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Abstract

Relativistic pair beams produced in the cosmic voids by TeV gamma rays from blazars are
expected to produce a detectable GeV-scale cascade emission missing in the observations.
The suppression of this secondary cascade implies either the deflection of the pair beam by
intergalactic magnetic fields (IGMFs) or an energy loss of the beam due to the electrostatic
beam-plasma instability. IGMF of femto-Gauss strength is sufficient to significantly
deflect the pair beams reducing the flux of secondary cascade below the observational
limits. A similar flux reduction may result in the absence of the IGMF from the beam
energy loss by the instability before the inverse Compton cooling. This dissertation
consists of two studies about the instability role in the evolution of blazar-induced beams.

Firstly, we investigated the effect of sub-fG level IGMF on the beam energy loss
by the instability. Considering IGMF with correlation lengths smaller than a few kpc,
we found that such fields increase the transverse momentum of the pair beam particles,
dramatically reducing the linear growth rate of the electrostatic instability and hence
the energy-loss rate of the pair beam. Our results show that the IGMF eliminates beam-
plasma instability as an effective energy-loss agent at a field strength three orders of
magnitude below that needed to suppress the secondary cascade emission by magnetic
deflection. For intermediate-strength IGMF, we do not know a viable process to explain
the observed absence of GeV-scale cascade emission and hence can be excluded.

Secondly, we probed how the beam-plasma instability feeds back on the beam, using
a realistic two-dimensional beam distribution. We found that the instability broadens the
beam opening angles significantly without any significant energy loss, thus confirming
a recent feedback study on a simplified one-dimensional beam distribution. However,
narrowing diffusion feedback of the beam particles with Lorentz factors less than 106

might become relevant even though initially it is negligible. Finally, when considering
the continuous creation of TeV pairs, we found that the beam distribution and the wave
spectrum reach a new quasi-steady state, in which the scattering of beam particles
persists and the beam opening angle may increase by a factor of hundreds. This new
intrinsic scattering of the cascade can result in time delays of around ten years, thus
potentially mimicking the IGMF deflection. Understanding the implications on the GeV
cascade emission requires accounting for inverse Compton cooling and simulating the
beam-plasma system at different points in the IGM.





Zusammenfassung

Relativistische Teilchenstrahlen, erzeugt in den Weiten des Weltraums durch TeV- Gam-
mastrahlen von Blazaren, sollen eine Art von Emission im GeV-Bereich erzeugen. Diese
Emission wurde jedoch bisher nicht beobachtet. Der Grund für diese fehlende Emission
könnte eine von zwei Ursachen sein: Entweder werden die Teilchenstrahlen von den
Magnetfeldern im Weltraum (den sogenannten intergalaktischen Magnetfeldern oder
IGMFs) umgeleitet, oder die Strahlen verlieren ihre Energie aufgrund einer Art von
Instabilität namens Strahlungs-Plasma-Instabilität. Wenn die IGMFs extrem schwach
sind (im Femto-Gauss-Bereich gemessen), können sie dennoch eine große Wirkung auf
die Teilchenstrahlen haben, indem sie diese von ihrem Kurs abbringen und die Menge
der fehlenden Emission verringern. Andererseits kann die Strahlungs-Plasma-Instabilität
die Energieverluste der Strahlen verursachen, wenn es keine IGMFs gibt.

Diese Forschung besteht aus zwei Studien. In der ersten Studie haben Wissenschaftler
erforscht, wie schwache IGMFs den Energieverlust der Strahlen aufgrund von Instabilität
beeinflussen. Sie stellten fest, dass diese schwachen Felder den Impuls der Teilchen-
strahlen erheblich verändern können, was den Energieverlust aufgrund der Instabilität
erheblich verlangsamt. Dies bedeutet, dass selbst extrem schwache IGMFs die Strahlungs-
Plasma-Instabilität unwirksam machen können, wenn es darum geht, Energieverluste zu
verursachen.

In der zweiten Studie haben sie untersucht, wie die Strahlungs-Plasma-Instabilität
die Teilchenstrahlen beeinflusst. Sie entdeckten, dass die Instabilität den Winkel der
Strahlen erweitert, ohne signifikante Energieverluste zu verursachen. Im Laufe der
Zeit könnten jedoch Partikel mit niedrigeren Energien anfangen, Energie zu verlieren.
Wenn man die kontinuierliche Erzeugung von hochenergetischen Teilchen berücksichtigt,
stellten sie fest, dass die Verteilung der Strahlen und das Wellenspektrum schließlich
einen stabilen Zustand erreichen, in dem die Partikel weiterhin gestreut werden und der
Strahlenwinkel sich erheblich vergrößern kann. Diese intrinsische Streuung der Emission
kann Zeitspannen verursachen, die es so aussehen lassen, als ob die IGMFs die Emission
umlenken. Um die Auswirkungen auf die fehlende GeV-Emission vollständig zu verste-
hen, müssen Wissenschaftler Faktoren wie inverse-Compton-Kühlung berücksichtigen
und die Wechselwirkung zwischen den Teilchenstrahlen und dem umgebenden Plasma
an verschiedenen Stellen im Weltraum simulieren.
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Chapter 1

Introduction

Gamma-ray astronomy is a recent cutting-edge astrophysics field that unveils the universe’s
most extreme and enigmatic phenomena. Employing the power of high-energy gamma
rays that emerge from the most violent cosmic processes in the universe this discipline
provides a unique lens through which we can explore supernovae, pulsars, gamma-ray bursts,
and the active galactic nuclei (AGNi). AGNi stand as the brightest persistent emitters of
electromagnetic radiation in the universe. Consequently, they serve as valuable tools for
discovering distant objects and their evolution over cosmic epochs and provide constraints
on our models of the universe’s evolution.

Blazars are AGNi with their relativistic jet pointing toward Earth. Observations of the
Fermi-LAT telescope and the imaging atmospheric Cerenkov telescopes (such as VERITAS,
MAGIC, and H.E.S.S.) show a bright GeV-TeV gamma-ray emission of several blazars.
During their propagation through the intergalactic medium (IGM), those very high energy
gamma-rays interact with the extragalactic background light (EBL) photons, producing a
focused beam of electron-positron pairs with a wide range of Lorentz factors between 103

and 108. These pairs are anticipated to dissipate their energies via inverse Compton scattering
on the cosmic microwave background (CMB) giving a secondary GeV-scale gamma-ray
cascade that is detectable by Fermi-LAT telescope (Blumenthal and Gould, 1970; Gould and
Schréder, 1967).

Although primary blazar gamma-rays with energies of a few TeV would initiate an
electromagnetic cascade in the GeV energy range, such emissions seem to be absent from
the gamma-ray spectra of certain blazars (Neronov and Semikoz, 2009) and possibly the
isotropic gamma-ray background (Blanco et al., 2023). One possible explanation for the
absence of the GeV cascade emission from the gamma-ray spectra of blazars is the TeV pairs
deflection by the intergalactic magnetic fields (IGMFs) (Durrer and Neronov, 2013; Elyiv
et al., 2009; Neronov and Semikoz, 2009; Neronov and Vovk, 2010; Takahashi et al., 2011;



2 Introduction

Taylor et al., 2011; Vovk et al., 2012). This deflection results in an extended emission or/and
a time delay of the cascade emission. In this case, the observed blazar spectra are used to put
lower limits on the strength of the IGMFs.

The field strength required to suppress the cascade emission due to the time delay is
around BIGM > 10−15G for IGMF with a correlation length similar to or larger than the
energy loss length of the beam, λB ≳ 10 kpc, and stronger than that for a small correlation
length, for which the beam sees a fluctuating magnetic field and the deflection becomes
diffusive (Ackermann et al., 2018). If the magnetic field is strong enough to deflect by a
radian or more, then the cascade emission from AGNi with oblique jets (jets more than 30◦

off of our line of sight) should become visible (Broderick et al., 2016; Tiede et al., 2020), but
corresponding emission has not been found (Ackermann et al., 2018; Broderick et al., 2018;
Tiede et al., 2017).

The only alternative solution for the missing GeV cascade emission within the standard
model physics is the beam energy loss by the collective beam-plasma instabilities before the
inverse Compton cooling on the CMB. However, whether the non-linear evolution of those
instabilities is efficient in taking significant fraction of the beam energy is still debatable
in the literature (Alves Batista et al., 2019; Broderick et al., 2012; Broderick et al., 2014;
Chang et al., 2014, 2016b; Kempf et al., 2016; Miniati and Elyiv, 2013; Rafighi et al., 2017;
Schlickeiser et al., 2012, 2013; Shalaby et al., 2020; Sironi and Giannios, 2014; Supsar and
Schlickeiser, 2014; Vafin et al., 2018, 2019). If the nonlinear evolution of the instability is
efficient in draining the energy from the beam particles then the IGM could be subject to
significant heating. Cosmological simulations including this heating process can successfully
reproduce the observed IGM temperature and the effective optical depth as a function of
redshift as well as several other observations (Puchwein et al., 2012b).

Vafin et al. (2018) calculated the linear growth rate of the electrostatic instability using a
realistic pair distribution generated by the annihilation of high-energy gamma rays with the
extragalactic background light. Their results demonstrated that the finite angular spread of
the beam plays a decisive role in shaping the unstable electrostatic modes. They concluded
that the balance of instability growth with the modulation instability damping determines the
saturation level, yielding an energy loss rate of the beam due to the instability that is faster
than that due to the comptonization on the CMB photons.

The beam-plasma electrostatic instability operates best in the absence of a magnetic field.
Noting that magnetic deflection needs more than a femto-Gauss field amplitude, here in the
first study related to this thesis (Alawashra and Pohl, 2022) and presented in chapter 4, we
address the effect on the electrostatic instability that would be imposed by much weaker
intergalactic magnetic fields with a correlation length much smaller than the beam energy
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loss length. In particular, we investigate whether the beam-plasma instability still is the
dominant energy-loss process and how strongly the cascade emission is suppressed.

Apart from the non-linear wave interactions, there is also the non-linear feedback of the
waves on the beam. Previous studies of the blazar-induced pair beam instabilities didn’t
consider this feedback of the instability. This feedback has been studied for the first time
in the context of blazar-induced pair beam electrostatic instability by Perry and Lyubarsky
(2021). Their findings imply that the back reaction of the electrostatic unstable waves on the
pair beam widens the beam opening angles by around one order of magnitude without any
significant energy loss.

In the second work related to this thesis (Alawashra and Pohl, 2024) and presented in
chapter 5, we use a two-dimensional realistic beam distribution to explore the influence of
the instability feedback on the beam. This is unlike the simplified one-dimensional beam
distribution used in Perry and Lyubarsky (2021). Specifically, we use the beam profile at a
distance of 50 Mpc from the blazar found in Vafin et al. (2018). This treatment enables us
to look at the feedback influence on the pairs that have the relevant Lorentz factors for an
inverse Compton scattering cascade in the GeV band.

The instability feedback is described by a Fokker-Planck diffusion both in momentum and
angular space. This treatment was simplified in the analysis by Perry and Lyubarsky (2021),
by evaluating only the initially dominant angular widening diffusion and neglecting the other
subdominant feedback involving the momentum diffusion and angular narrowing diffusion.
Here, we check rigorously this assumption by using the 2D spectrum of the expanded beam
under the dominant feedback to analyse the possible impact of the momentum diffusion on
the beam energy and whether the beam narrowing diffusion is still negligible.

The beam-plasma instability significantly outpaces other factors that could change the
blazar-induced pair beam profile, such as inverse Compton cooling and pair production.
Whereas previous works have predominantly focused on assessing the instability’s impact on
a stationary beam profile, we incorporate in chapter 4 the continuous production of TeV pairs
into the transport equation of the beam, in addition to the instability feedback on the beam.

We start in chapter 2 with an overview of the field of gamma-ray astronomy, where we
will introduce the main persistent extragalactic sources of the gamma-ray mainly AGNi
and their subclass blazars. We also follow the gamma-ray journey across the cosmic voids
from those sources to Earth. In chapter 3, we take a close look at the foundations and the
relevant physics of the beam-plasma instabilities including their non-linear interactions. The
following chapter 4 focus on our first work where we investigated the impact of weak IGMF
on the growth of the beam-plasma instability, we derived the magnetic fields limit at which
the instability is suppressed by the tangled IGMF. Later, in chapter 5, we present our second
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study and its methodology where we simulated the Fokker-Planck diffusion feedback of the
instability on the beam. Ultimately we conclude and give an outlook of further possible
investigations in chapter 6



Chapter 2

Observational Context

In this chapter, we present several concepts that are relevant to the scope of this thesis:
studying the beam-plasma instability of the blazar-induced TeV pair beams. We discuss
the extragalactic TeV gamma-ray sky in section 2.1. In section 2.2, we introduce the active
galactic nuclei (AGNi) and Blazars which are astrophysical sources producing TeV-gamma
rays propagating in the intergalactic medium (IGM). Later in section 2.3, we introduce the
IGM environment where those very-high-energy (VHE) gamma rays propagate in before
reaching us. Finally, we follow the TeV gamma rays journey through the comics voids of the
IGM in section 2.4.

2.1 The Extragalactic Gamma-Ray Sky

The thermal radiation in the Universe is emitted by several astrophysical objects like stars,
dust and gas. This radiation lies mainly in the optical and infrared wavelengths. However,
along with this thermal radiation, we also observe non-thermal radiation at several wave-
lengths like radio, X-ray and gamma-ray. This non-thermal emission is possible by the
acceleration of charged particles through extreme processes in astrophysical environments.
Those high-energy charged particles radiate by several emission mechanisms like the syn-
chrotron radiation when spiralling magnetic fields or the inverse Compton scattering on
low-energy target photons Ghisellini (2013).

The field of gamma-ray astronomy is a relatively young disciplinary field compared
to thermal astronomy. Unlike the detection of thermal light, the detection of gamma rays
presents different challenges and requires different techniques. Gamma rays with very high
energies (100 GeV - 100 TeV) are observed by the ground-based Imaging Atmospheric
Cherenkov Telescopes IACTs (i.e H.E.S.S., MAGIC, VERITAS). The basic idea behind this
detection technique is to detect the flash of Cherenkov radiation induced by the cascade of
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Fig. 2.1 The number of detected extragalactic gamma-ray sources with time. Space-based
telescopes (like EGRET and Fermi-LAT) detections are shown by the dashed grey line.
Those detections are reported from the following catalogues: 1EG Fichtel et al. (1994),
3EG Hartman et al. (1999), 1FGL Abdo et al. (2010a), 3FGL Acero et al. (2015), 1FLGC
Ackermann et al. (2013), 4FGL-DR2 Abdollahi et al. (2020), 1FLT Baldini et al. (2021)
and 2FLGC Ajello et al. (2019). The solid black line shows the detections by ground-
based gamma-ray telescopes as reported by TeVCat Wakely and Horan (2008) during the
2021 International cosmic-ray Conference (ICRC 2021). The categories of the sources are
displayed in the pie chart at the lower right of the Figure. Blue: BL Lac (BLL), flat-spectrum
radio quasar (FSRQ), radio galaxy (RDG) and active galactic nuclei of either radio galaxy of
blazar-type with uncertain classification (AGN, AGU, BCU). Green: Narrow-line Seyfert
1 (NLSY1), steep-spectrum radio quasars (SSRQ) and compact steep spectrum sources
(CSS). Orange: regular star-forming galaxies along with starburst galaxies and non-jetted
Seyfert-type AGN (GAL, SBG, SEY), gamma-ray bursts of short (sGRB) and long (lGRB)
duration. Figure was taken from Biteau and Meyer (2022).
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charged particles resulting from the interaction of the gamma-ray with the atmosphere. This
flash illuminates an area of hundreds of square meters on the ground, this requires distances
of hundred meters between the telescopes to ensure the coverage of the cascade (Di Sciascio,
2019).

Other gamma-ray telescopes include space-based telescopes. Where a tracker and a
calorimeter are used to detect the shower generated by the gamma-ray. Those particle-
physics instruments are carried on the board of a satellite orbiting Earth like the Fermi
gamma-ray space telescope. This technique is mostly effective at the detection of gamma
rays with energies of 50 MeV up to a few hundred GeV. The small effective area of this
technique compared to the ground-based telescopes is the resonance for the limitation of a
few hundred GeV on the maximum detected energy.

The field of Extragalactic gamma-ray astronomy started during the 1990s, in figure
2.1 we see the number of observed extragalactic gamma-ray sources with time. EGRET
(Energetic Gamma Ray Experiment Telescope) detector was one of the first space-based
gamma-ray telescopes during the 1990s. The detector on board the Compton Gamma-Ray
Observatory revealed almost a hundred bight extragalactic sources with gamma-ray energies
above 100 MeV band like Flat Spectrum Radio Quasars. This telescope also allowed for the
firm creation of the entire gamma-ray sky map, where the comparison with multi-wavelength
observations revealed that the majority of those sources are Active Galactic Nuclei (AGNi).
Those objects are the host galaxies of a supermassive black hole with an active accreting.

During the early 2000s, the Whipple Observatory, a ground-based gamma-ray telescope,
detected seven blazars (AGN with their jet closely aligned with the line of sight) and a single
radio galaxy, M87. Later after 2005, a new generation of ground-based gamma-ray telescopes
emerged, VERITAS in Arizona, USA, MAGIC in La Palma, Canary Islands and H.E.S.S.
in Khomas Highlands, Namibia. With enhanced imaging capabilities along with improved
background rejection, they discovered a population of TeV extragalactic sources called
BL Lac objects (BLL). BL Lac is a type of blazar with Spectral Energy Distributions that
peaked at very high energies. Those telescopes also revealed TeV emissions from galaxies
surrounding the Local Group, where the Milky Way is located, like M82, NGC 253 and
Centaurus A.

In 2008, the Fermi Large Area Telescope (Fermi-LAT) was launched with an effective
area of around a square meter and a field of view larger by about five times than EGRET
(Thompson, 2015). This instrument has given rise to an enormous increase in the number of
observed extragalactic gamma-ray sources with energies above a hundred MeV as we can see
in figure 2.1. Thanks to Fermi-LAT angular resolution of around a degree for energies above
GeV, the comparison with observations of x-ray, optical and radio was possible. Having
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multi-wavelength observations has provided us with extraordinary insights into the violent
process happening in the environments of extragalactic gamma-ray sources. In the next
section, we will take a look at one of the prominent gamma-ray astrophysical objects called
blazars.

2.2 AGNi and Blazars

Blazars are a class of active galactic nuclei (AGNi) with a relativistic jet pointing along the
line of sight of the Earth. They are characterized by intense and persistent radiation across
the electromagnetic spectrum, ranging from radio waves to high-energy TeV gamma-rays.

AGNi are galaxies with an actively accreting supermassive black hole at the centre with
typical masses of 107 −1010 solar masses. They represent a few per cent of all the galaxies
in the observed universe. AGNi are characterized by a bright jet composed of high-energy
relativistic particles that emit radiation as they interact with the surrounding material and
magnetic fields. Over half of the electromagnetic luminosity of AGNi is in the gamma-rays
band (E > 100 MeV).

AGNi are categorized into Radio-quiet AGNi and Radio-loud AGNi based on their radio
emission properties (Miller et al., 1990; Wilson and Colbert, 1995). Radio-quiet AGNi have
relatively weak radio emissions, with radio luminosities L5GHz < 1025 WHz−1. Examples of
radio-quiet AGNi include Seyfert galaxies and Radio-quiet quasars/QSOs. In this thesis, we
focus on Blazars that are classified within the other type of AGNi called Radio-loud AGNi.

Radio-loud AGNi have strong radio emission, with radio luminosities L5GHz > 1026

WHz−1. They are characterized by prominent relativistic jets extending out from the galaxy’s
central black hole up to the intergalactic medium. In figure 2.2, we show a multi-wavelength
picture of such a galaxy, the Radio galaxy 3C 348 (also known as Hercules A). The picture
is a combination of visible wavelengths by Hubble Space Telescope’s Wide Field Camera
3 and radio wavelengths by the Very Large Array (VLA) radio telescope in New Mexico.
In the radio component, we see clearly the very high-energy plasma beams of the jet of the
supermassive black hole at the centre of the galaxy. This jet extends for a distance of around
one million light-years in the IGM.

AGNi are also classified based on the orientation of the accretion disk and the jet relative
to the observer. This is the so-called unification model of the AGNi that was introduced
by Urry and Padovani (1995) for the radio-loud ones and by Antonucci (1993) for radio-
quiet sources. In figure 2.3, this unification is illustrated (Beckmann and Shrader, 2012).
This Figure also shows that the presence or absence of radio jets is the difference between
radio-loud and radio-quiet AGNi. Finally, it is important to highlight that there are more
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Fig. 2.2 Multi-wavelength picture of the Radio galaxy 3C 348 (also known as Hercules A).
Hubble Space Telescope’s Wide Field Camera 3 reviles the yellowish elliptical galaxy at the
centre in visible wavelengths of light, while the Very Large Array (VLA) radio telescope
reviles the jetted outflow of the galaxy in radio wavelengths shown in pink. [Credits: NASA,
ESA, S. Baum and C. O’Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the
Hubble Heritage Team (STScI/AURA), hubblesite.org]

https://hubblesite.org/contents/media/images/2012/47/3110-Image.html


10 Observational Context

Fig. 2.3 Representation of the unified AGN model. The classification of the AGN depends on
the viewing angle we see the object, and whether or not there is a significant jet emission. In
particular, we see that blazars are a subclass of Radio loud AGN where the jet points toward
us. Figure was taken from Beckmann and Shrader (2012).

classifications in the literature, for example, based on the evolution of the host galaxy of the
AGN (Goulding et al., 2014; Hickox et al., 2009).

When the jet of the radio-loud galaxy is closely aligned with our line of sight (Blazars),
we observe an enhancement in the energy of the photon compared to the emitted photon in
the jet frame. This is due to the relativistic beaming of the photons in the jet outflow with
an opening angle of θ ∼ Γ−1, where Γ is the bulk Lorentz factor of the jet plasma outflow.
The result is an increase in the observed luminosity of the jet by a factor of δ 4, where δ is
the relativistic Doppler Factor of the jet that is of the order 10 (Gaidos et al., 1996). This
Lorentz boosting makes it possible to detect the weak jet emission of blazars.

The spectral energy distribution (SED) of blazars stretches over the entire electromagnetic
spectrum from radio up to very high-energy gamma-ray. This SED has two spectral humps,
the first peaks between the optical and X-ray bands, whereas the higher energy one peaks in
the gamma-ray band. The low-energy bump is usually assigned to the beamed synchrotron
emission from relativistic electrons or pairs in the jet, where it is possible to interpret the
high-energy one with leptonic or hadronic models. In the leptonic approach, the emission is
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explained as the radiation produced via inverse Compton scattering of the same electrons or
pairs that have produced the synchrotron radiation on target lower energy photons. The target
photons for this scattering can be the synchrotron radiation photons or external photons from
the surrounding (Dermer and Schlickeiser, 1993; Levinson and Blandford, 1995; Maraschi
et al., 1992; Sikora et al., 1994).

On the other hand, along with the leptonic component, a hadronic one might contribute
to the blazar emission. In the case of purely hadronic models Mastichiadis et al. (2013), all
the gamma-ray emission can be traced to the hadronic interactions and synchrotron radiation
either from the secondary leptons created in hadronic processes or from protons. However,
extreme jet powers are required normally in those scenarios Sol and Zech (2022).

In the case of lepto-hadronic models, the low-energy peak of the blazar SED is explained
by the synchrotron emission of electrons as in the leptonic models. Whereas the high-energy
emission has a hadronic component along with a leptonic one. In the case of strong magnetic
fields 1-100 Gauss, synchrotron radion from protons with energies up to 1019 eV dominates
the high-energy peak (Cerruti et al., 2015). In the case of smaller magnetic fields and large
particle and photon field densities, synchrotron emission from the p-γ induced cascades
(i.e. photomeson processes) could dominate the high-energy emission (Cerruti et al., 2015;
Mannheim, 1993).

Blazars are classified into flat-spectrum radio quasars (FSRQ) and BL Lacertae objects
(BLL). BL Lac blazars have very weak or missing emission lines while the FSRQs are
characterized by broad emission lines in their optical spectra. BL Lacs also in general have
higher energies of peak luminosity of the emitted gamma rays (Ghisellini et al., 2017). The
inverse Compton emission dominates the SED of the FSRQs due to the high accretion rate
and the presence of bright external photon fields compared to the BLLs (Sikora et al., 1994).

