current when depolarizat	ic potassium voltage-gated channel subfamily KQT member 5	transmembrane ion transport	•	5.35	1.87
8-mRNA-1 KCMA7_2 Voltage-dependent potassium ion permeability of excitable (potassium voltage-gated channel subfamily A member 7a transm. 10-mRNA-1 KCMA7_1 voltage-dependent potassium ion permeability of excitable (potassium voltage-gated channel subfamily A member 7a transm. 10-mRNA-1 KCMA voltage-dependent potassium ion permeability of excitable (potassium voltage-gated channel subfamily A member 7a transm. 10-mRNA-1 KCM2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily C member 2 transm. e-5.59-mRNA-1 KCM2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily C member 1 transm. 28-mRNA-1 KCM2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily C member 1 transm. 28-mRNA-1 KCM2 cegulation of the fast action potential repolarization potassium voltage-gated channel subfamily M member 1 transm 28-mRNA-1 KCM1 down-regulate the channel actors the plasm an activ/potassium voltage-gated channel subfamily M member 1 transm 28-mRNA-1 KCM1 down-regulate the channel actors the plasm an activ/potassium voltage-gated channel subfamily M member 1 transm <td>maker-ptg000265I-est_gff_est2g</td> <td>enome-gene-6.33-mRNA-1</td> <td>KCNJ2</td> <td>allow potassium to flow into a cell; probably participates</td> <td>in inward rectifier potassium channel 2</td> <td>transmembrane ion transport</td> <td>•</td> <td>1.13</td> <td>1.73</td>	maker-ptg000265I-est_gff_est2g	enome-gene-6.33-mRNA-1	KCNJ2	allow potassium to flow into a cell; probably participates	in inward rectifier potassium channel 2	transmembrane ion transport	•	1.13	1.73
JO-mRNA-1 KCMA7_2.1 Voltage-dependent potassium ion permeability of excitable i potassium voltage-gated channel subfamily H member 7a transm JG-mRNA-1 KCM43 elicita a slowly activating, ouwand recityfing current potassium voltage-gated channel subfamily H member 8 transm JG-mRNA-1 KCM2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily C member 1 transm e-10.4-mRNA-1 KCM2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily C member 1 transm e-5.9-mRNA-1 KCM2 regulation of the fast action potential repolarization potassium-voltage-gated channel subfamily C member 1 transm 2.8-mRNA-1 KCM2 optiming of an ion-conducting thannel across the plasm and subfamily C member 1 transm 2.8-mRNA-1 KCM1 denyer factored across the plasm and subfamily M member 1 transm 2.8-mRNA-1 KCM1 delayed rectifier potassium channel potassium voltage-gated channel subfamily M member 1 transm 2.8-mRNA-1 KCM1 delayed rectifier potassium channel potassium voltage-gated channel subfamily M member 1 transm 2.8-mRNA-1 KCM14 delayed re	maker-ptg000028l-snap-gene-81	.8-mRNA-1	KCNA7a_2	voltage-dependent potassium ion permeability of excitabl	e i potassium voltage-gated channel subfamily A member 7a	transmembrane ion transport	•	-2.10	-1.11
.16-mRNA-1 KCVH8 elicits a slowly activating, outward rectifying current potassium voltage-gated channel subfamily H member 8 transm e-104-mRNA-1 KCVC2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily H member 2 transm e-104-mRNA-1 KCVC2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily C member 2 transm e-559-mRNA-1 KCVC2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily V member 1 transm c4-132-mRNA-1 KCVC3 optium/potassium-ATPase o-subunt potassium-transporting ATPase subunt alpha-3 transm .44-132-mRNA-1 KCVH1 down-regulate the channel across the plasma me acerycholine receptor submit delta transm .44-132-mRNA-1 KCVH1 delayed rectifier potassium channel potassium voltage-gated channel subfamily V member 1 transm .5-mRNA-1 KCVH2 delayed rectifier potassium channel potassium voltage-gated channel subfamily V member 1 transm .5-mRNA-1 KCVH1 delayed rectifier potassium channel potassium voltage-gated channel subfamily V member 1 transm .5-mRNA-1 KCVH1 delayed rectifier potassium channel potassium voltage-gated channel subfamily V member 2 transm .5-mRNA-1 KCV	maker-ptg000028l-snap-gene-81	10-mRNA-1	KCNA7a_1	voltage-dependent potassium ion permeability of excitabl	e i potassium voltage-gated channel subfamily A member 7a	transmembrane ion transport	r	-1.06	-2.38
de-10.4-mRNA-1 KCMC2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily C member 2 transm ne-50.4-mRNA-1 KVCI2 regulation of the fast action potential repolarization potassium voltage-gated channel subfamily C member 1 transm ne-55.9-mRNA-1 AFPLa3 sodium/potassium-AFPase or subunit potassium voltage-gated channel subfamily C member 1 transm 1.28-mRNA-1 AFPLa3 sodium/potassium-AFPase or subunit sodium/potassium-AFPase or subunit transm 1.28-mRNA-1 AFPLa3 codium/potassium-AFPase or subunit potassium voltage-gated channel subfamily V member 1 transm 1.44-mRNA-1 C/HND opening of an ion-conducting channel actoss the plasma me eetylcholine receptor subunit delta transm 5-mRNA-1 KCVH1 deaved-rectifier voltage-dependent outward potassium voltage-gated channel subfamily V member 1 transm 5-mRNA-1 KCVH2 dealsef-factorentic subtamily V member 1 transm 5-mRNA-1 KCVH2 dealsef-factorentic subtamily V member 1 transm 5-mRNA-1 KCVH2 dealsef-factorentic subtamily V member 1 transm 5-mRNA-1	maker-ptg000922l-snap-gene-1:	3.16-mRNA-1	KCNH8	elicits a slowly activating, outward rectifying current	potassium voltage-gated channel subfamily H member 8	transmembrane ion transport	•	-2.36	-1.39
Re-S39-mRNA-1 KCNCI regulation of the fast action potential repolarization potassium voltage-gated channel subfamily C member 1 transm 2.8-mRNA-1 ATPLa3 sodium/potassium-ATPase α-subunit sodium/potassium-ATPase q-subunit transm 2.8-mRNA-1 ATPLa3 sodium/potassium-ATPase α-subunit sodium/potassium-transporting ATPase subunit alpha-3 transm 2.4-mRNA-1 CHRND opening of an ion-conducting channel across the plasma me eetvlctoline receptor subunit delta transm 6-4.132-mRNA-1 KCNH1 denvergulate the channel across the plasma me eetvlctoline receptor subunit delta transm 5-mRNA-1 KCNH1 delayed rectifier potassium channel across the plasma mo ortexylopine receptor submit delta transm 5-mRNA-1 KCNH2 delayed rectifier potassium channel across the plasmit y member 1 transm 5-mRNA-1 KCNH2 delayed rectifier potassium channel potassium voltage-gated channel subfamily V member 1 transm 5-mRNA-1 KCNH2 delayed rectifier potassium channel subfamily M member 2 transm 5-mRNA-1 KCNH2 potassium voltage-gated channel subfamily M member 2 transm </td <td>maker-ptg001310l-augustus-ger</td> <td>ie-10.4-mRNA-1</td> <td>KCNC2</td> <td>regulation of the fast action potential repolarization</td> <td>potassium voltage-gated channel subfamily C member 2</td> <td>transmembrane ion transport</td> <td>r</td> <td>-1.04</td> <td>-1.41</td>	maker-ptg001310l-augustus-ger	ie-10.4-mRNA-1	KCNC2	regulation of the fast action potential repolarization	potassium voltage-gated channel subfamily C member 2	transmembrane ion transport	r	-1.04	-1.41
1.28-mRNA-1 ATPLa3 sodium/potassium-ATPase α-subunit sodium/potassium-transporting ATPase subunit alpha-3 transm 1.44-mRNA-1 ATPLa3 sodium/potassium-vtPase α-subunit transm transm 1.44-mRNA-1 CHND pown-regulate the channel actorist plasma me activity of KCNB1, KCNC potassium voltage-gated channel modifier subfamily V member 1 transm 6-4.137-mRNA-1 KCNV1 down-regulate the channel actorist plasma me activity of KCNB1, KCNC potassium voltage-gated channel modifier subfamily V member 1 transm 5-mRNA-1 KCNV1 delayed rectifier potassium channel potassium voltage-gated channel subfamily V member 1 transm 5-mRNA-1 KCND2 delayed-rectifier voltage-dependent outward potassium voltage-gated channel subfamily N member 2 transm 5-mRNA-1 KCND2 delayed-rectifier voltage-dependent outward potassium voltage-gated channel subfamily N member 2 transm 5-mRNA-1 KCND2 delayed-rectifier voltage-dependent outward potassium voltage-gated channel subfamily N member 2 transm 5-mRNA-1 KCND2 delayed-rectifier voltage-dependent outward potassium voltage-gated channel subfamily A member 3 transm 6-12.7-mRNA-1 KCND2 rectifier potassium channel tsba potassium voltage-gated channel subfamily A member 3 transm 6-12.7-mRNA-1 KCND3 Factin cross-linking protein alpha-actinin-2	maker-ptg000898l-augustus-ger	le-5.59-mRNA-1	KCNCI	regulation of the fast action potential repolarization	potassium voltage-gated channel subfamily C member 1	transmembrane ion transport	r.	-3.13	-3.18
A4-mRNA-1 CHRND Opening of an ion-conducting channel across the plasma me acetylcholine receptor submit delta transme e-4.132-mRNA-1 KCVV1 down-regulate the channel activity of KCV81, KCVC porassium voltage-gated channel modifier subfamily V member 1 transm sed-gene-6.4-mRNA-1 KCVV1 down-regulate the channel activity of KCV81, KCVC porassium voltage-gated channel modifier subfamily V member 1 transm sed-gene-6.4-mRNA-1 KCVV1 delayed rectifier potassium channel potassium voltage-gated channel subfamily V member 1 transm sed-gene-6.4-mRNA-1 KCV04 regulation of neuronal excitability potassium voltage-gated channel subfamily N member 2 transm sed-gene-3.28-mRNA-1 KCV042 staker-related potassium channel tsh2 voltage-gated channel subfamily N member 2 transm sed-gene-5.11-mRNA-1 KCV042 shaker-related potassium channel tsh2 voltage-gated channel subfamily N member 3 transm e-12.7-mRNA-1 KCV042 shaker-related potassium channel tsh2 cytosk transm 89-mRNA-1 ACTN2 F-actin cross-linking protein alpha-actinin-2 cytosk transm 89-mRNA-1 KCV12 potassium channel subfamily H member 2	maker-ptg000650l-snap-gene-20	.28-mRNA-1	ATP1a3	sodium/potassium-ATPase α-subunit	sodium/potassium-transporting ATPase subunit alpha-3	transmembrane ion transport	•	-4.83	-4.21
44-mRN-1 CHRND Opening of an ion-conducting channel across the plasma me acetycholine receptor subunt delta Tansm e4.132-mRNA-1 KCVV1 down-regulate the channel across the plasma me acetycholine receptor submit y member 1 transm see4.132-mRNA-1 KCVV1 down-regulate the channel across the plasma me acetycholine receptor submit y member 1 transm see4.132-mRNA-1 KCVV1 delayed rectifier potassium voltage-gated channel subfamily N member 1 transm see4.98m6.4-mRNA-1 KCVV2 regulation of neuronal excitability potassium voltage-gated channel subfamily N member 1 transm see4.98m6.4-mRNA-1 KCV62 delayed-rectifier potassium channel tha2 voltage-gated potassium voltage-gated channel subfamily A member 2 transm see4.98m6.4-mRNA-1 KCV63 shaker-related potassium channel tha2 voltage-gated potassium channel subfamily A member 3 transm se-fene -26.11-mRNA-1 KCV63 shaker-related potassium channel tha2 oftasse cycosk se-fene -26.11-mRNA-1 KCV64 fanored potassium channel subfamily A member 3 transm se-fene -26.11-mRNA-1 ACN2 F-actin cross-linking potein alpha-actinin-2 cycosk <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
e-4.132-mRNA-1 KCNV1 down-regulate the channel activity of KCNB1, KCNB2, KCNC potassium voltage-gated channel modifier subfamily V member 1 transm steed-gene-64-mRNA-1 KCNH1 delayed rectifier potassium channel potassium voltage-gated channel subfamily V member 1 transm S-mRNA-1 KCNH1 delayed rectifier potassium channel potassium voltage-gated channel subfamily V member 1 transm S-mRNA-1 KCNB2 delayed rectifier voltage-dependent outward potassium untage-gated channel subfamily N member 2 transm sted-gene-32-mRNA-1 KCNB2 delayed-rectifier voltage-dependent outward potassium untage-gated channel subfamily N member 2 transm sted-gene-25.11-mRNA-1 KCNB2 shaker-related potassium channel tsha2 voltage-gated channel subfamily A member 2 transm e=12.7-mRNA-1 KCNB2 F -actin cross-linking protein alpha-actinin-2 alpha-actinin-2 transm a9-mRNA-1 ATPLD5 potassium current potassium voltage-gated channel subfamily H member 2 transm e=13mRNA-1 KCN46 potassium current potassium voltage-gated channel subfamily H member 2 transm e=13mRNA-1 KCN40 potassium current potas	maker-ptg000160l-snap-gene-11	44-mRNA-1	CHRND	opening of an ion-conducting channel across the plasma n	ne acetylcholine receptor subunit delta	transmembrane ion transport	1.08	ę	ē
sed-gene-6.4-mRNA-1 KCVH1 delayed rectifier potassium channel potassium voltage-gated channel subfamily H member 1 transm 5-mRNA-1 KCV02 regulation of neuronal excitability potassium voltage-gated channel subfamily B member 4 transm sed-gene-3.28-mRNA-1 KCV02 delayed-rectifier voltage-dependent outward potassium voltage-gated channel subfamily B member 2 transm sed-gene-3.28-mRNA-1 KCV02 delayed-rectifier voltage-dependent outward potassium voltage-gated channel subfamily B member 2 transm sed-gene-3.28-mRNA-1 KCV02 haker-related potassium channel subfamily B member 2 transm sed-gene-26.11-mRNA-1 KCV02 shaker-related potassium channel subfamily A member 6a transm sed-gene-26.11-mRNA-1 ACTV02 F-actin cross-linking protein alpha-actinin-2 alpha-actinin-2 cortex 39-mRNA-1 ATTP12.12 potassium/solutur ATTP3ee β-submit potassium voltage-gated channel subfamily A member 2 cross set 38-mRNA-1 KCV12 rapidly activiting delayed rectifier potassium current potassium voltage-gated channel subfamily H member 2 transm 37-mRNA-1 KCV12 rapidly activiting delayed rectifier potassium current potassium voltage-gated channel subfamily H member 2 transm 37-mRNA-1 KCV12 rapidly activiting delayed rectifier potassium current potassium voltage-gated channel subfamily H member 2 transm 37-mRNA-1 KCV12 rapidly cativities depated rectifier voltassium current potassium voltage-gated channel subfamily H member 10 transm 37-mRNA-1 KCV12 rapidly cativities developed rectifier voltassium current potassium voltage-gated channel subfamily H member 10 transm 37-mRNA-1 KCV12 rapidly cativities developed rectifier voltaber 2 transm 37-mRNA-1 KCV12 rapidly rectifier voltab	maker-ptg001844I-augustus-gen	e-4.132-mRNA-1	KCNV1	down-regulate the channel activity of KCNB1, KCNB2, KCI	VC potassium voltage-gated channel modifier subfamily V member 1	transmembrane ion transport	4.58	-	ē
s-mRNA-1 KCVQ4 regulation of neuronal excitability potassium voltage-gated channel subfamily Q member 4 transm seed-gene-3.28-mRNA-1 KCV022 deleyed-rectifier voltage-dependent outward potassium voltage-gated channel subfamily B member 2 transm sed-gene-3.6.11-mRNA-1 KCV032 deleyed-rectifier voltage-dependent outward potassium voltage-gated channel subfamily A member 3 transm sed-gene-3.6.11-mRNA-1 KCV036 shaker-related potassium channel tsha2 voltage-gated potassium channel subfamily A member 6 transm sed-gene-3.6.11-mRNA-1 ACTV2 F-actin cross-linking protein alpha-actinin-2 alpha-actinin-2 alpha-actinin-2 cycosk 9-mRNA-1 ATV2 rapidly activating dependent outward potassium voltage-gated channel subfamily A member 6 cycosk 33-mRNA-1 KCV12 rapidly activating dependent outward potassium voltage-gated channel subfamily H member 10 transm 33-mRNA-1 KCV12 rapidly cativating dependention channel model outbannel subfamily H member 10 transm	snap_masked-ptg000316l-proces	sed-gene-6.4-mRNA-1	KCNH1	delayed rectifier potassium channel	potassium voltage-gated channel subfamily H member 1	transmembrane ion transport	1.77	,	ı.
ised-gene 3.28-mRNA-1 KCV082 delayed-rectifier voltage-dependent outward potassium curt potassium voltage-gated channel subfamily B member 2 transm ised-gene 3.28-mRNA-1 KCV082 shaker-related potassium channel tsha2 transm ised-gene 26.11-mRNA-1 KCV166 shaker-related potassium channel tsha2 transm e-12.7-mRNA-1 ACTV2 F-actin cross-linking protein alpha-actinin-2 optassium channel subfamily A member 6a transm 6-12.7-mRNA-1 ACTV2 F-actin cross-linking protein alpha-actinin-2 optassium channel subfamily H member 72 transm 6-13.7-mRNA-1 ACTV2 rapidly activating delayed rectifier potassium current potassium/sodium transporting beta 1b transm 6-13.8-mRNA-1 KCV120 inward rectifier-type potassium current potassium voltage-gated channel subfamily H member 2 transm	maker-ptg002790l-snap-gene-0.	5-mRNA-1	KCNQ4	regulation of neuronal excitability	potassium voltage-gated channel subfamily Q member 4	transmembrane ion transport	1.30		i.
ssed-gene -26.11-mRNA-1 KCVA66 shaker-related potassium channel tsha2 voltage-gated potassium channel subfamily A member 6a transm e-12.7-mRNA-1 F-actin cross-linking potein alpha-actinin-2 alpha-actinin-2 alpha-actinin-2 e-13.8-mNA-1 ATP12 b potassium/sodium-ATPase 9-submit ATP3 potes potassium voltage-gated channel subfamily H member 2 transm 33-mNA-1 KCV12 invarid restifier-type potassium current potassium voltage-gated channel subfamily H member 2 transm 33-mNA-1 KCV12 invarid restifier-type potassium channel	snap_masked-ptg001091l-proce:	ssed-gene-3.28-mRNA-1	KCNB2	delayed-rectifier voltage-dependent outward potassium or	uri potassium voltage-gated channel subfamily B member 2	transmembrane ion transport	-2.57		÷
e-12.7-mRNA-1 ACTV2 F-actin cross-linking protein alpha-actinin-2 cyrosik 39-mRNA-1 ATP12b potassium/sodium-ATPase β-subunit ATPase potassium/sodium transporting beta 1b transm e-19.8-mRNA-1 KCVH2 rapidly activiating delayed rectifier potassium current potassium voltage-gated channel subfamily H member 2 transm 33-mRNA-1 KCVH2 inward rectifier-type potassium channel potassium voltage-gated channel subfamily 1 member 10 transm	snap_masked-ptg000633I-proce	ssed-gene-26.11-mRNA-1	KCNA6a	shaker-related potassium channel tsha2	voltage-gated potassium channel subfamily A member 6a	transmembrane ion transport	-3.39		1
.39-mRNA-1 ATP1b1b potassium/sodium-ATPase 8-subunit ATPase potassium/sodium transporting beta 1b transm ne-19.8-mRNA-1 KCNH2 rapidly activating delayed rectifier potassium current potassium voltage-gated channel subfamily H member 2 transm 33-mRNA-1 KCN10 inward rectifier-type potassium current potassium voltage-gated channel subfamily J member 10 transm	maker-ptg000457l-augustus-gei	ne-12.7-mRNA-1	ACTN2	F-actin cross-linking protein	alpha-actinin-2	cytoskeletal & sarcomeric	4.76	3.71	6.17
ie-19.8-mRNA-1 KCWHZ rapidly activating delayed rectifier potassium current potassium voltage-gated channel subfamily H member 2 transm 33-mRNA-1 KCW10 inward rectifier-type potassium channel potassium voltage-gated channel subfamily J member 10 transm	maker-ptg000509l-snap-gene-9.	39-mRNA-1	ATP1b1b	potassium/sodium-ATPase β-subunit	ATPase potassium/sodium transporting beta 1b	transmembrane ion transport	1.48	3.05	1.98
33-mRNA-1 KCN/10 inward rectifier-type potassium channel potassium voltage-gated channel subfamily J member 10 transm	maker-ptg000073l-augustus-ger	ie-19.8-mRNA-1	KCNH2	rapidly activating delayed rectifier potassium current	potassium voltage-gated channel subfamily H member 2	transmembrane ion transport	-1.29	-2.79	-2.60
	maker-ptg001156l-snap-gene-2.3	33-mRNA-1	KCN110	inward rectifier-type potassium channel	potassium voltage-gated channel subfamily J member 10	transmembrane ion transport	-2.04	-5.33	-3.78

down-regulated, and three copies (*KCNJ2*, *KCNS3* and *KCNQ5a*) were up-regulated in the adult electric organ. In addition, a sodium/potassium transporting ATPase subunit alpha 3 (*ATP1a3*) was down-regulated in adults (Table 1).

