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Summary 

Randomized trials (RTs) are promising methodological tools to inform evidence-based reform 

to enhance schooling. Establishing a robust knowledge base on how to promote student 

achievement requires sensitive RT designs demonstrating sufficient statistical power and 

precision to draw conclusive and correct inferences on the effectiveness of educational 

programs and innovations. Proper power analysis is therefore an integral component of any 

informative RT on student achievement. This venture critically hinges on the availability of 

reasonable input variance design parameters (and their inherent uncertainties) that optimally 

reflect the realities around the prospective RT—precisely, its target population and outcome, 

possibly applied covariates, the concrete design as well as the planned analysis. However, 

existing compilations in this vein show far-reaching shortcomings. 

The overarching endeavor of the present doctoral thesis was to substantively expand 

available resources devoted to tweak the planning of RTs evaluating educational interventions. 

At the core of this thesis is a systematic analysis of design parameters for student achievement, 

generating reliable and versatile compendia and developing thorough guidance to support apt 

power analysis to design strong RTs. To this end, the thesis at hand bundles two complementary 

studies which capitalize on rich data of several national probability samples from major German 

longitudinal large-scale assessments. 

Study I applied two- and three-level latent (covariate) modeling to analyze design 

parameters for a wide spectrum of mathematical-scientific, verbal, and domain-general 

achievement outcomes. Three vital covariate sets were covered comprising (a) pretests, 

(b) sociodemographic characteristics, and (c) their combination. The accumulated estimates 

were additionally summarized in terms of normative distributions. 

Study II specified (manifest) single-, two-, and three-level models and referred to 

influential psychometric heuristics to analyze design parameters and develop concise selection 

guidelines for covariate (a) types of varying bandwidth-fidelity (domain-identical, cross-

domain, fluid intelligence pretests; sociodemographic characteristics), (b) combinations 

quantifying incremental validities, and (c) time lags of 1- to 7-year lagged pretests scrutinizing 

validity degradation. The estimates for various mathematical-scientific and verbal achievement 

outcomes were meta-analytically integrated and employed in precision simulations. 

In doing so, Studies I and II addressed essential gaps identified in previous repertoires 

in six major dimensions: Taken together, this thesis accumulated novel design parameters and 

deliberate guidance for RT power analysis (1) tailored to four German student (sub)populations 
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across the entire school career from Grade 1 to 12, (2) matched to 21 achievement 

(sub)domains, (3) adjusted for 11 covariate sets enriched by empirically supported guidelines, 

(4) adapted to six RT designs, (5) suitable for latent and manifest analysis models, (6) which 

were cataloged along with quantifications of their associated uncertainties. These resources are 

complemented by a plethora of illustrative application examples to gently direct psychological 

and educational researchers through pivotal steps in the process of RT design. 

The striking heterogeneity of the design parameter estimates across all these dimensions 

constitutes the overall, joint key result of Studies I and II. Hence, this work convincingly 

reinforces calls for a close match between design parameters and the specific peculiarities of 

the target RT’s research context.  

All in all, the present doctoral thesis offers a—so far unique—nuanced and extensive 

toolkit to optimize power analysis for sound RTs on student achievement in the German (and 

similar) school context. It is of utmost importance that research does not tire to spawn robust 

evidence on what actually works to improve schooling. With this in mind, I hope that the 

emerging compendia and guidance contribute to the quality and rigor of our randomized 

experiments in psychology and education.  
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Preface 

From the outset, it is important to note that a power analysis is only as 

good as the formulae and parameter estimates that are used and the 

analyst who uses them. Power analysis should be done by someone who 

understands the formulae and why they are structured as they are. This 

allows the analyst to tailor the formulae to the particular needs of the 

study. In addition, investigators should take care that the parameter 

estimates accurately reflect the expected state of affairs in the population 

to be studied. Without good estimates, power analysis is only guesswork. 

 David M. Murray (1998, pp. 349-350) 

 

The ultimate goal of any randomized experiment in educational psychology is to generate 

unbiased and valid—in one word: useable—knowledge on how to shape students’ 

developmental trajectories (Hedges, 2018). Without doubt, successful education is a 

cornerstone of personal, societal, and economic prosperity. Efficient education systems 

therefore build upon reliable evidence on what works to enhance student achievement. An 

individual’s academic performance not only essentially determines their educational and 

occupational career and contributes to their well-being, health, and longevity (P. Peng & Kievit, 

2020; Spinath, 2012; Steinmayr et al., 2014), but also empowers them to participate in social 

life and democratic processes (Organisation for Economic Co-operation and Development, 

2018). Student achievement is a highly complex, multifaceted construct which is influenced by 

a myriad of factors (see e.g., Steinmayr et al., 2014; Wang et al., 1993; Winne & Nesbit, 2010). 

It is therefore of both individual as well as macrosocial interest that research does not tire to 

raise both the quantity and quality of the empirical information on how to optimally foster 

student achievement. This information serves as the basis of political decisions and practices in 

teaching and learning (Whitehurst, 2003). Randomized trials (RTs) function as invaluable 

methodological tools for this endeavor, as they facilitate causal claims on the actual impacts of 

educational interventions by assigning units (e.g., individual students or whole schools) by 

chance to experimental conditions (Institute of Education Sciences & National Science 

Foundation, 2013; Mosteller & Boruch, 2002; Slavin, 2002; Spybrook, Shi, et al., 2016). 

Overall, it is quite a recent trend though (spanning around the last 15 years), that RTs literally 

proliferated in the field of education, however, with large differences between nations 

(Connolly et al., 2018).  

A strong RT is well-designed, well-implemented, and well-analyzed (Spybrook, 2013). 

Contributing to the former is at the core of this dissertation. Over the last 25 years, educational 

and psychological research have made great leaps forward in the methodological foundations 

of RT design. Optimizing power analysis for RTs through innovative statistical methods (e.g., 
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Bloom, 2005; Donner & Klar, 2000; Murray, 1998; Raudenbush, 1997) and software (e.g., 

Borenstein et al., 2012; Dong & Maynard, 2013; Raudenbush et al., 2011) is a key feature of 

these advancements; and the accumulation of (covariate-adjusted) variance estimates for 

student achievement outcomes (e.g., Bloom et al., 2007; Hedges & Hedberg, 2007; Westine et 

al., 2013) has been an integral element of this (Spybrook, 2013). Reasonable assumptions on 

such so-called design parameters are indispensable to plan sensitive RTs that demonstrate 

sufficient statistical power to detect the hypothesized effect of an educational intervention with 

a high level of statistical precision (i.e., with a low standard error). As the quote above by 

Murray (1998) suggests, the accuracy of the design parameters thereby strongly hinges on the 

idiosyncrasies of the target RT (in terms of, e.g., population, outcome and covariates, or 

experimental design and analysis model). Note that throughout this thesis, I refer to design 

parameters as the variance estimands (and their estimates) defining a certain RT design, 

specifically the intraclass correlation coefficient (ICC) ρ, and the amount of explained variance 

𝑅2.1 Note further that I use design sensitivity as a conceptual umbrella term embracing both 

statistical power and statistical precision (Hedges & Hedberg, 2013).2  

Overarching Objective of the Present Doctoral Thesis 

In the present doctoral thesis, I strive to substantially expand available resources to perform 

power analysis when planning RTs on student achievement. More precisely, this dissertation 

accumulates extensive compendia of reliable and versatile (meta-analytically integrated) design 

parameter estimates consistent with the German (and similar) school context and manifold 

competence domains across the entire school career (Grade 1 to 12), along with thorough 

(theoretically derived and empirically established) guidance, for instance, on covariate selection 

to boost statistical power and precision. The emerging compilation is supposed to assist and 

guide evaluation researchers in education and psychology to design strong RTs of various 

designs and with different analysis models for treatment effects, which are conducted with a 

view to produce useable knowledge on what works to promote student achievement.     

                                                 
1  In doing so, I adopt a narrow meaning of the term “design parameters.” Note that in the (methodological) 

literature, the notion is used with some ambiguity. If used rather inclusively, design parameters refer to all 

estimands and quantities that define a certain design, including variance parameters, but also the effect size, the 

noncentrality parameter, the sample size, and so on (see e.g., Spybrook et al., 2014). Note that this thesis does 

not provide empirical estimates of the treatment effect heterogeneity design parameters additionally required in 

power analysis when planning multisite RT designs (see Section 1.4.4). 
2  In the (methodological) literature, the use of the notions “(design) sensitivity”, “(statistical) power”, and 

“(statistical) precision” is ambiguous; sometimes “power” is simply used in a broader sense including all these 

concepts (Cumming, 2014).   
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Structure of the Present Doctoral Thesis  

Chapter 1 introduces the substantive and methodological key concepts underlying this work. 

First, I delineate the rationale motivating the need for design parameters on student 

achievement, which in essence arose from the growing importance of RTs to inform evidence-

based educational practices and policies (Section 1.1). Next is the definition of student 

achievement (Section 1.2) and a presentation of the RT designs for which the present design 

parameters are relevant (Section 1.3). Subsequently, I introduce and elaborate on the 

foundations of power analysis, with a special emphasis on the peculiarities and challenges 

associated with multilevel RT designs, also encompassing the formal definition of the design 

parameters at the various hierarchical levels (Section 1.4). Then, I briefly summarize the current 

state of knowledge on design parameters for student achievement, from both an international 

as well as a German perspective, in particular identifying vital research gaps (Section 1.5). 

Finally, I present the objectives of the present thesis alongside the identified research gaps 

(Section 1.6). The two following chapters constitute the empirical part of the present 

dissertation. Study I in Chapter 2 analyzes multilevel design parameters for student 

achievement in various domains across elementary and secondary school, taking into account 

vital covariates. Study II in Chapter 3 focuses on the improvement of design sensitivity in 

single- and multilevel RTs by adding design parameters for a large spectrum of diverse 

covariate sets, which is enriched through concrete guidelines on covariate choice. Chapter 4 

provides an overarching, albeit nuanced discussion of the present thesis. Again alongside the 

identified research gaps, I first summarize the key results derived from the two studies, situating 

them in the literature, and deriving important implications for the design of RTs on student 

achievement (Section 4.1). I then put the spotlight on a selection of remaining core challenges 

in the planning of RTs seeking to inform evidence-based education (Section 4.2). After 

outlining strengths and limitations of the present work and pointing out some—in my opinion 

appealing—directions for upcoming works and extensions (Section 4.3), this doctoral thesis 

closes with some final concluding remarks (Section 4.4).       
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1.1 The Experimental Renaissance of Modern Educational 

Psychology, Or: Why Do We Need Design Parameters? 

Evidence-based policies and practices are key to successful education—and declared goal of 

governmental authorities all around the globe (Dekker & Meeter, 2022; Hedges & Schauer, 

2018; Organisation for Economic Co-operation and Development [OECD], 2007; Pellegrini & 

Vivanet, 2021; Slavin et al., 2021), as in Germany (Bundesministerium für Bildung und 

Forschung [BMBF], 2018; Kultusministerkonferenz [KMK], 2016). Since the advent of the 

millennium, educational policymakers and practitioners increasingly prioritize empirically 

supported knowledge over traditional, rather hermeneutic notions when investing in and 

adopting educational innovations, products, and services (Hedges, 2018; Slavin, 2002). In 

particular, stakeholders request valid answers on how to improve students’ achievement: Since 

academic performance not only fundamentally shapes every student’s personal life but also a 

whole nation’s wealth (Steinmayr et al., 2014), its promotion is among the central concerns of 

evidence-based education (OECD, 2007; Slavin, 2020; see Section 1.2 for the definition of 

student achievement adopted in this dissertation).  

Most apparently in the United States, the shift towards evidence-based education along 

with its initial legalizations (the U.S. No Child Left Behind Act in 2001 and the Education 

Sciences Reform Act in 2002) both established whole infrastructures of funding, bundling, and 

dissemination of rigorous research (e.g., the U.S. Institute of Education Sciences [IES] along 

with the What Works Clearinghouse [WWC]) as well as creating demands for high-quality 

studies (Hedges & Schauer, 2018; Whitehurst, 2003). These movements—radiating beyond the 

United States—initiated a new era of modern educational psychology, culminating in what 

Raudenbush and Schwartz (2020, p. 177) titled a “methodological renaissance” with a strong 

emphasis on randomized (field) experiments (because of which I redefine it as experimental 

renaissance; Boruch, 2003; Slavin, 2020; Whitehurst, 2012).  

A randomized trial (RT) is a study under controlled conditions, where units (e.g., 

individual students or entire schools) are allocated by chance (like by tossing a coin3) to receive 

some deliberate intervention (i.e., a treatment) or not, in order to test its effect (Shadish et al., 

2002). Widely appreciated as the most unbiased and efficient study design to address causality 

(Shadish et al., 2002, pp. 247–248), RTs have become indispensable tools to rigorously evaluate 

                                                 
3  Although coin toss is indeed still sporadically used (Bruce et al., 2022), randomization is rather done by 

computer-based algorithms nowadays (e.g. random number generator). Interestingly though, the randomness of 

coin toss has itself been experimentally studied (e.g., Clark & Westerberg, 2009; Gelman & Nolan, 2002).   
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educational interventions (IES & National Science Foundation [NSF], 2013; Mosteller & 

Boruch, 2002; Slavin, 2002; Spybrook, Shi, et al., 2016). 

The notion ‘renaissance’ captures it fairly well: The RT design has by now traversed a 

(far more than) centennial, fascinating history in which psychology as a field truly plays a 

pioneering role (here, the famous weight experiments by Charles S. Peirce and his student 

Joseph Jastrow in the late eighteen-hundreds come to mind,4 see e.g., Dehue, 1997, 2001; 

Jamison, 2019; Stigler, 1992, for some excellent digests on the origin of RTs, and their roots in 

psychology and education). Sir Ronald A. Fisher (1925, 1935) later refined the basic principles 

of RT design, in agriculture though, but they became popularized far beyond. Not least the fact 

that since then quite some classics of experimental research methodology appeared in 

psychological journals (D. T. Campbell, 1957, 1969; Raudenbush, 1997; Rubin, 1974) 

witnesses that RTs hold a deep-seated key position in (educational) psychology. 

Notwithstanding, it is a rather new development that educational RTs enormously flourished 

(see e.g., Connolly, 2017; Gorard et al., 2017; Morrison, 2020; Mosteller & Boruch, 2002), not 

even two decades old: More than three quarters of the over 1,000 educational RTs reviewed by 

Connolly et al. (2018) that were internationally carried out between 1980 and 2016 do not 

predate 2007.  

A crucial prerequisite of any RT to allow for conclusive and correct claims on an 

intervention’s impact is, that it is designed to be sensitive to the treatment effect (Hedberg, 

2018; Lipsey, 1990). Design sensitivity embraces both statistical power and statistical precision 

(see also Hedges & Hedberg, 2013). But what does this mean? I basically refer to the sensitivity 

of an RT design as its capacity (in terms of probability; i.e., statistical power) to detect a real 

contrast between the experimental groups on the studied outcome at a given level of statistical 

significance with a low standard error (i.e., statistical precision; see Section 1.4.3 for more 

detail). Of importance, this capacity is heavily determined by the degree of outcome variation 

in the experimental groups, relative to their contrast (Lipsey, 1990): Usually, low variance 

barely affects the ability to precisely observe a treatment effect, while large variance, or much 

random noise fades the signal of any treatment effect, unless this contrast is very pronounced, 

resulting in limited power and precision (Raudenbush et al., 2007).  

                                                 
4  Peirce and Jastrow (1885) adapted a self-experiment by Gustav T. Fechner (a pioneer in psychophysics) in 

which they had to decide which of two concealed and indistinguishable weights was heavier. Aiming for 

unbiased results, for example by which hand was used or which weight was picked up first, they created a 

special deck of cards that determined the conditions of each trial. Although anything but perfect, this is gauged 

the first experiment that applied random assignment—located in psychology (Hacking, 1988; Jamison, 2019; 

Stigler, 1992).   
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The pivotal influence of relative variation—or, put differently, the signal-to-noise ratio 

in group contrasts for design sensitivity can be illustrated by means of the following example 

(see Figure 1): Imagine a road bike race. We try to judge which of the two Teams A or B is 

closest to the finish line, on average, as a group. If all riders within Team A ride side by side, 

and the same happens in Team B (see Figure 1a), we can immediately observe that Team A is 

leading. The position of the riders within the teams does not vary, which facilitates to precisely 

assess the contrast. But if the riders spread over the route (see Figure 1b), it becomes much 

harder to identify the faster team. Yet, the average progresses are exactly the same as in Figure 

1a: Team A is leading. The variation in the riders’ position within the teams induces noise, 

blurring the contrast. However, holding the variation in the positions of the single riders 

constant, if the distance between the two teams grows (see Figure 1c), or the number of riders 

per team increases (see Figure 1d), the advantage of Team A becomes readily apparent again 

(see Lipsey, 1990, for a similar illustration). 

Figure 1. Illustration of the Signal-to-Noise Ratio in Detecting a Group Contrast 

Note. Adapted from “Design Sensitivity. Statistical Power for Experimental Research.” (Figure 1.1, p. 15) by M. 

W. Lipsey, 1990, SAGE Publications. Copyright 1990 by SAGE Publications. Reprinted and adapted with

permission.

Extrapolated to applied experimental research—where the (mean) contrast between 

experimental groups is of interest—this illustration implies that both larger treatment effects 

and larger sample sizes raise design sensitivity, whereas larger outcome variance causes the 

exact opposite. Unfortunately, various factors induce variation in applied RTs (e.g., sampling, 

measurement and estimation error; Lipsey, 1990). And, in educational psychology, the dilemma 

is even exacerbated by the nature of the population to be studied: As in many other scientific 
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fields, the population of interest is not uniform, but hierarchically structured; individuals are 

nested within groups—a statistician would say “clusters.”  For instance, in health care, patients are 

nested within clinics; in economics, employees are nested within companies; in politics, delegates 

are nested within parties; and finally in education, students are typically nested within classrooms 

and schools. Importantly, these groupings do not arise by chance. Rather, the individuals within 

these clusters do have some kind of connection, they share cluster-specific commonalities, 

norms, and standards (Kreft & de Leeuw, 1998; Murray, 1998). In the institutionalized school 

system, this connection is quite obvious: A school represents the (physical) environment for 

learning and teaching that has its idiosyncratic characteristics (e.g., school climate, teachers’ 

professional level, student composition), and students within these schools co-influence each 

other. The same principle naturally extends to classrooms within schools. As a result, variation 

distends among students (within classrooms and schools), classrooms (within schools), as well 

as schools (Raudenbush & Schwartz, 2020).  

Undoubtedly, (small-scale) single-level RTs that randomly sample and assign 

individual students (irrespective of the membership to a classroom or school; e.g., Harks et al., 

2014; Loosli et al., 2012) are fundamental pieces contributing to the generation of knowledge 

on ways to improve student achievement. Specifically, they offer necessary insights into how 

to conceive and possibly customize deliberate interventions, and facilitate probing their efficacy 

(Hedges, 2022; Roland & Torgerson, 1998). At the same time, to test the effectiveness and 

scalability of these interventions, it is essential to implement RTs at larger scales in ecologically 

valid settings (D. T. Campbell, 1957; Moerbeek & Teerenstra, 2016; e.g., Gersten et al., 2015). 

Therefore, more complex RTs that mimic the hierarchical structure (in the sampling, design, as 

well as analysis stage) have become the methodological instruments of choice when probing 

educational interventions in the school context (Hedges & Rhoads, 2010a; Spybrook et al., 

2020). Such (large-scale) multilevel RTs often address the inherent nesting of the target 

population by randomly assigning the treatment either to entire student clusters (e.g., 

classrooms or schools) or to students within these clusters (e.g., classrooms or schools serving 

as sites; see Section 1.3.2 for a presentation of the various multilevel RT designs covered in this 

thesis).  

The major drawback associated with any multilevel RT is an (often dramatically) 

reduced design sensitivity, as contrasted with a single-level RT (e.g., Bloom et al., 2007; 

Hedges & Rhoads, 2010a; Lipsey & Hurley, 2009; Raudenbush et al., 2007; Schochet, 2008): 

The described exposure to a joint environment in conjunction with the mutual influences cause 

the achievement scores of students within the same classroom and school to resemble each other 
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(Donner & Klar, 2000). From a statistical point of view, this means that the errors associated 

with the students within a classroom or school are likely to be correlated (Kreft, 1993; Schochet, 

2008). This correlation between individuals within groups, or the other way around, the amount 

of between-cluster differences, is typically expressed by the intraclass correlation (ICC) ρ 

(where 0 ≤ ρ ≤ 1; ρ is formally defined for different hierarchical levels in Section 1.4.4). In a 

multilevel RT, the ICC inflates the sampling variances of the outcome (means) in the 

experimental groups,5 and thus, compromises the precision of the treatment effect estimate (i.e., 

bloats its standard error). It follows that, given ρ > 0 (which holds virtually always true; 

Murray, 1998, p. 8), the statistical power of the test in a multilevel RT will always be attenuated 

as compared to a single-level RT of the exact same total sample size (Hedges & Rhoads, 

2010a).6 

Crucially, one of the techniques proven beneficial to thwart the detrimental 

consequences of inflated variances is covariate adjustment. In fact, statistically controlling for 

covariates can (often substantially) raise design sensitivity—notably, regardless of the RT 

design (e.g., Bloom et al., 2007; Kahan et al., 2014; Maxwell et al., 2017; Porter & Raudenbush, 

1987; Raudenbush, 1997; Raudenbush et al., 2007, 2007). As schematically visualized in Figure 

2 for a multilevel RT with two hierarchical levels and randomization occurring at the cluster 

level (e.g., students within schools, and schools are randomly allocated to experimental 

conditions), baseline covariates that are correlated with (i.e., explain variance in) the outcome 

reduce error variance in the outcome (Porter & Raudenbush, 1987). This mechanism improves 

the signal-to-noise ratio of the treatment effect estimate (Raudenbush et al., 2007), which boosts 

power and precision (unless the sample size is very small; see Konstantopoulos, 2012; Liu, 

2011; Moerbeek & Teerenstra, 2016). The proportion of explained variance by one or more 

covariates is indexed by 𝑅2 (where 0 ≤ 𝑅2 ≤ 1; 𝑅2 is defined for different hierarchical levels

in Section 1.4.4). 

5  For continuous (or binary) outcomes, this property is reflected in the so-called variance inflation factor (VIF; 

Donner et al., 1981; also referred to as the “design effect” in sampling theory; Kish, 1965). The VIF is conceived 

as the ratio of the variance in a clustered random sample (see also Section 1.3.2) to the variance in a simple 

random sample of the same total sample size (irrespective of any randomization). See Appendix A for details. 
6  Major foundations of this understanding have been laid as early as almost one century ago, which, interestingly, 

root in educational psychology (see Hedges & Schauer, 2018): Everett F. Lindquist (1940), one of the pioneers 

of modern psychometrics and large-scale assessment, spread the idea of biased conventional single-level 

significance tests when using data actually obtained from  multilevel RTs. Soon after, Walsh (1947) 

demonstrated how ignoring the hierarchical variance structure in such data may overrate precision, and how 

growing cluster differences aggravates bias. Finally, in his seminal paper, Cornfield (1978) was the first who 

formalized the analytical aspects posed by cluster randomization. He is also the originator of the (under 

experimental methodologists) well-known credo: “Randomization by cluster accompanied by an analysis 

appropriate to randomization by individual is an exercise in self-deception.” (Cornfield, 1978, pp. 101–102)  
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In total, whereas between-cluster differences (with ρ > 0) generally hamper design 

sensitivity in multilevel RTs, predictive covariates (with 𝑅2 > 0) tend to raise design sensitivity

in both single- and multilevel RTs. However, which are the concrete implications of growing 

ICCs and explained variances for well-designed (i.e., sufficiently powered and precise) RTs on 

student achievement? 

Note. Variance component partitioning when the treatment explains 20% of the total variance at the cluster level, 

and (a set of) individual- and cluster-level covariates explain 50% of the total variance at either hierarchical level. 

Consider, for example, a multilevel RT of the form depicted in Figure 2 in which 𝐾 

schools are randomly allocated to experimental groups, with (a fixed number of) 𝑛𝑘 = 23

students nested within each school (representing the typical school size in large-scale 

educational RTs; see Lortie-Forgues & Inglis, 2019). Figure 3 portrays the total sample size 

𝑁 = 𝐾𝑛𝑘 that is required for such a multilevel RT to be sensitive to the (standardized) treatment

effects that define students’ typical (range of) annual academic growth in German lower 

secondary school (meta-analytic average and 95% confidence interval [CI]; Brunner, Stallasch, 

et al., 2023, Table 1), in juxtaposition to a conventional single-level RT (i.e., ignoring 

clustering) as placed at the bottom row. First, the sample size requirements are quickly 

augmented with growing homogeneity among students within schools, especially without 

covariate adjustment (𝑅2 = 0): For instance, to find an effect of δ = .14 𝑆𝐷 (lower bound of

the 95% CI) in some achievement test, almost 400 more students are required for a multilevel 

RT (𝑁 = 2,001, 𝐾 = 87) compared to a single-level RT (𝑁 = 1,604) when only 1% of the total 

variance in the studied outcome can be attributed to between-school achievement differences; 

and when ρ = .50, the required sample size for a multilevel RT strikingly inflates to 𝑁 = 19,274 

(𝐾 = 838). Notably, such large ICCs are by no means uncommon in German lower secondary 

school (see Brunner et al., 2018; Knigge & Köller, 2010). The same pattern of results is 

a. Without covariate adjustment

Error variance (ICC; ρ) 

Error variance

Explained variance 
by treatment

Cluster level 
(e.g., schools)

Individual level 
(e.g., students)

Explained variance by covariates (𝑅2) 
Explained variance  

by treatment
Error variance (adjusted ρ) 

b. With covariate adjustment

Explained variance by covariates (𝑅2) Error variance

Cluster level 
(e.g., schools)

Individual level 
(e.g., students)

Total variance 

Figure 2. Variance Decomposition in a Multilevel RT with Cluster Randomization 
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observed for δ = .21 (average) as well as δ = .27 (upper bound of the 95% CI), although it 

becomes evident again (remember the road bike race scenario) that treatment effects of larger 

magnitudes are detectable with fewer students (everything else held constant).7 Second, the 

adjustment for strong (i.e., highly prognostic) covariates substantively diminish sample size 

requirements: When including one student-level and one school-level covariate that explain 

large amounts of variance of 𝑅2 = .75 at either level, the necessary sample sizes can be virtually

quartered, irrespective of the RT design and the degree of clustering (e.g., to detect δ = .21, 

𝑁 = 8,579 students would have to be sampled without covariates, but only 𝑁 = 2,185 with 

covariates).  

Figure 3. Total Sample Size Required to Detect Treatment Effects in a Single- vs. Multilevel 

RT as a Function of Design Parameters 

Note. Power analysis (see Section 1.4 for details) for a single-level RT vs. multilevel RT (students within schools; 

schools form the unit of randomization) under complete balance (i.e., samples are randomly assigned to the 

treatment and control condition in equal shares; constant school size of 𝑛𝑘 = 23 students) to detect a statistically

significant standardized treatment effect of δ = .14/.21/.27 at α = .05 (two-tailed) in a two-sample independent 𝑡-

test with 80% statistical power. Designs with covariate adjustment (i.e., 𝑅2 > 0) include one covariate at the 

student level and one covariate at the school level which explain the same amount of variance at either level. The 

hypothesized effect sizes represent the typical range (i.e., 95% confidence interval) and the average of the annual 

growth in students’ achievement in German lower secondary school, meta-analytically averaged across Grades 5 

to 10 (Brunner, Stallasch, et al., 2023, Table 1). The typical school size was calculated as the average number of 

students within schools across the educational large-scale RTs reviewed by Lortie-Forgues and Inglis (2019). 

To sum up: Strong (i.e., well-designed) RTs maximize the chances for conclusive and 

correct causal inferences on the effectiveness of educational interventions, programs, and 

innovations, while maintaining cost-efficiency. Crucially, only if RTs are adequately powered 

and precise (in short: sensitive), they can serve as indispensable methodological tools to 

generate valid knowledge informing evidence-based policies and practices in education. 

Therefore, sound power analysis is an integral component in the planning of any RT on student 

achievement for which substantive guidance is needed—irrespective of its particular design. 

7  Of importance, in this concrete example of 𝑛𝑘 = 23 students per school, it holds true across hypothesized effect

sizes, that the increase in the required sample size is almost tenfold when moving from ρ = .01 to ρ = .50. 

However, the exact percentage increase depends on 𝑛𝑘 (as also implied by the VIF, see Appendix A).
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Yet, with multilevel designs, by contrast with single-level designs, this is a more 

sophisticated venture additionally requiring educated assumptions on the degree of clustering 

in the outcome’s variance structure. Thus, researchers rely on reliable values of the design 

parameters ρ and (in both single- and multilevel RTs) 𝑅2. As numerous scholars stressed for

decades, these estimates are sharply context-specific and should therefore be optimally tailored 

to the RT’s target population, achievement outcome, and possibly applied covariate set, as well 

as its concrete design and planned analysis model to guarantee strong designs (e.g., Bloom et 

al., 2007; Brunner et al., 2018; M. Campbell et al., 2000; Cohen, 1988; Donner & Klar, 2000; 

Hedges & Hedberg, 2007; Lipsey et al., 2012; Moerbeek & Teerenstra, 2016; Murray, 1998; 

Schochet, 2008; Spybrook, 2013; Zhang et al., 2023). 

The remainder of this chapter is organized as follows. Section 1.2 defines student 

achievement as a core target outcome of educational RTs. Section 1.3 presents the RT designs 

covered in this thesis. Section 1.4 introduces and elaborates on power analysis, putting the 

spotlight on the peculiarities of multilevel RTs, and formulizes the level-specific design 

parameters. Section 1.5 summarizes the current research state on design parameters for student 

achievement, from an international and German perspective, identifying vital research gaps. 

Section 1.6 details the objectives of the present thesis alongside these identified research gaps. 

1.2 Student Achievement as Target Outcome of Randomized 

Experiments 

The enhancement of student achievement ranks among the pivotal endeavors of evidence-based 

education (OECD, 2007; Slavin, 2020), as it has far-reaching ramifications—in individual as 

well as macrosocial respect (Steinmayr et al., 2014). Hence, it might not come as a surprise that 

more than one third of the educational RTs reviewed by Connolly et al. (2018) explicitly 

targeted student achievement, in various domains. In two other reviews propounded by 

Spybrook and Raudenbush (2009) and Spybrook et al. (2016) that cover RTs funded by the IES 

in the years 2002 to 2004 and 2011 to 2013, the dominance of achievement-related 

over -unrelated RTs was even more pronounced (55% and 73%, respectively).  

Student achievement is a multifaceted construct (Steinmayr et al., 2014). It results from 

long-term and cumulative mechanisms of knowledge acquisition determined by a myriad of 

factors (Baumert et al., 2009; Winne & Nesbit, 2010). Typically, an achievement outcome in a 

certain domain (e.g., mathematics) indicates the degree of goal attainment in learning tasks or 
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activities in that very same domain (e.g., the number of correctly solved calculations), and is 

often assessed via school grades or standardized achievement tests (Steinmayr et al., 2014). 

Since school grades are given by teachers with reference to a particular classroom or school 

framework, standardized tests represent more objective, and thus, comparable measures—

across students, classrooms, or schools (Borghans et al., 2016; Brookhart, 2015). Contemporary 

conceptualizations of domain-specific achievement, as underlying, for instance, the 

standardized tests of large-scale assessment studies reflect the multidimensionality of domain-

specific achievement by uniting both content dimensions (e.g., mathematical quantity, space 

and shape) and cognitive process dimensions (e.g., mathematical modeling, problem solving; 

Neumann et al., 2013; OECD, 2013). 

1.3 Experimental Designs 

RTs facilitate unbiased causal claims on the impact of educational programs and innovations 

(IES & NSF, 2013; Mosteller & Boruch, 2002; Slavin, 2002; Spybrook et al., 2016), given 

some basic assumptions (Shadish et al., 2002). The core feature of an RT as opposed to any 

non-experimental study is, as the name implies, randomization. Randomization means to select 

units to receive a treatment or not, completely by chance. In such a two-arm or two-group 

study8, the first resulting group forms the treatment group TG and the second the control group 

CG (often doing “business as usual”). This tactic, in principle, eliminates any systematic 

differences between experimental groups that might exist prior to the treatment. This way, 

factors both known and unknown to be related to the treatment are offset and differences in the 

outcome under investigation are likely exclusively due to the treatment (M. J. Campbell & 

Walters, 2014; Shadish et al., 2002). For instance, randomizing students to receive a French 

language training or not allows a “fair comparison” (Boruch, 2003, p. 107) of the outcomes in 

a respective posttest between the TG and CG, irrespective of whether single students spent a 

year abroad in France or show higher linguistic affinity than others. Obviously, this would only 

work perfectly with infinitely large samples; therefore, a certain likelihood of imbalance 

between the experimental groups always remains (M. J. Campbell & Walters, 2014).  

Power analysis for RTs hinges on the target experimental design. Many different 

experimental designs have been developed (see e.g., Kirk, 2013, for a thorough presentation). 

8  The delineations and discussions in this thesis are limited to two-arm RT designs with one single treatment 

group TG and one single control group CG. 

.

..
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The design parameters accumulated in the present doctoral thesis inform the RT designs most 

frequently implemented in educational research (see Connolly et al., 2018; Hedges & Rhoads, 

2010a; Spybrook, Shi, et al., 2016; Spybrook & Raudenbush, 2009). Figure 4 illustrates their 

respective randomization schemes and data structures; the Appendix B provides formulations 

of the corresponding unconditional (i.e., without covariates) and conditional (i.e., with 

covariates) statistical models. These designs may be roughly classified with respect to two 

dimensions: (a) the sampling process (simple single-level vs. complex multilevel), and (b) the 

randomization unit (individual vs. cluster vs. subcluster). 

The implications for both the design and the analysis of an RT that follow from the 

underlying sampling process can hardly be overstated (Hedges & Rhoads, 2010a): The 

sampling technique fundamentally determines the assumptions on the stochastic 

(in)dependence of the students, and thus, the complexity of the data structure and the properties 

of the derived statistics. 

1.3.1 Single-Level Designs 

Under simple random sampling, the students are selected independently of one another, at an 

entirely individual basis. In statistical terms, this means that all observations are assumed to be 

stochastically independent. 

Individually Randomized Trial 

From a simple random sampling procedure, the most basic design emerges: an individually 

randomized trial (IRT; e.g., Bloom, 2006; Dong & Maynard, 2013; see Equations (B1)–(B2) 

in Appendix B). An IRT is also referred to as “single-level” (e.g., Zhang et al., 2023), 

“completely” (e.g., Hedges & Rhoads, 2010b), or “simple” (e.g., Moerbeek & Teerenstra, 2016) 

randomized design. In an IRT as portrayed in Figure 4a, individual students are sampled 

independently of each other and are randomly assigned to the experimental groups, regardless 

of the classroom or school they attend; likewise, the experimental and control protocols are 

delivered at an individual basis (Lohr et al., 2014). An IRT design may be used in a number of 

scenarios. Examples are predominated by studies conducted in laboratory-similar settings under 

well-controlled conditions by well-trained staff (e.g., Harks et al., 2014; Karbach et al., 2017; 

Karbach & Kray, 2009; Loosli et al., 2012), but also include studies conducted in informal 

learning settings (e.g., Biggart et al., 2013) or with students from only one single classroom or 

school (e.g., Kelly et al., 2013).  
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Figure 4. Experimental Designs Covered in the Present Doctoral Thesis 

Note. The design parameters estimated in the present doctoral thesis are appropriate for power analysis to plan the 

six RT designs shown. Figure 4a: 𝑖 ∈ {1, 2, … , 𝑁} students are independently randomized at an individual basis 

(i.e., irrespective of classroom or school membership). Figures 4b and 4d: 𝑖 ∈ {1, 2, … , 𝑛𝑘} students at Level (L) 1

are nested within 𝑘 ∈ {1, 2, … , 𝐾} schools at L3. Figures 4c, 4e, and 4f: 𝑖 ∈ {1, 2, … , 𝑛𝑗𝑘} students at L1 are nested

within 𝑗 ∈ {1, 2, … , 𝐽𝑘} classrooms at L2 which are nested within 𝑘 ∈ {1, 2, … , 𝐾} schools at L3.
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Note, however, that IRTs represent usually small-scale experiments, and are in fact most 

often based on convenience samples rather than fully random samples from a population, 

raising concerns about their limited generalizability (Hedges & Rhoads, 2010b; Stuart et al., 

2011; Tipton & Olsen, 2018; see also Section 4.2.2). Nonetheless, IRTs are integral 

cornerstones in educational evaluation research as they not only allow to develop, calibrate, and 

modulate innovative programs and measures but may also offer unique possibilities to draw 

causal conclusions on their general efficacy (e.g., for answering research questions such as: 

“Does the underlying didactic approach of this literacy training would improve students’ 

reading comprehension under ideal conditions?”; see Hedges, 2022; Roland & Torgerson, 

1998; Stuart et al., 2011). 

1.3.2 Multilevel Designs 

The great majority of RT designs in education involves some sort of complex cluster and/or 

multistage random sampling (Connolly et al., 2018; Hedges & Rhoads, 2010b), where a pool 

of (intact) clusters instead of individual subjects is selected from a pre-defined population (see 

e.g., S. K. Thompson, 2012). In many educational experiments, for instance, whole schools are

sampled. The complete student body in each school may then be collectively assigned to either 

the TG or the CG (representing a cluster sample; e.g., Stullich et al., 2007). Alternatively, from 

this pool of schools, students may be sampled in a second step (representing a two-stage sample; 

e.g., Corrin et al., 2015), or again, (intact) clusters—typically classrooms—may be sampled

(representing a two-stage cluster sample; e.g., Cook et al., 2000), possibly followed by the 

sampling of students in a third step (representing a three-stage cluster sample; e.g., Itzek-

Greulich et al., 2017). In either case, observations of students can no longer be regarded as 

stochastically independent. Rather, such sampling techniques lead to complex hierarchical data 

structures whose (statistical) properties often deviate drastically from those of simple random 

samples (Hedges & Rhoads, 2010b). As IRTs, RTs incorporating multilevel samples lead to 

unbiased inferences, as long as design and analysis adequately account for the clustering 

(Raudenbush, 1997). 

Notably, hierarchically nested samples do not exclusively result from cluster or 

multistage sampling procedures. Even when students are independently sampled (and 

individually assigned to experimental conditions at random), many educational treatments are 

either delivered in group settings or operate at the group level by definition (Bloom, 2005; 

Boruch & Foley, 2000; Cook, 2005), still inducing a clustered variance structure (Lipsey & 

Hurley, 2009). Such kind of RTs are often labeled individually randomized group treatment 
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trials (IRGT; e.g., Moerbeek & Teerenstra, 2016) where randomization determines the cluster 

membership of individuals (Moerbeek & Teerenstra, 2016). One of the most prominent 

examples is the project STAR (Finn & Achilles, 1990), also known as the Tennessee class size 

experiment, where kindergarten children (as well as teachers) were independently and 

randomly enrolled into small or large classrooms installed within participating elementary 

schools. The treatment itself (i.e., teaching within small vs. large classrooms) then occurred at 

the cluster level. Similarly, in the evaluation of U.S. charter schools (Gleason et al., 2010), 

students were allocated at the individual level to either a reform (TG) or another (CG) school 

by means of lotteries.  

This thesis considers hierarchically clustered (i.e., multilevel) designs with, in total, two 

and three hierarchical levels (L). In the two-level designs, 𝑖 ∈ {1, 2, … , 𝑛𝑘} students at L1 are

nested within 𝑘 ∈ {1, 2, … , 𝐾} schools at L3. In the three-level designs, 𝑖 ∈ {1, 2, … , 𝑛𝑗𝑘}

students at L1 are nested within 𝑗 ∈ {1, 2, … , 𝐽𝑘} classrooms at L2 which are, in turn, nested

within 𝑘 ∈ {1, 2, … , 𝐾} schools at L3. Multilevel RTs may be further distinguished with regard 

to the level or randomization unit. Specifically, whether treatment allocation occurs at the top 

hierarchical level or within the top hierarchical level has important consequences for—not 

exclusively, but especially—the design of the RT. In the former case, schools (i.e., the top-level 

units) are nested within experimental conditions, which characterizes a cluster-randomized trial 

(CRT); in the latter case, experimental conditions are crossed with the random effects of the 

schools within which randomization occurs, constituting a multisite randomized trial (MSRT). 

Sample sizes at either hierarchical level held constant, it can be shown that CRTs demonstrate 

less efficiency than MSRTs (due to a larger variance in CRTs as compared to MSRTs; 

Moerbeek & Teerenstra, 2011). Hence, design sensitivity tends to be smaller for CRTs as 

opposed to MSRTs; yet, power calculations for MSRTs require a larger set of input parameters. 

Cluster-Randomized Trial 

A CRT (e.g., Raudenbush, 1997), which is also referred to as “group-randomized” (e.g., 

Murray, 1998) or “place-based” (e.g., Bloom, 2005) design, assigns intact clusters of 

individuals to experimental conditions. Importantly, in a straight CRT, treatment allocation 

always occurs at the top hierarchical level (Hedges & Rhoads, 2010a). Especially in the United 

States, CRTs have a long—in fact over 100 year-old (see Hedges & Schauer, 2018)—tradition 

and are nowadays deeply seated tools in educational research. In fact, Connolly et al. (2018) 

found that 58% of educational RTs represent CRTs. This prevalence is motivated by several 

advantages encapsulated in this design (see Bloom, 2005, for a comprehensive list of 
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appropriate application scenarios): CRT designs are especially useful for interventions that 

operate best at the group level or that do this by definition, such as whole school reforms 

(Boruch & Foley, 2000; Cook, 2005). Moreover, in some situations, it may be unfeasible or 

unethical to favor individual over cluster assignment, for example, when an intact group of 

students has to be spatially and physically separated (Bloom, 2005). Finally, the most frequent 

rationale for a CRT is the prevention of contamination or spillover effects, reflecting undesired 

interdependencies among several students and/or among the outcomes of a single student 

(Bloom, 2005; Hemming & Taljaard, 2023). Yet, if not carefully designed, CRTs can be 

susceptible to different kinds of methodological bias (Hahn et al., 2005; Hemming & Taljaard, 

2023), for instance, selection bias when recruitment is not blinded and/or students within 

classrooms or schools are selected post-hoc to randomization (Brierley et al., 2012; F. Li et al., 

2022). 

In a two-level cluster-randomized trial (2L-CRT; see Equations (B3)–(B8) in Appendix 

B) as shown in Figure 4b, students at L1 are nested within schools at L3, and entire schools

receive the treatment. Inserting the classroom level, while keeping randomization at the level 

of schools, so that students at L1 are nested within classrooms at L2, which are, in turn nested 

within schools at L3, renders this design into a three-level cluster randomized trial (3L-CRT; 

see Equations (B9)–(B16) in Appendix B) as depicted in Figure 4c. Spybrook and Raudenbush 

(2009) as well as the follow-up review of Spybrook et al. (2016) revealed that both designs are 

employed with equal frequency.  

Multisite Individually Randomized Trial 

In recent years, multisite individually randomized trials (MSIRT; e.g., Raudenbush & Liu, 

2000), which have also been called “blocked” designs (e.g., Konstantopoulos, 2008a) have 

gained popularity. An MSIRT randomly delivers the treatment to individuals within clusters, 

forming the sites or blocks. Put differently, in an MSIRT, one and the same experiment is 

replicated in several superordinate clusters, making it more feasible (Liu, 2014). Such designs 

offer appealing opportunities to evaluate educational interventions beyond what is possible via 

CRTs: In addition to the average treatment effect, they allow studying the extent and the 

determinants (e.g., mediator and moderator variables) of cross-site heterogeneity in treatment 

effects (Bloom & Spybrook, 2017; Raudenbush & Bloom, 2015; Weiss et al., 2014). Moreover, 

similar individuals can be matched within sites (therewith a main rationale behind this design 

is named) which should reduce between-site variance; and this between-site variance does not 
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affect the overall heterogeneity in the average treatment effect, so that power and precision may 

substantially be raised (Hedges & Rhoads, 2010a; Spybrook & Raudenbush, 2009).  

A two-level multisite individually randomized trial (2L-MSIRT; see Equations (B17)–

(B26) in Appendix B) as illustrated in Figure 4d randomly assigns students at L1 within schools 

at L3 to experimental conditions. For instance, Dynarski et al. (2004) conducted a 2L-MSIRT 

in which randomly selected students within each school attended an after-school program at an 

21st Century Community Learning Center. Such a design may be extended by adding the 

classroom level, leading to a three-level multisite individually randomized trial (3L-MSIRT; 

see Equations (B27)–(B41) in Appendix B) as mapped in Figure 4e, wherein the treatment is 

delivered to students at L1 within classrooms at L2 within schools at L3. Thus, classrooms and 

schools form (nested) sites (Raudenbush & Schwartz, 2020). Such a design was implemented, 

for instance, by Torkildsen et al. (2022). In their study, randomization occurred within four 

large school blocks, and students within classrooms were individually allocated to either a 

morphological (TG) or mathematical (CG) training. Along with the quantification of cross-site 

treatment effect variability, Weiss et al. (2017) provide a comprehensive list of such MSIRTs 

with various hierarchical levels. 

Multisite Cluster-Randomized Trial 

A multisite cluster-randomized trial (MSCRT) couples cluster randomization and blocking: 

Figure 4f shows a three-level multisite cluster-randomized trial (3L-MSCRT; e.g., Dong et al., 

2023, see Equations (B42)–(B53) in Appendix B) in which entire classrooms within school 

sites are randomly assigned to experimental conditions. In Spybrook and Raudenbush (2009), 

50% of the reviewed RTs involving cluster randomization represented 3L-MSCRTs; in their 

follow-up examination, even 55% were of such a design (Spybrook, Shi, et al., 2016). A 3L-

MSCRT was used, for instance, to evaluate the Open Court Reading curriculum in the United 

States (Borman et al., 2008). As noted by Weiss et al. (2017), such RTs, however, typically 

suffer from low site-level precision because the number of classrooms within a school is 

limited. 

1.4 Power Analysis for Randomized Experiments 

Statistical power is definitely part of the bedrock of statistics: Around the 1930s, Jerzy Neyman 

and Egon S. Pearson (1928, 1933) espoused the idea of stating an alternative hypothesis of an 
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effect (thought of as addition to Sir Ronald Fisher’s null hypothesis of no effect), dichotomizing 

correct vs. incorrect regions in the space of possible statistical results (Pernet, 2016). Basically, 

their approach facilitates to differentiate between Type I and Type II errors in statistical decision 

making, and statistical power is the probability of not committing an error of the second type. 

At that time, however, the concept of statistical power was not at all warmly embraced by 

statisticians, above all not by the influential Fisher (1955) who denied that it is even possible 

(or helpful) to determine power (Descôteaux, 2007; Liu, 2014; Sedlmeier & Gigerenzer, 1989).   

The consolidation of power analysis in psychology is widely credited to Jacob Cohen 

(1969, 1988), whose ground-breaking introductory book “Statistical Power Analysis for the 

Behavioral Sciences”, as well as numerous further works (e.g., Cohen, 1962, 1973, 1992, 1994), 

has been sculpting the methodological landscape in the field and beyond until today (Perugini 

et al., 2018).  

1.4.1 Preliminaries: Type I and Type II Error in Statistical Decision 

Making 

The estimand of interest in an RT on student achievement is usually the average treatment effect 

on an achievement outcome 𝑌. The estimator of the average treatment effect is the difference 

between the means in 𝑌 observed for the TG and the CG, that is �̅�TG − �̅�CG (Bloom, 2006). For

instance, one may ask: “Is the new curriculum, on average, effective to improve students’ 

reading achievement?” The average treatment effect would then be computed as the mean 

reading score of the TG minus the mean reading score of the CG. 

When making decisions on the (in)effectiveness of such an educational intervention in 

the framework of conventional null hypothesis significance testing (NHST)9, 2×2 conclusion 

scenarios are possible (see Table 1; e.g., Cumming & Calin-Jageman, 2017, p. 148; Lipsey & 

Hurley, 2009). First, a true treatment effect either does exist or it does not exist in the 

population. The former corresponds to the alternative hypothesis 𝐻1 (i.e., �̅�TG − �̅�CG ≠ 0; e.g.,

the curriculum improves reading achievement); the latter corresponds to the null hypothesis 𝐻0

(i.e., �̅�TG − �̅�CG = 0; e.g., the curriculum does not affect reading achievement).10 Second, in

9  For the sake of clearness, here, “conventional” refers to the classical NHST approach to statistical inference as 

typically used in applied (experimental) research, which in fact mixes the approaches introduced by Fisher 

(1925) on the one hand and Neyman and Pearson (1928, 1933; see Pernet, 2016; Sedlmeier & Gigerenzer, 

1989). As Sedlmeier and Gigerenzer (1989) pointedly note, this hybrid approach would actually have been 

validated neither by Fihser nor the Neyman-Pearson team.  
10  There are also other possibilities to state these hypotheses. For instance, the 𝐻1 may be formulated as a one-

sided hypothesis of only a positive treatment effect (i.e., �̅�TG − �̅�CG > 0), instead of the stated two-sided

hypothesis (�̅�TG − �̅�CG ≠ 0) that implies that the treatment effect may be either positive or negative. Crucially,

𝐻0 and 𝐻1 cannot overlap though.
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both cases, the statistical test for the treatment effect either is statistically significant or it is not 

statistically significant based on the sample data.  

Table 1. Types of Error and Statistical Power in Null Hypothesis Significance Testing 

Population 

Statistical conclusion 
Treatment effect exists 

𝐻0 is false

No treatment effect 

𝐻0 is true

Significant treatment effect 

(𝑝 < α), reject 𝐻0

Correct conclusion 

Probability: 1 − β (power) 

Type I error 

Probability: α 

No significant treatment effect 

(𝑝 ≥ α), fail to reject 𝐻0

Type II error 

Probability: β 

Correct conclusion 

Probability: 1 − α 

In these four scenarios, two types of errors can lead to invalid inferences: (a) The test 

yields a statistically significant result while there is actually no treatment effect in the 

population. Rejecting the 𝐻0 when it is in fact true is referred to as Type I error, with (in the

long run) probability α. This is called a false positive. α is the criterion for 𝐻0 rejection (often

set to α = .05; see Section 1.4.3). (b) The test yields a statistically nonsignificant result while 

there is actually a treatment effect in the population. Failure to reject the 𝐻0 when it is in fact

false is referred to as Type II error, with (in the long run) probability β (often set to β = .20; 

see Section 1.4.3). This is called a false negative. Note that the probabilities α and β are 

conditional on 𝐻0: If the 𝐻0 is true, then an erroneous statistical conclusion has probability α;

if the 𝐻0 is false, then a statistical conclusion error occurs with probability β (Lipsey & Hurley,

2009).  

The remaining two scenarios represent correct statistical conclusions. Most relevant for 

the present thesis, the probability of correctly rejecting the 𝐻0 when it is in fact false, is 1 − β,

and denotes statistical power (often set to 1 − β = .80; see Section 1.4.3). In other words: 

Statistical power is the likelihood of not committing a Type II error, or detecting an effect, if it 

truly exists, which is significant at a stated α level.  

1.4.2 The Why of A Priori Power Analysis 

Power analysis is an indispensable step in RT planning.11 Disclosing the assumptions and key 

results of power analyses—sample size, power, and precision—ranks among the “basic 

11  Generally, power analysis is considered a venture in study design (i.e., a priori), not in study analysis (i.e., post-

hoc). Post-hoc power analysis have long been and still are subject to controversial debates (see e.g., Dziak et 
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expectations” of the reporting standards for quantitative studies (American Psychological 

Association, 2020, pp. 79, 83–84; see also Wilkinson & Task Force on Statistical Inference, 

1999). This also complies with the Consolidated Standards of Reporting Trials 2010 Statement 

for social and psychological interventions (CONSORT-SPI 2018) urging researchers to make 

sample size justification in RTs explicit by reporting power analysis (Grant et al., 2018; 

Montgomery et al., 2018). Not surprisingly then that third-party funding nowadays presupposes 

in general full transparency on power analysis and sample size determination (e.g., Education 

Endowment Foundation, 2022; German Research Foundation, 2022; Institute of Education 

Sciences, 2023). Power analysis basically showcases the prospective capacity of a design to 

distinguish real from chance differences (Schochet, 2008). Given that educational RTs are 

typically resource-intensive (Wozny et al., 2018), “it would be almost unthinkable to embark 

on a large-scale study without conducting a power analysis.” (Hedges & Rhoads, 2010b, p. 436) 

The overarching purpose of an a priori power analysis for RTs on student achievement 

is twofold: designing studies that are likely to produce (a) conclusive results and (b) correct 

results on the (in)effectiveness of an educational intervention (see Hedberg, 2018). Obtaining 

conclusive results (i.e., being informative with regard to a particular inferential goal; Lakens, 

2022; Lortie-Forgues & Inglis, 2019) is important to guarantee considerate handling of scarce 

monetary and human resources (Bausell & Li, 2002; Halpern et al., 2002; Lenth, 2001). 

Importantly, both under- and overpowered RTs may waste these resources: the former by 

probably overlooking a meaningful effect (i.e., Type II error) or by being incapable to prove 

the (true) absence of an effect; the latter by needlessly overusing funds as well as the time and 

commitment of investigators, school principals, teachers, students and so on (Ahn et al., 2020). 

Striving for correct results tells its own tale. It was repeatedly shown that an underpowered RT 

may inflate or even invert the estimate of the population effect (Gelman & Carlin, 2014; 

Ioannidis, 2005, 2008; Sims et al., 2022). Such erroneous findings not only rule out 

reproducibility (Open Science Collaboration, 2015) but also—if experimental education 

al., 2020; Lakens, 2022; Onwuegbuzie & Leech, 2004; Quach et al., 2022), whose coverage is, however, beyond 

the scope of the present thesis. Shortly recapped, unless for the sake of research reviews scrutinizing achieved 

power rates in previous studies, the meaningfulness of post-hoc power calculations seems weak at best in most 

cases. In essence, they provide very little new, but potentially flawed information (Aberson, 2019, p. 15; Dziak 

et al., 2020; Levine & Ensom, 2001). The level of retrospectively observed power of an underpowered RT 

failing to reject the null hypothesis 𝐻0 implies nothing more and nothing less than that the design lacked power

to detect a for this design too small effect. Fisher (1938, p. 17) somewhat ironically get to the heart of this 

problem by stating that “to consult the statistician after an experiment is finished is often merely to ask him to 

conduct a post mortem examination. He can perhaps say what the experiment died of.” Furthermore, an 

underpowered RT that only “slightly fail significance” (within quotation marks as this wording is to be criticized 

itself) would demonstrate higher post-hoc power than an underpowered RT that not even approach significance 

(Aberson, 2019; Dziak et al., 2020). As an alternative to post-hoc power, one may better investigate the 

confidence interval of the effect size (Levine & Ensom, 2001).  
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research claims to inform evidence-based policy and practices—could lead to (fundamentally) 

wrong political decisions in the education system.  

Sufficient design sensitivity is therefore a paramount indicator of the rigor and quality 

of RTs. All the more alarming is that quite a few RTs in education lack power and precision 

(Lortie-Forgues & Inglis, 2019; Spybrook, Shi, et al., 2016; Spybrook & Raudenbush, 2009).12 

1.4.3 Fundamentals: Types of Power Analysis and Core Factors 

Power analysis typically has one of three outputs (see e.g., Bausell & Li, 2002; Hedberg, 2018): 

(a) the required sample size, or (b) the statistical power, or (c) the statistical precision of the

treatment effect estimate.13 These three quantities are interrelated concepts, meaning that 

computing one of them requires assumptions on the two remaining; and on the α level (i.e., the 

Type I error rate) as well as the type of the test (often a 𝑡-test, but sometimes also F-test, Mann-

Whitney U test, etc.). By convention, α = .05 in a two-tailed test (Cohen, 1988), although it 

should be noted that, theoretically, one could just as well determine the α criterion as a function 

of sample size, power, and effect size (Cohen, 1988; Murphy & Myors, 2004). Practically 

however, this strategy is rarely adopted: moving from α = .05 to α = .01, for example, 

dramatically reduces power with almost no substantial benefit with regard to the protection 

against a Type I error (Murphy & Myors, 2004).  