Up to now, around 67 BL Lac blazars and around 9 FSRQs have been detected in the
gamma-ray band by state-of-the-art imaging atmospheric Cherenkov telescopes such as
HESS, VERITAS and MAGIC and by the LAT telescope on the board of Fermi satellite
Wakely and Horan (2008). Those Blazars redshifts are widely distributed, up to redshifts
of 1 for the blazars observed by the ground telescopes and up to redshifts of 4 for the
ones observed by the space-based telescopes. The fact that we observe gamma rays from
such a distance gives us a unique way to study the interactions of gamma rays during their
propagation in cosmic voids. We will present those interactions in section 2.4 and follow the
gamma-ray journey in cosmic voids, however, before this, we introduce the cosmic voids
and their radiation content in the following section.
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2.3 Intergalactic Medium

Most of the universe consists of voids between galaxies called the "intergalactic medium"
(IGM). This medium has a density much lower than the lowest density of vacuum we have
made in the lab which is about 1000 atoms per cubic centimetre achieved at CERN. Typical
densities of the electrons in the intergalactic medium are of the order (ne ≈ 10−7 cm−3)
where z is the redshift (Madau, 2000), while the IGM temperature is of the order 104 Kelvin
(Chang et al., 2012). We will be adapting those values of the IGM density and temperature
throughout our work.

The IGM contains half of the dark matter in the universe, whereas the present fraction of
baryons that are intergalactic is probably much higher (McQuinn, 2016). Baryonic matter
within the IGM has been leaked out of galaxies due to the interactions between galaxies, star
formation processes, and the influence of supermassive black holes. It is also thought that
the star and supermassive black hole formation are the primary sources of the IGM heating,
metal enrichment and ionization (McQuinn, 2016).

Cosmic microwave background (CMB) observations indicate that cosmic gas recombined
and turned neutral at around the Universe’s 400,000th year (z ≈ 1100), marking the end
of a recombination era extending up to those redshifts. After that, it is anticipated that the
intergalactic medium (IGM) will maintain its neutrality until radiation sources capable of
reionization emerge (McQuinn, 2016). As the Universe expanded, the cosmic gas adiabati-
cally cooled, leading to the emergence of the intergalactic medium (IGM), whose structure
primarily arises from the gravitational influence on primordial matter fluctuations.

The inception of star formation in the Universe likely began within the exceptionally rare
peak of the cosmological density field at a redshift of approximately z ∼ 70 (Naoz et al.,
2006). These early stars are thought to have formed within halos with masses spanning from
105 to 107 solar masses. Over time, the universe witnessed a progressive increase in star
formation, ultimately reaching a saturation level in the star formation rate of the Population
III stars in minihalos at redshifts of around z∼ 20−30 Trenti and Stiavelli (2009). Population
III stars are considered to be the main source of radiative feedback in the universe at redshifts
(z > 22) and the first luminous objects to form during the dark ages of the universe when
hydrogen remained in a neutral state (Bromm and Larson, 2004).

As the universe was just a few hundred million years old, the first galaxies formed
marking the end of the cosmic dark ages. The majority of them could already have contained
low-mass, Population II stars and possibly stellar clusters (Bromm and Larson, 2004; Bromm
et al., 2001; Schneider et al., 2002). The intergalactic medium, which just started to emerge,
was directly affected by radiative backgrounds associated with the first galaxies. In the
beginning, the IGM gas was heated by roughly 10 eV and soft X-ray background photons
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such that the 21 cm line of atomic hydrogen could potentially be detected (Furlanetto et al.,
2006; Madau et al., 1997). Following this, photons with energies greater than 13.6 eV
photoionized approximately all the intergalactic hydrogen, a process known as cosmological
"reionization", which in turn raised the temperature of the IGM to tens of thousands of
degrees Kelvin.

At redshifts 2 < z < 5, the IGM can be probed by the hydrogen Lyα absorption line
that has been redshifted to the point that it can be observed by the ground-based optical
telescopes (Hu et al., 1995; Kirkman and Tytler, 1997; Vogt et al., 1994). And because the
light encounters several IGM gas clouds at different redshifts, multiple Lyα absorption lines
are usually formed in the observed quasar spectra in what is known as the Lyα forest spectral
region. Hundreds of well-resolved such Lyα forest spectral regions have been observed in
quasars spectra by the 10-meter telescopes and a hundred thousand with medium resolution
by the 2.5-meter Sloan telescope (Lee et al., 2013; O’Meara et al., 2015).

This wealth of absorption line data for the IGM gas at those redshifts (2 < z < 5) is
crucial for our understanding of IGM. It has been employed for example to determine the
thermal history of the IGM (Becker et al., 2011; Boera et al., 2014; Bolton et al., 2014;
Faucher-Giguère et al., 2009; Ricotti et al., 2000; Schaye et al., 2000) and constrain the
history of intergalactic enrichment (Pieri and Haehnelt, 2004; Simcoe et al., 2004). However,
it’s difficult to observe the IGM gas at redshifts lower than two since the expansion of the
universe has diluted most cosmic gas by those redshifts.

Redshift surveys of galaxies revealed the cosmic web’s large-scale structures where
clusters, that extend over several megaparsecs in radius, are connected by extensive filaments
spanning numerous tens of megaparsecs. Those filaments envelop underdense voids, with
radii measuring tens of megaparsecs. These large-scale structures cosmic web have evolved
through gravitational instabilities from the initial density fluctuations of the early Universe
(Bond et al., 1996). In figure 2.4a, we see this large-scale structure of the universe in the
Sloan Digital Sky Survey (SDSS) galaxy map (Abazajian et al., 2003).

Cosmological simulations, such as the Millennium Simulation, have boosted our under-
standing of the origin and evolution of large-scale cosmic structures (Springel et al., 2005;
Vogelsberger et al., 2014). Those simulations have successfully replicated the cosmic web’s
topology in a ΛCDM Universe, including the matter filaments on scales of several tens of
megaparsecs and the isotropic homogenous matter distribution on larger scales (Libeskind
et al., 2017). In figure 2.4b, we see those large-scale structures in a slice from the TNG300
simulation of IllustrisTNG. This advanced magneto-hydrodynamic simulation contains more
than 30 billion resolution elements (Nelson et al., 2018).
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(a) (b)

Fig. 2.4 (a) A slice through the Sloan Digital Sky Survey (SDSS) galaxy map. Each dot
represents a galaxy, with the Milky Way being at the centre. The region between the wedge is
not mapped because the dust of our galaxy intervenes in the view of distant galaxies in these
directions. The colour indicates the age of the stars in the galaxy, with the redder being made
of older stars. [Credit: M. Blanton and Sloan Digital Sky Survey, sdss.org] (b) The cosmic
large-scale structure as seen in a thin slice in the TNG300 simulation of IllustrisTNG. The
image brightness indicates the projected baryonic mass density and the colour hue reflects the
mean projected gas temperature. The width of the box here is around 1.2 billion lightyears.
The underlying calculations of TNG300 shown here contain more than 30 billion resolution
elements Nelson et al. (2018). [Credit: TNG Collaboration, tng-project.org]

https://www.sdss4.org/
https://www.tng-project.org/media/
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Fig. 2.5 All-sky map of the cosmic microwave background (CMB) temperature fluctuations
by the Planck satellite. Image was taken from Planck Collaboration et al. (2016).

In the next sections 2.3.1 and 2.3.2, we introduce the radiation content of the IGM
including the cosmic microwave background (CMB) and extragalactic background light
(EBL). Those radiation fields are crucial for the propagation of the TeV gamma rays in the
IGM as we will see in section 2.4.

2.3.1 Cosmic Microwave Background

The cosmic microwave background (CMB) carried out the image of the universe when it was
around 380,000 years old after the Big Bang. At that time, the temperature of the universe’s
plasma dropped to around 3,000 degrees Kelvin (corresponds to 0.26 eV). This temperature
is well below the ionization energy of hydrogen (13.6 eV). As a result of this, the electrically
charged free electrons and protons formed neutral hydrogen atoms releasing photons. Those
photos decoupled from baryon since temperatures have dropped below the ionization energy
of hydrogen, making the Universe transparent to radiation for the first time.

The released photons at the "recombination" formed a perfect blackbody. The temper-
ature of this blackbody has been redshifted with the expansion of the Universe reaching a
temperature of 2.73 degrees kelvin today (Fixsen, 2009). In figure 2.5, we see the temperature
fluctuations on the order of 100µ degrees Kelvin of the CMB measured by the Planck satellite
and using SMICA semi–blind spectral– matching algorithm (Planck Collaboration et al.,
2016). Even though the CMB map is largely homogenous, there is a partial anisotropy con-
sisting of the small temperature fluctuations in the CMB blackbody radiation. Measurements
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of the CMB polarization anisotropies are a unique probe of the early universe history and
include a wealth of cosmological information (Bucher, 2015; Planck Collaboration et al.,
2016).

2.3.2 Extragalactic Background Light

The extragalactic background light (EBL) is the diffusive radiation of the light emitted across
the full electromagnetic spectrum throughout the history of the universe. The EBL spans
the whole electromagnetic spectrum from radio to gamma rays, however, sometimes it is
referred to as the extragalactic intensity spectrum from ultraviolet to infrared (Dwek and
Krennrich, 2013). The EBL spectrum includes the light emitted by all the stars, galaxies,
and AGNs throughout cosmic history along with the cosmological background singles of
primordial phenomena, like the CMB discussed in the previous section 2.3.1. The EBL might
also encompass extended and diffused other signals, such as high-energy photons due to the
decay or annihilation of dark matter particles (Abdo et al., 2010b).

The EBL measurements are due to both the ground and space-based observations. Direct
absolute intensity measurements require accounting for a variety of foreground contributions
both within the Solar system and our galaxy, including Zodiacal light within the Solar system
and Galactic emission spanning radio, infrared, X-ray, and gamma rays (Cooray, 2016). This
makes those measurements challenging, especially in the wavelength range of around one
micrometre due to the predominant Zodiacal light contribution in this regime. However, it is
possible to find lower limits on the EBL flux in this range by galaxy count surveys (Madau
and Pozzetti, 2000).

Indirect measurements of the EBL spectrum in the range of ultraviolet to infrared wave-
lengths are possible by using the absorbed TeV spectra of distant sources such as blazars and
AGNs (Abeysekara et al., 2019; H. E. S. S. Collaboration et al., 2017). The annihilation of the
high-energy gamma rays with the EBL low-energy photons in the range of 0.1 µm - 100 µm
in wavelength produces an electron-positron pair suppressing the high-energy gamma-ray
flux. Using this fundamental standard model process, one can infer the number density of
the EBL photons needed to attenuate the intrinsic spectra to the absorbed one. Even though
this indirect technique provides us with the best measurements in this range of the EBL, they
still need improvements in the uncertainties on the intrinsic spectra of the TeV sources. In
figure 2.6, we see the measurements of the EBL spectrum in the range of 0.1 µm - 1000 µm
wavelengths.
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Fig. 2.6 Intensity measurements of the cosmic optical and infrared background light between
0.1 µm - 1000 µm wavelengths. Lower limits are from the integrated galaxy light from
galaxy counts using SCUBA (Smail et al., 2002), Herschel/SPIRE (Béthermin et al., 2012),
Herschel/PACS (Berta et al., 2010), Spitzer/MIPS (Dole et al., 2004; Papovich et al., 2004),
ISO (Elbaz et al., 1999), Spitzer/IRAC (Fazio et al., 2004) and Hubble (Gardner et al., 2000;
Madau and Pozzetti, 2000). The data points are based on the absolute photometry estimates
using IRTS (purple crosses; (Matsumoto et al., 2005)), UVS/STIS (blue upper limits; (Brown
et al., 2000; Edelstein et al., 2000)), FIRAS (black line: (Fixsen et al., 1998; Lagache et al.,
2000)), DIRBE (red circles: (Wright, 2004, 2001), stars: (Cambrésy et al., 2001; Levenson
et al., 2007), open squares: (Hauser et al., 1998)), CIBER (blue circles: (Zemcov et al.,
2014)), Spitzer (open triangle: (Levenson and Wright, 2008)), IRAS (bluesquare: (Miville-
Deschênes et al., 2002)) and Hubble (green circles: (Bernstein, 2007)). The blue-shaded
region is the estimate using absorption spectra by the EBL of the brightest blazars observed
with H.E.S.S. (H. E. S. S. Collaboration et al., 2013). Figure was taken from Cooray (2016)
and it is based on the figure by Dole et al. (2006).
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2.4 Blazar-induced Pair Beam Cascade

As we described in section 2.2, gamma-rays with energies higher than 100 GeV have been
detected from many blazars by gamma-ray telescopes like Fermi-LAT, VERITAS, H.E.S.S.
and MAGIC. Some of those blazars are more than a billion light years away from Earth,
such as the blazar of High-Frequency-Peaked BL Lacertae type (HBL) 1ES 0229+200 (with
z = 0.14) (Aharonian et al., 2007). The observations of gamma rays from such distant
distances give us a unique prob of the intergalactic medium and its radiation content (EBL)
(Franceschini, 2021).

As we mentioned in section 2.3.2, the high-energy gamma rays propagating in the
intergalactic medium interact with EBL photons producing electron-positron pairs, γ +

γEBL −→ e−+ e+. However, in order for this process to happen the two interacting photons’
energy in the centre of the momentum frame has to exceed the mass of the electron and
positron, leading to the following threshold condition (Gould and Schréder, 1967)

EγεEBL ≥ 2(mec2)2

1− cosθ
, (2.1)

where Eγ is the gamma-ray photon energy and εEBL is the EBL background photon energy
both in the comoving cosmological frame. Here me is the mass of the electron and θ is the
angle between the momenta of the two interacting photons.

The pair production cross-section,σγγ is expressed as a function of the produced electron
(positron) velocity in the centre of the momentum frame, β ∗,

β
∗2 = 1− 2(mec2)2(

EγεEBL (1− cosθ)
) . (2.2)

Since we have an isotropic radiation field then averaging over cosθ yields zero and we
find the maximum cross-section to be σγγ ≈ 0.25σT at εEBL ≈

(
TeV
Eγ

)
eV, where σT is the

Thomson cross-section. As a consequence, the high-energy TeV photons interact most
efficiently with the infrared photons where the produced electron and positron have half of
the TeV photon energy each. The produced pairs tend to move in the direction of the original
TeV photon with production angles of around γ−1, where γ = Eγ/2mec2 is the pairs’ Lorentz
factor that is of typical values between 104 and 108 (Miniati and Elyiv, 2013; Schlickeiser
et al., 2012).

The exact mean free path of the high-energy gamma rays is dependent on the evolving
photon density of the EBL (Kneiske, T. M. et al., 2004), which has uncertainties in the
relevant wavelengths of optical and infrared as we saw in section 2.3.2. However, following
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Fig. 2.7 The cascade emission from the TeV blazar 1ES 0229+200 is depicted as a thick solid
black curve, while the Fermi upper limit on the observed GeV band spectrum is represented
by the grey curve, and H.E.S.S. data points are shown in grey. The primary unabsorbed
blazar spectrum is indicated by the thin dashed curve, and the combined spectrum resulting
from both the secondary cascade and direct emissions after interacting with the extragalactic
background light (EBL) is illustrated by the dotted curve. The vertical line with the arrow
highlights the energy below which cascade emissions are expected to be suppressed. Figure
was taken from Neronov and Vovk (2010).

Neronov and Semikoz (2009) we can approximate the mean free path length for a gamma-ray
with energy Eγ by

λγγ ∼ 80(1+ z)−ξ

(
Eγ

10TeV

)−1

Mpc, (2.3)

where ξ = 4.5 and ξ = 0 for redshit of z ≤ 1 and z > 1 respectively. Typically, gamma rays
with energies of TeV have mean free paths of the order of hundreds of Mpc producing the
pair beams in the IGM cosmic voids.

The produced electrons and positrons in the IGM can undergo inverse Compton scattering
on the CMB photons. For pairs with a Lorentz factor of about 106 the inverse Compton
scattering on the CMB photons happens in the Thomson regime, where the pairs give a small
fraction of their energy every single scattering (Blumenthal and Gould, 1970). In this regime,
the mean free path for pairs with a Lorentz factor γ is (Biteau and Meyer, 2022)

λIC =
3mec2

4σTUCMBγ
≈ 0.7Mpc

(
Eγ

TeV

)−1

, (2.4)

where UCMB = 0.26 eV cm−3 is the CMB integrated energy density (Fixsen, 2009). The typi-
cal energies of the produced photons after the scattering are approximately εIC = 4

3εCMBγ2 ≈
0.8GeV

(
Eγ/TeV

)2, where the average CMB photon energy is εCMB = 630µeV Fixsen
(2009). Therefore, a primary TeV gamma ray is expected to give a secondary IC cascade in
the GeV energy band.
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In a nutshell, TeV primary gamma rays from distant blazars would generate a GeV-scale
secondary electromagnetic cascade due to their attenuation in the IGM. This GeV secondary
emission is expected to be detected in the blazar spectrum along with the survived primary
emission (Aharonian et al., 1994; Elyiv et al., 2009; Neronov and Semikoz, 2009; Plaga,
1995). However, Fermi-LAT observations at the GeV energy range of several blazars have
shown that the secondary GeV cascade is suppressed (Abdo et al., 2010c; Neronov and
Vovk, 2010). In other words, the observed GeV fluxes of blazars are significantly lower than
the predicted fluxes due to the full electromagnetic cascade (see figure 2.7). This missing
GeV cascade is attributed at the moment to two different physical scenarios: (1) Deflection
of the pair beams by Intergalactic magnetic field (IGMF), or (2) energy loss of the pair beam
by beam-plasma instability before IC cooling.

In the first scenario, the electron-positron pairs are deflected in the intergalactic magnetic
fields (IGMF) along the line of sight. Sufficiently large IGMF strength would broaden the
pair beam so that the produced secondary gamma-ray cascade is not detectable within the
point spread function of our telescopes (Aharonian et al., 1994; Neronov and Semikoz, 2009;
Neronov and Vovk, 2010; Plaga, 1995; Taylor et al., 2011). The secondary cascade could
arrive with a time delay compared to the primary gamma-ray emission due to the extra flight
distance resulting from the IGMF deflection. The cascade also could form a halo of extended
gamma-ray emission around the point-like source. These effects have yielded lower limits
constraints on the IGMF strengths for a given magnetic field correlation length. The current
lower limits are set on the level of femto-Gauss magnetic field strength for a coherence length
greater than 10 kpc (Fermi-LAT Collaboration et al., 2023).

If the magnetic field is strong enough to deflect the pair beams by a radian or more, then
the cascade emission from AGNi with oblique jets (jets more than 30◦ off of our line of
sight) should become visible (Broderick et al., 2016), but the corresponding emission has
not been detected in the stacking analysis of gamma-ray images in the direction of those
AGNi (Ackermann et al., 2018; Broderick et al., 2018; Tiede et al., 2017). This, if confirmed,
suggests that the inverse Compton cooling might be ruled out as the dominant energy loss
mechanism of the pair beam. An alternative energy loss mechanism of the pair beam is the
beam-plasma instabilities that could drain the pair beam energy faster than the IC cooling as
proposed by Broderick et al. (2012).

The collective plasma effects of the TeV low-density pair beam propagating through
much denser unmagnetized IGM hot background plasma have been investigated by many
authors (Alves Batista et al., 2019; Broderick et al., 2012; Broderick et al., 2014; Chang et al.,
2014, 2016b; Kempf et al., 2016; Miniati and Elyiv, 2013; Rafighi et al., 2017; Schlickeiser
et al., 2012, 2013; Shalaby et al., 2020; Sironi and Giannios, 2014; Supsar and Schlickeiser,



2.4 Blazar-induced Pair Beam Cascade 21

2014; Vafin et al., 2018, 2019). The unstable resonant plasma waves amplitude could grow
exponentially taking the beam kinetic energy and eventually transferring it into a heat in the
IGM plasma. If the beam energy loss time due to the instability growth is much faster than
the beam cooling time by the IC scattering then the secondary gamma-ray cascade would be
suppressed affecting the IGMF lower limit constraints.

However, the instability energy loss efficiency depends largely on the non-linear evolution
of the instability. The non-linear evolution of the beam-plasma instabilities and the overall
impact on the electromagnetic cascade are still unclear in the literature. We will discuss the
non-linear evolution problem in depth in chapter 3. If the beam’s energy loss length due to
the instability is smaller than the IC mean free path, then the GeV-cascade is suppressed
and the beam energy is efficiently transferred to a heating of the IGM plasma. This leads to
significant heating of the IGM background plasma. Cosmological simulations including this
heating process can successfully reproduce the observed IGM temperature and the effective
optical depth as a function of redshift as well as several other observations (Lamberts et al.,
2022; Puchwein et al., 2012a).





Chapter 3

Exploring the Foundations of
Beam-Plasma Instability

In this chapter, we review the theoretical frameworks that describe beam-plasma instability.
We will review the main characteristics of the intergalactic medium plasma in 3.1. The beam-
plasma instability is a collective process that can be described by the plasma kinetic theory
in the most general case. The kinetic theory involves the Vlasov equation of the particle
distribution function coupled with the Maxwell equations and it will be introduced in section
3.2. By perturbing a given equilibrium distribution with infinitesimal perturbations around
the equilibrium distribution, one can find the dispersion relations that can tell us whether
those perturbations decay or grow. When the imaginary component of the plasma wave
frequency is positive (ωi > 0), the waves grow from the small thermal fluctuations taking the
kinetic energy of the beam. This phenomenon is called beam-plasma instability and will be
introduced in section 3.3. The relevant beam plasma instability for the blazar-induced pair
beams is the electrostatic beam-plasma instability in the kinetic regime and will be introduced
in section 3.4. Finally, the non-linear effects and the limitations of the linear theory will be
presented in section 3.5 and section 3.6.

3.1 Intergalactic Medium Plasma

We have introduced the intergalactic medium (IGM) in section 2.3 of the previous chapter.
We saw that this medium has a very low density of around 10−7 particles per centimetre cube
and a temperature of the order 104 K. The IGM plasma properties, such as its density and
temperature, are crucial for the growth and evolution of the blazar-induced pair beam insta-
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bilities. In this section, we will be using those values to look at the important characteristics
of the IGM plasma.

The Debye length is a characteristic scale that describes the length at which most of the
particles’ charge is neutralized by neighbouring plasma charges. The Debye length is defined
as

λD =

√
kTe

4πnee2 , (3.1)

where Te and ne are the IGM temperature and density respectively. If there are many particles
in the sphere with the Debye length radius then the collective effects of the plasma dominate.
This condition is well satisfied for the IGM plasma.

For the IGM plasma, the mean free path of the coulomb collisions is much larger than the
Debye length of the plasma. Therefore the IGM plasma can be considered as collisionless
plasma where the interactions of particles are to be described by the collective influence of
many particles rather than the two-body Coulomb collisions.

Another collective phenomenon besides Debye shielding is plasma oscillation, where the
electrons oscillate around their motion, with the plasma frequency ωp. Ignoring the thermal
motion of the electrons, this frequency is given by

ωp =

√
4πe2ne

me
. (3.2)

The plasma frequency is the largest frequency of the electric field fluctuations that could
propagate in the IGM plasma. Those fluctuations happen in the background of the plasma
equilibrium state, which changes slowly in space and time or stays constant. The equilibrium
state can evolve slowly under the slowly changing external conditions or due to the average
effect of many small fluctuations.

3.2 Kinetic Theory

In the context of a collisionless plasma like the IGM plasma, it is crucial to determine the
specific shape of the velocity distribution function using a statistical model. The distribution
function plays a central role in the analytical plasma description referred to as the kinetic
treatment. The kinetic treatment forms the primary framework for analyzing plasma interac-
tions in this thesis. It revolves around solving the Vlasov equation, coupled with Maxwell’s
equations, to address the relevant plasma physics problems.
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Using the fact that the particle distribution function is conserved locally, the Vlasov
equation describes the evolution of the particle distribution function of species s, fs(r,v, t),
in space, velocity and time

d fs

dt
=

∂ fs

∂ t
+v · ∂ fs

∂r
+

F
ms

· ∂ fs

∂v
= 0, (3.3)

where Fs is the Lorentz force that describes the feedback of electric and magnetic fields on
the particles

Fs = qs

(
E+

v×B
c

)
. (3.4)

The time and spatial evolution of the electric fields E and the magnetic fields B is governed
by the Maxwell’s equations

∇ ·E = 4πρ, (3.5)

∇ ·B = 0, (3.6)

∇×E+
1
c

∂B
∂ t

= 0, (3.7)

∇×B− 1
c

∂E
∂ t

=
4π

c
J, (3.8)

where ρ is the total charge density

ρ(r, t) = ∑
s

qs

∫
dv fs(r,v, t), (3.9)

and J is the total current density

J = ∑
s

qs

∫
dvv f (r,v, t). (3.10)

This provides us with a closed system of equations describing the plasma, where the
electromagnetic fields are evolved by Maxwell’s equations given the total charge and current
densities. Using the fields, the distribution of every species is evolved by a separate Vlasov
equation, making the system of Vlasov-Maxwell equations eventually closed.

The Vlasov-Maxwell system can be solved numerically because obtaining analytical
solutions is usually a challenging task. An alternative analytical approach is to assume an
equilibrium state and explore the effect of small linear perturbations of the average electric,
E0, and magnetic, B0, fields as well the particle distribution function, f0,
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E(r, t) = E0(r)+δE(r, t), (3.11)

B(r, t) = B0(r)+δB(r, t), (3.12)

f (r,v, t) = f0(r,v)+δ f (r,v, t), (3.13)

where all the perturbations (δE,δB,δ f ) are much smaller than the equilibrium states
(E0,B0, f0).