In set B, we also found three potassium channel genes (*KCNV1*, *KCNH1* and *KCNQ4*) that showed up-regulation in the adult electric organ in *com*, while two were down-regulated (*KCNA6a*, *KCNB2*). Gene *CHRND* encoding for an ion-conducting channel was also overexpressed in adult *com* (Table 1).

In set C, actinin gene *ACTN2* showed high overexpression in all adult electric organs compared with the juveniles. The sodium/potassium transporting ATPase subunit beta 1b (*ATP1b1b*) was up-regulated, but two potassium channel genes (*KCNH2* and *KCNJ10*) were both downregulated (Table 1).

Allele specific expression during ontogeny

Allele specific expression analysis was performed to detect the allelic expression alteration in hybrids, detected via fixed (homozygous) SNPs in parental species (Fig. 1c).

In total, we identified fixed SNPs in 132 genes (Fig. 3a). Among these genes, 57 and 63 had an unbiased expression, i.e., an expression proportion of the *com* allele around $0.45 \sim 0.55$ in juvenile and adult hybrid, representing 43.2% and 47.7% of total genes, respectively (Fig. 3a). Interestingly, both juvenile and adult hybrids showed a tendency towards overexpression of the *com* allele, i.e., 46.9% of the total genes had a *com* allele expression proportion over 0.55. Only 9.8% of genes showed a bias towards *rhy* allele expression (i.e., *com* allele proportion less than 0.45) in juveniles, and only 5.3% in adult hybrids (Fig. 3a).

Fig. 3 Proportion of *com* allele expression separate for adults and juveniles, and *com* allele expression change between juvenile and adult in hybrids.

a Gene density (y-axis) from juvenile and adult stages in the hybrid. The x-axis shows the expression proportion of the allele stemming from one parental species (*com*). Numbers above the bars represent the number of genes in the respective proportion ranges. **b** *Com* allele proportion change from juvenile to adult stage, the number of genes is showed above every bar in the respective proportion variation range. **c** Allelic proportion of *KCNJ2* gene in each individual of juvenile and adult hybrids. The t-test p-value for *com* allele proportion between juvenile and adult individuals indicates a significant difference among ontogenetic stages, i.e., a larger expression bias towards the *rhy* allele in adults.

From those 132 genes, 50% showed increasing *com* allele expression proportion throughout ontogeny. Only 12 had the net proportion change between juveniles and adults over 10% (8 increased, 4 decreased expression bias in adults; Fig. 3b, Table 2).

	Table 2 12 genes show a com proportion difference over 10% between juvenile and adult hybrid.						
Gene ID in annotation	Gene	Hightlights of Predicted Function	Gene Description	Category	<i>com</i> pro hyt	portion in prid	com proportion
maker ptg002464Lspap gene					juvenile	adult	variation
maker-ptg002464l-snap-gene- 0.36-mRNA-1	CEP68	enables protein domain specific binding and kinase binding activity	centrosomal protein 68	other	0.40	0.57	0.17
maker-ptg000399l-augustus- gene-13.63-mRNA-1	HIP1	membrane-associated protein	huntingtin-interacting protein 1- related protein	other	0.44	0.59	0.15
maker-ptg000051l-snap-gene- 130.10-mRNA-1	TULP4	protein ubiquitination	tubby-related protein 4	other	0.40	0.53	0.13
maker-ptg000881l-augustus- gene-0.121-mRNA-1	FILIP1	acting through a filamin-A/F-actin axis	filamin-A-interacting protein 1	other	0.48	0.61	0.13
maker-ptg000312l-snap-gene- 7.122-mRNA-1	PLEKHA8	cargo transport protein for apical transport from Golgi complex	pleckstrin homology domain containing A8	other	0.60	0.47	-0.13
maker-ptg000160l-snap-gene- 11.44-mRNA-1	CHRND	subunit of the nicotinic acetylcholine receptor ion channel	acetylcholine receptor subunit delta	transmembrane ion transport	0.69	0.82	0.13
maker-ptg001623l-snap-gene- 3.166-mRNA-1	ARHGEF26	activates RhoG GTPase by promoting the exchange of GDP by GTP	Rho guanine nucleotide exchange factor 26	other	0.33	0.46	0.13
maker-ptg001894l-augustus- gene-1.273-mRNA-1	HEPH1	transmembrane transport of various molecules	pannexin 1	transmembrane ion transport	0.62	0.74	0.12
maker-ptg001572l-augustus- gene-4.62-mRNA-1	NFU1	iron-sulfur cluster biogenesis	NFU1 iron-sulfur cluster scaffold homolog, mitochondrial-like	other	0.56	0.68	0.12
maker-ptg000959l-snap-gene- 7.19-mRNA-1	PLPP3	converts phosphatidic acid to diacylglycerol	phospholipid phosphatase 3	other	0.66	0.55	-0.12
maker-ptg000608l-snap-gene- 5.61-mRNA-1	SYNE2	nuclear outer membrane protein that binds cytoplasmic F-actin	spectrin repeat containing nuclear envelope protein 2	other	0.61	0.51	-0.10
maker-ptg000265I- est_gff_est2genome-gene-6.33- mRNA-1	KCNJ2	allow potassium to flow into a cell rather than out of a cell, probably participates in establishing action potential waveform	inward rectifier potassium channel 2	transmembrane ion transport	0.26	0.16	-0.10

Those genes with a lower *com* allele proportion in the adult hybrid were *PLEKHA8*, *SYNE2*, *PLPP3* and *KCNJ2*. We specifically looked at the allelic expression in each individual at gene *KCNJ2* since this gene has been found to be up-regulated in elongated EOD duration *Campylomormyrus* species (Cheng et al. 2023a) and also in adults *rhy* and hybrids *com* x *rhy* compared with their juveniles (DEG in set A). In this study, the *com* allele of *KCNJ2* gene showed higher expression proportion (0.26) in juvenile hybrids, compared to adults (0.16; Table 2; t-test of arcsine transformed *com* proportion p-value=0.036; Fig. 3c). The *rhy* allele in *KCNJ2* gene is more dominant in the adult electric organ, indicating a considerable allelic expression shift during

hybrid ontogeny. *Com* allele in both genes *CHRND* and *FILIP1* showed increasing expression during ontogeny (Table 2), and the expression of the former was also increased in the skeletal muscle of adult hybrids (Cheng et al. 2023a). Interestingly, the expression of *CHRND* gene was up-regulated in the electric organ during the development of *com* species (set B), while *FILIP1* was up-regulated in both *rhy* and hybrid (set A).

DISCUSSION

Allele specific expression reveals subgenome effect in the hybrids

The weakly electric mormyrids usually possess a larval electric organ in early age and an adult electric organ that persists in adults. Adult EODs are generally different from the larval and juvenile EODs during ontogeny. For example, the species *rhy* possesses a relatively short biphasic juvenile EOD (0.5 ms), and gradually reaches an adult long triphasic EOD (40 ms) during development (Nguyen et al. 2020). Deviating from this, the EOD in species *com* shows consistency during ontogeny, remaining very short (0.4 ms) and biphasic (Kirschbaum et al. 2016). In the hybrid *com* x *rhy*, the early juvenile EOD was quite similar in shape and duration to the *com* EOD. In adulthood, however, the hybrid EOD was still biphasic but elongated (5 ms), resembling the EOD of a *rhy* juvenile of $6\sim7$ cm body length (Kirschbaum et al. 2016; Nguyen et al. 2020). It suggested that the EOD development in this hybrid is more close to the species *rhy* with an EOD considered apomorphic, instead of the plesiomorphic character state of species *com* (Kirschbaum et al. 2016; Cheng et al. 2023a).

Despite the hybrid showing phenotypic changes during ontogeny in the EOD similar to *rhy*, at the transcriptional level there is a general expression bias towards *com* in the hybrid at both life stages (Fig. 3a). The higher *com* allele expression also occurred in the adult skeletal muscle of hybrid

com x *rhy* as well as in the adult skeletal muscle and electric organ of hybrid *C. compressirostris* x *C. tshokwe* (Cheng et al. 2023a). The electric organ of both adult hybrids showed an even higher expression bias towards the *com* allele (Cheng et al. 2023a). In addition, eight genes had an increasing expression bias towards the *com* allele throughout ontogeny with an increase in bias over 10% in adult hybrid (eight genes) compared to the juvenile, whereas four genes showed a decrease in expression bias throughout ontogeny (Table 2). This suggests that the subgenome from *com* species might be more dominant in the hybrid *com* x *rhy* in general (especially in the electric organ), while the EOD phenotype resembles the one of the *rhy* species.

Interestingly, *KCNJ2* was the only gene that showed significant expression dominance of the *rhy* allele in the hybrid *com* x *rhy* at both juvenile and adult stages, and the dominance was increasing throughout ontogeny (Fig. 3c). The inwardly rectifying potassium channel gene (*KCNJ2*) is considered as a powerful candidate gene for regulating the EOD duration in *Campylomomyrus* since its expression is up-regulated in species with elongated EOD (Cheng et al. 2023a). The expression of this gene did also increase during ontogeny in *rhy* and in the hybrids (set A; Table 1) which both exhibit an increasing EOD duration elongation throughout ontogeny. The inward potassium channel encoded by *KCNJ2* gene can pass positive charged current more easily in the inward than the outward direction (Hibino et al. 2010). This channel is considered as important in regulating neuronal activity by stabilizing the resting membrane potential. Moreover, it may contribute to the shaping of the initial depolarization and the final repolarization step during the action potential, as evidenced in human cardiomyocytes (Dhamoon and Jalife 2005; Jeevaratnam et al. 2018).

The up-regulated *KCNJ2* in adult *rhy*/hybrids and increased dominance of †he *rhy* allele in adult further supported the potential function of *KCNJ2* gene in EOD duration regulation. In addition,

even though the subgenome from *com* species was more dominant in the hybrid (especially in the electric organ), the EOD phenotype (i.e. EOD duration) appears affected by the *rhy* allele in *KCNJ2* gene during ontogeny.

Juvenile individuals (J2 and J4 in Fig. 3c) showed *rhy* allele expression proportion similar to the adult. The EOD duration in J2 already showed slightly elongation (around 0.45 ms compared to 0.4 ms). It is likely that the expression bias towards the *rhy* allele occurs, when the juvenile EODs starts to elongate, and is maintained until adulthood.

The gene *CHRND* encodes for a cholinergic receptor nicotinic delta subunit. It binds acetylcholine and affects all subunits to open an ion-conducting channel across the plasma membrane (Shen et al. 2016). This gene was not only up-regulated in the adult *com* species, relative to the juvenile, but also showed an increasing expression bias towards the *com* allele in both electric organ and skeletal muscle in the hybrid during ontogeny. This pattern points towards a cis-regulation of this gene in *Campylomormyrus* species and their hybrids. Unfortunately, the function of this gene in electric fish is still unknown.

Electric organ discharge development during ontogeny in Campylomormyrus

Another goal of this study was to identify the candidate genes involved in the EOD alteration during ontogeny (in *rhy* and hybrids), relative to the EOD consistency in *com*. The depolarization and repolarization of EOD is associated with sodium and potassium currents across the plasma membrane. In electric fish, the initial depolarization phase is mainly driven by inward sodium current by voltage-gated sodium channels, and repolarization, ultimately returning the membrane to the resting potential, is principally affected by outward current through voltage-gated potassium channels (Stoddard 2008). Therefore, the potassium channel activity is the essential determinant

of the action potential duration as it limits the repolarization duration (Stoddard 2008; Jeevaratnam et al. 2018). The gene *KCNJ2* was already identified as a powerful candidate gene in regulating the EOD duration during ontogeny (Cheng et al. 2023a). In addition, other genes possibly contribute to the change in EOD duration during ontogenesis.

During the ontogeny of *rhy* and hybrid (set A), we observed several down-regulated voltage-gated potassium channel genes (two copies of *KCNA7a*, *KCNH8*, *KCNC1* and *KCNC2*) which could possibly reduce the outward potassium current during repolarization. The gene *ADCYAP1* encodes pituitary adenylate cyclase activating polypeptide (PACAP). It has the ability to bind a G protein-coupled receptor PAC1 with relatively high affinity (Johnson et al. 2019). The PACAP/PAC1 receptor signaling is potentially coordinating the function of several ionic channels to regulate neuronal excitability (Hammack et al. 2015), e.g. it has been shown to rapidly inactivate the potassium current in humans. Therefore, the up-regulated *ADCYAP1* might also inactivate the potassium current in electric fish. *KCNS3* forms functional heterotetrameric channels with *KCNB1* and regulates the potassium current activation and deactivation rates of *KCNB1*, as shown in human lens epithelium (Shepard and Rae 1999). Different types of potassium channel may contribute to the EOD shape and duration alteration during ontogeny.

Com is the only *Campylomormyrus* species that shows EOD consistence during ontogeny in *Campylomormyrus*. During the ontogeny, the electrocytes undergo cell growth and other structural changes (Nguyen et al. 2020). The membrane capacity may hence be enlarged in following with the growth of electrocytes. It is possible that the DEGs with ontogenetic changes in expression only in *com* (i.e., genes in set B) compensate for this developmental change to maintain a constant EOD in different life stages. The gene *KCNV1* down-regulates the delayed outward rectifier voltage-gated potassium channels, e.g. *KCNB2*, by the formation of heteropolymeric channels

(Hugnot et al. 1996). Differently expressed potassium channel genes (*KCNH1*, *KCNQ4*, *KCNA6a*) might have compensate for the developmental change on electrocytes and consequently stabilized the EOD shape and duration in *com* during ontogeny.

These results support the notion that the equipment of electrocytes in different species/hybrid cohorts and/or at a different developmental stage with a unique set of potassium channels is critical for the duration (and possibly also the shape) of the EOD. The exact function of these potassium channels in this scenario must remain open yet, since detailed information of the electrophysiological properties of the various channel types in these species, e.g. the effects of a different subunit composition for a distinct channel type, are missing. Further studies about the histology and physiology of electric organ development during ontogeny would be essential to understand the mechanisms of EOD development.

CONCLUSION

An important driver of phenotypic evolution in closely related species is the expression divergence in the genes underlying the respective phenotypic trait. Hybrids possess intermediate or even novel phenotypes because of their specific pattern of gene expression of two subgenomes from their parental species. In our example, the hybrid phenotype (here EOD) in juveniles is similar to *C. compressirostris* and in adults close to *C. rhynchophorus*.

The allele specific expression patterns inferred from hybrid transcriptome data of juvenile and adult electric organs revealed a distinct allelic expression dominance of the alleles from *C. compressirostris* in the hybrid. But our focus phenotype (the EOD) in the hybrids *C. compressirostris* x *C. rhynchophorus* rather resembled the other parental species, i.e., *C. rhynchophorus*. This points towards strong impact of single genes. Indeed, a strong candidate for

having profound influence on the elongated EOD is *KCNJ2*. *KCNJ2* was the only gene that showed significant allelic expression dominance of the *C. rhynchophorus* allele in both juvenile and adult life stages, and the *rhy* allele became was increasingly dominant throughout ontogeny. This gene was previously assumed to be involved in the EOD duration regulation in *Campylomormyrus* (Cheng et al. 2023a). In addition, its expression level also increases throughout the ontogeny of both *C. rhynchophorus* and the hybrids, associated with an EOD duration prolongation during ontogeny. Therefore, we hypothesized it as a crucial gene in regulating the EOD duration during the ontogeny in *Campylomormyrus*. Moreover, it likely affects the EOD in the hybrid development under a general expression dominance of the *C. compressirostris* subgenome.

A functional test of the impact of the *KCNJ2* gene in electric fish would be instrumental for a mechanistic understanding of the EOD divergence and development. In addition, a potential backcross experiment of F1 hybrid with *C. compressirostris* species might be interesting to explore if the allelic expression will affect the next generation.

Differentially expressed potassium channel genes, e.g. *ADCYAP1*, *KCNA7a*, *KCNS3*, *KCNC1* are further promising candidates to impact the EOD development or consistency throughout ontogeny.

Materials and Methods

Samples and RNA sequencing

We sampled the electric organ from two F0 species (*C. compressirostris*, *C. rhynchophorus*) and a F1 hybrid (*C. compressirostris* $rac{1}{3} \times C$. *rhynchophorus* $rac{2}{3}$) at juvenile (around 6 to 7 cm body size) life stage. The juvenile species/hybrid were artificially bred and raised at the University of Potsdam. We included five individuals from each species/the hybrids for mRNA sequencing. We anesthetized the fish specimens using a lethal dose of clove oil, and sampled the electric organs within 99% ethanol above ice. The extracted electric organ samples were flash frozen in liquid nitrogen and preserved in -80°C.

We applied QIAGEN RNeasy Fibrous Tissue Kit on all juvenile electric organ samples for RNA extraction and further inspected the quantity and quality using a NanoDrop 1000 spectrophotometer (ThermoFischer Scientific, Germany) and an Agilent Bioanalyzer 2100 (Agilent Technologies, USA), respectively. We performed mRNA enrichment via poly (A) capture from the isolated RNA using NEXTflex Poly (A) Beads, and then established the strand-specific transcriptomic libraries through NEXTflex Rapid Directional RNA-Seq Kit (Bioo Scientific, USA).

All constructed libraries were sent to a commercial company (Novogene) for sequencing at 150 bp paired-end reads using an Illumina HiSeq 4000 sequencing system. Raw reads were deposited in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus.

We also included the mRNA sequences of electric organs of adult *C. compressirostris*, *C. rhynchophorus* and their hybrid *C. compressirostris* \circ x *C. rhynchophorus* \circ from Cheng et. al (2023a; accessions number: GSE240783). In order to remove the adapter sequences and low quality reads, all sequences were trimmed using a 4 bp sliding window with a mean quality threshold of 25, and a minimum read length of 36 bp by Trimmomatic v0.39 (Bolger et al. 2014). Reads quality was measured by FastQC v0.11.9 (Andrew 2010).

Differential gene expression analysis

We mapped the quality-filtered RNA reads from each samples to the *C. compressirostris* genome (Cheng et al. 2023b) by RSEM (Li and Dewey 2011). The estimated gene level quantification counts were used as input in R/Bioconductor by tximport package. We removed low count (≤ 10)

and low frequency (less than two replicates) genes to get cleaned reads. Principle component analysis (PCA) was applied for the cleaned and log-transformed counting matrices.

For the purpose of identifying genes that are differentially expressed between adult and juvenile samples, we applied normalized counting matrices to DESeq2 (Love et al. 2014) between adult and juvenile species/hybrids respectively. Differentially expressed genes (DEGs) were identified using $|\log 2$ Folder change $(\log 2FC)| > 1$ and p-value < 0.05. A Venn diagram (Hanbo Chen 2011) was compiled to visualize different groups of DEGs across adults and juveniles of both purebred species and their hybrids.

We focused on three DEGs sets (A, B and C). Three sets of DEGs were blasted against the *nr* database from NCBI using blastx with an e-value cutoff 1e⁻¹⁰. Those DEGs were also applied for Gene Ontology (GO) enrichment analysis respectively (Dennis et al. 2003).

Allelic specific expression analysis between adult and juvenile hybrids

Knowing hybrid's allelic expression bias in different life stages can contribute to the understanding of hybrid development. In this study, we focused on genes with SNPs that had fixed bialleles (homozygous) in parental F0 species.

We mapped the cleaned mRNA reads from each sample to the *C. compressirostris* genome by STAR v2.7.7 (Dobin and Gingeras 2015) and sorted the generated bam files from STAR according to the coordinates using SAMtools v1.15 (Danecek et al. 2021). All the sorted bam files were imported to BCFtools v1.9 (Danecek et al. 2021) for variant calling and then filtered following Cheng et al. (2023a). Eventually we acquired high quality bialleles in both adult and juvenile for genes where the parental species are homozygous for different alleles.

We calculated the expression proportion of the allele from *C. compressirostris* (*com*) by assessing the SNPs status in hybrid samples. The average *com* allele proportion was counted to gene level for genes with more than one SNP. The proportion difference between juvenile and adult in hybrid were calculated.

For the gene *KCNJ2*, we counted the proportion from *com* allele in the hybrid individuals. The arcsine-transformed proportions between juveniles and adults were analyzed using a T-test (Kim 2015).

Acknowledges

We thank Dr. Linh Nguyen for fish and hybrid breeding and raising. The project is funded by University of Potsdam.

Author contributions

RT conceived and supervised this study, and provided financial support. FC performed lab work, analysis and drafted the manuscript with the input from DAB, BO, KF and DM.

Data availability

Sequence data have been deposited at NCBI Gene Expression Omnibus under accession GSE240784.

REFERENCE

- Andrew S. 2010. FastQC: a quality control tool for high throughput sequence data. *Babraham Bioinformatics*.
- Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* 30:2114–2120.

Boutet G, Alves Carvalho S, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Lavaud C, Pilet-Nayel ML, Rivière N, Baranger A. 2016. SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. *BMC Genomics* 17.

Burke JM, Arnold ML. 2001. Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52.

