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Abstract

The proper composition of independently developed components of an embedded real-
time system is complicated due to the fact that besides the functional behavior also the
non-functional properties and in particular the timing have to be compatible. Nowadays
related compatibility problems have to be addressed in a cumbersome integration and
configuration phase at the end of the development process, that in the worst case may
fail. Therefore, a number of formal approaches have been developed, which try to guide
the upfront decomposition of the embedded real-time system into components such that
integration problems related to timing properties can be excluded and that suitable con-
figurations can be found. However, the proposed solutions require a number of strong
assumptions that can be hardly fulfilled or the required analysis does not scale well. In
this paper an approach based on timed automata is represented that can provide the re-
quired guarantees for the later integration without strong assumptions, which are difficult
to match in practice. The approach provides a modular reasoning scheme that permits
to establish the required guarantees for the integration employing only local checks and
therefore scales. It is also possible to determine potential configuration settings by means
of timed game synthesis.
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1 Introduction

The proper composition of independently developed components of an embedded real-time
system is complicated due to the fact that besides the functional behavior also the non-
functional properties and in particular the timing have to be compatible. Nowadays related
compatibility problems have to be addressed in a cumbersome integration and configuration
phase that in the worst case may fail. Therefore, real-time models are employed to find and
check upfront a proper decomposition into components and related interfaces such that as
much as possible problems during the integration can be excluded (cf. [12]).

In particular formal approaches have been developed, which try to support the upfront plan-
ning and checking of the embedded real-time systems such that integration problems at the
non-functional level can be excluded. Any upfront planning and checking of the decomposi-
tion of an embedded real-time system has to be compatible with a number of requirements to
be applicable in practice: (R1) As the architectures for embedded real-time systems can be
rather large and include a huge number of components, the modeling and checking must be
scalable. (R2) To be further appropriate for embedded real-time systems, it must be possible
taking into account that the resources, which can be employed to realize the components,
are limited due to economical reasons. (R3) Moreover, a network of OEMs and suppliers of-
ten develops embedded real-time systems, as in the case of automotive systems. Therefore,
the modeling and checking must be possible without disclosing intellectual properties (IPs)1

that should remain hidden, e.g., in the case they are related to implementation details. (R4)
A reasoning scheme has to be expressive enough such that complex architectures contain-
ing cyclic communication dependencies and mode-dependent component interactions are
supported.

1.1 State of the Art

Different approaches exist that are able to fulfill individual requirements related to (R1), (R2),
(R3) or (R4). According to [2, 1] component-based approaches can be distinguish between
input-universal resp. pessimistic approaches that allow the environment to behave arbitrarily,
and input-existential interpretations resp. optimistic approaches that only require an environ-
ment to exist that behaves sufficiently helpful. Optimistic frameworks as described in [3] use
timed automata as timed interfaces and check whether an environment exists that behaves
helpful. They do only protect intellectual properties (R3) to a limited extent as the interface
behavior reveals many implementation details. Furthermore, the required checks do not
scale for larger architectures (R1) because all interfaces are analyzed at once or in form of
combined interfaces. Any analysis needs to be applied using the combined interface and as
a consequence during the analysis all relevant information of the overall architecture need
to be provided, rarely allowing protecting IPs (R3). In contrast, pessimistic frameworks as
in [16, 10] use conditions on the timed input/output automata (TIOA) such as progressive or
input enabled behavior for ensuring that components can be safely used in an environment

1Properties related to details that have an economical value.
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that behaves arbitrarily.2 A progressive or input enabled timed automaton is able to receive
each and every input signal at any state. The conditions are further compositional such that
the composition of two progressive, deadlock and zeno free TIOA is safe by resulting in a
progressive, deadlock and zeno free TIOA. Due to its compositional nature, the approaches
scale well (R1) and as the conditions are rather generic the IP is also well protected (R3).
However, these generic conditions result in high resource requirements. For being able to
fulfill the required property of progressive or input enabled behavior, such a component must
be able to receive an arbitrary number of signals (e.g., 1, 1000, 1 million or even more) in
any time period greater than 0. As a consequence nearly unlimited resources need to be as-
sumed for processing received signals. Thus, requirement (R2) is difficult or even impossible
to match in practice when requiring progressive behavior.

Another related direction is the timed interface approach for data-flow based architectures
as proposed in [22], which focuses only on the load that the components can handle. In
its basic form, these approaches scale (R1) and can take resource restrictions into account
(R2), but require acyclic architectures and do not support mode-dependent behavior (R4).3

Behavior, where different modes can become active during runtime, realizing a different
timing behavior, are not directly supported.4 Dependencies between the data-flow as well
as system characteristics as in case of the used scheduling exist, resulting in limitations
for the structure of the component-based architecture. As a result, requirement (R4) is not
fully supported. Existing extensions permit to cover cycles to some extend [15] as well as
components described by timed automata [17], but mode-dependent component interaction
at the interface is still not covered. Furthermore, the load characteristics are sufficiently
abstract such that the IP remains hidden (R3).

Behavior, Interaction, Priority (BIP) [6] is a framework for the component-based construction
of real-time embedded system. BIP provides mechanisms for supporting a correctness-by-
construction approach and creating hierarchical architectures composed of atomic compo-
nents as well as tooling for analyzing the reachable state space using explorative techniques.
Concerning (R1) holds that the original BIP approach does not scale, but in [20] it is shown
how to apply an analysis in a modular fashion. For being able to apply a modular analysis,
deterministic behavior is required and as a result only restricted types of timed automata
can be used for verification purposes. While protecting IP is not addressed (R3), BIP is ex-
pressive enough to partially cover practical cases to some extend (R4), because hierarchical
architectures and cyclic ones are supported.

Another approach supporting the modular verification of timed automata that scales (R1)
can be found in [11]. Like in the case of [13] (extension of BIP) only deterministic behavior
is allowed. We believe that allowing only deterministic TA is much too restrictive, due to the
fact that nondeterminism often is related to parameters that can be configured during and not
before composition (like in the case of execution orders of constituent parts of a component
that need to fit to the order of incoming signals). Further, how to support cyclic architectures
(R4) using deterministic frameworks in an analysis that scales is still an open issue. How to
maintain protecting IPs (R3) is not considered in [11] and [13].

2Only deadlocks and zeno behavior needs to be excluded for the environment.
3Minimal and maximal arrival times are fix.
4Such a mode dependent behavior can also be found in the used application example described in Sec. 3.
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1.2 Contribution

In this paper, an approach is represented based on timed automata that can provide the re-
quired guarantees (R1), (R2), (R3) and (R4) for the later integration, which does not require
strong assumptions difficult to match in practice as in the case of progressive, determinis-
tic or input enabled behavior. It can be seen as a compromise between the too pessimistic
approaches that avoid any reliance on the characteristics of the environment, leading to arbi-
trary high resource requirements (R2), and the too optimistic approaches that rely too much
on helpful environment characteristics, which do not scale (R1). The introduced reasoning
scheme is expressive enough such that complex architectures containing cyclic communica-
tion dependencies and mode-dependent component interactions are supported (R4).

As an example, Figure 1 shows the composition of the three components FuelSensor, Fu-
elController and Engine-Model realizing the fuel rate control of a combustion engine. This
architecture contains cyclic communication dependencies.5FuelSensor is responsible for the
evaluation of sensor values from the engine. FuelController is responsible for calculating the
desired fuel rate for the engine. The component EngineModel represents relevant behavior
of the engine. In Sec. 3 this application example is discussed in more detail. For such an
engine control system holds that in the domain of automotive systems only limited resource
are available (R2). IPs (R3) related to implementation details of individual components often
have to be protected in the case of a distributed development process. In the remainder
of this work the framework of language progressive TIOA is introduced. Furthermore, it is
shown how to address non-functional properties in case of the timing, for an architecture as
depicted in Figure 1, such that requirements (R1), (R2), (R3) and (R4) are fulfilled.

Figure 1: Fuel-Rate-Control architecture for the control of a combustion engine.

The paper is organized as follows: In Section 2, preliminary definitions like in the case of
timed (IO) automata are introduced. In Section 3 the application example of the fuel rate
control, like depicted in Fig. 1, is described in more detail. We show in Sec. 4 that the ex-
isting approach of progressive and receptive behavior (cf. [16]) does not fulfill requirement
(R2). In Section 5 a formal definition of language progressive and language receptive TIOA
is given, in contrast to the approach described in [16], fulfilling requirement (R2). Further it
is discussed how to automatically check whether the property of language progressive be-

5The example is derived from an existing demo application shipped with the tool SystemDesk, a
professional tool for designing component based architectures for real-time embedded systems (see
http://www.dspace.com/systemdesk).
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havior is fulfilled. Based on the defined property of language progressive timed automata,
we present a reasoning scheme in Section 6. Well-formedness criteria are used building a
framework for the component-based development of real-time embedded and resource re-
stricted (R2) systems consisting of components with a single input and a single output port.
How to overcome the limitation to be restricted to components with a single input/output port
is shown in Sec. 7. A compositional reasoning scheme is described supporting the con-
struction of components with multiple input/output ports and architectures containing cyclic
communication dependencies (R4). In Sec. 8 the defined reasoning scheme is applied on
the application example. It is shown that the created reasoning scheme scales and as a con-
sequence fulfills requirement (R1). In Sec. 9 it is briefly discussed how existing abstraction
techniques for timed automata fit into the developed approach, supporting requirement (R3).
We close the paper with conclusions and an outlook on future work.

2 Prerequisites

Following the formal model of Alur-Dill style timed automata (TA, cf. [4]) is introduced. Fur-
ther, the formal model of timed input/output automata (TIOA, cf. [16]) is introduced, which is
the basis for the subsequently introduced class of TA.

2.1 Timed Automata

In the following, the formal model of timed automata (TA) is recalled. TA are considered that
distinguish explicitly between variables in form of so-called clocks, respectively attributes
and in form of locations. In the following, let R denote the set of reals, R+ denote the set of
non-negative reals and N+ denote the set of non-negative natural numbers.

Definition 1 (Attributed Timed Automaton)
An attributed timed automaton (TA) is a tuple A = (Σ,L,L0, X, V, I, E) consisting of a finite
set of signals Σ, which includes the empty signal σε ∈ Σ, a finite set of locations L, a finite
set of initial locations L0 ⊆ L, a finite set of clock variables X = {x1, . . . , xn}, a finite set of
attribute variables V = {v1, . . . , vm}, a function I : L → 2 C(X) assigning to each location a
set of clock invariants I(l) ⊆ C(X) and a set of edges E ⊆ L×Σ×2 C(X)×2C(V )×2X×2V ×L.
C(X) is the set of (clock) conditions over X and consists of all equations of the form x ∼ c
where ∼ ∈ {≤,≥} and c ∈ N+ is a constant. C(V ) is the set of (attribute variable) conditions
over V , consisting of all equations of the form v v r where v ∈ {≤,=, 6=,≥} and r ∈ R.

An edge e ∈ E from location l to l′ is defined by a tuple e = (l, a, ϕ, λ, l′), where a ∈ Σ is a
signal, ϕ ⊆ C(X) ∪ C(V ) is a guard that must be enabled to fire the edge, and λ ⊆ 2X ∪ 2V .
2X is a set of clock variables that are reset to the value 0 if the edge is taken. 2V is a set of
all assignments of the form v ' n with v ∈ V and ' ∈ {+,−, :=} and n being either n ∈ V
or n ∈ R.

4



2.1 Timed Automata S. Neumann and H. Giese

An example of a TA is shown in Fig. 3 on page 12. Init is an initial location with invariant
p3 ≤ 4 over clock variable p3. This invariant allows the TA to stay in the initial location for at
most 4 time units. The edge from location Init to location CRV contains the clock reset d3 = 0
of the clock d3. The edge from location CRC to location wait contains the signal raw, which
need to be synchronized when taking the edge. Further, the edge contains the guard d3 ≥ 0,
allowing taking the edge only if the clock d3 has a value greater or equal to 0.6 Following
different types of locations are defined in case of urgent and committed locations. An urgent
location of a TA is a location where time is not allowed to pass. A committed location is a
location where time is not allowed to pass and, when being in a committed location, the next
edge needs to be taken is an edge starting from a committed location.7

Definition 2 (Extended Timed Automaton)
An extended timed automaton (TA), including urgent and committed locations is a TA A =
(Σ,L,UL, CL,L0, X, V, I, E) according to Def. 1 with L being divided into a set UL of urgent
locations and a set CL of committed locations with UL ∪ CL = L. For an extended TA holds
UL ∩ CL = ∅ and {UL ∪ CL ∪ L0} ⊆ L.

Remark, an extended TA with UL = CL = ∅ is equivalent to an attributed TA. Following the
semantics of the composition of attributed as well as extended TA is defined.

Definition 3 (Parallel composition of TA)
Let A1 = (Σ1,L1,L0

1, X1, V1, I1, E1) and A2 = (Σ2,L2,L0
2, X2, V2, I2, E2) be two timed au-

tomata. Their parallel composition A1 ‖ A2 is defined as the timed automaton

A = (Σ1 ∪ Σ2,L1 × L2,L0
1 × L0

2, X1 ∪X2, V1 ∪ V2, I, E)

where I(〈l1, l2〉) = I1(l1) ∪ I2(l2) for all l1 ∈ L1, l2 ∈ L2, and (〈l1, l2〉, a, ϕ, λ, 〈l′1, l′2〉) ∈ E if
one of the following conditions holds:

1. a ∈ Σ1 \ Σ2, l2 = l′2 and there exists (l1, a, ϕ, λ, l
′
1) ∈ E1,

2. a ∈ Σ2 \ Σ1, l1 = l′1 and there exists (l2, a, ϕ, λ, l
′
2) ∈ E2,

3. a 6= σε ∧ a ∈ Σ1 ∩ Σ2, and there exist (l1, a, ϕ1, λ1, l
′
1) ∈ E1, (l2, a, ϕ2, λ2, l

′
2) ∈ E2 with

ϕ = ϕ1 ∪ ϕ2, λ = λ1 ∪ λ2.

Accordingly the parallel product of two extended timed automata is defined as follows. The
only difference is, that edges leaving committed locations prevent edges leaving non-committed
locations.

Definition 4 (Parallel composition of extended TA)
Let A1 = (Σ1,L1,UL1, CL1,L0

1, X1, V1, I1, E1) and A2 = (Σ2,L2,UL2, CL2,L0
2, X2, V2, I2, E2)

be two extended timed automata. Their parallel composition A1 ‖ A2 is defined as the timed
automaton

A = (Σ1 ∪ Σ2,L1 × L2,L0
1 × L0

2, X1 ∪X2, V1 ∪ V2, I, E)

6An exclamation mark is used in case of the send signal. Exclamation marks, resp. question marks allow to
graphically distinguishing between send and received signals.

7Committed locations become more relevant in the context of the parallel product of two timed automata,
where each can or cannot be in a committed location.
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where I(〈l1, l2〉) = I1(l1) ∪ I2(l2) for all l1 ∈ L1, l2 ∈ L2, and (〈l1, l2〉, a, ϕ, λ, 〈l′1, l′2〉) ∈ E if
one of the following conditions holds:

1. a ∈ Σ1\Σ2, l2 = l′2 and there exists (l1, a, ϕ, λ, l
′
1) ∈ E1 and l1 6∈ CL1, l2 6∈ CL2∨l1 ∈ CL1,

2. a ∈ Σ2\Σ1, l1 = l′1 and there exists (l2, a, ϕ, λ, l
′
2) ∈ E2 and l1 6∈ CL1, l2 6∈ CL2∨l2 ∈ CL2,

3. a 6= σε ∧ a ∈ Σ1 ∩ Σ2, and there exist (l1, a, ϕ1, λ1, l
′
1) ∈ E1, (l2, a, ϕ2, λ2, l

′
2) ∈ E2 with

ϕ = ϕ1 ∪ ϕ2, λ = λ1 ∪ λ2.

Further holds each li ∈ L1 × L2 with li =< lj , lk > and lj ∈ L1, lk ∈ L2 is an urgent location,
if lj or lk is an urgent location and both are not committed locations. Further holds li is a
committed location if lj or lk is a committed location (committed locations dominate urgent
locations under composition).

The semantics of a (extended) timed automaton is defined in terms of an induced timed
system.

Definition 5 (Timed system)
A timed system is a tuple T = (Σ,S,S0, T ) consisting of a set of signals Σ with Σ ∩ R+ = ∅,
a set of states S, a set of initial states S0 ⊆ S and a transition relation T ⊆ S × (Σ∪R+)×S.

A (extended) timed automaton A = (Σ,L,UL, CL,L0, X, V, I, E) induces the timed system
TA = (Σ,S,S0, T ) in the following way. A function v : X → R+ is called a clock valuation.
For a duration τ ∈ R+, v + τ is the clock valuation v′′ with v′′(x) = v(x) + τ for all x ∈ X.
Now, the set of states S of the induced timed system TA is given by all pairs s = 〈l, v〉 where
l ∈ L and v is a clock valuation for X as well as an attribute assignment for V . The set of
initial states S0 consists of all pairs s0 = 〈l0, v0〉 where l0 ∈ L0 and v0 is the clock valuation
that assigns 0 to all x ∈ X and 0 to all variables of V . The induced timed system TA contains
two types of transitions:

1. discrete transitions s σ−→ s′ where σ ∈ Σ is a signal,

2. time transitions s τ−→ s′ where τ ∈ R+ is a duration.

Discrete transitions change the location parameter of a state and are induced by the edges
of the TA. A subset of the clocks may be reset to 0 when taking the transition, as specified
by the edge. Further, when taking an edge a potentially empty set of variables included in V
is updated.

A discrete transition can only be taken in state s if an edge e = (l, a, ϕ, λ, l′) of the underlying
TA is enabled. An edge e of a TA is called enabled in state s, if the TA in state s is in a
location l where an outgoing edge e, including the signal σ = a (including the empty signal),
can be taken. This is only the case if the guard ϕ can be evaluated to true in state s.

6



2.1 Timed Automata S. Neumann and H. Giese

Not reset clocks and not updated attributes remain the same. Time transitions do not modify
the location, but increase the values of all clocks synchronously, i.e. 〈l, v〉 τ−→ 〈l, v+ τ〉. This
is possible only as long as the invariant of location l is satisfied and if l is not an urgent or
committed location. Since the induced timed system of a TA is usually infinite, in practice
symbolic representations of the clock valuations, such as clock zones [14], are used to obtain
a finite semantics.

The induced timed system TA1‖A2
of the parallel product A1 ‖ A2 of the two TA A1 =

(Σ1,L1,UL1, CL1,L0
1, X1, V1, I1, E1) and A2 = (Σ2,L2,UL2, CL2,L0

2, X2, V2, I2, E2) accord-
ingly contains states of the form s = 〈l, v〉 with l = 〈l1, l2〉 and l1 ∈ L1, l2 ∈ L2 and v being an
assignment of all clocks included in the set X1 ∪X2 as well as variables in V1 ∪ V2. Discrete
transitions accordingly include signals σ ∈ Σ1 ∪ Σ2.

The timed system of a given TA A is denoted by TA = (ΣA,SA,S0
A, TA). TA(sA) denotes the

set of transitions starting in state sA ∈ SA of the induced timed system of TA A.

The observable behavior of a timed automaton A is defined by the set of traces observ-
able on TA. A trace α is a finite or infinite alternating sequence of signals and durations
α = τ1σ1τ2σ2τ3 . . . with σi ∈ Σ and τi ∈ R+ specifying the order and the delays between
consecutive signals. signals(α) denotes the set of signals that occur in α. Furthermore,
let traces to(s1, A) denote all traces starting in an initial state and ending in state s1 and
traces from to(s1, s2, A) denotes the set of all observable traces of the TA A when starting
in state s1 and ending in state s2. Let traces from(s,A) denote the set of all observable
traces of a timed automaton A starting in state s and let traces(A) denote the union of all
traces observable from all initial states. If a set of traces is given explicitly, it is also referred
as a language and usually denoted by the letter Υ. signals(Υ) denotes the set of signals
included in at least one trace α ∈ Υ. Attributes of a TA are defined to be internal and are not
shared with other TA in a parallel product. As a consequence attributes do not occur in any
trace or language of a TA.

With time(α) the sum over all time delays included in α is denoted. For trace α = 1.13 a 2.27 b 0
it holds that time(α) = 3.4.

Definition 6 (Time Length)
Let t be either a transition t = s

τ−→ s′1 observable on a state s of the induced timed system
of a TIOA or let t = τ1σ1τ2σ2 . . . τnσn be a trace. The function time-length time(t) over t is
defined as follows:

• In case t is a transition, time(t) = 0 if t is a discrete transition and time(t) = τ if t is a
continuous transition.