Furthermore one can look for wavelike perturbations where

δE(r, t) = E1 exp{i(k ·v−ωt)}, (3.14)

δB(r, t) = B1 exp{i(k ·v−ωt)}, (3.15)

δ f (r,v, t) = f1(v)exp{i(k ·v−ωt)}. (3.16)

Those perturbations can be used with the Maxwell and Vlasov equation to derive the so-called
dispersion relation for the wave frequency dependence on the wave vector Φ = Φ(ω,k) for
a given plasma system. Solving this implicit equation for a given plasma system provides
information about the properties of waves in the system, including their phase velocity, group
velocity, and temporal stability. The stability of perturbations with a given wavevector k is
determined by the imaginary part of the frequency ω; if it is positive, the wave modes are
unstable and the waves can grow in time, and if it is negative, the wave modes get damped.

3.2.1 Landau Damping

We will look at the one-dimensional case now where there are no electric fields, E0 = 0, and
the plasma is unmagnetized, B = 0, in electrostatic approximation. The distribution function
is still the sum of the steady-state and a perturbation, f = f0 +δ f . With all the perturbations
being in the form of plane waves in one-dimension approximation, we get the following
equations as a first-order approximation of the Vlasov equation

∂ f0

∂ t
+ v · ∂ f0

∂x
= 0, (3.17)
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and
i(ω − vk) f1 =

q
m

E1
∂ f0

∂v
. (3.18)

Using Gauss law, equation 3.5, and the total charge density, equation 3.9, we get

ikE1 = 4πq
∫

∞

−∞

dv f1. (3.19)

Combining equation 3.18 and equation 3.19 we get

1− 4πq2

mk

∫
∞

−∞

dv
∂ f0
∂v

vk−ω
= 0. (3.20)

We notice that there is a singularity vk−ω = 0. Therefore, there is a complex solution of
the frequency ω = ωR + iωi that can satisfy equation 3.20. A solution was found by Landau
(1946) for an equilibrium distribution in the form of the Maxwellian distribution. The final
result is given for the case when ωR ≫ ωi by

ωR(k) = ωp

(
1+

3
2

λ
2
Dk2
)
, (3.21)

for the real part and

ωi(k) =−ωp

√
π

8

(
1

kλD

)3

exp

{
−1

2

(
1

kλD

)2
}
, (3.22)

for the imaginary part, where ωp is the plasma frequency defined by equation 3.2 and λD is
the Debye length defined by equation 3.1.

Substituting the wave frequency in the perturbed electric field equation 3.14, yields

δE = E1 exp{ωit}exp{i(kx−ωRt)}. (3.23)

We see that the waves are excited and amplitudes grow when ωi > 0 and decay when ωi < 0.
For the case of Landau damping, the sign of ωi is dependent on the velocity derivative of the
equilibrium distribution function. So the waves grow if the distribution function increases
with the velocity derivative, and they are damped once the distribution function derivative
declines. The Maxwellian distribution decreases with the speed which explains the negative
sign in equation 3.22, making the electric field associated with the waves damped, which is
known as Landau damping.
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Fig. 3.1 The filamentation (green), two-stream (red) and Weibel (blue) modes. Figure was
taken from Cottrill et al. (2008).

3.3 Beam-Plasma Instabilities

The system of relativistic beam plasma is a very complex system with rapid non-linear
interactions of the unstable waves and non-linear feedback of the unstable waves on the beam.
This system is difficult to model including all the operating processes. As we introduced in
the previous chapter, the blazar-induced pair beams have a very low density and propagate
through a much denser background IGM plasma that is neutral and consists of ions and
electrons. In this IGM background medium, we can safely assume a very weak or zero
magnetic field (B0 = 0) and a zero large-scale electric field (E0=0).

One can use the dispersion relation yielded from the Vlasov-Maxwell system of the beam-
plasma system to explore the relevant instabilities and their growth rates. For a cold or a
monoenergetic beam, where the momentum spread of both the beam and background plasma
is very small, several types of beam-plasma instabilities can develop (Bret et al., 2010a).
Those instabilities include the two-stream, oblique, Weibel, and filamentary instabilities.
These instabilities usually start with a linear growth phase, followed by a phase of non-linear
interactions where the instability can eventually saturate at some level.

In figure 3.1, different types of instabilities are demonstrated. The simplest case is the
so-called two-stream electrostatic instability with no magnetic fluctuations (k×δE = 0 and
δB = 0) and wave vector k parallel to the beam propagation axis (k||vb) as seen in figure
3.1 (Bret et al., 2004). If the electrostatic modes have a finite angle to the beam propagation
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direction then they are called oblique modes. The filamentary instability is an electromagnetic
instability, consisting of both electric and magnetic field fluctuations, where the wave vector
is perpendicular to the beam direction (k ⊥ vb) as shown in figure 3.1.

The origin of both the two-stream and filamentary instabilities is the counterstreaming
motion of the beams (Cottrill et al., 2008). If the electromagnetic instability is driven by
the anisotropies in the beam temperature distribution then it’s called Weibel instability
(Weibel, 1959). The decisive quantity for the development of those different instabilities
is the maximum growth rate. The growth rates of the fastest modes for the filamentation,
two-stream and oblique instabilities are given by (Bret et al., 2010a)

ωi,F

ωp
= β

√
α

γ
, (3.24)

ωi,TS

ωp
=

√
3

24/3
α1/3

γ
, (3.25)

ωi,O

ωp
=

√
3

24/3

(
α

γ

)1/3

, (3.26)

where γ is the average beam particles Lorentz factor and α = nb/ne is the density ratio of
the beam density nb to the background plasma density ne. For the typical blazar-induced
TeV pair beams in the IGM, the Lorentz boost of the pair beam is of the order γ = 103 −108

and the beam densities are nb = 10−24 − 10−19cm−3. With the IGM density of the order
ne = 10−7cm−3, we obtain a density ratio of around α = 10−17 − 10−12 for the realistic
blazar-induced pair beams.

Rafighi et al. (2017) demonstrated using an analytical model that the condition for the
Weibel modes to grow is

α >
(

2− π

2

) kBTb

γmec2 , (3.27)

where Tb is the beam temperature in its rest frame. For the realistic blazar-induced pair beams,
the beam temperature is around kBTb = mec2 and αγ << 1, making the Weibel modes stable
for the realistic beam parameters. The suppression of the Weibel-type modes as shown by
Rafighi et al. (2017), left the electrostatic oblique modes as the relevant instability recovering
the essential physics of the blazar-induced pair beams interactions with the IGM plasma
(Chang et al., 2016a). It was demonstrated by Miniati and Elyiv (2013), that the electrostatic
modes are expected to develop in the kinetic regime. In the next section, we will introduce
the relevant electrostatic instability in the kinetic regime.
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3.4 The Beam-Plasma Electrostatic Instability

As we mentioned in section 3.3, the electrostatic approximation is valid for the blazar-
induced pair beam for which the electrostatic modes grow far more quickly than do the
electromagnetic modes (Bret et al., 2010; Chang et al., 2016a). A comparison of the Weibel
growth rate for blazar-induced pair beams using a cold-beam distribution (Schlickeiser et al.,
2012) and a Waterbag distribution (Rafighi et al., 2017) shows that the Weibel instability
is suppressed for a realistic blazar-induced pair beam. Therefore, we will proceed with the
electrostatic modes only in this section.

Assuming that the background plasma is cold and that the magnetic field is sufficiently
weak such as ωB ≪ ωp, where ωB is the electron cyclotron frequency. Then, linearizing the
Vlasov–Maxwell equations of the beam-plasma system for electrostatic waves leads to the
following dispersion relation (Breizman, 1990)

1−
ω2

p

ω2 −
4πnbe2

k2

∫
d3p

k · ∂ fb(p)
∂p

k ·v−ω
= 0, (3.28)

where fb(p) = fb(p,x)/nb is the normalized momentum distribution function of the beam
with nb being the total number density of the beam. The wave vector is chosen as k =

(k⊥,0,k||), and the beam propagates along the z axis with cylindrical symmetry.
There are two regimes that the instability can be characterized by, mainly, the reactive

and the kinetic. The reactive regime is valid for a beam with negligible velocity spread or
monochromatic beam ∆v ≈ 0. In this case, the instability is hydrodynamic in nature and all
the particles contribute to the growth rate, maximizing the growth rate along the longitudinal
component of the wavevector to the beam direction. The peak reactive growth rate is given
by (Bret et al., 2010b)

ωi,r =

√
3

24/3 ωp

(
nb

γne

)1/3
((

k⊥
k

)2

+
1
γ2

(
k||
k

)2
)1/3

, (3.29)

where γ is the beam Lorentz factor, and the parallel wave number is fixed at the resonance in
this case, k|| = ωp/c.

On the other hand, if the beam velocity spread is significant, then the parallel electrostatic
instability develops in the kinetic regime. In this case, only certain resonant particles
participate in the growth of the unstable waves, and thus the growth rate is smaller than the
reactive one. The kinetic instability is applicable if the velocity spread projection on the
wave vector of the unstable waves is larger than the maximum growth rate of the reactive
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instability (Chang et al., 2016a)
|k ·∆v|>> ωi,r. (3.30)

For a relativistic beam, the perpendicular velocity spread is ∆v⊥ ≈ c
γ
, and the parallel

velocity spread is ∆v|| ≳
c
γ2 , resulting from the Lorentz boost of the beam from the center-

of-momentum frame to the laboratory frame (Miniati and Elyiv, 2013). Given that for the
realistic blazar-induced pair beams, the Lorentz factor is around γ ∼ 104−108, and the beam
to the background density ratio is around α = 10−17 −10−12, the condition 3.30 is satisfied
for essentially all oblique waves and marginally for the quasi-parallel waves, meaning that
we should consider the kinetic regime for the realistic blazar-induced beams in the IGM and
not the reactive one (cold-limit).

For the kinetic approach, the linear growth rate is evaluated by the Taylor expansion of the
dispersion relation equation 3.28 for a small imaginary part of the frequency ω = ωR + iωi,
and using the Cauchy theorem for the pole of the integrand in the dispersion relation 3.28.
That yields the growth rate

ωi(k) = ωp
2π2e2

k2

∫
d3p

(
k · ∂ fb(p)

∂p

)
δ (ωp −k ·v), (3.31)

and ωR = ωp for the real part of the frequency.
We note that the linear growth rate of the unstable waves with a wave vector k is found

by the integral over the normalized momentum distribution function of the pair beam, fb(p),
involving the resonance condition for the Cherenkov interaction between beam particle with
velocity v and an electrostatic wave with a wave vector k and the plasma frequency ωp

ωp −k ·v = 0. (3.32)

Vafin et al. (2018) demonstrated that the exact growth rate depends on the beam dis-
tribution function including both the beam angular and momentum profiles. Their results
show that for a cold beam with no angular spread, the growth rate dominant modes are
perpendicular to the beam, and when considering a realistic beam with finite angular spread,
the growth rate is maximized at wave vectors quasi-parallel to the beam direction. The
growth rate of the electrostatic waves (equation 3.31) is complicated to evaluate analytically
for the realistic beam profile and it is often evaluated numerically as we will see in Chapter 4.

The linear growth rate is only applicable in the linear phase of the instability develop-
ment. In this phase, the unstable plasma wave amplitude grows exponentially, |δE| ∝ eωit ,
until the wave energy density is sufficient for the non-linear processes to interplay. In the
following sections, we will introduce two of the main non-linear processes that influence
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the development of the blazar-induced beam electrostatic instability. The first one is the
wave-particle non-linear scattering so-called non-linear Landau damping and the second one
is the wave-wave interaction known as the modulation instability.

3.5 Non-linear Landau Damping

The overall non-linear evolution of the unstable waves generated by the blazar-induced pair
beam is still unclear in the literature. Those non-linear processes are difficult to model
including the whole processes; therefore, often they are studied by focusing on a certain
process and neglecting others.

One of the relevant non-linear processes for the blazar-induced TeV beams is the non-
linear Landau damping. This process describes the scattering of the resonant unstable plasma
waves on the background plasma particles in the non-linear regime (Breǐzman et al., 1972;
Lesch and Schlickeiser, 1987; Tsytovich and Shapiro, 1965). This process results in an energy
and momentum exchange between the waves and the particles where energy is gradually
transferred from the unstable plasma waves to the background particles. Resulting in the
damping of the unstable wave amplitudes at the resonant wave vectors and shipping their
energy to regions of smaller wavenumber.

The relevant process for the TeV pair beam is the scattering of the electrostatic waves on
the background ions. Once the non-linear Landau regime is established, a thermal background
ion with velocity, ui, interacts with two electrostatic waves with frequencies ω(k) and ω(k′)

through the Cherenkov interaction under the following condition

(
ω(k)−ω(k′)

)
−
(
k−k′) ·ui = 0. (3.33)

Assuming a Maxwellian distribution of the background plasma, the non-linear landau
damping rate of a wave with wave vector k due to the scattering into waves with the wave
vectors k′ is given by the following integral (Breǐzman et al., 1972; Melrose, 1986)

ωNL(k) =
3
√

2π

64

∫
d3k′ W (k′)

nemeui

(
kk′

kk′

)2 k′2 − k2

|k−k′|

× exp

{
−1

2

( 3u2
e

2ωpui

k′2 − k2

|k−k′|

)2
}
,

(3.34)
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where ue,i =
√

TIGM/me,i is the thermal velocity of the IGM electrons/ions, and W (k′) is the
spectral energy density of the electrostatic waves. Here, we assume that the IGM electrons
and ions have the same temperature TIGM = Te = Ti.

The electrostatic spectral energy density evolution is governed by the following non-linear
wave kinetic equation incorporating the non-linear rate given by equation 3.34

dW (k)
dt

= 2(ωi(k)+ωLL(k)+ωNL(k)+ωc)W (k), (3.35)

where ωi(k) is the linear electrostatic growth rate given by equation 3.31, and ωLL is linear
Landau damping rate given by equation 3.22 and can be rewritten as

ωLL(k) =−ωp

√
π

8

(
ωp

kue

)3

exp

{
−1

2

(
ωp

kue

)2
}
. (3.36)

ωc is the collisional damping rate (Tigik et al., 2019)

ωc(k) =−ωp
g

6π
3
2

1
(1+3k2λ 2

D)
3 . (3.37)

Here g = (neλ 3
D)

−1 is the plasma parameter, λD is Debye length, ne = 10−7cm−3 is the
density number of the intergalactic background electrons and Te = 104K is the intergalactic
medium temperature.

The non-linear Landau damping has been studied for the first time in the context of the
blazar-induced pair beam by Miniati and Elyiv (2013). They used a simplified 1D model
assuming the case of k′ ≪ k where the waves are removed out of the resonance in a single
scattering. Under this condition equation 3.34 reduces to

ωNL,1D = ωp
Wnr

neTe

u2
e

uic
, (3.38)

where Wnr is the total energy density of the electrostatic waves at the non-resonant wave
numbers k ≪ ωp/c. They also included the dissipation of the non-resonant waves by the
Coulomb collisional damping, yielding the following equation for the evolution of the
non-resonant waves

∂Wnr

∂ t
= 2(ωNL,1DWr +ωc), (3.39)

where Wr is the total energy density of the electrostatic at resonant wave numbers k ∼ ωp/c,
which evolves as

∂Wr

∂ t
= 2(ωi,maxWr −ωNL,1DWr), (3.40)



34 Exploring the Foundations of Beam-Plasma Instability

where ωi,max is the maximum linear growth rate of the electrostatic instability. Miniati and
Elyiv (2013) solved the coupled system of equation 3.39 and equation 3.40 by assuming a
steady state saturation of both equations, finding an energy loss time of the beam due to the
instability that is much larger than the inverse Compton scattering energy loss time.

Afterwards, Chang et al. (2014) solved numerical the kinetic wave evolution equation
including the non-linear Landau damping and a simplified oblique growth rate. Their results
indicated the opposite conclusion of Miniati and Elyiv (2013), mainly that the non-linear
Landau is not sufficient at suppressing the growth rate of the oblique instability. They
concluded that the instability dominates the cooling of the pair beam before the inverse
Compton cooling up to redshifts z ≈ 1 and that it is less effective at higher redshifts.

Later, Vafin et al. (2019) studied the impact of non-linear Landau damping including
the electrostatic linear growth rate of the realistic blazar-induced pair beams. Where the
linear growth rate decreases as the wavenumber increases, they used a simplified 2D model
to solve numerically the kinetic evolution equation of the electric-field spectrum including
the non-linear Landau.

Vafin et al. (2019) found that the non-linear Landau damping transfers the entire energy
of the unstable waves to smaller wave numbers that are not in resonance with the beam,
concluding that the non-linear Landau damping prevents the unstable waves from taking
a significant fraction of the beam energy during the inverse Compton cooling time. Vafin
et al. (2019) model was a 2D in the wavenumber space, where they considered the plane
k|| = ωp/c where k|| is the wavevector component parallel with the beam propagation axis.
The two dimensions they left are the perpendicular wave number and the azimuthal angle
(k⊥,ϕ). The linear growth rate was limited to modes with ck⊥/ωp > 1, whereas modes at
ck⊥/ωp < 1 were assumed to be stable.

3D model of non-linear Landau damping

In the model of Vafin et al. (2019), the parallel component of the wavevector was fixed
to the resonance one, k|| = ωp/c, simplifying the problem to 2D in cylindrical coordinate
(k⊥,ϕ,ωp/c). Here, we upgrade this model the full 3D space of the wave vector in the
cylindrical coordinate (k⊥,ϕ,k||), where k⊥ is the perpendicular component to the beam axis,
ϕ is the polar angle of k⊥ and k|| is defined as the parallel component to the beam axis that
defines the cylindrical symmetry axis.

Because of the azimuthal symmetry of the beam, then without losing the generality we
can fix the wave vector k in equation 3.34 to (k = k⊥ŷ+ k||ẑ) and integrate over the full
cylindrical coordinate of the scattered waves k′ (k′ = sinϕ ′k′⊥x̂+ cosϕ ′k′⊥ŷ+ k′∥ẑ), yielding
the following 3D model of the non-linear landau damping rate
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ωNL(k⊥,k||) =
3(2π)1/2
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and

F(k⊥,k||,k
′
⊥,k

′
||) =

k′2⊥+ k′2|| − k2
⊥− k2

||√
(k⊥− k′⊥ cosϕ ′)2 +(k||− k′||)

2 +(k′⊥ sinϕ ′)2
. (3.43)

The unstable modes are located in an extremely narrow range near the parallel wave
number k|| =

ωp
c . Therefore, we performed a nonuniform grinding for ck||ωp in the range

10−5 - 1.5 with an exponential function k||,i = exp
{
−5
(

i−i0
i0

)n}
, where the number of grid

points is imax = i0
(

1+
( ln1.5

5

)1/n
)

, n = 7 and i0 = 50. We used logarithmic grinding for

ck⊥/ωp for the range 10−5 up to 102 with 100 modes. The maximum linear growth rate
we used here was of the order ω

−1
i,max ≈ 5×106 seconds and the IGM number density was

ne = 10−7 cm−3.
We calculated numerically equation 3.35 with the 3D form of the non-linear landau

damping in equation 3.41. The initial condition for equation 3.35 is set to the thermal wave
energy of the intergalactic medium Wk(t = 0) = kBTIGM = 1 eV per wavenumber mode k.
We also forced the solution Wk(t) to stay above the initial level Wk(t = 0) by the condition
Wk(t = 0)≤Wk(t). The total electric field energy density is computed as

Wtot = 2π

∫
dk∥

∫
dk⊥ k⊥W (k⊥,k||). (3.44)

Figure 3.2 show the time evolution of the total electric field energy density during the
evolution of the wave spectrum under the non-linear landau 3D model. During times much
smaller than 108 seconds, the linear growth rate dominates and the unstable waves grow
exponentially in the resonance region ck||/ωp ≈ 1. In this regime the total electric field
energy density increases as shown in figure 3.2. Afterwards, when the non-linear Landau
damping starts operating, the waves are efficiently scattered to non-resonant smaller wave



36 Exploring the Foundations of Beam-Plasma Instability

Fig. 3.2 The total electric field energy density normalized to the IGM energy density during
the time evolution of equation 3.35 and equation 3.41.

numbers. Once this non-linear regime starts, the spectral energy density of the resonant
modes drops to the IGM background thermal fluctuations suppressing any efficient energy
loss of the beam as it was shown in Vafin et al. (2019).

After the efficient shipping of the energy from the resonant to the non-resonant modes,
the waves of the non-resonant modes keep scattering to very small wave numbers under the
impact of the non-linear landau scattering. However, the accumulation of these non-resonant
waves can generate other non-linear processes like modulational instability. So far, we have
only introduced and dealt with the non-linear Landau damping. In the next section, we will
introduce another non-linear process called the modulation instability.

3.6 Modulation Instability

In the previous section, we introduced the non-linear landau damping resulting from the
unstable electrostatic waves scattering on the background ions. The result of this process is
the transfer of the energy of the unstable waves from the resonant modes to the non-resonant
ones with small wave numbers. In this section, we look at modulation instability which is
another non-linear process that could impact both the resonant and the non-resonant waves.

The modulation instability develops as the non-linear ponderomotive force of the unstable
electrostatic waves produces cavitons (density cavities) (Galeev et al., 1975; Schlickeiser
et al., 2012). It results in the transformation of the energy from the beam resonant waves
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to the waves with shorter wavelengths. This modulation instability becomes relevant if the
wave energy density of the resonant waves, Wtot, exceeds the threshold (Chang et al., 2014;
Galeev et al., 1975)

Wtot

neTe
> 3(kλD)

2. (3.45)

We see in figure 3.2 that the total electric field energy density exceeded the threshold for
the modulation instability (where 3(kλD)

2 ≈ 5×10−6). This applies to both the resonant
and the non-resonant waves. Where the non-resonant modes accumulate energy from the
resonant when the non-linear Landau scattering efficiently operates. Therefore, including the
modulation instability along with the non-linear Landau damping is necessary to understand
the non-linear evolution of the instability.

The exact non-linear equations describing the modulation instability, i.e. equations 1-4
in Papadopoulos (1975), are complex and often solved numerically. However, we can get
an insight into the physics of the modulation instability by using the following simplified
linearized damping rates for the resonant waves with total energy density, Wr, (Freund et al.,
1980)

ωM(Wr) = ωp
1
4

Wr

neTe
, (3.46)

for 3(kλD)
2 < Wr

neTe
< me

mp
, and

ωM(Wr) = ωp

√
1
3

me

mp

Wr

neTe
, (3.47)

for Wr
neTe

> max[3(kλD)
2, me

mp
], where me and mp are the electron and proton masses.

In the rest of this section, we combine this simplified description of the modulation
instability with the simplified description of the non-linear Landau damping given by equation
3.39 and equation 3.40 of Miniati and Elyiv (2013).

Waves energy density evolution with Modulation instability and non-linear Landau
damping

Since the resonant and non-resonant wave energy density during the non-linear Landau
evolution exceeded the threshold for the modulation instability, we included in a simplified
manner the modulation instability damping rate for the resonant and non-resonant modes. The
evolution of the total energy density of the modes resonant with the beam can be described
by the following equation
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Fig. 3.3 The numerical solution of the system of equations (3.48-3.51) describing the time
evolution of the total energy density of the waves at different modes. The unstable resonant
modes, Wr, are excited by the beam instability growth and damped by the non-linear Landau
to the non-resonant modes, Wnr and the modulation instability to the modes, Wmr. The
non-resonant modes, Wnr, are also damped by the modulation of the modes, Wmnr.

∂Wr

∂ t
= 2ωi,maxWr −2ωNL(Wnr)Wr −2ωM(Wr)Wmr, (3.48)

where the first term on the right-hand side is growth due to the beam resonant electrostatic
instability, the second one is a non-linear Landau damping due to the non-resonant waves,
Wnr, and the third term is also a damping rate due to the modulation. Here, we assume
that the modulation shifts the energy to the modes called, Wmr. The non-resonant waves,
Wnr, grow due to the non-linear Landau damping of the resonant waves and damping by the
modulation to the waves noted, Wmnr,

∂Wnr

∂ t
= 2ωNL(Wnr)Wr −2ωM(Wnr)Wmnr. (3.49)

Finally, the modes, Wmr and Wmnr, grow solely due to the modulation instability

∂Wmr

∂ t
= 2ωM(Wr)Wmr, (3.50)

∂Wmnr

∂ t
= 2ωM(Wnr)Wmnr. (3.51)
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The non-linear damping rate, ωNL, is given by equation 3.38 and the modulation damping
rate, ωM, is given by equation 3.46 and equation 3.47. We have solved the system of equations
(3.48-3.51) numerically with the initial condition where all wave mode regions are at a very
low background level, W (t = 0) = 10−20neTe.