- Cheng F, Dennis AB, Baumann O, Kirschbaum F, Abdelilah-Seyfried S, Tiedemann R. 2023a. Gene and allele specific expression underlying the electric signal divergence in African weakly electric fish. *Unpublished manuscript*.
- Cheng F, Dennis AB, Osuoha J, Canitz J, Kirschbaum F, Tiedemann R. 2023b. A new genome of an African weakly electric fish (*Campylomormyrus compressirostris*, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha. *BMC Genomics*. 24:129.
- Comai L. 2005. The advantages and disadvantages of being polyploid. *Nat Rev Genet* 6:836–846.
- Cooper RD, Shaffer HB. 2021. Allele-specific expression and gene regulation help explain transgressive thermal tolerance in non-native hybrids of the endangered California tiger salamander (*Ambystoma californiense*). *Mol Ecol* 30:987–1004.
- Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK, Kim Y, Wang JR, Morgan AP, Calaway JD, Aylor DL, et al. 2015. Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. *Nat Genet*. 47:353–360.
- Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM. 2021. Twelve years of SAMtools and BCFtools. *Gigascience* 10:1–4.
- Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. 2003. DAVID: Database for Annotation, Visualization, and Integrated Discovery. *Genome Biol* 4.
- Dhamoon AS, Jalife J. 2005. The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. *Heart Rhythm* 2:316–324.
- Dobin A, Gingeras TR. 2015. Mapping RNA-seq Reads with STAR. *Curr Protoc Bioinformatics* 51:11.14.1-11.14.19.
- El-mihoub TA, Hopgood AA, Nolle L, Battersby A. 2006. Hybrid Genetic Algorithms : A Review. *Engineering Letters* 13:124–137.
- Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R. 2009. Magic trait electric organ discharge (EOD): Dual function of electric signals promotes speciation in African weakly electric fish. *Commun. Integr. Biol.* 2:329–331.
- Hammack SE, May V, Hall JD. 2015. Pituitary adenylate cyclase activating polypeptide in stress- related disorders: data convergence from animal and human studies. *Biol Psychiatry* 78:167–177.
- Hanbo Chen PCB. 2011. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. *BMC Bioinform.* 12:1–7.
- Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. 2010. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. *Physiol Rev* 90:291–366.
- Hugnot JP, Salinas M, Lesage F, Guillemare E, De Weille J, Heurteaux C, Mattéi MG, Lazdunski M. 1996. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. *EMBO Journal* 15:3322–3331.
- Janko K, Bartoš O, Kočí J, Roslein J, Drdová EJ, Kotusz J, Eisner J, Mokrejš M, Štefková-Kašparová E. 2021. Genome Fractionation and Loss of Heterozygosity in Hybrids and Polyploids : Mechanisms , Consequences for Selection, and Link to Gene Function. *Mol Biol Evol* 38:5255–5274.
- Jeevaratnam K, Chadda KR, Huang CLH, Camm AJ. 2018. Cardiac Potassium Channels: Physiological Insights for Targeted Therapy. *J Cardiovasc Pharmacol Ther* 23:119–129.
- Johnson GC, May V, Parsons RL, Hammack SE. 2019. Parallel signaling pathways of pituitary adenylate cyclase activating polypeptide (PACAP) regulate several intrinsic ion channels. *Ann N Y Acad Sci.* 1455:105–112.
- Kim TK. 2015. T test as a parametric statistic. Korean J Anesthesiol 68:540–546.
- Kirschbaum F, Nguyen L, Baumgartner S, Chi HWL, Wolfart R, Elarbani K, Eppenstein H, Korniienko Y, Guido-Böhm L, Mamonekene V, et al. 2016. Intragenus (*Campylomormyrus*) and intergenus hybrids in mormyrid fish: Physiological and histological investigations of the electric organ ontogeny. J Physiol Paris 110:281–301.
- Knowles DA, Davis JR, Edgington H, Raj A, Favé MJ, Zhu X, Potash JB, Weissman MM, Shi J, Levinson DF, et al. 2017. Allele-specific expression reveals interactions between genetic variation and environment. *Nat Methods*. 14:699–702.
- Korniienko Y, Tiedemann R, Vater M, Kirschbaum F. 2021. Ontogeny of the electric organ discharge and of the papillae of the electrocytes in the weakly electric fish *Campylomormyrus rhynchophorus* (Teleostei: Mormyridae). *Journal of Comparative Neurology* 529:1052–1065.
- Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinform*.:1–16.
- Love MI, Anders S, Huber W. 2014. Differential analysis of count data the DESeq2 package.
- Mills A, Zakon HH. 1991. Chronic androgen treatment increases action potential duration in the electric organ of Sternopygus. *Journal of Neuroscience* 11:2349–2361.
- Nguyen L, Mamonekene V, Vater M, Bartsch P, Tiedemann R, Kirschbaum F. 2020. Ontogeny of electric organ and electric organ discharge in *Campylomormyrus rhynchophorus* (Teleostei: Mormyridae). *Journal of Comparative Physiology A* 206:453–466.
- Nguyen L, Paul C, Mamonekene V, Bartsch P, Tiedemann R, Kirschbaum F. 2017. Reproduction and development in some species of the weakly electric genus *Campylomormyrus* (Mormyridae, Teleostei). *Environ Biol Fishes* 100:49–68.
- Stoddard P K, Markham M R. 2008. Signal Cloaking by Electric Fish. *Bioscience*. 58:415–425.
- Quinn A, Juneja P, Jiggins FM. 2014. Estimates of allele-specific expression in Drosophila with a single genome sequence and RNA-seq data. *Bioinformatics* 30:2603–2610.

- Ren L, Li W, Qin Q, Dai H, Han F, Xiao J, Gao X, Cui J, Wu C, Yan X, et al. 2019. The subgenomes show asymmetric expression of alleles in hybrid lineages of *Megalobrama amblycephala* × *Culter alburnus*. *Genome Res* 29:1805–1815.
- Schiavinato M, Bodrug-Schepers A, Dohm JC, Himmelbauer H. 2021. Subgenome evolution in allotetraploid plants. *Plant Journal* 106:672–688.
- Shao L, Xing F, Xu C, Zhang Qinghua, Che J, Wang X, Song J, Li X, Xiao J, Chen LL, et al. 2019. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. *Proc Natl Acad Sci U S A* 116:5653–5658.
- Shen X-M, Okuno T, Milone M, Otsuka K, Takahashi K, Komaki H, Giles E, Ohno K, Engel AG. 2016. Mutations causing slow-channel myasthenia reveal that a valine ring in the channel pore of muscle AChR is optimized for stabilizing channel gating. *Hum Mutat*. 37:1051–1059.
- Shepard AR, Rae JL. 1999. Electrically silent potassium channel subunits from human lens epithelium. *Am J Physiol Cell Physiol* 277.
- Swapna I, Ghezzi A, York JM, Markham MR, Halling DB, Lu Y, Gallant JR, Zakon HH. 2018. Electrostatic Tuning of a Potassium Channel in Electric Fish. *Current Biology* 28:2094–2102.
- Zhang Q, Ye Z, Wang Y, Zhang X, Kong W. 2023. Haplotype-Resolution Transcriptome Analysis Reveals Important Responsive Gene Modules and Allele-Specific Expression Contributions under Continuous Salt and Drought in Camellia sinensis. *Genes (Basel)* 14:1417.

Γ
e)
P
्रेल
Γ
\geq
ar
Ľ,
er
Я
G
pl
b
n
\mathbf{v}

Supplementary Table 1 Differentially expressed candidate genes with in set A, B and C

		•					
				ol	g2FC		
Gene ID in annotation	Gene	Hightlights of Predicted Function	Gene Description	Category cc	im rhy	com x rhy	Set
maker-ptg000085I-snap-gene-19.30-mRNA-1	МҮН2	myosin heavy chain	myosin heavy chain, fast skeletal muscle	cytoskeletal & _ sarcomeric	4.05	5.22	A
maker-ptg000572I-augustus-gene-14.21- mRNA-1	SMYHC 1	myosin heavy chain beta isoform	myosin-7	cytoskeletal & _ sarcomeric	2.97	3.28	٨
maker-ptg000734I-snap-gene-4.160-mRNA-1	MYO5C	unconventional myosin-Vc	myosin VC	cytoskeletal & _ sarcomeric	2.8(2.49	A
maker-ptg001003I-snap-gene-2.16-mRNA-1	MY01E	unconventional myosin; actin-based motor protein	unconventional myosin-le	cytoskeletal & _ 	2.53	1.60	٨
maker-ptg000881I-augustus-gene-0.121- mRNA-1	FILIP1	acting through a filamin-A/F-actin axis	filamin-A-interacting protein 1	cytoskeletal & _ 	1.66	1.06	A
maker-ptg000548I-snap-gene-0.90-mRNA-1	PNKD	probable hydrolase; activation of the NF-kappa-B signaling pathway	paroxysmal nonkinesigenic dyskinesia	other -	1.70	1.30	A
snap_masked-ptg000585I-processed-gene-1.0- mRNA-1	HS3ST1	a member of the heparan sulfate biosynthetic enzyme family	heparan sulfate glucosamine 3-O- sulfotransferase 1	other -	7.01	6.40	A
maker-ptg0001741-snap-gene-2.8-mRNA-1	H2-Aa	antigen processing and activation	H-2 class II histocompatibility antigen, A-U alpha chain	other -	5.47	6.05	A
maker-ptg0008271-snap-gene-1.93-mRNA-1	OPRM1	G protein-coupled receptor for natural and synthetic opioids	mu-type opioid receptor	other -	6.39	5.06	A
maker-ptg000528I-augustus-gene-4.129- mRNA-1	CCDC10 5	located in extracellular exosome	coiled-coil domain containing 105	other -	5.2(5.23	٨
snap_masked-ptg000142I-processed-gene- 0.216-mRNA-1	CDH17	calcium-dependent cell adhesion protein	cadherin-17	other -	1.38	2.84	A
maker-ptg002338I-snap-gene-0.93-mRNA-1	KCTD14	protein-containing complex assembly	potassium channel tetramerization domain containing 14	other -	1.38	1.75	A
maker-ptg002895I-snap-gene-2.33-mRNA-1	ICAM1	binding of a cell to another cell or to the extracellular matrix	intercellular adhesion molecule 1	other -	-6.1	2 -5.82	A
maker-ptg000974I-snap-gene-8.9-mRNA-1	FAM20 C	post-translational protein modification	extracellular serine/threonine protein kinase FAM20C	other -	5.3(5.62	٨
maker-ptg000130I-est_gff_est2genome-gene- 5.10-mRNA-1	CLDN7	integral membrane protein; tight junction component	claudin-7	other -	5.11	5.62	A
maker-ptg000061l-augustus-gene-13.21- mRNA-1	CDH26	calcium-dependent cell adhesion protein	cadherin-26	other -	3.55	1.29	A
snap_masked-ptg000633I-processed-gene- 29.4-mRNA-1	CADPS2	positive regulation of exocytosis	calcium dependent secretion activator 2	other -	1.95	2.35	٩

- 143 -

naker-ptg000405 -snap-gene-38.13-mRNA-1 naker-ptg000222 -snap-gene-9.11-mRNA-1	SMOC2 CDH20	extracellular matrix organization calcium-de pendent cell adhesion protein	SPARC related modular calcium binding 2 cadherin-20	other - other -	1.45 -4.14	1.11 -4.01	۹ ۹
maker-ptg001524I-augustus-gene-3.4-mRNA-1	TMEM4 7	regulates cell junction organization	transmembrane protein 47	other -	3.10	4.40	۲
maker-ptg000852I-augustus-gene-40.4-mRNA- !	MARVE LD2	cell-cell junction organization	MARVEL domain-containing protein 2	other -	1.29	6.05	٩
maker-ptg000032I-augustus-gene-10.24- nRNA-1	CAB39	protein kinase activator activity	calcium-binding protein 39	signaling -	1.45	1.21	٩
maker-ptg000974I-augustus-gene-10.57- nRNA-1	PVALB2	high affinity calcium ion-binding protein	parvalbumin-2-like	signaling -	-5.02	-8.72	A
snap_masked-ptg001873I-processed-gene-0.7- nRNA-1	NXPH1	signaling molecules that resemble neuropeptides	neurexophilin-1	signaling -	6.11	5.51	A
naker-ptg000267I-snap-gene-2.92-mRNA-1	PIEZO2	mechanosensitive ion channel	piezo type mechanosensitive ion channel component 2	signaling -	1.16	1.34	۲
maker-ptg000084 -augustus-gene-28.11- nRNA-1	CAMK1 D	Ca2+/calmodulin-dependent protein kinase	calcium/calmodulin dependent protein kinase ID	signaling -	-1.24	-1.41	٩
maker-ptg001479I-augustus-gene-0.6-mRNA-1	ADCYA P1	activation of adenylate cyclase activity	adenylate cyclase activating polypeptide 1	signaling -	8.95	5.56	۲
maker-ptg000335 -snap-gene-16.83-mRNA-1	KCNS3	modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1	potassium voltage-gated channel subfamily S member 3	transmembran e ion transport	4.07	6.07	۲
maker-ptg000878 -augustus-gene-3.11-mRNA- L	kCNQ5 a	form M-type outward potassium current when depolarization, counteracts sodium influx to prevent action potential	potassium voltage-gated channel subfamily KQT member 5	transmembran e ion transport	5.35	1.87	۲
maker-ptg000265 -est_gff_est2genome-gene- 	KCNJ2	allow potassium to flow into a cell; probably participates in establishing action potential waveform	inward rectifier potassium channel 2	transmembran e ion transport	1.13	1.73	۲
maker-ptg000028I-snap-gene-81.8-mRNA-1	KCNA7 a_2	voltage-dependent potassium ion permeability of excitable membranes	potassium voltage-gated channel subfamily A member 7a	transmembran _ e ion transport	-2.10	-1.11	A
maker-ptg000028I-snap-gene-81.10-mRNA-1	KCNA7 a_1	voltage-dependent potassium ion permeability of excitable membranes	potassium voltage-gated channel subfamily A member 7a	transmembran _ e ion transport	-1.06	-2.38	٩
maker-ptg000922I-snap-gene-13.16-mRNA-1	KCNH8	elicits a slowly activating, outward rectifying current	potassium voltage-gated channel subfamily H member 8	transmembran _ e ion transport	-2.36	-1.39	۷
maker-ptg001310 -augustus-gene-10.4-mRNA- !	KCNC2	regulation of the fast action potential repolarization	potassium voltage-gated channel subfamily C member 2	transmembran e ion transport	-1.04	-1.41	A
maker-ptg000898I-augustus-gene-5.59-mRNA- !	KCNC1	regulation of the fast action potential repolarization	potassium voltage-gated channel subfamily C member 1	transmembran _ e ion transport _	-3.13	-3.18	٩
maker-ptg000078I-augustus-gene-7.51-mRNA- t	KCNIP1	inactivating A-type potassium channels	Kv channel-interacting protein 1	transmembran 	-4.23	-2.20	۲
maker-ptg000897I-augustus-gene-1.69-mRNA- L	SLC6a2 0	amino acid transmembrane transporter	solute carrier family 6 member 20	transmembran e ion transport	3.19	3.04	A

- 144 -

maker-ptg000611I-snap-gene-3.83-mRNA-1	SLC7a7	amino acid transmembrane transporter	solute carrier family 7 member 7	transmembran e ion transport	5	32 2.78	A
maker-ptg000326I-snap-gene-3.64-mRNA-1	SLC13a 1	sodium:sulfate symporter	solute carrier family 13 member 1	transmembran e ion transport	2.	14 2.15	٨
maker-ptg000802l-augustus-gene-1.88-mRNA-	SLCO3a	sodium-independent organic anion transmembrane	solute carrier organic anion transporter family	transmembran	-	39 1.97	A
1	1	transporter	member 3A1	e ion transport	i		C
snap_masked-ptg001837I-processed-gene- 1.59-mRNA-1	SLC25a 23	adenyl nucleotide antiporter in the inner mitochondrial membrane	solute carrier family 25 member 23	transmembran e ion transport	-1	37 -2.20	A
maker-ptg0003611-snap-gene-18.27-mRNA-1	SLC22a 23	antiporters to transport organic ions across cell membranes	solute carrier family 22 member 23	transmembran e ion transport	-2	.10 -3.06	A
maker-ptg000650I-snap-gene-20.28-mRNA-1	ATP1a3	sodium/potassium-ATPase α -subunit	sodium/potassium-transporting ATPase subunit alpha-3	transmembran e ion transport	4	.83 -4.21	A
maker-ptg001619I-snap-gene-1.72-mRNA-1	NKAIN1	regulation of sodium ion transport	sodium/potassium transporting ATPase interacting 1	transmembran e ion transport	-2	96 -1.98	A
maker-ptg0001751-snap-gene-20.31-mRNA-1	CACNA 1E	voltage-gated calcium channel	calcium voltage-gated channel subunit alpha1 E	transmembran e ion transport	4.	34 4.33	A
maker-ptg000810l-snap-gene-9.26-mRNA-1	TRPC6	receptor-activated calcium channel	short transient receptor potential channel 6	transmembran e ion transport	Ļ	.54 -1.00	A
maker-ptg000049I-augustus-gene-2.28-mRNA- 1	P2RX5	ligand-gated ion channel	P2X purinoceptor 5	transmembran e ion transport	ù.	13 2.46	A
maker-ptg000384I-snap-gene-5.22-mRNA-1	GLRA1	ligand-gated chloride channel	glycine receptor alpha 1	transmembran e ion transport	4-	.78 -5.45	A
snap_masked-ptg000276I-processed-gene- 2.10-mRNA-1	MYL4	regulatory light chain of myosin	myosin light chain 4	cytoskeletal & sarcomeric	- 08.		В
snap_masked-ptg002519I-processed-gene-0.5-mRNA-1	ACTC1b	actin isoform, striated muscle	actin, al pha cardiac muscle 1b	cytoskeletal & 2 sarcomeric	54 -		В
maker-ptg000333I-augustus-gene-6.128- mRNA-1	MYBPC 3	regulator of cardiac contraction	myosin-binding protein C, cardiac-type	cytoskeletal & _ 	3.19 -		В
maker-ptg001199I-augustus-gene-0.2-mRNA-1	. PPIL6	protein folding and protein peptidyl-prolyl isomerization in cytoplasm	peptidylprolyl isomerase like 6	other	.95 -	ı	В
maker-ptg000775I-snap-gene-5.52-mRNA-1	TRIM35	protein ubiquitination	E3 ubiquitin-protein ligase	other	.35 -		В
maker-ptg000650I-snap-gene-19.18-mRNA-1	CEACA M1	cell-cell adhesion molecule	carcinoembryonic antigen-related cell adhesion molecule 1	other	.08		В
snap_masked-ptg001288I-processed-gene- 5.53-mRNA-1	DIdd	assists protein folding	peptidyl prolyl isomerase C	other -	5.01 -	ı	В
maker-ptg000041l-snap-gene-15.5-mRNA-1	FKBP1a	protein folding and trafficking	peptidyl-prolyl cis-trans isomerase	other -	5.76 -		В
maker-ptg001424I-augustus-gene-5.112- mRNA-1	TSPAN1 5	protein maturation	tetraspanin 15	other	.20 -	·	В

maker-ptg0002431-augustus-gene-0.26-mRNA- 1	NXPE2	integral component of membrane	neurexophilin and PC-esterase domain family member 2	other	6.37 -	,	В
maker-ptg000852l-snap-gene-27.43-mRNA-1	CCL4	cell-cell signaling	C-C motif chemokine 4 homolog	signaling	- 6.88 -		B
maker-ptg000051l-snap-gene-32.5-mRNA-1	ZBED4	transcriptional regulator	zinc finger BED domain-containing protein 4	transcription factor	5.19 -	ī	В
maker-ptg000238I-snap-gene-24.29-mRNA-1	GTF2IR D2	DNA-binding transcription factor activity	general transcription factor II-I repeat domain- containing protein 2	transcription factor	6.94 -	ı	В
snap_masked-ptg002462I-processed-gene- 0.59-mRNA-1	HESS	transcription factor; regulates cell differentiation	transcription factor HES-5	transcription factor	5.54 -	ı	В
maker-ptg000424I-snap-gene-12.1-mRNA-1	TCF15	transcription factor; regulates patterning of axial skeleton and skeletal muscles	transcription factor 15	transcription factor	-4.31 -	ı.	В
maker-ptg0003121-snap-gene-4.182-mRNA-1	ABCC1	ATP-binding cassette transporter	multidrug resistance protein 1	transmembran e ion transport	5.78 -	ı	В
maker-ptg000160I-snap-gene-11.44-mRNA-1	CHRND	opening of an ion-conducting channel across the plasma membrane	acetylcholine receptor subunit delta	transmembran e ion transport	1.08 -	·	В
maker-ptg000577I-augustus-gene-2.33-mRNA- 1	CACNA 1d	mediates the entry of calcium ions into excitable cells	voltage-dependent L-type calcium channel subunit alpha-1D	transmembran e ion transport	4.29 -	,	В
maker-ptg001844I-augustus-gene-4.132- mRNA-1	KCNV1	down-regulate the channel activity of <i>KCNB1</i> , <i>KCNB2</i> , <i>KCNC4</i> and <i>KCND1</i> , possibly by trapping them in intracellular membranes	potassium voltage-gated channel modifier subfamily V member 1	transmembran e ion transport	4.58 -	ı	В
snap_masked-ptg000316I-processed-gene-6.4- mRNA-1	KCNH1	delayed rectifier potassium channel	potassium voltage-gated channel subfamily H member 1	transmembran e ion transport	1.77 -	,	В
maker-ptg0027901-snap-gene-0.5-mRNA-1	KCNQ4	regulation of neuronal excitability	potassium voltage-gated channel subfamily Q member 4	transmembran e ion transport	1.30 -	·	В
snap_masked-ptg001091l-processed-gene- 3.28-mRNA-1	KCNB2	delayed-rectifier voltage-dependent outward potassium current	potassium voltage-gated channel subfamily B member 2	transmembran e ion transport	- 2.57	·	В
snap_masked-ptg000633I-processed-gene- 26.11-mRNA-1	KCNA6 a	voltage-gated potassium channel	shaker-related potassium channel tsha2	transmembran e ion transport	- 3.39	ī	В
maker-ptg001587I-snap-gene-9.16-mRNA-1	SLC6a1 7	sodium-dependent neutral amino acid transporter	solute carrier family 6 member 17	transmembran e ion transport	5.45 -	·	В
maker-ptg000102l-augustus-gene-69.90- mRNA-1	SLC20a 1b	sodium-dependent phosphate transporter 1-B	solute carrier family 20 member 1b	transmembran e ion transport	1.04 -	ı	В
maker-ptg002519I-snap-gene-5.142-mRNA-1	SLC10a 1	sodium/bile acid cotransporter	solute carrier family 10 member 1	transme mbran e ion transport	- 2.87	·	В
maker-ptg001574I-snap-gene-0.9-mRNA-1	SLC8a1	sodium/calcium exchanger 1	solute carrier family 8 member 1	transmembran e ion transport	2.81 -		В
maker-ptg001451l-snap-gene-2.178-mRNA-1	CACNA 1c	mediate the influx of calcium ions into the cell upon membrane polarization	calcium voltage-gated channel subunit alpha1 C	transmembran e ion transport	- 3.61	·	В
maker-ptg0004571-augustus-gene-12.7-mRNA- 1	ACTN2	F-actin cross-linking protein	alpha-actinin-2	cytoskeletal & sarcomeric	4.76 3.7	1 6.17	U