• In case t is a trace t = τ1σ1τ2σ2 . . . τnσn with τi being a delay and σi being a signal for
0 ≤ i ≤ n, time(t) is equal to a such that

∑n
i=1 τi = a.

Further, the language of a TA is defined as follows.

Definition 7 (TA Language)
The language Υ of a (extended) TAA is defined as the set of traces Υ = traces(A). traces(A)
includes all traces that can be observed on the TA A starting from an initial state.

7
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For being able to distinguish between different sets of signals included in a TA at the level of
its language, the restriction of a language is following defined.

Definition 8 (Language Restriction)
Let α be a trace and σ be a signal. The trace α \ σ is derived from α by replacing all
occurrences of τστ ′ in α by (τ+τ ′) for all τ, τ ′ ∈ R+. Let Σ be a set of signals and ΣΥ =
{σ1, . . . , σn} = signals(Υ) \Σ all signals included in Υ but not in Σ. The trace α�Σ is defined
as α�Σ = α \ σ1 \ . . . \ σn. For a given language Υ, Υ�Σ is equal to { α�Σ | α ∈ Υ }.

Thus, for a language Υ, the language Υ�Σ is derived by restricting the set of included signals
to Σ, formally by removing all signals that do not occur in Σ in all traces of Υ. Note that when
removing the occurrence of a signal in a trace, the delays before and after this occurrence
are summed up in the derived trace.

Moreover, a trace α is called a prefix of a trace β, written as α ` β, if α = β or α is a finite
trace α = τ1σ1 . . . τnσn and β is of the form β = τ1σ1 . . . τnσnτ(n+1)σ(n+1). . . , i.e., β begins
with α. Further, in a state s of an induced timed system an observable transition t is part of
the observable trace α starting from this state. t ` α denotes that t contributes the first step
of the observable trace α starting from state s. Also two traces t1 and t2 can be related by the
operator `. As an example consider t1 = s1

a−→ s′1 and t2 = s2
b−→ s′2. If a is a signal,t1 ` t2

is fulfilled if a = b. If a is time delay greater than zero, t1 ` t2 is fulfilled if b is time delay with
a ≤ b.

α = β◦γ denotes the concatenation of two traces and α = β◦t◦γ denotes the concatenation
of a trace β, a transition t and a trace γ.

The restriction operator is also defined for a TA.

Definition 9 (TA Restriction)
Let A = (Σ,L,L0, X, I, E) be a TA and let Σrem be a set of signals. A�Σrem = A2 =
(Σrem,L,L0, X, I, E2). Let Σ2 = Σ \ Σrem be the set of removed signals. For each edge
e ∈ E, with e = (l, a, ϕ, λ, l′), holds, e ∈ E2 if a 6∈ Σ2. If a ∈ Σ2 an edge erem = (l, σε, ϕ, λ, l

′)
is included in E2 containing the empty signal σε. Further holds there not exists an edge e in
E2 if one of the following conditions holds:

1) e = (l, a, ϕ, λ, l′) and a ∈ Σ2 with e ∈ E, or,

2) e = (l, σε, ϕ, λ, l
′) ∧ ¬∃e2 : e2 ∈ E with e2 = (l, a2, ϕ, λ, l

′) ∧ a2 ∈ Σ2 and e 6∈ E.

Informally a TA restricted to a set of signals Σrem is a TA where signals are removed from
edges of the TA that are not included in Σrem (edges are preserved but signals are added).

Lemma 2.1 (Restriction Relation)
Given a TA A with traces(A) = Υ. For any set of signals Σrem holds: traces((A�Σrem)) =
Υ�Σrem.

Proof 2.1
(sketch) Assuming traces((A�Σrem)) 6= Υ�Σrem. This can only be the case if 1) a trace α is
included in traces((A�Σrem)) that is not included in Υ�Σrem, or, 2) a trace α is not included
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in traces((A�Σrem)) that is included in Υ�Σrem. Assuming 1): This can only be the case
if a trace α is observable on the induced time system of A�Σrem for that holds: ¬∃β ∈ Υ
such that β�Σrem being equal to α. If this is the case, the restriction operator �Σrem applied
on A has enabled a transition in the induced time system of A�Σrem by removing a signal.
Because A is an isolated TA which do not need to synchronize with other TA at all, this
cannot be the case. Assuming 2): This can only be the case if a signal σ, included in an
edge of A is removed by applying the restriction operator �Σrem on A, such that for at least
one trace β, which is observable on the induced time system of A, no trace α is observable
on the induced time system of A�Σrem with β�Σrem being equal to α. This can only be the
case if a state of the induced time system of A is reachable because a transition is enabled
only if synchronization with σ appears. Because in our model such synchronization of an
isolated TA can only disable but not enable transitions, this cannot be the case.

Informally Theorem 2.1 states that an equivalence relation between the observable traces of
a TA and the language of the TA concerning the restriction operator exists. Thus, it doesn’t
matter if first the TA is restricted to a set of signals or if the set of observable traces, of the
induced timed system, is restricted to the same set of signals. Both methods lead to the
same set of signals.

2.2 Timed I/O Automata

The definition of a timed I/O automaton (TIOA) is obtained by explicitly distinguishing be-
tween input, output and internal signals contained in a timed automaton.

Definition 10 (Timed I/O automaton)
A timed I/O automaton (TIOA) is a tuple A = (A, I,O,H) where A is a (extended) timed
automaton and the set of signals Σ of A is partitioned into the disjoint sets I,O and H,
respectively called the input, output and internal signals of A. Further holds that the empty
signal is an internal signal: σε ∈ H.

Intuitively, a component modeled by a TIOA receives input signals, sends output signals and
performs internal state changes using internal signals or delay transitions.

Definition 11 (Parallel composition of TIOA)
Given two timed I/O automata A1 = (A1, I1, O1, H1) and A2 = (A2, I2, O2, H2). Their parallel
composition is defined as A1 ‖ A2 = (A1 ‖ A2, I, O,H) where:

• I = (I1 ∪ I2) \ (O1 ∪O2),

• O = (O1 ∪O2) \ (I1 ∪ I2),

• H = H1 ∪H2 ∪ (I1 ∩O2) ∪ (I2 ∩O1)

if the following conditions hold:
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1. I1 ∩ I2 = O1 ∩O2 = ∅

2. H1 ∩ (I2 ∪O2 ∪H2) = H2 ∩ (I1 ∪O1 ∪H1) = ∅,

3. X1 ∩X2 = ∅ where X1, X2 are the clock sets of A1 and A2, respectively.

4. V1 ∩ V2 = ∅ where V1, V2 are attribute variable sets of A1 and A2, respectively.

Thus, two TIOA can be composed only if (1) their respective input and output signal sets
are disjoint, (2) the internal signals of one automaton do not occur in the other automaton,
(3) they do not share any clocks and (4) attributes. If these conditions are fulfilled the two
TIOA are following called compatible. When modeling components using TIOA, the parallel
composition of two components is only allowed if the associated TIOA holds: input ports
are connected to output ports and vice versa. Internal signals sets need to be disjoint and
variables (clocks and attributes) of different components, resp. TIOA also need to be disjoint.
Moreover, connected ports become internal. In this way, parallel composition can be used to
hierarchically structure a component-based system (see Sec. 6.2).

In this paper the focus is set on undesired behavioral properties of TIOA in the form of
deadlocks and zeno-behavior. Formally, for a TIOA A, a finite trace αd is called a deadlock
trace if there exists a path for αd in TA, the induced timed system of A, that ends in a state
sd that contains no transition. A deadlock state is defined accordingly.

Definition 12 (Deadlock)
Let TA = (Σ,S,S0, T ) be the induced timed system of a TIOAA. A state sd ∈ S is a deadlock
state if ¬∃t ∈ T with t = sd

σ−→ s′d and σ ∈ Σ or t = sd
τ−→ s′d and τ > 0 ∧ τ ∈ R+.

Informally a deadlock state is a state where no outgoing transition can be taken including a
signal or a delay greater than zero.

An infinite trace αz = τ1σ1τ2σ2 . . . is called a zeno trace if there exists an ` ∈ R+ such that∑∞
i=1 τi = `, i.e., if it has a finite time length. In contrast to a deadlock, for a zeno trace no

associated state exists. As a consequence no definition of a zeno state is given.

3 Application Example - Engine Control

Now that required preliminary formal definitions for TA and TIOA have been given, the appli-
cation example of the engine-control model shown in Fig. 1 is described in more detail. Like
previously mentioned this application example is derived from an existing demo application
shipped with the professional tool SystemDesk.8 We first give a more detailed description
of each included component. Afterwards we specify the timing behavior for each included
component by an individual TIOA. This example is used in the remainder of this work to illus-
trate how the framework, which is introduced in the next sections, can be applied on typical
applications in the domain of real-time embedded systems.

8See http://www.dspace.com/systemdesk
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3.1 Component Engine-Model

The component EngineModel is an abstract representation of the behavior of the physical
engine. It has two main functionalities: first, consuming the desired fuel rate and second,
calculating appropriate raw output values. Within the raw output, information about the cur-
rent throttle position, the actual speed value of the engine, the oxygen value as well as the
actual pressure (e.g., of the combustion) is included. Because this information is always
sent at the same point of time, only a single signal raw is considered within the subsequently
introduced TIOA representing the timing-behavior of the component. Because in this work
the focus is set on the non-functional and especially the timing-behavior, concrete values of
send or received signals are following not considered.

Figure 2: The component representing the physical behavior of the engine.

The associated TIOA is shown in Fig. 3. It consists of four locations. In the initial location Init
the component is able receiving the current value of the fuel rate via the signal fuel rate. In
the second location the TIOA waits for executing functionality and the third location (CRV as
a shortcut for Calculate-Raw-Values) is associated with a state, where values received via
the signal fuel rate are send to the real engine9 and raw output values are read inside the
component.10 At this location the component is not able receiving arriving signals of type
fuel rate. This is the case because in location CRV consistent values need to be send to the
real engine. The fourth location wait is associated with the state where the component has
finished its computation and is waiting for the next period to begin.

Following, the TIOA representing the timing behavior of component EngineModel is de-
scribed in more detail. For graphically describing the structure of a TA, the same syntax
like provided by the model checker UPPAAL (cf. [8]) is used. Each input signal is followed by
a question mark and each output signal is followed by an exclamation mark. In such a man-
ner, in the remainder of this work, input and output signals of a TIOA can be distinguished.
The TIOA is allowed to stay in the initial location for at most five time units, according to
the invariant of the form p3 ≤ 5, where p3 is a clock for measuring the progress of time in
each period. Thus, location Init needs to be left at point in time five. The only outgoing edge
need to receive the signal fuel rate. Thus, in the initial location the TIOA need to receive
this signal within a time frame of five milliseconds (ms). After five ms the TIOA is required
to leave the second location taking the edge to location CRV (Calculate Raw Values). When
taking the edge to location CRV, clock d3 is reset to zero. The clock is used for measuring
the amount of time spent for writing respectively reading sensor and actuator values when
being in location CRV. The invariant d3 ≤ 1 requires the TIOA leaving the location CRV at

9This is realized by setting actuators of the real engine.
10By reading and processing the output of analog-digital converters of the sensors of the real engine.
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the latest after one time unit and the guard allows to leave the location also at the earliest
after one time unit. When leaving location CRV, signal raw is send via the edge leading to
location wait. The TIOA is required to stay in this location till the overall period of 10 time
units is over (realized by the guard p3 ≥ 10 in combination with the invariant p3 ≤ 10). After-
wards, the edge to the initial location is taken, resetting the clock p3 to zero. The resulting
TIOA AEM = (AEM , IEM , OEM , HEM ) consists of the input signal IEM = {fuel rate}, the
output signal OEM = {raw}, an empty set of internal signals HEM = ∅ and the TA AEM with
constituent elements like described above.

Figure 3: The TIOA AEM representing the engine model.

3.2 Component Fuel-Sensor

The component FuelSensor is responsible for evaluating the raw values provided by the
component EngineModel. Depending on the current values and the absolute point of time in
which they have been received, the mode of the engine is calculated and sent via a signal
to the component FuelController. In case the engine is running for a short period (still in the
warm up phase) or a failure is detected, the mode is set to rich. In this mode the component
FuelController is responsible for calculating a fuel rate allowing the engine to run in a more
robust way. In the case the engine is already warm and no failure is detected the mode is
set to normal, requiring the component FuelController to calculate more optimized values
for the fuel rate. Further, FuelSensor is responsible for realizing a post-processing of the
raw values, allowing component FuelController more easily evaluating the raw value (e.g.,
removing sensor-failures if possible), resulting in the output signal eng value.

The associated TIOA is shown in Fig. 5. It contains the initial location Init. When being in this
location, signals of type raw can be received by the component. In the successor location
DSF (short for Detect-Sensor-Failures) the mode is derived. Depending on the absolute
point in time and the received values the mode is set either to normal or to rich by sending
the signal normal, resp. rich. When sending the signal rich or normal, the location with name
RSC, respectively RSC2 (Run-Sensor-Correction) is reached. The only difference between
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Figure 4: The component representing functionality for processing raw sensor values.

these two locations is, that in case of being in mode rich a more simplified computation
is used for processing the input values received via the signal raw. Accordingly, varying
execution times are associated with both locations (RSC and RSC2). Afterwards the signal
eng value is sent via the edge leading to location wait, where the component is waiting for
the end of the period before taking the edge to the initial location. In the initial location, as
well as in location wait, the component is able to receive incoming signals of type raw. In
the remaining locations this is not allowed due to the fact that in locations DSF and RSC
consistent data need to be provided when computing output signals.

Concerning the timing the associated TIOA AFS behaves as follows. AFS is allowed to stay
in the initial location for at most seven time units reflected by the invariant p ≤ 7, where p is a
clock for measuring the current time of the overall period. When taking the edge to location
DSF (Detect-Sensor-Failures) the clock d is reset to zero. Clock d is used for measuring
the duration of the computation of each location (for locations associated with computations
like described above). The computation of the error-detection takes at most one time unit
reflected by the invariant d ≤ 1 in combination with the guard d ≥ 0. In addition the outgoing
edge to location RSC (Run-Sensor-Correction) has the guard abs ≥ 1000 for ensuring that
the signal normal is only send if the engine is running for a longer time period. Depending
on the current mode the successor location RSC resp. RSC2 is reached. In comparison
to location RSC2, where a more simplified processing of the raw values is applied, location
RSC requires more computation time (between 1−2 ms in contrast to 0−1 ms). The guards,
invariants and resets, like shown in Fig. 5, realize this timing behavior. When leaving location
RSC, resp. RSC2, the signal eng value is sent via the edge leading to location wait. At this
location the TIOA is waiting till the overall period, measured by the clock p, is over.

The resulting TIOA AFS = (AFS , IFS , OFS , HFS) consists of the input signal IFS = {raw},
the output signals OFS = {rich, normal, eng value}, an empty set of internal signals HFS =
∅ and the TA AFS with constituent elements like described above. Zeno behavior in case
of the incoming signals is prevented like previously described in the case of the TIOA rep-
resenting the component EngineModel, using additional attribute variables. The complete
resulting TIOA can be found in Appendix B.

Some of the components of the real application example, taken from the professional tool
SystemDesk, allow receiving an arbitrary number of signals when not being in a state where
signals are processed. This is also the case for component FuelSensor that is able to receive
an arbitrary number of signals of type raw when being in location Init. This is the case
because the last received value is considered to be the best value (last-value best-value
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semantic). Unfortunately, allowing receiving an arbitrary number of signals introduces an
undesired property of TIOA in form of zeno behavior. Also for any real implementation it
cannot be considered that a component is able to receive an unbounded number of incoming
signals in finite time. To avoid undesired behavior in case of zeno traces and to achieve a
more realistic component behavior, it is only allowed to receive a limited number of signals
when being in a location. For this purpose a dedicated single attribute variable a is used
within the TIOA shown in Fig. 5. Each edge that receives signal raw has an additional guard
ensuring that at most a maximal number of signals can be received while being in locations
Init. Each time a signal raw is received the attribute variable is incremented by one. Only
in case an edge is taken from a location not being able to receive signals to location Init,
this attribute variable is reset to the value zero. For keeping the TIOA models simple and
for allowing a better understanding, these additional variables and guards are not shown in
Fig. 29. The complete TIOA models, including variables, guards and updates avoiding zeno
behavior, can be found in Appendix B.

Figure 5: The TIOA AFS representing the timing behavior of component FuelSensor.

3.3 Component Fuel-Controller

The component FuelController is responsible for calculating the appropriate fuel rate for the
engine. Depending on the current mode as well as the current sensor values different com-
putations are executed. In every case the approximate current airflow is calculated based
on the input values received via the port correctedSensor. Depending on the current mode
and the approximated airflow value the desired fuel rate is calculated, either for a more ro-
bust behavior when being in the mode rich or for a more optimized behavior when being in
mode normal. In our model a mode-switch is indicated each time an appropriate signal is
received via the port mode. Depending on the mode different functional parts are executed.
When being in mode rich, a fuel rate appropriate for a more robust but less efficient engine
operation is calculated. When being in mode normal, more optimized values for the fuel rate
are derived.

Fig. 7 shows an example how the state-based timing-behavior of the FuelController can be
modeled using a TIOA. The TIOA basically describes two different behaviors, represented by
the locations and edges at the upper respectively lower part of Fig. 7. Those located at the
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Figure 6: The component representing the Fuel-Controller.

lower part do represent the behavior of the FuelController when being in mode rich. Those
located at the upper part represent the behavior when being in mode normal. In the locations
on the left as well as the locations on the right the component is able to receive incoming
signals in case of signals eng value, rich and normal. When receiving signal rich or normal,
the TIOA switches accordingly between the upper and lower locations, representing the dif-
ferent modes. In the upper part of the TIOA the location NAC (Normal-Airflow-Calculation)
represents the state where the component FuelController calculates the airflow when being
in mode normal.11 In this mode, in contrast to mode rich, additional functionality for deriving
a corrected and accurate value for the airflow is executed. This airflow is required for the
successor location NFRC (Normal-Fuel-Rate-Calculation) where the optimized desired fuel
rate is calculated. At the lower part of the TIOA shown in Fig. 7, locations and edges are
shown representing the behavior parts for calculating the fuel rate when being in mode rich.
In contrast to location NAC, location RAC (Rich-Airflow-Calculation) computes the resulting
airflow without any correction. In location RFRC (Rich-Fuel-Rate-Calculation) a fuel rate is
calculated allowing operating the engine in a more robust way.

The timing of the two different behavior parts, associated with the mode rich respectively
normal like shown in Fig. 7, does only differ in case of locations NAC and RAC. Location
NAC, associated with the normal execution mode can require more computation time for cal-
culating the airflow compared to location RAC. The rest of the behavior is almost identical,
starting in one of the locations on the left. Invariants require leaving these locations within
the first two time units. The clock d2 is set to zero when taken the edge to location NAC,
resp. RAC. The clock is used to reflect the execution times like described above by using
appropriate guards and invariants. The timing behavior of the two different successor loca-
tions NFRC and RFRC is identical, again realized by an invariant (d2 ≤ 1), indicating that
the computation of the resulting output signal eng value is finished within one time unit. In
the locations on the right the clock p2 is used to ensure that the TIOA will only switch back
into the initial location when the overall period (10 time units) is over.

The resulting TIOA AFC = (AFC , IFC , OFC , HFC) consists of the input signals IFC =
{rich, normal, eng value}, the output signal OFC = {fuel rate}, an empty set of internal
signals HFC = ∅ and the TA AFC with constituent elements like described above. Again, for
avoiding zeno behavior an additional attribute variable is used. The resulting complete TIOA
can be found in Appendix B.

11The airflow is not considered within the example. The airflow can be considered as an internal signal that is
hidden for allowing a better understanding.

15



S. Neumann and H. Giese

Figure 7: TIOA AFC representing the timing behavior of component Fuel-Controller.

The introduced application example is rather small compared to real applications in the do-
main of embedded real-time systems, containing a huge number of components. Neverthe-
less, also in case of the introduced example major differences concerning the complexity of
the analysis are shown in Sec. 8.3 when applying the subsequently introduced scalable rea-
soning scheme, compared to a monolithic approach where all involved TIOA are analyzed at
once. Further, it can be seen that the application example, as a typical example for real-time
embedded systems, provides components with restricted resources (R2), not being able to
receive any amount of signals at any state. As an example see the TIOA shown in Fig. 7,
not being able receiving signals when being in one of the locations NAC, NFRC, RAC and
RFRC. Further, also in the case of this more simple application example non-deterministic
behavior exists. This is the case because execution times of functional parts can only be
expressed using upper and lower bound (associated with Best-Case and Worst-Case exe-
cution times) in form of invariants and guards of the associated TIOA. As a consequence,
like in the case of the TIOA shown in Fig. 7, state-changes occur nondeterministically. As
an example the transition between location NAC and NFRC cannot be predicted based on
the observation of time and exchanged signals only. As a consequence, approaches that
do require deterministic behavior for realizing a modular and scalable check (cf. [11]) seem
to be too restrictive to be applied on such application examples. While the shown behavior
models have been derived manually from a given architecture model,12 such TA models can
also be automatically derived like shown in [19].