The result is shown in figure 3.3. We see that the resonance modes, Wr, grow exponentially
until the non-linear Landau and the modulation instability operate. Shortly after the non-
linear processes operate, the energy density of the resonance modes, Wr, saturates at the
modulation threshold 3.45. This saturation is a result of balance on the three terms on the
right-hand side of the equation 3.48. The non-resonant non-linear Landau modes, Wmr, also
saturate but at a lower energy density than the resonance modes, Wr due to the balance
between the non-linear Landau and the modulation terms on the right- hand side of the
equation 3.49. In the end, the modes, Wmr and Wmnr, continue to grow in time feeding on
the beam’s kinetic energy. In this scenario, the energy of the TeV pair beams is efficiently
transformed into an IGM heating by the instability.





Chapter 4

IGMF impact on the Beam-Plasma
Instability

The material in this chapter has been previously published in the publication Alawashra and
Pohl (2022).

In this chapter, we investigate the effect of weak IGMF with correlation lengths shorter
than the pairs’ inverse Compton cooling length on the plasma inability of the blazar-induced
pair beam. The beam-plasma electrostatic instability operates best in the absence of an
external magnetic field. Noting that magnetic deflection needs more than a femto-Gauss
field amplitude to suppress the GeV-cascade, here we address the effect on the electrostatic
instability that would be imposed by much weaker intergalactic magnetic fields. In particular,
we investigate whether plasma instability still is the dominant energy-loss process and how
strongly the cascade emission is suppressed by the instability.

In this study, we consider an IGMF with a small correlation length far below the energy-
loss length of the pair beam, λB ≪ λe, which deflects the electrons and positrons equivalently.
Note that this condition implies that we assume the intergalactic magnetic fields to have
no large-scale (≫ kpc) or homogeneous component. We only consider the fluctuation
component. Our IGMF model here is the same as that widely used in the analysis of
deflection and time-delay limits (Elyiv et al., 2009; Neronov and Semikoz, 2009; Neronov
and Vovk, 2010; Takahashi et al., 2011; Taylor et al., 2011; Vovk et al., 2012). Magnetic
fields with strengths of BIGM ≪ 10−12 Gauss do not modify the linear dispersion relation
of the beam-plasma instability obtained by the electrostatic approximation. However, those
fields may impact the instability linear growth rate by their effect on the beam distribution
function.

The focus lies on weaker field strength and on small correlation lengths. In such magnetic
fields, the electrons and the positrons of the blazar-induced pair beam perform a random
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walk passing through many regions with different field orientations, resulting in an increased
angular spread of the pair beam that scales with the mean field strength and the square root
of the correlation length (Durrer and Neronov, 2013). The case of large magnetic-field
correlation lengths involves a net current in the beam and we do not consider it here.

We show in section 4.1.2 that this widening of the beam significantly slows the electro-
static instability, which decreases the energy loss rate of the beam particles. At a certain limit
in the parameter space (BIGM, λB), driving the waves becomes less effective than inverse
Compton scattering the CMB, and the GeV cascade emission can no longer be suppressed by
the instability. For the plasma instability model in Vafin et al. (2018), this limit is found to be
around three orders of magnitude below the one that by magnetic deflection would impose a
time delay of the cascade emission by 10 years (Ackermann et al., 2018).

In this study, we neglect the instability feedback on the beam as discussed in Perry and
Lyubarsky (2021). We assume an efficient energy loss of the beam as discussed in Vafin
et al. (2018) and focus solely on the impact of the IGMF on this situation. The effect of the
instability non-linear feedback on the beam is investigated and discussed in chapter 5.

The structure of this chapter is as follows. In section 4.1, we present the linear growth
rate spectrum of the electrostatic instability of realistic pair beam distributions without and
with weak intergalactic magnetic fields. In section 4.2, we present the non-linear instability
saturation of the unstable electrostatic waves. Finally, we demonstrate our results in section
4.3 and conclude in section 4.4.

4.1 Linear Growth Rate of the Electrostatic Instability

In this section, we present the linear growth rate of electrostatic waves for a realistic blazar-
induced pair beam with finite angular spread (kinetic instability) moving in an unmagnetized
intergalactic medium. Then we consider the magnetic fields in the intergalactic medium and
find their impact on the beam distribution function and the implications for the growth rate
of electrostatic waves.

As we mentioned in chapter 3, the electrostatic approximation is valid for the blazar-
induced pair beam for which the electrostatic modes grow far more quickly than do the
electromagnetic modes (Bret et al., 2010; Chang et al., 2016a). A comparison of the Weibel
growth rate for blazar-induced pair beams using a cold-beam distribution Schlickeiser et al.
(2012) and a Waterbag distribution (Rafighi et al., 2017) shows that the Weibel instability
is suppressed for a realistic blazar-induced pair beam. Therefore, we will proceed with the
electrostatic approximation in our analysis.
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For a relativistic electron beam (γb >> 1) with a small angular spread (∆θ << 1 rad)
travelling in a homogeneous background plasma with a number density ne, the dispersion
relation, equation 3.28, in the kinetic regime yields the following linear growth rate of
electrostatic waves (Breizman, 1990)

ωi(k) =πωp
nb

ne

(
ωp

kc

)3 ∫ θ2

θ1

dθ

×
−2g(θ)sinθ +(cosθ − kc

ωp
cosθ ′)∂g(θ)

∂θ

[(cosθ1 − cosθ)(cosθ − cosθ2)]1/2 ,

(4.1)

where
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∫
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0
d p p fb(p,θ), (4.2)

and

cosθ1,2 =
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)2

−1

 , (4.3)

where k =
√

k2
⊥+ k2

|| is the module of the unstable electrostatic waves wave-number vector
(k⊥ and k|| are the perpendicular and the parallel components to the beam propagation
direction respectively), θ ′ is the angle between the wave vector and the beam propagation
direction, and θ is the angle between the particle momentum and the beam direction axis
(z-axis). The beam is azimuthally symmetric around the propagation axis.

The beam distribution function, fb(p,θ), of the beam is normalized as follows

2π

∫
∞

0
d p p2

∫
π

0
dθ sinθ fb(p,θ) = 1, (4.4)

and can be factorized into parallel and perpendicular components

fb(p,θ) = fb,p(p) fb,θ (p,θ), (4.5)

where for the parallel momentum distribution fb,p(p) we used equation 26 and equation
56 in Vafin et al. (2018) that are obtained for a realistic pair beam at a distance of 50 Mpc
from the blazar. The angular distribution, fb,θ (p,θ), depends on whether or not we have
intergalactic magnetic fields.
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Fig. 4.1 Normalized electrostatic growth rate in the absence of an external magnetic field.

4.1.1 Electrostatic Instability for a Pair Beam in Non-magnetized Inter-
galactic Medium

In the case of a non-magnetized intergalactic medium, the angular spread of the beam is due
to the angular energy spread only. In this case, the angular distribution function of the beam,
fb,θ (p,θ), can be approximated by a Gaussian (Miniati and Elyiv, 2013)

fb,θ (p,θ)≈ 1
π∆θ 2

s
exp
{
− θ 2

∆θ 2
s

}
, (4.6)

where the angular energy spread approximated as (Broderick et al., 2012)

∆θs ≈
mec

p
. (4.7)

Substituting equation 4.6 into the equations 4.5 and 4.1 we found the numerical solution
for the linear electrostatic growth rate as shown in figure 4.1, we see that most of the
unstable modes are in the oblique and the parallel directions. We used the intergalactic
background electrons unit density of ne = ne710−7cm−3 = 10−7cm−3. For the fiducial
pair beam parameters, the number density of the pair beam is nb = nb2010−20cm−3 = 3×
10−22cm−3.

Vafin et al. (2018) demonstrated that for a blazar with a redshift z = 0.2 those unstable
waves drain the pair beam energy around a hundred times faster than does inverse Compton
scattering on the CMB, taking into account the modulation instability as a damping process.
The main uncertainties in that work are the assumptions on the spectrum and gamma-ray flux
from the blazar and the approximation of the non-linear saturation level.
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The growth rate is calculated for a pure electron beam moving in a background plasma of
electrons and ions. Schlickeiser et al. (2012) demonstrated that having separate distribution
functions for electrons and for positrons yields the same growth rate as calculations that
assume only an electron beam (Broderick et al., 2012).

4.1.2 Electrostatic Instability for a Pair Beam with a weak Intergalactic
Magnetic Field

We address in this section the effects of weak intergalactic magnetic fields on electrostatic
plasma instability. If the electrons’ gyromagnetic frequency, ωB = eBIGM/me, is much
smaller than their plasma frequency, ωB ≪ ωp, then an external magnetic field doesn’t
change the electrostatic dispersion relation used to derive the linear growth rate (Fainberg,
1961). The corresponding upper limit for the strength of the intergalactic magnetic field is
BIGM ≲ 10−9 Gauss, where we used intergalactic medium number density of ne = 10−7 cm−3.

The magnetic-field correlation lengths we consider, λB ∼ 103 −10−5 pc, are much larger
than the intergalactic plasma skin length, λD ∼ 5×10−10 pc, meaning that even the variations
of the IGMF have no direct impact on the beam plasma dispersion relation. However, the
directional changes of the magnetic field affect the equilibrium beam distribution function,
which in turn impacts the linear electrostatic growth rate (equation 4.1). In other words, the
blazar-induced pair beam that triggers the instability travels through many correlation lengths
in the IGMF.

Take the inverse Compton scattering length, λIC ≈ 75kpc
(
107/γb

)
, as an upper limit on

the energy loss length of the beam particles, which gives around 188 kpc for a Lorentz factor
of γ = 4× 106. This means that the pair beam distribution function carries the effects of
the magnetic fields over a large number of directional changes, since most of the particles
in the beam have travelled many correlation lengths at least, λIC >> λB. This propagation
of the pair beam over many correlation lengths imposes an additional angular spread on its
momentum distribution which in turn significantly affects the linear electrostatic growth rate.

Those fields lead to stochastic deflections of the electrons and positrons that diffusively
widen the angular distribution function of the pair beam as shown in appendix A.1. Adding in
quadrature the energy angular spread ∆θs (equation 4.7) and the magnetic widening ∆θIGMF

(equation A.8) gives the following distribution of the angular spread of the pair beam after
travelling many correlation lengths in the IGM

fb,θ (θ , p) =
1

π∆θ 2 exp
{
−
( θ

∆θ

)2
}
, 0 ≤ θ ≤ π, (4.8)
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Fig. 4.2a BIGM = 10−18 Gauss and λB = 1
pc

Fig. 4.2b BIGM = 10−17 Gauss and λB = 1
pc

Fig. 4.2c BIGM = 10−16 Gauss and λB = 1
pc.

Fig. 4.2d BIGM = 10−15 Gauss and λB = 1
pc.

Fig. 4.2 The longtime of the normalized electrostatic growth rate (log10(ωi/(πωp,e(nb/ne))))
for different intergalactic magnetic field strength values, we see that as the intergalactic mag-
netic fields strength increases the linear growth rate of the instability growth rate decreases.
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Fig. 4.3 The logarithm of the maximum normalized growth rate,
log10(ωi,max/(πωp,e(nb/ne))).

where

∆θ =
mec

p

√
1+

2
3

λBλIC

(
eBIGM

mec

)2

. (4.9)

Note that the result in appendix A.1 for the magnetic deflection, ∆θIGMF, is consistent
with the diffusion angle used in the IGMF deflection analyses, e.g. equation 31 in Neronov
and Semikoz (2009).

Finally, substituting equation 4.8 into the equations 4.5 and 4.1 we numerically found the
linear growth rate spectrum for a few values of the IGMF strength, BIGM, and the correlation
length, λB, and displayed it in figure 4.2. The main impact of the IGMF is a general reduction
of the growth rate. Figure 4.3 shows the peak growth rate as a function of BIGM and λB.
To be noted from the figure is that specific values of the peak growth rate are found on a
characteristic BIGM ∝ λ

−0.5
B . The reduction of the instability growth rate increases the energy

loss time due to the plasma instability as we will see in the next section.
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4.2 Non-linear Instability Saturation

The unstable electrostatic waves grow exponentially with the linear growth rate, accumulating
at the resonant parallel wave number k|| ≈ ωp/c. Depending on their non-linear interactions,
the waves could drain the kinetic energy of the pair beam and heat the IGM. The first type of
non-linear interaction is the scattering of the electrostatic waves on the background plasma,
known as non-linear Landau damping that we have discussed in section 3.5. The second
non-linear interaction is modulation instability which we introduced in section 3.6.

Simulations of the evolution of the beam-plasma system are impossible right now for
realistic parameters. However, there are various analytical estimates in the literature concern-
ing the energy density that the waves reach in an equilibrium state (Broderick et al., 2012;
Miniati and Elyiv, 2013; Schlickeiser et al., 2012; Vafin et al., 2018). The inverse energy loss
time of the pair beam due to the electrostatic instability is given by (Miniati and Elyiv, 2013;
Vafin et al., 2018)

τ
−1
loss = 2δωi,max, (4.10)

where ωi,max is the peak linear growth rate and δ =UES/Ubeam is the normalized wave energy
density at the equilibrium level. The reduction of the linear growth rate due to the IGMF
translates into an increase in the energy loss time. At some limit, the beam-plasma instability
becomes less relevant than the inverse Compton scattering. We will find this limit in the next
section.

The wave intensity, δ , depends on the non-linear evolution of the electrostatic waves,
which have different estimates. In the next section, we are going to include first the result
given in Vafin et al. (2018) and then discuss the implications of changing the value of the
intensity of the waves to that found by Broderick et al. (2012).

4.3 Results

We found the maximum linear growth rate of the unstable electrostatic 2D spectrum for each
intergalactic magnetic field strength, BIGM, and correlation length, λB, as shown in figure 4.3.
Then we calculated the approximated energy loss time of the beam based on the maximum
linear growth rate as in equation 4.10, using the intensity of the waves given in Vafin et al.
(2018), δ = 10−5. This time should be smaller than the inverse Compton scattering energy
loss time, otherwise, the beam-plasma instability cannot suppress the secondary cascade.
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The energy loss time of the inverse Compton scattering is given by

τIC =
(
7.7×1013 s

)
(1+ z)−4

(
106

γ

)
, (4.11)

which at redshift z = 0.2 and for a pair-beam Lorentz factor γ = 4×106 gives the following
ratio for the beam-plasma instability loss time given in Vafin et al. (2018)

τloss

τIC
= 0.026, (4.12)

if the intergalactic magnetic field is zero.
Using equation 4.10, we infer that a reduction by a factor 40 of the instability growth

rate is sufficient to render it inefficient. The dependence of the growth rate on BIGM and λB

(see figure 4.3) can then be turned into a limit in the BIGM-λB parameter space, above which
inverse Compton scattering provides the dominant energy loss of the pair beam. We show
this limit in figure 4.4. It is at the same time an exclusion limit, because the then unavoidable
inverse Compton emission is not seen, and so the cyan-shaded are in the figure is excluded for
the IGMF. For weaker fields, the oblique instability may drain the beam energy sufficiently
quickly, and for stronger fields, the time delay of the cascade emission causes substantial
uncertainty in the interpretation of the Fermi-LAT data of GeV-scale cascade emission.

We see in figure 4.4 that the beam-plasma instability suppression limit (the purple line) is
three orders of magnitude lower than the lower limit on the IGMF strength needed to impose
a significant time delay of the cascade emission flux due to the magnetic deflection (the green
line) (Ackermann et al., 2018; Finke et al., 2015; Taylor et al., 2011). We follow Ackermann
et al. (2018) in assuming a time period of 10 years as sufficient for the suppression of the
cascade signal. The actual deflection angle would be well below one minute of arc.

Finally, to account for the uncertainty of the non-linear saturation level of the waves,
we consider also the beam-plasma instability model presented in Broderick et al. (2012)
with δ = 0.2 and check how the plasma instability suppression limit changes for a certain
correlation length. For λB = 10−11 Mpc, the instability limit would shift for Broderick et al.
(2012) to BIGM = 10−12.5 Gauss which is two orders of magnitude higher than that based on
Vafin et al. (2018) but still below the Fermi time delay lower limit. This shift applies also to
all the instability suppression limit points in figure 4.4, since the correlation length and the
intergalactic magnetic field strength determine together the angular spread equation 4.9 that
plays the key role in determining the linear growth rate.

Although the non-linear saturation level had changed by four orders of magnitudes
between the models of Vafin et al. (2018) and Broderick et al. (2012), the magnetic field limit
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Fig. 4.4 The excluded region of the IGMF, for which neither magnetic deflection nor the
oblique instability can explain the absence of cascade emission (Cyan). The grey region is
the upper limit on the intergalactic magnetic field strength due to the MHD turbulent decay
(Banerjee and Jedamzik, 2004; Durrer and Neronov, 2013).
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had changed by only two orders of magnitude. This is due to the dependence of the energy
loss time on the angular spread as τloss ∝ (∆θ)2, which is a result of the maximum linear
growth rate dependence on the angular spread as ωi,max ∝ (∆θ)−2 Vafin et al. (2019), and
the energy loss time relation with the linear growth rate as τloss ∝ ω

−1
i,max (equation 4.10).

For a generic beam-plasma instability model with plasma instability energy loss time
τloss,0 in the absence of the IGMF, the energy loss time increases as τloss ∝ (∆θ)2 when
the angular spread increases with the IGMF strength and correlation length as in equation
4.9 reaching the inverse Compton scattering energy loss time at the following intergalactic
magnetic field strength

log
(

BIGM,lim

Gauss

)
=−17.92− 1

2
log
(

λB

pc

)
+ log

(√
Myr

τloss,0
−
√

Myr
τIC

)
.

(4.13)

Equation 4.13 provides the intergalactic magnetic fields strength that is sufficient to
suppress a general plasma instability, with energy loss time τloss,0 in the absence of the IGMF,
against the inverse Compton scattering of the blazar-induced pair beam on the CMB. For
Vafin’s model, the last logarithmic term on the right-hand side of equation 4.13 has a value
very close to unity.

4.4 Summary

We investigated in this chapter the effects of tangled weak intergalactic magnetic fields with
small correlation lengths on the electrostatic instability driven by blazar-induced pair beams.
The weak fields increase the angular spread of the pair beam which decreases the linear
growth rate of the electrostatic beam-plasma instability, which in turn reduces the associated
energy loss rate.

In a certain region in the BIGM-λB parameter space, neither the beam-plasma instability
nor the intergalactic magnetic field deflection can explain the absence of cascade emission in
the spectra of some TeV blazars, and so this parameter space region can be excluded, unless
there is a third mechanism that suppresses the GeV-band cascade.

Considering the beam-plasma instability model of Vafin et al. (2018), we can exclude an
IGMF strength within the three orders of magnitude below the limit above which magnetic
deflection imposes a significant time delay of the cascade (ten years). Even for the non-linear
evolution model of Broderick et al. (2012), we can exclude a range a values that is one order
of magnitude wide.
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Although the parameter space below the beam-plasma instability suppression limit is not
excluded by the cascade observations, part of this region (at λB ≲ 10−8 Mpc and shaded in
gray in figure 4.4 is constrained by MHD turbulent decay (Banerjee and Jedamzik, 2004;
Durrer and Neronov, 2013). In conclusion, the allowed region for the IGMF lies below 10−16

Gauss at λB ≈ 10−8 Mpc, and the constraint on the IGMF strength is tighter than that for
both larger correlation lengths (due to the instability suppression) and smaller correlation
lengths (due to the MHD turbulent decay).

In this chapter, We have assumed an efficient energy loss of the beam as discussed
in Vafin et al. (2018) and focused on the impact of the IGMF on this instability energy
loss. We have neglected the instability feedback on the beam. Perry and Lyubarsky (2021)
demonstrated that this instability feedback can influence the instability evolution significantly
by broadening the beam. In the next chapter, we discuss this instability feedback in detail.



Chapter 5

Fokker-Planck Diffusion Simulation of
the Instability Feedback

Part of the material in this chapter has been previously published in the article Alawashra
and Pohl (2024).

In this chapter, we study the instability feedback on the pair beam. This feedback was
studied for the first time in the context of blazar-induced pair beam electrostatic instability by
Perry and Lyubarsky (2021). The treatment in Perry and Lyubarsky (2021) used a simplified
one-dimensional beam distribution. In this chapter, we use instead a two-dimensional
realistic beam distribution to explore the influence of the instability feedback on the beam.
Specifically, we use the beam profile at a distance of 50 Mpc from the blazar found in Vafin
et al. (2018). This treatment enables us to understand the feedback influence on the pairs
with the relevant Lorentz factors for cascade emission in the GeV band.

The instability feedback is described as Fokker-Planck diffusion both in momentum and
angular space. This treatment was simplified in the analysis by Perry and Lyubarsky (2021),
by evaluating only the initially dominant angular widening diffusion and neglecting the other
effects involving the momentum diffusion and angular narrowing (Dθ p). Here in section
5.4.2, we check rigorously this assumption by using the 2D spectrum of the expanded beam
under the dominant feedback to analyse the possible impact of the momentum diffusion on
the beam energy and whether the beam narrowing is still negligible.

The blazar-induced pair beam-plasma instability significantly outpaces other factors
that could change the beam profile, such as inverse Compton cooling and pair production.
Whereas previous works have predominantly focused on assessing the instability’s impact on
a stationary beam profile, we incorporate the continuous production of TeV pairs into the
transport equation of the beam, in addition to the instability diffusion in section 5.4.4.
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The structure of this chapter is as follows. In section 5.1, we describe the numerical and
analytical methods we used in calculating the time evolution of the beam-plasma system in
the quasi-linear regime. In section 5.2, we introduce the pair beam realistic 2D profile that
we used in this study. In section 5.3, we present the quasi-linear theory of the beam-plasma
system, we introduce the linear growth rate of the electrostatic instability, the time evolution
of the electrostatic waves spectrum and the Fokker-Planck diffusion of the beam distribution.
Finally, we demonstrate the numerical simulation and the results in section 5.4 and conclude
in section 5.5.

5.1 Methodology

In this section, we present the numerical and analytic calculations we used to solve the time
evolution of the beam-plasma system in the quasi-linear regime. We present the calculations
of the linear growth rate of the electrostatic instability in section 5.1.1. Then we introduce
the diffusion coefficients calculations in section 5.1.2. Finally, we demonstrate the numerical
schemes for the Fokker-Planck diffusion equation of the instability feedback and the wave
spectrum evolution equation in section 5.1.3.

5.1.1 Modifications of Linear Growth Rate Calculations

In this section, we introduce our numerical and analytical calculations of the linear growth
rate for a given beam distribution function. The linear growth rate is calculated for an
unstable modes spectrum. The unstable wave modes are characterized by a wave number, k,
and a wave vector angle with the beam propagation direction (z-axis), θ ′. The wave vector
azimuthal angle is fixed to zero, ϕ ′ = 0, without losing the generality due to the cylindrical
symmetry of the beam. Furthermore, here we calculate the unstable modes in the Cartesian
coordinates characterized by the perpendicular wave number, k⊥ = k sinθ ′, and the parallel
wave number, k|| = k cosθ ′. The resonant unstable modes for relativistic blazar-induced pair
beams are extremely narrow in the parallel wave number range from around ωp

c

(
1+10−16)

to ωp
c

(
1+10−6). Therefore, often we will use the parallel wave number as,

ck||
ωp

−1.
In the previous chapter 4, we were only interested in the maximum linear growth rate and

its reduction with the IGMF. For that purpose, we used the calculations developed by Vafin
and that have been used in the publications Vafin et al. (2018, 2019). However, for the study
of this chapter, we are also interested in more accurate information on the spectral shape
of the linear growth rate and in using an arbitrary beam distribution as an input. Therefore,
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we improved several of the limitations of the calculations we previously adopted for the
purposes of our study in this chapter.

The previous calculations assumed that the beam particle’s speed is equal to the speed of
light vb = c and hence there was no dependence on the beam Lorentz factor once evaluating
the resonance angle boundaries. We found that the corrections of the beam particle speed
become relevant once evaluating the linear growth rate for parallel unstable modes with

the condition,
(

ck⊥
ωp

)2
+2
(

ck||
ωp

−1
)
≤ 103

2γ2 , where γ is the beam particle Lorentz factor (see
equation B.5). We added this correction to both the linear growth rate integrated and the
resonance boundaries. The previous code included the distribution function as an analytical
form and therefore all the derivatives were performed analytically. For the calculations in
this chapter, we used a numerical form of the distribution function with finite difference
numerical derivatives up to the fourth order.

For an ultra-relativistic beam with beam particle speed vb ≃ c
(

1− 1
2γ2

)
, equation 3.31

yields

ωi(k⊥,k||) =πωp
nb

ne

(
ωp

kc

)3
mec

∫
∞

pmin

d p p I(p), (5.1)

where

I(p) =
∫

θ2

θ1

dθ

−2 fb(p,θ)sinθ +(cosθ − kvb
ωp

cosθ ′)∂ fb(p,θ)
∂θ

[(cosθ1 − cosθ)(cosθ − cosθ2)]1/2 , (5.2)

and

cosθ1,2 =
ωp

kvb

cosθ
′± sinθ

′

√(
kvb

ωp

)2

−1

 , (5.3)

θ ′ is the wave vector angle with the beam propagation direction (z-axis), θ is the beam’s
particle momentum angle with the beam propagation direction and p = mecγ is the beam
particle momentum. The lower bound on the beam momentum is given by the condition,(

kvb
ωp

)2
≥ 1, that yields

pmin =

√√√√√√1+
(

ck⊥
ωp

)2
+2
(

ck||
ωp

−1
)

(
ck⊥
ωp

)2
+2
(

ck||
ωp

−1
) . (5.4)

We calculated the linear growth rate in two different regimes in the parameter space
(ck⊥

ωp
,

ck||
ωp

− 1). The first one we call the quasi-parallel and oblique modes regime where
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Fig. 5.1 The resonant beam angles boundaries (equation 5.3) for each wave mode (k⊥, k||).
Here the beam Lorentz factor is fixed to γ = 106. Dark red areas are larger than 10−1 radian
and blue dark are smaller than 10−9 radian.

