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Averaging along Lévy diffusions in foliated spaces

Michael Högele∗ Paulo Ruffino†

April 13, 2013‡

Abstract

We consider an SDE driven by a Lévy noise on a foliated manifold, whose trajectories stay
on compact leaves. We determine the effective behavior of the system subject to a small smooth
transversal perturbation of order ε > 0. More precisely, we show that the average of the
transversal component of the SDE converges to the solution of a deterministic ODE, according
to the average of the perturbing vector field with respect to the invariant measures on the leaves
(of the unpertubed system) as ε goes to 0. In particular we give upper bounds for the rates of
convergence. The main results which are proved for pure jump Lévy processes complement the
result by Gargate and Ruffino for Stratonovich SDEs to Lévy driven SDEs of Marcus type.

Keywords: averaging principle; foliated diffusion; Lévy diffusions on manifolds; canonical Marcus
integration

2010 Mathematical Subject Classification: 60H10, 60J60, 60G51, 58J65, 58J37.

1 Introduction

The purpose of this article is to extend the scope of an averaging principle from continuous semi-
martingales in Gonzáles and Ruffino [4] to Lévy diffusions containing a pure jump component.

The system under consideration is the following. We study a stochastic differential equation
(SDE) driven by a jump Lévy noise with values in a smooth Riemannian manifoldM with a foliation
structure M, i.e. there exists an equivalence relation on M , which defines a family of immersed
submanifolds (the elements of M, called the leaves of the foliation) of constant dimension r. For
more details and further properties on foliated spaces we refer to Tondeur [12] or Walcak [13]. The
solution flow of the SDE is assumed to be foliated with respect to M in the sense that each of the
(discontinuous) solution paths of the SDE stays on the corresponding leaf of its initial condition
almost surely for all times. We further assume the existence of a unique invariant measure for the
SDE on each leaf.

If this system is perturbed by a smooth deterministic vector field εK transversal to the leaves
with intensity ε > 0, the foliated structure of the solution is destroyed due to the appearance
of a (smooth) transversal component in the trajectories. We study the effective behavior of this
transversal component in the limit as ε tends to 0.

The main idea is the following. Consider the solution along the rescaled time t/ε, its foliated
component approximates the ergodic average behavior for small ε. Hence the essential transversal
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behavior is captured by an ODE for the transversal component driven by the vector field K instead
of εK, which is averaged by the ergodic invariant measure on the leaves. Note that the intensity
of the original pertubation εK cancels out by the time scaling t/ε. This is the result of Theorem
4.1 and will be referred to as an averaging principle. Our calculations here also determine upper
bounds for the rates of convergence and a probabilistic robustness result.

The heuristics of an averaging principle consists in replacing the fine dynamical impact of a
so-called fast variable on the dynamics of a so-called slow variable by its averaged statistical static
influence. For references on the vast also classical literature on averaging for deterministic systems
see e.g. the books by V. Arnold [2] and Saunders, Verhulst and Murdock [11] and the numerous
citations therein. For stochastic systems among many others we mention the book by Kabanov
and Pergamenshchikov [5] and the references therein which gives an excellent overview on the
subject. See also [3, 6]. An inspiration for this article also goes back to the work [8] by Li, where
she established an averaging principle for the particular case of completely integrable (continuous)
stochastic Hamiltonian systems. In Gonzáles and Ruffino [4] these results have been generalized
to averaging principles for perturbations of Gaussian diffusions on foliated spaces. This article
completes this result for general Lévy driven foliated diffusions.

The article is organized as follows. In the next paragraph we present the precise framework of
our study. Section 2 is dedicated to the fundamental technical Proposition 2.1, where the stochastic
Marcus integral technique is applied and whose estimates turn out to be the basis for the rates of
convergence of the main theorem. Section 3 deals with the averaging on the leaves. In Section 4
we prove the main theorem and provide a simple, but instructive example.

The set up. Let M be a simply connected smooth Riemannian manifold with an n-dimensional
smooth foliation. We denote by Lx the leaf of the foliation passing through a point x ∈ M . For
simplicity we assume that the leaves are compact an that each leaf Lx has a tubular neighborhood
U ⊂ M , where U is diffeomorphic to Lx × V where V ⊂ R

d is an open bounded neighborhood of
the origin and d is the codimension of the foliation.

We shall assume an SDE in M immersed in an Euclidean space, whose solution preserves the
foliation, i.e. it is a Marcus canonical equation also known as generalized Stratonovich equation
in the sense of Kurtz, Pardoux and Protter [7]. We consider the foliated stochastic differential
equation

dXt = F0(Xt)dt+ F (Xt) � dZt, X0 = x0, (1)

which consists of the following components.

1. Let F ∈ C1(M ;L(Rr;TM)), such that the map x �→ F (x) is C1 and the linear map F (x) :
R
r → TxLx. We write Fi(x) = F (x)ei, for ei the canonical basis of Rr.