12In case of a given AUTOSAR model.
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4 Progressive and Receptive TIOA

Following the notion of progressive and receptive behavior is introduced, like defined in [16].
It is shown that progressive and receptive behavior requires strong assumptions that are hard
or even impossible to achieve for resource restricted embedded components. Based on the
given property of progressive behavior a new property is defined as a relaxed condition of
progressive and receptive behavior that does not require such strong assumptions. This
relaxed property is used to verify the correctness of the previously introduced example.

In [16] desired properties, like in the case of the absence of deadlock and zeno traces, is cap-
tured by the notion of progressive TIOA. A TIOA A = (A, I,O,H) is called progressive if the
induced timed system does not allow to observe any zeno executions or deadlocks if the en-
vironment includes no deadlocks and zeno behavior. The definition of progressive behavior
according to [16] is rather strong. Fulfilling the property of progressive behavior, according
to [16], a TIOA is also I/O feasible, what means that in each state of A an arbitrary trace
β = τ1, σ1, τ2, ..., consisting of signals σi ∈ I and of arbitrary delays τi, can be accommo-
dated by A. Thus, an I/O feasible TIOA automaton A := (A, I,O,H) is able to accommodate
arbitrary input actions (signals) occurring at arbitrary time. For an I/O feasible TIOA A holds
that each trace α := τ1σ1τ1σ1..., consisting of signals σi ∈ I, α ∈ traces from(ω,A) can be
observed on A starting in any state s of A, respectively of the induced timed system.

However, the requirement of progressiveness of components is rather strong. According
to [16] instead of progressive behavior also receptive behavior, as a weaker condition, can
be used. Receptive behavior is based on the definition of a strategy. Therefore, first it
is defined what a strategy is in the context of a TIOA. For being able to reason about a
strategy the edges of a TA, and as result also of a TIOA are partitioned into controllable and
uncontrollable once.

Definition 13 (Disjoint Partitioned TA)
A Disjoint Partitioned TA is defined as follows. Let A = (Σ,L,UL, CL,L0, X, V, I, E) be
a (extended) TA where a disjoint partitioning of controllable edges En and uncontrollable
edges Ec with En ∩ Ec = ∅ and En ∩ Ec = E exists. A′ = (Σ,L,UL, CL,L0, X, V, I, E′)
containing uncontrollable edges En ∈ E with En ∈ E′ and controllable edges E′c ∩ En = ∅
with E′c ∪ En = E′ is a Disjoint Partitioned TA of A.

Based on the definition of a partitioning of the edges of a TA, now the semantics of a valid
strategy is defined. In the reminder of this work, whenever a strategy is mentioned a valid
strategy according to Def. 14 is meant.

Definition 14 (Valid Strategy)
Given TA A = (Σ,L,UL, CL,L0, X, V, I, E). Let A′ = (Σ,L,UL, CL,L0, X, V, I, E′) be a
Disjoint Partitioned TA A′ of A according to Def. 13, where E = Ec ∪ En and E′ = E

′
c ∪ E

′
n.

A′ is a valid strategy for A if the following conditions are fulfilled: 1) En = E
′
n. 2) ∀e =

(l1, a, ϕ, λ, l
′
1) ∈ E′c holds: ∃e1 = (l1, a, ϕ

′, λ, l′1) ∈ Ec and for all states s of the induced time
system TA′ of A′, being in location l holds: if ϕ′ is enabled also ϕ is enabled (ϕ′ =⇒ ϕ).
Further, for a valid strategy holds that no deadlock state or zeno trace is observable on A′.
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A strategy is valid if and only if controllable edges are removed or modified in such a way
that the resulting observable behavior is a subset of the observable behavior of the original
TA A. As a consequence each valid strategy A′ realizes a subset of the observable behavior
of the original TA A, like in the case of the induced timed system and the observable traces.
As a consequence holds for each valid strategy A′ of a TA A: traces(A′) ⊆ traces(A).

The notion of a strategy can be applied to the model of TIOA by simply allowing only edges
including signals of the set of internal signals to be controllable. Thus, a valid strategy
A′ = (A′, I,H,O) of a TIOA A = (A, I,H,O) is defined based on the TA A included in TIOA
A where an edge of A is only allowed to be controllable if only signals of H are included in
this edge. In such a manner different strategies of different TIOA are kept independent from
each other under composition. This is the case because only edges including internal signals
are allowed to be controllable. Like also done in [16] strategies are used similar to winning
strategies as in [5] for different types of games for timed automata. Defining strategies based
on timed automata allows avoiding introducing extra mathematical machinery.

The definition of receptive behavior in [16] is based on progressive behavior and a timed I/O
automaton A is called receptive if there exists a strategy A′ for A that is progressive. In other
words, a TIOA is receptive if a strategy A′ exists that is able to resolve all nondeterministic
choices in such a manner that A is not able to generate infinitely many internal transitions in
finite time, no matter how the environment behaves. Furthermore, for a receptive TIOA it is
required that in the case A is executed according to strategy A′, time can always progress
if the environment allows to do so. As a consequence no deadlock and no zeno behavior
can occur for the strategy A′ of a receptive TIOA A. For example, if a component in the
environment decides to send no signal to A within the time period t, A under A′ allows to let
time pass for at least t time units without receiving any signal.

Finding a strategy and thus determining whether a TIOA is receptive or not can be decided
using timed two player games (see [9, 16]). For this purpose, edges of a TIOA need to be
partitioned into controllable and uncontrollable according to Def. 13, depending on whether
the observed signal σ is internal, i.e. σ ∈ H, or not.

In a timed two player game (cf. [9]) a player can choose controllable transitions and its op-
ponent can choose the uncontrollable transitions. Depending on the winning condition, e.g.,
reaching or avoiding specific states, such a timed two player game eventually results in a
strategy, indicating that a strategy A′ according to Def. 14 can exist, where the player is able
to win the game no matter which choices its opponent makes.

Taking two compatible TIOA A1 and A2 into consideration while both on their own fulfill all
required properties like in the case of progressive or receptive behavior. One reasonable
question is if such properties are preserved under composition. In [16] this question has
been answered for progressive TIOA.

Theorem 4.1
(from [16]) If A1 and A2 are compatible progressive TIOA, then their composition is also
progressive.

Further it has been shown in [16] that the composition of two compatible receptive TIOA
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is also receptive. Thus, the property of progressive behavior is sufficient for preserving
properties like deadlock freedom and absence of zeno behavior under composition. It is not
required to compare the possible input, respectively output traces of the individual automata.
Further holds that receptive behavior is preserved under composition, still allowing finding
a strategy avoiding zeno and deadlock behavior for the composition.13 Each progressive
or receptive TIOA needs to be also I/O feasible (see [16]). In the following it is shown that
even I/O feasibility is hard to achieve for embedded systems and as a result progressive
and receptive behavior is even more unrealistic. An I/O feasible automaton A is at least
capable to accommodate any sequence of arbitrary input signals occurring at arbitrary points
of time. On the one hand, this property allows ignoring the input traces for the considered
components, which are able to consume any sequence of signals when being composed.
Therefore, it helps protecting IP (R3) as well as supports a modular, scalable analysis (R1).
On the other hand, requiring an automaton to be I/O feasible is an unrealistic or at least
very difficult to match property for a relevant portion of typical embedded real-time systems.
This is the case because I/O feasibility does not allow specifying a concrete upper bound of
signals that a receptive or progressive TIOA A needs to be able to consume. If the property
of I/O feasibility holds, A can consume any trace α with time length n including m signals.
Consider a time length of n = 10, A needs to be able to consume any amount of signals
within this 10 time units, e.g., 10, 1000, 10000000 signals or even more. Only zeno traces,
consisting of an infinite number of signals are not allowed. Obviously, such a property can
rarely be achieved for a huge portion of resource restricted real-time embedded systems.
This is the case because only limited resources can be assumed (requirement (R2)). Only for
systems with unrestricted resources or system that are able to simply ignore signals (simply
skip incoming signals without consuming resources when skipping signals), the property
of receptive or progressive behavior seems to be realistic. As a result the existing TIOA
framework can rarely support requirement R2. An example of a TIOA Ar is shown in Fig. 8.
Ar consists of the tuple (A, I,H,O), with I = {a,b}, O= {d}, H = {σε} and the single clock
x. The initial location READY has an outgoing edge leading to location Done. This edge
includes the guard x ≥ 0 over the clock x. As a result the edge can be taken if the signal a is
received and the guard is fulfilled. A second cyclic edge exists that can be taken if the signal
b is received. A third edge exists leading to location WORKING. This edge contains the
internal signal σε that do not need to synchronize with any other TIOA. Further, when taking
this edge clock x is reset to zero. Location WORKING contains the invariant x ≤ 10, allowing
staying in this location for at most 10 time units. For allowing a better understanding question
marks are used for depicting input signal that are received and exclamation marks are used
for depicting output signals that are send. Internal signals do not contain exclamation, resp.
question marks. Solid lines depict controllable edges and dashed lines depict uncontrollable
edges.

Ar is not progressive because each time Ar enters location WORKING, no signal included
in the input I is observable on Ar for at least two time units. As a result Ar is not progressive
because a reachable state exists, when being in location WORKING, where traces of the
form α := 0a0a... are not observable. Nevertheless, Ar is receptive because a strategy
A′ exists for which holds A′ is progressive. Such a strategy exists, e.g., by disabling the

13It is not required to compare the strategies. Strategies in [16], like also done in this work are defined to be
orthogonal because different strategies of compatible TIOA do not share signals or variables (clocks or attributes)
and controllable edges are restricted to those including internal signals.
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edge from READY to WORKING. Because the solid edges include only signals of H and
all remaining edges are only enabled if the edges of the original TIOA are enabled, A′ is a
valid strategy according to Def. 14. This is the case because in each reachable state of A′

any trace α, consisting of arbitrary sequences of signals a and b as well as time delays can
be observed while excluding deadlocks or zeno traces consisting of internal signals. As a
result Ar obviously is receptive. The previously discussed implications of progressive and
receptive behavior can also be found in the example of Fig. 8. As soon as Ar is able to reach
a state where no signal of I can be consumed for longer than zero time units, the property of
progressive behavior is violated. For the receptive TIOAAr holds that it can be refined by the
strategy A′, excluding all states where signals in I cannot be observed for more than zero
time units, or in other words the example works fine (behaves progressive) when avoiding
location WORKING (consuming time). The resulting progressive TA, resp. TIOA A′ is shown
in Fig. 9.

x >= 2

READY

WORKING

DONE

x <= 10

x := 0

x >= 0

b?

b?

a

a?

d!

Figure 8: A TIOAAr=(A,I,O,H) being receptive and not progressive with I={a,b}, O={d},
H={σε}, and a single clock x.

READY DONE

x >= 0

b?

b?

a

a?

Figure 9: A TA, resp. TIOA A′ being progressive with I = {a,b}, O = {d}, H = ∅, and the
single clock x.
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5 Language Progressive and Language Receptive TIOA

As discussed in Section 4, the properties of progressive and receptive behavior are too
demanding and cannot be fulfilled by typical embedded real-time systems using restricted
resources (requirement (R2)). This is also reflected by the application example introduced
in Sec. 3, where states, respectively locations exist, not allowing receiving an input signal
due to the fact that during processing already received signals, no new signals are allowed
to arrive. As a consequence, based on the previously defined properties, which exclude
deadlocks and zeno-behavior for any possible environment that allows time to diverge, now
relaxed conditions are defined. Receptiveness and progressiveness of an automaton A is
expected only w.r.t. the given input language Υ, and not for arbitrary sequences of input
signals. The relaxed conditions do not require that a component need to be capable of
receiving an arbitrary finite amount of signals in an arbitrary time frame, and as a result
support systems with limited resources, fulfilling requirement (R2). Similarly to receptive
resp. progressive behavior, it is required that the automaton has no undesired behavior in
the form of deadlocks or zeno-behavior for those traces that are included in Υ. Following
only TIOA AΥ with traces(AΥ) ⊆ Υ that do not include a deadlock state or zeno trace are
considered to be a valid representation of input languages. In the reminder of this work a
zeno and deadlock free TIOA is called a valid TIOA. In other words, A is not able to produce
any internal zeno-behavior nor runs into a deadlock, if the environment sends an arbitrary
sequence (trace) of signals to A that is included in Υ.

Definition 15 (Language Progressive)
A TIOA A = (A, I,O,H) is called Υ-progressive (written as Υ proA) for language Υ with
signals(Υ) ⊆ I and Υ not including a deadlock or zeno trace if for all compatible and valid
TIOA AΥ with traces(AΥ) ⊆ Υ holds: AΥ ‖ A does not include a deadlock or zeno trace.

Informally, a TIOA A is Υ-progressive if it never generates a zeno or deadlock trace if only
sequences of signals are sent to A that are included in Υ. Υ is an input language of the
TIOA A containing no deadlock and zeno traces. For all TIOA AΥ that do only contain
signals of the input signals of A, AΥ ‖ A does not include a deadlock or zeno trace. By
construction, a zeno trace can only exist in the parallel composition of two TIOA, if at least
one TIOA already includes a zeno trace. This is the case because due to synchronization
in our model of TIOA transitions can only be removed, but not added. Because zeno traces
cannot be invented by the composition and only zeno free TIOA are considered, following
only the parallel product of zeno free TIOA is considered. The correctness of a parallel
product can only be violated if a deadlock is introduced by the composition of valid TIOA.
Thus, following only deadlock traces, resp. deadlock states are considered as undesired
properties occurring during composition.

It is also possible to specify a condition based on the states and transitions included in the
induced timed system TA of A, indicating if the property of language progressive behavior is
violated for a TIOA A and a language Υ. For this purpose first a so-called transition blocking
state of the induced time system of TIOA A is defined.
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Definition 16 (Transition Blocking State)
Given a valid TIOA A = (A, I,O,H), its induced timed system T = (Σ,S,S0, T ) and a
language Υ with traces(A)�I = Υ. A state s ∈ S is called a transition blocking state if
∃α ∈ Υ, α = β ◦ t ◦ γ with β ∈ traces to(s,A) and ¬∃t2 ∈ T (s) with:

• t2�I ` t if t ∈ Σ (if t is a signal),

• t2�I ` t if t ∈ R+ (if t is a time delay).

Intuitively Def. 16 states that a state is reachable in the induced timed system of the TIOA
A that can be reached via a prefix of a single trace α of the language Υ, but continuing this
same trace is not possible from this state of the induced timed system of A.

Following in Theorem 5.1 it is shown that a TIOA violates the property of language progres-
sive behavior, iff, a transition blocking state according to Def. 16 exists.

Lemma 5.1 (Language Progressive Condition)
For a given valid TIOA A = (A, I,O,H), its induced timed system T = (Σ,S,S0, T ) and a
language Υ with traces(A)�I = Υ holds: ¬Υ proA, iff, a transition blocking state s according
to Def. 16 exists for the language Υ.

Proof 5.1
Two directions are shown separately: 1) Assuming ¬Υ proA, with A = (A, I,O,H) and
no state s according to Def. 16 is included in the induced timed system T . By definition
a compatible, deadlock and zeno free (valid) TIOA An need to exist with traces(An) ⊆ Υ
and An ‖ A including a deadlock trace. This deadlock trace need to lead to a deadlock
state sd of the induced timed system TAn‖A. Thus, there also need to exist a deadlock trace
αd ∈ traces to(sd,An ‖ A) leading to sd. For αd = β (β like used in Def. 16) holds there need
to exists an α with α = β ◦ t ◦ γ, α ∈ traces(An) and α not being a deadlock or zeno trace
(An is valid). Because in the deadlock state sd no transition is observable in that state, also
no transition t2 with α = β ◦ t ◦ γ and t2�I ` t is included in the induced timed system of A
leading to a contradiction.

2) Assuming Υ proA and a state according to Def. 16 exists. Because s exists in the induced
timed system ofA and s is reachable via a trace β ` α with α ∈ Υ, a TIOAAα exists for which
holds α = traces(Aα), allowing observing only the single trace α. For the parallel product
Aα ‖ A holds either s is reachable via β or a deadlock occurs (α is the only observable trace).
If s is reachable via β, s is a deadlock state by construction or s is not reachable because of
a deadlock not allowing reaching s. In both cases Aα is a counter example indicating that
¬Υ proA leading to a contradiction.

Informally spoken Lemma 5.1 states that if and only if a state s is reachable in the induced
timed system T of A, for that holds it can be reached via a prefix of an input trace taken
from the input language Υ, but continuing the same trace is not possible from that state, the
property of Υ proA is violated. In other words, if A is able to prevent the continuation of a
trace α included in the input language in a state reachable via a prefix of α, the property of
language progressive behavior is violated.
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Based on the definition of language progressive behavior the property of language receptive
behavior is defined as a relaxed condition of receptive behavior like given in [16].

Definition 17 (Language Receptive)
Let A = (A, I,O,H) be a valid TIOA. A is called Υ-receptive (written as Υ recA) if a valid
strategy A′ for A exists with: Υ proA′.

Informally, a TIOA is Υ-receptive if it can be refined by a strategy to a Υ-progressive TIOA.

Figure 10: The two TIOA: AΥ = (A, I,O,H) with I = {}, O = {a1, a2}, H = {} and single
clock x1 and Arec = (A, I,O,H) with I = {a1, a2}, O = {b1}, H = {d1, d2} and single clock
x2.

For an example of a TIOA Arec that is Υ recArec with Υ = {α} and α := 5 a1 1 a2... see
Fig. 10. Arec is not language progressive due to the fact that location l3 is reachable by
taking at point in time 0 the edge to location l2. Trace β := 0 d2 0 d1... can be observed
leading to l3. When being in location l3 a deadlock occurs in case of the parallel product
AΥ ‖ Arec.

Nevertheless, a strategy A′ for Arec exists with Υ proA′. A′ can be derived by simply
disabling the edge between locations l1 and l2. As a result, only one trace of the form
α1 := 5 α1 0 b1 1 α2... remains observable on Arec, leading to location l3 where time can
diverge. For AΥ being a compatible TIOA representing Υ holds, no zeno or deadlock trace
exist in AΥ ‖ A′. In our example this can be obviously seen because Υ only includes a single
trace. Thus, the property of language receptive behavior is fulfilled due to the existence of
A′.

5.1 Checking Language-Progressive TIOA

Following it is shown how to check if the property Υ proA is fulfilled for a given TIOA AcΥ,
with traces(AcΥ) = Υ. According to Lemma 5.1 this property is fulfilled if no transition block-
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ing state according to Def. 16 exists in A, reachable under a trace included in Υ, its input
language. It is shown how to transform any given TIOA AΥ, with traces(AΥ) = Υ, to a TIOA
AcΥ, with traces(AcΥ) = Υ, fulfilling the property that each transition blocking state of A leads
to at least one deadlock state in the parallel product AcΥ ‖ A. Thus, iff, AcΥ ‖ A includes a
deadlock, the property Υ proA is not fulfilled. This transformation is later on used to create
a testbed allowing deciding if the property of language progressive behavior is fulfilled. The
overall procedure is sketched in Fig. 11. First, based on a given TIOA AΥ, representing the
input language Υ, a modified version AcΥ is derived representing the same input language.
In contrast to the original TIOA AΥ, AcΥ includes a deadlock if at least one transition blocking
state is reachable in AcΥ ‖ A. Accordingly, the parallel product AcΥ ‖ A is created allowing
deciding if Υ proA, if (and only if) no deadlock is included in this parallel product.

For being able checking if the property Υ proA is fulfilled for a given TIOAAcΥ, with traces(AcΥ)
= Υ, first a condition under that a violation of language progressive behavior can be detected
in form of a deadlock when building the parallel product AcΥ ‖ A is defined. In Theorem 5.1 a
property is defined, if fulfilled, AcΥ ‖ A includes a deadlock, if (and only if) Υ proA is violated.
Afterwards it is shown how to transform any given TIOA AΥ, with traces(AΥ) = Υ, to a TIOA
AcΥ with traces(AcΥ) = Υ, fulfilling the property defined in Theorem 5.1. This transformation
is later on used to create a testbed, allowing deciding if the property of language progressive
behavior is fulfilled. The only precondition is that a TIOA is available being a valid represen-
tation of the input language. Such a TIOA can be found in a component based architecture
by the neighbored component sending input signals to A.