(
ck⊥
ωp

)2
>
(

ck||
ωp

−1
)

and the second one is the parallel modes regime where
(

ck⊥
ωp

)2
≤(

ck||
ωp

−1
)

. In the first regime, the resonance beam angle region is very wide (see figure 5.1)
and the calculations from the previous work of Vafin probably resolve the linear growth rate
integrand. However, in the second regime, the resonance beam angle region is extremely
narrow (see figure 5.1) and we developed a novel method for the calculations. First, we
introduce the calculations in the quasi-parallel and oblique range and then we introduce the
parallel one.

Quasi-parallel and oblique modes regime

In this regime, we consider the modes with the following condition,
(

ck⊥
ωp

)2
>
(

ck||
ωp

−1
)

,
where the resonance region is very wide and the integral of equation 5.2 is well resolved by
the beam angle variable, θ . In this case, we used the result from Vafin’s calculations with
several modifications. The original calculations assumed vb = c, here we include the speed
of the beam particles as vb ≃ c

(
1− 1

2γ2

)
. We rewrite equation 5.2 as
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I(p) =
∫

θ2

θ1

dθ
Fθ (p,θ)

[(cosθ1 − cosθ)(cosθ − cosθ2)]1/2 , (5.5)

where
Fθ (p,θ) =−2 fb(p,θ)sinθ +(cosθ − kvb

ωp
cosθ

′)
∂ fb(p,θ)

∂θ
. (5.6)

To avoid the singularities at the boundaries during numerical integration of equation 5.5,
the following method was proposed in the calculations by Vafin. The integral was split into
two parts [θ1,θ0] and [θ0,θ2] where θ0 = (θ1 +θ2)/2. Then for the first integral interval,
the relation, [cosθ1−cosθ ]−1/2d cosθ =−2d[cosθ1−cosθ ]1/2, were used applying partial
integration. With the same thing applied to the second integral but using the other bracket
the final result of equation 5.5 reads as

I(p) =
2Fθ (p,θ0)

sinθ0

√
cosθ1 − cosθ0

cosθ0 − cosθ2
+

2Fθ (p,θ0)

sinθ0

√
cosθ0 − cosθ2

cosθ1 − cosθ0

−2
∫

θ0

θ1

dθ

√
cosθ1 − cosθ

sinθ
√

cosθ − cosθ2

[
dFθ (p,θ)

dθ
−

Fθ (p,θ)
(
2cosθ(cosθ − cosθ2)− sin2

θ
)

2sinθ(cosθ − cosθ2)

]

+2
∫

θ2

θ0

dθ

√
cosθ − cosθ2

sinθ
√

cosθ1 − cosθ

[
dFθ (p,θ)

dθ
−

Fθ (p,θ)
(
2cosθ(cosθ1 − cosθ)+ sin2

θ
)

2sinθ(cosθ1 − cosθ)

]
.

(5.7)

The original code, solving equation 5.7, was written using the analytical expressions of
the first and second angular derivatives of the beam distribution function, fb(p,θ). For the
purpose of our calculations in this Chapter and since the initial beam’s Gaussian angular
profile evolves in time under the instability feedback we need to use numerical derivatives
of the beam distribution allowing the beam profile to evolve in time. We used fourth-order
sampled points finite difference numerical derivatives with a natural logarithm uniform grid
of spacing, ∆ lnθ . The first-order angular derivative at the point, (p,θi), is given by

∂ fb(p,θ)
∂θ

∣∣∣
θi
=

fi−2 −8 fi−1 +8 fi+1 − fi+2

12θi∆ lnθ
, (5.8)
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where fi = fb(p,θi). Where the second-order angular derivative is given by

∂ 2 fb(p,θ)
∂θ 2

∣∣∣
θi
=

1
12(θi∆ lnθ)2

[
− (∆ lnθ +1) fi−2 +(8∆ lnθ +16) fi−1 −30 fi

+(−8∆ lnθ +16) fi+1 +(∆ lnθ −1) fi+2

]
.

(5.9)

We used second-order sampled points finite difference numerical derivatives for the bound-
aries of our grid.

The resonance boundaries are defined by the equation 5.3. We found that in the regime

where
(

ck⊥
ωp

)2
≫ 2

(
ck||
ωp

−1
)

and γ2
(

ck⊥
ωp

)2
≫ 1, the numerical values of θ1,2 as calculated

in the old numerical code using the expression provided in equation 5.3 are susceptible to
significant numerical inaccuracies. Expanding the square root to the leading orders is needed
for robust calculations. We have employed this expansion for the expression of θ1,2, as
detailed in the appendix B.1 once we are in this regime. The final result for the resonance
lower angle bound, θ1, is given by equation B.10 where the resonance upper angle bound, θ2,
is given by equation B.11. We used equations B.10 and B.11 to find the values of θ1,2, when(

ck⊥
ωp

)2
≥ 200

(
ck||
ωp

−1
)

and γ2
(

ck⊥
ωp

)2
≥ 100, and equation B.7 otherwise.

We noted that the maximum linear growth rate value has been reduced by around a factor
of 1.5 after implementing the new robust method of calculating θ1,2. We also found that
there were significant numerical fluctuations in the linear growth rate map that disappeared
completely after using the robust formula. This numerical correction is irrelevant to the
previous study in chapter 4, since we were interested in the reduction of the maximum linear
growth rate by tangled intergalactic magnetic field over orders of magnitudes. A change
in the linear growth rate maximum value by a factor of 1.5 would impact the suppression
limits of the instability in figure 4.4 by around 1.5 for the IGMF correlation length, λB

and by around
√

1.5 for the IGMF strength, BIGM. This shift is negligible compared to the
uncertainties we had on the non-linear saturation of the instability.

Parallel modes regime

In the regime of
(

ck⊥
ωp

)2
≤
(

ck||
ωp

−1
)

, the resonant angles boundaries approach each other the

value of θ1,2 ∼
√

2
[(

ck||
ωp

−1
)
− 1

2γ2

]1/2
(see also figure 5.1), making the resonance region

extremely narrow and impossible to resolve using the beam angle variable, θ . We therefore
calculated the linear growth rate integral (equation 5.2) in this regime using a new variable,
λ , defined as
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λ =
θ 2

2
((

ck⊥
ωp

)2
+ ε||− 1

2γ2

) , (5.10)

where the linear growth rate integrated numerically well resolved by linear grinding in λ .
After the change of variable in the appendix B.2, we arrived at the following result for I(p)
(equation 5.2) in terms of the variable, λ ,

I(p) =
∫

λ2

λ1

dλ
Fλ (p,λ )

[(λ −λ1)(λ2 −λ )]1/2 , (5.11)

where

Fλ (p,λ ) =−2 fb(p,λ )+

−λ +

1
2γ2 − ε||((

ck⊥
ωp

)2
+ ε||− 1

2γ2

)
 ∂ fb(p,λ )

∂λ
, (5.12)

and the resonance boundaries for the variable, λ , are

λ1,2 = 1∓
ck⊥/ωp((

ck⊥
ωp

)2
+ ε||− 1

2γ2

)√(ck⊥
ωp

)2

+2ε||−
1
γ2 . (5.13)

We now apply the same mathematical trick we used for equation 5.5 to equation 5.11 in
order to avoid the singularities at the boundaries during the numerical integration. We split
the integral into two parts [λ1,λ0] and [λ0,λ2] where λ0 = (λ1 +λ2)/2. Then we integrate
the first integral by parts using the relation, [λ −λ1]

−1/2dλ = 2d[λ −λ1]
1/2, and using the

same thing for the second integral but using the other bracket we arrive to the final result of
equation 5.11 as

I(p) =2Fλ (p,λ0)

√λ0 −λ1

λ2 −λ0
+

√
λ2 −λ0

λ0 −λ1

−2
∫

λ0

λ1

dλ

√
λ −λ1

λ2 −λ

[
dFλ (p,λ )

dλ
+

Fλ (p,λ )
2(λ2 −λ )

]

+2
∫

λ2

λ0

dλ

√
λ2 −λ

λ −λ1

[
dFλ (p,λ )

dλ
+

Fλ (p,λ )
2(λ −λ2)

]
.

(5.14)

We have calculated the linear growth rate momentum integral in equation 5.1 using the
Midpoint Riemann Sum with logarithmic grinding of the beam momentum, p. The resonance
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angles integral in equation 5.2 is solved in two cases: In the case of
(

ck⊥
ωp

)2
≥ 10

(
ck||
ωp

−1
)

,
we perform the integral calculations as in equation 5.7 using the Midpoint Riemann Sum

with logarithmic grinding of the beam angle, θ . In the case
(

ck⊥
ωp

)2
< 10

(
ck||
ωp

−1
)

, we use
the result in equation 5.14 with linear grinding of the variable, λ , defined in equation 5.10.
We found that the results of the two cases’ calculations match each other at the transition
line.

5.1.2 Diffusion Coefficients

The diffusion coefficients can be calculated using the following integral over the wave
spectrum, W (k), involving the resonance condition

Di j = πe2
∫

d3kW (k, t)
kik j

k2 δ (k ·v−ωp), (5.15)

where the unstable wave wavevector k = (k,θ ′,ϕ ′) and the beam particles velocity vb =

(vb ≃ c(1− 1
2γ2 ),θ ,ϕ = 0) are both defined in the spherical coordinates with the beam

propagation axis being the z-axis here. ki is the projection of wave-vector (k) to the spatial
direction i. We use the azimuth symmetry of the wave spectrum and the beam to fix ϕ = 0
and integrate over ϕ ′ without losing the generality arriving at the following expression after
a few steps shown in appendix B.3


Dpp

Dpθ

Dθθ

= π
meω2

p

ne

∫
∞

ωp/c
k2dk

∫ cosθ ′
2

cosθ ′
1

d cosθ
′ W (k)
kvb
√

(cosθ ′− cosθ ′
1)(cosθ ′

2 − cosθ ′)


1
ξ

ξ 2

 ,

(5.16)
where

ξ =
cosθ

ωp
kvb

− cosθ ′

sinθ
. (5.17)

and the boundaries of cosθ ′ are given by

cosθ
′
1,2 =

ωp

kvb

cosθ ± sinθ

√(
kvb

ωp

)2

−1

 . (5.18)

We see in equation 5.16 that the integrand of the diffusion coefficients is proportional to
the very narrow wave spectrum. We have resolved this narrow spectrum and the integrand
numerically using a binning in the coordinates, (k⊥,θ R) where θ R =

(
ck||
ωp

−1
)
/
(

ck⊥
ωp

)
as
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Fig. 5.2 A sample of the wave spectrum after a growth time of 7ω
−1
i,max. We used here the

linear growth rate resulting from the realistic initial beam profile as presented in sections
5.2 and 5.3.1. Here W ≡ dW

c
ωp

ck⊥
ωp d ck⊥

ωp dθ R
in unites of eV cm−3. We observe here that the wave

spectrum is well-resolved numerically using the parameter θ R =
(

ck||
ωp

−1
)
/
(

ck⊥
ωp

)
.
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shown in figure 5.2. Therefore, we had to transform the integral in equation 5.16 from the
coordinates, (k,θ ′), to the coordinates, (k⊥,

ck||
ωp

− 1), and then finally to the coordinates,
(k⊥,θ R). The steps for those coordinates transformation are shown in the appendix B.3
where the final expression of the diffusion coefficients is given by

Dpp

Dpθ

Dθθ

=π
meω2

p

necθ

∫
R(θ ,γ)

dk⊥k⊥
∫

R(θ ,γ)
dθ

R

× W (k⊥,θ R)√
1−
(

θ R

θ

)2
+ θ R

ck⊥/ωp

[
1+
(

1
γθ

)2
]
− (

ωp
ck⊥

)2
[

1
2γ2θ

+ θ

2
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1
ξ

ξ 2

 ,

(5.19)

where

ξ =− 1√
1+2θ R(ck⊥/ωp)+(ck⊥/ωp)2(1+θ R2)

[
θ R

θ

ck⊥
ωp

+
θ

2
− 1

2θγ2

]
, (5.20)

and the resonance region R(θ ,γ) is defined by the following condition in the parameter space,
(k⊥,θ R), for each beam angle,θ , and Lorentz factor, γ

(
ck⊥
ωp

)2(
θ

2 −θ
R2
)
+

ck⊥
ωp

θ
R
[

θ
2 +

1
γ2

]
−
[

1
2γ2 +

θ 2

2

]2

≥ 0. (5.21)

We have calculated the diffusion coefficients during the time evolution of the beam and
waves using logarithmic grinding of the coordinates (k⊥,θ R) where the peak of the evolving
wave spectrum is well resolved as well. We see in equation 5.19, that the dependence of
the diffusion coefficients is very weak on the beam Lorentz factor, γ , for perpendicular
wave numbers, ck⊥

ωp
> 10−3. Since the unstable wave amplitude, W , is roughly constant

for perpendicular wave numbers, k⊥, less than 10−1 ωp
c and it is smaller for the parallel

wave number modes, k⊥ < 10−6 ωp
c (see section 5.3.1), and since the diffusion coefficients

integrands are proportional to k⊥∆k⊥ then we could safely neglect the contribution of modes
with k⊥ less than 10−3 ωp

c . Therefore, we can also neglect the dependence of the diffusion
coefficients on the beam Lorentz factor, γ , in this relevant range of k⊥.
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5.1.3 Beam Diffusion and Wave Evolution Equations

In this section, we introduce the numerical schemes we used to solve the time evolution of
the beam and the wave spectrum during the Fokker-Planck diffusion of the beam-plasma
system as presented in section 5.4.1. We demonstrate in section 5.4 that the θθ diffusion
on the right-hand side of equation 5.40 is significantly larger than the other diffusion terms
initially and therefore we will include only this term in this section

∂ f (p,θ)
∂ t

=
1

p2θ 2
∂

∂ lnθ

(
Dθθ

∂ f (p,θ)
∂ lnθ

)
. (5.22)

In appendix C.1, we have performed the Von Neumann stability analysis of the diffusion
equation (equation 5.22) for the FTCS (Forward Time Centered Space) numerical scheme.
We found that the numerical stability of the FTCS scheme requires the following minimum
time step

∆t ≤ min
i

p2
θ

2
i (∆ lnθ)2

(Dt
θθ i+ 1

2
+Dt

θθ i− 1
2
)

(Dt2
θθ i+ 1

2
+Dt2

θθ i− 1
2
)

 , (5.23)

where θi is the beam angle with spatial index i computed using a logarithmic grid with
spacing, ∆ lnθ . We define Dt

θθ i+ 1
2
≡ Dθθ (θi+ 1

2
, t) and Dt+1

θθ i− 1
2
≡ Dθθ (θi− 1

2
, t +∆t), where t

is the initial time, ∆t is the time step and θi+ 1
2
= exp

{
(lnθ)i+ 1

2

}
. We compute (lnθ)i+ 1

2
as

(lnθ)i+ 1
2
= ((lnθ)i +(lnθ)i+1)/2.

We found that the numerical stability time step condition of the FTCS scheme (equation
5.23) gives time steps that are much shorter than the inverse linear growth rate times ω

−1
i

making it very expensive to solve the diffusion equation using the FTCS numerical scheme.
We also noted that the time step condition for the FTCS numerical (equation 5.23) is
proportional to the inverse of the diffusion coefficients, ∆t ∝ D−1

θθ
(t), where the diffusion

coefficients them self are proportional to the unstable wave amplitude (equation 5.15),
Dθθ ∝ W (t), that grows exponential during the linear phase of the instability evolution,
W (t) ∝ exp{2ωit}, making the time step even shorter and shorter as the unstable waves grow.
Therefore, we have adopted another numerical scheme to solve the beam diffusion equation,
that is the Crank–Nicolson semi-implicit scheme (Crank and Nicolson, 1947).

We found in the appendix C.2 that the numerical solution of equation 5.22 using the
semi-implicit Crank-Nicolson scheme is unconditionally stable. However, the downside of
this scheme is that it’s much more difficult to solve than the FTCS scheme. In the case of the
semi-implicit Crank-Nicolson scheme, one needs to solve a set of linear equations with a
number of unknowns equal to the number of grid points.
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Fig. 5.3 Schematic diagram of the θθ Fokker-Planck feedback simulation steps. We present
the simulation method in section 5.1.3. The light blue arrows denote the resonance integration
over the beam distribution, f , yielding the linear growth rate, ωi, as given by equation 5.1.
The purple arrows denote the resonance integration over the wave spectrum, W , yielding
the diffusion coefficients, Dθθ , as given by equation 5.19. The red arrows stand for the
unstable wave spectrum, W , evolution according to equation 5.27 using the FTCS scheme.
The green arrows represent the beam distribution function, f , evolution according to the
diffusion equation 5.22 using the Crank–Nicolson scheme.
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Applying the semi-implicit Crank-Nicolson scheme with derivatives of the second order
to equation 5.22, we get

f t+1
i − f t

i
∆t

=
1

2p2θ 2
i (∆ lnθ)2

[
Dt

θθ i+ 1
2
( f t

i+1 − f t
i )−Dt

θθ i− 1
2
( f t

i − f t
i−1)

+Dt+1
θθ i+ 1

2
( f t+1

i+1 − f t+1
i )−Dt+1

θθ i− 1
2
( f t+1

i − f t+1
i−1 )

]
,

(5.24)

where we define f t
i ≡ f (p,θi, t) and Dt+1

θθ i+ 1
2
≡ Dθθ (θi+ 1

2
, t +∆t) with t being the initial

time, ∆t is the time step and θi+ 1
2
= exp

{
(lnθ)i+ 1

2

}
. We compute (lnθ)i+ 1

2
as (lnθ)i+ 1

2
=

((lnθ)i +(lnθ)i+1)/2.
We can rewrite equation 5.24 as

−ξ Dt+1
θθ i+ 1

2
f t+1
i+1 +

[
1+ξ

(
Dt+1

θθ i+ 1
2
+Dt+1

θθ i− 1
2

)]
f t+1
i −ξ Dt+1

θθ i− 1
2

f t+1
i−1 =Ci, (5.25)

where
Ci = f t

i +ξ

[
Dt

θθ i+ 1
2
( f t

i+1 − f t
i )−Dt

θθ i− 1
2
( f t

i − f t
i−1)

]
, (5.26)

and ξ = ∆t
2p2θ 2

i (∆ lnθ)2 . The index i runs over the entire logarithmic grid of the beam angle, θ ,
giving as many linear equations in the form of equation 5.25 as many grid points, Nθ , we
have. This results in a Tridiagonal and band-diagonal system of equations, that has nonzero
elements only on the diagonal plus or minus one column. We solved this system of linear
equations using the mathematical technique presented in section 2.4 of Press (2007).

We used the no-flux boundary condition for the distribution function at the minimum
angle, f t+1

−1 = f t+1
0 , where the beam energy is conserved. As for the maximum beam angle,

we used the condition, f t+1
Nθ+1 = 0, where we stop the beam angle grid at a very small

numerical value of 10−10 of the beam distribution peak value. We tested this with different
values up to 10−15 of the beam distribution peak value.

For the wave spectrum evolution equation, we rewrite equation 5.35 as

∂ lnWk,l

∂ t
= 2(ωik,l −ωc), (5.27)

where Wk,l = exp
{

lnWk,l
}

and we defined Wk,l ≡ W (k⊥,k,θR,l). We solved equation 5.27
using the FTCS (Forward Time Centered Space) scheme.
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Lastly, we describe in detail how we combine the numerical solution of the beam diffu-
sion equation (equation 5.22) with the solution unstable wave spectrum evolution equation
(equation 5.27). We show a schematic diagram of the steps in figure 5.3. We start the
simulation by calculating the instability linear growth rate, ω t

i , at time t given the beam
distribution function at time t, f t , using equation 5.1. We then use this linear growth rate, ω t

i ,
evolving the waves spectrum using equation 5.27 with the FTCS scheme from the time t, W t ,
to the time t +1, W t+1. Where t +1 represents the new time after a time step ∆t.

We then use the wave spectrum at the time t, W t , and the time t +1, W t+1, to calculate
the diffusion coefficients at the time t, Dt

θθ
, and at the time t +1, Dt+1

θθ
respectively using

equation 5.19. Afterwards, we use the diffusion coefficients at the current and later times
(Dt

θθ
and Dt+1

θθ
) along with the beam distribution at the current time, f t , to find the beam

distribution at the later time, f t+1, using the Crank–Nicolson scheme of equation 5.22 as
given by equation 5.25.

We then find the new linear growth rate, ω
t+1
i , using the updated beam distribution, f t+1.

Using this new growth rate we calculate the wave spectrum and the diffusion coefficients
at the later time as before. We then updated the beam distribution for the new time step as
before and so on as shown in figure 5.3. We used a dynamical time step of ω

−1
i,max as the

default time step with an upper limit set by the fastest rate of change of the beam distribution
during the last simulation time step. We verified this by a convergence of the result by 0.1%
using time steps that are 10 times smaller.

For the wave spectrum, W , we use a logarithmic grid in the coordinates (k⊥,θ R) where
θ R =

(
ck||
ωp

−1
)
/
(

ck⊥
ωp

)
. We used 100 grid points for the perpendicular wave number, k⊥,

from 10−3 ωp
c to 10 ωp

c , we have verified a convergence of this by using 300 points. For the
parameter, θ R, we used 600 grid points for the interval 10−9 to 5× 10−3 where we have
tested this with 1500 grid points. For the beam distribution, f , we use a logarithmic grid in
the coordinates (θ ,γ) where γ is the beam particle Lorentz factor. We used 100 grid points
for γ from 104 to 108 and verified a convergence of this with 300 grid points. Finally for the
beam particle angle, θ , we used 600 grid points from 10−9 radian to 5×10−3 radians tested
by using 1500 grid points.

5.2 Blazar-induced Pair Beam Distribution

The pair-beam distribution function is the crucial quantity that determines the beam-plasma
instability growth rate (Vafin et al., 2018). Thus, using the realistic spectrum of blazar-
induced pair beams is essential for examining the influence of the beam-plasma instability
on the beam and the GeV-scale cascade emission. In this study, we used the realistic beam
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distribution at a distance of 50 Mpc from the blazar, as reported in Vafin et al. (2018). Here,
we introduce this beam spectrum and explain the ingredients used to find it.

The propagation of the beam distribution in the IGM is driven by two primary factors.
The first one is the pair’s production due to the interaction of the high-energy gamma rays
with the EBL, along with their subsequent cooling processes. The second effect is the
dispersion of the primary gamma-ray flux with the propagation distance, leading to an inverse
proportionality of the beam density with the square of the distance from the blazar. These
two fundamental mechanisms collectively shape the evolution of the pair-beam distribution
along the propagation distance in the IGM.

The two effects have been combined in Vafin et al. (2018), neglecting the IC cooling, to
calculate the accumulated pair spectrum over the IC cooling mean-free path of pairs with
Lorentz factor of 107 starting at the distance 50 Mpc from the blazar. The neglect of IC
cooling is driven by the necessity to investigate beam-plasma instabilities that provide the
dominant energy loss. They used an intrinsic power-law gamma-ray spectrum with a spectral
index of 1.8 and a cut-off step function at the energy of 50 TeV.

We define the normalized beam momentum distribution, f (p,θ) = f (x,p)/nb∫
d3 p f (p,θ) = 1, (5.28)

where nb is the pair-beam density. The density at 50 Mpc from the blazar is estimated as
nb = 3×10−22 cm−3 (Vafin et al., 2018). Factorizing the distribution as

f (p,θ) =
d3 f
d p3 =

1
2πmecβ p2 fγ(γ) fcosθ (γ,θ), (5.29)

where fcosθ (γ,θ) is an angular differential part, fγ(γ) is a parallel momentum differential
part, and β is the normalized speed. The angular part is approximated by a Gaussian
(Broderick et al., 2012; Miniati and Elyiv, 2013; Vafin et al., 2018)

fcosθ (γ,θ) =
2

∆θ 2 exp
{
−
( θ

∆θ

)2
}
, (5.30)

with the angular spread of ∆θ = 1
γ
. The parallel momentum part, fγ(γ), is given by equation

D.1 in the appendix D, where we replaced the sharp step-function cut-off used in Vafin et al.
(2018) by an exponential cut-off at the Lorentz factors higher than 6×106 using a part of a
logarithmic Gaussian as shown in figure D.1.