- 146 -

maker-ptg0007311-augustus-gene-2.84-mRNA- 1	MY01f	unconventional myosin; vesicle transport along actin filaments	unconventional myosin-If	cytoskeletal & sarcomeric	1.25 1.58 2.4	4	
maker-ptg000407I-augustus-gene-3.0-mRNA-1	MYH7	myosin heavy chain beta isoform	myosin-7	cytoskeletal & sarcomeric	-5.05 -4.23 -4.	60	()
maker-ptg0002531-augustus-gene-66.24- mRNA-1	Ca 14	type I membrane protein; regulation of pH	carbonic anhydrase 14	other	-1.95 -6.40 -3.	81 0	()
maker-ptg001301I-snap-gene-0.33-mRNA-1	SLC7a3	sodium ions- and pH-independent amino acid transport	solute carrier family 7 member 3	other	-1.64 -1.61 -1.	34 0	()
maker-ptg0001021-snap-gene-29.0-mRNA-1	SUB1	may be involved in stabilizing the multiprotein transcription complex	activated RNA polymerase II transcriptional coactivator p15	other	2.30 6.07 4.1	с С	()
maker-ptg000939I-snap-gene-2.46-mRNA-1	POSTN	extracellular matrix organization	periostin	other	-7.09 -2.71 -3.	98	()
maker-ptg000159l-snap-gene-9.79-mRNA-1	MMP13	degradation of extracellular matrix proteins	collagenase 3	other	-6.47 -4.67 -2.	33	()
maker-ptg000065I-augustus-gene-13.18- mRNA-1	PCOLCE 2	collagen biosynthesis and modifying enzyme	procollagen C-endopeptidase enhancer 2	other	-4.10 -5.29 -4.	56 0	()
maker-ptg000067I-augustus-gene-17.208- mRNA-1	PAPLN	extracellular matrix organization	papilin	other	-4.80 -2.87 -6.	51 0	()
maker-ptg001300I-augustus-gene-3.31-mRNA- 1	ENTPD5	mediate catabolism of extracellular nucleotides	ectonucleoside triphosphate diphosphohydrolase 5	other	-4.32 -5.44 -6.	29	
maker-ptg000056l-snap-gene-10.13-mRNA-1	ADH1	ethanol catabolic process	alcohol dehydrogenase 1	other	-2.75 -6.78 -7.	33 0	~
maker-ptg000435I-snap-gene-1.208-mRNA-1	GPR22	G-protein coupled receptor	probable G-protein coupled receptor 22	signaling	4.31 3.92 5.8	9	\sim
maker-ptg000574l-snap-gene-0.16-mRNA-1	CABP2	signal transduction	calcium-binding protein 2	signaling	-1.41 -4.42 -6.	12 0	()
maker-ptg000393I-snap-gene-34.55-mRNA-1	PHF24	regulate G protein-coupled receptor signaling pathway	PHD finger protein 24	signaling	-3.16 -3.99 -4.	96	()
snap_masked-ptg000659I-processed-gene- 2.105-mRNA-1	SLC4a5	electrogenic sodium bicarbonate cotransporter 4	solute carrier family 4 member 5	transmembran e ion transport	6.84 3.48 3.4	4	()
maker-ptg000509I-snap-gene-9.39-mRNA-1	ATP1b1 b	potassium/sodium-ATPase β-subunit	ATPase potassium/sodium transporting beta 1b	transmembran beion transport	1.48 3.05 1.9	8	()
maker-ptg0000731-augustus-gene-19.8-mRNA- 1	KCNH2	voltage-gated inwardly rectifying potassium channel	potassium voltage-gated channel subfamily H member 2	transmembran e ion transport	-1.29 -2.79 -2.	09	()
maker-ptg001156I-snap-gene-2.33-mRNA-1	KCNJ10	inward rectifier-type potassium channel	potassium voltage-gated channel subfamily J member 10	transmembran e ion transport	-2.04 -5.33 -3.	78 0	

		Suppler	mentary	Table 2 Si	znificantly enriched Gene Ontology (GO) terms in set A genes with Fisher's exact test p-value <0.05.				
Term GO terms	Category	Count	%	-value (3enes l	List Po _l	p Pop	Fold	Bonfe Benja FDR
						Total Hit	s Total	Enrichment	rroni mini
GO:0048246 macrophage chemotaxis	Biological Process	7	0.89 4	1.68E-06	22RX7, WASB, CXCR3.2, ILIB, RAC2, DUOX, CSFIRA	656 14	18397	14.022	0.006 0.006 0.006
GO:0005886 plasma membrane	Cenlular Component	156	19.7 4		URROS, IGF2BP2A, CPNE7, CSE1I, ITPR1B, INPP5KB, CELSR2, CLDN1, ZGC:162193, RaB44, GIA3, 12PR5A, TSPAN4A, DUOX, PLXNC1, MF5D2B, SLC39A1, FZD9B, CA14, PHLDA3, TESCA, ENTPD2A. 2, CCNH3, TESCB, CLDND, ENTPD2A, 1, ENTPD3, SEMAGE, NRP2A, ADGRA3, GABRG2, APBA1A, MAG, 5PR160, AMPH, ALPK2, NLGN4XA, RHOBTB2B, ABCG1, SLC6A19A, 1, GRIA3B, SKAP2, ABHD2A, ESYT1B, CCDH11, SHC1, RGS7BPB, SI:CH211-204C21.1, KIRREL3L, RASGRP4, RASGRP3, NKAIN1, RAPGEF5A, XCR3.2, SCUBE1, PIP5K1CA, CCDC141, CNRIP1B, TSPAN18A, FZD1, HSPA8, SYT3, CARMIL2, GAS7A, LN2B, SI:CH73-206F6.1, APCDD1L, ADGRB1A, SNX18A, JAG2B, FYBB, AD11, BAMBIA, RG11, MPP2B, TRC6A, PLEK, PIK3CD, NRCAMA, TRH, CSF1RA, RND2, MRC1A, ADRB3A, MMP24, CHRNA2B, CTSK, AC2, EFNB2A, SI:CH211-132E22.4, DCH81A, RGNA, KCNU2A, BIN2B, SLC15A1A, SLCAA2B, TRPC6A, PLEK, PIK3CD, NRCAMA, TRH, CSF1RA, RND2, MRC1A, ADRB3A, MMP24, CHRNA2B, CTSK, AC2, EFNB2A, SI:CH217-132E22.4, DCH81B, NEO1A, PCN1A, BIN2B, SLC15A1A, SLCA2A2B, GC:65811, LCP1, CDH17, OBSCNB, GPSM1B, NEO1A, PCDH10A, GUCY2F, NKD1, ADCY3A, RHD, FEMA3AB, SI:CH1073-396H14.1, ATP1A3A, GLRA1, CNN1, RYR2B, RAP1AB, SLC21B, ZGC:101731, NNM3, RASGEFIBA, TSPAN2A, CAP2, PDZD7A, MYO1EA, IL10RA, METKA, STAC3, PCDHB, MST1RB, I:DKEY-11F4.7, ADGRL2B.1, SNV3B, P2RX7, GHRA, TSPAN14, SEMA4BA, P2RX5, ANO8B, AXL, AGRN, FR3BB, MXG, EGFRA, LGR4, CRFB4, GRNA	32:	99 18868	1.346	0.012 0.013 0.013
GO:0005509 calcium ion binding	Molecular Function	48	6.08 7	7.66E-05	NTNAP1, ESYTIB, MYLPFB, PCDH11, ITPR1B, LTBP1, NELL2B, CELSR2, PCDH10A, NKD1, RASGRP4, I RASGRP3, PRF1.8, MEGF6A, SCUBE1, EGFLAM, RYR2B, PLCD3A, DUOX, FBN2B, DCHS1B, TESCA, TESCB, XT3, PCDH9, EPDR1, TBC1D9, SLC25A23B, PCDHB, AIF1L, VIL1, JAG2B, SMOC2, LOXL2A, LOXL2B, ICALDB, PLCH1, MASP2, KCNIP1B, EFHC2, LCP1, AGRN, PVALB3, CDH17, PLA2G4AA, MACF1A, 'LA2G4AB, CDH19	615 73!	9 17340	1.831	0.052 0.054 0.054
GO:0045921 positive regulation of exocytosis	Biological Process	4	0.51 4	1.26E-04 (JADPSA, CADPS2, CADPSB, RAB27A	656 5	18397	22.435	0.442 0.198 0.198
GO:0019221 cytokine-mediated signaling pathway	Biological Process	11	1.39 4	l.34E-04 (5HRA, IGF2BP2A, IL2RGB, IL10RA, IL1B, EBI3, STAT4, IRAK3, CSF1RA, IL6R, CRFB4	656 78	18397	3.955	0.448 0.198 0.198
GO:0030593 neutrophil chemotaxis	Biological Process	10	1.27 0	0.001105	.W. WASB, SAA, CCL19B, IL1B, RAC2, DUOX, LTA4H, CCL34A.4, CCL35.2	656 73	18397	3.842	0.781 0.379 0.379
GO:0014005 microglia development	Biological Process	4	0.51 0	0.001412	VRROS, SLCZA7, IRF8, CSF1RA	656 7	18397	16.025	0.856 0.388 0.387
GO:0005216 ion channel activity	Molecular Function	18	2.28 0	0.002204	(CNH3, TRPC6A, TRPC3, KCNC2, ITPR1B, KCNC1A, GABRG2, P2RX7, GLRA1, P2RX5, TRPN1, RYR2B, 'HRNA2B, KCNQ5A, CACNA1DA, CACNA1EB, KCNS3A, GRIA3B	615 22(0 17340	2.307	0.786 0.770 0.770
GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway	Biological Process	13	1.65 0	0.002356	.W, SHCI, TNKI, MERTKA, CSFIRA, SLAIA, PTK2BB, MSTIRB, DOK2, AXL, BLNK, PTK6A, EGFRA	656 13(0 18397	2.804	0.961 0.539 0.538
GO:0030027 lamellipodium	Cellular Component	6	1.14 0	0.003344	vil1, CARMIL2, CAPGB, NAV3, PHACTR4A, ABI3A, IGF2BP1, ILK, ARHGEF7B	663 71	18868	3.607	0.581 0.435 0.435
GO:1990504 dense core granule exocytosis	Biological Process	m	0.38 0).003707 (ADPSA, CADPS2, CADPSB	656 3	18397	28.044	0.994 0.727 0.726

Supplementary Table 2

- 148 -

GO:0005085 guanyl-nucleotide exchange factor activity	Molecular Function	17	2.15 0	.004239	FARP2, OBSCNB, ARHGEF33, ARHGEF12B, ARHGEF7B, RASGRP4, RASGRP3, RA PGEF5A, SI:DKEY-65J6.2, 6 ARHGEF10LB, CCDC88C, CYTH3B, ARHGEF25A, SI:DKEY-33C9.6, RGL1, MCF2L2, RASGEF1BA	15 215	17340 2.229	0.949 0.815 0.815
GO:0007264 small GTPase mediated signal transduction	Biological Process	11	1.39 0	004526	ARHGAP32A, RAPGEF5A, GDI1, CCDC88C, RAC2, RGL1, RND2, RASGEF1BA, RHOBTB2B, RASGRP4, RASGRP3	56 106	18397 2.910	0.998 0.745 0.745
GO:0004896 cytokine receptor activity	Molecular Function	∞	1.01 0	.004663	GHRA, IGF2BP2A, IL2RGB, IL10RA, EBI3, CD74A, IL6R, CRFB4	15 59	17340 3.823	0.962 0.815 0.815
GO:0030154 cell differentiation	Biological Process	30	3.8 0	004889	VEGFAA, SPIJB, SLAIA, PTK2BB, FGFA, FSTI3, LFNG, SEMA3AB, EFNB2A, FSTA, PTK6A, LYN, SRRM4, GE DLX1A, TNK1, NRP2A, NRG1, TDRD5, RNASEL3, FGF1A, IFT20, SMAD6B, ERF, ID4, PTPN6, TRIP13, AGRN, LGR4, EGFRA, RARGA	56 487	18397 1.728	0.999 0.745 0.745
GO:0031234 extrinsic component of cytoplasmic side of plasma membrane	Cellular Component	7	0.89 0	.005174	LYN, ESYTIB, TNK1, STAC3, PTK6A, SLA1A, PTK2BB 66	63 46	18868 4.331	0.740 0.448 0.448
GO:0008201 heparin binding	Molecular Function	6	1.14 0	.007297	VEGFAA, SMOC2, VEGFBA, SI:DKEY-6N6.1, SI:CH211-106H11.3, RSPO3, NRP2A, NELL2B, FGF1A 61	15 80	17340 3.172	0.994 1.000 1.000
GO:0005737 cytoplasm	Component	182	23 C	1008406	CYFIPZ, TRIM3F-12, ANKRD37, NCFJ, IGF2BP2A, IRF1B, CSE1L, SI:CH211-163121.7, CPOX, TRAFAA, INVPPSKB, NADSYNJ, NELL2B, RCBTBJ, FGF4, SELENOUJA, S1PRSA, TRIM3F-19, PIMA3, NT5CJAA, EGLNJA, ZMP:000000395, EGLN1B, PHLDA3, ANKS1B, TESCA, TPD52, TESCB, FTHL27, CDKL5, NEFMA, YOD1, VASH1, NCCRP1, MID1, APBA1A, MARF1, M17, DOK2, SI:CH211-253B8.5, SI:CH211-256M1.8, MAK, HHPL1, AMPH, PFN1, OPTV, ALOX5A, SKAP2, ILRUN, SI:DKEY-33CJ23, PHACTRAA, TRIM35-36, UBA7, SHC1, ARHGFF12B, RG57BPB, TUBA8L2, CITA, SI:CH211-204211, IQGAP3, SULTIST3, PRDX5, CSRP1B, NUAK2, KIF3B, PCBP4, INPF5D, CASKIN1, SI:RF6, PLCD3A, LTA4H, SRGAP3, LHPP, EGR1, HSPA8, CARMIL2, ZGC:92594, GAS7A, TLN2B, TVK1, PLK1, SI:CH211-108D22.2, TDRD5, SI:CH211- 266618, 9, FGF1A, HPRTLI, GFAP, IFT20, VIL1, IRAK1BP1, SMAD6B, AD11, PPP1R1C, CCDC88C, MYH7L, MYO5C, ID4, DUSP15A, RPS21, SI:DKEY-33M8, 11, APRT, GCHFR, WWA8, BIN2B, TRAF5, LCP1, ACSBG2, PLA2G4AA, SI:DKEY-234A, CRP1, NKU1, NUSP2, PLKHO1B, GST01, PABPC4, COP22, IRAK3, SI:DKEY-37M8, 11, APRT, GCHFR, WWA8, BIN2B, TRAF5, LCP1, ACSBG2, PLA2G4AA, SI:DKEY-1X233, RBM22, PLA36B, BNRMA, CAPGB, DNAH2, TPMT, 1, DNAH5, NUAK1A, PPM1H, NOD2, CD74A, CRP1, NK01, DNAB2, ABLM3, CNR1, IGF2BP1, STAT4, CAP2, ATE1, PRKAG2A, PTPN18, URGCP, MYO1EA, FGF13A, STAC3, FKBP1AB, MYH11A, ELP3, YWHABL, PPB3CCA, TUBB4B, ARID3C, ARHGEF7B, PLEKHA8, CREBBPB, SI:CH211-195H233, GADD45AB, CAPN10, PPTN66, TBKP1, EBXO401, PVALB3, RG514B, MX6, CAMKIDA, NEX12	63 440	5 18868 1.176	0.889 0.491 0.491
GO:0003779 actin binding	Molecular Function	22	2.78 0	1,009035	MICAL2B, CAPGB, PDLIM5B, PHACTR4A, TLN2B, MYO1EA, MYH11A, MTS51LB, VIL1, MTSS1LA, WASB, 6 PDLIM2, NAV3, ABLIM3, MYO23A, NCALDB, MYH7L, MYO5C, LPP1, PEN1, MACF1A, CAP2	(15 337	17340 1.841	0.998 1.000 1.000
GO:000925 basal plasma membrane	Cellular Component	4	0.51 0	009451	CSE1L, ČACNAJDA, MSTIRB, EGFRA	63 13	18868 8.756	0.915 0.491 0.491
GO:0001935 endothelial cell proliferation	Biological Process	4	0.51 0	.009837	LOXL2A, LOXL2B, ITGB8, ARHGEF7B	56 13	18397 8.629	1.000 1.000 1.000
GO:0097178 ruffle assembly	Biological Process	ε	0.38 0	011783	MTSS1LA, MTSS1LB, AIF1L	56 5	18397 16.827	1.000 1.000 1.000
GO:0050832 defense response to fungus	Biological Process	m	0.38 0	.011783	NCF1, RAC2, DUOX 6:	56 5	18397 16.827	1.000 1.000 1.000