First a transition enforcing state is defined. A transition enforcing state is a state where either
exactly one single signal can be send or time is allowed to pass.

Definition 18 (Transition Enforcing State)
Let AcΥ be a valid TIOA and TΥc = (ΣΥc ,SΥc ,S0

Υc , TΥc) be the induced timed system of AcΥ.
s ∈ SΥc is called a transition enforcing state if ∀t ∈ TAΥc

(s) holds: either t = s
σε−→ s′

containing the empty signal or t = s
σ−→ s′ with σ ∈ ΣΥc and |TAΥc

(s)| = 1 or t = s
τ−→ s′

with τ ∈ R+.

Input
TIOA Transformation Transformed Input

TIOA

Y Y
c

Testbed

Transformation preserves:

Analyzed Component

Y
ctraces(       ) = traces(       )Y

Figure 11: The schematic description of the analysis for language progressive behavior.
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Based on the definition of a transition enforcing state a transition enforcing TIOA is defined.
Such a transition enforcing TIOA is defined based on all observable states and transitions
(discrete or continuous) of its induced timed system.

Definition 19 (Transition Enforcing TIOA)
Let AcΥ be a valid TIOA and TΥc = (ΣΥc ,SΥc ,S0

Υc , TΥc) be the induced timed system of
AcΥ. AcΥ is called a transition enforcing TIOA if ∀β, s, t with β ∈ traces to(s,AcΥ), s ∈ ScΥ
and t ∈ T cΥ(s) holds: ∃s2 ∈ ScΥ with β ∈ traces to(s2,AcΥ) being a transition enforcing state
according to Def. 18 with t ∈ T cΥ(s2).

More informally spoken Def. 19 can be described as follows. Assuming a TIOA AcΥ repre-
senting a language. If for this automaton holds: for any state s, being reachable via a trace
β allowing observing transition t (beneath other transitions in this state), Def. 19 holds, iff, a
state s2 is reachable via β only allowing observing transitions which are equal to t or which
are a prefix of t.

It needs to be considered that a transition enforcing TIOA is not necessarily a determin-
istic TIOA. Beneath the transition enforcing states additional states with nondeterministic
transition relations are allowed to exist. Further, the successor states can potentially be
nondeterministically chosen, also in case of a transition enforcing state.

Based on Def. 19 a condition can be defined allowing deciding if the property of language
progressive behavior is fulfilled.

Theorem 5.1 (Language Progressive Test)
Let A = (A, I,O,H) be a valid TIOA and AcΥ = (AcΥ, I

c
Υ, O

c
Υ, H

c
Υ) be a valid transition enforc-

ing TIOA according to Def. 19 with I = OcΥ, IcΥ = ∅ and Υ = traces(AcΥ).

It holds ¬Υ proA, iff, AcΥ ‖ A includes a deadlock.

Proof 5.2
(sketch) Let TA = (ΣA,SA,S0

A, TA) be the induced timed system of A and TΥc = (ΣΥc ,
SΥc ,S0

Υc , TΥc) be the induced timed system of AcΥ. Two different cases can exist if Theo-
rem 5.1 is not fulfilled: 1) ¬Υ proA and no deadlock is included in AcΥ ‖ A and 2) Υ proA
and a deadlock occurs in AcΥ ‖ A.

Assuming 1): ¬Υ proA and no deadlock is included in AcΥ ‖ A. Because of Lemma 5.1
holds: ∃sA ∈ SA, α ∈ Υ with α = β ◦ t ◦ γ and ¬∃tA ∈ TA(sA) with tA ` t. Because α ∈ Υ
and traces(AcΥ), inAcΥ ‖ A state sA need to be reachable forA in this parallel product. There
need to exists a state ofAcΥ ‖ A whereA is in state sA andAcΥ is in state scΥ with tcΥ ∈ T cΥ(scΥ)
and tcΥ ` t (because α ∈ Υ = traces(AcΥ)). Because AcΥ is a transition enforcing TIOA, a
transition enforcing state s2cΥ ∈ ScΥ of TIOA AcΥ is reachable in the parallel product under
the same circumstances, only containing outgoing transitions of the form tcΥ = s

a−→ s′.
According to Def. 18 such a transition of a transition enforcing state can contain either a
signal or a delay (either a ∈ ΣA or a ∈ R+). In case of a signal a single outgoing transition
exists for this state with tcΥ = t, immediately leading to a deadlock (t cannot be consumed
by A in this state of the parallel product.). In case of a continuous transition, all outgoing
transitions have only delays > 0 and as a result, again, tcΥ is of the form c

Υ ` t, leading to a
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deadlock in the parallel product. As a consequence a deadlock need to occur and leading to
a contradiction.

Assuming 2): Υ proA and a deadlock occurs in AcΥ ‖ A. Because AcΥ is a witness violating
Def. 15, Υ proA cannot be fulfilled leading to a contradiction.

In other words, if the environment of AcΥ (in this case the environment of AcΥ is A) blocks any
transition of AcΥ at any time, a deadlock is reachable in the induced timed system. Because
the involved TIOA are deadlock free in isolation, this deadlock allows deciding if the property
of language progressive behavior is fulfilled. Subsequently it is shown how to transform
any given TIOA representing an input language to a TIOA fulfilling the required properties
of Def. 19, without removing or adding any trace. In this case, it is possible checking for
language progressive behavior according to Theorem 5.1.

5.2 Creating a Testbed

It is following described how to create a testbed allowing deciding if a transition blocking
state according to Def. 16 is included in the induced timed system of A. It is shown how to
construct a modified version AcΥ of AΥ for that holds 1) traces(AΥ) = traces(AcΥ) and 2) for
each transition blocking state s of the induced timed system TA of A, being reachable via an
input trace α ∈ Υ, a deadlock is included in the parallel product AcΥ ‖ A.

According to Def. 16 it is distinguished between the two different types of transitions in form of
discrete and continuous transitions. First discrete transitions s σ−→ s′ of TAΥ

are considered,
where σ ∈ Σ is a signal. Such a transition can exist in a state of the induced timed system
TAΥ

while being blocked in the parallel productAΥ ‖ A, indicating the existence of a transition
blocking state of the TIOA A. As an example see the parallel product of two valid and
compatible TIOA shown in Fig. 12. While the TIOA AΥ = (AΥ, IΥ, OΥ, HΥ) with OΥ =
{a}, IΥ = HΥ = ∅ on the left has the possibility to send signal a at point in time two, the valid
and compatible TIOA A on the right of Fig. 12 is blocking this discrete transition till point in
time three. Thus, a transition blocking state needs to exist in A.

Subsequently the case of a discrete transition t = s
σ−→ s′ of the induced timed system

TAΥ
is considered with s = 〈l, v〉 and s

′
= 〈l′, v′〉. l is the location of state s and v is the

assignment of clock variables in this state. Accordingly l′ is the location of s′ and v′ is the
assignment of clock variables. Following it is shown how to create for each discrete transition
t of each state s = 〈l, v〉 of the induced timed-system of AΥ, a second state s2 = 〈lurgent, v〉,
being reachable via the same trace, allowing only taking discrete transition t2 = s2

σ−→ s′,
including the same signal σ. Each edge of the TIOAAΥ including a signal a ∈ OΥ is replaced
by two edges and an additional urgent location in between. In a timed automaton, an urgent
location is a location where time is not allowed to diverge. Thus, extended TA are used like
defined in Def. 2. The replacing works as follows. Each found edge e = (l, a, ϕ, λ, l′) including
a signal a ∈ OΥ, is replaced by e = (l, ε, ϕ, λ, lurgent), leading to the newly created urgent
location. Additionally an edge ea = (lurgent, a, ∅, ∅, l′) is created including an empty guard,
the signal a and an empty set of updated clocks leading to l′. In Fig. 13 the resulting changed
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TIOA AcΥ is shown. The original TIOA AΥ is shown on the left of Fig. 12. By construction
no trace is added by this modification, due to fact that taking any newly created transition to
the urgent location is possible in the same absolute point of time τ when the original TIOA
AΥ is able to send the associated signal (the transition to the urgent location is reachable
via an ε, the empty signal not occurring in any trace). Thus, no trace is added or removed
by this modification and it holds: traces(AΥ) = traces(AcΥ). Because the edge is leading
to an urgent location, time is not allowed to pass and the urgent location need to be left via
the only outgoing transition sending the signal at point in time τ . Thus, for each state of the
induced timed system where a discrete transition can take place, a state exists (a transition
enforcing state) where only this transition can be taken. As a consequence, by construction
each time a transition blocking state is reached in the parallel product AcΥ ‖ A in form of
a discrete transition, a deadlock need to occur. With modσ(AΥ) the operation realizing the
previously described modifications on the TIOA AΥ is denoted.

Fig. 12 also shows an example where A is blocking a continuous transition of the induced
timed system of AΥ. This is the case because AΥ can stay for 10 time units in the initial
location, but in the parallel product A is blocking the progress of time when clock d is equal
to 5. As a result A enforces AΥ taking a discrete transition, e.g., not allowing taking the
continuous transition s

τ−→ s′ with τ = 6. s = 〈l, v〉 consists of location l as well as the
assignment of clock variables v, and s

′
= 〈l, v′〉 consists of location l and clock variable

assignment v′. According to the definition of an induced timed system like given in Sec. 2,
continuous transitions do not change the location parameter l. Thus, states s and s′ have
the same location parameter.

According to Def. 16 such blocking of continuous transitions is caused by a transition blocking
state and violates the property of language progressive behavior. This is the case because
a trace α = β ◦ t ◦ γ ∈ Υ exists, with α = 6a..., β = 5 and t being a continuous transition
including a τ > 0 for that holds: in state sA of A (at the initial location) at point in time 5, no
transition t2 exists in that state of A with t2 ` t. Following it is shown how to modify AΥ such
that if a continuous transition s τ−→ s′ of TAΥ

is enabled in a state reachable via a trace β, a
second state is reachable via β only allowing taking continuous transitions. In this case AΥ

is in a state respectively a location li where the invariants I(li) = {xi,1 ∼ ci,1, ..., xi,n ∼ ci,n}
with ∼ ∈ {≤,≥, } allow the progress of time for τ > 0. Thus, it is possible to leave this
location via an edge for that holds: the guard {xi,1 ∼ ci,1, ..., xi,n ∼ ci,n} is fulfilled, or in other
word no upper bound of the invariant associated with the location of this state is passed.
AΥ is modified in such a way that for each location li of AΥ a copy l(i,c) is added. Now
for each pair li, li,c an edge ei,c = (li, ε, ϕi,c, λ, li,c) is added, with the guard ϕi,c = {xi,1 ∼
ci,1, ..., xi,n ∼ ci,n} being equal to the invariant of the original location. Thus, this newly
created location can be reached in the induced timed system of AΥ as well as in AΥ ‖ A,
as long as AΥ is able to stay in any state s = 〈li, v〉, allowing taking continuous transitions
only (allow time to pass). Further a second edge ec,i = (li,c, ε, ϕc,i,−, li) is added, with
ϕc,i = {xi,1 ≥ ci,1∨ ...∨xi,n ≥ ci,n},14 leading back to the original location. See the previously
described example of Fig. 12 where the continuous transition s τ−→ s′, with s = 〈l0, {c = 5}〉,
s′ = 〈l0, {c = 6}〉 and τ = 1 being prevented in the induced timed system TAΥ‖A. A copy l0,c

14By choosing the guard of the outgoing transition using the same values for the bounds, but with ≥ instead of
≤ (compared to the original invariant), the transition can be taken if for at least one equation of the invariant and
the guard holds: c ≤ n ∧ c ≥ n being equivalent to c = n, with n being an upper bound of the invariant.
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of l0 is added to AΥ, using the invariants of l0. Further edge e0,c = (l0, ε, {c ≤ 10}, ∅, l0,c) and
edge ec,0 = (l0,c, ε, {c ≥ 10}, ∅, l0) is added. The result is shown in Fig. 14. Unfortunately this
modification introduces zeno behavior as follows. Consider the example shown in Fig. 14.
The newly created edges from and to the copied location l0,c can be taken infinitely often at
the point in time when clock c has the value 10. This is the case because the added edges
do not require time to pass in case clock c has the value 10. For avoiding this effect an
additional attribute variable count is added to the TIOA. This variable is used inside guards
and updates accordingly to prevent zeno behavior like shown in Fig. 14. As result, the newly
created edges can only be taken when re-entering the original location (e.g., location l0).
In the remainder of this work these additional attribute variable are skipped from the used
figures to allow a better understanding. Withmodτ (AΥ) the operation realizing the previously
described modifications related to continuous transition is denoted, applied on the TIOA AΥ.

To conclude, AΥ is modified such that it can decide if it will only take continuous transitions
(allowing time to diverge) till the upper bound of the invariant, restricting the possible con-
tinuous transitions of a location, is reached. The made modifications do not add or remove
any traces to traces(AcΥ) which have not been previously included in traces(AΥ). This is the
case because guards and invariants of the added locations and edges are chosen, such that
AcΥ can decide to prevent sending any signal for a time interval, iff, AΥ is able taking only
continuous transitions for the same time interval (not sending any signal). Further holds, if
AΥ do not need to send a signal for a time period greater than zero, AcΥ is also able to enter
a state where synchronization is not able to force to send a signal for at least the same time
period. Thus, when being in a newly created location in AcΥ ‖ A and A is blocking a discrete
transition, a deadlock needs to occur.

The resulting testbed TB is defined as the parallel composition of AcΥ and A. The construc-
tion of the testbed is summarized in the following definition.

Definition 20 (Testbed)
Let AΥ = (AΥ, IΥ, OΥ, HΥ) and A = (A, I,O,H) be two compatible and valid TIOA with
OΥ = I. The testbed for AΥ and A is defined by the TIOA

TB(AΥ,A) = AcΥ ‖ A

with:

• AcΥ = (AcΥ, IΥ, OΥ, HΥ) = modτ (modσ(AΥ)),

• I = OΥ, H = ∅, O = ∅ and

• traces(AΥ) = traces(AcΥ)

• ∀t ∈ TA(s) with α ∈ traces to(s,A): ∃s′ with α ∈ traces to(s′,AcΥ) being a transition
enforcing state for transition t.

Corollary 5.1
Given two valid and compatible TIOA AΥ and A, each testbed according to Def. 20 allows
deciding if the property Υ proA is fulfilled.
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Proof 5.3
(sketch) By construction the TIOA AcΥ ‖ A includes a deadlock, iff, A has a transition block-
ing state according to Def. 16 (A and AcΥ are valid). Because the testbed only contains a
deadlock iff a transition blocking state is included, the testbed allows to decide if the property
of language progressive behavior is fulfilled.

According to Corollary 5.1 the testbed allows us deciding whether Υ proA by checking free-
dom of deadlock behavior of the testbed. Thus, for an input language Υ, represented by a
TIOA AcΥ with traces(AcΥ) = Υ, we are able to automatically decide whether the language
progressiveness is fulfilled. For the example shown in Fig. 12 this property is not fulfilled.
This is the case because discrete as well as continuous transitions are blocked like previ-
ously discussed. For the TIOA shown in Fig. 16 the property AΥ proA is fulfilled for the TIOA
AΥ shown on the left of Fig. 12.

In contrast to progressive or input enabled behavior, like used in [16] or [10], language pro-
gressive TIOA are not required being able to consume any amount of signals in any time. For
example the TIOA shown in Fig. 16 is allowed to stay in the initial location for one time unit
not being able to consume any signal. Thus, also TIOA are supported that are not able to
consume signals for a given time interval, allowing representing the behavior of components
like described in Sec. 3.

Now the example of the Engine-Control model introduced in Sec. 3 is considered. Lets
consider the two components EngineModel and FuelSensor. Component EngineModel is
sending signals to component FuelSensor (signals of type raw) and accordingly it is of in-
terest weather the TIOA AFS is language progressive for the language defined by the TIOA
EngineModel. By applying the previously described steps on the TIOA representing the com-
ponent EngineModel, a TIOA is achieved fulfilling the conditions like defined in Theorem 5.1.
The resulting TIOA AcEM is shown in Fig. 27. The input signal fuel rate of component En-
gineModel has been removed before applying the modifications. This is the case because
the input signal of component EngineModel is not synchronized in this test and not part of
the language Υ (containing input signals of component FuelSensor, resp. output signals of
component EngineModel).

The TIOA AcEM is created as follows. First, all input-signals are removed (signal fuel rate).
Second, for each location, a copied location is created that allows only to be left if the invari-
ant of the original location does expire. In Fig. 27 the added locations (Init clone, wait clone,
CRV clone and the location without a name) do have the name of the original ones, followed

Figure 12: Blocking a discrete transition included in TAΥ
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Figure 13: Modified TIOA leading to a deadlock in the case a discrete transition is blocked.
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Figure 14: Modified TIOA leading to deadlock in the case a continuous transition is blocked.
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Figure 15: Example of a testbed allowing detecting that the TIOA on the right is not language
progressive for the langue defined by the TIOA on the left.
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Figure 16: A being language progressive for the language defined by the TIOA AΥ shown in
the left of Fig. 12.
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Figure 17: TIOA AcEM for testing language progressiveness of TIOA AFS representing com-
ponent FuelSensor like shown in Fig. 5.

by the postfix clone. The only outgoing transition of each added location, back to the orig-
inal location, has a modified guard like previously described. For the only edge including
an output signal, an urgent location has been created according to the previously described
procedure.

Building the parallel product AcEM ‖ AFS allows to search for deadlocks, indicating that the
property of language progressive behavior is violated. For this purpose the tool UPPAAL [8]
is used. UPPAAL supports model checking timed automata. Due to the fact that each TIOA is
also a TA, UPPAAL can be used for this purpose. The semantics of a deadlock like discussed
in this work and a deadlock like defined in UPPAAL is slightly different. For more information
about these differences as well as how to use UPPAAL for searching deadlocks like defined
in this work, compare Appendix E. Further, UPPAAL supports the generation of examples,
resp. counterexamples for properties that are fulfilled respectively violated (depending on
the property defined). The model checking capabilities of UPPAAL are applied to find out if
the individual components include a deadlock. Only TA are considered that are deadlock and
zeno free (valid TIOA) to be reasonable. UPPAAL is used to verify that the components of
the application example described in Sec. 3 are deadlock and zeno free (well-formed). When
applying model-checking using UPPAAL the resulting state-space of the isolated individual
components turned out to be rather small, as expected.

Afterwards model checking has been applied on the parallel product AcEM ‖ AFS , searching
for a deadlock violating the property of language progressive behavior. A counterexample
has been generated by UPPAAL (see Fig. 18), where AcEM is in a state where signal raw
can be send by AcEM , but AFS is not able to receive this signal in the parallel product.
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Figure 18: Counter example in UPPAAL, violating the property of language progressive be-
havior: AFS reaching a state where the signal raw cannot be consumed while AEM , resp.
AcEM is able to send it.
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It turned out that a path exists leading to a state s, of the induced timed system ofAFS , where
AEM , resp. AcEM is able to send the signal raw but AFS is not able to receive it. Thus, the
property of language progressive behavior is violated according to Lemma 5.1 and Theo-
rem 5.1. The derived counterexample consists of the current locations of the involved TIOA
as well as the possible clock valuations in this state. UPPAAL provides a counterexample in
form of a so-called symbolic state, where all possible clock assignments are represented in
form of equations over clock variables (for more information about the symbolic representa-
tion compare [14, 18]). In our example UPPAAL provides a symbolic state representing an
example for a deadlock like shown in Fig. 18, consisting of location wait of TIOA AFS and
constraints about the clocks p, abs and d15 is of interest:

• p = 6,

• d ∈ [0, 1],

• abs = 6,

• p− d ∈ [5, 6],

• p = abs and

• abs− d ∈ [5, 6].

Accordingly, all concrete clock assignments fulfilling these equations are deadlock states
according to Def. 12. As a consequence a state s1 = 〈l, v〉 exists, with l = RSC and v, the
clock valuation, such that p = 6∧d ∈ [0, 1]∧abs = 6∧p−d ∈ [5, 6]∧p = abs∧abs−d ∈ [5, 6],
reachable under the parallel product of AcEM ‖ AFS , violating the property of language
progressive behavior (traces(AcEM ) proAFS).

Detecting violations of language progressive behavior as well as identifying states is the
first step for achieving a deadlock free and valid architecture. Removing such violations
is the next step. In the following section it is shown how to use timed games for deriving
configurations that avoid such states. Fortunately, techniques and tools already exist (see [7,
9]), allowing searching for strategies avoiding states.

5.3 Checking Language Receptive TIOA

Checking if a TIOA A = (A, I,O,H) is language progressive Υ proA according to Def. 15
for a language Υ, represented by an automaton AcΥ, can be achieved using the testbed
described in the previous section by searching for deadlock states.