The initial normalized realistic beam spectrum is shown in figure 5.4, and the main energy
bulk of the pair is located at Lorentz factors of a few 106. We also see that the pairs are
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Fig. 5.4 The normalized initial beam distribution 2π p3θ 2 f (p,θ)/nb at distance 50 Mpc
from the blazar (Vafin et al., 2018).

concentrated in a narrow band around the production angles of θ ∼ γ−1. We will use this
distribution to find the linear growth rate of the instability in section 5.3.1 and as the initial
condition for the Fokker-Planck simulation of the instability feedback in section 5.4.

5.3 Quasi-linear Theory of the Beam-Plasma System

The beam-plasma instabilities manifest in both electrostatic and electromagnetic modes,
including the two-stream instability (k×δE = 0 where δE is the perturbed electric field), the
transverse Weibel, and filamentation modes (k ·δE = 0) (Bret et al., 2010b). The electrostatic
modes dominate the wave spectrum for the blazar-induced TeV beams, whereas Weibel-type
modes are suppressed (Bret et al., 2005; Rafighi et al., 2017) (see section 3.3). Consequently,
we consider only the electrostatic oblique modes, which is sufficient to recover the essential
physics (Chang et al., 2016).

In section 5.3.1, we present the linear growth rate of the electrostatic instability. In
section 5.3.2, we introduce the balance equation for waves. Lastly, in section 5.3.3, we
introduce the Fokker-Planck diffusion equation describing the instability feedback on the
beam distribution.
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5.3.1 Electrostatic Linear Growth Rate

In the kinetic regime that is applicable for blazar-induced pair beams (Miniati and Elyiv,
2013), the linear growth rate of an unstable wave with a wave vector k can be found by
(Breizman, 1990)

ωi(k) = ωp
2π2e2

k2

∫
d3p

(
k · ∂ f (p)

∂p

)
δ (ωp −k ·vb), (5.31)

where ωp = (4πnee2/me)
1/2 is the plasma frequency of the intergalactic background plasma

with density ne. Exploiting the cylindrical symmetry around the beam propagation axis
(z-axis in our case), we fixed the wave vector of the electrostatic waves to k = (k⊥,0,k||),
where k⊥ and k|| are the perpendicular and the parallel components to the beam propagation
direction respectively. After integrating over the azimuthal angle of the beam we get the
following

ωi(k⊥,k||) = πωp
nb

ne

(
ωp

kc

)3 ∫ ∞

pmin

d pmec p
∫

θ2

θ1

dθ

×
−2 f (p,θ)sinθ +(cosθ − kvb

ωp
cosθ ′)∂ f (p,θ)

∂θ

[(cosθ1 − cosθ)(cosθ − cosθ2)]1/2 ,

(5.32)

where the boundaries are given by

cosθ1,2 =
ωp

kvb

cosθ
′± sinθ

′

√(
kvb

ωp

)2

−1

 , (5.33)

and

pmin =

√√√√√√1+
(

ck⊥
ωp

)2
+2
(

ck||
ωp

−1
)

(
ck⊥
ωp

)2
+2
(

ck||
ωp

−1
) . (5.34)

Here θ ′ is the wave vector angle with the beam propagation direction (z-axis), θ is the
angle between momentum and the beam axis, and vb ≃ c(1− 1

2γ2 ) is the particle speed.
In figure 5.5, we present the linear growth rate (equations 5.32 and 5.33), using the beam

distribution introduced in section 5.2, the density of IGM electron as ne = 10−7(1+ z)3cm−3,
and a redshift z = 0.15. Previous treatments in the literature used the approximation (vb = c)
when evaluating equation 5.32 (Miniati and Elyiv, 2013; Perry and Lyubarsky, 2021; Vafin
et al., 2018). However, we found that in the regimes of wave numbers with the condition,(

ck⊥
ωp

)2
+ 2
(

ck||
ωp

−1
)
≤ 103

2γ2 , the difference between the particle speed and the speed of
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light becomes relevant (see equation B.5). We have taken this difference into account in
our calculations of figure 5.5 where the detailed numerical and analytical calculations are
presented in section 5.1.1.

In figure 5.5, we see that the growth rate is maximal and constant in the range of
perpendicular wave numbers, 10−6 < ck⊥/ωp < 1, with a sharp drop at the oblique angles
ck⊥/ωp ∼ 1, whereas for the parallel modes, k⊥c/ωp < 10−6, it is smaller by around a factor
of 3. Note that the growth rate of the parallel modes is sensitive to the beam distribution,
for a simplified monoenergetic Gaussian the growth of the parallel modes is larger than the
quasi-parallel ones (Perry and Lyubarsky, 2021), where it’s smaller for the distribution we
used and for a Maxwell–Jüttner distribution (Chang et al., 2016).

The turnover of the linear growth rate spectral shape around the wave numbers of(
ck⊥
ωp

)2
∼
(

ck||
ωp

−1
)

is due to the change in the corresponding resonant beam angles. In the

regime of
(

ck⊥
ωp

)2
≫
(

ck||
ωp

−1
)

, the resonant beam angles are constrained by the minimum

angles of θ1 ≃
(

ck||
ωp

−1
)
/
(

ck⊥
ωp

)
and large θ2 (see figure 5.1). In the regime of

(
ck⊥
ωp

)2
≪(

ck||
ωp

−1
)

, the resonant angles boundaries approach each other to a ck⊥/ωp independent

value of θ1,2 ∼
√

2
[(

ck||
ωp

−1
)
− 1

2γ2

]1/2
.

The maximum growth rate, ωi,max ∼ 6.7×10−8 s−1, is much faster than the IC cooling
rate of the beam, τ

−1
IC (γ) ≈ γ × 1.3× 10−20(1+ z)4 s−1. However, the instability-induced

energy-loss rate significantly depends on the nonlinear evolution of the instability (Chang
et al., 2014; Miniati and Elyiv, 2013; Schlickeiser et al., 2013; Vafin et al., 2019).

In this study we focus on the instability feedback, therefore we will consider only the
linear regime of the instability and neglect the restrictions on the growth of the waves due to
non-linear interactions. In the next section, we briefly introduce the linear evolution equation
of unstable waves and levels of the unstable wave’s energy density where the nonlinear
processes become relevant.

5.3.2 Evolution of the Wave Spectrum

The quasi-linear evolution of the wave spectrum for homogeneous plasma is governed by the
following equation

∂W (k)
∂ t

= 2(ωi(k)+ωc(k))W (k), (5.35)

where W (k) is the spectral energy density of the electric field oscillations, ωi(k) is the linear
growth rate as defined in section 5.3.1, and ωc is the collisional damping rate (Tigik et al.,
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Fig. 5.5 Normalized linear growth rate using the realistic beam distribution function. White
areas denote stable modes.

2019),

ωc(k) =−ωp
g

6π3/2
1

(1+3k2λ 2
D)

3 . (5.36)

Here g = (neλ 3
D)

−1 is the plasma parameter, λD = 6.9 cm
√

Te/K
ne/cm−3 is the Debye length,

ne = 10−7(1+ z)3cm−3 is the density of IGM electrons, and Te = 104K is their temperature.
We start integrating equation 5.35 at the very low thermal fluctuations level.

The collisional damping rate given by equation 5.36 is approximately 20 times smaller
than the approximation employed in other studies (i.e. Miniati and Elyiv (2013); Perry
and Lyubarsky (2021); Vafin et al. (2019)), which did not account for the microscopic
wave-particle interactions. Those interactions were included under the generalized weak
turbulence theory in Yoon et al. (2016), deriving an accurate general kinetic formulation of
the collisional damping rate of the electrostatic plasma waves, that was used in Tigik et al.
(2019) to find the collisional damping rate (equation 5.36).

The total electric field energy density is calculated by

Wtot = 2π

∫
dk⊥k⊥

∫
dk||W (k⊥,k||). (5.37)
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Accounting for the energy equipartition between kinetic electrostatic fluctuations, the energy
loss rate of the beam due to the growth of the electrostatic waves at time t is given by (Vafin
et al., 2018)

dUb

dt
(t) =−2

dWtot

dt
(t)

=−8π

∫
dk⊥k⊥

∫
dk||W (k⊥,k||, t)ωi(k⊥,k||, t),

(5.38)

where the total beam energy density is defined as

Ub = 2π

∫
d pp2

∫
dθ sinθmec2

γ f (p,θ). (5.39)

In the previous section, we found that the modes with the maximum growth, 10−6 <

ck⊥/ωp < 1, grow at the same rate (see figure 5.5), maintaining a similar spectral amplitude.
However, the energy density in those modes is proportional to their wave number volume
element, 2πk⊥∆k⊥∆k|| (equation 5.37). Therefore, we can focus on the quasi-parallel and
oblique modes, 10−3 < ck⊥/ωp < 1, since they dominate the energy density of the unstable
mode spectrum. We can also neglect inhomogeneity of the background plasma since it is
relevant only for the strictly parallel modes (Perry and Lyubarsky, 2021; Shalaby et al.,
2020).

The amplitude of the unstable modes grows exponentially until their wave intensity is
high enough to trigger nonlinear processes. One of the main non-linear processes is the
modulation instability that moves wave energy from resonant to non-resonant modes. This
process operates when the total electric field energy density hits the threshold of around
(kλD)

2neTe (Miniati and Elyiv, 2013), resulting in the saturation of the resonant unstable
mode at around 10−3 of the total beam energy we consider here.

Another non-linear process is non-linear Landau damping, where the non-linear scattering
of the unstable waves on the background plasma ions results in severe damping of the resonant
modes. Non-linear Landau damping becomes effective when the total electric field energy
density reaches around 10−2 of that of the beam (Chang et al., 2014; Vafin et al., 2019).

The impact of these non-linear interactions is still uncertain (Chang et al., 2014; Miniati
and Elyiv, 2013; Schlickeiser et al., 2012; Vafin et al., 2019). The numerical noise in
simulations (such as PIC) is too high, and the numerical growth rate is too small, for a reliable
assessment, on account of the very small beam density. Upscaling of the beam density and
downscaling the beam Lorentz factor is possible, but the results of those simulations are
difficult to scale back to the realistic parameters (Rafighi et al., 2017; Sironi and Giannios,
2014).
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In this work, we focus on the nonlinear feedback of the instability on the beam and so
we consider only the linear phase of the instability growth. We discuss in section 5.4 that
under the instability feedback on the beam, the total electric field energy density stays always
below the non-linear thresholds for the beam density we consider. In the next section, we
look at the Fokker-Planck diffusion equation that describes the feedback of the electrostatic
waves on the beam during the quasilinear regime.

5.3.3 Fokker-Planck Diffusion Equation for the Pair Beam

The quasilinear regime is applicable when the total wave energy density is much smaller than
that of the plasma. In this regime, the feedback of the electrostatic unstable waves on the
beam is governed by the following Fokker-Planck diffusion equation (Brejzman and Ryutov,
1974)

∂ f (p,θ)
∂ t

=
1

p2θ

∂

∂θ

(
θDθθ

∂ f
∂θ

)
+

1
pθ

∂

∂θ

(
θDθ p

∂ f
∂ p

)
+

1
p2

∂

∂ p

(
pDpθ

∂ f
∂θ

)
+

1
p2

∂

∂ p

(
p2Dpp

∂ f
∂ p

)
,

(5.40)

where the diffusion coefficients are defined by the following resonance integrals (Rudakov,
1971)

Di j(p) = πe2
∫

d3kW (k)
kik j

k2 δ (k ·v−ωp), (5.41)

where the electric charge, e, is given in cgs units. The pair-beam distribution function, f , is
given in spherical coordinates (p,θ ,ϕ), and so is the wave-vector k (k,θ ′,ϕ ′). The angles
θ and θ ′ are defined with respect to the beam propagation direction (z− axis). Due to the
azimuthal symmetry of the pair-beam distribution function, we can set ϕ = 0 and integrate
over ϕ ′, yielding (see appendix B.3)

Dpp

Dpθ

Dθθ

=
πmeω2

p

ne

∫
∞

ωp/c
k2dk

∫ cosθ ′
2

cosθ ′
1

d cosθ
′W (k)

kvb

× 1√
(cosθ ′− cosθ ′

1)(cosθ ′
2 − cosθ ′)


1
ξ

ξ 2

 ,

(5.42)

where

ξ =
cosθ

ωp
kvb

− cosθ ′

sinθ
, (5.43)
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Fig. 5.6 The rate of change of the beam distribution for the largest three terms of the RHS
of the Fokker-Planck equation 5.40 for a given wave spectrum generated after around 20
growth times, 20ω

−1
i,max. We see here that the diffusion θθ significantly outpaces the diffusion

θ p and pθ . Solid lines are negative rates, where particles get removed from those angles,
and dash-doted lines are positive rates, where particles are increased at those angles. Note
that this is only a snapshot of a given wave spectrum for the purpose of comparison of the
different terms, in the actual feedback simulation the exponential wave growth is coupled
time-dependently with the beam diffusion.

and vb ≃ c(1− 1
2γ2 ) is the particle speed for Lorentz factor γ . The boundaries of the cosθ ′

integration are fixed by the resonance condition

cosθ
′
1,2 =

ωp

kvb

cosθ ± sinθ

√(
kvb

ωp

)2

−1

 . (5.44)

The integrands are largest at the peak of the wave spectrum, therefore a proper numerical
resolution of the spectrum is necessary when calculating the diffusion coefficients. We
have changed the integration variables in section 5.1.2 arriving at the coordinates (k⊥,θ R)

with θ R =
(

ck||
ωp

−1
)
/
(

ck⊥
ωp

)
, for which the peak of the unstable modes is numerically well

resolved and the diffusion coefficients are well defined by equation 5.19. We also found that
the Lorentz factor, γ , dependence of the diffusion coefficients is negligible compared to the
beam angle, θ .

In the next section, we describe the numerical setup of our study of the instability feedback
and present our results.
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Fig. 5.7 The angular spread for different Lorentz factors of the beam as a function of time
during the angular diffusion feedback simulation presented in section 5.4.1.

5.4 Numerical Results

We have calculated the rate of change for every term on the right-hand side of the Fokker-
Planck equation 5.40, using the diffusion coefficients of a wave spectrum generated after
around 20 growth times, 20ω

−1
i,max, of the growth rate presented in section 5.3.1. We represent

those rates by the following notion, τ
−1
i j = 1

f

(
∂ f
∂ t

)
i j

, where the indices i and j loop over θ

and p with the correspond terms on the RHS of equation 5.40.
We found that the diffusion term Dθθ exceeds the other terms by orders of magnitude

in the phase-space region containing the bulk of the beam particles. We see this clearly in
figure 5.6 where we plotted the highest three rates for beam Lorentz factors, γ = 106 and 107.
Evaluating the maximum rate across the entire parameter space for every term, we found the
following ratio between the different terms: θθ : θ p : pθ : pp ≈ 1 : 10−3 : 10−5 : 10−8.

Given this result, we initially neglect all the subdominant terms and in section 5.4.1
consider only the diffusion term Dθθ . We will check the validity of this approximation in
section 5.4.2 as we analyse the effect of the subdominant terms as the θθ diffusion modifies
the beam. We also analyse the dependence of our results on the beam parameters in section
5.4.3. Finally, we add the continuous pair production to our simulation setup in section 5.4.4.
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Fig. 5.8 Evolution of the linear growth rate of the instability for a fixed perpendicular wave
number during the angular diffusion feedback simulation presented in section 5.4.1. The
black dashed line represents the collisional damping rate. Legend values are common
logarithms of time in seconds. Throughout the simulation, we observed that the linear growth
rate has maintained its initial profile with perpendicular wave numbers as in figure 5.5.
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5.4.1 Simulation of the θθ Angular Diffusion Feedback

Having established that Dθθ initially dominates over the other diffusion terms by orders of
magnitudes, we perform here a numerical simulation of instability feedback including only
this term. We introduce the simulation setup in section 5.4.1 and present the results in section
5.4.1.

Simulation Setup

The numerical simulation of the beam-plasma system only includes the first term on the
right-hand side of equation 5.40

∂ f (p,θ)
∂ t

=
1

p2θ

∂

∂θ

(
θDθθ

∂ f (p,θ)
∂θ

)
, (5.45)

coupled time-dependently with the waves’ spectral evolution equation 5.35. The linear
growth rate of the instability (equation 5.32) and the diffusion coefficients (equation 5.42)
involve integration over the beam distribution function and the wave spectrum, respectively.

We solve equation 5.45 using the Crank–Nicolson scheme along with the FTCS scheme
for the wave equation, equation 5.35. We have demonstrated the simulation steps in section
5.1.3. We used a dynamical time step of ω

−1
i,max as the default time step with an upper limit

set by the fastest rate of change of the distribution. We tested this by using time steps that
are 10 times smaller. To properly resolve the narrow wave spectrum we use a logarithmic
grid in the coordinates (k⊥,θ R) where θ R =

(
ck||
ωp

−1
)
/
(

ck⊥
ωp

)
. We verified convergence in

our grid resolution for both the wave spectrum and the beam distribution. The initial beam
distribution is as described in section 5.2, and the initial wave energy density corresponds to
the fluctuation level (Vafin et al., 2019).

Results

We found that the instability feedback severely increased the beam’s angular spread. This
broadening strongly depends on the Lorentz factor of the beam particles. In figure 5.7, we
show the angular spread for different beam Lorentz factors. We see that particles with larger
Lorentz factors get scattered earlier since those particles are in resonance with faster-growing
wave modes, and so the scattering feedback affects them earlier.

The angular spreading of the beam immediately shifts the resonant wave numbers. In
figure 5.8, we see the reduction of the growth rate for the parallel wave numbers during
the simulation time for a fixed perpendicular wave number of 0.1. This reduction starts at
the fastest growing modes as they quickly scatter their resonant particles, and with time it
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Fig. 5.9 The time evolution of the wave spectrum for fixed perpendicular wave number for the
angular diffusion feedback simulation presented in section 5.4.1. Here W ≡ dW

c
ωp d ck⊥

ωp d
(

ck||
ωp −1

)
in unites of eV cm−3. Legend values are common logarithms of time in seconds.
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Fig. 5.10 The Dθθ for γ = 106 as a function of time in the angular diffusion feedback
simulation presented in section 5.4.1. Legend values are common logarithms of time in
seconds.

extends to slower growing modes at higher parallel wave numbers. We found that the initial
profile of the linear growth with respect to the perpendicular wave numbers, as shown in
figure 5.5, doesn’t change during the time evolution.

The resulting wave spectrum of the time-dependent linear growth rate is shown in figure
5.9. In the beginning, the fastest-growing modes form a spectral peak. Once the beam widens,
the slower modes at higher parallel wave numbers start forming a second peak until the
wave’s intensity is sufficient to kick the beam particles to higher angles. The process keeps
repeating until the linear growth rate becomes less than or comparable to the collisional
damping rate (presented by the dashed black line in figure 5.8). By the time we stop the
simulation at 5×1012 seconds, all modes are collisionally damped.

In figure 5.10, we show the diffusion coefficient, Dθθ , at various times. The variation of
the diffusion coefficient with beam angle, θ , closely resembles that of the wave spectrum
with parallel wave numbers, as represented in figure 5.9. This is due to the resonance
relation between the beam angle and the parallel wave numbers θ =

(
ck||
ωp

−1
)
/
(

ck⊥
ωp

)
in

the regime
(

ck⊥
ωp

)2
≫
(

ck||
ωp

−1
)

. The emergence of the final prominent peak in the diffusion

coefficient profile, occurring at angular values of approximately 10−5 radians, causes the
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observed increase in the angular spread rate after 7× 1011 seconds, as seen in figure 5.7.
We also see that around this time pairs with different Lorentz factors react to the same

resonant unstable modes, because in the regime
(

ck⊥
ωp

)2
≫
(

ck||
ωp

−1
)

waves with a certain
parallel wave number are resonant with the beam particles at a certain angle, whatever their
momentum.

We see in figure 5.7 that by the time the instability has saturated, the angular spread of
pairs with Lorentz factor 106 has increased by around two orders of magnitudes, much more
than the factor of ten reported by Perry and Lyubarsky (2021). The main reasons for this
higher spread are the smaller collisional damping rate and the higher beam density we used.

We found that during the entire simulation time, the wave energy density never exceeded
10−3 of the beam energy density. This level of the wave intensity is lower than that needed for
efficient operation of nonlinear Landau damping and the Modulation instability (Chang et al.,
2014; Miniati and Elyiv, 2013; Vafin et al., 2019). Therefore, the effect of these non-linear
processes on the instability development might be minimal compared to that of the diffusive
feedback on the beam.

We also calculated the total energy transferred from the beam to the waves by integrating
the energy loss rate of the beam given in equation 5.38 over time. The result is given by
the black dashed line in figure 5.11. We see that the beam lost less than 1% of its total
initial energy by the time the instability development was saturated by the widening feedback.
Those results suggest that the feedback widening severely limits the energy transfer from
the beam to the waves. We explore whether this situation changes as we use different beam
densities in section 5.4.3.

Up to here, we only included the initially dominant term Dθθ of the right-hand side of
equation 5.40. In the next section, we analyse the feedback of the other subdominant terms
as the dominant θθ diffusion widens the pair beam.

5.4.2 2D Analysis of the Diffusion Equation

We analyse here the effect of the subdominant terms as the beam widens, using the time-
dependent beam distribution that we numerically derived and discussed in the previous
section.

For the momentum diffusion of the beam (third and fourth terms on the RHS of equation
5.40), we can calculate the energy loss or gain rate of the beam by inserting the corresponding
time derivative of the beam distribution equation 5.40 in the total rate of change of the beam
energy. After integrating by parts we get the following relation for pθ diffusion
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Fig. 5.11 The accumulated change in the beam energy during the angular diffusion feedback
simulation presented in section 5.4.1. The black dashed line (∆W ) represents the beam energy
fraction going into unstable wave growth. The dashed cyan line (∆pθ ) and the dashed red line
(∆pp) represent the fraction of the beam energy loss and gain due to the momentum diffusion
by the pθ and the pp terms, respectively.
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Fig. 5.12 The logarithm of the ratio of Iθ p (equation 5.49) and Iθθ (equation 5.48). The
diffusion θ p dominates over the term (θθ ) in the orange and red areas with values higher
than zero, while it contributes less than 10% in the dark blue area. The drop in the ratio
just before the rim at 1012 seconds is due to the increase in the widening as a result of wave
growth outside the initial resonance region. After 1012 seconds, the collisional damping
effectively damps the waves, and the impact of both terms declines.
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dUb

dt

∣∣∣
pθ
(t) = 2πmec2

∫
dθθ

∫
d pp2

γ
d f
dt

∣∣∣
pθ
(p,θ , t)

=−2πc
∫

dθθ

∫
d ppDpθ

∂ f
∂θ

(p,θ , t),
(5.46)

and the following for pp diffusion

dUb

dt

∣∣∣
pp
(t) =−2πc

∫
dθθ

∫
d pp2Dpp

∂ f
∂ p

(p,θ , t). (5.47)

Looking at the overall sign of equation 5.46, we see that the diffusion pθ involves a
global energy loss of the beam since Dpθ and the angular derivative are always negative. We
also found that the dominant feedback of the diffusion pp is an energy gain of the beam, as
Dpp is always positive and the beam distribution function declines for γ ≳ 105 (see figure
D.1).

Integrating equation 5.46 and equation 5.47 over the simulation time and dividing by the
total beam initial energy, we see in figure 5.11 the accumulated fraction of the beam energy
lost and gained. We observe that pθ diffusion could eliminate only around 0.1% of the beam
total energy by the end of the simulation whereas pp diffusion increases it by a negligible
fraction. Therefore, it is evident that the cumulative effect of the diffusive momentum flux
on the beam is insignificant compared to the scattering.

Now, we proceed to the analysis of the second term on the RHS of equation 5.40, θ p
diffusion. This diffusion involves angular flux as the θθ diffusion, but it can result in both the
narrowing and widening of the beam depending on the beam momentum gradient. Pairs with
negative momentum gradient, γ > 105, experience narrowing whereas the ones with positive
momentum gradient, γ < 105, experience a widening. In figure 5.12, we have compared the
normalized angular integral of the absolute rate of change of the θθ diffusion for a certain
beam Lorentz factor

Iθθ =
∫

d cosθ

∣∣∣∣d f
dt

∣∣∣
θθ

∣∣∣∣= ∫ d cosθ

∣∣∣∣ 1
p2θ

∂

∂θ

(
θDθθ

∂ f
∂θ

)∣∣∣∣ , (5.48)

with that one of the θ p diffusion

Iθ p =
∫

d cosθ

∣∣∣∣d f
dt

∣∣∣
θ p

∣∣∣∣= ∫ d cosθ

∣∣∣∣ 1
pθ

∂

∂θ

(
θDθ p

∂ f
∂ p

)∣∣∣∣ . (5.49)

It is noticeable in figure 5.12 that the ratio of Iθ p and Iθθ increases gradually until it
drops after 7×1011 s. The reason for the increase is that the diffusive flux of θθ decreases
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Fig. 5.13 The accumulated fraction of the beam energy lost as a function of time due to the
wave growth during the angular diffusion simulations feedback with different values of the
beam density. All the values are in units of 10−22 cm−3.

as the beam profile flattens, while the diffusive flux of θ p remains relatively constant as the
momentum gradients are not impacted by the beam broadening. The drop after 7× 1011

seconds is due to the increase of diffusion θθ by the accumulated wave density outside the
initial resonance region that we discussed in the previous section.