Sample Size 

Researchers planning RTs on student achievement frequently conduct power analysis to find 

the required sample size for a given design which facilitates detecting a hypothesized effect 

size that can be expected from a specific educational intervention, or that is deemed worthwhile, 

in terms of practical or political relevance (Kraft, 2020; Lipsey et al., 2012). The sensitivity of 

an RT design to uncover a (true) treatment effect is an increasing function of the sample size, 

although this relation is not linear. As a rule, however, larger samples are associated with lower 

sampling error, improving the signal of a potential effect (Lipsey, 1990). Yet, in educational 

settings, the total sample size is often sharply restricted (not only due to constraints on the 

resources provided by a funding agency or a governmental authority, but also due to the 

12  This is in no way symptomatic for educational experimentation science in particular. Older and more recent 

reviews coincide in baring that low power and precision is a frequent issue in psychology in general (e.g., 

Bakker et al., 2012; Cohen, 1962; Fraley & Vazire, 2014; Rossi, 1995; Sedlmeier & Gigerenzer, 1989). Maxwell 

(2004) propounded a thorough investigation of possible reasons. 
13  It should be mentioned that there co-exist counter-projects to this rather broad, more generic notion of “power 

analysis” which unites multiple concepts pertinent to RT design. Schönbrodt and Wagenmakers (2018), for 

instance, defend the term “design analysis” (notably, within the Bayesian framework).   
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institutional frame of the school system). It may therefore also be helpful to assess statistical 

power or precision, given a certain sample size.  

Statistical Power 

Statistical Power, 1 − β, is defined as the likelihood of a statistical test to detect a treatment 

effect if it exists in the population (importantly: in the long run; Cohen, 1988). In the social and 

behavioral sciences, it is common to strive for an at least 80% chance of detecting an effect, 

that is 1 − β = .80 (Cohen, 1988).14 The achieved level of statistical power is influenced by 

various design characteristics, however, the core determinants include sample size, 

hypothesized effect size, and alpha level/statistical test (e.g., Aberson, 2019).15  

Statistical Precision 

The precision of the treatment effect estimate basically refers to its standard error (Hedges, 

2022). Generally, smaller standard errors mean higher precision. There are several ways to 

conceptualize and assess the target precision in power calculations. Some have proposed to set 

a desired width of the CI of the treatment effect (see e.g., Ahn et al., 2020, for a coverage of 

precision analysis; see e.g., Maxwell et al., 2008; Pornprasertmanit & Schneider, 2014, for the 

accuracy in parameter estimates [AIPE] approach), or, the other way around, defining a region 

of practical equivalence (ROPE) within the Bayesian framework (e.g., Kruschke, 2018). When 

precision is the outcome of power analysis, it seems intuitive to think about it as the minimum 

detectable effect size (𝑀𝐷𝐸𝑆; Bloom, 1995, 2005) which may then be juxtaposed against an 

effect size of educational importance (Kraft, 2020; Lipsey et al., 2012). The 𝑀𝐷𝐸𝑆 quantifies 

the smallest possible standardized effect size that reaches statistical significance in a given 

design (Bloom, Zhu, et al., 2008).  

Figure 5 visualizes that the 𝑀𝐷𝐸𝑆 is conceived as a multiple of the standardized 

standard error of the treatment effect (Bloom, 2005), and as such, represents a metric of 

precision. On the left, the 𝑡-distribution under the 𝐻0 of no treatment effect is shown, and on

the right, the 𝑡-distribution under the 𝐻1 of a positive16 standardized treatment effect of size

14  At the same time, most researchers are well aware of the fact that the 80% power benchmark lacks formal 

justification (e.g., Lakens, 2022). Lipsey and Hurley (2009), for instance, suggest to carefully weighing costs 

against risks with regard to the specific research context when deciding on the relative seriousness of potential 

Type I and Type II errors—missing an effect of an actually effective and promising intervention may mean a 

deprivation of beneficial learning and teaching conditions for students and teachers.    
15  Further factors include the variance of the target outcome measure, the reliability of outcome and covariate 

measures, and the experimental error (Lipsey, 1990, pp. 14–15).  
16  For simplicity, a positive treatment effect is assumed. Nevertheless, while the treatment effect, of course, may 

also be negative, the 𝑀𝐷𝐸𝑆 can not. 
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𝑀𝐷𝐸𝑆. To have a probability of 1 − β to be statistically significant at α/2 in a two-tailed test, 

this effect must be larger by 𝑡1−β than the critical t-value of the 𝐻1 and larger by 𝑡α/2 + 𝑡1−β

than the 𝐻0 (Bloom, 2005). Therefore, the smallest distance in standardized standard error (𝑡-

statistic) units between 𝐻0 and 𝐻1 equals the 𝑀𝐷𝐸𝑆 (Dong & Maynard, 2013).

Note. Multiplier for a two-tailed test: 𝑀𝑑𝑓 = 𝑡α/2 + 𝑡1−β, with 𝑑𝑓 degrees of freedom. Adapted from “The Core

Analytics of Randomized Experiments for Social Research” (Figure 1, p. 22) by H. S. Bloom, 2006, MDRC 

Working Papers on Research Methodology, MDRC. Copyright 2006 by MDRC. Reprinted and adapted with 

permission. 

The generalized form of an approximate 𝑀𝐷𝐸𝑆 is: 

𝑀𝐷𝐸𝑆 = 𝑀𝑑𝑓

𝑆𝐸(�̅�TG − �̅�CG)

σT

(1) 

𝑆𝐸(�̅�TG − �̅�CG) is the standard error of the treatment effect, and σT is the (pooled) total student

population’s standard deviation. The term 𝑆𝐸(�̅�TG − �̅�CG)/σT can be rewritten as a function of

sample size, proportional division of the sample into the TG and the CG, and (multilevel) design 

parameters. This reformulation is specific to the particular design of the RT, where for a two-

tailed test, 𝑀𝑑𝑓 = 𝑡α/2 + 𝑡1−β with 𝑑𝑓 degrees of freedom. 𝑑𝑓 increases with larger samples,

but decreases by the number of included covariates. For α = .05 and 1 − β = .80, 𝑀𝑑𝑓

approaches 2.8 in a two-tailed test when 𝑑𝑓 ≥ 20. Since in multilevel designs, the effective or 

operational sample size undercuts the total sample size (given ρ > 0; Bloom, 2006; Hedges & 

Rhoads, 2010a; Lipsey & Hurley, 2009), the threat of loss of 𝑑𝑓s is more pertinent to multilevel 

than single-level designs (Bloom, 2005).  

Notably, Bloom (1995) originally introduced the minimum detectable effect (𝑀𝐷𝐸) in 

a natural (i.e., unstandardized) metric. In general, standardized effect sizes are preferable in 

most scenarios of power analysis (Lipsey, 1990) as researchers evade the estimation of the 

population variance of an RT’s target outcome. Nonetheless, in doing so researchers should be 

aware that (a) a large standardized effect size could either point to a large unstandardized effect 

Figure 5. Minimum Detectable Effect Size Multiplier for a Two-Tailed Test 

𝑡α/2 

𝐻0: �̅�TG − �̅�CG = 0 𝐻1: 𝑀𝐷𝐸𝑆 

β 
α/2 

𝑡1−β 
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or little variation (Liu, 2014), and (b) the meaning of effect sizes are strongly tied to the specific 

research context (target population, outcome, etc.; e.g., Brunner, Stallasch, et al., 2023; C. J. 

Hill et al., 2008). For instance, our own meta-analytic study, wherein we estimated versatile 

effect size benchmarks for student achievement in the German school context, testifies 

considerable variation in each benchmark type among subpopulations, age groups, and 

outcomes (Brunner, Stallasch, et al., 2023). Hence, standardized effect sizes should be well 

rationalized within the RT’s actual contextual conditions (Pek & Flora, 2018). 

1.4.4 Power Analysis for Multilevel Designs 

Unlike in single-level designs, power analysis in multilevel designs not only circuits around the 

properties of the statistical test, effect size, and sample size but also involves concretizing the 

structure of clustering inherent in the sample. Here, two additional factors conspire to render 

power analysis for multilevel designs more complex (Hedges & Rhoads, 2010a; 

Konstantopoulos, 2009): (a) the sample allocation among hierarchical levels and (b) the 

variance design parameters at the various hierarchical levels. 

Sample Allocation Among Hierarchical Levels 

When planning CRTs and MSRTs, the level-specific sample sizes have to be configured. This 

means, depending on the desired output of a power analysis, the researcher has to specify the 

number of schools at L3; within schools, the number of classrooms at L2; and within 

classrooms, the number of students at L1. Holding the total sample size constant, different 

sample allocations across the hierarchical levels will likely yield different degrees of design 

sensitivity. Importantly, this also implies that—in stark contrast to single-level designs, when 

everything else is equal—augmenting the total sample size does not necessarily result in 

enhanced power and precision (Hedges & Hedberg, 2013). 

Multilevel Design Parameters 

For any CRT or MSRT17 design (and as a consequence, any CRT or MSRT analysis), the 

variance components of the random effects at each hierarchical level must be taken into account 

17  When planning MSRTs, researchers will additionally rely on reasonable assumptions on the treatment effect 

heterogeneity (i.e., the variation of the treatment effect between the sites). Reliable estimates of these parameters 

can only be obtained from experimental studies themselves, but not on the basis of observational (large-scale 

assessment) studies. Extensive resources of cross-site heterogeneity parameters are still scarce (for an exception 

see Weiss et al., 2017) as these heavily depend on the actual availability of MSRTs, which are largely lacking 

so far in Germany. 
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to allow for conclusive and correct inferences on an intervention’s impact. The internal 

homogeneity of students’ outcomes within classrooms and schools, which is usually quantified 

through the ICC, often noticeably limits statistical power and precision in multilevel RTs (e.g., 

Raudenbush, 1997; Schochet, 2008). Hence, researchers should carefully consider covariate 

adjustment to improve design sensitivity, which requires assumptions on the amounts of 

explained variance at the various hierarchical levels (e.g., Bloom et al., 2007; Raudenbush, 

1997; Raudenbush et al., 2007). Of importance, this strategy has been proven effective across 

RT designs, meaning that statistically controlling for covariates also is a beneficial strategy to 

raise design sensitivity in single-level IRTs (e.g., Kahan et al., 2014; Maxwell et al., 2017; 

Porter & Raudenbush, 1987). 

Next, I formally define the design parameters ρ and 𝑅2, decomposed each hierarchical

level to plan three- and two-level RTs. Note that I also include the definition of the single-level 

𝑅2 (i.e., not decomposed) to be used in power analysis for IRTs. The discussion assumes a

continuous achievement outcome 𝑌 with constant, unconditional total variance σT
2 , and

common within-cluster variances as well as infinite populations at either hierarchical level a 

(see Snijders & Bosker, 2012). In the multilevel scenarios, the sources of σT
2  are typically

identified through multilevel regression modeling (Raudenbush & Bryk, 2002; Snijders & 

Bosker, 2012). In the single-level scenario, conventional OLS modeling may be applied (Cohen 

et al., 2003). All underlying statistical models can be found in the Online Supplemental 

Materials (OSMs) A for Studies I and II.  

Intraclass Correlation Coefficients: Between-Classroom and Between-School 

Achievement Differences. The achievement outcomes of students within the same classroom 

or school show the tendency to intercorrelate (i.e., they are stochastically dependent; Kreft, 

1993). In other words: there is some redundancy in the scores of students who belong to the 

same classroom or school cluster (Scherbaum & Pesner, 2019). The degree of redundancy in 𝑌 

due to cluster membership—or equivalently, the extent of variation between clusters—is 

measured via the intraclass correlation coefficient (ICC), denoted by ρ.18  

In a three-level design (students at L1 within classrooms at L2 within schools at L3), σT
2

can be decomposed into the between-student-within-classroom variance located at L1, σL1
2 , the

between-classroom-within-school variance located at L2, σL2
2 , and the between-school variance

18  Put differently, ρ equals the Pearson correlation between any two achievement scores of students within one 

and the same classroom or school cluster. This implies that, as soon as ρ > 0, clusters can no longer be regarded 

“interchangeable [emphasis added] with regard to the experimental endpoint.” (Donner & Klar, 2000, p. 2) 
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located at L3, σL3
2 . Thus, with three levels of nesting, σT

2  is the sum of the variance components

at L1, L2, and L3: σT
2 = σL1

2 + σL2
2 + σL3

2 .

The ICC at L2 expresses the ratio of the variance at the classroom level to the total 

variance and can accordingly be interpreted as the proportion of the total variance in 𝑌 that can 

be attributed to between-classroom achievement differences:  

ρL2 =
σL2

2

σT
2 (2) 

The ICC at L3 expresses the ratio of the variance at the school level to the total variance 

and is therefore the proportion of the total variance in 𝑌 that can be attributed to between-school 

differences: 

ρL3 =
σL3

2

σT
2 (3) 

Having determined ρL2 and ρL3, the remainder proportion of σT
2  can be attributed to

students within classrooms in schools, which is simply their complement: 1 − ρL2 − ρL3

(Hedges & Hedberg, 2013). 

In a two-level design (students at L1 within schools at L3, i.e., skipping L2), σL1
2

becomes the between-student-within-school variance at L1, and σT
2  becomes the sum of the

variance components at L1 and L3 (one could think about this as if σL2
2  was set to zero). Thus,

with two levels of nesting, σT
2 = σL1

2 + σL3
2 ; the ICC at L3 is then computed with Equation (2).

Either ICC is, in theory, defined for 0 ≤ ρ ≤ 1, where ρ = 0 signifies that the only 

source of variation in 𝑌 are achievement differences between individual students (i.e., there are 

no between-classroom or between-school differences). Inversely, ρ = 1 signifies that students 

within the same classroom or school show identical achievement, so that classroom or school 

affiliation accounts for all the variation in 𝑌.19 Expressions for the large-sample variances of 

the ICCs are given in Appendix C.  

Squared Multiple Correlation Coefficients: Explained Variances by Covariates. Well-

selected covariates can substantially boost statistical power and precision in all RT designs 

(e.g., Bloom et al., 2007; Kahan et al., 2014; Konstantopoulos, 2012; Maxwell et al., 2017; 

Porter & Raudenbush, 1987; Raudenbush et al., 2007). Crucially, well-selected basically means 

highly predictive to the outcome. The mechanism behind this idea is as follows. When 

19  As Eldridge et al. (2009) note, ρ < 0 is in fact possible (e.g., when using analysis of variance or generalized 

estimating equations, but not, by definition, with multilevel or mixed effects modeling), however, this is 

implausible in most scenarios (Donner & Klar, 2000, pp. 10–11). A negative ICC is likely due to estimation 

error, but also occurs when the population ICC is actually negative with naturally finite cluster sizes (e.g., a 

family has always a finite number of members; Eldridge et al., 2009). A word of caution: In either case, power 

analysis should never draw on a value of ρ < 0. 
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covariates predict achievement differences in 𝑌, they reduce the unexplained total variance σT
2 .

This implies an attenuation of error variance which results in an improved signal-to-noise ratio 

of the treatment effect estimate (Raudenbush et al., 2007). Or equivalently, the reduction of σT
2

reduces the standard error of the treatment effect estimate, and thus, the 𝑀𝐷𝐸𝑆 (Bloom, 2006). 

This gain in precision translates into a gain in statistical power. Notably, given the basic 

principles of randomization, covariates do neither bias the treatment effect estimator nor do 

they change its estimate at all (in magnitude or direction)—covariates exclusively affect the 

treatment effect estimate’s standard error (Borenstein & Hedges, 2019; Maxwell et al., 2017, 

p. 471; Porter & Raudenbush, 1987). The amount to which covariates can account for

achievement differences in 𝑌 is quantified by the squared multiple correlation coefficient, 

denoted by 𝑅2.20

In multilevel designs, covariates can act at either hierarchical level, although it is not 

necessary to specify covariates at all levels. Cluster-level covariates may be represented by 

directly observable and non-decomposable “global” or “integral” measures (e.g., classroom 

size, school budget) or “contextual” or “analytical” measures aggregated from the individual 

student level (e.g., mean prior knowlegde, share of female students; Lüdtke et al., 2008, pp. 

203–204). In general, group-mean centering of within-cluster covariates is recommended to 

guarantee that the covariates contribute to the variance explanation only at those hierarchical 

level at which they are introduced (Konstantopoulos, 2012; Raudenbush & Bryk, 2002).    

In a three-level design (students at L1 within classrooms at L2 within schools at L3) 

that adjusts for one or more classroom-mean centered covariates 𝐶L1 at L1, one or more school-

mean centered covariates 𝐶L2 at L2, and one or more covariates 𝐶L3 at L3, the variance

decomposition produces a conditional between-student-within-classroom variance located at 

L1, σL1|𝐶L1

2 , a conditional between-classroom-within-school variance located at L2, σL2|𝐶L2

2 , and 

a between-school variance located at L3, σL3|𝐶L3

2 .

The explained variance at L1 by covariates 𝐶L1 is:

𝑅L1
2 =

σL1
2 −σL1|𝐶L1

2

σL1
2 (4) 

The explained variance at L2 by covariates 𝐶L2 is:

𝑅L2
2 =

σL2
2 −σL2|𝐶L2

2

σL2
2 (5) 

20  Elsewhere, the impacts of covariates 𝐶 have also been indexed in the form of an covariate-adjusted ICC, ρ|𝐶

(Eldridge et al., 2009; Hedges & Hedberg, 2007), simply expressing the complement of 𝑅2: 𝑅2 = 1 − ρ|𝐶.
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The explained variance at L3 by covariates 𝐶L3 is:

𝑅L3
2 =

σL3
2 −σL3|𝐶L3

2

σL3
2

(6) 

In a two-level design (students at L1 within schools at L3) that controls for one or more 

school-mean centered covariates 𝐶L1 at L1 and one or more covariates 𝐶L3 at L3, σL1|𝐶L1

2

becomes the conditional between-student-within-school variance at L1. The explained 

variances at L1 and L3 are computed as in Equations (4) and (6), respectively. 

In a single-level design (with students assumed to be independently sampled) with one 

or more (possibly grand-mean centered) covariates 𝐶T, σT|𝐶T

2  quantifies the conditional total 

variance, among all individual students.  

The total explained variance by covariates 𝐶T is:

𝑅T
2 =

σT
2 −σT|𝐶T

2

σT
2  , (7) 

Generally, 0 ≤ 𝑅2 ≤ 1, so that covariates can account for 0% to 100% of achievement

variance.21 Expressions for the large-sample variances of the 𝑅2 values are provided in

Appendix C.  

Implications for Statistical Power 

To make the influences of the cluster structure precise, Figure 6 illustrates statistical power as 

a function of (a) level-specific sample allocation and (b) multilevel design parameters for a 2L-

CRT (students at L1 within schools at L3). At the y-axis, the estimated power is shown for 

detecting a standardized treatment effect size of δ = .15 at α = .05 by a two-tailed 𝑡-test when 

the design is completely balanced (i.e., schools were randomly split fifty-fifty into one TG and 

one CG, 𝐾TG = 𝐾CG; and the number of students per school does not vary, 𝑛𝑘 = 𝑛𝑘′).22

The power analyses shown in Figure 6a assume ρL3 = .20 and no covariate adjustment

(𝑅L1
2 = 𝑅L3

2 = .00). Three main conclusions follow: (1) Power increases when the numbers of

students per school 𝑛𝑘 and the number of schools 𝐾 increase, whereby (2) 𝐾 exerts greater

impact on power than 𝑛𝑘, and (3) there is a point of diminishing returns in power for 𝑛𝑘

(Konstantopoulos, 2008b, provides the formal derivation why this is the case). For instance, 

21  Under the above definitions, negative 𝑅2 may occur (Snijders & Bosker, 2012). In the multilevel case, 𝑅2 < 0 

can be caused by estimation error when an unconditional variance component (i.e., σL1
2 , σL2

2 , or σL3
2 )

approximates zero (Jacob et al., 2010). Another possible reason might be that the formulae for the multilevel 

𝑅2 values ignore the interplay between the unconditional variance components (LaHuis et al., 2019; Rights & 

Sterba, 2018). 
22  I chose an effect size of δ = .15 as a realistic example because it depicts the average annual academic growth 

in reading across Grades 5 to 10 in German lower secondary school (Brunner, Stallasch, et al., 2023, Table 1). 
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with 𝐾 = 200 schools in total (i.e., 𝐾 = 100 per experimental condition) and 𝑛𝑘 = 20 students

per school, power equals 1 − β = .58. When quintupling the number of students per school to 

𝑛𝑘 = 100, while holding the total sample size of 𝐾𝑛𝑘 = 4,000 constant (i.e., decreasing the

number of schools to 𝐾 = 40 schools), power substantially drops to 1 − β = .17. By instead 

doubling the number of schools to 𝐾 = 400 schools (i.e., 𝑛𝑘 = 10), power makes a great leap

to 1 − β = .81. Notably, this sums up to a relative power gain of 40% as compared to the 

starting design with 𝐾 = 200 and 𝑛𝑘 = 20. Finally, when additionally doubling the number of

students per school to 𝑛𝑘 = 20, so that the total sample size is also doubled to 𝐾𝑛𝑘 = 8,000,

power equals 1 − β = .86, which yields a 48% power increase as opposed to the starting design 

(i.e., doubling the total sample size only yields 8% additional power).23 Therefore, everything 

else being equal, the number of schools is the main driver for power. Note that 𝐾 influences 

power through 𝑑𝑓, but even more strongly through the noncentrality parameter defining the 

cumulative distribution function of the noncentral 𝑡-distribution (see Equation (C65) in the OSM 

C for Study II). 

Figure 6b portrays power as a function of ρL3, 𝑅L1
2  and 𝑅L3

2  design parameters, where

the sample size is fixed to a total of 𝐾 = 100 and 𝑛𝑘 = 50 (𝐾𝑛𝑘 = 5,000). Note that the designs

with 𝑅L1
2 ≥ .25 and 𝑅L3

2 ≥ .25 are all based on one single covariate at both L1 and L3. In

contrast, the design with 𝑅L1
2 = 𝑅L3

2 = .00 does not involve any covariate, at neither level. The

three main conclusions from Figure 6b are: (1) Power decreases when ρL3 increases, (2) power

increases when 𝑅L1
2  and 𝑅L3

2  increase, (3) the impacts of both ρL3 as well as 𝑅L1
2  and 𝑅L3

2  on

power level off at a certain point, albeit in diametric directions. For instance, holding 𝑅L1
2 =

𝑅L3
2 = .00 constant, the relative drop in power when ρL3 = .05 (1 − β = .81) augments to ρL3 =

.10 (1 − β = .58) is −28%, while the drop for ρL3 = .45 (1 − β = .19) heightening to ρL3 = .50

(1 − β = .18) is only −5%. The other way around, holding ρL3 constant, gains in power increase

with higher values of 𝑅L1
2  and 𝑅L3

2 .

Finally, a simple comparison between a completely balanced 2L-CRT as just discussed 

and an IRT (where students are assumed to be stochastically independent) further highlights the 

utmost importance of taking into account the cluster structure when planning multilevel 

educational experiments: When assuming ρL3 = .20, 𝑛𝑘 = 50, and foregoing any covariate

adjustment, in total 𝐾 = 304 schools are required to achieve 80% power in a two-tailed 𝑡-test 

23  Note that in this example, the ratio of the (higher) costs associated with sampling additional schools to the 

(lower) costs associated with sampling additional students within a school is neglected for illustrative purposes. 

In real RT settings, however, cost efficiency plays a major role for a successful research design (e.g., 

Konstantopoulos, 2009). 
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to uncover δ = .15 at α = .05. This translates to a total sample size requirement of 𝐾𝑛𝑘 =

15,150 students. An equivalent IRT (ignoring clustering) would instead only need 𝑁 = 1,397 

students in total.  

Figure 6. Statistical Power as a Function of (a) Sample Allocation and (b) Design Parameters 

Note. Power analysis for a two-level cluster-randomized trial (2L-CRT; students at L1 within schools at L3) under 

complete balance (𝐾TG = 𝐾CG and 𝑛𝑘 = 𝑛𝑘′ for 𝑖 ∈ {1, 2, … , 𝑛𝑘} students nested within 𝑘 ∈ {1, 2, … , 𝐾} schools

randomly assigned to the treatment group TG and the control group CG) to detect a standardized effect size of δ = 

.15 at α = .05 (two-tailed) in a two-sample independent 𝑡-test. Figure 6a: Power for different sample sizes at L1 

and L3 when ρL3 = .20 and 𝑅L1
2 = 𝑅L3

2 = .00 are fixed. Figure 6b: Power for different values of ρL3 and 𝑅L1
2 =

𝑅L3
2  when 𝐾 = 100 and 𝑛𝑘 = 50 are fixed.

Note that the general pattern of relationships between statistical power on the one hand 

and (a) sample allocation and (b) design parameters on the other also holds for 2L-MSRT 

designs (see Raudenbush & Liu, 2000), as well as—albeit associated with greater complexity—

3L-CRT (see Konstantopoulos, 2008b), 3L-MSRT, and 3L-MSCRT (see Konstantopoulos, 

2008a) designs: (a) Everything else being equal, the sample size at the top hierarchical school 

level shapes power (far) more than those at lower levels. In MSRTs and MSCRTs, however, 

the influences of the sample sizes at lower levels is somewhat stronger by contrast with their 

influences in CRTs (Konstantopoulos, 2008a; Raudenbush & Liu, 2000).24 (b) Everything else 

held constant, ρ is a decreasing and 𝑅2 an increasing function of power, across the various

hierarchical levels. In MSRTs and MSCRTs, these relations are additionally modulated by the 

24  In particular, in a 3L-MSCRTs, 𝑑𝑓 is not only a function of the number of schools (and, if applicable, the 

number of the covariates included) but also depends on the number of classrooms, as shown in Equation (8) in 

Chapter 2. 
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treatment effect heterogeneity parameters capturing the variability in intervention effects across 

sites.  

Formulae to compute the minimum required sample size, statistical power, as well as 

𝑀𝐷𝐸𝑆 for the various designs can be found in (the OSMs for) Studies I and II (see also, e.g., 

Dong & Maynard, 2013, for expressions on sample size and the 𝑀𝐷𝐸𝑆; Liu, 2014, for 

expressions on power).  

1.4.5 Incorporating Uncertainties and Heterogeneities 

The accuracy of power analysis relies on the goodness of their input parameters. Unfortunately, 

each output quantity obtained from power analysis (i.e., sample size, power, precision/𝑀𝐷𝐸𝑆) 

is, by definition, only locally optimal (Moerbeek & Teerenstra, 2016, p. 203; see also Du & 

Wang, 2016 for a related discussion of the local optimization problem in effect sizes specified 

in power analysis). What does this mean? Power analysis heavily depends, inter alia, on the 

(point) estimates of ρ and 𝑅2, while, in fact, every single RT has its own set of true design

parameter estimands. It is simply impossible to foresee the exact magnitudes of these estimates 

before the data have been collected; thus, they remain unknown.25 Putting it in a nutshell in the 

words of Hedberg (2018, p. 99): “power analysis is all about assumptions.” Hence, their a priori 

output estimates (being it sample size, power, or precision) will inevitably deviate from the 

actual—true—state of affairs. No matter how elaborated and justified a researcher’s guesses on 

ρ and 𝑅2 are.

Basically, design parameters are subject to two major sources of variation: (a) sampling 

error, and (b) true heterogeneity. First, values of ρ and 𝑅2 to be entered in power analysis are

usually empirically derived (Bloom, Zhu, et al., 2008), either from former observational or 

experimental studies, pilot studies, or (large-scale) sample surveys (Hedges et al., 2012; Turner 

et al., 2004). Consequently, as based on finite samples, they are subject to random noise and 

therefore (sometimes fairly) imprecise (Eldridge & Kerry, 2012; Hedges et al., 2012; Jacob et 

al., 2010; Turner et al., 2004, 2005). Second, it is reasonable to assume that there is also true 

heterogeneity in ρ and 𝑅2, systematically varying by populations, outcomes and so forth (e.g.,

Brunner et al., 2018; Spybrook, Westine, et al., 2016; Zhang et al., 2023). Here, random-effects 

meta-analysis (e.g., Borenstein et al., 2021) is an excellent methodological tool to disentangle 

these two sources of variation in the design parameters, which has been applied to summarize 

25  Although the tests in power analyses actually assume that the input parameters, such as the effect size but also 

the design parameters, represent known quantities (Konstantopoulos, 2011). 
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design parameters estimated based on individual participant data (e.g., Hedberg & Hedges, 

2014; see Brunner et al., 2022, for a gentle introduction to individual participant data meta-

analysis based on large-scale assessments). 

Ignoring uncertainty in the empirically derived input parameters may severely distort 

power analysis (Liu, 2014; Perugini et al., 2014). For instance, Liu (2014, pp. 51–52) showed 

that the probability of nominal power (i.e., based on sample variance) overestimating actual 

power (i.e., based on population variance) exceeds 50%, and increases with decreasing sample 

size. It was therefore repeatedly highlighted that best-practice power analysis properly 

incorporate uncertainties in ρ and 𝑅2 values (Bausell & Li, 2002; Donner & Klar, 2000; Hedges 

et al., 2012; Jacob et al., 2010; Liu, 2014; Moerbeek & Teerenstra, 2016; Turner et al., 2004, 

2005). Several strategies have been proposed to conduct sensitivity analyses when determining 

sample size, power, or precision in RT planning. 

Using Confidence and Prediction Intervals 

One prominent option to explicitly address ρ and 𝑅2 uncertainties in power analysis is to draw 

on the (95%) CIs constructed from their nominal standard errors or on the meta-analytic 

prediction intervals (PIs) to define a plausible range of values for a certain design parameter. 

The meta-analytic 95% PI provides a plausible range of ρ and/or 𝑅2; it quantifies the total 

dispersion (sampling variance plus true heterogeneity) around the meta-analytic average of ρ 

and/or 𝑅2 (e.g., Borenstein et al., 2021). The bounds of the CI or PI can be used to estimate 

ranges of required sample sizes, or power and precision rates within which the actual target 

quantities will likely lie (Bausell & Li, 2002; Donner & Klar, 2000; Jacob et al., 2010; Liu, 

2014; Perugini et al., 2014). This has also been labeled the “safeguard” approach (Perugini et 

al., 2014). However, such strategies have been criticized for being overly conservative (Turner 

et al., 2004; Williamson et al., 2023). Moreover, such techniques treat each value within the 

95% CI or PI as equally likely, which might not be justifiable in most scenarios (Turner et al., 

2004; Williamson et al., 2023). Turner et al. (2005, p. 114) lamented that “it seems insufficient 

to simply provide a series of “what-if” scenarios conditioning on various ICC values: a measure 

of their respective plausibility appears necessary.” 

Running Simulations  

Another, more elegant solution is to simulate power analysis outcomes based on Monte Carlo 

methods. Especially promising are approaches that make use of (empirically informed) prior 

distributions in the spirit of Bayesian statistics to implicitly take into account uncertainty in ρ 



Previous Research   | 33 

and 𝑅2 (Moerbeek & Teerenstra, 2016; Pek & Park, 2019; Spiegelhalter et al., 2004; Turner et

al., 2004, 2005; Williamson et al., 2023). For instance, Spiegelhalter et al. (2004) introduced a 

hybrid “Bayesian-classical” approach to power analysis (see also Pek & Park, 2019). Quite a 

few variations and extensions of the concept have been developed (see Kunzmann et al., 2021, 

for a review); yet, the gist uniting all of them is: while the design stage of an RT contains 

Bayesian elements, the analysis stage is assumed to be purely classical. This strategy has been 

frequently applied in clinical research (e.g., Brus et al., 2022; Moerbeek & Teerenstra, 2011; 

O’Hagan & Stevens, 2002; Sarkodie et al., 2023; Turner et al., 2004, 2005). Note that the idea 

of placing priors on ρ and 𝑅2 can be easily extended to the remaining input parameters in power

formulas (depending on the desired output such as effect sizes; see e.g., Du & Wang, 2016; Pek 

& Park, 2019)—a major appeal of Bayesian-based power analysis simulations.  

1.5 How Much Is (Not) Known on Design Parameters for 

Student Achievement? A Brief Outline of Previous Research 

Apt design parameters are the fundament of expedient power analysis to plan sound RTs. 

Researchers who aim to evaluate interventions to foster student achievement therefore need 

reliable estimates and standard errors of  ρ and 𝑅2 optimally customized to the planned study’s

specifications (e.g., Brunner et al., 2018; M. Campbell et al., 2000; Cohen, 1988; Murray, 1998; 

Spybrook, 2013; Zhang et al., 2023). Over the past two decades—encouraged by the turn 

towards evidence-based policies and practices in education and its strong focus on RTs—vast 

repertoires of ICCs and explained variances have been built. 

This section recapitulates where these collections are already well-equipped; and also 

where not so well. Specifically, I pinpoint five major dimensions in which existing resources 

on empirical guidance for designing RTs on student achievement show several important 

research gaps: (1) target populations, (2) target outcome domains, (3) target covariates, (4) 

target experimental designs, (5) target analysis models, and (6) quantifications of uncertainties 

and heterogeneities. Thereby, Figure 7 visualizes the extent of these shortcomings by mapping 

available studies that accumulated design parameters explicitly devoted to inform power 

analysis for RTs on student achievement in Grades 1 to 12. In particular, Figure 7 lists scopes 

and features, as well as summarizes estimates of ρL2 and ρL3, as well as 𝑅T
2, 𝑅L1

2 , 𝑅L2
2 , or 𝑅L3

2

for several covariate sets. These depict the unique, incremental, and relative impacts of those 
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factors that have previously been theoretically and empirically identified as core predictors of 

student achievement (detailed below).  

Note that Studies I and II in the present doctoral thesis enclose research reviews which 

thoroughly elaborate on the current body of knowledge on design parameters for student 

achievement. Specifically, the research review included in Study I offers a detailed examination 

and visualization of previously reported ρ and 𝑅2 values appropriate for two-level (students

within schools) and three-level (students within classrooms within schools) RT designs. The 

research review included in Study II complements this picture via a meta-analytic integration 

of previous 𝑅2 values for the various covariate sets for single-level (students assumed to be

independently sampled), two-level, and three-level RT designs.  

1.5.1 Current Research Gaps 

Target Populations—National Scopes and Grade Levels 

School systems markedly differ from each other in vital characteristics (OECD, 2010), and so 

do students in different grades (i.e., cohorts/age groups) with regard to their proficiency levels 

and taught curricula. Hence, design parameters should accurately mirror the RT’s target 

population (e.g., Lipsey et al., 2012).  

As Figure 7 shows, many studies that accumulated design parameters on student 

achievement to inform RT power analysis stem from the United States. These works drew either 

on national probability samples (Hedberg et al., 2004; Hedges & Hedberg, 2007; 

Konstantopoulos, 2009), state-wide assessments in one single state (Brandon et al., 2013; Jacob 

et al., 2010; Konstantopoulos, 2009; Westine et al., 2013) or multiple states (Cole et al., 2011; 

Hedges & Hedberg, 2013; Spybrook, Westine, et al., 2016; Xu & Nichols, 2010; Zhu et al., 

2012), or individual (experimental) studies in multiple districts (Bloom et al., 2007; Hedberg et 

al., 2004; Jacob et al., 2010; Schochet, 2008; Zhu et al., 2012), in one city (Bloom et al., 1999; 

Gargani & Cook, 2005, as cited in Schochet, 2008), or multiple cities (Schochet, 2008). 

Notably, the majority of these studies provide ρ and 𝑅2 values for several, albeit mostly selected

grades in both elementary26 as well as secondary school.  

The few studies going beyond the U.S. school context listed in Figure 7 were carried 

out at an international level, as cross-country research. These publications capitalized on large-

scale assessments for 81 nations and economies from the 2000, 2003, 2006, 2009, and 2012 

cycles of the Programme for International Student Assessment (PISA) study (Brunner et al., 

26  In the United States, elementary school covers Grades 1 to 6. 
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2018), up to 84 nations and economies from the 1995, 1999, 2003, and 2007 cycles of the 

Trends in International Mathematics and Science Study (TIMSS) plus the 2001 and 2006 cycles 

of the Progress in International Reading Literacy Study (PIRLS; Zopluoglu, 2012), and 15 sub-

Saharan African countries of the third cycle of the Southern and Eastern Africa Consortium for 

Monitoring Educational Quality (SACMEQ III) study (Kelcey et al., 2016). Therefore, the sheer 

volume of resulting ICCs and explained variances is stunning (e.g., Zopluoglu, 2012, spawned 

646 distinct ρL3 values). Notably, these compendia are based on representative, yet cross-

sectional data of national probability samples. Although the international studies offer estimates 

of ρ and 𝑅2 to design RTs in many different school systems (including the German one), they 

remain limited to Grade 4 or 627 in elementary and/or Grade 8 or 9 in secondary school. 

Nevertheless, consistently testifying substantial variation in ρ and 𝑅2 values between countries, 

all of the mentioned studies of international scope provide strong evidence that the design 

parameters documented for the United States may not generalize well across national contexts.  

Target Outcome Achievement Domains 

Student achievement is multifarious, and may be measured in several more broader or narrower 

defined (sub)domains (Brunner, Preckel, et al., 2023; Steinmayr et al., 2014). Accordingly, 

contemporary educational curricula reach far beyond the typical core domains, such as 

mathematics, science, and reading (OECD, 2018). Importantly, estimates of ρ and 𝑅2 to be 

entered in power analysis should align with the target outcome domain (e.g., Westine et al., 

2013). 

However, as shown in Figure 7, the grand majority of past studies focus on outcomes in 

only one or two of these core achievement domains, namely mathematics and/or reading 

(Bloom et al., 1999, 2007; Brandon et al., 2013; Cole et al., 2011; Gargani & Cook, 2005; 

Hedges & Hedberg, 2007, 2013; Jacob et al., 2010; Kelcey et al., 2016; Konstantopoulos, 2009; 

Schochet, 2008). Some investigations broadened this spectrum by adding one or more science-

related subdomains such as biology, physics, and chemistry (Brunner et al., 2018; Westine et 

al., 2013; Xu & Nichols, 2010; Zhu et al., 2012; Zopluoglu, 2012). Yet, other important 

achievement domains, for instance specific verbal skills or domain-general cognitive abilities 

are still severely underrepresented, although this line of research suggests that design 

parameters may differ substantially depending on the achievement domain.  

                                                 
27  In sub-Saharan African countries, elementary school covers Grades 1 to 6. 
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Figure 7. Overview on Previous Studies on Design Parameters for Student Achievement 

Note. The color code corresponds to the median ρ or (Δ)𝑅2 value. The number in a bubble counts the achievement 

(sub)domains analyzed. Outer triangles map the 𝑅2 value (absolute) for a combination, inner triangles map the 

Δ𝑅2 value (increment) for a covariate over and above a domain-identical pretest. On the x-axis, a filled/empty dot 

marks the in-/exclusion of a covariate, where a numbered dot specifies the pre-posttest time lag in years. LA = ρ 

and/or 𝑅2 values are also suitable for a latent variable modeling target analysis of the treatment effect. SE = 

standard errors of ρ and/or 𝑅2 were reported. INT = International.  
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Target Covariates 

Highly predictive covariates of student achievement are powerful means to raise power and 

precision; in both single- as well as multilevel RT designs (e.g., Bloom et al., 2007; Kahan et 

al., 2014; Konstantopoulos, 2012; Porter & Raudenbush, 1987). Numerous scholars and 

agencies have repeatedly emphasized that decisions on which covariates to include should be 

both empirically as well as theoretically justified, ideally in combination with preregistration 

(Committee for Proprietary Medicinal Products, 2004; Cook, 2005; European Medicines 

Agency [EMA], 1998, 2015; Maxwell et al., 2017; Moerbeek & Teerenstra, 2016; Murray, 

1998; Raab et al., 2000; U.S. Food and Drug Administration, 2021). As a multifaceted 

construct, domain-specific student achievement may be shaped by various factors (e.g., 

Steinmayr et al., 2014; Winne & Nesbit, 2010). In educational psychology, prominent models 

of school learning (Haertel et al., 1983; Wang et al., 1993) coincide with existing empirical 

evidence in highlighting the relevance of the following determinants: domain-identical pretests 

(e.g., previous mathematics skills predict future mathematics skills; Dochy et al., 1999), cross-

domain pretests (e.g., previous reading skills predict future mathematics skills; Baumert et al., 

2009), fluid intelligence pretests (Cattell, 1987), as well as sociodemographic characteristics 

(e.g., gender, migration background, socioeconomic status; Bradley & Corwyn, 2002; see 

Chapter 3 for a more detailed rationalization of these covariates as well as their hypothesized 

unique, incremental, and relative impacts).  

Previous studies on design parameters have scrutinized precision-enhancing impacts of 

covariates from three angles. (a) Unique effects of key covariate types, namely domain-

identical pretests and/or sociodemographics were frequently quantified, and occasionally also 

of cross-domain pretests. Yet, the impact of fluid intelligence has been neglected so far. (b) The 

largest part of the studies that estimated 𝑅2 values for both domain-identical pretests and

sociodemographics also investigated their joint or incremental effect. However, further 

covariate combinations have been ignored. (c) Few studies providing 𝑅2 values for domain-

identical pretests scrutinized the influence of covariate time lags. The temporal decay in their 

predictive power has only been modeled for baseline measures lagged three years at maximum. 

Of importance, this choice of covariates was largely not (or, at least not explicitly) motivated 

by substantive theory but was rather data-driven instead. Relatedly, to the best of my 

knowledge, former works forego any theoretically founded derivation of hypotheses about the 

unique, relative, or incremental effectiveness of the covariates to explain variation in student 

achievement. 
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Briefly summarized, this strand of research indicates that a domain-identical pretest is 

the most powerful covariate for student achievement, explaining impressive amounts of 

variance, both in total as well as decomposed at the various hierarchical levels. Moreover, its 

explanatory power has been proven to only slowly decline with growing pre-posttest time lags. 

Meanwhile, sociodemographics turned out to be useful covariates at L2 and especially L3 but 

not L1, and are in general of little incremental value when combined with a domain-identical 

pretest. 

Target Experimental Designs 

Basically, the concise sampling strategy (i.e., simple single-level vs. complex two- or three-

level), and thus, the structure of the data used to estimate the design parameters has to match 

the planned experimental design to obtain valid power calculations.28 In applied experimental 

educational and psychological research, both single-level IRTs as well as two-, but first and 

foremost three-level CRTs and MSRTs represent the most commonly implemented designs 

(Connolly et al., 2018; Spybrook, Shi, et al., 2016; Spybrook & Raudenbush, 2009). 

To date, only one single investigation offers explained variances by covariates explicitly 

compiled to inform the planning of IRTs (students treated as independently sampled; Cole et 

al., 2011). Apart from this, 𝑅T
2 values are widely scattered across single empirical studies and 

have not yet been systematically integrated. In stark contrast, Figure 7 illustrates that the bulk 

of design parameter studies are multilevel in nature, and consequently, produced ICCs and 

explained variances relevant to design CRTs and MSRTs. All of these works—and most of 

them exclusively—quantified between-school achievement differences; therefore much is 

already known on the typical magnitudes of ρL3 for CRT and MSRT designs with two

hierarchical levels (students at L1 within schools at L3). At an international level, these 

unconditional variance components varied broadly, but appeared on average larger than in the 

United States. 

These are undoubtedly relevant pieces of information to plan 2L-CRTs or 2L-MSIRTs. 

At the same time, reliable values of ρL2 and ρL3 that are required to plan 3L-CRTs, 3L-MSIRTs,

or 3L-MSCRTs (with students at L1 within classrooms at L2 within schools at L3) are still 

scarce. Of note, the few studies that decomposed the total variance in student achievement into 

the shares that can be attributed to differences between students, classrooms, and schools all 

apply to the U.S. school context (Jacob et al., 2010; Konstantopoulos, 2009; Xu & Nichols, 

28  When aiming to plan MSRTs, the unit where randomization occurs (i.e., students or classrooms) further 

determines the choice of the treatment effect heterogeneity parameters which are then additionally needed. 
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2010; Zhu et al., 2012). Respective evidence suggests that in secondary school, between-

classroom differences substantially outweighed between-school differences whereas it was the 

other way around in elementary school. 

Target Analysis Models 

In applied effectiveness research, a test for the treatment effect may generally be performed 

drawing on various statistical analysis methods (see e.g., M. J. Campbell & Walters, 2014; 

Hayes & Moulton, 2017; Maxwell et al., 2017, for comprehensive treatises). Importantly, the 

review by Blanca et al. (2018) indicates that most tests of comparison in RTs reported in 

psychological articles draw on manifest variables (e.g., via ANOVA, ANCOVA, or 

“conventional” regression modeling) rather than latent variables (via structural equation 

modeling). Concerning CRTs and MSRTs, the review by Luo et al. (2021, Table 7) 

substantiates this picture: Only around 11% of multilevel analysis that have been carried out in 

educational and psychological research during the last decade used Mplus (Muthén & Muthén, 

2017; which was, as far as I am aware, the only software implementing multilevel latent 

variable modeling for a long time). In spite of this, techniques for group comparison within a 

latent variable framework have been developed—for single-level (Bollen, 2002; Mayer et al., 

2016) as well as multilevel RTs (Lüdtke et al., 2008; Raudenbush & Bryk, 2002)—that offer 

the advantageous possibility to partial out measurement error in the (outcome and covariate) 

measures. It was repeatedly recommended that design parameters entered into power analysis 

should mirror the planned analysis procedure (Ahn et al., 2020; Kleinman & Huang, 2017; 

Schochet, 2008), certainly not least because latently modeled 𝑅2 are expected to be larger than

their manifest counterparts, due to their higher reliabilities (Cohen et al., 2003, pp. 119–124; 

Raudenbush & Bryk, 2002, p. 346). 

Yet, as Figure 7 indicates, design parameters have typically been generated using 

fallible manifest variables. So far only the international study by Brunner et al. (2018) 

embedded the estimation of ρ and 𝑅2 values into a general latent variable modeling framework

by using Mplus. Specifically, as the applied multilevel latent covariate models (Lüdtke et al., 

2008) involve latently aggregated cluster means of L1 covariates that correct for measurement 

error, resulting 𝑅L2
2  and 𝑅L3

2  should be more pronounced than they would have been without

this (default) option (i.e., based on manifestly aggregated cluster means). However, nothing is 

known so far whether, and if yes, how much design parameters may differ by the employed 

statistical model to analyze the treatment effect, posing problems when researchers intend to 

use some kind of structural equation model in the analysis stage of RTs (Schochet, 2008).    
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Quantifications of Uncertainties and Heterogeneities 

The outputs from power analysis are inextricably linked to their input parameters (referred to 

as local optimization; Du & Wang, 2016; Moerbeek & Teerenstra, 2016, p. 203). Already small 

deviations between a priori assumed design parameters and retrospectively observed (true) 

values may result in misleading sample size, power, or 𝑀𝐷𝐸𝑆 calculations. However, ρ and 𝑅2

as empirical estimates are subject to uncertainty due to sampling error, and meta-analytic 

aggregations of ρ and 𝑅2 (to be used, e.g., in the absence of more specific estimates that would

optimally fit the target RT, or when there are multiple competing more specific estimates) 

additionally contain true heterogeneity (apart from sampling error). A robust RT design, thus, 

should take into account the statistical uncertainty, and if applicable, also the true heterogeneity 

associated with the design parameters, either explicitly (e.g., using CIs/PIs; Liu, 2014) or 

implicitly (e.g., running simulations that involve empirical distributions; Moerbeek & 

Teerenstra, 2016).     

Unfortunately, Figure 7 discloses that fewer than half of the extant design parameter 

compilations provide respective standard errors (Hedges & Hedberg, 2007, 2013; Jacob et al., 

2010; Kelcey et al., 2016; Spybrook, Westine, et al., 2016; Westine et al., 2013). Notably, with 

the exception of Hedges and Hedberg (2013), all standard errors pertain to ρ, but not to 𝑅2

values. This is astonishing as the results of Hedges and Hedberg (2013) imply that the sampling 

uncertainties associated with the values of 𝑅L3
2  are typically (much) larger than those of ρL3

(and also of 𝑅L1
2 ). Meanwhile, meta-analytic estimates informing on the degree of true variation

among two-level ICCs (but neither three-level ICCs nor explained variances at either 

hierarchical level) have been, as far as I am aware, so far only provided by Hedberg and Hedges 

(2014; not shown in Figure 7).   

1.5.2 A Closer Look at German Research 

As stated above, design parameters to plan RTs on student achievement need to optimally fit 

the target population in terms of the national context and the attended grade. Figure 7 does not 

list any exclusive research from Germany though. Rather, the international studies of Brunner 

et al. (2018) and Zopluoglu (2012) encompass reliable estimates of ρL3, and Brunner et al.

(2018) additionally calculated 𝑅L1
2 , and 𝑅L3

2  for sociodemographic characteristics. Drawing on

nationally representative cross-sectional data from PISA, TIMSS, and PIRLS, these collections 

are suitable to design sound RTs which test interventions targeted at the general (i.e., total) 

student population in Grade 4, 8, or 9. Nevertheless, other grades or certain subpopulations that 
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arise from the special characteristics of the German school system were not covered, neither 

were quite a few of the central covariates. 

Characteristics of the German School System 

The school system in Germany has some distinctive peculiarities that create special 

requirements for the design parameters. Germany constitutes a federal republic, where each of 

the 16 federal states takes the primary responsibility for legislation and administration of 

schooling (Secretariat of the Standing Conference of the Ministers of Education and Cultural 

Affairs of the Länder in the Federal Republic of Germany, 2021). In 14 federal states, 

elementary school (“Grundschule”) comprises Grades 1 to 4, but in two federal states (Berlin 

and Brandenburg), elementary school comprises Grades 1 to 6. In secondary school, all school 

systems are characterized by extensive school type tracking, as is the case for many other school 

systems (Reichelt et al., 2019; Salchegger, 2016). As a rule, five school types are distinguished 

that address students with different achievement levels: the academic track school 

(“Gymnasium”; up to Grade 12 or 13), vocational school (“Hauptschule”; up to Grade 9 or 10), 

intermediate school (“Realschule”; up to Grade 10), multitrack school (“Schulen mit mehreren 

Bildungsgängen”; up to Grade 9, 10, 12, or 13), and comprehensive school (“Gesamtschule”; 

up to Grade 12 or 13). The more demanding academic track school is offered across all federal 

states, but the remaining less demanding school types—which I subsume under the umbrella 

term “non-academic track”—partly differ by federal state.  

Note that throughout this thesis, I differentiate between three grade levels: for Grades 1 

to 4, I refer to elementary school; for Grades 5 to 10, I refer to lower secondary school; for 

Grades 11 to 12, I refer to upper secondary school. Importantly, in upper secondary school, 

students are typically not taught into intact classrooms, but are rather enrolled into courses 

differentiated by the aspiration level chosen for a certain subject (e.g., basic vs. advanced 

mathematics courses). However, all upper secondary school students are taught in the core 

domains (i.e., mathematics, German as first language, and a science-related subject).  

Design Parameters Reflecting the German School Context 

To date, design parameters appropriate for the design of RTs implemented in the German school 

system have not yet been systematically cataloged. Apart from the mentioned exceptions of 

Brunner et al. (2018) and Zopluoglu (2012), the respective body of knowledge is fairly 

scattered.  Empirical estimates of ρ and 𝑅2 were—if at all—reported as by-product alongside
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with research on educational effectiveness and social inequalities (e.g., Baumert et al., 2000, 

2003; Knigge & Köller, 2010; Lehmann & Lenkeit, 2008).  

The so far largest collection comprises ICCs at L3 based on data from the 2008/2009, 

2011, and 2016 cycles of the German National Assessment Study. Figure 8 shows the 

distributions of ρL3 values for mathematics, several verbal skills in German (as first language),

and reading in English (as foreign language) by federal state, and for the total German student 

population (i.e., analyzed as a whole, highlighted yellow). Figure 8 accentuates three aspects: 

Achievement differences between German schools (a) appear significantly larger in secondary 

than in elementary school, (b) markedly deviate from those registered for U.S. schools, and (c) 

vary considerably across federal states. 

Figure 8. Between-School Achievement Differences for the German School Context 

Note. Dots show ρL3 values as estimated for the various federal states in Germany. ρL3 as estimated for the total

German student population is depicted in yellow. NAS = National Assessment Study (NAS-2008/2009: 

“Ländervergleich 2008/2009”, NAS-2011/2016: “IQB-Bildungstrend”). Data has been retrieved from Knigge and 

Köller (2010) for NAS-2008/2009, Böhme and Weirich for NAS-2011 German reading and listening, Haag and 

Roppelt for NAS-2011 mathematics, Wittig and Weirich for NAS-2016 spelling, reading, listening, Hagg and 

Kohrt for NAS-2016 mathematics. The NAS is carried out by the Institute for Educational Quality Improvement 

(IQB). 

1.6 The Present Doctoral Thesis 

The virtue of power analyses for RTs to be designed to evaluate interventions on student 

achievement hinge on reliable input design parameter estimates. Specifically, ρ and 𝑅2 values

should properly reflect the particular study context (e.g., Zhang et al., 2023) as defined by the 

RT’s target population, achievement outcome domain, possibly applied covariates, 
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experimental design, and analysis model, as well as they should be accompanied by 

quantifications of their associated uncertainties (e.g., Hedges et al., 2012). However, as the 

many gaps in Figure 7 immediately unveil: currently available collections in this vein suffer 

from several crucial shortcomings. And despite the fact that educational stakeholders in 

Germany increasingly prioritize rigorous RTs to generate useable knowledge about 

interventions that make students succeed, the necessary evidence footing to design such studies 

falls even further behind this international knowledge base. 

The overarching objective of the present doctoral thesis is to analyze versatile 

compendia of (meta-analytically integrated) design parameters in order to build comprehensive, 

reliable resources and thorough guidance to optimize power analysis for the design of RTs on 

student achievement in the German (and similar) school context. To this end, I conducted two 

comprehensive studies directly addressing the gaps identified in previous research. 

First, the current knowledge base on design parameters for target populations outside 

the United States is meager. Even if such estimates have been propounded, they are restricted 

to some single grades. In particular, a systematic compilation of ρ and 𝑅2 values across the

entire school career that map the distinctive characteristics of the German school system is still 

lacking. Studies I and II used rich, representative data from three German longitudinal large-

scale assessments (National Educational Panel Study [NEPS], PISA, Assessment of Student 

Achievements in German and English as a Foreign Language [DESI]) to generate design 

parameters for students in Grades 1 to 12. Study I drew on five samples (starting cohorts 2, 3, 

4 from NEPS; the follow-up of the 2003 PISA cycle; DESI). Study II capitalized on six samples 

(samples from Study I plus the follow-up of the 2012 PISA cycle) as identified via a systematic 

search whose results were meta-analyzed within grade levels to support the design of RTs 

targeting multiple grades. Both studies covered several student (sub)populations to reflect the 

German school context: the total population as well as the subpopulations in the academic and 

non-academic track In Study I, ICCs and explained variances were additionally adjusted for 

mean-level achievement differences between the various school types in German secondary 

education.  

Second, the coverage of target outcome domains by past design parameters is 

insufficient in that it remains limited to the core subjects of mathematics, science, and reading. 

Studies I and II significantly broaden this spectrum. Study I accumulates ρ and 𝑅2 estimates

for, in total, 21 different subdomains (core domains, multifarious verbal skills in German and 

English, domain-general skills such as information and communication technology or basic 

cognitive functions). Study II meta-analytically summarized design parameters across, in total, 
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eight STEM29 and German verbal skills to inform power analysis for RTs addressing multiple 

domains.   

Third, available guidance on the selection of target covariates is poor. Not only that 

many critical covariate types, combinations, and time lags have been excluded so far. Also, the 

choice of studied covariate sets as well as their hypothesized unique, incremental, and relative 

return fully lack theoretical justification. Study I lays a foundation by revisiting three previously 

scrutinized covariate sets which in fact include factors that are—according to influential models 

of school learning (Haertel et al., 1983; Wang et al., 1993)—among the most important 

predictors for student achievement: pretest (domain-identical or proxy scores) and/or 

sociodemographics. Study II referred to three psychometric heuristics (bandwidth-fidelity; 

Cronbach & Gleser, 1957; incremental validity; Sechrest, 1963; validity degradation; Ghiselli, 

1956; Humphreys, 1960) to scrutinize precision-enhancing impacts of 11 distinct covariate sets 

of varying types (domain-identical, cross-domain, fluid intelligence pretests, 

sociodemographics), their combinations (domain-identical pretests plus each of the remaining 

and all together), and time lags (1- to 7-year lagged domain-identical, cross-domain, fluid 

intelligence pretests). To evaluate covariate impacts on precision, Study II encloses simulations 

which followed a hybrid Bayesian-classical approach to power analysis. The results of Study II 

were used to develop empirically supported guidelines on covariate adjustment. 

Fourth, existing collections of design parameters neglect several target experimental 

designs beyond RTs with two hierarchical levels (students at L1 within schools at L3). Studies 

I and II compiles reliable estimates appropriate to plan six different RT designs (see Figure 4) 

with up to three hierarchical levels (students at L1 within classrooms at L2 within schools at 

L3): IRTs (students assumed to be independently sampled), 2L- and 3L-CRTs, 2L- and 3L-

MSIRTs, as well as 3L-MSCRTs. Specifically, Study I applied two- and three-level modeling 

to estimate ρL2 and ρL3 as well as 𝑅L1
2 , 𝑅L2

2 , and 𝑅L3
2 . Study II specified single-, two-, and three-

level models to estimate ρL2 and ρL3 as well as 𝑅T
2, 𝑅L1

2 , 𝑅L2
2 , and 𝑅L3

2 .

Fifth, virtually all previous repertoires of design parameters are suitable for manifest 

target analysis model for the test of the treatment effect and disregard potential applications 

within a latent variable modeling framework (Lüdtke et al., 2008; Mayer et al., 2016). 

Acknowledging the coexistence of both options and offering the chance to juxtapose the 

performances of the techniques to estimate ρ and 𝑅2 (Schochet, 2008), Study I applied latent

(covariate) modeling in Mplus when estimating the multilevel variance components, while 

Study II relies on a manifest estimation approach using R.     

29  The term STEM is commonly used to subsume science, technology, engineering, and mathematics.  
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Sixth, most past studies failed to report statistical uncertainties and heterogeneities 

associated with the empirically estimated and meta-analyzed design parameters. Studies I and 

II consistently documented all ρ and 𝑅2 values along with their corresponding standard errors 

and/or 95% CIs. Study II quantified meta-analytic heterogeneities among ρ and 𝑅2 and 

registered 95% PIs. Studies I and II were complemented by diverse illustrative application 

scenarios which guide through the process of RT planning when incorporating uncertainties 

and heterogeneities associated with the design parameters by using their 95% CIs/PIs (explicit 

uncertainty handling). In Study II, the simulation study showcases power analysis involving 

priors based on the joint empirical distributions of ρ and 𝑅2 (implicit handling of uncertainty). 

All in all, tackling crucial gaps of extant resources in six major dimensions, this 

dissertation strives to support educational researchers and psychologists in designing strong 

RTs on student achievement. The emerging resources couple—so far unique—nuanced design 

parameter compendia and guidance for power analysis. 
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Abstract 

To plan cluster-randomized trials with sufficient statistical power to detect intervention effects 

on student achievement, researchers need multilevel design parameters, including measures of 

between-classroom and between-school differences and the amounts of variance explained by 

covariates at the student, classroom, and school level. Previous research has mostly been 

conducted in the United States, focused on two-level designs, and limited to core achievement 

domains (i.e., mathematics, science, reading). Using representative data of students attending 

grades 1 to 12 from three German longitudinal large-scale assessments (3,963 ≤ 𝑁 ≤ 14,640), 

we used three- and two-level latent (covariate) models to provide design parameters and 

corresponding standard errors for a broad array of domain-specific (e.g., mathematics, science, 

verbal skills) and domain-general (e.g., basic cognitive functions) achievement outcomes. 

Three covariate sets were applied comprising (a) pretest scores, (b) sociodemographic 

characteristics, and (c) their combination. Design parameters varied considerably as a function 

of the hierarchical level, achievement outcome, and grade level. Our findings demonstrate the 

need to strive for an optimal fit between design parameters and target research context. We 

illustrate the application of design parameters in power analyses. 

Keywords: explained variance, intraclass correlation, large-scale assessment, multilevel latent 

(covariate) models, power analysis 
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Multilevel Design Parameters to Plan Cluster-Randomized 

Intervention Studies on Student Achievement in Elementary and 

Secondary School 

Educational research strongly moved towards evidence-based policies and practices at the 

outset of the 21st century, when educational stakeholders around the world increasingly 

demanded sound evidence of what actually works to foster student achievement 

(Kultusministerkonferenz, 2015; Organisation for Economic Co-operation and Development 

[OECD], 2007; Slavin, 2002). Formal education is usually organized within intact classrooms 

and schools. Further, various interventions operate by definition at the group level, such as 

teaching methods, curricular programs, or school reforms (Bloom, 2005; Boruch & Foley, 

2000; Cook, 2005). A fundamental question of evidence-based education is therefore whether 

results on the effectiveness of interventions tested in small-scale laboratory experiments can be 

replicated when implementing these interventions, for instance, in the regular school day by 

teachers at the classroom or school level (see e.g., Gersten et al., 2015). An efficient way for 

educational researchers to address this concern is to conduct large-scale experiments where 

entire classrooms or schools rather than individual students are randomly assigned to the 

treatment or control condition. Studies of this type are known as cluster-randomized trials 

(CRTs; Donner & Klar, 2000; Raudenbush, 1997), place-based trials (Bloom, 2005), or group-

randomized trials (Murray, 1998). CRTs can provide unbiased causal inferences about the 

impacts of interventions in the field at larger scales, and thus generate reliable knowledge to 

inform evidence-based educational policies and practices (Institute of Education Sciences & 

National Science Foundation, 2013; Slavin, 2002; Spybrook, Shi, et al., 2016). 

Given their scale, CRTs are by nature very expensive. Hence, when planning such trials 

educational researchers should make every effort to ensure that their study design will allow 

for valid causal conclusions (Shadish et al., 2002). In this respect, a power analysis is an 

essential step in the planning phase of any CRT (American Educational Research Association, 

2006, p. 37; American Psychological Association, 2019, pp. 83-84). However, power analysis 

for CRTs is particularly challenging as it requires reasonable assumptions on design parameters 

that take into account the multilevel (i.e., nested) structure of the outcome data. The reviews on 

CRTs in educational research (Spybrook & Raudenbush, 2009; Spybrook, Shi, et al., 2016) 

indicated that most studies (between 82 and 90%) had at least three hierarchical levels (e.g., 

students nested within classrooms, and classrooms nested within schools), with treatment 

allocation at either the classroom or school level. Thus, most educational researchers 
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conducting CRTs need multilevel design parameters that inform about the proportions of 

variance located at the student, classroom, and school level, as well as the respective amounts 

of variance that can be explained by vital covariates (e.g., pretest scores or sociodemographic 

characteristics) at these levels. Crucially, leading scholars strongly recommend using 

empirically established estimates of design parameters that match the target population, the 

target hierarchical level, and the target outcome measure rather than conventional benchmarks 

with unclear ties to the research context under investigation (Bloom et al., 2008; Brunner et al., 

2017; Lipsey et al., 2012). To date most knowledge on design parameters is based on U.S. 

samples, only pertains to two-level designs (i.e., students within schools), and is limited to 

mathematics, science, and reading achievement (cf. Spybrook, 2013; Spybrook & Kelcey, 

2016). Hence, the overarching goal of this article is to substantially expand the empirical body 

of knowledge on design parameters for CRTs in these three major dimensions. Our study is the 

first to compile (normative distributions of) design parameters with standard errors that are 

relevant to (I) the German school context or similar school systems, (II) three- as well as two-

level designs, and (III) a broad variety of achievement domains. 

Statistical Framework 

Researchers need several multilevel design parameters to perform power analyses for CRTs 

aimed at enhancing student achievement based on three-level designs (Bloom et al., 2008; 

Hedges & Rhoads, 2010; Konstantopoulos, 2008a), where students at level one (L1) are nested 

within classrooms at level two (L2) which, in turn, are nested within schools at level three 

(L3):30 (a) Intraclass correlations ρ quantifying the proportions of total variance in students’ 

achievement that can be attributed to achievement differences between classrooms within 

schools (ρL2) and between schools (ρL3), as well as (b) the amounts of variance in students’

achievement that can be explained by covariates, typically measured as squared multiple 

correlations 𝑅2, at the student (𝑅L1
2 ), classroom (𝑅L2

2 ), and school level (𝑅L3
2 ).

The intraclass correlation at L2 is given by 

ρL2 =
σL2

2

σT
2  , (1) 

30  Equivalent specifications for two-level designs (where students at L1 are nested within schools at L3) are 

recorded in the Supplemental Online Material A. 
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and at L3 by 

ρL3 =
σL3

2

σT
2  , (2) 

where σT
2 = σL1

2 + σL2
2 + σL3

2  represents the total variance in students’ achievement across all

individual students, with σL1
2 , σL2

2 , and σL3
2  denoting the variances between students within

classrooms in schools, between classrooms within schools, and between schools, respectively. 

ρ = 0 implies that there are no between-classroom or between-school achievement differences, 

but rather that the total variance in students’ achievement is located at L1. ρ = 1 means, 

inversely, that students within a classroom do not differ in their achievement, but rather that the 

total variance in students’ achievement is located at L2 and L3. 

A major challenge when designing a CRT is to ensure adequate precision (i.e., small 

standard errors) for any estimated intervention effects. It is well-documented that vital 

covariates (e.g., pretest scores or sociodemographic characteristics) may significantly raise the 

precision of randomized experiments (e.g., Bloom et al., 2007; Hedges & Hedberg, 2007a, 

2013; Konstantopoulos, 2012; Raudenbush, 1997; Raudenbush et al., 2007). Covariates remove 

noise in the variance of an outcome measure (i.e., reduce σT
2), which improves the signal of the

intervention effect (Raudenbush et al., 2007, p. 18). Although not necessary for validity, 

covariates can operate in CRTs at various hierarchical levels. When covariates explain a 

substantial proportion of variance in an outcome (in particular at higher levels), they are an 

efficient way to improve statistical power and precision, and thus reduce the required sample 

sizes and therefore the cost of CRTs (Bloom et al., 2007; Konstantopoulos, 2012; Raudenbush, 

1997). 

The explained variance at L1 is computed as 

𝑅L1
2 =

σL1
2 −σL1|𝐶L1

2

σL1
2  , (3) 

at L2 as 

𝑅L2
2 =

σL2
2 −σL2|𝐶L2

2

σL2
2  , (4) 

and at L3 as 

𝑅L3
2 =

σL3
2 −σL3|𝐶L3

2

σL3
2  . (5) 

Here, σL1|𝐶L1

2 , σL2|𝐶L2

2 , and σL3|𝐶L3

2  are the covariate-adjusted within-classroom variance at L1, 

within-school variance at L2, and between-school variance at L3, respectively. 𝐶L1, 𝐶L2 and

𝐶L3 denote a set of covariates introduced at L1, L2, and L3, respectively. Typically, multilevel

modeling is applied to estimate the variance components σL1
2 , σL2

2 , and σL3
2 , as well as the
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covariate-adjusted variance components σL1|𝐶L1

2 , σL2|𝐶L2

2 , and σL3|𝐶L3

2  (for further details, see 

Supplemental Online Material A). Of note, 𝐶L2 and 𝐶L3 may include covariates assessed at L1 

which are aggregated to L2 and/or L3 (e.g., the classroom and school mean of a pretest) as well 

as covariates assessed only at L2 (e.g., class size) or L3 (e.g., school size). Note that aggregated 

L1 covariates should be entered as group-mean centered variables in the multilevel models. 

Doing so ensures that the covariates explain variance only at the level at which they are 

specified (Konstantopoulos, 2008a, 2012). Consequently, the 𝑅2 values (that may vary between 

0 and 1) quantify the proportions of the variances observed at each level that can be explained 

by a certain set of covariates at the corresponding level. 

The values for the design parameters ρ and 𝑅2 at each level are entered into power 

calculations to determine the number of students, classrooms, and schools that are needed to 

achieve a certain minimum detectable effect size (𝑀𝐷𝐸𝑆; Bloom, 1995). The 𝑀𝐷𝐸𝑆 can be 

described as the smallest true intervention effect that a study design could detect with 

confidence (Jacob et al., 2010) and thus is a measure of the precision of a CRT (Bloom, 2005). 

In formal terms, the 𝑀𝐷𝐸𝑆 is defined as the smallest possible standardized intervention effect 

that can be detected in a study of a certain sample size with, by convention, a power of 1 − β = 

.80 and a significance level of α = .05 in a two-tailed test (Bloom et al., 2008). Since the 𝑀𝐷𝐸𝑆 

is standardized with respect to the total student-level standard deviation in the outcome, it can 

be conceived as a standardized effect size measure. For instance, an 𝑀𝐷𝐸𝑆 of 0.25 implies 80% 

power to detect an intervention effect on the outcome measure of one quarter of the total 

student-level standard deviation (Bloom et al., 2007). 

The size of the 𝑀𝐷𝐸𝑆 depends on the type of CRT. Assuming no covariates and equal 

variances for the treatment and control group, the 𝑀𝐷𝐸𝑆 of a three-level CRT with treatment 

assignment at L3 is calculated as follows (see Bloom et al., 2008, Equation 2): 

 𝑀𝐷𝐸𝑆 = 𝑀𝑑𝑓√
ρL3

𝑃(1−𝑃)𝐾
+

ρL2

𝑃(1−𝑃)𝐾𝐽
+

(1−ρL3−ρL2)

𝑃(1−𝑃)𝐾𝐽𝑛
 , (6) 

where 𝑛 is the harmonic mean number of students per classroom, 𝐽 is the harmonic mean 

number of classrooms per school, and 𝐾 is the total number of schools. The multiplier 𝑀𝑑𝑓 is a 

function of the t-distributions specific to α and 1 − β for the applied test procedure (i.e., one- 

or two-tailed) with 𝑑𝑓 = 𝐾 − 2 degrees of freedom (for details, see Bloom, 2005, pp. 158–

160). For example, when 20 or more schools are randomly assigned to both the treatment and 

the control condition (i.e., 𝐾 ≥ 40), 𝑀𝑑𝑓 equals approximately 2.8 (Bloom et al., 2008). Finally, 

𝑃 represents the proportion of schools assigned to the treatment group. From Equation (6) it 

becomes clear that the 𝑀𝐷𝐸𝑆 increases with growing values of ρ.
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Adding covariates yields an adjusted 𝑀𝐷𝐸𝑆 (see Bloom et al., 2008, Equation 3): 

𝑀𝐷𝐸𝑆adj = 𝑀𝑑𝑓√
ρL3(1−𝑅L3

2 )

𝑃(1−𝑃)𝐾
+

ρL2(1−𝑅L2
2 )

𝑃(1−𝑃)𝐾𝐽
+

(1−ρL3−ρL2)(1−𝑅L1
2 )

𝑃(1−𝑃)𝐾𝐽𝑛
 , (7) 

with 𝑑𝑓 = 𝐾 − 𝑔L3
∗ − 2 degrees of freedom where 𝑔L3

∗  is the number of L3 covariates. Given

that ρL2 and ρL3 are fixed values, adding covariates (especially at higher levels), as shown in

Equation (7), leads to a lower 𝑀𝐷𝐸𝑆, or in other words, a higher precision of the CRT. 

The formula for the adjusted 𝑀𝐷𝐸𝑆 of a three-level multisite or blocked cluster 

randomized trial (MSCRT; e.g., Konstantopoulos, 2008b; Raudenbush & Liu, 2000), where 

treatment assignment occurs at L2 subclusters (e.g., classrooms) within L3 clusters (serving as 

sites or blocks; e.g., schools), is given in Dong and Maynard (2013, pp. 53–55): 

𝑀𝐷𝐸𝑆MSCRTadj
= 𝑀𝑑𝑓

√
τδL3

2 ρL3 (1−𝑅δL3
2 )

𝐾
+

ρL2(1−𝑅L2
2 )

𝑃(1−𝑃)𝐾𝐽
+

(1−ρL3−ρL2)(1−𝑅L1
2 )

𝑃(1−𝑃)𝐾𝐽𝑁
 , 

(8) 

where τδL3

2 = σδL3

2  / σL3
2  is the effect size variability at L3 (i.e., the heterogeneity of the

intervention effect δ across schools) with σδL3

2  denoting the between-school variance in δ. 

Further, 𝑅δL3

2 is defined as the proportion of τδL3

2  that can be explained by covariates at L3: 

𝑅δL3

2 = (τδL3

2 − τδL3|𝐶L3

2 ) / τδL3

2 , where τδL3|𝐶L3

2  is the covariate-adjusted effect size variability 

at L3. If δ is considered to be constant across schools (as represented by a fixed effect), τδL3

2

and ρL3 equal zero and thus, the first term within the square root (i.e., τδL3

2 ρL3 (1 − 𝑅δL3

2 ) / 𝐾)

vanishes and is dropped from Equation (8). In this fixed effect scenario, 𝑑𝑓 becomes 𝐾(𝐽 −

2) − 𝑔L2
∗ , where 𝑔L2

∗  is the number of L2 covariates. If δ is considered to vary across schools

(as represented by a random effect), 𝑑𝑓 is 𝐾 − 𝑔L3
∗ −1. As in the computation of the unadjusted

𝑀𝐷𝐸𝑆 for CRTs, the values for 𝑔∗ and 𝑅2 equal zero (and are therefore dropped from Equation

(8)) when no covariates are used.

Previous Empirical Research on Multilevel Design Parameters 

A critical question that any educational researcher faces when performing power analyses is 

which values of ρ and 𝑅2 at each hierarchical level should be entered in the equations presented

above. Unfortunately, many applied researchers (still) draw on conventional guidelines: For 

example, they interpret values of ρ = .01 as “small”, ρ = .10 as “medium”, and ρ = .25 as 

“large” (LeBreton & Senter, 2008, p. 838). These guidelines, though, were proposed as 

“operational definitions”, with the strong recommendation to use better estimates whenever 

possible – “better” means that they should match the target population, hierarchical level, and 
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outcome measure of the study (e.g., Cohen, 1988, pp. 12–13 and 534; Lipsey et al., 2012, p. 4). 

Thus, what do we know about design parameters at the various levels for student achievement? 

International Research 

First, in the United States, the body of knowledge on design parameters has substantially 

expanded in recent years (cf. Spybrook, 2013; Spybrook & Kelcey, 2016), especially for the 

core achievement domains mathematics, science, and reading. Figure 1 summarizes design 

parameters based on U.S. samples as reported in previous research. 

Second, it is evident from Figure 1 that most studies in the United States have cataloged 

design parameters that are relevant for planning two-level CRTs (i.e., students within schools; 

see upper panels in Figure 1a to d). Despite expected variation across samples, domains, and 

grade levels, this line of research indicates that the variance attributable to between-school 

achievement differences in the United States only occasionally exceeds a value of ρL3 = .25

(see Figure 1a). 

In contrast, few studies have compiled variance components for three-level designs (i.e., 

students within classrooms within schools; see lower panels in Figure 1a-d). Figure 1a reveals 

that intraclass correlations at L2 vary by grade level. For instance, in the study by Zhu and 

colleagues (2012), values of ρL2 were usually smaller than .14 (with ρL3 ≤ .10) in both

mathematics and reading in elementary school. In secondary school, however, Zhu et al. (2012) 

reported between-classroom differences within a range of .29 ≤ ρL2 ≤ .38 in tests related to

mathematics and science (with .07 ≤ ρL3 ≤ .17). The authors argue that this increase in ρL2

probably reflects a more extensive student tracking within secondary schools than within 

elementary schools (Zhu et al., 2012, p. 53). 
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Figure 1. Results from Previous Research on Multilevel Design Parameters for Student 

Achievement in Elementary and Secondary School in the United States: (a) Between-Classroom 

(𝜌𝐿2) and Between-School Differences (𝜌𝐿3), and Explained Variances by (b) Pretest Scores,

(c) Sociodemographic Characteristics, and (d) Pretest Scores and Sociodemographic

Characteristics at the Student (𝑅𝐿1
2 ), Classroom (𝑅𝐿2

2 ), and School Level (𝑅𝐿3
2 )

Note. Boxplots show distributions across all domains. The distributions in mathematics/science/reading are based 

on 341/12/370 values for elementary school (grades 1-6) and 266/93/223 values for secondary school (grades 7-

12). The underlying data table can be obtained from the OSF (https://osf.io/2w8nt). In the upper panels of Figures 

1a to 1d, design parameters obtained from two-level models (students at L1 within schools at L3) are shown as 

reported in the following studies: Bloom et al. (1999) reported ρL3 for elementary schools in 1 city. Bloom et al.

(2007) reported ρL3, 𝑅L1
2  and 𝑅L3

2  for pretests and sociodemographics for elementary and secondary schools in 5

districts. Brandon et al. (2013) reported upper bounds of the means of ρL3 across several years for elementary and

secondary schools in one state. Hedberg et al. (2004) reported ρL3, and 𝑅L3
2  for sociodemographics for elementary

schools in 120 districts and for secondary schools on a nationwide basis (values are retrieved from Schochet, 

2008). Hedges and Hedberg (2007a) reported ρL3, 𝑅L1
2  and 𝑅L3

2  for pretests, sociodemographics, and their

combination for elementary and secondary schools on a nationwide basis (across districts and states). 

(Figure continues) 
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Figure 1. (continued) 

Note. Hedges and Hedberg (2013) reported ρL3, 𝑅L1
2  and 𝑅L3

2  for pretests and sociodemographics for elementary

and secondary schools in 11 states (with between-district variance pooled into between-school variance within 

states). Schochet (2008) reported ρL3 for elementary schools based on 3 studies conducted in 6 cities, 12 districts,

and 7 states, respectively. Spybrook, Westine, et al. (2016) reported means of ρL3, 𝑅L1
2  and 𝑅L3

2  across several

years for pretests and sociodemographics for elementary and secondary schools in 3 states. Westine et al. (2013) 

reported means of ρL3, 𝑅L1
2  and 𝑅L3

2  across 5 years for pretests, sociodemographics, and their combination for

elementary and secondary schools in 1 state. In the lower panels of Figures 1a to 1d, design parameters obtained 

from three-level models (students at L1 within classrooms at L2 within schools at L3) are shown as reported in the 

following studies: Jacob et al. (2010) reported ρL2, ρL3, 𝑅L1
2 , 𝑅L2

2  and 𝑅L3
2  for pretests, sociodemographics and their

combination for elementary schools in 6 districts. Xu and Nichols (2010) reported ρL2, ρL3, 𝑅L1
2 , 𝑅L2

2  and 𝑅L3
2  for

pretests, sociodemographics, and their combination for elementary and secondary schools in 2 states. Zhu et al. 

(2012) reported ρL2, ρL3, 𝑅L1
2 , 𝑅L2

2  and 𝑅L3
2  for pretests for elementary and secondary schools on a nationwide

basis. 

Third, a small number of studies outside the United States have investigated intraclass 

correlations focusing on between-school achievement differences. The study by Kelcey et al. 

(2016) drew on representative samples of grade 6 students in 15 sub-Saharan African countries. 

Their results showed that between-school differences in mathematics and reading varied widely 

across countries (.08 ≤ ρL3 ≤ .60). Zopluoglu (2012) reanalyzed data from several cycles of

the Trends in International Mathematics and Science Study (TIMSS) and Progress in 

International Reading Literacy Study (PIRLS) and found that ρL3 varied considerably across

countries in mathematics, science and reading. For example, in the year 2007 cycle of TIMSS 

the average intraclass correlation at L3 in mathematics were ρL3 = .27 across 44 countries

(𝑆𝐷 = .14, .07 ≤ ρL3 ≤ .62) in grade 4, and ρL3 = .31 across 57 countries (𝑆𝐷 = .14, .03 ≤

ρL3 ≤ .65) in grade 8. Similar results were found for science and reading. Finally, capitalizing

on five cycles of the Programme for International Student Assessment (PISA) with 

representative data from 15-year-old students from 81 different countries and economies, 

Brunner and colleagues (2017) found large international variation in between-school 

achievement differences with median values of ρL3 lying around .40 (ranging from .10 to over

.60). In sum, these results from international studies clearly show that design parameters 

obtained for the United States do not generalize well to the large majority of other countries. 

For instance, the analyses by Brunner et al. (2017, p. 21) reveal that in about 80% of the 

countries that participated in PISA, achievement differences at L3 are (much) larger than those 

typically found for U.S. schools. 

Fourth, pretest scores have proven to be highly powerful in explaining variance in 

students’ achievement at all levels (e.g., Bloom et al., 2007; Hedges & Hedberg, 2007a; Westine 

et al., 2013; Zhu et al., 2012; see Figure 1b). For example, in the study by Zhu and colleagues 

(2012, p. 66, Table A1), median values for the proportions of variance explained by pretests 

were 𝑅L1
2 = .59, 𝑅L2

2 = .72, and 𝑅L3
2 = .52.
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Fifth, as a rule, sociodemographic characteristics (i.e., as typically represented by a 

covariate set comprising socioeconomic status, gender, and migration background) explain a 

smaller proportion of variance in students’ achievement at L1, and a larger proportion at L3. 

As shown in Figure 1c, in the United States (e.g., Bloom et al., 2007; Hedges & Hedberg, 2013; 

Spybrook, Westine, et al., 2016), values of 𝑅L3
2  typically lie in the range of .42 to .79. The

corresponding average values of 𝑅L1
2  typically lie around .10. This general pattern of results

was also found for sub-Saharan countries in the study by Kelcey et al. (2016) as well as in the 

analyses of Brunner et al. (2017) for 81 countries participating in PISA. Notably, these 

international studies also demonstrated that achievement differences adjusted for 

sociodemographics varied widely across countries. For example, values of 𝑅L3
2  for reading

ranged between .18 and .89 across countries (Brunner et al., 2017). 

To the best of our knowledge, only Jacob et al. (2010) and Xu and Nichols (2010) have 

provided empirical estimates of 𝑅L2
2  for the application of sociodemographic covariates.

Drawing on data from 3rd graders, Jacob and colleagues (2010) reported that 

sociodemographics explained 42%/20% of the variance located at L2 for mathematics/reading 

achievement. In the investigation of Xu and Nichols (2010) the proportions of explained 

variance at L2 varied by state, domain, and grade level: The values for 𝑅L2
2  in elementary school

were between .11 (mathematics; Florida) and .32 (reading; North Carolina), and in secondary 

school between .05 (mathematics; Florida) and .44 (geometry; North Carolina). 

Sixth, drawing on data from the United States for K-12th graders, Hedges and Hedberg 

(2007a) found that sociodemographics provided (almost) no incremental gain in explaining 

variance in mathematics and reading at either L1 or L3, once pretests were controlled for at 

these levels. However, the analyses of Jacob et al. (2010; Table 2) as well as Xu and Nichols 

(2010, Table NC-7) suggest that sociodemographics may contribute to the prediction over and 

above pretests, especially at L2 (see Figure 1d). 

Research in Germany 

To date, design parameters for student achievement in Germany have typically been reported 

in the context of research on educational effectiveness or social inequalities, mainly as ancillary 

results. Hence, the knowledge base is scattered and design parameters for Germany have not 

been systematically summarized. Table 1 provides an overview of intraclass correlations as 

reported in several key German large-scale studies. 
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Table 1. Results from Previous Large-Scale Studies on Student Achievement in Germany: 

Between-Classroom (𝜌𝐿2) and Between-School Differences (𝜌𝐿3) by Grade and Domain

Grade Mathematics Science Verbal Skills in German 
English 

Reading 

Reading Listening 

ρL2 ρL3 ρL2 ρL3 ρL2 ρL3 ρL2 ρL3 ρL2 ρL3

Elementary School 

1 

2 

3 

4 .02 a .25 b/.27 c/.15 a .26 d .04 e .22 f/.24 g/.17 e .27 h 

Secondary School 

5 

6 

7 .03 i .45 i 

8 .51 j/.49 k .41 l 

9 .56 m .54 m .58 m/.48 n .55 n 

10 .03 i .47 o/.62 i .44 p 

11 

12 .52 q 

Note. Design parameters in italic/normal print are based on national probability samples/representative samples of 

a certain state. a Lehmann & Lenkeit (2008, Table 3.6). b Haag & Roppelt (2012, Figure 5.11). c Martin et al. (2013, 

p. 139). d Martin et al. (2013, p. 140). e Lehmann & Lenkeit (2008, Table 3.3). f Böhme & Weirich (2012, Figure

5.3). g Martin et al. (2013, p. 138). h Böhme & Weirich (2012, Figure 5.4). i Baumert et al. (2003, Figure 10.6)

where values of 𝜌𝐿3 represent the sum of the variances between schools and between school types. j Martin et al.

(2000, p. 77). k Baumert et al. (2000, p. 68). l Martin et al. (2000, p. 76). m Brunner et al. (2017, Table S2) with data

from 15-year-old students of which about 65% attend grade 9; most remaining students attend grade 10. n Knigge

& Köller (2010, Table 10.1). o Senkbeil (2006, p. 298). p Senkbeil (2006, p. 299). q Baumert et al. (2000, p. 69).

The following results are noteworthy in Table 1: First, intraclass correlations were only 

available at L3 for the majority of studies, and these differed markedly between elementary 

school and secondary school. Elementary school values of ρL3 lay between .15 and .27, whereas

secondary school values of ρL3 lay between .41 and .62. In the very few studies where intraclass

correlations at L2 were reported, they appeared rather small (with ρL2 ≤ .04) compared to

between-school differences. Finally, the many empty cells in Table 1 demonstrate that the 

existing empirical research on design parameters for German schools is limited to selected 

hierarchical levels, achievement domains, and grades. 

Second, as in most countries, the amount of variance explained by sociodemographics 

differs substantively between levels in Germany. For example, in the reanalysis of data from 

five PISA cycles by Brunner et al. (2017), the average proportion of L1 variance explained by 

socioeconomic status, gender, and migration background was 𝑅L1
2 = .09/.09/.10 for German

students’ achievement in mathematics/science/reading. On the other hand, the respective 

average proportion of explained L3 variance was 𝑅L3
2 = .75/.77/.77. Similar patterns of results
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were also found in other studies (Baumert et al., 2003; Knigge & Köller, 2010). Of note, to the 

best of our knowledge, multilevel models have not yet been used to decompose the variance 

that can be explained by pretests at L1, L2, and L3 for German schools. 

Third, the design parameters reported in Table 1 refer to the general (i.e., total) student 

population. At Germany’s elementary level, there is only a single type of elementary school 

across all 16 federal states (“Grundschule”; up to grade 4 in most German federal states). 

However, at the secondary level, Germany’s school system is characterized – like many other 

countries (Salchegger, 2016) – by tracking into different school types that cater to students with 

different performance levels. Typically, five major school types are distinguished in large-scale 

studies: The academic track school (“Gymnasium”; up to grade 12 or 13), vocational school 

(“Hauptschule”; up to grade 9 or 10), intermediate school (“Realschule”; up to grade 10), 

multitrack school (“Schulen mit mehreren Bildungsgängen”; up to grade 9, 10, 12, or 13), and 

comprehensive school (“Gesamtschule”; up to grade 12 or 13). Notably, all federal states offer 

schools in the academic track but they vary with respect to the other school types. In the 

remainder of this article, we will therefore subsume the latter four school types under the 

umbrella term “non-academic track” to describe this broad class of schools.

Importantly, when statistically controlling for mean-level differences between school 

types in secondary education (e.g., by introducing school type as a L3 covariate), ρL3 may

decrease markedly. For instance, Baumert and colleagues (2003, p. 270) found that around 

47%/45% of the total variance in mathematics/reading achievement of 9th graders were 

accounted for by differences between school types whereas 7%/12% were attributable to 

differences between schools of the same type; the remaining 46%/43% were attributable to 

differences between students within schools. Drawing on data from the German federal state 

North Rhine-Westphalia, Baumert et al. (2003) also delineated that the amount of variance 

attributable to school types may increase with higher grades, while the amount of variance 

attributable to differences between schools of the same type decreases. In summary, these 

results for the German school system have two implications: first, school types are an important 

feature of the German school system that explain a substantial proportion of between-school 

differences in students’ achievement and, second, design parameters obtained for certain grades 

cannot be easily generalized to other grades. 
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The Present Study 

Multilevel design parameters that are tied to the target population, hierarchical level, and 

outcome measure are indispensable for designing CRTs on student achievement with sufficient 

statistical power and precision. However, our literature review showed that the corresponding 

empirical knowledge base is limited in several ways: First, existing compendia of design 

parameters are based almost exclusively on U.S. samples, whereas the body of knowledge is 

rather weak for Germany and other countries with similar school systems. Second, most 

previous research on design parameters focused on two-level structures (i.e., students within 

schools), but little research has been done using three-level analyses yielding classroom-level 

estimates in the United States and elsewhere. Third, design parameters are most frequently 

available for the core achievement domains mathematics, science, and reading. Yet, 

contemporary educational curricula go far beyond these core domains (National Research 

Council, 2011; OECD, 2018): They cover a multifaceted skills portfolio including, for instance, 

verbal skills in foreign languages and domain-general skills such as information and 

communication technology literacy and problem solving. Although cognitive outcomes of 

different domains are correlated, their unique characteristics may introduce considerable 

variation in design parameters and, therefore, in the required samples sizes for CRTs (Westine 

et al., 2013). Finally, it is important to quantify the statistical uncertainty associated with 

empirically estimated design parameters due to sampling error (Hedges et al., 2012). To date, 

standard errors or confidence intervals have rarely been reported for ρ and 𝑅2 at L1 and L3

(Hedges & Hedberg, 2007a, 2007b, 2013; Jacob et al., 2010) and, as far as we are aware, never 

at L2. 

The present study directly addresses these research gaps. Specifically, this is the first 

study to rigorously investigate design parameters and their standard errors (I) based on rich, 

large-scale data from German samples spanning the entire school career (grades 1 to 12), (II) 

for three- as well as two-level designs, and (III) for a very wide array of achievement domains. 

Following prior work (e.g., Bloom et al., 2007; Hedges & Hedberg, 2007a, 2013; Westine et 

al., 2013), we use pretest scores and sociodemographic characteristics as covariates at each 

level to determine the increase in the precision of CRTs when estimating causal effects on 

student achievement. We analyze three-level design parameters (i.e., ρL2, ρL3, 𝑅L1
2 , 𝑅L2

2 , 𝑅L3
2 )

and two-level design parameters (i.e., ρL3, 𝑅L1
2 , 𝑅L3

2 ) for the general student population. Given

that tracking is a key characteristic of the secondary school system in Germany and many other 

school systems around the world (Salchegger, 2016), we additionally estimate design 
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parameters both by adjusting them for mean-level differences in achievement between school 

types as well as separately for the academic and non-academic track. Finally, we illustrate how 

the present design parameters can be applied in power analysis in the planning phase of CRTs. 

Method 

Large-Scale Assessment Data 

This study drew on several national probability samples from three German longitudinal large-

scale assessments: The National Educational Panel Study (NEPS; Blossfeld et al., 2011), the 

Assessment of Student Achievements in German and English as a Foreign Language (DESI; 

DESI-Konsortium, 2008), and the longitudinal extension of the year 2003 cycle of the 

Programme for International Student Assessment (PISA-I-Plus 2003, 2004 [PISA-I+]; PISA-

Konsortium Deutschland, 2006). NEPS is an ongoing complex multi-cohort study on the 

interplay of student achievement, educational processes, and life outcomes across the lifespan. 

We analyzed data from students attending grades 1 to 12 using the starting cohorts (SC) 2, 3, 

and 4. DESI investigated the development of first (i.e., German) and foreign language (i.e., 

English) achievement during grade 9. PISA-I+ focused on the development of mathematics and 

science achievement from grade 9 to 10 and additionally contains assessments of reading and 

problem solving in grade 9. 

All studies followed a multistage sampling procedure. In NEPS-SC3 and -SC4, as well 

as in DESI and PISA-I+, two entire classrooms per school were randomly drawn (Aßmann et 

al., 2011; Beck et al., 2008; Prenzel et al., 2006). For NEPS-SC2, the sample did not consist of 

intact classrooms but rather was representative of children entering elementary school (Aßmann 

et al., 2011). 

Our analysis sample of NEPS-SC2 included students who took part in the study in grade 

1. It was composed of two subsamples: students who started participating as 4-year-old

kindergarten children (school year 2010/11; wave 1) and a refreshment sample of 1st graders 

(2012/13; wave 3), both providing data up to grade 4 (2015/16; wave 6). The analysis sample 

of NEPS-SC3 comprised students from grade 5 (2010/11; wave 1) up to 9 (2014/15, wave 6) 

and, again, included two subsamples: 5th graders of wave 1, and a refreshment sample of grade 

7 students (2012/13; wave 3). For NEPS-SC4, we analyzed data from students from grade 9 

(2010/11; wave 1) up to 12 (2013/14; wave 7). For DESI, we analyzed data of the full student 

sample at the outset (wave 1) and end (wave 2) of grade 9 in 2003/04. The analysis sample of
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PISA-I+ covered students from grade 9 (2002/03; wave 1) up to 10 (2003/04; wave 2). Datasets 

for each large-scale study and grade consisted of those students who participated in the studies 

in the respective grade and for whom the exclusion criteria31 did not apply. Table 2 contains 

detailed information on sample sizes by grade, large-scale study, and school track.

Table 2. Number of Students (L1), Classrooms (L2), and Schools (L3), and Median Cluster 

Sizes by Grade, Large-Scale Study, and School Track 

Grade Study Total Academic Track Non-Academic Track 

𝑁 𝑀𝑑𝑛 𝑁 𝑀𝑑𝑛 𝑁 𝑀𝑑𝑛 

L1 L2 L3 L1 L2 L1 L2 L3 L1 L2 L1 L2 L3 L1 L2 

Elementary School 

1 NEPS-SC2  6,731 1,020 374 6 2 - - - - - - - - - - 

2 NEPS-SC2  6,319   986 362 6 2 - - - - - - - - - - 

3 NEPS-SC2  5,554   888 354 6 2 - - - - - - - - - - 

4 NEPS-SC2  5,419 1,026 349 4 3  - - - - - - - - - - 

Secondary School 

5 NEPS-SC3  5,380   452 225 12 2  2,340   155  76 15 2  3,040   297 149 10 2 

6 NEPS-SC3  5,026   452 211 11 2  2,287   170  76 13 2  2,739   282 135 10 2 

7 NEPS-SC3  6,279   614 266 10 2  2,980   254 105 11 2  3,299   360 161 8 2 

9 NEPS-SC3  4,651   627 239 6 2  2,255   271  95 8 2  2,396   356 144 5 2 

9 NEPS-SC4 14,640   975 518 15 2  5,098   292 146 18 2  9,542   683 372 14 2 

9 DESI 10,543   427 219 25 2  4,308   163  82 27 2  6,235   264 137 24 2 

9 PISA-I+  6,020   275 152 23 2  2,664   116  61 23 2  3,356   159  91 22 2 

10 NEPS-SC4 10,031   824 402 12 2  3,770   298 118 12 2  6,261   526 284 12 2 

10 PISA-I+  6,020   275 152 23 2  2,664   116  61 23 2  3,356   159  91 22 2 

11 NEPS-SC4  4,566 n/a 175 26 n/a  4,087 n/a 143 29 n/a    479 n/a  32 14 n/a 

12 NEPS-SC4  3,963 n/a 168 23 n/a  3,596 n/a 137 27 n/a    367 n/a  31 12 n/a 

Note. Cells containing a dash indicate that tracking into different school types does not occur in elementary 

school. Cells containing n/a indicate that classroom-level information was not available as 11th and 12th grade 

students did not attend intact classrooms, but rather the grouping of students varied depending on the subject 

taught. 

The sample sizes varied from 𝑁 = 3,963 students from 168 schools (NEPS-SC4, grade 

12) and 𝑁 = 14,640 students in 975 classrooms in 518 schools (NEPS-SC4, grade 9). Notably,

none of samples from the three large-scale studies comprises 8th grade students as achievement 

tests were not conducted in this grade. Furthermore, in the German school system, the majority 

of 11th and 12th graders are not grouped in intact classrooms, but rather attend courses that are 

specific to the subject taught at different ability levels (e.g., basic and advanced courses). 

Information on classroom affiliation in grades 11 to 12 consequently did not exist. 

31  The exclusion criteria applied for the present analyses are outlined in the Supplemental Online Material A. 

Table A1 itemizes the number of excluded students. Sensitivity analyses showed no systematic differences in 

the study measures between students that were included and those that were excluded (see Tables A2 to A4). 
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Measures 

Achievement Outcomes 

We examined a broad spectrum of domain-specific and domain-general achievement measures 

(for a comprehensive overview, see Table A5 in the Supplemental Online Material A). The 

datasets included data at L1 in various domains: mathematics, science, specific verbal skills in 

German as a first language (reading comprehension, reading speed, spelling, grammar, 

vocabulary, writing, argumentation, listening), and specific verbal skills in English as a foreign 

language (reading comprehension, text reconstruction, language awareness, writing, listening). 

Likewise, we investigated domain-general areas: declarative metacognition, information and 

communication technology, problem solving, and basic cognitive functions (perception speed, 

reasoning). 

Assessments were conducted in all grades from 1 to 12 except grade 8. All tests were 

administered using a paper-and-pencil format. Test scores were provided either as weighted 

likelihood estimates (WLE; Warm, 1989) that were derived from item-response models, or as 

sum or mean scores that were computed by the number of correctly solved items. 

Pretest Scores 

For each outcome measure we used the corresponding previously-collected domain-identical 

achievement score as predictor, if available. If there were multiple pretests from different years 

for a certain domain, we selected the pretest with the smallest time lag between pre- and 

posttest. When studying mathematics, science, and German vocabulary and grammar as 

outcomes in grade 1, and basic cognitive functions in grade 2, we included the corresponding 

pretests that were assessed in kindergarten (waves 1 and 2 of NEPS-SC2). If no domain-

identical pretest was available, we used predictors that were conceptually related to the target 

outcome (so-called “proxy” pretests; Shadish et al., 2002, p. 118; see Table A6 in the 

Supplemental Online Material A). However, some grade-specific achievement outcomes did 

not have any relevant pretest available. 

Sociodemographic Characteristics 

We used four sociodemographic characteristics as covariates. Specifically, we used two 

measures of socioeconomic status, including the highest International Socio-Economic Index 

of Occupational Status within a family (HISEI; Ganzeboom & Treiman, 1996) and an indicator 

of the highest educational attainment within the family. The highest educational attainment was 
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based on the greatest number of years of schooling completed within a family (ranged between 

9 and 18) for NEPS and PISA-I+ and the highest school-leaving qualification within a family 

(with 1 = no qualification up to 5 = “Abitur”) for DESI. Indicator variables were used to 

represent students’ gender (0 = male, 1 = female) and migration background (0 = no migration 

background, 1 = migration background).  

Statistical Analyses 

Missing Data 

Missing data is an unavoidable reality in any large-scale assessment (for missing data statistics, 

see Tables A7 to A11 in the Supplemental Online Material A). Across all datasets, the total 

percentage of missing values varied from 6% (NEPS-SC2, grade 3) to 32% (NEPS-SC2, grade 

1). The highest missing rates occurred in pretests measured in the first two waves of NEPS-

SC2, as only a small share of the kindergarten children continued participating in NEPS after 

entering elementary school. To deal with missing data we used (groupwise) multilevel multiple 

imputation and generated 50 multiply imputed datasets for each large-scale study and grade 

using the mice (van Buuren & Groothuis-Oudshoorn, 2011) and miceadds (Robitzsch et al., 

2018) packages (for details, see Supplemental Online Material A). 

Multilevel Models 

Adapting the approach of Hedges and Hedberg (2007), we estimated four sets of three-level 

(i.e., students within classrooms within schools) and two-level (i.e., students within schools) 

multilevel latent (covariate) models (Lüdtke et al., 2008) with random intercepts for each grade 

and achievement outcome. Notably, all covariates were assessed at L1. The classroom and 

school means of these covariates were estimated by applying the default options for the latent 

multilevel modeling framework as implemented in Mplus 8 (Muthén & Muthén, 2017), and 

thus were entered as latent group means in the models. Doing so also implies that in the three-

level models both L1 covariates and L2 means were “implicitly” centered at the respective 

classroom and school means (Muthén & Muthén, 2017, pp. 274–275). 

Model set 1 was an intercept-only model that did not contain any covariates. Model set 

2 was a pretest covariate(s) model that drew on the respective pretest scores (or proxy pretest 

scores, if necessary) as predictors at each level. Model set 3 was a sociodemographic covariates 

model that included at each level students’ socioeconomic status (i.e., HISEI and the highest 

educational attainment within the family), gender, and migration background. Model set 4 was 
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a pretest and sociodemographic covariates model that combined the pretest covariate(s) model 

and the sociodemographic covariates model. All analysis models are specified in Equations 

(A13) to (A30) in the Supplemental Online Material A. 

To estimate design parameters at L1, L2, and L3 for grades 1 to 10, we applied three-

level modeling. For grades 11 to 12, we specified two-level models to estimate design 

parameters at L1 and L3 because German education in grades 11 and 12 is usually not organized 

within intact classrooms. As noted above, secondary students in Germany are tracked into 

different school types. We therefore also applied two different adjustments to model sets 1 to 4 

to estimate design parameters in secondary education taking tracking into account. First, we 

adjusted the design parameters for mean-level differences in achievement between school 

types. To accomplish this, we added dummy-coded indicator variables representing the various 

school types as covariates at L3 in all multilevel models (see Table A12 in the Supplemental 

Online Material A). Second, we examined model sets 1 to 4 separately for the subpopulations 

of students in the academic and non-academic track. 

Finally, we ran model sets 1 to 4 as two-level models for grades 1 to 10 for the general 

student population (both with and without adjusting for mean-level differences between school 

types), and separately for the academic and non-academic track. This approach allows us to 

provide design parameters at L1 and L3 that are appropriate for research lacking information at 

the classroom level. 

Estimation of Design Parameters and Standard Errors 

The analyses were conducted in three steps. First, model sets 1 to 4 were run separately for each 

large-scale study, grade, achievement outcome, and for each of the 50 imputed datasets in 

Mplus 8 (Muthén & Muthén, 2017) using the maximum likelihood estimator with robust 

standard errors (MLR) which were computed based on a sandwich estimator.32 These analyses 

were run via R (R Core Team, 2018) using the MplusAutomation package (Hallquist & Wiley, 

2018). 

Second, the calculation of the design parameters and their standard errors was done in 

R (R Core Team, 2018) using the estimates obtained in the first step: We employed Equations 

(1) and (2) to calculate ρL2 and ρL3, respectively, Equations (3), (4), and (5) to calculate 𝑅L1
2 ,

𝑅L2
2 , and 𝑅L3

2 , respectively, as well as Equations (A18) and (A22) displayed in the Supplemental

Online Material A to calculate school-type-adjusted values of ρL3 and 𝑅L3
2 , respectively. The

32  In very few cases, negative 𝑅2 values or estimation problems occurred. Different strategies applied to resolve 

these estimation issues are described in the Supplemental Online Material A. 
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standard errors of the ρ values were computed using the formulas for large sample variances in 

unbalanced three-level designs (i.e., with unequal cluster sizes) presented in Hedges et al. 

(2012, Equations 7 to 9), and the formula for the large sample variance in unbalanced two-level 

designs given in Donner and Koval (1980, Equation 3). The standard errors of the 𝑅2 values

were calculated drawing on Hedges and Hedberg (2013, p. 451). 

Third, the design parameters and standard errors obtained in the second step were pooled 

across imputations using Rubin’s (1987) rules in R (R Core Team, 2018) using the mitml 

package (Grund et al., 2019) to combine the estimates into a single set of results and to obtain 

standard errors that take into account within and between imputation variance. Of note, for 

grade 9, design parameters for the same achievement domain were available from several large-

scale studies. We integrated these results in R (R Core Team, 2018) with the metafor package 

(Viechtbauer, 2010) and applied a meta-analytic fixed effects model to determine the average 

design parameter estimates across the grade 9 samples (Hedges & Vevea, 1998).33 

Results 

The complete compilation of multilevel design parameters, corresponding standard errors, and 

normative distributions are available in Tables B1 to B16 in the Supplemental Online Material 

B on the Open Science Framework (OSF; https://osf.io/2w8nt; see also Figure 4). Table 3 

aggregates the results based on three-level (grades 1 to 10) and two-level (grades 11 to 12) 

models for the general student population (with and without adjustment for mean-level 

differences between school types), the academic track, and the non-academic track, yielding 

normative distributions of design parameters. Figure 2 visualizes the results for the general 

student population as well as the school-type-adjusted results at L3 by grade level and 

achievement domain. 

Design Parameters for the General Student Population 

The results obtained for the intercept-only models demonstrated substantial between-school 

differences in students’ achievement across grade levels and domains. As displayed in Figure 

2a, values of ρL3 were noticeably smaller in elementary (𝑀𝑑𝑛(ρL3) = .11) than in secondary

33  After careful consideration we decided not to use sampling weights in our analyses. As we had to exclude 

students who did not meet the criteria required for our analyses, applying the weights to the remaining students 

would have no longer represented the total German student population. 
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school (𝑀𝑑𝑛(ρL3) = .35; see also Table 3). Moreover, achievement differences at L3 varied

widely between outcome measures and grade levels, and even within grade levels (see Tables 

3 and B1): In elementary school, ρL3 ranged from .04 (e.g., basic cognitive functions in

reasoning, grade 2) to .22 (German vocabulary, grade 1), and in secondary school from .09 

(German reading comprehension, grade 12) to .59 (English language awareness in grammar, 

grade 9). Compared to between-school differences, between-classroom differences were 

considerably smaller ranging from ρL2 = .03 (e.g., German grammar, grade 1) to ρL2 = .09

(basic cognitive functions in perception speed, grade 2) in elementary school 

(𝑀𝑑𝑛(ρL2) = .05), and from .01 (declarative metacognition, grade 9) to .13 (e.g., German

reading speed, grade 5) in secondary school (𝑀𝑑𝑛(ρL2) = .04; see Figure 2a, Tables 3 and B1).

The results of the pretest covariate(s) models showed that pretest scores (including 

proxy pretests) explained substantial amounts of variance in students’ achievement at all 

hierarchical levels with median values of 𝑅L1
2 = .21, 𝑅L2

2 = .51, and 𝑅L3
2 = .89 across

elementary and secondary school (see Table B2). Table 3 and Figure 2b reveal that the 

effectiveness of pretests in reducing variability in students’ achievement at L1 were relatively 

consistent across grade levels with 𝑀𝑑𝑛(𝑅L1
2 ) = .24/.20 in elementary/secondary school. The

explanatory power of pretests at L2 and L3, however, depended on the grade level: Pretests 

explained substantively larger proportions of L2 and L3 variance in secondary school (median 

values: 𝑅L2
2 = .65, 𝑅L3

2 = .96) than in elementary school (median values: 𝑅L2
2 = .27,

𝑅L3
2 = .39). The corresponding standard errors were exceptionally large in grade 1 (e.g.,

German grammar: 𝑆𝐸(𝑅L2
2 ) = .34, 𝑆𝐸(𝑅L3

2 ) = .32; see Table B1). The proportion of explained

variance varied considerably across domains for all grade levels (.01 ≤ 𝑅L1
2 ≤ .56, .00 ≤

𝑅L2
2 ≤ .95, .00 ≤ 𝑅L3

2 ≤ 1.00; see Table B2).

The results of the sociodemographic covariates models indicated that these student 

characteristics were in general very powerful predictors at L2 and L3 across grade levels 

(median values: 𝑅L2
2 = .55 and 𝑅L3

2 = .85) but considerably less effective at L1

(𝑀𝑑𝑛(𝑅L1
2 ) = .04; see Table B2). Again, we found a wide range in the amount of variance

explained by sociodemographic characteristics across outcome measures (.00 ≤ 𝑅L1
2 ≤ .14,

.16 ≤ 𝑅L2
2 ≤ .89, .14 ≤ 𝑅L3

2 ≤ .97; see Table B2). Broken down by grade levels as mapped in

Table 3 and Figure 2c, median values for 𝑅2 at L1/L2 were greater in elementary than secondary

school with .10/.61 and .03/.53, respectively. At L3 explained variances were lower in 

elementary (𝑀𝑑𝑛(𝑅L3
2 ) = .63) than in secondary school (𝑀𝑑𝑛(𝑅L3

2 ) = .88) instead.
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Table 3. Normative Distributions of Multilevel Design Parameters for Student Achievement: (a) 

Between-Classroom (𝜌𝐿2) and Between-School Differences (𝜌𝐿3), and Explained Variances by (b) 

Pretest Scores, (c) Sociodemographic Characteristics, and (d) Pretest Scores and 

Sociodemographic Characteristics at the Student (𝑅𝐿1
2 ), Classroom (𝑅𝐿2

2 ), and School Level (𝑅𝐿3
2 )

Statistic a. Model Set 1 b. Model Set 2 c. Model Set 3 d. Model Set 4

Intercept-Only 

Model 
 Pretest Covariate(s) 

Model 

Sociodemographic 

Covariates Model 

Pretest and

Sociodemographic 

Covariates Model 

ρL2 ρL3 𝑅L1
2 𝑅L2

2 𝑅L3
2 𝑅L1

2 𝑅L2
2 𝑅L3

2 𝑅L1
2 𝑅L2

2 𝑅L3
2

Elementary School (Grades 1-4) 

Minimum  .03  .04  .01  .00  .06  .00  .16  .14  .02  .27  .27 

25th percentile  .04  .10  .09  .11  .33  .04  .38  .51  .14  .46  .66 

Median  .05  .11  .24  .27  .39  .10  .61  .63  .30  .67  .77 

75th percentile  .06  .15  .36  .37  .59  .10  .66  .69  .38  .82  .82 

Maximum  .09  .22  .51  .85  .90  .14  .84  .92  .52  .89  .92 

Secondary School (Grades 5-12) 

General Student Population 

Minimum  .01  .09  .08  .09  .00  .00  .16  .16  .08  .31  .61 

25th percentile  .03  .27  .14  .45  .87  .01  .35  .80  .17  .69  .95 

Median  .04  .35  .20  .65  .96  .03  .53  .88  .22  .77  .98 

75th percentile  .06  .39  .30  .75  .98  .05  .66  .91  .31  .86  .99 

Maximum  .13  .59  .56  .95 1.00  .10  .89  .97  .57  .97 1.00 

General Student Population with Adjustment for Mean-Level Differences Between School Types 

Minimum  .02  .03  .08  .06  .01  .00  .15  .24  .08  .27  .51 

25th percentile  .04  .08  .14  .41  .72  .02  .34  .54  .17  .70  .84 

Median  .06  .10  .21  .63  .81  .03  .46  .70  .22  .77  .90 

75th percentile  .09  .12  .30  .75  .91  .05  .64  .80  .31  .86  .97 

Maximum  .18  .22  .56  .94  .99  .10  .90  .96  .57  .97 1.00 

Academic Track 

Minimum  .01  .01  .07  .05  .01  .00  .07  .27  .08  .19  .64 

25th percentile  .04  .04  .11  .51  .52  .02  .44  .46  .15  .72  .82 

Median  .05  .06  .20  .61  .68  .03  .64  .66  .22  .85  .89 

75th percentile  .09  .09  .30  .82  .84  .05  .75  .81  .32  .92  .95 

Maximum  .21  .23  .54  .94  .97  .10  .92  .94  .55  .98  .98 

Non-Academic Track 

Minimum  .01  .07  .07  .07  .02  .00  .11  .14  .07  .52  .45 

25th percentile  .04  .16  .16  .41  .81  .02  .42  .66  .18  .74  .91 

Median  .06  .20  .20  .65  .88  .03  .53  .79  .24  .84  .96 

75th percentile  .09  .23  .33  .80  .98  .06  .67  .89  .34  .91  .99 

Maximum  .15  .36  .59  .94 1.00  .21  .90  .99  .61  .97 1.00 

Note. Statistics were calculated across achievement domains and are based on the estimates obtained from three-

level models (students at L1 within classrooms at L2 within schools at L3) for grades 1 to 10 and two-level models 

(students at L1 within schools at L3) for grades 11 to 12 because 11th and 12th grade students did not attend intact 

classrooms, but rather the grouping of students varied depending on the subject taught. This means that statistics 

for estimates at the classroom level (i.e., ρL2, 𝑅L2
2 ) were calculated for grades 1 to 10 only. Statistics were calculated

excluding meta-analytically pooled results of grade 9. The complete collection of normative distributions is 

available in Tables B2, B4, B6, B8, B10, B12, B14 and B16 in the Supplemental Online Material B on the OSF 

(https://osf.io/2w8nt). 



Results   | 83 

Figure 2. Multilevel Design Parameters for Student Achievement for the General Student 

Population Without and With Adjustment for Mean-Level Differences Between School Types: (a) 

Between-Classroom (𝜌𝐿2) and Between-School Differences (𝜌𝐿3), and Explained Variances by (b) 

Pretest Scores, (c) Sociodemographic Characteristics, and (d) Pretest Scores and 

Sociodemographic Characteristics at the Student (𝑅𝐿1
2 ), Classroom (𝑅𝐿2

2 ), and School Level (𝑅𝐿3
2 )

Note. Boxplots show distributions across all achievement domains. For grades 1 to 10, design parameters are based 

on three-level models (students at L1 within classrooms at L2 within schools at L3). For grades 11 to 12, design 

parameters are based on two-level models (students at L1 within schools at L3) as 11th and 12th grade students 

did not attend intact classrooms, but rather the grouping of students varied depending on the subject taught. This 

means that design parameters at the classroom level (i.e., 𝜌𝐿2, 𝑅𝐿2
2 ) were estimated for grades 1 to 10 only. In

Figure 2a, intraclass correlations 𝜌 were estimated in intercept-only models (model set 1). In Figure 2b, explained 

variances 𝑅2 by pretests were estimated in pretest covariate(s) models (model set 2). In Figure 2c, explained 

variances 𝑅2 by sociodemographics were estimated in sociodemographic covariates models (model set 3). In 

Figure 2d, explained variances 𝑅2 by pretests and sociodemographics were estimated in pretest and 

sociodemographic covariates models (model set 4). To estimate design parameters that were adjusted for mean-

level achievement differences between school types offered in German secondary education  (L3 adjusted), 

dummy-coded indicator variables representing the various school types were added as additional covariates at L3. 

The complete collection of design parameters is available in Tables B1, B3, B5, B7, B9, B11, B13 and B15 in the 

Supplemental Online Material B on the OSF (https://osf.io/2w8nt). 
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As evident from Figure 2d, the results of the pretest and sociodemographic covariates 

models suggested that pretests and sociodemographics may explain incremental amounts of 

variance in students’ achievement over and above each other (see also Table 3): In secondary 

school, this was most noticeable at L2, where we observed a significant increase in the median 

value for 𝑅2 of .12 relative to the pretest covariate(s) models. In elementary school, the

respective gains were even larger at both L2 (Δ𝑀𝑑𝑛(𝑅L2
2 ) = .40) and L3 (Δ𝑀𝑑𝑛(𝑅L3

2 ) = .38).

Averaged across grade levels, pretests plus sociodemographics could explain about 23% of the 

variance at L1, 75% at L2, and 95% at L3 (see Table B2). 

Design Parameters with Adjustment for Mean-Level Achievement 

Differences between School Types 

When comparing the design parameters with and without adjustment for mean-level 

achievement differences between secondary school types, we observed several key results (see 

Table 3 and Figure 2). First, when adjusting for mean-level differences, intraclass correlations 

at L2 were slightly larger (.02 ≤ ρL2 ≤ .18, 𝑀𝑑𝑛(ρL2) = .06) whereas intraclass correlations at

L3 were considerably smaller (.03 ≤ ρL3 ≤ .22; 𝑀𝑑𝑛(ρL3) = .10). Second, the results obtained

for the adjusted pretest covariate(s) models showed that the explanatory power of pretests 

remain roughly the same at L1 and L2 with median 𝑅2 values of .21 and .63, respectively, but

that it was decreased at L3 (𝑀𝑑𝑛 (𝑅L3
2 ) = .81). Third, the pattern of results from the adjusted

sociodemographic covariates models largely mirrored the results of the unadjusted pretest 

covariate(s) models. Fourth, in the adjusted pretest and sociodemographic covariates models, 

median amounts of explained variance remained unchanged at L1/L2 (22%/77%), but were 

slightly decreased at L3 (90%). 

Design Parameters for the Academic and Non-Academic Track 

The following major findings emerged from the analyses performed separately for the academic 

track and the non-academic track (see Table 3). First, the results of the intercept-only models 

showed that between-classroom differences in students’ achievement for the academic (.01 ≤

ρL2 ≤ .21; 𝑀𝑑𝑛(ρL2) = .05) and non-academic track (.01 ≤ ρL2 ≤ .15; 𝑀𝑑𝑛(ρL2) = .06) were

very similar. However, median proportions of achievement differences located at L3 were 

found to be smaller in the academic than non-academic track, with 6% (ranging between .01 ≤

ρL3 ≤ .23) and 20% (ranging between .07 ≤ ρL3 ≤ .36), respectively. Second, the results of the

pretest covariate models demonstrated that pretests explained on average about the same 
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amount of variance at L1/L2 in both tracks (20%/approximately 63%). The amount of variance 

explained at L3, however, was smaller in the academic track (𝑀𝑑𝑛(𝑅L3
2 ) = .68) than the non-

academic track (𝑀𝑑𝑛(𝑅L3
2 ) = .88). Third, the pattern of results from the sociodemographic

covariates models mirrored those obtained from the pretest covariate(s) models. Fourth, the 

results obtained from the pretest and sociodemographic covariates models revealed that the 

amount of incremental variance explained by either the pretests or sociodemographics differed 

only marginally between the academic and non-academic track at all levels. 

Design Parameters for Two-Level versus Three-Level Designs 

We additionally studied design parameters and standard errors for student achievement 

assuming only a two-level structure (i.e., students within schools) for grades 1 to 10 to simulate 

situations where no classroom-level information is available. Concerning the (unadjusted) 

results obtained for the general student population, values for ρL3 and 𝑅L1
2  are highly similar

between two- and three-level designs, as clearly seen in Figure 3, indicating that information at 

L2 barely affects the design parameters. On the other hand, applying two-level instead of three-

level models underestimated the values for 𝑅L3
2  in several cases, sometimes considerably.

Similar patterns of results were observed when these comparisons were performed for the 

adjusted and track-specific design parameters (see Figures A1 to A3 in the Supplemental Online 

Material A). 
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Figure 3. How Much Bias May Result in Design Parameters for Student Achievement for the 

General Student Population at the Student (L1) and School Level (L3) When the Classroom Level 

(L2) Is Ignored? Comparison of Corresponding Design Parameters Obtained From Three-Level 

Models versus Two-Level Models: (a) Between-School Differences (𝜌𝐿3), and Variances Explained 

by (b) Pretest Scores, (c) Sociodemographic Characteristics, and (d) Pretest Scores and 

Sociodemographic Characteristics at the Student (𝑅𝐿1
2 ) and School Level (𝑅𝐿3

2 )

Note. The graph juxtaposes corresponding design parameters estimated by three-level models (x-coordinate; 

students at L1 within classrooms at L2 within schools at L3) with design parameters estimated by two-level models 

(y-coordinate; students at L1 within schools at L3). The black line marks congruence of three- and two-level design 

parameters. Larger labeled dots exceed a deviation of ± .20 between three- and two-level design parameters. For 

example, in Figure 3b, left grid (“Student Level (L1)”), the dot labeled with “a” (representing German vocabulary 

in grade 1) shows that 𝑅𝐿1
2  was .24 when specifying a three-level pretest covariate model, whereas 𝑅𝐿1

2  was .47

when specifying a two-level pretest covariate model. 
a Vocabulary (NEPS-SC2, grade 1). b Declarative metacognition (NEPS-SC2, grade 3). c Basic cognitive functions: 

Reasoning (NEPS-SC2, grade 2). d Reading speed (DESI, grade 9, wave 2). e Declarative metacognition (NEPS-

SC2, grade 1). f Declarative metacognition (NEPS-SC2, grade 3). g Basic cognitive functions: Perception speed 

(NEPS-SC3, grade 9). h Reading speed (NEPS-SC2, grade 2). i Basic cognitive functions: Perception speed (NEPS-

SC3, grade 5). j Declarative metacognition (NEPS-SC2, grade 3). k Basic cognitive functions: Reasoning (NEPS-

SC2, grade 2). l Basic cognitive functions: Perception speed (NEPS-SC3, grade 9). m Reading speed (NEPS-SC2, 

grade 2). n Basic cognitive functions: Perception speed (NEPS-SC2, grade 2). 
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Applications 

This section discusses three research scenarios to illustrate how the design parameters and their 

standard errors that we provided in this paper can be used in power analyses to plan CRTs (and 

MSCRTs) on student achievement. Figure 4 can help researchers select an appropriate set of 

design parameters as a function of key characteristics of the planned intervention. For each 

scenario, we assumed that classrooms or schools would be randomly assigned to the 

experimental conditions in equal shares (i.e., 50% of the target [sub]clusters obtain the 

educational treatment, and the remaining 50% represent the control group; 𝑃 = .50). Further, 

we assume a two-tailed test with a significance level of α = .05 and set the desired power at 

80% (1 − β = .80). A constitutive step when planning CRTs is to define a reasonable value for 

the 𝑀𝐷𝐸𝑆; this decision can take into account political, economic, and programmatic 

perspectives or a combination thereof (see Bloom, 2006; Brunner et al., 2017; Schochet, 2008, 

for thorough discussions). We used the package PowerUpR (Bulus et al., 2019) in R (R Core 

Team, 2018) for the calculations. 

Scenario 1: How Many Schools Are Required for a CRT? 

Research Team 1 would like to conduct a three-level CRT on the effectiveness of a school-wide 

intervention to improve 4th graders mathematical achievement. Team 1 plans to sample 𝐽 = 3 

classrooms with 𝑛 = 20 students per classroom from every school. The researchers are 

interested in 𝐾, the number of schools necessary to detect a typical intervention effect on student 

achievement. According to the research synthesis by Hill and colleagues (2008), the mean 

standardized effect size for intervention effects on student achievement ranges between .20 ≤

δ ≤ .30 across domains and grade levels. Thus, Team 1 choses a target intervention effect size 

of δ = .25. After consulting Figure 4, Team 1 chooses Table B1 containing the appropriate 

estimates of design parameters for their study. According to this table, the intraclass correlations 

at L2 and L3 for mathematics in grade 4 were ρL2 = .05 and ρL3 = .10, respectively. As

recommended in Hedges et al. (2012) and Jacob et al. (2010), the researchers want to take into 

account the statistical uncertainty (due to sampling error) associated with these point estimates. 

Team 1 therefore determines the lower and upper bound estimates for 𝐾 by computing the 95% 

confidence interval of ρL2 and ρL3 using their standard errors of 𝑆𝐸(ρL2) = 𝑆𝐸(ρL3) = .02 (see

Table B1). The lower bound of the 95% confidence interval of ρL2 is thereby computed as

.05 – 1.96 ∗ .02 = .01 and the upper bound as .05 + 1.96 ∗ .02 = .09. Analogously, the 95% 

confidence interval of ρL3 equals 95% CI [.06, .14]. When using these values for the power
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calculations, Team 1 needs 𝐾 = 42 schools for the lower bound estimates, 𝐾 = 68 schools for 

the point estimates, and 𝐾 = 94 schools for the upper bound estimates of 𝜌. 

In order to improve statistical precision, Team 1 plans to assess pretest scores and to use 

them as covariates. As listed in Table B1, the explained variances and corresponding standard 

errors for a mathematics pretest were 𝑅L1
2 = .40 (𝑆𝐸 = .01),  𝑅L2

2 = .35 (𝑆𝐸 = .04),

and 𝑅L3
2 = .76 (𝑆𝐸 = .03). These values yield a lower bound estimate for 𝑅𝐿1

2  of

.40 – 1.96 ∗ .01 = .38 and an upper bound estimate for 𝑅L1
2  of .40 + 1.96 ∗ .01 = .42. Likewise,

the 95% confidence intervals of 𝑅L2
2  and 𝑅L3

2  are 95% CI [.27, .43] and 95% CI [.70, .82],

respectively. Hence, when including a pretest and using the point estimates of ρL2 and ρL3, the

required number of schools is 𝐾 = 28 for the lower bound estimates, 𝐾 = 24 for the point 

estimates, and 𝐾 = 20 for the upper bound estimates of the 𝑅2 values.

When opting for a conservative approach, Team 1 should use the upper bound estimates 

of 𝜌 and the lower bound estimates of 𝑅2 at each hierarchical level (i.e., ρL2 = .09, ρL3 = .14,

𝑅L1
2 = .38; 𝑅L2

2 = .27; 𝑅L3
2 = .70), resulting in a required number of schools of 𝐾 = 38. Of note,

if Team 1 employed pretests as well as sociodemographic characteristics as covariates, the 

required number of schools would decrease significantly (𝐾 =  26, when using the upper bound 

estimates of ρ and lower bound estimates of 𝑅2 at each level). In conclusion, Team 1 should

carefully balance the cost of additionally assessing sociodemographics against the cost of 

sampling a larger number of schools to achieve an equal level of precision (see Schochet, 2008). 

Scenario 2: Which 𝑴𝑫𝑬𝑺 is Attainable for a CRT? 

Suppose that research Team 2 plans a three-level CRT to study the impact of an intervention 

that is intended to affect students’ history achievement in comprehensive schools (grades 5 to 

12). Due to budgetary constraints (see Spybrook, Shi, et al., 2016), a fixed maximum number 

of 𝐾 = 40 schools (with 𝐽 = 2 classrooms, and 𝑛 = 20 students each) are at the researchers’ 

disposal. Given these limits, the primary concern of Team 2 is to ensure that the attainable 

𝑀𝐷𝐸𝑆 lies within the range of typical intervention effects on student achievement (i.e., .20 ≤

δ ≤ .30; Hill et al., 2008). Team 2 consults Figure 4 to find the suitable table of design 

parameters. Since the intervention is targeted at a single, specific school type within the non-

academic track, Team 2 uses the design parameters that are adjusted for mean-level differences 

between school types. Moreover, since design parameters for history are not available, Team 2 

consults Table B4 outlining the normative distributions across the various achievement domains 

to determine small (i.e., 25th percentile [P25]), medium (i.e., median), and large values (i.e., 

75th percentile [P75]) of the design parameters. Entering the respective values for the intraclass 
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correlations (P25: ρL2 = .04, ρL3 = .08; median: ρL2 = .06, ρL3 = .10; P75: ρL2 = .09, ρL3 =

.12; see Table B4), Team 2 learns that the attainable 𝑀𝐷𝐸𝑆 is .32/.35/.39 for 

small/medium/large values of ρL2 and ρL3. Including both pretests and sociodemographics as

covariates (P25: 𝑅L1
2 = .17, 𝑅L2

2 = .70, 𝑅L3
2 = .84; median: 𝑅L1

2 = .22, 𝑅L2
2 = .77, 𝑅L3

2 = .90;

P75: 𝑅L1
2 = .31 𝑅L2

2 = .86, 𝑅L3
2 = .97; see Table B4) and using the 75th percentiles of the values

for ρL2 and ρL3 (as more conservative upper bounds), the respective values for the 𝑀𝐷𝐸𝑆

reduce to .20/.18/.14 for small/medium/large values of 𝑅2 at the various levels. Consequently,

Team 2 can be quite confident that their CRT design offers sufficient sensitivity to detect a true 

intervention effect within the desired range when including both pretests and 

sociodemographics. 

Figure 4. Flow Chart to Guide the Choice of Design Parameters as a Function of Key 

Characteristics of the Target Intervention 

Note. Tables B1 to B16 can be retrieved from Supplemental Online Material B. A comprehensive overview of the 

achievement measures analyzed in the present study is given in Table A5 in the Supplemental Online Material A. 

The Supplemental Online Materials are available on the OSF (https://osf.io/2w8nt). 

Scenario 3: How Many Schools Are Required for a MSCRT? 

Research Team 3 would like to study the effects of a new teaching method involving learning 

software developed to enhance grade 9 students’ English listening comprehension skills in the 

academic track. Due to practical constraints (e.g., limited availability of computers in the 

schools), classrooms within schools (serving as sites or blocks) are randomly assigned to 

 Consult Table
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experimental conditions, making this design a three-level MSCRT. Since most academic track 

schools have at least four 9th grade classrooms of at least 20 students each, Team 3 plans to 

have 𝐽 = 4 and 𝑛 = 20. Team 3 considers an intervention effect of δ = .10 policy-relevant (see 

Bloom, 2006; Bloom et al., 2007; Brunner et al., 2017; Schochet, 2008). Since the goal of Team 

3 is to generalize the study findings to the population of German academic track schools beyond 

those sampled for their MSCRT, they treat the school effects as random (Bloom et al., 2017; 

Bloom & Spybrook, 2017; Spybrook & Raudenbush, 2009). Recall, this requires a reasonable 

assumption on the estimate of the cross-site effect size variability τδL3

2 . According to Weiss et

al. (2017), the values for the standard deviations of standardized intervention effects across 

schools often range between .10 ≤ τδL3
≤ .25. Since schools in the academic track form a

comparatively homogeneous sample, Team 3 assumes that τδL3
= .15. Team 3 consults Figure

4 and chooses Table B5 for the appropriate design parameters. Team 3 draws on the estimates 

that were meta-analytically pooled across 9th grade samples, with ρL2 = .19 and ρL3 = .07 (see

Table B5). Under these conditions and in the absence of covariates, 𝐾 = 198 schools are 

necessary to detect an intervention effect of δ = .10, if it exists. In order to raise statistical 

precision, Team 3 intends to assess vital sociodemographics. The researchers enter the meta-

analytically pooled 𝑅2 values at L1 and L2 given for the sociodemographic covariates models

in the power calculations (𝑅L1
2 = .01, 𝑅L2

2 = .72; see Table B5). A particular challenge is to

define the amount of variance in τδL3

2  that can be explained by L3 covariates because empirical 

guidance on values for 𝑅δL3

2  is scarce. According to Schochet et al. (2014) as well as Weiss et 

al. (2014), site-level covariates may explain a substantial proportion of τδL3

2 . Nevertheless, as 

can be derived from Equation (8), when τδL3

2  and ρL3 are rather small, 𝑅δL3

2  has a negligible

effect on statistical power and precision, and thus, on the required number of schools. Opting 

for a conservative approach, Team 3 assumes that sociodemographics will explain considerably 

less variability in the intervention effect across schools compared to between-school differences 

in achievement (i.e., 1/10). Following this rationale, Team 3 estimates 𝑅δL3

2 =

RL3
2  ∗ 0.10 = .87 ∗ 0.10 = .09. Using sociodemographics as covariates at all levels decreases

the required number of schools markedly to 𝐾 = 89. Team 3 should therefore sample at least 

𝐾 = 89 schools (with 𝐽 = 4 classrooms of 𝑛 = 20 students each) and include vital 

sociodemographics in their study design in order to uncover a true intervention effect of δ = .10 

with confidence. 
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Discussion 

CRTs on the effectiveness of large-scale educational interventions are valuable tools to inform 

evidence-based educational policies and practices (Institute of Education Sciences & National 

Science Foundation, 2013; Slavin, 2002; Spybrook, Shi, et al., 2016). When planning CRTs, 

educational researchers need reliable multilevel design parameters that match the target 

population, hierarchical level, and outcome domain to derive the number of students, 

classrooms, and schools needed to ensure sufficient statistical power to detect intervention 

effects. Capitalizing on data from three German longitudinal large-scale assessments, the 

present study provides three- and two-level design parameters (and respective standard errors) 

for student achievement across a very broad array of domains throughout the school career. 

This research expands the existing body of knowledge in three major dimensions. 

(I) Expanding the Knowledge Base of Design Parameters to Germany

The large majority of previous research provided design parameters for the United States We 

added design parameters based on German samples of 1st to 12th graders to this knowledge 

base. We observed the following key results: 

First, for the general student population, we found substantially larger (unadjusted) 

between-school differences in achievement than those typically reported for U.S. samples. In 

our study, the average value of ρL3 lay around .31, whereas in the United States ρL3 does not

often exceed .25 (e.g., Bloom et al., 2007; Hedges & Hedberg, 2013; Spybrook, Westine, et al., 

2016). This difference between schools in Germany and the United States corroborates the 

results of international studies pointing to a significant variation of ρL3 across countries

(Brunner et al., 2017; Kelcey et al., 2016; Zopluoglu, 2012). Looking at different grade levels, 

however, yields a more differentiated picture. As mentioned before, the German school system 

is characterized by an early tracking into different school types that cater to students with 

different performance levels. In elementary school, the discrepancy between the results from 

the United States (with 𝑀𝑑𝑛(ρL3) = .18; see Figure 1a) and the present German samples (with

𝑀𝑑𝑛(ρL3) =.11) was therefore considerably smaller than the discrepancy observed for

secondary school. When German students were placed into different school types in secondary 

education, achievement differences at L3 were considerably smaller in the United States 

(𝑀𝑑𝑛(ρL3) = .19; see Figure 1a) than in Germany (𝑀𝑑𝑛(ρL3) = .35). This finding supports

previous results from German large-scale studies indicating that values of ρL3 are larger in

secondary than in elementary school (see Table 1). However, when adjusting for mean-level 
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differences between school types or when conducting the analyses separately for schools in the 

academic or non-academic track, values of ρL3 dropped considerably. This observation is well-

aligned with past research showing that school types explain a vast proportion of achievement 

differences between schools in Germany (Baumert et al., 2003). 

Second, we replicated and extended the well-documented finding that covariates are a 

powerful way to increase statistical power and precision of CRTs in educational research. 

Specifically, we confirmed the discovery that pretest scores are highly effective in explaining 

variance, especially at higher levels (Bloom et al., 2007; Hedges & Hedberg, 2007a; Spybrook, 

Westine, et al., 2016). Overall, pretests explained about 21% of the variance at L1 and 89% of 

the variance at L3. We also observed substantial variation in the amounts of variance explained 

by pretests. Very low values of 𝑅2 might be partly due to the application of proxy pretests in 

some instances. In line with previous research (e.g., Bloom et al., 2007; Hedges & Hedberg, 

2013; Westine et al., 2013), we also found that the explanatory power of sociodemographic 

characteristics was quite strong at L3, but relatively weak at L1: while sociodemographics on 

average explained 85% of between-school variability in students’ achievement, the amount of 

variance explained at L1 was relatively low with an average of about 4%. Finally, 

sociodemographics contributed to the prediction of variance over and above pretests (and vice 

versa) at all levels. In our analyses, the combined covariate set, however, was markedly less 

effective at L1 than in studies in the United States, but more effective at L3. Divergences in the 

composition of variance components might explain this observation: achievement differences 

at L1 are more pronounced in the United States than in Germany, leading to a better signal-to-

noise ratio at L1 for U.S. samples, whereas the reverse pattern was found at L3, resulting in a 

better signal-to-noise ratio in Germany than in the United States (Raudenbush et al., 2007). 

(II) Providing Three-Level Design Parameters and Standard Errors for the 

Student, Classroom, and School Level 

Previous research has established a wealth of two-level design parameters (i.e., students within 

schools). Yet, little was known about classroom-level estimates within schools. Further, the 

statistical uncertainty associated with the design parameters (particularly those at L2) was rarely 

reported – although it is a decisive piece of information when conducting power analyses 

(Hedges et al., 2012; Jacob et al., 2010). To address these gaps, we fitted multilevel latent 

(covariate) models (Lüdtke et al., 2008) with three levels (i.e., students within classrooms 

within schools) whenever students were in intact classroom settings (i.e., for grades 1 to 10) 

and estimated standard errors for all design parameters. We observed the following key results: 
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First, in line with previous research from Germany (see Table 1), between-classroom 

differences in students’ achievement were substantially smaller in size than between-school 

differences. In total, values for ρL2 were around .05 and usually smaller than .13. These values

appeared relatively stable across grade levels, but varied by domain to a certain degree. Overall, 

our results suggested markedly lower achievement differences at L2 than in the United States, 

especially in secondary school (elementary school in the United States: 𝑀𝑑𝑛(ρL2) = .07, ρL2 ≤

.14; secondary school in the United States: 𝑀𝑑𝑛(ρL2) = .30, ρL2 ≤ .45; Jacob et al., 2010; Xu

& Nichols, 2010; Zhu et al., 2012). 

Second, the explanatory power of both pretests and sociodemographics at L2 strongly 

varied as a function of achievement domain and grade level. Values for 𝑅L2
2  ranged from .00 to

.95 for pretests, from .16 to .89 for sociodemographics, and from .27 to .97 when combining 

both covariate sets. Sociodemographics consistently contributed incremental amounts of 

variance to the prediction of students’ achievement over and above pretests (and vice versa), in 

particular at L2. These results align with those presented in Jacob and colleagues (2010). 

Therefore, depending on the level of treatment assignment, collecting data on 

sociodemographics in addition to measuring baseline achievement appears to be a sound 

strategy to improve the precision of CRTs. Notably, the wide range observed for 𝑅L2
2  and the

corresponding standard errors may be attributable to estimation error caused by the very small 

size of certain variance components at L2 (Jacob et al., 2010, p. 177).  

Third, we specified two-level models to assess the degree of bias when omitting 

information on the classroom-level cluster variance structure. In line with existing research 

addressing this question (Xu & Nichols, 2010; Zhu et al., 2012) we found negligible deviations 

between the intraclass correlations as estimated based on three-level versus two-level designs. 

Some values for 𝑅L3
2  were markedly higher in three-level than two-level models. As Xu and

Nichols (2010, p. 28-29) described, the degree of bias should hinge on the degree of clustering 

in the outcome at L2: if there is substantial between-classroom variability, the omission of L2 

can lead to severely biased design parameters at L1 and/or L3, and thus to erroneous results in 

power analyses. Our findings suggest that students’ achievement varied only to a small degree 

at L2 for most outcome measures. Thus, the present results suggest that ignoring the classroom-

level variance and using two-level instead of three-level design parameters is unlikely to 

produce biased estimates from power analyses for the German school context, at least regarding 

intraclass correlations. Nevertheless, we recommend educational researchers to use three-level 

design parameters for sample size calculations whenever these parameters are available in order 

to obtain the most accurate results in power analysis for CRTs. 
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Fourth, capitalizing on data from three large-scale studies allowed us to achieve a 

satisfactory to high level of precision when estimating design parameters (in terms of small 

standard errors). A major exception was found in the large standard errors of the estimates for 

𝑅L2
2  and 𝑅L3

2 , primarily in grade 1, obtained from the pretest covariate(s) models involving 

pretests assessed in Kindergarten. The high percentage of missing values (over 90%) in these 

measures induced significant variation across the imputed datasets (i.e., between-imputation 

variance) resulting in large standard errors. When planning CRTs, we therefore recommend 

that researchers apply the provided values in their power analyses with caution (e.g., using 

conservative strategies as illustrated in the applications), or use both pretests and 

sociodemographics as covariates in grade 1 as we observed much smaller standard errors for 

design parameters in this case. 

(III) Providing Design Parameters for a Very Broad Array of Achievement 

Domains 

The bulk of previously presented design parameters were restricted to mathematics, science, 

and reading achievement. However, schools aim to foster a considerably broader spectrum of 

achievement domains. Thus, in addition to the core domains, we also estimated design 

parameters that have not previously been available, including specific verbal skills in student’s 

first language (i.e., German) and foreign languages (i.e., English), and domain-general 

measures such as declarative metacognition, information and communication technology, 

problem solving, and basic cognitive functions. We observed the following key results: 

First, the present findings corroborate those from previous research stressing that design 

parameters do not generalize well across achievement (sub)domains (e.g., Spybrook, Westine, 

et al., 2016; Westine et al., 2013; Xu & Nichols, 2010). Specifically, median values of between-

classroom and between-school differences were typically lower for domain-general 

achievement (ρL2 = .04, ρL3 = .24) and science (ρL2 = .04, ρL3 = .29), and higher for verbal 

skills in English as foreign language (ρL2 = .07, ρL3 = .45) than for other domains 

(mathematics: ρL2 = .05, ρL3 = .35; verbal skills in German as first language: ρL2 = .05, ρL3 = 

.33).  

Second, the present study showed that design parameters may even not generalize well 

across skills of the same domain. For instance, we examined German reading comprehension 

and German reading speed in grade 5: ρL2 and ρL3 were strikingly different from each other for 

these outcome measures (reading comprehension: ρL2 = .04, and ρL3 = .32; reading speed: 

ρL2 = .13 and ρL3 = .19). 
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Taken together, these findings underscore the importance of striving for the best fit 

between design parameters and target achievement measure when performing power analyses 

for CRTs because borrowing design parameters that do not match well can yield severely biased 

sample size requirements (Westine et al., 2013). 

Limitations and Outlook 

This study has several limitations. First, given the large international variability of design 

parameters detected in previous studies (e.g., Brunner et al., 2017; Zopluoglu, 2012), our 

findings are first and foremost applicable to the German school system. Notably, the school 

systems in Austria, Czech Republic, Hungary, Slovak Republic, and Turkey are also 

characterized by an early onset of school-level tracking after elementary school as in Germany 

(Salchegger, 2016). When design parameters are not available, intervention researchers 

conducting trials in such countries may apply the present design parameters in their power 

analyses because they are still better guesses than conventional benchmarks. 

Second, we did not apply sampling weights. Hence, our results are representative only 

for those students selected for the present analyses. In general, the present design parameters 

are likely somewhat less accurate compared to those obtained from analyses using sampling 

weights. However, differences may be small as indicated in previous studies drawing on 

international large-scale assessment data (e.g., Wenger et al., 2018). 

Third, the present design parameters were derived from national probability samples. 

Federal states within Germany as well as districts within federal states may vary in their mean 

achievement levels. The outcome measures analyzed in this paper contain some degree of 

variance that may be located at those higher levels. Thus, the reported values for between-

school differences may be considered upper bound rather than lower bound estimates (see 

Hedges & Hedberg, 2007a, 2013). 

Fourth, the present design parameters focus on student achievement as outcomes. Yet, 

apart from cognitive achievement, educational curricula worldwide identify a large range of 

further outcomes as key learning targets in school (World Economic Forum, 2015), such as 

socio-emotional skills (e.g., skills needed for task performance, to cooperate with others, or to 

regulate emotions; Organisation for Economic Co-operation and Development, 2017). Future 

research should therefore also supply design parameters for these skills (see e.g., Brunner et al., 

2017). 

Fifth, the present design parameters go well with outcome measures that are identical 

or highly similar to the measures that were used in NEPS, DESI, or PISA-I+. Researchers 
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should be cautious when relying on the present design parameters for planning CRTs with 

outcome measures that differ substantially from those used in the present study (see Brunner et 

al., 2017). 

Finally, we provided standard errors for design parameters that quantify the statistical 

uncertainty associated with these estimates due to sampling error. Importantly, variability in 

research contexts (e.g., student populations, outcome measures) may further increase statistical 

uncertainty. When planning CRTs for research designs that are not covered in our study (e.g., 

for modestly dissimilar student populations and outcome measures), we recommend using our 

compilation of normative distributions of design parameters (Tables B2, B4, B6, B8, B10, B12, 

B14, and B16). In general, little is still known about the factors that affect the value of design 

parameters (e.g., why certain 𝑅L3
2  values equal 1.00; see Figures 1 and 2). An important next 

step for future research is therefore to conduct meta-analyses that quantify variability in design 

parameters across research contexts and examine moderator variables (e.g., outcome domain, 

onset of school type tracking, time lag between pre- and posttest, reliability of measures) that 

might explain this variability. 

Conclusion and Recommendations  

Capitalizing on representative data from three German longitudinal large-scale assessments, 

our study provides reliable three- and two-level design parameters with standard errors for a 

broad spectrum of achievement domains across the school career. Design parameters varied 

considerably as a function of the hierarchical level, achievement outcome, and grade level. 

Importantly, our analyses show that pretest and sociodemographic covariates improve the 

precision of educational CRTs at the student, classroom, and school level over and above each 

other. The present design parameters and their standard errors are therefore fundamental when 

planning CRTs in the German or similar school systems. Specifically, researchers may benefit 

from consulting Figure 4 to select the set of design parameters that offers the best fit to the 

planned educational intervention (e.g., in terms of population, domain, grade level) so CRTs 

can be adequately powered to generate high-quality evidence of what actually works to foster 

student achievement in Germany and elsewhere. 
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Abstract 

Well-chosen covariates boost the design sensitivity of individually and cluster-randomized 

trials. We provide guidance on covariate selection generating an extensive compilation of 

single- and multilevel design parameters on student achievement. Embedded in psychometric 

heuristics, we analyzed (a) covariate types of varying bandwidth-fidelity, namely domain-

identical (IP), cross-domain (CP), and fluid intelligence (Gf) pretests, as well as 

sociodemographic characteristics (SC), (b) covariate combinations quantifying incremental 

validities of CP, Gf, and/or SC beyond IP, and (c) covariate time lags of 1–7 years, testing 

validity degradation in IP, CP, and Gf. Estimates from six representative German samples 

(1,868 ≤ 𝑁 ≤ 10,543) covering various outcome domains across Grades 1–12 were meta-

analyzed and included in precision simulations. Results varied widely by grade level, domain, 

and hierarchical level. In general, IP outperformed CP, which slightly outperformed Gf and SC. 

Benefits from coupling IP with CP, Gf, and/or SC were small. IP appeared most affected by 

temporal validity decay. Findings are applied in illustrative scenarios of study planning and 

enriched by comprehensive Online Supplemental Material (OSM; https://tinyurl.com/osf-

blinded). 

Keywords: covariate selection, design parameters, individual participant data meta-analysis, 

individually and cluster-randomized trials, power analysis, student achievement 

https://tinyurl.com/osf-blinded
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Single- and Multilevel Perspectives on Covariate Selection in 

Randomized Intervention Studies on Student Achievement 

What works to advance student learning? There is growing social and political call to answer 

this fundamental question based on sound evidence (Slavin, 2020). This has put a spotlight on 

randomized trials (RTs), which allow for causal inferences on the actual effects of educational 

interventions (Whitehurst, 2012). Individually randomized trials (IRTs) that randomly assign 

individual students to experimental conditions are imperative for conceiving and testing 

deliberate programs (e.g., Kelly et al., 2013). Validating a program’s benefit in real-life 

schooling then requires upscaling and implementation in ecologically valid settings (Campbell, 

1957; e.g., Gersten et al., 2015). Over half of educational RTs (Connolly et al., 2018) nowadays 

represent cluster-randomized trials (CRTs) involving random allocation of student groups, such 

as whole schools. CRT designs not only reflect the fact that educational interventions ought to 

reach a broader student body and/or operate at the group level by definition (Bloom, 2005), but 

also map the natural nesting of students within classrooms and schools in institutional contexts 

(Konstantopoulos, 2012). 

Irrespective of whether individual or intact groups of students form the unit of 

randomization, one constitutive feature of a methodologically high-quality RT is an adequate 

design sensitivity (Lipsey, 1990), meaning sufficient statistical power 1 − β to detect a 

treatment effect at significance level α with a high level of statistical precision. This poses a 

key challenge—not exclusively, but especially—when planning CRTs: their inherent multilevel 

data structure often dramatically restricts power and precision, and thus often require large 

sample sizes (Schochet, 2008). For instance, Stallasch et al. (2021, p. 193) show that a CRT 

requires 4,080 students (68 schools, each with 3 classrooms of 20 students) to detect an effect 

of 𝑑 = .25 on 4th graders’ mathematics achievement (α = .05, 1 − β = .80). An IRT, in stark 

contrast, requires only 504 students to detect the same effect. In other words, everything else 

being equal, CRTs are much more resource-intensive than IRTs. 

A promising technique to raise sensitivity in RT designs without inflating the sample 

size is to statistically control for pre-treatment covariates (e.g., Bloom et al., 2007; Kahan et al., 

2014; Porter & Raudenbush, 1987; Raudenbush, 1997; Raudenbush et al., 2007).34 In the 

34  This strategy is by no means a recent trend; in fact, it goes back to Fisher’s (1932) original formulation of 

ANCOVA almost one century ago. In the field of agriculture, Fisher (1932, p. 158) evinced how “the precision 

of the comparison [between successive yields of tea crops] has been increased over six-fold” by adjusting for 

previously recorded yields. Likewise, other pioneers of modern experimental statistics advocated the use of 

covariates to increase power and precision in RTs (e.g., Campbell & Stanley, 1963; Cochran & Cox, 1957). 
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example above, a mathematics pretest that explained 40%/35%/76% of the variance between 

students/classrooms/schools could reduce the CRT’s sample size requirements by almost two 

thirds to 1,440 students (24 schools; Stallasch et al., 2021, p. 193). This scenario underpins that 

“well-chosen covariates do wonders for power” (Aberson, 2019, p. 135); yet, the effective value 

of a covariate is dictated by its prognostic performance.35 Scholars and agencies hence stress 

the importance of grounding the ideally preregistered decisions about covariate inclusion on a 

priori theoretical and empirical considerations that are tied to the specific research field in 

question (e.g., European Medicines Agency [EMA], 2015; Maxwell et al., 2017, pp. 494–495; 

Murray, 1998, pp. 137–140). Meanwhile, firm guidance on covariate choice is scarce (Pocock 

et al., 2002; Tafti & Shmueli, 2020), often not going beyond general recommendations for 

correlational thresholds (e.g., Bausell & Li, 2002, pp. 114–115; Cox & McCullagh, 1982; but 

see Bloom et al., 2007). 

The overall aim of this two-part study is to offer thorough empirical guidance on 

covariate selection to optimize design sensitivity in IRTs and CRTs on student achievement. In 

Part I, we estimate and meta-analytically integrate single- and multilevel design parameters for 

a broad array of outcomes in Grades 1–12 by capitalizing on large-scale assessment data from 

multiple German samples. In doing so, we quantify impacts of varying (a) covariate types (i.e., 

pretests in the outcome domain, a different domain, and fluid intelligence, as well as 

sociodemographic measures), their (b) combinations, and (c) time lags to the outcome (i.e., 1-7 

years), drawing on the psychometric heuristics of bandwidth-fidelity (Cronbach & Gleser, 

1957), incremental validity (Sechrest, 1963), and validity degradation (Ghiselli, 1956; 

Humphreys, 1960). In Part II, we use the empirically estimated design parameters in precision 

simulations to assess the actual returns of the covariates for the design sensitivity in IRTs and 

CRTs. 

Statistical Underpinnings 

Sufficient design sensitivity is a vital methodological quality criterion of rigorous research 

(American Psychological Association, 2020, pp. 83–84, 86; Wilkinson & Task Force on 

Statistical Inference, 1999). It includes both statistical power and statistical precision (Zhang et 

al., 2023). Any RT should have an appropriate probability (commonly 80%, i.e., 1 − β = .80; 

35  Note that covariate adjustment might be worthless or even harmful in certain cases (Aberson, 2019, p. 136; 

Berk et al., 2013; Liu, 2011; Moerbeek & Teerenstra, 2016, p. 85; Raab & Butcher, 2005). Perks and perils of 

the method have been intensively and controversially discussed (see e.g., Moerbeek, 2006; J. Wang, 2020). 
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Cohen, 1988) to detect a true treatment effect.36 The precision of an RT can be quantified by its 

minimum detectable effect size (𝑀𝐷𝐸𝑆; Bloom, 1995, 2005) depicting the smallest possible 

significant (at α) standardized effect size (with 1 − β), given the sample size. Thus, a small 

𝑀𝐷𝐸𝑆 indicates high design sensitivity. The approximate 𝑀𝐷𝐸𝑆 can be written as (Bloom, 

2005, pp. 158–160; Dong & Maynard, 2013, pp. 31–32): 

𝑀𝐷𝐸𝑆 = 𝑀𝑑𝑓𝑆𝐸(�̅�TG − �̅�CG)/σT (1) 

𝑀𝑑𝑓, reflects the 𝑡-distributions specific to α and 1 − β, with 𝑑𝑓 degrees of freedom. For a two-

tailed test, 𝑀𝑑𝑓 = 𝑡α/2 + 𝑡1−β, which converges to 2.8 when 𝑑𝑓 ≥ 20, given α = .05 and 1 −

β = .80 (Bloom, 2006, p. 5). The term 𝑆𝐸(�̅�TG − �̅�CG)/σT represents the treatment effect’s

�̅�TG − �̅�CG standard error that is standardized by the (pooled) total student population’s standard

deviation σT of an achievement outcome 𝑌, with TG and CG referring to the treatment and

control group, respectively. For instance, 𝑀𝐷𝐸𝑆 = .25 means that a standardized treatment 

effect of at least one quarter of a student-level 𝑆𝐷 in the applied achievement test would be 

significant under sufficient power (Bloom et al., 2007). 

As we show below, 𝑆𝐸(�̅�TG − �̅�CG)/σT is a function of three factors:37 (a) the sample

size, (b) the allocation of the sample to the experimental conditions, and (c) so-called 

(multilevel) design parameters that quantify the unconditional (i.e., unadjusted) and conditional 

(i.e., covariate-adjusted) variance (components) in 𝑌. Here, a relevant distinction in the 

assumptions about the (in)dependence of the underlying student sample between IRT and CRT 

designs is made that has important implications for the 𝑀𝐷𝐸𝑆.  

A single-level IRT randomizes individual students, so that students are sampled 

independently of each other (i.e., regardless of e.g., school affiliation). Equation (1) then 

transforms to (Bloom, 2006, Equation 14; Dong & Maynard, 2013, p. 45): 

𝑀𝐷𝐸𝑆IRT = 𝑀𝑑𝑓√
1−𝑅T

2

𝑃T(1−𝑃T)𝑁
(2) 

𝑁 is the total number of students (i.e., the sum of students 𝑛 in TG and CG; 𝑁 = 𝑛TG + 𝑛CG).

Everything else being equal, the larger 𝑁, the smaller the 𝑀𝐷𝐸𝑆. 𝑃T denotes the proportion of

students assigned to TG (i.e., 𝑃T = 𝑛TG/𝑁), where 𝑃T = .50 (i.e., a balanced design with

50%/50% are randomly assigned to TG/CG) minimizes the 𝑀𝐷𝐸𝑆. The design parameter 𝑅T
2 is 

36  Failure to do so may result in an underpowered study that is likely either to miss a meaningful effect or to inflate 

or even invert the estimate of the true population effect (Gelman & Carlin, 2014; Sims et al., 2022). This would 

make the RT “uninformative” (Lortie-Forgues & Inglis, 2019) at best and misleading at worst. An overpowered 

study, the other way around, may waste financial and human resources. 
37  For derivations, see e.g., Bloom (2005, 2006), Hedges and Rhoads (2010), and Raudenbush (1997). 
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of special interest in this study because it quantifies the amount of the total variance σT
2  in 𝑌

that can be explained by covariates 𝐶T:

𝑅T
2 = (σT

2 − σT|𝐶T

2 )/σT
2 (3) 

σT|𝐶T

2 symbolizes the conditional total student population’s variance of 𝑌. 𝑑𝑓 = 𝑁 − 𝑄T − 2,

where 𝑄T is the number of covariates 𝐶T.

Unlike an IRT, a multilevel CRT randomizes groups of students (e.g., whole schools). 

Consider a two-level CRT (2L-CRT) with students at level (L) 1 nested within schools at L3, 

and a three-level CRT (3L-CRT) with students at L1 nested within classrooms at L2 which are 

nested within schools at L3. This clustering implies dependencies among selected subjects—

students within the same classroom or school tend to be (often much) more similar than students 

from distinct classrooms or schools. The degree of within-cluster similarity is typically 

expressed by the multilevel design parameters ρL2 and ρL3 (i.e., the intraclass correlation

coefficients at L2 and L3), which are the proportions of σT
2  in 𝑌 that is between classrooms

within schools and between schools, respectively: 

ρL2 = σL2
2 /σT

2 (4) 

ρL3 = σL3
2 /σT

2 , (5) 

For a 2L-CRT, σT
2 = σL1

2 + σL3
2 , and for a 3L-CRT, σT

2 = σL1
2 + σL2

2 + σL3
2 , where σL1

2 , σL2
2 ,

and σL3
2  are the unconditional variances in 𝑌 between students within classrooms in schools,

between classrooms within schools, and between schools, respectively. 

For a 2L-CRT with randomization at L3, Equation (1) then transforms to (Bloom, 2006, 

Equation 21; Dong & Maynard, 2013, p. 33): 

𝑀𝐷𝐸𝑆2L−CRT = 𝑀𝑑𝑓√
ρL3(1−𝑅L3

2 )

𝑃L3(1−𝑃L3)𝐾
+

(1−ρL3)(1−𝑅L1
2 )

𝑃L3(1−𝑃L3)𝐾𝑛L3
 , (6) 

For a 3L-CRT with randomization at L3, Equation (1) transforms to (Bloom, 2008, Equation 3; 

Dong & Maynard, 2013, p. 52):

𝑀𝐷𝐸𝑆3L−CRT = 𝑀𝑑𝑓√
ρL3(1−𝑅L3

2 )

𝑃L3(1−𝑃L3)𝐾
+

ρL2(1−𝑅L2
2 )

𝑃L3(1−𝑃L3)𝐾𝐽L3
+

(1−ρL3−ρL2)(1−𝑅L1
2 )

𝑃L3(1−𝑃L3)𝐾𝐽L3𝑛L2

(7) 

𝑛L2 and 𝑛L3 are the average numbers of students within classrooms and schools, respectively,

𝐽L3 is the average number of classrooms within schools, and 𝐾 is the number of schools (i.e.,

the sum of schools 𝐾 in TG and CG; 𝐾 = 𝐾TG + 𝐾CG). Generally, 𝐾 exerts greater impact on

the 𝑀𝐷𝐸𝑆 than 𝑛L2 or 𝑛L3 and 𝐽L3: Everything else being equal, the larger 𝐾, the smaller the

𝑀𝐷𝐸𝑆. 𝑃L3 is the proportion of schools assigned to the treatment condition (i.e., 𝑃L3 = 𝐾TG/𝐾)
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with 𝑃L3 = .50 minimizing the 𝑀𝐷𝐸𝑆. Further, everything else held constant, the larger ρL2

and/or ρL3, the larger the 𝑀𝐷𝐸𝑆. Since ρL2 and/or ρL3 are fixed, the multilevel design

parameters 𝑅L1
2 , 𝑅L2

2 , and 𝑅L3
2  are of particular importance in this study because they quantify

the amounts of σL1
2 , σL2

2 , and σL3
2  in 𝑌 that can be explained by covariates 𝐶L1 at the student,

𝐶L2 at the classroom, and 𝐶L3 at the school level, respectively:38

𝑅L1
2 = (σL1

2 − σL1|𝐶L1

2 )/σL1
2 (8) 

𝑅L2
2 = (σL2

2 − σL2|𝐶L2

2 )/σL2
2 (9) 

𝑅L3
2 = (σL3

2 − σL3|𝐶L3

2 )/σL3
2  (10) 

σL1|CL1

2 , σL2|CL2

2 , and σL3|CL3

2  signify the conditional between-student, -classroom, and -school 

variances, respectively. 𝑑𝑓 = 𝐾 − 𝑄L3 − 2, where 𝑄L3 is the number of covariates 𝐶L3.

Estimates of σ2 can be obtained through (multilevel) regression (see OSM A). For both

IRTs and CRTs, larger 𝑅2 values should result in smaller 𝑀𝐷𝐸𝑆 values, and therefore, higher

design sensitivity—provided adequate power and covariate-treatment orthogonality, usually 

holding for large samples (Moerbeek & Teerenstra, 2016, p. 83). Altogether, adjusting for 

highly prognostic covariates is a powerful way to raise RT design sensitivity.  

Theoretical and Empirical Considerations on Covariate Selection 

Well-founded decisions on the choice of covariates are key to designing strong RTs. Scholars 

and agencies agree that these decisions should be based on both substantive theory and 

empirical results (Committee for Proprietary Medicinal Products, 2004; Cook, 2005; EMA, 

1998, 2015; Maxwell et al., 2017, pp. 494–495; Moerbeek & Teerenstra, 2016, pp. 84–87; 

Murray, 1998, pp. 137–140; Raab et al., 2000; Tafti & Shmueli, 2020; U.S. Food and Drug 

Administration, 2021; Wright et al., 2015). When the target outcome is student achievement—

a multifaceted, complex construct influenced by numerous factors (Haertel et al., 1983; M. C. 

Wang et al., 1993; Winne & Nesbit, 2010)—several covariates are worth considering. First, a 

measure of prior knowledge in the same domain as the outcome (e.g., previous mathematics 

skills predicting future mathematics skills), which we refer to as a domain-identical pretest (IP), 

is known to shape performance trajectories (e.g., Ausubel, 1968; Dochy et al., 1999). This view 

38  CL1 and CL2 are group-mean centered (see e.g., Konstantopoulos, 2012). CL2 and CL3 may be either covariates 

directly assessed at L2 and L3 or classroom and school means of L1 covariates, respectively. 
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is rooted in the assumption that one’s pre-existing knowledge base fundamentally molds input 

integration during knowledge acquisition (Brod, 2021; Woolfolk, 2020). Second, a measure of 

cognitive prerequisites in a certain domain may also explain achievement differences in another 

domain (e.g., previous reading skills predicting future mathematics skills), which we refer to as 

a cross-domain pretest (CP). This idea is supported by the fact that scores from distinct 

achievement tests are often highly correlated (Baumert et al., 2009), reflecting the operation of 

a common cognitive capacity (often described as the g factor; Jensen, 1993) or the relevance of 

a specific ability to tasks in other domains (e.g., reading comprehension is needed to create a 

mental representation of mathematical problems; Kintsch, 1998). Third, there is broad 

consensus that fluid intelligence (Gf) is a powerful predictor of achievement in various domains 

(e.g., Cattell, 1987; Jensen, 1993; Neisser et al., 1996). Finally, sociodemographic 

characteristics (SC) such as gender, migration background, and socioeconomic status are also 

widely acknowledged as persistent precursors for academic success (e.g., Bradley & Corwyn, 

2002; Stanat & Chistensen, 2006). 

Importantly, educational RTs often address outcomes in multiple domains (Lortie-

Forgues & Inglis, 2019; Morrison, 2020, pp. 123–124) that might need to be adapted or 

expanded during implementation (e.g., due to logistic or financial reasons, or political 

decisions; see Bloom et al., 2007, p. 32), and often span several years (Connolly et al., 2018; 

Rickles et al., 2018). Moreover, apart from the fact that RTs should always be designed as 

parsimoniously as possible, they are usually subject to limited resources. Therefore, in practice, 

researchers planning RTs often face the challenge of weighing the potential trade-offs between 

the different covariate types, their combinations, and time lags for design sensitivity. Three 

influential, albeit debated, psychometric heuristics may help to derive predictions on the unique, 

relative, and incremental impacts of IP, CP, Gf, and SC: (a) the bandwidth-fidelity dilemma, 

(b) the incremental validity concept, and (c) the validity degradation principle. In the following,

we elaborate on each heuristic under both a theoretical and empirical lens: First, we briefly 

introduce the respective underlying conception. Figure 1 visualizes the implications for 𝑅2 in

student achievement. We then systematically review previous evidence on the links between 

standardized achievement tests and the covariate sets relevant to each heuristic. We present 

meta-analytic integrations of 𝑅2 (see OSM B for methodology and detailed results) for past

studies providing estimates based on either (a) single-level methods (i.e., that do not 

hierarchically decompose the variances between students, classrooms, and schools) which are 

informative for planning IRTs or (b) multilevel methods to compile multilevel design 
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parameters which are informative for planning CRTs. Figure 2 portrays the 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅2 values

discussed below.  

Figure 1. Schematic Visualization of the Theoretical Predictions Implied by Psychometric 

Heuristics for Covariate Impacts on 𝑅2 in Student Achievement

Note. IP = Domain-identical pretest. CP = Cross-domain pretest. Gf = Fluid intelligence. SC = Sociodemographic 

characteristics. IP/CP/Gf−1 = IP/CP/Gf assessed 1 year before the outcome. IP/CP/Gf−7 = IP/CP/Gf assessed 7 

years before the outcome. 

Figure 2. Previous Research on Covariate Impacts: Meta-Analytically 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅2 in Student

Achievement for Single- and Multilevel Designs 

Note. Multivariate fixed-effect meta-analysis with correlated effect sizes (with an assumed within-study 

correlation of 𝑟 = .90). For single-level designs, we reviewed in total 𝑆 = 44 studies, with 𝐻 = 53 independent 

samples yielding 𝐺 = 1,633 correlations between all covariate sets and achievement outcomes which were 

transformed into 𝑅2 effect sizes. Note that only Stern (2009) provided one single effect size for Gf−5, thus, no

meta-analytic average could be computed. For multilevel designs, we reviewed in total 𝑆 = 12 studies, with 𝐻 > 

200 independent samples yielding 𝐺 = 2,394 𝑅2 effect sizes for all covariate sets and achievement outcomes. See

OSM B for details on studies, methodology, and results. On the x axis, a filled/empty dot marks the in-/exclusion 

of a covariate, where a numbered dot specifies the pre-posttest time lag in years. SL = Single-level designs. ML = 

Multilevel designs. IP = Domain-identical pretest. CP = Cross-domain pretest. Gf = Fluid intelligence. SC = 

Sociodemographic characteristics. 
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Covariate Types: Bandwidth-Fidelity 

Theoretical Conception 

The bandwidth-fidelity dilemma as originally introduced in psychometrics by Cronbach and 

Gleser (1957) describes an inherent compromise between the complexity (i.e., bandwidth) and 

the specificity (i.e., fidelity) of a covariate with respect to its predictive validity for an outcome 

(Hogan & Roberts, 1996; Salgado, 2017). The core idea is that maximal explanatory power 

requires the alignment of both the conceptual breadths and peculiarities between predictor and 

outcome (Hogan & Roberts, 1996; Salgado, 2017). Following this rationale, when predicting a 

domain-specific achievement outcome, IP is expected to be superior to CP because the former 

matches the outcome domain; yet, as domain-specific cognitive measures, both should be 

covariates of high fidelity. CP is expected to outperform Gf, as Gf is a domain-general cognitive 

measure and should be a covariate of lower fidelity/broader bandwidth. Gf is expected to 

surpass SC, as SC are non-cognitive measures and should be covariates of even broader 

bandwidth. 

Previous Empirical Evidence 

Single-Level Perspective. Many studies demonstrated the high predictive power of IP for 

student achievement, with 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP
2 = .56. For example, to inform power analyses for

IRTs, Cole et al. (2011) calculated the year-to-year pre-posttest correlations for 3rd–8th graders 

in five U.S. states that translated to around two thirds of the explained variance in both 

mathematics and verbal skills and remained fairly stable across grades. However, others showed 

that IP gains in relevance with higher grades (e.g., McCoach et al., 2017). There was substantial 

between-study variation (.17 ≤ 𝑅T|IP
2  ≤ .73) due to variation across grade levels and/or domains

and pre-posttest time lags. CP was half as effective as IP (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|CP
2 = .28). Amounts of

explained variance by CP varied widely between studies, from 4% for mathematics as predicted 

by phonological abilities (Passolunghi & Lanfranchi, 2012) to around 49% for associations 

between mathematics and reading (Bailey et al., 2020). Gf turned out to be a significant 

predictor, with 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|Gf
2 = .19. For instance, using large-scale data from six German

secondary school samples, Saß et al. (2021) recorded that Gf explained about one quarter of 

achievement differences in mathematics and reading. However, the prognostic validity of Gf 

ranged broadly across studies (.04 ≤ 𝑅T|Gf
2 ≤ .38). Finally, SC explained a meaningful but—

relative to IP, CP, and Gf—small proportion of variance of about 4%. Again, there was 
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considerable between-study heterogeneity in 𝑅T|SC
2  from .00 (derived from Spencer et al., 2022,

for gender as single covariate) and .29 (derived from Li et al., 2022, for a set of gender, 

migration background, and socioeconomic status). To conclude, the reviewed single-level 

evidence generally supports the theoretical predictions on the differential impacts of covariate 

types with varying bandwidth-fidelity. 

Multilevel Perspective. Across studies, IP appeared to be the most powerful predictor for 

student achievement, explaining astonishing proportions of variance at the group levels: 

𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L2|IP
2  = .73 and 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L3|IP

2 = .81. At L1, IP explained on average 48% of

achievement differences. Nevertheless, there was notable variation between studies (.23 ≤

𝑅L1|IP
2 ≤ .58, .49 ≤ 𝑅L2|IP

2 ≤ .70, .54 ≤ 𝑅L3|IP
2 ≤  .83). Of note, the prognostic value of IP

seems to strengthen throughout the school career, in particular at L3: 𝑅L3|IP
2  in

mathematics/reading as reported in Hedges and Hedberg (2013) averaged to .69/.75 with 1st–

6th graders and to .79/.84 with 7th–11th graders. This trend was replicated in several works 

(see Stallasch et al., 2021, Figure 1). Despite domain mismatch, CP proved a highly robust 

predictor, particularly at L3: 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L3|CP
2  amounted to .74, whereas 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|CP

2  was .30.

Spybrook, Westine et al. (2016), for example, found that reading explained about 77% of 

school-level variance in science achievement. Cross-study variations were moderate (.24 ≤

𝑅L1|CP 
2 ≤ .35, .56 ≤  𝑅L3|CP

2 ≤ .77). As far as we are aware, the predictive capacity of Gf has

not yet been partitioned into its hierarchical variance components. Overall, SC exerted 

substantial predictive power at L3 with 64% of explained variance, but rather limited predictive 

properties at L1/L2 with 10%/21%. It is noteworthy that 𝑅L3|SC
2  show considerable

heterogeneity, specifically between domains and countries: Brunner et al. (2018), for instance, 

documented 𝑅L3|SC 
2 = .01 for mathematics in Azerbaijan and 𝑅L3|SC

2 = .97 for reading in 

Liechtenstein. In summary, the available multilevel evidence fit the assumptions about the 

differential impacts of covariate types with varying bandwidth-fidelity quite well. Yet, 

compared to the single-level findings, the respective differences in 𝑅2 seemed far less

pronounced, especially at the group levels.  

Covariate Combinations: Incremental Validity 

Theoretical Conception 

Incremental validity (Sechrest, 1963) refers to a measure’s capacity to additionally explain 

variance in an outcome beyond what is explained by other prognostic factors (Haynes & Lench, 
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2003; Hunsley & Meyer, 2003) by contrasting a covariate combination with a subset (Haynes 

& Lench, 2003). As outlined above, IP is the best-known predictor of domain-specific student 

achievement. When planning RTs, an important question is therefore whether IP plus CP, Gf, 

and/or SC jointly explain more variance than IP alone. 

Previous Empirical Evidence 

Single-Level Perspective. Averaged across the reviewed studies, CP contributed to the 

prediction of student achievement beyond IP, albeit to a small degree; the joint effect computed 

to 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+CP
2 = .57. Yet, the maximum incremental returns from CP summed to +13%

(Chu et al., 2018). Overall, Gf showed no additional benefits over and above IP 

(𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+Gf
2 = .48). There was, however, notable between-study variation: In Georgiou et

al. (2021), for instance, Gf added around +12% to the proportion of explained variance in 

mathematics and reading. Combining IP and SC did not lead to a general improvement over 

controlling for IP alone (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+SC
2 = .55), but increments occasionally reached 

∆𝑅T|+SC
2 = +.08 (Li et al., 2022). Taken together, the full covariate battery did not raise the 

amount of explained variance beyond IP (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+CP+Gf+SC
2 = .52). Yet, some studies

revealed meaningful increments, peaking at +15% (Chu et al., 2018). Notably, the 𝑀𝑎𝑥(∆𝑅T
2) 

were consistently found with elementary school samples, potentially implying that the 

incremental validities of CP, Gf, and/or SD might be stronger in younger than older students. 

Multilevel Perspective. We found no multilevel study quantifying incremental validities of CP 

or Gf, or their combination with SC over and above IP. Much more is known about SC: SC 

incrementally predicted student achievement after IP had been taken into account, although 

only at the group levels. Pooled across studies, the joint amounts of explained variance equaled 

83% at L3, 77% at L2, and 46% at L1. Jacob et al.’s (2010) and Stallasch et al.’s (2021) analyses 

revealed that SC contributed around +13%/+4% and +21%/+13% to the prediction of L2/L3 

achievement differences beyond IP, respectively. Of note, additional returns in 𝑅2 at the various

hierarchical levels appeared to be more pronounced in elementary than secondary school 

(Stallasch et al., 2021).  
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Covariate Time Lags: Validity Degradation 

Theoretical Conception 

The validity degradation principle (Ghiselli, 1956; Humphreys, 1960) implies that the amount 

of variance explained by a cognitive predictor steadily decreases with growing time lags to the 

outcome (Hulin et al., 1990; Keil & Cortina, 2001; Reeve & Bonaccio, 2011). The 

developmental dynamics underlying validity degradation can be described as a simplex time 

series pattern (Humphreys, 1960). Accordingly, for domain-specific student achievement as 

outcome, the explanatory power of IP, CP, and Gf assessed 1 year ago should be higher than 

the explanatory power of IP, CP, and Gf assessed, for example, 7 years ago.39 

Previous Empirical Evidence 

Single-Level Perspective. The vast majority of reviewed studies indicate that 𝑅T|IP
2  in student

achievement decreases with greater pre-posttest time lags: Values considerably dropped from 

𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP−1
2 = .63 to 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP−7

2  = .36. For example, drawing on large-scale data from

U.S. colleges and universities, Dahlke et al. (2018) showed that the prognostic validities of high 

school students’ mathematics and reading IPs clearly deteriorates over time (𝑅T|IP−1
2 = .62, 

𝑅T|IP−3
2 = .55). Of note, this trend holds true for all grade levels (e.g., McCoach et al., 2017). 

Analogous results—though far less striking—were reported for the predictive properties of CP: 

𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|CP−1
2 = .24 declined to 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|CP−7

2 = .10. Specifically, McCoach et al. (2017)

found that correlations between mathematics and reading in Grades 2 through 12 steadily 

weakened as the time gap grew (𝑅T|CP−1
2 = .36, 𝑅T|CP−7

2 = .28). However, there was significant

between-study heterogeneity. In some studies, 𝑅T|CP
2  barely diminished (e.g., Erbeli et al., 2021) 

or even increased with growing time lags (e.g., Träff et al., 2020). The scant available studies 

on the potential validity degradation of Gf suggest fairly robust long-term impacts: Pooled 

across studies, Gf−1 explained 13% and Gf−7 explained 33% of achievement differences. In 

their review, Reeve and Bonaccio (2011) concluded that the decay of Gf’s predictive property 

is subtle at best, even across numerous years. Stern (2009), for instance, demonstrated that Gf 

was an exceptionally stable predictor of Grade 11 mathematics after 7 years and even beyond 

(𝑅T|Gf−5 
2 = .17 and 𝑅T|Gf−7

2 = .16).

39  Note that SC is assumed to be time-invariant (e.g., migration background does change across the lifespan). 
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Multilevel Perspective. The few existing investigations on multilevel design parameters 

addressing the temporal validity degradation of covariates substantiated a notable decrement of 

explanatory power of IP at L1; 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|IP−1
2 = .50 declined to 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|IP−3 

2 = .35.

Meanwhile, amounts of explained variance at L3 were far less prone to time effects: Pooled 

across studies, IP−1 accounted for 86% and IP−3 accounted for 76% of achievement differences 

between schools. Only Xu and Nichols (2010) studied deterioration in the prognostic property 

of IP at L2. The authors found that explanatory power remained at a high level of 70% across 

two subsequent years. Of note, declines in 𝑅2 seem to be more prevalent in elementary than

secondary school, especially at L3. In Bloom et al. (2007), mean 𝑅L3|IP−1
2 /𝑅L3|IP−2

2 /𝑅L3|IP−3
2

was .56/.49/.26 in elementary school, and .83/.79/.77 in secondary school. This finding held 

true for both mathematics and reading and could largely be replicated by Xu and Nichols 

(2010). To the best of our knowledge, multilevel studies focusing on cross-time validity decay 

of CP and Gf are lacking to date.

The Present Study 

Strong RTs unite cost-efficiency and sophisticated methodology to ensure appropriate design 

sensitivity. Given that well-selected covariates substantially raise statistical power and 

precision, evaluation researchers need reliable evidence that substantiates covariate choices by 

quantifying unique, relative, and incremental yields of the target outcome’s most important 

predictors. We aim to significantly expand the available guidance for IRTs and CRTs on student 

achievement through a comprehensive compilation of reliable single- and multilevel design 

parameters that were meta-analyzed and applied to simulate precision.40 

First, both IRTs and CRTs are in their own right cornerstones of evidence-based 

education. Both designs are frequently implemented (Connolly et al., 2018). However, single-

level design parameters on student achievement have not yet been systematically compiled. 

Indeed, our quantitative research review may be considered a first major step towards this 

endeavor. Moreover, extant multilevel design parameters remain mostly restricted to two 

hierarchical levels. To address these gaps, we cover RTs of three different designs: IRTs (with 

40  This study used, inter alia, the same data as Stallasch et al. (2021), who also reported a small part of the results 

presented here, namely the two- and three-level results for Covariate Sets 0, 1, 4, 7, and 9 (see Table 2). 

However, all single-level results, the multilevel results for the remaining sets, and all meta-analytic integrations 

are presented for the first time here. 
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students assumed to be independently sampled), 2L-CRTs (with students nested within 

schools), and 3L-CRTs (with students nested within classrooms nested within schools). 

Second, researchers rely on knowledge about the potential sensitivity-raising effects of 

specific covariate types, combinations, and time lags. The above research review pointed out 

that the latest IP is most likely the best among the covariates. Yet, sometimes the inclusion of 

IP is not feasible, such as when there are multiple outcome domains (e.g., Lortie-Forgues & 

Inglis, 2019) while testing time is limited, when the outcome changes after the RT has started 

(e.g., due to political decisions; Bloom et al., 2007, p. 32), when the outcome is subject to strong 

developmental dynamics and/or presupposes intensive instruction (e.g., reading skills during 

elementary school), or when individual pretest differences are unlikely to be observed ahead of 

the intervention (e.g., integral calculus prior to its introduction; Shadish et al., 2002, p. 118). In 

such situations, CP, Gf, or SC may be meaningful alternatives to IP. However, only a few 

multilevel studies provide information on the impacts of CP and SC, and none on the impacts 

of Gf. Beyond that, the combination of IP with CP, Gf, and/or SC may further boost design 

sensitivity. Past multilevel studies solely assessed incremental validity of SC over and above 

IP. Further, RTs often span multiple years (e.g., Rickles et al., 2018), especially when long-

term intervention effects are of interest. Although the explanatory power of IP, CP, and Gf may 

be susceptible to temporal decay, prior multilevel studies addressed rather short pre-posttest 

time lags of 1-3 years to test validity degradation in IP, but not in CP or Gf. To address these 

gaps, we systematically vary and combine IP, CP, and Gf with 1- to 7-year-lagged data, as well 

as SC within 11 different covariate sets (in addition to a Set 0 without any covariates).  

Third, contemporary educational standards refer to a plethora of skills in various 

domains (National Research Council, 2011; Organisation for Economic Co-operation and 

Development, 2018), as do educational RTs (e.g., Morrison, 2020, pp. 123–124). Past works 

on multilevel design parameters dealt with a limited number of outcome domains, namely 

mathematics, science, and reading. To address this gap, we investigate a wide array of eight 

commonly-targeted outcomes from STEM41 and verbal domains. 

Fourth, educational RTs are conducted all around the globe (Connolly et al., 2018), but 

existing collections of multilevel design parameters primarily stem from U.S. samples. 

Estimates for countries whose school system characteristics markedly deviate from those of the 

United States, such as an (often much) earlier onset of ability-based school-type-tracking as is 

the case in Germany, are scarce. To address this gap, we capitalize on longitudinal large-scale 

assessment data from six German probability samples that are representative for the total 

41  STEM is commonly used to subsume domains of science/technology/engineering/mathematics. 
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student population in elementary (Grades 1–4), lower secondary (Grades 5–10), and upper 

secondary school (Grades 11–12), as well as the student populations in lower and upper 

secondary school belonging to the academic and non-academic track42. 

Finally, many past educational large-scale RTs lacked design sensitivity (Lortie-

Forgues & Inglis, 2019). It is therefore essential to reliably judge how the varying covariates 

types, combinations, and time lags actually affect precision (given the typical desired 80% 

power). To this end, power analyses contextualizing the respective 𝑅2 values within predefined

designs are indispensable: as becomes clear from Equations (2), (6), and (7), the 𝑀𝐷𝐸𝑆 is 

shaped by the interplay of several quantities beyond power and 𝑅2, such as sample size and

allocation, and in the multilevel case also values of ρ. Furthermore, since empirical design 

parameters are tainted with sampling error that may (dramatically) distort power analysis 

outcomes, proper allowance of uncertainty is best practice (e.g., Jacob et al., 2010; Turner et 

al., 2004). We consequently ran precision simulations that concede ρ and 𝑅2 uncertainties via

a Bayesian rationale to calculate plausible 𝑀𝐷𝐸𝑆 ranges for IRTs and CRTs.

The remainder of this paper is structured as follows. Part I covers empirically estimated 

and meta-analytically integrated design parameters, and demonstrates their use in sample size 

and power computations. Part II covers the 𝑀𝐷𝐸𝑆 simulation study. Note that this study is 

accompanied by an extensive OSF repository at https://tinyurl.com/osf-blinded. In addition to 

all R scripts and brief instructions for data access, it includes OSM A-G with (A) expressions 

of single- and multilevel models, (B) methodology and results related to the quantitative 

research review, (C) methodology, further results, and manifold application scenarios of study 

planning related to Part I, (D) methodology and further results related to Part II, as well as 

interactive Excel workbooks compiling all (E) empirical, (F) meta-analytic, and (G) simulated 

design parameters, the latter along with their 𝑀𝐷𝐸𝑆 statistics.  

42  The German secondary school system offers various school types. We differentiate the academic track (most 

demanding school type: “Gymnasium”, up to Grade 12) from the non-academic track (subsuming: vocational 

[“Hauptschule”], intermediate [“Realschule”], and multitrack [“Schule mit mehreren Bildungsgängen”] 

schools, up to Grades 9 or 10; comprehensive school [“Gesamtschule”], up to Grades 9, 10, or 12). 
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Part I: Two-Stage Individual Participant Data Meta-Analysis—

Estimating and Integrating Design Parameters 

Method 

We briefly sketch the applied methods here (see OSM C for details). We used R 4.2.2 (R Core 

Team, 2022); package versions are noted in the R scripts. 

Large-Scale Assessment Data 

Systematic Search. To identify German large-scale assessment datasets suitable for analyzing 

covariate impacts on design sensitivity in RTs on student achievement, we carried out a 

systematic search in three electronic data repositories (see also Brunner, Stallasch, et al., 2023). 

Datasets had to meet the following eligibility criteria: (a) representativeness for the German 

student population, (b) longitudinal design, and (c) assessment of student achievement via 

standardized tests. We found three large-scale assessments providing data of six independent 

national probability samples. 

National Educational Panel Study (NEPS). NEPS (Blossfeld & Roßbach, 2019) has 

been tracking multiple cohorts’ educational trajectories throughout their lifespan from 2010 to 

today. We used the data43 of students from three NEPS starting cohorts: 4-year-olds (in 

kindergarten) tested through Grade 4 (NSC2; NEPS Network, 2020); Grade 5 students tested 

through Grade 12 (NSC3; NEPS Network, 2019a); Grade 9 students tested through Grade 12 

(NSC4; NEPS Network, 2019b). Achievement tests were administered every 1–3 years. 

Programme for International Student Assessment (PISA). The PISA cycles 2003 and 

2012 were extended as national longitudinal follow-ups in Grades 9–10 in Germany (Prenzel, 

Baumert, et al., 2006; Reiss et al., 2017). We used the data44 from PISA-I-Plus 2003, 2004 

(PP03; Prenzel et al., 2013), which focuses on students’ mathematics and science achievement 

development and PISA-Plus 2012-2013 (PP12; Reiss et al., 2019), which additionally 

incorporates a follow-up assessment of reading achievement. 

Assessment of Student Achievements in German and English as a Foreign Language 

(DESI). DESI (DESI-Konsortium, 2008) studied students’ verbal achievement during Grade 9. 

We used the DESI data11 (Klieme, 2012) on verbal skills in German. 

43  Provided by the Research Data Center (FDZ) at the Leibniz Institute for Educational Trajectories (LIfBi). 
44  Provided by the FDZ at the Institute for Educational Quality Improvement (IQB). 
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Sampling Process and Sample Selection. Except for NSC2, all samples were drawn applying 

a multistage (i.e., multilevel) sampling process where schools were first randomly drawn, 

followed by at least two intact classrooms per school (Aßmann et al., 2011; Beck et al., 2008; 

Heine et al., 2017; Prenzel, Carstensen, et al., 2006). NSC2 involved sampling kindergarten 

children and students of the schools that those children entered to ensure representativeness for 

children entering elementary school (Aßmann et al., 2011). 

When studying covariate types and combinations, we drew on the full spectrum of 

samples. When studying covariate time lags, we drew only on NSC2 and NSC3, as these 

samples provided longitudinal achievement data across at least 3 measurement points. As listed 

in Table 1, we analyzed data from a total of 𝑁 = 68,502 students, where sample sizes ranged 

within 1,868 (NSC3, Grade 12) ≤  𝑁 ≤ 10,543 (DESI, Grade 9), with median cluster sizes of 

4 ≤  𝑛L2 ≤ 25, 14 ≤  𝑛L3  ≤ 50, and 2 ≤  𝐽L3 ≤ 3. Note that in Grades 11–12, information at

L2 did not exist because in German upper secondary school, the affiliation of students to intact 

classrooms is usually replaced by a course grouping system catering to students’ ability level 

in a certain school subject (e.g., basic vs. advanced courses). 

Table 1. Numbers of Students 𝑁, Classrooms 𝐽, and Schools 𝐾, and Median Numbers of 

Students per Classroom 𝑛L2, Students per School 𝑛L3, and Classrooms per School 𝐽L3

Grade Sample 𝑁 𝐽 𝐾 𝑛L2 𝑛L3 𝐽L3

Elementary school 

1 NSC2 6,731 1,020 374 6 16 2 

2 NSC2 6,319 986 362 6 15 2 

3 NSC2 5,554 888 354 6 14 2 

4 NSC2 5,418 1,026 349 4 14 3 

Lower secondary school 

7 NSC3 6,314 619 268 10 24 2 

9 NSC3 4,659 631 240 6 20 2 

9 DESI 10,543 427 219 25 50 2 

10 PP03 6,020 275 152 23 42 2 

10 PP12 4,494 252 134 19 37 2 

Upper secondary school 

11 NSC3 2,054 n/a 107 n/a 19 n/a 

11 NSC4 4,565 n/a 175 n/a 26 n/a 

12 NSC3 1,868 n/a 105 n/a 17 n/a 

12 NSC4 3,963 n/a 168 n/a 23 n/a 

Total 68,502 6,124 3,007 

Note. Sample sizes refer to the total student population. See Table C10 in OSM C for sample sizes broken down 

by school track. n/a indicates that information at L2 was not available as students in Grades 11 and 12 are not 

grouped into intact classrooms, but are rather grouped into courses specific to the subject taught. 
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Measures 

Achievement Outcomes. We analyzed outcomes in three STEM domains, namely 

mathematics, science, and information and communication technology (ICT), as well as in five 

verbal domains in German, namely reading, grammar, spelling, vocabulary, and writing. 

Covariates. We examined four covariate categories: IP, CP, Gf, and SC. We employed reading 

as CP for STEM outcomes and mathematics as CP for verbal outcomes. Gf was assessed in 

terms of figural reasoning. IP, CP, and Gf were available with a 1- to 7-year time lag to the 

outcome, where the smallest pre-posttest gap ranged from 1 to 4 years. SC comprised 4 

variables, namely students’ gender (0 = male, 1 = female) and migration background (0 = no, 1 

= yes) as well as two indicators of socioeconomic status: (1) Parents’ highest educational 

attainment was assessed by the greatest number of years of schooling completed (range: 9–18) 

in all studies except the DESI, where the highest school leaving certificate was used, and (2) 

parents’ highest International Socio-Economic Index of Occupational Status (HISEI; 

Ganzeboom & Treiman, 1996; range: 11–89). 

Missing Data 

Virtually all measures used in this study contained some missing values. The percent of 

missings across the datasets varied from 11% (PP03, Grade 10) to 42% (NSC2, Grade 1). The 

greatest missing rates occurred in pretests measured in the first two waves of NSC2, as only a 

small share of kindergarten children continued participating in NEPS after entering elementary 

school. We performed (groupwise) multilevel multiple imputation and generated 50 multiply-

imputed datasets for each sample and grade using the mice (van Buuren & Groothuis-

Oudshoorn, 2011) and miceadds (Robitzsch et al., 2021) packages. 

Procedure 

We applied a two-stage approach to meta-analysis of individual participant data (Brunner, 

Keller, et al., 2023; see also Brunner, Stallasch, et al., 2023). We estimated and meta-analyzed 

design parameters for three RT designs, namely single- (individual students), two- (students 

within schools), and three-level designs (students within classrooms within schools), as well as 

for three target populations, namely the total, academic track, and non-academic track student 

populations. Notably, in upper secondary school, only single- and two-level designs were 

considered due to the lack of L2 information.  
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Stage 1: Single- and Multilevel Modeling—Estimating Design Parameters. We performed 

single- and multilevel modeling to empirically estimate ρ and 𝑅2. As shown in Table 2, we

systematically in- and excluded 1- to 7-year-lagged IP, CP, and Gf, as well as SC within a total 

of 12 covariate sets, with the number of covariates Q per set ranging between 0 ≤ Q ≤ 7. This 

resulted in up to 363 distinct models per design and population. 

Table 2. Covariate Sets Analyzed in the Present Study with Numbers of Covariates 𝑄, and 

𝜌/𝑅2 Effect Sizes 𝐺 and Samples 𝐻 by Design

Types: 

bandwidth-fidelity 

Combinations: 

incremental validity 

Time lags: 

validity degradation  

Set 0 1 2 3 4 5 6 7 8 Set 

IP     
9 

CP        
10 

Gf         
11 n/a 

SC     

  



𝑄 0 1 1 1 4 2 2 5 7   1 1 1 1 1 1 1 

Single-/two-level designs 

𝐺 34 34 31 31 34 31 31 34 31 9 2 15 6 7 3 1 2 

10 6 14 6 8 3 1 3 

11 5 8 5 7 n/a 1 3 

𝐻 6 6 6 6 6 6 6 6 6 9 1 2 2 2 1 1 1 

10 1 2 2 2 1 1 1 

 11 1 2 2 2 n/a 1 1 

Three-level designs 

𝐺 26 26 23 23 26 23 23 26 23 9 2 14 3 7 0 0 0 

10 6 13 3 7 0 0 0 

11 5 7 2 7 n/a 0 0 

𝐻 5 5 5 5 5 5 5 5 5 9 1 2 2 2 0 0 0 

10 1 2 1 2 0 0 0 

11 1 2 1 2 n/a 0 0 

Note. A filled/empty dot marks the in-/exclusion of a covariate, where a numbered dot specifies the pre-posttest 

time lag in years. Set 0 yielded ρ effect sizes, Sets 1–11 yielded 𝑅2 effect sizes. Set 1/2/3 involved the most recently 

assessed IP/CP/Gf (i.e., with the smallest possible time lag to the outcome, ranging between 1 and 3 years for IP 

and CP, and between 1 and 4 years for Gf). n/a indicates that the respective covariate was not available. See Table 

C18 in OSM C for covariate sets broken down by domain area. IP = Domain-identical pretest. CP = Cross-domain 

pretest (reading for STEM outcomes, mathematics for verbal outcomes). Gf = Fluid intelligence. SC = 

Sociodemographic characteristics (gender, migration background, socioeconomic status). 

Model Fitting. For all outcomes, we fitted two model classes separately for each 

imputation. The first model class consisted of unconditional models without any covariates (Set 

0). Specifically, for single-level designs, we obtained σT
2  by taking the outcomes’ variances.

For multilevel designs, we obtained σL1
2 , σL2

2 2, and σL3
2  by specifying two- and three-level

random-intercept-only models. The second model class consisted of conditional models with 

varying covariate types (Sets 1–4), combinations (Sets 5–8), and time lags (Sets 9–11). 
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Specifically, for single-level designs, we obtained σT|CT

2  by specifying single-level regression 

models. For multilevel designs, we obtained σL1|CL1

2 , σL2|CL2

2 , and σL3|CL3

2  by specifying two- 

and three-level random-intercept models. Note that all covariates were assessed at L1. In two-

level models, we entered school averages at L3. In three-level models, we entered classroom 

averages at L2 and school averages at L3. In single-level models, we centered all covariates 

around their respective total population’s means whereas in multilevel models, we applied 

group-mean centering: L1 covariates were centered around their respective school/classroom 

means in two-/three-level models and L2 covariate means were centered around their respective 

school means in three-level models. Single-level modeling was performed using the stats 

package implemented in base R. Multilevel modeling was performed using the lme4 package 

(Bates et al., 2015) applying restricted maximum likelihood (REML) estimation. 

Calculating Design Parameters and Standard Errors. We calculated ρ and 𝑅2 by

inserting the variance (component) estimates from the model fits into Equations (3)–(5) and 

(8)–(10). 𝑆𝐸s of ρ were computed with the formulas for the large sample variances in 

unbalanced (i.e., with unequal cluster sizes) two-level designs derived in Donner and Koval 

(1980, Equation 3) and three-level designs in Hedges et al. (2012, Equations 7–9). The latter 

involves the sampling variances of σL2
2  and σL3

2 , which we obtained by applying the ‘cases

bootstrap’ from the lmeresampler package (Loy & Korobova, 2021). We drew 1,000 samples 

(Huang, 2018, p. 303; Schomaker & Heumann, 2018). 𝑆𝐸s of 𝑅2were computed with the

formula for the large sample variances given in Hedges and Hedberg (2013, p. 451). 

Pooling. ρ and 𝑅2with corresponding 𝑆𝐸s were pooled across the 50 imputations. We

used the mitml package (Grund et al., 2021) that employs Rubin’s (1987) rules to take into 

account within- and between-imputation variance. 

Stage 2: Meta-Analysis—Integrating Design Parameters. We performed meta-analysis to 

integrate ρ and 𝑅2 for covariate types and combinations, and meta-regression with outcome-

covariate time lag as moderator to integrate 𝑅2 for covariate time lags (both across domains

and samples, but within hierarchical and grade levels, designs, and populations).45 

Model Fitting. Using the metafor package (Viechtbauer, 2010), we fitted two meta-

analytic/meta-regression model classes, conditional on the number of 𝑅2 effect sizes 𝐺 per

covariate set: either (multivariate) fixed-effect models if 𝐺 < 10 or (multivariate multilevel) 

random-effects models via REML if 𝐺 ≥ 10 (see Langan et al., 2019, p. 95). Both methods 

yield an average (true) effect size 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅2, with 𝑆𝐸(𝑃𝑜𝑜𝑙𝑒𝑑 𝑅2). However, the “real” (i.e.,

45  We concentrate on 𝑅2 as the focus of this study, but all analysis steps described below also applied to ρ.



126 |   STUDY II: COVARIATE SELECTION 

not due to sampling error) heterogeneity among true 𝑅2 values within samples, τEffect sizes
2 , and 

between samples, τSamples
2 , can solely be captured by random-effects models (Borenstein et al., 

2021, pp. 61–80). We deployed two weighting schemes, conditional on the number of samples 

𝐻 per covariate set: If 𝐻 > 1, we addressed within-sample dependencies among 𝑅2 effect sizes

(Hedges, 2019) by multivariate (multilevel) meta-analyses and imputed working variance-

covariance matrices using the clubSandwich package (Pustejovsky, 2021). We assumed a 

within-sample intercorrelation of 𝑟 = .90 as a reasonable upper-bound guess (see Brunner, 

Stallasch, et al., 2023). If 𝐻 = 1, we drew on the sampling variances of 𝑅2 in terms of the

standard meta-analytic inverse-variance weighting. 

Depicting Heterogeneity. With random-effects modeling, we calculated—in addition to 

the 95% confidence interval (95% CI)—the 95% prediction interval (95% PI). The 95% PI 

provides a plausible range of 𝑅2; it quantifies the total dispersion (sampling variance plus

τEffect sizes
2 , and if applicable, plus τSamples

2 ) of 𝑅2 around 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅2 and defines the range in

which an 𝑅2 estimated based on data of a new sample randomly drawn from a population of

samples will likely (i.e., in 95% of cases) fall (Borenstein et al., 2021, pp. 119–126; Riley et 

al., 2011). We also calculated (multilevel) 𝐼2 (Higgins & Thompson, 2002), the ratio of “real”

heterogeneity to the total variation across observed 𝑅2 values (Borenstein et al., 2017).

Gauging Sensitivity and Model Convergence. For the imputed working variance-

covariance matrices, we ran sensitivity analyses over 𝑟  {0.00, 0.05, …, 0.95} (Hedges, 2019) 

to preclude a misspecification of 𝑅2 dependencies. With random-effects modeling, we profiled

log-likelihoods of τ2 values to evaluate their identifiability (see Viechtbauer, 2022).

Results 

We present major patterns in meta-analytic single- and multilevel (i.e., three-level in Grades 1–

10 and two-level in Grades 11–12) design parameters for the total student population, as 

illustrated in Figure 3 (which we refer to in this section, unless otherwise stated; see OSM C 

for result plots of two-level designs in Grades 1–10 and school tracks, and OSM E/F for the full 

compilation of the empirical/meta-analyzed design parameters). 

Covariate Types: Bandwidth-Fidelity 

Single-Level Perspective. IP was consistently the most powerful among all covariate types. IP 

explained over one third of achievement differences between individual students in 

elementary/upper secondary school (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP
2 = .36/.34), and even almost one half in
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lower secondary school (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP
2 = .46). Despite domain mismatch, CP was a valuable

predictor, particularly in lower secondary school, where 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|CP
2 = .28. In

elementary/upper secondary school, CP was almost half as effective as IP, with 

𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|CP
2 = .17/.12. Gf only served as a useful covariate type with 5th–10th graders:

Pooled across domains and samples, Gf contributed 20% to the prediction in lower secondary 

school, but only 6% in the other grade levels. SC turned out to be meaningful predictors only 

in younger students: in elementary school, SC performed as well as CP (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|SC
2 = .16),

but their explanatory power significantly fell behind all other covariates in lower secondary 

school (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|SC
2 = .13) and was as weak as Gf in upper secondary school

(𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|SC
2 = .07).

We registered substantial 𝑅T
2 heterogeneities, in particular for IP and least for SC: in 

elementary school, for example, the respective 95% PIs were [.13, .58] and [.09, .24], with 

τEffect sizes
2 = .0119 and .0013 (Table F1). Consistently, most of the observed variability was 

due to true variance rather than random noise (𝐼Effect sizes
2 ≥ 94%; Table F1). 

Multilevel Perspective. IP was of paramount relevance when predicting student achievement. 

This holds true for all grade and hierarchical levels. Nevertheless, it is noteworthy that while 

from Grade 5 on, IP was the strongest among all covariate types and showed exceptional 

prognostic properties at L3 with 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L3|IP
2 = .98/.78 in lower/upper secondary school, the

respective value lay around .44 in elementary school. Across the entire school career, IP 

explained less variance at both L1 and L2 (.26 ≤  𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|IP
2 ≤ .36; 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L2|IP

2 =

.29/.60 in elementary/lower secondary school). CP was a powerful predictor, explaining about 

91% of L3 variance in lower secondary school, and still about 30%/47% in elementary/upper 

secondary school. At lower hierarchical levels, the explanatory power of CP was clearly 

reduced, with 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|CP
2  being between .10 and .16 and 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L2|CP

2 = .15/.40 in

elementary/lower secondary school. Gf appeared to be of utmost importance to explaining 

differences between lower secondary schools (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L3|Gf
2 = .86), but less so between

classrooms (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L2|Gf
2 = .16) and students (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|Gf

2 = .07). Gf was consistently the

weakest covariate type both in elementary (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅|Gf
2 = .06/.08/.13 at L1/L2/L3) and upper

secondary school (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅|Gf
2 =.04/.39 at L1/L3). Although SC were the poorest predictors in

lower secondary school, amounts of explained between-school differences still amounted to 

around 77% (with 4%/12% at L1/L2). In upper secondary school, the explanatory power of SC 

at L3 was similar to that of CP (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L3|SC
2 = .45, with 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|SC

2 = .05). Notably,
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with 1st–4th graders, SC outweighed IP at both L2 and L3, explaining 35% and 52% of 

variance, respectively (with 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|SC 
2 = .11).

Degrees of heterogeneity in multilevel 𝑅2 were often substantial, depending not only

on the covariate type but also on the grade and hierarchical level. Consider, for instance, IP: 

Predicted 𝑅L3|IP
2 ranged widely from .07 to .81 in elementary (τEffect sizes

2 = .0325; 𝐼Effect sizes
2 = 

93%; Table F1) but only between .95 and 1.00 in lower secondary school (τEffect sizes
2 =

 τSamples
2 = .0001; 𝐼Effect sizes

2 = 26%, 𝐼Samples
2 = 60%; Table F2). At L1/L2, 95% PIs were 

always sizeable, with [.12, .60]/[.00, .72] (τEffect sizes
2 = .0136/.0430; 𝐼Effect sizes

2 = 99%/96%; 

Table F1) in elementary and [.00, .53]/[.20, 1.00] (τEffect sizes
2 = .0140/.0383, τSamples

2 = 

.0041/.0000; 𝐼Effect sizes
2 = 77%/94%, 𝐼Samples

2 = 23%/0%; Table F2) in lower secondary 

school. 

Covariate Combinations: Incremental Validity 

Single-Level Perspective. In all grade levels, CP explained additional variance in student 

achievement over and above IP. Incremental gains were largest in lower secondary school, with 

around +5% (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+CP
2 = .51), but were also noticeable in elementary school, with 

around +4% (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+CP
2 = .40). In upper secondary school, however, increments were 

small, with an average gain of +2% (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+CP
2 = .36). When controlling for IP, Gf 

further contributed to the prediction in lower secondary school (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+Gf
2 = .50; 

∆𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|+Gf
2 = +.04), but in elementary/upper secondary school, benefits were negligible 

(𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+Gf
2 = .37/.35, ∆𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|+Gf

2 = +.01/+.01). In contrast, SC explained more

additional variance in elementary/upper secondary school, with about +4%/+3% 

(𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+SC
2 = .40/.37) than in lower secondary school, with about +2% 

(𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|IP+SC 
2 = .48). Joint effects through the full battery of covariates were always

largest, with around 44%/53%/40% of variance explained in elementary/lower secondary/upper 

secondary school (∆𝑃𝑜𝑜𝑙𝑒𝑑 𝑅T|+CP+Gf+SC
2 = +.08/+.07/+.06).

We found signal heterogeneities in all 𝑅T
2. For example, future 𝑅T|IP+Gf

2  will likely fall 

between .15 and .59 with 1st–4th graders (τEffect sizes
2 = .0117; 𝐼Effect sizes

2 = 98%; Table F1). 
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Figure 3. Meta-Analytic Integrations of Single- and Multilevel 𝑅2 in Student Achievement

Note. Figure 3a: Multivariate fixed-effect (upper secondary school) and (multivariate multilevel) random-effects 

(elementary and lower secondary school) meta-analysis; dots show 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅2; solid/dotted lines represent 95% 

CIs/PIs. Figure 3b: Fixed-effect (Set 11 [Gf−lag] throughout secondary school) and random-effects (remaining) 

meta-regression with time lag as moderator; bubbles show observed 𝑅2sized by weight; line slopes map 𝑏𝑙𝑎𝑔. On

the axes, a filled/empty dot marks the in-/exclusion of a covariate, where a numbered dot specifies the pre-posttest 

time lag in years. IP = Domain-identical pretests. CP = Cross-domain pretests (reading for STEM outcomes, 

mathematics for verbal outcomes). Gf = Fluid intelligence pretests. SC = Sociodemographic characteristics 

(gender, migration background, socioeconomic status). 
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Multilevel Perspective. At L3, CP added to the prediction of achievement differences beyond 

IP between elementary schools (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L3|IP+CP
2 = .53, ∆𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L3|+CP

2 = +.09), but not 

between lower/upper secondary schools, where increments did not exceed values of around 

+1% (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L3|IP+CP
2 = .98/.79). At both L1 and L2, CP provided some additional 

explanatory power beyond IP over the entire school career: benefits were largest in lower 

secondary school with on average +7% at L1 (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|IP+CP
2 = .33) and +5% at L2 

(𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L2|IP+CP
2 = .65). We found Gf to be a rather poor additional covariate beyond IP 

across grade and hierarchical levels. In elementary school, average gains in the amounts of 

explained variance from Gf was the greatest at L2 with +3% (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L2|IP+Gf
2 = .32). In lower 

secondary school, Gf was not useful at the group levels with ∆𝑃𝑜𝑜𝑙𝑒𝑑 𝑅|+Gf
2 ≤ +.01 at L2 and 

L3, but added around +6% at L1 (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|IP+Gf
2 = .32). In upper secondary school, 

contributions of Gf were negligible, with ∆𝑃𝑜𝑜𝑙𝑒𝑑 𝑅|+Gf
2 = +.01 at all hierarchical levels. SC 

was of notable incremental relevance, especially in elementary school at L1/L2, adding 

+16%/+11% of explained variance (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅|SC 
2 = .39/.40). For 5th–10th graders, increments

were consistently small (∆𝑃𝑜𝑜𝑙𝑒𝑑 𝑅|+SC 
2 ≤ +.02); nevertheless, here, pooled values of 𝑅L3

2

maximized, with 99% of explained variance. For 11th–12th graders, SC contributed about

+4%/+3% at L1/L3 (𝑃𝑜𝑜𝑙𝑒𝑑 𝑅|SC
2 = .33/.82). Except for L3 in lower secondary school, the

complete set of covariates consistently outweighed all other combinations: together they 

explained 43%/35%/36% of the variance at L1 (∆𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L1|+CP+Gf+SC
2 = +.07/+.09/+.06), 

42%/67% at L2 (∆𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L2|+CP+Gf+SC
2 = +.13/+.07), and 60%/98%/84% at L3 

(∆𝑃𝑜𝑜𝑙𝑒𝑑 𝑅L3|+CP+Gf+SC
2 = +.20/+.00/+.06) in elementary/lower secondary/upper secondary 

school. 

Multilevel 𝑅2 heterogeneities largely mirrored those of IP, and were substantive (except

𝑅L3
2  in lower secondary school). 𝑅L2|IP+CP

2 , for instance, had a 95% PI [.21, 1.00] in Grades 5–

10 (τEffect sizes 
2 = .0380, τSamples

2 = .0002; 𝐼Effect sizes
2 = 92%, 𝐼Samples

2 = 0%; Table F2). 

Covariate Time Lags: Validity Degradation 

Single-Level Perspective. In all grade levels, the predictive power of IP clearly reduced with 

growing pre-posttest time lags. Validity degradation was most prevalent in elementary school, 

where predicted 𝑅T|IP−1
2 = .41 almost halved to 𝑅T|IP−4

2 = .23. The meta-regression coefficient 

𝑏lag = −.06 shows that with each additional year between IP and outcome, 𝑅T|IP
2  decreases by

6%. In lower/upper secondary school, temporal declines in the proportions of explained 
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variance were also noticeable, with 𝑏lag= −.04/−.03; predicted 𝑅T|IP−2
2 = .53/.37 declined to

𝑅T|IP−4
2 = .46/𝑅T|IP−7

2  = .23. In contrast, CP emerged to be far less prone to cross-time decay. 

Until Grade 10, prognostic properties remained stable (𝑏lag = .00) over 4 years both in

elementary (𝑅T|CP−1
2 = .16, 𝑅T|CP−4 

2 = .15) and secondary school (𝑅T|CP−2
2 = .31, 𝑅T|CP−4

2 = 

.30). In upper secondary school, predicted amounts of explained variance slightly reduced from 

16% to 10% for a 2- to 7-year-lagged CP (𝑏lag = −.01). Gf turned out to be an extraordinarily

time-robust predictor throughout the entire school career, with 𝑏lag =.00: in lower/upper

secondary school, predicted 𝑅T|Gf
2  = .18/.06 remained unchanged across 4/7 years; in 

elementary school, the drop was infinitesimal (𝑅T|Gf−1
2 = .06, 𝑅T|Gf−4

2 = .05). 

Multilevel Perspective. Validity degradation in 𝑅|IP
2  was substantial for almost all grade and 

hierarchical levels, except for lower secondary school at L3. Here, we recorded remarkable 

temporal stabilities in the amounts of explained variance (𝑏lag = −.01): predicted 𝑅L3|IP−2
2 = 

.95 persisted at high levels of 𝑅L3|IP−4
2 = .92 after 4 years. In all other cases, explanatory power 

of IP is likely to drop around 3% per year, as documented at L1 in upper secondary school 

(𝑅L1|IP−2 
2 = .34, 𝑅L1|IP−7

2 = .21), up to about 8% per year as found at L2 in lower secondary 

school (𝑅L2|IP−2
2 = .67, 𝑅L2|IP−4

2 = .52). CP appeared to be a relatively time-stable covariate; 

however, decrements in prognostic capacity hinged on both the grade and hierarchical level: in 

elementary school, solely predicted 𝑅L3|CP−1 
2 = .27 slightly declined to 𝑅L3|CP−4

2 = .24 (𝑏lag =

−.01); in lower secondary school, only predicted proportions of explained L2 variance dropped, 

and this strikingly from 41% to 23% across 2 to 4 years (𝑏lag = −.09); and in upper secondary

school, both predicted 𝑅L1|CP
2 and 𝑅L3|CP

2 showed small reductions over time, with 𝑏lag = −.01

(𝑅L1|CP−2
2 = .14, 𝑅L1|CP−7

2 = .09) and 𝑏lag = −.02 (𝑅L3|CP−2
2 = .49, 𝑅L3|CP−7

2 = .39), 

respectively. In all other cases, we registered any temporal decline in the proportions of 

explained differences (.00 ≤ 𝑏lag ≤ .03). Gf emerged as highly time-stable at L1, losing 0% of

explanatory power across time: predicted 𝑅L1|Gf
2 stagnated at .06/.01 across 4 years in 

elementary/lower secondary school, and 𝑅L1|Gf−2
2 = .04 even slightly raised to 𝑅L1|Gf−7

2 = .05

in upper secondary school. At the same time, validity decay was significant at L2/L3: In 95% 

of studies with 1st–4th graders, 𝑅|Gf−1
2 = .08/.14 will fall to 𝑅|Gf−4 

2 = .04/.05 (𝑏lag = −.01/−.03).

With 5th–10th graders, predicted 𝑅|Gf−2
2 = .22/.81 dropped to 𝑅|Gf−4

2 = .12/.79 (𝑏lag=

−.05/−.01). With 11th–12th graders, a 2-year-lagged Gf is predicted to explain 44% of between-

school differences, but a 7-year-lagged Gf only 24% (𝑏lag = −.04).
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Application 

Researchers designing RTs may profit from the flow chart in Figure 4. It facilitates the choice 

of single- and multilevel design parameters that are optimally tailored to the specific application 

context. To showcase the estimates’ use in study planning, we developed manifold scenarios to 

determine the (a) sample size and (b) statistical power of IRTs and CRTs via power analysis. 

We present one in the following (see OSM C for the remaining). 

An Illustrative Scenario 

A research team has programmed an app. It functions as a multidisciplinary digital learning 

environment which can be used throughout lower secondary school in Germany. 

Single-Level Perspective. As a first step, the researchers aim to test the general efficacy of the 

underlying didactic approach. They plan a small-scale pilot IRT involving exclusively 

mathematical topics from Grade 7. A standardized treatment effect of 𝑑 = .15 is considered 

meaningful, representing around one half of the expected annual growth in mathematics for 

Grade 6–7 in the German student population (Brunner, Stallasch, et al., 2023, Table 1). The 

team’s objective, therefore, is to sample enough 7th graders to detect 𝑀𝐷𝐸𝑆 = .15 at α = .05 

(two-tailed) with 1 − β = .80, where 𝑃T = .50. The minimum required sample size (𝑀𝑅𝑆𝑆) to

achieve this in an unconditional IRT design is 𝑁 = 504 students. Striving for parsimony and 

being aware of the potential virtue of covariate adjustment, the researchers plan to statistically 

control for IP. Before power analysis, they consult our flow chart (Figure 4): Since the IRT 

addresses the total population in lower secondary school and a specific grade and domain 

analyzed in our study, the team is guided to Table E2 (panel a) that lists the suitable empirically 

estimated single-level design parameters. Inserting 𝑅T|IP
2 = .53, the researchers find that the

𝑀𝑅𝑆𝑆 more than halves to 𝑁 = 237 when adjusting for IP. They then think about optimizing 

the design by additionally including either a reading CP or SC, where 𝑅T|IP+CP
2 = .56 and 

𝑅T|IP+SC
2 = .55. The 𝑀𝑅𝑆𝑆 further reduces to 𝑁 = 228 when combining IP with SC and to 𝑁 = 

225 when combining IP with CP. They decide to administer both a mathematics and reading 

test. The team wants to account for uncertainty in 𝑅T|IP+CP
2 . To this end, they determine the 

95% CI by means of 𝑆𝐸(𝑅T|IP+CP
2 ) = .01: the lower bound is calculated as .56 − 1.96 ∗ .01 = 

.54 and the upper bound as .56 + 1.96 ∗ .01 = .57, which leads to an 𝑀𝑅𝑆𝑆 range of 235 ≥ 𝑁 ≥ 

216. Consequently, when opting for a conservative approach and sampling 𝑁 = 235 students,

it is fairly certain that the IRT will be sensitive to uncover a (truly existing) treatment effect of 

𝑑 = .15 with IP and CP as covariates.  
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Figure 4. Flow Chart to Choose Design Parameters from Our Compilation in OSM E and F 

Note. OSM E is an interactive excel workbook that contains Tables E1–E7 listing empirically estimated single- 

and multilevel design parameters. OSM F is an interactive excel workbook that contains Tables F1–F7 listing 

meta-analytically integrated single- and multilevel design parameters. 

Multilevel Perspective. As a second step, the researchers aim to scrutinize the effectiveness of 

the full app in students’ usual school routine. They plan a large-scale 3L-CRT involving the 

complete spectrum of domains for Grades 5–10. 𝑑 = .11 is considered reasonable, 

approximating half of the average academic year-to-year growth observed across lower 

secondary school in Germany (Brunner, Stallasch, et al., 2023, Table 1). Due to logistical 

reasons, the total sample is restricted to a maximum of 𝐾 = 400 schools, with 𝑛L2 = 20 and

𝐽L3 = 3. The team’s primary concern, thus, is to achieve sufficient power (i.e., 1 − β ≥ .80) to

detect 𝑀𝐷𝐸𝑆 = .11 at α = .05 (two-tailed), where 𝑃L3 = .50. Since the 3L-CRT addresses the

total population in lower secondary school but neither a specific grade nor domain, our flow 

chart (Figure 4) directs them to Table F2 (panel c) that lists the suitable meta-analytically 

integrated three-level design parameters. Entering 𝑃𝑜𝑜𝑙𝑒𝑑 ρ values at L2/L3 of .05/.35 into 
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power analysis, the researchers learn that an unconditional 3L-CRT clearly undercuts the 

desired power rate (1 − β = .43). They wonder which covariates to use: given the limited 

testing time, assessing multiple IPs is not a viable option. Instead, controlling for either Gf or 

SC seems most feasible, with 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅2 values at L1/L2/L3 of .07/.16/.86 for Gf and

.04/.12/.77 for SC. Controlling for both Gf (1 − β = .98) and SC (1 − β = .92) leads to 

adequate power. However, when incorporating total design parameter heterogeneities (i.e., 

sampling error plus true variation) and adopting a (very) conservative approach by using the 

upper bounds of 95% PIs of ρL2 = .07 and ρL3 = .50 and the lower bounds of the 95% PIs of

𝑅L1|Gf
2 = .00, 𝑅L2|Gf

2 = .00, 𝑅L3|Gf
2 = .76, 𝑅L1|SC 

2 = .00, 𝑅L2|SC 
2 = .00, and 𝑅L3|SC 

2 = .56, only 

Gf (1 − β = .81) likely guarantees enough power, as opposed to SC (1 − β = .59). The team 

decides to collect students’ Gf scores. Finally, the researchers wish to evaluate the long-term 

effects of the app. Thus, a possible follow-up 3L-CRT of the same sample should still 

demonstrate adequate power. The suitable design parameters are 𝑃𝑜𝑜𝑙𝑒𝑑 ρL2 = .04,

𝑃𝑜𝑜𝑙𝑒𝑑 ρL3 = .38, and predicted values of 𝑅L1|Gf−2
2 = .01, 𝑅L2|Gf−2

2 = .22, 𝑅L3|Gf−2
2 = .82, as 

well as 𝑅L1|Gf−4
2 = .01, 𝑅L2|Gf−4

2 = .12, 𝑅L3|Gf−4
2 = .79. Assuming no attrition over time, the 

team calculates 1 − β = .95/.94 for a 2-/4-year lagged Gf. Consequently, even when 

reevaluating the app’s impact 4 years later, the 3L-CRT with Gf as a covariate will likely be 

adequately powered. 

Part II: Precision Simulations—Assessing Design Sensitivity via 

the 𝑴𝑫𝑬𝑺 

Method 

We briefly sketch the applied methods here (see OSM D for details). We used R 4.2.2 (R Core 

Team, 2022); package versions are noted in the R scripts. 

Procedure 

We adopted a hybrid Bayesian-classical approach to power analysis (Spiegelhalter et al., 2004, 

pp. 189–202; see also Pek & Park, 2019). To this end, we took advantage of the (joint) empirical 

distribution of single- and multilevel design parameters estimated in Stage 1 of Part I to simulate 

MDES distributions for small, medium, and large IRTs and CRTs. 
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Simulation Conditions. We established typical sample sizes of educational RTs by drawing 

on data of Lortie-Forgues and Inglis’ (2019)46 review. We computed normative distributions 

(i.e., percentiles P) across 𝐾 and categorized P10(𝐾) = 14 as small, P50(𝐾) = 46 as medium, 

and P90(𝐾) = 100 as large, where 𝑛L3 = 46. Sample sizes at L2 were not available; we assumed

𝐽L3 = 2, resulting in 𝑛L2 = 23. It followed that 𝑁 = 644/2116/4600 for small/medium/large

RTs.47 We assumed α = .05 (two-tailed), 1 − β = .80, and 𝑃T =  𝑃L3 = .50.

Expressing Uncertainty in Design Parameters. Random noise in ρ and 𝑅2 can be

incorporated into power analysis in a number of ways. One method is to enter the bounds of 

their (meta-analytic) 95% CIs/PIs, as we illustrated above in Part I (section “Application”). 

Here, we apply a hybrid technique that implicitly models uncertainty by following a Bayesian 

notion to treat ρ and 𝑅2 along with their 𝑆𝐸s as (informative) prior distributions, which are used

to perform Monte Carlo simulations within the frequentist framework (see e.g., Moerbeek & 

Teerenstra, 2016, pp. 211–213). Specifically, for each set of connected design parameters (e.g., 

in three-level designs, ρL2, ρL3, 𝑅L1
2 , 𝑅L2

2 , and 𝑅L3
2  for a certain outcome are interrelated) we

specified a multivariate normal distribution. The mean vector was represented by the point 

estimates of ρ and 𝑅2, the variances by their squared 𝑆𝐸s, and the covariances were derived

assuming an intercorrelation of 𝑟 = .90, as a conservative upper-bound guess of dependencies. 

Using the SimDesign package (Chalmers & Adkins, 2020), we then generated 100 draws from 

each multivariate design parameter prior distribution. 

Calculating the 𝑴𝑫𝑬𝑺. For each draw, we computed the 𝑀𝐷𝐸𝑆 based on Equations (2), (6), 

and (7) employing the PowerUpR package (Bulus et al., 2021). 

Gauging Sensitivity. For the variance-covariance matrices defined for the multivariate normal 

distributions, we ran sensitivity analyses over 𝑟 {0.00, 0.05, …, 0.95} to preclude a 

missspecification of ρ and 𝑅2 dependencies.

Results 

We present major patterns in 𝑀𝐷𝐸𝑆 distributions for small, medium, and large IRTs and CRTs 

(i.e., 3L-CRTs in Grades 1–10 and 2L-CRTs in Grades 11–12) for the total student population, 

as illustrated in Figure 5 (which we refer to in this section; see OSM D for result plots of school 

46  We thank the authors for providing this data. 
47  Note that Lortie-Forgues and Inglis (2019) reviewed large-scale RTs; thus, we refer to small, medium, and large 

IRTs and CRTs for interventions whose general effectiveness has already been empirically proven (e.g., via 

small-scale studies under well-controlled conditions in the lab) and which are now scaled up. 
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tracks and 2L-CRTs in Grades 1–10, and OSM G for the full data table of simulated design 

parameters along with their 𝑀𝐷𝐸𝑆 statistics). Generally, in all simulation conditions, we 

observed substantive variation in the 𝑀𝐷𝐸𝑆—between and within outcomes. Further, 𝑀𝐷𝐸𝑆 

distributions for small RTs tended to be more sensitive to design parameter uncertainties, and 

therefore appeared more broadly dispersed than those for large RTs. 

Covariate Types: Bandwidth-Fidelity 

Single-Level Perspective. In a medium IRT, 𝑀𝐷𝐸𝑆IRT = .12 (i.e., unconditional). Precision

was then moderately affected by the covariate types; the median 𝑀𝐷𝐸𝑆IRT|IP/CP/Gf/SC equaled

.10/.11/.12/.11 in elementary, .09/.10/.11/.11 in lower secondary, and .10/.11/.12/.12 in upper 

secondary school. Notably, percentage 𝑀𝐷𝐸𝑆 reduction for a certain covariate type remained 

constant across IRT sizes. Since precision is a positive function of sample size, absolute 𝑀𝐷𝐸𝑆 

shrinkage was stronger in small IRTs than in large IRTs; furthermore, covariate adjustment 

reached a point of diminishing returns when sample size increased. For instance, in elementary 

school, SC raised precision in an IRT with 𝑁 = 644 (𝑀𝐷𝐸𝑆IRT  = .22 vs. 𝑀𝑑𝑛(𝑀𝐷𝐸𝑆IRT|SC) =

.20) but not with 𝑁 = 4600 (𝑀𝐷𝐸𝑆IRT = 𝑀𝑑𝑛(𝑀𝐷𝐸𝑆IRT|SC) = .08).

Multilevel Perspective. In a medium CRT, median 𝑀𝐷𝐸𝑆CRT = .35/.53/.32 (i.e.,

unconditional) in elementary/lower secondary/upper secondary school. In lower secondary 

school, all covariate types strongly boosted median precision, first and foremost IP 

(𝑀𝐷𝐸𝑆3L−CRT|IP = .15), followed by CP (𝑀𝐷𝐸𝑆3L−CRT|CP = .20), but also Gf

(𝑀𝐷𝐸𝑆3L−CRT|Gf  = .25) and SC (𝑀𝐷𝐸𝑆3L−CRT|SC = .28). In upper secondary school, IP

markedly reduced the 𝑀𝐷𝐸𝑆2L−CRT to around .19, twice as much as CP/Gf/SC, which averaged

.26/.27/.26. In elementary school, particularly SC (𝑀𝐷𝐸𝑆3L−CRT|SC = .26), but also IP

(𝑀𝐷𝐸𝑆3L−CRT|IP = .27) and CP (𝑀𝐷𝐸𝑆3L−CRT|CP = .29), evoked reasonable average precision

improvements, while Gf performed more poorly (𝑀𝐷𝐸𝑆3L−CRT|Gf = .33). Proportionally, the

impact of the covariates strengthened somewhat with CRT size: For example, in elementary 

school, SC reduced the 𝑀𝐷𝐸𝑆 to about 24% in small CRTs (𝑀𝑑𝑛(𝑀𝐷𝐸𝑆3L−CRT) = .68 vs.

𝑀𝑑𝑛(𝑀𝐷𝐸𝑆3L−CRT|SC) = .52) and to 27% in large CRTs (𝑀𝑑𝑛(𝑀𝐷𝐸𝑆3L−CRT) = .24 vs.

𝑀𝑑𝑛(𝑀𝐷𝐸𝑆3L−CRT|SC) = .17). Meanwhile, as with the IRTs, absolute 𝑀𝐷𝐸𝑆 reductions were

still (far) more pronounced with 𝐾 = 14 than 𝐾 = 100. 
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Covariate Combinations: Incremental Validity 

Single-Level Perspective. In a medium IRT, the additional inclusion of CP diminished the 

𝑀𝐷𝐸𝑆 over and above IP, but only in elementary/lower secondary school 

(𝑀𝑑𝑛(𝑀𝐷𝐸𝑆IRT|IP+CP) = .09/.08). In these grade levels, no other combination resulted in

further improvements. In upper secondary school, only the complete covariate battery resulted 

in genuine precision benefits beyond IP alone (𝑀𝑑𝑛(𝑀𝐷𝐸𝑆IRT|IP+CP+Gf+SC) = .09).

Multilevel Perspective. In a medium CRT targeted at 1st–4th graders, adding CP to IP led to 

notable 𝑀𝐷𝐸𝑆 drops (𝑀𝑑𝑛(𝑀𝐷𝐸𝑆3L−CRT|IP+CP) = .25), but IP plus SC raised precision the

most (𝑀𝑑𝑛(𝑀𝐷𝐸𝑆3L−CRT|IP+SC) = .22), with no further gains through the full covariate array.

From Grade 5 on, we did not detect any improvements in the 𝑀𝐷𝐸𝑆 by pairing IP with CP or 

Gf; the addition of SC, alone or with CP and Gf, returned only miniscule 𝑀𝐷𝐸𝑆 declines 

averaging .14/.18 in lower/upper secondary school.  

Covariate Time Lags: Validity Degradation 

Single-Level Perspective. In a medium IRT, precision was slightly affected by temporal 

validity losses in IP (∆𝑀𝑑𝑛(𝑀𝐷𝐸𝑆IRT|IP) = +.02/+.01/+.01 from the shortest to the longest time

lag in elementary/lower secondary/upper secondary school), and in CP only after 7 years in 

upper secondary school (∆𝑀𝑑𝑛(𝑀𝐷𝐸𝑆IRT|CP−7) = +.01). Of note, precision was more prone to

validity deterioration in IP and CP in small rather than large IRTs (e.g., 𝑀𝑑𝑛(𝑀𝐷𝐸𝑆IRT|IP−2)=

.17/.07 and 𝑀𝑑𝑛(𝑀𝐷𝐸𝑆IRT|IP−7) = .19/.07 with 𝑁 = 644/4600 in upper secondary school). By

contrast, 𝑀𝐷𝐸𝑆IRT|Gf consistently remained highly stable.

Multilevel Perspective. In a medium CRT, median 𝑀𝐷𝐸𝑆CRT = .35/.54/.32 (i.e.,

unconditional) in elementary/lower secondary/upper secondary school. The 𝑀𝐷𝐸𝑆 somewhat 

fluctuated with growing pre-posttest time lags: when subtracting median values for the longest 

from the shortest time gaps, ∆𝑀𝐷𝐸𝑆CRT|IP  = +.02/+.03/+.01, ∆𝑀𝐷𝐸𝑆CRT|CP =

 −.06/+.01/±.00, and ∆𝑀𝐷𝐸𝑆CRT|Gf = −.05/+.02/±.00. As for IRTs, cross-time precision decay

appeared more pronounced in small rather than large CRTs (e.g., 𝑀𝑑𝑛(𝑀𝐷𝐸𝑆2L−CRT|IP−2) =

.45/.16 and 𝑀𝑑𝑛(𝑀𝐷𝐸𝑆2L−CRT|IP−7) = .48/.16 for 𝐾 = 14/100 in upper secondary school).
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Figure 5. 𝑀𝐷𝐸𝑆 Distributions for Small, Medium, and Large IRTs and CRTs 

Note. Figure 5a: Vertical lines show the unconditional (i.e., unadjusted) 𝑀𝐷𝐸𝑆IRT (by definition, only varying by

sample size) and 𝑀𝑑𝑛(𝑀𝐷𝐸𝑆CRT). Figure 5b: Lines connect 𝑀𝑑𝑛(𝑀𝐷𝐸𝑆) values of consecutive time lags; ribbons

depict interquartile ranges; for small/medium/large RTs, unconditional 𝑀𝑑𝑛(𝑀𝐷𝐸𝑆3L−CRT) = .68/.35/.24

(elementary school) and 1.05/.54/.36 (lower secondary school), 𝑀𝑑𝑛(𝑀𝐷𝐸𝑆2L−CRT) = .62/.32/.21 (upper

secondary school). In multilevel designs, 𝑛L2 = 23 and 𝐽L3 = 2 for 3L-CRTs (elementary and lower secondary

school), 𝑛L3 = 46 for 2L-CRTs (upper secondary school). On the axes, a filled/empty dot marks the in-/exclusion

of a covariate, where a numbered dot specifies the pre-posttest time lag in years. IP = Domain-identical pretest. 

CP = Cross-domain pretest (reading for STEM outcomes, mathematics for verbal outcomes). Gf = Fluid 

intelligence. SC = Sociodemographic characteristics (gender, migration background, socioeconomic status). 
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Discussion 

Worldwide, the prevalence of educational RTs has been growing sharply (Connolly et al., 2018; 

Raudenbush & Schwartz, 2020). Reliable knowledge on the effectiveness of programs and 

innovations to bolster student learning—the foundation of evidence-based policies and 

practices in education (Hedges, 2018)—requires both well-designed IRTs and CRTs that are 

sensitive to detect true intervention effects. Highly prognostic covariates are key elements of 

strong designs; yet, choosing them can be challenging and involves both theoretical and 

empirical considerations. Our study sought to expand substantive guidance to support informed 

covariate selection and power analysis for IRTs and CRTs on student achievement: Inspired by 

three psychometric heuristics (the bandwidth-fidelity dilemma, incremental validity concept, 

and validity degradation principle) and using representative longitudinal large-scale 

assessments from Germany, we analyzed unique, relative, and incremental covariate impacts 

on design sensitivity. Part I covered a wealth of (meta-analytically integrated) single- and 

multilevel design parameters and Part II covered a simulation study generating plausible 𝑀𝐷𝐸𝑆 

distributions for educational RTs. 

Expanding the Range of Designs 

We scrutinized covariates in IRTs as well as 2L- and 3L-CRTs. In doing so, our study is unique 

by covering a large array of the experimental designs implemented to determine the 

effectiveness of educational interventions (Connolly et al., 2018; Spybrook, Shi, et al., 2016). 

The first central message from our analyses is as follows: In IRTs, effects on design 

sensitivity through the covariates largely confirmed the psychometric heuristics; in CRTs, 

usually all of the covariates noticeably boosted design sensitivity, even long-term. From a 

single-level perspective, the higher the fidelity, the lower the bandwidth, and the shorter the 

pre-posttest time lag of a covariate, the better the variance explanation between individual 

students, and the greater the returns in design sensitivity. Thus, the psychometric heuristics are 

indeed useful to inform covariate choices in IRTs. From a multilevel perspective, however, 

relations are not always as straightforward. Fortunately, researchers have much more flexibility 

when choosing covariates for CRTs: all covariates under investigation, irrespective of their 

degree of bandwidth/fidelity and time gap to the outcome, markedly raised design sensitivity. 

This holds especially true throughout secondary school, where large proportions of between-

school differences could be captured by any covariate. This phenomenon, in which aggregated 

measures tend to correlate much more strongly than their individual-level equivalents, has been 
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described by scholars before (e.g., Bloom et al., 2007; Härnqvist et al., 1994; Robinson, 1950; 

Snijders & Bosker, 2012, pp. 25–26).  

Expanding the Range of Covariate Types, Combinations, and Time Lags 

Previous studies on covariate effects on design sensitivity have systematically analyzed 1- to 

3-year-lagged IP, the latest CP, as well as SC; the latter have been examined both uniquely and

beyond IP. We added Gf to the spectrum of covariate types, combined IP with CP or Gf as well 

as with CP plus Gf plus SC, and covered long pre-posttest time lags of up to 7 years. In doing 

so, we involve the most relevant precursors of students’ learning trajectories (e.g., M. C. Wang 

et al., 1993) and respond to the needs arising from the features of RTs implemented in education 

(e.g., Connolly et al., 2018; Lortie-Forgues & Inglis, 2019). 

The second central message from our analyses is as follows: Using the latest IP as the 

only single covariate demonstrated outstanding capacities to improve design sensitivity in both 

IRTs and CRTs. IP clearly outweighed all remaining covariate types, although its prognostic 

property was indeed often affected by temporal deterioration. This pattern of results replicated 

the pattern that we identified in our meta-analytic research review. However, as noted above, 

there may be scenarios that necessitate the switch to CP, Gf, or SC, even when assessed long 

before the target outcome, or that justify their additional inclusion. On a side note, the present 

values of 𝑅|CP/Gf/SC
2 may also serve as lower bound estimates when pre-posttest content 

alignment is less than perfect (Bloom et al., 2007, p. 41). The effectiveness of CP, Gf, and SC 

to tweak design sensitivity depended on several factors, first and foremost the grade level. 

Controlling for CP or Gf was a reasonable (alternative) strategy for RTs implemented in lower 

secondary school. Of importance, Gf appeared to be an exceptionally time-stable predictor, 

even across numerous years and irrespective of the design. Thus, the idea that Gf may serve as 

a robust covariate in RTs spanning several years—supported by existing single-level 

evidence—was generalized to multilevel settings in the present study for the first time. SC, in 

contrast, performed well as covariates particularly in elementary school, and occasionally also 

in upper secondary school. Incremental returns of CP, Gf, and/or SC over and above IP were 

often negligible, largely consonant with previous studies. As an exception, additionally taking 

into account SC in CRTs with 1st–4th graders seems to be a relatively safe option to boost 

design sensitivity. Consequently, researchers should always take into account the cost-

effectiveness of covariates beyond IP, with regard to the specific application context.  
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Expanding the Range of Outcome Domains 

The bulk of available resources of design parameters to guide covariate choices focus on core 

domains, namely mathematics and science as STEM outcomes, and reading as a verbal 

outcome. We further complemented the STEM outcomes by ICT and the verbal outcomes by 

grammar, spelling, vocabulary, and writing. In doing so, we acknowledge that RTs often seek 

to enhance skills in domains beyond the core domains (Lortie-Forgues & Inglis, 2019; 

Morrison, 2020, pp. 123–124). 

The third central message from our analyses is as follows: Impacts of the covariates on 

design sensitivity varied widely between achievement outcomes. For almost all covariates, we 

observed large heterogeneities in the amounts of explained variance across domains (and, if 

applicable, samples). Heterogeneity was mostly due to true variation at the level of effect sizes. 

This observation coincides with the findings of past studies (see also Brunner et al., 2018; 

Stallasch et al., 2021). Likewise, our simulations emphasize that 𝑀𝐷𝐸𝑆 distributions were 

considerably dispersed; benefits in precision also strongly hinged on the outcome. Hence, 

researchers should always strive for an ideal fit between design parameters and the 

intervention’s target outcome. Yet, circumstances may limit this endeavor, such as the 

unavailability of suitable estimates for a specific domain. Here, our meta-analytic results may 

inform researchers of possible design parameter ranges and can be used in power analysis to 

determine expected lower and upper bounds of sample sizes, power rates, or 𝑀𝐷𝐸𝑆 values. 

Expanding the Range of National Scopes 

Most evidence on sensitivity-enhancing covariate effects is restricted to the United States. We 

accumulated design parameters drawing on longitudinal large-scale assessment data from six 

German samples covering the entire school career (i.e., Grades 1–12) of the total student 

population, as well as the student populations in the academic and non-academic tracks. In 

doing so, we meet the demands of a vast number of RTs that are conducted in countries where 

the school system more closely resembles the German system (e.g., with respect to the onset of 

school type tracking; Connolly et al., 2018).   

The fourth central message from our analyses is as follows: The covariates’ capabilities 

to raise design sensitivity cannot be universally generalized across national education contexts. 

We found notable differences in multilevel design parameters based on data from German vs. 

U.S. samples. With the former, explained variances at L3 often appeared more pronounced 

throughout secondary school, and vice versa at L2. This might be due to the fact that in the 

tracked German secondary school system, ρL3 tend to be larger and ρL2 tend to be smaller than 
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previously reported in the United States (see Stallasch et al., 2021). Similar patterns in 

multilevel design parameters by country have also been documented in cross-national works 

(Brunner et al., 2018; Kelcey et al., 2016). It is therefore of utmost importance that researchers 

rely on variance estimates that best depict the characteristics of the interventions’ target 

population.  

Essentials of Covariate Adjustment in RTs on Student Achievement at a 

Glance 

Our analyses imply the following general recommendations on covariate inclusion in IRTs and 

CRTs on student achievement in the German (and similar) school context. 

1. A pretest should substantively match the RT’s target outcome as closely as possible.

Thus, a pretest in the outcome domain may be favorable over one in another domain.

2. A pretest should have high fidelity/low bandwidth rather than low fidelity/high

bandwidth. Thus, a domain-specific pretest may be preferable to a domain-general one.

3. A pretest in fluid intelligence may be considered in—especially long-term—RTs

implemented in lower secondary school (i.e., Grades 5–10).

4. Sociodemographic measures may be considered in RTs implemented in elementary

school (i.e., Grades 1–4).

5. If a pretest in the outcome domain is available, additional covariates should be avoided,

except for point 4.

6. In IRTs, a pretest in the outcome domain should be granted priority, in spite of its

potential temporal validity degradation. In CRTs—especially implemented in secondary

school (i.e., Grades 5–12)—cost issues should be brought to the fore, as any covariate

may be beneficial.

7. Uncertainty in the design parameters should be taken into account, for example via

(meta-analytic) 95% CIs/PIs or simulations based on empirical prior distributions.

In addition, we urge researchers planning RTs to keep the following factors in mind: 

8. In small RTs, covariate adjustment comes with two threats: (a) Every covariate at the

top hierarchical level costs 1 𝑑𝑓 (and 𝑑𝑓 ∝ 𝑀𝐷𝐸𝑆−1); so, too many covariates are

detrimental (Liu, 2011; Moerbeek & Teerenstra, 2016, p. 85). (b) The likelihood of

violating covariate-treatment orthogonality is amplified (Konstantopoulos, 2012;

Moerbeek & Teerenstra, 2016, p. 83). Risk (b) may be compensated through further

balancing methods (e.g., minimization, matching, stratification; Moerbeek &

Teerenstra, 2016, pp. 87–90), albeit, in turn, thwarting the attempt to prevent risk (a).
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9. Reliable covariates (i.e., with low measurement error), and in CRTs, aggregated L1

covariates that demonstrate large ρ values at the implementation level of the

intervention, are advantageous. Thus, in case of newly-developed covariate measures

for the RT, it may be worthwhile to add items to improve score reliability or to use pilot

data of ρ estimates for each item to construct multi-item scales that optimize between-

group differentiation (Bliese et al., 2019).

10. Participant attrition during RT implementation hampers the prognostic properties of

covariates (Rickles et al., 2018). Hence, planning RTs as conservatively as possible

given available financial and personnel resources may be reasonable.

Limitations 

Our work has several shortcomings. First, this study’s output is most relevant to RTs whose 

target populations and outcomes are similar to those analyzed here. More precisely, our results 

ideally apply to the German school context, but may still be valuable for RTs conducted in other 

school systems characterized by early performance-based tracking such as Austria, Czech 

Republic, Hungary, Slovak Republic, and Turkey (Salchegger, 2016). Further, our findings 

optimally match measures resembling those used in NEPS, PISA, or DESI. Caution is 

warranted when designing RTs relying on (substantively) divergent measures. Second, our 

selection of covariates was oriented towards a theoretical and empirical rationale. Nevertheless, 

as noteworthy amounts of variance remained unexplained for many outcomes, further 

individual- or group-level attributes (e.g., motivation or instruction quality; Haertel et al., 1983; 

Levy et al., 2023) might also function as profitable covariates. Third, we used reasoning ability 

as assessed by standard figural matrices as our measure of fluid intelligence. Fluid intelligence, 

however, is a multifaceted construct that encompasses—besides reasoning as one integral 

component—various further abilities such as perception speed, accuracy, and problem solving 

(e.g., Baltes et al., 1999; Cattell, 1987; see also Brunner et al., 2014). Therefore, 𝑅|Gf
2  values

should be interpreted as lower-bound estimates and would possibly have been stronger with a 

broader spectrum of subtests. Fourth, the applicability of our results may suffer from range 

restriction (Miciak et al., 2016). Although we offered design parameters specific to the 

academic and non-academic track (differing in students’ mean achievement), they may be 

inappropriate to plan RTs exclusively targeted at low-performers. 
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Conclusion 

Inspired by psychometric heuristics and capitalizing on representative data from several 

German longitudinal large-scale assessments, we substantively expanded the body of 

knowledge on covariate impacts to improve design sensitivity in IRTs and CRTs on student 

achievement. Our study bundles an extensive compilation of (meta-analytic) single- and 

multilevel design parameters with a precision simulation study implicitly incorporating 

uncertainty adopting a Bayesian rationale. Our work is enriched by illustrative and empirically-

supported application guidance and comprehensive OSMs. We hope that these resources 

support evaluation researchers in making wise covariate selections when planning educational 

experiments to gather sound evidence on what works to advance student learning. 
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4.1 Compendia and Guidance for Power Analysis: 

Contributions, Key Results, and Design Implications 

Stakeholders in education policy, practice, and research worldwide committed in prioritizing 

evidence-based reform to improve schooling (e.g., OECD, 2007; Pellegrini & Vivanet, 2021; 

Slavin et al., 2021). This also holds for Germany (BMBF, 2018; KMK, 2016). Building useable 

evidence on what works to shape learning trajectories presupposes strong RTs that are sensitive 

(i.e., sufficiently powered and precise) to draw valid inferences on the effectiveness of 

educational innovations, products, and services. Crucially, if—and only if—RTs are well-

designed, they can become indispensable methodological tools for generating empirical 

evidence to develop and refine theory, practice, and policies.  

Thus, the overarching goal of the present doctoral thesis was to support the evolution of 

rigorous RT designs in the German (and similar) school context through the analysis of design 

parameters for student achievement. In doing so, this thesis developed reliable and versatile 

compendia and guidance to tweak power analysis.  

For decades leading experts have been stressing that the estimates informing power 

analysis should optimally reflect the realities around the target RT: its population and outcome, 

applied covariates, and the concrete design as well as planned analysis (e.g., Bloom et al., 2007; 

Brunner et al., 2018; M. Campbell et al., 2000; Cohen, 1988; Hedges & Hedberg, 2007; Lipsey 

et al., 2012; Murray, 1998; Schochet, 2008; Spybrook, Westine, et al., 2016; Zhang et al., 2023). 

At the same time, ρ and 𝑅2 can only lead to locally optimal designs (Moerbeek & Teerenstra,

2016, p. 203). Quantifying their (random and true) variation is consequently also of utmost 

relevance (e.g., Donner & Klar, 2000; Hedges et al., 2012; Jacob et al., 2010; Turner et al., 

2004). However, as the research reviews in the preceding chapters showed (see Figure 7 in 

Chapter 1, Figure 1 in Chapter 2, and Figure 2 in Chapter 3), most existing design parameters 

for student achievement are limited to (1) the United States, (2) core outcome domains 

(mathematics, reading, science), (3) few selected sets of covariate types (domain-specific 

pretests and sociodemographics), combinations, and short time lags (1 to 3 years) as well 

lacking theoretical and empirical justification, (4) 2L-CRTs, (5) manifest analysis models, and 

(6) rarely report uncertainty and heterogeneity estimates (e.g., standard errors, meta-analytic

CIs/PIs). 

To address these gaps, I realized two complementary studies. In juxtaposition to Figure 

7 in Chapter 1, Figure 1 visualizes how the present thesis contributes to the current knowledge 

base on design parameters for student achievement by summarizing the joint output of Study I 
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and II: Taken together, the studies bundle (meta-analytically integrated) design parameters for 

(1) four German student (sub)populations across Grades 1 to 12; (2) 21 achievement

(sub)domains; (3) 11 covariate sets of varying types, combinations, and times lags, provided 

with concrete guidelines; (4) six RT designs, (5) manifest and latent analysis models, and (6) 

corresponding standard errors and (meta-analytic) CIs/PIs. These resources are complemented 

by a precision simulation study, a plethora of illustrative application examples as well as flow 

charts guiding the choice of appropriate design parameters.  

Figure 1. Overview on the Contributions of the Present Doctoral Thesis 

Note. The color code corresponds to the median ρ or (Δ)𝑅2 value. The number in a bubble counts the achievement 

(sub)domains analyzed. Outer triangles map the 𝑅2 value (absolute) for a combination, inner triangles map the 

Δ𝑅2 value (increment) for a covariate over and above a domain-identical pretest. On the x-axis, a filled/empty dot 

marks the in-/exclusion of a covariate, where a numbered dot specifies the pre-posttest time lag in years. LA = ρ 

and/or 𝑅2 values are also suitable for a latent variable modeling target analysis of the treatment effect. SE = 

Standard errors and meta-analytic 95% confidence and prediction intervals of ρ and/or 𝑅2 were reported. DEU = 

Germany (ISO 3166-1 ALPHA-3 classification). IP = Domain-identical pretest. CP = Cross-domain pretest 

(reading for STEM [i.e., mathematical-scientific] outcomes, mathematics for verbal outcomes). Gf = Fluid 

intelligence pretest. SC = Sociodemographic characteristics (gender, migration background, socioeconomic 

status). 

The remainder of this chapter is organized as follows. Alongside the six major 

dimensions in which crucial research gaps have been identified and that are addressed in this 

dissertation, Section 4.1 presents the concrete contributing features broken down by Study I 

and II, puts the spotlight on respective key results and situates them in the existing body of 

research, as well as elaborates on important implications for the design of RTs.48 Section 4.2 

reflects on further vital challenges that educational researchers and psychologists face when 

planning RTs that seek to inform evidence-based education. Section 4.3 outlines strengths and 

48  Throughout Section 4.1, I refer to ρ and 𝑅2 estimates as obtained from three-level models in Grades 1 to 10 and 

two-level models in Grades 11 to 12 for the total student population, unless otherwise stated. 
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limitations of the present thesis, and highlights directions for future research. Section 4.4 closes 

the present doctoral thesis by formulating some final concluding remarks.  

4.1.1 Design Parameters Tailored to the German School Context 

German Student Populations as a Whole and Within School Tracks Across the School Career 

Although cross-country research suggests that design parameters are not unambiguously 

interchangeable across nations (e.g., Brunner et al., 2018; Kelcey et al., 2016), previous ρ and 

𝑅2 collections devoted to inform power analysis for RTs on student achievement show a clear

dysbalance in the target populations, in favor of the U.S. student population. In particular, 

reliable ρ and 𝑅2 values for 1st to 12th graders in German schools have not yet been

systematically accumulated.  

Studies I and II in the present dissertation used nationally representative, longitudinal 

data from three central large-scale assessments (NEPS, PISA, DESI) to analyze design 

parameters for four (sub)populations across elementary (Grades 1 to 4), lower secondary 

(Grades 5 to 10), and upper secondary (Grades 11 to 12) school in the German school context. 

Study I drew on five samples (starting cohorts 2, 3, 4 from NEPS, the follow-up of the 2003 

PISA cycle, DESI). In Study II, a systematic database search was carried out to (meta-

analytically) integrate empirically estimated ρ and 𝑅2 values from the six available national

probability samples (samples used in Study I plus the follow-up of the 2012 PISA cycle) which 

were suitable to study design parameters in Grades 1 to 12. Both studies purposefully took core 

features of the German school system (e.g., early onset of ability-based school type tracking) 

into account, by covering not only the total German student population as a whole, but also the 

subpopulations in the academic (i.e., “Gymnasium”) and non-academic track. In Study I, I 

additionally adjusted the ICCs and explained variances for mean-level achievement differences 

between the various school types offered in German secondary education to support RT design 

with the populations of students attending specific school types within the non-academic track. 

In the following, I briefly discuss key results and implications for RT design with regard to the 

ICCs; the coverage of the explained variances is embedded in Section 4.1.3. 
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Key Results 

Total Population: Between-School Achievement Differences Outweighed Between-

Classroom Achievement Differences, Following a Non-Linear Trend Across the School 

Career. For the total German student population (i.e., analyzed as a whole), ρL3 clearly 

surpassed ρL2 in magnitude—irrespective of the grade level and the achievement domain. In 

concrete terms: The combined results from Studies I and II, across all 86 outcomes, indicated 

that typically between 14% and 37% of the total variance in student achievement was located 

at the school level, but only around 3% to 6% at the classroom level (see Figure 1).  

Whereas ρL2 remained fairly robust throughout the entire school career, ρL3 hinged on 

the grade level. Specifically, Study I revealed that between-school achievement differences 

emerged considerably smaller in elementary (𝑀𝑑𝑛(ρL3) = .11) than secondary school 

(𝑀𝑑𝑛(ρL3) = .35; see Table 3 in Chapter 2). This pattern of results widely mirrors those 

previously documented for Germany (e.g., Haag & Roppelt, 2012; Knigge & Köller, 2010; see 

Figure 8 in Chapter 1 and Table 1 in Chapter 2). At the same time, it stands in stark contrast to 

the conclusions drawn from the three-level variance decompositions based on U.S. secondary 

school samples, where ρL2 usually outweighed ρL3 (Xu & Nichols, 2010; Zhu et al., 2012). 

The meta-analytic integration from Study II further clarified the picture in secondary 

school: the large ICCs at L3 were mainly driven by variation between lower rather than upper 

secondary schools. Indeed, ρL3 for 5th to 10th graders emerged three times larger than ρL3 for 

11th to 12th graders. This marked difference may reflect the generally more homogenous 

composition of the student body in upper secondary school where permeability is usually 

granted only for higher performing students. Moreover, especially the German lower secondary 

school system is characterized by an extensive tracking occurring at L3 via the establishment 

of various school types that cater to students with different ability levels. This kind of tracking 

induces further variation between schools.  

On International Trial: German L3 ICCs as Outliers? The observed discrepancies 

between the German and the U.S. ICCs align well with the findings from international research 

suggesting considerable cross-country heterogeneity in ρL3 (e.g., Brunner et al., 2018; 

Zopluoglu, 2012). Although achievement differences attributed to schools emerged strikingly 

large in Germany when compared to their equivalents registered for the United States, they still 

lay well below the international average (e.g., 40% in Brunner et al., 2018). Hence, in 

international comparison, the German ICCs at L3 are no exception. The specificity of design 

parameters by country may first and foremost point to differences in the structure and the 
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characteristics of the school systems such as the rationale for (e.g., ability-based, interest-based) 

or the onset and degree of tracking (Reichelt et al., 2019; Salchegger, 2016).  

Subpopulations by School Track and Adjustments by School Type: Between-School 

Achievement Differences Appeared More Pronounced in the Non-Academic Track Than 

in the Academic Track and Could Largely Be Captured by Differences Between School 

Types. German secondary education pursues extensive school type tracking—like in many 

other countries (Reichelt et al., 2019; Salchegger, 2016). The analyses conducted separately by 

school track in Grades 5 to 12 revealed considerable deviations for ρL2 and ρL3. Study I suggests

that within the academic track, ρL3 practically converged with ρL2 at a low level. In contrast,

within the non-academic track, the share of total variation at L3 was still far more pronounced 

than at L2. The meta-analytic results from Study II largely substantiate these findings. Recall 

that all school types except the most demanding “Gymnasium” were subsumed under the non-

academic track. Thus, its higher L3 ICCs may to a certain degree depict remaining variation 

between the various less demanding school types.  

This idea is supported by the fact that ρL3 dramatically dropped when students’ mean

achievement within the (up to) five major school types in German secondary education had 

been taken into account: As Study I showed, school types removed around two thirds of the 

unconditional variance at L3. The tendency was even slightly increasing in the course of lower 

secondary school. This is a well-studied phenomenon pointing to so-called differential learning 

and developmental environments by school type structurally created through the early onset of 

performance-based tracking in Germany (Baumert et al., 2003, 2006; Maaz et al., 2008): 

students within the same school type are (intendedly) more similar in their proficiency level 

than students between distinct school types; and these between-school-type differences have 

been proven to manifest throughout educational trajectories (Baumert et al., 2003), in the vein 

of a Matthew effect (see e.g., Baumert et al., 2012; Ceci & Papierno, 2005). On a side note, 

median fractions of between-classroom differences equaled 6%, and thus, remained virtually 

unaffected by the adjustments (see Table 3 in Chapter 2). 

Implications for RT Design 

First, the school system in Germany differs markedly from those in other countries, and so do 

its ICCs. Thus, borrowing those estimates from, for instance, the United States will most likely 

lead to severely flawed power analysis.   

Second, as stressed in Section 1.4.4, the variance component at the top hierarchical (i.e., 

school) level (together with its corresponding sample size) predominates power and precision 



162 |   GENERAL DISCUSSION 

in any of the multilevel RT designs considered: All else being equal, the larger ρL3, the greater

the efficiency loss in a multilevel RT (as compared to a single-level IRT). Hence, given the 

pronounced achievement differences between (especially lower secondary) German schools, it 

may be wise in RT design to give precedence to considerations on strategies that may cushion 

the respective detrimental effects (e.g., blocking, matching, stratification, or—ideally—

covariate adjustment; Moerbeek & Teerenstra, 2016; Raudenbush et al., 2007). 

Third, German secondary school types are associated with different aspiration levels. 

Since academic track students in the German “Gymnasium” represent a comparatively 

homogenous subpopulation (in particular with respect to their academic ability), researchers 

will find that it is easier to achieve adequate design sensitivity in RTs with this student body as 

opposed to that in the non-academic track; at least provided the absence of covariates: Of 

importance, greater homogeneity may also be associated with a loss of covariate performance, 

as the respective outcomes should demonstrate increased balance with respect to potential 

predictive factors (see Hedges & Hedberg, 2007). Therefore, strong covariates may even offset 

the expected differences in power and precision between RTs implemented within these two 

school tracks. 

Fourth, the adjusted ρ values may be especially helpful when planning RTs to be run in 

a specific school type within the non-academic track as they correct for the heterogeneity 

engendered by achievement differences between the various school types. However, 

researchers should understand these values as a kind of school type average, which may not 

perfectly reflect the state of affairs in a specific school type of the non-academic track: Since 

they involve the adjustment for the academic track, they tend to underestimate ρL3. Here,

sensitivity analyses using the corresponding normative distributions across design parameters 

from Study I should be performed.  

In sum, this work once again demonstrates the limited generalizability of ρ estimates across 

national contexts (e.g., Brunner et al., 2018). It even testifies that ρL3 values are not universally

applicable in each of the various subpopulations as defined by grade and performance level. 

Hence, the present findings can be interpreted as another confirmation that variance estimates 

used for power analysis should accurately match the RT’s target (sub)population. For this 

purpose, the present dissertation provides novel design parameters for the German student 

population as a whole, in the academic, and (a specific school type of the) non-academic track 

across Grades 1 to 12.  



Compendia and Guidance for Power Analysis   | 163 

4.1.2 Design Parameters Matched to a Wide Array of Outcome Domains 

Mathematical-Scientific, Verbal, and Domain-General Skills 

Given the demands presented to student learning in the 21st century (OECD, 2018), many 

relevant target outcome domains beyond the core subjects (mathematics, reading, and at best 

also science) are severely underrepresented in existing compilations of ICCs and explained 

variances to be employed in the design of RTs on student achievement. 

Studies I and II significantly enlarged this spectrum. Study I is special in amassing 

design parameters for 21 different subdomains (apart from the core domains, many verbal skills 

in German as first language and English as foreign language, multifarious domain-general 

outcomes such as declarative metacognition or problem solving), easily accessible in lucid 

interactive Excel worksheets. An important contribution of Study II is the meta-analytic 

integration of ρ and 𝑅2 across eight STEM49 and German verbal domains to inform power

analysis for RTs that target multiple and/or not covered target outcomes (and grades). In the 

following, I shortly recapitulate key results and RT design implications with regard to the ICCs, 

the explained variances will be separately discussed in Section 4.1.3.   

Key Results 

Between-School and—Albeit to a Smaller Degree—Between-Classroom Achievement 

Differences Emerged Strictly Domain-Specific. Studies I and II returned that values of ρL2

and ρL3 clearly differed by achievement domain. Three aspects should be recorded: (a) ρL3

showed larger variation across domains than ρL2. (b) The shares of the total variance in student

achievement that could be attributed to differences between schools were typically most 

pronounced for verbal skills in English and the least pronounced for domain-general skills. (c) 

The median shares that could be attributed to differences between classrooms also maximized 

for English, but did, apart from that, not vary in a noteworthy manner across the remaining 

domains. These findings corroborate former research in Germany (e.g., Knigge & Köller, 2010; 

see Figure 8 in Chapter 1 and Table 1 in Chapter 2), in the United States (e.g., Westine et al., 

2013), as well as at an international level (e.g., Brunner et al., 2018).  

Domain-Specific Skill Acquisition Requires Domain-Specific Learning 

Opportunities. The acquisition of domain-specific skills basically hinges on the availability of 

suitable learning opportunities with tasks tailored to the specific domain in question (Baumert 

49  Recall that the term STEM subsumes domains of science/technology/engineering/mathematics. 
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et al., 2009). Hence, the variability in the magnitudes of the ICCs by achievement domain may 

depict differences in the schools’ effectiveness in teaching certain subjects (e.g., due to 

differences in didactic approaches, instructional quality, or the processes determining the 

composition of the student and teacher body; see Snijders & Bosker, 2012, p. 35) or their 

prioritization of certain subjects over others (e.g., due to differences in school policies or 

curricula, as is the case for schools with a special focus on a certain domain such as schools 

with an emphasis on mathematics and science or schools with an emphasis on languages).   

Implications for RT Design  

First, researchers who clearly define a specific target outcome domain for their planned RT 

should use the best possible matching input variance estimates in power analysis that are 

available. Specifically, when designing RTs aimed at fostering students’ foreign language skills 

in English with samples from Germany, evaluators should anticipate that the respective 

between-classroom and between-school achievement differences can be pronounced as 

compared to those in other domains.  

Second, when the prospective RT targets multiple domains, it may be promising to 

conduct sensitivity power analysis. To establish plausible ranges of required sample sizes, 

power or precision rates, the normative design parameter distributions offered in Study I or the 

meta-analytic integrations accumulated in Study II may be of high practical value.  

 

Overall, the present results coincide with former works in emphasizing that ICCs do also not 

generalize well across achievement domains (e.g., Brunner et al., 2018; Westine et al., 2013). 

Responding to this circumstance, this thesis considerably widens the range of potential target 

outcome domains by compiling multifarious (normatively and meta-analytically summarized) 

design parameters for mathematical-scientific, verbal, and domain-general contents.  

4.1.3 Design Parameters and Guidelines for Covariate Adjustment 

Various Covariate Types (Including Fluid Intelligence), Combinations, and Time Lags, with 

Selection Guidelines Based on Psychometric Heuristics 

Experts and agencies have repeatedly highlighted that covariate decisions should be based on 

both theoretical and empirical considerations, and should ideally be preregistered (e.g., Cook, 

2005; EMA, 1998, 2015; Raab et al., 2000). Yet, past research on design parameters for student 

achievement shows crucial gaps concerning the coverage and the selection guidance of target 

covariates. If at all, (joint) explained variances and precision-enhancing impacts were 
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quantified for domain-identical pretests, sociodemographic characteristics, and occasionally 

also cross-domain pretests. Importantly, existing works made generally no attempt to ground 

the choice of covariates and their hypothesized unique, incremental, and relative effects on 

theoretical and empirical considerations.  

Study I accumulated 𝑅2 values for the previously most often applied covariate sets

(domain-identical pretests, sociodemographics, the combination of both) to replicate the former 

results for the German school context. Study II is the first that suggests deriving predictions on 

the unique, incremental, and relative covariate effects from influential psychometric heuristics. 

In doing so, I studied a large battery of 11 distinct covariate sets: (a) covariate types (domain-

identical, cross-domain, fluid intelligence pretests, sociodemographics) as embedded in the 

bandwidth-fidelity dilemma theory (Cronbach & Gleser, 1957), (b) their combinations as 

embedded in the validity degradation concept (Sechrest, 1963), and (c) varying time lags (1 to 

7 years) for the cognitive covariates as embedded in the validity degradation principle (Ghiselli, 

1956; Humphreys, 1960). To evaluate how precision is actually affected by the various 

covariates, I carried out simulations which followed a hybrid Bayesian-classical approach to 

power analysis. The meta-analytically integrated results were finally used to formulate so far 

unique empirically supported guidelines on covariate selection when planning RTs on student 

achievement.   

Key Results 

Fidelity Covariates, Especially When Assessed in the Target Outcome Domain, 

Outperformed Bandwidth Covariates in Explaining Achievement Differences. Study II 

provides strong evidence that covariates should psychometrically and conceptually be well-

aligned to the RT’s target outcome in order to optimize design sensitivity. Specifically, in line 

with the theoretical predictions implied by the bandwidth-fidelity dilemma (Cronbach & 

Gleser, 1957), a narrowly measured domain-identical pretest that faithfully maps the 

substantive peculiarities of the outcome (Ackerman & Lohman, 2006; Hogan & Roberts, 1996; 

Salgado, 2017) raised precision most in an RT which addresses achievement in a specific 

domain. For example, when predicting reading achievement, a fidelity baseline measure of 

previous reading skills appeared generally superior to any divergent fidelity variable capturing 

antecedent cross-domain performance, or to bandwidth measures on fluid intelligence or 

sociodemographics. 

Overall, the predominance of a domain-identical pretest over another domain-specific 

fidelity covariate or domain-general bandwidth covariates was proven robust across German 



166 |   GENERAL DISCUSSION 

student (sub)populations, grade levels, achievement domains, as well as RT designs, and 

hierarchical levels. Consequently, Study II connects to a well-documented finding (e.g., Bloom 

et al., 2007; Hedges & Hedberg, 2013; Spybrook, Westine, et al., 2016; see Figure 7 in Chapter 

1), expanding it to the German school context. Of note, these observations not only substantiate 

the bandwidth-fidelity heuristic but may also empirically support related theories such as the 

specificity-matching principle (Swann et al., 2007) or the well-known Brunswik summetry 

(Wittmann, 1988, 2011; Wittmann & Süß, 1999) which has also been explicitly discussed under 

an experimental lens. All these mentioned paradigms amalgamate in the common gist that 

maximal predictive validity necessitates the psychometric and conceptual harmonization of 

outcome and covariate. 

 

The Incremental Validity of Additional Covariates Over and Above a Pretest in the 

Target Outcome Domain Tended to Be Small. Generally spoken, the present doctoral thesis 

provides little support for noteworthy incremental benefits in power and precision when 

accounting for additional covariates over and above a domain-identical pretest: Study I mostly 

documented rather small incremental returns in the empirical estimates of 𝑅2, and Study II 

undergirds this pattern of results via both meta-analytic 𝑅2 as well as simulated 𝑀𝐷𝐸𝑆 values. 

Thus, our findings largely mirror the state of knowledge on this topic (e.g., Hedges & Hedberg, 

2007; Jacob et al., 2010; Xu & Nichols, 2010; see Figure 7 in Chapter 1). It seems reasonable 

to interpret the observed low incremental validities of cross-domain pretests and the usually 

high-dimensional fluid intelligence pretests as a reflection of their substantial intercorrelation 

with domain-identical pretests (Baumert et al., 2009; Cattell, 1987; Jensen, 1993; Neisser et al., 

1996).50  

The models involving the array of sociodemographics or the full battery of covariates 

were associated with the largest yields in 𝑅2, first and foremost in multilevel designs at L2, but 

also at L3, and especially in elementary school. These observations are congruent with the 

expectations derived from the incremental validity concept (Sechrest, 1963; see also Haynes & 

Lench, 2003; Hunsley & Meyer, 2003), which may rationalize the ubiquitous, though often not 

questioned assumption that in RTs, additional outcome-related covariates beyond known 

prognostic factors (such as a baseline measure of the outcome itself) should incrementally add 

to the prediction of the outcome, and thus, incrementally increase design sensitivity (e.g., 

Bloom et al., 2007; Kahan et al., 2014; Tafti & Shmueli, 2020).  

                                                 
50  Note that if the assumption of covariate-treatment orthogonality in RTs holds, any potential detrimental impacts 

on the estimation of the treatment effect through (multi)collinearity could theoretically be ruled out.  
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Importantly, even when non-negligible, the observed increments did (apart from minor 

exceptions) barely translate into substantial precision improvements when simulating power 

analysis in Study II. Perhaps, this can partly be explained by the fact that the RT sample sizes 

were rather large in all simulation conditions (as covariate effects tend to be stronger in small-

sized RTs); however, the assumed RT sizes mimic the empirical state of affairs for extant 

educational large-scale RTs (see Lortie-Forgues & Inglis, 2019). Nevertheless, there was 

considerable heterogeneity among simulated 𝑀𝐷𝐸𝑆 values. Occasionally, incremental 

validities of additional covariates were indeed strikingly large, depending on the 

(sub)population, grade level, achievement domain, and in multilevel designs also on the 

hierarchical level. Due to the lack of substantive benchmarks for these increments and given 

their strict connection to a specific design and research context, any judgements on their actual 

practical significance for study design must remain conditional, and thus, are difficult to 

generalize to a broader application scope (Hunsley & Meyer, 2003). 

Why “The More, the Better” Still Often Holds. Against the background of the results 

just discussed, it might seem far-fetched that it is common practice in effectiveness research to 

collect as much auxiliary information on the studied sample as financially, logistically, and 

ethically feasible (Balzer et al., 2023; Lin, 2013; Wright et al., 2015). The charm of having 

multifarious covariates is actually intelligible in that covariates fulfill (at least) a triple function 

in RTs. Apart from their potential value in raising the sensitivity to detect a (true) treatment 

effect by eliminating variation in the target outcome (e.g., Kahan et al., 2014; Raudenbush, 

1997; Shadish et al., 2002), covariates have two further important advantages: They help to 

inform on the population to which the RT’s findings may be generalized by creating the setup 

to report on the key characteristics of the sample based on which inferences on intervention 

effectiveness shall be drawn (Bausell & Li, 2002). Moreover, covariates often serve as 

mediators when exploring operating mechanisms of treatment effects (Kelcey et al., 2021; 

Lynch et al., 2008), as moderators when investigating variation in these treatment effects (Dong 

et al., 2021, 2023), or as blocking factors (Bausell & Li, 2002).  

Validity Degradation Was Most Pronounced for a Pretest in the Outcome Domain and 

the Least Pronounced for a Pretest in Fluid Intelligence. Study II produced mixed findings 

on a potential validity degradation of cognitive covariates. The prognostic properties of domain-

identical pretests emerged the most negatively affected from developmental dynamics across 

time, often showing a clear—albeit still relatively mild—simplex time series pattern 

(Humphreys, 1960). In its essence, this pattern of results buttress the validity degradation 

principle (Ghiselli, 1956; Humphreys, 1960), according to which a pretest’s predictive power 
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should gradually decline with growing time gap to the achievement outcome. However, given 

the rather moderate deterioration, this conclusion best holds under a less strict interpretation of 

this hypothesis (see Reeve & Bonaccio, 2011). Similar tendencies were also registered 

previously based on U.S. samples (Bloom et al., 2007; Westine et al., 2013; Xu & Nichols, 

2010; see Figure 7 in Chapter 1). Their comparability with the present findings is limited 

though, as these studies investigated validity decay in domain-identical pretests over only two 

or three years. In contrast, the explanatory power of fluid intelligence pretests (and also partly 

cross-domain pretests) often leaned towards striking stability over time. This corresponds well 

to existing single-level research in this vein (see Figure 2 in Chapter 3; see Reeve & Bonaccio, 

2011, for a broader review in terms of outcomes).  

The precision simulations imply that threats by validity degradation may be more 

pertinent to the smaller-sized RTs. Here, the detrimental effects of the small sample sizes plus 

the weakened amounts of explained variance cumulatively added up and led to decreased design 

sensitivity as compared to larger-sized RTs.  

 

Overall, the Explanatory Power of Covariates Was Strongest at the Top Hierarchical 

School Level. Irrespective of the concrete covariate set, one of the most consistent findings 

across Studies I and II was the predictive superiority of the aggregated51 cluster-level covariates 

over their (disaggregated) individual-level equivalents. Indeed, in virtually every constellation, 

the (latent) school and—albeit to a smaller degree—classroom means significantly outweighed 

both the multi- and single-level student-level scores in explaining variance in an achievement 

outcome (i.e., 𝑅L3
2 > 𝑅L2

2 > 𝑅L1
2  and 𝑅L3

2 > 𝑅L2
2 > 𝑅T

2). With some minor exceptions, this was 

true across designs, (sub)populations, grade levels, outcome domains as well as covariate sets. 

Yet, as the meta-analytic integrations from Study II accentuated, this pattern was most 

unequivocal in lower secondary school: here, pooled amounts of explained L3 variance 

consistently exceeded thresholds of 76%, while corresponding shares at L2 widely ranged 

between 12% and 67%, and at L1 always fell below 36% (see Figure 3a in Chapter 3). In both 

elementary and upper secondary school, similar gradations emerged, although in general 

somewhat less clear-cut. This general pattern has also previously been proven highly robust, 

both at an international level in general (e.g., Brunner et al., 2018), and in the United States in 

particular (e.g., Hedges & Hedberg, 2007; Jacob et al., 2010; see Figure 7 in Chapter 1), as well 

as in Germany (e.g., Baumert et al., 2003). Notably, the values of single-level 𝑅T
2 ≤ .53 

                                                 
51  Recall that only cluster-level covariates aggregated from L1 covariates were analyzed. Such aggregated cluster-

level variables has been referred to as contextual or analytical variables and has to be distinguished from so-

called global or integral variables which represent cluster-level variables by definition (i.e., that are measured 

directly and cannot be disaggregated; e.g., school size; Lüdtke et al., 2008).     
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appeared in general slightly larger than multilevel 𝑅L1
2 , yet, still consistently smaller than 𝑅L3

2

(see Figure 3a in Chapter 3). 

Inflated Cluster-Level 𝑹𝟐 as Statistical Artefacts Through Aggregation? The tendency

of aggregated entities to intercorrelate higher than their individual-level counterparts has been 

discussed by several scholars for a long time (e.g., Bloom et al., 2007; Härnqvist et al., 1994; 

Ostroff, 1993; Raudenbush et al., 2007; W. S. Robinson, 1950; Snijders & Bosker, 2012). As 

early as in 1950, Robinson introduced the term “ecological correlations” to describe the 

phenomenon that correlations at the aggregate level will virtually always differ from those at 

the individual level (when based on the very same variables). He also offered mathematical 

proofs. Although his calculations have been criticized, mainly for being technically insufficient 

and partly erroneous (see Oakes, 2009; Subramanian et al., 2009; Te Grotenhuis et al., 2011 for 

debates and re-analyses), the conclusion still applies: (very) high 𝑅2 values for covariate

measures that were aggregated to higher hierarchical levels occur frequently (see e.g., Bloom 

et al., 2007; Klar & Darlington, 2004; Teerenstra et al., 2012 for some notes on this).  

Of importance, from a mathematical point of view, the relations 𝑅L3
2 > 𝑅L2

2 > 𝑅L1
2  or

𝑅L3
2 > 𝑅L2

2 > 𝑅T
2 are neither generally true nor are necessary consequences following from

aggregation (Snijders & Bosker, 2012); rather, these relations are determined by a more 

complex interplay of several factors, such as the correlations between the coefficients/residuals 

in (multilevel) models specified for both the outcome and the cluster-level covariate(s) as well 

as those reliabilities (for proofs, see Snijders & Bosker, 2012, pp. 32–33). Everything else being 

equal, higher reliabilities of both the outcome and the cluster-level covariate(s) at L2 and/or L3 

should trigger higher 𝑅L2
2  and/or 𝑅L3

2  values (Bloom et al., 2007; Teerenstra et al., 2012).

The Influence of Measurement Error. It is widely acknowledged that measurement 

error (in both the outcome and the covariate) in general52 negatively affects the amounts of 

explained variance in regression modeling (Cohen et al., 2003; Raudenbush & Bryk, 2002). 

This means that higher reliabilities are typically associated with higher 𝑅2 estimates. In the

multilevel context, the reliability of a cluster-level covariate is a function of its ICC and the 

cluster size (Raudenbush & Bryk, 2002, p. 46; Snijders & Bosker, 2012, p. 26): The reliability 

of an L3 covariate quickly improves with (a) increasing L2 and L3 cluster sizes, and (b) growing 

values of the L3 covariates’ ICC. From this follows that the reliability of an L3 covariate 

52  More precisely, measurement error in the outcome always diminishes 𝑅2, in both bivariate as well as multiple 

regression. In bivariate regression, this also applies when the covariate is unreliable (Cohen et al., 2003; 

Raudenbush & Bryk, 2002). However, in multiple regression, 𝑅2 is most likely reduced with unreliable 

covariates; but under certain circumstances, 𝑅2 may be inflated or even “unbiased” (see Cohen et al., 2003, pp. 

121–124 for proofs and illustrations).   
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approaches 1 with either (a) large schools (provided that its ICC is nonzero and positive), or (b) 

high values of its ICC (see also Figure 3.3 in Snijders & Bosker, 2012, p. 27). The relations for 

L2 covariates are equivalent: The reliability of an L2 covariate is a positive function of its 

(positive) ICC and the L2 cluster size. Since the classroom size is smaller than the school size 

(as soon as there is more than one classroom per school), the reliability of an L2 covariate 

should also be smaller than the reliability of an L3 covariate. This might be one reason why 𝑅L2
2

tends to be lower than 𝑅L3
2 .

Implications for RT Design 

In general, covariate adjustment has great potentials to boost power and precision in RTs on 

student achievement, and thus, addresses a major threat of statistical conclusion validity 

(Shadish et al., 2002). The practical implications for RT planning that can be derived from the 

analyses on covariate impacts are numerous and sweeping. A useful summary of general 

recommendations on covariate selection is given in the Section “Essentials of Covariate 

Adjustment in RTs on Student Achievement at a Glance” in Chapter 3. So, which are further, 

more integrative issues to primarily consider with covariate inclusion? 

First, given that that the concrete 𝑅2 estimates not only widely varied as a function of

the covariate type, combination, and time lag, but also by (sub)population, achievement 

outcome, hierarchical level and so forth, researchers should take care they optimally match the 

specific peculiarities of the target RT when used for power analysis.  

Second, the above results may perhaps create the impression that, in principle, the target 

outcome’s baseline measure is the ultimate linchpin of any meaningful RT design to study 

interventions on student achievement. It is not. There are various realistic scenarios that allow 

for or even require the shift to other covariates. Such a strategy may be either intended (e.g., 

when the RTs’ target outcome heavily depends on dynamic and/or cumulative developmental 

processes in students’ learning trajectories so that there might not exist any test battery that 

accurately captures or yields enough variance in the abilities under investigation; Shadish et al., 

2002, p. 118), or may be a logical consequence of emergent circumstances under which a 

particular RT is implemented (e.g., when the RT’s target outcome changes during realization due 

to logistical factors or political decisions; Bloom et al., 2007, p. 32).  

Third, the unique, incremental, and relative effects of the studied covariates on power 

and precision in RTs on student achievement usually intensify with small sample sizes. Hence, 

a problematic issue, particularly in long-term RTs, is sample attrition: Apart from the fact that 

sample attrition poses threats to internal and external validity, the loss of students (or their 
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responses) basically implies shrinkage of the effective total sample size. From the designs 

addressed by this thesis—unless entire schools drop out of the study—IRTs will typically suffer 

most from sample attrition (Rickles et al., 2018).53   

Fourth, in multilevel RTs, especially in lower secondary school, the orientation towards 

the three psychometric heuristics may become somewhat less relevant given the pervasive 

predictive strength of cluster-level covariates that usually translated well into power and 

precision returns. Of note, L3 covariates can also be exclusively used in RTs, that is, without 

simultaneously adjusting for covariates at L1 or L2 (e.g., Bloom et al., 2007; Westine et al., 

2013). There is no absolute need to introduce covariates at all hierarchical levels in any RT 

design (although it still remains best-practice to do so) and some planning scenarios even 

necessitate this strategy (e.g., when resources are firmly restricted). Administrative data from 

local authorities or schools themselves (provided as aggregated information, e.g., on shares of 

female students within a school, or representing global information, e.g., on the school size), or 

archive data from former cohorts (e.g., the nation-wide “Vergleichsarbeiten” [VERA]) may be 

easily and cheaply obtained (Bloom et al., 2007). Hence, utilizing L3 covariates derived from 

such data usually pledges high cost-effectiveness (see e.g., W. Li et al., 2020; Moerbeek, 2006 

for discussions on cost-effectiveness under covariate inclusion), because researchers may 

curtail or even skip a good deal of steps during RT implementation (e.g., construction and 

validation of test batteries and questionnaires, multiple testing sessions).  

Fifth, high reliabilities are generally advantageous for the design sensitivity in RTs. Yet, 

it should be noticed that even (highly) unreliable covariates still boost power and precision, 

compared to an RT design without covariates (Maxwell et al., 2017, p. 481); unless in—very 

rare—scenarios of very small RTs where the reduction in error variance is offset by the loss in 

degrees of freedom through too many covariates (Konstantopoulos, 2012; Liu, 2011; Moerbeek 

& Teerenstra, 2016).54 

Taken together, the present doctoral thesis considerably expands the knowledge and guidance 

on covariate adjustment and selection in RTs on student achievement. Not only does it provide 

a vast collection of reliable 𝑅2 estimates to inform power analysis and to adjust required sample

sizes, or prospectively achieved power and precision rates. It also presents a so far unique 

theoretical framework based on the psychometric heuristics of the bandwidth-fidelity dilemma, 

53  Note that in a long-term IRT, even when small-sized, a strongly predictive (domain-identical) pretest may still 

level off mild harmful impacts induced by temporal validity decay. A prominent example is the Perry preschool 

program of noble prize winner James Heckman and colleagues (Heckman et al., 2013). 
54  Covariates—perfectly reliable or not—affect the standard error of the treatment effect, i.e., its precision, but 

not its estimate itself (in magnitude or direction); therefore, treatment effects are not biased through unreliable 

covariates (Borenstein & Hedges, 2019; Maxwell et al., 2017, pp. 471, 481; Porter & Raudenbush, 1987). 
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the incremental validity concept, and the validity degradation principle to derive hypotheses on 

the potential unique, incremental, and relative precision-enhancing impacts of a broad spectrum 

of varying covariate types, combinations, and time lags. Not least, a special feature of this 

dissertation is the hierarchical decomposition of fluid intelligence effects on student 

achievement which is, to the best of my knowledge, the very first of its kind. 