Assuming the case that the resulting TB includes a deadlock (¬(Υ proA)). According to
Def 17 a strategy A′ can exists with Υ proA′, if A = (A, I,H,O) is language receptive for Υ.
Following it is described how to achieve strategies A′ for A, fulfilling the property Υ proA′.

15Constraints about clocks of the TIOA representing the EngineModel (p3 and d3) are not considered because
in the used framework only the state-information of AFS .

33



S. Neumann and H. Giese

A is used for defining a timed game where at most those edges containing signals of H (or
no signal) are controllable like described in Sec. 2.2. All modified TA that are a valid strategy
according to Def. 14 can be used to remove undesired behavior, e.g., in case of deadlocks.

The previously described example of the FuelSensor is investigated, where the testbed
shown in Fig 18 indicates that the property of language progressive behavior is violated. The
derived counterexamples, in case of discovered deadlock-state s1 of the testbed, respectively
the state information of the deadlock-state that can be observed on AFS only, can be used to
search for a strategy A′FS of the TIOA AFS , avoiding this state. For this purpose a goal need
to be defined for a timed two player game. Such a goal is defined by the state s = 〈l, v〉 with
l = wait and v, being a variable valuation, such that p = ∧d ∈ [0, 1]∧abs = 6∧p−d ∈ [5, 6]∧p =
abs∧abs−d ∈ [5, 6] (p, abs and d are clock variables). The goal is defined as follows: avoid all
states s1 observable on AFS , for that hold: the current location is equal to l and for the possi-
ble clock assignments holds p = ∧d ∈ [0, 1]∧abs = 6∧p−d ∈ [5, 6]∧p = abs∧abs−d ∈ [5, 6].

One valid strategy avoiding this state is the TIOA A′FS shown in Fig. 19. The only difference
compared to the original TIOA AFS , like shown in Fig. 5, is, that the controllable transition
from the initial location to location DSF can only be taken if the clock variable p has a value
greater or equal to 7. Thus, a state according to s can no longer be reached, due to the fact
that p is always greater than 7 when entering location wait.

While the previously shown strategy (A′FS) is derived manually, tool support exists for au-
tomation support. Timed two player games can be formulated within the tool UPPAAL TIGA
(see [7]). UPPAAL TIGA is a branch of UPPAAL, allowing deciding if a strategy exists as well
as allowing to automatically synthesizing a strategy. For this purpose edges included in the
TIOA AFS = (AFS , IFS , HFS , OFS) are divided into controllable and non-controllable. Like
described in Sec. 4, only edges not including signals of IFS and OFS , not containing input or
output signals, are allowed to be controllable in our framework of TIOA. The resulting TIOA
is shown in Fig. 20, where all dashed edges are defined to be uncontrollable and all solid
edges are defined to be controllable. In this example only the edge between location Init
and location DSF is defined to be controllable. This edge is associated with the decision at
which relative point in time within each period of 10 ms the functionality, represented by the
locations DSF, RSC and RSC2, is triggered. At a more technical level this decision can be
seen as a scheduling configuration, deciding what is the last possible time within each period

Figure 19: The TIOA A′FS representing a valid strategy for AFS .
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of 10 ms to trigger the functionality included in component FuelSensor. In the original TIOA
depicted in Fig. 5, this relative point in time is reached in case the clock variable p, included
in the invariant of location Init, has reached the value 7. Within the timed game this edge is
defined to be controllable, allowing searching for a strategy where this relative point in time
can be chosen arbitrary as long as not violating the invariant of location Init. Further, the goal
of the timed game is defined as follows: all states s = 〈l, v〉 for which hold s is in location
l=DSF with a variable assignment of v like previously described, have to be avoided. In other
words, the goal of the game is not to reach a state according to s1.

UPPAAL TIGA is trying to find a strategy fulfilling this goal and as a result decides if such a
strategy can exist. Further, UPPAAL TIGA allows to synthesizing a strategy that fulfills this
goal. Because in UPPAAL TIGA strategies are not defined directly as a timed automaton,
the semantics are slightly different such that strategies are functions that, based on the full
history, specify the next allowed transition. The strategies used in this work are memoryless
and defined based on TA. As a consequence the synthesized strategies cannot be directly
used in any case as a valid strategy like defined in Def. 14. Nevertheless, the derived
strategies can potentially be used to derive appropriate solutions for solving the conflict. How
to automatically achieve strategies that can be directly used as a TA or how to transform a
given strategy synthesized by UPPAAL TIGA to a TA is considered to be future work.

6 Compositional Reasoning - Supporting Single I/O Ports

Based on the previously defined property of language progressive/receptive behavior, the
compositional reasoning scheme is introduce in this section. It is shown how to build an
overall valid (deadlock and zeno free) architecture, based on individual valid (deadlock and
zeno free) atomic components while only applying local checks is required.

Figure 20: The TIOA AFS with edges being grouped into controllable and non-controllable.
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6.1 Well-Formedness - Language Progressive

Based on the definition of language progressive behavior, a well-formedness criterion for a
single component is defined.

Definition 21 (Well-formed Component)
A component with TIOA A = (A, I,O,H) is well-formed if Υ proA according to Def. 15 and
Υ being the input language of A, only including signals of I.

A TIOA AΥ, representing the input language Υ, can be obtained by taking the TIOA associ-
ated with the neighbored component that is sending signals to A.

Following two neighbored components are considered while the output of the first is con-
nected to the input of the second. Given TIOA A1 = (A1, I1, H1, O1), representing the
behavior of the first, and A2 = (A2, I2, H2, O2), representing the behavior of the second
component, while both are valid and compatible such that O1 = I2.

Theorem 6.1 (Composed Components)
The parallel composition of two well-formed compatible components represented by TIOA
A1 = (A1, I1, O1, H1) ‖ A2 = (A2, I2, O2, H2) with compatible TIOA A1 and A2 is well-formed
and valid if traces(A1)�I2 proA2.

Proof 6.1
The parallel construct A1 ‖ A2 can only be not well formed if ¬Υ1 proA1 ‖ A2. This can only
be the case if A2 blocks at least one transition included in A1, what is not possible because
traces(A1)�I2 proA2.

The first result is, that two compatible and well-formed components, sharing either input or
output signals, is valid (deadlock and zeno free). Following it is shown that also the property
of language progressive behavior is preserved under composition.

Theorem 6.2 (Well-Formed Composition)
Given the parallel composition of two valid, compatible and well-formed components repre-
sented by TIOA A1 = (A1, I1, O1, H1) ‖ A2 = (A2, I2, O2, H2) with O1 = I2 and all other
signal sets are disjoint. If Υ proA1 and A1�O1 proA2, it follows that A1 ‖ A2 is well-formed
for language Υ (Υ proA1 ‖ A2).

Proof 6.2
(sketch) Assuming ¬Υ proA1 ‖ A2 (not well-formed). Let T1 = (Σ1,S1,S0

1 , T1) be the induced
timed system of A1, T2 = (Σ2,S2,S0

2 , T2) be the induced timed system of A2 and T1,2 =
(Σ1,2,S1,2,S0

1,2, T1,2) be the induced timed system of A1 ‖ A2. It holds that a state s1,2 =
〈〈l1, l2〉, 〈v1, v2〉〉 exists being a transition blocking state for a trace α = β ◦ t ◦ γ ∈ Υ with
s1 = 〈l1, v1〉 ∈ S1, s2 = 〈l2, v2〉 ∈ S2 and ¬∃t2 ∈ T1,2(s1,2) such that t2�I1 ` t. Because of
Υ proA1 it holds: ∃t3 ∈ T1(s1) such that t3�I1 ` t. Thus, due to synchronization with A2 this
transition t3 is no longer observable on s1,2. t can be a delay or signal of I1 only. If t is a delay
and in s1,2 no transition is observable allowing time to diverge, the induced timed system T2 of
A2 includes a transition blocking state s2 for A1�O1, traces(A1)�O1 proA2 cannot be fulfilled
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leading to a contradiction. t can also be a signal included in I1 that is observable on state s1

of A1. Because no signal in I1 is synchronized with A2 in A1 ‖ A2, this transition needs to be
preserved in state s1,2 resp. T1,2(s1,2). This cannot be the case and leads to a contradiction.

Theorem 6.2 states that the composition of two well formed components, represented by
TIOA A1 and A2, while the second consumes signals send by the first, is well-formed for the
(input) language Υ of A1. Following a well-formedness condition for multiple components
connected in an acyclic form is defined.

Theorem 6.3 (Multiple Components)
The parallel composition of n well-formed and pair wise compatible components represented
by TIOA A1 ‖ ... ‖ An, for that hold Oi−1 = Ii, with i ≤ n and all other sets of signals are dis-
joint, is well formed and valid if for each Ai−1 = (Ai−1, Ii−1, Oi−1, Hi−1), Ai = (Ai, Ii, Oi, Hi)
with (i− 1, i), i ≤ n holds Oi−1 = Ii and traces(Ai−1)�Oi−1 proAi.

Proof 6.3
(sketch) For An−1 ‖ An, because of Theorem 6.2 holds: if traces(An−2)�On−2

proAn−1 and
traces(An−1)�On−1 proAn, it follows that traces(An−2)�On−2

proAn−1 ‖ An. By renaming
An−1 ‖ An = A′n−1, it follows inductively for An−2 ‖ A′n−1 that Theorem 6.3 need to be
fulfilled for the overall archtecture.

For the cutout of an overall architecture like shown in Fig. 21 the reasoning scheme allows
checking the correctness of the composition by only applying local checks including at most
two neighbored components at a time. Thus, instead of being required checking all involved
TIOA at once using the parallel product A1 ‖ A2 ‖ A3 ‖ A4, the reasoning scheme allows
checking only pairs of neighbored components of language progressive TIOA.

Figure 21: Simplified example of an architecture representing multiple components by TIOA
A1, ...,A4.

In summary, the introduced reasoning scheme scales (R1), supports the example introduced
in Sec. 3 containing components with restricted resources (R2) and that supports protecting
IPs (R3) by only requiring to provide details of neighbored components for realizing the local
checks. How requirement (R3) can be further supported is briefly discussed in Sec. 9. As a
result, only complex architectures containing multiple ports and cyclic structures (R4) are not
sufficiently supported by the introduced approach. In the following the approach is extended
such that more complex architectures (R4) containing cyclic dependencies are supported.
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6.2 Limitations

Unfortunately, the property of language progressive behavior is not sufficient for supporting
cyclic architectures. As an example consider the two TIOA shown in Fig. 22.

Figure 22: Two compatible TIOA A1 = (A1, I1, H1, O1) and A2 = (A2, I2, H2, O2) with O1 =
I2 = {b}, O2 = I1 = {a} and H1 = H2 = ∅.

Fig. 22 shows an example of two TIOA A1 = (A1, I1, H1, O1) and A2 = (A2, I2, H2, O2)
for that hold traces(A1)�O1 proA2 and traces(A2)�O2 proA1. The only trace observable on
A1 is α1 = 5 b 0 a ∞ and the only trace observable on A2 is α2 = 5 a 0 b ∞. While for
Υ1 = traces(A1)�O1 = {(5 b ∞)} and Υ2 = traces(A2)�O2 = {(5 a ∞)} holds Υ1 proA2

and Υ2 proA1, for the parallel product A1 ‖ A2 a deadlock obviously exists (signal b cannot
be send by A1 in the initial state and as a result no transition at all can be taken). Thus, an
example of two compatible, valid and pairwise language progressive TIOA connected in a
cyclic architecture exist that includes a deadlock.

The same holds for the example shown in Fig. 23, where signal a, resp. b cannot be received.

Figure 23: Two compatible TIOA A1 = (A1, I1, H1, O1) and A2 = (A2, I2, H2, O2) with O1 =
I2 = {b}, O2 = I1 = {a} and H1 = H2 = ∅.

In both cases (shown in Fig. 22 and Fig. 23) it holds that each involved TIOA contains a
trace where input and output signals are sent and received without time in between. As an
example, the TIOA A1 of Fig. 22 allows observing the trace α = 5 b a∞, where b is an output
signal and a is an input signal. Such a trace of a TIOA is defined as follows.

Definition 22 (Zero-Time Input/Output Trace)
A TIOA A = (A, I,O,H) contains a zero-time input/output trace if ∃α ∈ traces(A) with
α = β ◦ γ ◦ δ, time(γ) = 0, signals(γ) ∩ I 6= ∅ and signals(γ) ∩O 6= ∅.

Thus, each TIOA containing a zero-time input/output trace allows to observe at least one
trace where an input signal is received without any delay after sending an output signals or
an output signal is send without any delay after receiving an input signal.
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Following a condition is given by Theorem 6.4 allowing excluding deadlocks in a cyclic case
of language progressive TIOA if for at least one of the TIOA a zero-time input/output trace
can be excluded.

Theorem 6.4
For two compatible and valid TIOA A1 = (A1, I1, O1, H1) and A2 = (A2, I2, O2, H2) with
O1 = I2, O2 = I1, A1�O1 proA2 and A2�O2 proA1 holds: if ¬∃α1 ∈ traces(A1) being a zero-
time input/output trace or ¬∃α2 ∈ traces(A2) being a zero-time input/output trace, it follows
A1 ‖ A2 is deadlock free.

Proof 6.4
It directly follows from Lemma A.5 (cf. Appendix A) that a deadlock can only occur if both
TIOA include such a trace. Thus, if only one TIOA does not include a zero-time input/output
trace, no deadlock can occur.

The main result of Theorem 6.4 is, that if at least one TIOA requires time to pass between
each pair of send and received signals, no additional deadlock can occur in the cyclic case.
The proof of Lemma A.5 has been moved to Appendix A.

Because the composition of an arbitrary number of connected components with at most a
single input and output port can be understood as one TIOA, each case can be reduced to
a system consisting of two components only, like shown in Fig. 24. In Fig. 24 the two com-
ponents represented by the TIOA A1 and A2 are connected in an acyclic form and become
the TIOA A1||2, where signals O1 = I2 become internal. Thus, according to Theorem 6.4
it is sufficient that component A3 is language progressive for A1||2, resp. A1||2 is language
progressive for A3, and that A3 or A1||2 (one is sufficient) contains no zero-time input/output
trace. Because for acyclic structures according to Theorem 6.2 the property of language pro-
gressiveness is preserved under composition for A1||2 = A1 ‖ A2, it only need to be ensure
that zero-time input/output traces can be excluded for A3 or A1||2 (one is sufficient). Follow-
ing it is shown how to automatically check if a component excludes zero-time input/output
traces.

   

1 2 3

Comp 1 Comp 2 Comp 3
1||2 O2

I1

I2 I3

O1

O3

1||2
=(A1||2,I1,H,O2)

Figure 24: A (cyclic) composition of components can be understood as two components
being composed, resulting in a single component.
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6.3 Input/Output delayed TIOA

In this section it is discussed, based on the given application example, how to check if a
TIOA contains delays between each pair of consecutive send and received signals. If at
least one TIOA does not include a zero-time input/output trace, contained in an architecture
of components connected in a cyclic form, according to Theorem 6.4 the composition of
multiple valid and pairwise language progressive TIOA is valid.

Subsequently it is show how to construct a testbed allowing deciding if a zero-time input/out-
put trace is included in the set of traces observable on a given TIOA A = (A, I,O,H). For
this purpose an initial TIOA AI,O = (AI,O, II,O, OI,O, HI,O) is created containing five loca-
tions l0, lI , lIErr, lO, lOErr and a single clock x that is not contained in A. Further, signal sets
are chosen as follows: II,O = O, OI,O = I and HI,O = ∅. Thus, AI,O is able to receive
signals send by A and able to send signals that can be received by A.

The construction works as follows: l0 is the initial location of AI,O not containing any invari-
ant. For each signal σ in II,O an edge eσ = (l0, σ, ∅, {x}, lI) is added leading to location lI
containing an empty set of guards and resetting the clock x to zero. Thus, from the initial
location any signal potentially send by A can be received in the initial location leading to
location lI while clock x is reset to zero when taking the edge. For each signal σ2 ∈ OI,O a
second edge eσ2 = (lI , σ2, ϕ, lIErr), with ϕ = x ≤ 0 is added. No outgoing transition exists in
location lIErr while an invariant x ≤ 0 is added to this location. Thus, once AI,O is in location
IIErr, a deadlock occurs (no discrete and no delay transitions are possible). One additional
edge eI,0 = (lI , σε, ∅, ∅, l0) is added, not containing any signal, guard or update, leading back
to the initial location.

The same is applied for all signals σ ∈ OI,O. For each σ an edge eσ = (l0, σ, ∅, {x}, lO) is
added. Thus, from the initial location any signal potentially received by A can be send in the
initial location while clock x is set to zero when sending the signal. For each signal σ2 ∈ II,O
a second edge eσ2 = (lO, σ2, ϕ, lOErr), with ϕ = x ≤ 0 is added. No outgoing transition exists
in location lOErr while an invariant x ≤ 0 is added to this location. Thus, once AI,O is in
location IOErr, a deadlock occurs (no discrete and no continuous transitions are possible).
One additional edge eI,0 = (lO, σε, ∅, ∅, l0) is added leading back to the initial location, not
containing any signal, guard or update.

By construction holds location lOErr and location lIErr are reachable, iff, at least one input
signal is send without any delay after receiving an output signal, resp. an input signal is
received without any delay after sending an output signal. Only in location lOErr or location
lIErr a state can exists where a signal cannot be send or received for longer than zero
time units, necessarily leading to a deadlock.16 In any other state either all signals can be
received, resp. send or a successor state is reachable in zero time (when being in location lI
or lO) where all signals can be received or send. An example of a testbed, allowing checking
if a zero-time input/output trace is observable on a given TIOA, is shown in Fig. 25. It consists
of the previously described five locations l0, lI , lO, lIErr and lOErr. Additionally, edges are
added for signal raw and signal fuel rate according to the previously described procedure.

16Time cannot diverge and because each TIOA need to be valid and zeno-free, there need to be a last discrete
transition that can be taken if time is not able to diverge.
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Figure 25: TIOA AEMIO for checking absence of zero-time input/output traces for the TIOA
AEM , representing the behavior of component EngineModel.

Fig. 25 shows a testbed allowing deciding if a zero-time input/output trace is observable on
the TIOA AEM , representing the behavior of component EngineModel. Iff, the TIOA AEM is
able to send and receive signals without any time-delay in between, location lIErr or lOErr are
reachable, and a deadlock is reachable in the induced timed-system of the parallel product
AEMIO ‖ AEM .

7 Compositional Reasoning - Supporting Multiple I/O Ports

Based on the previously given definition of language progressive behavior an overall reason-
ing scheme for architectures with arbitrary structures is defined. First, the reasoning scheme
is extended for supporting components containing multiple input and output ports. Second, it
is shown how to support cyclic connections using components with multiple ports. By doing
so, a reasoning scheme is defined supporting all requirements (R1)...(R4).

7.1 Well-Formedness - Supporting Multiport Components

Till now a reasoning scheme has been defined supporting components represented by TIOA
where each component has one input and/or one output port only. Following the reasoning
scheme is extended to support components with multiple ports like included in the example
shown in Fig. 1.

The formal description of a component with n different input and m different output ports,
represented by the TIOA A = (A, I,O,H), is realized by partitioning the input signals I
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respectively the output signals O. The partitioning of input signals results in different sets
I1, ..., In with I1∩ ...∩In = ∅ such that I1∪ ...∪In = I. Partitioning of output signals O results
in sets O1, ..., Om with O1 ∩ ... ∩ Om = ∅ such that O1 ∪ ... ∪ Om = O. The language of the
input port i is defined by Υi consisting only of signals in Ii. Accordingly the language for the
output port j is defined by the Θj consisting only of signals in Oj . By construction via the
partitioning of signals it is ensured that Υ1 ∩ ... ∩Υn = ∅ and Θ1 ∩ ... ∩Θm = ∅.

Given a TIOA A = (A, I,O,H) and the set of input ports I1, ..., In associated with the related
languages in form of trace sets Υ1, ...,Υn, and the set of output ports O1, ..., Om associated
with the languages Θ1, ...,Θm. It is required for a component to be well formed that the prop-
erty of language progressive behavior is fulfilled for all traces resulting from the interleaving
of the languages associated with the input ports. The interleaving of languages is defined in
form of the product language according to Def. 23.