In figure 5.12 we see that the θ p diffusion becomes dominant for Lorentz factors less
than 106 at times much earlier than their inverse Compton cooling time (≳ 1013 s). For these
particles including this diffusion is necessary. However, there is a minimal impact of the
θ p diffusion on the pairs that are capable of giving IC emission in the detectable GeV band
(Lorentz factors of 106 or slightly higher). This indicates that θ p diffusion might not impact
the GeV-scale cascade emission as strongly as the θθ diffusion does.

5.4.3 Parameters Dependence

In the simulation discussed in section 5.4.1, we used a fiducial pair beam density at a distance
of 50 Mpc from the blazar, 3×10−22cm−3 (Vafin et al., 2018). However, the beam density
changes under different conditions, such as varying the distance from the source, changing
the source’s luminosity, or using different EBL models in the calculations. Here we vary
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Fig. 5.14 The total energy density contained in the electric fields with time during the angular
diffusion simulations feedback with different values of the beam density. The total energy
density starts to decrease around 5× 1011 seconds due to the decay of the waves by the
collisional damping.

the beam density using the same setup as in section 5.4.1 and investigate its impact on our
results.

In figure 5.13, we see the fraction of the beam energy lost by the instability for different
beam densities. As the beam density is increased, the instability develops earlier and takes
more energy from the beam. However, the beam lost only 2% even for a very high beam
density, 8× 10−21 cm−3. Therefore, the fundamental physical behaviour of the system
remains consistent, the beam experiences expansion with a negligible energy loss of its initial
energy as the instability is saturated by the beam expansion.

In figure 5.14, we plot the time evolution of the total electric field energy density, equation
5.37, for different beam densities. We noticed that the wave intensity during the simulations
with beam density higher than 10−21cm−3 has exceeded the threshold for the non-linear
modulation instability that is around 10−3. We didn’t include any of the wave spectrum
non-linear processes in our calculations. Those processes will impose further restrictions on
the growth of the unstable modes.

We observed that the angular spread increased by a factor of 1.5 when the beam density
was inflated by a factor of three (see table 5.1). This scaling can be attributed to the fact
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Table 5.1 The angular spread,∆θF , for different beam Lorentz factors, γ , at the end time,
5×1012 seconds, of the θθ diffusion simulation presented in section 5.4.1 with different
beam densities, nb. We see here clearly that the angular spread increased by a factor of 1.5
when the beam density was inflated by a factor of three.

γ = 105

nb[10−22cm−3] ∆θF [rad] Ratio
3 2.26 ×10−4

1.53
9 3.46 ×10−4

1.51
27 5.21 ×10−4

1.52
81 7.91 ×10−4

γ = 106

nb[10−22cm−3] ∆θF [rad] Ratio
3 8.96 ×10−5

1.52
9 1.36 ×10−4

1.49
27 2.03 ×10−4

1.5
81 3.00 ×10−4

γ = 107

nb[10−22cm−3] ∆θF [rad] Ratio
3 3.63 ×10−5

1.51
9 5.48 ×10−5

1.48
27 8.10 ×10−5

1.47
81 1.19 ×10−4

that the linear growth rate is linearly proportional to the pair beam density and inversely
proportional to the square of the beam angular spread, ωi ∝

nb
∆θ 2 . Therefore, increasing

the beam density by a factor C requires an increase in the angular spread by a factor of
approximately

√
C to maintain the reduction of the linear growth rate to the collisional

damping rate at the time when the instability has saturated.
In the remainder of this section, we will discuss the influence of the cut-off energy in

the intrinsic gamma-ray spectrum on the results of section 5.4.1. Vafin et al. (2018) used an
intrinsic power-law gamma-ray spectrum with a step function cut-off at the energy of 50 TeV.
However, in the end, they used the attenuated gamma-ray spectrum at a distance of 50 Mpc
to calculate the accumulated pair beam spectrum over a certain path length. At a distance
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Fig. 5.15 Evolution of the linear growth rate of the instability for a fixed perpendicular
wave number during the simulation with continuous pair injection presented in section 5.4.4.
The black dashed line represents the collisional damping rate. Legend values are common
logarithms of time in seconds. We see the linear growth rate eventually balance the collisional
damping rate across the wave spectrum after the time 1013 seconds. We see also that the
resonance region keeps expanding due to the ongoing expansion of the beam particles to
higher opening angles.

of 50 Mpc from the blazar, the majority of gamma rays with energies higher than 10 TeV
have already been absorbed. The mean free path for a gamma-ray with energy Eγ for pair
production with the EBL photons is given by

λγγ ≈ 80(1+ z)−ξ

(
Eγ

10TeV

)−1

Mpc, (5.50)

where ξ = 4.5 and ξ = 0 for redshifts of z ≤ 1 and z > 1, respectively (Kneiske, T. M.
et al., 2004; Neronov and Semikoz, 2009). Therefore, any cut-off energy above the 10-TeV
threshold will have only a minimal impact.
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Fig. 5.16 The wave spectrum as a function of time during the injection simulation presented
in section 5.4.4. Legend values are common logarithms of time in seconds. We see the
steady-state diffusion coefficients emerging after the time 1013 s.

5.4.4 Simulation with Injection

In section 5.4.1, we found that the instability growth is severely reduced by beam broadening
to the point that it cannot be isolated from the production and the cooling rates of the beam.
In this section, we include the pair creation rate in the evolution equation of the beam.

The beam distribution found in Vafin et al. (2018) was calculated as the accumulation of
pairs over the path length of 7.7×1012 light-seconds, using a constant production rate Qee.
We added this production rate to the beam evolution equation along with the dominant θθ

diffusion term,

∂ f (p,θ)
∂ t

=
1

p2θ

∂

∂θ

(
θDθθ

∂ f
∂θ

)
+Qee. (5.51)

Using the same simulation setup as described in section 5.4.1, we numerically solved
the coupled system of the evolution equations (equations 5.51 and 5.35). For times much
less than 1013 seconds, we found essentially the same behaviour of the system as without
injection. After 1013 s, a new quasi-steady state of the beam distribution and the waves
spectrum emerges.
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Fig. 5.17 The time evolution of Dθθ for γ = 106 during the simulation with continuous
pair injection presented in section 5.4.4. Legend values are common logarithms of time in
seconds.

The creation of highly focused pairs with beam angles of the order γ−1 increases the
linear growth rate at wave numbers in resonance with these particles. Ultimately, this leads
to a quasi-equilibrium of the wave spectrum and the beam distribution. On the wave side,
the linear growth rate and the collisional damping rate balance across the resonant wave
numbers (see figure 5.15), resulting in a steady-state wave spectrum as shown in figure 5.16
and a steady-state diffusion coefficients as well as shown in figure 5.17. On the beam side,
the diffusive scattering compensates the pair production, keeping the beam expanding as
shown in the angular profile of pairs with a Lorentz factor of 106 in figure 5.18. This ongoing
expansion of the beam extends the unstable modes to higher parallel wave numbers as shown
in figure 5.16

We have stopped the simulation after 5×1013 s, which corresponds to the IC cooling
time of pairs with a Lorentz factor of 106. By this time the pairs have experienced a diffusive
deflection up to angles of around 4×10−4 radians. This deflection results in an arrival time
delay of the secondary GeV-band photons emitted by those pairs (Neronov and Semikoz,
2009). The arrival time delay of secondary gamma rays emitted by pairs that have undergone
a deflection by an angle of ∆θ from the primary gamma-ray propagation direction is given
by the following formula
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Fig. 5.18 The angular profile of pairs with Lorentz factor of 106 during the injection simula-
tion presented in section 5.4.4. Legend values are common logarithms of time in seconds. We
see that around the IC cooling time of 5×1013s for those pairs, they have been deflected by
around 4×10−4 radians which yields a time delay of around 10 years for the GeV cascade.



5.5 Summary 91

∆tdelay ≃
∆θ 2

2
DcDb −D2

c
cDb

, (5.52)

where Dc is the distance between the emitting pairs and the blazar and Db is the distance
between the blazar and the Earth. Given that for our simulation setup Dc = 50 Mpc and
Db = 720 Mpc for the fiducial z = 0.15, the formula reduces to ∆tdelay = ∆θ 2 × 7.6× 107

years. Hence, the deflection of pairs with Lorentz factor of 106 by 4×10−4 radians implies a
time delay of around 10 years for the GeV-scale cascade emission produced at the distance
50 Mpc from the source. Calculating the deflection at different distances from the source is
needed to find the impact on the observed cascade emission. This is beyond the scope of this
paper and will be covered in future works.

As of the previous simulation in section 5.4.1, we also found here that the wave energy
density never exceeded 10−3 of the total beam energy density, keeping the wave intensity
at levels lower than what is needed for the non-linear processes to operate efficiently, again
justifying their neglect.

It is crucial to emphasize that the calculations presented in this paper have not incorporated
IC cooling. The inclusion of the IC cooling is important for a comprehensive understanding
of the associated physical implications on the arrival time distribution of GeV-scale cascade
emissions, and it is part of our future research plans.

5.5 Summary

We solved the Fokker-Planck diffusion equation for the beam distribution function, coupled
with the linear evolution equation of the plasma-wave spectrum. As the initial condition for
the beam, we used the realistic two-dimensional beam distribution computed by Vafin et al.
(2018) for a distance of 50 Mpc from the blazar. Initially, the dominant feedback is angular
broadening of the beam, stemming from the scattering of the beam particles by the excited
waves. As the instability widens the beam, the instability growth rate is severely reduced,
leading at the end to a negligible energy transfer from the beam to the plasma waves. These
findings align with a recent study on instability feedback (Perry and Lyubarsky, 2021).

Using the 2D time-dependent beam profile evolving by the predominant angular diffusion,
we found that momentum diffusion does not have any significant impact on the beam.
However, we found that another angular diffusion term, which is initially negligible, might
become relevant and may narrow the beam particles with Lorentz factors between 105 and 106.
Therefore, including this term in the feedback calculations is necessary for a comprehensive
understanding of the instability impact on those pairs. However, the GeV-scale cascade is
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emitted by pairs with Lorentz factors of 106 or slightly higher, and so the impact of this term
on the GeV-scale secondary cascade might be limited.

In our analysis, we neglected non-linear wave interactions in the evolution of the wave
spectrum. For beam density lower than 10−21 cm−3, we found that the cumulative energy
density of the electric field fluctuations remains below the critical thresholds required to
trigger the significant impacts of the non-linear processes, such as non-linear Landau damping
or the modulation instability. However, for higher beam densities the wave energy density
exceeded the threshold for the non-linear modulation instability. Those non-linear processes
would impose further restrictions on the growth of the unstable modes.

Lastly, we have included the continuous TeV pairs production in the Fokker-Planck
diffusion equation. Unlike the previous simulation discussed in section 5.4.1, in this particular
configuration, the unstable modes do not decay after the beam has expanded but saturate at a
finite amplitude. The wave spectrum reaches a quasi-equilibrium across the wave numbers
resonant with the beam injection angles. The beam particles experience persistent scattering
under the diffusive feedback of this steady-state wave spectrum. Then, beam particles with
Lorentz factors of 106 scatter up to angles of around 4×10−4 radians within their IC cooling
time. This results in a time delay of around 10 years in the arrival of the secondary GeV-
scale cascade, assuming pairs at a distance of 50 Mpc from a blazar that is 720 Mpc away
from Earth. We expect that this estimate depends on the beam density that varies along the
propagation distance and with source luminosity.

In the end, calculating the broadening at more points along the beam propagation is
needed to understand the impact of the instability broadening on the GeV-scale cascade
emission. Also, it’s essential to include the inverse Compton cooling in the beam distribution
evolution equation to understand the long-term time evolution of the beam-wave system.



Chapter 6

Conclusions and Outlook

Very high-energy gamma rays emitted by blazars produce relativistic pair beams in the
intergalactic medium (IGM) after interacting with the extragalactic background light (EBL).
Those pairs are expected to produce a detectable inverse Compton cascade in the GeV
energy band that is missing in the observations of the gamma-ray telescope Fermi-LAT.
The suppression of this secondary cascade implies either the deflection of the pair beam
by intergalactic magnetic fields (IGMFs) (Neronov and Vovk, 2010) or, alternatively, an
energy loss of the beam due to the beam-plasma instability (Broderick et al., 2012). The
possible role of the electrostatic instability of blazar-induced pair beams has been studied
both analytically and numerically but no definite answer has been reached in the literature.

It’s evident that the linear growth rate of the instability for narrow realistic blazar-induced
beams, ∆θ ∼ γ−1, is much faster than the inverse Compton (IC) cooling rate on the CMB
photons (Vafin et al., 2018). What is not clear is whether the non-linear evolution of the
instability succeeds at draining a significant fraction of the beam energy by the IC cooling
time (Chang et al., 2014; Miniati and Elyiv, 2013; Vafin et al., 2019). We have reviewed
and investigated this problem in the sections 3.5 and 3.6. We found that the modulation
instability is a faster saturation process than the nonlinear Landau damping. Combining
these two non-linear processes in a simplified model we found in section 3.6 that the energy
density of the resonant plasma waves saturates at the threshold of the Modulation instability
draining the beam energy faster than the IC cooling.

Assuming that the non-linear saturation of the instability succeeds at draining the beam
energy before the IC scattering on the CMB, there are still two significant effects that have
not been included in this picture. The first one is the magnetization of the intergalactic
medium and the second one is the instability feedback on the beam. In this thesis, we have
studied those two effects in detail. In chapter 4, and separately published as (Alawashra and
Pohl, 2022), we have investigated the effects of tangled weak IGMFs with small correlation
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lengths on the electrostatic instability. Whereas in chapter 5, and separately published as
(Alawashra and Pohl, 2024), we have simulated the beam-plasma system considering the
feedback of the instability on the pair beam in the quasi-linear regime.

In chapter 4, we have studied the influence of weak IGMFs on the efficient energy loss of
the beam by the instability. We found that tangled weak IGMFs, with correlation lengths
smaller than the pairs’ energy loss lengths, deflect the pair beam particles stochastically
increasing the beam angular spread. The increment of the angular spread decreases the
instability growth rate, which in turn reduces the associated energy loss rate. Considering
the instability energy loss time found in Vafin et al. (2018), We found the values of the
intergalactic magnetic fields strength BIGM and correlation length λB sufficient to suppress
the instability energy loss rate to the level of that one of the IC cooling.

Those values of BIGM-λB that suppress the instability lay at IGMF strengths that are
three orders of magnitude lower than the estimated IGMF strengths needed to suppress the
secondary cascade by ten years of time delay due to the magnetic deflection (Ackermann
et al., 2018). In the region of the BIGM-λB parameter space that suppresses the instability
and that is below the time delay lower limit, neither the beam-plasma instability nor the
intergalactic magnetic field deflection can explain the absence of cascade emission in the
spectra of some TeV blazars, and so this parameter space region can be excluded unless there
is a third mechanism that suppresses the GeV-band cascade.

In conclusion, we can exclude an IGMF strength within the three orders of magnitude
below the limit above which magnetic deflection imposes a significant time delay of the
cascade (ten years). This leaves a conditionally new allowed region for the IGMF that lies
below 10−16 Gauss at λB ≈ 10−8 Mpc, and the constraint on the IGMF strength is tighter
than that for both larger correlation lengths (due to the instability suppression) and smaller
correlation lengths (due to the MHD turbulent decay). The condition for this allowed region
is the instability-efficient energy draining of the beam. Perry and Lyubarsky (2021) argued
otherwise of this condition and that the instability feedback broadens the beam predominantly
with negligible energy loss.

In chapter 5, we have explored the feedback of the instability on a realistic two-dimensional
beam distribution, unlike the simplified one-dimensional distribution used in Perry and
Lyubarsky (2021). The feedback of the instability is described by a Fokker-Planck diffusion
in both beam momentum and angles. Beam narrowing and momentum diffusion were ne-
glected in the one-dimensional treatment of Perry and Lyubarsky (2021) considering only the
initially dominant beam broadening. Our goal was to check the validity of this approximation
using the information from the two-dimensional beam profile evolving under the influence of
the initially dominant broadening feedback.
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We solved the Fokker-Planck beam diffusion equation including the instability dominant
broadening feedback, coupled with the linear evolution of the unstable wave modes. We
found that the angular broadening of the beam, stemming from the scattering of the beam
particles by the unstable waves, severely reduced the instability growth rate leading at the
end to a negligible energy transfer from the beam to the unstable waves. We observed by
the time the instability has saturated, an increase in the beam angular spread by a factor
of a hundred for pairs with Lorentz factor of 106, this is much more than the factor of ten
reported by Perry and Lyubarsky (2021). The main reasons for this higher spread are the
more accurate and smaller collisional damping rate and the higher beam density we used.

We found using the evolving 2D time-dependent beam profile under the predominant
angular diffusion feedback that the instability momentum diffusion is incapable of any
significant impact on the beam. However, we observed that a different angular diffusion term,
initially negligible, may become relevant and lead to the narrowing of the beam particles
with Lorentz factors ranging from 105 to 106. Consequently, incorporating this term into
the feedback calculations becomes essential for a comprehensive comprehension of the
instability’s physical impact on these pairs. However, the emission of a GeV-scale cascade is
expected to be emitted predominantly by pairs with Lorentz factors of 106 or slightly higher,
and thus, the effect of this term on the observable GeV-scale cascade is anticipated to be
limited.

Finally, we have upgraded the beam-plasma quasi-linear simulation by including a source
term of the continuous pairs production in the IGM due to the gamma rays annihilation
with the EBL photons along with the dominant Fokker-Planck diffusion feedback of the
instability. We found that in this case, the unstable modes do not decay completely after
the beam expansion but saturate at a finite amplitude due to the continuous injection of the
pairs with focused angles of γ−1. In this new quasi-steady state, the wave spectrum reaches a
steady state equilibrium across the wave numbers that are resonant with the beam injection
angles. The beam particles experience persistent scattering under the diffusive feedback of
this steady-state wave spectrum.

We found that beam particles with Lorentz factors of 106 scatter up to angles of around
4× 10−4 radians by their IC cooling time. This deflection of the pairs by the instability
scattering feedback would translate into an arrival time delay of the secondary cascade
emission to Earth. We found that the time delay of a GeV-scale secondary cascade emitted
by scattered pairs at a distance of 50 Mpc from a blazar that is 720 Mpc away from Earth is
of the order of 10 years. Many improvements can be made to our calculations for a solid
understanding of the observable effects of this new intrinsic scattering of the cascade by the
instability feedback.
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In our analysis, we simulated the beam-plasma system starting with the accumulated
beam distribution at a distance of 50 Mpc from the blazar (Vafin et al., 2018). A proper
understanding of the observable effects of the instability feedback requires calculating the
broadening of the beam at different points along the distance between the blazar and Earth.
The resulting angular spread would scale in this case with the beam density that varies
along the propagation distance. The beam broadening estimate could also change due to the
evolving momentum profile of the beam along the propagation distance.

Another important improvement would be to include the inverse Compton cooling in
the beam transport equation. Including this term is necessary to understand the long-term
time evolution of the new beam-spectrum quasi-steady state. One also can include the other
initially subdominant angular diffusion θ p term that dominates for pairs with Lorentz factors
less than 106 after the expansion of the beam. This other instability feedback could scatter
those beam particles inward affecting the beam broadening.

In the instability feedback calculations, we have neglected non-linear wave interactions in
the evolution of the wave spectrum. This is valid as long as the energy density of the electric
field fluctuations remains below the critical thresholds required to trigger the significant
impacts of the non-linear processes, such as non-linear Landau damping and modulation
instability. We found that this condition breaks when the beam densities are higher than
10−21 cm−3. Incorporating the non-linear wave interaction terms in the wave evolution
equation would be another improvement of our model. Those non-linear processes would
impose further restrictions on the growth of the unstable modes.

Ultimately, our findings in this thesis suggest that the efficient energy loss of the blazar-
induced pair beam by the instability could be limited by the beam broadening due to weak
IGMFs and due to the instability feedback. This hints that the lack of GeV bumps in the
blazar spectra might not be due to the beam energy loss by the plasma instability. However,
we found that the instability can modify the beam to a new steady state with higher angular
spreads affecting the arrival time of the GeV cascade. Several advancements are yet to
be made to have a comprehensive understanding of the overall impact of this on the GeV
cascade flux, such as adding the IC cooling of the pairs, simulating the beam-plasma system
at different points in the IGM and including the non-linear processes in the wave evolution
equation.
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Appendix A

Beam Angular Distribution

A.1 Beam Distribution Function with IGMF

Consider a magnetic field with a constant magnitude that arbitrarily and abruptly changes
its direction every correlation length, λB, along the beam propagation line. In Cartesian
coordinates with the z axis aligned with the beam, the magnetic-field component in the x− y
plane deflects the beam every λB interval in a different direction. We will include first the
deflection due to the magnetic field component along the x axis then we will generalize to
the x− y plane. At the end we find that the angular distribution function is a Gaussian with
azimuthal symmetry, hence the electrons and positrons distribution functions are equivalent,
and it is sufficient to consider only one species.

At a given correlation-length interval denoted by i, the component of the magnetic field
in the x direction (Bx,i = BIGM sinθ ′ cosϕ ′) deflects the beam positrons along the y direction
with a deflection angle

∆θi(θ
′,ϕ ′) =

λBeBIGM sinθ ′ cosϕ ′

p
, (A.1)

where p is the momentum of the beam particle and e is the elementary electric charge. ∆θi

is a random variable that depends on the random variables θ ′ and ϕ ′. Since all the possible
magnetic field orientations have the same probability, the mean deflection is

µ =
1

4π

∫
π

0
sinθ

′dθ
′
∫ 2π

0
dϕ

′
∆θi(θ

′,ϕ ′)P(∆θi(θ
′,ϕ ′))

=
λBeBIGM

4π p

∫
π

0
dθ

′
∫ 2π

0
dϕ

′ sin2
θ
′ cosϕ

′ = 0,
(A.2)
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and the variance is

σ
2 =

1
4π

(
λBeBIGM

p

)2 ∫ π

0
dθ

′
∫ 2π

0
dϕ

′ sin3
θ
′ cos2

ϕ
′

=
1
3

(
λBeBIGM

p

)2
.

(A.3)

The total deflection of the beam is computed as

∆θ =
n

∑
i=0

∆θi, (A.4)

where n = λIC/λB is the total number of the correlation lengths crossed by the beam during
the its energy loss length (substituted here by the inverse Compton scattering length). Since
n is very large in our case, λIC >> λB, we can use the central limit theorem with n −→ ∞ to
find the distribution function of the total deflection,

fb,θy(θy, p) =
1√

2π nσ
exp

{
−1

2

(
θy√
nσ

)2
}
, −π ≤ θy ≤ π, (A.5)

which is a normal distribution with dispersion
√

nσ . For the magnetic-field component
By = BIGM sinθ ′ cosϕ ′, we get the same distribution for fb,θx(θx, p),

fb,θx(θx, p) =
1√

2π nσ
exp

{
−1

2

(
θx√
nσ

)2
}
, −π ≤ θx ≤ π. (A.6)

Note that by definition n = λIC/λB. Combining the two distributions in equation A.5 and
equation A.6 using the result in appendix A.2 we get the full angular distribution of the pair
beam

fb,θ (θ , p) =
1

∆θ 2
IGMFπ

exp
{
−
(

θ

∆θIGMF

)2
}

; 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, (A.7)

where

∆θIGMF =
eBIGMF

p

√
2
3

λICλB. (A.8)

What we have considered here is a fixed IGMF amplitude. Considering a IGMF with
different amplitudes leads to the same result in terms of the root-mean-square IGMF with a
numerical factor.
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Fig. 5 The two systems of coordinate for the angular discretion; the first one uses spherical
coordinates, (θ ,ϕ), and the second one is involves (θx,θy), where θy is the angle between
the z axis and the projection on the y− z plane and θx is the angle between the z axis and the
projection on the x− z plane.

A.2 Transformation of fx(θx) fy(θy) to f (θ ,ϕ)

Combining the distributions fx(θx) and fy(θy) to the distribution f (θ ,ϕ) by

f (θ ,ϕ)sinθdθdϕ = fx(θx) fy(θy)dθxdθy, (A.9)

where θ and ϕ are the spherical coordinate and θx and θy are defined in figure 5. We rewrite
equation A.9 using the Jacobian determinant

f (θ ,ϕ) = fx(θx(θ ,ϕ)) fy(θy(θ ,ϕ))
1

sinθ
|J(θ ,ϕ)|. (A.10)

The relations between (θx,θy) and (θ ,ϕ) can be found as follows; the Cartesian coor-
dinates of a unit vector with (θ ,ϕ) are x = sinθ cosϕ , y = sinθ sinϕ and z = cosθ , then
using the definitions of θx and θy in figure 5

tanθx =
x
z
= tanθ cosϕ, (A.11)

and
tanθy =

y
z
= tanθ sinϕ. (A.12)
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The Jacobian determinant is given by

|J(θ ,ϕ)|=
∣∣∣∣∂θx

∂θ

∂θy

∂ϕ
− ∂θx

∂ϕ

∂θy

∂θ

∣∣∣∣
=

∣∣∣∣ 4tanθ

4+ sin2
θ tan2 θ sin2 2ϕ

∣∣∣∣≈ | tanθ |,
(A.13)

for a small θ . Putting this in equation A.10 gives

f (θ ,ϕ) = fx(θx(θ ,ϕ)) fy(θy(θ ,ϕ))
| tanθ |
sinθ

≈ fx(θx(θ ,ϕ)) fy(θy(θ ,ϕ)), (A.14)

for a small θ .



Appendix B

Methodology of Fokker-Planck
Simulation

B.1 Expansion for θ1,2

The resonance boundaries for the integration over the beam angle are given by

cosθ1,2 =
ωp

kvb

cosθ
′± sinθ

′

√(
kvb

ωp

)2

−1

 , (B.1)

where vb ≃ c
(

1− 1
2γ2

)
. Dividing and multiplying the expression with kc/ωp gives

cosθ1,2 =
(

ωp

kc

)2 1(
1− 1

2γ2

)
ck||

ωp
± ck⊥

ωp

√(
kvb

ωp

)2

−1

 . (B.2)

Expressing the parallel wave number as k|| =
ωp
c (1+ ε||) gives

(
ωp

kc

)2 1(
1− 1

2γ2

) =
1

1+
(

ck⊥
ωp

)2
+2ε||+ ε2

|| −
1

2γ2

(
1+
(

ck⊥
ωp

)2
+2ε||

) , (B.3)

and √(
kvb

ωp

)2

−1 =

√√√√(ck⊥
ωp

)2

+2ε||+ ε2
|| −

1
γ2

(
1+
(

ck⊥
ωp

)2

+2ε||

)
, (B.4)
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where we neglected the higher order terms of
ε2
||

2γ2 that is always very small. After substituting
equations B.3 and B.4 in equation B.2, we get

cosθ1,2 =

 1

1+
(

ck⊥
ωp

)2
+2ε||+ ε2

|| −
1

2γ2

(
1+
(

ck⊥
ωp

)2
+2ε||

)


×

1+ ε||±
ck⊥
ωp

√√√√(ck⊥
ωp

)2

+2ε||+ ε2
|| −

1
γ2

(
1+
(

ck⊥
ωp

)2

+2ε||

) .

(B.5)

We can see here in equation B.5, that the condition for the beam particles’ speed to

be relevant in the linear growth calculations is,
(

ck⊥
ωp

)2
+2ε|| ≤ 103

2γ2 . Equation B.5 can be
rewritten as

cosθ1,2 =

 1

1+
(

ck⊥
ωp

)2
+2ε||+ ε2

|| −
1

2γ2

(
1+
(

ck⊥
ωp

)2
+2ε||

)


×

1+ ε||±
(

ck⊥
ωp

)2
√√√√√1+

2ε||(
ck⊥
ωp

)2 +
ε2
||(

ck⊥
ωp

)2 −
1

γ2
(

ck⊥
ωp

)2

(
1+
(

ck⊥
ωp

)2

+2ε||

) .

(B.6)

Using the trigonometric identity, sin2 θ

2 = 1−cosθ

2 , we then get

sin2 θ1,2

2
=

 1

2
(

1+
(

ck⊥
ωp

)2
+2ε||+ ε2

|| −
1

2γ2

(
1+
(

ck⊥
ωp

)2
+2ε||

))


×

(
ε||+ ε

2
|| −

1
2γ2

(
1+
(

ck⊥
ωp

)2

+2ε||

)

+

(
ck⊥
ωp

)2

1∓

√√√√√1+
2ε||(
ck⊥
ωp

)2 +
ε2
||(

ck⊥
ωp

)2 −
1

γ2
(

ck⊥
ωp

)2

(
1+
(

ck⊥
ωp

)2

+2ε||

)
)
.

(B.7)
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We see in equation B.6 and equation B.7 that for
(

ck⊥
ωp

)2
≫ 2ε|| and γ2

(
ck⊥
ωp

)2
≫ 1,

the square root becomes very close to 1 making the numerical round-off of the square root
affecting the calculations. We solved this problem by expanding the square root up to the
following orders

√√√√√1+
2ε||(
ck⊥
ωp

)2 +
ε2
||(

ck⊥
ωp

)2 −
1

γ2
(

ck⊥
ωp

)2

(
1+
(

ck⊥
ωp

)2

+2ε||

)
≈ 1+

ε||(
ck⊥
ωp

)2 +
1
2

ε2
||(

ck⊥
ωp

)2

− 1
2

ε2
||(

ck⊥
ωp

)4 −
1
2

ε3
||(

ck⊥
ωp

)4 +
1
2

ε3
||(

ck⊥
ωp

)6 −
1

2γ2
(

ck⊥
ωp

)2

(
1+
(

ck⊥
ωp

)2

+2ε||

)

− 1

8γ4
(

ck⊥
ωp

)4

(
1+
(

ck⊥
ωp

)4

+2
(

ck⊥
ωp

)2
)
+

ε||

2γ2
(

ck⊥
ωp

)4

(
1+2

(
ck⊥
ωp

)2
)
,

(B.8)

for
(

ck⊥
ωp

)2
≥ 200ε|| and γ2

(
ck⊥
ωp

)2
≥ 100.

Substituting the result of equation B.8 in equation B.7, gives

sin2 θ1,2

2
=

 1

2
(

1+
(

ck⊥
ωp

)2
+2ε||+ ε2

|| −
1

2γ2

(
1+
(

ck⊥
ωp

)2
+2ε||

))


×

((
ck⊥
ωp

)2

+ ε||+ ε
2
|| −

1
2γ2

(
1+
(

ck⊥
ωp

)2

+2ε||

)

∓

[(
ck⊥
ωp

)2

+ ε||+
ε2
||
2

1− 1(
ck⊥
ωp

)2


+

ε3
||
2

− 1(
ck⊥
ωp

)2 +
1(

ck⊥
ωp

)4

− 1
2γ2

(
1+
(

ck⊥
ωp

)2

+2ε||

)

− 1

8γ4
(

ck⊥
ωp

)2

(
1+
(

ck⊥
ωp

)4

+2
(

ck⊥
ωp

)2
)
+

ε||

2γ2
(

ck⊥
ωp

)2

(
1+2

(
ck⊥
ωp

)2
)])

,

(B.9)
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yielding the following for the resonance lower angle bound θ1

sin
θ1

2
=

ε||

2
(

ck⊥
ωp

)
(

1+
(

ck⊥
ωp

)2
+2ε||+ ε2

|| −
1

2γ2

(
1+
(

ck⊥
ωp

)2
+2ε||

))1/2

×

(
1+
(

ck⊥
ωp

)2

+ ε||

1− 1(
ck⊥
ωp

)2


+

1
4γ4ε2

||

(
1+
(

ck⊥
ωp

)4

+2
(

ck⊥
ωp

)2
)
− 1

γ2ε||

(
1+2

(
ck⊥
ωp

)2
))1/2

,

(B.10)

and the following for the resonance upper angle bound θ2

sin
θ2

2
=

1(
1+
(

ck⊥
ωp

)2
+2ε||+ ε2

|| −
1

2γ2

(
1+
(

ck⊥
ωp

)2
+2ε||

))1/2

×

((
ck⊥
ωp

)2

+ ε||−
1

2γ2

(
1+
(

ck⊥
ωp

)2

+2ε||

)

+
ε2
||
4

3− 1(
ck⊥
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||
4
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ck⊥
ωp

)2 +
1(

ck⊥
ωp

)4


− 1

16γ4
(
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ωp
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(
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(

ck⊥
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+

ε||

4γ2
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.

(B.11)

We used equations B.10 and B.11 to calculate the values of θ1,2, when
(

ck⊥
ωp

)2
≥ 200ε||

and γ2
(

ck⊥
ωp

)2
≥ 100, and equation B.7 otherwise.
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B.2 Parallel Modes Transformation

The goal of this section is to transform the linear growth rate (equation 5.2) using the

transformation of equation 5.10 for the case of the parallel modes,
(

ck⊥
ωp

)2
≤
(

ck||
ωp

−1
)

.
Using the values of cosθ1,2 given by equation B.5

cosθ1,2 =

 1

1+
(

ck⊥
ωp

)2
+2ε||+ ε2

|| −
1

2γ2

(
1+
(

ck⊥
ωp

)2
+2ε||

)


×

1+ ε||±
ck⊥
ωp

√√√√(ck⊥
ωp

)2

+2ε||+ ε2
|| −

1
γ2

(
1+
(

ck⊥
ωp

)2

+2ε||

) ,

(B.12)

and the approximation cosθ ≈ 1− θ 2

2 that is always valid for the blazar-induced TeV pairs,
we get

cosθ1 − cosθ =

 1

1+
(

ck⊥
ωp

)2
+2ε||+ ε2
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,

(B.13)

and

cosθ − cosθ2 =

 1
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(B.14)
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Where we neglected the quantities
ε2
||

2γ2 , θ 2ε2
|| and ε3

|| that are always negligible. Multiply-
ing equation B.13 and equation B.14 we get the following

(cosθ1 − cosθ)(cosθ − cosθ2) =
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ωp

)2
+2ε||(

1+
(

ck⊥
ωp

)2
+2ε||+ ε2

|| −
1

2γ2

(
1+
(

ck⊥
ωp

)2
+2ε||

))2

×

[
−
(

θ 2

2
+

1
2γ2

)2
(

1+
(

ck⊥
ωp

)2

+2ε||

)

+θ
2

(
ε||+

(
ck⊥
ωp

)2
)
− ε

2
|| +

ε||
γ2

]
.

(B.15)

In the regime of ε|| ∼
(

ck⊥
ωp

)2
and ε|| >>

(
ck⊥
ωp

)2
, one can see that ck⊥

ωp
<< 1 since always

ε|| << 1. We also have 1
2γ2 << 1 for the blazar-induced TeV beams. Using those limits

equation B.15 simplify to

(cosθ1 − cosθ)(cosθ − cosθ2) =−θ 4

4
+θ

2

((
ck⊥
ωp

)2

+ ε||−
1

2γ2

)
−
(

ε||−
1

2γ2

)2

.

(B.16)

Using the transformation of the variable, θ , to the following variable, λ ,

λ =
θ 2

2
((

ck⊥
ωp

)2
+ ε||− 1

2γ2

) , (B.17)

equation B.16 simplify to

(cosθ1 − cosθ)(cosθ − cosθ2) =

((
ck⊥
ωp

)2

+ ε||−
1

2γ2

)2

(λ −λ1)(λ2 −λ ) , (B.18)

where

λ1,2 = 1∓
ck⊥/ωp((

ck⊥
ωp

)2
+ ε||− 1

2γ2

)√(ck⊥
ωp

)2

+2ε||−
1
γ2 . (B.19)
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Using again the transformation B.17, the numerator of equation 5.2 transform as

(
−2 fb(p,θ)sinθ +(cosθ − kvb

ωp
cosθ

′)
∂ fb(p,θ)

∂θ

)
dθ =

((
ck⊥
ωp

)2

+ ε||−
1

2γ2

)−2 fb(p,λ )+

−λ +

1
2γ2 − ε||((

ck⊥
ωp

)2
+ ε||− 1

2γ2

)
 ∂ fb(p,λ )

∂λ

dλ .

(B.20)

Finally combining the results in equation B.18 and equation B.20, equation 5.2 transforms
to

I(p) =
∫

λ2

λ1

dλ
Fλ (p,λ )

[(λ −λ1)(λ2 −λ )]1/2 , (B.21)

where

Fλ (p,λ ) =−2 fb(p,λ )+

−λ +

1
2γ2 − ε||((

ck⊥
ωp

)2
+ ε||− 1

2γ2

)
 ∂ fb(p,λ )

∂λ
, (B.22)

and λ1,2 are given by equation B.19.

B.3 Diffusion Coefficients

The diffusion coefficients are given by

Di j = πe2
∫

d3kW (k)
kik j

k2 δ (k ·vb −ωp), (B.23)

where the unstable wave wavevector k = (k,θ ′,ϕ ′) and the beam particles velocity vb =

(vb ≃ c(1− 1
2γ2 ),θ ,ϕ = 0) are both defined in the spherical coordinates with the beam

propagation axis being the z-axis. Because of the azimuth symmetry, we set ϕ = 0 without
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losing the generality yielding

Di j =πe2
∫

k2dk
∫

d cosθ
′
∫

dϕ
′W (k, t)

kik j

k2

×δ (kc(1− 1
2γ2 )[sinθ

′ sinθ cosϕ
′+ cosθ

′ cosθ ]−ωp).
(B.24)

After transforming the delta function we get

Di j = πe2
∫

k2dk
∫

d cosθ
′
∫

dϕ
′W (k, t)

kik j

k2
δ (ϕ ′−ϕ ′

∗)

kc(1− 1
2γ2 )sinθ ′ sinθ sinϕ ′

∗
, (B.25)

where cosϕ ′
∗ =

ωp/(kc(1− 1
2γ2 ))−cosθ ′ cosθ

sinθ ′ sinθ
.

ki is the projection of wave-vector (k = k sinθ ′ cosϕ ′x̂+ k sinθ ′ sinϕ ′ŷ+ k cosθ ′ẑ) to
the spatial direction i. We have fixed the azimuth angle of the pair beam to zero (ϕ =

0), therefore we have only the beam modulus momentum (p) and the angler direction
θ̂ = cosθ x̂− sinθ ẑ. Based on this we find that kp is the modulus of the wave-vector and
kθ = k · θ̂ = k[sinθ ′ cosθ cosϕ ′− cosθ ′ sinθ ].

Substituting the values of kp and kθ and integrating over ϕ ′, gives
Dpp

Dpθ

Dθθ

=π
meω2

p

ne

∫
∞

ωp/c
k2dk

∫ cosθ ′
2

cosθ ′
1

d cosθ
′

× W (k)
kc(1− 1

2γ2 )
√
(cosθ ′− cosθ ′

1)(cosθ ′
2 − cosθ ′)


1
ξ

ξ 2

 ,

(B.26)

where

ξ = sinθ
′ cosϕ

′
∗ cosθ − cosθ

′ sinθ =

cosθ
ωp

kc(1− 1
2γ2 )

− cosθ ′

sinθ
. (B.27)

and the boundaries of cosθ ′ are fixed by the condition

∣∣cosϕ
′
∗
∣∣= ∣∣∣∣∣ωp/(kc(1− 1

2γ2 ))− cosθ ′ cosθ

sinθ ′ sinθ

∣∣∣∣∣≤ 1, (B.28)
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which gives

cosθ
′
1,2 =

ωp

kc(1− 1
2γ2 )

cosθ ± sinθ

√(
kc
ωp

)2

(1− 1
2γ2 )

2 −1

 . (B.29)

Since we have the calculations for the linear growth rate in the Cartesian coordinates
(k⊥,ε||) where k|| =

ωp
c (1+ ε||), we need to transform the diffusion coefficients integrand

from the coordinates (k,cosθ ′) to the coordinates (k⊥,ε||). Using the Jacobian determinant
|J|= ωp

c
k⊥
k2 in equation B.26, we get

Dpp

Dpθ

Dθθ

=π
meω2

p

nec

∫
dε||

∫
∞

k⊥,1

dk⊥k⊥

×
W (k⊥,ε||)√

θ 2
(

k⊥
ωp/c

)2
+ ε||

[
θ 2 + 1

γ2

]
− ε2

|| −
[

1
2γ2 +

θ 2

2

]2


1
ξ

ξ 2

 ,

(B.30)

where for θ << 1 and ε|| << 1, we can approximate ξ as

ξ =−
ωp

kc
1
θ

[
θ 2

2
+ ε||−

1
2γ2

]
, (B.31)

and we used the relation

(kc/ωp)
√
(cosθ ′− cosθ ′

1)(cosθ ′
2 − cosθ ′) =√

θ 2
(

k⊥
ωp/c

)2

+ ε||

[
θ 2 +

1
γ2

]
− ε2

|| −
[

1
2γ2 +

θ 2

2

]2

.

(B.32)

The resonance boundaries (equation B.29) translated to a lower bound on k⊥ for a given
ε||. The modes with negative ε|| are stable and therefore we are only left with the lower limit
for the positive ε|| that is given by

k⊥,1 =
ωp

c
1
θ

√
ε2
|| +

1
4γ4 +

θ 4

4
−

ε||
γ2 +

1
2

(
θ

γ

)2

− ε||θ 2. (B.33)

In order to have a proper numerical girding over the unstable waves spectrum we trans-
form the coordinates from (k⊥,ε||) to (k⊥,θ R) where θ R =

ε||
ck⊥/ωp

finding the following final
expression for the diffusion coefficients
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Dpp

Dpθ

Dθθ

=π
meω2

p

necθ

∫
R(θ ,γ)

dk⊥k⊥
∫

R(θ ,γ)
dθ

R

× W (k⊥,θ R)√
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(

θ R

θ
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ck⊥/ωp
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(

1
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)2
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− (

ωp
ck⊥

)2
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1
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+ θ

2
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1
ξ

ξ 2

 ,

(B.34)

where

ξ =− 1√
1+2θ R(ck⊥/ωp)+(ck⊥/ωp)2(1+θ R2)

[
θ R

θ

ck⊥
ωp

+
θ

2
− 1

2θγ2

]
, (B.35)

and the resonance region R(θ ,γ) is defined by the following condition

(
ck⊥
ωp

)2(
θ

2 −θ
R2
)
+

ck⊥
ωp

θ
R
[

θ
2 +

1
γ2

]
−
[

1
2γ2 +

θ 2

2

]2

≥ 0. (B.36)



Appendix C

Von Neumann Stability Analysis of the
Diffusion Equation

C.1 FTCS Numerical Scheme

The Fokker–Planck diffusion equation we solve in section 5.1.3 reads

∂ f (p,θ)
∂ t

=
1

p2θ 2
∂

∂ lnθ

(
Dθθ

∂

∂ lnθ
f (p,θ)

)
. (C.1)

Applying the explicit forward time-centered space scheme (FTCS), we get

f t+1
i − f t

i
∆t

=
1

p2θ 2
i (∆ lnθ)2

[
Dt

θθ i+ 1
2
( f t

i+1 − f t
i )−Dt

θθ i− 1
2
( f t

i − f t
i−1)

]
, (C.2)

where we defined f t
i ≡ f (p,θi, t) and Dt+1

θθ i+ 1
2
≡ Dθθ (θi+ 1

2
, t +∆t) with t being the initial

time, ∆t is the time step and θi+ 1
2
= exp

{
(lnθ)i+ 1

2

}
. We compute (lnθ)i+ 1

2
as (lnθ)i+ 1

2
=

((lnθ)i +(lnθ)i+1)/2 with ∆ lnθ as the grid spacing in logarithmic of θ .
Neglecting the numerical errors in the diffusion coefficients and defining the round-off

error in the beam distribution as
ε

t
i = f t

i −Et
i , (C.3)

where Et
i is the exact solution in the absence of the round-off error and f t

i is the numerical
solution. Since both Et

i and f t
i satisfy the equation C.2 then the error also does

ε
t+1
i − ε t

i
∆t

=
1

p2θ 2
i (∆ lnθ)2

[
Dt

θθ i+ 1
2
(ε t

i+1 − ε
t
i )−Dt

θθ i− 1
2
(ε t

i − ε
t
i−1)

]
. (C.4)
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Writing the error as a Fourier sum

ε
t
i ≡ ε(θi, t) = ∑

km

Ekm(t)e
ikmθi, (C.5)

where the time dependence of the error is included in the amplitude of the error Fourier
components Ekm(t). As the equation C.4 is linear, we can pull the sum out and the equation is
satisfied for every Fourier component km. To find the error evolution with time, we substitute
the Fourier modes of the error for every grid point

ε
t
i,km

= Ekm(t)e
ikmθi,

ε
t+1
i,km

= Ekm(t +∆t)eikmθi,

ε
t
i−1,km

= Ekm(t)e
ikm(θi−∆θi),

ε
t
i+1,km

= Ekm(t)e
ikm(θi+∆θi),

(C.6)

in equation C.4, yielding the amplification factor

G =
Ekm(t +∆t)

Ekm(t)
= 1+α(θi)

[
(Dt

θθ i+ 1
2
+Dt

θθ i− 1
2
)(cos(km∆θi)−1)

+ i(Dt
θθ i+ 1

2
−Dt

θθ i− 1
2
)sin(km∆θi)

]
,

(C.7)

where
α(θi) =

∆t
p2θ 2

i (∆ lnθ)2 . (C.8)

Multiplying with the complex conjugate of the amplification factor, G, we get

|G|2 =
[
1+α(θi)(Dt

θθ i+ 1
2
+Dt

θθ i− 1
2
)(cos(km∆θi)−1)

]2

+α
2(θi)(Dt

θθ i+ 1
2
−Dt

θθ i− 1
2
)2 sin2 (km∆θi).

(C.9)

The condition for the numerical stability is that the amplification factor is smaller than one,
|G|2 ≤ 1. If this equality is satisfied when sin(km∆θi) = 1 then it’s satisfied globally, and so
the numerical stability condition reduces to

(Dt2
θθ i+ 1

2
+Dt2

θθ i− 1
2
)

(Dt
θθ i+ 1

2
+Dt

θθ i− 1
2
)

α(θi)≤ 1, (C.10)
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yielding the following condition for numerically stable time step

∆t ≤ min
i

p2
θ

2
i (∆ lnθ)2

(Dt
θθ i+ 1

2
+Dt

θθ i− 1
2
)

(Dt2
θθ i+ 1

2
+Dt2

θθ i− 1
2
)

 . (C.11)

C.2 Crank–Nicolson Numerical Scheme

The semi-implicit Crank–Nicolson scheme of the diffusion equation reads as

f t+1
i − f t

i
∆t

=
1

2p2θ 2
i (∆ lnθ)2

[
Dt

θθ i+ 1
2
( f t

i+1 − f t
i )−Dt

θθ i− 1
2
( f t

i − f t
i−1)

+Dt+1
θθ i+ 1

2
( f t+1

i+1 − f t+1
i )−Dt+1

θθ i− 1
2
( f t+1

i − f t+1
i−1 )

]
.

(C.12)

This case is much more complicated to analyse in its current form, we can simplify the
analysis by considering the case, Dt+1

θθ i+ 1
2
≈ Dt

θθ i+ 1
2
. Applying the Fourier analysis of

the round-off error as in the previous section we get the following relation for the error
amplification factor, G,

L ≡ G−1
G+1

= β (θi)

[
i

4θi
sin(km∆θi)

(
1+

∂ lnDt
θθ i

∂ lnθi

)
− 2

θi∆ lnθ
sin2

(
km∆θi

2

)]
, (C.13)

where

β (θi) =
2∆tDt

θθ i
p2θi∆ lnθ

. (C.14)

Writing L = Re(L)+ i Im(L), where Re(L) is the real part of L and Im(L(θi)) is the
imaginary part of L, we can write the amplification factor as

G =
1+L
1−L

=
1+Re(L)+ i Im(L)
1−Re(L)− i Im(L)

. (C.15)

Multiplying and dividing the amplification factor with the complex conjugate of its denomi-
nator and then multiplying the result with the complex conjugate of the amplification factor
we get

|G|2 =
[
1−Re2(L)− Im2(L)

]2
+4Im2(L)[

(1−Re(L))2 + Im2(L)
]2 . (C.16)
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Applying the numerical condition |G|2 ≤ 1, we get the following

7
4

Re(L)−Re2(L)− Im2(L)≤ 1. (C.17)

As Re(L) is always negative, then we get always something negative on the left-hand side
of the equality and therefore this scheme is always numerically stable. Therefore, we don’t
have any constrain on the choice of ∆t and ∆ lnθ using the Crank-Nicolson scheme.



Appendix D

Beam Parallel Momentum Distribution

We approximated the pair beam parallel momentum distribution function found in Vafin et al.
(2018) with a logarithmic Gaussian at Lorentz factors higher than 6× 106. This replaces
the step-function cut-off with an exponential one. This additional function has continuity in
derivative and value at the transition point with the distribution found in Vafin et al. (2018),
where the resulting distribution function is given by

fγ(γ) =N1

(
γ

γ1

)−b1

exp
{
−
√

γ1

γ

}
Θ

[
(γ −6×103)(6×106 − γ)

]
+N2

(
γ

γ2

)− ln(γ/γ2)
b2

−1

Θ

[
(γ −6×106)(108 − γ)

]
,

(D.1)

where the parameters are summarized in table D.1. We have plotted the pair beam distribution
function in figure D.1.

Table D.1 The parameters for the approximation in equation D.1.

i bi γi Ni

1 1.60 1.58×106 3.00×10−7

2 5.78 1.55×106 1.14×10−7
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Fig. D.1 The parallel momentum distribution of the pair beam that we have used in the study
of chapter 5 as it is given by equation D.1.
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