4.1.4 Design Parameters Adapted to a Broad Range of Experimental 

Designs 

Single-Level IRT, Two- and Three-Level CRT and MSRT Designs 

So far, design parameters for several target experimental designs commonly implemented in 

applied educational and psychological research are widely lacking (e.g., Connolly et al., 2018; 

Spybrook, Shi, et al., 2016). Compendia largely remain restricted to estimates informative for 

planning two-level RT designs (students within schools).  

Study I applied two- and three-level modeling to estimate ρL2 and ρL3 as well as 𝑅L1
2 ,

𝑅L2
2 , and 𝑅L3

2  values. Study II used single-, two-, and three-level modeling to estimate ρL2 and

ρL3 as well as 𝑅T
2, 𝑅L1

2 , 𝑅L2
2 , and 𝑅L3

2 . In doing so, the present doctoral thesis significantly

augments the range of designs by covering six different kinds of RTs (see Figure 4 in Chapter 

1): IRTs (individually sampled students who are assumed to represent stochastically 

independent experimental units, that is, disregarding their classroom or school affiliation, with 

randomization at an individual basis), 2L-CRTs (students at L1 within schools at L3, and 

randomization at L3), 3L-CRTs (students at L1 within classrooms at L2 within schools at L3, 

and randomization at L3), 2L-MSIRTs (students at L1 within schools at L3, and randomization 

at L1), 3L-MSIRTs (students at L1 within classrooms at L2 within schools at L3, and 

randomization at L1), as well as 3L-MSCRTs (students at L1 within classrooms at L2 within 

schools at L3, and randomization at L2).55 

55  Note that, however, for MSRT designs, estimates of the treatment effect heterogeneity (i.e., the degree of 

variation among site-specific treatment effects) are additionally required, which are not covered by the present 

thesis (see also Section 1.4.4). To reliably estimate treatment effect heterogeneities, and also corresponding 𝑅2 

values (i.e., quantifying the degree to which heterogeneity can be explained by covariates), a re-analysis with 

data of (a pool of) MSRTs would be necessary. Weiss et al. (2017), for instance, were among the first 

systematically compiling such heterogeneity design parameters based on 16 MSRTs on educational and 

professional interventions, suitable for the U.S. context. Schochet et al. (2014) and Weiss et al. (2014) 

thoroughly discuss the conceptual underpinnings of treatment effect heterogeneity. The high relevance of 

treatment effect heterogeneity in MSRT design is further highlighted by the fact that in 2017, the Journal of 

Research on Educational Effectiveness devoted a whole issue (Volume 10, Issue 4) to this topic.  
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Key Results 

Design Parameters Varied Considerably by (Hierarchical) Level. The findings from both 

Study I and Study II underline that the design parameter estimates hinged on the assumptions 

on the data’s underlying variance structure, and if assumed to be clustered, emerged strictly tied 

to the hierarchical level. These phenomena have been proven robust across all analyses and 

were thoroughly discussed in several sections above: When the variances were decomposed at 

the various hierarchical levels, (a) differences in student achievement located at L2 usually 

appeared (clearly) smaller than those located at L3 (depending on the subpopulation), and (b) 

explained variances by L1, L2, and L3 covariates were typically smallest at L1, somewhat 

higher (but widely varying) at L2, and the largest at L3. When the variances were not 

hierarchically decomposed, 𝑅T
2 (meant to inform IRT designs) typically surpassed the 

corresponding 𝑅L1
2 . This should be due to the fact that the estimates of 𝑅T

2 conflate variation

between students with variation between classrooms and schools. 

The Omission of the Classroom-Level Variance Component Barely Impacted the ICCs, 

but Occasionally Affected the Explained Variances at the School Level. To inform the 

design of both 3L-CRTs/3L-MSRTs (students at L1 within classrooms at L2 within schools at 

L3) as well as 2L-CRTs/2L-MSIRTs (students at L1 within schools at L3), this dissertation 

offers values of ρL3, 𝑅L1
2 , and 𝑅L3

2  as estimated via both three-level models (i.e., treating

classrooms at L2 as random effects) as well as two-level models (i.e., neglecting the random 

effects of classrooms at L2) for Grades 1 to 10.56 In Study I, I explicitly juxtaposed these three- 

and two-level design parameters to learn about the degree of deviation in the estimates that may 

result from a misspecification due to the omission of L2 variance. I observed that ρL3 values as

estimated in two-level models exceed their three-level equivalents, which held across all 

(sub)populations. This is as it should be: Since the total variance is identical in both models, 

the variance located between classrooms not modeled shifts to both L1 and L3 instead 

(Moerbeek, 2004; Zhu et al., 2012).57 However, generally, differences in ρL3 were trivial. A

similar pattern of results—concerning both direction and degree of the deviations—also applied 

to 𝑅L1
2 . In contrast, discrepancies in the 𝑅L3

2  values were more apparent. Compared to three-

level models, few 𝑅L3
2  values were slightly overstated in two-level models; yet, most 𝑅L3

2  values

56  In upper secondary school, exclusively two-level models were specified since 11th and 12th grade students are 

typically not grouped into intact classrooms, but courses where student compositions vary by the subject taught. 
57  Recall that ρL3 = σL3

2 /σT
2 . σL3

2  consists of a true component depicting the “real” variation across schools plus

an error component associated with σL1
2 . The latter is underestimated in the absence of σL2

2 , and consequently,

the true variation in σL3
2  is overestimated, resulting in larger ρL3 estimates (Zhu et al., 2012, pp. 48–49).
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were understated in two-level models, occasionally even substantially. These results largely 

replicated those previously reported based on U.S. samples (Zhu et al., 2012). 

When to Rely on Two- Instead of Three-Level Design Parameters? In practice, there 

may be various application scenarios in which researchers may assume a two-level variance 

structure ignoring the variance component at L2 when planning (in reality actually three-level) 

RTs on student achievement. First, as the research reviews above highlighted, reliable estimates 

of ρL2 and 𝑅L2
2  are still scarce. If such values were reported previously, they were limited to the 

application in the U.S. school context, and were largely restricted to selected grades, and few 

core achievement domains and covariate sets. Therefore, RT designs relying on previously 

generated design parameters often do not explicitly take into account the nesting of students 

into classrooms within schools (Jacob et al., 2010; Konstantopoulos, 2009; Zhu et al., 2012).  

Second, the exact identification of clusters might not (or hardly) be feasible. For 

instance, sometimes the grouping of students into learning groups is not static, but rather varies, 

for instance, depending on the subject taught. Usually this does not eliminate the random effects 

at the middle level, but rather leads to a cross-classified cluster variance structure. Note that 

such “imperfect hierarchies” (Snijders & Bosker, 2012, p. 205) modulating cluster effects in 

fact routinely occur in educational settings, for a variety of reasons including the blending of 

students from distinct classrooms in neighborhoods, sports clubs, tutoring classes and so forth 

(Raudenbush & Bryk, 2002, pp. 373–375). Thus, it is—strictly speaking—implausible to 

categorize grouping contributions on student achievement exclusively into classroom or school 

effects. In German upper secondary school, students are often enrolled into courses 

differentiated by the aspiration level chosen for a certain subject (e.g., basic vs. advanced 

mathematics courses). Since there are usually limited combination options for these courses, 

students frequently learn within one and the same group, but not at all times. Although design 

parameters that accurately reflect such cross-classified structures technically represent a 

relatively straightforward extension (or, rather simply an internal differentiation; Raudenbush 

& Bryk, 2002, pp. 377–378) of the design parameters that neglect multiple group memberships, 

their implementation and meaning in power analysis have rarely been explicitly studied so far 

(but see e.g., Moerbeek & Safarkhani, 2018). Furthermore, such cross-classified ρ and 𝑅2 

estimates would even more strongly depend on the actual nature, target outcome, and specific 

inferential goal of the RT, and as a consequence, might miss adaptability in most application 

scenarios.  

Third, researchers often use administrative data or official statistics to measure 

outcomes or covariates for their RT. Most of these records, however, lack an identifier for the 
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classroom a student attends (Zhu et al., 2012). Consequently, the effectiveness of the RT’s 

intervention is planned to be evaluated by specifying a two-level model only, with students at 

L1 nested within schools at L3. And finally, even if such an identifier is available, the number 

of classrooms per school should be adequately large to specify a robust three-level model (Lee 

& Hong, 2021) or, at least, to be able to differentiate classroom from school effects 

(Opdenakker & Van Damme, 2000, p. 283). All in all, the motivations to use two- instead of 

three-level design parameters are manifold.  

Implications for RT Design 

First, researchers should be aware of the fact that the level-specific ρ and 𝑅2 values are not

interchangeable: For instance, L2 estimates cannot be used as substitute for lacking L3 

estimates; likewise, 𝑅T
2 as obtained from single-level models should not be entered into power 

analysis for multilevel RTs, and so on. 

Second, under some specific circumstances, the general rule of an accurate matching 

between design parameters and target experimental design may be relaxed: Employing values 

of ρL3, 𝑅L1
2 , and 𝑅L3

2  values as estimated in two-level models omitting L2 information in

combination with data from samples that actually have a three-level variance structure may 

barely affect power analysis. At best, power might be somewhat understated when employing 

𝑅L3
2  obtained from two-level instead of three-level models. The practical relevance of this

problem might be insignificant though, given that power calculations for large-scale RTs tend 

to be rather optimistic than pessimistic (Konstantopoulos, 2008b; see e.g., Lortie-Forgues & 

Inglis, 2019; Spybrook & Raudenbush, 2009). Moreover, it has been empirically proven that 

L1 covariates may compensate for potentially underestimated 𝑅L3
2  estimates in two-level RTs

(Zhu et al., 2012). Importantly, as described above, the samples used in the present studies 

produced rather small estimates of ρL2. The deviation between two- and three-level estimates

is expected to be larger with growing ρL2 (Moerbeek, 2004; Zhu et al., 2012). In either case,

unless ρL2 = 0, dropping the L2 variance components from power analysis will always

overestimate design sensitivity to a certain degree (Konstantopoulos, 2008b). 

In summary, the present analyses reinforce calls for design parameters that accurately reflect 

the actual (hierarchical) variance structure of the prospective RT (e.g., Konstantopoulos, 2009; 

Westine, 2016). By generating single, two-, and three-level ρ and 𝑅2, the present thesis helps

to fill an important research gap to enable the planning of RTs of six different experimental 

designs.  
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4.1.5 Design Parameters Suitable for Manifest and Latent Analysis Models 

Manifest and Latent Variable Modeling Frameworks 

Despite the fact that the applied target analysis models for the test of treatment effect in 

psychological and educational RTs are diverse (e.g., Blanca, Alarcón, & Bono, 2018; Schochet, 

2008), most former collections of ρ and 𝑅2 values drew exclusively on manifest variable

modeling; precluding potential applications of latent variable modeling techniques to analyze 

treatment effects in RTs (e.g., Lüdtke et al., 2008; Mayer et al., 2016).  

In Study I, the multilevel variance components were estimated within the general latent 

variable modeling framework implemented in Mplus (Muthén & Muthén, 2017) to compute ρ 

and 𝑅2. In particular, the multilevel latent covariate models (Lüdtke et al., 2008) implied the

latent aggregation of L1 covariates to their L2 and L3 cluster means, partialing out measurement 

error. In Study II, a manifest approach to multilevel modeling in R (R Core Team, 2023) was 

followed using the lme4 package (Bates et al., 2015). Therefore, in Study II, the cluster-level 

variables underlying the 𝑅L2
2  and 𝑅L3

2  estimates represent manifest cluster means, including

measurement error. Thus, the present doctoral thesis facilitates a flexible adaption of design 

parameters to the concrete statistical analysis procedure to be used for mean comparisons of the 

outcomes between the experimental groups. Moreover, since Study II re-analyzed ρ and 𝑅2

values for selected outcomes and covariate sets based on the same data (see also Footnote 40 

in Chapter 3), it becomes possible for researchers to directly contrast ρ and 𝑅2 values for student

achievement obtained via Mplus vs. R when planning RTs. 

Key Results 

Cluster-Level 𝑹𝟐 Values Based on Latent Covariate Means Clearly Surpassed Their

Counterparts Based on Manifest Covariate Means. The present thesis demonstrates that 

values of 𝑅L2
2  and 𝑅L3

2  calculated from variance components estimated in latent models

correcting for unreliability consistently exceeded their equivalents derived from manifest 

models in magnitude, often considerably. Figure 2 directly juxtaposes the 𝑅L2
2  and 𝑅L3

2  values

for the duplicate covariate sets including a domain-identical pretest, sociodemographics, and 

their combination from Study I and Study II.58 It is obvious that the decreased reliabilities of 

the manifest cluster means in Study II largely attenuate the amounts of explained variance 

estimated for all covariate sets—this is as expected given that that measurement error (in both 

58  Note that classroom means at L2 were group-mean centered at their respective L3 school means in both studies. 
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the outcome and the covariate) has been proven to negatively influence 𝑅2 estimates in

regression modeling (Cohen et al., 2003; Raudenbush & Bryk, 2002; see also the discussion in 

Section 4.1.3). Furthermore, the systematic understatement of 𝑅L2
2  and 𝑅L3

2  in Study II is

exacerbated with multiple fallible covariates (i.e., for the sets involving the battery of 

sociodemographics). Of importance, this pattern of results emerged highly robust irrespective 

of the (sub)population, grade level, outcome, and concrete covariate set. Notably, 𝑅L2
2  values

near zero in Study II can probably be explained by estimation error induced by low variance 

components at L2 (see Jacob et al., 2010, p. 177). On a side note, the equivalent ICCs from 

Study I and II practically converged, and the explained variances at L1 only occasionally 

showed noteworthy—albeit very rarely severe—deviations; thus, the different functioning of 

the Mplus and R software did barely affect these design parameters. 

Figure 2. Comparison of Explained Variances at the Classroom (𝑅𝐿2
2 ) and School Level (𝑅𝐿3

2 )

As Estimated in Study I and Study II for Equivalent Covariate Models 

Note. 𝑅2 values for the total student population as estimated in three-level models (students at L1 within 

classrooms at L2 within schools at L3). 𝑅2 values below the diagonal line were higher in Study I employing latent 

cluster means than in Study II employing manifest cluster means. IP = Domain-identical pretest. SC = 

Sociodemographic characteristics (gender, migration background, socioeconomic status). 

Implications for RT Design 

Unless researchers intend to forego covariate adjustment, they should consider the following 

when applying the present design parameters to perform power analysis. First, when some sort 

of structural equation model is intended for the test of the treatment effect and/or Mplus will be 

used, it is advisable to draw on the ρ and 𝑅2 values provided in Study I. In such cases, these

design parameters modeled within the latent variable framework serve as unbiased and valid 

input estimates, also probably avoiding overpowered RTs. Otherwise—which I anticipate will 

still be most often the case (Blanca, Alarcón, & Bono, 2018; Luo et al., 2021)—, especially 
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when measurement error in the outcome and covariate is not partialed out, the design 

parameters from Study II represent reliable values for power calculations.  

Second, special caution is warranted in scenarios, where a certain covariate set to be 

applied in the RT was not covered in Study I, but the analysis stage will involve latent modeling. 

Here, the design parameters from Study II should be considered rather conservative, lower 

bound estimates. Nevertheless, evaluators will ideally perform sensitivity analyses around 

plausible ranges of design parameters; either by using CIs/PIs or by running simulations.  

As a whole, this dissertation again puts the spotlight on the relevance of the target analysis 

model when choosing design parameters for power analysis (e.g., Ahn et al., 2020; Kleinman 

& Huang, 2017; Schochet, 2008). In doing so, the present work offers novel insights to which 

extent ρ and 𝑅2 estimates to design RTs on student achievement may differ between manifest

and latent variable modeling techniques. In particular, by applying both approaches to 

multilevel estimation, the present design parameters should also be helpful to adequately power 

tests for the treatment effect conducted outside the conventional manifest procedures, which 

substantively expands the potential scope of applications.   

4.1.6 Quantifications of Uncertainties and Meta-Analytic Heterogeneities 

Standard Errors and Meta-Analytic Heterogeneity Estimates, With Application Illustrations 

and Simulation Study 

Although required for sensitivity analyses across power analysis outputs (e.g., Liu, 2014; 

Moerbeek & Teerenstra, 2016), the reporting of uncertainties and heterogeneities in form of 

standard errors or CIs for ICCs and explained variances has been rather a rare practice so far, 

leave alone meta-analytic PIs.59  

In both Study I and II, standard errors and/or 95% CIs were consistently documented 

for all ρ and 𝑅2 estimates. Guidance on how to use them when explicitly incorporating

uncertainties or heterogeneities into power analysis was offered via manifold realistic 

application scenarios. Study II additionally provided 95% PIs obtained from random-effects 

meta-analysis. A simulation study to assess covariate impacts on statistical precision showcased 

how to implicitly allow for uncertainties following a Bayesian rationale when setting priors 

based on the joint empirical distributions of ρ and 𝑅2.

59  For instance, to date only Hedberg and Hedges (2014) propounded random-effects meta-analytic summaries of 

(within-district) ρL3 values, which inform on their random (i.e., due to sampling error) and true variation shares,

but which are suitable for (rather specific) RT applications with students from the United States and do likely 

not generalize well to the German school context. 
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Key Results 

Statistical Uncertainties in the Design Parameters Were of Practical Significance in RT 

Design. Drawing on large-scale assessment data from large probability samples, most ρ and 𝑅2

values could be estimated with an adequate degree of precision in terms of low standard errors. 

Notwithstanding, already small adjustments in ρ and 𝑅2 occasionally translated to substantial

shifts in the required sample size, or the expected power, or 𝑀𝐷𝐸𝑆 when performing sensitivity 

analysis across power analyses; a tendency that has been well-acknowledged previously (e.g., 

Donner & Klar, 2000; Williamson et al., 2023). Of course, this behavior aggravated when 

simultaneously considering uncertainties in ρ and 𝑅2. This held true under both explicit and

implicit handling of uncertainty.  

A relatively consistent observation was that the statistical uncertainties in 𝑅L2
2  and 𝑅L3

2

appeared often (much) more pronounced than in 𝑅L1
2 . This may not come as a surprise given

that the closed-form solution for the large sample variances of 𝑅2 (see Equation (C5) in the

Appendix C) exclusively involves the respective total sample sizes at L2 and L3, which are 

inevitably (by far) smaller than the total sample size at L1. Of note, Equation (C5) also implies 

that the clustered nature of the variances was neglected; other methods might have provided 

more exact results. Nevertheless, our approach facilitated connectivity to and comparability 

with the standard errors of multilevel 𝑅2 values as previously—and so far uniquely—recorded

in Hedges and Hedberg (2013). In addition, large amounts of between-imputation variance 

induced by high missing rates in certain measures probably further inflated the standard errors. 

Finally, large standard errors of 𝑅L2
2  may also be attributable to the very small size of most L2

variance components (see Jacob et al., 2010, p. 177).  

Meta-Analytic Heterogeneities Across Design Parameters Were Considerable. One 

leading edge of meta-analyzing the design parameters in Study II was the opportunity to explore 

sources of their inherent heterogeneity. Specifically, the (multivariate multilevel) random-

effects models60 (Borenstein et al., 2021; Pustejovsky & Tipton, 2022) allowed to distinguish 

variation due to sampling error from true heterogeneity among ρ and 𝑅2 values.

A highly robust finding from these pieces of analysis states that the great majority (often 

over 90%; see OSM F for Study II) of the total variation among design parameters did not 

represent sampling error but was rather attributed to true heterogeneity. This implies 

“considerable heterogeneity” according to the benchmarks established by Higgins (2022). This 

60  Recall that random-effects modeling was applied with at least 10 ρ or 𝑅2 estimates to be integrated (Langan et 

al., 2019, p. 95); otherwise, fixed-effect modeling was applied. 
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may partly be a direct consequence of the high precision (in terms of low standard errors) of 

the ρ and 𝑅2 estimates, but may also indirectly point to proper study designs of the large-scale 

assessments. Thereby, true heterogeneity was, as a rule, mainly at the level of effect sizes 

(within samples), which seems credible given that ρ and 𝑅2 are expected to show larger 

variation by exact grade and outcome than between samples assumed to be randomly drawn 

from, and thus, representative for a common population of students.  

The absolute magnitudes of true variation among ρ and 𝑅2 estimates were in general 

substantial, translating into 95% PIs of large width (see Figure 3a in Chapter 3). This led in 

consequence to broad ranges of expected power when relying on the lower and upper bounds 

of these PIs (see Figure C46 in OSM C for Study II). Several attributes may explain the true 

heterogeneity among values of ρ and 𝑅2. These should include the exact grade or age group as 

well as the achievement subdomain, but presumably also specific characteristics of the samples 

(e.g., composition, cohorts), schools (e.g., curriculum, instruction quality), or test instruments 

(e.g., conceptualization, psychometric properties).     

Fixed-Effect vs. Random-Effects Meta-Analysis. One vital goal of the meta-analytic 

integration in Study II was to provide average estimates of design parameters, along with their 

standard errors. Both the conducted fixed-effect and the random-effects meta-analyses 

produced these quantities. However, these two methods critically differ in their assumptions on 

the underlying true design parameters—whether there is a common (ergo, “fixed”) population 

ρ or 𝑅2 value or a distribution of (ergo, “random”) population ρ or 𝑅2 values. This assumption 

determines the type of inference that can be drawn: conditional vs. unconditional (Hedges & 

Vevea, 1998). In a nutshell, while fixed-effect models allow for conditional inferences on ρ or 

𝑅2 values across those (large-scale assessment) samples actually meta-analyzed, random-

effects models support unconditional inferences on ρ or 𝑅2 values in a population of samples 

from which the samples actually meta-analyzed were drawn (Konstantopoulos & Hedges, 

2019). Therefore, claims on the true heterogeneity among ρ or 𝑅2 values are only possible on 

the basis of random-effects models.   

Implications for RT Design 

First, ignoring uncertainty in the empirically derived input parameters may severely distort 

power analysis (e.g., Liu, 2014). In RT planning, researchers should therefore regard sensitivity 

analyses as a standard procedure, realized by (explicitly or implicitly) incorporating uncertainty 

measures to assess plausible ranges of the desired power analysis output. 
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Second, the meta-analytically generated 𝑃𝑜𝑜𝑙𝑒𝑑 ρ and 𝑃𝑜𝑜𝑙𝑒𝑑 𝑅2 values and

corresponding standard errors are meant to inform power analysis for RTs whose target 

achievement outcomes differ to some extent to those covered by the present analyses (see the 

illustrative scenario in Chapter 3 and the Application Scenario 6 in OSM C for Study II for a 

didactic illustration of power analysis in such a case). Thus, this ambition anticipates some kind 

of generalization beyond the observed design parameters (see also Hedberg & Hedges, 2014). 

However, as Hedges and Vevea (1998, p. 488) pointed out, any generalization is a two-part 

process: the first is statistical, rationalized by sampling theory, in both fixed-effect and random-

effects models; but the second is “extrastatistical” in fixed-effect models. Precisely, when using 

our meta-analyzed ρ or 𝑅2 values in power analysis for a prospective RT, the first part is to

generalize from the samples included in our meta-analysis to a universe of samples considered 

to be identical (where uncertainty is addressed by sampling error), and the second part is to 

generalize from the universe of samples considered to be identical to a universe of target RT 

samples considered to be nonidentical (albeit similar/representative; Hedges & Vevea, 1998). 

Random-effects meta-analysis is superior with respect to the second part of generalization 

because it attempts to statistically quantify this kind of uncertainty via estimates of true 

heterogeneity. Fixed-effect approaches cannot afford this. Nevertheless, the fixed-effect meta-

analytic results that were generated in the few cases where unbiased heterogeneity parameter 

estimates could not be guaranteed (due to a too small number of effect sizes to be aggregated; 

see Langan et al., 2019, p. 95) are still reliable, and therefore also valuable for RT design, but 

with the restriction that they remain conditional on the NEPS, PISA, and DESI samples 

analyzed in the present thesis. Thus, generalizations based on these fixed-effect meta-analytic 

design parameters should be made with great caution and have to be accordingly justified 

(Hedges & Vevea, 1998).     

In conclusion, quantifications of uncertainties in the ICCs and explained variances are integral 

fundaments of robust a priori power analysis to design RTs. This dissertation satisfies this 

requirement by supplying all design parameters along with their standard errors and estimating 

meta-analytic heterogeneity parameters. The manifold illustrative examples as well as the 

simulation study propounded may serve as helpful guidance on how to incorporate uncertainty 

into power analysis. In doing so, I addressed a sixth major gap in the current research state on 

design parameters for student achievement.  
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4.2 Further Challenges in the Design of Randomized 

Experiments to Reliably Inform Evidence-Based Education 

Beyond the estimation of reliable ICCs and explained variances, there are plenty other issues—

well familiar ones and more recently emergent ones—in the design stage of RTs on student 

achievement. Challenges include attrition, complexities of educational interventions, cost-

effectiveness, endogeneity of design, generalizability, 𝑀𝐷𝐸𝑆 benchmarking and justification, 

noncompliance, reliability of measures, replication, spillover/contamination, and many more 

(Hedges, 2018; Maxwell et al., 2017; Moerbeek & Teerenstra, 2016; Raudenbush & Schwartz, 

2020). Several of them have already been more or less addressed up to here (and for certain all 

of them deserve thorough examination). Next, I briefly elaborate on two topics that I think are 

among the most directly relevant to the present doctoral thesis, namely 𝑀𝐷𝐸𝑆 benchmarking 

and justification, and generalizability.  

4.2.1 𝑴𝑫𝑬𝑺 Benchmarking and Justification 

“How big is big?” asked Robert Slavin (2018) in his blog post on the practical meaningfulness 

of effect sizes, showing an image of an oversized mouse next to a tiny elephant. The message: 

How big is big? It depends. To be precise, it depends on the reference point whether a mouse 

appears large or an elephant small, and so it also depends on the research context under 

investigation how small, medium, or large a (standardized) treatment effect observed for certain 

intervention is deemed. This crucial discernment has been reiterated by numerous scholars and 

experts in the field (Baird & Pane, 2019; Bloom, Hill, et al., 2008; Brunner, Stallasch, et al., 

2023; C. J. Hill et al., 2008; Konstantopoulos & Hedges, 2008; Kraft, 2020; Lipsey et al., 2012; 

Valentine, 2019), even Cohen (1988) himself whose rules of thumb for the interpretation of 

effect sizes—which are not the only ones, but certainly the most prominent—are still granted 

priority in many educational and psychological studies (C.-Y. J. Peng et al., 2013).  

Identifying a reasonable magnitude of the 𝑀𝐷𝐸𝑆, or degree of statistical precision, 

therefore is as an integral as demanding task in power analysis (see Section 1.4.3). When 

assessing the meaningfulness of the 𝑀𝐷𝐸𝑆, various rationales may (simultaneously) play a role 

(see Bloom, 2006; Brunner et al., 2018; Schochet, 2008, for thorough examinations). First, a 

cost-effectiveness or economic rationale would prioritize an 𝑀𝐷𝐸𝑆 that translates into 

(monetary) earnings large enough to offset the costs of the RT (see Schochet, 2008, p. 66, for a 

computational illustration). 
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Second, a programmatic rationale would prefer an 𝑀𝐷𝐸𝑆 that is attainable given the 

nature of the intervention and the specific context of the RT, including the target population 

and outcome. Attainability may be oriented towards previous empirical evidence quantifying 

treatment effects for similar RTs. If available, meta-analyses may offer promising reference 

points. However, as Brunner et al. (2018) cautioned, it is essential to carefully compare the 

treatment protocols, to study the metric of the reported pooled effect size, and to take into 

account potential discrepancies in the variances of the outcome measure.     

Third, a political rationale would favor an 𝑀𝐷𝐸𝑆 that satisfies the demands and 

expectations of policymakers and other important stakeholders in education. For instance, 

ministries may be interested in how much the intervention may improve students’ learning 

outcomes as measured by their typical or expected annual achievement growth. Or, they may 

expect from a program to be implemented in daily school routine that it facilitates closing the 

achievement gaps between relevant demographically defined student groups (e.g., in terms of 

gender, migration background, and socioeconomic status) or between weak- and average-

performing schools. Respective benchmarks have been made available for the United States 

(e.g., Bloom, Hill, et al., 2008; C. J. Hill et al., 2008; Konstantopoulos & Hedges, 2008; Lipsey 

et al., 2012; Scammacca et al., 2015). Recently, we added a vast compilation of meta-

analytically summarized effect size benchmarks for various achievement outcomes across the 

entire school career from Grade 1 to 12 in the German school system to this body of knowledge 

(Brunner, Stallasch, et al., 2023). A common key result from the U.S. works and our study was 

the large heterogeneity of effect size benchmarks across subpopulations (e.g., as defined by 

school types), grade levels, and achievement domains, emphasizing that the substantive 

relevance of a chosen 𝑀𝐷𝐸𝑆 is strongly tied to the specific research context in question. For 

example, according to our analysis for the student population in Germany, a desired 𝑀𝐷𝐸𝑆 = 

.20 for an RT to enhance students’ reading achievement would, on average, translate into a 

learning gain of almost one and a half years from Grade 5 to 6 in lower secondary school, but 

only into a learning gain of half a year from Grade 11 to 12 in upper secondary school (Brunner, 

Stallasch, et al., 2023, Table 1). Likewise, when related to mean differences in mathematics 

achievement between weak and average German schools, the gap could be closed for upper 

secondary schools, but not so for elementary and lower secondary schools if the RT’s 

mathematics intervention produced a standardized treatment effect of 𝑑 = .20 (Brunner, 

Stallasch, et al., 2023, Table 5).    

To conclude, when designing an RT on student achievement, setting a reasonable 

precision level to compute the required sample size or the prospectively achieved power rate, 
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or evaluating the attainable precision level given a specified sample size and power in terms of 

the 𝑀𝐷𝐸𝑆 requires researchers’ substantive knowledge on the practical importance of a 

(standardized) treatment effect size and involves adopting economic, programmatic, and/or 

political rationales.  

4.2.2 Generalizability 

As stressed throughout this dissertation, educational RTs seek to provide a basis for policy and 

practice to decide on whether to launch or continue, or to cancel programs in real-life schooling 

(Stuart et al., 2017). In doing so, an RT usually tests a particular intervention in a sample drawn 

from some relevant population.61 In other words: it is intended to generalize the results of an 

RT beyond the sample studied to a certain target population (which may include the sample or 

not; Raudenbush & Schwartz, 2020; Shadish et al., 2002). However, this endeavor is anything 

but trivial. 

Under this notion62 of “causal generalization” (Shadish et al., 2002), and more precisely, 

external validity, two crucial premises collude: (a) the target population has to be well-defined 

(O’Muircheartaigh & Hedges, 2014; Tipton & Olsen, 2018), and (b) treatment effects have to 

be assumed to vary (Hedges, 2018). It is not reasonable to discuss the generalizability of RTs 

without specifying to whom the results should be generalized (e.g., an RT on a university 

preparation training may generalize to students in the academic track but not to students in less 

demanding school types of the non-academic track). Nor is the question of generalizability 

relevant at all if one does not expect that the intervention may function differentially (e.g., a 

new teaching method works fine in one school but not in another school).  

In regard to the first point: The target population may be defined rather narrowly (e.g., 

as for a [small-scale] efficacy [single-level] RT, see also Section 1.3.1) or rather broadly (e.g., 

as for a [large-scale] effectiveness [multilevel] RT; Stuart et al., 2011; Tipton & Olsen, 2018)—

the challenges and implications associated with complex multilevel designs have been 

intensively discussed above. Ideally, the definition of the target population then guides the 

recruitment of those sample units that support the desired generalizations (Tipton et al., 2014; 

Tipton & Olsen, 2018). Importantly, although the definition of the target population should be 

oriented towards the rationale which students, classrooms, or schools will finally be affected 

61  There are also RTs relying on dual- or multiple-frame sampling with the aim to generalize to two or multiple 

target populations, for instance, when addressing two or several different research questions (Hedges, 2018). 
62  Some have discussed generalizability rather through the lens of the underlying mechanisms of the intervention, 

focusing on how a treatment may work (e.g., Deaton & Cartwright, 2018). I follow Raudenbush and Schwartz 

(2020) and conceive generalizability as a matter of the sampling process and the transferability and applicability 

of results from an RT sample to a specified target population.  
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by decisions made based on the findings of the RT (Tipton & Olsen, 2018), there are also 

examples of RTs whose conclusions have been used to inform program decisions for 

populations that were actually not targeted by RT (see Hedges, 2018).  

In regard to the second point—the anticipation of treatment effect heterogeneity: The 

implausibility of a contrary assumption (i.e., that treatment effects are static or homogeneous) 

has also been empirically proven. For instance, Weiss et al. (2017) found that treatment effects 

show considerable heterogeneity across schools. Here, MSRTs are highly promising tools to 

tackle generalizability: As noted above, an MSRT can be seen as replicating an intervention 

study multiple times, that is, once in each site (Liu, 2014). This not only lays the foundation for 

meta-analysis but also gives a formal test of generalizability across the varying settings of the 

included sites (Raudenbush & Liu, 2000), whereby the more heterogeneous the sites are, the 

more generalizability may be improved (Bloom & Spybrook, 2017).    

In the past, there has been quite a bit of concern about the generalizability and the 

extrapolations of results from educational RTs, partly questioning their widely praised value to 

shape evidence-based policies and practices (Deaton & Cartwright, 2018; Morrison, 2020; D. 

H. Robinson et al., 2013; Sullivan, 2011; Thomas, 2016). One major plea that has been raised 

is that most large-scale RTs in education (but this holds also true for other areas, such as 

medicine or health service; see M. J. Campbell & Walters, 2014; Eldridge & Kerry, 2012) are 

based nonrandom convenience samples (Stuart et al., 2017) selected under relevant criteria of 

restriction and inclusion (e.g., the number of students per school as determined through a priori 

power analysis; Tipton et al., 2014). Bell and Stuart (2016), for example, argue that bias in 

external validity (and also in the results from the RTs) through non-representative sample 

selection may reach an intolerable degree, at least when applying criteria for internal validity.  

Raudenbush and Schwartz (2020) recapitulated three currently followed design-based 

approaches to tackle generalizability under sample selection, whose common logic is to link 

the RT data to some kind of extern auxiliary data to model (a) the selection process via 

(stratified) weighting schemes using propensity score methods (Kern et al., 2016; 

O’Muircheartaigh & Hedges, 2014; Stuart et al., 2001, 2011; Tipton, 2013; Tipton et al., 2014), 

or—though so far less prevalent—(b) the outcome of the RT given the covariates using 

(Bayesian) response surface methods (J. Hill et al., 2020; Kern et al., 2016), or (c) both sampling 

and outcome using doubly robust methods (Kern et al., 2016). The auxiliary data often stem 

from large-scale assessments, other surveys, or administrative or census records (Tipton & 

Olsen, 2018). Pivotal for either approach, these should reflect the inference population and 



186 |   GENERAL DISCUSSION 

contain the same covariates as the RT (Raudenbush & Schwartz, 2020).63 Put simply, the 

overarching goal is to minimize observed discrepancies in the compositions of the RT sample 

and the target population (Kern et al., 2016; Tipton et al., 2014). In a related strand of research, 

methodologists then also established techniques and measures for quantifying generalizability 

in terms of the accuracy of the predictions based on RTs and their extrapolations to the 

populations which will probably be affected by political or practical decisions on the 

educational innovations, products, and services in question (Orr et al., 2019; Stuart et al., 2011; 

Tipton, 2014). 

Finally, causal generalizations from RTs basically rest on assumptions not directly 

testable with the data; therefore calls for stronger emphasis on sensitivity analyses have been 

brought forward (Raudenbush & Schwartz, 2020; see e.g., Nguyen et al., 2017, 2018). 

Furthermore, the above mentioned techniques to estimate treatment effects with convenience 

samples hinge on (strong) assumptions on treatment effect heterogeneity and its correlates 

(Hedges, 2018). Therefore, a focal mission of experimental education research remains the 

exploration of the context characteristics that either favor or hamper impacts of interventions, 

preferably via strong, and ideally via representative MSRTs (e.g., Yeager et al., 2019). Bryan 

et al. (2021) go even that far to call for a “heterogeneity revolution.” 

4.3 Strengths, Limitations, and Future Directions 

Central Strengths 

Strong Databases. With the high-quality and ample data of several national probability 

samples from three German large-scale assessments (NEPS, PISA, DESI), the present thesis 

capitalizes on the strongest database to generate design parameters for achievement outcomes 

of 1st to 12th graders, thus, across the entire school career, which accurately map the specific 

features of the (tracked) German school system. In particular, in Study II, it was possible to take 

full advantage of the available longitudinal datasets that are suitable for tackling the objectives 

of this dissertation, as identified by a systematic search. 

State-of-the-Art Methods. I consistently applied state-of-the-art methods to handle the special 

challenges associated with the analysis goals. Specifically, to properly reflect the data’s 

63  This also points to the assumption of sampling ignorability (Tipton & Olsen, 2018): The generalizability hinges 

on the extent to which the covariates explain treatment effect variation in the population. 
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underlying cluster sampling strategy, I used (group-wise) multilevel multiple imputation to 

handle missing data; advanced (latent) multilevel modeling to estimate the (un)conditional 

variance components; and non-parametric cluster bootstrapping to obtain robust standard errors 

of the unconditional variance components. Further, (multivariate multilevel) meta-analysis and 

meta-regression allowed reliable and generalizable syntheses (see Findley et al., 2021) of the 

results based on individual participant data, while accounting for stochastic dependencies in the 

design parameters. Moreover, precision simulations following a hybrid Bayesian-classical 

approach to power analysis facilitated a proper implicit allowance of design parameter 

uncertainties via priors representing the joint empirical distribution of the ICCs and explained 

variances. 

Large Multiplicity. Given the extensive range of student samples and grades, as well as the so 

far broadest diversity of achievement domains and largest variety of covariate sets, which were 

involved to estimate ρ and 𝑅2 values for several RT designs by means of both latent and

manifest (multilevel) modeling techniques, the present design parameters are highly robust, 

reliable, and versatile in use. Taking the perspective of a “critical multiplism” sensu Shadish 

(1993), the strategy followed in the present dissertation helps to prevent constant, unidirectional 

bias, which increases the credibility of the results. At the same time, it substantively broadens 

the scope of applications in RT design. Thus, the present dissertation helps to fill many 

important gaps of previous research on design parameters for student achievement, from both 

an international perspective (see Figure 7 in Chapter 1 by contrast with Figure 1 in Chapter 4), 

as well as specifically a German perspective (Ständige Wissenschaftliche Kommission der 

Kultusministerkonferenz, 2022).   

Rich Output. This work aims at contributing to an improved quality and rigor of RTs on 

student achievement in the German school context by directly supporting researchers in 

designing their studies. Therefore, this thesis has developed (a) lucid, interactive Excel 

workbooks amassing broadly applicable design parameters (broken down by population, 

achievement domain, grade, and enriched with flow charts guiding the choice of the appropriate 

set of estimates), and (b) thorough guidance for power analysis in general (via multifarious 

illustrative planning scenarios and simulations) and covariate selection in particular (via 

concrete guidelines inspired by three influential psychometric heuristics). In doing so, this 

thesis strives to build a bridge between the research in the methodological underpinnings of RT 

design and applied experimental research. 
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Overall Limitations 

The results of the present doctoral thesis should be interpreted in the light of several 

shortcomings. Most of the more (study-)specific ones among these were addressed in the 

respective limitation sections in Studies I and II. I therefore now focus on overall limitations 

relevant for both studies. 

 

Generalizability I. The narrow definition and high specificity of the generated design 

parameters (e.g., in terms of the target population or target outcome) come at the cost of 

generalizability to other contexts. The present estimates are most suitable for RTs carried out 

in the German school system. Yet, they may also support the planning of RTs in school systems 

that share vital characteristics with the German one (e.g., early onset of ability-based school 

type tracking, as is the case in, e.g., Austria, Czech Republic, Hungary, Slovakia, or Turkey; 

Reichelt et al., 2019; Salchegger, 2016), when more appropriate design parameters are lacking.  

The same logic applies to RTs that draw on measures that deviate from those analyzed: 

the poorer the design parameters’ match to the target measure of the intervention, the worse 

their adequacy for respective power analysis. Mismatch may occur with divergent test 

instruments (e.g., with different psychometric properties), but should be more severe with 

substantively divergent measures of achievement, such as school grades instead of standardized 

tests (Borghans et al., 2016; Brookhart, 2015). With this in mind, it is best practice to perform 

sensitivity analyses to pointedly take into account uncertainty and heterogeneity in the design 

parameters (see e.g., Liu, 2014; Moerbeek & Teerenstra, 2016). Of course, a realistic appraisal 

of applied experimental research anticipates the complexity and diversity in prospective RTs; 

thus, slight deviations between empirical estimates of ρ and 𝑅2 and the context features of the 

target RTs may be natural. However, there might be situations where these deviations are more 

severe (e.g., when an intervention aims at enhancing student achievement in a domain not 

analyzed in the present thesis). My hope is that, in such cases, the normative distributions from 

Study I or the meta-analytic estimates from Study II can serve as valuable approximations. In 

either case, such aggregates should still be more reliable values than conventional (e.g., Cohen, 

1988), quite arbitrary benchmarks (LeBreton & Senter, 2008). To better judge which kind of 

estimates may be most optimal for a certain planning purpose, I invite researchers to consult 

the flow charts enclosed in each study.   

 

Generalizability II. A related issue, but from an opposite perspective: Sometimes, the target 

context defined for the compiled design parameters might be too broad. Consider, for example, 

a prospective RT implemented within a specific school type within the non-academic track in 
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German secondary education. Although it would have been, in principle, possible to estimate 

school-type specific ρ and 𝑅2 values, the potential value of such more specific design

parameters is subject to an accuracy-uncertainty trade-off (Hedges & Hedberg, 2007): Although 

school-type specific design parameters are expected to demonstrate less bias in reflecting the 

distinctive peculiarities of a respective student population, lower sample sizes induce greater 

uncertainty in the estimates (i.e., higher standard errors). Thus, the accuracy of the more specific 

estimates may be offset by their higher uncertainty. Similarly, the range restrictions associated 

with more selective populations (other examples include populations in a certain federal state 

in Germany, impoverished regions, or low-performing schools) may also result in diminished 

covariate-outcome correlations, translating into attenuated statistical power rates (Miciak et al., 

2016). When designing RTs with more homogenous samples, the compiled ρ and 𝑅2 values

should therefore be interpreted rather as upper bound estimates.  

Assumptions of Power Analysis. The applied power analysis formulae to determine the 

required sample size, power, or 𝑀𝐷𝐸𝑆 for two-sample independent 𝑡-tests hinge on strong 

assumptions. One of them is balance in sample allocation, meaning that the TG and the CG are 

equal in sample size, and in multilevel RTs, additionally fixed cluster sizes. With varying 

cluster sizes, statistical power has been demonstrated to decrease (everything else held constant, 

and as long as 0 ≤ ρ ≤ 1), where the more pronounced the variation in cluster size, the greater 

the efficiency loss (e.g., Lauer et al., 2015; van Breukelen et al., 2007). Another assumption is 

homoscedasticity, that is, the TG and the CG share a common variance of the target outcome. 

A (mild) violation of homoscedasticity, however, may be more the rule than the exception 

(especially with comparably heterogeneous populations, as is typically the case in educational 

and psychological research; Blanca, Alarcón, Arnau, et al., 2018; Delacre et al., 2017; P. 

Thompson et al., 2023), and may occur due to non-normality (which is then often solvable 

through score transformations; Aberson, 2019), but also due to treatment effect heterogeneity 

(Bloom, 2005; Bryk & Raudenbush, 1988; P. Thompson et al., 2023): For instance, when a 

reading program shows greater effects for poor readers, the error variance at the individual level 

in the TG can decrease, relative to the CG. Likewise, in multilevel RTs, the reading program 

may exert greater influences in high-performing schools, probably decreasing the respective 

school-level variance component in the TG. Power is affected by heteroscedasticity (i.e., 

unequal variances) because it can flaw the treatment effects’ standard error (and thus, also the 

𝑀𝐷𝐸𝑆; Bloom, 2005), inflating Type I error rates (Aberson, 2019; Bryk & Raudenbush, 1988; 

P. Thompson et al., 2023). In balanced designs, statistical tests for the treatment effect estimate

that assume common variances have been shown robust even under heteroscedasticity at either 
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level (Blanca, Alarcón, Arnau, et al., 2018; Gail et al., 1996; Korendijk et al., 2008). Of note, 

this does not hold for unbalanced designs, though.64 For all power analyses in this dissertation, 

I consistently assumed completely balanced designs (i.e., equal sample sizes in the TG and the 

CG, and in multilevel designs, fixed cluster sizes); hence, the results of the illustrative 

application scenarios as well as of the precision simulations may be most valid for prospective 

RT that (at least roughly) mimic these design characteristics, even when homoscedasticity is 

violated. 

 

Outcome Reliability. Most power analysis tools and software solutions implicitly assume that 

the RT’s target outcome demonstrates perfect reliability (Cox & Kelcey, 2019), and so do the 

present power analyses carried out with the R package PowerUpR (Bulus et al., 2021).65 As 

already alluded in Section 4.1.3, as is the case for covariates, low reliabilities of the outcomes 

can also negatively influence the design sensitivity in RTs (Cohen et al., 2003; Cox & Kelcey, 

2019; Raudenbush & Bryk, 2002; Raudenbush & Sadoff, 2008). For 2L-CRTs and 2L-MSIRTs, 

Cox and Kelcey (2019) also showed that measurement error in the target outcome may 

undermine the efficiency of conventional optimal sampling allocations. As a consequence, the 

power analysis illustrations may depict RT planning under rather ideal circumstances of highly 

reliable outcome measures. It should be noted, however, that fallibility in the outcomes is, at 

least partly, accounted for through the design parameters from Study II as estimated within a 

manifest rather than latent variable modeling framework, indirectly incorporating measurement 

error (at all hierarchical levels) into power analysis (Cox & Kelcey, 2019).   

 

Deviating Nesting Structures. The present design parameter compendia cover RT designs 

with three sampling schemes of up to three hierarchical levels (i.e., students within classrooms 

within schools). The offered ρ and 𝑅2 values, however, may not be appropriate for designing 

multilevel RTs with other nesting structures (e.g., students within teachers within schools or 

                                                 
64  Gail et al. (1996) presented simulations showing that heteroscedasticity distorts the 𝑡-tests in unbalanced CRT 

designs, both when the variance in the TG is larger than in the CG (if the sample size in the CG surpass the 

sample size in the TG) as well as when the variance in the TG is smaller than in the CG (if the sample size in 

the TG surpass the sample size in the CG). The extent of inferential error hinges on the degrees of imbalance in 

the sample sizes between the TG and the CG and their variances. Nevertheless, the authors claim that this 

problem may be of less practical relevance since the differences in the variances between the TG and the CG 

are usually not expected to be as large (at least in clinical trials; Gail et al., 1996). In cases where it is not feasible 

or less cost-efficient to attain balance in sample allocation to the experimental conditions (e.g., when the 

treatment is expensive and it would be cheaper to assign more units to the CG), researchers may adjust for 

heteroscedasticity; for this, several methods and tests have been proposed (see e.g., Aberson, 2019; Blanca, 

Alarcón, Arnau, et al., 2018; Bloom, 2005 for some listings). Delacre et al. (2017) even call for the use of 

Welch’s 𝑡-test (instead of Student’s 𝑡-test) as the default procedure. 
65  Note that PowerUpR currently allows the specification of an individual-level outcome reliability coefficient in 

power computations for 2L-CRTs and 2L-MSIRTs as based on the formulae given in Cox and Kelcey (2019); 

however, so far, a congruent strategy is implemented neither for IRTs nor the various three-level RT designs.  
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students within schools within districts; Shen et al., 2023; Spybrook, Westine, et al., 2016). 

Nevertheless, the six different RT designs considered in this dissertation apply to those RT 

designs which are most frequently implemented to evaluate interventions on student 

achievement (Connolly et al., 2018; Spybrook, Shi, et al., 2016; Spybrook & Raudenbush, 

2009).  

Future Directions 

Increasing the Diversity of Design Parameters. Educational interventions are diverse in their 

goals (Morrison, 2020), and so are the RTs that test their actual impact (Connolly et al., 2018; 

Lortie-Forgues & Inglis, 2019; Spybrook, Shi, et al., 2016; Spybrook & Raudenbush, 2009). 

Therefore, design parameters for many other targets are required. These include further 

populations and age groups (e.g., preschool children, university students, teachers), non-

cognitive outcomes (e.g., socio-emotional, behavioral, professional characteristics), covariate 

sets (e.g., motivational predictors, global variables such as school size or instructional quality), 

experimental designs and hierarchical levels (e.g., stepped-wedge or cross-classified designs, 

four- or even five-level designs with students nested within classrooms nested within teachers 

nested within schools nested within cities/regions), as well as innovative, auspicious analysis 

models and statistical procedures for estimating treatment effects (e.g., latent repeated measures 

ANOVA; Langenberg et al., 2022; or the “EffectLiteR” approach to latently model conditional, 

interindividual treatment effect differences; Mayer et al., 2020). 

Providing Design Parameters for Binary Outcomes. Many educational outcomes are binary 

in nature (e.g., obtaining a certain certificate or not) or are dichotomized from on a continuous 

scale (e.g., achieving a certain proficiency standard or not, having a low to medium frustration 

tolerance or not). To plan RTs targeted at binary outcomes, researchers need appropriate design 

parameters (e.g., in log odds), which are widely lacking to date (but see Schochet, 2013 for an 

exception), again, especially for the German school context. 

Studying Treatment Effect Heterogeneity. Most educational RTs use methods such as 

stratification or blocking (Spybrook, Shi, et al., 2016). To plan such MSRTs, researchers 

heavily rely on reliable estimates of treatment effect heterogeneity, which are widely lacking 

so far (but see Weiss et al., 2017 for an exception), especially for the German school context. 

Hence, to generate and accumulate these values will be one of the pressing issues for future 

research. Apart from this, studying variation in the impacts of interventions is of high scientific 

and practical relevance it its own right.
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Upgrading Simulation-Based Sensitivity Analysis Methods. It cannot be overemphasized 

that sensitivity analyses across a range of plausible design parameter estimates are key to 

rigorous RT design; and simulation-based methods within a hybrid Bayesian-classical approach 

to power analysis making use of (empirically informed) priors are highly promising 

developments to tackle uncertainty inherent in ρ and 𝑅2 (Pek & Park, 2019; Spiegelhalter et al.,

2004; Williamson et al., 2023; as well as in effect sizes, see Du & Wang, 2016). However, the 

adoption of such approaches in applied experimental research is comparatively rare. This is 

probably due to the fact that little practical guidance exists on how to properly implement these 

techniques in RT planning. Therefore, it would be helpful if methodologists could provide such 

resources in the future. Relatedly, recent innovations in this area should be expanded further, 

for instance, by building on works that integrate multiple ρ and 𝑅2 estimates by specifying

commensurate priors (Turner et al., 2005; Zheng et al., 2023), by diligently elaborating on the 

plausibility of distributional assumptions for the priors, or by also embracing fully Bayesian 

approaches to power analysis to simulate posterior densities of design parameters as well as of 

the various power analysis outcomes themselves, both with continuous (see e.g., Spiegelhalter, 

2001) and binary (see e.g., Turner et al., 2001) outcomes.66  

Building an RT Infrastructure in Germany. Germany lacks a firmly established 

infrastructure that couples support for the design of RTs with the dissemination of the resulting 

evidence, perhaps based on the model of the IES together with the WWC in the United States. 

Probably, such an endeavor would also contribute to a better connection between 

methodological advancements and applied evaluation research. This also includes enabling 

even more easy access to versatile design parameter compilations, for instance via an online 

tool, similar to the “Variance Almanac” built by Hedges and Hedberg (2023). The latter aspect 

seems important since even though funding agencies stress the need to carefully document 

relevant estimates from RTs (e.g., Education Endowment Foundation, 2022; German Research 

Foundation, 2022; Institute of Education Sciences, 2023), comprehensive summaries of the data 

from these reports are not regularly made available to researchers who are possibly planning 

similar research, at least in Germany.  

66 Generally, Bayesian approaches to power analysis increasingly gain ground (Kruschke, 2010); promising 

developments encompass, for instance, Bayes factor design analysis to determine sample size (Schönbrodt & 

Wagenmakers, 2018).  
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4.4 Conclusion 

“A power analysis is only as good as the formulae and parameter estimates that are used (…) 

Without good estimates, power analysis is only guesswork” (Murray, 1998, pp. 349–350), as 

claimed at the very beginning of this doctoral thesis. Indeed, power analysis is by no means a 

surefire success for strong experimental study designs. Exactly in this spirit, this dissertation 

pursued the systematic analysis of reliable and versatile design parameters to plan meaningful 

randomized experiments on student achievement. In doing so, I generated extensive compendia 

of ρ and 𝑅2 estimates, enriched with nuanced guidance to deliberately optimize power analysis.

My overarching endeavor was to support evaluators in realizing sensitive—adequately 

powered and precise—RT designs that allow for conclusive, unbiased, and valid causal 

inferences on the impact of innovative programs, novel developments, and promising services 

devoted to foster student learning. 

The quintessence of the analyses at hand is that the design parameter estimates to rely 

on when determining required sample sizes, attainable power, or precision rates should mirror 

as accurately as possible the context features and idiosyncrasies of the prospective RT. To be 

precise: the RT’s target population and achievement outcome domain, the (preregistered) 

covariates, as well as its planned experimental design and statistical analysis model. The design 

parameters considerably varied across all these dimensions. Hence, a close match is crucial.    

The emerging materials are appropriate to design robust single- and multilevel RTs with 

several German and similar student (sub)populations across the entire school career, 

multifaceted achievement (sub)domains, varied covariate sets, diverse single- and multilevel 

experimental designs, as well as manifest and latent analysis models. When the fit between 

design parameters and target RT is less than perfect (which I anticipate will virtually always be 

the case to some degree), the additionally supplied quantifications of the estimates’ 

uncertainties and heterogeneities facilitate expedient (simulation-based) sensitivity analyses.  

I hope that the resources accumulated in my doctoral thesis function as valuable toolkits 

for power analysis in RT design, and thus, contribute to the quality and rigor of our randomized 

experiments in psychology and education. Because these studies represent the indispensable 

fundaments of wise and profound decisions in evidence-based policies and practices whose 

ultimate aim is to improve schooling, and therefore, every students’ personal life as well as the 

whole societies’ prosperity.     
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Appendix A: Variance Inflation Factor in a Two-Stage Clustered 

Sample 

This appendix introduces the variance inflation factor for two-stage clustered samples and the 

respective effective sample size derived from it (see also e.g., Hedges & Rhoads, 2010). 

Let 𝑌 be an achievement outcome, which is normally distributed with variance σT
2 . For 

a simple random sample of 𝑁 students, the variance of the sample mean is: 𝑉𝑎𝑟(�̅�) = σT
2/𝑁. 

Now consider a two-stage (i.e., clustered) random sample of the same total sample size 𝑁, but 

where first, 𝑘 ∈ {1, 2, … , 𝐾} schools, and second, within each school the same number of 𝑖 ∈
{1, 2, … , 𝑛𝑘} students are selected, so that 𝑁 = 𝐾𝑛.  