Definition 23 (Product language)
For a finite set of signals Σ, let Σω denote the set of all finite and infinite traces over Σ.
Given two languages Υ1 and Υ2 with Σ1 = signals(Υ1) and Σ2 = signals(Υ2) such that
Σ1 ∩ Σ2 = ∅. The product language over Υ1 and Υ2 is defined by:

Υ1 ×Υ2 =
{
α ∈

(
Σ1 ∪ Σ2 ∪ R+

)ω | α�Σ1 ∈ Υ1 and α�Σ2 ∈ Υ2

}
As an example the product language of the two languages Υ1 = {α1} and Υ2 = {α2} with
α1 = 1 a ∞ and α2 = 1 b ∞ is {{1 a b ∞}, {1 b a ∞}}, where ∞ is the progress of time
against infinity.

Consider the parallel product A1 ‖ A2 of the two valid TIOA A1 = (A1, I1, H1, O1) and
A2 = (A2, I2, H2, O2) with disjoint signals and variables (clocks and attributes). In other
words both TIOA are independent because they do not share any syntactical elements that
need to synchronize. Because synchronization does not occur and no deadlock or zeno
behavior can exist (because both are valid), the observable traces traces(A1 ‖ A2) are
equal to the product language of the individual trace sets traces(A1)× traces(A2).

Theorem 7.1
The language Υ1,2 of the parallel product of two valid TIOA A1 = (A1, I1, H1, O1) and A2 =
(A2, I2, H2, O2) withO1∩I2 = O2∩I1 = ∅ that do not share any variable is Υ1,2 = traces(A1)×
traces(A2).

Proof 7.1
(sketch) The observable traces of the parallel product do not result in the product language,
iff, synchronization prevents at least one trace or a state is reachable in one of the TIOA
where progress of time is not possible. Because the TIOA do not share any syntactical
element, synchronization effects cannot take place. Because only valid (deadlock and zeno
free) TIOA are considered, time is always able to diverge. Thus, no trace of a TIOA can
be prevented by a zeno or deadlock trace included in any TIOA. As a result Theorem 7.1 is
fulfilled.

In the reminder of this work such TIOA are called to be independent if no syntactical ele-
ments in form of signals and variables are shared. This property of the product language for
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independent and valid TIOA is subsequently used for being able to define a well formedness
criterion for components with multiple input ports connected to different components.

Definition 24 (Multiport Component)
A multiport component C represented by a valid TIOA A = (A, I,O,H) contains a par-
titioning IP = {I1, ..., In} of pairwise disjoint input signal sets and a partitioning OP =
{O1, . . . , Om} of pairwise disjoint output signal sets. It further holds that I = I1 ∪ ... ∪ In and
O = O1 ∪ ... ∪ Om. For each Ii ∈ IP a language Υi exists containing only signals included
in Ii and for each Oj ∈ OP a language Θj exists containing only signals included in Oj .

Following a well-formed property for a multiport component using the notion of the product
language is defined.

Definition 25 (Well-Formed Multiport Component)
A component represented by a valid TIOAA = (A, I,O,H) with multiple input ports I1, ..., In,
associated with the related languages in form of trace sets Υ1, ...,Υn and Ii ∩ Ij = ∅ with
i 6= j and 1 ≤ i, j ≤ n is well-formed, if Υ1 × ...×Υn proA.

A link between an output port of a first component, represented by a TIOA A1, and an
input port of a second component, represented by A2 exists, iff, the associated ports are
connected. A link is defined as follows.

Definition 26 (Link)
A link ln between two different components, represented by two different TIOA A1 and A2 is
a tuple ln = 〈Oi, Ij〉 with Oi being an output port of A1 and Ij being an input port of TIOA
A2.

Between components FuelSensor and FuelController (see Fig. 1) two links according to
Def. 26 exist in case of the connected input, resp. output port with name mode and the
connected input, resp. output port with name correctedSensors. When connected via a link
the input port receives each signal send by the output port. Following the definition of a well-
formed link that connects components is given. Each component is identified via its name
(e.g., component with name FuelController like shown in Fig. 1).
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Definition 27 (Well-Formed Link)
Given a link ln = 〈Oi, Ij〉 between output port i providing the output language Θi of a first
well-formed component with name C1, and an input port j providing the input language Υj of
a second well-formed component with name C2, with C1 6= C2. Let the two compatible TIOA
A1 = (A1, I1, O1, H1) and A2 = (A2, I2, O2, H2) represent component C1, resp., component
C2. This link is well-formed if

Θ1i ⊆ Υ2j .

The composition of the two components C1 and C2 is well-formed if all links between output
ports of the first and input ports of the second are well-formed.

7.2 Extended Scheme

The main result for the composition of components employing the concept of language pro-
gressive behavior, is, that well-formed components and well-formed compositions imply that
the resulting composed component and its timed automata are also well-formed if connect
in an acyclic form.

Theorem 7.2
Given a composition of two well-formed multiport components with TIOAA1 = (A1, I1, O1, H1)
and A2 = (A2, I2, O2, H2), well-formed links L = {ln1, ..., lnn} and for each link lnk = 〈Oi, Ij〉
holds Oi is an output port of A1 and Ij is an input port of A2 (no links exist building a cyclic
connection). The composition A3 = A1‖A2, with the resulting set of input and output ports
for A3 is well-formed.

Proof 7.2
(sketch) Let A3 = (A1 ‖ A2, I3, O3, H3) be the TIOA A3 = A1 ‖ A2 with a resulting
set of n unconnected (not linked) input ports I3,1, . . . , I3,n and there associated languages
Υ3,1, . . . ,Υ3,n. Let I3,1 ∪ · · · ∪ I3,n = I∪3 be the union over the resulting input signals of A3

and let Υ3,1 × · · · ×Υ3,n = Υ×3 be the product language of the remaining unconnected input
ports of A3.

A3 is not well-formed if a transition blocking state sb according to Def. 16 exists in the induced
timed system T3 = (Σ3,S3,S0

3 , T3) ofA3, reachable via a trace β with β ∈ traces to(sb,A3)�I∪3 ,
α = β ◦ t ◦ γ, α ∈ Υ×3 and ¬∃tb ∈ T3(sb) with tb�I∪3 ` t. For sb written as sb = 〈〈l1, l2〉, 〈v1, v2〉〉
holds that s1 = 〈l1, v1〉 is the state information of A1 in state sb and s2 = 〈l2, v2〉 is the state
information of A2 in sb.

Assuming a transition blocking state sb exists. Two different cases can exist: Either 1) t is a
delay, not including a signal or 2) t is a signal.

Assuming 1): Because Υ×1 proA1 it holds that a transition t1 need to exist in T1(s1) of the
induced timed system of A1, such that t1�I∪1 ` t. If s1 in sb is a transition blocking state
for A3 = A1 ‖ A2, it also holds that t1 is blocked in A1 ‖ A2 via synchronization with A2.
t1 cannot contain an input signal of A1 (than t cannot be blocked via synchronization with
A2), neither contain an internal signal or the empty signal σε (both types of transitions do not
synchronize with A2 and cannot be blocked). As a consequence it holds that t1 is either a
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delay transition or a discrete transition including an input signal of A2. s1 need to be a state
where T1(s1) includes a transition (transition t1) that is blocked by A2 via synchronization
when A2 is in state s2 of the transition blocking state sb. Because of the well-formedness of
the links it holds that state s2 ofA2 is reachable via a trace α2 for that holds α2�I∪2 = β2◦t1◦δ2,
α2 ∈ Υ×2 and ¬∃t2 ∈ T2(s2) with t2 ` t1. This is directly in contradiction to Υ×2 proA2.

Assuming 2): If t is a signal again two different cases can occur. 2.1) t is a signal included
in an input port of A2 and 2.2) t is a signal included in an input port of A1. Assuming 2.1):
Because of the well-formedness of links it follows that s2 of A2 is reachable via a trace β2

with α2 = β2 ◦ t ◦ δ2, α2 ∈ Υ×2 and there not exists a transition t2 ∈ T2(s2) such that t2�I∪2 ` t.
In this case s2 itself need to be a transition blocking state and Υ×2 proA2 cannot be fulfilled,
leading to a contradiction.

Assuming 2.2): Because of Υ×1 proA1 it holds that a transition t1 exists in T1(s1), such that
t1�I∪1 ` t. If s1 in sb is a transition blocking state forA3 = A1 ‖ A2, it holds that t1 is blocked in
A1 ‖ A2 via synchronization with A2. t1 cannot contain a continuous transition or a transition
including an input signal of A1 (in both cases follows ¬t1 ` t), neither a transition including
an internal signal nor the empty signal σε (in both cases this transition won’t be removed
due to synchronization with A2). Thus, t1 need to be a transition including an input signal
of A2. s1 need to be a state where T1(s1) includes a transition (transition t1) that is blocked
by A2 via synchronization when A2 is in state s2 of the transition blocking state sb. Because
of the well-formedness of the links it holds that state s2 of A2 is reachable via a trace α2 for
that holds α2�I∪2 = β2 ◦ t1 ◦ δ2, α2 ∈ Υ×2 and ¬∃t2 ∈ T2(s2) with t2 ` t1. This is directly in
contradiction to Υ×2 proA2.

It follows that for all possible cases no transition blocking state can exist and Theorem 7.2
need to be fulfilled.

Thus, for two well-formed multiport components the property of language progressive behav-
ior is preserved under composition, if connected in an acyclic way using well-formed links
only.

For being able to extend the scheme to support cyclic connections of links for multiport
components, the semantics of a cyclic dependency is defined.

Definition 28 (Cyclic Dependency)
Given a set of n well-formed components C1, . . . , Cn = C connected via a set L of well-
formed links. A Cyclic dependency exists if the following conditions hold: a link li = 〈Ol, Im〉 ∈
L connects an output port of Component Cq ∈ C to an input port of component Cr ∈ C. A
set of links Lr ⊂ L exists with Lr ∩ li = ∅, and Lr builds a connected graph of components
{Ca, . . . , Cb} ⊂ C with Cq 6∈ {Ca, . . . , Cb} and Cr ∈ {Ca, . . . , Cb}. A link lz = 〈Ox, Iz〉 ∈ L
exists where an output port of a component in {Ca, . . . , Cb} is linked to an input port of Cq.

Subsequently it is shown that the property of language progressive behavior is preserved un-
der composition containing cyclic dependencies if at least one of the composed components
excludes zero-time input/output traces.
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Theorem 7.3 (Well-Formed Cyclic Multiport)
Given a composition of two well-formed multiport components with TIOAA1 = (A1, I1, O1, H1)
and A2 = (A2, I2, O2, H2), well-formed links L = {ln1, ..., lnn} and for each link lnk = 〈Oi, Ij〉
holds Oi is an output port and Ij is an input port (cyclic dependencies according to Def. 28
are allowed). The composition A3 = A1‖A2, with the resulting set of input and output ports
for A3 is well-formed if A1 or A2 not contains a zero-time input/output trace according to
Def. 22.

Proof 7.3
(sketch) It follows directly from Theorem 7.2 that in the case no cyclic dependency of links
exists, the property of language progressive behavior needs to be fulfilled for A3. Following it
is shown that in the case a cyclic connection of links is included, both TIOA need to contain
a zero-time input/output trace if the property of language progressive behavior is violated for
the product language of the remaining unconnected ports. Thus, if at least one TIOA does
not include a zero-time input/output trace, the property of language progressive behavior
needs to be fulfilled.

Let A3 = (A1 ‖ A2, I3, O3, H3) be the TIOA A3 = A1 ‖ A2 with a resulting set of n uncon-
nected (not linked) input ports I3,1, . . . , I3,n and there associated languages Υ3,1, . . . ,Υ3,n.
Let I3,1∪· · ·∪I3,n = I∪3 be the union over the resulting input signals ofA3 contained in uncon-
nected input ports and let Υ3,1 × · · · ×Υ3,n = Υ×3 be the product language of the remaining
unconnected input ports of A3. Let Υ×1,2 describe the product language of all languages
associated with input ports (linked or not) of A1 and A2.

IfA3 is not well-formed a transition blocking state sb according to Def. 16 exists in the induced
timed system T3 = (Σ3,S3,S0

3 , T3) ofA3 reachable via a trace β∪ with β∪ ∈ traces to(sb,A3)�I∪3 ,
α∪ = β∪ ◦ t ◦ γ∪, α∪ ∈ Υ×3 and ¬∃tb ∈ T3(sb) with tb�I∪3 ` t.

Because α∪ ∈ Υ×3 there need to exist a trace α ∈ Υ×1,2, the product language over all input
ports of both TIOA, with α = β ◦ t ◦ γ, β ∈ traces to(sb,A3) and ¬∃t2 ∈ T3(sb) with t2�I∪3 ` t.
For sb written as sb = 〈〈l1, l2〉, 〈v1, v2〉〉 need to hold that s1 = 〈l1, v1〉 is the state information
of A1 in state sb and s2 = 〈l2, v2〉 is the state information of A2 in sb.

Assuming the parallel composition is not well-formed, two different cases can exist for the
trace α and the state sb: 1) for sb with α = β ◦ t ◦ γ holds t is a signal contained in an input
port of A1, resp. of A2 or 2) t is a delay containing no signal.

Before investigating the individual cases a partitioning of the links is defined: L1 is defined
as the set of well-formed links connecting output ports of A1 with input ports of A2 and L2 is
defined as the set of well-formed links connecting output ports of A2 with input ports of A1.
By construction it holds that L1 ∩L2 = ∅ and L1 ∪L2 = L. Because of Theorem 7.2 it further
need to hold that the composition of the two well-formed multiport components represented
by TIOA A1 and A2, using either the set of well-formed links L1 or the set L2, need to be
well-formed. This is the case because no cyclic dependency exists when using either link
set L1 or link set L2.

Assuming case 1): Because for A1 ‖ A2 = A3,1 using the set of well-formed links L1 only,
according to Theorem 7.2 it needs to hold that A3,1 is well-formed (no cyclic connection is
included). According to the assumption it further need to hold that A3, including the set
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of well-formed links L1 ∪ L2 = L, is not well formed and sb is a transition blocking state
for the trace α = β ◦ t ◦ γ while sb is no transition blocking state for A3,1. Thus, due to
synchronization with signals contained in the set of linked ports of L2 a transition included
in sb need to be removed by synchronizing a signal of O2. As a consequence there need to
exist a transition t3,1 ∈ T3,1(sb) of the induced timed system T3,1 = (Σ3,1,S3,1,S0

3,1, T3,1) of
A3,1 that is a discrete transition (it cannot be a continuous transition because any continuous
transition does not contribute to t in the considered case) including a signal of a port that is
also included in one of the links in L2 and as a consequence including a signal of O2. t3,1
cannot be a transition receiving a signal that becomes enabled when removing all links in L2,
because either such a received signal is equal to t and sb won’t be a transition blocking state
for A3, or it is different to t and as a consequence does not contribute to α because such a
transition includes a signal of the input, not contributing to α. As a consequence it needs to
be a send signal. Because in L2 only signals are included that are send by A2, it needs to
be an output signal σ2 that can be observed on a transition t2 included in T2(s2), the part of
the state information of A2 in state sb.

The same need to hold for A1 ‖ A2 = A3,2, using the set of well-formed links L2 only, for the
state s1 of the induced timed system of A1. T1(s1) need to contain a transition t1 including a
send signal σ1 ∈ O1 for that holds it is also included in O1.

Assuming case 2): Because forA1 ‖ A2 = A3,1, using the set of well-formed links L1 only, ac-
cording to Theorem 7.2 it needs to hold thatA3,1 is well-formed. According to the assumption
it further need to hold thatA3, with the set of well-formed links L1∪L2 = L, is not well formed
and sb is a transition blocking state for the trace α = β ◦ t ◦ γ while sb is no transition blocking
state for A3,1. Thus, due to synchronization with signals contained in the set of linked ports
of L2 a transition included in sb need to be removed. As a consequence there need to exist a
transition t3,1 in T3,1(sb) of the induced timed system T3,1 = (Σ3,1,S3,1,S0

3,1, T3,1) of A3,1 that
is a discrete transition (a continuous transition won’t be removed in this case by synchroniz-
ing the signals) including a signal of a port that is included in one of the links in L2. It needs
to be a transition sending a signal, because in any other case (if it is a signal being received)
it will be different to t, not contributing to α, and A3,1 won’t be language progressive for its
input languages also if links L2 are removed. Thus, it needs to be a signal σ2 send by a
transition t2 ∈ T2(s2) of A2.

The same need to hold in case A1 ‖ A2 = A3,2 is considered using the set of well-formed
links L2 only for the state s1 of the induced timed system of A1. T1(s1) need to contain a
transition t1 including a send signal σ1 ∈ O1 for that holds it is also included in I2.

As a consequence the following conditions need to hold if the property of language progres-
sive behavior is violated for the cyclic composition of two well-formed components C1 and
C2, represented by the TIOA A1 and A2, that are connected via well-formed links L only:

According to the assumption a transition blocking state sb = 〈〈l1, l2〉, 〈v1, v2〉〉, with s1 =
〈l1, v1〉 representing the state information of A1 and s2 = 〈l2, v2〉 representing the state infor-
mation of A2 need to exist. Like previously shown it further holds:

∃t1 ∈ T1(s1) with t1 = s1
σ1−→ s′1, σ1 ∈ O1 ∩ I2 and ∃t2 ∈ T2(s2) with s2

σ2−→ s′2, σ2 ∈ O2 ∩ I1.
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When using the set of links L1 only, in state s2 of the parallel product A1 ‖ A2, a transition
t2 = s2

σ2−→ s′2 exists (because signals of O2 do not need to be synchronized when using
only links L1) leading to state s′b = 〈〈l1, l′2〉, 〈v1, v

′
2〉〉 with s′2 = 〈l′2, v′2〉. Because t1 ∈ O1 ∩ I2,

t1 = s1
σ1−→ s′1 ∈ T1(s1) and because of the langauge progressiveness for A1 ‖ A2 using

links L1, a successor state s
′n
2 of s2 need to be reachable in zero time, allowing receiving

signal σ1. Thus, for A2 a zero-time input/output trace can be constructed as follows: The
zero-time input/output trace starts at state s2 allowing observing signal σ2 being an output
signal of A2. The trace is continued leading to state s

′n
2 without consuming time. In this state

the input signal σ1 need to be observable because A2 is language progressive for the trace
β ◦ t1 where β ∈ traces to(s′n2 ,A2).

A zero-time input output trace for A1 can be constructed in the same way. As a consequence
Theorem 7.3 need to be fulfilled.

Furthermore, the construction of well-formedness results in a situation that a closed compo-
nent based architecture excludes undesired behavior like deadlock states or zeno traces, if
it has been composed step-wise using well-formed atomic components where for each com-
position of two well-formed atomic components including a cyclic dependency, at least one
excludes zero-time input/output traces.

Definition 29 (Well-Formed Composition)
Given two well-formed multiport components C1 and C2, represented by TIOA A1 and A2,
connected via well-formed links L only. Well call C1 ‖ C2 = C1,2 a well-formed composition
if no cyclic dependency for C1 and C2 according to Def. 28 exists, or, if a cyclic dependency
exists, A1 or A2 excludes zero-time input/output traces according to Def. 22.

Corollary 7.1
A closed component with timed input/output automaton A = (A, ∅, ∅, H) that is a result of a
well-formed composition (cf. Def. 29) of two well-formed components is deadlock free and
zeno free.

Proof 7.4
(sketch) Assuming that it contains undesired behavior, then, either (i) zeno behavior or (ii) a
deadlock is included in one of the components. In case (i) the projection of the zeno trace
would imply also that a zeno trace existed for one of the components. In general this cannot
be the case for the used model of TA. For case (ii) holds that neither there could be a local
deadlock in one of the components nor can synchronization cause a deadlock due to the
language progressiveness (+ absence of zero-time input/output traces in case of a cyclic
dependency) of the involved automata. Thus, there could not be any undesired behavior in
the composed component.
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The Def. 29 together with the Corollary 7.1 enable to compositionally check that arbitrary
complex architectures will in the end compose to a free system excluding undesired behavior
in form of deadlock states or zeno traces. What is only required is

• Ensure that all employed atomic components are well-formed by showing that they are
language progressive for the languages associated with the input ports.

• In case of a cyclic dependency according to Def. 29, ensure that one of the two TIOA
involved in each check excludes zero-time input/output traces.

8 Checking Well-Formedness on Example

In this section it is shown how to apply the previously introduced reasoning scheme on the
application example described in Sec. 3.

8.1 Checking Language Progressive Behavior - Application Example

Following it is shown what is required to ensure that the overall composition of the Fuel-
Control-System, shown in Fig. 1 (resp. Fig. 26), is well-formed and as a consequence also
deadlock and zeno free. This is achieved by showing that all links between atomic compo-
nents are well-formed in such a manner that they are language progressive for the languages
associated with their linked input ports according to Def. 25. Given the TIOA AFC represent-
ing the atomic component FuelController of Fig. 1. The input languages Υ2,1 and Υ2,2 do
represent the input language of port I2,1 (associated with port correctedSensors) and port
I2,2 (associated with port mode). According to Def. 25 component FuelController is well-
formed for the two languages associated with the linked input ports, iff: Υ2,1 ×Υ2,2 proAFC .
In this particular case both input ports are linked to the output ports of the same component
FuelSensor. As a results both ports can be seen as a single one and as a consequence
TIOA AFS is taken for representing both input languages Υ2,1 and Υ2,2. Accordingly well-
formedness of the linked ports is fulfilled if traces(AFS) proAFC .