- 149 -

GO:0001965 G-protein alpha-subunit	Molecular	4	0.51 0.012012 GPSM1B, CCDC88C, OPRM1, RGS14B		615	14	17340 8.056	1.000 1.000 1.000
binding	Function							
GO:0098609 cell-cell adhesion	Biological Process	13	1.65 0.012109 OBSCNB, ZMP:000001082, IAMA5, NEO1A, TLN2B, NRCAMA, SI:CH73-208G1C TMEM47, SI:CH211-66E2.3, CCDC141, CDH17	.1, CELSR2, KIRREL3L,	656	160	18397 2.279	1.000 1.000 1.000
GO:0006629 lipid metabolic process	Biological Process	21	2.66 0.013165 SI:CH1073-429110.1, OLAH, ABHD2A, PTGIS, CERS6, ELOVL2, CSF1RA, CPT1B, SF PLD1A, ELOVL4A, FADS6, PCYT1BA, PLCD3A, PLCH1, CHPT1, PLA264AA, PLA26	EBF2, SULT1ST3, FA2H, 1AB, B4GALT5	656	326	18397 1.807	1.000 1.000 1.000
GO:000002 cell morphogenesis	Biological Process	9	0.76 0.014647 DCHS1B, CYFIP2, NEO1A, RGMA, CAP2, CDH19		656	41	18397 4.104	1.000 1.000 1.000
GO:0005200 structural constituent of	Molecular	7	0.89 0.019095 TUBA1C, SI:DKEY-33C12.3, TLN2B, NEFMA, TUBA8L2, TUBB4B, GFAP		615	60	17340 3.289	1.000 1.000 1.000
cytoskeleton	Function				l	L		
GO:0000278 mitotic cell cycle	Biological Process	5	1.14 0.019973 SNX9B, TUBAIC, PLK1, TUBA8L2, PTPN6, E2F4, SNX18A, TUBB4B, POLE		656	95	18397 2.657	1.000 1.000 1.000
GO:0035335 peptidyl-tyrosine	Biological	S	0.63 0.020926 PTPN18, DUSP2, PTPN6, TNS2A, DUSP16		656	30	18397 4.674	1.000 1.000 1.000
dephosphorylation	Process							
GO:0009952 anterior/posterior	Biological	6	1.14 0.021135 HESG, HOXA4A, ZIC3, NOTUM1A, HNF1BA, EFNB2A, MAFBA, AGRN, HOXD3A		656	96	18397 2.629	1.000 1.000 1.000
pattern specification	Process	!						
GO:0007399 nervous system	Biological	17	2.15 0.021231 SRRM4, NEOIA, PHACTR4A, IGF2BP2A, FGF13A, MERTKA, NRG1, NRP2A, ELP3 SEMMAAD MANYA AVI ISEPERI SEMERA	MST1RB, LFNG,	656	256	18397 1.862	1.000 1.000 1.000
GO:000986 cell surface	Cellular	1	JENNASAB, NAVS, AAL, IGEZBE'L, CJEGJA, EFNBZA 1 57 0.071797 ROROJ NRROS NEO14 SCLIBEI IRENI TNESE13 ITGR& TMX2R ITGRE PDIA	8 NIGNAXA CD744	663	156	18868 2 189	0 997 0 945 0 945
	Component	l						
GO:0002376 immune system process	Biological	10	1.27 0.022778 ILRUN, CXCR3.2, IRF1B, INPP5D, IRF8, MHC2A, IFI30, CSF1RA, RNASEL3, C7B		656	116	18397 2.418	1.000 1.000 1.000
	Process							
GO:0006955 immune response	Biological	19	2.41 0.023596 NRROS, CCR12A, CCL19B, TNFSF13, MHC2A, CD74A, CCL35.2, C7B, TNFSF13B, F	RF1.8, CXCR3.2, IL6,	656	302	18397 1.764	1.000 1.000 1.000
	Process		IRAK1BP1, ZGC:174904, MHC2DEB, CT5K, IL1B, SI:CH211-214K5.3, CCL34A.4			:		
GO:0070679 inositol 1,4,5	Molecular	4	0.51 0.024251 TRPC6A, TRPC3, PLCL2, ITPR1B		615	18	17340 6.266	1.000 1.000 1.000
trisphosphate binding	Function					ç		
GO:0050731 positive regulation of	Biological	4	0.51 0.024604 VEGFAA, GHRA, PTPRC, CD74A		656	18	18397 6.232	1.000 1.000 1.000
pepudyi-tyrosine phosphorvlation	Process							
GO.000617 recence to bacterium	Diological	0	1 M D D S S S S S S S S S S S S S S S S S		65.6	6	967 C 70601	
	Process	0	TUT OLOGODO EXENDER, DAA, ILIB, DOOA, ERAMA, NOUZ, CELIB, MILAD			70	061.2 16001	
GO:0001525 angiogenesis	Biological	14	1.77 0.028077 VEGFAA, SHC1, KREMEN1, CALCRLA, NRP2A, ISM1, ARHGEF7B, RNASEL3, PTK2	BB, FGF1A, PLD1A,	656	201	18397 1.953	1.000 1.000 1.000
	Process		ANGPTL2B, EFNB2A, ITGB8					
GO:0035091 phosphatidylinositol	Molecular	6	1.14 0.028296 SNX9B, ARHGAP32A, PLD1A, ESYT1B, PXDC1B, NCF1, TOM1, ITPR1B, SNX18A		615	102	17340 2.488	1.000 1.000 1.000
binding	Function							
GO:0035556 intracellular signal trancduction	Biological Process	90	3.8 0.028431 CAB39L SHC1, PLEK, NUAK1A, NOD2, CITA, GUCY2F, ADCY3A, RASGRP4, RASG DICD3A MACEVI3 CAD145CA DICL3 STAC2 DKN1A IDAK2 NDC1 TNV2A SVCH	RP3, NUAK2, BLNK, 211-108022-2-60410	656	560	18397 1.502	1.000 1.000 1.000
			ARHGEFZB, ASB13A.2, PPP1R1C, MAK, PLCH1, PTPN6, RGS14B	, mun (1997)				
GO:0043547 positive regulation of	Biological	10	1.27 0.028944 RAPGEF5A, ADCYAPIA, CCL19B, SI:DKEY-33C9.6, RGL1, CCL34A.4, RASGEF1BA,	RASGRP4, CCL35.2,	656	121	18397 2.318	1.000 1.000 1.000
GTPase activity	Process		RASGRP3					
GO:0005576 extracellular region	Cellular	50	6.33 0.029079 COL8A1A, CCL19B, IL19L, TRH, ISM1, IF130, HAPLN4, FGF4, PRF1.8, CRHBP, CT5I	, RSPO3, FBN2B,	663	1059	18868 1.344	1.000 0.972 0.972
	Component		ССІЗ4А.4, EPDR1, RNASEL3, LGI2A, SAA, RBP4, ILIB, ZGC:65811, SMPDL3B, VEC NOTTIM1A I TBD1 CCI35 2 SEMA3AR DIPK2AR ECEIAM ADCVAD1A ГРАМИ	FAA, ITIH5, LAMA5, 8 ADAMTS 17 ESTA				
			PKDCCB, CPA4, ADAMTSISA, FGF13A, FGF13A, A2ML, C7B, SMOC2, GDF9, IL6, L	OXLZA, LOXLZB, APOCI				
			SI:CH211-106H11.3, GRNA					
GO:0043020 NADPH oxidase complex	Cellular	ю	0.38 0.029906 NCF1, NCF2, DUOX		663	8	18868 10.672	1.000 0.972 0.972
	Component							

- 150 -

GO:0016491 oxidoreductase activity	Molecular	34	4 4.3 0.030496 ACADVL, MICAL2B, CPOX, IFI30, CRVZ, SELENOU1A, HSD11B2, CVP.	P2K21, PRDX5, AIFM2, TYRP1B,	615 6	61 17340 1.	450	1.000 1.000 1.000
	Function		DUUX, GLUDIB, EGLNIA, SI:UKEY-IZE/.4, EGLNIB, SI:CHIU/3-4291. GSTO1, SQOR, YWHABL, PRDX6, FA2H, CYP26A1, LOXL2A, LOXL2B, . MAO. ALOX5A	IIIUI, HEPHLIB, CYBSA, AKRIBI.Z, 1, ADI1, DNAJCI0, CRYZL1, CRYL1,				
GO:0005096 GTPase activator activity	Molecular	16	6 2.03 0.030754 RGS18, ARHGAP32A, GDI1, ARHGEF12B, TBC1D9, GMIP, IQGAP3, R-	RASGRP3, ARHGAP22, RGS4,	615 2	48 17340 1.	819	1.000 1.000 1.000
	Function		ARHGAP10, SI:DKEY-191M6.4, TBC1D7, SI:DKEY-33C9.6, RGS14B, SI.	51:DKEYP-23E4.3				
GO:0009611 response to wounding	Biological Process	4	0.51 0.032621 LYN, RAC2, DUOX, PLA264AA		656 2	0 18397 5.	609	1.000 1.000 1.000
GO:0007409 axonogenesis	Biological	80	1.01 0.033549 RGS4, SRRM4, CNR1, SI:CH211-159/8.4, ELP3, AGRN, ALDOAA, OPTI	NT	656 8	6 18397 2.	609	1.000 1.000 1.000
GO 10004715, non-membrane	Process Molecular	y	0.76 0.033744 I VN TNK1 PTK6A SIA1A PTK2BB PKDCCP		615 5	1 17340 3	317	1 000 1 000 1 000
spanning protein	Function	,					ļ	
tyrosine kinase activity								
GO:0019955 cytokine binding	Molecular	ъ	0.63 0.034212 GHRA, IL2RGB, EBI3, CSF1RA, IL6R		615 3	5 17340 4.	028	1.000 1.000 1.000
GO:0004713 protein tyrosine kinase	Molecular	10	0 1.27 0.035113 LYN, TNK1, MERTKA, CSF1RA, PTK6A, CITA, SLA1A, PTK2BB, MS71R	IRB, EGFRA	615 1	26 17340 2.	238	1.000 1.000 1.000
activity	Function				r C	1 0001 011		
	Component	n N	 34.6 UU30941 SLCJSDZ, ILZNGB, EXILL, MHLCJ, IIPKLB, SYCHZULT-129184, CLUNU MFSDZB, ADAM88, ADRA1AA, ENTPDZA. Z XMP:000001082, CLUN ENTPDZA. 1, ENTPDZA. 1, ENTPDZA. 2, ZMP:000001082, CLUN GABRGZ, GPR160, ALPK2, SLC6A19A. 1, ENTPSD, CACNATEB, CSPG5A 171020.1, XKRX, HSD11B2, NKAIN1, INPFSD, CACNATEB, CSPG5A 171020.1, XKRX, HSD11B2, NKAIN1, INPFSD, CACNATEB, CSPG5A 1706RB17, B4GALNT4A, PONZR1, SNX18A, JAG2B, CYP26A1, FA2H, AD11, CACNA1DA, BAMBIA, MACF1A, OGFR, ROBO2, TRPC6A, KCN 1706RB17, ENG, IMMP2L, UCHL1, MMP24, CHRNA2B, CTS7, IGHD, 1706RB17, B4GMA, GCHFR, SLC2A23, SLC7A5, SLC7A7, IGHD, 1700M10, SI:DKEY-251110.2, CD744, PCN104, GUCY2F, NKD1, ADC A TP12A3, GLR1A, JSTAMBPL1, TYR2B, KCN05A, SLC2A1B, DUV0X2, F 1706M64, NITR3C, PLEKHA8, GHRA, IL17RA1A, SEMA4BA, SCE1J5, 6 A TP12A3, GLR1A, STAMBPL1, TYR2B, KCN05A, SLC2A1B, DUV0X2, F 1706M64, NITR3C, PLEKHA8, GHRA, IL17RA1A, SEMA4BA, SCE1J56, 2 A TP12A3, GLR1A, STAMBPL1, TYR2B, KCN05A, SLC2A1B, DUV0X2, F 1706M64, NITR3C, PLEKHA8, GHRA, IL17RA1A, SEMA4BA, SCE1J56, 1706M64, NITR3C, PLEKHA8, GHRA, IL17RA1A, SEMA4BA, SCE1J56, 1706M64, NITR3C, PLENA3, GHRA, IL17RA1A, SEMA4BA, SCE1J56, 1706M64, NITR3C, PLENA3, GHRA, IL17RA1A, SEMA4BA, SCE1J56, 1706M10, SI:DKEY-2511102, CD744, FAN20CB, ABCG1, GRI3B, AO NDUFB11, TMEM59L, S1CH73-206G189, IGSF11, IRAK1BP1, PTPRC, CNTNAP1, PIN3CD, NRCAMA, CSF1RA, MRC1A, ADRB3A, TWF5F13E UG72A2, UG72A, UG72A, AUG, SI:CH73-266G189, IGSF11, FR78A, SLC3A33, AN TRPC3, ABCB6A, LMF2A, CALCRLA, BRINP3A, 1, IRAK1BP1, PTPRC, CNTNAP1, PIN3CD, NRCAMA, CSF1RA, MRC1A, SLCAA3B, LCP1, CDH17, B4G4, L ADGRA1A, KCNU2A, NAV3, SLC15A1A, SLCAA2B, LCP1, CDH17, B4G4, S UG72A3, UG72A, UG72A, NAV3, SLC15A1A, SLCAA2B, LCP1, CDH17, B4G4, S AD12010, CYB5A, ZGC:112965, MRF17A, PCDHB, MS71RB, SI:CD55A 429110, CYB5A, ZGC:112965, MRF17A, PCDHB, MS71RB, SI:CD55A 2GC:19431, TSPAN14, P2RX, SNVKD, SYNGR1A, ANO3B, SCG24, 2262:12562 2GC:19431, TSPAN14, P2RX, SNVKD, SYNGR1A, ANO3B, SCG24, 2262 	11, 20:114904, GJAS, DUOX, 200, TMEM182A, VEGFBA, 214, CPT1B, KCNC1A, TMEM170A, ARHGEF12B, EBI3, RGS7BPB, SI:CH73- , ST3GAL4, PLCD3A, LINGO1A, TINFSF13, APCDD1L, RAB27A, 4, TFPN1, ELOVL4A, LOXL2A, LOXL2B, NC2, PTPRO, SLC35F4, AP2A1, 202, ST6765811, VEGFAA, AP2A1, COVL2, KREMEN1, COP22, IL17RC, D, ZG56811, VEGFAA, RPRMA, COVL2, KREMEN1, COP22, IL17RC, D, ZG56811, VEGFAA, RPRMA, CY3A, RHD, SI:CH1073-396H14, 1, FRS1B, YIPF2, IL10RA, STAC3, 5, TOMM7, AGRN, EGFRA, LGR4, 174863, CEISR2, SELENOU1A, R, SLC39A1, CA14, SYBU, CL25A23B, M17, MAG, TMX1, 2021A, ABHD2A, FAM49BB, CP1A, 1, 22877, SN29B, CP1A, 1, 22877, CH71, EFR3BB, MXG, CFR84	500 500	T 89987	N S	T86:0 186:0 D00:1
GO:0021754 facial nucleus development	Bi ological Process	ε	0.38 0.038593 SRRM4, GLI1, CELSR2		656 9	18397 9.	348	1.000 1.000 1.000

- 151 -

GO:0098978 glutamatergic synapse	Cellular	5	0.63 0.039725 CADPSA, CADPS2, CADP.	PSB, NRP2A, ADGRA1A	663 3	37 15	8868 3.846	1.000 0.981 0.981
GO:0004867 serine-type endopeptidase inhibitor	Component Molecular Function	ø	1.01 0.040373 ITIH5, SERPINB1, CPAML	ID8, SERPINB1L1, SERPINB14, AGRN, A2ML, PCSK1NL	615 9	<u> 1</u> .	7340 2.506	1.000 1.000 1.000
GO:0007155 cell adhesion	Biological Process	24	3.04 0.04067 DCHSIB, ZMP:00000108 CELSR2, PCDH10A, PCDH FRNJR NIGNAXA ITGR6	82, LAMA5, CLDND, PCDH9, PCDH11, TLN2B, SI:CH73-208G10,1, HAPLN4, HB, CLDN1, MAG, SI:CH211-66E2.3, SI:CH211-106H11.3, SPP1, EFNB2A, ITGB8, 6, CCDC141, CDH17	656 4	11 11	8397 1.540	1.000 1.000 1.000
GO:0007275 multicellular organism development	Biological Process	34	4.3 0.041347 VEGFAA, PHACTRAN, CO DCHS1B, NCOA2, HOXA4, CS MCT1RB, 14628, M17 H	D. 2012 - 2012 - 2013, IFNG, SEMA3AB, EFNB2A, ZNF503, F5TA, F2D9B, F2D1, 44, DIX14, KREMEN1, MERTKA, NRP2A, ADGRA3, TDRD5, RNASEL3, FGF1A, 44ND7 HYRPA GREN RORAA, HOXD34, IGR4 FGFRA, RRM72	656 6	575 18	8397 1.413	1.000 1.000 1.000
GO:0005178 integrin binding	Molecular Function	7	0.89 0.041979 ZMP:0000001082, LAMA.	45, TLN2B, SI:CH211-106H11.3, ITGB8, ITGB6, FGF1A	615 7.	72 1.	7340 2.741	1.000 1.000 1.000
GO:0007229 integrin-mediated	Biological	9	0.76 0.042565 ZMP:0000001082, LAMA.	45, FYBB, ILK, ITGB8, ITGB6	656 5	54 15	8397 3.116	1.000 1.000 1.000
GO:0031012 extracellular matrix	Cellular Component	14	1.77 0.044221 COL&A1A, NRROS, HAPLI 51:DKEY-65B12.6, FBN28.	LN4, COL19A1, MMP24, SI:DKEY-6N6.1, ADAMTS17, SI:CH211-106H11.3, 3, HPSE, LGR4, LINGO1A, ADAMTS15A	663 2	218 15	8868 1.828	1.000 0.981 0.981
GO:0005925 focal adhesion	Cellular	7	0.89 0.045298 TLN2B, ILK, ITGB8, ITGB6	6, TNS2A, SLA1A, PTK2BB	663 7	74 15	8868 2.692	1.000 0.981 0.981
GO:0007265 Ras protein signal transduction	Component Biological Process	9	0.76 0.045507 RAPGEF5A, DOK2, RGL1,	', RASGEF1BA, RASGRP4, RASGRP3	656 5.	i5 1£	8397 3.059	1.000 1.000 1.000
GO:0048703 embryonic viscerocranium	Biological Process	6	1.14 0.04667 EDARADD, EGR1, SMOCi	22, DLX1A, ZIC2A, HAND2, F5TA, PONZR1, VGLL2A	656 1	112 1{	8397 2.254	1.000 1.000 1.000
GO:0009134 nucleoside diphosphate catabolic process	Biological Process	ε	0.38 0.047124 ENTPD2A.2, ENTPD2A.1,	l, ENTPD3	656 1	10 15	8397 8.413	1.000 1.000 1.000
GO:0051252 regulation of RNA metabolic process	Biological Process	ŝ	0.38 0.047124 IGF2BP2A, PCBP4, IGF2B	BP1	656 1	10 15	8397 8.413	1.000 1.000 1.000
GO:0043197 dendritic spine	Cellular Component	9	0.76 0.049155 KIF3B, SI:DKEY-33C9.6, S	SLA1A, PTK2BB, GRIA3B, APBA1A	663 5	57 15	8868 2.996	1.000 0.983 0.983

	Supplen	entary	Table 3	Significa	antly enriched Gene Ontology (GO) terms in set B genes with Fisher's exact test p-v	value <	0.05.				
Term GO terms	Category	Count	%	P-value	Genes List	t Pop	Pop	Fold	Bonferro	Benjami	FDR
					701	tal Hits	Total	Enrichment	Ē	'n	
GO:0031012 extracellular matrix	Cellular Component	28	2.95	4.29E-07	COLIGAI, ECM2, COLIIA2, ADAMTSI2, HAPLN3, TSKU, COLIAIA, ADAMTSI7, 78. TIMP2B, TIMP2A, COLI5AIB, CCN5, ADAMTSL7, MMP2, MMP13A, MMP15B, MMP17A, CCN2B, COLI8AIA, COL2AIB, MGP, COL4A6, MMP19, COL4A5, SI:DKEY-65B12,6, LRRN1, TGFBI, VCANA	7 218	18868	3.07930476	1.29E-04	1.29E-04	1.29E-04
GO:0030198 extracellular matrix organization	Biological Process	18	1.9	5.01E-05	COLI6AI, ECM2, MMP2, COLI1A2, MMP13A, MMP15B, MMP17A, 78 ADAMT512, COLI8A1A, COL1A1A, ADAMT517, COL2A1B, COL15A1B, COL4A6, COL4A5, MMP19, ADAMT517, TGFBI	4 133	18397	3.17579024	0.06752	0.06971	0.06971
GO:0007411 axon guidance	Biological Process	21	2.22	9.99E-05	ROBO2, ROBO4, SEMA6A, SLIT1A, SI:DKEY-49N23.1, NRCAMA, SEMA3E, 78 KIF5AA, ROBO1, SEMA4AB, EFNB1, CNTN1A, LRTM2A, NPTNA, SEMA3FB, TRIOB, RTN4RL1B, NFASCA. KALRNA. EPHA3. EFNA3A	4 182	18397	2.70756476	0.130142	0.06971	0.06971
GO:0005911 cell-cell junction	Cellular Component	12	1.27	1.07E-04	IGSF11, RAP1B, USP53B, EPB41L3A, PARD3AB, PERP, LINZA, SI:CH211-186J3.6, 78 MAGI1B. SI:DKEY-11F4.20. NECTIN1B. LIMS1	7 68	18868	4.23080948	0.031581	0.01604	0.01604
GO:0007155 cell adhesion	Biological Process	35	3.69	5.44E-04	PCDH18B, ROBO4, PCDH2G16, AMIGO1, NEDD9, SI:CH73-208G10.1, THY1, 78. PTPRFB, PCDH19, HAPLN3, CELSR2, PARD3AB, CNTN1A, ITGA2.2, CCN5, CLDN11A, NFASCA, PCDH2AC, ITGB6, PCDH15B, ZMP:000001082, EGFL6, PCDH2G28, ITGA1, PKP3A, NRXN1A, CCN2B, FAP, NPTNA, CDH11, CTNNB1, TGFB1. VCANA, SI:CH711-18613.6. NECTIN1B	4 437	18397	1.87939278	0.531959	0.253	0.253
GO:0005615 extracellular space	Component Component	89	7.17	0.00121	ILISL, COLIGAL, FFEMP2B, ZGC:110239, SLITIA, CCL38, I, SPINT2, OLFML2A, 78, CLU, TSKU, SEMA4AB, WNT2BB, CTSS2.2, COLLA1A, LIPG, ANGPTL2B, SVEP1, CCL19A, I, SEMA4AB, WNT2BB, CTSS2.2, COLLA1A, LIPG, ANGPTL2B, SVEP1, CCL19A, I, SEMA6A, MYOC, WNT5A, SI:DKEY-49N23, I, IGFBP5B, COLL8A1A, ANGPTL7, ANGPTL6, COL6A2, COL6A1, SEMA3FB, COL4A6, MMP19, COL4A5, VWA2, SMPDL3A, GSNA, CFD, COLEC10, COL11A2, LPL, SEMA3E, PRELP, CCL35.1, CST3, FRZB, CLEC3BA, TIMP2B, TIMP2A, COL15A1B, COL7A1L, WNT2, SFRP1A, TGFB2, ANGPT1, LGALS3B, NOG2, STC2A, ADMA, GDF7, MANF, BMP4, FGF19, COL2A1B, CPE, SI:DKEY-65B12.6, LRRN1, TGFBI, CBLN4, WNT7AA	7 110	2 18868	1.47937561	0.304543	0.12099	0.12099
GO:0072686 mitotic spindle	Cellular Component	7	0.74	0.00184	TPX2, POLN, KIFC1, EFHC1, WDR62, EML3, RTRAF	7 32	18868	5.24444092	0.423821	0.13771	0.13771
GO:0060047 heart contraction	Biological Process	11	1.16	0.00205	SLC8A4A, RBFOX1, CMLC1, BAG3, TTN.2, CRIP2, CCM2, TPM4A, FBXO32, CRIP1, UMS1	4 80	18397	3.22651467	0.942901	0.58064	0.58064
GO:0050919 negative chemotaxis	Biological Process	ø	0.84	0.00208	SEMA4AB, SEMA6A, LRTM2A, SUT1A, SEMA3FB, SI:DKEY-49N23.1, SEMA3E, 784 RTN4RL1B	4 43	18397	4.36568581	0.945319	0.58064	0.58064
GO:0005581 collagen trimer	Cellular Component	6	0.95	0.00296	COLI8A1A, COLECIO, COL1A1A, COL2A1B, COL11A2, COL15A1B, COL4A6, 787 COL4A5, COL7A1L	7 59	18868	3.6571404	0.58905	0.17759	0.17759
GO:0098609 cell-cell adhesion	Biological Process	16	1.69	0.00348	ZMP:000001082, ITGA1, TJPIA, PKP3A, NRCAMA, SI:CH73-208610.1, CELSR2, 78. CNTN1A, DLG3, ITGA2.2, PERP, CDH11, CTNNB1, NFASCA, SI:CH211-18613.6, LIMS1	4 160	18397	2.34655612	0.992323	0.81017	0.81017

Supplementary Table 3

- 153 -

GO:0007519 skeletal muscle tissue	Biological	6	0.95	0.00615	SLC8A4A, RBM24A, BAG3, TTN.2, TTN.1, MYOD1, COL6A1, PPARGC1A, PXNA	784	65 18	397 3.2490	7771 0.999816 1	Ч	
development	Process										
GO:0008201 heparin binding	Molecular	10	1.05	0.00653	CCN2B, ECM2, LRTM2A, SUT1A, UPG, CCN5, LPL, RTN4RL1B, PTN, PTPRFB	734	80 17	340 2.9529	9728 0.986275 1	Ч	
GO:0045165 cell fate commitment	Biological	٢	0.74	0.00827	BMP4, WNT2BB, WNT5A, GATA3, WNT7AA, WNT2, SOX5	784	42 18	397 3.9109	2687 0.999991 1	H	
GO:0031290 retinal ganglion cell axon	Biological	7	0.74	0.00827	ROBO2, FGF19, MMP2, PTCH2, CDH11, COL4A5, ADCY8	784	42 18	397 3.9109	2687 0.999991 1	Ч	
guidance	Process										
GO:0004725 protein tyrosine	Molecular	13	1.37	0.00853	SSH1A, PTPN1, PTPN9B, EYA1, DUSP8A, PTPRFB, PTPREA, DUSP26, CDC25B,	734	129 17	340 2.3807	1098 0.996341 1	1	
phosphatase activity	Function				PTPRD, PTPRJB.1, PTPN6, DUSP22B						
GO:0051015 actin filament binding	Molecular	20	2.11	0.00891	MYO5AA, TPM1, MYOM1A, PPP1R9A, MYO19, VIL1, TRIOBPB, MYO1B,	734	247 17	340 1.9128	7273 0.997159 1	1	
	Function				SAMD14, LASP1, TPMA, GAS2, MARCKSA, FLNB, TPM4A, UTRN, MYH10, SI:DKEY-40C11.2, DBN1, GSNA						
GO:0045879 negative regulation of	Biological	S	0.53	0.00915	SOX11A, PTCH1, PTCH2, GATAD2B, SOX4A	784	20 18	397 5.8663	9031 0.999997 1	H	
pathwav											
GO:0005085 guanvl-nucleotide	Molecular	18	1.9	0.00999	VAV3B. EEF1DB. MCF2A. ARHGEF16. RAB3IP. DOCK11. PSD2. TRIOB. ARHGEF4.	734	215 17	340 1.9778	2143 0.998603 1	1	
exchange factor activity	Function				RAPGEF1B, ARHGEF2, ARHGEF25A, KALRNA, ECT2, MCF2L2, DOCK1, ARFGEF3, DOCK9B						
GO:0009008 DNA-methyltransferase	Molecular	ŝ	0.32	0.01012	DNMT3AB, DNMT3AA, DNMT3BB.1	734	4 17	340 17.717	9837 0.998718 1	1	
activity	Function										
30:0071711 basement membrane	Biological	e	0.32	0.01025	FRAS1, COL4A6, COL4A5	784	4 18	397 17.599	1709 0.999999 1	1	
organization	Process										
30:0005178 integrin binding	Molecular	6	0.95	0.01082	CCN2B, ZMP:000001082, EGFL6, ITGA2.2, ITGA1, CCN5, ITGB6, TGFBI, THY1	734	72 17	340 2.9529	9728 0.999197 1	1	
	Function										
GO:0008375 acetylglucosaminyltransfer	Molecular	7	0.74	0.0124	GCNT4A, B3GNT2B, B3GLCTA, EXT1B, B3GNT5A, B3GALT4, RFNG	734	46 17	340 3.5949	5321 0.999718 1	1	
ase activity	Function										
GO:0007420 brain development	Biological Process	19	2	0.01343	MEISIB, ROBOZ, PYCRIB, SOX11A, ANGPT1, AMIGO1, TSC22D3, B3GNT5A, KIETA NRCAMA PCDH19 PEITIR CNTN1A EGE19 ZNEZD3 REI, MARCKSA	784	238 18	397 1.8733	0111 1 1 1	Ч	
					NFASCA, POU3F3B						
30:0005576 extracellular region	Cellular	60	6.33	0.01385	ILISL, SLITIA, CCL38.1, NTN1A, HAPLN3, CLU, TSKU, PRF1.8, WNT2BB,	787	1059 18	868 1.3583	3354 0.984757 0.5	3364 0.533	364
	Component				COLIAIA, LIPG, CCN5, SVEP1, ADAMTSL7, CCLI9A.1, NXPE3, GATD1, MYOC, MMP2, WNT5A, IGFBP5B, RNASEL3, EMILINIA, COL4A6, COL4A5, UT51, VCANA, SMPDI3A, COLIIA2, LPL, DNAH9, PTN, CCL35.1, ADAMT512, LTBP1.						
					FRZB, ADAMTSI7, DNAH9L, TIMP2B, TIMP2A, WNT2, SFRP1A, TGFB2, RNLS, FGF13A, NOG2, CRIM1, STC2A, ADMA, GDF7, MANF, BMP4, CCN2B, CALUB,						
					raris, colemp, inder, iardi, wiwiyaa, rookceed						
GO:0005874 microtubule	Cellular Component	18	1.9	0.01388	POLN, NDE1, FGF13A, STARD9, KIF14, KIF5AA, CENPE, TPX2, TUBB5, TUBA1A, MID1IP11, MAP2, KIFC1, DNAH9L, MAP6D1, KIF2C, FSD1, MACF1A	787	226 18	868 1.9094	8038 0.984909 0.9	3364 0.533	364

- 154 -

GO:0005794 Golgi apparatus	Cellular Component	39 2	4.11 0	0.01423	FAIM2B, EXTIB, B3GNT5A, MOSPDJ, GALNT18B, RFNG, ZDHHC20B, RAB32A, GCNT4A, CHSY1, ST3GAL8, GLCEB, VT11A, CHSY3, ADAM19B, VT11B, SLC35A4, TRAPPC1, B3GNT2B, RNF24, MYOC, YIPF2, COG5, ENTPD4, B3GAT2, SLC35E4, SURF4, B3GALT4, CLASP1B, ST6GALNAC5A, IFT20, B3GAT1A, CALUB, SI:CH211- 269C21.2, PXYLP1, SH3GIB1A, ITM2BA, KDELR3, FGFR2	787 (28 188	38 1.4888676	0.986429 0.5336	4 0.53364
GO:0048843 negative regulation of axon extension involved in axon	Biological Process	9	0.63	0.01552	SEMA4AB, ROBO2, SEMA6A, SEMA3FB, SI:DKEY-49N23.1, SEMA3E	784	5 183	37 4.0226676 [,]	1 1	ц.
guraance	- - -		:							•
GO:0050650 chondroitin sulfate proteoglycan biosynthetic	Biological Process	4	0.42 (0.01595	B3GA11A, CHSY1, B3GA12, PXYLP1	/84	183	97 7.22017268	2 1 1	-
process										
GO:0008289 lipid binding	Molecular	14	1.48 0	0.01671	EPN3A, PAQR7B, PAQR5B, STARD5, STARD8, INSIG1, STARD9, RBP7B, ACBD5A,	734 1	58 173	t0 2.09326389	0.999984 1	1
	Function				FABP2, CRABP1A, RBP5, ESRRGA, OSBPL3B					
GO:0003779 actin binding	Molecular	24 2	2.53 0	0.01671	SSH1A, MYO5AA, MICAL2B, CNN3B, TPM1, EVLB, ANTXR2A, MTSS1LB, VIL1,	734 3	37 173	t0 1.6824198:	0.999984 1	1
	Function				EPB41L3A, MYO1B, DAAM2, TPMA, MRTFAB, MYOZ1B, FLNB, TPM4A, UTRN, MVH10 St.DKEKADC11 3 SDTEN1 DBN1 GSNA MAACT1A					
							ļ			
GO:0003707 steroid hormone receptor artivity	Molecular Function	ы Б	0.53	0.01715	PAQR7B, AR, ABHD2A, RXRGB, ESRRGA	734	4 173	t0 4.92166213	0.999988 1	H
GO:0098703 calcium ion import across	Biological	2	0.53	0.01754	SLC8A4A, CACNA1FB, CACNA1DB, CACNA1DA, CACNA1C	784	4 183	97 4.88865859	911	ר ו
plasma membrane	Process									
GO:0005783 endoplasmic reticulum	Cellular	45 4	4.75 0	0.01853	LMBR1L, FKBP11, INSIG1, FAIM2B, EXT1B, CISD2, MOSPD1, AGPAT2, CLU,	787	63 188	58 1.41396647	0.996347 0.6178	0.6178
	Component				PIGX, ZDHHC20B, RNF145B, TMEM147, APH1B, ORMDL3, SEC23B, VKORC1,					
					PTPN1, PDIA2, TRAPPC1, ACSL2, MYOC, PNPLA7B, FKBP10B, SURF4, ACSL3B,					
					ALG2, SYVN1, ELOVL6, MBOAT4, NCK2B, TMEM170A, MANF, RCN3, BACE2,					
					LMBRD1, CALUB, DAD1, CERS4A, PI4KB, KDELR3, DEGS2, SGK1, PLPP7A,					
					HSD20B2					
GO:0006470 protein dephosphorylation	Biological	13	1.37 0	0.02013	SSH1A, PTPN1, PTPN9B, PPM1H, DUSP8A, PPP4R2A, PTPRFB, PTPREA,	784 1	44 183	97 2.11841872	1 1	Ч
	Process				CDC25B, PTPRD, PTPRJB.1, PTPN6, DUSP22B					
GO:0060070 canonical Wnt signaling	Biological	6	0.95	0.02032	SFRP1A, WNT2BB, FRZB, WNT5A, CTNNB1, TCF3B, FZD9B, WNT7AA, WNT2	784 8	0 183	97 2.63987564	L 1 1	-
pathway	Process									
GO:0046983 protein dimerization	Molecular	16	1.69	0.02117	TCF15, HER9, ID2A, HER4.5, NPAS2, HEYL, FBXW11A, MYCH, MYOD1, MEF2AB,	734	98 173	to 1.90900834	1 0.999999 1	7
activity	Function				BHLHE40, TCF3B, MXD1, EBF3A, ZBED4, HIF1AL2					
GO:0030574 collagen catabolic process	Biological	5	0.53 0	0.02309	MMP2, MMP13A, MMP15B, MMP19, MMP17A	784 2	6 183	97 4.51260793	1 1	1
	Process									
GO:0001649 osteoblast differentiation	Biological	4	0.42 0	0.02383	MYOC, PTCH1, PTCH2, NOG2	784 1	5 183	97 6.25748299	1 1	ц.
	Process									
GO:1901998 toxin transport	Biological	3	0.32	0.02421	ANTXR1C, ANTXR1B, ANTXR2A	784 6	183	97 11.7327806	6 1 1	1
	Process									
GO:0016199 axon midline choice point	Biological	3	0.32	0.02421	ROBO2, ADCY8, ROBO1	784 6	183	97 11.7327806	511	7
recognition	Process									
GO:0015629 actin cytoskeleton	Cellular	11	1.16 C	0.02558	VILI, TRIOBPB, MYO1B, SAMD14, MYO5AA, TPMA, MYOZ1B, PPP1R9A,	787	18 188	58 2.23491913	0.999579 0.7674	1 0.76741
	Component				MY019, GSNA, MACF1A					

- 155 -

GO:0030239 myotibril assembly	Biological Process	9	.63	.02647	CHRND, TNNIZA.4, TTN.2, TTN.1, MEFZAB, TNNT3B	784 4(0 18	3397 3.51983418 1	H	H
GO:0007015 actin filament organization	Biological	13	.37 0	.02792	MYO5AA, TPM1, PPP1R9A, MYO19, TRIOBPB, MYO1B, SAMD14, TPMA,	784 19	51 18	3397 2.02021388 1	Ч	Ļ
)	Process				MARCKSA, TPM4A, ARHGEF2, RND3A, DBN1					
GO:0030878 thyroid gland development	Biological	4 0	.42 0	.02842	AGIB, GLIS3, NTNIA, BCL2L1	784 1(6 18	3397 5.86639031 1	Ч	Ч
	Proce ss									
GO:0005938 cell cortex	Cellular	6	.95 0	.03019	PARD3AB, LASP1, CTTNBP2, CTNNB1, ECT2, FNBP1L, RND3A, PXNA, MACF1A	787 88	8 18	868 2.4519464 0.999899	9 0.8233	0.8233
	Component									
GO:0003886 DNA (cytosine-5-)-	Molecular	0 8	.32 0	.03253	DNMT3AB, DNMT3AA, DNMT3BB.1	734 7	17	'340 10.1245621 1	1	1
methyltransferase activity	Function									
GO:0001945 lymph vessel development	Biological	5	.53 0	.0332	ACAA2, MMP2, SVEP1, HDAC9B, BMPR2B	784 29	9 18	3397 4.04578642 1	Ч	1
	Process									
GO:0004721 phosphoprotein	Molecular	12 1	27 0	.03378	SSH1A, PTPN1, EYA1, SSU72, PPM1H, DUSP8A, PTPN6, PTPRFB, PPTC7A,	734 13	39 17	7340 2.03948013 1	1	1
phosphatase activity	Function				PTPREA, DUSP22B, CDC25B					
GO:0004222 metalloendopeptidase	Molecular	11 1	.16 0	.03402	NLN, ZGC:174164, MMP2, ADAMTS17, MMP13A, MMP15B, MMP19,	734 1.	22 17	7340 2.13003082 1	1	1
activity	Function				4DAMTSL7, MMP17A, ADAMTS12, ADAM19B					
GO:0003755 peptidyl-prolyl cis-trans	Molecular	6 0	.63 0	.03405	FKBP11, FKBP10B, FKBP7, FKBP6, FKBP5, PP1L6	734 40	3 17	7340 3.29636905 1	1	1
isomerase activity	Function									
GO:0035335 peptidyl-tyrosine	Biological	5	.53 0	.03706	PTPN1, EYA1, DUSP8A, PTPN6, PTPRFB	784 3(0 18	3397 3.91092687 1	1	1
dephosphorylation	Process									
GO:0008331 high voltage-gated calcium	Molecular	4 0	.42 0	.03823	CACNA1FB, CACNA1DB, CACNA1DA, CACNA1C	734 18	8 17	'340 5.24977293 1	1	1
channel activity	Function									
GO:0004467 long-chain fatty acid-CoA	Molecular	4 0	.42 0	.03823	4CSL2, ACSL3B, SLC27A1A, ZGC:101540	734 18	8 17	'340 5.24977293 1	ч	1
ligase activity	Function									
GO:0061515 myeloid cell development	Biological	4 0	.42 0	.0389	RNF145B, TPMA, AK3, SMAD9	784 18	8 18	3397 5.21456916 1	1	1
	Process									
GO:0005516 calmodulin binding	Molecular	11 1	.16 0	.0392	SLC8A4A, ASPM, KCNH1B, SPATA17, CNN3B, KCNQ5A, MAP6D1, MARCKSA,	734 1	25 17	7340 2.07891008 1	1	1
	Function				CACNA1C, UNC13BB, STRN3					
GO:0006486 protein glycosylation	Biological	12 1	.27 0	.04022	B3GAT1A, GCNT4A, B3GNT2B, ST3GAL8, B3GAT2, EXT1B, B3GNT5A, B3GALT4,	784 1⁄	42 18	3397 1.98300517 1	1	1
	Proce ss				4LG2, GALNT18B, POGLUT3, ST6GALNAC5A					
GO:0007224 smoothened signaling	Biological	6 0	.63 0	.04139	DISP2, GRK3, PTCH1, PTCH2, GLIS3, TNPO1	784 4	5 18	3397 3.1287415 1	1	1
pathway	Process									
GO:0044206 UMP salvage	Biological	3	.32 0	.04271	UCK2A, UPP2, UPP1	784 8	18	3397 8.79958546 1	1	1
	Process									
GO:0048846 axon extension involved in	Biological	Э	.32 0	.04271	COL4A6, COL4A5, NTN1A	784 8	18	3397 8.79958546 1	1	1
axon guidance	Process									
GO:0005201 extracellular matrix	Molecular	6	.95 0	.04299	COL18A1A, COL16A1, COL1A1A, COL2A1B, COL11A2, COL15A1B, COL4A6,	734 9:	3 17	7340 2.28619144 1	1	1
structural constituent	Function				COL4A5, PRELP					
GO:0008081 phosphoric diester	Molecular	8	.84 0	.04391	PDE11A, TDP1, PDE5AB, GDPD1, GDE1, PDE6A, PDE7A, SMPDL3A	734 7	7 17	'340 2.45443929 1	÷	1
hydrolase activity	Function									

- 156 -

GO:0005737 cytoplasm	Component Component	205	21.6 0.0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	 GP2B, TRIM35-13, ARHGAP2TI, SI:CH211-285F17.1, FNBP1L, TRIM2A, GF2B, TRIM35-21, ARHGAP2TI, SI:CH211-285F17.1, FNBP1L, TRIM2A, GC:110353, ZDHHCZ0B, TXNDC17, ZFWC2B, SAMD14, RPS6KA1, RNF111, RIM35-20, TDRD7B, DDIT4, MARCKSA, SGT.65851, UCK2A, CRABP1A, EC14L1, MAP2, ZNF703, RNF217, TRIOB, ANXA5B, SPTBN1, VAV3B, HSP70.3, IYO5AA, CARMIL3, LGALS3B, PKP3A, CDC7, SNF8, NCK2B, RNF34B, SNUPN, PXZ, BHMT, REI, MRVI1, MMS19, DUSP22B, MACF1A, SI:CH211-191A24.4, C:1211-195B131, SVWM, ID2A, SH3BP5B, CSAD, TUBA1A, NUDCD1, D11A1A, MCF2L2, LMCD1, RYBPA, SSH14, GATD1, ARG1, PAWR, TTBK1A, D11A1A, MCF2L2, LMCD1, RYBPA, SSH14, GATD1, ARG1, PAWR, TTBK1A, D11A1A, MCF2L2, LMCD1, RYBPA, SSH14, GATD1, ARG1, PAWR, TTBK1A, D11A1A, MCF2L2, LMCD1, RYBPA, SSH14, GATD1, ARG1, PAWR, TTBK1A, M24A, CNKSR3, ARHGEF2, ALD0B, SGK1, CRYAA, ALOX5B.1, RG53B, GP51, EDD9, PRKAR2AA, CCND2A, CRIP1, CST3, TTN.2, FRZB, CYP2X9, RTRAF, RKAGZA, DNMT3AB, NDE1, DNMT3AA, DUSP8A, PKMAA, SI:CH211-120G10.1, ABP2, CTNUB1, SH3GLB1A, LIMS1, ANKRD37, ZGC.1623P39, CLU, ALDH1L2, SXW11A, TUBB5, CCND1, MID11P11, SESN1, S1PR5A, SESN2, EGLN1B, KNIPA, SSU72, VASH2, ACBD5A, CDC25B, DOK2, MRTFAB, TPMA, CMPK2, TTN, SULT6B1, MAG1B, KANK4, FKBP6, FKBP5, EPN3A, SHC1, ARA3, STN, SULT6B1, MAG1B, KANK4, FKBP6, FKBP5, EN3A, SHC1, ARA3, SYW11A, TUBB5, CCND1, MID11P11, SESN1, S1PR5A, SESN2, EGLN1B, KNIPA, SSU72, VASH2, ACBD5A, CDC25B, DOK2, MRTFAB, TPMA, CMP2, SYW11A, TUBB5, CCND1, MID11P11, SESN1, S1PR5A, SFD3, SHC11A, GAD3, FGF13A, ARPK4, SHC4A, SI:CH211-120610.1, ASU14, CDC42EP1A, PPP1R9A, LASP1, HYDIN, UPP2, UPP1, TNP01, SPB8, ELAVL4, CDC42EP1A, PP1R9A, LASP1, HYDIN, UPP2, UPP1, TNP01, ACA, SRU12, DNAH9, GUL14, GN14, FGF19, CDC42BPA, MAP6D1, PW14, OSPD1, SRL, TPS3INP2, FSD1, SCC31B, KSR1A, MAPK4, ARHGAP12B, PPN14, OSPD1, SRL, TPS3INP2, FSD1	787 4	405 188	999993 0.99999	۵ ۲	r,
GO:0008345 larval locomotory behavior	Biological	4	0.42 0.0⁄	1 L	GP2B, SETD5, PSD2, FBXO32	784 1	9 183	97 4.94011815 1	1	Ч
GO:0070509 calcium ion import	Process Biological Process	4	0.42 0.0⁄	4477 C	ACNA1FB, CACNA1DB, CACNA1DA, CACNA1C	784 1	9 183	97 4.94011815 1	1	Ļ
GO:0022625 cytosolic large ribosomal	Cellular	-	0.63 0.0⁄	1497 f	PLTA, RPL18A, UBE2E1, RPL15, RPL18, RPL17	787 4	.7 186	se8 3.06058558 0.999999	9 1	Ч
GO:0007156 homophilic cell adhesion via plasma membrane	component Biological Process	15	1.58 0.0⁄	4552 F	OBOZ, PCDH15B, PCDH18B, ROBO4, CADM4, PCDH2G28, PCDH2G16, CDH19, CELSR2, NPTNA, CDH11, PCDH2AC, SI:CH211-186/3.6, NECTIN1B, Армил	784 1	99 183	97 1.7687609 1	сı	Ч
GO:0098632 protein binding involved in real-real adhesion	Molecular Function	ъ	0.53 0.0⁄	у 6064	DBO4, CNTN IA, NPTNA, NRCAMA, NFASCA	734 3	3 173	40 3.57939064 1	1	Ч
GO:0000278 mitotic cell cycle	Biological Process	6	0.95 0.0⁄	4937 1	ЮНD1, CENPE, ASPM, CENPF, TUBB5, TUBA1A, PTPN6, CLTCA, MCPH1	784 9	5 183	97 2.22305317 1	7	1

- 157 -

	Supple	ementar	y Table 4 Sig	gnificantl	tly enriched Gene ontology (GO) terms in set C genes with Fisher's exact tes	st p-val	ue < 0.05.			
Term GO terms	Category	Count	%	P-value	Genes Lis	st Pol	o Pop Fold	Bonferr	Benjami	FDR
					To	otal Hit	s Total Enrichme	ent oni	ni	
GO:0005576 extracellular region	Component	23	18.728	8.82E-18	8 COL5A2A, CIQTWF6A, WFDC1, LOXL4, MDKB, CIQTWF9, LOXA, 23 HAPLN2, COMP, PRF1.5, NID2B, COL1A1A, COL1A1B, ENPP2, PAPLNB, B2M, ADAMTS6, COL6A4A, MMP2, COL10A1A, BGNA, VWDE, CCN4B, SFRP2, SFRP5, COL14A1A, THBS2A, VCANA, IPPK, SOSTDC1A, SFM22, SFRP5, COL14A1A, THBS2A, VCANA, IPPK, SOSTDC1A, FSTP2, C4, PCOLCEB, CD9A, ADAMTS17, CILP2, PRG4B, SPON2B, LGi3, FSTL5, C4, PCOLCEB, CD9A, ADAMTS17, CILP2, PRG4B, SPON2B, LGi3, COL27A1B, FIBINB, CCN2A, COL5A1, LFT1, MMP13B, GRNB	38 105	9 18868 3.967608	57 1.16E-15	1.16E-15	1.11E-15
GO:0030198 extracellular matrix organization	Biological Process	21	7.4205	2.80E-16	5 COL6A4A, SCARA3, COLI6A1, COL5A2A, COLI0A1A, MMP2, COL11A1B, COL27A1B, FBLN1, MMP16B, MMP17B, MMP17A, POSTNA, COL5A1, MMP11A, COL1A1A, MMP13B, ADAMT517, COL1A1B, PAPLNB, ADAMT56	31 133	18397 12.57484	62 2.21E-13	1.86E-13	1.84E-13
GO:0031012 extracellular matrix	Cellular Component	25	8.8339	4.53E-16	5 COLI6A1, COL5A2A, COL11A1B, MMP16B, HAPLN2, POSTVA, BMPER, 23 COL1A1A, ADAMTS17, COL1A1B, PAPLNB, ADAMTS6, SCARA3, SPON2B, COL10A1A, MMP2, COL27A1B, MMP17B, MMP17A, CCN2A, CCN4B, COL5A1, MMP11A, MMP13B, VCANA	38 218	18868 9.091434	74 5.86E-14	2.99E-14	2.86E-14
GO:0007155 cell adhesion	Biological Process	21	7.4205	6.51E-07	7 COL6A4A, DCH5IA, SPON2B, TENM3, ITGB4, ZMP:000000650, 23 HAPLN2, POSTNA, COMP, PCDH7B, MAG, CCN2A, CCN4B, COL5A1, NID2B, CDH2, LICAMA, ITGA11A, THBS2A, VCANA, CLDN7A	31 437	18397 3.827127	11 4.32E-04	2.16E-04	2.14E-04
GO.0005615 extracellular space	Component	35	12.367	1.12E-06	5 COLIGA1, COLSA2A, SOSTDC1A, SEMA3D, MSTNB, COLI1A1B, 23 C1QTNF6A, FGF18A, WFDC1, LOXL4, PCSK6, GLDN, LOXA, POSTNA, C4, BMPER, NID2B, CTSS2.1, PCOLCEB, COL1A1A, COL1A1B, ENPP2, CILP2, PRG4B, OLFMI2BB, SCARA3, COL10A1A, BGNA, COL27A1B, SFRP2, LFT1, COLSA1, SFRP5, ANGPTL1A, COL14A1A	38 110	2 18868 2.517881	93 1.48E-04	4.93E-05	4.71E-05
GO:0043209 myelin sheath	Cellular Component	ഹ	1.7668	4.80E-06	5 MBPA, MPZ, HSP90AA1.1, ZWI, PLP1A 23	38 10	18868 39.63865	55 6.34E-04	1.59E-04	1.51E-04
GO:0005581 collagen trimer	Cellular Component	ø	2.8269	8.84E-06	5 COL6A4A, COL5A1, COL1A1A, COL10A1A, COL11A1B, COL1A1B, 23 COL14A1A, COL27A1B	38 59	18868 10.74946	59 0.00117	2.33E-04	2.23E-04
GO:0030574 collagen catabolic process	Biological Process	9	2.1201	1.55E-05	5 MMP11A, MMP2, MMP13B, MMP16B, MMP17B, MMP17A 23	31 26	18397 18.37862	14 0.01026	0.003131	0.0031
GO:0007422 peripheral nervous system development	Biological Process	9	2.1201	1.89E-05	5 FOXD3, CDH2, SEMA3D, FGF18A, AGRN, SOX10 23	31 27	18397 17.69793	17 0.01244	0.003131	0.0031
GO:0005201 extracellular matrix structural constituent	Molecular Function	თ	3.1802	2.47E-05	5 SCARA3, COLI6A1, COLSAZA, COLSA1, COLIAIA, COLI0AIA, COL11A1B, COL1A1B, COL27A1B	22 93	17340 7.558849	17 0.00671	0.00361	0.00358

Supplementary Table 4

- 158 -

GO:0004222 metalloendopeptida	Molecular	10	3.5336	2.64E-05	MMP11A, MMP2, MMP13B, ADAMTS17, MMP16B, MMP17B,	222	122 1	17340 6.40230394	0.00719	0.00361	0.00358
se activity GO:0007420 brain development	Function Biological	13	4.5936	4.74E-05	MMP17A, PAPLNB, ADAMTS6, TRABD2B ADGRL2A, MDKB, POU3F1, COR01A, SCGN, CDH2, AATKA, CNTN2,	231	238 1	18397 4.35012187	0.03101	0.0063	0.00624
GO:0030424 axon	Process Cellular Component	11	3.8869	9.15E-05	AATKB, SLCZA3A, CNTN4, CXCR4A, AP1M2 NTRK1, ADGRL2A, C4, TENM3, ZGC:113337, L1CAMA, DNM1B, MXA, CNTN2, KIF1B, CNTN4	238	179 1	18868 4.87179006	0.01201	0.002014	0.00192
GO:0007275 multicellular organism	Bi ological Process	22	7.7739	1.20E-04	TBX1, IPPK, NOTCH2, NTRK1, SEMA3D, FYNA, SEBOX, COL27A1B, FIBINB, FBLN1, POU3F1, FSTL5, SFRP2, LFT1, PRRX1B, CDH2, L1CAMA,	231 (675 1	18397 2.59569665	0.07682	0.01332	0.0132
development GO:0030154 cell differentiation	Bi ological Process	18	6.3604	1.42E-04	MIMP11A, SFRP5, SHOX, AGRN, FZD/A SEMA5A, NOTCH2, NTRK1, FOXD3, TENM3, SEMA3D, FYNA, SEBOX, FGF18A, NR2F5, POU3F1, FSTL5, SFRP2, CDH2, L1CAMA, SFRP5, AGRN, JAK3	231 4	487 1	18397 2.9435985	0.0899	0.013457	0.01334
GO:0014032 neural crest cell	Biological	9	2.1201	3.56E-04	TBX1, FOXD3, SOX8A, SEMA3D, VWA1, SOX10	231 4	64	18397 9.75192155	0.21068	0.029568	0.0293
GO:0008237 metallopeptidase	Molecular	6	3.1802	5.00E-04	MMP114, MMP2, MMP138, ADAMTS17, MMP168, MMP178,	222	143 1	17340 4.91589492	0.12755	0.037454	0.03718
activity GO:0008201 heparin binding	Function Molecular	7	2.4735	5.49E-04	MMP17A, ADAM156, TRABD2B CCN2A, CCN4B, PCOLCEB, COL5A1, CHAD, THBS2A, MDKB	222	80	17340 6.83445946	0.13917	0.037454	0.03718
GO:0001501 skeletal system development	Function Biological Process	9	2.1201	7.21E-04	COLIAIA, COLIAIB, COL27AIB, MMP16B, VCANA, HAPLN2	231	57 1	18397 8.3832308	0.38071	0.053223	0.05274
GO:0005886 plasma membrane	Cellular	62	21.908	8.60E-04	GABRB3, ADGRL2A, ATP8A2, TENM3, IGF2BP2A, SI:CH211-286C4.6,	238	3299 1	18868 1.48990399	0.1074	0.016224	0.01549
	Component				HSP90AA1.1, GPR37L1B, PLP1A, SLCOID1, CDH2, DNM1B, SLCIA2B, MPZ, SLC2A3A, PANX3, CA14, CDON, PLXNAIB, DCHS1A, AGTRAP, PLPPR5B, ACTN2B, PCDH7B, MAG, SLC1A3B, MCOLN1A, TNFRSF21, TRABD2B, SI:CH211-210B2.4, NOTCH2, SEMA3D, FPR1, MMP16B, GRIN1B, CACNA1G, DRP2, ATP1B1B, LICAMA, CD9A, ADGRGG, KCN110A, FZD7A, GPR157, PLXNA3, NTRK1, GPR17, GPM6AA, MBPA, ZMP:000000650, ADGRB1A, GPR22A, MXA, CNTN2, CNTN4, CD247, EFR3BB, RGL1, AGRN, CLDN7A, MY01F, GRIA1A						
GO:0014069 postsynaptic density	Cellular	7	2.4735	0.001069	CDH2, FAM196A, DNM1B, MXA, ADGRB1A, ARHGEF9B, SHANK3A	238	92	18868 6.03196931	0.13166	0.017637	0.01684
GO:0005509 calcium ion binding	Component Molecular Function	21	7.4205	0.001271	NOTCH2, DCHS1A, CD248A, FBLN1, VWDE, ACTN2B, COMP, ANXA13L, FSTL5, PCDH7B, SCGN, PRF1.5, NID2B, CDH2, THBS2A, ENPP2, TNNC1A, CABP2B, VCANA, AGRN, EFCC1	222	739 1	17340 2.21958088	0.29329	0.069383	0.06887
GO:0007399 nervous system	Biological	11	3.8869	0.001478	NTRK1, FSTL5, IGF2BP2A, CDH2, SEMA3D, L1CAMA, IGF2BP3, MDKB,	231	256 1	18397 3.42206101	0.62555	0.098157	0.09727
development GO:0001755 neural crest cell migration	Process Biological Process	2	2.4735	0.002484	PUUSFL, INAVIB, CDUN SEMASA, TBX1, FOXD3, CDH2, SEMA3D, MMP17B, SOX10	231	109 1	18397 5.11453989	0.80827	0.149966	0.14861

- 159 -

30:0051252 regulation of RNA	Biological	ŝ	1.0601	0.00655	55 IGF2BP2A, PCBP4, IGF2BP3 23	31 1	0 183	397 23.8922078 0.98731	0.362715 0.35944
metabolic process	Process								
50:0017147 Wnt-protein binding	Molecular	4	1.4134	0.00771	15 SFRP2, SFRP5, FZD7A, TRABD2B	22 3	2 173	340 9.76351351 0.87929	0.351036 0.34846
	Function								
30:0042552 myelination	Biological Process	4	1.4134	0.00940	02 MPZ, FYNA, ADGRG6, PLP1A	31 3	5 183	397 9.10179345 0.99811	0.480205 0.47587
30-0043025 neuronal cell hody	Cellular	С	1 7668	0 0105	54 GPM6AA 7GC-113337 SNCGA 11CAMA HSP90AA1 1	38 6	8 185	868 5 82921404 0 75354	0 154794 0 14776
	Component)	i	200		2	5		
50:0010001 glial cell	Biological	ŝ	1.0601	0.01108	85 CDH2, CDKN1CA, SOX10 23	31 1	3 18:	397 18.3786214 0.99939	0.525762 0.52101
differentiation	Process								
50:0007517 muscle organ	Biological	4	1.4134	0.01356	6 COL6A4A, MSTNB, HSP90AA1.1, LOXA 23	31 4	0 18	397 7.96406926 0.99988	0.569595 0.56445
development	Process								
50:0048675 axon extension	Biological	4	1.4134	0.01449	99 SEMA5A, KIF1B, GRNB, PLXNA3	31 4	1 183	397 7.76982367 0.99994	0.569595 0.56445
	Process								
50:0048752 semicircular canal	Biological	ŝ	1.0601	0.01468	8 TBX1, CDH2, SOX10 23	31 1	5 183	397 15.9281385 0.99995	0.569595 0.56445
morphogenesis	Process								
50:0098609 cell-cell adhesion	Biological	7	2.4735	0.01542	41 DCHS1A, CDH2, ITGA11A, CNTN2, ZMP:000000650, CNTN4, CDON 23	31 1	60 183	397 3.4842803 0.99997	0.569595 0.56445
	Process								
50:0050840 extracellular matrix	Molecular	ŝ	1.0601	0.01725	52 BMPER, CD248A, ADGRG6 22	22 1	6 173	340 14.6452703 0.99136	0.672846 0.66792
binding	Function								
30:0048484 enteric nervous	Biological	4	1.4134	0.01861	12 FOXD3, SEMA3D, SEBOX, SOX10 23	31 4	5 18	397 7.07917268 1	0.650431 0.64455
system	Process								
development									
50:0033339 pectoral fin	Biological	4	1.4134	0.01973	31 COLIAIA, SHOX, FGF18A, PDLIM7	31 4	6 18	397 6.92527762 1	0.655057 0.64914
development	Process								
50:0048538 thymus	Biological	ŝ	1.0601	0.02313	38 TBX1, SEMA3D, MCM2 23	31 1	9 183	397 12.5748462 1	0.731602 0.72499
development	Process								
30:0007166 cell surface receptor	Biological	9	2.1201	0.02448	8 ADGRL2A, ADGRG6, ADGRB1A, CD247, FZD7A, GPR157 23	31 1	31 183	397 3.64766531 1	0.738846 0.73217
signaling pathway	Process								
30:0071526 semaphorin-plexin	Biological	4	1.4134	0.02587	71 SEMA5A, SEMA3D, PLXNA3, PLXNA1B 23	31 5	1 183	397 6.24632884 1	0.746896 0.74015
signaling pathway	Process								
30:0035567 non-canonical Wnt	Biological	ŝ	1.0601	0.02795	56 SFRP2, SFRP5, FZD7A 23	31 2	1 183	397 11.3772418 1	0.773442 0.76645
signaling pathway	Process								
50:0008233 peptidase activity	Molecular	12	4.2403	0.02834	41 CTSS2.1, MMP11A, MMP2, MMP13B, ADAMTS17, PSMB8A, MMP16B, 22	22 4	46 173	340 2.10156345 0.99961	0.967128 0.96004
	Function				MMP17B, MMP17A, PCSK6, ADAMTS6, TRABD2B				
50:0007492 endoderm	Biological	ŝ	1.0601	0.03050	02 CCN2A, FRAS1, SEBOX 23	31 2	2 183	397 10.8600945 1	0.810136 0.80282
development	Process								
30:0016055 Wnt signaling	Biological	9	2.1201	0.03570	04 SFRP2, SOSTDC1A, SFRP5, CCDC88C, FZD7A, TRABD2B	31 1	45 183	397 3.29547694 1	0.910938 0.90271
pathway	Process								

- 160 -

GO:0060272 embryonic skeletal	Biological	2	0.7067 0.037041 SEMA3D, PLXNA3	231 3	18397 53.0937951 1	0.910938 0.	.90271
joint morphogenesis GO:0005588 collagen type V	Process Cellular	2	0.7067 0.037213 COL5A2A, COL5A1	238 3	18868 52.8515406 0.9933	0.491217 0.	.46889
trimer	Component						
GO:0035118 embryonic pectoral	Biological	ŝ	1.0601 0.047543 CDH2, FGF18A, FIBINB	231 28	18397 8.53293135 1	1 0.	.99246
fin morphogenesis	Process						
GO:0050931 pigment cell	Biological	2	0.7067 0.049082 FOXD3, SOX10	231 4	18397 39.8203463 1	1 0.	.99246
differentiation	Process						
GO:0043583 ear development	Biological	2	0.7067 0.049082 TBX1, ADGRG6	231 4	18397 39.8203463 1	1 0.	.99246
	Process						

6 General discussion

The electric fish have long been considered as an excellent model to study convergent evolution, radiative evolution, and electrophysiology. There are more than 180 described species in the African weakly electric fish mormyrids. Such a successful radiative speciation in mormyrids is associated with a highly divergent electric organ discharge (EOD). The major objective of this thesis was to understand the genetic basis of the EOD divergence among mormyrid fish from the gene expression to whole genome level. The provided novel reference genome is also a valuable resource for future work investigating the evolution of this taxon on many levels.

6.1 Genomics of Campylomormyrus

A high quality whole genome was produced from the species *Campylomormyrus compressirostris*. This is the second well-annotated genome in mormyrids, the fourth genome of an electric fish, and the third well-annotated genome in Osteoglossomorpha. Compared to the available genomes from *Paramormyrops kingsleyae*, *Electrophorus electricus* and *Scleropages formosus*, the contig length from the genome of *C. compressirostris* was significantly improved. The major finding from the genome was the substantially higher number of the predicted protein-coding genes, which counted for 34,492, compared to other annotated Osteoglossomorpha genomes (~23k protein-coding genes). This profound difference could relate to our improved assembly, but could also reflect true differences in *Campylomormyrus*, relative to *Paramormyrops*.

I curated 16 genes from *Kv1* subfamily. The most interesting finding was a further tandem duplication of the *KCNA7a* gene. This duplication was also found in *P. kingsleyae* after re-analyzing its genome, but not in *S. formosus* (a non-electric fish close to mormyrids), nor in other electric fish lineages beyond mormyrids, indicating this tandem duplication might be lineage-specific (perhaps shared among mormyrids). *Kv1* genes encode for voltage-gated potassium

channels, which are considered to be regulate EOD signals in mormyrids. The abundant gene number in this subfamily likely resulted from two rounds of whole genome duplication and an additional teleost-specific whole genome duplication. Those duplicated gene copies might have undergone neofunctionalization or subfunctionalization leading to the retention of those copies. This can be supported by the up-regulation of 13 *Kv1* genes in the electric organ (EO) of *C. tshokwe* compared with skeletal muscle (SM). Two tandem duplicated *KCNA7a* genes were both up-regulated in the EO of *C. compressirostris*, *C. tshokwe*, *C. rhynchophorus* and hybrids *C. compressirostris* x *C. rhynchophorus*, *C. compressirostris* x *C. tshokwe*. *KCNA7a_2*, which was inferred to be under positive selection in the transmembrane helices 3-4 linkers among species *Brienomyrus* and *Gymnarchus*, exhibited even higher expression than the other copy. This indicates that both *KCNA7a* copies are functional in the EO of *Campylomormyrus* (and perhaps across mormyrids), which resulted in the retention of both copies.

6.2 What makes the EO?

Most electric fish possess a specific myogenic EO derived from SM fibers, indicating a convergent evolution in those independently evolved lineages. Therefore, a transcriptional comparison between EO and SM helped investigate the transitions from SM to EO at the gene expression level during development.

Several EO-specific candidate genes showed convergent expression pattern in the studied *Campylomormyrus* and other electric fish lineages Mormyroidea (beyond *Campylomormyrus*), Siluriformes and Gymnotiformes, e.g. *SCN4aa*, *SIX2a*, *HEY1*, *KCNA7a*, *NDRG3*, *MEF2a* and several isoforms of sodium/potassium ATPase α and β subunits (Gallant et al. 2012; Gallant et al. 2014; Traeger et al. 2017; Losilla et al. 2020). These consistently up-regulated genes in the EO of electric fish lineages indicate that EOs differ from SM in part due to the specific expression of

sodium and potassium channels, transduction signals, and skeletal muscle-specific transcription factors in general.

In addition to the convergently expressed genes in the EO in general, *Campylomormyrus* also exhibited specific gene expression patterns. This is evidenced by the abundantly up-regulated F-actin dynamics, unconventional myosin and *MEF2* genes. Those motoric/sarcomeric genes were quite different relative to another mormyrid, *Brienomyrus brachyistius*, where, e.g. troponin I isoforms, myosin heavy chain and tropomyosin were specifically up-regulated in the EO (Gallant et al. 2012). It suggested that the organization of the F-actin system in electrocytes might vary across mormyrid genera.

One transcription factor (*KLF5* - Krüppel-Like Factor 5) was highly overexpressed in the EO of *Campylomormyrus*. Krüppel is involved in the regulation of potassium channel expression in *Drosophila* when there is no expression from *KCND* genes (Parrish et al. 2014). We did not observe the expression of *KCND* genes in the EO of *Campylomormyrus* as well. In addition, several potassium channel genes were up- or down-regulated in the EO. We therefore suppose that the Krüppel transcription factor (*KLF5* here) possibly contributes to the regulation of potassium channels in the EO of *Campylomormyrus*, thereby enabling the formation of a special SM-derived EO.

6.3 EOD duration diversification among Campylomormyrus species

The EOD is usually species-specific in mormyrids with regard to shape and waveform. The diverged EOD serves as a pre-zygotic isolation mechanism and hence contributes to the species radiation in mormyrids. The EOD is assumed to be regulated by different sodium and potassium currents across the plasma membrane. We clearly see gene expression patterns related to the EOD

duration, consistently observed in both adult and juvenile EO samples (Article II, Fig. 3a; Article III, Fig. 2a).

We identified several candidate genes that showed an increasing or decreasing expression pattern relative to the EOD duration, including three potassium channel genes (*KCNJ2*, *KCNK6* and *KCNQ5*) and a transcription factor *KLF5* (Article II, Table 2). Both *KCNK6* and *KCNQ5* encode for the voltage-gated potassium channel genes, which generate outward potassium currents (Schroeder et al. 2000; Chai et al. 2017). *KCNK5*, which is a paralog of *KCNK6*, also shows higher expression in *Paramormyrops* species with short EOD (Losilla et al. 2020). Their lower expression in species with elongated EOD might result in decreased outward potassium currents and eventually prolongate the repolarization of the EOD. *KCNJ2* encodes for an inward rectifying potassium channel. It stabilizes the resting membrane potential, shaping the initial depolarization and final repolarization of cardiomyocytes' action potential (Dhamoon and Jalife 2005; Hibino et al. 2010). The expression of this gene is higher in elongated EOD species, along with the transcription factor *KLF5*.

We amplified *KCNJ2* genes in 10 *Campylomormyrus* species using different pairs of primers designed from the genome (this part was performed by a bachelor student; Cheri, Cheng & Tiedemann, unpubl. results). Two non-synonymous substitutions were identified in *C. rhynchophorus* and *C. numenius*. The substitution at site 198 was predicted change the function of the encoded protein. This suggests that the *KCNJ2* gene has a dual impact on the modulation of EOD duration, resulting from both altered gene expression and protein function. Those two species possess very elongated EOD (over 40 ms). They have a special papillae structure at the anterior face of the electrocyte. We do not know the relationship between papillae and inwardly rectifier potassium channels (encoded by the *KCNJ2* gene). It is possible that this special folding and

invagination on the membrane might increase membrane capacity and increase ion currents to elongate the EOD. Further exploration on electrophysiology and histology is essential to prove the function of *KCNJ2* on EOD modulation.

6.4 EOD development during ontogeny

The mormyrid fish possess a larval EO in the deep lateral muscle (Nguyen et al. 2020). The EOD produced by the larval organ is biphasic and short (around 0.4 ms) duration in several studied *Campylomormyrus* species. Throughout the ontogeny of *C. compressirostris*, the EOD shows no change in shape and duration. However, in *C. rhynchophorus* and *C. tshokwe*, the EOD exhibits continuous alteration throughout several stages from larval EOD until the adult EOD.

We observed several potassium channel genes that were differentially expressed throughout the ontogeny of *C. compressirostris*, *C. rhynchophorus* and their cross-species hybrid (also exhibiting EOD change during ontogeny). *KCNJ2* also showed higher expression in the adult *C. rhynchophorus* (40 ms duration EOD) and the hybrid *C. compressirostirs* x *C. rhynchophorus* (4 ms duration EOD), compared to their respective juveniles, which have 5 ms and 0.4 ms duration EODs respectively. This further suggests the *KCNJ2* gene to contribute to the elongation of EOD in *Campylomormyrus*. In addition, several voltage-gated potassium channel genes exhibited a decreasing expression pattern throughout ontogeny. They may generate lower outward potassium currents and consequently elongated EOD during development.

Although *C. compressirostris* does not show any EOD alteration during ontogeny, we still observed some potassium channel genes (e.g. *KCNA6a*) to be down-regulated in the adult. One possible explanation is that the membrane capacity may have enlarged following the growth of the electrocytes growth. The down-regulated voltage-gated potassium channel gene might compensate

for this developmental change and result in the EOD consistency during ontogeny. However, this hypothesis needs further investigation.

6.5 EOD diversification in *Campylomormyrus* hybrids

Hybrids play an important role in understanding the phenotypic evolution, as they contain two different subgenomes from their respective parental species. The *Campylomormyrus* hybrids exhibited interesting EODs compared to their parental species. We explored the gene and allele specific expression of two hybrid cohorts, i.e., crosses among the short duration EOD species *C. compressirostris* and (1) a medium duration EOD species (*C. tshokwe*) resp. (2) an elongated duration EOD species (*C. rhynchophorus*). Short duration EOD (e.g. in adult *C. compressirostris* and *C. tamandua*) is considered as an ancestral phenotype (plesiomorphic), while the long duration EOD (e.g. medium duration EOD in *C. tshokwe* and *C. alces*; elongated duration EOD in *C. rhynchophorus*) as a derived phenotype (apomorphic).

Both hybrids exhibit intermediate EODs in the adult stage compared to their parental species. However, the shape and duration of hybrids' EODs all more closely resemble their parental species with elongated EOD instead of *C. compressirostris*, i.e., they had a tendency towards the apomorphic EOD phenotype.

In the allele specific analyses on the EO and SM of two adult hybrids, we observed a general dominance of the alleles from the *C. compressirostris* (Article II, Fig. 5a). Such dominance occurred in the EO of juvenile hybrids *C. compressirostris* x *C. rhynchophorus* as well (Article III, Fig. 3a). We inferred that the subgenome from the parental species with a plesiomorphic EOD appeared dominantly expressed in the hybrids.

We identified several genes that showed allele expression imbalance in the adult hybrids, with only one gene (*KCNJ2*) exhibiting dominant expression of the allele from *C. rhynchophorus* instead of *C. compressirostris* (Article II, Fig. 5b). In addition, the expression of the *C. rhynchophorus* allele increased during ontogeny of the hybrid *C. compressirostris* x *C. rhynchophorus* (Article III, Fig. 3c). This gene showed a higher expression in the purebred species with an elongated EOD, suggesting its expression might be under cis-regulation in both purebred species and hybrids. The allele specific expression results support the potential function of the *KCNJ2* gene in regulating EOD duration of *Campylomormyrus*.

This is the first time to explore the allele specific expression in the electric fish hybrids and ontogeny. Although, the asymmetric expression of two parental alleles affect the phenotype was studied in other species. The F1 hybrids between California tiger salamander and barred tiger salamander show that the proportion of genes with allelic imbalance might relate to their thermal tolerance (Cooper and Shaffer 2021). The Amazon molly also exhibits allelic bias favoring the maternal ancestor allele in ovarian tissue (Zhu et al. 2017). Those studies suggest that the allele specific expression (allele imbalanced expression) has an impact on the phenotype in hybrids.

Therefore, the allele imbalanced expression of *KCNJ2* gene probably affects the EOD resemblance to *C. rhynchophorus* in the hybrid *C. compressirostris* x *C. rhynchophorus* under the scenario of overall dominance of *C. compressirostris* alleles, and also might affect the EOD development of this hybrid during ontogeny by increasing the expression of the allele from *C. rhynchophorus*.

7 Conclusion

My PhD study produced a high quality genome in *Campylomormyrus*. This is the fourth wellannotated genome in electric fish and third in Osteoglossomorpha. It will be a valuable resource for understanding the evolution of electric fish as well as teleosts.

This study further investigated the EOD diversification across species and ontogeny of *Campylomormyrus* species/hybrids from a gene expression perspective. Several candidate genes potentially involved in the EOD waveform were identified, e.g. *KCNJ2*, *KLF5*, *KCNK6*, *KCNQ5*. *KCNJ2* is also involved in the EOD development during ontogeny. In addition, I identified one transcription factor *KLF5* that might regulate different potassium channels expression in *Campylomormyrus*.

The alleles from *C. compressirostris* exhibited near global expression dominance in the hybrids. A single exception was *KCNJ2*, which showed an opposite expression dominance of the allele from *C. rhynchophorus* in their hybrids. This further supported our hypothesis that *KCNJ2* is a powerful candidate in regulating EOD duration.

In summary, the major finding figured out the candidate genes that affect EOD duration diversification in the weakly electric fish. It contributed to our understanding of the adaptive radiation in Mormyroidae (even Osteoglossomorpha) under a possibily sympatric condition.

Further exploration is necessary to prove our hypotheses on the inferred EOD duration-specific candidate genes. Gene knockdown on *KCNJ2* in different *Campylomormyrus* will be useful to verify the function on EOD duration regulation. In addition, gene editing in *C. rhynchophorus/C. numenius* and hybrids will help us to understand if the non-synonymous mutation will alter the protein function in very elongated EOD species, and perhaps will change the EOD phenotype of

hybrids. Different sets of hybrids crossing species with plesiomorphic and apomorphic EOD features might help to understand if the subgenome from parental species with plesiomorphic traits are generally more dominant in the hybrid offspring. More detailed gene expression during the ontogeny of *C. rhynchophorus* and *C. numenius* might help us to understand the EOD development.

8 Reference

- Arnegard ME, Bogdanowicz SM, Hopkins CD. 2005. Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry. *Evolution (N Y)* 59:324–343.
- Arnegard ME, McIntyre PB, Harmon LJ, Zelditch ML, Crampton WGR, Davis JK, Sullivan JP, Lavoué S, Hopkins CD. 2010. Sexual signal evolution outpaces ecological divergence during electric fish species radiation. *American Naturalist* 176:335–356.
- Bass AH. 1986. Electric Organs Revisited: Evolution of a Vertebrate Communication and Orientation Organ.
- Bennett MVL. 1970. Comparative physiology: electric organs. Annu Rev Physiol 32:471-528.
- Bennett MVL. 1971. Electric organs. In: Fish Physiology. Vol. 5. p. 347–491.
- Carlson BA, Hasan SM, Hollmann M, Miller DB, Harmon LJ, Arnegard ME. 2011. Brain evolution triggers increased diversification of electric fishes. *Science (1979)* 332:583–586.
- Carlson BA, Sisneros JA, Popper AN, Fay RR. 2019. Electroreception : fundamental insights from comparative approaches. Available from: https://www.google.com/books/edition/_/zCy-DwAAQBAJ?hl=en
- Chai S, Wan X, Nassal DM, Liu H, Moravec CS, Ramirez-Navarro A, Deschênes I. 2017. Contribution of two-pore K+ channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes. *Am J Physiol Heart Circ Physiol* 312:H1144–H1153.
- Crampton WGR. 2019. Electroreception, electrogenesis and electric signal evolution. *J. Fish Biol.* 95:92–134.
- Dhamoon AS, Jalife J. 2005. The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. *Heart Rhythm* 2:316–324.
- Feulner PGD, Kirschbaum F, Tiedemann R. 2008. Adaptive radiation in the Congo River: An ecological speciation scenario for African weakly electric fish (Teleostei; Mormyridae; Campylomormyrus). J Physiol Paris 102:340–346.

- Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R. 2009a. Electrifying love: Electric fish use species-specific discharge for mate recognition. *Biol Lett* 5:225–228.
- Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R. 2009b. Magic trait electric organ discharge (EOD): Dual function of electric signals promotes speciation in African weakly electric fish. *Commun. Integr. Biol.* 2:329–331.
- Gallant JR, Hopkins CD, Deitcher DL. 2012. Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish Brienomyrus brachyistius. *Journal of Experimental Biology* 215:2479–2494.
- Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen P, Novina CD, Jr GNP, Anand R, Wells GB, Pinch M, et al. 2014. Genomics basis for the convergent evolution of electric organs. *Science (1979)* 344:1522–1525.
- Glasauer SMK, Neuhauss SCF. 2014. Whole-genome duplication in teleost fishes and its evolutionary consequences. *Molecular Genetics and Genomics* 289:1045–1060.
- Gundappa MK, To TH, Grønvold L, Martin SAM, Lien S, Geist J, Hazlerigg D, Sandve SR,
 Macqueen DJ. 2022. Genome-Wide Reconstruction of Rediploidization Following
 Autopolyploidization across One Hundred Million Years of Salmonid Evolution. *Mol Biol Evol* 39:msab310.
- Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. 2010. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. *Physiol Rev* 90:291– 366.
- Hooper SD, Berg OG. 2003. On the nature of gene innovation: Duplication patterns in microbial genomes. *Mol Biol Evol* 20:945–954.
- Jatllon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Maucell E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, et al. 2004. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. *Nature* 431:946–957.
- Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, et al. 2007. The medaka draft genome and insights into vertebrate genome evolution. *Nature* 447:714–719.

- Kirschbaum F, Nguyen L, Baumgartner S, Chi HWL, Wolfart R, Elarbani K, Eppenstein H, Korniienko Y, Guido-Böhm L, Mamonekene V, et al. 2016. Intragenus (Campylomormyrus) and intergenus hybrids in mormyrid fish: Physiological and histological investigations of the electric organ ontogeny. *J Physiol Paris* 110:281–301.
- Korniienko Y, Tiedemann R, Vater M, Kirschbaum F. 2021. Ontogeny of the electric organ discharge and of the papillae of the electrocytes in the weakly electric fish Campylomormyrus rhynchophorus (Teleostei: Mormyridae). *Journal of Comparative Neurology* 529:1052–1065.
- Lamanna F, Kirschbaum F, Ernst ARR, Feulner PGD, Mamonekene V, Paul C, Tiedemann R. 2016. Species delimitation and phylogenetic relationships in a genus of African weaklyelectric fishes (Osteoglossiformes, Mormyridae, Campylomormyrus). *Mol Phylogenet Evol* 101:8–18.
- Lamanna F, Kirschbaum F, Waurick I, Dieterich C, Tiedemann R. 2015. Cross-tissue and crossspecies analysis of gene expression in skeletal muscle and electric organ of African weaklyelectric fish (Teleostei; Mormyridae). *BMC Genomics* [Internet] 16:1–17. Available from: http://dx.doi.org/10.1186/s12864-015-1858-9
- Losilla M, Luecke DM, Gallant JR. 2020. The transcriptional correlates of divergent electric organ discharges in Paramormyrops electric fish. *BMC Evol Biol* 20:1–19.
- Nagel R, Kirschbaum F, Engelmann J, Hofmann V, Pawelzik F, Tiedemann R. 2018. Malemediated species recognition among african weakly electric fishes. *R Soc Open Sci* 5:4–11.
- Nagel R, Kirschbaum F, Hofmann V, Engelmann J, Tiedemann R. 2018. Electric pulse characteristics can enable species recognition in African weakly electric fish species. *Sci Rep* 8:1–12.
- Nagel R, Kirschbaum F, Tiedemann R. 2017. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes. *Journal of Comparative Physiology A* 203:183–195.

- Nguyen L, Mamonekene V, Vater M, Bartsch P, Tiedemann R, Kirschbaum F. 2020. Ontogeny of electric organ and electric organ discharge in Campylomormyrus rhynchophorus (Teleostei: Mormyridae). *Journal of Comparative Physiology A* 206:453–466.
- Nguyen L, Paul C, Mamonekene V, Bartsch P, Tiedemann R, Kirschbaum F. 2017. Reproduction and development in some species of the weakly electric genus Campylomormyrus (Mormyridae, Teleostei). *Environ Biol Fishes* 100:49–68.
- Parrish JZ, Kim CC, Tang L, Bergquist S, Wang T, DeRisi JL, Jan LY, Jan YN, Davis GW. 2014. Krüppel Mediates the Selective Rebalancing of Ion Channel Expression. *Neuron* 82:537–544.
- Paul C, Mamonekene V, Vater M, Feulner PGD, Engelmann J, Tiedemann R, Kirschbaum F.
 2015. Comparative histology of the adult electric organ among four species of the genus
 Campylomormyrus (Teleostei: Mormyridae). *Journal of Comparative Physiology A*201:357–374.
- Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ. 2000. KCNQ5, a Novel Potassium Channel Broadly Expressed in Brain, Mediates M-type Currents. *Journal of Biological Chemistry* 275:24089–24095.

Stern DL. 2013. The genetic causes of convergent evolution. Nat Rev Genet 14:751–764.

- Swapna I, Ghezzi A, York JM, Markham MR, Halling DB, Lu Y, Gallant JR, Zakon HH. 2018. Electrostatic Tuning of a Potassium Channel in Electric Fish. *Current Biology* 28:2094-2102.e5.
- Thompson A, Vo D, Comfort C, Zakon HH. 2014. Expression evolution facilitated the convergent neofunctionalization of a sodium channel gene. *Mol Biol Evol* 31:1941–1955.
- Tiedemann R, Feulner PGD, Kirschbaum F. 2010. Electric Organ Discharge Divergence Promotes Ecological Speciation in Sympatrically Occurring African Weakly Electric Fish (Campylomormyrus). In: Evolution in Action: Case studies in Adaptive Radiation, Speciation and the Origin of Biodiversity. p. 307–321.
- Traeger LL, Sabat G, Barrett-Wilt GA, Wells GB, Sussman MR. 2017. A tail of two voltages: Proteomic comparison of the three electric organs of the electric eel. *Sci Adv* 3:e1700523.

- Volff JN. 2005. Genome evolution and biodiversity in teleost fish. Heredity (Edinb) 94:280-294.
- Wang Y, Yang L. 2021. Genomic Evidence for Convergent Molecular Adaptation in Electric Fishes. *Genome Biol Evol* 13:1–11.
- Zhu F, Schlupp I, Tiedemann R. 2017. Allele-specific expression at the androgen receptor alpha gene in a hybrid unisexual fish, the Amazon molly (Poecilia formosa). *PLoS One* 12:1–14.

9 Acknowledgements

I would firstly thank my first supervisor Prof. Dr. Ralph Tiedemann for offering me the opportunity to work on this interesting and challenging topic in the Evolutionary Biology/Systematic Zoology group. I appreciate his professional supervision and support during my five years here.

I also want to thank Prof. Dr. Frank Kirschbaum for sharing his knowledge of weakly electric fish. He helped a lot in fish breeding experiment side by side. Great appreciation also give to apl. Prof. Dr. Otto Baumann for sharing his electrophysiology knowledge.

Many thanks go to apl. Prof. Dr. Alice B. Dennis for her supervision on experiment design, bioinformatics and analysis guidance. Her excellent knowledge on evolutionary biology, bioinformatics helped me a lot. I also would like to thank Dr. Stefanie Hartmann and Dr. Christian Kappel for their help on bioinformatics and data analyses.

Special thanks go to all the colleagues at the group Evolutionary Biology/Systematic Zoology for the relaxed atmosphere. I like to thank Dr. Linh Nguyen for taking care of the breeding fish as well as sharing his knowledge of weakly electric fish. I would like to thank our technicians Anja Ernst, Katja Havenstein and Tonio Pieterek for their help in the lab, to Dr. Marisol Domínguez for her suggestion to my project. To Dr. Julia Cantiz, Dr. Rahma Amen and Andrew Sinnott, specially thank them for building a nice office together.

Finally, I would like to thank my family and Xuan for having backed on me during my PhD.