2. Here Z = (Zt)t�0 with Zt = (Z1
t , . . . , Z

r
t ) is a Lévy process in R

r with respect to a given filtered
probability space (Ω,F , (Ft)t�0,P) with characteristic triplet (0, ν, 0). It is assumed that the
filtration satisfies the usual conditions in the sense of Protter [9]. It is a consequence of the
Lévy-Itô decomposition of Z (see for instance Applebaum [1]) that Z is a pure jump process
with respect to a Lévy measure ν : B(Rr) → [0,∞] which satisfies

∫
(1 ∧ ‖y‖2)ν(dy) < ∞

of the pure jump part Zd of Z and b ∈ R
d the linear drift component of Z. Due to the

compactness of the leaves we restrict ourselves to the case of uniformly bounded jumps of Z,
i.e.

∃ R > 0 : ν(Bc
R(0)) = 0.

3. Equation (1) is defined as
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Xε
t = x0 +

∫ t

0
F0(X

ε
s )ds+

∫ t

0
F (Xε

s−)dZs +
∑

0<s�t

(ΦFΔsZ(Xε
s−)−Xε

s−)− F (Xε
s−)ΔsZ) (2)

where ΦFz(x) = Y (1, x;Fz), where Y (t, x;Fz) is the solution of the ordinary differential
equation with initial condition

d

dσ
Y (σ) = F (Y (σ))z Y (0) = x ∈ M, z ∈ R

r.

4. The upper bound of the jump size is such that, that there exists a compromise between the
vector field and the domain of a local coordinate system. Precisely, for given upper bound
R > 0 for the increments we assume the vector field F to satisfy that for each point x ∈ M
there exist local coordinates ϕ such that x,ΦFz(x) ∈ dom(ϕ) for all z ∈ BR(0) ⊂ R

r.

Point 4 yields that if ΔsZ �= 0 and Xs−(x0) ∈ dom(ϕ), then also Xs(x0) = Xs−(x0) +
ΔsX(x0) belongs to dom(ϕ). It can always be satisfied, since ΔsX depends continuously on
F (Xs−)ΔsZ and the radius of injectivity of the compact leaf, which represents the overall
worst case on the manifold, is always positive. This is a moderate technical restriction, which
does not disturb the spirit of the result, since the leaves of M are compact and the jumps
of Z are uniformly bounded. It is necessary in order to avoid implicit conditioning on the
nonappearance of jumps beyond a certain size.

Proposition 4.3 in Kurtz, Pardoux and Protter [7] shows a sort of support theorem, i.e. that
under the aforementioned conditions P(X0 ∈ Lx0) = 1 implies P(Xt ∈ Lx0 ∀t � 0) = 1. For a
smooth vector field K in M , we shall denote by Xε, ε > 0 the solution of the perturbed system

dXε
t = F0(X

ε
t )dt+ F (Xt) � dZt + εK(Xε

t )dt, Xε
0 = x0. (3)

It is defined analoguously to equation (2).

2 Preliminary results

The local coordinates. Given an initial condition x0 ∈ M let U ⊂ M be a bounded neigh-
borhood of x0 which is diffeomorphic to Lx0 × V whose closure Ū ⊂ M . By compactness of Lx0 ,
there is a finite number k, say, of local foliated coordinate systems ϕi : Ui → Wi × V ⊂ R

n × R
d

and x0 ∈ U1 with the following properties.

1. U =
⋃k

j=1 Uj

2. Lx0 =
⋃k

j=1 ϕ
−1
i (Wi × {0})

3. For all q1 ∈ Ui and q2 ∈ Uj , i, j ∈ {1, . . . k} we have that Lq1 = Lq2 if the projection onto the
transversal components, which have values in V is identical, that is π2(ϕi(q1)) = π2(ϕj(q2)).

4. The coordinates ϕi, i = 1, . . . , k have bounded derivatives.

Proposition 2.1 Let τ ε be the first time the solution Xε(x0) of (3) exits the aforementioned fo-
liated coordinate neighborhood U1. Then for all Lipschitz test functions Ψ : M → R, exponent
p ∈ [2,∞) there exist K1,K2 > 0 such that for all T � 0 it follows that(

E

[
sup

s�T∧τε
|Ψ(Xε

s (x0))−Ψ(Xs(x0))|p
]) 1

p

� K1 ε T exp (K2 T
p) . (4)
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The constants K1,K2 depend on the upper bounds of the norms for the perturbing vector field K,
of the Lipschitz coefficient of Ψ and the derivatives of the vector fields F0, F1 . . . , Fr with respect to
the coordinate system.

Proof: Change of coordinates: First we rewrite Xε and X, the solutions of equation (1) and
(3), in terms of the foliated coordinates ϕ1

(ut, vt) := ϕ1(Xt) and (uεt , v
ε
t ) := ϕ1(X

ε
t ).

Exploiting the regularity of Ψ and ϕ1 we obtain

|Ψ(Xε
t )−Ψ(Xt)| = |Ψ ◦ ϕ−1

1 (uεt , v
ε
t )−Ψ ◦ ϕ−1

1 (ut, vt)| � C ′(|uεt − ut|+ |vεt − vt|) (5)

for C ′ := Lip(ψ) supy∈Ū1
|ϕ−1

1 (y)|. Further we define

Fi := (Dϕ1) ◦ Fi ◦ ϕ−1
1 for i = 0, . . . , n,

K := (Dϕ1) ◦K ◦ ϕ−1
1 ,

which all together with their derivatives are bounded. We adopt the notation

K = (K1,K2), K1 = (K1
1, . . . ,K

n
1 ), K2 = (K1

2, . . . ,K
d
2).

The chain rule proved in [7] Theorem 4.2 yields for equation (3) the following form in ϕ1 coordinates
written for the different components

duε,it = πi
1F0(u

ε
t , v

ε
t )dt+ πi

1F(u
ε
t , v

ε
t ) � dZt + εKi

1(u
ε
t , v

ε
t )dt for i = 1, . . . , n, (6)

dvε,jt = εKj
2(u

ε
t , v

ε
t )dt for j = 1, . . . , d, (7)

where Fi(x) = ∇ϕ1(x)Fi ◦ ϕ−1
1 (x), i = 1, . . . , n and πi

1 is the projection onto the i-th coordinate of
W1 ⊂ R

n. Equation (5) yields the estimate

sup
s�t∧τε

|vεs − vs| � ε sup
s�t∧τε

∫ s

0
|K2(u

ε
σ, v

ε
σ)| dσ � C0 ε t (8)

where C0 = supy∈U |K1(y)|. Analoguously we estimate for further purpose in abuse of notation
with a constant

ε sup
s�t∧τε

∫ s

0
|K1(u

ε
σ, v

ε
σ)| dσ � C1 ε t. (9)

By equation (6) we have that for s < τ ε

uεs − us =

∫ s

0
(F0(u

ε
σ, v

ε
σ)− F0(uσ, vσ))dσ

+

∫ s

0
(F(uεσ, v

ε
σ)− F(uσ, vσ)) � dZσ

+ ε

∫ s

0
K1(u

ε
σ, v

ε
σ)dσ.

This equality is defined as

uεt − ut =

∫ t

0
[F0(u

ε
s, v

ε
s)− F0(us, vs)]ds
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+

∫ t

0
[F(uεs−, v

ε
s−)− F(us−, vs−)]dZs

+
∑

0<s�t

[
(ΦFΔsZ(uεs−, v

ε
s−)− ΦFΔsZ(us−, vs−))

− (uεs− − us−)− (F(uεs−, v
ε
s−)− F(us−, vs−))ΔsZ

]
+ ε

∫ t

0
K1(u

ε
σ, v

ε
σ)dσ.

Since p � 1 this leads to

|uεt − ut|p � 4p−1
∣∣∣ ∫ t

0
F0(u

ε
s, v

ε
s)− F0(us, vs)ds

∣∣∣p + 4p−1Cp
1ε

ptp

+ 4p−1
∣∣∣ ∫ t

0
[F(uεs−, v

ε
s−)− F(uεs−, v

ε
s−)]dZs

∣∣∣
+ 4p−1

∣∣∣ ∑
0<s�t

ΦFΔsZ(uεs−, v
ε
s−)− ΦFΔsZ(us−, vs−)− (uε,is− − uis−)

− (F(uεs−, v
ε
s−)− F(us−, vs−))ΔsZ

∣∣∣p. (10)

We now estimate the terms of the right-hand side in (10). The first term on the right-hand side is
estimated in a straight-forward manner with the help of equation (8) by

∣∣∣ ∫ t

0
F0(u

ε
s, v

ε
s)− F0(us, vs)ds

∣∣∣p � (∫ t

0
C2|(uεs − us, v

ε
s − vs)|ds

)p
� (C2C3)

p
(∫ t

0
(|uεs − us|+ |vεs − vs|)ds

)p
� (C2C3)

ptp−1

(∫ t

0
|uεs − us|pds+

∫ t

0
|vεs − vs|pds

)

� (C2C3)
ptp−1

(∫ t

0
|uεs − us|pds+ Cp

1ε
ptp+1

)

� (C2C3)
ptp−1

∫ t

0
|uεs − us|pds+ (C1C2C3)

pt2pεp.

The term in the second line has the following representation with respect to the random Poisson
measure associated to Z∫ t

0
[F(uεs−, v

ε
s−)− F(us−, vs−)]dZs =

∫ t

0

∫
Rr\{0}

[F(uεs−, v
ε
s−)− F(us−, vs−)]zÑ(ds, dz).

By Kunita’s first inequality for the supremum of integrals with respect to the compensated random
Poisson measure integrals, as stated for instance in Theorem 4.4.23 in [1], and inequality (8) we
obtain

E

[
sup

t∈[0,T ]

∣∣∣ ∫ t

0

∫
Rr\{0}

[F(uεs−, v
ε
s−)− F(us−, vs−)]zÑ(ds, dz)

∣∣∣p
]

� C4 E

⎡
⎣(∫

Rr\{0}
|z|2ν(dz)

)p/2(∫ T

0
|F(uεs−, vεs−)− F(us−, vs−)|2ds

)p/2
⎤
⎦
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+ C4 E

[∫
Rr\{0}

|z|pν(dz)
(∫ T

0
|F(uεs−, vεs−)− F(us−, vs−)|pds

)]

� C4(C6C3)
p(C

p/2
5 T p/2−1 +Rp−2C5)

∫ T

0
E

[
sup
s∈[0,t]

|uεs − us|p
]
ds

+ C4(C6C3C0)
p(C

p/2
5 T 3p/2 +Rp−2C5T

p+1) εp (11)

Since the vector fields F and (DF)F are Lipschitz continuous, we can mimic the estimates in [7],
proof of Lemma 3.1, which yields a constant C7 = C7(p) > 0, exploit that |ΔsZ| � R almost surely,
apply once again (8) and go over to the random measure representation of the quadratic variation
of Z∣∣∣ ∑

0<s�t

ΦFΔsZ(uεs−, v
ε
s−)− ΦFΔsZ(us−, vs−)− (uε,is− − uis−)− (F(uεs−, v

ε
s−)− F(us−, vs−))ΔsZ

∣∣∣p

�
(
C7

∑
0<s�t

|(uεs− − us−, vεs− − vs−)|eC7|ΔsZ||ΔsZ|2
)p

� Cp
3 (C7e

C47R)p
( ∑

0<s�t

(|uεs− − us−|+ |vεs− − vs−|)|ΔsZ|2
)p

= (C3C7e
C47R)p

[( ∑
0<s�t

|uεs− − us−||ΔsZ|2 + C1εt
∑

0<s�t

|ΔsZ|2
)p]

= (C3C7e
C7R)p2p−1

[(∫ t

0

∫
Rr\{0}

|uεs− − us−||z|2Ñ(ds, dz)
)p

+ (Cp
1ε

ptp)
(∫ t

0

∫
Rr\{0}

|z|2Ñ(ds, dz)
)p]

, (12)

where C6 =
∫
Rr\{0} |y|2ν(dy) < ∞. Taking the supremum and expectation for the first term

of the right-hand side of (12) we apply once again Kunita’s first inequality for the supremum
of compensated random Poisson measures and obtain for the first summand in (12) a constant
C8 = C8(p) > 0 such that

E

[
sup

t∈[0,T ]

(∫ t

0

∫
Rr\{0}

|uεs− − us−||z|2Ñ(ds, dz)
)p]

� Rp
E

[
sup

t∈[0,T ]

(∫ t

0

∫
Rr\{0}

|uεs− − us−||z|Ñ(ds, dz)
)p]

� RpC8

(
E

[(∫ T

0

∫
Rr\{0}

|uεs− − us−|2|y|2ν(dy)ds
) p

2
]
+ E

[ ∫ T

0

∫
Rr\{0}

|uεs− − us−|p|y|pν(dy)ds
])

= RpC8C
p/2
5 T p/2−1

E

[
sup

t∈[0,T ]

∫ t

0
|uεs− − us−|pds

]
+ C8R

2p−2C5E

[(∫ T

0
sup
s∈[0,t]

|uεs− − us−|pdt
)]

=
(
RpC8C

p/2
5 T p/2−1 + C8R

2p−2C5

)∫ T

0
E

[
sup
s∈[0,t]

|uεs− − us−|p
]
dt. (13)

For the last term on the right-hand side of (12) there exists a constant C9(p) > 0 satisfying
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E

[
sup

t∈[0,T ]

(∫ t

0

∫
Rr\{0}

|z|2Ñ(ds, dz)
)p]

� C9T
p
(∫

Rr\{0}
|z|2ν(dz)

)p
+ C9T

∫
Rr\{0}

|z|pν(dz) = C9T
pCp

5 + C9R
p−2TC5. (14)

Taking the supremum and expectation in inequality (10) we combine (11), (13) and (14) and obtain
constants C10 and C11

E

[
sup

t∈[0,T ]
|uεt − ut|p

]

� C10(T
2p + T p+1)εp + C11

(
T p−1 + 1

)∫ T

0
E

[
sup
s∈[0,t]

|uεs − us|p
]
dt

=: aε(T ) + b(T )

∫ T

0
E

[
sup
s∈[0,t]

|uεs − us|p
]
dt.

A standard integral version of Gronwall’s inequality, as stated for instance in Lemma D.2 in [10],
yields that

E

[
sup

t∈[0,T ]
|uεt − ut|p

]
� aε(T )(1 + b(T )T exp (b(T )T ))

� C10T
p+1(1 + T p−1)εp

[
1 + C11T (1 + T p−1) exp

(
C11T (1 + T p−1))

) ]
� C12T

p(1 + T p)2εp exp (C13T
p)) .

Hence (
E

[
sup

t∈[0,T ]
|uεt − ut|p

]) 1
p

� C12 ε T (1 + T )2 exp (C13 T
p)

� C12 ε T exp (C14 T
p) . (15)

Eventually Minkowski’s inequality and the estimates (5), (8) and (15) yield the desired result

(
E

[
sup

s�T∧τε
|Ψ(Xε

t (x0))−Ψ(Xt(x0))|p
]) 1

p

� C ′
(
E

[
sup

s�T∧τε
|uεs − us|p

]) 1
p

+ C ′
(
E

[
sup

s�T∧τε
|vεs − vs|p

]) 1
p

� C ′C14 ε T exp (C13 T
p) + C ′C1Tε

� C15 ε T exp (C13 T
p) .

This finishes the proof. �
If Z has a continuous component, the solution of equation (1) also contains a continuous

Stratonovich component, see [7]. Combining the proof above with the proof of Lemma 2.1 in
[4] we conclude the following.
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Corollary 2.1 Let Z be a Lévy process with characteristic triplet (b, ν, A) in R
r for a drift vector

b ∈ R
r and the covariance matrix A and ν as in Lemma 2.1. Then estimate (4) of Proposition 2.1

holds true with an appropriate choice of the constants K1 and K2.

Proof: The estimates of E
[
supt∈[0,T ] |uεt − ut|p

]
in both cases -continuous and pure jumps- just

before applying Gronwall’s lemma yields polynomial estimates in T and ε of the same degree. Hence
Gronwall’s inequality guarantees the same estimates modulo constants. �

3 Averaging functions on the leaves

We assume that each leaf Lq ∈ M passing through q ∈ M contains a unique ergodic invariant
measure μq of the unperturbed foliated system (1) with initial condition x0 = q.

Let Ψ : M → R be a differentiable function. We define the average of Ψ with respect to μq in
the following way. If v is the vertical coordinate of q, that is q = ϕ(v, u), we define

QΨ(v) :=

∫
Lq

Ψ(y)μq(dy). (16)

and fix the notation Π(q) := π2(ϕ
−1(q)) = v, where π2 is the projection on V ⊂ R

d. We assume
that QΨ(Π(Xε

s )) is Riemann inegrabile of with respect to s.
For fixed x0 ∈ M and ε > 0 we denote by τ = τ εx0

the stopping time, which stops when Xε· (x0)
leaves the open neighbourhood U ⊂ M , which is diffeomorphic to Lx0 × V .

Proposition 3.1 Given Ψ : M → R differentiable and QΨ : V → R its average on the leaves given
by (16). For t � 0 we denote by

δΨ(ε, t) :=

∫ t∧ετ

0
Ψ(Xε

r
ε
(x0))−QΨ(Π(Xε

r
ε
(x0)))dr.

Then δΨ(ε, t) tends to zero, when t or ε tend to zero. Moreover, if QΨ is α-Hölder continuous with
α > 0, then for p � 1 and any β ∈ (0, 12) holds the estimate

(
E

[
sup
s�t

|δΨ(ε, s)|p
]) 1

p

�
√
t| ln(ε)|−β

p h(t, ε),

where h(t, ε) is continuous in (t, ε) and tends to zero when t or ε do so.

Proof: (First part.) For ε sufficiently small and t � 0 we define the partition

t0 = 0 < tε1 < · · · < tεNε � t

ε
∧ τ

as long as Xε has not left U with the following step size

hε := t| ln ε|2β
p

by

tεn := nhε for 0 � n � N ε where N ε = �(ε| ln ε|2β
p )−1�.

We now represent the first summand of δΨ by∫ t∧ετ

0
Ψ(Xε

r
ε
(x0))dr = ε

∫ t
ε
∧τ

0
Ψ(Xε

r (x0))dr

8



= ε
N−1∑
n=0

∫ tn+1

tn

Ψ(Xε
r (x0)) + ε

∫ t
ε
∧τ

tn

Ψ(Xε
r (x0))dr

We lighten notation and omit for convenience in the sequel all super and subscript ε and Ψ as well
as the initial value x0. We denote by θ the canonical shift operator on the canonical probability
space Ω = D(R,M) of càdlàg functions. Let Ft(·, ω) the stochastic flow of the original unpertubed
system in M . The triangle inequality yields

|δΨ(ε, t)| � |A1(t, ε)|+ |A2(t, ε)|+ |A3(t, ε)|+ |A4(t, ε)|, (17)

where

A1(t, ε) := ε

N−1∑
n=0

∫ tn+1

tn

[Ψ(Xε
r )−Ψ(Fr−tn(X

ε
tn , θtn(ω)))] dr

A2(t, ε) := ε
N−1∑
n=0

∫ tn+1

tn

[Ψ(Fr−tn(X
ε
tn , θtn(ω)))− hQ(Π(Xε

tn))] dr

A3(t, ε) :=
N−1∑
n=0

εhQ(Π(Xε
tn))−

∫ t∧ετ

0
Q(Π(Xε

r
ε
)) dr

A4(t, ε) := ε

∫ t
ε
∧τ

tn

Ψ(Xε
r (x0))dr.

The following four lemmas estimate the preceding terms. This being done the proof is finished.

Lemma 3.1 For any γ ∈ (0, 1) there exists a function h1 = h1(γ) such that(
E

[
sup
s�t

|A1(s, ε)|p
]) 1

p

� K1tε
γh1(t, ε),

where h1 is continuous in ε and t and tends to zero when ε and t do so.

Proof: The proof is identical to Lemma 3.2 in [4], since Proposition 2.1 provides the same asymp-
totic bounds as Lemma 2.1 in [4], which enters here. Furthermore, only the Markov property of
the solutions of equation (3) is exploited. �

Lemma 3.2 For the process A2 in inequality (17) there exists a constant K3 > 0 such that(
E

[
sup
s�t

|A2(s, ε)|p
]) 1

p

� K3

√
t| ln(ε)|−β

p .

Proof: The proof is identical to the proof of Lemma 3.3 in [4], since it only exploits the Markov
property, the existence of first moments and the rate of convergence of the strong law of large
numbers. �

Lemma 3.3 Assume that QΨ is α-Hölder continuous with α > 0. Then the process A3 in inequality
(17) satisfies (

E

[
sup
s�t

|A3(s, ε)|p
]) 1

p

� K4t
1+αεα| ln(ε)| 2αβ

p

for a positive constant K4 > 0.

9



Proof: We lighten notation Q = QΨ. We consider the interval [0, t] with the partition 0 < εt1 <
· · · < εtN � t

|A3(t, ε)| =
∣∣∣N−1∑
n=0

εhQ(Π(Xε
tn))−

∫ t∧ετ

0
Q(Π(Xε

r
ε
)) dr

∣∣∣
� ε

N−1∑
n=0

h sup
εtn�s<εtn+1

|Q(Π(Xε
s ))−Q(Π(Xε

tn))|

� εC1hN sup
εtn�s<εtn+1

|vεs − vεtn |α

� εC2hN(εh)α

� C3ε
1+αt1+α| ln(ε)|(1+α) 2β

p ε−1| ln(ε)|− 2β
p

= C3t
1+αεα| ln(ε)| 2αβ

p .

�

Lemma 3.4 The process A4 satisfies

E

[
sup
s�t

|A4(s, ε)|p
]
� K5tε| ln ε|

2β
p ,

where K5 = ‖Ψ‖∞,U .

The proof is identical to the Proof of Lemma 3.5 in [4].

(Final step of Proposition 3.1) Collecting the results of the previous lemmas yields with the
help of Minkowski’s inequality the desired result

(
E

[
sup
s�t

|δΨ(ε, s)|p
]) 1

p

� t
1
2 | ln ε|−β

p

(
K1t

1
2 εγh1(ε, t) +K3 +K4t

1
2
+αεα| ln(ε)|

(2α−1)β
p +K5t

1
2 | ln ε| 3βp

)

=: t
1
2 | ln ε|−β

p h(t, ε),

where h(t, ε) tends to zero if ε or t does so. �

4 An averaging principle

For the main result we are going to assume the following
Hypothesis H: For any Lipschitz continuous function Ψ on M , its corresponding average function
QΨ on the transversal space V , which indexes the leaves is also Lipschitz.

We use the derivatives of each component of Π : M → V ⊂ R
d, where

Π(·) = (Π1(·), . . . ,Πd(·)),

in order to get the averages Qdπi(K)(x) of the real functions dΠi(K), i = 1, . . . , d on each leaf of Lx.
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Theorem 4.1 Assume that the unperturbed foliated system (1) on M satisfies Hypothesis H. Let
w be the solution of the deterministic ODE in the transversal component V ⊂ R

n.

dw

dt
(t) = (QdΠ1(K), . . . , QdΠd(K)) (w(t)) , (18)

with initial condition w(0) = Π(x0) = 0. Let T0 be the time that w(t) reaches the boundary of V .
Then we have that:

1. For all 0 < t < T0, β ∈ (0, 12) and 2 � p < ∞
(
E

[
sup
s�t

‖Π(Xε
s∧τ
ε

)− w(s)‖p
]) 1

p

�
√
t| ln(ε)|−β

p h(t, ε),

where h(t, ε) is continuous and converges to zero, when ε or t do so.

2. For γ > 0, let
Tγ := inf{t > 0 | dist(w(t), ∂V ) � γ}.

The exit times of the two systems satisfy the estimates

P(ετ < Tγ) � γ−pt
p
2 | ln ε|−βh(t, ε)p.

The second part of the theorem above guarantees the robustness of the averaging phenomenon in
transversal direction.

Proof: The gradient of each Πi is orthogonal to the leaves. Hence by Itô’s formula for canconical
Marcus integrals, see e.g. [7] Proposition 4.2, we obtain for i = 1, . . . , d that

Πi

(
Xε

t∧τ
ε

)
=

∫ t∧τ
ε

0
dΠi(εK)(Xε

r )dr =

∫ t∧τ

0
dΠi(K)(Xε

r
ε
)dr. (19)

We may continue and change the variable

|Πi

(
Xε

t∧τ
ε
)− wi

(
t
)| � ∫ t∧τ

0
|QdΠi(K)(Xε

r
ε
)−QdΠi(K)(w(r))|dr + |δdΠi(t, ε)|

� C1

∫ t∧τ

0
|Πi(X

ε
r
ε
)− wi(r)|dr + |δdΠi(t, ε)|

� C2

∫ t∧τ

0
|Π(Xε

r
ε
)− w(r)|dr +

N∑
i=1

|δdΠi(t, ε)|

Since the right-hand side does not depend on i, we can sum over i at the left-hand side and apply
Gronwall’s lemma. This yields

|Π(Xε
t∧τ
ε
)− w

(
t
)| � eC2t

d∑
i=1

|δdΠi(t, ε)|.

An application of Proposition 3.1 finishes the proof of the first statement. For the second part we
calculate with the help of Chebyshev’s inequality

P
(
ετ < Tγ) = P

(
sup

s�Tγ∧ετ
|Π(Xε

t∧τ
ε
)− w(s)| > γ

)
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� γ−p
E

[
sup

s�Tγ∧ετ
|Π(Xε

t∧τ
ε
)− w(s)|p

]

� γ−pt
p
2 | ln(ε)|−βhp(t, ε).

�

Example. As a simple but illustrative example of the phenomenon we consider a foliation (cf.
[4]) whose transversal space is richer than the leaves themselves, hence the range of the impact
for different perturbations is relatively large. We consider M = R

3 \ {(0, 0, z), z ∈ R} with the
1-dimension horizontal circular foliation of M where the leaf passing through a point q = (x, y, z)
is given by the horizontal circle

Lp = {(
√
x2 + y2 cos θ,

√
x2 + y2 sin θ, z), θ ∈ [0, 2π)}.

For an initial condition q0 = (x0, y0, z0), say with x0 � 0 consider the local foliated coordinates in
the neighbourhood U = R

3 \ {(x, 0, z);x � 0; z ∈ R} given by cylindrical coordinates. Hence, using
the same notation as before ϕ = (u, v) will be defined by ϕ : U ⊂ M → (−π, π)× R>0 × R, where
u ∈ (−π, π) is angular and v = (r, z) ∈ R>0×R such that ϕ−1 : (u, v) �→ (r cosu, r sinu, z) ∈ M . In
this coordinates system, the transversal projections Π1 and Π2 correspond to the radial r-component
and the vertical z-coordinate, respectively. Consider the foliated linear SDE on M consisting of
random rotations:

dXt = ΛXt � dZt, X0 = q0 = (x0, y0, z0), (20)

where

Λ =

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ .

For convenience the process Z = (Zt)t�0 is a symmetric Lévy process in R with characteristic
triplet (a, ν, 1), where ν is a Lévy jump measure with support [−1, 1] and satisfies the integrability
condition

∫
R
|z|2ν(dz) < ∞, that is, by its Lévy-Itô decomposition it has almost surely the shape

Zt = at+Bt +

∫ t

0

∫
[−1,1]

yÑ(dsdy),

where B is a standard Brownian motion independent of the pure jump part and Ñ is the compen-
sated random Poisson measure with intensity measure dt⊗ ν. Equation (20) is defined as follows:
First note that Λ2 = diag(−1,−1, 0). Secondly, note that for z ∈ R, z �= 0 the solution flow Φ of
the equation

d

dσ
Y (σ) = F (Y (σ))z, Y (0) = q where F (q̄) = Λq̄

is obtained by a simple calculation as

ΦFz(q) = Y (1; q) =

⎛
⎝ x cos(z)− y sin(z)

x sin(z) + y cos(z)
z

⎞
⎠ .

Note that here the compromise between the jump increments, the vector field and the geometry is
satisfied in the sense of inclusion (4), since the norm of the vector fields ΦF (x)(x)−F (x)z decreases
accordingly when the radius of injectivity diminishes. Hence we obtain

Xt = q0 +

∫ t

0
(aΛXs +

1

2
Λ2Xs)ds+

∫ t

0
ΛXs−(dBs + zÑ(ds, dz))
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+
∑

0<s�t

(ΦFΔsZ(Xs−)−Xs− − F (Xs−)ΔsZ).

We ignore from now on the constant third component X3
t = z0 for all t � 0 almost surely and keep

the name X for (X1, X2) for convenience. Using the chain rule of the Marcus integral, as stated
in Proposition 4.2 in [7], we verify for η(x, y) := x2 + y2 that for X = (X1, X2)

dη(X1
t , X

2
t ) = −2Xt−ΛXt− � dZt = 0.

The invariant measures μq in the leaves Lq passing through points q ∈ M are given by normalized
Lebesgue measures in the circle Lq, hence Hypothesis (H) is trivially satisfied. We investigate the
effective behaviour of a small transversal perturbation of order ε:

dXε
t = ΛXε

t � dZt + εK(Xε
t ) dt.

with initial condition q0 = (1, 0, 0). In this example we shall consider two classes of perturbing
vector field K.

(A) Constant perturbation εK. Assume that the perturbation is given by a vector field which is
constant K = (κ1, κ2, κ3) with respect to Euclidean coordinates in M . Then, the average horizontal
component QdΠ1K = 0 and the vertical z-component is constant QdΠ2K = κ3. Hence the transversal
component in Theorem 4.1 for initial condition q0 = (1, 0, 0) is given by w(t) = (1, κ3t) for all t � 0.
Theorem 4.1 establishes a minimum rate of convergence to zero of the difference between each of
the transversal components. Hence for the radial component of the perturbed systems w1(t) ≡ 1
and Π1(X

ε
t∧τε

ε

) holds that, for p � 2

[
E

(
sup
s�t

∣∣∣Π1(X
ε
t∧τε

ε

)− 1
∣∣∣p)]

1
p

goes to zero as ε or t goes to zero with the prescribed rate of convergence. We have that

Xε
t
ε
=

⎛
⎜⎜⎜⎜⎝

cos

(
at
ε +B t

ε
+
∫ t

ε
0

∫
[−1,1] yÑ(dsdy)

)

sin

(
at
ε +B t

ε
+
∫ t

ε
0

∫
[−1,1] yÑ(dsdy)

)
0

⎞
⎟⎟⎟⎟⎠

+ ε

⎛
⎜⎜⎜⎜⎝

κ1 sin

(
at
ε +B t

ε
+
∫ t

ε
0

∫
[−1,1] yÑ(dsdy)

)
+ κ2 cos

(
at
ε +B t

ε
+
∫ t

ε
0

∫
[−1,1] yÑ(dsdy)

)
− κ2

−κ1 cos

(
at
ε +B t

ε
+
∫ t

ε
0

∫
[−1,1] yÑ(dsdy)

)
+ κ2 sin

(
at
ε +B t

ε
+
∫ t

ε
0

∫
[−1,1] yÑ(dsdy)

)
− κ1

0

⎞
⎟⎟⎟⎟⎠

By normalization and using the symmetry, one can fix any k1 and k2; for simplicity, we shall fix
K = (1, 0, 0), hence, in this case, for t ≤ τ ε

r(t) = 1 + ε2

[
2 + cos

(
at

ε
+B t

ε
+

∫ t
ε

0

∫
[−1,1]

yÑ(dsdy)

)]

− ε

[
cos 2

(
at

ε
+B t

ε
+

∫ t
ε

0

∫
[−1,1]

yÑ(dsdy)

)
+ sin

(
at

ε
+B t

ε
+

∫ t
ε

0

∫
[−1,1]

yÑ(dsdy)

)]
.

13



Hence, the comparison of the second transversal component

|Π2

(
Xε

t∧τε

ε

)
− w2(t)| ≡ 0

for all t � 0 and the convergence of the theorem is trivially verified.

(B) Linear perturbation εK(x, y, z) = ε(x, 0, 0). For the sake of simplicity, consider a one di-
mensional and horizontal linear perturbation, which in this case can be written in the form
K(x, y, z) = (x, 0, 0). The z-coordinate average vanishes trivially. For the radial component,
we have that dΠ1K(q) = r cos2(u), where u is the angular coordinate of q whose distance to the
z-axis (radial coordinate) is r. Hence the average with respect to the invariant measure on the
leaves is given by QdΠ1K = r/2 for leaves with radius r.

For initial value q0 = (x0, y0, z0) = (r0 cos(u0), r0 sin(θ0), z0) the transversal system stated in

Theorem 4.1 is then w(t) = (e
t
2 r0, z0). Hence the result guarantees that the radial part Π1

(
Xε

t∧τε

ε

)
must have a behaviour close to the exponential e

t
2 in the sense that

[
E

(
sup
s�t

∣∣∣Π1

(
Xε

t∧τε

ε

)− e
t
2

∣∣∣p)]
1
p

goes to zero when ε goes to zero. The fundamental solution of linearly perturbed Marcus equation
is given by the exponential of the matrix⎛

⎜⎝ εt −(at+Bt +
∫ t
0

∫
[−1,1] yÑ(dsdy)) 0

(at+Bt +
∫ t
0

∫
[−1,1] yÑ(dsdy)) 0 0

0 0 0

⎞
⎟⎠ .

In fact, the eigenvalues for the first two coordinates (the horizontal plane) are

λ1,2 :=

(
εt

2
± 1

2

√
ε2t2 − 4(at+Bt +

∫ t

0

∫
[−1,1]

yÑ(dsdy))2
)
,

whose real part is given by ε/2, with probability increasing to 1 as ε goes to 0. This result points
out that the top Lyapunov exponent (in the horizontal directions) of the perturbed system in the
original time scale is given by ε/2.
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