The first part of the testbed TBs
FC(AFS ,AFC) is shown in Fig. 31, representing the modified

TIOA AcFS of component FuelSensor. Modifications are applied according to Sec. 5.2, such
that the modified TIOA can be used for checking if the property of language progressive
behavior is fulfilled. The second part of the testbed is the TIOA shown in Fig. 7, representing
the original behavior of the component FuelController.

The same is applied for the two components EngineModel and FuelSensor like already de-
scribed in Sec. 5.2, as well as for the two components FuelController and EngineModel. The
first part of testbed TBEM (AFC ,AEM ), representing the modified version of the TIOA repre-
senting the behavior of component FuelController, is shown in Fig. 32. As a result the three
testbeds TBs

FC(AFS ,AFC), TBEM (AFC ,AEM ) and TBFS(AEM ,AFS) have been checked
for ensuring the well-formedness of the overall composition. Because a cyclic dependency
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according to Def. 28 exists in the architecture shown in Fig. 26, it needs to be ensured that
for at least one of the involved components zero-time input/output traces can be excluded.
This can be checked by building the parallel product AEM ‖ AEMIO of the TIOA AEM and
the created testbed AEMIO like shown in Fig. 25.

A schematic description of the used testbeds for verifying the well-formedness for the in-
volved TIOA is shown in Fig. 26.17

Figure 26: Schematic description of the testbeds associated with the links between the in-
volved components, resp. between the associated TIOA.

It turned out that the TIOA AFS , representing the behavior of component EngineModel,
is language progressive for the output language defined by the TIOA AFC , representing
the timing behavior of component FuelController. Like previously shown in Sec. 5.2 a
conflicting state s1 exists in case of component FuelSensor, discovered using the testbed
TB(AEM ,AFS). As a result one conflicting (not well-formed) link is discovered in the ap-
plication example indicated by the discovered deadlock state s1. This conflicting link exists
between components EngineModel and FuelSensor. Like discussed in Sec. 8.3 the pro-
posed reasoning scheme has been applied on the application example and the result have
been compared with a monolithic approach where all involved TIOA are analyzed at once.
It turned out that also for the parallel construct of all involved TIOA state s1 is a deadlock
state. For our application example it turned out that all discovered violations of language
progressive behavior also lead to undesired behavior for the parallel product of the overall
architecture. The case discovered when applying the modular approach turns out to be not
a false-negative.

For any architecture including an arbitrary number of components, within each testbed at
most the behavior models of those components are included that are linked to input ports.
As a result requirement (R1) is fulfilled and do to the fact that cyclic dependencies and
multiple ports are allowed requirement (R4) is supported. Because (R2) is fulfilled by using
the property of language progressive instead of progressive behavior only requirement (R3)
till now is not discussed in more detail. In Sec. 9 it is discussed how to further support
requirement (R3): protecting IPs.

17It is sufficient checking only one connecting component closing the cyclic architecture for zero-time input/out-
put traces. For the rest of the architecture it is sufficient to only check language progressive behavior. This is
the case because multiple language progressive TIOA (AFS and AFC ) connected in an acyclic way can be
understood as one composition (AFS ‖ AFC ), and according to Theorem 7.3 a deadlock can only occur, if both
involved TIOA (AFS ‖ AFC and AEM ) include zero-time input/output trace.
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8.2 Checking Language Receptive Behavior - Application Example

Checking if all involved TIOA representing the behavior of the individual components are
language progressive for the linked input languages of their input ports is the first step.
When applying the previously described checks using the testbed, potentially one of the
required well-formedness criteria is violated. In our application example one conflict has
been detected like previously shown in case of state s1 of component FuelSensor (compare
Sec. 5.2 and Sec. 8.1). Like discussed in Sec. 5.3 state s1 can be eliminated by choosing an
appropriate valid strategy.

On the one hand derived strategies do well fit to embedded components due to the fact
that only edges representing internal behavior parts, in the case of edges including internal
signals, are used to realize strategies. Such internal signals are often related to parameters
being modified during configuration activities. On the other hand exchanging the behavior of
a component, e.g., by using a strategy, eventually leads to an undesired effect: Assuming
all links in the example shown in Fig. 1 are well-formed except one, the link between output
port O1,1 of component FuelSensor and input port I2,1 of component FuelController. Using
a strategy A′FC for component FuelController instead of the original TIOA AFC resolves this
conflict. What should be prevented is being required to re-validate well-formed links from
or to components being neighbored to component FuelController. For example, using a
different TIOA for component FuelController can lead to the situation that the link between
FuelController and EngineModel is no longer well-formed. This conflict can be solved by
deriving a strategy for EngineModel, potentially invalidating another link connected to an
output port of EngineModel. Such an effect can be propagated through the overall cyclic
architecture resulting in changes that need to be applied multiple times on each component.
Following it is shown that if strategies are used according to Def. 14, this effect cannot occur
on output ports of the changed component.

By construction any resulting strategy A′ of a TIOA A represents a subset of the reachable
transitions of the associated timed-system. As a result also for the trace sets of each strategy
A′ holds traces(A′) ⊆ traces(A). The same holds for the derived strategy for component
FuelController : traces(A′FC) ⊆ traces(AFC). According to Def. 15 it can be concluded
that using a strategy A′ instead of A does not invalidate any well-formed link between an
output port of a changed component and an input port of any other component. Consider
the link between the output port O2,1 of component FuelController and the input port I3,1

of component EngineModel. If previously holds traces(AFC) proAEM and for strategy A′FC
holds traces(A′FC) ⊆ traces(AFC), according to Def. 15 it follows that traces(A′FC) proAEM
and the link is still well-formed.

8.3 Evaluation Results - Complexity

In this section the results of the application example introduced in Sec. 3 are briefly dis-
cussed. Performance results in case of the explored states during the verification of the
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overall architecture are investigated in more detail. The monolithic approach,18 where all
involved TIOA are analyzed at once, is compared with the modular approach, where only
connected TIOA (linked components) are analyzed in pairs. In such a manner it is shown
that the introduced reasoning scheme outperforms the monolithic approach by numbers and
thus fulfills requirement (R1).

When checking deadlock freedom of the testbeds, UPPAAL provides the possibility to deter-
mine the number of symbolic states explored during verification. Table 1 shows the result
in case of the states that have been explored for ensuring that the property of language
progressive behavior is fulfilled for each involved TIOA. Using the approach proposed in this
work (following called modular approach), the checking of each testbed requires at most
291 symbolic states and 564 symbolic states at all. A monolithic check, where all three TIOA
are involved at once requires 184 symbolic states in UPPAAL. While for the application ex-
ample the monolithic as well as the modular approach scales (verification can be applied in
both cases within two seconds using UPPAAL), it is following shown that the modular ap-
proach outperforms the monolithic approach when using a higher number of components.
A synthesized example has been used where a set of components are connected in a row.
The number of states, when applying the monolithic and the modular approach, are com-
pared.19 The results are listed in Table 1, where the first column describes which example
is used, the second column shows the number of included components, resp. TIOA, the
third column shows the number of states explored using the monolithic approach and the
last column shows the number of states when using the modular approach for checking
deadlock freedom. Especially in case of the synthesized example, the exponential growth in
case of the explored states becomes visible. The check including 15 components requires
more than half an hour to be verified using the monolithic approach.20 Any example using
18 components or more consumes more working memory than provided by the used PC
when applying the monolithic check. In contrast, the modular approach requires less than 1
second for each check.

Table 1: Verification type and resulting number of states.
Example #Components #States Monolithic #States Modular
FuelControl 3 184 249 + 24 + 291=564
Synthesized 6 1.608 1.128
Synthesized 9 16.734 1.692
Synthesized 12 222.236 2.256
Synthesized 15 3.683.147 2.820
Synthesized 18 out of memory 3.384

Figure 28 graphically shows the difference between the modular and the monolithic ap-
proach. While the modular approach rarely differs concerning the required states that need
to be explored for ensuring well-formedness, the monolithic approach clearly shows an ex-
ponential growth, depending on the number of used components. Especially in the case that

18The approach by construction does not fulfill requirement R3 (protecting IPs).
19The synthesized example consists of an architecture where multiple instances of the previously shown com-

ponents of the fuel rate control system are used in form of a larger architecture of pairwaise linked components.
20All checks have been executed using the 64 bit version of UPPAAL running on a 2.4 GHz dual-core PC with

8 GB of RAM.
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Figure 27: TIOA AcEM for testing language progressiveness of TIOA AFS representing com-
ponent FuelSensor like shown in Fig. 5.
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Figure 28: Explored states during analysis using the monolithic and the modular approach.
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more than 11 components are included in the architecture, the monolithic approach requires
more than 200000 states to be explored at once. In the case of 14 components more than
1.2 million states are explored. Thus, all architectures including more than 14 components
are skipped in Fig. 28 because the verification requires more states to be explored than can
be shown in the scale used in Fig. 28.

9 Abstraction

In the following, it is briefly discussed how abstraction techniques can be used in our rea-
soning scheme for protecting IPs, supporting requirement (R3).

9.1 Automatic Abstraction for IP Protection

One requirement for several real-time embedded systems is (R3): support for protecting IPs
such that internal details of individual components do not need to be disclosed during well-
formedness checks. Consider the well-formedness check of the component FuelController
using AFS . AFS is the behavior model of the linked component FuelSensor. It is used as the
representation for the languages of the input ports I2,1 and I2,2 of the component FuelCon-
troller shown in Fig. 26. In the case FuelSensor and FuelController are developed by two
different suppliers, the supplier developing the first component is not willing to provide inter-
nal details related to Intellectual Properties (IP) to the second supplier. The second supplier
develops the component FuelController and relies on AFS or any other valid representation
of the input languages for being able to apply the well-formedness check. In the following,
it is shown how such a conflict, that the second supplier of component FuelController relies
on the behavior model including IPs of the first supplier, can be resolved.

It is assumed that IPs are mainly related to internal signals and by removing these signals
from AFS , like done when using AFS for creating a testbed, these properties are well pro-
tected in our framework. Nevertheless, potentially IPs are associated with other syntactical
elements of the component FuelSensor, represented by TIOA AFS . Examples of such ele-
ments are locations, edges or clock variables. Protecting IPs means hiding these syntactical
elements by creating an abstract representation for the component FuelSensor, allowing to
be used during well-formedness checks without providing syntactical elements related to IPs.
Such an abstract representation of component FuelSensor is following called AFS/. If an ab-
stract representationAFS/ ofAFS can be derived for that holds traces(AFS) ⊆ traces(AFS/),
according to Def. 15, the abstract version AFS/ can be taken as a representation of the input
language for component FuelController.

Thus, if the well-formedness constraints are fulfilled for the abstract representation AFS/
they are also fulfilled for the more detailed version AFS . As a result of Def. 15 holds,
if AFS/�I3,1 proAFC , with traces(AFS) ⊆ traces(AFS/) implies AFS�I3,1 proAFC . Thus,
any abstraction mechanism that can be applied on a TIOA resulting in traces(AFS) ⊆
traces(AFS/) is permitted. An example of an existing technique allowing deriving such an
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abstract representation AFS/ based on AFS is given in [21]. In [21] the authors show how
to derive an abstract representation of a TA A by removing syntactical elements. According
to [21] the shown abstraction mechanism guarantees that for any abstract version A/ of any
given TA A holds: traces(A) ⊆ traces(A/). Thus, our framework and reasoning scheme
can be adapted by existing techniques for further support requirement (R3) if desired. How
such techniques can be further integrated into the framework described in this work, e.g., for
resolving conflicts in case errors are introduced by the abstraction, is considered to be future
work.

10 Conclusion and Future Work

The concept of language progressive and language receptive timed I/O automata has been
introduced as a compromise between the existing purely optimistic and completely pes-
simistic approaches.

If we consider as input language all zeno-free and deadlock-free traces over the input sig-
nals of a given timed I/O automaton, our notion of language progressiveness and language
receptiveness coincide with the pessimistic approach. Thus, the pessimistic approach is a
special case of our more general framework for timed I/O automata.

We further demonstrated how TIOA can be used to set-up a compositional reasoning scheme
that supports component-based architectures of embedded real-time systems. This reason-
ing scheme removes the limitations of both extreme perspectives and therefore satisfies
requirement (R1), (R2), (R3) and (R4) as stated in Section 1. Specifically, our compromise
between the too pessimistic approaches that avoid any reliance on the characteristics of the
environment and the too optimistic approaches, which too much rely on helpful environment
characteristics, permits us finding a solution that scales (R1) but avoids the need for too
strong assumptions on the available resources (R2). By using an additional abstraction step,
also the IP of component developers is protected (R3). Further the introduced approach
is expressive enough to cover arbitrary structures, including cyclic dependencies (R4). As
future work, we plan developing tool support for the approach and integrate it with available
architectural frameworks such as AUTOSAR. As a first step we have shown in [19] how to
automatically derive TA models from given AUTOSAR architecture descriptions.
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A Proofs

First we give a definition what is following called a cyclic blocking language progressive pair
of two TIOA A1 and A2.

Definition 30
Given two compatible and valid TIOA A1 = (A1, I1, O1, H1), A2 = (A2, I2, O2, H2) with O1 =
I2, O2 = I1, A1�O1 proA2 and A2�O2 proA1. Let T1,2 = (Σ1,2,S1,2,S0

1,2, T1,2) be the induced
timed system of A1 ‖ A2, T1,− = (Σ1,−,S1,−,S0

1,−, T1,−) be the induced timed system of
A1�O1 ‖ A2 and T−,2 = (Σ−,2,S−,2,S0

−,2, T−,2) the induced timed system of A1 ‖ A2�O2. Let
T1 = (Σ1,S1,S0

1 , T1) be the induced timed system of A1 and T2 = (Σ2,S2,S0
2 , T2) the induced

timed system of A2. We call A1 and A2 cyclic blocking language progressive, if S1,2 includes
a deadlock state sd.

For such a cyclic blocking language progressive pair A1 and A2 each deadlock state sd is
also reachable in the parallel product of A1�O1 ‖ A2.

Lemma A.1
Let A1 and A2 be two cyclic blocking language progressive TIOA according to Def. 30. For
each deadlock state sd ∈ S holds: sd ∈ S1,− and sd ∈ S−,2.

Proof A.1
(sketch) The only differences between A1 ‖ A2 and A1 ‖ A2�O2, resp. A1�O1 ‖ A2 is,
that signals are removed in the later. By construction signals can only prevent transitions
in a parallel product but not enable (cf. Def. 3) a single transition. When removing signals,
transitions can only be added in A1 ‖ A2�O2, resp. A1�O1 ‖ A2 and as a consequence all
states reachable in A1 ‖ A2 are also reachable in A1 ‖ A2�O2, resp. A1�O1 ‖ A2.

Further, for each deadlock state sd no transition including the empty signal can be contained
neither in the state s1 of A1 when being in the deadlock, nor in the state s2 of A2 when being
the same deadlock state sd.

Lemma A.2
Let A1 and A2 be two cyclic blocking language progressive TIOA according to Def. 30. Let
sd be a deadlock state. sd is of form sd = 〈〈l1, l2〉, 〈v1, v2〉〉, with l1 being a location of A1,
l2 being a location of A2, v1 a variable assignment for all variables of A1 and v2 a variable
assignment for all variables of A2. When being in state sd of S1,2, A1 is in state s1 = 〈l1, v1〉
and A2 is in state s2 = 〈l2, v2〉. Let T1(s1) be the set of transitions in state s1 and T2(s2) be
the set of transitions in state s2. It holds:

¬∃t ∈ T1(s1) ∪ T2(s2) with t = si
σ−→ s′i, i ∈ {1, 2} and σ = σε.

Proof A.2
Assuming ∃t ∈ T1(s1) ∪ T2(s2) with σi = σε. Because t is a discrete transition that do not
need to be synchronized with any signal it needs to be preserved in sd = 〈〈l1, l2〉, 〈v1, v2〉〉 and
T1,2(sd) need to include this transition. This is the case because A1 and A2 are compatible
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TIOA that do not share any clocks, attributes or constraints over the same clocks or attributes.
As a consequence sd cannot be a deadlock state and we have a contradiction.

Like following shown in Lemma A.3, transitions are included in those transitions observable
at state s1 of A1 and in s2 of A2 (when being in a deadlock state sd), such that signals from
the input as well as the output of both TIOA can be observed.

Lemma A.3
Let A1 and A2 be two cyclic blocking language progressive TIOA according to Def. 30. Let
sd be a deadlock state. sd is of form sd = 〈〈l1, l2〉, 〈v1, v2〉〉, with l1 being a location of A1,
l2 being a location of A2, v1 a variable assignment for all variables of A1 and v2 a variable
assignment for all variables of A2. When being in state sd of S1,2, A1 is in state s1 = 〈l1, v1〉
and A2 is in state s2 = 〈l2, v2〉. Let T1(s1) be the set of transitions in state s1 and T2(s2) be
the set of transitions in state s2. It holds:

∃tO1 , tO2 ∈ T1(s1) ∪ T2(s2) with tO1 = sO1

σ1−→ s′O1
, tO2 = sO2

σ2−→ s′O2
, σ1 ∈ O1 and σ2 ∈ O2.

Proof A.3
Because A1�O1 proA2 and A2�O2 proA1, it holds that A1�O1 ‖ A2 and A2�O2 ‖ A1 are
deadlock free. Because of Lemma A.1 it holds that each deadlock state sd observable on
A1 ‖ A2 is also observable on A1�O1 ‖ A2 and A2�O2 ‖ A1, where sd is no longer a
deadlock state. Because in A1�O1 ‖ A2 only signals from O2 are removed and sd is no
longer a deadlock state, at least one transition is enabled in sd by removing a signal included
in O2. Thus, a transition tO2 = sO2

σ2−→ s′O2
need to be included in T1(s1) or T2(s2). The

same holds for the case A2�O2 ‖ A1 where only signals included in O1 are removed and
as a consequence also a transition tO1 = sO1

σ1−→ s′O1
with σ1 ∈ O1 need to be included in

T1(s1) or T2(s2).

In Lemma A.4 it is following shown that in the case a deadlock state sd is reachable in the
induced timed system of A1 ‖ A2, for the two valid and compatible TIOA A1 and A2 it cannot
hold that both are able taking a continuous transition in s1 = 〈l1, v1〉 and s2 = 〈l2, v2〉 of
sd = 〈〈l1, v1〉, 〈l2, v2〉〉.

Lemma A.4
Let A1 and A2 be two cyclic blocking language progressive TIOA according to Def. 30. Let
sd be a deadlock state. sd is of form sd = 〈〈l1, l2〉, 〈v1, v2〉〉, with l1 being a location of A1,
l2 being a location of A2, v1 a variable assignment for all variables of A1 and v2 a variable
assignment for all variables of A2. When being in state sd of S1,2, A1 is in state s1 = 〈l1, v1〉
and A2 is in state s2 = 〈l2, v2〉. Let T1(s1) be the set of transitions in state s1 and T2(s2) be
the set of transitions in state s2. It holds:

¬∃t1, t2, with t1 ∈ T1(s1), t1 = s1
τ−→ s′1, t2 ∈ T2(s2), t2 = s2

τ−→ s′2 and τ ∈ R+ being two
continuous transitions.

Proof A.4
Assuming t1 and t2 exist being continuous transitions of s1 resp. s2. A1 and A2 are com-
patible TIOA that do not share any clock variable, attribute variable or any constraints about
common variables. As a consequence sets of invariants and guards are also disjoint for
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the individual TIOA and in state sd of the induced timed system of A1 ‖ A2 a continuous
transition need to exist. Thus, sd cannot be a deadlock state and we have a contradiction.

The previously shown lemmata are used in Lemma A.5 showing that Theorem 6.4 (see
Sec. 6.2) holds.

Lemma A.5
Let A1 and A2 be two cyclic blocking language progressive TIOA according to Def. 30. Let
sd be a deadlock state. sd is of form sd = 〈〈l1, l2〉, 〈v1, v2〉〉, with l1 being a location of A1,
l2 being a location of A2, v1 a variable assignment for all variables of A1 and v2 a variable
assignment for all variables of A2. When being in state sd of S1,2, A1 is in state s1 = 〈l1, v1〉
and A2 is in state s2 = 〈l2, v2〉. Let T1(s1) be the set of transitions in state s1 and T2(s2) be
the set of transitions in state s2. It holds:

For Ai with i ∈ {1, 2}: ∃si, αi with si ∈ Si, αi ∈ traces(Ai), αi = βi ◦ γi ◦ δi, βi ∈
traces to(si,Ai), time(γi) = 0, signals(γi) ∩ Ii 6= ∅ and signals(γi) ∩Oi 6= ∅.