There are two important differences between this clustered sample and the simple 

sample described before. First, although the total sample size is still 𝑁, there may be various 

possible configurations of 𝐾𝑛 (e.g., 𝐾 = 50 and 𝑛 = 10 results in 𝑁 = 500, but also 𝐾 = 5 and 

𝑛 = 100; see Hedges & Rhoads, 2010). Second as students mutually influence each other in the 

context of school-specific attributes, norms and standards (Kreft & de Leeuw, 1998; Murray, 

1998), their scores resemble each other when they belong to the same school (Donner & Klar, 

2000). Statistically, this implies a correlated error structure (Kreft, 1993; Schochet, 2008). This 

correlation between individuals within clusters, or put differently, the degree of between-group 

differences, is expressed by the intraclass correlation (ICC) ρ. These two properties of a 

clustered sample are reflected in the variance inflation factor (VIF; Donner et al., 1981; in 

survey sampling theory best known as the “design effect”; Kish, 1965): 

 VIF =  1 + (𝑛𝑘 − 1)ρ (A1) 

A derivation of the VIF is, for example, given in M. J. Campbell and Walters (2014, p. 23).  

The sampling variance of the mean in a clustered sample has to be multiplied by the 

VIF: 𝑉𝑎𝑟(�̅�) = [σT
2/𝑁][1 + (𝑛𝑘 − 1)ρ]. This way, the VIF can be conceived as the ratio of 

the variance in a clustered random sample of size 𝑁 = 𝐾𝑛 to the variance in a simple random 

sample of the same size 𝑁. Recall that this adjustment of 𝑉𝑎𝑟(�̅�) through the VIF in its basic 

form of Equation (A1) assumes constant cluster sizes, all well as neither covariate adjustment, 

nor other balancing techniques such as stratification, blocking, or matching, and 𝑌 being a 

continuous (or also binary) response measure (Eldridge & Kerry, 2012). It follows that as soon 

as ρ > 0, the correctly computed variance of the sample mean (i.e., by taking the hierarchical 

structure into account) is always larger with a clustered than a simple random sample. For 

instance, for 𝑁 = 500, 𝐾 = 50, 𝑛𝑘 = 10, and ρ = .01/.25/.50, the variance of the sample mean 

increases by 9%/225%/450%. 

Note that this very same VIF also augments the required sample size (M. J. Campbell 

& Walters, 2014); or equivalenty, decreases the effective sample size in a clustered sample. The 

effective sample size is computed as (Snijders & Bosker, 2012, Equation 3.18): 

 𝑁effective =  
𝐾𝑛

VIF
 (A2) 

For the example of 𝐾 = 50 and 𝑛𝑘 = 10, with ρ = .25, the effective sample size is 𝑁effective = 

(50 ∗ 10) / 1 + (10 − 1) ∗ .25 ≈ 154. Thus, the clustered sample with 𝐾𝑛 = 500 is equivalent 

to a simple random sample of 𝑁 = 154 students. 

With covariates, the VIF may be adjusted by a factor 1 − 𝑅2 sensu Teerenstra et al. 

(2012) in an ANCOVA framework (see also Hayes & Moulton, 2017); however, notably with 

the restriction that ρ is assumed to be unadjusted, making this correction most useful when a 

researcher wishes to adjust the required sample size of a CRT for baseline covariates subsequent 

to having corrected for the VIF (M. J. Campbell & Walters, 2014; Teerenstra et al., 2012).  
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Appendix B: Statistical Models of the Experimental Designs 

This appendix deals with the statistical formulations of the six RT designs for which the present 

doctoral thesis has generated appropriate design parameters to be used in power analysis (see 

Figure 4 in Chapter 1). The discussion is limited to two-arm RTs with one single TG and one 

single CG, although, in principle, extensions to multi-arm RTs are possible (see e.g., Liu, 

2014a). The models yield estimates of the average treatment effect on an achievement outcome 

𝑌 (i.e., �̅�TG − �̅�CG; Bloom, 2006). For simplicity, I assume that TG and CG share a common

variance in 𝑌 (i.e., σTG
2 = σCG

2 = σT
2 ; see also Bloom, 2006). See Section 4.3 in this dissertation,

or also Bloom (2005), for a discussion of the implications when σTG
2 ≠ σCG

2 .

For each design, first the expression for an unadjusted model that does not contain any 

covariates is given, which I refer to as unconditional model. Second, the expression for an 

adjusted model that does contain one or more covariates is given, which I refer to as conditional 

model. For multilevel designs, both all models are formulated in a combined form as well as 

decomposed at the various hierarchical levels.  

In the MSRTs, the sites can be treated as random or fixed (see Dong & Maynard, 2013; 

Schochet, 2008). This choice basically affects statistical power through the noncentrality 

parameter, and determines whether the RT can be generalized to a superpopulation of sites (in 

the case of random site effects) or only to the sites actually included in the RT (in the case of 

fixed site effects; Spybrook & Raudenbush, 2009). 

Individually Randomized Trial 

Suppose that 𝑖 ∈ {1, 2, … , 𝑁} students are sampled independently of each other (i.e., 

disregarding any grouping into classrooms and schools) and are randomly assigned to the TG 

or CG (see Figure 4a in Chapter 1). For such an IRT, the unconditional single-level model can 

be written as (Bloom, 2006, Equation 12): 

𝑌𝑖 = β0 + ψ1𝑇𝑖 + e𝑖 (B1) 

𝑌𝑖 is the achievement of the 𝑖th student and 𝑇𝑖 is the treatment indicator of the 𝑖th student, with

𝑇𝑖 = .50/−.50 for students in the TG/CG. β0 is the intercept and ψ1 is the treatment effect (i.e.,

ψ̂1 = �̅�TG − �̅�CG). 𝑒𝑖 is the residual of the 𝑖th student, with 𝑒𝑖 ~ 𝑁(0, σT
2 ), where σT

2  is the total

variance of 𝑌 within experimental groups. 

Adding 𝑞T ∈ {1, 2, … , 𝑄T} covariates 𝐶T yields the conditional single-level model

(Bloom, 2006, Equation 13): 

𝑌𝑖 = β0 + ψ1𝑇𝑖 + ∑ β𝑞T
𝐶T𝑞T𝑖

𝑄T
𝑞T=1 + 𝑒𝑖 (B2) 

β𝑞T
 is the coefficient of the 𝑞Tth covariate 𝐶T of the 𝑖th student. 𝑒𝑖  ~ 𝑁(0, σT|CT

2 ), where σT|CT

2

is the covariate-adjusted total variance of 𝑌. 

Two-Level Cluster-Randomized Trial 

Suppose that 𝑖 ∈ {1, 2, … , 𝑛𝑘} students at L1 are nested within 𝑘 ∈ {1, 2, … , 𝐾} schools at L3

and schools are randomly assigned to the TG or CG. Therefore, schools are treated as random 

effects. Since treatment allocation occurs at the top hierarchical school level, the treatment is 

not crossed with these random school effects; rather, schools are nested within experimental 

conditions (Liu, 2014b; see Figure 4b in Chapter 1). For such a 2L-CRT, the unconditional two-

level model can be written as (Bloom, 2006, Equation 17): 
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 𝑌𝑖𝑘 =  π00 + ψ01𝑇𝑘 + 𝑢0𝑘 + 𝑒𝑖𝑘 , (B3) 

where 

L1: 𝑌𝑖𝑘 = β0𝑘 + 𝑒𝑖𝑘 (B4) 

L3: β0𝑘 = π00 + ψ01𝑇𝑘 +  𝑢0𝑘 (B5) 

𝑌𝑖𝑘 is the achievement outcome of the 𝑖th student in the 𝑘th school and 𝑇𝑘 is the treatment 

indicator of the 𝑘th school, with 𝑇𝑘 = .50/−.50 for schools in the TG/CG. β0𝑘 is the intercept 

of the 𝑘th school, π00 is the grand mean, and ψ01 is the treatment effect (i.e., ψ̂01 = �̅�TG −
�̅�CG). 𝑒𝑖𝑘 is the residual of the 𝑖th student in the 𝑘th school, with 𝑒𝑖𝑘 ~ 𝑁(0, σL1

2 ), where σL1
2  is 

the between-student-within-school variance of 𝑌 at L1. 𝑢0𝑘 is the residual of the 𝑘th school, 

with 𝑢0𝑘 ~ 𝑁(0, σL3
2 ), where σL3

2  is the between-school variance of 𝑌 at L3.  

Adding 𝑞L1 ∈ {1, 2, … , 𝑄L1} covariates 𝐶L1 at L1 and 𝑞L3 ∈ {1, 2, … , 𝑄L3} covariates 

𝐶L3 at L3 yields the conditional two-level model (Dong & Maynard, 2013, pp. 50–51): 

 𝑌𝑖𝑘 = π00 + ψ01𝑇𝑘 + ∑ π0𝑞L3+1𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 + ∑ π𝑞L10𝐶L1𝑞L1𝑖𝑘

𝑄L1
𝑞L1=1 + 𝑢0𝑘 + 𝑒𝑖𝑘  (B6) 

where 

L1: 𝑌𝑖𝑘 = β0𝑘 + ∑ β𝑞L1𝑘𝐶L1𝑞L1𝑖𝑘
𝑄L1
𝑞L1=1 + 𝑒𝑖𝑘  (B7) 

 

L3: 
β0𝑘 = π00 + ψ01𝑇𝑘 + ∑ π0𝑞L3

𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 +  𝑢0𝑘  

β𝑞L1𝑘 = π𝑞L10 
(B8) 

β𝑞L1𝑘 is the coefficient of the 𝑞L1th covariate 𝐶L1 of the 𝑖th student in the 𝑘th school and π0𝑞L3
 

is the coefficient of the 𝑞L3th covariate 𝐶L3 of the 𝑘th school. 𝑒𝑖𝑘 ~ 𝑁(0, σL1|CL1

2 ), where σL1|CL1

2  

is the covariate-adjusted between-student-within-school variance of 𝑌. 𝑢0𝑘 ~ 𝑁(0, σL3|CL3

2 ), 

where σL3|CL3

2  is the covariate-adjusted between-school variance of 𝑌. 

Three-Level Cluster-Randomized Trial 

Suppose that 𝑖 ∈ {1, 2, … , 𝑛𝑗𝑘} students at L1 are nested within 𝑗 ∈ {1, 2, … , 𝐽𝑘} classrooms at 

L2 which are, in turn, nested within 𝑘 ∈ {1, 2, … , 𝐾} schools at L3 and schools are randomly 

assigned to the TG or CG (see Figure 4c in Chapter 1). For such a 3L-CRT, the unconditional 

three-level model can be written as: 

 𝑌𝑖𝑗𝑘 =  π000 + ψ001𝑇𝑘 + 𝑢00𝑘 + 𝑟0𝑗𝑘 + 𝑒𝑖𝑗𝑘 (B9) 

where 

L1: 𝑌𝑖𝑗𝑘 =  β0𝑗𝑘 + 𝑒𝑖𝑗𝑘 (B10) 

L2: β0𝑗𝑘 =  γ00𝑘 +  𝑟0𝑗𝑘 (B11) 

L3: γ00𝑘 =  π000 + ψ001𝑇𝑘 +  𝑢00𝑘 (B12) 
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𝑌𝑖𝑗𝑘 is the achievement outcome of the 𝑖th student in the 𝑗th classroom in the 𝑘th school and 𝑇𝑘

is the treatment indicator of the 𝑘th school, with 𝑇𝑘 = .50/−.50 for schools in TG/CG. β0𝑗𝑘 is

the intercept of the 𝑗th classroom in the 𝑘th school, γ00𝑘 is the intercept of school 𝑘, π000 is the

grand mean, and ψ001 is the treatment effect (i.e., ψ̂001 = �̅�TG − �̅�CG). 𝑒𝑖𝑗𝑘 is the residual of the

𝑖th student in the 𝑗th classroom in the 𝑘th school, with 𝑒𝑖𝑗𝑘 ~ 𝑁(0, σL1
2 ), where σL1

2  is the

between-student-within-classroom variance of 𝑌. 𝑟0𝑗𝑘 is the residual of the 𝑗th classroom in the

𝑘th school, with 𝑟0𝑗𝑘 ~ 𝑁(0, σL2
2 ), where σL2

2  is the between-classroom-within-school variance

of 𝑌. 𝑢00𝑘 is the residual of the 𝑘th school with 𝑢00𝑘 ~ 𝑁(0, σL3
2 ), where σL3

2  is the between-

school variance of 𝑌. 

Adding 𝑞L1 ∈ {1, 2, … , 𝑄L1} covariates 𝐶L1 at L1, 𝑞L2 ∈ {1, 2, … , 𝑄L2} covariates 𝐶L2

at L2, and 𝑞L3 ∈ {1, 2, … , 𝑄L3} covariates 𝐶L3 at L3 yields the conditional three-level model

(Dong & Maynard, 2013, p. 51): 

𝑌𝑖𝑗𝑘 = π000 + ψ001𝑇𝑘 + ∑ π00𝑞L3
𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 + ∑ π0𝑞L20𝐶L2𝑞L2𝑗𝑘

𝑄L2
𝑞L2=1 +

∑ π𝑞L100𝐶L1𝑞L1𝑖𝑗𝑘
𝑄L1
𝑞L1=1 + 𝑢00𝑘 + 𝑟0𝑗𝑘 + 𝑒𝑖𝑗𝑘 ,

(B13) 

where 

L1: 𝑌𝑖𝑗𝑘 =  β0𝑗𝑘 + ∑ β𝑞L1𝑗𝑘𝐶L1𝑞L1𝑖𝑗𝑘
𝑄L1
𝑞L1=1 + 𝑒𝑖𝑗𝑘 (B14) 

L2: 
β0𝑗𝑘 =  γ00𝑘 + ∑ γ0𝑞L2𝑘𝐶L2𝑞L2𝑗𝑘

𝑄L2
𝑞L2=1 + 𝑟0𝑗𝑘

β𝑞L1𝑗𝑘 = γ𝑞L10𝑘

(B15) 

L3: 

γ00𝑘 =  π000 + ψ001𝑇𝑘 + ∑ π00𝑞L3
𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 + 𝑢00𝑘

γ0𝑞L2𝑘 = π0𝑞L20

γ𝑞L10𝑘 = π𝑞L100

(B16) 

β𝑞L1𝑗𝑘 is the coefficient of the 𝑞L1th covariate 𝐶L1 of the 𝑖th student in the 𝑗th classroom in the

𝑘th school, γ0𝑞L2𝑘 is the coefficient of the 𝑞L2th covariate 𝐶L2 of the 𝑗th classroom in the 𝑘th

school, and π00𝑞L3
 is the coefficient of the 𝑞L3th covariate 𝐶L3 of the 𝑘th school.

𝑒𝑖𝑗𝑘 ~ 𝑁(0, σL1|CL1

2 ), where σL1|CL1

2  is the covariate-adjusted between-student-within-classroom 

variance of 𝑌. 𝑟0𝑗𝑘 ~ 𝑁(0, σL2|CL2

2 ), where σL2|CL2

2 is the covariate-adjusted between-

classroom-within-school variance of 𝑌. 𝑢00𝑘 ~ 𝑁(0, σL3|CL3

2 ), where σL3|CL3

2  is the covariate-

adjusted between-school variance of 𝑌.  

Two-Level Multisite Individually Randomized Trials 

Suppose that 𝑖 ∈ {1, 2, … , 𝑛𝑘} students at level (L) 1 are nested within 𝑘 ∈ {1, 2, … , 𝐾} schools

at L3 and individual students are randomly assigned to the TG or CG (see Figure 4d in Chapter 

1). For such a 2L-MSIRT, the unconditional two-level model with random between-student-

within-school site effects can be written as (Raudenbush & Liu, 2000, Equation 4): 

𝑌𝑖𝑘 =  π00 + π10𝑇𝑖𝑘 + 𝑢0𝑘 + 𝑢1𝑘𝑇𝑖𝑘 + 𝑒𝑖𝑘 , (B17) 

where 

L1: 𝑌𝑖𝑘 = β0𝑘 + ψ1𝑘𝑇𝑖𝑘 + 𝑒𝑖𝑘 (B18) 
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L3: 
β0𝑘 = π00 + 𝑢0𝑘  

ψ1𝑘 = π10 + 𝑢1𝑘 
(B19) 

𝑌𝑖𝑘 is the achievement outcome of the 𝑖th student in the 𝑘th school and 𝑇𝑖𝑘 is the treatment 

indicator of the 𝑖th student in the 𝑘th school, with 𝑇𝑖𝑘 = .50/−.50 for students in TG/CG. β0𝑘 is 

the intercept of the 𝑘th school, π00 is the grand mean, ψ1𝑘 is the treatment effect in the 𝑘th 

school (i.e., ψ̂1𝑘 = �̅�TG − �̅�CG), and π10 is the average treatment effect. 𝑒𝑖𝑘 is the residual of the 

𝑖th student in the 𝑘th school, with 𝑒𝑖𝑘 ~ 𝑁(0, σL1
2 ), where σL1

2  is the between-student-within-

school variance of 𝑌 at L1. 𝑢0𝑘 and 𝑢1𝑘 are the residuals of the 𝑘th school, with 

 (
𝑢0𝑘

𝑢1𝑘
) ~𝑁 ((

0
0

) , [
σL3

2 σL3δL3

σL3δL3
σδL3

2 ]) , (B20) 

where σL3
2  is the between-school variance of 𝑌 at L3, σδL3

2  is the between-school variance in 

the treatment effect at L3, and σL3δL3
 is the covariance between 𝑢0𝑘 and 𝑢1𝑘. 

Adding 𝑞L1 ∈ {1, 2, … , 𝑄L1} covariates 𝐶L1 at L1 and 𝑞L3 ∈ {1, 2, … , 𝑄L3} covariates 

𝐶L3 at L3 yields the conditional within two-level model with random site effects (Dong & 

Maynard, 2013, p. 47): 

 
𝑌𝑖𝑘 = π00 + π10𝑇𝑖𝑘 + ∑ π0𝑞L3+1𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 + ∑ π1𝑞L3

𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 𝑇𝑖𝑘 +

∑ π𝑞L10𝐶L1𝑞L1𝑖𝑘
𝑄L1
𝑞L1=1 + 𝑢0𝑘 + 𝑢1𝑘𝑇𝑖𝑘 + 𝑒𝑖𝑘  

(B21) 

where 

L1: 𝑌𝑖𝑘 = β0𝑘 + ψ1𝑘𝑇𝑖𝑘 + ∑ β𝑞L1𝑘𝐶L1𝑞L1𝑖𝑘
𝑄L1
𝑞L1=1 + 𝑒𝑖𝑘  (B22) 

 

L3: 

β0𝑘 = π00 + ∑ π0𝑞L3
𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 +  𝑢0𝑘  

ψ1𝑘 = π10 + ∑ π1𝑞L3
𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 + 𝑢1𝑘  

β𝑞L1𝑘 = π𝑞L10 

(B23) 

β𝑞L1𝑘 is the coefficient of the 𝑞L1th covariate 𝐶L1 of the 𝑖th student in the 𝑘th school and π0𝑞L3
 

is the coefficient of the 𝑞L3th covariate 𝐶L3 of the 𝑘th school. 𝑒𝑖𝑘 ~ 𝑁(0, σL1|CL1

2 ), where σL1|CL1

2  

is the covariate-adjusted between-student-within-school variance of 𝑌. 

 (
𝑢0𝑘

𝑢1𝑘
) ~𝑁 ((

0
0

) , [
σL3|CL3

2 σL3δL3|CL3

σL3δL3|CL3
σδL3|CL3

2 ]) , (B24) 

where σL3|CL3

2  is the covariate-adjusted between-school variance of 𝑌, σδL3|CL3

2  is the covariate-

adjusted between-school variance in the treatment effect, and σL3δL3|CL3
 is the covariate-

adjusted covariance between 𝑢0𝑘 and 𝑢1𝑘. Note that 𝐶L3 may be either aggregated 𝐶L1 variables 

or cluster characteristics by definition (e.g., school size). In the first case, group-mean centering 

is recommended which ensures that the covariates explain variance exclusively at the level of 

their specification (Konstantopoulos, 2008). Note further that the expected effect of covariate 

adjustment on the treatment effect equals zero, assuming covariate-treatment orthogonality 

(Konstantopoulos, 2008). 

If the site effects are treated as fixed, 𝑢0𝑘 and 𝑢1𝑘 are fixed effects with a mean 

constrained to zero. Equation (B21) reduces to (Dong & Maynard, 2013, pp. 46–47):  

 𝑌𝑖𝑘 = π00 + π10𝑇𝑖𝑘 + ∑ π𝑞L10𝐶L1𝑞L1𝑖𝑘
𝑄L1
𝑞L1=1 + 𝑢0𝑘 + 𝑢1𝑘𝑇𝑖𝑘 + 𝑒𝑖𝑘  (B25) 

Equation (B23) reduces to (Dong & Maynard, 2013, pp. 46–47):  
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L3: 

β0𝑘 = π00 + 𝑢0𝑘  

ψ1𝑘 = π10 + 𝑢1𝑘  

β𝑞L1𝑘 = π𝑞L10 
(B26) 

Three-Level Multisite Individually Randomized Trials 

Suppose that 𝑖 ∈ {1, 2, … , 𝑛𝑗𝑘} students at L1 are nested within 𝑗 ∈ {1, 2, … , 𝐽𝑘} classrooms at 

L2 which are, in turn, nested within 𝑘 ∈ {1, 2, … , 𝐾} schools at L3 and individual students are 

randomly assigned to the TG or CG (see Figure 4e in Chapter 1). For such a 3L-MSIRT, the 

unconditional within three-level model with random site effects can be written as: 

 𝑌𝑖𝑗𝑘 =  π000 + π100𝑇𝑖𝑗𝑘 + 𝑢00𝑘 + 𝑢10𝑘𝑇𝑖𝑗𝑘 + 𝑟0𝑗𝑘 + 𝑟1𝑗𝑘𝑇𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘 , (B27) 

where 

L1: 𝑌𝑖𝑗𝑘 = β0𝑗𝑘 + ψ1𝑗𝑘𝑇𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘 (B28) 

 

L2: β0𝑗𝑘 = γ00𝑘 + 𝑟0𝑗𝑘  

ψ1𝑗𝑘 = γ10𝑘 + 𝑟1𝑗𝑘 
(B29) 

 

L3: γ00𝑘 = π000 + 𝑢00𝑘  

γ10𝑘 = π100 + 𝑢10𝑘 
(B30) 

𝑌𝑖𝑗𝑘 is the achievement outcome of the 𝑖th student in the 𝑗th classroom in the 𝑘th school and 

𝑇𝑖𝑗𝑘 is the treatment indicator of the 𝑖th student in the 𝑗th classroom in the 𝑘th school, with 

𝑇𝑖𝑗𝑘 = .50/−.50 for students in TG/CG. β0𝑗𝑘 is the intercept of the 𝑗th classroom in the 𝑘th 

school, γ00𝑘 is the intercept of school 𝑘, π000 is the grand mean, ψ1𝑗𝑘 is the treatment effect in 

the 𝑗th classroom in the 𝑘th school (i.e., ψ̂1𝑗𝑘 = �̅�TG − �̅�CG), γ10𝑘 is the average treatment effect 

in the 𝑘th school, and π010 is the average treatment effect. 𝑒𝑖𝑗𝑘 is the residual of the 𝑖th student 

in the 𝑗th classroom in the 𝑘th school, with 𝑒𝑖𝑗𝑘 ~ 𝑁(0, σL1
2 ), where σL1

2  is the between-student-

within-classroom variance of 𝑌 at L1. 𝑟0j𝑘 and 𝑟1j𝑘 are the residuals of the 𝑗th classroom in the 

𝑘th school, with 

 (
𝑟0j𝑘

𝑟1j𝑘
) ~𝑁 ((

0
0

) , [
σL2

2 σL2δL2

σL2δL2
σδL2

2 ]) , (B31) 

where σL2
2  is the between-classroom-within-school variance of 𝑌 at L2, σδL2

2  is the between-

classroom-within-school variance in the treatment effect at L2, and σL2δL2
 is the covariance 

between 𝑟0j𝑘 and 𝑟1j𝑘. 𝑢00𝑘 and 𝑢10𝑘 are the residuals of the 𝑘th school, with 

 (
𝑢00𝑘

𝑢10𝑘
) ~𝑁 ((

0
0

) , [
σL3

2 σL3δL3

σL3δL3
σδL3

2 ]) , (B32) 

where σL3
2  is the between-school variance of 𝑌 at L3, σδL3

2  is the between-school variance in 

the treatment effect at L3, and σL3δL3
 is the covariance between 𝑢00𝑘 and 𝑢10𝑘. 

Adding 𝑞L1 ∈ {1, 2, … , 𝑄L1} covariates 𝐶L1 at L1, 𝑞L2 ∈ {1, 2, … , 𝑄L2} covariates 𝐶L2 

at L2, and 𝑞L3 ∈ {1, 2, … , 𝑄L3} covariates 𝐶L3 at L3 yields the conditional within three-level 

model with random site effects (see Dong & Maynard, 2013, p. 48; Konstantopoulos, 2008, 

pp. 279–280): 
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𝑌𝑖𝑗𝑘 = π000 + π100𝑇𝑖𝑗𝑘 + ∑ π00𝑞L3
𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 + ∑ π10𝑞L3

𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 𝑇𝑖𝑗𝑘 +

∑ π0𝑞L20𝐶L2𝑞L2𝑗𝑘
𝑄L2
𝑞L2=1 + ∑ γ1𝑞L2𝑘𝐶L2𝑞L2𝑗𝑘

𝑄L2
𝑞L2=1 𝑇𝑖𝑗𝑘 + ∑ π𝑞L100𝐶L1𝑞L1𝑖𝑗𝑘

𝑄L1
𝑞L1=1 +

𝑢00𝑘 + 𝑢10𝑘𝑇𝑖𝑗𝑘 + 𝑟0𝑗𝑘 + 𝑟1𝑗𝑘𝑇𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘

(B33) 

where 

L1: 𝑌𝑖𝑗𝑘 = β0𝑗𝑘 + ψ1𝑗𝑘𝑇𝑖𝑗𝑘 + ∑ β𝑞L1𝑗𝑘𝐶L1𝑞L1𝑖𝑗𝑘
𝑄L1
𝑞L1=1 + 𝑒𝑖𝑗𝑘 (B34) 

L2: 

β0𝑗𝑘 = γ00𝑘 + ∑ γ0𝑞L2𝑘𝐶L2𝑞L2𝑗𝑘
𝑄L2
𝑞L2=1 + 𝑟0𝑗𝑘

ψ1𝑗𝑘 = γ10𝑘 + ∑ γ1𝑞L2𝑘𝐶L2𝑞L2𝑗𝑘
𝑄L2
𝑞L2=1 + 𝑟1𝑗𝑘

β𝑞L1𝑗𝑘 = γ𝑞L10𝑘

(B35) 

L3: 

γ00𝑘 = π000 + ∑ π00𝑞L3
𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 + 𝑢00𝑘

γ10𝑘 = π100 + ∑ π10𝑞L3
𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 + 𝑢10𝑘

γ0𝑞L2𝑘 = π0𝑞L20

γ1𝑞L2𝑘 = π1𝑞L20

γ𝑞L10𝑘 = π𝑞L100

(B36) 

β𝑞L1𝑗𝑘 is the coefficient of the 𝑞L1th covariate 𝐶L1 of the 𝑖th student in the 𝑗th classroom in the

𝑘th school, γ0𝑞L2𝑘 is the coefficient of the 𝑞L2th covariate 𝐶L2 of the 𝑗th classroom in the 𝑘th

school, and π00𝑞L3
 is the coefficient of the 𝑞L3th covariate 𝐶L3 of the 𝑘th school.

𝑒𝑖𝑗𝑘 ~ 𝑁(0, σL1|CL1

2 ), where σL1|CL1

2 is the covariate-adjusted between-student-within-school 

variance of 𝑌. 

(
𝑟0𝑗𝑘

𝑟1𝑗𝑘
) ~𝑁 ((

0
0

) , [
σL2|CL2

2 σL2δL2|CL2

σL2δL2|CL2
σδL2|CL2

2 ]) , (B37) 

where σL2|CL2

2  is the covariate-adjusted between-classroom-within-school variance of 𝑌 at L2, 

σδL2|CL2

2  is the covariate-adjusted between-classroom-within-school variance in the treatment 

effect at L2, and σL2δL2|CL2
 is the covariate-adjusted covariance between 𝑟0𝑗𝑘 and 𝑟1𝑗𝑘.

(
𝑢00𝑘

𝑢10𝑘
) ~𝑁 ((

0
0

) , [
σL3|CL3

2 σL3δL3|CL3

σL3δL3|CL3
σδL3|CL3

2 ]) , (B38) 

σL3|CL3

2 is the covariate-adjusted between-school variance of 𝑌 at L3, σδL3|CL3

2  is the covariate-

adjusted between-school variance in the treatment effect at L3, and σL3δL3|CL3
 is the covariate-

adjusted covariance between 𝑢00𝑘 and 𝑢10𝑘. Note that 𝐶L2 and 𝐶L3 may be either aggregated

𝐶L1 variables or cluster characteristics by definition (e.g., classroom or school size). In the first

case, group-mean centering is recommended which ensures that the covariates explain variance 

exclusively at the level of their specification (Konstantopoulos, 2008). Note further that the 

expected effect of covariate adjustment on the treatment effect equals zero, assuming covariate-

treatment orthogonality (Konstantopoulos, 2008). 

If the site effects are treated as fixed, 𝑟0𝑗𝑘 and 𝑟1𝑗𝑘 as well as 𝑢00𝑘 and 𝑢10𝑘 are fixed

effects with means constrained to zero. Equation (B33) reduces to: 

𝑌𝑖𝑗𝑘 = π000 + π100𝑇𝑖𝑗𝑘 + ∑ π𝑞L100𝐶L1𝑞L1𝑖𝑗𝑘
𝑄L1
𝑞L1=1 + 𝑢00𝑘 + 𝑢10𝑘𝑇𝑖𝑗𝑘 + 𝑟0𝑗𝑘 +

𝑟1𝑗𝑘𝑇𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘

(B39) 

Equations (B35) and (B36) reduce to: 
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L2: 

β0𝑗𝑘 = γ00𝑘 +  𝑟0𝑗𝑘

ψ1𝑗𝑘 = γ10𝑘 + 𝑟1𝑗𝑘

β𝑞L1𝑗𝑘 = γ𝑞L10𝑘

(B40) 

L3: 

γ00𝑘 = π000 +  𝑢00𝑘

γ10𝑘 = π100 +  𝑢10𝑘

γ𝑞L10𝑘 = π𝑞L100

(B41) 

Three-Level Multisite Cluster-Randomized Trials 

Suppose that 𝑖 ∈ {1, 2, … , 𝑛𝑗𝑘} students at L1 are nested within 𝑗 ∈ {1, 2, … , 𝐽𝑘} classrooms at

L2 which are, in turn, nested within 𝑘 ∈ {1, 2, … , 𝐾} schools at L3, and classrooms are 

randomly assigned to the TG or CG, while schools form the sites (see Figure 4f in Chapter 1). 

For such a 3L-MSCRT, the unconditional three-level model with random between-classroom-

within-school site effects can be deduced from the formulas given in Dong and Maynard (2013, 

pp. 54–55) and Konstantopoulos (2008, pp. 270–272) as follows: 

𝑌𝑖𝑗𝑘 = π000 + π010𝑇𝑗𝑘 + 𝑢00𝑘 + 𝑢01𝑘𝑇𝑗𝑘 + 𝑟0𝑗𝑘 + 𝑒𝑖𝑗𝑘 (B42) 

where 

L1: 𝑌𝑖𝑗𝑘 = β0𝑗𝑘 + 𝑒𝑖𝑗𝑘 (B43) 

L2: β0𝑗𝑘 = γ00𝑘 + ψ01𝑘𝑇𝑗𝑘 + 𝑟0𝑗𝑘 (B44) 

L3: 
γ00𝑘 = π000 +  𝑢00𝑘

ψ01𝑘 = π010 + 𝑢01𝑘
(B45) 

𝑌𝑖𝑗𝑘 is the achievement outcome of the 𝑖th student in the 𝑗th classroom in the 𝑘th school and

𝑇𝑗𝑘 is the treatment indicator of the 𝑗th classroom in the 𝑘th school, with 𝑇𝑗𝑘 = .50/−.50 for

classrooms in TG/CG. β0𝑗𝑘 is the intercept of the 𝑗th classroom in the 𝑘th school, γ00𝑘 is the

intercept of school 𝑘, π000 is the grand mean, ψ01𝑘 is the treatment effect in the 𝑘th school (i.e.,

ψ̂01𝑘 = �̅�TG − �̅�CG), and π010 is the average treatment effect. 𝑒𝑖𝑗𝑘 is the residual of the 𝑖th

student in the 𝑗th classroom in the 𝑘th school, with 𝑒𝑖𝑗𝑘 ~ 𝑁(0, σL1
2 ), where σL1

2  is the between-

student-within-classroom variance of 𝑌 at L1. 𝑟0j𝑘 is the residual of the 𝑗th classroom in the 𝑘th

school, with 𝑟0j𝑘 ~ 𝑁(0, σL2
2 ), where σL2

2  is the between-classroom-within-school variance of

𝑌 at L2. 𝑢00𝑘 and 𝑢01𝑘 are the residuals of the 𝑘th school, with

(
𝑢00𝑘

𝑢01𝑘
) ~𝑁 ((

0
0

) , [
σL3

2 σL3δL3

σL3δL3
σδL3

2 ]) , (B46) 

where σL3
2  is the between-school variance of 𝑌 at L3, σδL3

2  is the between-school variance in 

the treatment effect at L3, and σL3δL3
 is the covariance between 𝑢00𝑘 and 𝑢01𝑘.

Adding 𝑞L1 ∈ {1, 2, … , 𝑄L1} covariates 𝐶L1 at L1, 𝑞L2 ∈ {1, 2, … , 𝑄L2} covariates 𝐶L2

at L2, and 𝑞L3 ∈ {1, 2, … , 𝑄L3} covariates 𝐶L3 at L3 yields the conditional within three-level

model with random site effects (see Dong & Maynard, 2013, pp. 54–55; Konstantopoulos, 

2008, pp. 270–272): 

𝑌𝑖𝑗𝑘 = π000 + π010𝑇𝑗𝑘 + ∑ π00𝑞L3
𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 + ∑ π01𝑞L3

𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 𝑇𝑗𝑘 +

∑ π0𝑞L20𝐶L2𝑞L2𝑗𝑘
𝑄L2
𝑞L2=1 + ∑ π𝑞L100𝐶L1𝑞L1𝑖𝑗𝑘

𝑄L1
𝑞L1=1 + 𝑢00𝑘 + 𝑢01𝑘𝑇𝑗𝑘 + 𝑟0𝑗𝑘 + 𝑒𝑖𝑗𝑘

(B47) 
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where 

L1: 𝑌𝑖𝑗𝑘 = β0𝑗𝑘 + ∑ β𝑞L1𝑗𝑘𝐶L1𝑞L1𝑖𝑗𝑘
𝑄L1
𝑞L1=1 + 𝑒𝑖𝑗𝑘  (B48) 

 

L2: 
β0𝑗𝑘 = γ00𝑘 + ψ01𝑘𝑇𝑗𝑘 + ∑ γ0𝑞L2𝑘𝐶L2𝑞L2𝑗𝑘

𝑄L2
𝑞L2=1 + 𝑟0𝑗𝑘  

β𝑞L1𝑗𝑘 = γ𝑞L10𝑘 
(B49) 

 

L3: 

γ00𝑘 = π000 + ∑ π00𝑞L3
𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 +  𝑢00𝑘  

ψ01𝑘 = π010 + ∑ π01𝑞L3
𝐶L3𝑞L3𝑘

𝑄L3
𝑞L3=1 + 𝑢01𝑘  

γ0𝑞L2𝑘 = π0𝑞L20  

γ𝑞L10𝑘 = π𝑞L100 

(B50) 

β𝑞L1𝑗𝑘 is the coefficient of the 𝑞L1th covariate 𝐶L1 of the 𝑖th student in the 𝑗th classroom in the 

𝑘th school, γ0𝑞L2𝑘 is the coefficient of the 𝑞L2th covariate 𝐶L2 of the 𝑗th classroom in the 𝑘th 

school, and π00𝑞L3
 and π01𝑞L3

 are the coefficients of the 𝑞L3th covariate 𝐶L3 of the 𝑘th school. 

𝑒𝑖𝑗𝑘 ~ 𝑁(0, σL1|CL1

2 ), where σL1|CL1

2  is the covariate-adjusted between-student-within-classroom 

variance of 𝑌 at L1. 𝑟0𝑗𝑘 ~ 𝑁(0, σL2|CL2

2 ), where σL2|CL2

2  is the covariate-adjusted between-

classroom-within-school variance of 𝑌 at L2. 

 (
𝑢00𝑘

𝑢01𝑘
) ~𝑁 ((

0
0

) , [
σL3|CL3

2 σL3δL3|CL3

σL3δL3|CL3
σδL3|CL3

2 ]) , (B51) 

where σL3|CL3

2  is the covariate-adjusted between-school variance of 𝑌 at L3, σδL3|CL3

2  is the 

covariate-adjusted between-school variance in the treatment effect at L3, and σL3δL3|CL3
 is the 

covariate-adjusted covariance between 𝑢00𝑘 and 𝑢01𝑘. Note that 𝐶L2 and 𝐶L3 may be either 

aggregated 𝐶L1 variables or cluster characteristics by definition (e.g., classroom or school size). 

In the first case, group-mean centering is recommended which ensures that the covariates 

explain variance exclusively at the level of their specification (Konstantopoulos, 2008). Note 

further that the expected effect of covariate adjustment on the treatment effect equals zero, 

assuming covariate-treatment orthogonality (Konstantopoulos, 2008). 

If the site effects are treated as fixed, 𝑢00𝑘 and 𝑢01𝑘 are fixed effects with a mean 

constrained to zero. Equation (B47) reduces to (Dong & Maynard, 2013, p. 53): 

 
𝑌𝑖𝑗𝑘 = π000 + π010𝑇𝑗𝑘 + ∑ π0𝑞L20𝐶L2𝑞L2𝑗𝑘

𝑄L2
𝑞L2=1 + ∑ π𝑞L100𝐶L1𝑞L1𝑖𝑗𝑘

𝑄L1
𝑞L1=1 +

𝑢00𝑘 + 𝑢01𝑘𝑇𝑗𝑘 + 𝑟0𝑗𝑘 + 𝑒𝑖𝑗𝑘  
(B52) 

Equation (B50) reduces to (Dong & Maynard, 2013, p. 53): 

L3: 

γ00𝑘 = π000 +  𝑢00𝑘  

ψ01𝑘 = π010 + 𝑢01𝑘  

γ0𝑞L2𝑘 = π0𝑞L20  

γ𝑞L10𝑘 = π𝑞L100 

(B53) 
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Appendix C: Sampling Variances of ρ and 𝑅2

This appendix provides the expressions for the sampling variances of the ρ and 𝑅2 estimates at

the various hierarchical levels, which were used to derive the standard errors offered in the 

present doctoral thesis. 

Intraclass Correlation Coefficients 

The sampling variances of the ICCs (and therefore their standard errors) can be analytically 

approximated, using the derivations provided in Hedges et al. (2012) and Donner and Koval 

(1980). In an unbalanced three-level design with varying cluster sizes at both L2 (i.e., 𝑛𝑗𝑘 ≠

𝑛𝑗′𝑘′) and L3 (i.e., 𝐽𝑘 ≠ 𝐽𝑘′), the large-sample variance of ρL2 is given by (Hedges et al., 2012,

Equations 7 and 8): 

(1−ρL2)2𝑉𝑎𝑟(σL2
2 )

σT
4 +

ρL2
2 𝑉𝑎𝑟(σL3

2 )

σT
4 −

2ρL2(1−ρL2)𝐶𝑜𝑣(σL2
2 ,σL3

2 )

σT
4 (C1) 

The large-sample variance of ρL3 is given by (Hedges et al., 2012, Equations 7 and 9):

ρL3
2 𝑉𝑎𝑟(σL2

2 )

σT
4 +

(1−ρL3)2𝑉𝑎𝑟(σL3
2 )

σT
4 −

2ρL3(1−ρL3)𝐶𝑜𝑣(σL2
2 ,σL3

2 )

σT
4 (C2) 

where 

𝐶𝑜𝑣(σL2
2 , σL3

2 ) = −
𝑉𝑎𝑟(σL2

2 ) ∑ 𝑎𝑘/(1+𝑏𝑘σL3
2 )𝐾

𝑘=1

∑ 𝑏𝑘
2/(1+𝑏𝑘σL3

2 )𝐾
𝑘=1

(C3) 

with 𝑎𝑘 = ∑ 𝑛𝑗𝑘
2𝐽𝑘

𝑗=1 /(𝑛𝑗𝑘σL2
2 + σL1

2 )
2
 and 𝑏𝑘 = ∑ 𝑛𝑗𝑘

𝐽𝑘
𝑗=1 /(𝑛𝑗𝑘σL2

2 + σL1
2 ).

In an unbalanced two-level design with varying cluster sizes at L3 (i.e., 𝑛𝑘 ≠ 𝑛𝑘′), the

large-sample variance of ρL3 is given by (Donner & Koval, 1980, Equation 3):

2𝑁(1−ρL3)2

𝑁 ∑ 𝑛𝑘(𝑛𝑘−1)[1+(𝑛𝑘−1)ρL3
2 ]/[1+(𝑛𝑘−1)ρL3]2−ρL3

2 [∑ 𝑛𝑘(𝑛𝑘−1)/[1+(𝑛𝑘−1)ρL3]𝐾
𝑘=1 ]

2𝐾
𝑘=1

 (C4) 

where 𝑁 = ∑ 𝑛𝑘
𝐾
𝑘=1 is the total sample size. It becomes immediately clear from 

Equations (C1) to (C4) that increasing the sample sizes decreases the variance of ρ values. 

For such an unbalanced two-level design, Figure B1 visualizes the relations between the 

standard error of ρL3 and (a) the number of schools, and (b) the number of students per school

for ρL3 ∈ {.05, .25, .50, .75, .95}. Three aspects are noteworthy: When holding the total sample

size constant, (1) adding schools reduces the standard error more than adding students per 

school, (2) unless the cluster size is very small, the standard error maximizes with ρL3 = .50,

and declines both with low as well as high values of ρL3, and (3) increasing the cluster size is

most efficient in reducing the standard error when ρL3 is small. Albeit more complex, this

general pattern of results can be transferred to the standard errors of ρL2 and ρL3 in three-level

designs. 

Note that respective expressions for the large-sample variances of the ICCs under the 

assumption of balanced designs have also been made available (e.g., Hedges et al., 2012; Jacob 

et al., 2010). Here, constant cluster sizes (i.e., 𝑛𝑗𝑘 = 𝑛𝑗′𝑘′, 𝐽𝑘 = 𝐽𝑘′, or 𝑛𝑘 = 𝑛𝑘′) may be

depicted through their averages such as their (harmonic) means. These formulae are generally 

less complex, and facilitate quick and straightforward computation of standard errors. Yet, 

simulations in two-level designs indicate that the respective confidence intervals may be 

distorted, especially with few large-sized clusters and small σL1
2  values (Ukoumunne, 2002).

Other methods to obtain the sampling variances of the ICCs include bootstrapping (e.g., 

Xiao et al., 2012) or Bayesian estimation (e.g., Turner et al., 2006). However, Eldridge and 

Kerry (2012, p. 193) stated that the benefits of these approaches over the analytic 

approximations are in general negligible, given their additional computational burden. 
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Figure B1. Standard Error of 𝜌𝐿3 as a Function of the (a) the Number of Schools, (b) the

Number of Students per School 

Note. The figure shows the standard errors of ρL3 ∈ {.05, .25, .50, .75, .95} given a total sample size of 𝑁 =
100/231/390/544/679 when (a) 𝐾 = 10/20/30/40/50 with 4 ≤ 𝑛𝑘 ≤ 13/8 ≤ 𝑛𝑘 ≤ 18/11 ≤ 𝑛𝑘 ≤ 15/7 ≤ 𝑛𝑘 ≤ 24/6

≤ 𝑛𝑘 ≤ 26 and (b) 1 ≤ 𝑛𝑘 ≤ 5/6 ≤ 𝑛𝑘 ≤ 10/11 ≤ 𝑛𝑘 ≤ 15/16 ≤ 𝑛𝑘 ≤ 20/21 ≤ 𝑛𝑘 ≤ 25 for 𝐾 = 30.

Squared Multiple Correlation Coefficients 

The simplified analytic approximation of the sampling variances of 𝑅2 uses Fisher’s (1925)

formulation and is given in Hedges and Hedberg (2013, p. 451): 

4𝑅2(1−𝑅2)2

𝑁∗
 , (C5) 

where 𝑁∗ is the total sample size at the respective level. That is, for 𝑅L3
2 , 𝑁∗ is the total number

of schools 𝐾, for 𝑅L2
2 , 𝑁∗ is the total number of classrooms 𝐽, and for 𝑅L1

2  and 𝑅T
2, 𝑁∗ is the

total number of students 𝑁. Note that the expression in Equation (C5) does not take into account 

the clustering of students within classroom in schools, and the clustering of classrooms within 

schools. Therefore, in multilevel designs, the standard errors for 𝑅L2
2 , and especially for 𝑅L1

2

computed from these sampling variances are only approximations.   

Note that the reporting of sampling variances for the 𝑅2 design parameters is very

scarce; in fact, only Hedges and Hedberg (2013) provided standard errors for estimates of 𝑅L1
2

and 𝑅L3
2  so far. As Jacob et al. (2010) speculated, the reason for this might be that the

distributional parameters of 𝑅2 are unkown (Ohtani, 2000; Press & Zellner, 1978), and therefore

the attempt to find more accurate analytic solutions largely failed (but see Helland, 1987, for 

another approximation based on the F distribution).  
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Glossary: Terms and Abbreviations As Frequently Used Throughout 

the Present Doctoral Thesis 

Cluster-randomized trial (CRT). Generally, a class of multilevel experimental studies in 

which entire clusters are randomly assigned to the experimental groups. From a 

statistical perspective, this means that the observations within clusters can no longer be 

assumed stochastically independent; rather, their errors are (typically) correlated 

(Schochet, 2008). In a straight CRT, treatment allocation always occurs at the top 

hierarchical level (Hedges & Rhoads, 2010).  

Two-level cluster-randomized trial (2L-CRT). Students at Level 1 are nested within 

schools at Level 3, and schools are randomly assigned to the experimental groups. 

Three-level cluster-randomized trial (3L-CRT). Students at Level 1 are nested within 

classrooms at Level 2, which are, in turn, nested within schools at Level 3, and schools 

are randomly assigned to the treatment and control condition. 

Control group (CG). The randomly composed experimental group (here, in a two-arm 

experiment) which is not delivered with the treatment to be studied, and instead often 

doing “business as usual.” 

Cross-domain pretest (CP). A pretest assessed in a different domain than the outcome. In 

Study II, reading served as a predictor of STEM (i.e., mathematical-scientific) 

achievement outcomes, and mathematics served as a predictor of verbal achievement 

outcomes. 

Design sensitivity. Umbrella term used to embrace the concepts of statistical power and 

statistical precision (Hedges & Hedberg, 2013). Thus, the sensitivity of a design is its 

probability (i.e., statistical power) to detect a real contrast between the experimental 

groups on the studied outcome at a given level of statistical significance with a low 

standard error (i.e., statistical precision; Lipsey, 1990). 

Domain-identical pretest (IP). A pretest assessed in the same domain as the outcome, that is, 

the baseline achievement score of the outcome itself (e.g., prior mathematics skills 

predicting future mathematics skills). 

Estimand. Population target quantity to be estimated or to formulate hypotheses about (e.g., 

the average treatment effect). 

Estimate. The sample value of a population quantity; the result of the estimator. 

Estimator. Method (or "recipe") applied to compute an estimate (e.g., the difference between 

the means observed for the treatment and control group). 

Fluid intelligence (Gf). One multifaceted, integral component of general intelligence that 

encompasses, for instance, reasoning, perception speed, accuracy, and problem solving. 

Gf is distinguished from crystallized intelligence (Gc; i.e., cumulative knowledge and 

learned skills; Cattell, 1963).   

Individually randomized trial (IRT). Students are sampled and randomly assigned to the 

experimental groups completely independently of each other, regardless of their 

membership to a classroom and/or school. Statistically, this means that all observations 
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are assumed stochastically independent. IRTs most often use (non-representative) 

convenience samples (Stuart et al., 2011). 

Intraclass correlation coefficient (ICC; 𝛒). Generally, the degree of redundancy in an 

achievement outcome, due to cluster membership, or equivalently, the extent of 

variation between clusters. 

Intraclass correlation coefficient at Level 2 (𝛒𝐋𝟐). Between-classroom (within-

school) achievement differences. The ratio of the variance located at the classroom level 

to the total variance. 

Intraclass correlation coefficient at Level 3 (𝛒𝐋𝟑). Between-school achievement

differences. The ratio of the variance located at the school level to the total variance. 

Level 1 (L1). Student level. 

Level 2 (L2). Classroom level. 

Level 3 (L3). School level. 

Minimum detectable effect size (MDES). As a multiple of the standardized standard error of 

the treatment effect a measure of statistical precision (Bloom, 2005): The 𝑀𝐷𝐸𝑆 

quantifies the smallest possible standardized effect that reaches statistical significance 

in a given design (typically, at a stated alpha level of .05 in a two-tailed test, a statistical 

power of 80%, and a given sample size). 

Multisite cluster-randomized trial (MSCRT). Generally, a class of multilevel experimental 

studies that combines cluster randomization and blocking. Randomization does not 

occur at the top hierarchical level, but at an intermediate level. Thus, entire clusters are 

randomly assigned to experimental groups within superordinate clusters, forming the 

sites. This implies that experimental conditions are crossed with the random effects of 

the superordinate clusters within which cluster randomization occurs (Konstantopoulos, 

2008). Put differently, in an MSCRT, one and the same cluster-randomized trial is 

replicated in several superordinate clusters (Liu, 2014b). 

Three-level multisite cluster-randomized trial (3L-MSCRT). Students at Level 1 are 

nested within classrooms at Level 2, which are, in turn, nested within schools at Level 

3, and classrooms are randomly assigned to the experimental groups within schools. 

Thus, schools form the sites. 

Multisite individually randomized trial (MSIRT). Generally, a class of multilevel 

experimental studies in which individuals are randomly assigned to the experimental 

groups within clusters, forming the sites.  

Two-level multisite individually randomized trial (2L-MSIRT).  Students at Level 

1 are nested within schools at Level 3, and students are randomly assigned to the 

experimental groups within schools. Thus, schools form the sites. 

Three-level multisite individually randomized trial (3L-MSIRT). Students at Level 

1 are nested within classrooms at Level 2, which are, in turn, nested within schools at 

Level 3, and students are randomly assigned to the experimental groups within 

classrooms within schools. Thus, classrooms and schools form (nested) sites. 

Multisite randomized trial (MSRT). Generally, a class of multilevel experimental studies in 

which randomization does not occur at the top hierarchical level, but at any subordinate 

level. This subordinate level may be composed of either individuals or clusters which 
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are randomly assigned to experimental groups within superordinate clusters, forming 

the sites. In either case, this implies that experimental conditions are crossed with the 

random effects of the superordinate clusters within which randomization occurs 

(Konstantopoulos, 2008). Put differently, in an MSRT, one and the same experiment is 

replicated in several superordinate clusters (Liu, 2014b). 

Power Analysis. Statistical procedure to determine the required sample size, or the statistical 

power, or the statistical precision of the treatment effect estimate (here, minimum 

detectable effect size; Bloom, 2005). These three quantities are interrelated concepts: 

computing one of them requires assumptions on the two remaining; and on the α level 

(i.e., the Type I error rate) as well as the type of the test (often a 𝑡-test, but sometimes 

also F-test, Mann-Whitney U test, etc.; e.g., Lipsey, 1990). In multilevel designs, power 

analysis also involves assumptions on the sample allocation among hierarchical levels 

and the variance design parameters at the various hierarchical levels (i.e., necessarily 

the intraclass correlation coefficient[s], and possibly also the amounts of explained 

variance; Hedges & Rhoads, 2010). 

Prediction Interval (PI). Quantifies the total dispersion (sampling variance plus true 

heterogeneity) around the meta-analytic average of ρ and/or 𝑅2. Thus, it provides a

plausible range of ρ and/or 𝑅2, that is the range in which an ρ and/or 𝑅2 estimated based

on data of a new sample randomly drawn from a population of samples will likely (i.e., 

in 95% of cases) fall (Borenstein et al., 2021). 

Randomization. The selection of units to be assigned to experimental conditions, fully by 

chance (e.g., via coin toss or lottery). 

Randomized trial (RT). A study under controlled conditions, where units (e.g., individual 

students or entire schools) are allocated by chance (like by tossing a coin) to receive 

some deliberate intervention (i.e., a treatment) or not, in order to test its effect. 

Sociodemographic characteristics (SC).  Gender, migration background and socioeconomic 

status in terms of the highest International Socio-Economic Index of Occupational 

Status within a family (HISEI; Ganzeboom & Treiman, 1996) and the highest 

educational attainment within the family. In Study I, also the NEPS starting cohort. 

Squared multiple correlation coefficient (𝑹𝟐). Generally, the amount of explained variance

by covariates. In multilevel designs, covariates can act at either hierarchical level, 

although not necessary. When within-cluster covariates are group-mean centered, the 

covariates explain variance only at the level at which they are introduced 

(Konstantopoulos, 2008). 

Squared multiple correlation coefficient at Level 1 (𝑹𝐋𝟏
𝟐 ). The amount of explained

variance at L1 by L1 covariates. The ratio of the difference between the unconditional 

(i.e., not covariate-adjusted) and the conditional (i.e., covariate-adjusted) between-

student-within-classroom variance components to the unconditional between-student-

within-classroom variance component. 

Squared multiple correlation coefficient at Level 2 (𝑹𝐋𝟐
𝟐 ). The amount of explained

variance at L2 by L2 covariates. The ratio of the difference between the unconditional 

(i.e., not covariate-adjusted) and the conditional (i.e., covariate-adjusted) between-

classroom-within-school variance components to the unconditional between-classroom-

within-school variance component. 
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Squared multiple correlation coefficient at Level 3 (𝑹𝐋𝟑
𝟐 ). The amount of explained 

variance at L3 by L3 covariates. The ratio of the difference between the unconditional 

(i.e., not covariate-adjusted) and the conditional (i.e., covariate-adjusted) between-

school variance components to the unconditional between-school variance component. 

Squared multiple correlation coefficient, in total (𝑹𝐓
𝟐). The total amount of explained 

variance among all individual students (i.e., not decomposed). The ratio of the 

difference between the unconditional (i.e., not covariate-adjusted) and the conditional 

(i.e., covariate-adjusted) total variance to the unconditional total variance. 

Statistical Power (𝟏 − 𝛃). The (long-term) probability of rejecting the null hypothesis when it 

is actually false; or, put differently, the likelihood of a statistical test to detect an effect, 

if it exists in the population. 

Statistical Precision. Basically, the standard error of the treatment effect. Here, precision is 

quantified via the minimum detectable effect size, which is conceived as a multiple of 

the standardized standard error of the treatment effect (Bloom, 2005). 

Total (T). Not hierarchically decomposed, among all individual students. T is used to index 

design parameters or other quantities that define a single-level RT design. For instance, 

𝑅T
2 denotes the total amount of explained variance by covariates in an individually 

randomized trial, across all individual students. 

Treatment. A deliberate measure or intervention. 

Treatment effect, average. Difference between the means observed on some achievement 

outcome 𝑌 for the treatment group (TG) and the control group (CG; �̅�TG − �̅�CG; Bloom, 

2006).  

Treatment Group (TG). The randomly composed experimental group (here, in a two-arm 

experiment) which receives the treatment to be studied. 

𝒀. Achievement outcome variable. 
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