Proof A.5
First, the property is shown for Ai = A2: For A2 we take s2 = 〈l2, v2〉 as state si for that
holds an α2 ∈ traces(A2) exists with α2 = β2 ◦ γ2 ◦ δ2 and β2 ∈ traces to(s2,A2). This is the
case because the deadlock state sd = 〈〈l1, l2〉, 〈v1, v2〉〉 is reachable in A1 ‖ A2 and due to
the fact that synchronization only removes reachable states in our model of TIOA, s2 need
to be reachable via a trace β2 ∈ traces to(s2,A2). Because A2 is deadlock free, a trace µ
need to be included in traces from(s2,A2). We can split this trace into two parts µ = γ2 ◦ δ2

resulting in α2 = β2 ◦ γ2 ◦ δ2. Based on Lemma A.3 we can distinguish three different cases
for A1, the other TIOA, when being in state sd:

• 1) ∃t1 ∈ T1(s1) with t1 = s1
σ1−→ s′a for that holds σ1 ∈ O1 and ¬∃t2 ∈ T1(s1) with

t2 = s1
σ2−→ s′b for that holds σ2 ∈ O2,

• 2) ¬∃t1 ∈ T1(s1) with t1 = s1
σ1−→ s′a for that holds σ1 ∈ O1 and ∃t2 ∈ T1(s1) with

t2 = s1
σ2−→ s′b for that holds σ2 ∈ O2 or

• 3) ∃t1 ∈ T1(s1) with t1 = s1
σ1−→ s′a for that holds σ1 ∈ O1 and ∃t2 ∈ T1(s1) with

t2 = s1
σ2−→ s′b for that holds σ2 ∈ O2

The case 4): ¬∃t1 ∈ T1(s1) with t1 = s1
σ1−→ s′a for that holds σ1 ∈ O1 and ¬∃t2 ∈ T1(s1) with

t2 = s1
σ2−→ s′b for that holds σ2 ∈ O2 is not possible because of Lemma A.3. Following we

show for all three possible cases of A1 individually that each individual case implicates that
Lemma A.5 need to be fulfilled for A2 if a deadlocks state sd exists:

1) Assuming the case: ∃t1 ∈ T1(s1) with t1 = s1
σ1−→ s′a for that holds σ1 ∈ O1 and ¬∃t2 ∈

T1(s1) with t2 = s1
σ2−→ s′b for that holds σ2 ∈ O2. Because of Lemma A.1 it follows that state

sd = 〈〈l1, l2〉, 〈v1, v2〉〉 is reachable in A1�O1 ‖ A2, where A1 is in state s1 = 〈l1, v1〉 and A2

is in state s2 = 〈l2, v2〉. Because T1(s1) does not contain a transition t2 = s1
σ2−→ s′b with

σ2 ∈ O2, according to Lemma A.3 it follows ∃t ∈ T2(s2) with t = s2
σ2−→ s′2 and σ2 ∈ O2.
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Thus, a trace α2 = β2 ◦ σ2 ◦ δ2 exists with β2 ∈ traces to(s2,A2) where A2 allows observing
σ2 ∈ O2. Because A1�O1 proA2, sd is no deadlock state in A1�O1 ‖ A2, where A2 is in
state s2 and A1 is in state s1. Because of the language progressiveness (A1�O1 proA2, cf.
Def. 15 and Theorem 5.1) A1 is able to take the discrete transition at state s1 including signal
σ1 not allowing time to diverge till A2 has received this signal. Because sd is a deadlock in
A1 ‖ A2, σ1 cannot be received directly in state s2 (otherwise sd want be a deadlock state).
As a consequence a successor state s

′n
2 of s2 need to exist, reachable in zero time allowing

observing a trace κ with time(κ) = 0, where σ1 is included in transition T2(s
′n
2 ). Thus, s2 is

an example of A2 with s2 ∈ S2, ∃α2 ∈ traces(A2), α2 = β2 ◦σ2 ◦κ ◦σ1, β2 ∈ traces to(s2,A2)
and time(κ) = 0. By choosing σ2 ◦ κ ◦ σ1 = γ2 the property of Lemma A.5 is fulfilled for this
case.

2) Assuming ¬∃t1 ∈ T1(s1) with t1 = s1
σ1−→ s′a for that holds σ1 ∈ O1 and ∃t2 ∈ T1(s1) with

t2 = s1
σ2−→ s′b for that holds σ2 ∈ O2. Because of Lemma A.4 we can subdivide this case

into two sub-cases: 2 a) T1(s1) includes no continuous transition and 2 b) T1(s1) contains a
continuous transition.

Assuming 2 a): Because of Lemma A.2 the set of transitions T1(s1) only contains discrete
transitions including signals of O2. Because of Lemma A.5 follows T2(s2) need to contain
a discrete transition including a signal σ1 ∈ O1. Because of A2�O2 proA1 and s1 being
reachable in A2�O2 ‖ A1 (sd is reachable in A2�O2 ‖ A1), s1 is not allowed to lead to a
deadlock in A2�O2 ‖ A1. For A2�O2 ‖ A1 being in state sb, where A1 is in state s1, it is
not possible to let diverge time (because in the considered case no continuous transition
is containing in T1(s1)) but only to receive signals from O2. Thus, there need to exist a
successor state s

′n
2 of s2 being reachable in zero time via a trace κ with time(κ) = 0 for that

holds, T2(s
′n
2 ) includes a transition sending a signal σ ∈ O2. Again, we can construct for

s2 ∈ S2 a trace α2 with α2 ∈ traces(A2), with α2 = β2 ◦ σ1 ◦ κ ◦ σ and β2 ∈ traces to(s2,A2).
By renaming σ1 ◦ κ ◦ σ = γ2, s2 contains a zero-time input/output trace.

Assuming 2 b): Because of Lemma A.4, T2(s2) cannot contain a continuous transition. Be-
cause of A1�O1 proA2 no deadlock can exist in A1�O1 ‖ A2 also in the case A1 in state
s1 takes the continuous transition while A2 is in state s2 where no continuous transition can
be taken. Thus, in s2 a discrete transition need to be included that not contains a signal of
O1 (T1(s1) contains no such transition in sd while synchronizing all signals of O1) and that
not contains the empty signal (cf. Lemma A.2). As a consequence at least one transition of
T2(s2) need to contain one or more discrete transitions including a signal of O2 while no tran-
sition of T1(s1) contains this signal (otherwise sd won’t be a deadlock in A1 ‖ A2). Thus, sd is
a state where A2 is in state s2 allowing observing one or more signals included in O2, while
A1 is in state s1 not allowing receiving any of these signal and not allowing taking another
discrete transition (only transitions including signals from O1 are observable on s1 accord-
ing to the considered case). Because A2 in state s2 allows to observe a signal included in
O2 that cannot be received by any transition in s1 of A1, and in s1 only transitions can be
included that need to synchronize with signals of O2, the property A2�O2 proA1 cannot be
fulfilled and we have a contradiction. As a consequence this case cannot occur for two cyclic
blocking language progressive TIOA and do not need to be considered here.

3) Assuming ∃t1 ∈ T1(s1) with t1 = s1
σ1−→ s′a for that holds σ1 ∈ O1 and ∃t2 ∈ T1(s1) with
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t2 = s1
σ2−→ s′b for that holds σ2 ∈ O2. In state sd (a deadlock state of A1 ‖ A2), let A1 be

in state s1 and A2 be in state s2. A transition need to be included in T1(s1) containing a
signal σ1 ∈ O1. Because sd is a deadlock state in A1 ‖ A2, T2(s2) cannot contain a transition
with the same signal. Because A1�O1 proA2, A1 need to be able to send σ1 when being
in state s1 without taking any other transition (in any other case A2 contains a transition
blocking state and A1�O1 proA2 cannot be fulfilled). Because in T2(s2) this signal cannot
be consumed, a transition need to be taken in T2(s2) including a signal σ3 ∈ O2 (T2(s2)
cannot contain a transition including the signal σ1, because otherwise sd want be a deadlock
state in A1 ‖ A2). It can also not be another transition including a signal of O1 because all
signals included in O1 are synchronized and A1 can decide to only send σ1 without causing
a deadlock (because of the language progressiveness). Further, because of Lemma A.2 it
cannot be a transition including the empty signal. Thus, in state s2 a transition need to be
observable that contains a σ3 ∈ O2, leading to s′2. Further, in state s′2 either a transition
need to exist including signal σ1 or a successor state s

′n
2 need to be reachable, without the

passage of time, where σ1 can be consumed (in any other case A1�O1 proA2 cannot be
fulfilled). As a consequence in state s2 a signal σ3 ∈ O2 can be send and a successor state
s
′n
2 of s2 need to be reachable that allows to receive σ1 while time do not need to progress

between s2 and s
′n
2 . As a consequence a trace κ with time(κ) = 0 is observable between s2

and s
′n
2 . By choosing α2 = β2 ◦ σ3 ◦ κ ◦ σ1 with β2 ∈ traces to(s2,A2) and γ2 = σ3 ◦ κ ◦ σ1 it

follows that Lemma A.5 is fulfilled for that last case.

Till now it has been shown that for each and every possible situation of A1, when being in a
deadlock state sd of the two cyclic blocking language progressive TIOA A1 and A2, A2 need
to be in a state where the property of Lemma A.5 is fulfilled. By exchanging in the previously
shown proof A1 with A2, it follows that for each and every possible case of A2, when being
in a deadlock state sd, also A1 is in a state according to Lemma A.5. As a consequence in
each and every case a deadlock is included in the parallel product of two cyclic connected
language progressive TIOA, it holds that for each involved TIOA the property is fulfilled and
thus Lemma A.5 is fulfilled in general.
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B Detailed TIOA models

Figure 29: TIOA representing the component FuelSensor without providing undesired zeno
behavior.
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Figure 30: TIOA representing the component FuelController without providing undesired
zeno behavior.
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C Detailed Models of Testbeds

Figure 31: TIOA AcFS for checking if AcFS proAFC .
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Figure 32: TIOA representing the first part of the testbed TBEM (AFC ,AEM ).
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D Combined Ports

Consider a given component for that holds two input ports are linked to output ports of a
single component, like shown in Fig. 1 in case of connected ports of component FuelSensor
and FuelController. The two input ports of component FuelController can be understood
as a single input port. The same holds for the output ports of component FuelSensor that
can be understood as a single combined port at the syntactical level by defining port O1,3

representing the combined ports O1,1 and O1,2. For the signal set of the combined port
holds O1,3 = O1,1 ∪ O1,2. The same can be done for the two input ports I2,1 and I2,2 by
creating the syntactically combined port I2,3 = I2,1 ∪ I2,2. Accordingly only one link remains
in the architecture and as a consequence both ports can be checked using only a single
analysis step by only applying syntactical modifications on the components. The syntactically
transformed architecture of the Fuel-Rate-Control architecture is shown in Fig. 33.

Figure 33: Fuel-Rate-Control architecture with syntactically combined ports.

E Deadlock Semantics and Checks

Deadlocks like defined in the context of the tool UPPAAL have different semantics compared
to a deadlock like used in this work. Following it is briefly discussed what are the differences
between a deadlock state in UPPAAL in comparison to a deadlock state according to Def. 12.
Further, it is shown how to use UPPAAL for checking deadlock freedom according to the
semantics of a deadlock like defined in this work.

In this work a deadlock state of a TIOA A is defined to be deadlock state sd that is reachable
via a finite trace αd (called a deadlock trace). For this deadlock state sd holds no outgo-
ing transition exists in the induced timed system TA. Thus, if a deadlock exists, a state is
reachable for that holds no transition leaving this state exists at all. In contrast a deadlock
state in UPPAAL is defined to be a state where no outgoing discrete transition (edge) can
be taken, also in the case previously a continuous transition is taken. In the context of the
considered application domain, systems, subsystems and components exist that are used,
e.g., for initialization purpose only. Such components are often able reaching a specific state
at a certain point of time where no discrete transition need to be taken (e.g., in case an
initialization procedure has finished). According to the semantic of a deadlock like used in
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UPPAAL, such a component includes a deadlock by construction. Thus, the definition of a
deadlock like used in this work seems to be more natural.

As an example consider Fig. 34 containing the initial location Init and the second location
Final for that no outgoing edge exists. Further the TIOA contains a single clock x and an
invariant x ≤ 10 for location Init, forcing the TIOA leaving location Init within 10 time units. For
the location Final no invariant exists. According to the UPPAAL semantic this specific TIOA
is in a deadlock state when being in location Final. This is the case, because no discrete
transition (an edge) can be taken when being in location Final, no matter if previously a
continuous transition is taken in the induced timed system. In contrast, according to the
definition of a deadlock state like used in this work (see Def. 12), no deadlock state exists
in the TIOA shown in Fig. 34. This is the case because in location Final always a discrete
transition can be taken allowing time to diverge.

Figure 34: TIOA including a deadlock in UPPAAL.

When using the UPPAAL verifier these semantically differences lead to the limitation that
the mechanisms provided by the tool for detecting deadlocks cannot directly be used. UP-
PAAL provides the keyword deadlock for allowing formulating generic statements for check-
ing deadlock freedom according to the UPPAAL semantic. As a result the keyword deadlock
cannot be used for checking deadlock freedom like defined in this work.

Following we show how to add an additional TA called an Observer, allowing deciding if a
trace exists that allows time to diverge. Such an observer is shown in Fig. 35. It consists
of the two locations Init and Alive that are connected by two edges in a cyclic form. The
TA Observer is allowed to stay in the location Init for exactly one time unit (realized by the
invariant alive ≤ 1 of location Init over the clock alive, in combination with the guard alive ≥ 1
of the only outgoing edge) before being required taking the edge to location Alive. Location
Alive is an urgent location where time is not allowed to pass before the edge back to location
Init need to be taken. When taking this edge, clock alive is reset to 0 when entering location
Init where the overall behavior of the TA is repeated.

alive >=1

alive=0

AliveInit

alive <=1

Figure 35: Observer.
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When searching for deadlocks, e.g., for the TA AFS , the Observer TA is added in form of the
parallel product AFS ‖ Observer. Like also described in [3] such an Observer can be used
for checking if the progress of time is always possible. This is achieved by checking for the
liveness property, requiring that location Alive can be reached on each and every trace of
the induced timed system infinitely often within the parallel product. Location Alive cannot
be reached infinitely often if a path exists where time is not able to diverge. This can be the
case if first, a zeno trace exists, not allowing time to diverge, or second, if a deadlock state
is reachable where no transition at all can be taken. In this work a TA, and also a TIOA is
defined to be valid, iff, it is deadlock and zeno free. As a consequence if time is not able
to diverge and location Alive of the Observer TA cannot be reached infinitely often on at
least one path, the TA/TIOA is not valid. Thus, the observer allows checking if a TA is valid,
excluding deadlocks and zeno behavior.

Fortunately the tool UPPAAL supports checking liveness properties, allowing deciding if a
given TA/TIOA is valid by using the observer shown in Fig. 35. The liveness property for
the observer for checking if location Alive is reachable on each and every trace infinitely
often can simply be formulated as follows: Init −→ Alive. This statement can be used in
UPPAAL for checking if time is always able to diverge, what excludes deadlock states as
well as zeno traces like defined in this work. The same holds for the tool UPPAAL TIGA
where liveness properties can be used as a goal allowing searching for strategies avoiding
undesired behavior in form of zeno or deadlock behavior, according to the semantics used
in this work.

In this work the observer as well as the liveness property is not shown in the discussed
examples to allow a better understanding. All investigated deadlocks shown in the examples
are cases where a state is reachable allowing not taking a discrete transition, what also
is a deadlock according to UPPAAL semantic. Nevertheless, the observer can be used to
investigate for zeno and deadlock behavior like defined in our reasoning scheme.

67



 



Aktuelle Technische Berichte  
des Hasso-Plattner-Instituts 

 
 
Band ISBN Titel Autoren / Redaktion 

    
64 978-3-86956-

217-9 
 

Cyber-Physical Systems with Dynamic 
Structure: Towards Modeling and 
Verification of Inductive Invariants 
 

Basil Becker, Holger Giese 

63 978-3-86956-
204-9 

Theories and Intricacies of  
Information Security Problems 
 

Anne V. D. M. Kayem,  
Christoph Meinel (Eds.) 

62 978-3-86956-
212-4 

Covering or Complete? 
Discovering Conditional Inclusion 
Dependencies 
 

Jana Bauckmann, Ziawasch 
Abedjan, Ulf Leser, Heiko Müller, 
Felix Naumann 

61 978-3-86956-
194-3 

Vierter Deutscher IPv6 Gipfel 2011 Christoph Meinel, Harald Sack 
(Hrsg.) 
 

60 978-3-86956-
201-8 

Understanding Cryptic Schemata in Large 
Extract-Transform-Load Systems 
 

Alexander Albrecht,  
Felix Naumann 

59 978-3-86956-
193-6 

The JCop Language Specification 
 

Malte Appeltauer,  
Robert Hirschfeld 
 

58 978-3-86956-
192-9 

MDE Settings in SAP: A Descriptive Field 
Study 
 

Regina Hebig, Holger Giese 

57 978-3-86956-
191-2 

Industrial Case Study on the Integration of 
SysML and AUTOSAR with Triple Graph 
Grammars 
 

Holger Giese, Stephan 
Hildebrandt, Stefan Neumann, 
Sebastian Wätzoldt 

56 978-3-86956-
171-4 

Quantitative Modeling and Analysis of 
Service-Oriented Real-Time Systems 
using Interval Probabilistic Timed 
Automata 
 

Christian Krause, Holger Giese 

55 978-3-86956-
169-1 

Proceedings of the 4th Many-core 
Applications Research Community 
(MARC) Symposium 
 

Peter Tröger,  
Andreas Polze (Eds.) 

54 978-3-86956-
158-5 

An Abstraction for Version Control 
Systems 
 

Matthias Kleine,  
Robert Hirschfeld, Gilad Bracha 

53 978-3-86956-
160-8 

Web-based Development in the Lively 
Kernel 
 

Jens Lincke, Robert Hirschfeld 
(Eds.) 

52 978-3-86956-
156-1 

Einführung von IPv6 in 
Unternehmensnetzen: Ein Leitfaden 
 

Wilhelm Boeddinghaus,  
Christoph Meinel, Harald Sack 

51 978-3-86956-
148-6 

Advancing the Discovery of Unique 
Column Combinations 
 

Ziawasch Abedjan,  
Felix Naumann 

50 978-3-86956-
144-8 

Data in Business Processes Andreas Meyer, Sergey Smirnov, 
Mathias Weske 
 

49 978-3-86956-
143-1 

Adaptive Windows for Duplicate Detection Uwe Draisbach, Felix Naumann, 
Sascha Szott, Oliver Wonneberg 
 

48 978-3-86956-
134-9 

CSOM/PL: A Virtual Machine Product Line 
 

Michael Haupt, Stefan Marr, 
Robert Hirschfeld 
 

47 978-3-86956-
130-1 

State Propagation in Abstracted Business 
Processes 
 

Sergey Smirnov, Armin Zamani 
Farahani, Mathias Weske 

 



 



 



ISBN 978-3-86956-226-1
ISSN 1613-5652


	Title
	Imprint

	Abstract
	Contents
	Introduction
	State of the Art
	Contribution

	Prerequisites
	Timed Automata
	Timed I/O Automata

	Application Example - Engine Control
	Component Engine-Model
	Component Fuel-Sensor
	Component Fuel-Controller

	Progressive and Receptive TIOA
	Language Progressive and Language Receptive TIOA
	Checking Language-Progressive TIOA
	Creating a Testbed
	Checking Language Receptive TIOA

	Compositional Reasoning - Supporting Single I/O Ports
	Well-Formedness - Language Progressive
	Limitations
	Input/Output delayed TIOA

	Compositional Reasoning - Supporting Multiple I/O Ports
	Well-Formedness - Supporting Multiport Components
	Extended Scheme

	Checking Well-Formedness on Example
	Checking Language Progressive Behavior - Application Example
	Checking Language Receptive Behavior - Application Example
	Evaluation Results - Complexity

	Abstraction
	Automatic Abstraction for IP Protection

	Conclusion and Future Work
	References
	Appendix
	Proofs
	Detailed TIOA models
	Detailed Models of Testbeds
	Combined Ports
	Deadlock Semantics and Checks

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts



