
System Analysis and Modeling Group
Hasso Plattner Institute for Digital Engineering

University of Potsdam
Potsdam, Germany

Incremental Self-Adaptation of Dynamic Architectures
Attaining Optimality and Scalability

Dissertation
zur Erlangung des akademischen Grades

“doctor rerum naturalium”
- Dr. rer. nat. -

in der Wissenschaftsdisziplin
Praktische Informatik

eingereicht an der
Digital-Engineering-Fakultät

des Hasso-Plattner-Instituts und
der Universität Potsdam

von
Sona Ghahremani

March 2023

Unless otherwise indicated, this work is licensed under a Creative Commons License Attribution 4.0
International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by/4.0

Sona Ghahremani:
Incremental Self-Adaptation of Dynamic Architectures Attaining Optimality and Scalability
March 2023

Advisor:
Prof. Dr. Holger Giese

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-62423
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-624232

http://creativecommons.org/licenses/by/4.0/

A B S T R A C T

The landscape of software self-adaptation is shaped in accordance with the need to
cost-effectively achieve and maintain (software) quality at runtime and in the face
of dynamic operation conditions. Optimization-based solutions perform an exhaus-
tive search in the adaptation space, thus they may provide quality guarantees. How-
ever, these solutions render the attainment of optimal adaptation plans time-intensive,
thereby hindering scalability. Conversely, deterministic rule-based solutions yield only
sub-optimal adaptation decisions, as they are typically bound by design-time assump-
tions, yet they offer efficient processing and implementation, readability, expressivity
of individual rules supporting early verification. Addressing the quality-cost trade-off
requires solutions that simultaneously exhibit the scalability and cost-efficiency of rule-
based policy formalism and the optimality of optimization-based policy formalism as
explicit artifacts for adaptation. Utility functions, i.e., high-level specifications that cap-
ture system objectives, support the explicit treatment of quality-cost trade-off. Never-
theless, non-linearities, complex dynamic architectures, black-box models, and runtime
uncertainty that makes the prior knowledge obsolete are a few of the sources of uncer-
tainty and subjectivity that render the elicitation of utility non-trivial.

This thesis proposes a twofold solution for incremental self-adaptation of dynamic
architectures. First, we introduce Venus, a solution that combines in its design a rule-
and an optimization-based formalism enabling optimal and scalable adaptation of dy-
namic architectures. Venus incorporates rule-like constructs and relies on utility theory
for decision-making. Using a graph-based representation of the architecture, Venus

captures rules as graph patterns that represent architectural fragments, thus enabling
runtime extensibility and, in turn, support for dynamic architectures; the architecture
is evaluated by assigning utility values to fragments; pattern-based definition of rules
and utility enables incremental computation of changes on the utility that result from
rule executions, rather than evaluating the complete architecture, which supports scal-
ability. Second, we introduce HypeZon, a hybrid solution for runtime coordination of
multiple off-the-shelf adaptation policies, which typically offer only partial satisfaction
of the quality and cost requirements. Realized based on meta-self-aware architectures,
HypeZon complements Venus by re-using existing policies at runtime for balancing the
quality-cost trade-off.

The twofold solution of this thesis is integrated in an adaptation engine that lever-
ages state- and event-based principles for incremental execution, therefore, is scalable
for large and dynamic software architectures with growing size and complexity. The
utility elicitation challenge is resolved by defining a methodology to train utility-change
prediction models. The thesis addresses the quality-cost trade-off in adaptation of dy-
namic software architectures via design-time combination (Venus) and runtime coor-
dination (HypeZon) of rule- and optimization-based policy formalisms, while offering
supporting mechanisms for optimal, cost-effective, scalable, and robust adaptation. The
solutions are evaluated according to a methodology that is obtained based on our sys-
tematic literature review of evaluation in self-healing systems; the applicability and
effectiveness of the contributions are demonstrated to go beyond the state-of-the-art in
coverage of a wide spectrum of the problem space for software self-adaptation.

iii

C O N T E N T S

acronyms xii
1 introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.2.1 Requirements for Architecture-based Self-adaption of Software
Systems . 2

1.2.2 State-of-the-art Policy Formalisms for Self-adaptation 4

1.3 Overview of Proposed Solutions . 6

1.3.1 Utility Functions for Dynamic Software Architectures 7

1.3.2 Venus: Combining Utility- and Rule-based Policies 8

1.3.3 HypeZon: Coordinating Off-the-shelf Policies 9

1.4 Contributions . 10

1.5 Thesis Evaluation Plan . 13

1.6 Document Roadmap . 14

i preliminaries 15

2 foundation 17

2.1 Control Theory . 17

2.1.1 Adaptive Control . 18

2.1.2 Model Predictive Control . 19

2.2 Utility Theory for Decision-making . 21

2.2.1 Analytics of Preferences: Engineering and Learning 21

2.3 Self-adaptive Software . 24

2.3.1 Vision . 24

2.3.2 Realization . 25

2.3.3 Hybrid Planning for Self-adaptive Software 30

2.4 MDE for Runtime Adaptability . 31

2.5 Running Example: mRUBiS . 34

2.6 Graph Transformation . 36

2.6.1 Adaptation via Graph Transformation 36

ii approach 39

3 utility functions for dynamic software architecture 41

3.1 Pattern-based Utility . 41

3.1.1 Positive Architectural Utility Patterns 43

3.1.2 Negative Architectural Utility Patterns 45

3.2 Engineering Utility Functions . 47

3.2.1 Utility Space . 47

3.2.2 Utility-change . 49

3.2.3 Utility Function Construction for mRUBiS 50

3.3 Learning Utility-change Prediction Models 55

3.3.1 Supervised Machine Learning . 55

3.3.2 Modifications to Standard Supervised Learning Steps 57

3.3.3 Methodology . 58

v

vi contents

3.4 Summery . 67

4 venus : utility-driven rule-based scheme for architecture-based

self-adaptation 69

4.1 Graph-based Realization of Adaptation Concepts 70

4.2 Linking Adaptation Rules to Utility . 73

4.3 Realizing Venus in a Feedback Loop . 76

4.3.1 Feedback Loop . 76

4.3.2 Monitor . 78

4.3.3 Analyze . 78

4.3.4 Plan . 80

4.3.5 Execute . 84

4.4 Assessment of Venus . 85

4.4.1 Detailed Algorithms for Analyze and Plan 85

4.4.2 Computational Effort of Analyze and Plan in Venus 87

4.4.3 Optimality of a Single MAPE-K Run with Venus 89

4.4.4 Discussion of Assumptions . 90

4.5 Summary . 92

5 hypezon : hybrid self-adaptation with receding horizon con-
trol 95

5.1 Motivating Example . 97

5.2 Hybrid Planning for Self-adaptation with HypeZon 99

5.2.1 Hybrid Planning: Preliminary Definitions 100

5.2.2 Receding Horizon in HypeZon . 101

5.3 HypeZon: a Case for Meta-self-awareness 102

5.3.1 Self-awareness and Meta-self-awareness 103

5.3.2 Meta-self-aware Designs to Realize Hybrid Planning 104

5.3.3 HypeZon as Meta-awareness Subject 105

5.4 Summary . 113

iii evaluation and conclusion 115

6 experimental application examples 117

6.1 mRUBiS . 117

6.1.1 Self-healing and Self-optimizing mRUBiS 119

6.2 ZNN.com . 120

6.2.1 Analyze, Plan, and Execute Activities with SD 124

6.2.2 Utility Function for Znn.com . 125

6.3 Evaluation Methodology and Input Traces 126

6.3.1 Input Traces for mRUBiS . 127

6.3.2 Input Traces for Znn.com . 132

7 evaluation of venus 135

7.1 Implementation . 135

7.1.1 Adaptable Software . 135

7.1.2 Architectural Runtime Model . 136

7.1.3 Adaptation Engine . 137

7.2 Alternative Solutions for Architecture-based Self-adaptation 138

7.3 Qualitative and Quantitative Evaluation with mRUBiS 140

7.3.1 Evaluation of Runtime Performance and Scalability 141

contents vii

7.3.2 Qualitative Assessment of Reward and Optimality 147

7.3.3 Quantitative Evaluation of Reward and Optimality 151

7.4 Quantitative Evaluation with Znn.com . 155

7.4.1 Evaluation of Runtime Performance and Scalability 157

7.4.2 Evaluation of Reward and Optimality 159

7.5 Possible Violation of Assumptions . 160

7.5.1 Violation of A2: Impact on Reward 161

7.5.2 Violation of Assumptions: Impact on Scalability 164

7.6 Threats to Validity . 164

7.7 Summary . 167

7.7.1 Fulfillment of Requirements . 167

8 learning utility-change prediction models : application and

evaluation 169

8.1 Application . 169

8.1.1 Step 1: Data Generation . 169

8.1.2 Iterate Step 2, 3, and 1: Training, Validating, and Preparing 171

8.1.3 Step 4: Select Prediction Model . 173

8.2 Evaluation . 174

8.2.1 Ground Truth and Experiment Design 174

8.2.2 Evaluating Prediction Model Performance - Q8.2 175

8.2.3 Evaluating Prediction Model Selection - Q8.3 177

8.2.4 Threats to Validity . 178

8.3 Summary . 178

8.3.1 Fulfillment of Requirements . 179

9 evaluation of hypezon 181

9.1 Implementation . 181

9.2 Alternative Solutions for Hybrid Adaptation 182

9.3 Evaluation . 183

9.3.1 Policies . 184

9.3.2 Experiment Design . 184

9.3.3 Results: Answering Q9.1, Q9.2, and Q9.3 185

9.4 Threats to Validity . 190

9.5 Summary . 191

9.5.1 Fulfillment of Requirements . 192

10 related work 193

10.1 Landscape of Techniques for Architecture-based Self-adaptation 193

10.1.1 Runtime Models and MDE . 194

10.1.2 Architecture Models Defined with ADLs 196

10.1.3 Discussion . 198

10.2 Planning Mechanisms for Architecture-based Self-adaptation 199

10.2.1 Search and Optimization-based Planning 200

10.2.2 Learning-based Planning . 204

10.2.3 Rule-based Planning . 206

10.2.4 Hybrid Planning . 206

10.2.5 Discussion . 210

10.3 Prediction Model Acquisition Mechanisms 214

10.4 Summary . 216

viii contents

11 conclusion and future work 219

11.1 Conclusion . 219

11.2 Future Work . 222

11.2.1 Learning . 222

11.2.2 Venus . 223

11.2.3 HypeZon . 224

bibliography 227

iv appendix 271

a technical supplement 273

a.1 Introduction to Story Diagram Formalism 273

a.2 Example of Loading SDs from Java . 276

b evaluation supplement 279

b.1 Training and Testing . 279

b.2 Validating . 279

b.3 Final Prediction Models . 282

c publications 283

index 285

L I S T O F F I G U R E S

Figure 1.1 A notional representation of a space for self-adaptation solutions
in domains with growing complexity (Q* denotes optimal objec-
tive satisfaction). 6

Figure 1.2 Overview of proposed solutions (gray blocks are novel contribu-
tions of this thesis). 8

Figure 2.1 Block diagram of a feedback control loop. 17

Figure 2.2 Block diagram of an adaptive control system. 19

Figure 2.3 Block diagram for model predictive control. 20

Figure 2.4 Basic concept for MPC from [374]. 20

Figure 2.5 Internal and external approaches for building self-adaptive soft-
ware. 25

Figure 2.6 MAPE-K reference model for self-adaptive software. 26

Figure 2.7 Classification of ways to create hybrid policies from [405]. 30

Figure 2.8 Simplified metamodel of mRUBiS. 35

Figure 2.9 Exemplary architectural runtime model of mRUBiS. 37

Figure 2.10 LHS of a transformation rule in mRUBiS. 37

Figure 3.1 Chapter overview: Utility Function for adaptation engine. 41

Figure 3.2 Positive architectural utility pattern P+1 43

Figure 3.3 Positive architectural utility pattern P+1 and relevant context (in
gray) for utility calculation. 44

Figure 3.4 Negative architectural utility pattern P−2 45

Figure 3.5 Excerpt of mRUBiS architecture including matches for positive
and negative patterns. 47

Figure 3.6 Excerpt of mRUBiS goal model. 51

Figure 3.7 tanh(x) with different gradients. 53

Figure 3.8 Positive pattern P+1 and relevant context (in gray) for saturating
utility function calculation. 54

Figure 3.9 Steps of proposed methodology to train prediction models. . . . 57

Figure 3.10 Overview of model training. 63

Figure 4.1 Chapter overview: analyze and plan with Venus in adaptation
engine. 69

Figure 4.2 Examples of adaptation issues (top) and excerpt of mRUBiS ar-
chitectural RTM with matches for issues (bottom). 71

Figure 4.3 Target configuration reachable through different paths. 73

Figure 4.4 Activities of MAPE-K feedback loop realizing Venus. 76

Figure 4.5 Annotating an occurrence (match) of a negative pattern in RTM. 79

Figure 4.6 SD of a planning rule. 81

Figure 4.7 Rule for executing a component restart. 85

Figure 4.8 Excerpt of mRUBiS metamodel showing annotations. 86

Figure 5.1 Chapter overview: plan with HypeZon in adaptation engine. . . 96

Figure 5.2 A notional representation of a space for self-adaptation solutions
in domains with growing complexity (Q* denotes optimal objec-
tive satisfaction). 96

ix

x List of Figures

Figure 5.3 Look-ahead, planning, and execution horizon in HypeZon. . . . 100

Figure 5.4 Awareness levels and scopes. 103

Figure 5.5 External and Internal designs for meta-self-awareness. 104

Figure 5.6 Meta-self-aware External and Internal designs realizing hybrid
planning. 106

Figure 5.7 Generic description of hybrid planning in HypeZon. 107

Figure 5.8 Sequence diagram for HZe execution with I = 2. 112

Figure 5.9 Sequence diagram for HZi execution. 113

Figure 6.1 Architecture of a tenant in mRUBiS from [413]. 118

Figure 6.2 High-level view for Znn.com system. 120

Figure 6.3 Simplified metamodel of Znn.com. 121

Figure 6.4 Analyze SD for overBudget issue. 122

Figure 6.5 SDs specifying planning and execution for overBudget issue. . . 123

Figure 6.6 Failure group size (FGS), failure exposure time (FET), and inter
arrival time (IAT) of failure models. 128

Figure 6.7 Probabilistic FGS distribution in Grid5000 (full curve) and sam-
pled segments for constructing synthetic failure profile models. . 131

Figure 6.8 Plots of FIFA short traces. 134

Figure 6.9 Plots of FIFA long traces. 134

Figure 7.1 Architectural decomposition of Venus implementation. 136

Figure 7.2 Planning time of self-adaptation approaches. 145

Figure 7.3 Planning time during 50 MAPE-K executions for short traces
from Burst (top) and Uniform (bottom) failure models. 146

Figure 7.4 Lost reward of Static compared to Venus due to non-optimal rule
selection (top) and non-optimal rule ordering (bottom). 148

Figure 7.5 Lost reward of Solver compared to Venus due to longer planning
time. 149

Figure 7.6 Lost reward of Solver compared to Venus due to longer planning
time and short IAT. 149

Figure 7.7 Reward of the three approaches over 50 MAPE-K runs. 151

Figure 7.8 Reward for short traces of realistic failure profile models. 152

Figure 7.9 Reward for long traces of realistic failure profile models. 153

Figure 7.10 Reward for synthetic traces with equal failure densities. 154

Figure 7.11 Average planning time with polynomial regression (in dashed
green). 156

Figure 7.12 Response time (sec) for deterministic traces in Znn.com. 158

Figure 7.13 Response time for realistic traces in Znn.com. 159

Figure 7.14 Normalized reward for realistic traces in Znn.com. 161

Figure 7.15 Reward of mRUBiS in experiments with probabilistic rules. . . . 162

Figure 7.16 Effect of probabilistic rules on reward. 163

Figure 8.1 MADP for Combined utility function across prediction models
trained with all dataset sizes. 171

Figure 8.2 MADP across utility functions and prediction models trained
with 9K datasets. 172

Figure 8.3 Runtime effort across utility functions in logarithmic scale (9K
dataset is used). 172

Figure 8.4 Similarity aggregation values for optimal and predicted decisions
produced by selected prediction models. 173

Figure 8.5 Normalized reward across prediction models for Combined vari-
ant computed with DEUG trace. 176

Figure 8.6 Normalized reward across prediction models (9K dataset is used). 177

Figure 9.1 Implementation decomposition for evaluation of hybrid solutions. 182

Figure 9.2 Policy switch decisions by HZi and HZe in Znn.com. 187

Figure 9.3 Average request response time (sec) in Znn.com. 188

Figure 9.4 Normalized reward of self-adaptation solutions in mRUBiS with
growing complexity of input traces. 190

Figure A.1 Analyze SD for CF2 issue. 274

Figure A.2 Plan SD for CF2 issue. 274

Figure A.3 Execute SD for CF2 issue. 275

Figure B.1 XGB trained with 500 trees over different datasets and data splits. 280

Figure B.2 XGB trained with 500 trees with 10K data points. 280

Figure B.3 RF across different dataset sizes (top) and with 200 trees (bottom). 280

Figure B.4 GBM across different dataset sizes. 281

Figure B.5 Normalized reward across prediction models for Linear, Saturat-
ing, and Continuous variants computed with DEUG trace. 282

L I S T O F TA B L E S

Table 1.1 Requirements for architecture-based self-adaption of software sys-
tems. 4

Table 3.1 Data schema for utility space. 49

Table 3.2 Utility functions for mRUBiS and their complexity class. 51

Table 4.1 List of assumptions for applicability of Venus. 91

Table 6.1 Utility sub-functions for Znn.com. 126

Table 6.2 General characteristics of failure models. 128

Table 6.3 Characteristics of realistic failure models (top) and generated
traces (bottom). 130

Table 6.4 Characteristics of synthetic failure models (top) and their gener-
ated traces (bottom). 130

Table 6.5 Characteristics of deterministic input traces for Znn.com. 132

Table 7.1 Positioning three solutions in the landscape of self-adaptation
solutions. 140

Table 7.2 Average MAPE-K loop execution time (ms). 142

Table 7.3 Average planning time (ms). 144

Table 7.4 Server cost/capacity parameters in Znn.com. 156

Table 7.5 Average planning time (ms) for deterministic traces in Znn.com. . 156

Table 8.1 Failure traces used for steps of methodology. 170

Table 8.2 Variants of mRUBiS. 170

Table 8.3 SAM values for prediction models based on 9K data set. 174

Table 8.4 Normalized reward of XGB-9K for different architecture sizes
across variants. 176

Table 9.1 Characteristics of hybrid solutions. 183

xi

Table 9.2 Normalized reward over 24 hrs for Znn.com (top) and mRUBiS
(bottom). 186

Table 9.3 Normalized reward of HZe with different I over 24 hours. 187

Table 9.4 Normalized reward over 60 min for Znn.com. 188

Table 10.1 Architecture-based self-adaptation requirements coverage by re-
late work. () indicates full, (G#) indicates partial, (#) indicates
no, and (?) indicates unknown coverage. 207

Table B.1 Final prediction models. 281

L I S T I N G S

Listing A.1 Loading SD rules for Analyze, Plan, and Execute in Znn.com. . . 276

Listing A.2 Simulation initialization including method calls for Analyze and
Plan activities. 277

Listing A.3 Excerpt of Analyze method in Znn.com. 278

Listing A.4 Calling Execute SDs in Znn.com. 278

A C R O N Y M S

ADL Architecture Description Language

aDT Average Deployment Time

AI Artificial Intelligence

ATL ATLAS Transformation Language

CBR Case-based Reasoning

CF Critical Failure

CG Correspondence Graph

DCG Discounted Cumulative Gain

DSL Domain-specific Language

ECA Event-Condition-Action

EMF Eclipse Modeling Framework

EU Expected Utility

FET Failure Exposure Time

FGS Failure Group Size

FOL First Order Logic

GA Genetic Algorithm

GBM Gradient Boosting Models

xii

Acronyms xiii

GT Graph Transformation

IAT Inter Arrival Time

IID Independent and Identically Distributed

KPI Key Performance Indicator

LHS Left-hand Side

LRA-M Model-based Learning, Reasoning, and Acting

MADP Mean Absolute Deviation Percent

MDE Model-driven Engineering

MDP Markov Decision Process

MEU Maximum Expected Utility

MIMO Multi-input, Multi-output

MPC Model Predictive Control

mRUBiS Modular Rice University Bidding System

MTBF Mean Time Between Failures

NAC Negative Application Condition

OCL Object Constraint Language

PI Performance Issue

pmml predictive model markup language

POMDP Partially Observable Markov Decision Processes

QoS Quality of Service

QVT Query/View/Transformation

RF Random Forest

RHS Right-hand Side

RL Reinforcement Learning

RMSE Root Mean Square Error

RRS Recursive Random Sampling

RTM Runtime Model

SAM Similarity Aggregation Metric

SD Story Diagram

SDM Story-driven Modeling

SEAMS Symposium on Software Engineering for Adaptive
and Self-Managing Systems

SLA Service Level Agreement

SLR Systematic Literature Review

SP Story Pattern

TGG Triple Graph Grammar

UML Unified Modeling Language

XGB Extreme Gradient Boosting Trees

1
I N T R O D U C T I O N

1.1 motivation

Modern, complex software systems are increasingly required to continue operating in
highly dynamic environments, accommodate rapidly changing requirements, and cope
with unpredictable operation conditions [112, 367]. While manual oversight and main-
tenance [see 258, 336] benefits from domain expertise, global problem contexts, and
flexible policies, human operators are costly and error-prone. Embedded and low-level
mechanisms [see 151, 160] however, are effective and timely for error recovery, but suf-
fer from covering only local scopes. Such solutions are application specific which makes
reusability infeasible. In addition, embedded mechanisms to change software are costly
to modify in the face of dynamic adaptation objectives, thus integration in contexts that
are not known a priori becomes challenging.

The vision of autonomic computing and self-adaptation emerged as the complexity of the
computing systems approached human limits for manual maintenance, development,
deployment, management, and evolution [110, 158]. Autonomic computing and self-
adaptation seek the reduction of the human involvement in the maintenance/evolution
of the computing systems. Both visions share the objectives of automating the adapta-
tion process and shifting the responsibility for performing the adaptation from human
to the system itself. More specifically, autonomic computing is generally concerned with
automating the management of computing systems based on the high-level objectives
obtained from domain experts. Self-adaptation, on the other hand, refers to automating
the modification of system behavior and/or structure based on the perception of the
system of itself, its environment, and its goals [89]. The aforementioned modifications
can be realized from the software engineering perspective. While self-adaptive systems
are used in a number of different areas, this thesis focuses only on their application
in the software domain, called self-adaptive software. Leveraging domain expertise, an
automated process of system adaptation provides an end-to-end system perspective al-
lowing for modification of the target system at runtime [252]. The promise of coping
with the growing costs, complexity, and diversity of evolving systems via realization of
self-adaptation has led to continuously growing research trends on autonomic comput-
ing and self-adaptation during the last two decades [275, 293, 332, 342, 426].

The architecture model of a software system is an abstract representation of the system
as a composition of computational elements and their interconnections [381]. Architecture-
based self-adaptation of software systems uses external mechanisms where the self-adaptive
software comprises the adaptable software, the adaptation engine, and an architecture
model of the target system to close the control loop of the automated adaptation—
see [167, 367]. The state-of-the-art has evolved to support variability and adaptation
modeling; this goal is achieved by making use of architecture models at runtime to
monitor and drive runtime adaptation at a desired level of abstraction, e.g., [108, 144,
146, 198, 254], as architecture models allow for explicitly capturing the knowledge re-

1

2 introduction

quired to manage software quality. Architectural models are widely recognized as pro-
viding separation of concerns between the system behavior and that of its constituent
components that renders architecture models appealing for self-adaptation of software
systems [93, 426]. Specification of the adaptation logic at the model level yields separa-
tion of the logic from the code and benefits the loose coupling of the adaptation policies
and the main system functionalities [323].

The use of software architecture as the basis of a control model for self-adaptation
holds a number of advantages; a rich body of work on architecture trade-off analy-
sis techniques, used at design-time, facilitates runtime self-adaptation. As an abstract
model, an architecture model exposes important system properties and constraints,
provides end-to-end problem contexts, and allows principled and automated adapta-
tions [321, 381]. Considering high-level system design decisions, the model makes sys-
tem integrity constraints explicit, thereby helping to ensure the validity of a change. An
architecture-based solution for self-adaptation cultivates the benefits of an overall soft-
ware architecture specification so that, despite the changes to the system, the system
will remain well-formed with respect to its desired specification, thus the system may
preserve the structural and behavioral properties captured by its specification [170].

1.2 problem statement

In the following, we first present the scope of the problem that concerns this thesis.
We state the elements of the problem as requirements (R) for architecture-based self-
adaptation of software systems.The requirements are derived from the literature and
summarized in Table 1.1. Next, we present state-of-the-art policy formalisms for soft-
ware self-adaptation mechanisms and discuss their limitations.

1.2.1 Requirements for Architecture-based Self-adaption of Software Systems

The quality-cost trade-off in adaptation is a multi-faceted challenge in engineering self-
adaptive systems [184]. A self-adaptive system is expected to simultaneously balance
multiple software quality objectives while complying to the cost-induced restrictions,
e.g., security vs. performance vs. time. The severity of the conflicting objectives how-
ever varies for different application domains. In safety-critical systems, for instance, it
is essential to maintain certain levels of quality at any expense, as otherwise the sys-
tem might endangers lives [84, 260]. In other domains, e.g., commercial systems such
as Amazon Web Services (AWS), the Service Level Agreement (SLA) demands a monthly
up-time percentage of at least 99.99%1 in combination with cost minimization. In order
to avoid violation of the SLAs, system availability must be obtained constantly. Thus,
eliminating runtime anomalies that affect system availability in a timely manner is im-
portant. Streaming media services like Netflix are another example where minimizing
the streaming latency is critical to satisfying user experience; on the other hand, reduc-
ing the maintenance and operation cost enables lower subscription prices which is an
influential factor of client experience [319].

Today’s complex and dynamic software systems demand adaptations that fulfill sys-
tem quality objectives (R1) in a cost-effective manner (R2) [see 93]. In essence, planning
an adaptation is a search and optimization process performed over the space of pos-

1 https://aws.amazon.com/compute/sla/– accessed 18 March 2023.

https://aws.amazon.com/compute/sla/

1.2 problem statement 3

sible solutions [404]. Exhaustive search in the possible adaptation space can provide
quality guarantees but renders attaining optimal adaptation plans time-intensive [361].
Challenges in addressing the trade-off include provisioning of efficient and scalable solu-
tions (R3) to cope with the complexity caused by the possible combinatorial explosions
of adaptive system artifacts such as configurations, variant dependencies, and adapta-
tion options [145].

The imbalance between quality and cost objectives increases significantly as software
systems grow in size and complexity, creating a relatively larger search space for adap-
tation solutions that satisfy multiple quality objectives [72]. To design a self-adaptive
software that is capable of maintaining multiple quality objectives, cost-effectively and
at runtime, models that explicitly capture system objectives and requirements, as well as
the knowledge representing system properties and its relevant context are required [183].
The models must be kept representative at runtime. In order to enhance runtime rea-
soning of multiple objectives during self-adaptation, trade-off policies must be made ex-
plicit (R4) [see 351].

Software systems with dynamic architectures allow for modifications of their architec-
ture during their execution [303]. Designing architectures that exhibit a good trade-off
between multiple quality attributes is effortful [53, 381]; adapting dynamic software
architectures at runtime, on the other hand, imposes further challenges in the face of
growing software complexity, changing requirements, highly dynamic environments,
and unpredictable operating conditions [146, 396]. Additionally, monetary, time, and
resource constraints further perplex the adaptation, yielding possibly conflicting ob-
jectives for the system [93]. An adaptation mechanism is required to manage dynamic
software architectures (R5) [53, 214]. This implies that the self-adapting system should
be able to dynamically create and operationalize adaptation plans that satisfy system
objectives.

As stated in (R4), the trade-off policies should be made explicit to enable dynamic
adaptation [93]. Utility functions, i.e., high-level specifications that capture system ob-
jectives [146], support the explicit treatment of quality-cost trade-off. Specifying utility
functions however is non-trivial and may require several iterations [143, 259]. Construct-
ing a utility function that represents system preferences is a challenging task due to
sources of uncertainty and subjectivity, e.g., non-linearities, complex dynamic architec-
tures, and black-box system models [254, 383]. Addressing these challenges requires
specialized domain knowledge [333], which makes utility elicitation burdensome [79].
Additionally, highly dynamic operation conditions of software systems rapidly renders
the prior knowledge obsolete [117].

The state-of-the-art proposes the common practice of construing the system utility
by hand-picking the features of the architecture [see 232] or reducing the number of
the features by exploring inter-feature relationships [129]. The runtime uncertainty hin-
ders the expectation to have an omniscient decision-maker that knows user/system2

preferences at any given time and under different operation conditions [117]. An ideal
solution should be able to address the problem of initially unknown runtime knowledge to
support adaptation (R6). In other words, the approach should preclude the designers
from having a detailed knowledge of the user or system preferences for every specific
adaptation decisions necessary to restore the system to the desired states. Systematic

2 A user of a system is another system (physical or human) which interacts with the former [281].

4 introduction

Table 1.1: Requirements for architecture-based self-adaption of software systems.

Req. Description

R1 Solution satisfies system quality objectives at a desirable level

R2 Solution is cost-effective

R3 Solution is scalable

R4 Solution explicitly captures quality-cost trade-off policies

R5 Solution supports dynamic architectures

R6 Solution addresses problem of initially unknown runtime knowledge
of user and system preferences

acquisition of utility prediction models for black-box systems where prior knowledge
is missing or becomes obsolete at runtime should be supported.

All the requirements discussed in this section in provision of the architecture-based
self-adaptation solutions are listed in Table 1.1. We will use them in this thesis to discuss
our approach to engineering self-adaptive software and contrast it to related work.

1.2.2 State-of-the-art Policy Formalisms for Self-adaptation

Adaptation policies govern the decision-making process during planning and are used
to express and operationalize the high-level objectives of the system [214]. Two main
families of formalism have been proposed to capture adaptation policies [see 253]: de-
terministic Event-Condition-Action (ECA) rules [244] and optimization-based approaches
leveraging utility functions or goal models [254].
Rule-based solutions. Self-adaptation solutions that use ECA rules to formalize adap-
tation policies relate context events to reconfiguration actions via rules [108, 163]. The
main strength of the rule-based approaches are twofold: the readability and expressiv-
ity of each individual rule and efficient processing and implementation [243]. These
approaches benefit from using well-known policy definition formalism, allowing them
to be efficiently implemented, while supporting early verification [144].
Limitation of rule-based solutions. Designing a self-adaptive system where quality
trade-off policies are deterministically defined makes rule-based policies implicit arti-
facts of system design [241, 321]. While adaptation solutions defined based on ECA
rules may explicitly consider quality objectives during software design, the resulting
trade-off decisions are not exposed as first-class (operational) entities in software func-
tionality. The implicit nature of hard-wired policies complicates the reasoning about
satisfying objectives, for there is often no explicit treatment of the objectives. Moreover,
adding new quality of concern may be difficult since it requires modifications that affect
many aspects of the system. Rule-based policies are bound by design-time assumptions,
thus have a single context of use which may become obsolete when system preferences

1.2 problem statement 5

change due to evolving business needs [see 90, 113, 278]. While reactive, condition-
based solutions for adaptation deliver adaptation plans timely, i.e., in a cost-effective
manner (see R2 in Table 1.1), they often fail to find the optimal solutions, thus cannot
guarantee achievement of R1. Additionally, rule-based solutions may encounter scala-
bility problems related to the management and validation of large sets of rules when
context and variability spaces grow, thus may not satisfy R3.
Optimization-based solutions. In optimization-based approaches, the adaptation pol-
icy is expressed as high-level system objectives through utility functions or goal mod-
els [see 146, 198]. Utility function policies can be viewed as generalizations of goal
policies [253]. A utility function evaluates each system configuration in terms of satisfy-
ing system objectives. The optimization aims at identifying configurations yielding the
highest utility values. The main benefit of the optimization-based approaches is the ab-
straction they provide through properties allowing use of relatively simpler adaptation
actions. In addition, utility functions are an efficient way to determine how well-suited
a configuration is depending on the runtime context.
Limitation of optimization-based solutions. Optimization-based policies do not explic-
itly describe all the possible configurations of the system a priori, instead, they often
perform an exhaustive search in the possible adaptation space. Thus, the optimization
process hinders scalability for large configuration spaces. In the presence of multiple
system objectives, scalability is further impeded by employing complex utility func-
tions, as used in constraint solver-based approaches [145]—see R3 in Table 1.1. These
solutions solve an optimization problem before every adaptation which may render at-
taining optimal adaptation plans time-intensive [361]. As stated in R2 (see Table 1.1),
a solution for self-adaptation should be capable of coping with the continuous change
in a cost-effective manner, i.e., scale with the complexity of the adaptation space. Fur-
thermore, as discussed in the context of R6, due to non-linearities, complex dynamic
architectures, black-box models, and runtime uncertainty, elicitation of utility functions
is non-trivial.
Hybrid solutions. The state-of-the-art offers paradigm for compromise, namely hybrid
adaptation, where an ensemble of multiple adaptation policies, combined at different
levels, steer the adaptation—see [62, 90, 326, 351]. Hybrid planning refers to solving a
planning problem by combining multiple planning approaches/algorithms to benefit
from their combined strengths. However, the end result inherits the properties of its
constituents including their limitations.
Summary. Various research provide tangible evidence that constructing an individual
or hybrid automated adaptation mechanism that systematically recognize and handle
cost-effective adaptations of large, dynamic software systems with growing complexity
remains an open challenge where current approaches offer only partial solutions with
limited applicability [8, 137, 297, 326, 365, 367, 426]. Existing approaches are restricted
in being concerned with fixed set of quality attributes, captured either as ECA rules or
hand-crafted objective (utility) functions, for which desired values are defined a priori.
They lack flexibility to efficiently cater to dynamic architectures and offer only par-
tial support for trade-off across multiple objectives and varying contexts. A systematic
treatment in addressing the increasing complexity of the adaptation space for dynamic,
large, and highly-configurable systems is missing.

6 introduction

1.3 overview of proposed solutions

For self-adaptation of software systems that an individual policy cannot simultaneously
satisfy R1 and R2, a compromise between two ends of the spectrum, i.e., rule- and
optimization-based approaches, is beneficial. Consequently, a trade-off for large-scale
dynamic systems while addressing the complexity-induced combinatorial explosion of
the number of context and configuration changes can be achieved [145]. This thesis com-
prises a twofold solution for software self-adaptation based on (i) design-time combina-
tion (Venus) and (ii) runtime coordination (HypeZon) of rule- and optimization-based
formalisms of adaptation policies. The solution contributes to a segment of software
self-adaptation problem space where the quality and cost requirements for a solution
exceed the ability of an individual adaptation mechanism, to solely, fulfill the objectives.
A customized combination-based solution may combine policy formalism of the individ-
ual solutions in its design to construct a new policy. The resulting solution may leverage
the strength of all the constituents, thus outperforming them in terms of cost minimiza-
tion and quality maximization. On the other hand, the quality-cost trade-offs can be
addressed by a hybrid self-adaptation mechanism that coordinates multiple off-the-shelf
approaches that individually perform either cost-effectively (R2) or with high objective
satisfaction (R1). The quality and cost of the adaptation carried out by the hybrid so-
lution, is bounded by the ones of its constituents, i.e., a coordination-based solution
performs only as good as its best performing constituent policies.

O
bj

ec
tiv

e
Sa

tis
fa

ct
io

n

Adaptation Complexity
X1

Q*

X2
’

(a) Individual adaptation policies.

 Optimization-based
 Coordination
 Combination
 ECA Rule-based

O
bj

ec
tiv

e
Sa

tis
fa

ct
io

n

Adaptation Complexity
X1

Q*

X2

(b) Individual adaptation policies against their coordination and combination.

Figure 1.1: A notional representation of a space for self-adaptation solutions in domains with
growing complexity (Q* denotes optimal objective satisfaction).

Figure 1.1 shows a notional representation of the solution space for self-adaptations
versus growing complexity of the adaptation space. An optimization-based and a rule-
based policy constitute the set of individual solutions (top) for whom a coordination-
based and a combination-based solution is sketched (bottom). The parts of the x-axis

1.3 overview of proposed solutions 7

before X1 represent adaptation complexities where an individual solution, i.e., the
optimization-based solution, performs desirably (obtains Q∗). X1 marks the point in
the adaptation space where the individual solutions cannot desirably satisfy the adap-
tation objectives (below Q∗). X2 represents a point where the complexity of the adap-
tation space prevents the optimization-based solution from out-performing the rule-
based alternative. The coordination approach is bounded by the performance margin
of its constituent solutions (see the switch at X2), while the combination approach may
prevent the performance degradation of the optimization-based solution and exhibit
the steady pattern of the rule-based solution. Adaptable software with dynamic archi-
tectures is prone to evolution during system execution, thus adaptation complexity is
subject to change. This might rapidly render a well-performing solution insufficient—
see X2 in Figure 1.1 where a slight change in the complexity of the adaptation space
disqualifies the, until then, best-performing optimization-based solution in comparison
to the alternative rule-based solution.

Capturing the complexity of the multi-dimensional adaptation space as points across
the x-axis is an oversimplification of the phenomenon. Note that Figure 1.1 is used
only for conceptual illustration purposes and does not correspond to any empirical
measurements. We replace this chart by an alternative3 that is based on quantitative
experiments in Chapter 9 where we report on a series of experiments during which we
maintain all the dimensions of the adaptation space constant and emulate the increasing
complexity of the adaptation by step-wise increasing the complexity of the adaptation
setup, e.g., increasing system load or architecture size.

The twofold solution of this thesis for self-adaptation of software systems, i.e., Venus,
and HypeZon, is integrated in an external adaptation engine that implements the Mon-
itor, Analyze, Plan, Execute, and Knowledge (MAPE-K) loop—a standard blueprint of a
control feedback loop from IBM for an automated cycle of the four activities operating
on a shared Knowledge base [215]. The adaptation engine employs utility functions to
incrementally evaluate an architectural Runtime Model (RTM) [322] of the adaptable soft-
ware as well as the adaptation plans. We present the technical contributions of this thesis
as three main building blocks that collectively constitute our solution for architecture-
based adaptation: (i) utility functions for dynamic software architectures; (ii) a solution
that combines utility- and rule-based policies to engineer the Analyze and Plan ac-
tivities of the adaptation loop (Venus); (iii) a coordination-based hybrid solution for
planning software adaptation (HypeZon)—see Figure 1.2 for an overview.

1.3.1 Utility Functions for Dynamic Software Architectures

Leveraging graphs and a graph-based formalism, we capture the software architecture
as a graph. Dynamic architectures are evaluated by assigning utility values to fragments
of the architecture, i.e., graph patterns. We refer to this as pattern-based utility. Desired
and undesired patterns in the architecture are distinguished by assigning positive and
negative values, respectively, introducing the notion of positive and negative architectural
utility patterns that capture the impact of the fragments of the architecture on the utility.
Utility functions in general can be obtained in two ways: (i) analytically engineered
from domain knowledge or (ii) gradually learned from the observations. In this thesis,

3 See Figure 9.4.

8 introduction

Adaptable Software

Execute

Utility
Function

RTM
Monitor

Analyze
VENUS

Plan
VENUS

HYPEZON

Adaptable Software

Execute

Analyze Plan
Policies

RTM
Monitor

Utility
Function

Figure 1.2: Overview of proposed solutions (gray blocks are novel contributions of this thesis).

we present our approach to attain both practices for utility elicitation in the context of
dynamic software architectures.

In addition to employing analytically defined utility functions obtained from domain
knowledge, this thesis provides a systematic methodology to acquire utility prediction
models for black-box software systems or application domains where specialized do-
main knowledge is not available. We extend the standard machine learning process to
systematically train utility-change prediction models for rule-based self-adaptive soft-
ware. Utility-change indicates the changes in utility during an adaptation. The method-
ology employs multiple learners to empirically construct models for predicting the ef-
fects of the adaptation rules on the system utility, when sufficient prior knowledge is
missing. The prediction models are trained offline and when the adaptable software is
executed under simulated operation conditions. The methodology calls for co-existence
of offline training and online execution of the prediction models to maintain accurate
predictions of rule applications impact on the system utility.

1.3.2 Venus: Combining Utility- and Rule-based Policies

Venus is a utility-driVen rule-based scheme for engineering software self-adaptation.
The scheme combines the common ECA rule- and optimization-based formalisms in
its design. Consequently, Venus exhibits the benefits of its constituents, collectively,
while, inevitably, inheriting certain limitations. Venus employs ECA rules to realize the
adaptation loop activities. In addition, the scheme uses utility functions to capture sys-
tem objectives and steer the adaptation towards optimizing the utility function. Venus

primarily targets the architecture-based self-adaptation of large, dynamic software sys-
tems, i.e., resolving runtime issues by dynamically adapting the system architecture.
Model-driven Engineering (MDE) principles are heavily exploited to support creation and
runtime evolution of causally connected architectural RTMs—see [148]. Being integrated
in a MAPE-K feedback loop, the scheme operates on a causally connected architectural
RTM of the system that is captured as a graph. Consequently, adaptation issues, i.e., phe-
nomena that trigger adaptation, as well as the condition and action parts of the ECA

1.3 overview of proposed solutions 9

rules are realized as graph patterns in the architectural RTMs—see Figure 1.2 for an
overview.

Venus is reactive and targets a class of self-adaptation problems that are usually identi-
fied by symptoms, also known as conditions, e.g., self-healing systems [see 81, 185, 343],
where adaptation is only needed if runtime failures occur. The scheme exploits these
symptoms, leveraging event-based principles, i.e., event-based detection and processing
of the changes. Venus also supports state-based execution of the adaptation loop as
it holds a global view on the adaptable software through maintaining an architectural
RTM that represents the state. While state-based realization of the adaptable software
supports decisions with global impacts, event-based processing of the changes enables
incremental execution of the feedback loop. Scalability in Venus is achieved through the
incremental processing of adaptation activities and leveraging the locality information
of the event-based changes affecting the self-adaptive software. Venus is scalable as its
complexity is independent of the size of the system architecture and is only influenced
by the number of adaptation issues.

The pattern-based realization of the utility functions as well as the adaptation rules
jointly enable mapping the impact of the rule executions to the corresponding utility
values in Venus. Based on the expected impact of the adaptation rules on the over-
all system utility, and based on the estimated costs of the adaptation rule executions,
Venus aims to obtain optimal adaptation decisions that maximize the system utility
cost-effectively. In this thesis, we demonstrate that, for the targeted class of self-adaptive
systems, Venus is robust, scalable, timely, and optimal—in terms of system utility. The op-
timality claim in Venus is restricted to the class of self-adaptation problems that satisfy
the greedy choice property [see 121], where a globally optimal solution can be reached by
making a locally optimal (greedy) choice at each step [6].

1.3.3 HypeZon: Coordinating Off-the-shelf Policies

The second part of our proposed solution is HypeZon, a coordination-based Hybrid
planner for self-adaptation employing receding horiZon [see 298]. Venus constitutes
the main contribution for engineering self-adaptive software. HypeZon serves as a com-
plementary solution with a relatively low development and deployment effort. The
scheme proposes a coordination-based hybrid adaptation for problems that a runtime
coordination between multiple off-the-shelf policies could satisfy the cost and quality
objectives, thereby rendering the cost-intensive development of custom solutions such
as Venus dispensable. In short, Venus might provide over-engineered4 solutions to a
problem that a simpler process, in terms of development-effort, is adequate. Further
more, HypeZon is beneficial when the problem at hand does not satisfy the greedy
choice property, thus Venus cannot provide optimality guarantees.

HypeZon exploits the notion of meta-self-awareness [see 284] to provide the hybrid
planner, realized in an additional, higher-level control loop with increased awareness.
This way, HypeZon holds a global view of the system and the adaptation process that al-
lows for observing phenomena with global scope. The scheme enables the self-adaptive
software to observe its own behavior (in combination with the adaptation feedback con-

4 “The act of designing a product or providing a solution to a problem in an elaborate or complicated
manner, where a simpler solution can be demonstrated to exist with the same efficiency and effectiveness
as that of the original design” [324].

10 introduction

trol loop in terms of objective satisfaction), reason about changing trade-offs during its
lifetime, and explore coordination of multiple off-the-shelf policies at runtime. Hype-
Zon exhibits the characteristics of a generic solution for hybrid adaptation since it is
designed to consider the employed adaptation policies as black-box and can coordinate
arbitrary policies—see Figure 1.2 for an overview.

HypeZon considers the coordinator unit as an additional, conceptual entity and imple-
ments it as a controller with receding horizon. Similar to the benefits of the external
adaptation approaches over the internal alternatives [367], the external realization of
HypeZon in the design of the control loops supports explicit separation of concerns
at the architecture level, yielding reusability, easier maintenance, and independent evo-
lution of each level [265, 427]. Conforming to the well-established practice of explicitly
capturing control loops in the architecture of the system [208, 367], HypeZon adopts the
hierarchical arrangement of the control loops from adaptive control in its design [380].

The control design and architecture of HypeZon build on control theory as a promi-
nent base, and moreover, extend the involvement scope of the higher-level control loops
in the lower-level entities. In adaptive control, the controller may change its own control
regime by having adjustable parameters [see 280]. The adaptive control theory restricts
the scope of controllers to calculating set-points and prescribing required changes in
the system input parameters accordingly. In HypeZon however, adaptive control is per-
ceived as reasoning about the adaptation logic [see 140] that requires advanced self-
reflective properties through, e.g., meta-self-awareness [285].

1.4 contributions

In brief, this thesis advances the state-of-the-art in software architecture-based self-
adaptation by providing the following contributions:

C1 - Incremental execution of the adaptation loop, thus attaining scalability
In order to perpetuate a global-scope view, the adaptation engine maintains a causally
connected architectural RTM that captures the state of the adaptable software and its
context. The MDE principles are explored to engineer the elements of a MAPE-K feed-
back loop. Dynamic architectures are supported via realizing the architectural RTMs as
a graph (R5) where the change events, the condition, and the action parts of the ECA
rules are then captured as graph patterns. Using an RTM avoids complicated events
that carry the context of a state change because the model represents the state of the
adaptable software, therefore, the context of the change. Modifications to the dynamic
architecture during software execution are realized and implemented via graph trans-
formation rules.

Scalability in Venus is achieved via fully exploiting the opportunities for incremental-
ity as majority of the runtime changes, while occurring frequently, are by their nature
incremental, i.e., limited number of phenomena change at each time point [183]. The
RTM provides for capturing change events that typically contain a fraction of the state
corresponding to the context of the change. Event-based execution of the adaptation
loop allows for the loop activities only processing the change events rather than the
whole state, thus supporting cost-effective execution of the adaptation (R2). In this the-
sis, enabled by model-driven adaptation, we employ incremental monitoring, analysis,

1.4 contributions 11

planning, and execution to improve the runtime performance of the adaptation loop
contributing to a more scalable solution, thus supporting R3—see Table 1.1.

C2 - Defining pattern-based utility functions for dynamic architectures
This thesis uses utility theory to capture the high-level system objectives and potential
trade-offs among them in the form of utility functions and preferences over different
quality attributes, thus supporting R4. When available, we use domain knowledge to
engineer analytically defined utility functions. We explore a wide range of complexity
classes for utility functions that are characterized at the level of software architecture.
Representing the software architecture as a graph allows for pattern-based definition
of utility functions. Therefore, similar to the adaptation issues and ECA rules (see C1)
we define utility values for dynamic architectural fragments, i.e., graph patterns (sup-
porting R5). Pattern-based definition of utility functions allows for incremental utility
calculation that is in harmony with the incremental execution of the adaptation loop
activities and provides for scalability (supporting R3).

The majority of state-of-the-art in utility-based adaptation either employ search-based
optimization in the solution space hindering scalability, e.g., [129, 359], or characterize
utility functions over pre-defined, and hence, bounded configuration spaces—see [91,
146]. In this thesis, we advance the state-of-the-art in utility-driven self-adaptation by
defining utility functions that exploit beyond the linear utility functions and cover a
wide range of mathematical complexity. Moreover, utility functions are then associated
with architectural graph patterns, thus extensible as software architecture evolves at
runtime, thereby supporting evaluation of dynamic architectures—see R5 in Table 1.1.

C3 - Training utility-change prediction models for rule-based self-adaptive software
In addition to the analytically designed utility functions, we propose a methodology
to systematically train prediction models for utility-changes in rule-based self-adaptive
software systems (supporting R6). This is beneficial for engineering systems with a
black-box model with initially unknown knowledge of system inner-working, e.g., fea-
ture dependencies, or runtime preferences, or when the prior knowledge becomes ob-
solete. Moreover, large and complex architectures make the manual acquisition of a
utility function challenging. The proposed methodology extends and modifies the stan-
dard machine learning process to contemplate the class of self-adaptive systems with
dynamic architectures employing rule-based adaptation. The methodology learns pre-
diction models for multiple variants of a system employing different utility models that
vary in the complexity and number of attributes. The learned prediction models ap-
proximate an analytically-defined optimum with an acceptable error margin.

C4 - Combining rule- and optimization-based formalism of adaptation policies at
design time
Venus is designed based on a combination of ECA rule-based constructs and utility
theory. The pattern-based characterization of the ECA adaptation rules as well as the
utility functions allows for mapping the utility values to the adaptation rules and there-
fore, predicting the impact of each rule application on the overall utility. Based on the
predictions for the impact of the adaptation rules and leveraging the knowledge about
the cost of each rule application, rules that offer an acceptable utility-cost trade-off are
chosen to carry out the adaptation, thus supporting R4 in Table 1.1. As a result, Venus

brings together the benefits of the rule- and optimization-based approaches.

12 introduction

C5 - An optimal solution for self-adaptation with negligible runtime overhead
Venus aims for optimality with respect to the system quality objective satisfaction via
pursuing a greedy algorithm before each adaptation, thus the optimality claim is re-
stricted to the class of self-adaptation problems that satisfy the greedy choice property
where a globally optimal solution can be reached by making a locally optimal (greedy)
choice at each step. Mapping utility values to adaptation rule applications allows for as-
sessing the expected utility-increase of each rule application before the adaptation, and
choosing a rule that maximizes the overall utility (R1). Capturing the adaptation deci-
sions via rule-based formalism, pattern-based characterization of the adaptation rules
as well as of the utility values, and finally, incremental execution of the adaptation loop
collectively contribute to engineering an adaptation process that introduces negligible
runtime overhead. Moreover, the solution is scalable for large and dynamic software
architectures, thus supports cost (R2) and scalability (R3) requirements.

We demonstrate that the computation complexity in Venus is only affected by the
number of change events, hence independent of the size of the architecture and the
configuration space. Venus computes the utility for each possible adaptation option in-
crementally and at runtime, taking into account the change events and their contexts.
Due to the incremental computation, the scheme is scalable while achieving optimal
adaptation decisions in terms of utility and reward, i.e., accumulated utility over time.

C6 - A robust solution
The IEEE standard [227] delineates the robustness of a software system as the degree to
which the system operates correctly in the presence of exceptional inputs or stressful en-
vironmental conditions. We demonstrate the robustness of Venus, as is customary [see
306], via bombarding the self-adaptive software with valid and exceptional inputs and
verify the success criteria, i.e., if it does not crash or hang, then it is robust. To this end, we
operate a self-adaptive software equipped with Venus together with a diverse collection
of input traces covering a large and representative spectrum of the excepted input space
for the system. Moreover, we demonstrate the robustness of the scheme through execut-
ing it outside its intended operation condition, i.e., when certain validity assumptions
are violated.

C7 - A generic scheme for hybrid self-adaptation
As a complementary solution to Venus, we propose HypeZon. HypeZon leverages
control-theoretic principles to systematically engineer a generic hybrid adaptation mech-
anism to support R1 and R2. The scheme coordinates multiple off-the-shelf adaptation
policies and chooses at runtime the one that best suits the operation conditions. Hy-
peZon is generic, as its design is independent of its constituent policies. The scheme
advances the state-of-the-art for hybrid adaptation of software systems by providing
explicit architectural design and explicit separation of concerns, i.e., adaptation and
policy coordination, at the architecture level. Moreover, it allows for reusability, easier
maintenance, and independent evolution of each level, i.e., for adaptation and policy
coordination.

C8 - Coverage of a wide spectrum of self-adaptation problem space beyond the state-
of-the-art

1.5 thesis evaluation plan 13

In light of our Systematic Literature Review (SLR) of state-of-the-art in evaluation of
self-healing systems [see 176, 177], we identified a set of required improvements to
support the claims in self-healing systems via evaluation. The identified improvements,
developed into an evaluation methodology, are implemented in thesis. The applicability
and effectiveness of our solutions as well as the credibility of our contributions are in-
vestigated according to said methodology via thorough evaluation. Figure 1.1 shows an
example of how evaluating an approach against only a single (or a non-representative
set of) data points in the input space of the self-adaptive software yields inconclusive
results—see how the best performing solutions in Figure 1.1a change as complexity
increases.

1.5 thesis evaluation plan

To evaluate this thesis, we apply both Venus and HypeZon on two different application
examples based on two different architectural styles. For each application, we employ
multiple utility functions that vary in complexity and number of attributes and capture
different system objectives. To ensure a conclusive, robust, and reliable evaluation out-
come, each approach-application combination is evaluated via multiple reproducible,
controlled experiments over a wide spectrum of the adaptation input space provid-
ing for sensitivity analysis of the results—as suggested by our evaluation methodology
in C8 (see Section 1.4). In addition, we implement two alternative solutions for self-
adaptation: a deterministic, rule-based scheme and an optimization-based scheme that
are used in a comparative study with Venus. We use the two solutions also as off-the-
shelf adaptation policies in the evaluation of HypeZon.

We evaluate the impact of incremental execution of the proposed adaptation engine
that encapsulates Venus and HypeZon in a comparative study with an instantiation
of a non-incremental alternative. We quantitatively compare the solutions via a set of
experiments across different architecture sizes and input traces.

In the context of Venus, we comprehensively evaluate the scheme with respect to
the quality attributes of optimality, scalability, runtime performance (timeliness), and
robustness. We investigate the optimality of Venus in terms of business goal satisfac-
tion that is quantified via utility functions; we compare the reward of the scheme to
an optimization-based solution that employs a constraint solver to plan the adaptations.
The performance and timeliness of Venus is compared to a deterministic, rule-based adap-
tation policy that employs design-time preferences with no runtime overhead. The scal-
ability of Venus is evaluated via controlled evaluation scenarios while systematically
increasing the size of the system architecture and the number of the adaptation issues.
The timeliness, optimality, and effectiveness of Venus are studied for robustness during
multiple evaluation scenarios which simulate operational environment with different
characteristics in terms of the magnitude and pace of the changes resulting in adap-
tation issues. Moreover, we evaluate the effectiveness and correctness of Venus when
certain validity assumptions are violated.

We evaluate our methodology to train utility-change prediction models concerning
model accuracy, performance, and runtime effort. We conduct the evaluation for predic-
tion models across a breadth of mathematical complexities and number of attributes in
the utility functions. We analyze the design of the methodology by comparing it to the
standard machine learning process and discussing the design guidelines. We investigate

14 introduction

the application of the methodology to a black-box software system. We study the model
accuracy and runtime effort of different learners employed to train prediction models.
For this purpose, we execute the prediction models on a running system to estimate
the impact of the adaptation rules on the overall system utility. The performance of the
self-adaptive system is then compared to a white-box equivalent of the system where
the ground truth, i.e., the analytically defined utility function, is available. We assess
the benefits of an aggregation metric to guide the choice of the best fitting prediction
model at runtime without requiring the models to be deployed on a real system.

In the context of HypeZon, we first discuss its implementation that is captured
through two different designs. We then compare the two designs with respect to their
impact on the utility and timeliness of the adaptations via multiple evaluation scenarios
on two different application examples. The benefits of using receding horizon in Hype-
Zon is evaluated through a comparison to an alternative solution for hybrid adaptation
that does not support runtime adjustments of its control parameters and exploits deter-
ministic conditions for policy invocation. Finally, we investigate the cost and benefit of
hybrid adaptation versus employing the individual adaptation policies to solely carry
out the adaptation.

1.6 document roadmap

The remainder of this document is structured into three parts. In Part I, we describe
the preliminaries of this work and introduce the running example (Chapter 2). Part
II presents the technical contributions of this thesis. We outline how to define, manu-
ally construct, and learn architectural pattern-based utility functions (Chapter 3) and
introduce Venus in Chapter 4. Chapter 5 presents HypeZon. Finally, Part III introduces
the application examples and their corresponding input traces in Chapter 6, presents
the implementation of Venus and evaluates it via a set of qualitative and quantitative
experiments in Chapter 7, investigates the methodology to train prediction models for
utility-changes in Chapter 8, and evaluates HypeZon in Chapter 9. Moreover, Part III
includes discussion of the related work (Chapter 10), concludes the thesis, and presents
an outlook on the future work (Chapter 11).

Part I

P R E L I M I N A R I E S

This part presents the scientific background and foundations for this work as
well as the running example that is used through out the thesis. In detail, we
discuss the concepts of control theory, utility theory, self-adaptive software,
model-driven engineering, and graph transformation.

2
F O U N D AT I O N

2.1 control theory

Control theory is concerned with engineering disciplines to influence the behavior of
dynamical systems. A dynamical system is a system whose behavior changes overtime,
often in response to external stimulation or forcing [19]. The design of a controller
is based on a mathematical model of the system behavior. This model is usually a
dynamic model defined based on differential or difference equations. The system model
formalizes the relationships between time, system state, control variables, i.e., system
inputs, and the controlled variables, i.e., system output. The objective is to develop a
model or algorithm to govern system inputs such that the desired output is achieved,
while minimizing any delay, overshoot, or steady-state error and ensuring a level of
control stability; often with the aim to achieve a degree of optimality.

Closed-loop control is one of the several process control paradigms that is extensively
studied and applied in various disciplines concerned with the control of dynamical
systems. Closed-loop control uses a controllable process that usually includes the envi-
ronment, a controlled variable or measured output, and control action(s). As shown in
Figure 2.1, the target system is controlled by control actions form the controller. The refer-
ence input—also known as the set-point—is the desired value of the system’s measured
output. The objective of the closed-loop control is to continuously adjust the control
input to the target system such that the measured output matches the reference input
within some error margin despite the disturbance [46]. For this purpose, the difference
between the measurement and reference, i.e., error, is fed back to the controller which
determines the control actions that are required to achieve the reference input. The dis-
turbance captures any change that affects the way in which the control input influences
the measured output.

An alternative design for control mechanisms is the open-loop control, also referred to
as feedforward which is a technique that avoids using the measured output to adjust the
control input. Thus, the control actions are independent of the system output. While
feedback control is reactive, i.e., it is invoked by perturbations in the target system to
perform corrective actions, feedforward control is predictive as it can anticipate changes
to the measured output. Monitoring only the control input, feedforward controller de-
termines control actions. Under certain circumstances, it is possible to measure a dis-
turbance before it affects the system and use this information to take corrective actions

Control
Actions

Controller

Measured
OutputTarget

System

Disturbance

+ -
Reference Error

Figure 2.1: Block diagram of a feedback control loop.

17

18 foundation

before the disturbance influences the system. This way, the effect of the disturbance is
reduced by measuring it and generating a control signal that counteracts it through the
feedforward control.

An open-loop controller assumes stable conditions where the control result is ap-
proximately adequate under normal conditions without the need for feedback. In this
design, an accurate model of the target system is required to determine the setting of
the control input. The control input is then a deterministic function of the reference
(and/or disturbance) input. Open-loop control supports reduction in component count
and complexity, however, it cannot make any corrections on potential control errors or
adjustments for disturbances.

Applying controllers to computing systems often requires consideration of several
feedback control properties; A control system is stable if for any bounded input the
output is also bounded. Stability refers to the system reaching a steady-state equilibrium,
that is, the observed property converges to a specific value, ideally the set-point, and
stays inside a previously defined stability margin around this convergence point. The
control system is accurate if the measured output converges (or becomes sufficiently
close) to the reference input. Typically, we do not quantify accuracy. Rather, we measure
inaccuracy. For a system in steady-state, its inaccuracy, or steady-state error measures
how far from the set-point the system converges, i.e., the steady-state difference between
the set-point and the observed property. The settling time is the time required for the
system to reach the steady-state equilibrium. And finally, overshoot refers to an output
exceeding its final, steady-state value. The control system should achieve its objectives
in a manner that does not overshoot.

Computing systems often have multiple inputs, e.g., settings of configuration pa-
rameters, and multiple outputs, e.g., response time and throughput. Thus, controlling
a software system can be viewed as Multi-input, Multi-output (MIMO) control prob-
lem, however, the measured output and control input are often discrete-time rather than
continuous-time as in traditional closed-loop process control. Moreover, discrete-time is
consistent with the way that measurements are naturally obtained from computing sys-
tems. Provided that the measured output and control input can be properly identified
in a software system, control theory also supports the control of discrete variables.

2.1.1 Adaptive Control

While feedback control has established mathematically grounded and practical frame-
works for managing complex systems [140], it restricts the scope of the controllers to
calculating set-points and prescribing required changes in the system input parameters
accordingly [137]. The black-box-oriented scheme of feedback control further extends
towards adaptive control, where the controller may change its own control regime. An
adaptive controller is a controller with adjustable parameters and a mechanism for ad-
justing the parameters. In general, adaptive control is concerned with a set of techniques
which provide a systematic approach for automatic adjustment of the controllers in real
time in order to achieve or maintain a desired level of control system performance, when
the parameters of the target system are unknown and/or vary over time [280]. This re-
quires the controllers to have adjustable parameters. Moreover, an adjustment mechanism
needs to be in place to oversee the parameter tuning via layered arrangements of the
control loops, where the lower-level controller is controlled by the immediate higher-

2.1 control theory 19

Reference
Control
ActionsAdjustable

Controller

Measured
OutputTarget

System

Disturbance

Error

Parameter
Adjustment

Desired Performance

Controller
Parameters

+ -

Figure 2.2: Block diagram of an adaptive control system.

level loop [113]. The tuning of the controller is done in real-time based on the real-time
data collected from the system. Figure 2.2 shows a block diagram of an adaptive control
system. The controller in this case is nonlinear because the parameters of the controller
depends upon measurements of the system variables through the adaptation loop, i.e., the
higher-level, parameter adjustment loop.

An adaptive control system measures a certain performance index of the control
system using the inputs, the states, the outputs, and the known disturbances. Via com-
paring the measured performance index and a set of desired inputs, the adaptation
mechanism modifies the parameters of the adjustable controller and/or generates an
auxiliary control in order to maintain the performance index of the control system close
to the desired performance. Note that the control system here (Figure 2.2) is an adjustable,
dynamic system in the sense that its performance can be adjusted by modifying the pa-
rameters of the controller or of the control signal. The above definition can be extended
for adaptive systems in general in a straightforward manner [279].

An adaptive control system, in addition to a basic closed-loop feedback control with
adjustable parameters, contains a supplementary loop that takes explicit measures to
compensate for variations in the system dynamics or for variations in the disturbances,
in order to maintain the optimal performance and robustness of the system. In brief, an
adaptive control system can be thought of as two loop; on is a conventional feedback
control loop with the target system and the controller; the other loop is the parameter
adjustment loop [20].

2.1.2 Model Predictive Control

A specific form of closed-loop control called Model Predictive Control (MPC) is particu-
larly well suited for MIMO control problems with inequality constraints between ma-
nipulated inputs and outputs [192]. A block diagram of an MPC system is shown in
Figure 2.3. Provided an accurate dynamic model of the target system, model and cur-
rent measurements can be used to predict future values of the system outputs. The
difference between the actual and the predicted outputs, i.e., error, serves as the feed-
back signal to a prediction block. The appropriate changes to the input variables are
then calculated based on both the predictions and the measurements. The predictions
are used to generate set-points. Set-points define the target values for control calculations.
Set-point calculations and control calculations are performed at each sampling interval.
In essence, the changes in the individual input variables are coordinated after consider-
ing the input-output relationships represented by the system model [68].

MPC formulates a multi-variable optimization function for set-point calculations. Typ-
ical optimization objectives include maximizing a profit function (e.g. a utility function),

20 foundation

Control
Actions

Predicted
Output Control

Calculation

Set-point
Calculation

Measured
Output

Set-points

Target
System

Disturbance

+

-

Error

Prediction

Model

Model
Output

Figure 2.3: Block diagram for model predictive control.

minimizing a cost function, or maximizing a production rate. The MPC calculations are
based on current measurements as well as the predictions of the future values of the
outputs. The objective of control calculation is to determine a sequence of M control
actions so that the predicted output moves towards the set-points in an optimal man-
ner. Control calculations determine a sequence of M control actions (i.e., control horizon)
such that the predicted output moves towards the set-points over a finite prediction hori-
zon P—see Figure 2.4 for basic concepts of MPC from [374].

The advantages of MPC are manifold: the technique systematically captures the con-
straints on inputs and outputs. Moreover, the target system model captures dynamic
and static interactions between input, output, and disturbance variables. Set-point cal-
culations and control calculations can be coordinated because the set-points define the
target values for control calculations. Finally, leveraging accurate model predictions
provides early warnings of potential problems. The success of MPC depends on the
accuracy of the system model.

A distinguishing feature of MPC is its receding horizon control. It suggests that al-
though a sequence of several control actions is calculated after each sampling interval,
only the first action is executed. A new sequence is calculated in the next sampling in-
terval and after new observations become available. Similarly, only the first action for
the new sequence is executed. This procedure is repeated at each sampling interval. Em-
ploying a receding horizon of size one supports the case where the variables available
for the control calculations change from one execution time to the next. If the control
structure changes from one control execution time to another but the MPC controller
does not recalculate the parameters, the subsequent control calculations may become
ill-conditioned [374]

This thesis draws concepts and techniques of feedabck and MPC, adaptive control,
receding horizon control, stability, and steady-state from the control theory domain to

K K+1 K+M-1 K+P

Prediction Horizon, P

Control Horizon, M

FuturePast Set-point

Past output

Predicted future output

Past control action

Future control action

K-1

Figure 2.4: Basic concept for MPC from [374].

2.2 utility theory for decision-making 21

control software systems. Unlike the traditional control systems, however, this thesis
targets discrete, state-based computing systems [see 208] which require a different type
of system model, e.g., a software architecture model.

2.2 utility theory for decision-making

Decision theory in its essence is the interdisciplinary study of choice. Given two or
more incompatible options, decision theory is concerned with how optimal decisions
can be reached [152]. A core concern of decision theory is to study choice under un-
certainty [261]. The choice becomes challenging between incommensurable commodi-
ties [54]. Numerous techniques for choice under uncertainty have been developed; de-
cision trees and decision tables to evaluate desirability of decisions via tests on at-
tributes [420], Expected Utility (EU) theory to attribute values to decisions [127, 142],
and Markov Decision Process (MDP) to solve for an optimal decision [131].

Following the expected utility theory for decision-making, when presented with op-
tions, each outcome is assigned a subjective value, i.e., utility, that reflects the strength
of the preference for that outcome. This way, decision-making is about choosing among
options based on the expected desirability of their immediate outcomes [361]. For this
purpose, the numerical representation of preference orderings is important. The nu-
merical measures in question are known as utility functions. The principle of Maximum
Expected Utility (MEU) suggests that a rational decision-maker should make a choice
that maximizes the expected utility.

Von Neumann and Morgenstern [419] formulated four axioms for utility theory as
constraints on rational preferences1. The axioms of utility theory imply the existence of
utility functions. As stated by Keeney [245, 248] and DeGroot [109], if the preferences
have been determined consistent with the axioms, then it can be shown that a numerical
utility function always exists. Russel and Norvig [361] refer to this inference from utility
axioms as the existence of utility function, i.e., “if an agent’s preferences obey the axioms of
utility, then there exists a function U such that U(A) > U(B) if and only if A is preferred to B
and U(A) = U(B) if and only if the agent is indifferent between A and B”—see [361, p. 613].

2.2.1 Analytics of Preferences: Engineering and Learning

Constructing a utility-theoretic decision-maker requires obtaining a utility function that
captures the preferences. This process is often referred to as preference elicitation or equiv-
alently, utility elicitation [79, 152]. Preference elicitation approaches involve collecting the
system’s user preferences and using them to suggest progressively better recommenda-
tions until a satisfactory option is obtained [338]. A user is another system—physical
or human—which interacts with the former [281]. Preference information may be ac-
quired in either direct or indirect manner [249]. The former relies on interactive user/

1 The completeness axiom states that for any two possible outcomes, either one outcomes is preferred or the
individual is indifferent. The transitivity axiom (assumes that preferences are consistent across any three
options). The continuity axiom states that given three subjectively ordered outcomes, a decision maker will
be indifferent between the middle outcome and a probabilistic combination of the two other outcomes.
Finally, independence states that preferences between two options should not change when altering both op-
tions equally by mixing them with a common outcome– we refer the interested reader for the mathematical
formalization of the axioms to [419].

22 foundation

stakeholder querying while latter can be obtained indirectly from preference statements
such as SLA, user critiques, observations of user’s clicking behavior, etc.

2.2.1.1 Engineering utility function for software systems

The burden of utility elicitation can be lessened considerably if the decision-maker is
presented only with a restricted set of scenarios. This allows for making assumptions
about the preferences based on the available domain knowledge, provided by users
or domain experts. Leveraging domain knowledge to capture preferences allows for
deriving functional form(s) of the utility function that satisfy the assumptions [51, 261,
333]. If the assumptions are verified, the functional form can be used to simplify the
requisite assessments needed to specify the utility function.

Traditional elicitation methods rely on the domain knowledge, e.g., via querying
users or stakeholder about the desired behavior of the utility function or the relative
importance of every outcome in terms of each decision criterion [245]. Once presented
with the preferences, the engineer/designer leverages the knowledge for direct utility
assessment, i.e., to program simple standard mappings between outcomes and utility
values [90]. Alternatively, the knowledge can be utilized for qualitative structuring of
preferences, i.e., postulating various assumptions about the preference attitudes of the
decision-maker and deriving functional forms of the multi-attribute utility function con-
sistent with these assumptions that ascribe proper utility values to outcomes—see [249].

While the concept of utility is theoretically sound, specifying reasonable procedures
for obtaining multi-attributed utility functions is challenging [248]. The elicitation of
preference and utility functions is complicated by the fact that utility functions are very
difficult for users to assess [338], more specifically when multiple attributes capturing
different dimensions are involved.

In decision-making under uncertainty, a common operational method for assessing
multi-attributed preferences is the use of additive utility function [230, 340]. In n di-
mensions, the additive utility function may be written as u(x1, x2, ..., xn) =

∑n
1 ui(xi),

where ui(xi) is a utility function defined over the Xi attribute—see [246]. The additive
utility decomposition is applicable only when the mutual utility independence between
different attributes hold. Utility independence concerns situations where the levels of
some attributes are deterministically fixed. The assumption then requires that prefer-
ences between prospects over the remaining attributes to be independent of the fixed
deterministic levels [48]. The assumption of independence allows for the reduction of
the number of outcomes for consideration and the construction of less complicated
and thus more manageable utility functions. The main advantage of the additive utility
function is its relative simplicity. The assessment of the n−dimensional utility function
is reduced to the assessment of n one-dimensional utility functions and n− 1 scaling
constant. A major shortcoming of employing additive decomposition of utility is the
restrictiveness of the necessary assumption [247].

Keeney [247] shows that when the utility independence assumption holds, the utility
function is either additive or multiplicative, i.e., the utility of any given outcome can
be broken down to the multiplication of the individual attributes [248]. In this thesis,
we consider additive utility functions, thus we exclude systems where attributes are
preferentially dependent and assumptions of additive decomposability do not hold.

2.2 utility theory for decision-making 23

2.2.1.2 AI for preference learning

While the classic preference elicitation protocols are well-founded, their applicability is
restricted in variety of circumstances, e.g., when sufficient prior domain knowledege
is not available. Initiating from the operations research community, several researchers
started to deal with the problem of eliciting a utility function when only incomplete
information is available—see [24, 230]. More recently, researchers in Artificial Intelligence
(AI) [see 50, 52, 79, 410, 423] have developed elicitation techniques for utility elicitation
with the goal of relaxing the requirement for sufficient prior information to manually
craft a utility function and mitigating the cognitive cost for the user/designer.

As AI in its core is concerned with developing agents that act rationally on behalf
of the user, eliciting the preferences of the user in an effective way is therefore crucial.
Preference elicitation from the AI perspective is the process of interactively learning
a model that captures the preferences with the goal of providing a high-quality rec-
ommendation with minimal cognitive effort for the designer [287, 338]. Some of the
AI-based techniques to automatically learn or extract a model capturing the prefer-
ences include but are not limited to supervised learning, optimization, planning, and
Reinforcement Learning (RL) [54, 261].

Supervised learning methods for utility elicitation, mainly applied to classification [78,
286] and regression [56] problems, provide a set of training example in the form of
input–output pairs. The employed automated learning algorithm then infers a function
that maps from input to output. Once the learning has converged, the learner may
generalize a preference model from the provided examples that allows the algorithm
to correctly determine the class labels for unseen instances [30, 64]. The success of this
technique is measured through its generalization error that strictly depends on the size
and the characteristics of the training data sets as well as the complexity of the true
function.

Optimization methods for utility elicitation demand specification of the possible deci-
sion space as well as the attribute measures to be maximized. The utility of a decision is
quantified through several simulations on the dynamic model of the problem at hand
while employing the decision. The optimization algorithm then performs a search in
the decision space for the optimal decision. The success of the optimization methods
depend on the size of the decision space as well as the distribution of the utility mea-
sures across the space. If the decision space is relatively low dimensional and the utility
measures do not have many local optima, then various local or global search strategies
become relevant, e.g., hill-climbing [237], simulated annealing [257], and WalkSAT [173].
Although the optimization techniques assume a knowledge of a dynamic model to run
the simulations, they do not require a model to guide the search for the optimal decision
which is essential in complex problems.

Planning technique for automated utility elicitation is a branch of the optimization
technique that requires a model of the problem dynamics to guide the search in the
decision space. Majority of the state-of-the-art in this context focus on deterministic
problems where a deterministic model suffices. While deterministic models support ap-
plication of methods that more easily scale to high-dimensional problems, they fail to
account for future uncertainty [242, 262]. reinforcement RL-based methods use model-
free learning algorithms where the learner is given only a numerical performance score
as guidance [119, 264]. This technique eliminates the model requisite of the planning
methods to guide the search in the decision space [330]. As a result, the desired decision-

24 foundation

making strategy is learned while the decision-maker interacts with its context. RL-based
methods for utility elicitation only demand the designer to provide attribute measures
to optimize, the learner then optimizes the behavior of the decision-maker towards
making optimal decisions. RL-based methods however cannot always provide guaran-
tees for convergence.

2.3 self-adaptive software

2.3.1 Vision

The vision of autonomic computing and self-adaptation emerged as the computing systems’
complexity approached human limits for manual maintenance, development, deploy-
ment, management, and evolution [112, 252]. Autonomic and self-adaptive systems
have been used interchangeably in the literature [112, 214], however, there are slight
differences in the perspectives from which these systems are being considered. Auto-
nomic computing takes a system administrator perspective and refers to“computing
systems that can manage themselves given high-level objectives from administrators”
[252, p. 41]. In contrast, self-adaptation considers “systems that are able to modify their
behavior and/or structure in response to their perception of the environment and the
system itself, and their goals”. Thus, takes a software engineer perspective [112, p. 1].
While self-adaptive systems are used in a number of different areas, this thesis focuses
only on their application in the software domain, that is, self-adaptive software.

In a layered model for a software-intensive system consisting of hardware, operating
system, network, middleware, and application, self-adaptive software primarily covers
the application and middleware layers [302] while its coverage fades in the lower layers;
autonomic computing addresses the lower layers as well. Autonomic computing has
emerged in a relatively broader context while self-adaptive software domain is assumed
to be relatively limited and falls under the umbrella of autonomic computing [367].
Autonomic computing and self-adaptation seek reducing the human involvement in
the maintenance/evolution of the computing systems. Both visions share the objectives
of automating the adaptation process and shifting the responsibility for performing the
adaptation from human to the system itself. This way, software has a continuous life
cycle where the traditional development-time activities of software engineers are shifted
towards runtime [26]. This resulted in efforts towards runtime adaptation of software
systems, i.e., changing a running system without pausing or stopping its life cycle [302].

Both visions build upon the self - and context-awareness of the system to mitigate
the growing costs, complexity, and diversity of maintaining, operating, and generally
evolving software systems. Self represents the whole body of the system and context en-
compasses everything in the operating environment that affects the system’s properties
and its behavior [111].

The self-* properties [see 22] associated with autonomic computing systems origi-
nate from the IBM manifesto [211]. Kephart and Chess [252] define the four properties
of the self-managing and self-adaptive systems that serve as the de facto standard in
this domain as follows: self-configuration, that is the system’s ability to automatically
install, integrate, configure, and compose/decompose (parts of) itself; self-optimization,
that is, automatically seeking opportunities to improve performance and efficiency of
the system; self-healing, that is, automatically detecting, diagnosing, and repairing errors,

2.3 self-adaptive software 25

faults, and failures in the system; self-protection, that is, automatically defending itself
against security breaches, malicious attacks, and cascading failures. Selehie and Tahvil-
dari [367] base the above four major capabilities on two primitive ones: self-awareness,
that is, the system is aware of itself, its own state, and behavior; context-awareness, that
is, the system is aware of its operational environment and execution conditions.

2.3.2 Realization

This section briefly introduces the key concepts to realize self-adaptation in software
systems.

2.3.2.1 Feedback control loop for software adaptation

In general, it is software that realizes the self-adaptation by means of a feedback loop [see
60]. A distinct feature in engineering self-adaptive software is shifting certain design-
time activities towards runtime where the system uses runtime feedback to adapt itself.
Feedback loops from control theory provide a prominent base to engineer generic mech-
anisms for self-adaptation [60]. The adaptable software can be considered a controllable
process, i.e., the target system, in the feedback control loop in Figure 2.1; the control
feedback loop observes the system output in sampling intervals and adapts the sys-
tem towards its set-points to prevent violation of system requirements and goals; the
reference input in the feedback loop (see Figure 2.1) specifies the set of values and cor-
responding types that characterize the desired target state for the adaptable software;
the adaptation is responsible for achieving and maintaining the desired target state(s)
under changing conditions during system execution, e.g., disturbance; the measured
output represents the set of values and corresponding types that are measured in the
adaptable software; the measurements are compared to the reference inputs to evaluate
whether the desired state is reached.

In order to enable self-adaptation properties in a software system, the software is
equipped with an adaptation mechanism that monitors the software (self) and its opera-
tion environment (context) to detect changes and take appropriate actions to adapt the
system accordingly [92]. An adaptation mechanism realizes and controls the adaptation
process via adding a feedback loop to the software system resulting in a closed-loop
system with feedback from the self and the context. As a result, the closed loop system
exhibits degrees of variability provided by its self-* properties through which the self-
adaptive system may automatically configure, optimize, heal, and protect itself at runtime
according to its operational context.

Self-adaptive
Software

Sensing

Affecting

(a) Internal approach.

Self-adaptive Software

Adaptation
Engine

Adaptable
Software

Sensing Affecting

(b) External approach.

Figure 2.5: Internal and external approaches for building self-adaptive software.

26 foundation

Salehie and Tahvildari [367] distinguish between the two categories for incorporating
adaptability into software systems: internal and external. As depicted in Figure 2.5a, the
internal approach to subsume adaptability in a software system entangles the adaptable
software and the adaptation logic, i.e., the feedback loop. In this approach, the whole
set of sensors, effectors, and adaptation processes are mixed with the application code,
which often leads to poor scalability and maintainability.

In contrast, the external approach as shown in Figure 2.5b separates the adaptation en-
gine—implementing the adaptation logic—and the adaptable software. In this approach,
the external adaptation engine controls, i.e., senses and affects, the adaptable software.
The separation of the adaptation engine and the adaptable software allows engineers
to use application-independent adaptation mechanisms and supports reusability of the
adaptation engine or parts of it across different applications. The external approach
addresses the drawbacks of the internal alternative in various aspects: it supports scal-
ability because one adaptation logic can manage various resources; it increases main-
tainability through modularization [146, 275]; the external approach supports the at-
tainment of a global view on the system and offers reusability of the adaptation logic.
As stated by Salehie and Tahvildari [367] and confirmed in the survey conduced by
Krupitzer et al. [275], the choice of the external approach in the design of self-adaptive
software is relatively more prominent. In the following, we focus on the external ap-
proach for engineering software systems with self-* properties.

2.3.2.2 MAPE-K reference model

MAPE-K, depicted in Figure 2.6, is a common reference model that implements the ex-
ternal approach for realizing self-adaptation in a software system [252]. In this model,
the control feedback loop is explicitly realized via a MAPE-K loop that comprises of
components and interfaces for decomposing and managing the feedback loop. The
adaptation engine then is implemented via the four Monitor, Analyze, Plan, and Exe-
cute activities. MAPE-K loop Monitors and Analyzes the system and if needed, Plans and
Executes an adaptation of the system, which is all based on Knowledge [252]. In the con-
text of autonomic computing, this cycle is referred to as the Collect/ Analyze/ Decide/
Act cycle [118]. The Knowledge component in the MAPE-K reference model is shared
among the four activities and provides information about the adaptable software and its
context; Knowledge can be an architectural model of the adaptable software [118, 146],
implementation of a registry, a dictionary, a database or a repository [215]. In general,
Knowledge consists of particular types of data with architected syntax and semantics,

Adaptation Engine

Adaptable Software

Sensing Affecting

Monitor Knowledge Execute

Analyze Plan

Figure 2.6: MAPE-K reference model for self-adaptive software.

2.3 self-adaptive software 27

such as symptoms of undesired situations, adaptation policies, change requests, and
change plans [214].

2.3.2.3 Parameter and structural adaptation

Software adaptation can be generally conducted in two ways; parameter adaptation mod-
ifies variables of a program that determine the adaptive behavior. In contrast, structural
adaptation, also referred to as compositional adaptation, exchanges algorithmic or struc-
tural system components, e.g., modifying system architecture. The software architecture
is modified by adding, removing, or reconfiguring components and connections among
them [302]. Structural adaptation enables a broader adaptation scope that is beyond
the provisioned adaptability provided by parameter adaptation. In this thesis, we con-
sider structural adaptation of software systems where software components, connectors,
and their attributes define the points of variability in the configuration space for the self-
adaptive software [35].

2.3.2.4 State of adaptable software

The architectural features of the self-adaptive software constitute the configuration
space of the system that can be identified as a vector of configuration attributes setting c̄.
Thus, the system is adapted via changing the current configuration c̄ to the new config-
uration c̄ ′. The state of the adaptable software is comprised of a collection of parameters
that characterize or model the system; the state is affected by the operational environ-
ment, i.e., context, and the internal configuration of the software systems; the state can
be described as a vector of attributes that are either measured directly via sensors or
are synthesized based on sensor measurements [421]. The observable attributes are set of
features that can be observed and reflect the impact of the environment on the system
or its context. An observation is a vector of observation values ō; the current observa-
tions ō may change to new observations ō ′ independently of the configuration changes.
A collection of the configuration and observations attributes, (c̄, ō), constitute the state
of the adaptable software at each point in time [59].

2.3.2.5 Adaptation policy

The Plan activity in the MAPE-K loop takes into account the monitoring data from
the sensors to produce a series of changes, i.e., an adaptation plan, to be executed on the
adaptable software. The execution of the plan adapts the software system to a new state.
Adaptation policies govern the decision making process during planning and are used to
express and operationalize the high-level objectives of the system [214]. Numerous and
varied definitions of policy [see 31, 104, 393] have been put forward in recent years and
in their core they define a high-level policy as a declarative statement of what the end
user wants. Low-level policy representations are generally procedural and specify the
logic of how to achieve a goal, e.g. as rules or program control flows that are evaluated
to determine a sequence of actions that should be taken [104]. As stated by Kephart
and Walsh [253] and Bearden et al. [31], any single formal definition of policy tends
to be restrictive in covering the broad spectrum of behavioral guidance that autonomic
computing systems might require. AI is an appropriate core discipline from which to
borrow concepts and techniques for autonomic computing and self-adaptive software
systems, for automated decision-making is the central focus in AI [253]. As outlined by

28 foundation

Russell and Norvig [361], the notion of policy in general refers to a form of guidance
used to determine decisions and actions. Three main types of policies for expressing
and operationalizing the self-adaption goals are considered [214, 253]: Rule/ Action
Policy, Goal Policy, and Utility Function Policy.

2.3.2.6 Rule/ action policy

ECA rules directly map specific event combinations to adaptation plans, i.e., actions.
The semantics of ECA rules are straightforward: when the event occurs, evaluate the
condition; if the condition is satisfied, execute the action [214, 300]. Rule policies operate
in a stateless manner, thus offer limited applicability; in a stateless solution, the adap-
tation engine keeps no information on the state of the system and relies solely on the
current sensor data, i.e., events, for analysis and planning. Keeping state information
that can be updated progressively through sensor data and reasoned about, however, is
beneficial; Kephart and Walsh [253] propose to facilitate state-based executions of rule
policies via considering a state-based view of the rule policy referred to as action policy.
An action policy governs the choice of actions that should be taken when the system
is in a given state; this takes the form of IF(Condition) THEN(Action). The condition
specifies either a specific state or a set of states that satisfy the condition.

2.3.2.7 Goal policy

Goal policies are a higher-level form of behavioral specifications that establish perfor-
mance objectives, leaving the system to determine the actions required to achieve those
objectives [421]. They specify either a single desired state, or one or more criteria that
characterize a set of desired states for the adaptable software. Goal polices cannot ex-
press preference in choosing adaptation actions. In other words, goals describe the de-
sired system state but not how to reach the desired state. Therefore, the adaptation
engine is responsible for computing an action or a sequence of actions, i.e., a plan, that
adapts the system from the current state to the desired state(s). Rather than relying on
a human to explicitly encode rational behavior, as in action policies, the adaptation en-
gine may generate adaptation plans from the goal policy. This provides more flexibility
and eliminates the necessity of knowing low-level details of system function at the cost
of requiring reasonably sophisticated planning or modeling algorithms—see [88, 387,
422].

2.3.2.8 Utility function policy

Utility function policies quantify the desirability of each possible state of the adapt-
able software; they require objective functions that map system states to scalar val-
ues [421]. In a utility-driven adaptation mechanism, the goal is to adapt the system to
a feasible state that optimizes the objective function. Via assigning desirability values
to states, utility function policies generalize the binary state classification of the goal
polices to only desired and undesired states. Compared to the goal and action poli-
cies, utility function policies provide more fine-grained and flexible specifications of
the adaptive behavior [421]. Utility functions permit on-the-fly determination of a best
feasible state while goal policies place the system in any state that is both feasible and
acceptable, with no drive towards further improvement. In general, utility function poli-
cies allow for decision making by specifying the appropriate trade-off. However, utility

2.3 self-adaptive software 29

functions policies require multi-dimensional set of preferences, which is non-trivial to
obtain [248]—see Section 2.2.1. Utility function policies can be viewed as generalizations
of goal policies; conceptually, a utility function can be defined by specifying a complete
set of disjoint goals and assigning values to them—this is not generally feasible when
there is a large state space; and is impossible if the state space is continuous; in these
cases, more compact functional expressions of utility functions should be considered.
Although action policies are computed by optimizing utility function policies, there is
no meaningful sense in which utility function policies can be derived from action poli-
cies because action policies are defined over the current state space and utility function
policies are defined over the desired state space [see 253].

As discussed by Kephart and Walsh [253], among the three main mechanisms (poli-
cies) to capture the adaptation logic discussed above, action-/rule-based policies can
serve as the foundation for more sophisticated goal- and utility-based policies as adap-
tation actions or adaptation rules, henceforth used interchangeably, capture the fine-
grained units of change and collectively constitute the repertoire of ways in which an
adaptable software can be modified.

2.3.2.9 Static and dynamic policy

From a temporal perspective, Salehie and Tahvildari [367] categorize the process of
decision-making in the adaptation engine into static and dynamic decision-making. The
former stipulates decisions woven to the adaptation engine based on design-time con-
ditions while the latter is concerned with the runtime assessment of the conditions
affecting the adaptable software. Static decision-making operates based on design-time
hard-coded decisions where adaptation actions are mapped to states (conditions) ac-
cording to design-time estimates for the resulting state [49]. Adaptation plans synthe-
sized by static decision-making processes are likely to yield sub-optimal behavior at
runtime because the behavior is hardwired into the process and cannot be changed dy-
namically and at runtime. The estimations for the possible adaptation outcome, e.g., the
desirability of the resulting states, are agnostic to runtime conditions. However, due to
minimal runtime activity, static solutions for adaptation do not introduce considerable
runtime computation overhead during planning [322].

In contrast, a more flexible approach to compositional adaptation implements it at
runtime via realizing dynamic decision-making [302]. Dynamic decision-making mecha-
nisms can modify the design-time decisions based on runtime conditions during system
execution without halting or restarting the adaptable software. Thus, leveraging run-
time observations available during system execution to define the adaptive behavior. In
dynamic decision-making, adaptation policies [253], adaptation actions [289] or adap-
tion goals [190] may be externally defined or managed, allowing them to be modified
during system execution. This provides for more flexibility in the adaptive behavior of
the system regarding both functional and non-functional software requirements [367].
However, as discussed by McKinley et al. [302], dynamic solutions to runtime adapta-
tion, in addition to the necessity of deciding at runtime and dynamically, face additional
challenges such as finding optimal or partially optimal solutions for decision-making
problems, dealing with uncertainty and incompleteness of the observations available
at runtime, and addressing the scalability and fault-proneness of the decision-making
mechanisms.

30 foundation

HierarchicalIntegrated Coordinated Concurrent (Unrelated)

Plan Phase

integrated separate

Adaptation Problem

integrated separate

same unrelatedcommon
parent

information
used by other

policy

Adaptive System

Figure 2.7: Classification of ways to create hybrid policies from [405].

2.3.3 Hybrid Planning for Self-adaptive Software

Hybrid planning for self-adaptive software in general refers to combing two or more
adaptation policies to plan an adaptation. As discussed by Pandey [326], the notion of
hybrid planning is inspired by the research field of hyper-heuristics that relies on the idea
that as different heuristics yield different strengths and weaknesses, thus it is beneficial
to combine them in a way that they compensate the weaknesses of each other [63]. The
field in general is concerned with combining multiple lower-level heuristics and devel-
oping search algorithms or learning mechanisms for selecting or generating heuristics
to solve computational search problems [63, 335, 356].

Based on a structured literature analysis on approaches for engineering adaptation
policies, Trollmann et al. in [405] suggest a classification of ways to create hybrid solu-
tions from multiple adaptation policies; the classification considers how the combined
policies relate with respect to their corresponding adaptive systems, adaptation prob-
lem, and their planning phase. Figure 2.7 summarizes the classification of different
hybrid policies based on the taxonomy provided in [405].

Integrated adaptation policies: (i) target the same adaptive system, (ii) are concerned
with the same adaptation problem, and (iii) share the same planning phase; Therefore,
employing an Integrating Hybrid Planner, the adaptation engine uses information from
all the constituent policies during planning. [218, see].

A Coordinating Hybrid Planner combines adaptation policies that: (i) target the same
adaptable system, (ii) are concerned with the same adaptation problem, but (iii) main-
tain separate planning phases. The planning phase of an adaptation engine employing
coordinated policies can be subdivided into the original planning phases of the constituent
policies. The hybrid planning approach by Pandey et al. [327] is an example for coordi-
nated policies.

In a Concurrent Hybrid Planner, the combined policies: (i) solve different adaptation
problems, (ii) are operated in separate MAPE-K loops, i.e., different plan phases, but
(iii) target the same adaptive system directly or indirectly—see Figure 2.7. If the policies
operate on the same adaptive system, they directly share the same adaptive system.
However, the distinction between what is interpreted as the system’s dynamic behavior
and the adaptation carried out by other policies may be different. For instance, the

2.4 mde for runtime adaptability 31

adaptation performed by one policy may be considered as the dynamic behavior of
the system by the other policy. In the indirect case, the involved policies operate on
different (possibly overlapping) subsystems of the adaptive system that are all parts
of a common, overall adaptive system. The approach of Vogel and Giese in [415] is
an example of a concurrent self-adaptation approach in which a model of an adaptive
system is synchronized with multiple views on that model and each partial model has
its own adaptation mechanism.

In a Hierarchical combination of adaptation policies, the adaptive system that is man-
aged by one policy is part of the information that is used by the other policy. The
subsequent adaptation policies in the hierarchy are not concerned with adapting the
same adaptive system but to modify, i.e., adapt, the way in which their precedent pol-
icy adapts the system. Sharifloo et al. in [379] use a hierarchical combination where one
policy adapts the other policy.

2.4 mde for runtime adaptability

The wide conceptual gap between the problem and the solution domains makes de-
velopment of complex software systems that should, among others, run in distributed
and embedded environments, target various devices and platforms, and operate de-
pendably, a nontrivial task [375]. The problem domain refers to the concepts in the
application domains such as cyber physical systems, IoT, or health, while the solution
space refers to the space of computing and implementation technologies where the
solution is developed in the form of components, classes, or methods [42]. Employing
solutions that require extensive handcrafting of implementations to bridge the gap have
been shown to increase the accidental complexities [see 57], hence, give rise to the cost
and complexity of software development. Consequently, efforts towards industrializing
the software development have been put forward [148].

MDE is primarily concerned with raising the level of abstraction in software engineer-
ing, hence automating the development process via using concepts that are closer to the
problem domain rather than the ones offered by the programming languages [377].
To this end, MDE leverages technologies that support systematic transformation of
problem-level abstractions to software implementations [148]. According to France and
Rumpe [148], in MDE-based development of software systems, models describing the
system at multiple levels of abstractions constitute the primary artifacts. Models at
different levels of abstraction provide vertical views of the system [377], e.g., models
describing the system’s goals, architecture, or deployment—see [35, 88]. Models that
describe specific system aspects, e.g., performance or security [see 251] provide hori-
zontal views of the system [377].

The MDE vision of software development is generally realized via creation and use
of development models that are models of software at levels of abstraction above the
code level [148]. MDE employs modeling languages to express the various models that
reflect concern-specific views of the system [251]. The abstract syntax of a modeling
language is specified by a metamodel that defines the concepts of the language and how
these concepts can be combined to create a model [375, 376]. Bézivin [41] describes the
relation between a model and its metamodel similar to the one between a program and
the programming language in which it is written. A model created with a modeling
language represents an instance of the corresponding metamodel [21].

32 foundation

Applying models@run.time extends the use of MDE principles from development-time
to runtime environments. In contrast to the development-time models, RTMs are used
to reason about the operating environment and runtime behavior via providing aspect-
specific views of an executing system and thus abstractions of runtime phenomena [18,
35]. Leveraging the benefits of MED at runtime such as abstraction, automation, and
analysis, allows for model-driven management and adaptation of software during its
execution.

As discussed by Blair et al. [47], RTMs can be used to fix the design errors via mod-
ifying the initial design or to support controlled ongoing design of a running system
via enacting new design decisions. In the light of this vision for RTMs, Blair et al. [47,
p. 23] define a Runtime Model (RTM) as “a causally connected self-representation of the
associated system that emphasizes the structure, behavior, or goals of the system from
a problem space perspective”. The definition can be further contrasted with respect to
the notion of computational reflection [294].

Computational reflection enables a system to reveal selected details of its implemen-
tation [294]; any computational system is concerned with a domain, which corresponds
to the type of the application domain (problem space) addressed by the system [9].
The domain is realized by the system via structures representing the domain, i.e., the
domain model. An important property of any computational system is the causal connec-
tion between the domain and its representing model [9]. The causal connection requires
that the model and the corresponding domain are linked in a manner that changes on
one side lead to a corresponding effect upon the other [294]. A reflective computational
system is a system which incorporates structures representing (aspects of) itself; the
structures are then referred to as self-representations of the system; the self-representation
is causally-connected to (aspects of) the system it represents, thus the system has an ac-
curate representation of itself. Additionally, the status and computation of the system
are always in compliance with the self-representation. This means that a reflective sys-
tem can actually bring modifications to itself by virtue of its own computation. As a
result, a reflective system is defined as a computational system which is about itself in
a causally connected way [100].

Maes [294] describes two approaches for computational reflection: procedural reflec-
tion that considers the implementation of the system directly as self-representation
implying that computations about the system are performed at the abstraction level
of the system implementation [267]; declarative reflection, conversely, considers a stand-
alone and independent entity as an explicit self-representation of the system which is
different from the implementation of the system and can be considered as an RTM.
These two cases represent the two end-points on a self-representation continuum [9].
Declarative reflection has been adopted by threads of research, particularly, the soft-
ware architecture [166, 322], model-driven engineering [37], and requirements engineer-
ing fields [305], that aim at raising the level of abstraction of runtime representation by
considering explicit RTMs [36, 38, 315].

Building on the computational reflection, models@runtime are the causally connected
self-representations at the higher levels of abstractions that emphasize the structure,
behavior, or goals of the system from a problem space perspective—see the definition by
Blair et al. [47]. The definition conforms to declarative reflection defined by Maes [294]
that considers abstract statements about the system, e.g., what the system behavior
is instead of how the behavior is implemented. The causal connection between the
system and its self-representation, i.e., RTM, guarantees that explicit representation of

2.4 mde for runtime adaptability 33

the system and its implicitly obtained behavior are consistent with each other [144, 310].
This implies that, owing to causal connection, RTMs constantly mirror the underlying
system and its current state and behavior; any changes in the system is reflected in the
RTM and vice versa.

As discussed earlier in Section 2.3.2, adapting a software system at runtime is realized
in a multi-dimensional problem space including temporal aspects, structural features,
goals, and requirements [323]. The complexity caused by the wealth of information as-
sociated with runtime phenomena poses as a particularly challenging problem [18, 310].
Developing adaptation mechanisms that leverage MDE and software models at runtime
emerged as a promising solution [47]. Models@runtime that provide abstract informa-
tion on runtime phenomena during execution enable the development of technologies
that automate runtime decision-making and safe adaptation of the runtime behavior or
structure.

In a model-driven adaptation scheme, the adaptation mechanism operates on a model
of the system and its context. Models@runtime, analogously to the computational re-
flection, tend to focus on either the structural or the behavioral aspects of the underlying
system [114, 323]. Structural models reflect how the software is currently constructed
in terms of its constituents and their state, e.g., components and their connections [135,
147, 172]. In contrast, behavioral models are associated with the dynamics of the system,
i.e., how the system executes in terms of flows of events or traces [25, 139].

The causal connection between the system and the RTM allows for modifying the
modeled system via model transformation [186] where model queries search for parts
of the model that are to be altered via in-place transformations which correspond to
desired alterations to the system. Owing to the the causal connection, the changes to
the RTM are reflected on the system to maintain the two entities, i.e., the RTM and
the system, consistent with each other. In-place model transformation is a rule-based
modification of a source model resulting in a target model where both the source and
target models are typed over the same metamodel [263].

Software adaptation can be generally conducted as parameter adaptation, i.e., mod-
ifying variables of a program or as structural adaptation, i.e., changing the software
architecture by adding, removing or replacing components and connections among
components [302]—see Section 2.3.2. In this context, many researchers advocate that
software architecture provides an appropriate abstraction level for realizing software
self-adaptation (e.g., [53, 161, 213, 272, 296, 321, 322]) because self-adaptation can be
generally achieved by adding, removing, and reconfiguring components as well as con-
nectors among components in the system [302]. An architecture model represents the
system architecture as a graph of interacting components2. Nodes in the graph, termed
components, represent the principal computational elements and data stores of the sys-
tem: clients, servers, databases, user interfaces, etc. Arcs, termed connectors, represent
the pathways of interaction between the components. This is the core architectural rep-
resentation scheme adopted by a number of Architecture Description Language (ADL),
such as Acme [164] and xADL [106].

The architecture supports weak and strong adaptation [367]; the former refers to
changing the parameters of the architectural elements and the latter is concerned with
structural changes of the architecture [302]. Similar to the structural properties of the

2 Although there are different views of architecture [96], in this thesis we are primarily interested in the
component-connector view as it characterizes the abstract state and behavior of the system at runtime to
enable reasoning about problems and courses of adaptation.

34 foundation

software system, the behavioral aspects of the software can also be represented at the
higher level of abstraction [25]. For this purpose, the adaptation mechanism maintains
a causally connected architectural RTM as part of its knowledge to represent the archi-
tecture of the adaptable system. A recent survey by Bencomo et al. [36] on the state-
of-the-art in models@runtime revealed that the most common use of models@runtime
includes structural RTMs at the architectural level, e.g., [73, 146, 165, 166, 207, 310].

The architectural model used to capture system commonalities does not describe a
precise configuration of the components and the connectors to whom the adaptable soft-
ware must conform, but rather a set of constraints on the way components may be com-
posed [162, 163]. Supporting a broad class of adaptive changes at the architectural level
implies simultaneous changing of components, connectors, and the topology in a reli-
able manner. This requires distinctive mechanisms and architectural formalisms [322].
The architectural models are often expressed in ADLs [303] and, therefore, in different
languages as used for the implementation of the system. Examples of commonly used
ADLs are Darwin [170], C2/xADL [107, 321], or Acme/ ABLE [163, 166].

2.5 running example : mrubis

Throughout this thesis we use the Modular Rice University Bidding System (mRUBiS) [414]
as a running example. mRUBiS is an online marketplace on which users sell or auc-
tion products. It is derived from RUBiS, an open source benchmark to evaluate control
theoretic adaptation as well as self-adaptive software systems with performance con-
cerns ([see 332]) and is widely used to evaluate research ideas [120, 156, 226, 307, 308,
346]. mRUBiS extends RUBiS by adding new functionalities and modularizing its mono-
lithic structure; the modularization enables the architectural adaptation of mRUBiS. The
exemplar hosts arbitrary number of shops; each shop belongs to a tenant and can be con-
figured differently and runs isolated from the other shops; thus the architecture of each
shop is isolated from the architectures of the other shops; a shop in mRUBiS consists
of 18 components that are individually deployed; all shops share the same component
types but each have their own individually configured components.

The business objective of mRUBiS is to achieve high sales volumes for its tenants.
Thus, the mRUBiS goal model includes high availability of the services and low re-
sponse times for the customers. In order to satisfy these two goals, we employ archi-
tectural self-healing capabilities to automatically repair runtime failures that cause dis-
ruptions in mRUBiS services; this allows us to consider repair actions that adapt the ar-
chitectural configuration of mRUBiS. For instance, to mitigate faulty components, they
can be restarted, redeployed, or replaced with alternatives. In addition self-optimization
may be employed to improve the performance of the shops by reconfiguring the system;
we have extended mRUBiS in previous work [175] to support self-optimization options
such as adding replicas for system components.

In order to add self-healing and self-optimization properties to mRUBiS, the software
is equipped with a MAPE-K feedback loop that uses an architectural RTM of mRUBiS.
Specifically, the model represents the runtime architecture of mRUBiS according to the
deployment of mRUBiS on an application server. Figure 2.8 shows a simplified meta-
model of mRUBiS (based on the widespread ECORE syntax [391]) which defines valid
model instances [44]. The metamodel of the RTM captures the mRUBiS Architecture with
a set of ComponentTypes that require and provide InterfaceTypes. For each Tenant, the same

2.5 running example : mrubis 35

ArchitectureArchitecture
name : String
reliability : double
pmax : double
satPoint : double

ComponentType

name : String
reliability : double
pmax : double
satPoint : double

ComponentType

InterfaceTypeInterfaceType

required [0..*]required [0..*]

utility : double
importance : double

Tenant

utility : double
importance : double

Tenant

state : ComponentLifeCycle
criticality : double
performance : double
load : int
aDT : double

Component

state : ComponentLifeCycle
criticality : double
performance : double
load : int
aDT : double

Component

RequiredInterfaceRequiredInterface

ProvidedInterfaceProvidedInterface

componentcomponent

[1..1]

[0..*]

[1..1]

[0..*]

ConnectorConnector

[1..1][1..1]

[0..*]
[1..1]

[0..*]
[1..1]

name : String
message : String

Failure

name : String
message : String

Failure

DEPLOYED
STARTED
UNDEPLOYED
REMOVED
NOT_SUPPORTED

<<enum>>
ComponentLifeCycle

DEPLOYED
STARTED
UNDEPLOYED
REMOVED
NOT_SUPPORTED

<<enum>>
ComponentLifeCycle

AnnotationsAnnotations

utilityDrop : double

Issue

utilityDrop : double

Issue

[0..1][0..1]

[0..*][0..*]

[0..*]

[1..1]

[0..*]

[1..1]
utilityIncrease : double
costs : double
ratio : double

Rule

utilityIncrease : double
costs : double
ratio : double

Rule

[0..k][0..k]

[0..*][0..*]

CF1CF1 CF4CF4CF3CF3CF2CF2

RestartComponentRestartComponent

LwRedeployComponentLwRedeployComponentHwRedeployComponentHwRedeployComponent RecreateConnectorRecreateConnector

ReplaceComponentReplaceComponent

PI1PI1

AddReplicaAddReplicaRemoveReplicaRemoveReplica

state : boolean
load : int

Replica

state : boolean
load : int

Replica

[0..*]

[0..*]

[0..*]

affectedComponent

bestRules

[1..1]
[1..1]

[0..*]

issues

[1..*]

[0..*]

component

[1..1]

[0..*]

[0..1]
[0..*]

provided
[1..*]

issues

handledBy

handles [1..1]

[0..1]

Figure 2.8: Simplified metamodel of mRUBiS.

component types are instantiated to Components with their Provided- and RequiredInterfaces.
Components conforming to ComponentTypes constitute concrete configurations of mRUBiS.
Components are parameterized by setting the value attribute of properties, e.g., critical-
ity. A Component provides at least one interface and can require interfaces by means of
functionality from other components. A Connector links a required and a provided inter-
face if both are of the same InterfaceType. Using a ProvidedInterface of a component may
cause Failures in terms of exceptions. A Component can have one or more Replicas that
are of the same ComponentType as the original Component. The ComponentLifeCycle defines
the state of a Component. These elements allow us to describe the runtime architecture of
mRUBiS and the runtime issues, e.g., exceptions, failures, or sub-optimal configurations.
The elements colored gray are relevant for self-adaptation and described later.

In this thesis, we use the self-healing and self-optimization properties of mRUBiS
to discuss Venus. To achieve high availability for the tenant in mRUBiS, self-healing
aims at repairing architectural failures that disrupt the operation of mRUBiS. For the
mRUBiS architecture, four classes of Critical Failure (CF) considered as introduced by
Vogel [414]. They target Components that either crash and enter the UNKNOWN life
cycle state (CF1), throw Exceptions exceeding a given threshold (CF2), are destroyed
and removed from the architecture (CF3), and Connectors that are lost and removed from
the architecture (CF4). To achieve low response times, the self-optimization aims at
improving the performance of mRUBiS by architectural reconfiguration. We define one
Performance Issue (PI), henceforth, PI1, that indicates the performance of a component
in mRUBiS is below a threshold. PI1 may occur when the average load of a component
changes.

As adaptation options, i.e., rules in Figure 2.8, mRUBiS supports restarting, redeploy-
ing, and replacing components, adding and removing service replicas, as well as recre-
ating connectors. For the redeployment, there are two variants. The light-weight variant

36 foundation

keeps the latest configuration while the heavy-weight variant resets the configuration
parameters of the redeployed component.

2.6 graph transformation

The automated process of taking one or more source models as input and producing
one or more target models as output, following a set of transformation rules, is referred
to as model transformation [377]. Model transformation rules are specifications that de-
fine a model modification and are expressed via the transformation languages in MDE.
Examples of such languages are Triple Graph Grammar (TGG) [373], Query/View/Trans-
formation (QVT) [320], and ATLAS Transformation Language (ATL) [236]. Transformation
rules define, at the level of metamodels, how the target models are produced from the
source models using the joint concepts of the source and target modeling languages,
i.e., metamodels, for the specification of the transformation [189, 408].

Graphs and graph-based formalisims serve as a well-established prominent base for
dealing with non-linear data structures [27, 124, 186, 188, 373, 377, 408]. Treating mod-
els as graphs where model entities are captured as vertices and connectors between
entities as edges, allows for realization of model transformation via established graph
operations such as Graph Transformation (GT) [377]. To this end, model transformation
rules may be derived in the form of GT rules in accordance with the joint source and
target contexts [124]. GT provides a pattern- and rule-based manipulation of graph mod-
els, which is frequently used in various model transformation tools, e.g., VIATRA [409],
GREAT [412], and Henshin [16].

GTs are realized by the application of GT rules which are used for the evolution
of graph structures [188]. A GT rule, also referred to as graph rewriting rule, consists
of a graph to match, called Left-hand Side (LHS), and a replacement graph, commonly
referred to as Right-hand Side (RHS). The LHS and RHS are graph patterns that describe
the pre-condition and post-condition of the GT rule respectively. A match identifies an
occurrence of the LHS pattern in a source graph G and the process of finding matches
of the LHS of a GT rule in a graph is called graph pattern matching.

The application of a GT rule on a source graph G replaces a match of the LHS in
G by RHS. A match for the LHS graph identifies a sub-graph in G that is eligible for
the transformation; if a match is found, the corresponding GT rule is fired and results
in the matched sub-graph of G being replaced by the RHS graph. Thus, each GT rule
application transforms a graph by replacing a part of it by another graph [408]. In more
details, this is performed by finding a match of LHS in the source graph G, via graph
pattern matching, removing a part of the graph G that can be matched to LHS but not
to RHS, and finally, creating RHS by adding the adding new objects and links (that can
be mapped to the RHS but not to the LHS) obtaining the target graph G’ [189].

2.6.1 Adaptation via Graph Transformation

RTMs support system adaptation at runtime by providing a means to represent and
handle complex information captured in a non-linear format [34, 47, 396]. As discussed
in Section 2.6, the rigorously defined formal semantics of graph transformation are
well-established to support the complexity of models and model operations [27, 373,
397, 408]. Thus, in the context of self-adaptive systems and runtime adaptivity, the prac-

2.6 graph transformation 37

zBay:
Architecture

zBay:
Architecture

utility: u
importance: i

t:Tenant

utility: u
importance: i

t:Tenant

name: queryService
reliability: r1

queryService
:ComponentType

name: queryService
reliability: r1

queryService
:ComponentType

state: STARTED
criticality: c2

as: Component

state: STARTED
criticality: c2

as: Component

name: authenticationService
reliability: r2

authenticationService
:ComponentType

name: authenticationService
reliability: r2

authenticationService
:ComponentType

state: STARTED
criticality: c1

qs: Component

state: STARTED
criticality: c1

qs: Component

requiredInterface
:RequiredInterface
requiredInterface

:RequiredInterface
connector
:Connector
connector
:Connector

providedInterface
:ProvidedInterface
providedInterface
:ProvidedInterface

basicQueryService
:InterfaceType

basicQueryService
:InterfaceType

Figure 2.9: Exemplary architectural runtime model of mRUBiS.

[self .failures->size() >= 5]

providedInterface
:ProvidedInterface

[self .failures->size() >= 5]

providedInterface
:ProvidedInterface

crit icality

[self .state = STARTED]

component
:Component

crit icality

[self .state = STARTED]

component
:Component

ut ility := utility + U2()

shop
:Shop

utility := utility + U2()

shop
:Shop

architecture:
Architecture
architecture:
Architecture

state: UNDEPLOYED

component:
Component

state: UNDEPLOYED

component:
Componenttenant:Tenanttenant:Tenant

Figure 2.10: LHS of a transformation rule in mRUBiS.

tice of encoding RTMs as graphs has gained attention [32, 186, 415, 417, 418]. RTMs
capture the structural as well as the behavioral dynamics of a causally connected sys-
tem [47, 302]. Thus, most of the standard techniques for the formal description of sys-
tems such as automata or Petri nets are only of limited value in capturing structural
dynamics [32]. Attributed graphs and graph transformations are in contrast a natural
choice to capture structural changes of models [186]. Software architecture can be char-
acterized as a graph of components and connectors [282, 322]. Thus, it is natural to
capture the required modeling artifacts for architectural RTMs by graphs and graph
transformations [115, 415].

Figure 2.9 depicts an architectural RTM capturing a fragment of the Architecture in-
stance in mRUBiS. The RTM conforms to the metamodel in Figure 2.8, however, only
partially instantiates the elements of the metamodel that are relevant for the intended
context. The RTM includes one Tenant in mRUBiS with two Components in STARTED
state. The components correspond to queryService (qs) and authenticationService (as) Compo-
nentTypes respectively and are connected via a connector for basicQueryService InterfaceType.
Owing to the causal connection, the RTM mirrors the state of mRUBiS. As discussed
earlier, the architectural RTM can be captured as a graph, where the components are
mapped to graph vertices and their properties are captured as the vertex attributes.
Connectors between the components are modeled as graph edges—see [415].

Adaptation rules, specified either as ECA rules or Condition-Action rules, capture
modifications to the adaptable software system and constitute the basic artifact of the
adaptation [253]. Using (meta)models and MDE techniques for adaptation, adaptation
rules are realized by model transformation rules, i.e., the equivalent model-based notion
of GT rules–see Section 2.6. The condition in an adaptation rule, specifying a model
(graph) query, is thus captured by the LHS of a model (graph) transformation rule. To

38 foundation

characterize a model query, we use a pattern P describing a sub-graph of the source
graph G, i.e., the architectural RTM. A graph query is the equivalent graph-based notion
of a model query, i.e., a means to explore an existing graph. Typically, a simple graph
query searches for a smaller graph, henceforth called a (graph) pattern, in the existing
(queried) graph.

Since the architecture is represented by the RTM, we also use G to refer to the model.
An occurrence of a pattern P in the model G corresponds to a match m of P in G

(we write G |=m P). For instance, a match identifies a failure in the architecture—see
Figure 2.10 for an example of an LHS pattern in mRUBiS. The execution of the transfor-
mation rule including the specified LHS pattern in Figure 2.10 searches for the instances
of class Component belonging to a Tenant in the Architecture that are in an UNDEPLOYED
state.

A TGG specification is a declarative definition of a bidirectional model transforma-
tion that may be used to specify graph-to-graph transformation [373]. A TGG com-
bines three graph grammars (LHS, CG, RHS) where LHS and RHS represent source
and target graph structures respectively and are linked to each other by means of an
additional Correspondence Graph (CG). The CG stores relationships between the corre-
sponding source and target graphs. In the context of self-adaptive systems and causally
connected RTMs, TGG rules capture the formalism for supporting the incremental prop-
agation of changes among two models in both directions. TGG rules specify by means
of model transformation rules how the RTM, reflecting the running system, is synchro-
nized with the adaptable software [415, 416].

An adaptation issue, that is a phenomenon that triggers an adaptation, can be realized
as the condition of an adaptation rule and, consequently, by the LHS of a GT rule. In
this contexts, rules query the architectural RTM to identify adaptation issues, e.g., run-
time failures. An adaptation rule uses the LHS patterns and their identified matches
to localize the adaptation issue. Meanwhile, the RHS of the transformation rule deter-
mines how to modify the model enacting the action part of the adaptation rule and thus
adapts the system through causal connection to resolve the detected issue.

Part II

A P P R O A C H

This part presents the technical contributions. We divide the contributions
to three main building blocks that collectively constitute our solution for
architecture-based adaptation of software systems—see Figure 1.2 for an
overview. First, defining utility functions for dynamic software architectures
that enable utility-based adaptations; second, introducing an incremental
solution that combines the said utility functions with the adaptation rules
to engineer the Analyze and Plan activities of the adaptation loop; third,
building on the utility function for dynamic architectures and the incremen-
tal analysis, proposing an alternative solution for planning that coordinates
existing adaptation policies at runtime. The contributions are embodied in
a MAPE-based adaptation engine that is executed incrementally. The incre-
mental Analyze and Plan activities are complemented to build a complete
adaptation loop by using an incremental monitoring scheme from the exit-
ing work and including an incremental Execute activity. We leverage util-
ity theory to incrementally evaluate an architectural RTM of the adaptable
software as well as the adaptation plans. Utility functions in general can
be obtained in two ways; analytically engineered from domain knowledge
or gradually learned from the observations. We present our approach to at-
tain both practices for utility elicitation in the context of dynamic software
architectures. Having defined utility functions for dynamic software archi-
tectures, we discuss Venus, a utility-driVen rule-based scheme to engineer
architecture-based self-adaptive software. Venus uses graph pattern-based
characterization of the adaptation issues, adaptation rules, and utility func-
tions as its underlying principles. The scheme embodies ECA rule-based
constructs and relies on utility theory for decision-making. Different com-
plexities of software self-adaptation problem space require different solu-
tions in terms of expressiveness, development effort, quality, and cost of
the adaptation. Building on the incremental platform for monitoring, analy-
sis, and execution in the adaptation engine, we proposes HypeZon as an
alternative solution for planning. HypeZon is a Hybrid planner for self-
adaptation employing receding horiZon. HypeZon exploits the notion of
meta-self-awareness to provide the hybrid planner, realized in an additional,
higher-level control loop with increased awareness. Compared to Venus,
the scheme requires less development effort and addresses the quality-cost
trade-off by coordinating multiple off-the-shelf adaptation policies at run-
time.

3
U T I L I T Y F U N C T I O N S F O R D Y N A M I C S O F T WA R E
A R C H I T E C T U R E

In this chapter, we discuss the Utility Function building block of the proposed solution
for incremental architecture-based self-adaptation of software systems—see Figure 1.2.
The utility function contributes to the Analyze and Plan activities of the adaptation
engine—see Figure 3.1 for an overview. First, we discuss how to define utility func-
tions for large, dynamic architectures based on architectural patterns Section 3.1. Then,
in Section 3.2 we describe our approach to engineer a white-box decision-maker where
we analytically construct utility functions based on the domain knowledge. Next, we
present in Section 3.3 a methodology to systematically train utility-change prediction
models for black-box systems where a detailed knowledge of preferences or system
attributes is not available. The proposed methodology addresses the R6 requirement
in Table 1.1 for architecture-based self-adaptation regarding the initially unknown run-
time knowledge of user and system preferences. Solution addresses problem of initially

Adaptable Software

Execute

Sensing Affecting

Monitor

RTM

Analyze Plan

Utility
Function

Figure 3.1: Chapter overview: Utility Function for adaptation engine.

unknown runtime knowledge of user and system preferences

3.1 pattern-based utility

Utility functions can provide a general, principled, and pragmatic basis for utility-
driven decision-making in self-adaptive systems [421]. A utility function U(X) is an
objective function that expresses how well each system state X satisfies the functional
and non-functional requirements of the system. The state X can be characterized as
a multi-dimensional property X = {X1,X2, ...,Xn} where Xis represent constituent di-
mensions of state X. In this thesis, we focus on the architecture-based adaptation of
software systems, thus we capture the state of the system via a snapshot of the architec-

41

42 utility functions for dynamic software architecture

tural configuration of the system. In the context of architecture-based self-adaptation,
utility function U(G) assigns a real, scalar value to any system configuration G and has
a range ofU(G) ∈ (−∞,+∞). The utility value assigned to configuration G indicates the
desirability of G according to system objectives—see Section 2.2.1. This quantification
allows for comparisons between different architectural configurations; the adaptation
then can be steered towards obtaining the configuration yielding highest utility value.
Furthermore, the reward, that accounts for the accumulated utility over time, supports
comparisons of different architecture configurations over time.

Defining a representative and correctly formulated utility function is essential for the
optimization process that is concerned with finding the set of parameters that maxi-
mize the said function. In a utility-driven self-adaptation mechanism, it is the utility
function—and not the real utility of the system—that is being constantly optimized to
obtain an adaptation decision. Utility-driven adaptation can be carried out through an
extensive search in the solution space where the impact of the different properties on
the overall system utility, resulting in different configuration settings, is evaluated prior
to the decision-making; the configuration yielding the highest utility is then chosen—
see [146]. In addition to the internal configuration of the system, G may also include set
of features that reflect the impact of the environment on the system or its context. Such
features however, while having an impact on the utility, cannot be adapted. Hence, the
search within the solution space for maximizing the utility for G is limited to what can
be adapted.

In the specific context of architecture-based self-adaptation, a typical approach is to
use normalized1, linear2 utility functions that for each non-functional property, e.g., re-
liability or content quality, compute the impact of the alternatives options, providing
similar functionality at different quality levels, on the overall system utility [90, 91, 146].
Given a concrete architecture with concrete alternative options selected, the utility func-
tion then computes the weighted sum of these impact values over all properties where
the weights represent the preferences and the result is the utility of the given architec-
ture [12, 39, 421]. However, defining such utility functions is particularly challenging
for large, dynamic, and highly configurable software architectures where an extensive
search in the solution space before each adaptation decision hinders scalability and
renders the optimization process time-intensive.

In this section, we describe our methodology to define utility functions for large, dy-
namic architectures based on patterns. We introduce the notion of positive and negative
architectural utility patterns indicating the impact of the fragments of the architecture,
i.e., patterns, on the overall system utility. For this purpose, we present in the following
two requirements that should hold for utility functions that are used to evaluate the
software architecture:

Req 3.1 the optimal architectural configuration that fulfills the system objectives, at the most
desirable level, yields the maximum utility.

Req 3.2 any violation of system objectives leads to a decrease in the system utility.

1 A normalized function is one where the integral is equal to one over the entire domain.
2 A linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero

or one.

3.1 pattern-based utility 43

utility := utility + U1()
importance

tenant
:Tenant

utility := utility + U1()
importance

tenant
:Tenant

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

utility := utility + U1()
importance

tenant
:Tenant

utility := utility + U1()
importance

tenant
:Tenant

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

providedInterface
:ProvidedInterface
providedInterface
:ProvidedInterface

requiredInterface
:RequiredInterface
requiredInterface
:RequiredInterface

reliability
pmax
satPoint

type
:ComponentType

reliability
pmax
satPoint

type
:ComponentType

utility := utility + U1()
importance

tenant
:Tenant

utility := utility + U1()
importance

tenant
:Tenant

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

providedInterface
:ProvidedInterface
providedInterface
:ProvidedInterface

requiredInterface
:RequiredInterface
requiredInterface
:RequiredInterface

reliability

type
:ComponentType

reliability

type
:ComponentType

Figure 3.2: Positive architectural utility pattern P+1 .

3.1.1 Positive Architectural Utility Patterns

According to ReQ3.1, we include the impact of present architectural fragments in the
definition of architecture-based utility. We define the fragments as positive architectural
utility patterns P+ = {P+1 , . . . ,P+k } and capture their positive impact on the overall system
utility by utility sub-functions Ui. Thus, when a positive architectural utility pattern P+i
is present in the software architecture, it contributes a value defined by its correspond-
ing utility function Ui to the overall system utility. Recall from Section 2.6.1 that an
occurrence of a pattern P in the model, i.e., the architecture G, corresponds to a match
m of P in G (we write G |=m P). The obtained utility by the match m of the positive
pattern P+i in G is denoted as Ui(G,m).

A positive architectural utility pattern, henceforth, positive pattern, may include frag-
ments of the system architecture containing a single component or multiple components
and connectors. Moreover, the patterns may be defined as generic or component-specific
positive patterns. The impact of a pattern P+i is defined by Ui and, depending on the
specific context for individual occurrences of the pattern, may vary for each match of
the pattern in the architecture. Thus, the utility sub-functions Ui are context-dependent
and may ascribe different utility values to identical patterns with different context. In
general, any information that is observable at runtime and is represented in the RTM
of the software architecture can serve as the context of an architectural fragment and
be used for computing the utility values. Note that the context for utility calculation is
not necessarily required to be part of the original pattern. At runtime, the context of
a matched pattern is dynamically obtained from the RTM when evaluating the corre-
sponding utility sub-functions Ui.

We define the overall system utility, i.e., the utility of the system architecture G, based
on the principles of additive utility functions—see Section 2.2.1.1. In order to apply the
concept of the additive utility, the architecture G should be decomposed to fragments
that comply with the mutual utility independence. Let G = {g1,g2, ...,gn} where gis
represent architectural fragments of G with ∀i 6= j =⇒ gi 6= gj. Any decomposition
of G to gis that fulfills the mentioned requirement and conforms to the mutual utility
independence can be considered for the calculation of the additive overall utility of G
as below:

U(G) :=

n∑
i=1

Ui(gi) (3.1)

Thus, conforming to the additive utility principles, when matching a positive utility
pattern P+i in the architecture G, the overall utility of the system is increased by Ui.

Figure 3.2 shows an example of a positive pattern P+1 and the corresponding utility
sub-function U1 in mRUBiS. This pattern conforms to the metamodel in Figure 2.8 and

44 utility functions for dynamic software architecture

includes a component that is associated with a tenant and therefore, contributes to the
functionality of the tenant. The pattern targets a single component and is generic as
it refers to any started component. When matching this pattern for one component in
the architecture, the utility of the associated tenant increases by U1. For any match m
of the positive pattern P+1 in Figure 3.2, let the utility sub-function U1 be defined as
U1(G,m) := criticality of the component × reliability of the corresponding component
type × connectivity of the component—see the metamodel of mRUBiS in Figure 2.8 for
reference.

While the pattern in Figure 3.2 involves a Tenant and a Component in STARTED state,
in addition to the information directly observable by the match, the context for the
computation of the corresponding utility function U1 involves the reliability of the Com-
ponentType and the number of the ProvidedInterface and RequiredInterface of the matched
Component, i.e., connectivity of the Component. Figure 3.3 visualizes (in gray) the required
context for utility calculation for a match of P+1 in Figure 3.2. Thus, pattern P+1 and the
corresponding utility sub-function U1 determine the context of a matched component
as: criticality of the component , reliability of the component type, and connectivity of
the component. The three attributes define the impact of an occurrence of P+1 on the
utility of the associated tenant.

In mRUBiS, individual tenants are independent of each other, thus comply with the
mutual utility independence. In this context, the mutual utility independence of tenants
implies that the utility of each tenant is independent of other tenants. We define the
utility of architecture G with l tenants in mRUBiS as :

U(G) :=

l∑
i=1

Ui(tenanti) (3.2)

Similarly, for each tenant in mRUBiS, we assume utility independence between it con-
stituent components and define the utility of a tenant as the sum of the utility of its 18
components—see Section 2.5. Once all 18 components of a tenant are matched with the
positive pattern described in Figure 3.2, the utility of the tenant is the sum of the corre-
sponding sub-utilities U1(G,m) for all of the matched components. Finally, the pattern
is applied to all the tenants in mRUBiS to obtain the utility for each tenant and then,
collectively, for the whole architecture G.

utility := utility + U1()
importance

tenant
:Tenant

utility := utility + U1()
importance

tenant
:Tenant

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

utility := utility + U1()
importance

tenant
:Tenant

utility := utility + U1()
importance

tenant
:Tenant

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

providedInterface
:ProvidedInterface
providedInterface
:ProvidedInterface

requiredInterface
:RequiredInterface
requiredInterface
:RequiredInterface

reliability
pmax
satPoint

type
:ComponentType

reliability
pmax
satPoint

type
:ComponentType

utility := utility + U1()
importance

tenant
:Tenant

utility := utility + U1()
importance

tenant
:Tenant

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

providedInterface
:ProvidedInterface
providedInterface
:ProvidedInterface

requiredInterface
:RequiredInterface
requiredInterface
:RequiredInterface

reliability

type
:ComponentType

reliability

type
:ComponentType

Figure 3.3: Positive architectural utility pattern P+1 and relevant context (in gray) for utility cal-
culation.

3.1 pattern-based utility 45

3.1.2 Negative Architectural Utility Patterns

According to ReQ3.2, we include the impact of the undesired architectural fragments in
the definition of the architecture-based utility, titled negative architectural utility patterns
with P− = {P−k+1, . . . ,P−n }. Negative architectural utility patterns, henceforth, negative
patterns, negatively affect the system utility and cause a reduction in the overall utility
of the architecture G, i.e., U(G), relative to their corresponding utility sub-functions. An
occurrence of a negative utility pattern P−j in the architecture G is denoted by a match
m in G (we write G |=m P−j). Uj(G,m) is the impact of a match m of P−j defined by its
utility sub-function Uj. Examples of such negative patterns are occurrences of runtime
failures, e.g., exceptions.

We define the utility sub-function Uj of a negative pattern P−j as a negative real
value—remember from earlier U(G) ∈ (−∞,+∞). Thus, if occurrence of a match for
pattern P−j changes the architecture from G1 to G2, the system utility changes from
U(G1) to U(G2). Conforming to the additive utility definition, U(G2) = U(G1) +Uj
with Uj < 0. U(G2) can be equivalently rephrased as U(G2) = U(G1) − |Uj|. Con-
sequently, while the positive patterns capture the possible utility gain by the current
architectural configuration, the negative patterns represent whether the potential for
utility gain can be actually realized. The potential for obtaining the (maximum) pos-
sible utility gain is not realized if there is a match for a negative pattern in the archi-
tecture that correspondingly decrease the utility—see ReQ3.1. Therefore, considering
Mi(G) = {m |G |=m Pi} as the set of matches for the pattern Pi in the current architec-
ture G, the overall utility function U(G) accumulates all the effects due to the matches
of all n patterns P = {P1, . . . ,Pn}—see Equation 3.3. If we do not have to distinguish be-
tween positive and negative patterns, we omit the superscript + and − for the patterns
P ∈ P.

U(G) :=

n∑
i=1

∑
m∈Mi(G)

Ui(G,m) (3.3)

Analogously to the positive patterns, negative patterns may also be defined in a
generic manner where they can be matched by any generic entity of the same class indi-
cated by the pattern, e.g., any component or connector. The negative patterns may also
be defined in a component-specific manner where they may only be matched to specific
instantiation of the entities, e.g., only components of the type query management ser-
vice. Negative patterns are context-dependent and, based on the specific context in the
architecture G, the impact of a negative pattern P−j may vary for each individual match
of the negative pattern in G. Figure 3.4 shows an example for a negative pattern P−2
in mRUBiS. According to P−2 , the occurrence of five or more failures, e.g., exceptions,

architecture:
Architecture
architecture:
Architecture

state: UNDEPLOYED

component:
Component

state: UNDEPLOYED

component:
Componenttenant:Tenanttenant:Tenant

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

[self.failures->size() >= 5]

providedInterface
:ProvidedInterface

[self.failures->size() >= 5]

providedInterface
:ProvidedInterface

utility := utility + U2()
importance

tenant
:Tenant

utility := utility + U2()
importance

tenant
:Tenant

Figure 3.4: Negative architectural utility pattern P−2 .

46 utility functions for dynamic software architecture

in a Component in STARTED state marks a negative utility pattern in the architecture.
Each match of the negative pattern reduces the utility of the corresponding Tenant by
U2 where U2(G,m) is a negative value.

The definition of the pattern-based utility takes the context into account. In general,
when matching a positive or negative pattern Pi, the concrete context for each match
is dynamically identified in the architecture. The context corresponds to a fraction of
the architecture that is navigated to obtain the required information for calculating the
pattern-based utility at runtime. Each pattern Pi specifies a context that influences the
corresponding utility sub-function Ui and thus the increase or decrease of the utility.
For instance, each of the patterns P+1 in Figure 3.2 and P−2 in 3.4 specify the criticality of
the Component and the associated Tenant as part of their contexts. This context could be
extended, for instance, by taking the ComponentType into account—see Figure 3.3—such
that the pattern would only match to components of certain type, e.g., components of
the type authentication or user reputation. Finally, the individual context of each match
of a pattern could cause variations in the final (expected) utility after the adaptation,
thus plays an essential role in steering the decision-making mechanism. We discuss this
in Section 4.2.

Figure 3.5 shows an excerpt of the mRUBiS architecture; tenant t1 has two matches
of the positive pattern P+1 introduced in Figure 3.2, i.e., two STARTED component. The
first match includes t1 and the reputation component; t1 and the authentication component
constitute the second match for P+1 in tenant t1. Tenant t2 includes only a single match
for the positive pattern P+1 —the three matches of the positive pattern in the architecture
are highlighted in different shades of gray. Each match m for P+1 increases the utility
of the corresponding tenant by U1(G,m) and by taking the context of the matched
components into account—see Figure 3.3 for the required context to calculate the utility
of the matched P+1 . The utility of a tenant is the sum of U1(G,m) for all matches of P+1
in the tenant, consequently, the utility of the zBay architecture is the sum of the utilities
of t1 and t2.

In addition to the matches for the positive pattern P+1 , t1 in Figure 3.5 also includes
a match for the negative pattern P−2 (see Figure 3.4) caused by the providedInterface of
the authentication component that has 6 exceptions. The match for the negative pattern is
marked with a dash-lined box in Figure 3.5. The match for the negative pattern reduces
the utility of t1 as well as the utility of the architecture. In Figure 3.5, U2() represents a
negative utility associated with the match for P−2 . Therefore, for the given architecture,
the overall utility of tenant t1 comprises of two times U1(), one for each match of the
positive pattern P+1 , and one time U2() for the negative pattern match.

In this section, we introduced the notion of pattern-based utility and described how
utility values are assigned to the architectural fragments. We impose no restrictions on
the size of the considered architectural fragments, i.e., patterns; a fragment may in-
clude only a single component or may be as large as the whole system architecture. By
assigning utility values to architectural fragments, we are enabled to evaluate different
architectural configurations in terms of utility. The ability to quantify the desirability
of a configuration supports the decision-making through out the adaptation process by
providing a common basis for comparison between different adaptation options that
lead to different next configurations. The pattern-based definition of utility supports
dynamic architectures that may change in size or complexity at runtime, for the context
of the pattern-matching can also be dynamically extended at runtime.

3.2 engineering utility functions 47

zBay
:Architecture

t2
:Tenant

Utility := U1()
importance: 4

queryManagement
:Component

state: STARTED
criticality: 7
performance: 0.6
load: 75
aDT: 15

providedInterface
:ProvidedInterface

self.failures->size(): 6

Positive Pattern

Negative Pattern
Positive Pattern

authentication
:Component

state: STARTED
criticality: 5
performance: 0.5
load: 90
aDT: 18

reputation
:Component

state: STARTED
criticality: 2
performance: 1
load: 8
aDT: 11

t1
:Tenant

Utility := U1() + U1() + U2()
importance: 7

Figure 3.5: Excerpt of mRUBiS architecture including matches for positive and negative pat-
terns.

3.2 engineering utility functions

This section discusses how to analytically engineer mathematical models3 that map
a set of input parameters to a scalar value, namely, the utility value. In general, for
a software system, the utility function U can be obtained from SLAs, through user
preference elicitation, or based on templates [see 421]; utility of system describes the
degree to which system objectives are satisfied by the input parameters.

3.2.1 Utility Space

Defining utility functions for self-adaptive software requires recognizing three types of
attributes that construct the utility space for architecture-based self-adaptation: configu-
ration attributes, observation attributes, and quality attributes. Configuration attributes can
be identified as a vector of configuration settings c̄. These attributes typically specify the
structural characteristics of the architectural elements, i.e., components and connectors,
as well as their descriptive properties that have no influence on the composition of the
system. For instance, the criticality of a component, indicating its importance for system
functionality, is not a structural property, however, represents a configuration attribute
in this definition. In mRUBiS, the running example through out this thesis—see Sec-
tion 2.5—examples of configuration attributes include state, criticality, and connectivity of
a Component—see Figure 2.8. While state and connectivity, that is the sum of providedInter-
face and RequiredInterface, are structural properties, criticality is a behavioral property. The

3 Functions are rules that express the dependency of one variable quantity, i.e., output, on one or more
variable quantities, i.e., input, and are considered as simple kinds of mathematical models [see 98], thus
we use models as a general term here.

48 utility functions for dynamic software architecture

architecture-based adaptation of the software then is achieved via changing the current
configuration c̄ to the new configuration c̄ ′.

In addition to the internal configuration of the software systems captured via config-
uration attributes, the utility space is also affected by the operational environment of
the system. The observation attributes are set of features that can be either measured
directly or synthesized from sensor measurements and reflect the impact of the envi-
ronment on the system or its context [421]. An observation is a vector of observation
values ō that are monitored at runtime. An example of an observation attribute is the
component load—see the metamodel of mRUBiS in Figure 2.8. The current observations
ō may change to new observations ō ′ independently of the configuration changes. A
collection of the configuration and observations attributes, i.e., (c̄, ō), constitute the state
of the adaptable software at each point in time [59].

Finally, there are quality attributes that represent properties of the service delivered
by the system to the user. The service delivered by a system is its behavior as it is per-
ceived by its user(s). A user is another system—physical or human—which interacts
with the former [281]. Quality attributes capture the evaluation of the system opera-
tion and are orthogonal to system functionality and often pervade the structure of the
system [191]. Software quality is then recognized as the degree to which software pos-
sesses a desired combination of its quality attributes, e.g., reliability, performance, and
response time—see [217]. Quality attributes are also recognized as Key Performance Indi-
cators (KPIs) [354]. In the context of mRUBiS, instances of quality attributes are reliability
of ComponentType, i.e., continuity of service, and performance of Component, i.e., timeliness
of the service delivered by the component—see [385]. We denote a vector of quality
attributes as q̄ which may depend on both internal and external properties captured
by the configuration c̄ and observation ō attributes respectively. The set of quality at-
tributes q̄ may change to new quality attribute values q̄ ′ in response to changes in the
configuration or observation.

Each quality attribute captures a business objective of the system by mapping it to a
monitored architectural property. The overall quality of the system, i.e., the overall sys-
tem utility, is a quantitative measure of its quality attributes. Thus, a utility function is
a mathematically formulated function that maps each possible state of an entity, i.e., the
whole system, a single component, or a sub-set of system components, into a real scalar
value representing its desirability in terms of business objective satisfaction [421]. In
this context, we define U(c̄, q̄, ō) with U the utility of the system as a function of config-
uration attributes c̄, quality attributes q̄, and observation attributes ō.

Quality attributes are either directly observable from the system, e.g., response time,
or can be computed based on a set of relevant configurations c̄ and observations ō,
e.g., performance. For complex systems however, it is often not trivial to obtain the
relevant values for c̄, q̄, and ō to compute a well-behaving 4 U(c̄, q̄, ō). The reason is
that, it is not trivial to trace the effect of the changes—as a result of the adaptation—
on the system quality attributes. Thus, we often do not know which quality attribute
values q̄ result from which changes. Instead, we may only observe the system after the
adaptation, and thus only know the resulting configuration c̄ ′ and the usually stable

4 In this context, a well-behaving utility function is the one that calculates the utility values in a representa-
tive manner.

3.2 engineering utility functions 49

Table 3.1: Data schema for utility space.

Field Symbol Example

Configuration attributes c̄ State, connectivity
Observation attributes ō Load, disruption
Quality attributes q̄ Performance, response time

Quality model S(c̄, ō) Performance = fullfilled tasks
consumed resources

Utility function U(c̄, q̄, ō) Linear, sigmoid

observations ō. The solution is to calculate the quality attribute values q̄ by means of a
model S that takes configuration c̄ and observations ō as input—see below:

U(c̄,S(c̄, ō), ō) = U(c̄, q̄, ō) (3.4)

This way, we obtain the utility function Û based on model S for the quality attributes
as described below:

Û(c̄, ō) = U(c̄,S(c̄, ō), ō) (3.5)

Table 3.1 summarizes the artifacts that construct the utility space. Finally, we define
the utility space of a software system, comprising of a vector of configuration attributes,
a vector of observation attributes, and a vector of quality attributes as Equation 3.6.

c̄ ≡ {c1, c2, ..., cl}

ō ≡ {o1,o2, ...,om}

q̄ ≡ {q1,q2, ...,qn}

(3.6)

As discussed earlier, qi ∈ q̄ may be observed directly or calculated via a quality model
S with c̄ and ō as inputs; in this case, q̄ is defined as:

qi = Si(c̄, ō)

q̄ ≡ {S1(c̄, ō),S2(c̄, ō), ...,Sn(c̄, ō)}
(3.7)

Thus, the utility space to construct the utility function U(c̄, q̄, ō) is a space of v = l×
n×m dimension. In the context of dynamic software architectures, that is, software that
modify their architecture and enact the modifications during the system execution, the
vectors c̄, ō, and q̄ cannot be captured by finite sets of l, m, and n elements respectively
as shown in Equation 3.6. Therefore, the utility space for dynamic architectures is, by
definition, unbounded and cannot be represented via static, finite sets as shown above.

3.2.2 Utility-change

A pair of a configuration attributes and the corresponding observations, (c̄, ō), consti-
tute the state of the adaptable software system at each point in time [59]. For a software
system at a state (c̄, ō), the associated utility function U(c̄, q̄, ō) is required to ascribe a

50 utility functions for dynamic software architecture

scalar value describing the desirability of the system state. In the context of self-adaptive
software systems, the system is adapted via changing the current configuration c̄ to the
new configuration c̄ ′—see Section 2.3.2.

The adaptation of a software system changes the current state of the system, captured
by (c̄, ō), to a new state (c̄ ′, ō) by execution of an adaptation action a ∈ A with A the set
of available actions to adapt the system. We show this as (c̄, ō) →a (c̄ ′, ō). During
this process, changes in the system utility, i.e., utility-changes, indicate the differences
between the previous and the current utility. The utility-change during (c̄, ō)→a (c̄ ′, ō)
is described as:

Û∆(c̄, ō,a) = Û(c̄ ′, ō) − Û(c̄, ō) (3.8)

By localizing the effects of action executions, we avoid the potentially costly computa-
tion of Û(c̄ ′, ō) for the whole architecture and only, incrementally, compute Û∆(c̄, ō,a).
To further support incremental utility-change calculation in this thesis, when available,
we propose to explore the locality of the context for the adaptation action a. Instead
of Û∆(c̄, ō,a), a simpler function Û∆(˜̄c, ˜̄o,a) can be employed; the reason is that we
assume a local effect for action a, i.e., executing action a changes a restricted scope in
the architecture. Therefore, we do not need the full architectural configuration c̄ and
observations ō, instead, we can consider only the sub-vectors for the architectural con-
figuration ˜̄c and observations ˜̄o which are only available if we can assume a local effect
for execution of action a. The sub-vectors ˜̄c and ˜̄o can be determined locally, and rela-
tive to the application context of the action a and the selection could be specific to each
action a. In order to compute Û∆(c̄, ō,a) in Equation 3.8, we compute Û∆(˜̄c, ˜̄o,a).

In software architectures where the side effect of executing an action a cannot be
locally constrained, i.e., it has a global effect on the whole architecture, sub-vectors ˜̄c
and ˜̄o are equal to c̄ and ō respectively. Consequently, the effort for computing the
utility-change Û∆(c̄, ō,a) in Equation 3.8 would be equal to the effort for computing
Û(c̄ ′, ō) since the scope of the change, caused by a, cannot be localized and includes
the whole architecture.

3.2.3 Utility Function Construction for mRUBiS

We define a multi-objective utility function as an aggregation of multiple quality at-
tributes where each attribute represents a business objective. The ultimate goal of a
multi-objective utility function is to support quantitative evaluation and trading off
multiple quality attributes to arrive at a better overall system. In this thesis, we start
from quantification of individual quality attributes based on the architectural proper-
ties of the software and aggregate them to a single metric, that is, the multi-objective
utility function. In computing aggregate values, we accumulate units of each measured/
observed attribute in the same manner, so a formal distinction is not needed. We then
combine values by the sum or multiplication operators, depending on the employed
mathematical model for U and regardless of the attribute types.

The analytical engineering of utility functions, i.e., preference elicitation, for a soft-
ware system is often driven by a contract, e.g., SLA, or via querying the user(s), and
entails mapping of business objectives to quality attributes. For this purpose, the con-
stituent elements of the system utility space—see Table 3.1— are exploited to manually
arrive at the best fitting utility function U that represents system objectives. We dis-

3.2 engineering utility functions 51

High sales volumes

good customer
satisfaction

service is provided
when demanded

high availability small response time

good aftersales

encourage
additional purchases

heavy-weight
redeployment

restart
component

alternative
replacement

add service
replica to the pool

light-weight
redeployment

AND

AND

AND

AND

AND

OR

Goal Soft Goal Task Decomposition

recreate
connector

Figure 3.6: Excerpt of mRUBiS goal model.

cussed in Section 3.2.1 that the utility space of dynamic software architectures is a
multi-dimensional, unbounded space. Next, based on contracts such as system goal
models, SLAs, or informal knowledge of user preferences, a subset of the utility space
dimensions are selected to construct the utility function U. At this part of the thesis, the
utility construction is illustrated for our running example mRUBiS as system-specific
goal models are required. In the following, we present four analytically constructed
utility functions for mRUBiS that subscribe to four different mathematical complexity
classes.

mRUBiS simulates a marketplace on which users sell or auction items. Similar to
any e-commerce system, e.g., eBay and Amazon, the companies that are selling their

Table 3.2: Utility functions for mRUBiS and their complexity class.

U Complexity Class

Reliability×Criticality×(providedInterface+requiredInterface) Linear

Reliability× Criticality× Pmax× tanh(α× replica
load)

×(providedInterface + requiredInterface)
Saturating

Reliability×Criticality×(requiredInterface+1)×Importance×β
×(providedInterface)−10×ADT

Discontinuous

Reliability×Criticality×Importance×β×(providedInterface)×Pmax
× tanh(α× replica

load)×(requiredInterface+1) − 10×ADT
Combined

52 utility functions for dynamic software architecture

products on mRUBiS aim for high sales volumes by achieving customer satisfaction and
encouraging customers to additional purchases. Therefore, the e-commerce platform
should be highly available and exhibit small response times [414]. See Figure 3.6 for a
excerpt of the goal model of mRUBiS. The soft goals of high availability and small re-
sponse times in the goal model are fulfilled via the adaptation of mRUBiS. In order to
map the business objectives of mRUBiS to a representative utility function, we explored
a range of complexity classes for the mathematical formulation of U summarized in Ta-
ble 3.2.

In the context of mRUBiS, for any matchm of the positive pattern P+1 in Figure 3.2, the
utility sub-function U1(G,m) can be defined via one of the four variants of the utility
functions in Table 3.2; the variants differ in their parameters, complexity, and employed
operators. Moreover, having different parameters in the utility function formula implies
different required context for utility calculation when pattern P+1 is matched. We will
discuss this in more details when we explain the utility function variants.
Linear U: The linear variant, i.e., a polynomial of degree one [204], is a multiplication
of criticality of the component, reliability of the corresponding component type and the
connectivity of the component. This variant is used as the exemplary utility function
in Section 3.1. Figure 3.3 illustrates the required context in the mRUBiS architecture to
calculate the linear utility function. The connectivity is the sum of the providedInterface and
requiredInterface of a component. As described in Section 2.5, components in mRUBiS
have a criticality attribute denoting their relevance for a tenant—see the metamodel of
mRUBiS in Figure 2.8. For instance, concerning the functionality of e-commerce services
in general, the authentication service is considered more critical for the functionality of
an online shop than the reputation service since the former is necessarily required by a
shop to close a deal while the latter is not. In mRUBiS, the Authentication service is critical
since it is required to have the buying and selling functionality while the Reputation
component takes care of rating a seller or buyer after a deal which is not a critical matter
and can be done later in time. Additionally, each component type has a reliability. Certain
functionalities in mRUBiS can be provided by multiple, alternative component types
with different reliabilities, e.g., local vs. various third-party authentication services; in
these cases, selecting the most reliable alternative results in larger utility improvements.
The connectivity of a component as the number of associated connectors indicates the
importance and accordingly influences the utility of the component.
Saturating U: The linear variant of the utility function is extended by adding the quality
attribute performance to its formula. The performance of a component is calculated using a
quality model S—see Section 3.2.1 and is defined as:

Performance = S(c̄, ō) := Pmax × tanh(α× replica
load

) (3.9)

The performance attribute is also stored as a component attribute—see the metamodel of
mRUBiS for reference in Figure 2.8. Using a hyperbolic tangent function for the quality
model S to map the c̄ and ō attributes to performance provides a saturating effect and,
as a result, the performance values are bounded—see Equation 3.10 for definition of
the tanh(x). Figure 3.7 shows plots of the tanh(x) with different saturation gradients.
In saturating functions, the initial stage of growth is approximately exponential; as the

3.2 engineering utility functions 53

tanh 𝑥
tanh 2𝑥
tanh 0.5𝑥
tanh	(0.2𝑥)

Figure 3.7: tanh(x) with different gradients.

saturation begins, the growth slows down and eventually stops at maturity. The sigmoid
function [200] is another example for bounded functions with saturating phase.

tanh(x) =
ex − e−x

ex + e−x
(3.10)

As the mRUBiS metamodel in Figure 2.8 shows, each componentType has a Pmax attribute
that defines the maximum value to which the performance of the component saturates. A
certain ratio of replica

load , captured by the satPoint attribute of componentTypes in the mRUBiS
metamodel, is the saturating point of the hyperbolic tangent function in Equation 3.9
and defines the shape of the function. The satPoint is a configuration attribute of the sys-
tem and may vary for each individual component type. Therefore, for each component
type, the quality model S, defining the performance of the component, has a different
shape. The variable α in Equation 3.9 defines the gradient of the hyperbolic tangent
function for each componentType and is calculated as Equation 3.11.

α =
4

satPoint
(3.11)

In Equation 3.9, the hyperbolic tangent function only has positive input values, thus
only the positive outputs of tanh(x) in Figure 3.7 are relevant for our context. For each
component in mRUBiS, performance = Pmax when replica

load = satPoint. The satPoint and
Pmax are properties of component types and can be obtained from the system architec-
tural model—see Figure 2.8.

Compared to the linear utility function, the saturating utility function in Table 3.2
extends the required context from the system architecture for calculating the utility. Fig-
ure 3.8 presents the context to calculate the saturating utility function for a match of
pattern P+1 . See the context for the liner variant in Figure 3.3.
Discontinuous U: The discontinuous utility function extends the linear U in Table 3.2

in various ways; it introduces discontinuity to the function based on the component’s
providedInterface attribute. Discontinuity refers to the disconnected intervals in the utility
function as a result of using the attribute β defined in Equation 3.12. The providedInter-
face of a component C in mRUBiS describes to which degree other components in the
architecture depend on C; components that are highly connected and provide inputs
for multiple other components generally play a more central role in system functional-

54 utility functions for dynamic software architecture

utility := utility + U1()
importance

tenant
:Tenant

utility := utility + U1()
importance

tenant
:Tenant

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

utility := utility + U1()
importance

tenant
:Tenant

utility := utility + U1()
importance

tenant
:Tenant

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

providedInterface
:ProvidedInterface
providedInterface
:ProvidedInterface

requiredInterface
:RequiredInterface
requiredInterface
:RequiredInterface

reliability
pmax
satPoint

type
:ComponentType

reliability
pmax
satPoint

type
:ComponentType

utility := utility + U1()
importance

tenant
:Tenant

utility := utility + U1()
importance

tenant
:Tenant

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

criticality
performance
load
aDT

[self.state = STARTED]

component
:Component

providedInterface
:ProvidedInterface
providedInterface
:ProvidedInterface

requiredInterface
:RequiredInterface
requiredInterface
:RequiredInterface

reliability

type
:ComponentType

reliability

type
:ComponentType

Figure 3.8: Positive pattern P+1 and relevant context (in gray) for saturating utility function cal-
culation.

ity; thus components with higher number of providedInterface should contribute relatively
larger values to the overall system utility compared to the components with fewer pro-
videdInterface. We capture this effect on the system utility by defining β in Equation 3.12

such that components with higher number of providedInterface obtain a larger weight in
the utility function.

β =

2× providedInterface, 2 6 providedInterface

1, providedInterface < 2
(3.12)

Moreover, the context required by the discontinuous utility function is also broad-
ened compared to the linear variant. While the linear utility function is concerned with
attributes of the Component and ComponentTypes, the discontinuous variant extends its
computation context to also include the attributes of the Tenant via considering the im-
portance of a tenant in the formula. In mRUBiS, different tenants have different importance
based on their contract types; the importance of a Tenant represents the priority of the
tenant for the business objectives of mRUBiS; tenants with higher importance contribute
more to the overall system utility in terms of the business revenue. For instance, a gold
costumer has a more expensive contract with mRUBiS and, consequently, benefits from
certain priority maintenance and promotion services that silver and bronze costumers
are excluded.

Finally, the discontinuous utility function includes a quality attribute Average Deploy-
ment Time (aDT) of a component, the attribute introduces the notion of cost to the utility
function by adding the time variable. The aDT of a component is measured directly and
stored as a component attribute in the architectural RTM—see the mRUBiS metamodel
in Figure 2.8.

Combined U: For this variant, the previously introduced features, i.e., saturating and
discontinuity effects, are aggregated in one function titled combined utility function
in Table 3.2. Compared to the alternative variants, the combined function requires the
largest context for utility calculation; the function contains the tenant-level quality at-
tribute importance, the quality attribute performance, as well as the cost-related quality
attribute aDT.

In this section, we presented four alternatives, belonging to different classes of mathe-
matical complexity, for analytically constructed utility functions for mRUBiS. The utility
functions defined in Table 3.2 are employed to compute the utility of a component in

3.3 learning utility-change prediction models 55

the mRUBiS architecture. As discussed in Section 3.1.1, the utility of a tenant in mRUBiS
conforms to the additive utility formalism and is the sum of the utility of its constitut-
ing components. Similarly, the overall utility of the architecture is the sum of the utility
of all the tenants that are hosted by the mRUBiS marketplace—see Equation 3.2.

3.3 learning utility-change prediction models

Non-linearities, complex dynamic architectures, and black-box models, are few exam-
ples of the sources for uncertainty and subjectivity that require specialized domain
knowledge and render utility elicitation challenging [333, 383]. The absence of the do-
main knowledge required for constructing a representative utility function that captures
system business objective is another reason that challenges the manual engineering of
utility functions for software systems [51]. For complex, highly configurable systems or
systems with a black-box model, it is often not trivial to obtain the relevant values for
c̄, q̄, or ō to analytically engineer a well-behaving U(c̄, q̄, ō).

In Section 3.2, we employed mathematical models to construct analytically derived
models for Û(c̄, ō) and showed how we calculate the utility-change function during
(c̄, ō) →a (c̄ ′, ō)—see Equation 3.8. In this section, we are concerned with finding a
proper approximation for the analytical utility-change function Û∆(c̄, ō,a). The approx-
imation is captured as Û∗∆(c̄, ō,a), henceforth, referred to as predicted utility.

A common practice in constructing the system utility is via hand-picking the features
of the architecture [232] or reducing the number of the features by exploring the inter-
feature relationships [129]. In this section, we side-step this problem by optimistically
accepting the selection that is automatically made by certain types of machine learning
algorithms, for instance, decision trees [55] and boosting methods [86, 153]. Addition-
ally, similarly to Section 3.2.2, we explore the locality of the application context for
action a; instead of Û∗∆(c̄, ō,a), we employ a simpler function Û∗∆(˜̄c, ˜̄o,a). We consider
only the sub-vectors for the architectural configuration ˜̄c and observations ˜̄o, i.e., ˜̄c and
˜̄o respectively, which are selected locally and relative to the context required by the
adaptation action a.

In this section, we present a methodology, based on the supervised learning methods,
to approximate the utility-change values during the adaptation process. The goal of
the methodology is to find a proper approximation for the analytical utility-change
function Û∆(c̄, ō,a) by means of a prediction model Û∗∆(˜̄c, ˜̄o,a). The outputs, i.e., utility-
changes, correspond to the feedback signal for the learning techniques [361]. This is
important because it makes the format of the collected data conducive to be used by
a supervised machine learning method. In the following, we first briefly present the
traditional steps of supervised learning followed by our proposed methodology that
modifies and extends the conventional steps of the supervised learning process to train
prediction models.

3.3.1 Supervised Machine Learning

In a supervised machine learning approach [101], a prediction model can be generally
obtained by observing an output y and features x1, . . . , xn ∈ X and assuming a func-
tional relationship y = f(x1, . . . , xn) + ε where ε represents noise—see Section 2.2.1.2
for more details on supervised learning. The function f is then estimated using a pre-

56 utility functions for dynamic software architecture

diction model f∗ such that y∗ = f∗(x1, . . . , xn) approximates the functional relationship
with a prediction error [see 288] denoted as Equation 3.13

5.

|y+ ε− y∗| = |f(x1, . . . , xn) − y∗| = |f− f∗| (3.13)

In cases where y is a numerical value, the learning problem is called regression [56].
Regression analysis in statistical modeling includes a set of statistical processes for esti-
mating the relationships between a dependent variable, i.e., output y, and one or more
independent variables, i.e., features xi ∈ X. Solving a regression problem in general en-
tails finding a conditional expectation or average value of y, because the probability of
finding the exact real-valued number for y is zero [150]. Building a prediction model f∗

based on the supervised learning technique involves iterations across a set of standard
steps that we explain next:
1. Preparing includes three sub-steps; (1.1) generating sample data in the form of

input-output (xi,yi) where each yj is generated by an unknown function y = f(x)

for training and validation purposes (data generation). (1.2) choosing and setup of the
machine learning algorithm and tuning the hyper parameters of the learning algo-
rithm (method choice and tuning) [105, 372]. Method selection in general depends on the
amount of the training data, the required accuracy of the output, the required speed
or training time (that is inversely proportional to accuracy), and, finally, the linearity
and the number of the features in the training data [435]. The hyperparameters of the
learning algorithms are the high-level attributes that are set by the experts during the
preparation step and before the model is assembled and trained; while many attributes
can be learned from the training data, the learning algorithms cannot learn their own
hyperparameters. The third step of the preparation is (1.3) selecting a subset of system
features, x1, . . . , xn, to consider during training (feature selection) [2, 15, 196].
2. Training runs the machine learning algorithm of choice that builds the model f∗. This
step, given a training set of N example input–output pairs (x1,y1), (x2,y2), ...(xN,yN),
looks for a function f∗ that approximates the true function f. Training f∗ is optimized
for a training error [276]. The training error here is obtained by testing the prediction
model against data not seen during training6. Splitting the training data into two or
more sets provides for training and then testing the model—during the training step—
using a single source of data. This allows to detect if the model is overfitting, meaning
that it performs well with the training data but poorly with the test data.

A common way of splitting the training data is using statistical model validation
techniques such as K-fold cross-validation [see 5] where the data is split into K sets,
allowing to train and test the data K times. During a K-fold cross-validation, the data
is split into K equal parts (folds) where one fold is designated as the hold-out fold. The
prediction model then is trained on the remaining K − 1 folds and validated on the
hold-out fold. The process is repeated for K times where each time a different fold is
chosen to be the hold-out fold; the average performance across the ten hold-out folds is
the performance estimate, i.e., the cross-validation score.
3. Validating happens iteratively with steps 1 an 2 for each prediction model f∗. The
goal is to check prediction errors. To measure the accuracy of a prediction model, we give
it a validation set of samples. Validation mitigates over-fitting by using datasets that

5 The real error (without noise) would be |y− y∗| = |f+ ε− f∗|.
6 Note that the testing is an internal sub-step within the training step and is distinguished from the validation

step that follows the training.

3.3 learning utility-change prediction models 57

1.1.* Data generation

1.2. Method choice & tuning

1.3.* Feature selection

2. Train
prediction
models

3.1. Check prediction error

3.2. Check runtime effort

4. Select
prediction
model

4. Selecting2. Training1. Preparing 3. Validating

Figure 3.9: Steps of proposed methodology to train prediction models.

are distinct from training, e.g., 70% for training and 30% for validation. A prediction
model is recognized to generalize well if it correctly predicts the value of y for novel
examples. If the validation indicates that the prediction model is not yet appropriate,
we can obtain more data, choose new methods/hyperparameters, or change the feature
selection. At some point, we deem the prediction model acceptable regarding error and
model size/complexity; since this stopping criterion is subjective, one usually needs to
explore multiple prediction models to be confident in the outcome.

3.3.2 Modifications to Standard Supervised Learning Steps

We address the learning problem with a four-step methodology, presented in Figure 3.9,
that extends (shown as gray) and modifies (marked with ∗) the standard three-step ma-
chine learning process in Section 3.3.1. We briefly discuss our proposed extensions and
modifications to the standard machine learning process below:
1. Preparing We modify the data generation (1.1∗) step to obtain unbiased and repre-
sentative sampling. During this step, we have to mitigate specific realizations of the
running system, e.g., the adaptable software, that can inject bias in the data. The feature
selection (1.3∗) step is challenging for large, dynamic software architectures, because the
number of the configuration and the observation attributes can grow arbitrarily and
cause state space explosion [290]. Since features can be composed with various arith-
metic operators, analytically discovering the set of relevant features involves a search
in the combinatorial space that can grow fast, even for small architectures. We benefit
from the specific case of the architecture-based adaptation that allows for modifying
this step based on the application context of the adaptation actions and reducing the
search space for the relevant features.
2. Training No adjustments needed in our methodology with respect to the standard
training phase of the supervised learning process.
3. Validating In addition to the typical check prediction errors (3.1) discussed in Sec-
tion 3.3.1, we modify the validating step to check runtime effort (3.2∗) of the prediction
models. The reason is that, similarly to the prediction error of the model, the runtime
effort of the prediction model also affects the performance of the system. Since we can
use the data generated in step 1.1∗, we can measure the runtime effort without having
to execute the system for this propose.

4. Selecting We propose to train multiple prediction models, employing different
learners in parallel, thus the extension includes adding a dedicated fourth step to the
steps introduced in Section 3.3.1 for selecting the best fitting prediction model. In the
case that we have learned several acceptable prediction models, we need to choose
one to be deployed on the system; model selection, however, is known to be a difficult
task [276]. Furthermore, while relying on the prediction error guarantees the best deci-

58 utility functions for dynamic software architecture

sion based on the predictions, in the context of using the (predicted) utility values to
plan for adaptations, the concern is the ordering and selection of the adaptation actions
with highest utility-change, rather than the accuracy of the prediction, i.e., the absolute
value of the changes. Therefore, we have to identify a proper selection procedure that
takes this into account.

Finally, applying the methodology determines one prediction model that approxi-
mates the optimal utility-change; the prediction model is then exported in a runtime
executable format and replaces the analytic Utility Function in Figure 3.1 that may plug
in to the system.

3.3.3 Methodology

The goal of the proposed methodology is to train a prediction model Û∗∆(˜̄c, ˜̄o,a) that
properly approximates Û∆(c̄, ō,a). Consequently, Û∆(c̄, ō,a) is the output and c̄, ō,a
are the features we observe for the functional relationship that has to be estimated. As
we can measure (calculate) q̄, c̄, ō, and a by executing the system, we can also indirectly
observe Û∆(c̄, ō,a) := Û(c̄ ′, ō) − Û(c̄, ō) as defined in Equation 3.8. Next, we detail our
methodology, shown in Figure 3.9, to train prediction models for utility-changes.

3.3.3.1 Preparing: data generation

In the conventional supervised learning process, data generation includes sampling the
system execution in the form of input-output pairs [101]. However, in order to sam-
ple a self-adaptive system, we require the sampled data to be fully representative of the
software configuration space together with the adaptation space. The adaptation space in-
cludes also mappings of the adaptation actions to system configurations. Consequently,
in order to have a thorough coverage of the system configuration space, we suggest
in our methodology to execute the system excluding realizations of the system that
introduce bias to the sampled data.

During the data generation, we execute the adaptable system together with a ran-
domly operating adaptation engine on top—see Figure 2.6 for a reference model of a
self-adaptive system. This mitigates bias in the data that can be introduced by a specific
realization of the adaptation engine. A random adaptation engine maps the config-
uration and observation attributes to the adaptation actions in a random manner. It
provides a thorough coverage of the configuration-action combinations, i.e., adaptation
space. Conversely, any other rational adaptation steering policy could introduce bias by
leaving out certain combinations of configuration, observations, and adaptation actions.

3.3.3.2 Preparing: method choice and tuning

In this step of the methodology, we choose the learning algorithm and tune its hyper-
parameters accordingly to fit the problem at hand, i.e., learning the prediction model
for utility-changes in large and dynamic architectures. As discussed in Section 3.3.1,
learning a prediction model Û∗∆(˜̄c, ˜̄o,a) that approximates Û∆(c̄, ō,a) with numerical
values is a regression problem. In line with best practices in machine learning [see 74],
we suggest to use approximation methods based on decision trees [349].

A decision tree represents a functional relationship that takes as input a vector of
attribute values X, runs a set of tests on the value of each input attribute xi ∈ X, and

3.3 learning utility-change prediction models 59

reaches a decision, i.e., a single output value y. A decision tree partitions the space of
input variables into homogenous rectangle areas by a tree-based rule system; each tree
split corresponds to an If-Then rule over the input attributes.

Each internal node in the tree corresponds to a test, i.e., an If-Then rule, of the value
of one xi and the branches from the node are labeled with the result of the test, i.e., the
possible values of the attribute. Each leaf node in the tree specifies a value to be returned
by the function. The decision tree learning algorithm adopts a greedy divide-and-conquer
strategy7 where the most discriminative attribute is tested first. The most discriminative
attribute is the one that makes the most difference to the classification of the provided
sample set and consequently, obtaining the correct values is feasible with a small num-
ber of tests, meaning that all paths in the tree will be relatively short and the tree as
a whole will be shallow. The greedy search used in decision tree learning is designed
to approximately minimize the depth of the final tree [349, 361]. Decision trees are
parameterized with the number of splits, or equivalently, the interaction depth.

Section 3.3.1 lists a set of criteria affecting the choice of the learning methods. Accord-
ingly, the motivation to employ decision-tree learning algorithms in our methodology is
twofold; (i) these methods automatically perform feature selection and (ii) are capable
of handling non-linearity in data and modeling non-linear functions. Therefore, con-
trary to the linear regression methods, we do not have to hypothesize which features
are used in the utility functions and how they are combined into an analytic formula.

Decision trees in general are known for having low bias and high variance.Variance
is the amount that the estimate of the prediction model will change given different
training data. Low variance suggests that changes to the training dataset lead to small
changes to the estimate of the prediction models. Bias consists of high variability in the
predictions across training sessions and might be a consequence of low signal-to-noise
relationship or data that is not representative of all functional relationships that we need
to learn. A low bias model incorporates fewer assumptions about the target function.
Consequently, as a result of exhibiting low bias and high variance, decision trees pose a
major challenge that is higher risks of overfitting compared to the alternative learning
methods. Overfitting happens when the prediction model presents low error rate for the
training data, but high error rate with data that the model has not seen, i.e., validation
data. This is a consequence of overly complex models, e.g., deep decision trees [133,
220], which often results in factoring noise into the solution.

We mitigated the overfitting of the decision trees in two ways: (i) employing ensem-
ble machine learning methods that is building a collection, or an ensemble of learners,
as apposed to employing a single strong predictive model for data-driven modeling
tasks and combining their predictions. The ensemble approach relies on combining a
large number of relatively weak learners 8 to obtain a stronger ensemble prediction. The
most prominent examples of such machine-learning ensemble techniques are random
forests [55] and neural network ensembles [201], which have found many successful
applications in different application domains [130, 291, 347, 382]. The ensemble mod-
els are a useful practical tool for different predictive tasks, as they can consistently
provide higher accuracy results compared to the conventional, single, strong machine
learning models. (ii) loss function optimization over hyperparameters [369]. Hyperpa-

7 The divide-and-conquer test recursively divides the problem into smaller sub-problems until they become
simple enough to be solved directly—see [99].

8 A weak learner is a learning algorithm that always returns a prediction model with accuracy on the
training set that is slightly better than random predictions [361].

60 utility functions for dynamic software architecture

rameter optimization is the process of tuning the high-level attributes of the learning
algorithm (see Section 3.3.1), that finds a tuple of hyperparameters that yields an op-
timal prediction model minimizing a loss function on given independent data. The
objective function takes as input a tuple of hyperparameters and returns the associated
loss [202].

As discussed in Section 3.3.1, while the selection of the algorithms is primarily de-
termined by the end use-case, there are a set of additional factors that steer the choice
of the learning algorithms; the influencing factors include: algorithm-model complexity,
performance, interpretability, computer resource requirements, and speed. To this end,
we adopted three different learning methods to train multiple prediction models in par-
allel. The methods are extensively used by the practitioners in the machine learning
community and fit the intended use case and include: Random Forest (RF) [55], Gradient
Boosting Models (GBM) [153], and Extreme Gradient Boosting Trees (XGB) [86]. Next, we
briefly introduce each method and our motivation for choosing them.
RF is a classification algorithm consisting of many tree predictors, i.e., decision trees,
such that each tree depends on the values of a random vector sampled independently
and with the same distribution for all trees in the forest. It uses bagging and feature
randomness when building each individual tree to try to create an uncorrelated forest
of trees whose collective prediction is more accurate than that of any individual tree.
The generalization error for forests converges to a limit as the number of trees in the
forest becomes large—see Section 2.2.1.2.

Bagging [see 56] is the process of generating additional data for training from the
original data set using random combinations with repetitions to produce multi-sets of
the original data. It is an ensemble algorithm that fits multiple models on the generated
multi-sets of the training dataset, then combines the predictions from all models. RF is
an extension of bagging that also randomly selects subsets of features used in each data
sample. Bagging results in decreasing the variance in the prediction. Decision trees in
general are known for introducing high variance and since RF builds on decision trees,
it mitigates the high variance issue via its bagging process. Variance is the amount that
the estimate of the prediction model will change given different training data [240].
Low variance suggests that changes to the training dataset lead to small changes to
the estimate of the prediction models. RF aim to reduce the complexity of prediction
models that overfit the training data via bagging.
GBM has a learning procedure that consecutively fits new models to provide a more
accurate estimate of the output. The method in general includes three main elements:
a loss function to be optimized, a weak learner to make predictions, and an additive
model to add weak learners to minimize the loss function. The loss functions captures
the prediction error of the ensemble and can be any arbitrary error measure. As weak
learners, GBM employs decision trees. More specifically, regression trees that output
real values for splits and whose output can be added together, allowing subsequent
models outputs to be added and correct the residuals in the predictions. This process
in machine learning techniques is recognized as boosting. Trees are added one at a time,
and existing trees in the model are not changed. The algorithm constructs the new
learners to be maximally correlated with the negative gradient of the loss function [153,
235].

The boosting process in GBM, similarly to the bagging process in RF, is an ensemble
method and builds several learners from one learner by generating several multi-sets
of the original training dataset via random sampling. In contrast to bagging, boosting

3.3 learning utility-change prediction models 61

sequentially determines weights for the sampled data, i.e., weighted training set. In a
weighted training set, each data point has an associated weight wj > 0; higher weights
indicate higher importance of the sample during training and, as a result, the data
point is more likely to get resampled and appear more often in several training sets.
The motivation behind this is that instances, which are hard to predict correctly, will
be focused on during learning, so that the model learns from past mistakes. Boosting
reduces the risk of overfitting to the training data in prediction models by decreasing
the variance of single estimates as it combine several estimates from different learners.
Thus, the result is often a model with higher stability [234].
XGB is a specific implementation of the Gradient Boosting method which uses more
accurate approximations to find the best tree model. It improves the baseline gradient
boosting methods to be highly scalable, flexible and portable. XGB extends the GBM
by using the second order derivative as an approximation. It computes the second-
order gradients, i.e., second partial derivatives of the loss function, which provides
more information about the direction of the gradients and how to minimize the loss
function; regular GBM, however, uses the loss function of the base model, e.g., decision
tree, as a proxy for minimizing the loss function associated with the collective. Moreover,
XGB has advanced regularization which improves model generalization and results in
scalable and fast training that can be parallelized across the clusters. Regularization is
a technique to improve the generalization of a learned model by adding information in
order to prevent overfitting [317].

3.3.3.3 Preparing: feature selection

Feature selection is the last activity in the preparing step of the methodology—see Fig-
ure 3.9 for an overview of the steps. The goal of feature selection in machine learning
is to find the best set of features that support building prediction models of the studied
phenomenon. The common challenge affecting the feature selection step arises in the
context of large, complex systems with large state space in terms of dimension and/or
number of instances [134], where conventional feature selection methods, e.g., search-
based heuristics [see 87, 344] can be computationally prohibitive.

In this thesis, we are concerned with dynamic software architectures where the num-
ber of configuration and observation attributes can grow arbitrarily such that the com-
binations of c̄ and ō are not bounded. However, for the considered case, the learning
problem is only to train a prediction model Û∗∆(˜̄c, ˜̄o,a) that properly approximates
Û∆(c̄, ō,a) for a specific adaptation action a and its affected application context. In our
methodology, by only considering relatively small architectural fragments, i.e., ˜̄c and ˜̄o,
and the relevant application context of the adaptation action a, the learning problem
can be limited to a smaller fixed number of features. Consequently, standard machine
learning methods become applicable.

The sub-vectors ˜̄c and ˜̄o, as the selected features to learn Û∗∆(˜̄c, ˜̄o,a), are determined
relative to the application context for action a—we will discuss this in more details
in Section 4.2. Therefore, by systematically extending the context of an action a, such
that more features become available, we can generate enough data to train a prediction
model for large and unknown dynamic architectures. For example, consider an adapta-
tion action that modifies a component state in mRUBiS; the application context of the
action is the state attribute of the corresponding Component in the architecture; we can
systematically navigate the architecture and extend the context to include more features,

62 utility functions for dynamic software architecture

e.g., attributes of the Tenant containing the Component or of the ComponentType—see Fig-
ure 2.8 for a reference of mRUBiS metamodel.

In the proposed methodology, we only consider how to extend the offered set of
features with additional candidates; the reason is that we will keep only the predic-
tion models that themselves select a suitable subset of the offered features—see Sec-
tion 3.3.3.2; we do this by relying on the training step of the methodology to reduce the
features to the most significant ones.

Note that a constructed analytic function Û∆(c̄, ō,a) will usually only consider a
small fragment of the architectural configuration c̄ and observations ō denoted by ˜̄c and
˜̄o, which contain only a few dimensions of the original vectors—see Section 3.2.2. There-
fore, we assume that a local, hence small, fraction of the configuration and observation
attributes correspond to a feature space that is sufficient to learn the utility-changes.
Moreover, we aim to predict only the impact of each change, i.e., adaptation action ap-
plication for a given context, rather than learning the complete model S, which would
not be feasible. Model S predicts the quality attribute values q̄ for a planned configura-
tion c̄ and observations ō—see Equation 3.5. However, this would require a thorough
coverage of all combinations of c̄ and ō and can lead to combinatorial explosion regard-
ing the size of the architecture, combinations of c̄ and ō attributes, and their domain
sizes. Consequently, standard machine learning approaches that require a fixed number
of features are not directly applicable due to this effect.

3.3.3.4 Training

As discussed earlier, this step of the methodology conforms to the conventional model
training process in supervised learning—see Section 3.3.1, thus no novel contributions
are introduced. Figure 3.10 shows a flowchart of the activities and data objects during
the Training step of the methodology. Following the method choice and tuning, this step
initially is concerned with finding the most proper split of the sampled data generated
during the data generation step. The generated data is split to distinct training set and
validating set, e.g., 70% training and 30% validating. Next, the training set is again
split using statistical K-fold cross-validation technique–see Section 3.3.1. The training
data, i.e., in the form of input-output pairs, is then fed to the employed model training
methods. The training step is a repeatable process that maximizes utilization of the
available training data. Following the K-fold cross-validation for splitting the data, we
loop through K iterations of train and test.

At the end of the Kth iteration, the average model performance, i.e., the predic-
tion error of the K trained models during the K tests, is evaluated. In cases where
the trained model exhibits low cross-validation score, the training is re-initiated after
adjustments of the hyperparameters of the employed learning algorithm. During the
training, we optimized for model accuracy via minimizing the prediction error. We use
Root Mean Square Error (RMSE) as the performance metric of the prediction models that
is the square root of the mean of the squared differences between actual outcomes and
predictions—see Equation 3.14. The stopping criteria for the hyperparameter tuning
during training may be defined based on the number of iterations, upon obtaining cer-
tain model performance, or when the prediction performance saturates to a stable value.
Once the stopping threshold is met, among different prediction models, we chose the
one with the smallest RMSE, i.e., the highest performing model. Next, we switch to the
model validation step based on the unseen validating data set.

3.3 learning utility-change prediction models 63

Get data

Split data
to k foldsSplit data

[less than k repeats]

Training
set

Fold k-1

Fold 1

Fold k

Train Prediction
model

Test

Model
performance

Switch Fold k
with new fold

Check cross-
validation score

[k repeats]

Select highest
performing model

[Stopping
criteria met]

[Stopping criteria not met]Tune
hyperparameters

Validate prediction
model

Validating
set

Prediction
model

Tr
ai

ni
ng

Va
lid

at
in

g
Repeat k times

Figure 3.10: Overview of model training.

RMSE =

√∑i=N
i=1 (xi − x̂i)

2

N
(3.14)

3.3.3.5 Validating: check prediction error

During the validating step, we evaluate the trained prediction models across the validat-
ing data set. For this purpose, we utilized the Mean Absolute Deviation Percent (MADP)
metric which gives normalized values between zero and 100% and is computed accord-
ing to Equation 3.15. Different data splits between the training and validating sets may
yield different MADP values.

MADP = 100× |
Actual value− Predicted value

Actual value
| (3.15)

In the context of learning prediction models for utility-changes, the error between the
actual and predicted utility-change values, defined as Equation 3.16, is normalized to
serve as MADP for the prediction models.

e∗∆(c̄, ō,a) := |Û∆(c̄, ō,a) − Û∗∆(˜̄c, ˜̄o,a)| (3.16)

64 utility functions for dynamic software architecture

Note that Actual value in Equation 3.15 and Û∆(c̄, ō,a) in Equation 3.16 represent the
ground truth for the target variable and are obtained from the output values in the
validating data set that comes in the form of input-output.

For the employed set of learning methods, we opt for minimizing MADP by allowing
the decision trees to select all the available input features. This is accomplished by
tuning various hyperparameters of the employed methods such as number of the leaf
nodes and depth of the trees.

3.3.3.6 Validating: check runtime effort

In addition to the standard machine learning validation step, i.e., checking prediction
errors, in the proposed methodology we suggest an additional step, i.e., check runtime ef-
fort in Figure 3.9, to validate the K prediction models û∗∆,1(˜̄c, ˜̄o,a), . . . , û∗∆,k(˜̄c, ˜̄o,a). Run-
time effort is the amount of time required to load and execute the prediction models on
the running system until the prediction is made available by the models. However, we
can evaluate the runtime effort of the models by running them on the already available
execution traces of the system that is the data generated for learning.

At the end of this step, based on the observed runtime effort and the characteris-
tics of the system, a prediction model might be discarded or further tuned to prevent
performance reduction at runtime. The validation step is concluded by choosing best
performing prediction models regarding the model accuracy, i.e., prediction errors and
their runtime effort.

3.3.3.7 Selecting

Selecting models based on the prediction error does not guarantee that employing them
on a running system yields the highest reward, i.e., accumulated utility over time. In
other words, minimizing the prediction error does not necessarily maximize the sys-
tem performance. The reason is twofold; the prediction error values are averages across
predictions, hence, the error is not necessarily uniform across all the architecture ele-
ments. The second reason is that in the context of self-adaptive software system, system
performance depends on how the adaptation process is carried out.

The decision-making process during adaptation follows a three step process: (1) for
a current system state, represented by (c̄, ō), estimate the utility-change Û∗∆(c̄, ō,a) dur-
ing (c̄, ō) →a (c̄ ′, ō). (2) select an adaptation action a based on the estimates, and in
case a sequence of adaptation actions are selected for execution, (3) rank the actions re-
garding their priority for execution. We discuss the decision-making process, and more
specifically, steps (2) and (3) in Chapter 4. In this section, the proposed methodology is
concerned with step (1), i.e., predicting the utility-changes. However, it is natural that
the predictions further influence step (2) and (3) of the process. Thus, in the following,
we discuss the fourth step of our methodology, i.e., selecting the best-fitting prediction
models that, in addition to the prediction error and runtime effort, considers model per-
formance in finding the optimum ranking of the adaptation actions during step (3). At
this part of the text, let us assume that the optimum ranking list of adaptation actions
for sequential execution is a list of actions that are ranked in a decreasing order of the
estimated utility-change. Therefore, actions resulting in higher utility-change in their
corresponding adaptation (c̄, ō)→a (c̄ ′, ō) are prioritized. We revisit and provide more
context for this assumption later in Chapter 4.

3.3 learning utility-change prediction models 65

For each sorted list of adaptation actions, the adaptations with higher estimates of
utility-change should be on the top of the list. Nonetheless, even small prediction errors
can make the order of the actions diverge from the optimum. Our solution is to directly
compare the decision lists produced by the prediction models (predicted lists) to optimal
lists. The predicted lists can be obtained by executing the prediction models on the real
system. For each predicted list, it is also possible to observe the real utility-change, i.e., the
ground truth, via measurable quality attributes. Adaptation actions are then manually
sorted in a descending manner regarding the utility-changes. This generates an optimal
list for each predicted list which can now be compared. The lists are then compared re-
garding differences, i.e., mismatches. For that, we extend a set of standard similarity
metrics to cover three families of mismatches: the number of items with different rank-
ing positions (counting), the magnitude of the ranking differences (distance), and the
location of these differences (position), which we explain next.
Count-based metric. The Jaccard similarity index [229], with a range from 0 to 1, is
a measure of similarity for the two sets of data. It compares members for two sets to
identify their shared as well as the distinct members and is defined as the intersection
of two sets divided by the union of the two—see Equation 3.17. In our methodology,
we adopted the Jaccard coefficient to count the number of mismatches, i.e., items with
different positions in the ranking, between the predicted list and the optimal list. We are
concerned with comparing lists which are ordered sets. Moreover, the two lists are only
different with respect to their rankings. This means that the predicted list is fully con-
tained in the optimal list. Therefore, in calculating the Jaccard distance metric for two
lists, the intersection of the lists is the number of the items in similar positions while
the union is the length of the lists.

J(A,B) =
|A∩B|
|A∪B|

(3.17)

Distance-based metric. Counting the mismatches between two sets might hide the fact
that mismatches can be distinct regarding the distance between the actual position in the
ranking and the predicted one. Distances can be seen as the magnitude of the error for
each mismatch. Items with larger mismatch distances then have a larger negative impact
on a distance-based similarity index. This is important when certain list items should
present smaller mismatch distances than others. In the context of this thesis, where
lists include a sequence of adaptation actions, certain actions that are more critical to
system functionality should be prioritized over others, thus it is desirable to minimize
their mismatch distance in the predicted list; a distance-based similarity metric allows for
prioritizing these items in the list.

Kendall-tau, also written as Kendall τ [250], is a non-parametric correlation metric
that computes distances among the mismatches. Kendall-tau is a measure of rank cor-
relation indicating the similarity of the orderings and is calculated according to Equa-
tion 3.18. The variable N is the length of the lists, c is the number of concordant pairs and
d is the number of discordant pairs. For lists A and B, let A[i] and B[i] represent the items
in position i of the lists; any pair (A[i],B[i]) and (A[j],B[j]) where i < j, are concordant
if the sort order of (A[i],A[j]) and (B[i],B[j]) agrees; that is, if either both A[i] > A[j]

66 utility functions for dynamic software architecture

and B[i] > B[j] holds or both A[i] < A[j] and B[i] < B[j]; otherwise, they are considered
discordant [95].

τ =
c− d(
N
2

) (3.18)

The numerator c− d in Equation 3.18 is calculated according to ALGORITHM 3.1.

ALGORITHM 3.1 : c− d

1 numer← 0

2 for i = 2 to N do
3 for j=1 to i-1 do
4 numer := numer+ sign(A[i] −A[j]) × sign(B[i] −B[j])
5 end
6 end
7 return numer

Position-based metric. Mismatches can also be distinct regarding the position that they
happened in the ranking. Take for instance an item that is ranked at second position
in a list, but should have been ranked first. Now take the case of an item ranked 46th,
but should have been ranked 45th. Note that in both cases, there are two mismatches,
hence, same counting and the mismatch distance is the same, i.e., exactly one. However,
the mismatch at the top of the list might be more relevant. The premise of position-
based metrics is that highly relevant items appearing lower in a list should be penal-
ized. Among several metrics from the information retrieval field [82], we employ the
Discounted Cumulative Gain (DCG) metric [233].

DCG uses a graded relevance scale of ordered items, e.g., order of the results in a web
search. The graded relevance scale measures the usefulness or gain of an item based on
its position in the list. The gain is accumulated from the top of the list to the bottom,
with the gain of each item discounted at lower ranks. DCG penalizes wrong position-
ing of items that should be in higher ranked positions via logarithmically reducing the
graded relevance value proportional to the position of the item. Equation 3.19 character-
izes the DCG metric for an item in position p of a list where reli is the graded relevance
of the item at position i that is defined by the user or a domain expert.

DCGp =

p∑
i=1

reli
log2(i+ 1)

(3.19)

In our methodology, we extend the metric to consider the position of the mismatch and
to apply the discount factor only to the item that caused a mismatch. Moreover, we
obtain reli values for items in the predicted list from the ground truth, i.e., the optimal list.
The reli for an item in position i of the predicted list is its position in the optimal list.
Aggregation of metrics. Each of the three similarity metrics introduced above might
reflect an architectural concern, which a designer of an adaptive system would need to
combine in different ways. At this step of our methodology, we enable this by aggre-
gating all three metrics into one single metric, i.e., Similarity Aggregation Metric (SAM).
SAM, defined in Equation 3.20, is the weighted average of the three metrics. It is nor-
malized between 0 and 1 and allows for determining distinct levels of importance per

3.4 summery 67

metric and assigns the weight wi to the value accordingly. In order to compute SAM,
the Jaccard, Kendall-τ, and DCG metrics are measured for the predictions made by each
prediction model mod. Finally, the output of this step of the methodology is the model
yielding the highest similarity of the predictions to the ground truth, indicated by the
SAM metric.

SAM(mod) =
w1×Jaccard(mod) +w2×Kendall(mod) +w3×DCG(mod)

w1 +w2 +w3
(3.20)

3.4 summery

The objective of this thesis is to address the quality and cost trade-off during software
self-adaptation. As a first step towards achieving this goal, in this chapter, we discussed
our approach to define utility functions for dynamic software architectures that enable
incremental evaluation of the architecture. We introduced the notion of pattern-based
utility and described how utility values are assigned to fragments of the software ar-
chitecture. The pattern-based definition of utility supports dynamic architectures that
may change in size or complexity at runtime, for the context of the pattern-matching
can also be dynamically extended. Assuming a restricted scope of change in the archi-
tecture caused by each action execution, we proposed incremental utility calculation,
i.e., via using the locality information. Instead of evaluating the utility of the complete
architecture, the changes of the utility, caused by the action, are incrementality com-
puted and maintained. This way, we avoid the costly process of observing and evaluat-
ing the complete sate space and only track the changes of the architecture and of the
utility. We referred to this concept as the utility of the configuration-changes or simply,
utility-change. We proposed to consider utility-change calculation (prediction) rather
than evaluating the utility of the complete architecture, thus supporting incremental
utility calculation (prediction) for large and dynamic architectures.

In the context of dynamic architectures, we showed (i) how to analytically construct
utility functions from domain knowledge, and (ii) how to train prediction models for
utility-changes from observations. We demonstrated the analytical utility construction
based on business objectives for mRUBiS application example as the process requires
system-specific goal models. Further more, this chapter addressed the problem of ini-
tially unknown runtime knowledge of user and system preferences by proposing a
methodology that modifies and extends the conventional supervised learning process
to train prediction models for utility-changes—see R6 in Table 1.1. This chapter pro-
vides the Utility Function building block of our generic solution for architecture-based
self-adaptation in this thesis—see Figure 1.2 for an overview. In the following chap-
ters, we discuss how the adaptation engine leverages the utility values provided by the
Utility Function introduced in this chapter.

4
V E N U S : U T I L I T Y- D R I V E N R U L E - B A S E D S C H E M E F O R
A R C H I T E C T U R E - B A S E D S E L F - A D A P TAT I O N

This chapter presents Venus, a utility-driVen rule-based scheme for architecture-based
self-adaptation. Being integrated in a MAPE-K feedback loop, Venus is realized in an ex-
ternal approach for self-adaptation where the adaptation engine dynamically observes
and adjusts the adaptable software. The scheme relies on existence of a Utility Function
and implements the Analyze and Plan activities of the adaptation engine—see Figure 4.1
for an overview. We showed in Chapter 3 how to construct the Utility Function building
block; in this chapter, we discuss how Venus utilizes the Utility Function during the
Analyze and Plan.

Adaptable Software

Execute

Sensing Affecting

Monitor

RTM

Utility
Function

VENUS VENUS
Analyze Plan

Figure 4.1: Chapter overview: analyze and plan with Venus in adaptation engine.

MDE principles, constituting one of the major underpinnings of this thesis’ solu-
tion to software self-adaptation, support creation and runtime evolution of causally
connected RTMs. Building on the MDE principles, Venus uses models of software ar-
chitecture at runtime for maintaining the self-adaptive software. The fundamental re-
quirement of Venus is that the adaptation engine uses RTMs of software architecture as
introduced in Section 2.4.

While the state-of-the-art mainly subscribe to one of the main formalisms for the
adaptation policies, i.e., ECA rules and optimization-based solutions (goal-based or
utility-based), Venus tailors both classes, at design time, to assemble a compromise that
collectively exhibits the benefits of two ends of the spectrum, while, inevitably, inher-
iting certain limitations of its constituent elements. Venus achieves this combination
via a set of novel steps; leveraging graphs and graph-based formalism, Venus captures
the architectural RTMs as graphs. Consequently, the runtime issues requiring adapta-
tion are realized as graph patterns in the architectural RTMs. Venus employs ECA rules
to capture the adaptation decisions. In addition, the scheme uses utility functions, in-

69

70 venus : utility-driven rule-based scheme for self-adaptation

troduced in Chapter 3, to capture system objectives and steer the adaptation towards
maximizing the utility.

Similarly to the adaptation issues, Venus defines the adaptation rules as well as the
system utility in the space of graph patterns; this supports mapping between the utility
values and the adaptation rule applications. This way, Venus embodies ECA rule-like
constructs and relies on utility theory to choose an adaptation. Moreover, defining adap-
tation rules and utility functions based on the patterns in system architecture supports
adaptation of software systems with dynamic architectures that may change in size and
complexity. The idea of graph pattern-based characterization of the adaptation issues,
adaptation rules, and utility values is the underlying principle of Venus.

In this chapter, we first present the graph-based realization of the adaptation concepts
applicable to Venus in Section 4.1. Next, following the discussion of pattern-based util-
ity introduced in Chapter 3, we discuss the linking of utility values to adaptation rule
applications in Section 4.2. Then, we present in Section 4.3 an overview of our solution
for incremental execution of the adaptation engine whereby we discuss the integration
of Venus in a feedback loop. Finally, we provide an assessment of the computational
effort in Venus in Section 4.4 that is followed by a set of assumptions for applicability
of Venus and validity of the claims.

4.1 graph-based realization of adaptation concepts

Venus is realized in an external approach for self-adaptation (see Section 2.3.2) and is
integrated in a MAPE-K feedback loop where the adaptation engine dynamically ob-
serves and adjusts the adaptable software—see the reference model for the feedback
loop in Figure 2.6. The adaptation engine maintains a causally connected architectural
RTM, introduced in Section 2.4, as part of its knowledge to represent the architecture
of the adaptable software. Thus, adaptations of the software are achieved via adding,
removing, and reconfiguring components as well as connectors—see [302]. The RTM
enables capturing structural and behavioral dynamics of the causally connected sys-
tem [47, 302]. Moreover, software architecture can be characterized as a graph of com-
ponents and connectors [282, 322]. Thus, Venus captures the required modeling artifacts
for architectural RTMs by considering a graph-based realization of the model that en-
ables the use of graphs-based formalism and graph transformations [115, 415]—see Sec-
tion 2.6.1.

The architectural RTM represents the system architecture as a graph of interacting
components [322]. Nodes in the graph, i.e., components, represent the principal compu-
tational elements and data stores of the system; arcs, termed connectors, represent the
pathways of interaction between the components. Although there are different views of
architecture [96], in this thesis, we are primarily interested in the component-connector
view as it characterizes the abstract state and behavior of the system at runtime to enable
reasoning about problems and courses of adaptation—see example of an architectural
RTM for mRUBiS in Figure 2.9.

By realizing the architectural RTM as a graph G and building on MDE principals,
Venus enables realization of model transformation via the established graph opera-
tions, i.e., graph transformation [27, 186, 377] that is suitable for structural changes of
models. Thus, Venus uses attributed graphs and graph transformation to capture the
architectural RTM of the adaptable software and the structural changes of the models

4.1 graph-based realization of adaptation concepts 71

zBay:
Architecture

zBay:
Architecture

t2
:Tenant

t2
:Tenant

t1
:Tenant

t1
:Tenant

state = STARTED

c13
:Component

state = STARTED

c13
:Component

state = STARTED

c21
:Component

state = STARTED

c21
:Component

state = UNDEPLOYED

c22
:Component

state = UNDEPLOYED

c22
:Component

state = NOT-SUPPORTED

c12
:Component

state = NOT-SUPPORTED

c12
:Component

state = STARTED

c11
:Component

state = STARTED

c11
:Component

architecture:
Architecture
architecture:
Architecture

state: UNDEPLOYED

component:
Component

state: UNDEPLOYED

component:
Component

tenant:Tenanttenant:Tenant

architecture:
Architecture
architecture:
Architecture

state = NOT-SUPPORTED

component: Component

state = NOT-SUPPORTED

component: Component

tenant:Tenanttenant:Tenant

P2P1

Figure 4.2: Examples of adaptation issues (top) and excerpt of mRUBiS architectural RTM with
matches for issues (bottom).

respectively [186]—see Section 2.6.1. Particularly, we used Story Diagrams (SDs)/Story
Patterns (SPs) [141] as the modeling language to realize the graph (model) transforma-
tion rules in Venus. They allow to specify patterns at the same level of abstraction as the
RTM1. SDs are similar to ECA rules except that SDs are a visual language and based on
graph transformations—see Appendix A for an introduction to SD formalism. Techni-
cally, we employ an SD interpreter, i.e., an execution engine for graph transformations;
we will discuss this in Section 7.1 together with the implementation details of Venus.

Venus primarily employs a rule-based scheme that defines failures or performance
issues that can be directly identified and localized as faults or bottlenecks in the archi-
tectural RTM. Moreover, it defines adaptation strategies that can address these issues.
To specify a model query over the architectural RTM we use a pattern P. A pattern P of
a set of patterns P represents a structural fragment of the architecture G. In Venus, we
express the adaptation issues, henceforth, issues, in the architecture as model (graph)
patterns such that concrete issues relate to occurrences of these patterns in G. Since
the architecture is represented by the RTM, we also use G to refer to the model. An
occurrence of a pattern P in G corresponds to a match m of P in G and is represented as
G |=m P—see Section 2.6.1. Figure 4.2 shows examples of patterns P1 and P2 capturing
two adaptation issues in mRUBiS. P1 indicates a runtime component failure where the
state of a component in the architecture is set to NOT-SUPPORTED and P2 represents the
issue where a component is in UNDEPLOYED state. In the bottom, two matches, m1 and
m2, in an excerpt of the architectural RTM of mRUBiS are marked. The RTM conforms
to the metamodel of mRUBiS in Figure 2.8.

1 We used the Story-driven Modeling (SDM) tool as the model execution engine that comprise an editor,
interpreter, and debugger for SDs. Besides SDs, other graph transformation languages have been proposed
for expressing adaptation rules [390, 404, 424].

72 venus : utility-driven rule-based scheme for self-adaptation

Venus enables structural adaptation of the software—see Section 2.3.2—where soft-
ware components, connectors, and their attributes define the points of variability in
the configuration space for the adaptable software [35]. The configuration space of the
adaptable software is defined by a vector of configuration settings c̄ and thus the sys-
tem is adapted via changing the current configuration c̄ to the new configuration c̄ ′.
A pair of the configuration attributes and the corresponding observations ō, i.e., (c̄, ō),
constitute the state of the adaptable software system at each point in time—see Sec-
tion 2.3.2. The architectural adaptation of the software system changes the current state
of the system, captured by (c̄, ō), to a new state (c̄ ′, ō) by execution of an adaptation
action a ∈ A with A the set of available actions to adapt the system. We show this as
(c̄, ō)→a (c̄ ′, ō).

Venus captures the adaptation actions as ECA rules—see Section 2.3.2. Adaptation
rules are fine grained units of change and collectively constitute the repertoire of adap-
tation actions A. As introduced earlier in Section 2.3.2, ECA rules are guarded with
conditions that directly map specific event combinations to actions, i.e., modifications
of the adaptable software. In our context, adaptation issues create change events. Con-
forming to the ECA-based adaptation policies, once a change event occurs, if any of the
adaptation rule conditions are satisfied, the rules become applicable as an adaptation
action to adapt the system accordingly and resolve the adaptation issue(s). Venus is
particularly tailored to capture self-healing and self-optimization of large and dynamic
architectures; this entails automatic resolution of the adaption issues, e.g., runtime fail-
ures, by general repair and optimization actions that perform architectural adaptation
and reconfiguration.

An adaptation rule r in rule set < uses the patterns Pi ∈ P for already identified
matches in Mi(G), with Mi(G) = {m |G |=m Pi} as the set of matches for Pi in G, to
localize an issue and to change the model, in-place, thus resolving the issue. Remember
from Section 2.4 that in-place model transformation is a rule-based modification of a
source model resulting in a target model. In this process, both models are typed over
the same metamodel [45]; the automated matching of a pattern and execution of the
subsequent adaptation rule constitute the self-adaptation of the software.

Additionally, the adaptation rule r is characterized by LHS and RHS patterns which
define the pre-condition and post-condition of an application of r = (LHS,RHS), respec-
tively. An application of the rule r is required if the condition, described by the LHS
pattern, is satisfied, i.e., for each match of the LHS in the model. For r = (LHS,RHS), if
a match m for LHS in the model Gi exists, then, applying the rule results in a modified
model Gj by Gi →LHS,m Gj. For simplicity, we show this as Gi →r,m Gj. The RHS
of the transformation rule determines how to modify Gi to obtain Gj. Intuitively, the
execution of r searches for LHS in Gi and transforms it according to the RHS pattern—
see Section 2.6.1.

Venus operates on a graph-based realization of the architectural RTM where poten-
tial adaptation issues are captured as undesired patterns in the architecture G. Conse-
quently, by defining ECA rules with LHS defined as the patterns that capture the issues,
application of the rules entails querying the architectural RTM to identify the adapta-
tion issues. The adaptation rule uses the LHS patterns and their identified matches to
localize the adaptation issue. Next, the RHS of the transformation rule determines how
to modify the model enacting the action part of the adaptation rule and thus adapts the
system through causal connection to resolve the detected issue. Venus enables analysis

4.2 linking adaptation rules to utility 73

of the RTM via model (graph) queries and realizes the adaptation rules with in-place
model transformations.

4.2 linking adaptation rules to utility

Venus relies on utility theory to evaluate large, dynamic software architectures and their
modification. The utility function U(G) assigns a real scalar to the system architecture
G indicating the desirability of G according to system objectives—see Section 3.1. The
need for evaluating dynamic architectures is motivated by architectural self-adaptation.
Before each adaptation, the adaptation engine has to identify a desirable target config-
uration and select the adaptation actions that move the system in that direction. In this
section, we describe how Venus enables this via linking utility values to adaptation rule
applications.

Venus is integrated in a MAPE-K feedback loop, thus it involves the conventional
MAPE activities, i.e., Monitor, Analyze, Plan, and Execute—see Figure 2.6. The moni-
toring phase observes the current system configuration and updates the architectural
model accordingly. During analysis and planning, the adaptation engine is concerned
with two decisions: (I) the target configuration of the system after the adaptation; (ii)
identifying the applicable rules and their matches that move the system towards the
target configuration. This is illustrated in Figure 4.3 where a target configuration Gj is
reachable through three alternative paths from the source configuration Gi. These two
decisions are inspired by the idea of MPC that first defines a target and then predicts the
optimal path to reach the target [374]—see Section 2.1.2. Venus primarily is concerned
with identifying and addressing runtime failures and performance issues. Thus, select-
ing a configuration where these issues are resolved is equivalent to defining the target
configuration; during the adaptation, selecting the best sequence of the adaptation rules
and their matches that resolve all issues is equivalent to building the path towards the
target configuration. Paths that achieve, at an earlier point in time, larger increase of
the utility are preferred. Finally, the last step of the feedback loop executes these rules
for their matches on the running system.

Venus captures adaptation issues as negative architectural utility patterns. Hence,
occurrences of adaptation issues, i.e., finding matches for their corresponding patterns
in the architecture G, negatively affects the overall utility of the architecture G, i.e.,U(G),
relative to their corresponding utility sub-functions—see Section 3.1.2.

Time

U(Gj)

U(Gi)

Utility

Gj

Gi

Gk
U(Gk)

Path A: r1 r2 r3 r4

Path B: r3 r1 r4 r2

Path C: r4 r3 r2 r1r1

r2

r3

r4

r1

r2

r3

r4

r1

r2

r3

r4 Target configuration

Source configuration

A

B

C

Figure 4.3: Target configuration reachable through different paths.

74 venus : utility-driven rule-based scheme for self-adaptation

In the rule-based adaptation scheme, adaptation issues trigger the adaptation rules
by matching their pre-condition pattern. In Venus, the application of an adaptation rule
is concerned with resolving exactly one match for the LHS. Therefore, execution of the
rule removes the match for the issue, i.e., the negative architectural utility pattern, and
thus eliminates the negative impact of the issue on U(G). For the proposed rule-based
adaptation scheme we require that: (i) rules identify and resolve occurrences of negative
patterns in the architecture; (ii), a rule application should not affect existing positive
patterns, rather enable new occurrences of positive patterns by resolving occurrences
of the negative patterns. The individual context of each occurrence of a pattern could
cause variations in the final expected utility after the adaptation, thus plays an essential
role in steering the decision-making mechanism in Venus.

Starting from a current configuration Gi that is represented by a vector of configura-
tions and observations as (c̄, ō), applying the rule r with a match m in Gi adapts the
system to a target configuration Gj represented by (c̄ ′, ō). The adaptation is denoted as
(c̄, ō) →r,m (c̄ ′, ō). The graph equivalent of this notation is defined as Gi →r,m Gj. For
the general class of self-adaptation solutions, we compute the utility-change Û∆(c̄, ō,a)
during (c̄, ō) →a (c̄ ′, ō) in Equation 3.8 or approximate it via the predicted utility-
change Û∗∆(c̄, ō,a)—see Section 3.3. Venus realizes the adaptation action a via the
adaptation rule r and the match m. In the context of rule-based adaptation, for an
adaptation rule r and a match m in Gi with Gj as the next configuration, we define the
utility-change as follows: (for simplicity, in this chapter, we use the notation U instead
of Û—see Equation 3.5).

U∆(c̄, ō, r,m) = U(c̄ ′, ō) −U(c̄, ō)

= U(Gj) −U(Gi)
(4.1)

The utility-change calculation for a rule application and its corresponding match
in Equation 4.1 does not require the full architectural configuration c̄ and observation ō,
but only sub-vectors of them, i.e., ˜̄c, and ˜̄o respectively—see Section 3.2.2. The sub-
vectors are determined relative to the match m and the selection could be specific
to each rule r. In order to obtain utility-change values in Equation 4.1, we compute
U∆(˜̄c, ˜̄o, r,m). In Chapter 3, we discussed that sub-vectors ˜̄c and ˜̄o are determined rel-
ative to the application context for the selected adaptation action. However, we argued
that this assumption is only valid if the scope of the change caused by execution of a
is local, that is, it does not include the whole architecture—see Section 3.2.2 and Sec-
tion 3.3. In the context of rule-based adaptation, the scope of a change, caused by a rule
execution, is limited to its match m. Thus, in Venus, we determine ˜̄c and ˜̄o relative to
the match m for rule r.

For a target configuration Gj, it must hold that its utility U(Gj) is higher or equal to
any utility U(Gk) of all possible next and intermediate configurations Gk that are the
outcomes of resolving the issues in the current configuration Gi—see Figure 4.3. For the
class of self-adaptation properties that concern this thesis, i.e., self-healing and limited
scope self-optimization, the target configuration Gj is always reachable unless there are
resource limitations.

Venus avoids enumerating the complete search space, i.e., all the reachable configu-
rations from Gi, by computing the impact of each possible rule application for a match
on the related utility sub-function, thus on the overall utility—see Equation 4.1.

4.2 linking adaptation rules to utility 75

After identifying the target Gj, a set of adaptation rules with their matches has to
be selected to reach Gj—see Figure 4.3. A sequence of rule applications changes the
configuration Gi towards Gj, which we denote as Gi →ri ′ ,mi ′ Gi ′ → ... →rj,mj

Gj.
Based on the impact of each rule application on the utility, Venus determine the path. To
resolve a single issue, alternative rules are applicable and an estimation of their impacts
on the utility allows to select a conflict-free subset of them. In Venus, we assume that
the impacts of the adaptation rules on the utility are independent of each other, thus
for all such sets, we can compute the utility impacts, i.e., utility-changes, regardless of
the order in which the rules are executed—we mark this as a required assumption for
applicability of Venus later in this chapter.

Venus seeks optimality with respect to the system objective satisfaction that is cap-
tured by U(G) via pursuing a greedy algorithm before each adaptation. A greedy algo-
rithm always makes the choice that produces the largest immediate gain while main-
taining feasibility. There are two key ingredients in proving the correctness of a greedy
algorithm [see 121]: first, the greedy-choice property that indicates a globally optimal so-
lution can be arrived at by making a locally optimal, i.e., greedy choice, and second is
the optimal sub-structure property; a problem has an optimal sub-structure if an optimal
solution to the entire problem contains the optimal solutions to the sub-problems [438].
Thus, the optimality claim in Venus is restricted to the class of self-adaptation problems
that satisfy the greedy choice property where a global optimal solution can be reached by
choosing the optimal choice at each step [see 6]. In the light of this, Venus guarantees
the following achievements for each adaptation:
(i) executing the selected rules eventually leads to the target Gj with optimal utility U(Gj).
(ii) executing the selected rules in the right order results in the highest achievable reward, i.e.,
accumulated utility over time. The area under each path curve in Figure 4.3 represents the
reward.

Venus fulfills (i) by pursuing a greedy choice when there are two or more alternative
rules to resolve the same issue. The scheme selects the rule with the highest (expected)
impact on the utility. As discussed above, provided by the greedy choice property of
the targeted problems, Venus arrives at a globally optimal solution by making locally
optimal choices. To achieve (ii), the choice that produces the largest immediate gain is
prioritized, thus Venus executes the selected rules in a decreasing order of their impact
on the utility. To maximize the reward, Venus offsets the designated utility increase
with the estimated cost of executing each rule. The collective fulfillment of (i) and (ii)
suggests that Venus is optimal regarding both the final utility U(Gj) and the achieved
reward. Reward optimality in the context of (i) is achieved by selecting the best rule in
terms of utility impact for each issue. In the context of (ii), the scheme is optimal since
it prioritizes those rules from the selected set that have larger impact on utility. In both
cases, if multiple rules have the same impact on utility, cheaper rules, i.e., rule with
lower cost, are prioritized as cost, besides utility, also affects the reward.

Employing utility functions to evaluate dynamic architectures at runtime, as de-
fined in Chapter 3, enables optimization-based approaches for self-adaptation. These
approaches search the configuration space and compute the utility for each possible
next configuration; however, such a solution for making adaptation decisions does not
scale if the utility is computed for each configuration completely anew. Large configura-
tion spaces impose additional challenge for optimization-based approaches. In contrast,
Venus determines at runtime the impact of each possible rule application on the utility.
This way, the search space for next configuration is limited to those reachable from

76 venus : utility-driven rule-based scheme for self-adaptation

Update
RTM

Mark all rules
that resolve
the issues

Select best
rule for

each issue

Order best
k rules

Execute rules in
given order

Delete
related issues

Mark new
matches of

patterns

Rule set

Marked
rules

Selected
rules

Delete
invalid old

issues

Ordered
rules

[issues exist]

[no issues exist]

M
on
ito
r

A
na
ly
ze

Pl
an

Ex
ec
ut
e

RTM

RTM
RTM

RTM RTM

Figure 4.4: Activities of MAPE-K feedback loop realizing Venus.

the current configuration and via the specified rule execution. Based on these impacts,
Venus selects the optimal adaptation rule to address each issue and identifies the optimal
sequence of the rule executions required to maximize the reward.

4.3 realizing venus in a feedback loop

Venus is realized in a MAPE-K feedback loop that is amenable to incremental execu-
tion. In this section, we detail our approach for incremental execution of an adaptation
engine where the Analyze and Plan activities are implemented by Venus. We discuss
Venus and its features following the MAPE-K blueprint using the running mRUBiS
example—see Section 2.5—to discuss all aspects of Venus.

4.3.1 Feedback Loop

Figure 4.4 visualizes the steps of Venus, integrated in the MAPE-K feedback loop, in
the form of an activity diagram. The MAPE-K blueprint for feedback loops has been
discussed in Section 2.3.2 and it considers a sequence of Monitor, Analyze, Plan, and
Execute activities that all share and jointly operate on some Knowledge.

As discussed earlier, Venus implements the Analyze an Plan activities and is inte-
grated in a feedback loop where the Monitor and Execute activities also support incre-
mentality, therefore, collectively construct a complete adaptation loop. The adaptation
engine uses an architectural RTM of the adaptable software to monitor the system and

4.3 realizing venus in a feedback loop 77

reason about the required changes. To handle the individual adaptation activities and
the RTM within a feedback loop as well as the interplay between them, the adaptation
loop adopts the principles of MDE—see Section 2.4. Thus, the MAPE activities are con-
sidered as model operations that operate on an RTM. The interplay is reflected by the
control flow among the operations and the model usage defining how operations use
the RTMs.

The MAPE activities, including Venus, leverage event-based processing of the changes,
thus enable incremental execution of the adaptation loop. The execution of the loop is
triggered by every event that notifies about the changes of the adaptable software. The
feedback loop is not reentrant, thus all events that occur during a feedback loop execu-
tion are queued to be processed by the next loop. When the current feedback loop run
is finished, the next run is triggered if there is at least one queued event. The loop exe-
cution continues until it processes all of the currently queued events. Thus, Venus does
not required any static, time-based frequency to be determined manually for executing
the feedback loop.

All of the four MAPE activities operate on the architectural RTM. The activities in the
diagram in Figure 4.4, indicated by the rounded rectangles, work on the data objects that
are represented by rectangles. Figure 4.4 shows one RTM that captures the knowledge
part of MAPE-K. The usage of data objects like RTM as inputs or outputs of an activity
is defined by arrows pointing to the activity or to the data object, respectively.

Throughout multiple executions of the adaptation loop, the Monitor activity updates
the RTM in each run, therefore, the RTM is not created from scratch in each run of the
feedback loop, rather is preserved. Temporary updates of the models are allowed via
model annotations, e.g., to exchange information among activities, such that they can be
destroyed by activities after they have fulfilled their purpose. For instance, the Monitor
operation adds the symptoms to the RTM to provide hints for the Analyze operation
that could destroy the annotations after having used these hints. Likewise, the Plan and
Execute operations could destroy the markers created for the applicable and selected
rules when having finished the planning respectively the execution.

During monitoring, the model is updated to reflect the changes of the system. The
analysis deletes the old issues from the model. Old issues are matches of the negative
patterns that have been identified by a previous run of the loop that are not valid
anymore. In addition, the new issues are detected and annotated in the RTM during
analysis. The subsequent planning considers all possible adaptation rules in the rule set
that can address the existing issues. For each applicable rule, i.e., marked rule in Fig-
ure 4.4, the impact on the utility and cost of execution are calculated. For each issue, the
best rule regarding the impact and cost is selected. The selected rules over all issues are
sorted according to their utility impact and cost. In the execution phase, the ordered list
of rules is executed on the model and thus on the running system followed by remov-
ing the corresponding issues from the RTM. The incremental monitoring derives from
work of Vogel et al. [417, 418], while the incremental analysis, planning, and execution
mechanisms are new to this thesis. In the following, we provide a detailed description
of the MAPE-K feedback loop activities realizing Venus.

As mentioned earlier, modifications to the RTM in Venus are done via SDs as the mod-
eling language that realize the graph (model) transformation rules. An SD structures
an initial, a final, and one or more action node(s) in a control flow that characterizes
an activity. Action nodes are realized by Story Patterns (SPs) or Call Actions. An SP de-
scribes and executes a graph transformation while a Call Action invokes either another

78 venus : utility-driven rule-based scheme for self-adaptation

SD or code. SDs are similar to ECA rules and capture the LHS and RHS of a graph
transformation rule. They allow to specify patterns at the same level of abstraction as
the RTM. The Analyze, Plan, and Execute activities of the MAPE-K loop in Venus are
realized via SD-based rules and are referred to as analysis, planning, and execution
rules respectively—see Appendix A for more details on the SD formalism.

4.3.2 Monitor

During monitoring, owing to the causal connection between the adaptable software
and the RTM, enabled by MDE techniques, change events emitted by the system are
reflected in the RTM. Employing MDE principles allow the adaptation engine to main-
tain the causal connection, thus incrementally updating the architectural RTM based
on changes of the running system. The causal connection serves as a layer that links
the model space to the runtime space [see 310], i.e., an infrastructure that translates a
change to the system into a change in the RTM and vice-versa—see Section 2.4. The
Monitor activity observes the adaptable software through the sensors provided by the
adaptation engine, aggregates, and filters the gathered data to determine the symptoms
that need to be handed to the Analyze activity. According to the observations, the Mon-
itor activity updates the RTM of the adaptable software and creates symptoms that
should be analyzed.

We implement the incremental monitoring proposed by Vogel et al. [417, 418] where
the system and the RTMs are causally connected and changes in the system are incre-
mentally reflected in the RTM during monitoring via TGG rules. TGG rules, defined
at the level of metamodels, specify by means of model transformation rules how the
architectural RTM, reflecting the adaptable software, is synchronized with the software
system. Thus, monitoring the system keeps the architectural RTM up-to-date.

In mRUBiS, the monitoring operation is realized with code that invokes the causal
connection to incrementally update the architectural RTM based on changes of the run-
ning mRUBiS. For instance, changes of the lifecycle state of a component, e.g., indicating
a stopped, crashed, or removed state, are observed during monitoring and the RTM of
mRUBiS is updated to reflect those changes and current state of mRUBiS accordingly–
see the mRUBiS metamodel in Figure 2.8.

4.3.3 Analyze

During the Analyze activity, the updated RTM is analyzed for any symptoms that might
indicate a need for adaptation. Analyze is a model-driven activity as models are used
to specify and execute the analysis; on the other hand, it is event-/state-based as the
analysis is driven by change events resulting from updates of the architectural RTM,
i.e., of the state, during monitoring. The change events contain locality information as
they point to the parts of the RTM which have changed during monitoring. Thus, the
analysis can be performed directly on the affected parts of the RTM without having to
search and check the whole model, which supports incremental processing of the RTM.

In this phase, the updated RTM is analyzed to check whether known matches of
negative patterns, i.e., old issues, are still valid; otherwise, the annotations representing
these issues are removed from the RTM—see the activity diagram in Figure 4.4. Next,
the updated RTM is analyzed to detect new matches of negative patterns, i.e., new

4.3 realizing venus in a feedback loop 79

utilityDrop := U2()

cf2:CF2

utilityDrop := U2()

cf2:CF2
<<create>><<create>>

<<create>>

Analyze for CF2

[self.failures->size() >= 5]

providedInterface
:ProvidedInterface

[self.failures->size() >= 5]

providedInterface
:ProvidedInterface

[self.state = STARTED]

component
:Component

[self.state = STARTED]

component
:Component

utility := utility + U2()

tenant
:Tenant

utility := utility + U2()

tenant
:Tenant

affectedComponent

issues

annotations
:Annotations
annotations
:Annotations

annotations
:Annotations
annotations
:Annotations

Figure 4.5: Annotating an occurrence (match) of a negative pattern in RTM.

issues, that enrich the known set of matches. This analysis is driven by events notifying
about model updates.

Venus computes and adds new matches of newly observed negative patterns while
preserving the set of old matches that are still valid. The invalid matches are simply
removed. Detection of new matches entails drops in the utility caused by new occur-
rences of negative patterns—see Section 3.1.2. The output of the analysis is the updated
set of matches for negative patterns, marked in the RTM, along with their impacts on
the system utility. The updated RTM is then handed over to the Plan activity.

As a first step in computing the impact of the newly detected matches on the sys-
tem utility, Venus computes the utility incrementally, rather than for each configura-
tion anew. Given a former RTM G, i.e., before occurrence of new matches, and an
updated version G ′, the set of new matches for the pattern Pi—see Section 3.1—is
Mnew
i = Mi(G

′)\Mi(G). Similarly, Mdel
i = Mi(G) \Mi(G

′) contains the matches for
the pattern Pi in G that are no longer valid in G ′. The patterns represent adaptation
issues, thus are negative architectural utility patterns P− = {P−k+1, . . . ,P−n }. We define
the utility sub-function Uj for a match m of a negative pattern P−j in architecture G,
that is, Uj(G,m), as a negative real value—see Section 3.1.2. We can therefore calcu-
late the corresponding change of the overall utility U(G ′) −U(G) via the utility-change
function U∆(G ′,G) in Equation 4.2. Besides computing the change of the utility, Venus

keeps track of the newly identified matches for the negative patterns by marking them
in the RTM, i.e., adding annotations to the model.

U∆(G
′,G) = −

n∑
i=1

∑
m∈Mdel

i

Ui(G,m) +

n∑
i=1

∑
m∈Mnew

i

Ui(G
′,m) (4.2)

The Analyze activity consumes the change events for the RTM; based on these events,
it runs the relevant analysis by invoking the SD interpreter to execute the corresponding
SDs. In the context of mRUBiS, the Analyze activity checks the RTM for occurrences of
negative patterns and adds Annotations to the RTM that mark the issues pointing to the
relevant affectedComponent. In this thesis, we use the self-healing and self-optimization
properties of mRUBiS to discuss Venus—see Section 2.5. We consider the following
issues: crashes (CF1) and removals (CF3) of components, occurrences of Failures in terms
of exceptions (CF2), connector crashes (CF4), and sub-optimal service performance (PI1)—
see Figure 2.8 for metamodel of mRUBiS. For instance, if exceptions have occurred

80 venus : utility-driven rule-based scheme for self-adaptation

when using a providedInterface of a component, the model is updated by representing these
exceptions as failures attached to the providedInterface in the RTM. Such an update causes
a specific change event that indicates a potential occurrence of a CF2 issue. Figure 4.5
shows an analysis rule in mRUBiS realized by an SP that detects the negative pattern
P−2 —introduced in Figure 3.4. The green parts are modifications to the RTM elements
during analysis. The occurrence of the negative pattern results in a drop in the tenant
utility equal to |U2|. This rule creates the CF2 annotation (in green) in the RTM with the
computed utilityDrop that points to the affected component; we omit the details to avoid
multiple annotations for the same issue.

4.3.4 Plan

If the Analyze activity does not discover any issues in the RTM, Venus skips the Plan
and Execute activities of the MAPE-K loop and terminates immediately after the RTM
is analyzed; otherwise, Venus performs the Plan activity followed by the Execute—
see Figure 4.4. Based on the annotations indicating new or remaining matches for nega-
tive patterns, i.e., issues in the RTM, Venus incrementally proceeds during the planning
by following three steps: (1) compute the set of all possible adaptation rule applications
(matches) that resolve each issue, (2) select the best rule application for each issue based
on the impact on the utility and cost, and (3) order the best rule applications across all
issues to maximize the reward. In the following, we elaborate on the three steps of the
Plan activity in Venus:

4.3.4.1 Compute all possible adaptation rule matches

In self-healing and self-optimization, applying an adaptation rule always leads to an im-
proved utility as it resolves an issue that has previously caused a drop in the utility. For
this case, we will show that adaptation rules have to be linked to negative patterns, for
their removals improves the utility. Moreover, knowing the matches for these patterns
allows Venus to incrementally compute all relevant adaptation rule matches, i.e., all the
rules that are applicable to resolve the issues. In the context of Venus, an adaptation
scheme with pattern-based utility functions, all the patterns that need to be matched
and resolved are negative patterns, i.e., upon occurrence, cause a drop in utility, and
the following requirements must hold:

Req 4.1 if there are no matches of negative patterns, there is no need for adaptation and no
improvement of the utility is possible.

Req 4.2 any improvement of the utility must necessarily resolve the identified matches of nega-
tive patterns, otherwise no improvement is possible.

Thus, we can safely assume that: (A1) for any adaptation rule rj = (LHS,RHS) in the
set of all adaptation rules <, where LHS of the rule is captured by pattern Pj, a negative
pattern P−i exists such that any match mj for Pj (mj makes rj applicable) includes a
match mi for P−i (mi denotes an occurrence of the negative pattern P−i). Thus, any
adaptation rule must be linked to a negative pattern such that the rule can only be
applied if there is an occurrence of the negative pattern. Otherwise, the rule could
be applied even though there is no occurrence of a negative pattern, and no utility
improvement can be achieved, which contradicts ReQ4.1. It can be the case that the

4.3 realizing venus in a feedback loop 81

handledByhandledBy

ut ilityIncrease
costs
ratio

oldrule:Rule

ut ilityIncrease
costs
ratio

oldrule:Rule

cf2:CF2cf2:CF2

Get best rule

[failure][failure]

[success][success] [else][else]

ut ilityIncrease
costs
ratio

newrule
:RestartComponent

ut ilityIncrease
costs
ratio

newrule
:RestartComponent

Delete restart rule

<<destroy>>

utilityIncrease
costs
ratio

newrule
:RestartComponent

Delete restart rule

<<destroy>>

utilityIncrease
costs
ratio

oldrule:Rule

ut ilityIncrease
costs
ratio

oldrule:Rule
<<destroy>>

Remove old rule and assign restart rule

cf2:CF2cf2:CF2

utilityIncrease
costs
ratio

newrule
:RestartComponent

ut ilityIncrease
costs
ratio

newrule
:RestartComponent

handledByhandledBy
<<create>>

handledByhandledBy
<<destroy>>

ut ilityIncrease
costs
ratio

oldrule:Rule
<<destroy>>

Remove old rule and assign restart rule

cf2:CF2

utilityIncrease
costs
ratio

newrule
:RestartComponent

handledBy
<<create>>

handledBy
<<destroy>>

ut ilityIncrease := U1()
costs := estRestartCost()
ratio := U1() / estRestartCost()

newrule
:RestartComponent

ut ilityIncrease := U1()
costs := estRestartCost()
ratio := U1() / estRestartCost()

newrule
:RestartComponent

<<create>>

Plan restart to handle CF2

cf2:CF2cf2:CF2

utilityIncrease := U1()
costs := estRestartCost()
ratio := U1() / estRestartCost()

newrule
:RestartComponent

<<create>>

Plan restart to handle CF2

cf2:CF2

utilityIncrease
costs
ratio

newrule
:RestartComponent

ut ilityIncrease
costs
ratio

newrule
:RestartComponent

Assign restart rule

handledByhandledBy
<<create>>

cf2:CF2cf2:CF2

utilityIncrease
costs
ratio

newrule
:RestartComponent

Assign restart rule

handledBy
<<create>>

cf2:CF2

[newrule.utilityIncrease > oldrule.utilityIncrease ||
(newrule.utilityIncrease == oldrule.utilityIncrease

&& newrule.costs < oldrule.costs)]

[newrule.utilityIncrease > oldrule.utilityIncrease ||
(newrule.utilityIncrease == oldrule.utilityIncrease

&& newrule.costs < oldrule.costs)]

Figure 4.6: SD of a planning rule.

LHS of rj has a larger context and is, thus more restricted than the negative pattern P−i .
However, both patterns are exactly the same in the presented examples in this chapter.

Furthermore, we can plausibly assume that: (A2) for rule rj = (LHS,RHS) in <, where
LHS is captured by Pj, and any match mj for Pj with the included match mi for the
related negative pattern P−i , applying rj for mj will make the match mi invalid. This
means that executing an applicable rule resolves the related occurrence of the negative
pattern by resolving the issue. Otherwise, execution of rj does not resolve the identified
occurrence of the negative pattern P−i , therefore, does not lead to the improvement of
the utility as expected by ReQ4.2. Venus only considers the case where each rule covers
exactly one negative pattern. Based on the assumptions (A1) and (A2), during planning,
Venus incrementally computes all the matches for rule applications provided with the
set of new matches Mnew

i for the related negative pattern P−i .
Following the MAPE-K feedback loop to conduct adaptations in Venus, the Plan

activity decides which adaptation rules among all possible ones should be applied;
next, the Execute activity actually applies the chosen rules to prescribe an adaptation

82 venus : utility-driven rule-based scheme for self-adaptation

of the RTM that is subsequently, owing to the causal connection between the RTM and
the running system, propagated to the system—see Section 2.4.

In the context of applying Venus to mRUBiS, the Plan activity selects the adaptation
rules to be executed by modifying the RTM with Rule annotations that will handle the
identified Issues—see the metamodel of mRUBiS in Figure 2.8. These rules are finally
enacted by the Execute activity. As adaptation rules, mRUBiS support restarting, rede-
ploying, and replacing components, adding and removing service replica, as well as
recreating connectors—see Section 2.5. To realize the planning rules, similar to analysis
rules presented in Section 4.4, we use SDs. Using SDs, we can structure SPs (nodes of
the rule) in a control flow that complies with Unified Modeling Language (UML) activity
diagrams—see [141].

Figure 4.6 presents a planning rule in mRUBiS for an issue of type CF2. The first node
of the planning rule matches the CF2 annotation, created by the analysis phase, and
creates the new adaptation rule of type RestartComponent (shown in green) as a Rule
annotation to resolve the CF2 instance. Next, Venus decides for the adaptation rules to
be executed by selecting the best among all applicable rules for each issue.

4.3.4.2 Select best adaptation rule match for each negative pattern match

Each issue in the form of a negative pattern match may be resolved by alternative,
i.e., more than one, adaptation rules. Thus, for each issue, the planning must select one
rule for execution. To determine the best among all applicable adaptation rules for each
issue, Venus computes the impact on the utility as well as the cost of each possible rule
execution. Formally, for a single rule rj = (LHS,RHS) where LHS is captured by pattern
Pj and Pj extends the negative pattern P−i , the assumption (A2) indicates that each time
rj is applied to mj with mj a match for Pj, then the match mi for a negative pattern
P−i is removed. We further assume that: (A3) execution of rj does not result in any new
match or removed matches besides mi for any negative pattern. Then, we conclude for
any architectural RTM G and the resulting configuration G ′ from applying rule rj to G
for match mj (G→rj,mj

G ′) that:

U
rj
∆(G,mj) = U∆(G ′,G) = Ui(G,mi) (4.3)

U
rj
∆(G,mj) in Equation 4.3 is obtained according to Equation 4.1 and can be computed

either based on analytically defined utility functions (Section 3.2), or based on learned
utility-change prediction models (Section 3.3).

If the assumptions (A1) to (A3) hold, Venus locally computes the impact of the adap-
tation rules on the utility. We further assume that (A4) rule rj does not affect any utility
sub-function for any match mk of another negative pattern P−k . Consequently, applying
rj for a match mj does not affect the impact on the utility of any other rule rk for match
mk. Thus, if (A1) to (A4) hold, Venus can independently and locally compute the utility
impact of each rule application.

However, there can be cases where the RHS of a rule rj with G →rj,mj
G ′, results in

new matches for one or more positive patterns. In such cases, the impact on the utility,
caused by the corresponding positive utility sub-function of the matches, is added to
U
rj
∆(G,mj) in Equation 4.3. For this reason, we assume that: (A5) all the potential posi-

tive patterns are completely within the scope of the application condition and side effect
of rj and do not match only partially. Otherwise, matches for the positive patterns can-

4.3 realizing venus in a feedback loop 83

not be enabled by applying rj. Thus, the impact can be considered inUrj∆(G,mj) because
the formula in Equation 4.3 for the corresponding increase of the utility can be deter-
mined off-line, i.e., at design time. When repairing the local authentication component of
mRUBiS via replacing it with a third-party service, e.g., google authentication service,
each available service offers different reliability, thus results in a different increase of the
utility accordingly—see the definition of the linear utility for mRUBiS in Table 3.2. If
the selected service offers a higher reliability than the replaced service, not only the re-
pair restores the dropped utility to its former value, i.e., before the local authentication
component fails, but also further increases the utility due to its higher reliability that is
captured as a positive pattern in the RTM. This is an example of a case where removing
a match for a negative pattern results in a match for a positive pattern.

In the process of selecting the best adaptation rule, besides the estimated impact on
utility, the cost of rule applications are also considered. Venus considers the cost of
adaptation rules in terms of their estimated execution time by means of a cost function
Costrj(G,mj) for each application of a rule rj. The estimated execution time may de-
pend on the match mj with its context in G. Hence, for each issue, the planning rules
in Venus determine the expected utilityIncrease U

rj
∆(G,mj) and costs Costrj(G,mj) of ex-

ecuting each applicable adaptation rule on the running system before selecting the best
among all applicable adaptation rules.

Following the analysis phase where matches of the negative patterns are marked
as annotations of the RTM, e.g., annotation for CF2 issues in Figure 4.5, during the
planning phase, all the planning rules in < are checked if they match any of the an-
notations in the RTM. Rules that match are considered to be selected for planning. In
the planning rule example presented in Figure 4.6, the first SP of the rule matches
the CF2 annotation and creates the Rule annotation of type RestartComponent. It further
determines the utilityIncrease and costs of restarting the component—see attributes of
newrule:RestartComponent. For this purpose, the corresponding utility sub-function U1—
as discussed in Section 3.1—is used to calculate the expected utilityIncrease and the impact
of the rule execution on the utility. The repair rule restores the dropped utility, there-
fore, the utilityIncrease value assigned to newrule:RestartComponent is equal to the utilityDrop
caused by CF2 as shown in Figure 4.5, i.e., U2 = |U1|. This utility sub-function takes the
context of the match and thus runtime information into account, e.g., the reliability and
criticality of the affected component—see definition for linear U in Table 3.2.

Cost functions such as estRestartCost() in Figure 4.6 for each adaptation rule type
estimate the costs of executing the rule, e.g., restarting a component in the system. In
mRUBiS, the cost estimation for each rule type is static, context-independent, and based
on past measurements of the time that is needed to execute the corresponding change
to a running system. However, Venus does not require the cost values to be defined
statically; the cost functions can be more elaborate taking the context of the match into
account, e.g., it is more costly to replace a component with a higher connectivity, i.e., a
larger number of associated connectors.

Based on the utilityIncrease and costs of all applicable adaptation rules for an issue,
Venus proceeds with selecting the best rule. The planning checks for each applicable
adaptation rule, e.g., newrule in Figure 4.6, whether it results in a higher utilityIncrease than
the rule that is so far determined as the best rule within the current run of the feedback
loop—see oldrule:Rule in Figure 4.6. In the case that both rules yield equal utilityIncrease
values, Venus checks if the new rule has lower costs. Therefore, Venus prioritizes the
utilityIncrease over costs. If the old rule, i.e., the rule that has been determined as the best

84 venus : utility-driven rule-based scheme for self-adaptation

rule so far, does not exist, the planning selects the new rule to handle the CF2 issue–see
SP Assign restart rule. Otherwise, if the new rule is better than the old rule in terms of
utilityIncrease and costs, the old rule is deleted and the new rule is selected—see SP Remove
old rule and assign restart rule in Figure 4.6. For the case where the old rule is better than
the new rule, the planning proceeds with the old rule and deletes the annotation for
the new rule—see SP Delete restart rule. This way, the planning rules select for each issue
the best adaptation rule for execution. The rule is then associated to the issue by the
handles/handledBy association in the RTM—see the metamodel of mRUBiS in Figure 2.8
defining the relationship between Rule and Issue.

4.3.4.3 Order all selected adaptation rule matches

The final planning step in Venus determines the sequential order to resolve the issues
during a MAPE-K execution if multiple issues are to be resolved in one cycle—see Fig-
ure 4.4. Let us assume that during one cycle of the feedback loop, maximum of k issues
are resolved, thus k adaptation rules may be executed, e.g., due to time or resource
constraints. Therefore, the k best adaptation rules, selected during the previous plan-
ning step, are sorted in descending order regarding their impact on the overall utility
divided by the costs. This metric combines the benefits and costs of the adaptation rules
and is reflected by the ratio attribute of a Rule, see Figure 2.8. Venus calculates the ra-
tio value via the planning rules—see Figure 4.6. Applying the adaptation rules in this
order, as maintained by the association Annotations.bestRules in the RTM (see Figure 2.8),
guarantees that the maximal utility is re-established as fast as possible in the execution
phase and that the loss of reward is minimized. As depicted in Figure 4.3, prioritizing
the adaptation rules with a higher impact on utility, i.e., rules with larger slopes, max-
imizes the area under the curve. A curve is a path to the target configuration which
is recognized as utility over time or reward. During planning, Venus maximizes this
area via pursuing the policy of increasing the utility as fast as possible resulting in an
optimal adaptation sequence in terms of system utility and reward. As depicted in Fig-
ure 4.3, path A comprises of a rule sequence sorted in descending utility values and,
compared to path B and C that employ different ordering or rules, yields the largest
area under the curve, hence the largest reward.

4.3.5 Execute

Provided with the sorted list of adaptation rules by the planning phase, this phase ex-
ecutes the rules accordingly in a sequential manner—see Figure 4.4. Thus, each issue
is handled by the most appropriate rule. The rules are executed in the order such that
those yielding the best trade-off, i.e., ratio of utilityIncrease and costs, are prioritized. Simi-
larly to the Monitor activity, this phase follows an incremental scheme in executing the
adaptation rules on the RTM and propagating the corresponding changes through the
causal connection to the running system.

The synchronization of the adaptable software and its RTM is the causal connection
problem—see Section 2.4, i.e., propagating changes from the software to the model by
the Monitor activity and vice versa by the Execute activity. This problem can be generi-
cally solved because in this thesis we are concerned with generic changes at the architec-
ture level, e.g., creating and deleting components and changing their interconnections
and parameters [see 273, 302]. Thus, changes of the software that are monitored or adap-

4.4 assessment of venus 85

cf2:CF2cf2:CF2
restartComponent

:RestartComponent
restartComponent

:RestartComponent handleshandles
component
:Component
component
:Component

affectedComponentaffectedComponent

Restart component affected by CF2

state := DEPLOYED

component
:Component

state := DEPLOYED

component
:Component

Stop component

state := STARTED

component
:Component

state := STARTED

component
:Component

Start component

Remove failures

component
:Component
component
:Component

providedInterface
:ProvidedInterface
providedInterface
:ProvidedInterface

providedInterfacesprovidedInterfaces

failures
:Fai lures
failures

:Fai lures

<<destroy>>failuresfailures

Remove annotations

cf2:CF2cf2:CF2
<<destroy>> restartComponent

:RestartComponent
restartComponent

:RestartComponent

<<destroy>>

Figure 4.7: Rule for executing a component restart.

tations that are planned can be generically described as such architectural changes and
used by the causal connection regardless of the addressed self-adaptation capability,
e.g., self-healing or self-optimization.

Figure 4.7 illustrates an execution rule to restart a component in mRUBiS for address-
ing the CF2 issue. Based on the analysis and planning phases, see Figure 4.5 and Fig-
ure 4.6 respectively, an adaptation rule, in this case restartComponent, has been selected to
handle CF2 affecting the specific component—see the first node in Figure 4.7; this compo-
nent is then restarted by setting its lifecycle state to DEPLOYED, i.e., stopped, and then
to STARTED—see the second and third nodes. Next, the RTM is cleaned by removing,
i.e., destroying, the observed exceptions (failures) and the annotations for the executed
rule (restartComponent) and the handled issue (CF2).

4.4 assessment of venus

In this section, we analyze and discuss the computational effort as well as the optimal-
ity of Venus in terms of utility and reward. First, we present the generic algorithms
for the Analyze and Plan phases of Venus and show that their computation is done
incrementally and that resulting adaptation leads to optimal reward. Next, we discuss
the limitations imposed by the assumptions for Venus.

4.4.1 Detailed Algorithms for Analyze and Plan

The Analyze and Plan functions presented in ALGORITHM 4.1 and 4.2 respectively,
constitute the Analyze and Plan activities of the MAPE-K loop in Venus. Both algo-
rithms use a global data structure, i.e., an RTM, defined by a corresponding metamodel—
as an example, see excerpt of mRUBiS metamodel in Figure 4.8 showing annotations.
The singleton object annotations of type Annotations in Figure 4.8 captures the cur-
rent matches for the issues with the issues association of type Issue. Annotations also
captures the matches for the best k rules to resolve the issues with its bestRules associ-
ation of type Rule. The matches for the issues in the RTM and their assigned rules are
accessed by annotations.getAllIssues() and annotations.getAllBestRules() in AL-
GORITHM 4.1, respectively. Additionally, the association handledBy between the matches
for the issues and the matches for the rules maintains the best rule match for each issue.

86 venus : utility-driven rule-based scheme for self-adaptation

ArchitectureArchitectureAnnotationsAnnotations

utilityDrop : double

Issue

utilityDrop : double

Issue

[0..1][0..1]

[0..*][0..*]

utilityIncrease : double
costs : double
ratio : double

Rule

utilityIncrease : double
costs : double
ratio : double

Rule

[0..k][0..k]

CF1CF1 CF4CF4CF3CF3CF2CF2

RestartComponentRestartComponent

LwRedeployComponentLwRedeployComponentHwRedeployComponentHwRedeployComponent RecreateConnectorRecreateConnector

ReplaceComponentReplaceComponent

PI1PI1

AddReplicaAddReplicaRemoveReplicaRemoveReplica

bestRules

issues

handledBy

handles [1..1]

[0..1]

Figure 4.8: Excerpt of mRUBiS metamodel showing annotations.

For an Issue, we assume that a test, namely check(), exists that checks in constant
time whether the match of the issue is still valid. To maintain the matches of the is-
sues in a global list without double entries, three constant time operations are consid-
ered: annotations.existsIssue(), annotations.addIssue(), and
annotations.deleteIssue(). The operations check for existence of, add, and delete
issues respectively. The constant time operations are possible when using indexed
data structures with unique matches as indices2. Each issue is always linked to one
unique component (see Figure 2.8) to realize the annotations.existsIssue() test. The
test checks whether the same issue already exists for the same component.

Similarly, Analyze employs constant time operations annotations.addBestRule()
and annotations.resetBestRule() to maintain and clear the list of matches for the best
k rules with respect to their ratio attributes—see Section 4.3.4. k is chosen large enough
to cover as many rule applications as possible to fit into the time window of a single
MAPE-K run. The dedicated time window of a MAPE-K run is a design decision. A
shorter window allows more frequent planning. As a result, rules achieving a high
impact on the utility are executed earlier and not blocked by rules that achieve lower in-
creases but are scheduled for execution in the running MAPE-K cycle. This is beneficial
if the planning is time-efficient. For a selected time window, k can be determined using
estimates of the planning time of the scheme and rule execution time. Thus, k can vary
for different time windows accordingly. Since at most k adaptation rules are applied in
a single MAPE-K run, k is a constant upper bound on the rule elements that have to
be stored and ordered in the RTM. A run of the feedback loop is finished after the kth

2 An indexed database, e.g., a hash table, allows for constant-time retrieval and examination of data items
based on the value of the item’s index. However, the constant time complexity, i.e., O(1), of the operation
in a hash table is pre-supposed on the condition that the hash function doesn’t include any colliding
indices [406]; thus the performance of the hash table is directly proportional to the chosen hash function
ability to disperse the indices. An indexed database with unique indices supports O(1) performance [see
159].

4.4 assessment of venus 87

ALGORITHM 4.1 : Analyze(C)

1 forall issue ∈ annotations.getAllIssues() do // for all old issues in C

2 if ! issue.check() then // delete old issue if no longer valid

3 annotations.deleteIssue(issue) ; // delete issue from global list

4 end
5 end
6 forall c ∈ C do // iterate over modified or created elements

7 forall Pi ∈ P containing a node that may be matched to c do
8 forall m : G |=m Pi ∧m contains c do // find all new issues for Pi
9 if !annotations.existsIssue(Pi,m) then // issue for Pi, m exists?

10 annotations.addIssues(new Issue(Pi,m)) ; // add new issue

11 end
12 end
13 end
14 end

adaptation rule has been executed. The remaining issues that have not been addressed
in this run will be handled in the subsequent run of the feedback loop.

Analyze in ALGORITHM 4.1 requires as input the set C of elements in the RTM that
have been updated (modified) by the Monitor activity—see Figure 4.4. Next, Analyze

(i) removes the old issue in annotations.getAllIssues() that are no longer valid (line 1-
5); (ii) iterates over all changes c ∈ C (line 6-14) for all patterns in P that are relevant for
c (line 7-13) and for all possible new issues whose matches contain c (line 8-12) to check
whether these issues are new (line 9), and if yes, the issues are added to the global list
(line 10). Thus, after executing Analyze, the set of issues stored in annotations.issues
is up-to-date.

Plan in Algorithm 4.2 describes the steps of the Plan activity in Venus. The algorithm
initiates with clearing the global list of the best k rule matches (line 1). Next, it checks
for all the current issues in annotations.getAllssues() (line 2-14), for all the rules that
may resolve the match of the issue (line 3-11), and for all the matches of these rules that
extend the match of the issue (line 4-10), whether the new rule match is better than the
current best rule match captured by issue.getHandledBy(). The new rule is considered
better if it causes higher increase of the utility, or if the increase is the same, is has lower
cost. If such a match is detected, the current best rule match is replaced by the new rule
match. Thus, for each issue, the best rule match is determined and added to the global
list of k best rules (line 13).

4.4.2 Computational Effort of Analyze and Plan in Venus

During the Analyze and plan in ALGORITHM 4.1 and 4.2, detecting matches for the
patterns that represent the issues and rules in Venus does not require a global search,
rather a local search that starts from a change, a marking, or an existing match. We can
safely assume that the patterns have a constant upper bound concerning their size as
their sizes is bounded by the size of the architecture G. Further more, it is assumed that:
(A6) the association links which have to be traversed by a local search for matches have
a small constant upper bounds. As a result, finding a single match for an issue or a

88 venus : utility-driven rule-based scheme for self-adaptation

ALGORITHM 4.2 : Plan()

1 annotations.resetBestRules() ; // erase all entries from list of best rules

2 forall issue ∈ annotations.getAllIssues() do
3 forall ri ∈ < that can resolve issue do
4 forall m : G |=m ri with m ⊇ issue.match() do
5 rule := new Rule(m) ; // create new rule

6 oldrule := issue.getHandeledBy() ; // get best rule until now

7 if oldrule = NULL || rule.utilityIncrease > oldrule.utilityIncrease ||
(rule.utilityIncrease == oldrule.utilityIncrease &&
rule.utilityIncrease/rule.cost > oldrule.utilityIncrease/oldrule.cost) then

8 issue.setHandeledBy(rule) ; // rule is better than old one

9 end
10 end
11 end
12 rule := issue.getHandeledBy() ; // get overall best rule

13 annotations.addBestRules(rule, rule.utilityIncrease/rule.cost) ; // keep k best

rules for all issues according to ratio

14 end

rule requires only a constant computational effort, i.e., O(1). Based on the assumption
(A6), that typically holds, we next show that the algorithms for the Analyze and Plan

only require incremental computational efforts in O(∆+∆ ′) where ∆ is the number of
changes in the RTM and ∆ ′ is the number of the unprocessed issues.

In Analyze (ALGORITHM 4.1), the first loop (line 1-5) requires O(∆ ′) steps to check
whether the ∆ ′ many old, unprocessed issues in annotations.getAllIssues() are still
valid. Conducting such a single check requires constant time. The second loop (line 6-
14) iterates over all the changes c ∈ C with |C| = ∆ and thus results in O(∆) iterations.
The inner loop (line 7-13) considers all the patterns in P that potentially match c; the
loop has a constant number of iterations because of the small number of patterns, a
constant subset of which can actually be matched to c. The other inner loop of the
algorithm (line 8-12) considers all the matches for the patterns that actually include c
and is bounded by the number of the changes |C|. Therefore, it requires O(∆) iterations.
Thus, Analyze requires an incremental computational effort in O(∆+ ∆ ′) to process
the existing issues and create the list of current issues to be handed over to Plan.

Plan in ALGORITHM 4.2 as a first step erases the list annotations.bestRules()
in constant time. The list contains k best rule matches from the last cycle (line 1).
Next, maximum number of ∆ + ∆ ′ issues are handled in the outer loop (line 2 - 14)
in O(∆+ ∆ ′); for each iteration processing an issue, constant many rules that may re-
solve the issue at hand are considered (line 3-11). In the worst case, the number of
these rules is equal to |<|, i.e., the number of the adaptation rules in the finite set of
all adaptation rules <. Thus, the number of the considered rules is limited by this con-
stant upper bound and can be checked in O(1). As a result, constant number of rule
matches—each considered rule either matches or not—that extend the match of the
issue are considered in the loop from line 4 to 10. While iterating through all the ap-
plicable rules for an issue, bounded by |<|, one best rule regarding the utility increase
and cost is selected. Therefore, only constant number of times the best rule match for
an issue is updated and stored in issue.getHandledBy() in line 8. Finally, in line 12,

4.4 assessment of venus 89

the best rule match among the alternatives to resolve each match of an issue, stored in
issue.getHandledBy(), is selected and added to the annotations (line 13). As discussed
earlier, Venus restricts the number of issues that can be resolved within a feedback loop
run to k—see Section 4.4.1—thus constant number of best rule matches, maximum of k,
are kept by annotations.addBestRule() in line 13, yielding a constant computational
effort for this step of the algorithm. Consequently, Plan requires an incremental com-
putational effort in O(∆+∆ ′) and the resulting list of the best rule matches contains k
elements, i.e., O(1).

The Monitor and Execute activities of Venus are implemented in an event-based
and incremental manner, conforming to the scheme presented by Vogel et al. in [415,
417, 418] for monitoring—see Section 4.3. In this section, we showed that the Analyze
and Plan phases of Venus require incremental computational efforts. Overall, we can
conclude that Venus, realized in a MAPE-K feedabck loop, can operate in a highly
efficient, incremental manner as it requires O(∆+∆ ′) steps for Analyze and Plan with
∆ the number of the changes of the RTM and ∆ ′ the number of the unprocessed issues.
The Analyze and Plan activities are considered the bottleneck operations of the MAPE-
K loop in terms if performance.

4.4.3 Optimality of a Single MAPE-K Run with Venus

In this section, given the assumptions made through out the chapter and an appropriate
selection of k, we discuss why Venus guarantees an optimal adaptation behavior con-
cerning utility and reward in a single MAPE-K run—see Section 4.4.1 for a discussion
on appropriate selection of k.

Executing all k selected matches for the best rules in annotations.bestRules() guar-
antees a maximal increase of the utility because it removes all matches of the negative
patterns—see assumption (A2)—and does not affect any other matches for any other
negative patterns—see assumptions (A3) and (A4). Thus, the final utility after execut-
ing all the selected rules is maximal. This effect on the overall utility remains in the
system as long as the system is operating. Any other selection of rules that would lead
to a lower utility results in a lower reward, i.e., accumulated utility over time, even
though yielding lower costs. Thus, pursuing a faster adaptation scheme at the cost of
lower utility, i.e., requiring shorter execution time, results in a lower final utility and
does not pay off as the the system continues operating at a lower level of utility (com-
pared to the possible maximal utility). Such a system, however, will be equally affected
by any future issues, that is, will lose equal amount of utility, compared to an identical
system pursuing an optimal adaptation scheme that operates at a higher utility level.

Furthermore, the ordering of the k adaptation rules in annotations.bestRules in
Venus ensures, for the considered time window when the rules are executed, that the
resulting reward is maximal. The reason is that any reordering of two rule matches with
different ratios results in prioritizing rules with smaller gradients, i.e., smaller area
under the curve in Figure 4.3, which indicates lower reward. Similarly, more complex
reordering can be achieved by iteratively exchanging two rule matches, that however,
would eventually also lead to a lower reward. Thus, the correctly ordered sequence
of rules, i.e., in descending order with respect to their impact on utility, results in the
maximal reward.

90 venus : utility-driven rule-based scheme for self-adaptation

In cases where k is larger or equal to the number of identified issues before each
MAPE-K run and all of these issues can be resolved within the time window of a single
MAPE-K run, executing the k rules in the given order results in the maximal reward.
In this case, all the identified issues can be resolved during one run of the feedback
loop. If k is smaller than the number of the detected issues, the resulting reward of
executing the chosen sequence of the adaptation rule matches is still optimal given the
rationale for defining k—see Section 4.4.1. This would avoid blocking the execution of
rules achieving a high impact on the utility by rules that achieve lower increases but are
already scheduled to be executed during the current MAPE-K run.

As discussed earlier in Section 4.2, Venus seeks optimality with respect to system util-
ity and reward via pursuing a greedy algorithm before each adaptation. A greedy algo-
rithm always makes the choice that produces the largest immediate gain. Consequently,
the optimality claim in Venus is restricted to the class of self-adaptation problems that
satisfy the greedy choice property [see 121] that indicates a globally optimal solution can
be arrived at by making a locally optimal, i.e., greedy, choice [6]. Such problems exhibit
the optimal sub-structure property; a problem has an optimal sub-structure if an optimal
solution to the entire problem contains the optimal solutions to the sub-problems—
see [438].

4.4.4 Discussion of Assumptions

In the following, we review the assumptions we made through out this chapter, sum-
marized in Table 4.1, and discuss their justifications as well as the consequences on the
validity and applicability of Venus if the assumptions do not hold.

A violation of assumption (A1) indicates that the adaptation rules can be applied
even if there is no match for a negative pattern. This can be generally ruled out for self-
healing systems where only repair rules that resolve occurrences of negative patterns
are relevant. However, it might be an issue for self-optimizing systems if adaptation
rules are to be continuously applied to improve the utility while a notion of negative
patterns might not exist. Venus demonstrates both self-healing and self-optimization
properties; however, in the context of self-optimization, we are only concerned with
performance degradation issues which Venus captures via negative architectural utility
patterns. Thus, similar to self-healing, the self-optimizing property of Venus is realized
via negative patterns, hence, assumption (A1) renders valid.

Assumption (A2) states that any adaptation rule, if applied, is effective and therefore
resolves the corresponding issue. A violation of (A2) implies that adaptation rules are
not always effective, that is, applying a rule does not always resolve the issue. In the
context of Venus, we assume a deterministic behavior for the adaptation rules that rules
out violations of (A2); however, there might be cases in which rules might not succeed
in resolving the issues. We will therefore investigate such cases, i.e., probabilistic adap-
tation rules, by considering a likelihood for the success of each rule application during
evaluation of Venus in Section 7.5.

Assumption (A3) can be discussed in two parts; adaptation rules that cause new
issues are not reasonable, thus we can safely accept assumption (A3a). We suggest
designing the rules in such a way that they immediately resolve all the additional issues
they might cause. In Venus, if a rule accidentally causes a new match of a negative

4.4 assessment of venus 91

Table 4.1: List of assumptions for applicability of Venus.

(A1)
For any in-place model transformation rule rj = (LHS,RHS) in the adaptation rule
set <, where LHS of the rule is captured by pattern Pj, a negative pattern P−i exists
such that any match mj for Pj includes a match mi for P−i .

(A2)
For any rule rj = (LHS,RHS) in the rule set <, where LHS is captured by Pj, and
any match mj for Pj with the included match mi for the related negative pattern
P−i , applying rj for mj will make the match mi for P−i invalid.

(A3)
Applying rj does not result in any new match or removed matches besides mi for
any negative pattern.

(A3a)
Applying rj does not result in any new match for any negative pattern.

(A3b)
Applying rj does not result in any removed matches besides mj for any negative
pattern.

(A4)
Applying rj does not affect any utility sub-function for any match mk for another
negative pattern P−k , then applying a rule rj for a match mj does not affect the
impact on the utility for any other rule rk and match mk.

(A5)
All the potential positive patterns are completely within the scope of the application
condition and side effect of rj and do not match only partially.

(A6)
The links for associations that have to be traversed for local search of matches have
always small constant upper bounds.

pattern, which will trigger another rule (violation of (A3a)), the new match will be
detected and resolved in the next feedback loop run.

A violation of assumption (A3b) results in a case where applying a rule impacts the
applicability of other rules. An example of such a violation is applying a rule that re-
places a faulty component, which makes the repair rule of the related faulty connectors
inapplicable, for instance, because the new version of the component needs different
types of connectors and thus a different rule to reestablish the connectors. In this case,
the issue of the faulty component overlaps with the issue of the faulty connectors; the
issue of the faulty connectors will not be resolved in the current but in the subsequent
feedback loop run if it can be matched by a negative pattern. However, we suggest de-
signing the rules in a way that avoids such unwanted dependencies between them, one
way is to define the scopes of the rules such that each issue type is completely treated
by one rule and the scopes do not overlap. This requires that the scopes of different
types of issues do not overlap, otherwise, overlapping issue types should be combined
to one type. For instance, such a design results in defining the scope for the rule replac-
ing a faulty component to also cover the relevant faulty connector(s); meanwhile, the
scope for the connector repair rule would be restricted to faulty connectors that are not
associated to faulty components.

92 venus : utility-driven rule-based scheme for self-adaptation

Assumption (A4) excludes cases where executing a rule affects the impact of other
rule executions on the utility. A violation of (A4) implies dependencies between the
rules similar to a violation of (A3). Again, we suggest designing the rules in a way
that avoids such unwanted dependencies. If the adaptation rules influence each other
regarding the impact on the utility (violation of (A4)), Venus would not necessarily
find the optimal rule for each issue and consequently, the optimal ordering of all rules,
since it does not take such dependencies into account. However, all issues would still
be resolved although not necessarily with the best rules.

Assumption (A5) indicates that executing a repair rule achieves the intended improve-
ment of the utility. If it does not hold, then the utility function or the context to calculate
the impact of the rules on the utility are not appropriate. This requires a more expres-
sive utility function or a larger context—see Table 3.2 for examples of utility functions
with different context and expressiveness. While it can be challenging to define an ap-
propriate utility function [see 175], establishing a larger context is in principle always
possible by splitting such rules into multiple, more specialized rules that have a larger
context to achieve the overlap with the positive patterns.

Assumption (A6) comprises the constant upper bound of the size of the patterns and
the local search for matches of patterns/rules. In the context of Venus, this is justified
based on the simple nature of the patterns that we encountered and given that the size
of the patterns is limited by the size of the system architecture. Nevertheless, if the
assumption does not hold, also other schemes such as pure rule-based solutions might
also yield high execution costs.

To summarize, the assumptions listed in Table 4.1 are usually justified for rule-based
self-healing approaches and, for the limited scope of rule-based self-optimizing systems,
because designing rules that are not triggered by any issue or that do not resolve any
issue is not justified (see (A1) and (A2)); rules that cause new issues are a design bug
and could thus be excluded (see (A3a)); rules that affect other issues or other rules are
not useful and should thus be avoided (see (A3b) and (A4)); rules that do not completely
cover the positive patterns should be replaced by alternatives that offer a full coverage
for the resulting positives patterns (see (A5)); and finally, rules and patterns that do not
allow a local search affect the incrementality of the approach, are not usual, and can be
avoided (see (A6)).

4.5 summary

Having defined utility functions for dynamic software architectures in Chapter 3, as a
second step towards addressing the quality-cost trade-off in software self-adaptation,
we presented in this chapter an incremental solution for self-adaptation via introducing
Venus. The scheme tailors the ECA rule- and utility-based formalisms to assemble, at
design-time, a combination solution to engineering self-adaptation of large, dynamic ar-
chitectures. We integrated Venus in a MAPE-K feedback loop that leverages event-based
processing of the change events as well as the incremental utility-change calculation to
support incremental adaptation.

We position Venus as a reactive solution to self-adaptation that targets a class of
software self-adaptation problems that are usually identified by symptoms such as self-
healing systems. Enabled by model-driven principles, we described our approach for
implementing the Analyze and Plan activities in Venus; we discussed how Venus lever-

4.5 summary 93

ages the outcome of the Utility Function module during Analyze and Plan—see Fig-
ure 4.1 for an overview—and elaborated the mapping of the utility values to the adap-
tion rule applications to carry out a rule-based, utility-driven adaptation. We discussed
the execution complexity and optimality of Venus in terms of utility and reward of the
adaptation; we argued that for a class of self-adaption problems with the greedy choice
property, Venus can provide optimal solutions in terms of utility and reward, while
owing to its incremental execution, demonstrates properties of its ECA rule-based con-
stituent in terms of efficient runtime processing of the changes and adaptation scala-
bility. Finally, we provided a list of assumptions that are required for applicability of
Venus and validity of the claims and discussed why they are justified.

5
H Y P E Z O N : H Y B R I D S E L F - A D A P TAT I O N W I T H R E C E D I N G
H O R I Z O N C O N T R O L

When the complexity of the adaptation space exceeds the ability of the individual adap-
tation solutions, to solely, fulfill both the quality and cost requirements of the adapta-
tion, the quality-cost trade-off can be addressed via customized solutions that combine
multiple individual policies to construct a compromise adaptation mechanism that can
cope with the growing complexity of the software and its input space. In Chapter 4, we
introduced Venus, a solution for architecture-based self-adaptation that combines the
rule-based and utility-based policy formalisms in its design. Developing customized
solutions like Venus, while potentially beneficial at runtime, imposes a design-time
development effort that might be unproportionate to the complexity of the problem.
In short, such approaches might provide over-engineered solutions to a problem that a
simpler process, in terms of development-effort, is adequate. We propose to address this
problem via a systematic coordination of multiple off-the-shelf policies. The proposed so-
lution supports cost-effective achievement of system quality objectives while, compared
to solutions such as Venus, reduces the development cost because it precludes the ef-
fortful process of developing new algorithms/heuristics from scratch.

In this chapter, as a complementary solution to Venus , we propose HypeZon, a
coordinating Hybrid planner for self-adaptive software employing receding horiZon—
see Section 2.3.3. HypeZon implements the Plan activity of our solution for incremental
architecture-based self-adaptation—see Figure 5.1 for a schematic overview. We showed
in Chapter 3 how to construct the Utility Function building block; in Chapter 4, we
discussed design details of an adaptation engine, amenable to incremental execution,
where the Analyze and Plan activities were implemented by Venus. HypeZon builds
on the Monitor, Analyze, and Execute activities of the incremental adaptation engine,
presented Section 4.3, and offers an alternative solution for the Plan activity. The scheme
relies on coordination of multiple, existing policies and leverages control-theoretic prin-
cipals to systematically construct a generic hybrid planning mechanism. The scheme, at
runtime, coordinates multiple off-the-shelf adaptation policies that individually cannot
fulfill both the quality and cost requirements of the adaptation for a potential range of
the system input space. HypeZon is generic as it is agnostic to the inner workings of
the individual adaptation policies and hols a black-box view.

In Figure 5.2, we repeat the notional representation of the adaptation space with grow-
ing complexity from Figure 1.1. Adaptable software with dynamic architectures are
prone to evolution during system execution, thus adaptation complexity, e.g., size of the
system architecture or number of the adaptation issues affecting the system, is subject to
change. The change might instantly render a well-performing solution insufficient—see
X2 in Figure 5.2 where a slight change in the complexity of the adaptation space disqual-
ifies the, until then, best-performing optimization-based solution in comparison to the
alternative rule-based solution. The parts of the x-axis before X1 represent adaptation
complexities where an individual solution, i.e., the optimization-based solution, per-

95

96 hypezon : hybrid self-adaptation with receding horizon control

Adaptable Software

Execute

Sensing Affecting

Monitor

RTM

Utility
Function

Analyze Plan

Policies

HYPEZON

Sensing Switching

Figure 5.1: Chapter overview: plan with HypeZon in adaptation engine.

forms desirably (obtains Q∗). X1 marks the point in the adaptation space where the in-
dividual solutions cannot desirably satisfy the adaptation objectives (below Q∗). X2 rep-
resents a point where the complexity of the adaptation space hinders the optimization-
based solution to outperform the rule-based alternative. A hybrid, coordination-based
solution composes the two policies, i.e., rule-based and optimization-based, at runtime,
to balance the quality-cost trade-off—see the switch at X2. However, the hybrid solution
is bounded to the performance margins of its constituents. A customized, combination-
based solution, e.g., Venus, may combine multiple policy formalisms in its design to
construct a new customized policy that leverages the strength of its constituents, thus
outperforms them in terms of cost minimization and quality maximization.

Capturing the complexity of the multi-dimensional adaptation space as points across
the x-axis is a an oversimplification of the phenomenon. Note that Figure 5.2 is used
only for conceptual illustration purposes and does not correspond to any empirical

 Optimization-based
 Coordination
 Combination
 ECA Rule-based

O
bj

ec
tiv

e
Sa

tis
fa

ct
io

n

Adaptation Complexity
X1

Q*

X2

Figure 5.2: A notional representation of a space for self-adaptation solutions in domains with
growing complexity (Q* denotes optimal objective satisfaction).

5.1 motivating example 97

measurements. We replace this chart by an alternative1 that is based on quantitative
experiments in Chapter 9 where we report on a series of experiments during which we
maintain all the dimensions of the adaptation space constant and emulate the increas-
ing complexity of the adaptation by step-wise increasing the number of the adaptation
issues. This chapter introduces HypeZon that implements the coordination-based solu-
tion in Figure 5.2.

Conforming to the well-established practice of explicitly capturing the control loops
in the architecture of the system [see 208, 367], HypeZon adopts the hierarchical ar-
rangement of the control loops from adaptive control in its design—see Section 2.1.1.
The scheme is concerned with the Plan activity of the MAPE-K loop as a controller
that, inspired by the MPC, leverages receding horizon to utilize runtime information and
adjusts its control parameters at runtime—see Section 2.1.2. The control design and the
architecture of HypeZon build on control theory; however, compared to the adaptive
control that restricts the scope of the controllers to calculating set-points and prescrib-
ing required changes in the input parameters, HypeZon extends the involvement scope
of the higher-level control loop in the lower-level loop.

HypeZon enables the self-adaptive software to observe its own behavior jointly with
the one of the feedback control loop in terms of objective satisfaction, reason about
changing the trade-offs during its lifetime, and explore compositions of multiple off-
the-shelf adaptation policies, e.g., rule-based, goal-based, or utility-based policies, at
runtime. To engineer HypeZon for self-adaptive software, we propose two alternative
designs that conform to meta-self-aware architectures: external and internal. The designs
build on the framework for realizing meta-self-awareness in the architecture from earlier
work by Giese et al. [187].

The main focus in providing hybrid solutions for self-adaptive software so far has
been set on developing individual adaptation policies such that, in coordination to-
gether, they cover a large spectrum of the solution space for self-adaptive software—
see [4, 28, 225, 299, 398, 399]. In the context of HypeZon, we focus on the coordination
mechanism, i.e., the realization of the decision-making mechanism within the hybrid
planner.

In Section 5.1 we present a motivating example for application of the hybrid planning
with mRUBiS. Section 5.2 presents computational aspects of HypeZon and the architec-
tural design of HypeZon is presented in Section 5.3. Finally, in Section 5.4, we summa-
rize the chapter and discuss how HypeZon fulfills the requirements for architecture-
based self-adaptation.

5.1 motivating example

This section presents an exemplary scenario for mRUBiS. As discussed in Section 2.5,
mRUBiS is a web-based client-server system conforming to a component-based archi-
tecture style and serves as an online marketplace that hosts arbitrary number of shops.
Each shop, i.e., tenant, includes 18 components each providing a different type of ser-
vice within a shop. Clients send bid and buy requests to the shops of interest, the
requests are further transferred to the relevant services withing the shop, e.g., query
management service or authentication service.

1 see Figure 9.4.

98 hypezon : hybrid self-adaptation with receding horizon control

Two major types of adaptation issues affect mRUBiS: Critical Failures (CF) that affect
the availability of services and Performance Issues (PI) that affect performance of the
services as a result of changes in component’s load. The system’s workload depends
on the request arrival rate, which is uncertain as it depends on the external demand.
mRUBiS needs to optimize profit, i.e., maximizing revenue and minimizing operating
costs, via adaptation. As a market place, the business objective of mRUBiS is to pro-
vide for high availability and low response time—see goal model of mRUBiS in Figure 3.6.
To maximize the revenue, it is desirable to (i) maintain the components available by
prompt resolution of CFs and (ii) maintain the request response times below an accept-
able threshold, e.g., based on the SLA. Typically, an increase in the request arrival rate
leads to increased load on the services in the shops and causing the performance to
drop. In such situations, the system can add more replicas to the heavily loaded ser-
vices within a shop, using adaptation rule addReplica<type>, to handle the increased
workload, but also increasing the operating cost. To reduce costs, the system has an
adaptation rule, i.e., removeReplica<type>, to remove under-utilized service replicas
when the main service is experiencing relatively moderate load. Thus, during traffic
surges, addReplica<type> adds more replicas to services of the shop to cope with the
increasing demand and removeReplica<type> reduces the operation cost of the shops
by removing underutilized replicas. Moreover, the adaptation options applicable to re-
solve the CFs impose different execution cost to the system, e.g., it is more expensive to
replace a crashed component than to restart it—see Section 2.5.

There is a penalty for violations of system goals, i.e., if the shops in mRUBiS do not
have request response times below the promised threshold or their services are not
continuously available. Therefore, in case of a high response time, the system needs to
react quickly by adding replicas. Service crashes should also be handled as promptly
as possible. However, once response time is within the acceptable margins, the system
should execute self-optimizing adaptations to bring down the operating cost, execute
more robust, i.e., possibly time consuming, repair of the malfunctioning components to
maximize the long-term reward.

mRUBiS aims to maximize its revenue via increasing service performance and keep-
ing the response time below the threshold. Moreover, efforts towards minimizing its
operation cost include reducing the number of the active replicas and considering
low-cost repair actions for the CFs. These objectives are collectively captured in a
multidimensional utility function and a cost function—see Section 3.2. For this ex-
ample, we define the utility of each component in mRUBiS, in current state s, as
Uc(s) = reliability× criticality× connectivity× Performance, i.e., the Saturating
function in Table 3.2. The performance of a service in mRUBiS is defined according
to Equation 3.9. The overall utility of mRUBiS is defined based on the utility of the
tenants, i.e., shops, as Equation 3.2. The utility of a tenant, in current state s, is then
calculated as Equation 5.1. The goal of mRUBiS is to maximize the ratio of the utility to
cost—see Section 4.3.4.

U(tenant) =

18∑
i=1

Uc(s) (5.1)

The combination of the multidimensional utility function and cost function capture
conflicting requirements such as lowering response time, i.e., increasing performance,
increasing revenue, and reducing operating cost. The combination is concerned with

5.2 hybrid planning for self-adaptation with hypezon 99

both the quality and the timeliness of the adaptations. The utility function captures
quality since it has various adaptation goals as its constituents. Timeliness is captured
since there is a penalty, i.e., utility drop, for response time above the threshold that
cause a performance drop in the utility formula. In such a situation the system needs
to react quickly to mitigate the negative impacts on the utility.

The trade-off between the adaptation quality, e.g., robust repair of crashed compo-
nents or adding replicas to the server pool, and minimizing the operation cost, e.g., light-
weight, fast repair of crashed components, needs to be addressed during execution of
mRUBiS. As briefly discussed in Chapter 1, reactive ECA rule-based approaches for
self-adaptation tend to deliver prompt solutions for adaptation but they often only pro-
vide sub-optimal solutions in terms of system utility as they are bound to design-time
assumptions. For instance, a reactive solution such as a rule-based approach might
quickly provide a plan to a response time constraint violation, and thus improve the
utility in the short-term; however, the plan is likely to be sub-optimal due to uncer-
tainty in the request arrival rate, which is difficult to predict at design time, i.e., when
formulating the rule. Conversely, optimization-based mechanisms for self-adaptation
preclude design-time assignments of actions to conditions (events), instead, they often
perform an exhaustive search in the possible adaptation space. These solutions solve a
cost-intensive optimization problem before each adaptation which may render attain-
ing optimal adaptation plans time-intensive [361] which would be an issue in mRUBiS,
particularly for situations such as a response time constraint violation.

For systems such as mRUBiS that interact with an input space with volatile character-
istics, using an adaptation mechanism with a single planner, i.e., either a deterministic,
reactive policy or an optimization-based, proactive policy, fails to meet the contradicting
quality and cost (time) objectives. In this context, a hybrid adaptation solution composes
multiple off-the-shelf solutions at runtime, e.g., employing a reactive ECA rule-based so-
lution to provide timely adaptation plans while an optimization-based solution searches
the solution space for high-quality adaptation plans. For instance, a hybrid solution for
adaptation of mRUBiS can be instantiated using a rule-based and an optimization-based
approach; the rule-based approach can provide a timely response in time-sensitive situ-
ations, e.g., response time above the threshold or surges of component crashes, whereas
the optimization-based may be employed to provide higher-quality plans, thus balance
the quality and cost(timeliness) of the adaptation.

5.2 hybrid planning for self-adaptation with hypezon

In this section, we present the computational aspects of HypeZon. The scheme complies
with the definition of coordinated hybrid planner provided by Trollmann et al. in [405]
and introduced in Section 2.3.3. HypeZon is embedded in the incremental adaptation
engine introduced in Chapter 4. The scheme builds on the Monitor, Analyze, and Exe-
cute activities of the adaptation engine presented in Section 4.3 and offers an alternative
solution for the Plan activity. Therefore, incremental calculation of the utility-changes
as the impact of the adaptation rule applications are available to HypeZon—see utility-
change calculation in Venus as Equation 4.1.

100 hypezon : hybrid self-adaptation with receding horizon control

5.2.1 Hybrid Planning: Preliminary Definitions

A hybrid solution for planning adaptation in general is concerned with two aspects of
the available policies: quality and runtime cost, e.g., timeliness. A policy is generally de-
fined as a set of control decisions that map states to actions [361]. An adaptation policy π
represents an encapsulation of the system’s adaptive behavior governing the choice of
adaptation actions when applicable. For each state s, π(s) indicates the adaptation ac-
tion a to be executed, i.e., π(s) = a. We use the term policy to refer to the mechanism
that governs the decision-making process in the plan activity and is used to express and
operationalize the high-level objectives of the system [214]—see Section 2.3.2.

The set of adaptation issues that affect the self-adaptive software in a time-correlated
manner, i.e., they are detected and considered by one adaptation loop, constitute a plan-
ning problem. For a planning problem, a plan is an ordered list of adaptation actions such
that each action resolves at least one of the adaptation issues in the planning problem.
The actions are ordered based on the corresponding adaptation issues, e.g., more critical
issues are prioritized.

The look-ahead horizon L is the steps into the future, in terms of system changes, that
are considered during planning. A planning horizon Φ is a prefix of the look-ahead
horizon that is planned for—see Figure 5.3. A planning horizon of size |Φ| 6 |L| with
|L| the size of the look-ahead horizon, only plans for |Φ| out of |L| adaptation issues in
the look-ahead horizon. An infinite planning horizon allows for considering the entire
look-ahead horizon for planning.

Let πi(Φ) be the plan generated by policy πi for a planning problem captured in Φ.
For a given planning problem in Φ, the quality of πi is quantified as the utility of the
plan by πi, that is, U(πi(Φ)). The utility of plan, U(π(Φ)), is the expected improvement
of the overall system utility upon execution of the adaptation actions that constitute
the plan. U(s) represents the utility of the state s, i.e., a scalar value as a quality met-
ric that identifies the degree to which system goals and requirements are satisfied in
state s—see Section 2.2. When the utility U(π(Φ)) cannot be accurately measured, an
estimations of the value, Û(π(Φ)), is considered. The accumulated utility over time is
the reward. The cost of πi for providing a plan to address the issues in Φ is depicted
as C(πi(Φ)). Given a planning problem, the policy cost may be captured as the time
required by the policy to provide a plan. Therefore, C(πi(Φ)) can be provided by the
developers for different |Φ|, e.g., as a lookup table. When the exact value for the cost
C(πi(Φ)) cannot be accurately measured, an estimations of the cost, i.e., Ĉ(πi(Φ)), is
considered. Estimations of the policy cost can be obtained via theoretical modeling such
as employing worst-case time models [327] or based on empirical profiling [389].

Time
Execution Horizon 𝐻!

Planning Horizon Φ

Look-ahead Horizon ℒ

x Adaptation
Issues

x x x x x x x x x x x x

Figure 5.3: Look-ahead, planning, and execution horizon in HypeZon.

5.2 hybrid planning for self-adaptation with hypezon 101

5.2.2 Receding Horizon in HypeZon

HypeZon addresses the planning problem for software self-adaptation by coordinating
multiple off-the-shelf adaptation policies, at runtime, and selecting based on the cost
(time) and quality objectives. The scheme implements the Plan activity of a MAPE-
K loop that is realized by the incremental adaptation engine discussed in Section 4.3.
During an adaptation cycle, once the Analyze activity has detected the need to plan
an adaptation, i.e., there exists a planning problem captured by Φ, HypeZon takes the
runtime conditions into account and decides which of the available adaptation policies
best suits the said conditions while balancing the quality and cost trade-off.

Inspired by MPC, HypeZon implements the Plan activity using a receding horizon.
In Section 2.1.2, we introduced details of a model predictive controller—see Figure 2.3
for a block diagram. At each sampling interval I, HypeZon makes new measurements,
and based on the operation conditions, decides if a policy switch is required. As a result,
the running adaptation policy that steers the decision-making during the Plan activity
is replaced by a better fitting alternative. A sampling interval is the frequency of data
collection.

The process of resolving a set of adaptation issues in the planning horizon via se-
lecting a set of adaptation actions that maximize an objective function in HypeZon is
formulated similar to MPC; in a model predictive controller, the control calculations are
based on current measurements as well as the predictions of the future values of the
system outputs; the objective of the control calculation is to determine a sequence of M
control actions so that the predicted output moves towards the set-points in an optimal
manner. Control calculations determine a sequence of M control actions, i.e., control
horizon, such that the predicted output moves towards the set-points over a finite predic-
tion horizon P—see Section 2.1.2. HypeZon implements a hybrid planner whereby the
look-ahead and planning horizons of the planner provide similar functionality as the
prediction and control horizons in a typical MPC controller. Given a planning problem,
the objective of HypeZon during planning is to select a sequence of adaptation rules
that upon execution, adapt the system towards the desired configuration, while obtain-
ing highest possible reward, i.e., utility over time. HypeZon borrows the notion of MPC
receding horizon of size one and extends it to an execution horizon Hn with adjustable
size n. Figure 5.3 shows an example of a look-ahead horizon, planning horizon, and
execution horizon in HypeZon. As explained in Section 2.1.2, in MPC, the control hori-
zon is a list of all the actions that are planned during one interval; this is captured as
planning horizon Φ in HypeZon.

As stated by Pandey et al. [328], it is difficult to verify the compatibility between the
plans of different policies, how to choose the planning horizon, and when to stop using
one plan and switch to another policy for planning. In the following, we describe how
HypeZon addresses these challenges. The scheme uses runtime information such as the
planning cost (time) of the adaptation policies, system load, number and type of the
adaptation issues, and the cost of switching between the policies to decide on the size
of the planning and execution horizons.

Employing planning and execution horizons with adjustable size provides for run-
time flexibility. Before choosing a policy, HypeZon adjusts the size of the planning
horizon Φ with respect to the policy cost estimations Ĉ(π(Φ)). For example, if large
number of components in mRUBiS are affected by critical failures (CF) and, at the same
time, certain tenants are experiencing performance issues causing latency in request re-

102 hypezon : hybrid self-adaptation with receding horizon control

sponse times, HypeZon may reduce the size of the planning horizon Φ to first consider
the more critical issues, i.e., component crashes such that the corresponding services be-
come available as soon as possible. This way, HypeZon reduces the expected planning
overhead by reducing the size of Φ, thus the critical issues are resolved relatively faster.

An execution horizon Hn only considers the first n adaptation actions in the plan-
ning horizon for execution in the current adaptation cycle. After executing the n adap-
tation actions, HypeZon stops the execution of the plan and the remaining unresolved
issues are considered together with the newly observed issues in a subsequent adap-
tation cycle as a new planning problem. Employing execution horizon of small size
in HypeZon results in utilizing the most recent adaptation issues immediately. In con-
trast, large execution horizons ignore the recent observations until all the actions in the
planning horizon are executed—see Figure 5.3. Small sizes for Hn demand more fre-
quent planning. Moreover, the execution of the actions that are in the planning horizon
and not in the execution horizon is postponed to the subsequent adaptation cycle(s).
In cases where the planning in a policy is time-intensive, frequent planning might af-
fect the adaptation time negatively. When HypeZon switches the adaptation policy,
the employed policy plans for the remaining adaptation issues whose corresponding
adaptation actions in the planning horizon were not included in the execution horizon.
Moreover, the employed policy also considers the newly detected adaptation issues.
Consequently, after each policy switch, the planning problem is considered anew dur-
ing the control calculation in HypeZon. This way, HypeZon guarantees that after a pol-
icy switch, the active policy calculates the plan according to the most recently observed
conditions while taking into account the already existing issues.

In order to guarantee the compatibility between a plan and the planning problem,
HypeZon only executes one policy at a time and avoids concurrent executions of mul-
tiple policies. As a result of the sequential execution of the policies, the provided plans
are always compatible with the planning problem because the planning problem that is
assigned to a policy remains unchanged during the planning time. This way, once the
plan is ready, HypeZon does not check if the plan is still applicable to the current plan-
ning problem. This feature in HypeZon avoids the runtime overhead that is caused by
compatibility analysis between the planners; however, concurrent executions of policies
may reduce the time that the hybrid planner has to wait until a plan is ready.

5.3 hypezon : a case for meta-self-awareness

The black-box-oriented scheme of the control theory extends towards adaptive con-
trol, where the controller may change its own control regime [280]. This requires the
controllers to have adjustable parameters—see Section 2.1.1. Moreover, an adjustment
mechanism needs to be in place to oversee the parameter tuning via layered arrange-
ments of control loops, where the lower-level entities are controlled by the immediate
higher-level loop [113].

In the realm of self-adaptive systems, adaptive control is perceived as reasoning about
the adaptation logic [332]. The reasoning requires observing the behavior of the control
loop in terms of effectiveness and performance, realizing the need for change, and pre-
scribing the necessary decisions to steer the controller towards the desired behavior.
Meta-self-awareness captures the requirements for equipping self-aware systems with ad-
vanced self-reflective properties [271]. As a result, systems with meta-awareness proper-

5.3 hypezon : a case for meta-self-awareness 103

System + ContextAwareness Object

Observe Affect

Meta-awareness Subject Reason

ActLearn

Models

Observe Affect

Meta-awareness Object Reason

ActLearn

Models

Awareness Subject

Figure 5.4: Awareness levels and scopes.

ties can reason about changing trade-offs during their lifetime [284]. The control design
and architecture of a meta-self-aware system builds on Control Theory as a prominent
base, however, it extends the involvement scope of the higher-level control loops in the
lower-level entities.

A hybrid planner with adjustable control parameters requires a decision-making
mechanism that utilizes system-level as well as feedback control-level information at
runtime. In this section, we argue that equipping a self-adaptive software with hybrid
planning should be realized as a meta-self-awareness property. To this end, after pre-
senting brief background on self-awareness and meta-self-awareness in Section 5.3.1,
building on previous study by Giese et al. [187] towards making meta-self-awareness
visible in the architecture, first we propose two designs to engineer a self-adaptive soft-
ware with meta-self-awareness properties in Section 5.3.2. In Section 5.3.3, we show
how HypeZon can be realized by the two designs and present detailed algorithms to
instantiate HypeZon.

5.3.1 Self-awareness and Meta-self-awareness

A self-aware system is identified by two main characteristics; first, the ability to learn
models capturing knowledge of the system, its context, and its goals on an ongoing
basis. Second, reasoning about using the models for analysis and planning concerns.
Computational self-awareness is achieved via a Model-based Learning, Reasoning, and Act-
ing (LRA-M) loop. There can be multiple variations to Acting e.g., explaining, reporting,
suggesting, and adapting. Self-adaptation, realized via a MAPE-K feedback loop, is one
of the advanced characteristic of self-aware systems where the scope of Acting is set to
Adapting [284]. In this chapter, we target self-aware systems with adaptation capabil-
ities that conform to an LRA-M architecture—see lower-level loop in Figure 5.4. The
learning process uses system observations to learn models that are then used for reasoning
and adapting. As a result, a system realizing the LRA-M loop becomes aware of itself
and its context. The object of the awareness is the entity being reasoned upon, i.e., the

104 hypezon : hybrid self-adaptation with receding horizon control

Awareness
Level

Meta-awareness
Level

Awareness Object

Observe Affect

Meta-awareness Object

Awareness Subject

LRA-M

Observe Affect

Meta-awareness Subject

LRA-M

(a) External design.

Awareness Object

Observe Affect

Meta-awareness Subject
Awareness Subject

LRA-M

Observe and Affect

Meta-awareness Object

(b) Internal design.

Figure 5.5: External and Internal designs for meta-self-awareness.

system and its relevant context in Figure 5.4. The subject of the awareness is the entity
performing the reasoning.

A meta-self-aware system can obtain knowledge of its own awareness and how it is
exercised. A higher-level self-aware entity such as an LRA-M control loop—see higher-
level loop in Figure 5.4—reflects on the benefits and costs of maintaining increased
awareness as well as the capacities for it. Meta-self-awareness is concerned with two
classes of objects; The elements of the lower-level awareness loop, e.g., a learning
process or an adaptation logic, and the output of these elements, i.e., the models or
specifications produced by the object being reasoned upon [284]. In order to explic-
itly capture the meta-self-awareness properties in the architectural design, meta-self-
awareness can be realized either as a built-in capability or as an external meta-awareness
layer [187]—similar to the internal and external approaches for engineering systems
with self-adaptation properties [92].

5.3.2 Meta-self-aware Designs to Realize Hybrid Planning

In the proposed designs2, the self-awareness capabilities are realized via the LRA-M
loop introduced in Section 5.3.1. The model in the LRA-M loop overlaps with the notion
of an RTM—see Section 2.4—insofar it is evolving at runtime to reflect the current state
of the system and its context via being causally connected [47]. Moreover, the model
may include knowledge about system’s goals and requirements.

5.3.2.1 External design

In order to explicitly separate the awareness and the meta-awareness levels, as depicted
in Figure 5.5a, two hierarchically arranged LRA-M loops are employed. The lower-level
loop, henceforth the awareness level, serves as the awareness subject for the underlying
system and its context, i.e., the awareness object—see Figure 5.4. The LRA-M loop at the

2 Giese et al. have previously introduced different architectural concepts for modeling meta-self-aware com-
puting systems in [187] where they also discuss variations of internal and external concepts for realizing
meta-self-awareness. In this section, we build on their study and propose more concrete designs in the
context of self-adaptive systems and hybrid planning.

5.3 hypezon : a case for meta-self-awareness 105

higher level, henceforth meta-awareness level, observes the awareness level in combina-
tion with the system and context, i.e., meta-awareness-object, learns models that capture
knowledge about the meta-awareness object, reasons about the meta-awareness object
and, if required, adapts it accordingly. The scope of Affect in the meta-awareness level
includes changes to the awareness level and to the underlying system and its context.

The External design supports the explicit separation of concerns, i.e., awareness and
meta-awareness, at the architecture level and allows for reusability, easier maintenance,
and independent evolution of each level. As a result, separate and independent mech-
anisms for observing, learning, and reasoning logic may be employed by each level.
Realizing meta-awareness at an external level provides for a global view on the meta-
awareness object. This allows for observing phenomena with global scope that are not
observable at the awareness level. The External design operates the meta-self-awareness
subject on a different timescale than the one of the object, thus the lower-level loop
is executed more frequently. The meta-awareness loop however, is executed less fre-
quently since it is inherently concerned with relatively more sparse phenomena to react
upon [112].

5.3.2.2 Internal design

An internal realization of the meta-self-awareness properties is possible via employing
an awareness self-loop as depicted in Figure 5.5b. In this design, the LRA-M loop observes
and affects itself– known as self-loop [187]. The subject and object of meta-awareness are
not architecturally separated, consequently, one element, i.e., the LRA-M loop, performs
both the reasoning and being reasoned about parts of the meta-awareness. This is similar to
the internal approach for self-adaptation where there is not an explicit MAPE-K loop and
one element performs both the adapting and adapted part of the self-adaptation [367]—
see Figure 2.5. In the Internal design, the awareness level is also aware of itself. The
employed LRA-M loop observes the meta-awareness object—while being part of it—
learns the required models from the observations, reasons about the meta-awareness
object and adapts it accordingly. The scope of the Affect for the meta-awareness subject
includes changes to itself, the underlying system, and its context. The internal design
implements the awareness and the meta-awareness properties in an intertwined manner
and keeps the subject of the meta-awareness close to the object. In this design, the meta-
awareness self-loop operates at the same timescale as the awareness loop.

5.3.3 HypeZon as Meta-awareness Subject

HypeZon is realized as a meta-awareness subject via both External and Internal designs
presented in Figure 5.5. The variants are called HZe and HZi respectively. Figure 5.6
shows how the suggested designs for meta-self-awareness realize hybrid planning at
the architecture level. As discussed in Section 5.3.1, self-adaptation, often carried out
via a MAPE-K feedback loop, is one of the advanced characteristic of the self-aware
systems where the scope of acting in the LRA-M loop is set to adapting—see Figure 5.4.
Both HZe and HZi variants realize the self-awareness capabilities via a MAPE-K loop.

In the external design, i.e., HZe, the loop at the meta-awareness level implements
the hybrid planner. The hybrid planner observes the awareness level in combination
with the system and context, reasons about them, and plans accordingly. In the con-
text of hybrid planning with HypeZon, the adaptations of the awareness level include

106 hypezon : hybrid self-adaptation with receding horizon control

Awareness
Level

Meta-awareness
Level

System + Context

Monitor

Analyze

Execute
K’

Plan

Hybrid Planner

Monitor

Analyze

Execute
K

Plan

(a) External design (HZe).

System + Context

Monitor

Analyze

Execute
K’’

Plan

Hybrid Planner

(b) Internal design (HZi).

Figure 5.6: Meta-self-aware External and Internal designs realizing hybrid planning.

control parameter tuning and policy switch—see Section 5.2. HZe operates the hybrid plan-
ner in coarser time intervals compared to the lower-level MAPE-K loop. Consequently,
compared to HZi, the control loop containing the hybrid planner in HZe has larger sam-
pling intervals (I)—see Section 5.2. While the sampling interval in control theory refers
to the frequency of data collection, in the context of HypeZon, it captures the execution
intervals of the hybrid planner insofar the hybrid planner is executed at each sampling
interval, hence, it makes new measurements and decides accordingly. The measure-
ments are the accumulated observations during the sampling interval. The lower-level
loop in HZe is executed more frequently to guarantee timely adaptation concerning the
part of the system under its direct control. The meta-awareness loop however, operates
at a relatively larger timescale. This is both due to the sparsity of the relevant concerns
(compared to adaptation issues that are more frequent than other concerns) and its
more coarse grained execution intervals by design.

HZi, as depicted in Figure 5.6b, implements the hybrid planner at the awareness
level. Therefore, at each cycle of the MAPE-K loop, the hybrid planner is executed
as well. The knowledge base of the MAPE loop in this design, K ′′, contains different
information compared to K, K ′, and, K + K ′. The reason is that HZi implements the
adaptation loop and the hybrid planner in an intertwined manner and keeps the subject
of the meta-awareness, i.e., the hybrid planner, close to the object. In this design, the
meta-awareness self-loop, hence the hybrid planner, operates at the same frequency as
the awareness loop.

Figure 5.7 is a high-level flowchart showing the steps of hybrid planning in Hype-
Zon. For a planning problem captured in Φ, in both HypeZon variants, the decisions
for tuning the control parameters and the policy switch is made based on the average
values over system past executions during the sampling interval I. The observations
are shown as Monitor and Analyze output. Compared to HZi, HZe collects accumulated
observations of system executions that can be used to estimate the operation conditions
during the next interval. HZi however, is executed more frequently, that is, at each adap-
tation cycle, and makes control and switch decisions based on the observations over a
relatively shorter period. In the proposed designs, the focus is on the functional aspects

5.3 hypezon : a case for meta-self-awareness 107

[system objectives
satisfied]

[system objectives
not satisfied]

Find policy that
maximizes utility

with affordable cost

Find policy that
satisfies violated
objectives with
affordable cost

Policy

Adjust Hn

Obtain plan
from Policy

Set of
Policies

Set of
Policies

Monitor and
Analyze output

Forward plan
and Hn to
Execute

H
yb

rid
 P

la
nn

in
g Reduce planning

horizon to find a
compromise

Figure 5.7: Generic description of hybrid planning in HypeZon.

enabled by each design rather than the architectural aspects. However, the architectural
decision of separating the awareness and the meta-awareness loops in HZe and combin-
ing them in HZi steers the decisions that are relevant to the functional aspect, i.e., the
sampling (execution) intervals of HypeZon in each design.

Provided the observations in Figure 5.7, HypeZon checks the indicator(s) for system
objectives; if the objectives are satisfied, the hybrid planner searches the Set of Policies for
a policy that maximizes system utility with the hard constraint regarding the budget.
The cost of the policy, i.e., Ĉ(π(Φ)), should be within the permitted budget. HypeZon

may reduce the size of the planning horizon Φ, thus reducing the cost of planning
Ĉ(π(Φ)) to find a compromise policy that maximizes Û(π(Φ)). If one or more system
objectives are not satisfied, HypeZon searches for a policy that can address the violated
objective with affordable cost. Once the Policy is selected, HypeZon tunes the size of
the execution horizon Hn according to the expected conditions, e.g., estimated system
load and policy cost. Finally, HypeZon obtains the plan from the selected policy and,
together with Hn, forwards them for execution. As discussed earlier, HypeZon relies
on our incremental Analyze scheme pretested in Chapter 4, therefore, the issues in Φ
that constitute the planning problem are in the form of an ordered list with respect to
the importance of the issues. Consequently, Hn is also an ordered list. Therefore, any
adjustments to the size of the planning and execution horizons removes the elements
from the end of the lists, i.e., the least important issues.

108 hypezon : hybrid self-adaptation with receding horizon control

ALGORITHM 5.1 : HZe/HZi
1 Require: ˆload, Π, RTI, R̂T
2 Φ← L // Planning horizon gets all issues in look-ahead horizon

3 π∗ ← null

4 if RTI optimal then // Objective satisfied

5 π∗ ← πi ∈ Π : i = argmax
i

Û(πi(Φ)) // Policy to maximize utility

6 if (ccurr,∗ + Ĉ(π
∗(Φ)) + R̂T) high then // If cost not affordable

7 (π∗,Φ,Hn)←FindPolicy(R̂T ,Φ, ˆload) // Function call to find policy

8 else
9 Hn ←∞ // Cost affordable; execute full plan

10 end
11 else

// RTI is high; objective not satisfied

12 π∗ ← πj ∈ Π : j = argmin
j

Ĉ(πj(Φ)) // Policy to minimize cost

13 Hn ← Adjust(Φ,π∗, ˆload) // Function call to adjust Hn
14 end
15 List of Actions← π∗(Φ)
16 Return List of Actions , Hn

HypeZon is concerned with (i) control parameter tuning, i.e., tuning the size of the
planning and execution horizons, Φ and Hn respectively, and (ii) policy switch. ALGO-
RITHM 5.1 shows an instantiation of the flowchart in Figure 5.7. The algorithm is a
high-level description of HypeZon that is shared by both HZe and HZi. The only differ-
ence is the execution interval I of the hybrid planner in the two variants. Instantiating
the generic steps of hybrid planning with HypeZon that are described in Figure 5.7
requires making certain assumptions and specifications; consequently, the steps can
only be implemented as heuristics in the algorithms that are approximated instantia-
tions. Therefore, the three algorithms in this section are heuristics that approximate the
generic HypeZon scheme presented in Figure 5.7.
Assumption. Analogously to the considerations for Venus, we assume that the adapt-
able software and its operational context do not react to the adaptations in an unex-
pected way—see assumption (A3) in Chapter 4. Therefore, execution of an adaptation
action results in the expected changes of the system and of the system utility.
Required inputs. ALGORITHM 5.1 requires estimation of system load or the number
of the adaptation issues ˆload, set of available adaptation polices Π, the average response
time of the system during the sampling interval I, i.e., RTI, and estimation of response
time for the current adaptation cycle, i.e., R̂T . R̂T is approximated using linear regression
based on RTI and expected system load, i.e., ˆload.

For the planning problem captured in Φ, Π also includes estimations of quality and
cost for the policies, i.e., Û(π(Φ)) and Ĉ(π(Φ)) respectively. The planning horizon Φ
is initially set to fully include the look-ahead horizon L, i.e., all the the existing adap-
tation issues. L is the steps into the future, in terms of system changes, that are con-
sidered during planning. Φ is a prefix of the look-ahead horizon that is considered for
planning—see Figure 5.3.

5.3 hypezon : a case for meta-self-awareness 109

Policy switch thresholds. ALGORITHM 5.1 uses average response time RTI as an indi-
cator of the system objective satisfaction—see the decision node in Figure 5.7. However,
any other system objective metrics with relevant thresholds can be considered. Later in
the thesis, in the context of one of the application examples for evaluating HypeZon,
instead of response time RT , we use performance (P) of the services as indicators for
system objective satisfaction. This means, ALGORITHM 5.1 replaces RTI with PI that is
the average performance of the system during the sampling interval I. We discuss this
in more details in Chapter 9. Based on the requirements for system business objectives,
HypeZon partitions the range for objective satisfaction to optimal and high zones; optimal
indicates that RTI is within the acceptable range while high indicates that RTI is higher
than the permitted upper bound—see line 4 and 11 in ALGORITHM 5.1. The two zones
constitute the full range for the response time values. HypeZon supports modifications
of policy switch thresholds at runtime to reflect the changing goals and requirements.

Switching between the policies is charged with a cost proportionate to the runtime
overhead that is caused by the switch insofar it requires deploying specific settings for
the new policy, e.g., initializing a constraint solver or loading prediction models. The
switch from policy πi to πj is charged with a cost cij that is subtracted from the system
utility. HypeZon reasons about the trade-off between the cost and benefit of the switch
at runtime—line 6 in ALGORITHM 5.1. ccurr,∗ is the cost of switching from the current
policy to π∗. When system business objectives are satisfied, i.e., RTI is optimal (line 4),
HypeZon selects the policy yielding the highest estimated utility with affordable cost—
see Figure 5.7. HypeZon searches for a policy with the highest Û(π(Φ)) (line 5) where
the policy cost and the switch cost are acceptable. To do this, line 6 checks if the the
sum of the policy switch cost (ccurr,∗), Ĉ(π∗(Φ)), and the estimated response time R̂T
is high.

For a planning problem in Φ, if ALGORITHM 5.1 does not find in its first attempt a
match for policy π∗ in Π that maximizes Û(π∗(Φ)) with an affordable cost Ĉ((π∗(Φ))

(line 6), in line 7, HypeZon calls function FindPolicy to reduce the size of the planning
problem until a quality-cost compromise is reached. If RTI is high, indicating that the sys-
tem objectives are not satisfied, HypeZon searches for a policy that reduces the response
time as fast as possible—see Figure 5.7. To this end, HypeZon selects a policy with mini-
mum planning cost (time) and adjusts its execution horizon accordingly—see line 11-14.
Note that ALGORITHM 5.1 demonstrates only one of the several possible instantiations
of the generic HypeZon scheme presented in Figure 5.7; the step in line 12 is defined ac-
cording to the considered objective satisfaction indicator in ALGORITHM 5.1, i.e., the
response time. Considering different objectives than response time requires different
actions at this step of the algorithm to restore the violated objectives.

The FindPolicy function is defined in ALGORITHM 5.2; in addition to the policy
information, estimated load, and estimated response time, the algorithm also requires
an input parameter k. k is provided by the developer and defines how many iterations
HypeZon is allowed to reduce the size of the planning horizon Φ to find a policy with
an affordable cost that maximizes Û(π(Φ))—see Figure 5.7 for an overview of the steps.
FindPolicy is called by ALGORITHM 5.1 because for the given Φ, the main method
could not find a policy that satisfies the cost and quality constraints. Therefore, Find-
Policy reduces the size of the planning problem by 10% in line 6 of ALGORITHM 5.23;

3 The discounting factor for step-wise reduction of Φ is subject to change for different application domains
or runtime conditions.

110 hypezon : hybrid self-adaptation with receding horizon control

as a result, Ĉ(π∗(Φ)) is reduced accordingly. In order to save planning effort, before
searching for a policy that maximizes the Û(π(Φ)) in line 9, FindPolicy first calculates
the size of the execution horizon Hn in line 7. Hn includes the issues that will be ad-
dressed in the current cycle—see Figure 5.3. In line 8, Φ is adjusted to only include
the issues that remain in the execution horizon, thus planning for the rest of the issues
is avoided; consequently, the planning cost Ĉ(π∗(Φ)) is reduced. As discussed earlier,
both Φ and Hn are ordered lists and adjustments to their sizes entails removing the
elements from the end of the lists.

ALGORITHM 5.2 : FindPolicy(R̂T ,Φ, ˆload)

1 Require: k, Π, R̂T ,Φ, ˆload
2 π∗ ← null

3 iteration← 0

4 while iteration < k and π∗ = null
5 do // Check if planning horizon can be reduced

6 |Φ|← 0.9× |Φ| // Reduce size of planning horizon

7 Hn ← Adjust(Φ,π∗, ˆload) // Function call to adjust Hn
8 Φ← Hn // Planning Horizon is reduced to size of execution horizon

9 π∗ ← πi ∈ Π : i = argmax
i

Û(πi(Φ)) // Policy to maximize Û for new Φ

10 if (ccurr,∗ + Ĉ(π
∗(Φ)) + R̂T) high then // If cost not affordable

11 π∗ ← null // No policy found

12 end
13 iteration++

14 end
15 if π∗ == null then // No policy found

16 Φ← L // Planning horizon gets all issues in look-ahead horizon

17 π∗ ← πj ∈ Π : j = argmin
j

Ĉ(πj(Φ)) // Policy to minimize cost

18 Hn ← Adjust(Φ,π∗, ˆload) // Function call to adjust Hn
19 end
20 Return π∗,Φ,Hn

For a policy π∗, the cost of the policy switch ccurr,∗ and the estimated response time
R̂T in line 10 are constant, therefore, to find a policy, only Ĉ(π∗(Φ)) can be reduced.
FindPolicy reduces Ĉ(π∗(Φ)) via reducing |Φ|, until a match that satisfies the policy
switch condition is obtained or the algorithm reaches the end of the permitted iterations,
i.e., k times (line 4-13). Failing to find a policy that balances the utility-cost trade-off
(line 15), FindPolicy restores the original planning horizon Φ (line 16) and selects
the policy with the minimum planning cost (line 17). The algorithm then tunes the
execution horizon Hn accordingly (line 18). Finally, ALGORITHM 5.2 returns π∗, Φ,
and Hn to the main method in ALGORITHM 5.1.

Both ALGORITHM 5.1 and ALGORITHM 5.2 call the function Adjust to tune the size
of the execution horizon Hn based on the selected policy and the runtime conditions.
This function is defined in ALGORITHM 5.3. Tuning the execution horizon at runtime
requires information about the adaptation logic in the policies and the characteristics of
the MAPE-K loop at the awareness level, e.g., operation time—see Figure 5.6. HypeZon

captures this as the policy cost. Estimations of Ĉ(π(Φ)) are provided as inputs for Hype-

5.3 hypezon : a case for meta-self-awareness 111

Zon. In addition to Ĉ(π∗(Φ)) in ALGORITHM 5.3, Adjust requires information about
the average system load or estimated number of adaptation issues to tune the size of
the execution horizon. HypeZon captures this as ˆload. Estimations for ˆload are based
on the average observations made over the sampling interval I, i.e., since the most re-
cent execution of the hybrid planner. The upper bound values for ˆload and Ĉ(π∗(Φ))

are set by the developers and define the acceptable thresholds for each attribute. The
thresholds are shown as the range high—see line 3 and 4. The high range threshold for
the cost Ĉ(π∗(Φ)) in ALGORITHM 5.3 is defined according to the available budget.

ALGORITHM 5.3 : Adjust(Φ,π∗, ˆload)

1 Require: Φ,π∗, ˆload
2 Hn ← Φ // Execution horizon gets all the issues in planning horizon

3 if ˆload high then // Estimated load/ issue # is high

4 if Ĉ(π∗(Φ)) high then // Estimated policy cost is high

5 |Hn|← 0.9× |Hn| // Mildly reduce Hn
6 else

// Estimated policy cost is low

7 |Hn|← 0.5× |Hn| // Severely reduce Hn
8 end
9 end
10 Return Hn

Adjust in ALGORITHM 5.3 initially assigns all the issues in Φ to be included in Hn
(line 2). When the expected system load is not high, independent of the planning cost
of π∗, the algorithm executes all the actions in the planning horizon. High system load
or larger amount of anticipated adaptation issues, e.g., a failure burst, demand adjust-
ments of the execution horizon according to the planning cost of the corresponding
policy.

When the system is experiencing high load, it is important to make sure that the
most recent critical issues are not ignored because of a lengthy execution of the current
adaptation cycle. Therefore, when ˆload is high, ALGORITHM 5.3 reduces the size of Hn
(lines 3-9) to only execute the prioritized actions in the current adaptation cycle. The
cycle is aborted afterwards to consider the most recent issues in the planning. A plan to
resolve the issues in Φ is an ordered list of actions where actions that address the most
critical issues are prioritized—see Section 5.2. However, partial execution of a plan is
only beneficial if the planning cost of π∗ is relatively low and the expected number of
issues (ˆload) is high.

When both Ĉ(π∗(Φ)) and ˆload are high, ALGORITHM 5.3 mildly reduces Hn, e.g.,
by 10% (line 5), as otherwise, critical issues might be ignored for a long time if Hn is
too large, i.e., |Hn| = |Φ|. Another risk is that reducing Hn to a very small size forces π∗

to re-plan frequently. As a result, the high policy cost adds more overhead to an already
over-loaded system. Conversely, low policy cost allows for more extreme reduction of
the execution horizon (line 7). Smaller Hn entails more frequent planning by π∗ but
leads to shorter waiting time for the most recent adaptation issues in the queue—as
otherwise they are ignored until the subsequent adaptation cycle and after the full plan
is executed by the current cycle. For a π∗ with small Ĉ(π∗(Φ)), if the hybrid planner

112 hypezon : hybrid self-adaptation with receding horizon control

ContextContext SystemSystem ee

issues
change events

 Monitor
Adapt

Monitor

issues
change events Monitor

 +
Analyze

Plan + Hn
Adapt

Monitor

issues
change events

Monitor
Adapt

Monitor

Adaptation
Engine FindPolicyFindPolicy AdjustAdjust

get Pi, Hn
get Hn

 Hn
Pi, Hn

ContextContext SystemSystem ii

issues
change events

Monitor
+

Analyze

Plan + Hn
Adapt

Monitor

Adaptation
Engine FindPolicyFindPolicy AdjustAdjust

get Pi, Hn
get Hn

 Hn
Pi, Hn

issues
change events Monitor

+
Analyze

Plan + Hn
Adapt

Monitor

get Pi, Hn
get Hn

 Hn
Pi, Hn

issues
change events Monitor

+
Analyze

Plan + Hn
Adapt

Monitor

get Pi, Hn
get Hn

 Hn
Pi, Hn

𝐻!
plan , 𝐻!

get 𝜋∗, 𝐻!
get 𝐻!

𝜋∗, 𝐻!

HZ!

Algo
rit

hm 5.
1

Algo
rit

hm 5.
2

Algo
rit

hm 5.
3

Figure 5.8: Sequence diagram for HZe execution with I = 2.

expects high system load or large number of adaptation issues, Hn is reduced more
severely, e.g., by 50%. Finally, the algorithm returns Hn to the calling methods.

In mRUBiS, consider a case where the hybrid planner is dealing with a list of issues in-
dicating service crashes and under-utilized service replicas. Addressing a service crash
is more critical for the availability of the system, thus should be prioritized over opti-
mizing the utilization of service replicas—see Section 5.1. Thus it is beneficial to address
the service crashes as soon as they occur. Reducing the size of the execution horizon
results in shorter execution times. Consequently, this allows for making new observa-
tions more frequently, thus considering most recent issues sooner as otherwise, would
be ignored until the full plan is executed.

Figure 5.8 shows a sequence diagram of HZe execution with I = 2. The diagram
includes three adaptation cycles; each occurrence of the adaptation issues emits change
events to the adaptation engine. The adaptation engine that implements a MAPE-K
loop is executed to address the issues via adapting the system. The execution inter-
val I for the hybrid planner is set to two, therefore, HZe is only executed in every
other adaptation cycle, i.e., the second cycle in Figure 5.8. While the meta-awareness
loop in HZe monitors the adaptation engine in combination with the system before
and after each adaptation, the hybrid planner, implemented via ALGORITHM 5.1–5.3,
is only executed for every other adaptation since I = 2—see Figure 5.6a for the archi-
tectural design of HZe. Figure 5.9 shows a sequence diagram for HZi during three
adaptation cycles where the hybrid planner is executed in every adaptation cycle. As
discussed earlier, compared to HZi, HZe collects accumulated observations of system
executions that can be used to estimate the operation conditions for the next interval.

5.4 summary 113

ContextContext SystemSystem ee

issues
change events

 Monitor
Adapt

Monitor

issues
change events Monitor

 +
Analyze

Plan + Hn
Adapt

Monitor

issues
change events

Monitor
Adapt

Monitor

Adaptation
Engine FindPolicyFindPolicy AdjustAdjust

get Pi, Hn
get Hn

 Hn
Pi, Hn

ContextContext SystemSystem ii

issues
change events

Monitor
+

Analyze

Plan + Hn
Adapt

Monitor

Adaptation
Engine FindPolicyFindPolicy AdjustAdjust

get Pi, Hn
get Hn

 Hn
Pi, Hn

issues
change events Monitor

+
Analyze

Plan + Hn
Adapt

Monitor

get Pi, Hn
get Hn

 Hn
Pi, Hn

issues
change events Monitor

+
Analyze

Plan + Hn
Adapt

Monitor

get Pi, Hn
get Hn

 Hn
Pi, Hn

HZ!

get 𝜋∗, 𝐻#

𝐻#
get 𝐻#

get
𝐻#

𝜋∗, 𝐻#

get 𝐻#

plan , 𝐻#

𝐻#

𝐻#

plan , 𝐻#

plan , 𝐻#

get 𝜋∗, 𝐻#

get 𝜋∗, 𝐻#

𝜋∗, 𝐻#

𝜋∗, 𝐻#

Algo
rit

hm 5.
1

Algo
rit

hm 5.
2

Algo
rit

hm 5.
3

Figure 5.9: Sequence diagram for HZi execution.

HZi, however, due to its architectural design, is executed at each adaptation cycle, and
makes control and switch decisions based on the observations over a relatively shorter
period—see Figure 5.6b for the architectural design of HZi.

5.4 summary

When the complexity of the adaptation space exceeds the ability of individual adapta-
tion solutions, to solely, fulfill both the quality and the cost requirements of the adapta-
tion, hybrid adaptation mechanisms that coordinate, at runtime, multiple off-the-shelf
adaptation polices are beneficial. Such solutions, piece-wise, exhibit properties of their
constituents while avoiding a cost-intensive process of developing new custom solu-
tions for the problem at hand. In this chapter, we introduced HypeZon, a hybrid plan-
ner for self-adaption with receding horizon. The scheme complements the proposed
mechanisms for incremental architecture-based self-adaptation in this thesis by offering
a hybrid planner that implements the Plan activity of the adaptation engine— see Fig-
ure 5.1 for an overview. HypeZon exhibits the characteristics of a generic solution for
hybrid adaptation since it is designed to consider the employed adaptation policies as
black-box and can coordinate arbitrary adaptation policies.

114 hypezon : hybrid self-adaptation with receding horizon control

We discussed the use of receding horizon in HypeZon to adapt to the operation con-
ditions and exhibit control flexibility at runtime. By considering hybrid adaptation as a
case for meta-self-awareness, HypeZon supports systematic and consistent acquisition
of a broad view on the adaptable software, the adaptation process, and the individual
adaptation polices allowing for observing phenomena with global scope that are not
visible at the same level as the adaptation loop, thus supporting more informed de-
cisions for switching between the individual policies. The generic scheme for hybrid
planning in HypeZon was instantiated via heuristic-based algorithms. We discussed
through detailed algorithms how HypeZon coordinates a set of input policies to balance
the quality-cost trade-off while opting for maximizing system objective satisfaction.

The scheme advances the state-of-the-art for hybrid adaptation by providing explicit
architectural design. Conforming to meta-self-aware architectures, we proposed two de-
signs for HypeZon that support explicit separation of concerns, i.e., adaptation and pol-
icy invocation, at the architecture level allowing for reusability, easier maintenance, and
independent evolution of each level. Consequently, separate and independent mecha-
nisms for observing, learning, and reasoning logic may be employed by each level.

Part III

E VA L U AT I O N A N D C O N C L U S I O N

In this part of the thesis, we discuss the employed application examples to
evaluate the solutions. We outline the implementation framework and the
experiment environment which we use for the evaluation. Afterwards, we
comprehensively evaluate our incremental adaptation engine and Venus in
a comparative study with alternative self-adaptation solutions. We assess
the runtime performance, scalability, optimality, and robustness of Venus

through a set of qualitative and quantitative experiments. Next, we present
an instantiation of the proposed methodology for training utility-change pre-
diction models on mRUBiS and evaluate the methodology by assessing the
prediction error and runtime performance of the models. We evaluate the
adaptation engine and Venus prior to the learning methodology. The reason
is that, application of the methodology builds on existence of an adaptation
engine and an adaptation mechanism which we demonstrate and evaluate
first. Next, we evaluate HypeZon in a comparative study with an alternative
solution for hybrid adaptation. Moreover, we discuss related work to con-
trast the contributions of this thesis with the state-of-the-art in engineering
self-adaptive software; more specifically, we study how the state-of-the-art
in planning mechanisms satisfy the requirements for architecture-based self-
adaptation of dynamic architectures. Finally, we conclude the thesis and
provide an outlook on the future work.

6
E X P E R I M E N TA L A P P L I C AT I O N E X A M P L E S

In this chapter, we present the two application examples, i.e., mRUBiS and Znn.com,
that are used for the qualitative (only mRUBiS) and quantitative evaluation of the so-
lutions proposed in this thesis. First, in Section 6.1 we summarize the description of
the mRUBiS application that is already introduced in Section 2.5. Then, we present
Znn.com in Section 6.2. Finally, we discuss the evaluation methodology and present the
set of input traces/logs that we use for the experiments with both application examples
in Section 6.3.

6.1 mrubis

As a running example throughout this thesis, we used the Modular Rice University
Bidding System (mRUBiS) [414] to illustrate Venus and HypeZon. We have equipped
the application with an adaptation engine based on a MAPE-K feedback loop that real-
izes the self-healing and self-optimizing properties—see Section 2.5. More specifically,
we defined architectural pattern-based utility functions to represent the business objec-
tives of mRUBiS in Chapter 3. In Chapter 4, we presented a MAPE-based description of
Venus and its features based on an implementation of mRUBiS. Finally, in Chapter 5, we
used a motivating scenario based on mRUBiS to illustrate the details of HypeZon. In the
following, we summarize the description of mRUBiS initially introduced in Section 2.5.

mRUBiS is an online marketplace that implements the core functionality of an auc-
tion site: selling, browsing, and bidding. Technically, it is derived from RUBiS which
is a popular case study and an open source benchmark to evaluate control theoretic
adaptations as well as self-adaptive software systems with performance concerns [332].
mRUBiS extends RUBiS by adding new functionalities and modularizing its monolithic
structure. The modularization enables the architectural adaptation of mRUBiS. The mar-
ketplace hosts arbitrary number of shops, i.e., tenants. The architecture of each shop is
isolated from the architectures of the other shops as each shop is configured indepen-
dently from the other tenants—see Figure 6.1 for an architecture of a tenant in mRU-
BiS. A shop in mRUBiS consists of 18 components that are individually deployed. All
shops share the same component types but each shop has its own individually config-
ured components. The architecture of a tenant consists of components to manage the
products (Item Management Service), users (User Management Service), auctions and
purchases (Bid and Buy Service), inventory (Inventory Service), rating of users (Rep-
utationService), and components to authenticate users (Authentication Service) and to
persist (PersistenceService) and retrieve data (Query Service) from the database. Em-
ploying a pipe of filter components that follows the batch sequential pipe-and-filter
architectural style improves the results when users search for items, i.e., products. It
iteratively adjusts the list of items obtained from the query service and removing items
that are not considered as relevant for the specific user and search request.

117

118 experimental application examples

Figure 6.1: Architecture of a tenant in mRUBiS from [413].

The business objectives of a company running mRUBiS, i.e., obtaining high volumes
of sales, is achieved via high availability of the shop services and low response times to
client requests. In order to make sure that these goals are met, or in case of violation, the
system is quickly brought back to a state where it satisfies its business objectives again,
self-adaptation should be employed to automatically repair failures, i.e., self-healing by
detecting, diagnosing, and recovering from disruptions [185, 343] and improve perfor-
mance, i.e., self-optimization by reconfiguring the system [430]. The self-healing and
self-optimizing properties are added to mRUBiS via employing a MAPE-K feedback
loop as an adaptation engine.

In this thesis, we used mRUBiS as one of our application examples to investigate two
different self-adaptation properties, i.e., self-healing and self-optimization of software
systems. We equip mRUBiS with a MAPE-K feedback loop that uses an architectural
RTM of mRUBiS. Specifically, the model represents the runtime architecture of mRUBiS
according to the deployment of mRUBiS on an application server. Thereby, we con-
sider both parameter and structural adaptation of software systems. mRUBiS applica-
tion supports both types of adaptation. Restarting a component in mRUBiS is realized
with parameter adaptation while replacing a component with an alternative requires
structural adaptation that reconfigures the architecture. Moreover, the case study can
be executed in combination with synthetic input traces that allow for investigation of
the self-adaptive properties under a wide range of operation conditions. An individ-
ual input trace only captures one possible future for a simulated self-adaptive system
and fails to cover a large and representative spectrum of the input space. Employing

6.1 mrubis 119

such a trace results in inconclusive output for the self-adaptive system under evaluation
and lacks generality—we discuss this in the context of the evaluation methodology and
input traces in Section 6.3.

6.1.1 Self-healing and Self-optimizing mRUBiS

We use the self-healing and self-optimization properties of mRUBiS to discuss Venus

and HypeZon. To achieve high availability, the self-healing aims at repairing architec-
tural failures that disrupt the operation of mRUBiS. For the mRUBiS architecture, four
types of Critical Failures (CFs) are considered as introduced in [414] that should be han-
dled by self-healing. They target Components that either crash and enter the UNKNOWN
life cycle state (CF1), throw Exceptions exceeding a given threshold (CF2), are destroyed
and removed from the architecture (CF3), and Connectors that are lost and removed from
the architecture (CF4). The four CFs are the negative patterns that affect the system. The
rule set < includes the adaptation rules. As adaptation options, i.e., rules in Figure 2.8,
mRUBiS supports restarting, redeploying, and replacing components, as well as recre-
ating connectors. For the redeployment, there are two variants. The light-weight variant
keeps the latest configuration while the heavy-weight variant resets the configuration
parameters of the redeployed component.

In order to have low response times for the services, i.e., components, in mRUBiS,
the self-optimization aims at automatically improving the performance of mRUBiS by
architectural reconfiguration. We define one Performance Issue (PI1) that indicates the
performance of a component in mRUBiS is below a threshold. Changes in the load of
a component may bring mRUBiS to sub-optimal state that requires to be handed by
self-optimization of the system. Significant increase in a component load reduces the
performance of the component by overloading the active replicas of the component.
Equation 3.9 shows how we measure performance. Moreover, reduced load may cause
underutilization of the corresponding replicas for a component, thus reducing the per-
formance. As adaptation options, mRUBiS supports adding and removing service repli-
cas until the performance of the affected components reaches its desired value. Note
that in case of extreme traffic, self-optimization may be restricted by the available re-
sources thus failing to bring the component to its optimal state regarding performance.

Each adaptation rule in mRUBiS has three attributes: costs, utilityIncrease, and ratio—see
the metamodel of mRUBiS in Figure 2.8. Costs attribute captures the expected execution
time of the corresponding rule; utilityIncrease is the impact on the utility when applying
the rule; ratio is the defined as utilityIncrease/Costs. mRUBiS can host arbitrary number
of tenants, each containing 18 components. We define the overall system utility, i.e., the
utility of the mRUBiS architecture G, conforming to the principals of additive utility
functions [246, 340]—see Section 3.1.1. Hence, the utility of a tenant is the sum of the
sub-utilities of all its constituent components as shown in Equation 5.1 and, similarly,
the overall utility of mRUBiS is the sum of the utilities of its tenants—see Equation 3.2.

The system elements related to the self-healing and self-optimizing issues, i.e., the
component life cycle (CF1), exceptions (CF2), components (CF3, PI1), and connectors
(CF4) are represented in the mRUBiS RTM through the causal connection and thus ob-
servable in the running mRUBiS. The feedback loop operates on this reflection model
that describes the runtime architecture of mRUBiS including these system elements.
This model is a runtime instantiation of the mRUBiS metamodel presented in Figure 2.8.

120 experimental application examples

As discussed in Chapter 4, Executable Story Diagrams (SDs) are used in this thesis to
realize the rule-based adaptation scheme—see Section A.1 for more details on the SD
formalism. Diagrams are similar to ECA rules—see Section 2.3.2—except that SDs are a
visual language and based on graph transformations. The implementation of the anal-
ysis activity includes a code snippet that consumes the change events for the RTM.
Based on these events, the SD interpreter is invoked to execute the corresponding anal-
ysis SDs. For instance, if the number of the exceptions in the providedInterface of a com-
ponent in mRUBiS exceeds five, the model is updated by representing this as a CF2

attached to the providedInterface of a component in the RTM. Such an update causes a
specific change event that indicates a potential occurrence of CF2. In Figure 4.5, we pre-
sented an analysis rule for detecting CF2 in mRUBiS based on SDs and the planning SD
rule for addressing the CF2 was presented in Figure 4.6, respectively. Finally, once the
RestartComponent rule is assigned to handle the CF2, we showed the rule for executing a
component restart in Figure 4.7. For each of the CFs as well as PI1 that may potentially
affect mRUBiS, we created similar SDs that together specify the analysis, planning, and
execution activities of the MAPE-K loop. We presented the SDs addressing CF2 and
RestartComponent in Section 4.3 due to their simplicity since the SDs for the rest of the
issues and rules are more complex.

6.2 znn.com

As a second case study, we employ Znn.com [91] that simulates a news service website
based on real-world sites like CNN.com. Clients make content requests and a load bal-
ancer distributes requests across a server pool. The size of the pool can be dynamically
adjusted to balance server utilization against request response time. Architecturally,
Znn.com is a web-based client-server system conforming to an N-tier style—see Fig-
ure 6.2. Certain system and client information such as server load, request response
time, and the connection bandwidth can be monitored. The goal of Znn.com is to pro-
vide short response times to clients while keeping the cost of the server pool within the
budget limit.

The content requests are not uniformly distributed over time and demonstrate the
slashdot effect, i.e., sudden and relatively temporary surges in traffic. As a result of the
slashdot effect, the response time of the servers increases above the acceptable thresh-
old and causes latency issues for the affected clients. Znn.com handles latency via
enlistment of servers and reducing the quality of the content. The employed remedies,

Load balancerClients Server pool

Figure 6.2: High-level view for Znn.com system.

6.2 znn.com 121

Figure 6.3: Simplified metamodel of Znn.com.

however, could cause overBudget, underUtilized, and lowQuality issues which are
handled by discharging redundant servers and increasing content quality. Thus dur-
ing execution of Znn.com, four potential issues may affect the system: latency in the
response times, overBudget cost of adding servers to the pool, underUtilized servers,
and lowQuality contents.

In order to fulfill system objectives, i.e., short response times and low operation cost
of the server pool, we add self-adaptive properties to Znn.com via adding a MAPE-K
feedback loop that uses an architectural RTM of the system. The model represents the
runtime architecture of Znn.com and is presented in Figure 6.3 based on the widespread
ECORE syntax [391] which defines valid model instances [44]. The metamodel of the
RTM captures the Znn.com Architecture with a set of Servers constituting a ServerPool. Clients
are connected to the Architecture via HttpConn links. Each established connection, i.e., an
instantiation of HttpConn, has a bandwidth. Servers are parameterized by setting the value
attribute of the properties, e.g., quality and disruptionLevel. The ServerPool includes at least
one activated Server. All the Servers have the same operation cost that is stored as the

122 experimental application examples

Figure 6.4: Analyze SD for overBudget issue.

serverCost attribute in serverPool. These elements allow us to describe the runtime archi-
tecture of Znn.com and the runtime issues, e.g., delays or sub-optimal configurations.
The elements colored gray are relevant for self-adaptation of Znn.com. The activated
Servers in the ServerPool may exhibit Issuess of type underUtilized, and lowQuality. As
the number of the Servers grow above the budget limit, it causes overBudget issues in
the ServerPool. A Client can face a latency issue caused by response time days. The is-
sues that affect Znn.com are annotated in the RTM via model Annotations. The adaptation
Rules that modify the configuration of Znn.com to address the issues include discharging
and enlisting servers, increasing and reducing content quality, and setting the content
quality of servers to the possible minimum and maximum.

The Monitor activity of the MAPE-K loop, owing to the causal connection between
Znn.com and its RTM, incrementally updates the architectural RTM based on the changes
of the running Znn.com. The model then reflects the current state of the system. Next,
the updated RTM is analyzed for symptoms of the adaptation issues, i.e., latency,
overBudget, underUtilized, and lowQuality. The employed Analyze activity is event-

6.2 znn.com 123

(a) Plan SD for overBudget.

(b) Execution SD for overBudget.

Figure 6.5: SDs specifying planning and execution for overBudget issue.

124 experimental application examples

/state-based as it is driven by change events resulting from updates of the architectural
RTMl, i.e., of the state, during monitoring— see Section 4.3.3.

6.2.1 Analyze, Plan, and Execute Activities with SD

Similar to mRUBiS, we operationalize the MAPE activities in Znn.com via the SD rules;
implementation of the Analyze activity includes a code snippet that consumes the
change events for the RTM—see the source code in Section A.2. Based on these events,
the SD interpreter is invoked to execute the corresponding analysis SDs. For instance,
if the number of the activated Servers in the ServerPool exceeds the budget limit, e.g., 15
servers, the model is updated by representing this as an overBudget issue attached to
the ServerPool in the RTM. Such an update causes a specific change event that indicates a
potential occurrence of overBudget. Figure 6.4 shows the Analyze SD for identifying an
overBudget issue. The SD has two input parameters: the ServerPool model element ob-
tained from the change event that notifies about the exceeding number of the activated
servers and the Annotations element that contains all the annotations of the RTM. The
first Story Pattern (SP), titled check budget, checks if there are more then 15 servers in
the ServerPool. The Negative Application Condition (NAC) element in the SP checks for old
markings of the overBudget issue; if no existing marking is found, an overBudget issue
is identified and the second SP annotates the affected ServerPool with an overBudget

marker element; the SD terminates immediately. For each of the four issues shown in
the metamodel of Znn.com in Figure 6.3, we specified SD rules that analyze the model
for occurrences of the issues and annotate the RTM with the markings of the issue and
the affected model element. The green parts in the SD are modifications to the RTM
elements during analysis. The occurrence of the overBudget issue results in a drop in
the ServerPool utility. The SD in Figure 6.4 creates the overBudget annotation in the RTM
with the computed utilityDrop that points to the affected component, i.e., the ServerPool.
We omit the details to avoid multiple annotations for the same issue.

For each of the identified issues, the planning activity of the MAPE loop assigns
the proper rule to resolve the issue. Znn.com supports six adaptation rules as depicted
in Figure 6.3. We specify mappings of the issues to the corresponding rules with SDs.
Remember from Section 4.1 that a rule r = (LHS,RHS) is considered as applicable to
an issue if the pattern P, defining the issue in the RTM, creates a match for the LHS,
i.e., the pre-condition of r. For instance, the dischargeServer that discharges one server
from the pool, is triggered when the number of activated servers in the pool exceeds 15.
If the pre-condition holds, the rule dischargeServer becomes applicable. Figure 6.5a
shows the Plan SD for overBudget where a dischargeServer rule is assigned to handle
the issue. The assignment is realized via creating a dischargeServer marker element
and associating it to the issue. The green parts are modifications to the RTM elements
during planning. The issue points to the affected model element, i.e., the ServerPool.
Similar to the issue markers, rule markers are annotations to architecture elements in
the RTM. The result of the planning activity is an architectural RTM of the system with
rule marker elements. These elements represent the adaptation rules that are assigned
to the occurred issues and that should be executed by the Execute activity.

Finally, the Execute activity executes the adaptation rules that are assigned to the
issues in the RTM. Following a models@run.time approach, the adaptation is first per-
formed on the RTM of Znn.com and then synchronized to the system. This approach

6.2 znn.com 125

allows us to specify and execute the adaptation rules with SDs that operate at the
model level. Figure 6.5b shows the SD for the execution of dischargeServer.The first
SP checks the negative pattern once more, i.e., whether the ServerPool contains more
than 15 servers; if not, the execution of the rule is aborted and the SD terminates. Oth-
erwise, another SD (not shown here) is invoked via the activity call action node (in gray)
to discharge one server from the pool and re-distribute its load among the remaining
activated servers. In the next SP, having executed the dischargeServer rule, the cor-
responding issue and rule markers are removed from the model; the SD terminates
afterwards.

The rest of the three issues, i.e., latency, underUtilized, and lowQuality are also
detected and resolved via a set of SDs that together specify the Analyze, Plan, and
Execute activities of the MAPE-K loop. In this section, we presented the SDs for the
overBudget issue and the corresponding dischargeServer rule due to their simplicity.
As discussed earlier in Section 4.3, the MAPE activities are driven by changes of the
architectural RTM in terms of the markers, i.e., model annotations that have been added
to the model by their predecessor activity; this supports an incremental processing
as the execution of a rule starts with a rule marker that is directly associated to the
issue marker and the affected model element. With this information, the SD interpreter
is invoked by the Execute activity to execute the corresponding SD that realizes the
adaptation rules. Thereby, the adaptation performed at the model level is incrementally
synchronized to Znn.com.

6.2.2 Utility Function for Znn.com

The goal of employing self-adaptive properties in Znn.com is automating decisions that
trade off multiple objectives to adapt the system. More specifically, Znn.com with self-
adaptive properties exhibits automated system management to adjust the server pool
size with respect to multiple objectives, i.e., cost and response time, and switch the
content quality of each server. Response time, content quality, server utilization, and
budget are the four objectives of Znn.com. These objectives are captured by four quality
dimensions respectively. Each dimension is represented by a utility sub-function as de-
scribed in Table 6.1 that can either be observed, e.g., response time, or obtained from the
system configuration, e.g., server utilization. Utilities are assigned to particular values
of the quality dimensions. Cheng et al. in [91] employ a discrete custom utility function
in the form of (xi,yi) where the utility yi is assigned to the value xi of the quality
attribute. For example, the discrete utility function (low, 1) for response time means
that low response time obtains a utility value equal to 1. We Extend the discrete cus-
tom utility functions introduced in [91] for Znn.com and replace them by linear utility
sub-functions as described in Table 6.1.
RT in Table 6.1 is the estimated request response time and RTmax is set to 90 seconds,

i.e., when Znn.com throws a request timeout exception and ends the session. A server
in Znn.com can transfer content with three different qualities that are quantified as:
(low, 0), (medium, 0.5), and (high, 1). Therefore, Server.quality can have one of the
0, 0.5, or 1 values. Server.utilization is the percentage of the server capacity that is
in-use, and finally, Server.cost is the operational cost of the server which can vary for
different providers. Similarly to [91], we define the overall utility of the system as a
weighted sum of the utility sub-functions. The weights wi in Table 6.1 are extracted

126 experimental application examples

Table 6.1: Utility sub-functions for Znn.com.

ID Quality Dimension Utility Sub-function wi

uR Response time uR = 1− RT
RTmax

0.4

uQ Content quality uQ = Server.quality 0.2
uU Server utilization uU = Server.utilization 0.1
uC Cost uC = Server.cost 0.3

from [91]. For each state s = (c̄, ō), the overall utility of Znn.com is defined according
to Equation 6.1. For each target state s ′, the expected utility of the state is an estimation
of Equation 6.1, i.e., EU(s ′) = Ûznn(s ′).

Uznn(s) =
∑
client

wruR +
∑
server

(wquQ +wuuU −wcuC) (6.1)

In Figure 6.4, the drop in the utility of the system caused by the overBudget issue is
calculated at runtime and the related attribute of the overBudget element, i.e., utilityDrop,
is defined using the Object Constraint Language (OCL) [355] assignment expression. The
utilityIncrease of the corresponding rule, i.e., the impact of the rule application on the
utility, is computed and assigned during the planning—see Figure 6.5a. The execution
of the dischargeServer rule discharges one server from the pool, thus the the utility of
the server pool is increased according to wc × uC in Table 6.1.

The internet phenomenon, known as the slashdot effect, introduced earlier, motivates
the use of Znn.com instantiation in this thesis as it provides for multiple runtime sce-
narios where system configuration should be adapted at the architectural level to fulfill
system objectives. Moreover, an instantiation of Znn.com in this thesis explores the com-
posability of adaptations across different quality attributes, i.e., response time, content
quality, server utilization, and cost.

6.3 evaluation methodology and input traces

The experiments with mRUBiS and Znn.com are both based on simulated systems since
we are not executing a real system in its real operational environment. Thus, the simu-
lated systems are executed in combination with a set of input traces that are manually
injected to the adaptable software. In this context, we conducted an SLR of state-of-the-
art in evaluating self-healing systems in [176] and extended it in [177]. Our findings
suggest that proper design and evaluation of self-adaptive software still remains an
open issue, since critical elements for the design space of a self-adaptive system under
evaluation, e.g., fault models, as identified by [270], are often missing. The observations
revealed that while majority of the work that are concerned with performance of self-
healing systems use simulation-based evaluation (97%), they typically do not employ
representative input traces for evaluation. Workload related metrics such as response time,
throughput, and working versus adaptivity time need to be measured to analyze the
performance for self-adaptive systems—see [238]. Representative input trace is a (set of)
input trace(s) with volatile characteristics that provide coverage of a large region of the

6.3 evaluation methodology and input traces 127

potential operational environment of the simulated system. Therefore, the credibility
and the scope of validity of the claims in the systems remain unclear.

In the specific context of self-healing systems that are concerned with runtime fail-
ures, taking into account that: (i) the characteristics of their operational environments
are always only known to a limited extent due to the data sparsity caused by the rare
nature of the failures; (ii) the characteristics of their operational environments are also
subject to change over time due to runtime uncertainty; (iii) we are interested in a
robust solution whose performance profile is generalizable to different operation condi-
tions; it is necessary to consider multiple alternative probabilistic input traces that mimic
the runtime uncertainty of a real-world operation context. In the face of our findings
in [177] we recommended improving the efforts in evaluation of self-adaptive systems
such that multiple representative probabilistic input traces are employed during evalu-
ation. The reason is that, a single input trace for a system under evaluation only allows
for evaluating the system for one (of the many) possible future(s) and lacks generaliz-
ability. In Figure 1.1 we showed an example of how evaluating an approach against
only a single (or a non-representative set of) data points in the input space of the self-
adaptive software yields inconclusive results—see how the best performing solutions
in Figure 1.1a change as complexity increases.

The technical contributions of the thesis are evaluated according to an evaluation
methodology that is developed based on our SLR. The methodology builds on the re-
quired improvements for the current practice in evaluation of self-healing systems intro-
duced in [177] and suggests that conducting multiple reproducible experimental runs
under controlled circumstances is required to obtain robust, conclusive, and reliable re-
sults from the evaluation. Generic credibility claims on evaluation of the system are only
justified if the results are tested for robustness in the presence of large spectrum of the
input space. Therefore our evaluation methodology entails using multiple (probabilis-
tic) input traces with volatile characteristics that provide coverage of a wide spectrum
of the input space for the system under evaluation. As discussed in the context of con-
tribution C8 in Chapter 1 and confirmed by our SLR in [176, 177] (that is extended
in Chapter 10), the evaluation in this thesis goes beyond the state-of-the art in provid-
ing coverage of a wide spectrum of the potential input space for self-adaptive systems.
Next, we introduce the input traces that we use during evaluations with mRUBiS and
Znn.com.

6.3.1 Input Traces for mRUBiS

As revealed by the foundational work on characterizing failure models in computer
systems [77, 228, 400], failures are often not independently occurring, but correlated
in time or space, referred to as failure bursts. The phenomenon is associated to the
effects of failure propagation where a single failure in the system triggers a sequence of
failures in other system components within a short period of time. While several fault
tolerant algorithms make the assumption that failures occur independently [see 206,
436], this assumption contradicts the bursty failure models and neglects that occurrences
of failure bursts often result in correlated availability behaviors of different components.
Iosup et al. showed in [222] that ignoring the bursty character of failure models results
in overestimating the transient reward rate by an order of magnitude, even if only as
few as 10% of the failures conform to a bursty model.

128 experimental application examples

Table 6.2: General characteristics of failure models.

Deterministic Failure Model Probabilistic Failure Models

FGS Constant Varies for each failure (group) occurrence
IAT Large enough Varies for each failure (group) occurrence
FET 0 Larger than 0

The granularity, magnitude, and duration of the failures are the main features that shape
a failure model [270]. Thus, we characterize the failure models via the attributes Failure
Group Size (FGS), Inter Arrival Time (IAT), and Failure Exposure Time (FET). FGS is the
number of time- or space-correlated failures that occur approximately at the same time
or within a short time span. IAT, also known as Mean Time Between Failures (MTBF), is
the time between two occurrences of failure groups or bursts. FET is the time window
during which time- or space-correlated failures affect the system; thus each burst occurs
within the FET. See Figure 6.6 for an illustration of IAT, FGS, and FET.

In the following, we describe the two sets of input used for experiments with mRU-
BiS: Deterministic failure models and probabilistic failure models. A deterministic failure
model defines the characteristics of the failure profile with scalar values and there-
fore, generates traces with deterministic characteristics for occurrences of failures. A
probabilistic failure model, however, employs probability distributions to characterize a
failure profile. Such a statistically defined failure model is either an outcome of fitting
statistical models to recordings of real data, i.e., fitted to real data, or is synthetic, i.e.,
generated through computer programs instead of being composed through the docu-
mentation of the real-world events. The probabilistic failure models used for evaluation
are further decomposed to realistic failure models that are fitted to real data, and syn-
thetic failure models that are manual variations of the realistic failure models.

While the FGS and IAT of the failure traces based on probabilistic models vary during
the trace, they remain constant in the deterministic traces. In the realistic failure profile
models, FET > 0 as failures take some time to propagate in the system; conversely, we
assume FET = 0 in the deterministic traces and all the failures in a group occur at once.

Inter Arrival Time (IAT)

Fa
ilu

re
 G

ro
up

 S
iz

e
(F

G
S)

Failure Exposure
Time (FET)

Time

Figure 6.6: Failure group size (FGS), failure exposure time (FET), and inter arrival time (IAT) of
failure models.

6.3 evaluation methodology and input traces 129

6.3.1.1 Deterministic failure models

We use deterministic failure models to generate four deterministic failure traces: X,
X10, X100, and X1000. Each trace has a constant FGS, that is, the number of failures
occurring together, of 1, 10, 100, and 1000 failures respectively. In the context of mRUBiS,
different types of the adaptation issues, i.e., CF1-CF4 and PI1—see Section 2.5—are
equally distributed for each trace as failures. For a FGS larger than one, that includes
X10, X100, and X1000 traces, we assume that all the failures in one group, i.e., time-
correlated failures, occur at once, thus FET is only an instant and is approximated to
be zero. In the deterministic failure models, we assume a long enough IAT between
occurrences of each group of failures such that all the current failures are handled
by the current adaptation loop before the failures of the next group occur. The failure
density of each trace is the overall number of failures injected by the trace. For example,
considering four consequent executions of MAPE-K runs with X10, the failure density
of the X10 trace is 40. Table 6.2 shows the general characteristics of the deterministic
and probabilistic failure models introduced in this section.
Next, we present the two sets of probabilistic failure models, i.e., realistic and synthetic.

6.3.1.2 Realistic failure models

We employ three different realistic failure models provided by Gallet et al. [155] that are
fitted to real-world failure traces. The models originate from different computer systems
and differ in scale and volatility. Failure traces are derived from these failure models
for a certain duration. Among the failure models introduced in [155], we selected three
models with different failure densities and sizes of the source system: Grid5000, LRI,
and DEUG. The Grid5000 model is based on the Grid5000 system in which a signifi-
cant fraction of failures occurs in bursts. Grid5000 is an experimental grid environment
with over 2500 processors and 1288 nodes [see 223] which is comparable to the size of
mRUBiS with 100 shops, i.e., 1800 components. The event data for Grid5000 has been
gathered over 1.5 years of monitoring [269]. The other two models, DEUG and LRI, are
constructed from application-level traces of real enterprise desktop grids that contain
bursts of failures and are collected over one month from about 100 (DEUG) and 40 (LRI)
hosts [268].

All three failure models, conforming to probabilistic models principals, fit statistical
distributions to IAT and FGS. Moreover, Gallet et al. [155] consider different window
sizes for monitoring and detecting the failure occurrences in each model. This window
size is equivalent to the FET illustrated in Figure 6.6. Thus, each burst occurs within
duration of the FET. Gallet et al. [155] do not clarify how the failures are distributed
within each burst, thus we assume that failures propagate following a normal distri-
bution during each burst—see the normal distribution curves in each failure group
in Figure 6.6. Table 6.3 lists the distributions proposed by [155] for the IAT and FGS for
the three failure profile models along with the their FET.

We extracted a short and a long failure trace from each realistic failure model. As
shown in Table 6.3, short traces include n = 50 occurrences of failure bursts while long
traces include 1355, 2843, and 1678 bursts. Each of the traces has a different duration due
to different IAT distributions in the corresponding failure model. The failure densities
of the traces, i.e., the collective number of failures during the execution of the trace, is
shown in Table 6.3 as well.

130 experimental application examples

Table 6.3: Characteristics of realistic failure models (top) and generated traces (bottom).

LRI DEUG Grid5000

FGS LOGN(1.32, 0.77) LOGN(2.15, 0.70) LOGN(1.88, 1.25)
IAT (s) LOGN(−1.46, 1.28) LOGN(−2.28, 1.35) LOGN(−1.39, 1.03)
FET (s) 100 150 250

No. of bursts n (short trace) 50 50 50

No. of bursts n (long trace) 1355 2843 1678

Duration (hrs) (short trace) 41.2 21.4 24

Duration (days) (long trace) 30 30 30

Failure Density d (short trace) 318 666 1116

Failure Density d (long trace) 7568 32895 25279

6.3.1.3 Synthetic failure models

To obtain a fair and meaningful comparison between the experiment results for the dif-
ferent failure models, we constructed three synthetic probabilistic failure models based
on the Grid5000 model. The resulting traces share the same failure density d = 1116

as in the short trace of the Grid5000 in Table 6.3. The parameters of the Grid5000 fail-
ure model are modified to obtain variants with extreme characteristics; the synthetic
variants allow for studying the impact of the extreme characteristics of the failure mod-
els on parameters such as scalability and optimality of different self-adaptive solutions.
In addition, using more and extreme failure traces for the experiments allows us to
evaluate the robustness of the solutions and their yielding results.

The short trace generated from the Grid5000 failure model includes n = 50 occur-
rences of failure bursts during 24 hrs— see Table 6.3. The synthetic failure models
are constructed based on the Grid5000 (short trace) and are defined as follows: (1) the
Burst model replicates the Grid5000 model with identical characteristics; (2) the Uni-
form model where failures are uniformly distributed, (3) the Single model with a sin-
gle failure at each occurrence, and (4) the Bigburst model with only relatively large
bursts. Based on each of the synthetic failure profile models we generated a short fail-
ure trace that includes failure arrivals for 24 hrs. The synthetic models and their short
traces are presented in Table 6.4. Figure 6.7 shows the probabilistic FGS distribution
for the Grid5000 model, henceforth Burst model; different FGS values that have been
re-sampled to construct the synthetic models are marked in different patterns/colors
in Figure 6.7.

Table 6.4: Characteristics of synthetic failure models (top) and their generated traces (bottom).

Burst (Grid5000) Uniform Single Bigburst

FGS LOGN(1.88, 1.25) N(22.85, 20.68) 1 N(238, 97.3)
IAT (s) LOGN(−1.39, 1.03) 1728 77.4 N(3521.4, 5418.6)
FET (s) 250 250 N/A 250

No. of bursts n (short trace) 50 50 1116 6

Duration (hrs) (short trace) 24 24 24 24

Failure Density d (short trace) 1116 1116 1116 1116

6.3 evaluation methodology and input traces 131

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10 11 12 15 19 21 22 23 29 41 80 100 105 305 442

Pr
ob

ab
ili

ty

Failure Group Size (FGS)

Grid5000(Burst)

Uniform

Single

Bigburst

Figure 6.7: Probabilistic FGS distribution in Grid5000 (full curve) and sampled segments for
constructing synthetic failure profile models.

Burst Model. The Burst model is identical to Grid5000, thus has the same statistical
properties; the model is only listed here for consistency purposes. The description of
the Burst (Grid5000) model and its generated trace is repeated in Table 6.4.

Uniform Model. The Uniform failure profile model is constructed based on the
Grid5000 short trace—see the description of Grid5000 short trace in Table 6.3. Thus,
Uniform has the same failure density d = 1116 and lasts 24 hrs. The model has a uni-
form statistical distribution for IAT and FGS—see Table 6.4 for the characteristics of the
Uniform model and its trace.

To construct the Uniform model, we consider the original set of 50 failure groups
extracted from the Grid5000 short trace as the set S. A normal sample distribution is ex-
tracted from S using statistical bootstrapping [94, 122]. For this purpose, we randomly
re-sampled S using statistical bootstrapping and formed a new set S ′ of the mean val-
ues of each sample set. A normal distribution N(µS ′ , 2σ2S ′) is used to generate random
values for FGS. The resulting set consists of uniformly distributed values within a cer-
tain margin extracted from the original set S. Applying this distribution, we generated
a sequence of normally distributed values for FGS while keeping the same number of
bursts as in the original Grid5000 trace. Thus, the Uniform model takes all the d failures
within the 24 hrs and distributes them in n intervals, i.e., occurrences, by using the
extracted uniform distribution. The IAT is the average of the IAT values in the Grid5000
short trace. Therefore, the Uniform model is a sequence of failure groups with normally
distributed sizes which occur in equal intervals.

Single Model. To consider a naive failure profile model that—to the best of our
knowledge 1—has been used in the majority of the existing work on self-healing sys-
tems, e.g., [see 11, 75, 76, 116, 295, 334], we consider the Single failure profile model. In
this model, failures are not correlated but arrive individually, thus FGS = 1—see Fig-
ure 6.7. In the failure trace extracted from this model, individual failures are equally
distributed within the 24 hrs keeping the same failure density d as the original Grid5000

1 See our SLR on state-of-the-art in evaluation of self-healing systems [177].

132 experimental application examples

short trace, i.e., 1116. The number of the occurrences of bursts, i.e., n, equals d since
each failure group in the Single model includes exactly one failure—see Table 6.4 for the
characteristics of the Single failure model and its resulting trace.

Bigburst Model. We also consider the other end of the spectrum, that is, occurrences
of large failure bursts with 150 to 450 failures at each failure group. Similar to the
construction of the Uniform model, we use statistical bootstrapping to extract a set
from the original set S. To achieve large FGS values, only part of S that is above a certain
threshold, i.e., FGS > 100, is re-sampled for bootstrapping—see Figure 6.7. To keep the
same failure density as the original Grid5000 short trace, i.e., 1116, the number of the
failure groups are reduced to n = 6 since the failures occur only in large group sizes,
thus the IAT increases accordingly. The IAT values in the Bigburst model are extracted
via bootstrapping from the randomly re-sampled IAT values of the original Grid5000
trace where IAT > 1000 sec—see Table 6.4 for the characteristics of the Bigburst failure
model and its trace.

6.3.2 Input Traces for Znn.com

We consider two sets of input traces for experiments with Znn.com: deterministic traces
and realistic traces. The traces include client requests from the web servers in Znn.com.
The requests may result in different types of adaptation issues, i.e., latency, lowQuality,
overBudget and, underUtilized. However, the input traces for Znn.com only include
client requests and not the specific adaptation issues, the issues occur according to the
system response to the input trace—see Section 6.2 for a reference of different issues
and adaptation rules in Znn.com.

6.3.2.1 Deterministic input trace

The deterministic traces are constructed synthetically and include client content request
from the servers in Znn.com with constant request arrival rate. Overall, we consider five
different deterministic traces, i.e., TRr, with r the request arrival rate per minute. For
the five employed TRrs, we consider r = 1, r = 10, r = 100, r = 1K, and r = 10K

requests per minute; each trace has a constant value for r, that is, the number of the
requests that arrive together. Additionally, for traces that include more that one request
per minute, i.e., 1 < r, we assume that during an interval, all the requests arrive at once
and in an instant, therefore, the IAT between two consequent groups of client requests
is exactly one minute. The load density of each trace is the overall number of requests in
the trace. For example, during 10 minutes simulation of Znn.com with the TR100 trace,
in total 1000 client requests are injected to the system. Table 6.5 summarizes the general

Table 6.5: Characteristics of deterministic input traces for Znn.com.

TR1 TR10 TR100 TR1K TR10K

Request arrival rate r (short/long trace) 1 10 100 1K 10K

Duration (min) (short trace) 60 60 60 60 60

Duration (hrs) (long trace) 24 24 24 24 24

Request Density d (short trace) 60 600 6K 60K 600K

Request Density d (long trace) 1, 440 14, 400 144K 1, 440K 14, 400K

6.3 evaluation methodology and input traces 133

characteristics of the deterministic traces used for Znn.com. In the experiments with
Znn.com, for each TRr, we consider a short (60 min) and a long (24 hrs) trace.

6.3.2.2 Realistic input trace

To construct realistic user behavior for accessing a cloud-based system such as Znn.com,
we adapted a research dataset with online traffic, the daily traces of user requests from
the FIFA WorldCup website [17], that is common in web analytics [85]. These traces
are independent, day-by-day recordings of user website activity during the 1998 soccer
championships. The reasons we used the realistic WorldCup dataset as the realistic in-
put trace for Znn.com are twofold; first, the traces are considered as a benchmark for
traffic in web analytics—see [17, 221, 434]). Second, the traces comply with the custom-
ary request arrival pattern in modern-day web applications, e.g., content delivery and
video streaming platforms [see 66]), that are typically bursty, with periods of low load
contrasting with occasional spikes caused by an important event. The traces contain the
patterns for high-demand cloud systems as classified by Gandhiet al. [157] that include
slowly varying, quickly varying, big spike, dual phase, and large variations.

Out of the 92 available traces, five were incomplete/corrupted; we selected nine traces
(out of 87 remaining) for our experiments with Znn.com; the selected traces correspond
to day 10, 20, 30, 40, 50, 60, 70, 80, and 90—see the plots illustrating the client request
arrival patterns in Figure 6.8. The trace for each day contains timestamps representing
IAT between two client requests, abstracting away the details of user requests to fo-
cus on their frequency. For our implementation of Znn.com to work, we scaled down
each trace (keeping the trace pattern intact) such that it does not constantly exceed the
maximum capacity of Znn.com in terms of its ability to serve requests per minute. Con-
sidering the size of ServerPool in our implementation of Znn.com, for the experiments
with FIFA traces, we inject the system only with reasonable number of request. Thus,
we equally scaled down the traces such that the maximum request arrival rate does not
exceed 4000 requests per minute—see Day 60 in Figure 6.8.

Additionally, similar to the realistic traces in Table 6.5, we consider a short (Figure 6.8)
and a long (Figure 6.9) instantiation of the FIFA traces. The long traces keep the original
duration of the original trace, i.e., 24 hrs. To construct the short traces however, we scaled
each trace (keeping the trace pattern intact) to the length of 60 minutes. We fixed the
length of the traces to normalize aggregate utility values in the experiments for reward.
We consider the short variant of all nine traces in Figure 6.8; out of the nine traces,
however, we only consider the long versions for days 10, 50, and 90—see Figure 6.9.
Long traces are also scaled down to the maximum of 4K request arrival rate in a minute.

134 experimental application examples

0
250

500
750

1000
1250

1500
1750

0 10 20 30 40 50 60

N
um

be
r o

f R
eq

ue
st

s

Time (min)

Day 10

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

Day 20

0

500

1000

1500

2000

0 10 20 30 40 50 60

Day 30

0

500

1000

1500

0 10 20 30 40 50 60

Day 40

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

Day 50

0

1000

2000

3000

4000

0 10 20 30 40 50 60

Day 60

0

400

800

1200

0 10 20 30 40 50 60

Day 90

0

500

1000

0 10 20 30 40 50 60

Day 80

0

500

1000

1500

2000

0 10 20 30 40 50 60

Day 70

Figure 6.8: Plots of FIFA short traces.

0

1000

2000

3000

4000

0 6 12 18 24

Day 50

0
500

1000
1500

2000
2500

3000
3500

0 6 12 18 24

N
um

be
r o

f R
eq

ue
st

s

Time (hrs)

Day 10

0

1000

2000

3000

0 6 12 18 24

Day 90

Figure 6.9: Plots of FIFA long traces.

7
E VA L U AT I O N O F V E N U S

In this chapter, we evaluate Venus qualitatively and quantitatively, review the pieces
of supporting evidence, and discuss how each helps to support the thesis claims intro-
duced in Chapter 1. First, in Section 7.1, we discuss the implementation of our approach
for incremental architecture-based self-adaptation and of the technical setting that we
use to conduct experiments with Venus. Next, we introduce the alternative approaches
for architecture-based self-adaptation in Section 7.2. Section 7.3 presents qualitative and
quantitative evaluation of Venus using the mRUBiS application example in a compara-
tive study with alternative solutions for self-adaptation. Section 7.4 includes evaluation
of Venus using the Znn.com application example. In Section 7.5, we discuss the possible
violation of the assumptions that are required for the validity of Venus and demon-
strate the impact of the violations on the optimality and scalability of Venus. Finally,
Section 7.6 presents the threats to the validity of the results and Section 7.7 summarizes
the chapter and discuses the fulfillment of the requirements.

7.1 implementation

Figure 7.1 shows a stack of elements constituting the technical setting that we use to
implement Venus and run experiments. The implementation is in Java and based on
the Eclipse Modeling Framework (EMF) [391]; EMF is an Eclipse-based code generation
and modeling tool that provides the required MDE infrastructure for the model-driven
engineering of self-adaptive software with RTMs. The implementation architecture is
generic, i.e., it is not customized for one specific type of adaptable software (applica-
tion), one specific self-adaptive property, or one specific (built-in) utility function. Being
integrated in a MAPE-K feedback loop, Venus is realized via an external approach
for self-adaptation where the adaptation engine dynamically observes and adjusts the
software—see Section 2.3.2. Venus is embedded in an adaptation engine that employs
a causally connected RTM as its knowledge. The adaptation engine uses RTMs of soft-
ware architecture—see Section 2.4. Building on the MDE principles whereby creation
and runtime evolution of causally connectedRTMs are supported, Venus uses models
of software architecture at runtime for maintaining the adaptable software.

7.1.1 Adaptable Software

In order to achieve genericity, the Adaptable Software in Figure 7.1 is not limited to
one specific adaptable software, thus supporting a broad spectrum of applications.
The adaptable software platform represents the runtime environment of an executable
software system. The Application and its corresponding Input Trace(s) are provided by
the developers. The input trace simulates the operation condition for the application.
Via adding a control feedback loop on top, the application is then instrumented to
be managed as an adaptable software. We enforce no restrictions on the technology

135

136 evaluation of venus

Adaptable
SoftwareApplication

Adaptation Engine Utility
Function

Architectural
Runtime ModelMetamodel

(VENUS)
Monitor

Input
Trace

Metamodel

Figure 7.1: Architectural decomposition of Venus implementation.

used to develop the application, however, we require the application to be provided as
a component-based software consisting of multiple components and interconnections.
Service-oriented architectures are examples of software systems with component-based
designs [128]. The provided application, deployed on the corresponding application
server, should be instrumented with sensors and effectors making the application ob-
servable and adaptable during runtime. Consequently, the application supports param-
eter and structural adaptation as its individual components, connection (link) between
the components, and attributes of the components and links become subject to observa-
tion and adaptation.

We use an implementation of the mRUBiS simulator as an Eclipse plug-in that is
coupled on top of EMF. For Znn.com, we simulated the architecture of the application
example by means of the EMF models, i.e., without having to run the underlying causal
connection and the adaptable software, and executed it in combination with the input
traces—see Chapter 6 for more technical details about the application examples and
the input traces. For both application examples, we use injectors that implement the
injection of an issue into the Architectural Runtime Model. For instance, an injector can
introduce a failure into the model for a self-healing scenario. Consequently, an injector
simulates the occurrence of an issue such as a failure in the adaptable software and the
synchronization of this issue from the software to the model. In our implementation, we
are concerned with a higher level of abstraction such that feedback loops may operate
on a higher-level, platform-independent RTMs to perform self-adaptation. Owing to the
the causal connection between the system and its RTM, enabled by MDE tools such as
EMF, we bridge the abstraction gap between the low-level, platform-specific API and
the higher-level, platform-independent RTM. The causal connection between the model
and a system refers to synchronizing an RTM and a running software system such that
changes in one of them are reflected in the other—see Section 2.4.

7.1.2 Architectural Runtime Model

As shown in Figure 7.1, any user-defined Metamodel representing an application at a
desired level of abstraction can be used to instantiate an RTM. The causal connection,
supported by the sensor and effector API, is automated by the EMF tool and does not
concern our implementation. Thus, for any supported application as the adaptable soft-
ware, enabled by MDE, an Architectural Runtime Model of the software system is made
available and causally connected to the adaptable software. We envision that, ideally,

7.1 implementation 137

the adaptable software directly provides its sensor and effector capabilities as an RTM
instead of a code-based API. The architectural RTM is an instance of the provided Meta-
model, at the architecture abstraction level, and is used to monitor the adaptable soft-
ware. Moreover, changes to the adaptable software can be generated by modifications
of the corresponding architectural RTM. The causal connection synchronizes the RTM
with the adaptable software by using the sensors and effectors. The synchronization is
in both directions, i.e., from the adaptable software to the RTM and vice versa.

In the context of mRUBiS, we extended the (EMF-based) CompArch metamodel of
the system provided by Vogel [414]—see Figure 2.9. The metamodel describes the ar-
chitecture of the adaptable software in an abstract manner leaving out details that do
not concern self-adaptation—see Figure 2.8 for a metamodel of mRUBiS. Similarly, for
Znn.com, as shown in Figure 6.3, we defined a metamodel capturing the architecture of
the adaptable software. The metamodel is generated based on (but not identical to) the
Znn.com description provided by Cheng et al. [see 91].

7.1.3 Adaptation Engine

The topmost layer of the implementation layout in Figure 7.1 includes the Adaptation En-
gine that is implemented according to the MAPE-K feedback loop blueprints—see Sec-
tion 2.3.2. Venus is integrated in a MAPE-based adaptation engine as described in Sec-
tion 4.3.1. The adaptation engine uses the architectural RTM as its knowledge that is
shared between its four activities. The adaptation engine implementation includes Java
code snippets wrapped around the SDM tools1 including an editor, an interpreter, and a
debugger for the SDs—see Section A.1 for an introduction to the SDM tool. The source
code for the initialization of the SDs in Java are included in Section A.2.

The SD interpreter is used to parse the architectural RTM and check if any adaptation
issue exists. The adaptation engine is implemented in Java where each of the MAPE
activities are realized via SDs—see Figure 6.4, Figure 6.5a, and Figure 6.5b for Analyze,
Plan, and Execute SDs, respectively, for an overBudget issue in Znn.com.

The Monitor activity as shown in Figure 7.1 is implemented independently and ex-
ternal to Venus—see Section 4.3.2. To make the monitoring runtime-efficient, we use
a change tracking mechanism enabled by the notification feature of the EMF, which
provides notifications about the individual changes of any EMF-based models [391].
Thus, the monitoring activity consumes the EMF events notifying about changes of the
RTM—see the source code in Section A.2.

The implementation of the remaining MAPE activities then consists of Java code
snippets that consumes the change events for the architectural RTM. Based on these
events, relevant checks are conducted via invoking the SD interpreter to execute the
corresponding SDs. Finally, once the execution of the adaptation is completed, we
compute the overall utility of the RTM, i.e., the architecture, and validate the model to
check for any unhandled issue—see Section A.2 for the source code.

Venus employs utility functions to evaluate the desirability of each adaptation and
steer the planning accordingly—see Figure 4.1 for an overview. Utility functions, either
manually engineered and hard-coded in the adaptation logic at design time (see Sec-
tion 3.2), or acquired as prediction models and plunged in to the system before or

1 Story-Driven Modeling (SDM) Tools: http://www.mdelab.de/mdelab-projects/story-diagram-tools– ac-
cessed 18 March 2023.

http://www.mdelab.de/mdelab-projects/story-diagram-tools

138 evaluation of venus

during its execution (see Section 3.3), can be defined by externally, thus independently
of Venus—see Figure 3.1 for an overview. As shown in Figure 7.1, the implementation
of the adaptation engine and Venus, concerning the required Utility Function, is generic
and supports any plugged in utility function. In Table 3.2, we showed four different
utility functions subscribing to different mathematical complexity classes for mRUBiS.
Similarly, for any application of interest, a set of developer-provided utility functions
are supported in the implementation of Venus.

In our implementation, injecting adaptation issues to the RTM triggers an execution
of the adaptation loop. Different injection strategies as well as Input Traces may be pro-
vided by the developers—see Figure 7.1. A single run of the adaptation loop in our
implementation consists of the following steps: (i) the monitoring activity consumes
the input trace provided by the developer to simulate the runtime condition of the
adaptable software; consequently, the changes obtained by the monitoring activity trig-
ger an adaptation; (ii) the feedback loop performs the remaining adaptation activities to
identify and handle the potential adaptation issues; in this context, issues are handled
by adapting the architectural RTM. In a Models@run.time approach, an adaptation is
prescribed and previewed in the RTM before it is executed on the adaptable software
through the causal connection. We follow the same approach in the implementation. We
emulate the adaptable software and the causal connection such that the adaptation en-
gine can operate only on the RTM and regardless whether the actual adaptable software
with the causal connection or a simulator is used.

7.2 alternative solutions for architecture-based self-adaptation

Solutions to self-adaptation of software systems can be categorized in various ways [275,
367]. In the experiments to evaluate Venus, we structure the spectrum of the considered
self-adaptive approaches with respect to the following: (i) event- versus state-based pro-
cessing of the system changes; (ii) employed policies for expressing and operationaliz-
ing the self-adaption goals during planning; (iii) temporal aspect of the decision-making
process—see Section 2.3.2.

Static Solution. This approach leverages a deterministic, rule-based policy and em-
ploys ECA rules that directly map specific event combinations to the adaptation plans,
i.e., (sequence of) adaptation rule(s). Moreover, it conforms to the principles of a static
adaptation policy introduced in Section 2.3.2. The decision-making operates based on
the design-time preferences whereby the adaptation rules are mapped to the states,
i.e., conditions, based on design-time estimates for the resulting state. Therefore the
estimations for the desirability of the outcome configuration are agnostic to using any
runtime observations ō. The decision-making in the Rainbow framework [90] is an ex-
ample of a static adaptation policy as it only uses configuration attributes c̄ to estimate
the expected utility for its actions. However, due to their minimal runtime computation,
static solutions for adaptation do not introduce considerable runtime overhead during
planning [322]. The considered static approach, henceforth Static, uses deterministic
priorities for adaptation rules agnostic to their impact on the overall system utility at
runtime. In the context of our application examples, the costs and utilityIncrease of the
adaptation rules are defined at design time, hence, a rule is assigned to each issues in a
deterministic manner. The utilityDrop caused by each adaptation issue is also estimated
at design time suggesting a deterministic order to addressed the issues at runtime.

7.2 alternative solutions for architecture-based self-adaptation 139

Solver Solution. The second alternative approach has utility-based policy formalism
that uses IBM ILOG CPLEX2 optimizer [216] for selecting the adaptation rules dur-
ing planning. The approach, henceforth Solver, requires an objective function and a
set of constraints (if applicable) as inputs. The objective function, e.g., the overall util-
ity function that quantifies the desirability of system states, captures the system goal
satisfaction. Next, taking the system constraints into account, Solver plans the adapta-
tion such that the plan optimizes the objective function. In the context of mRUBiS and
Znn.com, Solver employs the utility functions in Table 3.2 (Linear) and Equation 6.1 as its
objective functions for the sequence of rule applications. The tasks of assigning proper
adaptation rules to the adaptation issues and ordering them for execution are defined
as optimization problems for Solver. Moreover, regarding the temporal aspect of Solver’s
decision-making, similar to Venus, it conforms to the principles of a dynamic decision-
maker and is concerned with the runtime assessment of the conditions affecting the
adaptable software, e.g., impact of the adaptation rule on the system utility and cost of
adaptation—see Section 2.3.2. Consequently, while providing for more control flexibil-
ity at runtime, as discussed by McKinley et al. [302], Solver faces additional challenges
such as finding optimal or partially optimal solutions for decision-making problems,
dealing with uncertainty and incompleteness of the observations available at runtime,
and addressing the scalability and fault-proneness of its decision-making mechanism.
rather

Venus Solution. Venus computes the impact of different adaptation rule applications
at runtime using a utility function. To resolve an issue, it selects the rules with largest
impact on the overall utility; in case of identical impacts, rules yielding the lowest costs
are selected. The execution order of the adaptation issues is determined by the ratio of
utilityIncrease/costs in mRUBiS and utilityIncrease in Znn.com, which are all dynamically
computed based on the runtime observations regarding the affected element by the
issues. Venus is event-based and uses change events as adaptation triggers; the changes
events result from updates of the RTM, i.e., of the state. Venus also supports the state-
based execution of the adaptation engine as it holds a global view on the adaptable
software through maintaining RTMs that represent the state of the system.

Static and Solver have different planning phases while they are both integrated in
an adaptation engine that is executed incrementally —as in Venus. Therefore all three
approaches listed above have similar and incremental monitoring, analysis and execu-
tion phases. For instance, Solver uses the optimizer only to solve the planning problem
of selecting the best adaptation rules and ordering them for execution. Possible ways
of how to monitor and modify the system/RTM are completely pre-defined and iden-
tical for all three approaches. Moreover, analogously to Venus, both Static and Solver
solutions support event-/state-based adaptation as they operate based on consuming
change events and maintain RTMs that capture the state of the system. In order to inves-
tigate the impact of the incremental execution of the activities in the adaptation engine
that integrates Static, Solver, and Venus, we employ a baseline approach titled Batch.
The approach is integrated in an adaptation engine that does not capture the change
events, therefore, is executed in a state-based manner.

Batch Solution. The activities of the feedback loop in this approach, henceforth Batch,
work in a state-based manner on the RTM that captures the state of the system. Thus,

2 The optimizer is suitable for Mixed Integer Programming (MIP). A MIP is a problem where some of the
decision variables at the optimal solution are constrained to be integer values. Integer variables make an
optimization problem non-convex, and therefore, non-trivial to solve—see [358].

140 evaluation of venus

Table 7.1: Positioning three solutions in the landscape of self-adaptation solutions.

Property of Interest Solution

Static Solver Venus Batch

Policy Rule-based Utility-based Rule-& utility-based Rule-based
Temporal aspect of decision-maker Design-time Runtime Runtime Design-time
Execution of adaptation loop Incremental Incremental Incremental Non-incremental
Event- /state-based Both Both Both State-based

the monitoring activity does not process any change events, rather evaluates the com-
plete RTM to identify whether changes of the model have occurred and analysis is
required. The analysis, in turn, checks the complete RTM for any symptoms of the
issues and annotates them in the model. The planning activity searches the complete
model to detect the annotations made during analysis. For each of them, it changes the
model according to a predefined, deterministic, rule-based adaptation policy to address
the corresponding issue (similar to Static). The execute activity removes the annotations
from the model and terminates the feedback loop. An overview of the considered ap-
proaches is given in Table 7.1.

All four solutions are implemented according to the technical setting presented in Sec-
tion 7.1; they use an architectural RTM of the adaptable software that is maintained by
the EMF tool and the activities of the adaptation engine are implemented based on the
SDM tool.

7.3 qualitative and quantitative evaluation with mrubis

In this section, we evaluate Venus through several comparative studies using mRUBiS
application example from Section 2.5 and Section 6.1. We compare Venus to three al-
ternative self-adaptation solutions introduced in Section 7.2. Through the experiments,
we investigate three features of Venus that are captured by individual contributions
in Section 1.4: runtime performance and scalability through incrementality (C1), optimality
and runtime overhead (C5), and robustness (C6). The qualitative evaluations in this chap-
ter are according to the evaluation methodology introduced in Section 6.3 and provide
coverage of a wide spectrum of the input space for self-adaptive software systems (C8).

The deployment of the four solutions, i.e., Static, Solver, Venus, and Batch follows the
implementation architecture presented in Section 7.1. In the context of Batch, the adapta-
tion engine in Section 7.1 is executed in a state-based manner, thus is non-incremental.
The different solutions operate on an architectural RTM of the employed application,
i.e., mRUBiS, while the input traces are injected—see Figure 7.1 for a reference. In the
experiments with mRUBiS, the RTM is maintained by a simulator that emulates the run-
ning system and the causal connection. Thus, connecting and synchronizing the RTM
and the running system does not concern the self-adaptation solutions.

All four self-adaptation solutions follow the MAPE-K blueprint and therefore consist
of four adaptation activities. However,they differ in the planning phases as discussed
in Section 7.2. At the beginning of each experiment run, we playback the relevant input
trace; for this purpose, we customize the mRUBiS simulator with injectors that intro-
duce adaptation issues to the RTM. One experiment run consists of three steps: (1) the
simulator injects adaptation issues to the RTM, (2) an execution of a MAPE-K loop

7.3 qualitative and quantitative evaluation with mrubis 141

is initiated during which the adaptation solution analyzes the RTM, plans an adapta-
tion, and executes the changes on the architectural RTM, (3) the simulator analyzes the
adapted RTM for success of the adaptation and the overall utility of the system.

The experiments for scalability and optimality with mRUBiS share the same exper-
iment design; we used mRUBiS with the Linear utility function in Table 3.2 that is
manually engineered in the code. Specifically, mRUBiS can host different number of
tenants (1 to 1000), each containing 18 components with different criticality and connectiv-
ity values. The utility of a tenant is the sum of the sub-utilities of all the components
in the tenant—see Section 6.1.1 for a reference on self-healing and self-optimization
with mRUBiS. To determine the injected traces of failures, we use deterministic, real-
istic, and synthetic failure models introduced in Section 6.3.1. We inject issues of type
Critical Failures (CF) and Performance Issue (PI) to mRUBiS which are the negative
patterns that affect the system. The rule set < includes the adaptation rules; each rule
has three attributes: costs, utilityIncrease, and ratio—see the metamodel of mRUBiS in Fig-
ure 2.8 for details of the supported issues, adaptation rules, and their attributes. Costs
refers to the expected execution time of the rule, utilityIncrease is the impact on the utility
when applying the rule, and ratio is defined as utilityIncrease/costs.

7.3.1 Evaluation of Runtime Performance and Scalability

To provide the supporting evidence for C1, i.e., the runtime performance and scalabil-
ity of Venus (see Section 1.4), we run Venus on a spectrum of architecture sizes and
input traces, providing sensitivity analysis of the results. We compare Venus against
the alternative solutions on different sizes of the mRUBiS architecture and measure the
execution times. Consequently, we can investigate the runtime performance and the
scalability of the adaptation loop for increasing sizes of the architecture; in addition,
the number of the adaptation issues are increased to evaluate the system under more
intense conditions.

mRUBiS simulates the behavior of a marketplace that hosts multiple shops as tenants;
each tenant has 18 components and an architecture as shown in Figure 6.1. Using mRU-
BiS with sizes larger than one tenant implies having an RTM that includes multiple
tenant architectures in one model. Thus, for each additional tenant on the marketplace,
the architectural RTM contains additional 18 components. Consequently, the adaptation
engine has to manage now a larger system and therefore operate on a larger RTM. Thus,
scalability of the self-adaptation solution is key in handling large architectures.
Experiment Design. To measure the performance, we execute the four solutions on top
of the simulator (see Figure 7.1) and consider the cycle of (1) injecting adaptation issues
to the RTM, (2) executing the MAPE-K loop to handle the issues in the model, and (3)
validating and evaluating the architecture after the adaptation. Step (1) is performed by
the simulator and based on a developer-defined injection strategy. The injection strategy
determines the type and the number of the CFs and PIs that are injected as well as
the affected elements. The solutions perform step (2), and step (3) is achieved via an
external code snippet that checks the the adapted RTM with respect to the success
and the overall utility of the adaptation. The analysis performed in step (3) provides
feedback whether the solutions actually addressed the injected CFs or PIs. Thus, for
runtime performance of the solutions, we measure only the times for step (2). In the
experiments with all four approaches, we report the complete loop execution times

142 evaluation of venus

Table 7.2: Average MAPE-K loop execution time (ms).

X X10

Comp. Batch Static Venus Solver Batch Static Venus Solver

18 97.2 3.1 3.3 7.4 101.1 26.6 30.6 71.9
180 1500.1 3.1 3.3 7.2 1504.8 27.9 31.5 77.1
1800 18043.8 3.2 3.3 7.3 18048.2 26.1 31.1 78.2
18000 202435.7 6.2 7.4 12.4 202439.2 37.1 41.7 99.6

X100 X1000

Comp. Batch Static Venus Solver Batch Static Venus Solver

18 – – – – – – – –
180 1511.3 42.1 46.6 246.5 – – – –
1800 18055.9 45.4 58.3 251.1 18070.1 183.1 189.7 3341.5
18000 202446.4 63.6 68.2 310.7 202461.8 350.8 400.1 3840.4

while in the experiments where the Batch approach is excluded, we only report the
planning times; the reason is that Static, Solver, and Venus have the same monitoring,
analysis, and execution phases and are only different with respect to their planning.

For one measurement run, we execute one solution (Static, Solver, Venus, or Batch) to-
gether with one failure trace from Section 6.3.1 for one size of the mRUBiS architecture
(1, 10, 100, or 1000 tenants, that includes, 18, 180, 1800, or 18000 components). For the
experiments, we only consider meaningful combinations of the architecture size and
number of the failures. Thus, we do not inject a large number failures to small archi-
tectures, e.g., we do not present any data where more than 10 (100) failures occur in a
system with 18 (180) components. Within one measurement run, we repeat the cycle of
steps (1), (2), and (3) 300 times or until the measurements stabilize, i.e., the standard
deviation of the execution time is less than five percent of the measured average exe-
cution time. We report the mean values of the measurements. The measurements were
performed on one machine3 and follow the benchmarking guidelines in [378].

7.3.1.1 Runtime performance of adaptation engine

To compare the complete loop execution time and scalability of the solutions, we exe-
cuted them on mRUBiS with 18, 180, 1800, and 18000 components. We used the X, X10,
X100, and X1000 failure traces from Section 6.3.1.1. One experiment run includes a sin-
gle MAPE loop run, one self-adaptation approach, one size of the architecture, and one
input trace. Table 7.2 shows the average MAPE-K loop execution time of Batch, Static,
Venus and Solver.

Compered to the other three approaches, Batch has significantly larger loop execution
times; the difference becomes more severe as the size of the model increases. For X1000
and 18000 components Batch has a complete loop execution time equal to 3.4 minutes
(202461.8 ms) while the worst execution time among the remaining three approaches
belongs to Solver (for the same experiment; 18000 components - X1000) with 3.8 seconds
(3840.4 ms). Another observation is that the execution times of the approaches that
leverage incremental executions of the MAPE activities, i.e., Static, Venus, and Solver,
are either almost insensitive to the increasing size of the architecture, or are affected

3 All experiments and simulations have been conducted on a machine with OS X 10.10, Intel processor
2.6GHz core i5, and 8GB of memory.

7.3 qualitative and quantitative evaluation with mrubis 143

only with a linear rate while the size of the architecture increases exponentially; the
latter applies only to the experiments with 18000 components. The results in Table 7.2
suggest that the incremental execution of the adaptation engine in Static, Venus, and
Solver results in scalability of the adaptation solutions—see the changes in the execution
times of the approaches as the size of the model increases. The good scalability of these
three solutions is caused by the event-based processing of the changes; the adaptation
engine never processes the whole model, rather only the events that capture a very
small amount of information obtained once from the model in the monitoring step,
e.g., the identifier and life cycle state of a single component. Technically, the analysis and
planning steps only partially refer to segments of the model (state-based processing),
that is, parts that are referred to by the change events; therefore, they do not access the
whole model and are not affected by the size of the model.

Consequently, we may observe that state-based, non-incremental solutions for self-
adaptation such as Batch do not scale for large systems which calls for incremental
approaches to process large models. Such an incremental approach is enabled by sup-
porting event-based processing of the changes, analogously to the proposed incremen-
tal adaptation engine in this thesis that integrates Venus. In this context, EMF itself
suffers from scalability issues when querying the contents of large models [see 40] or
modifying large models. This explains the almost stable loop execution times in the
incremental approaches for models with 18-1800 components in Table 7.2 and the in-
creased execution times for 18000 components. Therefore, those solutions that process
more often and extensively the EMF-based model might suffer from such issues. This
applies to all four solutions as all of their operations process (parts of) the model.

While the loop execution time in Batch heavily depends on the size of the architec-
tural model as the complete model is searched to detect the changes, the number of the
failures in the models, characterized by the input trace, does not affect the performance
of Batch nearly at the same scale as the size of the model. For example, for 18 compo-
nents, while the execution time of Venus increases by 827% from the experiments with
X to the experiments with X10 (3.3 to 30.6), the execution time of Batch increases only
by 4% (97.2 to 101.1). Static and Solver show similar performance patterns as Venus. For
comparisons between the three incremental approaches we refer to the following sec-
tion since the differences are attributed to the planning activity as they share the same
monitoring, analysis, and execution phases.

We exclude Batch from the rest of the experiments in this chapter for the following
reasons; (1) Batch only serves as a baseline approach to investigate the impact of incre-
mental execution of the adaptation engine on the performance and scalability of the
approaches; (2) the planning time in Batch is significantly affected by its state-based ex-
ecution, rather than its employed decision-making policy which impedes a comparison
of the policy performance in the individual solutions; (3) Batch uses the same deter-
ministic, rules-based policy for decision-making as Static, thus the same observations
regarding the optimality and reward can be made from the decision-maker in both ap-
proaches; (4) the excessive runtime overhead of Batch renders the assessment regarding
the optimality and reward inclusive as the extreme performance degradation preempts
any (potentiality) sub-optimal impact that may be attributed to the decision-maker.

144 evaluation of venus

Table 7.3: Average planning time (ms).

X X10 X100 X1000

Comp. Static Venus Solver Static Venus Solver Static Venus Solver Static Venus Solver

18 0.8 0.9 5.0 10.4 14.4 55.7 – – – – – –
180 0.7 0.9 5.0 9.7 13.6 59.1 14.2 17.7 219.5 – – –
1800 0.6 0.7 4.8 10.6 13.5 58.2 13.8 26.7 211.1 54.5 60.1 3216.6
18000 0.7 0.7 4.9 10.1 13.9 71.9 21.8 26.4 271.5 127.8 171.3 3611.9

7.3.1.2 Runtime performance of planning

Single MAPE-K loop run. To compare the planning time and scalability of the solu-
tions, we executed them on mRUBiS with 18, 180, 1800, and 18000 components; X, X10,
X100, and X1000 failure traces are used. One experiment run includes, a single MAPE
loop run, one self-adaptation approach, one size of the architecture, and one input
trace. Table 7.3 reports the average planning time of Static, Venus and Solver during the
same experiments shown in Table 7.2.

At the first glance, comparing the results in Table 7.2 to Table 7.3 suggests that for the
three incremental approaches, the planning time constitutes a large fraction of the loop
execution time, e.g., 94% in Solver for X1000 and 18000 components. As the number of
failures affecting the system increases in Table 7.3, the planning time typically increases
as well. However, the experiments suggest that the increase of the planning time is more
visible for Solver that has to solve larger optimization problems. For all the combinations
of numbers of the failures and architecture sizes in Table 7.3, we consider the planning
time of Static as the base value; the planning time of Solver is at least 447% (10 failures,
18 components) and at most 5802% (1000 failures, 1800 components) larger than the
base value. In case of Venus, the minimum difference compared to the base value is 9% (1
failure, 18000 components) and the maximum is 92% (100 failures, 1800 components).
Our experiments confirmed that while for a given architecture with failures, both Solver
and Venus reach the same final configuration, i.e., adapt the system similarly, Solver
has an extreme planning overhead in terms of execution time for the planning phase
for large numbers of failures and large architectures—see planning time of Solver for
X1000 and 18000 versus that of Venus in Table 7.3.

Figure 7.2a shows the planning time of the three approaches for the deterministic fail-
ure traces. Note that the vertical axis is in logarithmic scale. To achieve a more precise
regression, we added additional data points to the measurements presented in Table 7.3.
For this purpose, we constructed additional deterministic failure traces with FGS of 200,
300,..., 900 from the deterministic failure models and repeated the experiments with new
traces. The measured data points in Figure 7.2a are visualized as markers and the re-
gression lines represent the best fitting curves between the data points. As the number
of the adaptation issues in one MAPE loop increases, the planning time for Solver has
a polynomial growth while both Static and Venus maintain a linear growth of their
planning times. The results suggest that in contrast to Static and Venus, Solver does not
scale for large architectures and large FGSs.

The deterministic traces in experiments with single MAPE loop provide for a system-
atic evaluation during which runtime performance of the approaches is investigated for
various FGSs and different sizes of the architecture. However, the results are inconclu-
sive and serve only as preliminary evidence for runtime behavior of the self-adaptation

7.3 qualitative and quantitative evaluation with mrubis 145

1

10

100

1000

10000

0 200 400 600 800 1000

Av
er

ag
e

Pl
an

ni
ng

 T
im

e
(m

s)

Failure Group Size (FGS)

Solver StaticVENUS

(a) Single MAPE execution, deteremintsic failure traces are used.

1

10

100

1000

10000

0 100 200 300 400Av
er

ag
e

Pl
an

ni
ng

 T
im

e
(m

s)

Failure Group Size (FGS)

Solver StaticVENUS

(b) Multiple MAPE executions, realistic and synthtic failure traces are used.

Figure 7.2: Planning time of self-adaptation approaches.

solutions and the reason is twofold; first, as depicted in Table 6.2, deterministic fail-
ure traces assume long enough IAT between two groups of failures. Consequently, the
MAPE loop has enough time to handle all the issues currently affecting the system
before the next group of failures occur. However, there is no guarantee that this as-
sumption always holds and it is a simplification of realistic failure traces. Second, the
results of the evaluation are difficult to generalize as they are only based on a single
deterministic failure model. In addition, this failure model is deterministic, thus only
captures one possible future for the simulated system and fails to cover a large and
representative spectrum of its operation input space. We have shown in our work [177]
that employing one failure trace as input for evaluation of self-healing systems only
supports a single experiment run and does not justify any claim on the robustness and
generality of the results. Generic credibility claims are only justified if the results are
tested for robustness in the presence of a large spectrum of the input space during
multiple reproducible experiments.

Multiple MAPE-K loop runs. In the following, we investigate whether using the
traces extracted from the probabilistic failure models, i.e., realistic traces from Table 6.3
and synthetic traces in Table 6.4, confirm the scalability results that we obtained for the
deterministic model earlier. We used mRUBiS with 100 shops (1800 components). The
results are as follows:

Figure 7.2b shows the planning time for Venus, Static, and Solver for the six short
traces listed in Table 6.3 and Table 6.4. The traces based on LRI, DEUG, Grid5000, and
Uniform failure models invoke 50 executions of the MAPE loop, while the Single model

146 evaluation of venus

0

400

800

1200

1600

0 10 20 30 40 50
MAPE-KRun

Solver StaticVENUS Series1FGS 400

300

200

0

FG
S

Av
er

ag
e

Pl
an

ni
ng

 T
im

e
(m

s)

(a) Short trace from Burst model is used.

FGS

0

100

200

0 10 20 30 40 50
MAPE-K Run

Solver StaticVENUS

Av
er

ag
e

Pl
an

ni
ng

 T
im

e
(m

s)

60

30

0

FG
S

(b) Short trace from Uniform model is used.

Figure 7.3: Planning time during 50 MAPE-K executions for short traces from Burst (top) and
Uniform (bottom) failure models.

generated a trace with 1116 and Bigburst model generated a trace with only six bursts—
see Section 6.3.1 for detailed description of the employed short traces. For each of the
three solutions, we consider the measurements from all six traces collectively and show
the average planning time for the observed FGSs independent of the constituent failure
trace. The vertical axis in Figure 7.2b is in logarithmic scale. These results are the aver-
ages of the planning time measurements in ms over 300 repetitions for each of the six
traces.

Employing failure traces of the Single or Uniform model results in a large popula-
tion of data points, i.e., planning time measurements, for FGS < 50—see Figure 6.7 for
FGS distributions in Uniform and Single models. Therefore, in Figure 7.2b, to avoid
optimizing the regression curve for the range of 1 6 FGS < 50, we randomly sampled
the data points in the range FGS < 50 for all three approaches. The measured data
points in Figure 7.2b are visualized as markers and the regression lines represent the
best fitting curves between the points. Consistent with the results for the deterministic
failure traces in Figure 7.2a, compared to Solver, Venus has a lower overhead in terms of
planning time; Venus has similar planning times as Static, whose runtime planning ef-
forts are almost negligible—see definition of the static decision-making in Section 2.3.2;
the observation also holds for large FGSs. Both Static and Venus have linear growth in
planning time as the FGS increases. However, the planning time of Solver increases with

7.3 qualitative and quantitative evaluation with mrubis 147

a polynomial gradient as the FGS increases. Therefore, we can confirm the tendency
observed for the synthetic failure traces in Figure 7.2a by the results shown for the
probabilistic failure traces in Figure 7.2b; Solver does not scale well in contrast to the
other two approaches, while Venus and Static behave closely in terms of their planning
time for different FGSs.

Figure 7.3 shows the planning time of the approaches for short traces generated from
the Burst (top) and Uniform (bottom) models (see Table 6.4). The measured data points
are shown as markers while the black curves in both charts indicate the number of
the issues, i.e., FGS, for each data point. Once again, the results confirm the similar
runtime performance of Venus and Static for both traces. In Figure 7.3a, the last MAPE-
K run includes 436 issues which results in a large planning overhead in Solver, while
the planning times in Static and Venus are only slightly affected, i.e., less than 5%.

7.3.2 Qualitative Assessment of Reward and Optimality

In the following, we present a set of qualitative experiments through which we qualita-
tively assess the reward and optimality of Venus (C5) in a comparative study using the
mRUBiS application example. The employed mRUBiS simulator contains 100 tenants,
i.e., 1800 components. We use the deterministic failure traces in Section 6.3.1.1 to inject
failures to the simulator. We compare the runtime decision-making and performance
of Venus against the ones in the alternative solutions in terms of utility. At each point
in time, we can compute the overall utility of the mRUBiS architecture G via the corre-
sponding utility function U(G)—see more details on utility of the system architecture
in Section 3.1. In the context of mRUBiS, the utility of the architecture is the sum of
the utility of all its tenants—see Equation 3.2. Similarly, for each tenant in mRUBiS, we
assume utility independence between its constituent components and define the utility
of a tenant as the sum of the utility of its 18 constituent components. To compute the
utility of a component we use the linear utility function from Table 3.2.

Single MAPE-K loop run. The aim of this experiment is to separately evaluate the
two main steps of Venus for a single MAPE-K run: (1) selecting the best adaptation rules,
and (2) ordering them for execution. The experiments start with occurrences of three
failures of type CF1, CF2, and CF3 causing the utility of the system to drop. These utility
drops are followed by a single run of the adaptation loop that resolves the three CFs by
executing three repair rules. We show that Venus makes the optimal decision during
rule matching for CFs by selecting the rule that results in the maximum increase in the
overall utility. In contrast, the Static approach fails to do so and hence is non-optimal.
We also show how the order in which the adaptation rules are executed impacts the
achieved reward, i.e., accumulated utility over time.

When a match for an issue is detected, Venus computes the utilityIncrease and the costs
of all possible matches among the applicable adaptation rules. The effect on the utility
achieved by each rule application remains in the system while the cost of a rule has only
a short-term effect on the reward; the cost of a rule application is the time required to ex-
ecute the rule and realize the expected increase of the utility. Thus, in Venus, rules with
the highest utilityIncrease are prioritized over those with smaller increase but less costs.
The type of the issue and the specific affected component determine the utilityIncrease of
rule applications but the costs are defined at design time.

148 evaluation of venus

16920

16940

16960

16980

17000

0 50 100 150 200

 Static

HW Redeployment

LW Redeployment

Replace

Restart
Restart Restart

U
til

ity

Time (ms)

VENUS

(a) Non-optimal rule selection.

16940

16950

16960

16970

16980

0 50 100 150 200

 Static

Restart

Restart

Restart

HW Redeployment

HW Redeployment
Restart

U
til

ity

Time (ms)

VENUS

(b) Non-optimal rule ordering.

Figure 7.4: Lost reward of Static compared to Venus due to non-optimal rule selection (top) and
non-optimal rule ordering (bottom).

Figure 7.4a shows the utility of Static and Venus in the experiment with three issues.
Static fails to reach the maximum final utility due to non-optimal rule selection. Both
Static and Venus select CF3 to be resolved first; Static performs a Heavy Weight (HW)
Redeployment while Venus Replaces the affected component and reaches a higher utility—
see the first increase of utility in Figure 7.4a. As the first rule, Static selects a rule with
less cost, i.e., HW Redeployment, thus achieves the utility increase earlier than Venus—see
the hachured region representing the improvement of utility in Static over Venus—but
it obtains a lower reward compared to Replace rule in Venus. The impact of this non-
optimal rule selection by Static remains in the system during the whole experiment
and results in a loss reward for Static shown as the gray regions in Figure 7.4a. As the
second decision, Static resolves CF1 via a Light Weight (LW) Redeployment while Venus

resolves CF2 via Restart which has a higher impact on the utility. As the last decision,
Static resolves CF2 via Restart and reaches the same increase of utility as Venus in its
second rule execution, but with a delay, thus less reward. Venus finishes the adaptation
by repairing CF1 via a Restart rule. Static is slightly faster in resolving the three issues
due to avoiding all the runtime computations. The gray and hachured regions represent
respectively the lost and gained reward of Static compared to Venus. The result of the
qualitative experiment in Figure 7.4a suggest that the reward gained by Static as a
result of smaller runtime overhead and choosing the cheaper HW Redeployment rule over
the Replace rule does not compensate for the reward loss caused by the non-optimal
decisions in Static.

To back our claim for optimality of Venus, we show in Figure 7.4b that the optimal
rule execution order in Venus contributes to obtaining maximum accumulated utility
over time. Venus prioritizes rule applications with larger impacts on the utility while
Static decides for the priorities of rule executions based on the design time estimations.

7.3 qualitative and quantitative evaluation with mrubis 149

16940

16950

16960

16970

16980

0 50 100 150 200

Restart

Restart

HW
Redeployment

U
til

ity

Time (ms)

VENUS
Solver

Figure 7.5: Lost reward of Solver compared to Venus due to longer planning time.

16880

16910

16940

16970

17000

17030

0 50 100 150 200 250 300 350 400

 Solver

 Static

U
til

ity

VENUS

Time (ms)

Figure 7.6: Lost reward of Solver compared to Venus due to longer planning time and short IAT.

This can be done considering the type of the issues. A reasonable order of rules based
on the three issues in our example is: (1) removals of components (CF3), (2) crashes
of components that, however, might still be operating to a certain extent (CF1), and
(3) occurrences of Failures in terms of exceptions (CF2). This ordering, however, fails
to take into account the actual utility of the affectedComponent which is a function of
criticality, connectivity, and reliability—see Table 3.2 for the definition of the Linear
utility function. The values of these attributes can dynamically change such that they
are only known at runtime. Figure 7.4b illustrates a case where Static fails to address
the issues in the correct, i.e., optimal, order. In this experiment, despite the fact that
Static makes the optimal decision regarding the rule selection—which is not always
guaranteed, see Figure 7.4a—and achieves the same final utility as Venus, Static loses
reward due to its sub-optimal ordering of the rules (gray regions in Figure 7.4b) and
gains only a slight improvement over Venus because of the smaller overhead of its
planning time (hachured region).

In Figure 7.4b, Venus first repairs CF2 and Static repairs CF3; Static applies a HW
Redeployment reaching a slightly higher utility but with considerably larger costs than
Venus that Restarts the affected component. Because of the large cost of the rule selected
by Static, the solution loses utility that is equal to the area of the first gray region; in
contrast, it gains more utility over Venus, equal to the hachured area, due to repairing a
different issue first. As the second repair decision, Static resolves CF1 by a Restart while
Venus resolves CF3 by a HW Redeployment. Finally, Static resolves CF2 by a Restart and
reaches the same increase in utility as Venus, but loses utility over time due to the sub-
optimal rule execution order. Venus executes the repair of CF1 via a Restart rule as its
third repair decision because in this scenario, compared to CF2 and CF3, repairing a CF1
has a smaller impact on the utility, thus is the last rule to be executed.

150 evaluation of venus

We conducted the same experiments as in Figure 7.4b with three CFs for a quali-
tative comparison between Solver and Venus. Both solutions make identical decisions
regarding the rule selection and the ordering of the rules, thus they both reach the op-
timal final configuration and achieve the same final utility—see Figure 7.5. However,
Solver reaches the final utility value after a considerable delay due to its computational
planning overhead, which depends on the size of the architecture and number of the
issues. Despite the fact that both solution, at each point of decision-making, choose the
same rules with identical costs and utilityIncrease, and that both propose similar orders
for rule execution, compared to Venus, Solver gains less reward. The planning overhead
of Solver causes a delay resulting in reward loss compared to Venus—see dotted area
in Figure 7.5.

Multiple MAPE-K loop runs. This qualitative experiment investigates the impact for
characteristics of input traces on the reward for self-adaptation. We use mRUBiS with
100 shops (1800 components) and X10 failure trace (see Section 6.3.1.1). We inject the
simulator twice with X10 that randomly injects ten failures of type CF1, CF2, CF3, CF4,
and PI1 as a failure group that cause a drop in the utility of mRUBiS. Consequently,
the MAPE-K loop is executed twice. The first utility drop is followed by one MAPE-K
execution. The adaptation solutions plan for and resolve all the existing failures. The
feedback loop is not reentrant, thus in the case that new failures occur during the cur-
rent MAPE-K run, they are ignored until the execution of the loop is finished. Therefore,
the planner will not take these failures into account. Nevertheless, the occurrence of fail-
ures still causes drops in the utility of the system even if they are not yet considered by
the adaptation loop and are queued to be processed by the next loop.

Figure 7.6 shows the reward of Static, Venus, and Solver during two MAPE-K loop
executions with X10. The first drop in the utility is followed by the first MAPE-K exe-
cution where all the approaches plan for repairing the failures. Both Static and Venus

are fast enough to resolve the failures before the second group of failures occur—the
second failure occurrence time point is depicted by a red arrow in Figure 7.6. Due to
the longer planning time in Solver, the scheme misses the on-time detection of the sec-
ond group of failures. Therefore, the utility drop caused by the new group of failures
remains in the system until they are detected and resolved during the second MAPE-K
run. In contrast, Static and Venus, owing to their short planning times, manage to detect
and resolve the first group of failures and obtain the increase in the utility before the
second group of failures occur.

Both Solver and Venus obtain the same maximum final utility while Venus obtains
more utility over time due to faster execution of MAPE loop. The dotted areas in Fig-
ure 7.6 represent the lost reward of Solver compared to Venus. Therefore, we can con-
clude that, similar to the optimization-based solution, i.e., Solver, Venus chooses the
adaptation rules that bring back the system to the maximum possible utility after the
adaptation. However, the results suggest that this is not the case for Static—see the
lower final utility for Static in Figure 7.6. The gray regions represent the lost utility of
Static compared to Venus and the hachured regions depict the utility gained by Static
over Venus. This experiment clarifies that in situations where the IAT is shorter than the
repair time, there will be an additional loss of reward if the planning or the subsequent
execution phase overlap in time with the occurrences of failures; this is due to the fact
that recent failures in the system are temporarily neglected, while their impacts remains
in the system until until they are resolved by the next loop, thus the system performs
with a lower utility.

7.3 qualitative and quantitative evaluation with mrubis 151

7.
11

E+
14

7.
76

E+
14

1.
39

E+
15

4.
62

E+
15

7.
11

E+
14

7.
76

E+
14

1.
36

E+
15

4.
08

E+
15

6.
25

E+
14

6.
99

E+
14

8.
76

E+
14

4.
01

E+
15

0.E+00

1.E+15

2.E+15

3.E+15

4.E+15

5.E+15

X X10 X100 X1000

Re
w

ar
d

Failure Trace

Solver

Static

VENUS

Figure 7.7: Reward of the three approaches over 50 MAPE-K runs.

7.3.3 Quantitative Evaluation of Reward and Optimality

In the following, we quantitatively evaluate the optimality of Venus in terms of utility
and reward of the adaptation (contribution C5). We conduct a comparative study with
Static, that employs design-time decision-making policy, and Solver, that employs an
optimizer to plan an adaptation based on runtime circumstances—see Section 7.2. As
discussed earlier, we exclude Batch from the rest of the experiments in this chapter
because the approach uses the same policy for planning as Static. The overall utility of
the mRUBiS is the sum of the utility of all its tenants—see Equation 3.2. Similarly, the
utility of a tenant is the sum of the utility of its 18 constituent components. The utility
of a component is computed absed on the linear utility function from Table 3.2.
Experiment design. To compare the reward of the three approaches, we execute them
on mRUBiS with 1800 components. First, we conduct an experiment employing de-
terministic failure traces with long enough IAT, where the current MAPE-K loop has
enough time to handle all the existing issues before the next group of failures affect
the system. Next, we investigate the reward of the self-adaptation solutions under more
intense and unpredictable runtime conditions. For this purpose, we use probabilistic
failure models. This way, we can evaluate the obtained reward and optimality of the
solutions for various failure traces with varying IAT and FGS. During the experiments,
the different CF types and PI1 are equally distributed for each trace.
Experiments with deterministic traces. We inject failures to mRUBiS according to X,
X10, X100, and X1000 input traces. The experiment includes exactly 50 MAPE-K loop
executions. As we consider longer simulation runs, we observe rather large reward val-
ues. The reward of each approach is measured for each of the four traces. We consider
a time span of 24 hours during which 50 groups of failures, characterized by the input
traces, occur. The 50 groups of failures are uniformly distributed over the 24 hours re-
sulting in an IAT of 1728 seconds (24 hours divided by 50). As summarized in Table 6.2,
the employed deterministic failure traces impose long enough IAT. We manually con-
firmed that 1728 seconds constitutes a long enough IAT between two groups of failures
in the worst case, i.e., X1000, and for the slowest approach, i.e., Solver.

152 evaluation of venus

1.
74

E+
09

1.
73

E+
09

1.
70

E+
09

1.
82

E+
09

1.
78

E+
09

1.
77

E+
09 1.
85

E+
09

1.
79

E+
09

1.
83

E+
09

1.6E+09

1.7E+09

1.8E+09

1.9E+09

Udriven
LRI

Solver Static Udriven
DEUG

Solver Static Udriven
Grid5000

Solver Static

Re
w

ar
d

LRI Udriven
LRI Solver
LRI Static

VENUS

Solver
Static

LRI DEUG GRID5000
Failure Model

Figure 7.8: Reward for short traces of realistic failure profile models.

Figure 7.7 shows the reward of the approaches for the four failure traces. As the FGS
increases, the difference between the reward of Venus and Solver becomes larger. This is
due to the planning overhead of Solver as discussed in the context of Figure 7.5. Larger
numbers of failures cause larger overhead and thus a larger loss of reward for Solver.
This effect, however, is not visible in traces with relatively smaller FGS, e.g., X and X10.

For all the traces in Figure 7.7, compared to Solver and Venus, Static has the least
amount of reward. Non-optimal decisions and wrong ordering of the adaptation rules
in Static cause reward loss as discussed earlier in the context of Figure 7.4 and Fig-
ure 7.5. The loss of reward due to non-optimal decisions can be very severe for long
system execution times since the system is performing at a sub-optimal utility level for
a considerably long time. Solver has a larger reward than Static for all the traces in Fig-
ure 7.7. This is partially due to the fact that the adaptation loop always has enough
time, i.e., the IAT is large enough, to resolve the current failures within one feedback
loop run before the next group of failures occurs. Additionally, unlike Static, Solver
aims for optimal choice of the adaptation rules with respect to the UtilityIncrease and op-
timal ordering of the rules to maximize its final utility and reward. Venus aims for the
same optimal decisions as Solver, however, in the context of Venus, its relatively faster
planning results in timely adaptations, thus higher reward.
Experiments with probabilistic traces. The following experiments compare the reward
of the self-adaptation approaches using probabilistic failure models. Figure 7.8 shows
the reward of the approaches for the short traces generated based on LRI, DEUG, and
Grid5000 models—see Table 6.3 for details of the traces. Since these failure models have
different characteristics, e.g., the generated traces have different failure densities, the
results cannot be compared across different models. However, we can compare the
results in terms of the reward achieved by the three self-adaptation solutions for each
model separately. As previously shown, for large FGSs, compared to Venus and Static,
Solver requires considerably more time for planning. Consequently, for Grid5000 short
trace with 1116 failure density, Solver achieves the lowest reward compared to the other
two approaches—see Figure 7.8. In contrast, for DEUG and LRI short traces with a total
of 666 and 318 failures respectively, Solver performs slightly better than Static. Thus,
the different failure densities of the traces influence the reward and optimality of the
approaches under test.

7.3 qualitative and quantitative evaluation with mrubis 153

4.
17

E+
12

4.
12

E+
12

3.
32

E+
11

5.
24

E+
12

4.
60

E+
12

4.
80

E+
11

4.
26

E+
12

3.
72

E+
12

3.
78

E+
11

1.0E+11

2.1E+12

4.1E+12

6.1E+12

S-H approach
Trace

Udriven
LRI

Solver Static Udriven
DEUG

Solver Static Udriven
Grid5000

Solver Static

Re
w

ar
d

Trace S-H
approach
LRI Udriven

LRI Solver

VENUS

Solver

Static

LRI DEUG GRID5000
Failure Model

Figure 7.9: Reward for long traces of realistic failure profile models.

Moreover, if the IAT is shorter than the time required to resolve the failures, it causes
more severe loss of reward—see Figure 7.6 for a qualitative demonstration. This effect
applies in particular to Solver, due to its time-intensive planning, which is a further
reason that this approach achieves a considerably lower reward compared to the al-
ternatives for the Grid5000 with high failure density while performing better with LRI
and DEUG with smaller failure densities—see Table 6.3 for detailed characteristics of
the failure traces. For the LRI model that has the lowest failure density, the reward of
Solver in Figure 7.8 is close to Venus while their difference is larger for the DEUG and
Grid5000 traces with larger number of failures.

Figure 7.9 shows the reward for the long traces generated from the LRI, DEUG, and
Grid5000 models. The traces simulate approximately a period of 30 days, allowing for
observing the longer execution of the approaches. Particularly, we observe that Static,
compared to Venus and Solver, severely losses reward for all the failure models. As
discussed in the scope of the qualitative experiments in Section 7.3.2, the impact on
the reward, caused by the non-optimal decisions of Static, can permanently remain in
the system. Therefore, the reward loss due to non-optimal decisions remains and propa-
gates through 30 days of system execution. Similar to the results in Figure 7.8, Figure 7.9
shows that Solver achieves less reward compared to Venus due to the planning overhead.
However, the interesting point that comes to light thanks to the long system execution
period, i.e., 30 days, is that the reward achieved by Solver is considerably larger than
Static. The reason is that the reward loss in Solver is due to the planning overhead and
seems to be compensated for over time, while the reward loss in Static remains in the
system because the scheme does not always obtain the maximum final utility after the
adaptation. Conversely, Solver eventually brings the system to the maximum utility level
after the adaptation.

As different traces have different failure densities, the reward of the solutions for one
trace cannot be compared to the one for a different trace. To enable a comparison across
traces, we use traces with equal failure densities. Therefore, for the following experiment
we use the synthetic failure models from Table 6.4 to generate traces with equal failure
density. As confirmed by the qualitative assessment (Section 7.3.2) and quantitative
experiments for reward, characteristics of the input traces influence the reward of self-
adaptation. The results are presented in Figure 7.10. For the Single model, both Solver
and Venus obtain the maximum reward because it is a simple model, i.e., at each arrival
of failures, there is only a single failure to handle. Thus, Solver is not concerned with

154 evaluation of venus

1.
99

E+
09

1.
96

E+
09

1.
85

E+
09

1.
82

E+
091.
99

E+
09

1.
95

E+
09

1.
79

E+
09

1.
75

E+
091.

94
E+
09

1.
93

E+
09

1.
83

E+
09

1.
80

E+
09

1.5E+09

1.7E+09

1.8E+09

2.0E+09

Single Uniform Burst BigBurst

Re
w

ar
d

Failure Model

Solver

Static

VENUS

Figure 7.10: Reward for synthetic traces with equal failure densities.

planning overhead. Static however, achieves relatively less reward for Single model; this
is due to sub-optimal choice of rules in Static, this effect corresponds to the impact of
non-optimal decisions demonstrated by the qualitative experiment in Figure 7.4a. In the
experiments with Uniform model, Solver achieves more reward than Static but less than
Venus. For the trace generated based on the Uniform model, while the the average FGS
is smaller than in Burst and Bigburst models, Venus still manages to outperform Solver
in terms of reward do to its scalability and faster execution times.

As the FGS increases in the experiments with Burst and Bigburst models, all three
solutions obtain less reward compared to the experiments with Single and Uniform
models. Venus and Solver are both affected by their planning overhead for large FGSs,
thus attain less reward. In case of Static, the reward loss compared to models with
smaller FGS can be associated to the impact of non-optimal ordering of the rules during
execution. We investigate this phenomenon in qualitative assessment presented in Fig-
ure 7.4b.

The quantitative evaluation of Venus in comparison to a deterministic, rule-based
solution and an optimization-based solution for adaptation suggest that for the two
groups of experiments, i.e., with deterministic traces imposing long enough IAT, and
the probabilistic models with different characteristics regarding FGS, IAT, FET, failure
density, and duration, Venus always outperforms—in terms of the adaptation reward—
both Static and Solver. Only in the experiments with Single model, Venus and Solver
obtain the same reward (see Figure 7.10) because no costly planning is required when
there is only a single issue to resolve.

The experiments with multiple probabilistic traces allowed for investigating the per-
formance and reward of Venus while the adaptable software is operating under opera-
tion conditions that were subject to extreme and sudden changes. Additionally, follow-
ing the evaluation methodology introduced in Section 6.3, Venus has been evaluated
while exposed to a large spectrum of input traces with divers characteristics. The re-
sults confirmed that Venus consistently showed scalability, cost-efficiency, and optimal-
ity during multiple reproducible simulation scenarios. These observations provide the
supporting evidence for robustness of Venus as a solution for software self-adaptation.
As discussed in Section 1.4, according to the IEEE standard [227], the robustness of
a software system is defined by the degree to which the system operates correctly in
the presence of exceptional inputs or stressful environmental conditions. In this section,

7.4 quantitative evaluation with znn.com 155

using the mRUBiS application example, we demonstrated the robustness of Venus, as
is customary [see 306], via bombarding the self-adaptive software with valid and ex-
ceptional inputs and verify the success criteria, i.e., if it does not crash or hang, then it is
robust—see C6 in Section 1.4.

7.4 quantitative evaluation with znn.com

As the second case study for evaluating Venus, we adopted Znn.com, a cloud-based load
balancing system introduced in Section 6.2. Similar to the scheme of Section 7.3, we
compare Venus to the two alternative self-adaptation solutions, i.e., Static and Solver—
see Section 7.2. With the help of the comparative study, we aim to investigate two
features of Venus that are captured by the individual contributions in Section 1.4 ,
i.e., runtime performance and scalability (C1), and optimality in terms of reward (C5). The
qualitative evaluations in this section are according to the evaluation methodology in-
troduced in Section 6.3 and provide coverage of a wide spectrum of input space for
self-adaptive software system (C8).

We used Znn.com in combination with a large spectrum of deterministic and realistic
input traces presented in Section 6.3.2. The implementation and deployment of the three
solutions, i.e., Static, Venus, and Solver replicate the steps introduced in Section 7.3. The
different solutions operate on an RTM of Znn.com—see Figure 7.1 for a reference of the
implementation. We simulated the architecture of the application example by means
of the EMF models, i.e., without having to run the underlying causal connection and
adaptable software. Thus, similar to the experiments with mRUBiS, connecting and
synchronizing the RTM and the running system does not concern the self-adaptation
solutions. We customize the Znn.com RTM with injectors that add client requests to the
system, thus introducing adaptation issues in the RTM.

We conducted controlled experiments by keeping all the experimental parameters
constant except the self-adaptation solution and the traces used as inputs for Znn.com.
We controlled the parameter values to isolate the effects of the self-adaptation solution
on the utility of the Znn.com architecture as well as the request response time for clients.
One experiment run with Znn.com includes: (1) injection of client requests to the RTM,
(2) an execution of the employed self-adaptation solution realized with a MAPE-K loop,
and (3) validating the RTM with respect to success and utility of the adaptation.
Experiment Design. We instantiated a version of Znn.com with 10 severs, where only 5
are considered within the budget. Thus, during the Analyze activity of the MAPE loop,
the threshold for overBudget issue is set to 5, i.e., instead of 15, as shown in Figure 6.4.
We operate the serves in Znn.com with three levels of quality—see Section 6.2. Table 7.4
shows the cost and capacity parameters for servers in Znn.com for different content
quality. In our experiments, the cost of servers that are within the budget, i.e., the first 5
servers, can be covered by the revenue of handling approximately 20% of its maximum
capacity with optimal quality, or alternatively, the revenue of handling 45% of their
maximum capacity with medium quality, or, finally, 95% of its maximum capacity with
low content quality. Servers 6 to10 that are above the budget, however, can compensate
their operation cost by handling approximately 34% and 75% of their maximum capac-
ity with optimal and medium quality, respectively. The over budget servers, as shown
in Table 7.4, cost more than within the budget servers and cannot compensate for their
operation cost by providing low quality content.

156 evaluation of venus

Table 7.4: Server cost/capacity parameters in Znn.com.

Cost (per min) Capacity (serve per min)

within budget above budge low quality medium quality high quality

0.6 1 800 600 300

Table 7.5: Average planning time (ms) for deterministic traces in Znn.com.

Trace (short) # Req. per min Static Venus Solver
TR1 1 0.56 0.61 5.72
TR10 10 8.71 10.73 49.76
TR100 100 12.51 15.46 3, 071.07
TR1K 1K 80.26 99.34 51, 521.62
TR10K 10K 210.34 262.23 780, 746.26

The overall utility of Znn.com at state s = (c̄, ō), i.e., Uznn(s), is defined according
to Equation 6.1—see Section 6.2 for a reference on self-healing and self-optimization
with Znn.com. The request arrival traces for Znn.com are generated based on the syn-
thetic as well as realistic web traffic logs introduced in Section 6.3.2 and are employed
as the input traffic for Znn.com. The traces include clients web content requests from
the web servers over the course of 60 minutes for short traces and 24 hours for long
traces. Injecting client requests causes issues of type latency, overBudget, lowQuality,
and resolving them may cause further optimization issues, e.g., underUtilized. Simi-
lar to mRUBiS, the issues are captured as negative patterns that affect the system. The
rule set < includes the adaptation rules; each rule has a utilityIncrease attribute that is
the impact on the utility cased by the corresponding rule application—see the meta-
model of Znn.com in Figure 6.3 for details of the supported issues, adaptation rules, and
their attributes. We execute the adaptation loop at each minute, unless an in-progress
loop exceeds the one-minute time window. In this case, an execution of the consequent
loop immediately follows. We only allow for a single server boot-up at a time, however,
multiple servers can be active simultaneously. For one measurement run, we execute
one solution (Static, Solver, or Venus) together with one input trace from Section 6.3.2.
Within one measurement run, we repeat the cycle of steps (1), (2), and (3) for 300 times
or until the measurements stabilize, i.e., the standard deviation of the execution time
is less than five percent of the measured average execution time. We report the mean
values of the measurements. The measurements were performed on one machine.

R² = 0.9858

-100

0

100

200

300

1 10 100 1K 10KAv
er

ag
e

Pl
an

ni
ng

 T
im

e
(m

s)

Request Arrival Rate

Static

R² = 0.9833

-100

0

100

200

300

1 10 100 1K 10K

VENUS

R² = 1

-3.E+05

0.E+00

3.E+05

5.E+05

8.E+05

1.E+06

1 10 100 1K 10K

Solver

Figure 7.11: Average planning time with polynomial regression (in dashed green).

7.4 quantitative evaluation with znn.com 157

7.4.1 Evaluation of Runtime Performance and Scalability

To compare the planning time and scalability of the solutions, we executed them on
Znn.com in combination with the deterministic traces from Section 6.3.2.1—see the re-
sults in Table 7.5. The experiments in this section provide the supporting evidence
for contribution C1 in Chapter 1. As the request arrival rate in the traces increases,
Znn.com is more likely to exhibit adaptation issues such as latency, lowQuality, and
overBudget, therefore, the planning time of the approaches increases accordingly since
there are more issues to address. However, as shown previously in our experiments
with mRUBiS (see Table 7.3), compared to Venus and Static, Solver demonstrates more
significant increase of the planning time for large number of issues as it has to solve
large, time-intensive optimization problems.

Figure 7.11 shows the plots of planning times of the approaches from Table 7.5 with
respect to the request arrival rates; for each plot, Figure 7.11 also shows the best fitting
linear (polynomial) regression in dashed green lines. R-squared, i.e., R2, is between zero
and one and is the sum of squared residuals in the regression indicating a goodness-
of-fit measure for linear regression models; the larger the R2, the better the regression
model fits the observations [386]. As the request arrival rate increases by the orders of
magnitude, i.e., from 1 request per minute to 10K requests per minute, the planning time
for Static and Venus grows with O(n2), i.e., polynomial with degree two (R2 ≈ 0.98),
however, this growth rate for Solver is O(n4) with R2 = 1—see Figure 7.11.

Both the qualitative and quantitative evaluation of Static in Section 7.3 confirmed
that, in comparison to Solver and Venus, thanks to its minimal runtime overhead, Static
shows minimum planning time. We observed the same pattern in the experiments with
Znn.com presented in Table 7.5. Thus, taking the planning time of Static as the base value,
Venus yields in the worst case 25% (TR10K), and in the best case 9% (TR10K) longer for
planning. The average planning time in Solver, however, in the worst case is 371, 083%
(TR10K), and in the best case is 921% (TR10K) more than Static for the same trace.

Figure 7.12 shows the client response times (in seconds) for the same experiments
with deterministic traces as Table 7.5. In the experiments with TR10K, Solver shows only
timeout for the requests, i.e., response times are above 90 sec, thus not included in Fig-
ure 7.12. In Figure 7.12, the boxes represent the middle portion of the measured data
points, i.e., the response times values for a solution-trace pair. The horizontal lines in-
side each box represent the median. The whiskers show the minimum and maximum
response times. Take the chart with 100 requests as an example; the median for Static,
Venus, and Solver is 3.06, 4.2, and 10.9 sec respectively. This indicates that half of the
requests have response times below 3.06, 4.2, and 10.9 sec in Static, Venus, and Solver,
respectively, while the other half have higher response times. Additionally, the maxi-
mum response time value, represented by the upper end of the whiskers, is 6.27 sec
for Static, 7.02 sec for Venus, and 23.32 sec for Solver. The “×" marks inside the boxes
represent the mean values for the response time. Solver has a greater mean than the
median in all the experiments; this means, the distribution of the response times in
Solver is positively skewed, i.e., towards larger values. Apart from the experiment with 1
request, where the mean and the median are aligned, the mean values in Venus are less
than the median; this indicates that the distribution of response time values in Venus

are skewed negatively, i.e., towards smaller values. Static has appropriately aligned mean
and median values in the experiments with 10, 100, and 1K requests; in the experiments
with 1 and 10K traces, response times in Static are negatively skewed.

158 evaluation of venus

Re
sp

on
se

 T
im

e
(s

ec
)

0.00

0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

1 Request/min

Static
Venus

Solver

0

1

2

3

4

5

6
10 Requests/min

0

5

10

15

20

25
100 Requests/min

0

20

40

60

80

100

120
10K Requests/min

0
10
20
30
40
50
60
70
80

1K Requests/min

VENUS

x

x

x

x

Figure 7.12: Response time (sec) for deterministic traces in Znn.com.

7.4 quantitative evaluation with znn.com 159

0

30

60

90

120

0 10 20 30 40 50 60 70 80 90 100

Re
sp

on
se

 T
im

e
(S

ec
)

Day of Trace

Solver StaticVENUS

90 sec: Request
timeout threshold

Figure 7.13: Response time for realistic traces in Znn.com.

The deterministic input traces for Znn.com enable a systematic evaluation of the per-
formance and scalability of the self-adaptation solutions whereby runtime performance
of the approaches is investigated for various, controlled arrival rates for client requests.
Next, we compare the approaches in a study where we use the nine realistic FIFA traces,
presented in Section 6.3.2.2 and visualized in Figure 6.8, as input traces for the system.
Figure 7.13 presents the average request response times for clients in Znn.com for the
nine short traces (60 min) from Figure 6.8. The x-axis represents the trace based on the
corresponding day, e.g., the most left bars are with the Day 10 trace. Each measurement
shows the average response times (bullets) as well as the maximum and minimum re-
sponse times (vertical bars) of the clients in the experiments with Day i trace. Among
the nine traces, Day 60 shows larger response time values for all the three solutions.
The request arrival distribution of Day 60 in Figure 6.8 suggests that this trace has the
largest burst of client requests, i.e., 4000 requests per minute. This is while the second
largest burst contains approximately 2500 requests—see plots of Day 20 and Day 30
in Figure 6.8.

In the experiments with Day 60 and Day 20, Solver causes request timeout, i.e., above
90 sec. The same experiment shows the largest values for the maximum response times
in Static and Venus. Day 80 has the smallest average response time as well as the small-
est maximum and minimum response times for all the approaches. The reason is that,
the corresponding trace has a relatively small request burst size, i.e., 650 requests per
minute. The results in Figure 7.13 are inline with the response time measurements in Fig-
ure 7.12; Static and Venus have response time values in approximately the same range.
This can be explained by the planning time of the two solutions, presented in Table 7.5,
that are at most only 25% different.

7.4.2 Evaluation of Reward and Optimality

We compare the accumulated utility (reward) of Venus to Static and Solver during the 60
minute executions of Znn.com with the short FIFA input traces from Section 6.3.2.2. We
studied the response time of the clients when we played back the traces used in the ex-
periments for Figure 7.13. For each experiment, we used a single trace from Day i with
60 min duration and an adaptation solution, i.e., Static, Venus, or Solver. We inject the
client requests to Znn.com every minute according to the corresponding input trace. We

160 evaluation of venus

execute the MAPE-K loop in one-minute intervals, unless an in-progress loop exceeds
this time. At the end of each adaptation, we measure the accumulated utility of the
system during the last one minute. We use the utility function in Equation 6.1 to com-
pute the system utility. The experiments in this section provide supporting evidence for
contribution C5 in Section 1.4.

In Figure 7.14, we report the normalized reward of the three approaches over the
course of 60 min. The reward graphs for all three approaches have similar patterns.
Day 60 yields minimum normalized reward across the solutions. We observed in Fig-
ure 7.13 that Day 60 also has worst response time values, in terms of maximum, min-
imum, and average across all traces. We associate this to the characteristics of request
distributions over time—see Figure 6.8. While trace of Day 60 has a fairly small re-
quest arrival rate until minute 38, i.e., below 600 requests per minute, the reward values
suggest that the large request burst between minute 38 to 50 significantly reduces the
accumulated utility of the system during 60 min.

Another interesting observation regarding the reward charts involves the experi-
ments where Static, while often exhibiting sub-optimal behavior due to its deterministic
decision-making (see Section 7.2), outperforms Solver. The aforementioned experiments
belong to Day 20 and Day 60—see Figure 7.14. We showed earlier in Figure 7.13 that
for Day 20 and Day 60, Solver demonstrates the highest response time values as well as
request timeouts; consequently, low response times affect the utility of the system—see
the definition of uR in Table 6.1. Additionally, the results for the normalized reward
confirm that Venus outperforms both Static and Solver. This is interesting while, as
the response time measurements in Figure 7.13 show, for all nine experiments, Venus

exhibits larger response times than Static (in terms of both the average and the max-
imum). We attribute this to the utility-driven decision-making policy in Venus that
performs adaptations yielding higher utility, thus compensating for its slightly higher
client response times over Static. Regarding Solver, large planning times, as depicted
in Table 7.5, significantly affect the client response times, thus the reward.

In contrast to Static, Solver exhibits similar pattern to Venus, in terms of variations
in the reward values. This can be explained by the fact that the decision-making in
Static, compared to Solver and Venus, by principle is less sensitive to runtime opera-
tion conditions—see Table 7.1. Consequently, while this reduces the planning overhead
for the approach, thus avoiding steep drops in system utility, Static also overlooks the
opportunities, only surfacing during runtime, to improve its reward due to its runtime-
oblivious planning. Take for example the change of the reward in the approaches during
transition from Day 50 to Day 60, and from Day 70 to Day 80 in Figure 7.14; we observe
large variations of the normalized reward for Solver and Venus, while Static maintains
a more steady reward values during both experiments.

7.5 possible violation of assumptions

In the context of Venus, we made several assumptions (listed in Table 4.1) and discussed
that these assumptions are usually justified for rule-based, self-healing systems and for
the limited scope of rule-based, self-optimizing systems—see Section 4.4.4. To further
assess the robustness of Venus, in this section, we investigate how violation of the as-
sumption (A2) impacts the reward and scalability of Venus. Among the six assumptions
we made for the validity and applicability of Venus, the reason we chose to quantita-

7.5 possible violation of assumptions 161

0

0.25

0.5

0.75

1

0 10 20 30 40 50 60 70 80 90

N
or

m
al

ize
d

Re
w

ar
d

Day of Trace

 Solver
Static

VENUS

Figure 7.14: Normalized reward for realistic traces in Znn.com.

tively investigate the assumption (A2) is that the rest of the assumptions are either
always justified for the targeted class of problems and systems, e.g., assumption (A1),
or demonstration of their violations via controlled experiments required development
effort that is beyond the scope of this section, e.g., assumptions (A3)- (A6).

In the following, we first empirically investigate how violating the assumption (A2)
affects the utility and reward of Venus; next, we discusses how violations of the rest of
the assumptions in Table 4.1 affect the scalability and runtime performance of Venus.

7.5.1 Violation of A2: Impact on Reward

Assumption (A2) requires that adaptation rules are deterministic and effective, i.e., an
adaptation rule is always able to resolve the corresponding issue. However, there might
be cases where the rules do not succeed in resolving the issue, thus violating assump-
tion (A2).
Qualitative assessment. We first show through a scenario with probabilistic adaptation
rules how violating assumption (A2) affects system utility. A probabilistic adaptation
rule has a success likelihood for resolving the adaptation issues. If a rule is not success-
ful, the issue remains in the system and is dealt with during the subsequent MAPE-K
run(s). To study the impact of ineffective rules on the utility, we randomly injected mul-
tiple failures of type CF1- CF4 and PI1 to mRUBiS with 1800 components; as showed
in Figure 7.15, the failure injection causes a drop in the utility and is followed by an
execution of the MAPE-K loop via one of the three self-adaptation approaches.

In Figure 7.15a, the first MAPE-K loop execution resolves all the existing failures. In
this scenario, the adaptation rules are 100% effective, entailing they successfully resolve
the corresponding issues, i.e., assumption (A2) holds. Thus, after the adaptation is com-
plete, the utility of mRUBiS is restored to the same value (Static) or possibly higher value
(Venus and Solver) than before the failure injection. Figure 7.15b repeats the same exper-
iment, except that the success likelihood of the adaptation rules is reduced to 50%. After
the first MAPE-K run, the adaptation approaches fail to restore the utility of mRUBiS
due to partially ineffective rules; as a result, the unresolved issues remain in the system,
delaying the envisioned utility increase as otherwise would have been obtained, and
require additional attempt(s), i.e., executions of the MAPE-K loop. Each MAPE-K run
has one attempt of executing the rules. Consequently, the point in time when all the ex-

162 evaluation of venus

16900

16920

16940

16960

16980

17000

0 50 100 150 200 250 300

 Static

U
til

ity

Time (ms)

VENUS
Solver

(a)

16900

16920

16940

16960

16980

17000

0 50 100 150 200 250 300

 Static

U
til

ity

Time (ms)

VENUS
Solver

(b)

Figure 7.15: Reward of mRUBiS in experiments with probabilistic rules.

isting issues in the system are resolved and the system utility is restored is postponed
causing the system to operate with reduced utility in the meantime, thus obtaining less
reward.

The dotted area in Figure 7.15 shows the lost reward of Solver compared to Venus.
The gray (hachured) areas represent the reward loss (gain) of Static over Venus. In gen-
eral, the longer a failure remains in the system, for instance, because of the ineffective
adaptation rules, the larger is the reward loss. Moreover, as confirmed in Section 7.3,
Solver has a longer planning time, thus requires more time to resolve the failures com-
pared to the other approaches. Unsuccessful execution of the adaptation rules results
in potentially larger number of issue to be delegated to the subsequent execution(s) of
the MAPE-K loop. The qualitative assessment in Figure 7.15 suggest that compared to
Venus and Static, Solver is more strictly affected by the violation of the assumption (A2)
as ineffective rules entail more frequent planning by the approaches.
Quantitative evaluation. We now demonstrate the impact of violating assumption (A2)
on the reward and optimality of Venus via a set of qualitative experiments. The experi-
ment studies how this phenomenon affects the two alternative solutions in comparison
to Venus. The experiment starts with the random injections of multiple failures of type
CF1- CF4, and PI1 to mRUBiS with 100 tenants (1800 components). The short trace ex-
tracted from Grid5000model is used for simulation—see Table 6.3. We consider different
success likelihoods of 100%, 75%, 50%, 25%, and 5% for all adaptation rules. If a rule
is not successful, the dropped utility is not restored as the issue still remains in the
system. As the success likelihood decreases, the solutions obtain less reward since the
unresolved issues remain in the system for longer time until they are finally removed.

7.5 possible violation of assumptions 163

0%

25%

50%

75%

100%

0 1 2 3 4 5 6Pe
rc

en
ta

ge
 o

f B
as

el
in

e
Re

w
ar

d
Ga

in
ed

Success Likelihood of Rule

solver
Static

100% 75% 50% 25% 5%

VENUS

Figure 7.16: Effect of probabilistic rules on reward.

Figure 7.16 shows how different success likelihoods of the adaptation rules affect the re-
ward of the approaches; the baseline reward is the system reward when rules have 100%
success rate.

As the rules fail to resolve the issues, the MAPE-K loop keeps being re-invoked to
resolve the remaining failures during additional runs. Meanwhile, new failures might
occur, increasing the total number of the failures to be addressed. Consequently, the
accumulated unresolved failures, in addition to the newly occurred ones, constitute a
larger FGS, i.e., compared to the case of rules with 100% success rate. Figure 7.16 shows
that Venus, for rules with 75% and 50% likelihood, obtains 98% and 93% of the baseline
reward, respectively; this value drops to 73% for the 25% success likelihood. The reward
for Static is affected similarly to Venus. This is due to the fact that the subsequent
execution(s) of the MAPE-K loops in both Static and Venus are adequately prompt,
thus the failures do not remain long in the system until they are eventually resolved
and the utility of the system is restored. Probabilistic adaptation rules affect the reward
of Solver relatively more severely; after an unsuccessful attempt to resolve the issues,
the subsequent MAPE-K loop in Solver deals with an increasingly large optimization
problem to plan for the old and the new failures. More frequent planning is required
to resolve the remaining issues and the expected reward of Solver drops faster than the
one of Venus and Static.

In this section, Venus is executed outside its intended operation condition, i.e., when
the assumption (A2) does not hold. The empirical results suggest that while violating
assumption (A2) negatively affects the reward of Venus, the approach exhibits robust-
ness in that it continues to be functional and effective. The results in Figure 7.16 show
that Venus maintains 98% and 93% of its optimal reward in experiments with rules
that have 75% and 50% success likelihood; this can be attributed to the scalable and fast
planning in Venus. The experiments in this section provide the supporting evidence
for contribution C6 that indicates Venus is a robust approach as the scheme preserved
an acceptable percentage of its optimal performance while being executed outside its
envisioned operation conditions—see Section 1.4.

164 evaluation of venus

7.5.2 Violation of Assumptions: Impact on Scalability

We discuss in the following how violations of the assumptions listed in Table 4.1 affect
the scalability of Venus, or any generic self-adaptation approach—see Section 4.4.4 for
discussions on justification of assumptions for Venus.

The reduced success likelihood of the adaptation rules requires additional MAPE-K
loop executions during the IAT to resolve the remaining failures in the system. Un-
less the IAT is very short, such that not enough attempts in additional MAPE-K runs
can be achieved, the violation of assumption (A2) will not affect the scalability of the
self-adaptation because the size of the planning problem does not change. A viola-
tion of assumption (A3a) indicates that adaptation rules have side-effects in terms of
introducing new issues upon execution. This side-effect introduces additional failures
to the originally detected ones. Therefore, it can impact scalability by increasing the
FGS. This effect impacts the runtime performance of any self-adaptation solution as it
entails every rule execution might cause additional issues that the MAPE-K loop has
to address. However, self-adaptation solutions that have time-intensive analysis and
planning phases, e.g., Solver, are most likely to suffer from this effect in terms of their
runtime performance. The quantitative evaluation of Venus in Section 7.3 confirmed
that Venus has a reasonably low planning time for combinations of large architectures
and large FGS—see Table 7.3 and Figure 7.2.

The violation of assumptions (A3b) and (A4) imply that there are dependencies be-
tween the adaptation rules. Detecting and resolving such dependencies can complicate
the planning phase, thus negatively affecting scalability. To address this problem, more
exhaustive solutions, e.g., model-checkers, are required. However, the dependency be-
tween the adaptation rules is directly related to the rules and not to the employed
self-adaptation solution. Therefore, the impact will equally affect any solution for self-
adaptation, particularly, if they all use the same technique to resolve these dependen-
cies.

Violation of assumption (A6) can potentially reduce the scalability of Venus because it
entails a more costly pattern-matching process. Finally, a violation of assumptions (A1)
and (A5) will not have any impact on the scalability of the adaptation; as discussed
in Section 4.4.4, the violation of assumption (A1) does not hold for the case of self-
healing systems in general and for rule-based, self-optimizing systems. The violation of
assumption (A5) indicates the need to extend the context for the adaptation rules which
happens at design time and does not impact the runtime scalability of the adaptation
solutions.

7.6 threats to validity

Internal validity. Threats to internal validity concern how we performed the experi-
ments and interpreted the results [429]. To address such threats, we systematically inves-
tigated the alternative approaches in a comparative study by using the controlled sim-
ulation environment for the application examples, i.e., mRUBiS [414] and Znn.com [90].
We conducted controlled experiments by keeping all the experimental parameters con-
stant except for the self-adaptation solution and the traces used as inputs for the ap-
plication example. We controlled the parameter values to isolate the effects of the self-

7.6 threats to validity 165

adaptation solution on the quality objective of interest, i.e., performance, scalability,
optimality, and robustness.

This chapter served two main goals; (i) studying the effect of the incremental ex-
ecution of the adaptation engine on the adaptation performance; (ii) evaluating the
impact of different planning mechanisms on the scalability and the reward of the adap-
tation. To study the effects of incrementality, the baseline, non-incremental solution
shared the same implementation setting and used the same architectural RTM and
pattern-matching tool as the incremental alternatives, the only difference was how the
approaches captured the changes of the RTM and processed it. To focus on the effects
of planning, the three compared self-adaptation approaches shared the identical mon-
itoring, analysis, and execution phases of the MAPE-K feedback loop and they used
the same architectural RTM and utility function. To guarantee a fair comparison of the
approaches and to take variations of the measured execution times into account, the
experiments followed our evaluation methodology and are driven by the input traces,
constructed from the failure profile models or real world traces, that enable replicat-
ing a simulation for the different approaches and over multiple runs. Thus, we used
various failure profile models and traces to investigate the effects of the incrementality
and planning mechanisms on the scalability and the reward. For instance, to investigate
scalability in the experiments with mRUBiS, we focused on increasing the failure group
size (FGS), the rate of the injected issues through the traces, and the size of the system
architecture.

We conducted multiple experiments with two different application examples that
aimed at either qualitative assessment or quantitative evaluation of scalability and re-
ward. The experiments considered single or multiple MAPE-K runs and satisfied either
all or only a subset of the assumptions so that the results and their interpretation were
always focused to concrete questions without confounding different effects and aspects
of our overall evaluation. Finally, we followed the benchmark guidelines proposed by
[378] in all experiments to obtain trustworthy measurements and results.
External validity. Threats to external validity may restrict the generalization of our
evaluation results outside the scope of our experiments [429]. Such threats are the par-
ticularities of the two systems under adaptation, the specifications of the input traces,
the choices of the utility functions, and the choice of the alternative self-adaptation
approaches. To mitigate these threats, we used mRUBiS and Znn.com as the system
under adaptation that allow the injection of generic architectural failures and the re-
pair of these failures by generic architectural adaptation rules. We can consider both
application examples as generic and representative exemplars for architecture-based
self-adaptation. To characterize how the performance issues occur and propagate in
practice, besides the synthetic and the deterministic traces, we especially used realis-
tic ones as well as the probabilistic failure profile models that stem from real-world
systems [17, 155]. We also extended these realistic models to cover edge cases such as
single, isolated failures or large failure bursts with up to about 450 failures (mRUBiS) or
10K requests (Znn.com). Thus, our evaluation results hold for real-world failure behavior
(mRUBiS) and user web access behavior (Znn.com).

The threat of using a specific utility function is negligible in our opinion since the
same function is used for all alternative self-adaptation approaches in the study. Thus,
the utility function does not cause any effect that differs between the approaches, which
could otherwise influence the results; hence, we expect similar results with any other
utility function. We compared Venus to two other self-adaptation approaches and one

166 evaluation of venus

baseline solution in our experiments; consequently, while the relative results cannot
be generalized to other approaches, the alternative solutions in the comparative study
cover the edge cases in the solution space of self-adaptation: Static scales very well but
often achieves non-optimal rewards while Solver typically achieves optimal rewards but
does not scale due to the costly solving of the optimization problem. Batch precludes
incremental execution of the adaptation and serves as a baseline to shed light on the
impact of the incremental adaptation; nonetheless, considering these edge cases, we can
conclude that Venus is both scalable and optimal in creating plans for self-adaptation.

Finally, a major threat to external validity is the use of simulated systems instead of
real systems. Our SLR of the state-of-the-art on evaluating self-healing systems in [176,
177] revealed that simulation is the only means to evaluate the performance and reward
of self-healing systems. Additionally, based on the conducted SLR, in this thesis, we
employed an evaluation methodology to advance the state-of-the-art in the evaluation
of self-healing systems—see Section 6.3. In this context, we can categorize the state-of-
the-art in the self-healing systems as work that relies on simulation and does not use
input (failure) traces at all4, or work that rely on simulation and use input (failure)
traces, although these traces are not (based on) real-world traces5. Thus, we can, at
first, conclude that simulation is the common practice in the literature to evaluate self-
healing systems, which confirms the general finding for self-adaptive systems by Weyns
et al. [426]. Secondly, our SLR indicates the lack of appropriate methods to evaluate self-
healing systems because to the best of our knowledge and effort we did not find any
approach with performance claims that provides a complete failure profile either as
representative real-world test traces or models for occurrences of failures—see [177].
This distinguishes this thesis from the current state-of-the-art, in the sense that we used
realistic failure profile models for occurrences of failures and real world input traces.
This allows us to systematically and extensively evaluate our approach using real-world
data. Thus, our comparative study goes beyond the state-of-the-art in evaluation for self-
healing and self-adaptive systems.
Construct validity. Threats to construct validity comprise situations where the used
metrics do not measure the construct, i.e., the concept [429]. The major threats to con-
struct validity are the correctness of the simulation environment, our implementation of
the alternative self-adaptation approaches, our adaptation of the realistic input traces,
and our construction of the input traces from these models. To address these threats,
we use mRUBiS and Znn.com as our simulation environments that have been accepted
as the two most well known exemplars by the research community on self-adaptive
software and that have been extensively tested by students in the scope of our courses
and lectures on self-adaptive software. Moreover, the implementations of all the self-
adaptation approaches have been tested with both mRUBiS and Znn.com simulators
while the adapted input traces and the traces constructed from the failure profile mod-
els have been double-checked by the fellow colleagues during scientific collaborations
leading to publications.
Statistical conclusion validity. Threats to conclusion validity are factors that may lead
to drawing incorrect conclusion about a relationship in the observations made during
an experiment. In order to mitigate such threats, we employed a large set of realistic and

4 Examples of such work are [69, 123, 205, 316, 350, 366, 370].
5 Such approaches either use observed and manually adjusted failure traces, e.g., [165, 197, 224], probabilistic

or simple random failure traces, e.g., [7, 80, 337], or deterministic failure traces, e.g., [11, 75, 76, 116, 193,
203, 295, 334] .

7.7 summary 167

probabilistic input traces with diverse characteristics to reduce bias in the observed out-
come. During the comparative studies, the alternative solutions have been implemented
according to the same implementation guidelines; the experiments were executed un-
der identical, controlled, and reproducible conditions; the reported results were average
of relatively adequate number of executions.

7.7 summary

In this chapter, Venus was evaluated with respect to the quality attributes of perfor-
mance, scalability, optimality, and robustness. The evaluation included qualitative and
subjective assessments of the quality attributes while we provided quantitative data,
obtained based on rigorous evaluation of Venus. The experiments were based on an
evaluation methodology and provided coverage of a wide spectrum of the input space
for self-healing systems. We conducted a sensitivity analysis of the results in this chapter
by investigating Venus over a spectrum of architecture sizes, input traces, and alterna-
tive solutions in comparative studies. To assess the generalizability of the results, large
variety of the input traces along with two different application examples were used. The
results confirmed that Venus consistently showed scalability, cost-efficiency (timeliness),
and optimality during multiple reproducible simulation scenarios. These observations
provide the supporting evidence for robustness of Venus as a solution for software self-
adaptation. The timeliness, scalability, and utility of Venus are demonstrated to remain
robust during multiple simulated experiments whereby the self-adaptive software was
bombarded with realistic and extreme inputs. The robustness of Venus was also demon-
strated through executing it outside its intended operation condition, i.e., when certain
validity assumptions were violated.

In the context of Venus, this chapter provided supporting empirical evidence for the
following contributions stated in Section 1.4:

C1 Incremental execution of the adaptation loop, thus attaining scalability

C5 An optimal solution for self-adaptation with negligible runtime overhead

C6 A robust solution

C8 Coverage of a wide spectrum of self-adaptation problem space beyond the state-
of-the-art

7.7.1 Fulfillment of Requirements

Based on the overall discussion and evaluation of Venus, we now summarize its capabil-
ities by discussing its coverage of the requirements for architecture-based self-adaptive
software presented in Chapter 1—see Table 1.1.

We investigated the optimality of Venus in terms of objective satisfaction captured
by its utility function. In effect, we showed that, similar to an optimization-based solu-
tion that uses a constraint solver for planning, Venus adapts the system to the optimal
configuration in terms of final system utility and in the meantime, maximizes the ac-
cumulated utility, i.e., reward, thus fulfills R1. R1 indicates that the solution satisfies
system quality objectives at a desirable level.

168 evaluation of venus

We showed that, in comparisons to a pure deterministic, rule-based adaptation policy
that employs design-time preferences with no runtime overhead, planning with Venus

adds only negligible runtime overhead. The response time and utility of the adaptation
were shown to be insensitive to the increase in the size of the architecture. The timeli-
ness of Venus was demonstrated to be affected only linearly (quadratically in the worst
case) versus exponential growth of the number of the adaptation issues. Additionally,
via a comparative study with a baseline solution that uses the same implementation
setting as Venus, but executes the adaptation in a state-based manner, we investigated
the impact of incremental execution of the adaptation engine that integrates Venus. Our
solution for event-based detection and processing of the adaptation issues, incremental
utility-change computation and planning, and finally, incremental execution of the rules
constitute an adaptation engine that is amenable to incremental execution. The quanti-
tative evaluation in this chapter showed improvements of the runtime performance and
scalability of any adaptation mechanism that is integrated in the proposed adaptation en-
gine. The results confirm that Static, Solver, and Venus, independent of their planning
policy, have significantly lower execution times in comparison to a non-incremental,
state-based solution. Therefore, Venus fulfills R2 and R3 that indicate the solution is
cost-effective and scalable, respectively.

Venus pursues a utility-driven, rule-based scheme to plan the adaptations. Using util-
ity functions to steer the adaptation provides for balancing the quality-cost trade-offs
by Venus at runtime. In this chapter, we showed that the proposed scheme maximizes
the reward of the adaptable software while significantly reducing the operation cost
in terms of planning time. Additionally, being embedded in the proposed adaptation
engine, which is executed incrementally, further reduces the execution cost of Venus.
Consequently, we have shown in this chapter that Venus explicitly captures and opti-
mizes the quality-cost trade-off, thus fulfills R4.

8
L E A R N I N G U T I L I T Y- C H A N G E P R E D I C T I O N M O D E L S :
A P P L I C AT I O N A N D E VA L U AT I O N

In this chapter, using mRUBiS application example, we first present an instantiation of
the proposed methodology in Section 3.3.3 to learn prediction models for utility-change
in self-adaptive systems. We elaborate on the steps to design and execute, respectively
simulate, the adaptable system to collect data for machine learning and elaborate on the
process of learning the prediction models in Section 8.1. More specifically, we answer
the following question via investigating the prediction models with respect to their
prediction error and runtime effort:

Q 8.1 Is it possible to systematically learn a prediction model for the utility-changes in a utility-
driven, rule-based, self-adaptive system (particularly when the detailed knowledge of the system
is not available)?

Next, in Section 8.2, we provide a quantitative evaluation of the prediction model per-
formance with respect to the reward during adaptation. Finally, we study the similarity
metrics and their accuracy in steering the choice of best performing prediction models
before executing the models on a running system and discuss the threats to the validity
of the results. We evaluate the methodology in Section 8.2 concerning the following two
questions:

Q 8.2 Do the prediction models lead to a system performance that approximates an analytically-
defined optimum (real loss lower than 10%), considering that different arbitrary bounds could
be chosen to trade between model accuracy and model runtime effort?

Q 8.3 Can the suggested methodology properly select the best prediction model without requir-
ing the models to be deployed on a real system?

Finally, we summarize the chapter and discuss the fulfillment of the requirements in Sec-
tion 8.3.

8.1 application

In Section 3.3.3, we presented a methodology to train prediction model Û∗∆(˜̄c, ˜̄o,a) that
properly approximates the utility-change function Û∆(c̄, ō,a)—see Figure 3.9 for an
overview of the steps of the methodology. In the following, we use the mRUBiS applica-
tion example to elaborate how each step of the methodology is applied to an exemplary
self-adaptive software system.

8.1.1 Step 1: Data Generation

We equipped mRUBiS with both self-healing and self-optimizing capabilities as de-
scribed in Section 6.1.1. The implementation of the adaptable software replicates the

169

170 learning utility-change prediction models : application and evaluation

Table 8.1: Failure traces used for steps of methodology.

FGS IAT(s) Used in

Grid5000 LOGN(1.88, 1.25) LOGN(−1.39, 1.03) Step 1- 3

LRI LOGN(1.32, 0.77) LOGN(−1.46, 1.28) Step 4

DEUG LOGN(2.15, 0.70) LOGN(−2.28, 1.35) Evaluation

implementation setting presented in Section 7.1. To generate data for machine learning,
a failure trace based on Grid5000 failure model is used—see Table 6.3. We use different
failure traces, i.e., LRI and DEUG, for different steps of the methodology; this is impor-
tant to guarantee independent outcomes among the steps of model building (step 1-3
in Figure 3.9), model selection (step 4 in Figure 3.9) and model evaluation. Table 8.1
shows where we use each failure trace. For convenience, Table 8.1 contains the Inter
arrival time (IAT) and failure group size (FGS) distributions of each model originally
presented in Table 6.3. To have a good coverage of the configuration space, we equally
inject the failures to components and connectors in mRUBiS.

Each failure causes a drop in the utility. The random adaptation engine randomly
assigns each reached configuration and observation to an applicable adaptation rule r.
Applying an adaptation rule resolves the corresponding failure and increases the utility.
The overall utility for an instantiation of the mRUBiS architecture is the sum of the
utility of the tenants. The utility of a tenant is the sum of the utility of its constituting
components. The utility-changes are observed via measurable quality attributes that we
can measure (observe) independent of the model S(c̄, ō)—see Section 3.3.3.1.

During data generation, we execute the adaptable system, i.e., mRUBiS with 100

tenants, together with a randomly operating adaptation engine on top. We use Grid5000
model to generate an input trace for the simulator. In our implementation architecture—
see Figure 7.1—instead of Venus, we employ a random adaptation solution where as-
signment of issues to the applicable rules is random, in contrast to Venus that decides
based on the utilityIncrease and costs of the rules.

Four different variants of mRUBiS with four different utility functions are employed.
Table 8.2 summarizes the employed variants of mRUBiS and the descriptions of the
utility function Û encoded in each variant. The mathematical formulas of the utility
functions Û are detailed in Table 3.2. These functions are only employed on mRUBiS as
a black-box model to provide the feedback for machine learning—see [361]. The details
of the Û functions, providing the utility-changes, are hidden to the machine learning
method. Finally, we generate the data by executing each variant of mRUBiS with a

Table 8.2: Variants of mRUBiS.

mRUBiS Variant Description of the Encoded Û

Linear Û only includes linear elements.
Saturating There are saturation effects considered in Û.
Discontinuous Û includes discontinuous but linear steps.
Combined Û combines all three cases above.

8.1 application 171

10
.8

5.
6

3.
1

8.
1

4.
9

2.
64.

7

3.
7

1.
6

0

5

10

15

RF GBM XGB
M

AD
P

(%
)

Prediction Model

1K
3K
9K

Figure 8.1: MADP for Combined utility function across prediction models trained with all
dataset sizes.

sample configuration and observation along with the selected rule r and the utility-
change.

8.1.2 Iterate Step 2, 3, and 1: Training, Validating, and Preparing

This section answers Q8.1 for a spectrum of utility function complexities, machine learn-
ing methods, and dataset sizes, i.e., providing sensitivity analysis of the results. Table 3.2
and Table 8.2 present the different utility functions that are considered for mRUBiS.
The machine learning methods are Random Forest (RF) [55], Gradient Boosting Models
(GBM) [153], and Extreme Gradient Boosting Trees (XGB or XGBoost) [86]—see Sec-
tion 3.3.3.2. We used 1K, 3K, and 9K data points as different data set sizes. All the
datasets are publicly available [see 174]. We saved 30% of each of the datasets for valida-
tion and used the remaining 70% for training and testing, i.e., 10-fold cross-validation—
see Section 3.3.1.

We enable model validation by enforcing a usual data splits between training and
validation. The split with lowest error corresponded to 70% for training/testing and
30% for validation. We also investigated data splits of 80/20 and 90/10, which did not
show better results for the larger datasets—see Appendix B. The prediction models are
trained and validated using 10-fold cross-validation over a range of hyper-parameter
values. Among different prediction models, we choose the ones with the smallest Root
Mean Square Error (RMSE). The hyper-parameters that presented larger impact on RMSE
were the number of trees, the number of elements on the leaf nodes, and the maximum
depth of the tree—See Appendix B for a detailed results of this tuning process.

To validate the prediction models, we compute the error between the actual and the
predicted utility based on Equation 3.16. This error is further normalized, as MADP
(see Equation 3.16), to be compared across different datasets. MADP is minimized by
allowing the decision trees to select all the available input features. This is accomplished
by tuning various hyper-parameters such as number of nodes in the leaves and maxi-
mum depth of trees. This is confirmed in the models exported to predictive model markup
language (pmml) format1.

The validation results for the Combined variant across the three prediction models,
named after the learning method used to train them, show that larger dataset sizes cor-
respond to lower MADP values—see Figure 8.1. The same pattern is observed for the

1 http://dmg.org/pmml/v4-0-1/GeneralStructure.html– accessed 18 March 2023.

http://dmg.org/pmml/v4-0-1/GeneralStructure.html

172 learning utility-change prediction models : application and evaluation

0.
06

1.
78 1.
96

4.
66

0.
58 1.

00

2.
94 3.
27

0.
02 0.

47 0.
91 1.

57

0

2

4

6

Linear Saturating Discontinuous Combined

M
AD

P
(%

)

Utility Function

RF

GBM

XGB

Figure 8.2: MADP across utility functions and prediction models trained with 9K datasets.

other three utility functions, i.e., Linear, Saturating, and Discontinuous. This suggests
that we can optimize for accuracy by adopting the larger dataset 9K. We also investi-
gated larger datasets, i.e., 10K, 100K, but the prediction error saturated after 10K data
points.

Results in Figure 8.2 show that all three prediction models present increasing MADP
as the complexity of the utility function increases. Except for the Discontinuous variant,
GBM and RF models exhibit MADP values that are less than 0.5% different. The MADP
value for the XGB is twice to three times smaller than the ones from the GBM and RF.
This suggests that the XGB model would probably perform better when deployed on
the running system. However, it is not clear whether GBM or RF would perform better
for all the utility functions.

To check the runtime effort of the prediction models, discussed in Section 3.3.3.6, we
used 9K datasets for training. While automatic feature selection and hyper-parameter
tuning allowed us to minimize prediction error, it increases the size of the decision trees,
i.e., the running effort. Therefore, we tuned the trees to keep runtime effort within
one order of magnitude of each other. Take for instance the RF model that has the
highest prediction error; we further minimized MADP for this model, henceforth RF-
Heavy model, by respectively reducing the minimal number of elements in the leaves,
from 10 to 5, and increasing the number of trees from 100 to 200. As a result, the RF-
Heavy model presented a reduction in MADP from 4.66% to 4.09% for the Combined
variant, but the runtime effort increased in more than two orders of magnitude (from
67, 065µs to 8, 723, 761µs). Hence, the model with slightly larger MADP is chose. This is
performed for all the other models—see the results in Figure 8.3. The choice of learning

62 54
.3

61
.2

67
.1

57
5

57
7

69
3.

1

70
6

4.
32 5.

82

5.
33 6.
22

1

10

100

1000

Linear Saturating Discontinuous Combined

Ti
m

e
(m

s)

Utility Function

RF
GBM
XGB

Figure 8.3: Runtime effort across utility functions in logarithmic scale (9K dataset is used).

8.1 application 173

0.
92

0.
53

0.
80

0.
57

0.
19

0.
56 0.

75

0.
670.

76

0.
64 0.
73

0.
52

0

0.5

1

Linear Saturating Discontinuous Combined

Ja
cc

ar
d

Co
ef

fic
ie

nt

Utility Function

1.
00

0.
97

0.
99

0.
97

0.
83 0.

97

0.
99

0.
98

0.
98 0.
98

0.
98

0.
97

0

0.5

1

Linear Saturating Discontinuous CombinedKe
nd

al
l-t

au
 C

oe
ffi

ci
en

t

RF
GBM
XGB

0.
96

0.
73 0.

89

0.
77

0.
54

0.
78 0.

86

0.
780.

88

0.
82

0.
82

0.
71

0

0.5

1

Linear Saturating Discontinuous Combined

DC
G

Co
ef

fic
ie

nt

Figure 8.4: Similarity aggregation values for optimal and predicted decisions produced by se-
lected prediction models.

method has a larger impact on runtime effort than the choice of utility function. Since
distinct utility complexities imply different sets of features, one possible explanation for
the results in Figure 8.3 is that, the number of features has a smaller impact on model
size than the hyper-parameter tuning.

Answering Q8.1: We confirmed that (i) larger dataset sizes provide lower MADP
values for all prediction models and (ii) prediction models can be tuned to minimize
prediction error and runtime effort.

8.1.3 Step 4: Select Prediction Model

In this section, we select the prediction models based on their produced adaptation
decisions as outlined in Section 3.3.3.7. We select the models based on the similarities
between the optimal and the predicted list. The predicted lists are produced by executing the
prediction models on the mRUBiS variants with 50 adaptation cycles, i.e., 50 MAPE-K
loop executions, sampled from the LRI failure trace—see Table 8.1 for description of the
trace. For each predicted list, we did the following steps to generate the corresponding
optimal list: (1) inject the exact samples of LRI trace to mRUBiS and observe the utility-
changes, i.e., Û∆, (2) manually order the list in a descending manner regarding the
utility-changes.

174 learning utility-change prediction models : application and evaluation

Table 8.3: SAM values for prediction models based on 9K data set.

Variant/Prediction Model RF GBM XGB Selected Model

Linear 0.959 0.521 0.871 RF
Saturating 0.742 0.770 0.812 XGB
Discontinuous 0.891 0.864 0.842 RF
Combined 0.809 0.812 0.731 GBM

The similarity measures, shown in Figure 8.4, present three distinct patterns: propor-
tionate low values for GBM-Linear function, less discriminative values for Kendall-tau,
and the same relative values for the DCG and Jaccard metrics. The lower values for
GBM-Linear utility can be explained by the large difference in MADP between GBM
versus RF and XGB models—see Figure 8.2. GBM model has MADP respectively from
10 to 30 times larger than of the RF and XGB models. This shows that a prediction error
considered small, i.e., 0.58%, can still have a large impact on the quality of the adap-
tation decisions. The reason of this large impact is the simplicity of the Linear utility
function, which produces utility-change values with a lower variance if compared to
the more complex functions. Hence, even small errors are sufficient to alter the order of
the adaptation decisions. This might suggest a surprising trade-off. While simpler utili-
ties are easier to learn, i.e., small prediction error, the adaptation mechanisms deployed
with these simpler utilities are orders of magnitude more sensitive to error variance in
these models.

Kendall-tau values do not discriminate the prediction models as well as the DCG and
Jaccard metrics. Except for the Linear utility, for all the other utility functions, the simi-
larity differences for Kendall-tau are close to 1%—see Figure 8.4. Conversely, the DCG
and Jaccard values range from at least 2% to 15%. Although these differences are not the
same, DCG and Jaccard rank the prediction models in the same way. Ultimately, com-
puting the similarity aggregation metric (SAM) values according to Equation 3.20 across
all models, with wi = 1, allows identifying the best performing prediction model—see
highlighted cells in Table 8.3.

8.2 evaluation

We evaluate the quality of the results to answer the two remaining questions Q8.2 and
Q8.3. The quality is relative to an optimal and a baseline benchmark. We report on the
accuracy of the criteria used for model selection. To guarantee a fair comparison, we
detail the data and system evaluation setup.

8.2.1 Ground Truth and Experiment Design

The existence of the ground truth, i.e., an optimal steering strategy, is usually not fea-
sible for systems that come with a black-box performance model [383]. Conversely, in
experiments with a simulator, instead of a real system, we have the benefit of accessing
all the configurations and the possibility of undoing rule executions.

8.2 evaluation 175

Comparison: A simulator at first enables us to deploy multiple prediction models un-
der the same conditions and therefore, compare their performance in a fair manner.
Secondly, in a simulator, we can observe the utility-changes that result from applying a
rule and undoing the application step, i.e., acquiring the ground truth. This allows us
to determine the best and the worst rule application and emulate accordingly the best
possible strategy (Optimal) as well as the worst possible one (Baseline). Overall, we thus
can consider for the comparison, the Baseline, the Optimal strategy, and the considered
prediction models RF, GBM, and XGB. To facilitate model comparison, we normalize
the reward values between zero and one as follows:

Normalized Reward (mod) =
Reward (mod) − Reward (Baseline)

Reward (Optimal) − Reward (Baseline)
(8.1)

Experiment Design: The ground truth is generated by running four simulations of
mRUBiS (100 tenants each), i.e., one simulation for each variant in Table 8.22. With the
same setup, we also determine the optimal strategy (Optimal) and the baseline (Baseline)
that will serve as benchmark to evaluate the prediction models built and selected by the
methodology. To mitigate bias in the evaluation, we inject the simulator variants with
a real world failure trace DEUG that was not used in the steps 1-4. For each variant,
we inject 50 bursts of failures that result in 50 executions of the MAPE-K loop. The
number of the failures at each burst, i.e., the FGS, and the IAT follow the distributions
in Table 8.1.
Variants: Table 8.2 describes the encoded utility function Û in each mRUBiS variant
and the details of each function can be found in Table 3.2. Note that the functions in
Table 3.2 only presents the relevant fragment of Û for each utility-change Û∆ to be
estimated by the prediction models.
Linear variant: We equip one of the mRUBiS simulators with a linear function with
feature interaction [153], i.e., a polynomial of degree one.
Saturating variant: This variant of mRUBiS uses the Saturating utility function from Ta-
ble 3.2 that extends the Linear variant by introducing the quality attribute performance to
the formula.
Discontinuous variant: The Discontinuous variant conforms to the definition of the Dis-
continuous utility function for mRUBiS in Table 3.2 that includes disconnected intervals
in the utility function.
Combined variant: Finally, we construct the fourth variant of mRUBiS with the Combined
utility function that is a combination of the three formerly employed utility functions,
thus the most complex variant. See Section 3.2.3 for more details on constructing utility
functions for mRUBiS.

8.2.2 Evaluating Prediction Model Performance - Q8.2

To evaluate prediction model performance, we measure the normalized reward of the
adaptations applied to the simulator variants and the runtime effort of the models. The
normalized reward is calculated according to Equation 8.1 for two scalability scenarios:
different datasets sizes and mRUBiS architectures sizes. Prediction models trained with
larger dataset sizes acquire larger values of normalized reward. Figure 8.5 shows results

2 The experiments have been conducted on a machine with OS X 10.13, Intell processor 2.6 GHz core i5, and
8 GB of memory.

176 learning utility-change prediction models : application and evaluation

0.
90

1

0.
95

6

0.
93

8

0.
92

5

0.
98

2

0.
97

0

0.
94

5

0.
99

1

0.
98

7

1 1 1

0

0.25

0.5

0.75

1

RF GBM XGBN
or

m
al

ize
d

Re
w

ar
d

(C
om

bi
ne

d
Va

ria
nt

)

Prediction Models

1K

3K

9K

Optimal

Figure 8.5: Normalized reward across prediction models for Combined variant computed with
DEUG trace.

for the Combined variant. The same pattern is observed for the other three prediction
models across all four variants—see Appendix B for the additional charts. The results
in Figure 8.5 confirm our earlier finding for the prediction error, presented in Figure 8.1;
the results also suggest that selecting the larger datasets, i.e., 9K, is a correct decision.
The maximum reward loss of the 9K models compared to the optimal reward in Fig-
ure 8.5 is 5.5% and belongs to the RF model in the Combined variant (Normalized
reward = 0.945).The reward loss in the other variants is below 5.5%—see the charts for
Linear, Saturating, and Discontinuous variants in Appendix B.

As the architecture size grows, the normalized reward does not vary above 10%—
see Table 8.4 for normalized reward of XGB with the 9K dataset for different sizes of
architecture; similar patterns are observed for the RF and GBM models for dataset size
9K. To show this, we deployed the prediction models on mRUBiS simulators with dif-
ferent architecture sizes, i.e., 100, 500, and 1000 tenants. In addition to the DEUG trace,
we injected the simulator variants with LRI trace. These results confirmed that the per-
formance of the prediction models scales with architecture size. This also might suggest
that we could transfer prediction models learned in smaller architectures to larger ones.
This of course would require that the range of configuration and observation attributes,
i.e., features, remain the same across architecture sizes.

The runtime effort scaled for the prediction models across all simulator variants. We
evaluated this by measuring 20, 000 executions of each prediction model in each simu-
lator variant. The standard deviations of the outcome of each of these executions were
below 0.5%. This confirms that the findings presented in Figure 8.3 are accurate.

Answering Q8.2: For the final prediction models trained with 9K datasets, the worst
reward loss compared to an analytically defined optimum was 5.5%, i.e., a considerably
smaller error than the 10% error bound.

Table 8.4: Normalized reward of XGB-9K for different architecture sizes across variants.

DEUG Failure Trace LRI Failure Trace
Tenant Linear Saturating Discontinuous Combined Linear Saturating Discontinuous Combined

100 0.998 0.996 0.990 0.987 0.997 0.996 0.992 0.990
500 0.997 0.997 0.990 0.987 0.997 0.996 0.992 0.991
1000 0.997 0.995 0.989 0.986 0.997 0.996 0.991 0.990

8.2 evaluation 177

0.
76

4

0.
71

8

0.
76

8

0.
75

00.
99

8

0.
95

6

0.
99

7

0.
94

5

0.
96

1

0.
99

5

0.
98

7

0.
99

1

0.
99

8

0.
99

6

0.
99

0.
98

7

1 1 1 1

0

0.25

0.5

0.75

1

Linear Saturating Discontinuous Combined

N
or

m
al

ize
d

Re
w

ar
d

Variants

RF-Heavy
RF
GBM
XGB
Optimal

x x x x

Figure 8.6: Normalized reward across prediction models (9K dataset is used).

8.2.3 Evaluating Prediction Model Selection - Q8.3

Figure 8.6 shows that prediction models with higher similarity metric values also obtain
larger normalized reward. The prediction models that are selected based on the SAM
values are marked with an “X”—see Table 8.3 for the SAM values. Comparing the
normalized reward across all models in Figure 8.6, we can confirm that the similarity
metrics lead to the choice of best performing models within each variant, i.e., largest
normalized rewards. Moreover, although the RF-Heavy model has better prediction
error (MADP) than the other RF model, the RF-Heavy model presents more than 10%
loss in reward across all variants (see Figure 8.6). This confirms that during model
tuning (step 1.2) and validation (step 3), it is sensible to trade slightly higher error rate
for a smaller runtime effort.

Another observation is that the prediction model with the smallest runtime effort,
i.e., XGB (see Figure 8.3), does not achieve the highest normalized reward according to
the results in Figure 8.6. One possible explanation could be the effect of the different fail-
ure trace distributions. The average IAT between the groups of failures in DEUG trace,
i.e., the idle time window to execute self-adaptation, is 1, 543.26 sec—see Table 8.1. To
execute an adaptation that resolves all the failures injected in one cycle, the slowest pre-
diction model, i.e., GBM model for the Combined variant in Figure 8.3, takes on average
38.18 sec; this means that, even for the slowest model, the overhead for each adaptation
is on average 38.18 sec. Therefore, given the IAT of 1, 543.26 sec, this overhead does not
have a long lasting impact on the reward. However, the impact of the overhead can be
different in the presence of failure traces with different distributions.

Answering Q8.3: The best performing prediction models according to the results
shown in Figure 8.6 are the same as the ones suggested by the SAM in Table 8.3. The se-
lected models presented reward loss of less than 1% relative to the optimal reward. This
confirms that our methodology, in (step-4), properly selects the best prediction models.
Moreover, each of the lower performing models are correctly ranked, since they present
the same ranking positions by SAM values in Table 8.3 as by normalized reward in Fig-
ure 8.6. This is possible because during the model tuning iterations, that is, steps 2, 3,
and 1, the prediction models that could have potentially outperformed the alternatives
were not discarded—see Section 8.1.2.

178 learning utility-change prediction models : application and evaluation

8.2.4 Threats to Validity

Internal validity. The similarity metrics that we considered for answering Q8.3 can be
overly optimistic in the way that they are insensitive to the ranking of the components
with the same utility-change, because we do not count as a mismatch the cases of
components with the same utility-change, i.e., same ranking position. However, the case
of repeated utility-change happened only for the Linear varinat of the utility function,
which already presented low prediction errors. Using different similarity metrics or
considering component types in addition to the utility-change value could mitigate this
threat.
External validity. While our evaluation includes sensitivity analysis of the experiment
outcomes, generalization of the results beyond the scope of this thesis is the main threat
to external validity. Four factors hinder the generalization of our findings: considered
utility models, size/quality of the employed input traces, the specification of the compo-
nents/tenants, and the available adaptation rules. For a different setup of these factors,
the current prediction errors might be unacceptable (even when small). This might
happen in the case that adaptation decisions must present variances in utility that are
smaller than the prediction errors. Applying the prediction models to different systems
with different architecture styles can mitigate this threat.
Construct validity. The main threat to construct validity is the correctness of the im-
plementation of the mRUBiS simulator. Errors in the mRUBiS simulator with respect
to computing the utility of the architecture might lead to wrong measurements of the
utility-change as the ground truth, thus affecting the predictions. The simulator is a
exemplar from the Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS) community that is publicly available [414] and we have several past
experiences with mRUBiS from earlier work [175, 180, 181]. Slight error in calculating
the distance by the employed similarity metrics might result in completely different
rankings and affect the ordering of the rules. The distance metrics might not always
reflect the ranking errors. For instance, if each utility prediction, instead of an absolute
value, is a probability distribution, we would need a different metric that takes into
account the uncertainty of the utility while ranking.
Statistical conclusion validity Slightly different input traces can cause completely dif-
ferent adaptation outcomes. Therefore, we carefully generated and tested failure traces
to be Independent and Identically Distributed (IID) across the different ranges of dataset
sizes and utility functions. This involved testing the generated traces to detect inconsis-
tent output from the simulator, e.g., zero utility values. Inconsistencies are part of the
inherent randomness of a simulation of a real system. Another threat was the implicit
assumption that the data was IID while we did not make a parametric assumption,
e.g., normality or heteroskedasticity. This threat is mitigated by the fact that the em-
ployed simulator is memory-less across the execution rounds and the traces are injected
independently and uniformly across the architecture.

8.3 summary

This chapter presented an application followed by a quantitative evaluation of our pro-
posed methodology to train and select prediction models for utility-change in rule-
based, self-adaptive systems. We investigated if it is possible to learn instead of con-

8.3 summary 179

structing the system utility that steers rule-based adaptation in self-adaptive systems
with dynamic architectures. Our approach presented in Section 3.3 was to design a
methodology that extends the standard machine learning process. The results in this
chapter were promising and can be summarized in the answers to three questions:

Q8.1: Is it possible to systematically learn a prediction model for the utility-changes in a
utility-driven, rule-based, self-adaptive system (particularly when the detailed knowledge of the
system is not available)? it was possible to systematically learn a prediction model for the
utility-changes even when the detailed knowledge of the system was not available.

Q8.2: Do the prediction models lead to a system performance that approximates an analytically-
defined optimum (real loss lower than 10%), considering that different arbitrary bounds could
be chosen to trade between model accuracy and model runtime effort? the obtained predic-
tion models led to a performance that was equivalent to the optimal. The maximal loss
of performance compared with the optimal solution was 5.5%, which is considerably
lower than the 10% upper-bound used as a stopping criterion in our methodology. This
suggests that it might still be possible to obtain good performing models by accept-
ing models with prediction errors larger than 10%. We also showed that the prediction
models scaled for larger architectures and over multiple adaptation cycles.

Q8.3: Can the suggested methodology properly select the best prediction model without re-
quiring the models to be deployed on a real system? our methodology always selected the
prediction model with the best performance. Moreover, even without the information
about the final system performance, our methodology was able to correctly rank all
alternative prediction models.

While our evaluation in this chapter was limited to one architecture, we offered a
general methodology and evaluated it with real failure traces under different scalability
scenarios. The evaluation in this chapter was based on our evaluation guidelines pre-
sented in Section 6.3. We conducted a sensitivity analysis of our results by investigating
the methodology over a spectrum of utility function complexities, machine learning
methods, and dataset sizes. Finally, this chapter provided supporting empirical evi-
dence for the following contributions of the thesis mentioned in Section 1.4:

C3 Training utility-change prediction models for rule-based self-adaptive software

C8 Coverage of a wide spectrum of self-adaptation problem space beyond the state-
of-the-art

8.3.1 Fulfillment of Requirements

Based on the overall discussion and the answer provided for Q8.1 in this chapter, we
showed that it was possible to systematically learn a prediction model for the utility-
changes in a utility-driven rule-based self-adaptive system, even when the detailed
knowledge of the system was not available. Therefore, this chapter confirmed that our
proposed methodology to train utility-change prediction models for architecture-based
self-adaptive software fulfills requirement R6 in Table 1.1.

9
E VA L U AT I O N O F H Y P E Z O N

This chapter includes the quantitative evaluation of HypeZon, the hybrid solution for
self-adaptation introduced in Chapter 5. We study the effectiveness of the two designs
of HypeZon, i.e., HZi and HZe, in a comparative study with a deterministic hybrid
planner using Znn.com and mRUBiS application examples. Based on the empirical eval-
uation, this chapter aims at answering the following questions:

Q 9.1 how do internal and external designs for meta-self-awareness affect HypeZon?

Q 9.2 how does HypeZon perform in comparison to a deterministic hybrid planner?

Q 9.3 what are the effects of hybrid planning1 on the reward and timeliness of the adaptation?

In Section 9.1, we discuss the instantiation of HypeZon based on our implementation
setup. In Section 9.2, we introduce the alternative solutions for hybrid adaptation. Sec-
tion 9.3 presents the experiments and discusses the results by answering the three ques-
tions. In Section 9.4, we discuss the threats to the validity of the results and finally, Sec-
tion 9.5 summarizes this chapter and discusses the fulfillment of the requirements.

9.1 implementation

HypeZon builds on the Monitor, Analyze, and Execute activities of the incremental
adaptation engine presented in Section 4.3 and offers an alternative solution for the
Plan activity. This way, the incremental calculation of utility-changes as the impact of the
adaptation rules are also available to HypeZon—see Figure 5.1 for a schematic overview.
The implementation of HypeZon is based on the EMF. The deployment of HypeZon on
an adaptable software conforms to the implementation setup presented in Section 7.1.
The difference is that, in the context of HypeZon, the Adaptation Engine in Figure 7.1
is implemented with meta-self-aware properties—see Figure 5.1. Figure 9.1 shows the
deployment of the hybrid planning solutions for evaluation in this chapter. The two
variants of HypeZon, HZe and HZi, are implemented according to Figure 5.6a and
Figure 5.6b respectively. The Awareness-level MAPE activities in both HypeZon variants
that constitute the adaptation loop in Figure 5.6 are in charge of adapting the system
and replicating the same MDE-based scheme as discussed in Section 7.1. Hence, the
activities of the adaptation loop in HypeZon variants they use SDs to analyze, plan,
and execute adaptations on an architectural RTM of the system. The SDs are defined
according to the context, i.e., the adaptable software and the potential adaptation issues.
Thus, apart from the meta-self-aware design of the loops in the HypeZon variants, the
adaptation mechanism in the polices follows the same incremental event-based scheme
as we used to implement Venus and the other incremental alternative self-adaptation
approaches, i.e., Solver and Static in Section 7.2.

1 We use the terms hybrid (self-) adaptation and hybrid planning interchangeably.

181

182 evaluation of hypezon

Architectural
Runtime ModelMetamodel

Input
Trace

Metamodel
(mRUBiS /
Znn.com)

mRUBiS
/

Znn.com

Adaptation
Engine

Utility
Function

Hybrid Solution

Policies

Figure 9.1: Implementation decomposition for evaluation of hybrid solutions.

In the context of HZe, the Meta-awareness-level loop in Figure 5.6a has a purely code-
based implementation in Java, i.e., excluding the SDM tools. The code contains im-
plementation of the hybrid planning algorithm shown in ALGORITHM 5.1–5.3. Upon
each execution interval I, the execution of the code is invoked by the Plan activity in
the awareness-level loop. See Figure 5.8 for the sequence diagram for HZe execution.
In the context of HZi, detailed in Figure 5.6b, the meta-self-aware self-loop and its
corresponding activities that realize ALGORITHM 5.1–5.3 also have a pure code-based
implementation. The meta-self-aware loop in HZi, in contrary to the one in HZe, is real-
ized by code snippets that wrap around the MAPE loop activities at the awareness-level,
consequently, the meta-self-aware loop is invoked for execution at the same frequency
as the adaptation loop runs. See Figure 5.9 for the sequence diagram for HZi execution.

9.2 alternative solutions for hybrid adaptation

We evaluate two different variants of HypeZon in a comparative study against each
other as well as a home-developed deterministic hybrid planner. In the following, we
briefly introduce the deterministic solution and summarize the characteristics of the
three alternative solutions for hybrid planning.

Deterministic Solution. We implemented a deterministic, coordinating hybrid plan-
ner that uses predefined, fixed thresholds on quality attributes of interest, e.g., response
time, as constraints. Violation of the constraints indicates a trigger for policy switch. The
proposed hybrid planner, Chpdtr henceforth, does not support runtime adjustments of
its control parameters and considers look-ahead, planning, and execution horizons with
fixed sizes and, as a result, has smaller planning overhead at runtime. ALGORITHM 9.1
shows a simplified, high-level description of Chpdtr. Chpdtr takes set of available poli-
cies Π and the current response time RTcurr as inputs. Similar to ALGORITHM 5.1, for
a planning problem captured in the planning horizon Φ, Π also includes estimations of
Û and Ĉ for the available policies. Chpdtr also maintains the current response time of the
system, i.e., RTcurr (in contrast to the average response time RTI in ALGORITHM 5.1).
Based on the specific objectives of the system, Chpdtr defines a threshold, namely high,
for RTcurr. Reaching the threshold indicates that RTcurr is higher than the permitted

9.3 evaluation 183

ALGORITHM 9.1 : Chpdtr

1 Require: Π, RTcurr
2 Φ← L // Planning horizon gets all issues in look-ahead horizon

3 π∗ ← null

4 if RTcurr high then // Objective not satisfied

5 π∗ ← πj ∈ Π : j = argmin
j

Ĉ(πj(Φ)) // Policy to minimize cost

6 else
7 π∗ ← πi ∈ Π : i = argmax

i

Û(πi(Φ)) // Policy to maximize utility

8 end
9 List of Actions← π∗(Φ)
10 Return List of Actions

upper bound. Otherwise, RTcurr is within the acceptable range. The threshold is de-
fined at design time, thus is deterministic and not subject to change. If RTcurr is high,
Chpdtr switches to a policy with minimum planning time captured by Ĉ(π(Φ)) (line 5

in ALGORITHM 9.1), otherwise, a more time-intensive policy that has the highest plan
utility Û(π(Φ)) is selected (line 7). Chpdtr is proposed only as an algorithm, thus does
not require any specific architectural modifications to the conventional MAPE-K loop
and is realized during the Plan activity of the adaptation loop.

HypeZon Solutions. We proposed two different designs to realize hybrid planning
with HypeZon in Section 5.3.2, i.e., HZe and HZi. Both variants implement the hybrid
planning with receding horizon control as described in ALGORITHM 5.1-5.3—see Sec-
tion 5.3.3 for details of the inner working of the variants. Table 9.1 summarizes the
characteristics of the alternative solutions for hybrid planning.

9.3 evaluation

In this section, we present a comparative study of the alternative solutions for hybrid
self-adaptation and answer the questions Q9.1–Q9.3. First, we introduce the off–the-
shelf adaptation policies used by the hybrid solutions—see Figure 9.1 for reference;
next, we present the experiment design for the application examples followed by the
quantitative evaluation of the solutions.

Table 9.1: Characteristics of hybrid solutions.

Property of Interest
Solution

Chpdtr HZe HZi

Control parameter tuning Design-time Runtime Runtime
L, Φ, Hn ∞ Adjustable Adjustable
Policy switch criteria Deterministic Dynamic Dynamic
Implementation Algorithmic Architectural design Architectural design
Self-awareness scope NA Global Local
Execution intervals per adaptation cycle Adjustable per adaptation cycle

184 evaluation of hypezon

9.3.1 Policies

The hybrid planners in our experiments coordinate two different off-the-shelf poli-
cies for self-adaptation. As individual policies, we used Static and Solver, introduced
in Section 7.2. We equip the adaptable software, i.e., mRUBiS and Znn.com, with self-
adaptation capabilities using either Static or Solver solutions. The policies conform to
the principals of static and dynamic decision-making, as discussed in Section 2.3.2, re-
spectively. Static uses design time estimations for the expected utility. Therefore, at each
state s, for each applicable rule r, the expected effect on the utility is predetermined.
We have shown in Chapter 7 that this policy is sub-optimal in terms of utility and re-
ward but fast in terms of adaptation time. Regarding Solver, the results in Chapter 7

suggest that while this policy finds the optimal target state at each adaptation step,
it can presents long planning times. Runtime information are used to switch between
Static and Solver. For example, during surges of client traffic in Znn.com where more is-
sues such as latency are likely to occur, employing Static that can provide timely rather
than optimal adaptation plans is beneficial. However, once the traffic surge calms down,
the utilization of the servers can be optimized by switching to Solver—see Section 7.2
for detailed descriptions of Static and Solver. Switching between policies has a cost as
it requires deploying specific settings for the new policy, e.g., initializing a constraint
solver or loading prediction models. The switch from policy πi to πj is charged with
a cost cij that is subtracted from the system utility. The switch from policy Solver to
Static is charged with a cost cslv,stc = 2 and cstc,slv = 200 applies to the switch in the
opposite direction. The considered costs are independent of the runtime conditions and
are defined relatively and based on measurements of the policy deployment time.

9.3.2 Experiment Design

mRUBiS. We discussed in Section 5.1 an exemplary scenario for mRUBiS application
where a single adaptation solution is incommensurate to fulfill system objectives. In
this section, we use mRUBiS with 1000 tenants as one of the application examples for
hybrid planning. For each state s, the utility of the mRUBiS architecture, henceforth
UmRUBiS(s), is the sum of the utility of all its tenants—see Equation 3.2. Similarly, we
define the utility of a tenant as the sum of the utility of its 18 constituent components
as Equation 5.1. The utility of a component is computed according to Saturating utility
function in Table 3.2 with s = (c̄, ō) and c̄ =< connectivity, reliability, criticality >
and ō =< request, replica >—see Section 3.2.3 for details of the Saturating utility
function for mRUBiS. The employed utility function for mRUBiS considers the perfor-
mance P of a component defined as Equation 3.9. Each component in mRUBiS has a
unique Pmax to which the performance of the component saturates. As input traces
for mRUBiS, we use the realistic failure models from Table 6.3. We inject mRUBiS with
issues of type CF and PI—see the metamodel of mRUBiS in Figure 2.8 for details of the
supported issues, adaptation rules, and their attributes.
Znn.com. The second employed case study is Znn.com—see Section 6.2. We instan-

tiated a version of Znn.com with 20 severs, where only 15 are considered within the
budget—see Figure 6.4 for instance of an SD capturing the overBudget issue in Znn.com.
The request arrival traces are generated based on the realistic failure traces, i.e., web
traffic logs of FIFA 98 world cup site [17] introduced in Section 6.3.2.2, and are em-

9.3 evaluation 185

ployed as the input traffic for Znn.com. Out of the nine realistic traces in Section 6.3.2.2,
we consider three long traces, i.e., Day 10, Day 50, and Day 90—see Figure 6.9. We also
consider short traces of Day 30 and Day 80—see Figure 6.8. The traces include clients
web content requests from the web servers over the course of 24 hrs (long traces) and
60 min (short traces). For each state s = (c̄, ō), the overall utility of Znn.com, i.e., Uznn(s),
is defined according to Equation 6.1.

The sampling interval I for HZe indicates that the meta-awareness loop in HZe is
executed once for every I executions of the adaptation loop. In HZi, however, I = 1

as the meta-awareness is embedded in the adaptation loop and is executed at the
same frequency as the adaptation loop—see Figure 5.8 and Figure 5.9 for execution
sequence diagrams of HZe and HZi, respectively. The experiments are repeated and
averaged over 1000 simulation runs under controlled and reproducible conditions. The
reported values are normalized accumulated utility over time, i.e., normalized reward
with Normalized Reward = Uznn − cij for Znn.com and Normalized Reward =

UmRUBiS − cij for mRUBiS. For experiments with Znn.com, we consider the follow-
ing initial values for the two zones on the request response time RT ; 10 sec < RT is
associated to high and 0 < RT 6 10 sec corresponds to the optimal range—see ALGO-
RITHM 5.1. Chpdtr uses the same threshold as high—see ALGORITHM 9.1.

In experiments with mRUBiS, instead of response time RT , we use performance P

of the services as indicators for system objective satisfaction—see the decision node in
the flowchart describing hybrid planning with HypeZon in Figure 5.7. Thus, ALGO-
RITHM 5.1 and ALGORITHM 5.2 replace RTI and R̂T with PI and P̂ respectively; PI

is the average performance of the system during the sampling interval I and P̂ is the
estimated system performance for the current adaptation cycle that is approximated
using linear regression based on PI and expected system load, i.e., ˆload. Similarly, AL-
GORITHM 9.1 replaces RTcurr with Pcurr, with Pcurr the current performance of the
system. Consequently, based on the specific business objectives of mRUBiS, we define
two zones for performance: low range defined as 0.1× Pmax and the optimal range in-
dicates that PI is within the acceptable range, i.e., 0.1× Pmax < PI. Chpdtr uses the
same value for the low range—see ALGORITHM 9.1. Note the change of the term high
to represent undesirable response time values to the term low in the context of perfor-
mance to capture unsatisfactory system performance. Therefore, in ALGORITHM 5.1,
ALGORITHM 5.2, and ALGORITHM 9.1, in experiments with mRUBiS, the range high
for RT is replaced by low for P.

Note that the threshold values in the HypeZon variants, for both mRUBiS and Znn.com,
are not deterministic and may change at runtime. The size of the look-ahead, planning,
and execution horizons in Chpdtr is set to ∞, thus Chpdtr plans for all the existing
issues and executes the complete plan—see Table 9.1. In the experiments with mRUBiS,
the upper bound high in ALGORITHM 5.3 is initialized with 35 and 200 for ˆload and
Ĉ(π∗(Φ)); in the experiments with Znn.com, 500 and 80 are used respectively. The values
are selected based on empirical profiling and are only the initializing values and thus
subject to change during the experiments.

9.3.3 Results: Answering Q9.1, Q9.2, and Q9.3

Next, we evaluate HypeZon variants in comparison to Chpdtr via a set of quantitative
experiments. We structure the section by answering the three questions from the begin-

186 evaluation of hypezon

ning of this chapter.

Q9.1: how do internal and external designs for meta-self-awareness affect HypeZon?
Table 9.2 shows the normalized reward during 24 hrs for Znn.com (top) and mRUBiS

(bottom). Solver and Static perform simple adaptations without any hybrid planning
thus cij = 0. HZe is executed with I = 5. Table 9.3 presents the sensitivity analy-
sis of the results of HZe with different execution intervals I. In our experiments, HZe
with I = 1 is identical to HZi. The results in Table 9.2 suggest that in majority of the
experiments, HZe achieves higher reward compared to HZi. The reason is that HZe
has relatively larger execution intervals I that provides an extended monitoring pe-
riod. HZe makes decisions about setting its control parameters and policy switch based
on the estimations over this extended monitoring period. Larger execution timescale
of the meta-awareness loop in HZe results in more history, i.e., accumulated observa-
tions and experiences, consequently, HZe makes more informed decisions. Conversely,
HZi holds a localized view of the system load (ˆload) that is limited to its relatively
small monitoring period, i.e., since the last execution of the adaptation loop, and sets
its control parameters and switches the employed policies accordingly. Therefore, the
relatively small execution timescale of the meta-awareness loop in HZi may lead to
premature decisions due to insufficient and localized information and as a result, the
hybrid planner is likely to demonstrate nervous and volatile behavior regarding policy
switch decisions.

In the experiment with Grid5000 for mRUBiS, HZi outperforms HZe—see Table 9.2.
The reason is that the IAT of the adaptation issues in this trace is significantly smaller
compared to the other traces–see Table 6.3. Smaller IATs between issues demand more
frequent planning. In this case, as discussed in Section 2.1.2, more frequent control cal-
culations are beneficial since the system and its context change in high pace. Therefore,
when the system experiences adaptation issues at high arrival rate, smaller sampling
intervals I for the controller are more beneficial since HypeZon variants adjust their
control parameters at each sampling interval. Results in Table 9.2 and Table 9.3 suggest
that the reward of hybrid planners is affected by the characteristics of the input traces.
Moreover, as confirmed by Table 9.3, larger values for execution intervals of HZe result
in sub-optimal adaptations. HZe with I = 15 achieves only 25% and 34% of the optimal
utility for Day 10 and LRI respectively.

Figure 9.2 depicts the points in time that HZe and HZi make a policy switch over the
course of 60 min with Znn.com and Day 80 trace. HZe is executed with I = 5. The gray
curve in Figure 9.2 represents client request distribution in Day 80 trace—see Figure 6.8.

Table 9.2: Normalized reward over 24 hrs for Znn.com (top) and mRUBiS (bottom).

Trace HZi HZe Chpdtr Solver Static

Day 10 0.79 1 0.81 0.65 0.53
Day 50 0.55 1 0.85 0.49 0.38
Day 90 0.76 0.83 1 0.7 0.52

Grid5000 1 0.88 0.65 0.47 0.54
LRI 0.72 1 0.79 0.51 0.32
DEUG 0.83 0.97 1 0.47 0.43

9.3 evaluation 187

Table 9.3: Normalized reward of HZe with different I over 24 hours.

System-Input trace I = 1 I = 2 I = 3 I = 4 I = 5 I = 10 I = 15

Znn.com - Day 10 0.79 0.81 0.85 0.92 1 0.43 0.25

mRUBiS- LRI 0.65 0.73 1 0.93 0.9 0.6 0.34

HZi switches between its constituent policies more often compared to HZe that only
switches three times (see the square markers) during 60 min. As suggested by the ma-
jority of the measurements in Table 9.2, compared to HZe, the relatively more frequent
policy switches in HZi result in reward loss. As shown in Figure 9.2, between minute 0
and minute 20, HZe switches once in response to the relatively small turbulence in the
number of the requests; HZi in contrast, due to its localized view of the system load,
switches between the policies more frequently. The same pattern is observed for HZi
between minute 38 and 50.

Answering Q9.1: The results in Table 9.2 and Figure 9.2 suggest that the relatively
small execution timescale of the hybrid planner in HZi may lead to premature deci-
sions due to insufficient and localized information, and, as a result, the system is likely
to demonstrate nervous behavior. However, during volatile operation conditions when
the system is experiencing rapid changes, e.g., when IAT between the failures is small,
more frequent control calculations are beneficial since the system and its context change
in high pace. Therefore, smaller sampling intervals I for the controller would be more
effective.

Q9.2: how does HypeZon perform in comparison to a deterministic hybrid planner?

Table 9.2 shows that for Day 90 in Znn.com and DEUG in mRUBiS, Chpdtr obtains
higher reward compared to the HypeZon variants. Analysis of Day 90 characteristics
revealed that the average request arrival rate during Day 90 is 69% of the rate of Day 10
and 42% of the rate of Day 50. Similarly, the IAT between the bursts in DEUG trace
is significantly larger than the alternative traces used for mRUBiS—see distribution
for DEUG in Table 6.3. The results together with the analysis of the input trace char-
acteristics confirm that runtime conditions, i.e., the characteristics of the input traces,
significantly affect the reward of the adaptation. The results in Table 9.2 show that in
four traces the HypeZon variants outperformed Chpdtr. For the two traces with less

0

500

1000

0 5 10 15 20 25 30 35 40 45 50 55 60

N
um

be
r o

f R
eq

ue
st

s

Time (min)

HZeHZi

Figure 9.2: Policy switch decisions by HZi and HZe in Znn.com.

188 evaluation of hypezon

0

30

60

90

120

150

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Av
er

ag
e

 R
es

po
ns

e
Ti

m
e

(S
ec

)

Sampling Interval (min)

HZi SolverCHPdtr StaticHZe

90 sec: Request
timeout threshold

Figure 9.3: Average request response time (sec) in Znn.com.

extreme characteristics, i.e., Day 90 and DEUG, the pre-defined values of the control pa-
rameters and thresholds in Chpdtr are beneficial and outperform the HypeZon variants.
Overall, results suggest that, compared to Chpdtr, HypeZon variants are more effective
in copping with the varying operation conditions, e.g., input traces with more extreme
characteristics.

Figure 9.3 presents average request response times for clients in Znn.com during
60 min with Day 30 (short) trace. HZe is executed with I = 5. Each measurement at
sampling interval I shows the average response times (bullets) as well as the maxi-
mum and minimum response times (vertical bars) during the last 5 min. Note that
the hybrid planning overhead also affects the response time values. Table 9.4 shows
the corresponding normalized reward of the planners for the same experiment. Chpdtr

uses predefined and deterministic values for the control parameters, thus compared to
the HypeZon variants, has a smaller planning overhead and presents smaller response
times. In addition to the three hybrid planners, Figure 9.3 includes the response times
of their constituent adaptation policies, i.e., Solver and Static. Static has similar response
times to Chpdtr. This is due to the deterministic decision-making in Chpdtr that as
soon as response time raises above 10 sec, Chpdtr switches to the Static solution for
planning. Compared to Chpdtr, HZe has slightly higher average response times. How-
ever, as shown in Table 9.4, HZe obtains 35% higher accumulated utility over 60 min in
the same experiment. Response time values for HZi are higher than HZe and Chpdtr.
Despite its higher response times, Table 9.4 shows that HZi obtains 14% higher accumu-
lated utility compared to Chpdtr. This suggests that the reward loss in Chpdtr cannot
be compensated by its relatively short planning times.

Answering Q9.2: For the considered scenarios, in majority of the cases HypeZon

variants outperform Chpdtr in terms of system reward—see Table 9.2 and Table 9.4.
Compared to Chpdtr, HypeZon variants are more beneficial in copping with the vary-

Table 9.4: Normalized reward over 60 min for Znn.com.

HZi HZe Chpdtr Solver Static

0.79 1 0.65 0.59 0.51

9.3 evaluation 189

ing operation conditions, e.g., input traces with more extreme characteristics. In two
of the experiments with more uniformly distributed input traces Chpdtr outperformed
HypeZon, therefore, we can conclude that more stable operation conditions where traf-
fic surges or large and rapid failure bursts are not expected can be handled by a simpler
planner like Chpdtr with deterministic parameter setting. In the context of self-adaptive
systems however such an assumption for the input space of the system is not realis-
tic. Additionally, Chpdtr has only a negligible runtime overhead in terms of operation
cost and can be executed more cost-efficiently compared to HypeZon variants—see Fig-
ure 9.3.

Q9.3: what are the effects of hybrid planning on the reward and timeliness of adapta-
tion? For both application examples, the normalized reward values in Table 9.2 suggest
that hybrid planning approaches improve the reward of the system compared to their
constituent policies. Solver in Figure 9.3 has the highest average response time values,
it also presents significantly high maximum response times and in majority of the mea-
surements, encounters timeouts, i.e., from minute 20 to 60. While results in Figure 9.3
show relatively low response times for Static, according to Table 9.4, it obtains only 51%
of the maximum reward in HZe.

The non-hybrid solutions that employ a single policy for planning are likely to exhibit
sub-optimal behavior at runtime caused by their varying operation conditions. We have
shown in our work [see 177] that the choice of the adaptation policy in a self-adaptive
system should be steered with respect to the characteristics of the input trace, otherwise,
the employed policy may render sub-optimal at runtime. Thus, as also confirmed by
our empirical evaluation in this chapter, hybrid planners, either with deterministic or
adjustable parameters, results in improvements of the reward (Table 9.2 and Table 9.4)
and the timeliness (Figure 9.3) of the adaptation.

Finally, to validate our hypothesis regarding the behavioral patterns of different self-
adaptation solutions in the face of increasing adaptation complexity, illustrated in Fig-
ure 1.1 and discussed again in Figure 5.2, we ran a series of experiments on mRUBiS
with 1000 tenants; we injected failures according to the deterministic failure models
introduced in Section 6.3.1.1. The experiments include four subsequent MAPE-K runs;
before each adaptation cycle, mRUBiS is injected with one input trace; the traces are or-
dered in increasing size simulating the growing complexity of the operation condition
as depicted in Figure 1.1. Capturing the complexity of the multi-dimensional adaptation
space as points across the x-axis is a an oversimplification of the phenomenon. Here,
we perform a series of experiments during which we maintain all the dimensions of
the adaptation space constant and emulate the increasing complexity of the adaptation
by step-wise increasing the complexity of the adaptation setup, i.e., increasing system
load. Through out the experiments, we use the same model of the mRUBiS architecture
with the same characteristics and size; the only varying parameter is the input trace
that defines the number and the type of the issues that are injected to the system. As
the adaptation solutions we use Static, Solver, HypeZon (HZi), and Venus. HypeZon

uses Static and Solver as its constituent policies for runtime coordination.
We inject mRUBiS with one of the traces, execute the approaches for adapting the

system and resolving the issues, measure the overall accumulated utility over 5 min
of system execution, i.e., reward, then we inject the next trace. The reward values are
normalized. In order to have a baseline, we also report system reward when there are
no issues injected, i.e., before the first MAPE-K run. Figure 9.4 shows the normalized

190 evaluation of hypezon

 Solver

 Static

HYPEZON
VENUS

X100 X1000X10XNo
Failure

N
or

m
al

iz
ed

R
ew

ar
d

Input Traces

1.0

0.5

Figure 9.4: Normalized reward of self-adaptation solutions in mRUBiS with growing complexity
of input traces.

reward of the approaches as the complexity of the input trace increases. We executed
HZi varinat of HypeZon, therefore, the hybrid planner is executed before every MAPE-
K loop run. The red line on the x-axis (next to X100) marks the point where HypeZon

switches to Static. The measurements are discrete points captured by the markers in Fig-
ure 9.4, the points are only connected via the lines to visualize the change pattern and
for comparison against the schematic chart presented in Figure 1.1 and Figure 5.2.

As the complexity of the adaptation input increases, i.e., there are more issues to
resolve, the reward of all approaches is reduced. HypeZon selects the best-performing
policy before each adaptation. For X100, HypeZon switches to Static—see the switch
at X2 in Figure 1.1. As discussed earlier, a coordination-based hybrid solution like
HypeZon that composes off-the-shelf policies at runtime performs only as good as
its best performing constituent. A customized combination-based solution, however,
e.g., Venus, may combine policy formalism of the individual solutions in its design to
construct a new policy. The resulting adaptation solution can leverage the strength of
all the constituents, thus outperforming them in terms of cost minimization and quality
maximization. The results for Venus in Figure 9.4 confirm this.

Answering Q9.3: employing a hybrid planner, either with deterministic or adjustable
dynamic parameter setting, results in improvements of the reward and timeliness of the
adaptation.

9.4 threats to validity

Internal validity. The main threat to internal validity is the parameter setting and the
explored input traces for the experiments. While our evaluation includes sensitivity
analysis of the outcomes in some experiments, different control parameters and traces
may lead to different results. The performance of the hybrid planners may depend on
system parameters, e.g., server costs in Znn.com, or thresholds for the switching and ad-
justments in the algorithms. This threat is mitigated by carefully reproducing identical
experiment setting for the comparative studies. To mitigate the risk of confounding the
outcome of different planning policies, we established a set of controls. These controls
were threefold: (i) same monitoring, analysis, and execution phases, (ii) same architec-
tural RTM, and (iii) same utility functions. We further mitigated the threats to internal
validity by considering two different application examples, three different hybrid plan-

9.5 summary 191

ners, and a sizable set of input traces with substantial variation, which leads to a robust
assessment of planner performance through cross-validation.
External validity. We present a hybrid solution for self-adaptation that coordinates ar-
bitrary off-the-shelf adaptation policies. Because our evaluation considers coordinating
specific policies, the generalization of the results beyond the scope of this study is the
main threat to external validity. Although we present a generic solution for hybrid
adaptation that leverages control-theoretical principles, our evaluation focuses on inves-
tigating the reward and response times in two case studies. Thus, we cannot generalize
our results to other adaptation concerns, e.g., security, reliability, and robustness, and
target systems. Experimenting with more diverse policies could mitigate this threat.
The dependencies between constituent policies and the hybrid planners are affected by
various factors, including the utility function and assumptions behind the approaches.
Nonetheless, we expect these dependencies to hold for any utility function that is ac-
crued over states of input traces and reflects that timely adaptations are vital to the sys-
tem’s goals. We further mitigate the threat to validity by evaluating on two published
application examples that are commonly used exemplars for software engineering and
self-adaptive system research community, and are publicly available. We have several
past experiences with both from earlier work.
Construct validity. The main threat to construct validity is the correctness of the im-
plementation of the application examples and the approaches. Another threat is the
fact that the alternative solution in the comparative study, i.e., Chpdtr, is also home-
developed. We mitigate this threat by using open source and established application
examples, the correctness of our implementation of the approaches have been verified
by co-authors from collaboration in previous publications.

9.5 summary

In this chapter, we evaluated the two designs of HypeZon in a comparative study with
an alternative solution for hybrid adaptation. We answered the three questions via the
experiments:

Q9.1: how do internal and external designs for meta-self-awareness affect HypeZon? We
showed that meta-awareness capabilities that are realized either by the external or inter-
nal design are beneficial for hybrid planning. The reason is that they provide extended
control flexibility at runtime. The relatively small execution timescale of the hybrid
planner in HZi may lead to premature decisions due to insufficient and localized infor-
mation, and, as a result, the system is likely to demonstrate nervous behavior. However,
during volatile operation conditions when the system is experiencing rapid changes,
more frequent control calculations are beneficial since the system and its context change
in high pace. Therefore, smaller sampling intervals I for the controller are more effective.
Our results suggested that the common practice of increasing the visibility of control
loops in the architecture is also beneficial in designing meta-self-aware systems with
hybrid planning.

Q9.2: how does HypeZon perform in comparison to a deterministic hybrid planner? Hy-
peZon variants are more effective in copping with the varying operation conditions,
e.g., input traces with more extreme characteristics. However, we also made some ob-
servations indicating that more stable operation conditions can be effectively handled
by a simpler hybrid planner like Chpdtr with deterministic parameter setting. Because

192 evaluation of hypezon

Chpdtr has only a negligible runtime overhead in terms of operation cost, it can be
executed more cost-effectively compared to the HypeZon variants.

Q9.3: what are the effects of hybrid planning on the reward and timeliness of the adaptation?
we showed that employing a hybrid planner, either with deterministic or adjustable
parameters, results in improvements of the reward and timeliness of the adaptation.

The findings of this chapter revealed that considering hybrid planning and hybrid
self-adaptation as a case for meta-self-awareness has the following advantages and
limitation; the external design in HZe provides a broader view on the target system
and the adaptation process that allows to observe phenomena with a large scope that
are not visible at the awareness level. HZe supports explicit separation of concerns at
the architecture level and allows for reusability, easier maintenance, and independent
adjustments of control loop parameters at each level. The internal design of HZi con-
strains the controller in the meta-awareness subject to a localized view of its object.
In this design, the meta-awareness logic is dispersed throughout the awareness level.
The intertwined realization of the awareness and meta-awareness together with the em-
bedded and dispersed meta-awareness logic makes it challenging to reason about the
outcome of the meta-awareness, causing composability and resusability requirements
challenging to achieve.

Finally, this chapter provided supporting empirical evidence for the following contri-
butions of the thesis as mentioned in Section 1.4:

C7 A generic scheme for hybrid self-adaptation

C8 Coverage of a wide spectrum of self-adaptation problem space beyond the state-
of-the-art

9.5.1 Fulfillment of Requirements

The optimality and scalability of HypeZon depend on the characteristics of its con-
stituent policies. In the context of a hybrid solution like HypeZon, such claims are not
generally justified as they are inherent to the planning policies and not the hybrid plan-
ner. Being integrated in an adaptation engine that supports incremental execution of
the adaptations reduces the execution cost and provides for a more scalable solution by
definition. However, HypeZon cannot provide optimality or scalability guarantees and
fulfillment of R1 and R3 by HypeZon is dependent of its constituent policies. Runtime
coordination of multiple off-the-shelf policies in HypeZon allows the scheme to re-use
the existing policies in contrast to developing a new solution from scratch, thus reduc-
ing the development cost. Therefore, HypeZon fulfills R2. HypeZon relies on utility
functions to evaluate individual adaptation policies for runtime coordination. Addition-
ally, the scheme balances the quality-cost trade-off by coordinating the policies that
individually can only partially fulfill quality (Solver) or cost (Static) requirements for
different system inputs. We have shown in this chapter that HypeZon can balance the
quality and cost of the adaptation by switching between different policies at runtime
and tuning its control parameters, thus fulfilling R4.

10
R E L AT E D W O R K

This chapter discusses the related work. In this thesis, leveraging MDE principles,
graph-based formalism, and utility theory we proposed a solution for incremental
architecture-based self-adaptation of software systems, comprising two alternative plan-
ning mechanisms. We presented Venus as the main contribution of this thesis whereby
a design-time combination of rule- and optimization-based policy formalism is used
enabling Venus to address the quality-cost trade-off in engineering self-adaptive soft-
ware systems. The scheme leverages utility functions to explicitly capture the quality
objectives and assign utility values to the matches for the adaptation rules. We comple-
mented the solution by proposing a second planning mechanism, HypeZon, a hybrid
solution for self-adaptation that coordinates, at runtime, multiple off-the-shelf adapta-
tion policies that individually may operate either cost-effectively or deliver high-quality
plans. Additionally, having defined utility functions for dynamic software architec-
tures, we proposed two different solutions to analytically engineer utility functions and
systematically train prediction models to capture utility functions for the adaptation
engine.

In Section 10.1, we discuss the landscape of architecture-based self-adaptation regard-
ing their techniques for development of self-adaptive software. Next, in Section 10.2, we
investigate the planning mechanisms for architecture-based self-adaptation using the
requirements for architecture-based self-adaptation introduced in Chapter 1 and dis-
cuss if and how these approaches address the quality-cost trade-off during adaptation.
The requirements allow us to compare these approaches to Venus and HypeZon. Fi-
nally, in Section 10.3, we discuss the alternative solutions to our proposal for training
prediction models.

10.1 landscape of techniques for architecture-based self-adaptation

In this section, we discuss some of the most practiced techniques for adaptation of
software architectures. In an SLR conducted by Weyns et al. [425], next to feedback
loops and application domains, software architecture is identified as the main focus of
research in the field of software self-adaptation. In general, there exists a large body of
work on architecture-based self-adaptation of software systems—see [53, 161, 213, 273,
296, 321, 323]. Architecture-based adaptation of software systems entails modifications
to software architecture. Such changes cannot be directly realized by control theory and
require additional means for engineering self-adaptive software. In general, approaches
for developing self-adaptive software often provide a framework and use some forms of
models [301, 367]. In the following section, we review the state-of-the-art in approaches
for architecture-based self-adaptation that provide a complete adaptation engine with
execution support, i.e., we exclude studies that only focus on the design, e.g., [13, 14,
199, 292].

193

194 related work

10.1.1 Runtime Models and MDE

Bencomo et al. discovered in their systematic mapping study that a large body of work
on models@time, i.e., 131 out of 237 papers, are associated with the field of architecture-
based self-adaptation, i.e., the modeled artifacts is the software architecture. We dis-
cussed in Section 2.4 that, thanks to their high abstraction level with a global view,
models@run.time serve as a natural choice to enhance architecture-based adaptation
providing the necessary semantic basis for the systems to achieve self-adaptation. In the
following, we discuss solutions based on RTMs that support a full-loop self-adaptation
of software architectures.
Model Transformation. Major group of work on architecture-based adaptation with
RTMs (see [83, 388, 416]) use model transformation techniques to implement the adap-
tation process via taking one or more source models and a set of transformation rules
to produce one or more target models as outputs [377]. Thus, model transformations
address, among others, the problem of keeping multiple models describing the soft-
ware from different views and at different levels of abstraction consistent to each other.
Explicit transformations promise to improve the software quality in MDE [58].

The MAPE-K model for feedback loops [252], the architectural reflection pattern [65],
and the three-layer architecture for self-managed systems [273] constitute the most com-
mon reference models and architectures for the initial design of self-adaptive software
in general. EUREMA [413, 416] by Vogel et al. proposes an MDE approach for engi-
neering self-adaptive software via a Domain-specific Language (DSL) to realize both the
MAPE-K model and the three-layer reference architecture. The adaptation activities of
the feedback loops are specified by RTMs. The framework also supports user-defined
implementations for individual adaptation activities. The interplay between the activi-
ties and the RTMs are harmonized by certain types of RTMs titled runtime megamod-
els. A megamodel is a model containing other models and relationships between them
while the relationships constitute operations such as model transformations [43]. The
framework also offers a modeling language to support the explicit design, execution,
and adaptation of feedback loops providing for flexibility and extensibility. An adap-
tation feedback loop in EUREMA can be executed based on change events as well as
state-based information. EUREMA supports runtime evolution of RTMs as well as the
adaptation activities. The scope of the work by Vogel et al. reaches beyond the direc-
tion of this thesis, e.g., offering a framework that is open for user-defined languages
to express RTMs, supporting multiple feedback loops and layered architectures, and
evolving models at runtime. However, similar to EUREMA, in this thesis, we adopt the
generic concept for executing feedback loops by considering the feedback loop’s knowl-
edge as RTMs and the individual adaptation activities as model operations, carried out
by model transformation rules via executable Story Diagrams (SDs), that work with the
RTM. EUREMA supports incremental principles for execution of the adaptation loop,
thus achieving runtime efficiency and scalability. As discussed in Section 4.3, the incre-
mental monitoring in our proposed adaptation engine derives from Vogel et al. [417,
418] that is developed in EUREMA.

Chen et al. [83] propose a combination of requirement-driven self-adaptation and
architecture-based self-adaptation to reconfigure component-based architecture mod-
els using incremental and generative model transformations for complex architectural
adaptations. Three different RTMs, including a goal model, an architectural model, and
a design decisions model, relating the requirements and the architectural design, are

10.1 landscape of techniques for architecture-based self-adaptation 195

used. The requirements are captured as goal models where architectural design deci-
sions construct the design decisions models. The planning is driven by a requirement-
driven policy. Adaptations are carried out periodically, via execution of scripts for
model transformations that change the architectural model to the target configuration.
RTMs capture the state of the adaptable software and support the state-based execution
of the adaptation feedback loop. However, despite precluding change-based adaptation,
the framework achieves a runtime-efficient and scalable execution for the planning but
performance of the whole feedback loop is not evaluated. Similar to our solution for
architecture-based self-adaptation, Chen et al. automate the detection and execution of
architecture-based adaptation via model transformation, however, while we rely on an
existing set of adaptation rules whose LHS characterizes the specific issuers that we
are searching for in the software architecture, the solution by Chen et al. aims to go be-
yond the assumption that requirements of self-adaptive systems are well-understood at
design time and unchanged at runtime, thus supports architectural adaptations result-
ing from requirements changes. Although, unanticipated changes are not supported
by their solution, the approach offers flexibility in combining primitive architectural
changes and restructuring adaptations.

Song et al. [388] propose a model-driven runtime engine for self-adaptation. The
solution provides a language for modeling declarative adaptation polices in the form
of domain-specific constraints. RTMs are used to maintain the monitored system state
through causal connection. Adaptations are carries out following a rule-based, goal-
based policy. The adaptation models that are constructed manually and by the domain
experts are expressed in the OCL as a general purpose language with higher expressive
power that tolerates the conflicts in constraints and captures system policies via a set
of constrains. Possible system modifications are automatically extracted from the com-
bination of the RTM and the adaptation model. The solution directly captures system
constraints as adaptation policies, using concepts specific to the application domain and
applying OCL. The adaptations, implemented as model transformations, are captured
as ECA rules via the policy language. A transformation engine takes the system model
and OCL constraints from the adaptation model and maps them to first order logic First
Order Logic (FOL) predicates, interpreting what the constraints imply on the current sys-
tem. The FOL-based predicates are then fed to a constraint solver to dynamically com-
pute the required modifications on the current system that satisfy the adaptation model
constraints. The solver takes into account the constraints, their priorities, and the cost
of system modifications. Finally, the models@runtime engine propagates the changes to
the real system. The proposed solution does not have a control loop-based realization
in its design. Adaptation rules, in contrary to our work, are automatically generated
from descriptions of adaptation options and domain-specific constraints. Search-based
capabilities are used to derive adaptation actions that generate suitable target configu-
rations. The approach does not explicitly express the feedback loop and as confirmed
by the authors, does not exhibit runtime-efficiency and scalability for large, complex
systems. In general, the runtime efficiency is only shown for small systems/models
without investigating the scalability.
Variability Modeling. Besides model transformation, techniques such as variability
modeling have been used in combination with RTMs to perform model-driven self-
adaptation where the planning of adaptations is determined by change models, hence-
forth variability models, that define the variability of the software.

196 related work

DiVA [311–314] by Morin et al. employs RTMs with variability modeling technique
to support architecture-based self-adaptation. DiVA uses an architectural RTM of the
adaptable software, a model of the context, a feature model for the variability, and ECA
rules to perform adaptations. Given a context model, these rules describe which fea-
ture should be used on the architectural model. The four models required by DiVA are
expressed in a DSL. The framework implicitly captures the feedback loop in its imple-
mentation. An adaptation in DiVA is triggered via querying the sensor inputs which
support complex event processing. Consequently, DiVA supports various types of trig-
gers for adaptation. DiVA partially supports event-based adaptation, i.e., change events
are processed to update the architectural model while the analysis, planning, and exe-
cution activities work in a state-based manner. During an adaptation, the analysis and
planning are reported to be efficient for small models; the execute activity performs an
expensive state-based comparison of two architectural models for modification which
will likely not scale. In general, the runtime efficiency is only shown for such small
systems/models without investigating the scalability. Thus, while supporting the event-
and state-based principles, DiVA does not combine both to achieve an overall efficient
solution.

10.1.2 Architecture Models Defined with ADLs

Apart from the causally connected RTMs of software architecture that require MDE
techniques for implementation, many architecture-based approaches represent the ar-
chitecture in other form of models using ADLs to describe architectural models. These
models capture the architecture in different abstract representations—see [37, 163, 169,
273, 321, 322].

Driven by the external control for self-adaptation, the Rainbow framework [90, 91,
93, 163] divides the adaptable software into an architecture layer and a system layer
with the managed resources. Rainbow sets its main goal on cost-effective development
of the adaptable software. The framework is based on the Acme ADL to express the
architecture and the context. Rules and constraints, as part of the architecture model,
are specified in a first-order predicate logic provided by Acme. The architecture layer
in Rainbow has different components, defining adaptation strategies and utility prefer-
ences in Stitch [91]. A translation infrastructure translates and controls the deployment
of the adaptation plans at the system layer. The framework captures the RTMs, i.e., the
architectural model, in Acme. Hence, Rainbow does not employ RTMs that follow MDE
principles. For supporting runtime adaptation with Rainbow, an architectural style no-
tion of the system is used and extended with adaptation operators and strategies. Rain-
bow supports structural and parameter adaptation. The MAPE-K loop is implicit in the
design. Rainbow is a purely rule-based approach where rules define constraints for the
architectural model, as well as strategies, tactics, and operators that realize the adap-
tation. The framework offers customization points in the adaptation engine whereby
engineers can reuse the framework and customize it for a specific system. The adap-
tation triggers are not explicitly defined, rather are left as customization points which
have to be realized within the implementation of the sensors and adapters. The feed-
back loop is executed in a state-based manner. Before an adaptation, all the constraints
are evaluated on the architectural model when the model changes but change events
are not processed to drive the constraint checking and model evaluation. Hence, Rain-

10.1 landscape of techniques for architecture-based self-adaptation 197

bow does not support an event-based execution of the adaptation loop. The Framework
does not comprehensively evaluate the performance and scalability and reports efficient
execution for rather small adaptable systems.

Genie [35, 37] is a middleware that uses DSLs for the construction of the models
associated with both the structural and the environment variability. The structural vari-
ability models are used to generate components and component configurations. Genie
promotes the model-driven development of middleware-based self-adaptive software
where software artifacts are generated using models and generative techniques. Devel-
opers specify configurations of the adaptable software and adaptations in terms of con-
ditional transitions between these configurations. Using these models, Genie generates
configuration files and ECA rules for the software running on the middleware. Genie
implicitly realizes the adaptation loop. Context changes are captured by change events
that trigger the ECA rules. The rules are captured as transition models (expressed in
a language specific to the middleware and without using any RTM). Genie supports
event-based adaptation but does not offer a platform, e.g., a reflection model or an
RTM, to capture state-based information. The approach is not concerned with deliv-
ering adaptations efficiently or at a certain quality, rather, offering an ADL with the
focus on providing the architectural principles to support the generation and operation
of component-based adaptive systems. The authors of Genie do not report about the
runtime efficiency of the feedback loop.

MADAM [146, 168] is a middleware following an architecture-centric approach where
employing architecture models at runtime allow the generic middleware components
to reason about and control the adaptation. The framework realizes parameter and
structural adaptation of mobile applications. The architectural model of the adaptable
software is used as a code-based and therefore, as an implicit RTM by the middle-
ware. It offers a UML-based architectural language to characterize system components
and their variability regarding quality of service properties, system context, and re-
sources. At runtime, MADAM monitors the system context and a utility function steers
the adaptation engine towards finding the most promising configuration for the cur-
rent context—we discuss the planning scheme of MADAM in more details later in this
chapter. MADAM does not explicitly capture a feedback loop for adaptation in its im-
plementation. Change events that notify about the context changes trigger adaptations
in MADAM. The state of the adaptable software is not used for reasoning except for ob-
taining a reconfiguration script by comparing the current with the target architecture of
the adaptable software. MADAM achieves a runtime-efficient execution for small-sized
applications with a limited variability. The authors acknowledge scalability problems.

The MUSIC framework [359, 360] builds on MADAM approach for the implemen-
tation of context-awareness and self-adaptation, where context management and adap-
tation logic are delegated to generic middleware. MUSIC is an extension of MADAM
framework inheriting its development methodology and realization of self-adaptation.
The major extensions in MUSIC have been done to the middleware to cope with ubiq-
uitous applications. Therefore, we refer to the discussion of MADAM.

The Framework by Alférez et al. [3] is another solution for runtime architecture-based
adaptation where RTMs are defined with ADLs. The framework uses forward chaining
from AI—a bottom-up computational model that starting from a set of know facts, ap-
plies a logical process to infer unknown facts whose premises match the known facts
and moves forward using determined conditions and rules to find a solution [see 361]—
together with RTMs to plan the adaptation. The framework requires several RTMs: a

198 related work

requirement model that captures the system goals, an architectural model, a variability
model, a context model, and a set of tactic models each capturing an adaptation strategy
as features for the variability model. The context model includes conditions to be an-
alyzed during monitoring to detect the need for adaptation. The framework implicitly
realizes a feedback loop that monitors the system and its context, evaluates the context
conditions, and using the variability model, reconfigures the architecture accordingly.
Forward chaining is employed to find suitable adaptation tactics, woven to the variabil-
ity models, that address unknown contextual situations. The adapted variability model
then is used to steer the adaptation. The adaptations are performed periodically and
only based on state information excluding event-based processing of the changes. The
framework is not evaluated for the runtime efficiency of the feedback loop and scalabil-
ity.

10.1.3 Discussion

As revealed by our review of some of the most-practiced techniques to develop an
architecture-based solution for software self-adaptation, the two major groups of tech-
niques, regarding development and adaptation of software architecture models, entail
MDE-based principles and ADLs in combination with some form of RTMs. Our work
is well in line with the state-of-the-art as we employ an architecture-based approach to
self-adaptive software that, via the transformation of architectural RTMs, consistently
evolve the adaptable software and the architectural model of the software using MDE
Principles. Our proposed solution supports automated parameter and structural adap-
tation of software systems controlled by feedback loops via explicitly capturing the
control loop in its design and implementation, conforming to the MAPE-K reference
model. While the technical contributions of this thesis concern the Analyze and Plan
activities of the MAPE-K feedback loop, leveraging the incremental Monitor module
from Vogel et al. [418], the contributions are embodied in a MAPE-based adaptation
engine that is executed incrementally. This way, the solution offers supporting mech-
anisms for efficient execution of the adaptation loop, thus advancing the baseline for
architecture-based self-adaptation.

The survey on self-adaptive software by Salehie and Tahvildari [367] suggest that
development of self-adaptive software systems is often supported by using some form
of models. In this thesis, we use an architectural RTM of the adaptable software as
the knowledge element of the MAPE-K loop. Additionally, we use a goal model of the
adaptable software to extract an objective function that steers the adaptation. In Sec-
tion 3.3, we also provide a solution where the goal model of the system is not available,
hence, we learn system preferences via observations. The results of our investigation in
this section confirmed the observation of Salehie and Tahvildari [367]: state-of-the-art
employ models to represent the knowledge part of a feedback loop, i.e., they use mod-
els to describe the adaptable software as well as working data for the feedback loop
such as adaptation rules, e.g., Rainbow and Genie, and variability models, e.g., DivA
and Alférez et al.

In line with the discovery made in a 2019 survey on models@run.time by Bencomo et
al. [36], we observe that among the MDE development approaches to self-adaptive soft-
ware, including this thesis, model transformations are heavily explored as a natural
prerequisite for models@run.time in order to connect the RTMs and the system. Ex-

10.2 planning mechanisms for architecture-based self-adaptation 199

amples are Chen et al., Song et al., and EUREMA. Another observation was that the
state-of-the-art, similar to this thesis, often support both structural and parameter adap-
tation.

The execution of a feedback loops is either event-based or state-based. The former
is based on the change events that notify about changes in the adaptable software or
context, while the latter requires periodical evaluation of the (reflection) model of the
adaptable software that captures the state to detect adaptation triggers. As discussed
earlier in this section, solutions that support event-based processing of software and
context change, i.e., EUREMA, Genie, and MADAM/MUSIC, are more likely to show
runtime efficiency. In case of MADAM/MUSIC, scalability issues have been reported
by the authors. DiVA only partially supports change events of the RTMs while the anal-
ysis, planning, and execution activities work in a state-based manner, thus suffer from
scalability challenges—see [311]. State-based execution of adaptation activities entails
non-incremental processing of the architecture models, i.e., with every execution the
whole state captured in the architectural model should be processed. This renders the
execution of the adaptation loop time-intensive and inefficient. Examples are the frame-
works by Song et al., Chen et al., Alférez et al., and Rainbow. Only a few approaches
such as EUREMA and DiVA combine both event- and state-based principles. In the
context of DiVA, as discussed above, while both event-based and state-based principles
are supported, the framework does not use change models for incremental adaptation,
thus the combination does not improve the runtime efficiency.

In this thesis, similar to EUREMA, we exploit change events, leveraging event-based
principles for an incremental execution of the adaptation loop. We also support state-
based execution of the adaptation loop as it holds a global view on the adaptable
software through maintaining RTMs that represent the state of the adaptable software.
While state-based realization of the adaptable software supports decisions with global
impacts, event-based processing of the changes enables incremental execution of the
feedback loop. We have investigated the runtime efficiency and scalability of both adap-
tation solutions, i.e., Venus and HypeZon via qualitative discussions and quantitative
evaluations—see Section 7.3.1, Section 7.4.1, Section 7.5.2, and Section 9.3.3.

Finally, as discussed above, the runtime efficiency of executing the adaptation loop
is often either not investigated and, thus remains unknown, e.g., Genie and Alférez et
al., or efficiency claims are only partially justified, i.e., either investigating only the
performance of an individual adaptation activity but not of the whole feedback loop,
e.g., Chen et al, or for a subset of the activities, e.g., DiVA. Song et al., Rainbow, and
MADAM/MUSIC report efficient executions although they often do not investigate the
scalability. EUREMA reports on both runtime efficiency of the adaptation loop and
scalability.

10.2 planning mechanisms for architecture-based self-adaptation

In Section 10.1, we discussed the landscape of solutions for architecture-based self-
adaptation regarding their techniques for development of the self-adaptive software.
This section discusses the related work in planning mechanisms for architecture-based
self-adaptation by using the requirements introduced in Chapter 1 and summarized
in Table 1.1. The requirements allow us to compare these approaches to Venus and
HypeZon. Among the large body of existing work, we chose approaches that propose

200 related work

a complete solution for self-adaptation, i.e., addressing the whole feedback loop and
not only a planning mechanism, and that are concerned with quality, cost, or their
trade-offs during planning. We organize the section as the following: we discuss search
and optimization-based planning solutions in Section 10.2.1. Learning-based solutions
are pretested in Section 10.2.2. In Section 10.2.3 we discuss rule-based solutions for
architecture-based self-adaptation and finally, Section 10.2.4 discuses hybrid solutions.

10.2.1 Search and Optimization-based Planning

On one end of the spectrum there are search and optimization-based approaches for
runtime reasoning. Potential adaptation decisions are discovered and evaluated, at run-
time or at design time, often by means of exhaustive search in software adaptation space
or by optimizing a form of an objective function. In this context, employing utility func-
tions and utility-driven decision-making schemes have been extensively investigated.
Greedy Algorithm MADAM/MUSIC [146, 168, 359, 360] are adaptive middleware for
component-based applications that plan architectural adaptation by exploiting qual-
ity properties of alternative implementations of components. MUSIC [359, 360] is the
successor of MADAM that extends it to ubiquitous environments and uses the same
self-adaptation mechanism as MADAM—see 10.1. MADAM is focused on adaptation
of one node while MUSIC takes the use of service into account that are deployed on
other nodes. A Quality of Service (QoS)-aware RTM provides the knowledge for planning
activity that, pursuing a greedy algorithm, maximizes the utility of the architecture. A
greedy algorithm follows the problem-solving heuristic of making the locally optimal
choice at each step. Using properties and property predictor functions of alternative
components, each reconfiguration is planned and then evaluated for the current execu-
tion context by a utility function. MADAM/MUSIC represent different configurations
via different component architectures which are discriminated based on the properties
related to the context elements. However, the properties of each configuration regard-
ing the context are constant, predefined values. A utility function is applied to map the
provided properties of the context to scholar values representing user needs and static
priorities. Strategy selection in MADAM/MUSIC is conducted dynamically regarding
the given context, but the expected utility is based on design time estimates. It is only
the different user needs that assign different weights to utilities and may result in differ-
ent solutions for the same context. Adapting a system via the MADAM/MUSIC frame-
work peruses a greed optimization to maximize a utility function that captures system
quality attributes (R1), however, the solution searches the possible adaption space at
runtime to discover the plan yielding the highest utility, hence, is not cost-effective (R2).
The scalability of the framework is not evaluated but authors point out that for large
adaptation spaces they expect scalability issues (R3). Quality-cost trade-offs are cap-
tured by utility functions (R4). The framework support dynamic architectures (R5) but
requires developers to provide utility functions, typically expressed as a weighted sum
of dimensional utility functions where the weights express user preferences (R6).
Model-checking Markov Decision Process (MDP) [345] and Partially Observable Markov
Decision Processess (POMDPs) [239] describe discrete-time stochastic control processes
and are commonly used to model and optimize decision-making in stochastic environ-
ments. Probabilistic model-checking has been used to solve complex MDP and POMDP
optimization problems at runtime—see [70, 71, 394, 395]. Probabilistic model-checking

10.2 planning mechanisms for architecture-based self-adaptation 201

refers to a set of techniques that enable quantitative analysis and policy synthesis in sys-
tems with probabilistic behavior. The technique guarantees to achieve optimal expected
probabilities and rewards [see 277]), which is mapped to maximizing utility. It takes as
input a formal specification of the stochastic system, which is internally translated into
an MDP, and solves it. The time complexity of model-checking typically results in solu-
tions that do not scale for large configuration spaces as the MDP/POMDP model has
to be constructed every time for decision-making to incorporate the latest predictions
of the environment behavior. Therefore, rendering these solutions infeasible for applica-
tion in adaptive systems with large and complex state-space or requiring instantaneous
adaptation decisions. Although various optimization algorithms have been suggested
to improve the planning time for MDP [266, 308] and POMDP [339] planning, planning
delays in probabilistic domains remain a serious challenge.

Approaches such as work by Moreno et al. [308] offer improvements to runtime prob-
abilistic model-checking whereby most of the computation is performed off-line, thus
reducing execution time. In the solution proposed by Moreno et al. an MDP model of
the adaptable system is constructed off-line where feasibility of the adaptation decisions
for possible system states are assessed. During system execution, the planning activity
uses stochastic dynamic programming to solve the MDP and select the adaptation ac-
tion that maximizes the system utility (R1). Computations are performed as much as
possible off-line to reduce the planning efforts online (R2). The efficiency of the plan-
ning is shown to be improved in comparison to using probabilistic model-checking at
runtime, while providing comparable results in terms of adaptation utility. However,
the efficiency of the whole feedabck loop and scalability of the adaptation is not eval-
uated (R3). The solution explicitly considers quality-cost trade-offs (R4). Assuming a
static system model, at runtime, only the behavior of the environment is dynamic, thus
dynamic architectures are not supported (R5). The decision-maker depends on an MDP
model of the system and a user-defined goal model to operate (R6).

Franco et al. [149] address the runtime disruption of non-functional goals by predict-
ing their expected values for each adaptation strategy. The quantitative prediction is
based on a stochastic model translated from a model of the software architecture. At
runtime, before each adaptation, the Analyze activity, using a model-checking tool, pre-
dicts the impact of each possible adaptation action (strategy) on a copy of the snapshot
model of the system architecture. During planning, the adaptation action with highest
predicted impact on system quality objectives is chosen. The solution aims to maximize
system quality objectives (R1) but executes a time-intensive model-checking process be-
fore each adaptation at runtime to discover the optimal adaptation plan, thus is not
cost-effective (R2). The efficiency of the adaptation is evaluated for one adaptation sce-
nario but scalability claims are only supported by enforcing time constraints on the
model-checking process during the analysis and potentially affecting the quality of the
adaptation plans (R3). The quality-cost trade-off is explicitly captured via utility func-
tions (R4). Dynamic architectures are not supported (R5) and the approach relies on
prior knowledege to construct a utility function that is employed by the model-checker
at runtime (R6).

The PLASMA approach [398] addresses the planning problem via model-checking.
It proposes a three-layer architecture for plan-based adaptation, where the goal is the
generation of plans for adapting and executing software applications. The adaptation
loop and plan generation loop are executed separately. During system execution, the
planning layer, using a developer-defined domain model and the initial and goal states

202 related work

of the application, performs model-checking to device a plan for reaching the goal
state. PLASMA does not rely on design-time plans for adaptation, thus supports dy-
namic and unforeseen runtime conditions and can generate effective plans at runtime.
However, the solution does not offer any guarantees for system quality objective satis-
faction (R1) and is not cost-effective due its time-intensive planning-as-model-checking
mechanism (R2). The performance and scalability of the approach is not evaluated (R3)
and quality-cost trade-offs are not considered (R4). PLASMA tends to offer a solution
for online planning and supports dynamic software architectures (R5). The approach
requires user-defined target states, captured by the goal model, thus cannot operate
without prior knowledge about the application domain and user preferences (R6).

While model-checking and probabilistic planning enable exploration of rich adapta-
tion spaces, they render attainments of optimal solutions and other guarantees, e.g., con-
straint satisfaction, computationally costly, resulting in long planning times. MOSAICO
[72] improves the scalability of such approaches by using model-checking mechanism
in an off-line manner for plan synthesis. The solution targets the trade-off between qual-
ity and computation cost by discretizing the system and environment states and off-line
synthesis of adaptation plans for the different discretization points [72]. MOSAICO re-
quires user-defined utility models to estimate the impact of the adaptation decisions on
system quality objectives. A parametric model of the system that captures properties of
interest, e.g., quality attributes, is used to synthesis a plan with highest expected util-
ity at design time. The parametric model is specified based on the architecture model,
utility model, and estimated impact of the tactics. At runtime, to generate the best de-
cision for current state, the set of states in the discrete abstraction that have been used
to synthesize the repertoire of adaptation plans is searched. The current state of the sys-
tem may or may not belong to the set of states in the discrete abstraction. In the latter
case, the plan selected for execution will be the one synthesized for the closest state
in the abstraction. Analogously to off-line planning solutions, MOSAICO cannot pro-
vide optimality guarantees in terms of system quality objective satisfaction as plans are
generated at design time (R1). The solution is cost-effective (R2). The performance and
scalability of the whole adaptation loop and the runtime planning is not evaluated (R3).
Quality-cost trade-offs are explicitly captured (R4). Dynamic architectures are not sup-
ported as the off-line planner uses the design-time system architecture to generate the
state space and runtime evolution of the architecture is not considered by the synthe-
sized plans (R5). MOSAICO requires user-defined utility profiles that capture runtime
preferences to steer the synthesis of plans (R6).
Heuristics and Meta-Heuristics Search-based meta-heuristics such as hill-climbing [304]
conduct a local neighborhood search in the solution space for self-adaptation whereby
relying on a given starting point, a better solution in the neighborhood is searched.
SASSY [304] uses a utility function to capture the quality-cost trade-off. An adapta-
tion loop is triggered upon a drop in the overall system utility. For each adaptation,
starting from the current architecture, SASSY performs a hill-climbing combinatorial
search in the space of possible architectures. The architecture with the highest utility
becomes the new visited point in the search space. The search stops if no architec-
ture in the neighborhood increases the utility. The solution cannot provide optimality
guarantees regarding system objectives due to the inherent local-optima problem in
search-based solutions (R1). Starting from the current state, SASSY searches the com-
plete neighbor configurations in the fragment of the adaptation space that are reachable
from the current configuration, thus is not cost-effective in terms of planning time (R2).

10.2 planning mechanisms for architecture-based self-adaptation 203

The approach is evaluated for scalability and adaptation performance (R3). Moreover,
an evaluation of the overall utility of the system utility is required to detect the need
for adaptation, thus event-based processing of the adaptation triggers are precluded
rendering scalability challenging. The quality-cost trade-offs are explicitly captured via
utility functions (R4). Dynamic architectures are supported (R5). SASSY demands user
defined objective function and builds on prior domain knowledge for operation (R6).
Genetic Algorithms Genetic Algorithms (GAs) [210] are shown to be effective in dis-
covering near-optimal adaptation plans for large and complex adaptation spaces [154,
209, 331, 352, 353]. Hermes [352] is an evolutionary computation-based approach that
searches the adaptation space to find the best path to a desired configuration. Hermes
uses genetic programming to generate executable reconfiguration instructions specify-
ing structural and behavioral changes to the adaptable system. The approach requires
a set of instructions characterizing the adaptation paths that are extracted from a user-
defined component-dependency map between different system configurations. At run-
time, Hermes uses evolutionary techniques to gradually transform and possibly im-
prove an adaptation path by adding, removing, replacing, and reordering reconfigura-
tion instructions to better balance the competing objectives, while ensuring a safe tran-
sition to a desired target configuration. The approach does not implement a complete
adaptation loop. Assuming monitoring data, starting configurations, and target configu-
ration as given, Hermes is assigned with the task of finding the safest path to the target
configuration with the primary objective of maximizing reconfiguration performance
and reliability (R1) while minimizing reconfiguration costs (R2). However, the optimal-
ity guarantees cannot be provided. The performance of the path-planning by Hermes
is evaluated for a industry-size case study but the efficiency and scalability of an adap-
tation loop is not evaluated (R3). Hermes explicitly captures the quality-cost trade-off
via defining fitness sub-functions (R4). The solution requires design-time knowledge
of possible system configurations prior to execution, thus does not supports dynamic
architectures (R5) while heavily relying on user-defined component-dependency maps
and fitness functions to generate reconfiguration paths (R6).

In general, GA-based solutions are not concerned with generating adaptation plans
at runtime, but with selecting from an existing set of plans and computing the most fea-
sible paths to the plan. However, these solutions lack flexibility to cater to the needs of
dynamic architectures and dynamic environments, thus cannot offer optimality guaran-
tees regarding the final configuration as the plans are determined based on design-time
knowledge.

To improve runtime efficiency, techniques such as caching, pre-computation, and
near-optimality have been applied [171] and computations are performed as much
as possible off-line to reduce the planning efforts online [308]. Moreover, Moreno et
al. [309] propose a method for combinatorial optimization based on cross-entropy and
an any-time algorithm with random sampling from the solution space. Anytime plan-
ning algorithms, based on the idea of incremental planning, are optimizing, e.g., value
iteration algorithm for MDP planning whereby the planning process can be interrupted
at any time to get a sub-optimal plan [440]. Longer planning times lead to better plans.
Such solutions considerably reduce the computation time, however, they are not guar-
anteed to find an optimal adaptation plan.

Search and optimization-based approaches pursue a search-based optimization in the
potentially large adaptation space, which typically do not scale well for complex sys-
tems with large configuration spaces. Such approaches can manage to find the optimal

204 related work

configuration but there is no guarantee to reach the result within a reasonable time.
Executing an optimization algorithm for each adaptation decision at runtime causes
a large overhead degrading the performance. Tichy et al. [403] suggest reducing the
search space to speed up adaptation and avoid long delays. In contrast, the adaptation
solutions proposed in this thesis compute the utility for each possible adaptation option,
incrementally, and at runtime, taking into account the actual issues and their contexts,
i.e., runtime knowledge influencing the utility.

10.2.2 Learning-based Planning

Another technique for planning and decision-making with growing popularity is to
machine learning. Gheibi et al. [182] in their 2021 SLR on application of machine learn-
ing in self-adaptive systems identified a total of 15 studies on architecture-based self-
adaptation that address the quality-cost trade-off during adaptation. Among the 15 pa-
pers, we identified four studies that use machine learning during analysis and planning
and are concerned with learning policies/rules which we consider relevant to this work
that we briefly discuss in the following.

Kim et al. [255] use RL for online planning in architecture-based self-management
that enables a software system to change and improve its plan. State and actions are de-
fined through goal- and scenario-based discovery processes where goals capture the sys-
tem objectives and scenarios, realized in form of condition-action, represent a sequence
of events to achieve a specific goal. The state space is defined based on the condition
of the scenarios and a symbolic notation of the current architecture that is denoted as
a vector of components and connectors. Adaptations are defined based on the action
part of the scenarios and describe architectural changes such as adding, removing, re-
placing components, and reconfiguring the architectural topology. A fitness function,
derived from system goal model, represents the reward. Kim et al. apply Q-learning
method [274] to discover the action that maximizes system reward. Using an ε−greedy
selection strategy, Q-learning avoids local optima, thus is able to find the optimal action,
i.e., the most profiting action regarding system quality objectives. However, the online
planner my operate sub-optimally until the learner converges (R1). The approach em-
ploys online planning where actions are chosen for execution through the process of
exploitation and exploration, which, for large state spaces, has a time-intensive conver-
gence. Hence, in the context of highly configurable and dynamic software architectures,
the online learning-based planning is not cost-effective (R2). The runtime efficiency and
scalability of the approach is not evaluated (R3), nonetheless, for large state-spaces, on-
line learning solutions by definition suffer from scalability issues [see 357]. Quality-cost
trade-off policies are not captured in the fitness function (R4). The online planner sup-
ports adaptation of dynamic architectures (R5). Finally, the approach uses Q-learning
that is a modeless technique and can learn directly from raw experience without a
model. Therefore, the approach may operate without detailed knowledge of user pref-
erences and observe system reward as the ground truth (R6).

FUSION [126, 129] uses supervised learning to continuously learn the impact of soft-
ware features on system goals, thus improves the decision-making. System goals are
defined as utility functions by developers. Additionally, the framework requires a fea-
ture model defining the variability and an architectural model of the adaptable software.
Fusion solves the optimization problem of finding the optimal set of features that max-

10.2 planning mechanisms for architecture-based self-adaptation 205

imizes the utility. The approach aims to keep the system response time low and the
reliability high under changing workload and the occurrence of unexpected events. The
feedback loop consists of two cycles, one for learning and one for adaptation. The latter
uses the learned knowledge to decide which features should be (de)activated if a goal is
violated. Changes of the feature selection are propagated to the architectural model and
to the system via the user-defined transformations. When runtime conditions render the
learned knowledege in FUSION out of context, the framework performs sub-optimally
until the learning converges (R1). The framework is not cost-effective (R2). FUSION uses
events and the state captured in RTMs to drive the execution. The framework then uses
features and inter-feature relationships to reduce the configuration space of a sizable
system rendering the runtime analysis and learning feasible, thus achieves a runtime-
efficient execution for the planning activity and for the learning. The performance of
the whole feedback loop is not evaluated. The framework achieves a partially efficient
execution and investigate only the performance of the planning activity but not of the
whole feedback loop (R3). Quality-cost trade-off policies are explicitly captured (R4).
Owing to online learning in FUSION, dynamic architectures are supported (R5), Analo-
gously to any learning-based approach, provided sufficient unbiased and representative
data about the system execution under different feature configuration, FUSION infers
an accurate model of the system behavior from data and does does not required manu-
ally constructed utility functions (R6).

IDES [194] extends the rule-based adaptation scheme in Rainbow [91] whereby cost-
benefit assessment of adaptation strategies evolve at runtime. The feedback loop real-
ized by IDES consists of two cycles, one for evolving utility preferences and one for
adaptation. The adaptation loop is supported by a reinforcement learner that dynam-
ically updates adaptation policies based on the instant reward. The adaptation loop
uses the updated knowledge to adapt the system. IDES improves the rule-based adap-
tation scheme of Rainbow by updating policy preferences at runtime and based on the
received reward, therefore, adjusts design-time utility preferences based on runtime
conditions. However, the policy evolution does not consider any exploration, thus has
high probability to fall in a local-optima (R1). The framework is cost-effective (R2) and
explicitly captures quality-cost trade-offs (R4). The efficiency of the adaptation has not
been evaluated in a conclusive study and scalability is not reported (R3). IDES does
not offer any improvements in the design-time policy definitions in terms of dynamic
system attributes, thus does not support dynamic system architectures (R5). The frame-
work operates based on user-defined preferences and utility functions (R6).

Zhao et al. [437] use an off-line RL-based phase to learn best performing rules and
optimal values for system quality attributes from a set of given goals. The results consti-
tute a case-base that is then employed at runtime. The plans are generated via Case-based
Reasoning (CBR), i.e., utilizing the knowledge of past cases to solve new cases—see [1,
283]. Before each adaptation, following the general CBR cycle and an ε-greedy scheme,
the best performing rules that maximize system reward in terms of quality attribute sat-
isfaction are chosen (R1). Leveraging an off-line training phase, the approach precludes
a time-intensive training at runtime (R2). The performance of the whole adaptation
loop and the planning activity is not evaluated and scalability is not discussed (R3).
The quality-cost trade-offs are not explicitly captured (R4). The approach supports new
system goals while only amenable to static quality attributes defining system states,
thus dynamic architectures are not supported (R5). The solution supports black-box
systems where system and user preferences can be learned during training (R6).

206 related work

In general, online learning-based approaches suffer from a slow learning curve caus-
ing them to perform sub-optimally in terms of adaptation decision qualities until the
learning converges. In solutions where an off-line training mitigates the cold start at
runtime, changes that render the current knowledge insufficient will be addressed only,
at best sub-optimally, until the learners converge. Therefore, learning-based solutions
are often challenged by scalability issues and sub-optimal adaptations.

10.2.3 Rule-based Planning

Rule-based approaches are recognized to be efficient and stable in predictable domains
and support early validation [144]. They provide a quick recovery from a goal violation.
However, they often result in sub-optimal adaptation decisions as they do not handle
situations that have not been foreseen at design time.

Rainbow framework [90, 91, 93, 163] applies utility theory in combination with a
stochastic model for the reasoning process. Rainbow addresses the adaptation issues
based on solutions to similar problems from the past. When adaptation is needed, Rain-
bow chooses an adaptation strategy from a predefined repertoire, created at design time
by domain experts based on their past troubleshooting experience. Rainbow considers
the success rate of rules in the past to rank them and to eventually make a decision.
For each observed configuration, there is an specific adaptation strategy (rule) assigned
at design time. Therefore, the decision-making in Rainbow is insensitive to the run-
time context as the framework maps rules (strategies) to runtime states solely based on
design-time estimates of the applicability and desirability of the strategy for the given
context. In this thesis, additionally to the dynamic properties of the rules in terms of
utility impact and execution costs, the actual failures and their contexts, i.e., the af-
fected components, are considered to make an adaptation decision. We have discussed
the Rainbow framework in full length in Section 10.1, therefore, we briefly discuss how
the framework satisfied the requirements in the following. Rainbow is limited by design
time estimates of the potential impacts of the rules on utility of the system, thus does
not guarantee to satisfy system quality objectives at runtime (R1). The framework is
developed and executed in a cost-effective manner (R2), however, has not been inves-
tigated for scalability (R3). Rainbow explicitly captures quality-cost trade-off policies
(R4). Dynamic architectures are not supported in Rainbow (R5) and a user-defined util-
ity profile, capturing system preferences, is required to steer the adaptation (R6).

10.2.4 Hybrid Planning

Hybrid adaptation mechanisms combine, at various levels, concepts from two or more
different adaptation policies, e.g., rule-based, goal-based, or utility based to achieve
hybrid policies that collectively exhibit the features of the constituents. Trollmann et
al. [405] provide a framework for classification of different combination types of adap-
tation policies with examples from the literature. In the following, we discuss three
of the most relevant hybrid solutions for architecture-based self-adaptation. In the con-
text of hybrid solutions, we introduce R7 as an additional desired feature for the hybrid
planner to be added to the set of six requirements for architecture-based self-adaptation
in Table 1.1; R7 indicates whether a hybrid planning solution is generic, thus can com-
bine arbitrary adaptation polices for planning. A generic hybrid planner is not custom-

10.2 planning mechanisms for architecture-based self-adaptation 207

Table 10.1: Architecture-based self-adaptation requirements coverage by relate work. () indi-
cates full, (G#) indicates partial, (#) indicates no, and (?) indicates unknown coverage.

Category Approach

D
es

ir
ab

le
qu

al
it

y
ob

je
ct

iv
es

sa
ti

sf
ac

ti
on

C
os

t-
ef

fe
ct

iv
e

Sc
al

ab
le

Ex
pl

ic
it

qu
al

it
y-

co
st

tr
ad

e-
of

f
po

lic
ie

s

D
yn

am
ic

ar
ch

it
ec

tu
re

s
su

pp
or

t

Fu
nc

ti
on

al
w

it
ho

ut
de

si
gn

-t
im

e
kn

ow
le

dg
e

on
pr

ef
er

en
ce

s

G
en

er
ic

(H
yb

ri
d)

R1 R2 R3 R4 R5 R6 R7

Se
ar

ch
&

op
ti

m
iz

at
io

n

MADAM[146, 168] # # #

NA

MUSIC[359, 360] # # #

Moreno et al. [308] ? # #

Franco et al. [149] # # # #

PLASMA[398] # # ? # #

MOSAICO[72] # ? # #

SASSY[304] # # ? #

Hermes[352] G# ? # #

Le
ar

ni
ng

-
ba

se
d

Kim et al. [255] G# # ? #

FUSION[126, 129] G# # G#

IDES[194] # ? # #

Zhao et al. [437] ? # #

R
ul

e-
ba

se
d

Rainbow[90, 91, 93, 163] # ? # #

H
yb

ri
d Pandey[326, 327, 329] G# ? # G# G#

Caldas et al. [67, 132] # # # # # #

Qian et al. [348] # ? # # # #

Venus NA

HypeZon G# G#

208 related work

designed to combine specific policies and considers the policies as black-box. Therefore,
a generic hybrid planner is applicable for combining (coordinating) a variety of adapta-
tion policies.

A coordinating hybrid planning framework is proposed by Pandey et al. [326, 327,
329]. Among the hybrid solutions for self-adaptation investigated in this section, the
approach by Pandey et al. is closest to HypeZon, thus we discuss in more details
how we distinguish HypeZon from Pandey et al. The approach operates an MDP-
based (learning-based in [326]) planner in the background while a deterministic policy
adapts the system. The choice between different policies is based on time and quality
constraints. Adaptation triggers are detected via periodical evaluation of the system
utility. The approach supports concurrent executions of adaptation policies where an
optimization-based planner is continuously operating in the background. During adap-
tation, the hybrid planner checks in fixed intervals if the optimal policy has a plan.
If the optimal plan is not ready, the deterministic policy adapts the system. The em-
ployed off-the-shelf policies concurrently generate plans based on the current state. The
reactive, deterministic policy delivers timely plans based on a set of pre-defined tac-
tics while the optimization-based policy searches for a better quality plan followed by
a time-intensive optimization process. Upon delivery, the hybrid planner executes the
optimal plan and improves the quality of the adaptation.

While the idea of making a trade-off between timeliness and optimality is explored
by both Pandey et al. and HypeZon, we distinguish our work based on the following
grounds: in the approach by Pandey et al., due to concurrent execution of multiple
policies, the compatibility of the newly generated plans with the planning problem
is formally verified before execution. In order to guarantee the compatibility between
a plan and the planning problem, HypeZon only executes one policy at a time and
avoids concurrent executions of multiple policies. As a result, a planning problem that
is assigned to a policy remains unchanged during the planning time. This way, once
the plan is ready, HypeZon does not have to check if the plan is still applicable to the
current planning problem. This feature in HypeZon avoids the runtime overhead that is
caused by compatibility analysis between the planners. However, concurrent executions
of planners may reduce the time that hybrid planner has to wait until a plan is ready
as it allows for executing proactive policies in the background.

Pandey et al. use static thresholds on quality attributes of interest, e.g., response
time or performance, as triggers to switch between the adaptation polices. The hybrid
planner by Pandey et al. is proposed as an algorithm, thus as opposed to HypeZon,
does not require any specific architectural modifications to the conventional MAPE-K
loop and is realized in the planning phase of the adaptation loop—see Section 5.3.3.
Moreover, Pandey et al. do not support runtime adjustments of the control parameters
and consider look-ahead horizon and planning horizon with predefined and fixed sizes.
Executions horizon is not considered.

HypeZon is event-driven by reacting to the change events so that it avoids a continu-
ous utility evaluation to detect adaptation needs. A complete evaluation of the system
utility can be costly if the architecture is large. The adaptation loop realizing HypeZon

seeks timeliness by using techniques for the incremental detection of adaptation issues
and pattern-based computation of utility changes driven by change events. We com-
pute the impact of different adaptation plans (rules) at runtime regarding the change
events and plan the adaptation accordingly. Due to these characteristics of our scheme,
HypeZon supports scalability at runtime independent of the size of the architecture.

10.2 planning mechanisms for architecture-based self-adaptation 209

The solution by Pandey et al. continuously operates an optimization-based planner in
the background, thus delivers high-quality adaptation plans in terms of system quality
objectives as soon as the plan is ready. However, in the mean time, the hybrid planner
executes a deterministic, sub-optimal planner (R1). In essence, compared to developing
a hand-crafted planning solution, instantiating a hybrid solution that uses off-the-shelf
planners imposes lower cost in terms of development effort [see 63]. Therefore the so-
lution by Pandey et al. is cost-effective (R2). The solution is runtime efficient and the
hybrid planner is shown to outperform its constituent planners; the scalability of the
approach is not investigated and remains unknown (R3). Quality-cost trade-offs are ex-
plicitly captured (R4). The solution does not support dynamic architectures (R5) and
partially, for the reactive planner, requires detailed knowledge of user and system prefer-
ences to construct a utility function while the learning-based planner may operate based
on the knowledge acquired during the off-line training (R6). Finally, while the solution
by Pandey et al. is designed to particularly coordinate a deliberative optimization-based
and a reactive policy, it remains generic in terms of the policy specifications and treats
them as black-box, therefore, partially fulfills (R7).

Caldas et al. [67, 132] propose a hybrid solution for self-adaptation where they com-
bine control-theoretic principles to carry out an adaptation and evolutionary optimiza-
tion to find the best adaptation plan. The approach requires a goal model, defined
by the stakeholders, that captures system objectives regarding non-functional require-
ments. The adaptation process is realized in a two-layer architecture where the lower-
layer is a closed feedback control loop, implemented as a PI controller, that provides for
Monitor, Analyze, and Execution functionalities of an adaptation loop; the higher-layer
is responsible for decision-making and synthesizing adaptation plans to be executed
by the adaptation loop. The control parameters of the PI controller are tuned at run-
time and during an evolutionary optimization to guarantee optimal performance with
respect to runtime conditions. The adaptation loop processes change events to detect
the need for adaptation. The higher layer searches for the best plan by performing a
search-based heuristic to find best fitting values for a parametric formula, i.e., an alge-
braic equation evaluating a QoS property of the system at runtime. The correct values
for tunable parameters, i.e., granularity and offset (scope) of the search that affect the
success as well as the required time for the search algorithm, are discovered during an
evolutionary optimization process. Upon convergence, the selected plan is handed to
the lower layer for execution. The solution by Caldas et al. captures system quality objec-
tives as an algebraic formula that is optimized at runtime (R1). However, the optimality
has the burden of executing two evolutionary optimizers at runtime, thus the approach
is not cost-effective (R2). The performance and scalability of the adaptation and the
planner is not evaluated. The authors report that while using the parametric formula
reduces the size of the adaptation space in terms of complexity and time, the proposed
solution is still not free from problem of combinatorial state-space explosion (R3). The
solution does not explicitly capture quality-cost trade-off (R4). Dynamic architectures
are not supported (R5) and the approach requires user-defined preferences formulated
as the parametric formula that is optimized at runtime (R6). Finally, the approach is
designed to specifically combine control-theoretic formalism in the PI controller with
evolutionary algorithms for optimization, thus is not generic (R7).

Qian et al. [348] propose to combine goal-based reasoning and CBR for planning the
adaptations. Past experiences of successful adaptations are retained as adaptation cases.
When no similar past cases are available, goal reasoning is employed to provide adap-

210 related work

tation solutions requiring a goal model of the system. Violation of the system quality
attributes, e.g., response time, trigger an adaptation. Monitoring and analysis details
are not discussed. To plan an adaptation, the approach searches for similar adaptation
cases from the case base using CBR. When the observed conditions do not comply
with any of the existing recorded cases, an automated goal-based reasoning steers the
planning by identifying plans that adapt the system towards satisfying the violated
goals. If the adaptation is successful, i.e., quality requirements are now satisfied, the
adaptation solution is added to the case base as a new case. The automated goal-based
reasoning conducts a search in the space of possible configuration changes, i.e., plans,
and evaluates the satisfaction level of system goals by each plan. The plan yielding
the highest goal satisfaction score is selected for execution. The approach by Qian et
al. satisfies system quality objectives (R1) but conducts time-intensive CBS, thus is not
cost-effective (R2). The performance of the whole adaptation loop and scalability is not
investigated (R3). Quality-cost trade-offs are not captured explicitly (R4). Dynamic ar-
chitectures are not supported (R5). The approach requires design-time knowledge of
system objectives in the form of a goal model (R6) and is designed to combine specific
policies for planning, therefore, is not generic (R7).

10.2.5 Discussion

In this section, we investigated how state-of-the-art in planning mechanisms satisfy
the requirements for architecture-based self-adaptation introduced in Table 1.1. More
specifically, among the large body of work on mechanisms for self-adaptive systems,
we targeted works that are concerned with quality-cost trade-offs during planning. In
the following, we summarize the findings of this section.

R1: Solution satisfies system quality objectives at a desirable level
Majority of the approaches are concerned with providing adaptation plans that improve
system quality objective, e.g., MADAM/MUSIC, Moreno et al., Franco et al., Hermes,
Kim et al., FUSION, Zhao et al., Pandey et al., Caldas et al., and Qian et al. Among
these approaches, Hermes, Kim et al., FUSION, and Pandey et al. only partially offer
optimality guarantees while the rest guarantee to provide optimal adaptation plans in
terms of system quality objectives. PLASMA, MOSAICO, SASSY, IDES, and Rainbow
framework do not have any optimality gauntness. Three out of the four approaches that
employ machine learning during their planning satisfy the quality requirement (either
fully or partially).The solution by Kim et al. and FUSION may perform sub-optimally in
terms of system objective satisfaction until the RL learners converge. In general, guaran-
tees of convergence in learning-based methods are often not possible. The investigated
studies employ different forms of tabular RL, e.g., Q-learning; for this class of learning
methods convergence can be guaranteed. However, the learner is bound to sub-optimal
performance until the learning is complete. In case of Zhao et al., the approach uses an
off-line trained model for planning until the online learner converges. Learning-based
approaches, however, often suffer from scalability and high adaptation cost in terms of
resources and time.

Our investigation revealed that the search and optimization-based solutions, dis-
cussed in Section 10.2.1, while primarily aim at maximizing quality objective satis-
faction, often cannot provide optimality guarantees, e.g., PLASMA, MOSAICO, and

10.2 planning mechanisms for architecture-based self-adaptation 211

SASSY, or only have partial claims, e.g., Hermes. This is partly attributed to the com-
plexity of the large adaptation spaces for highly configurable systems where, for certain
search and optimization techniques, local optima and state-space explosion is inevitable.
Given the assumptions listed in Table 4.1, Venus provides optimality guarantees by
pursuing a greedy optimization before each adaptation, where runtime context of the
change events are used to estimate the impact of the applicable adaptation rules on
system utility and cost. Venus employs a utility functions (utility-change prediction
models) to compute (estimate) the impact of the adaptation rules at runtime. While the
values for the parameters of the utility function are captured and updated at runtime,
the function itself is defined (trained) at design time (off-line).

Rainbow, as the only static, rule-based solution investigated in this chapter, selects the
adaptation plans that maximize the system utility, however, due to employing design-
time estimates of adaptation rule (tactic) impacts on system utility, optimality claims are
not supported by the framework. Venus is distinguished from deterministic solutions
such as Rainbow as the runtime context of the adaptation rules in Venus is considered
in estimating their impact on system utility. Additionally, the execution of adaptation
rules in Venus is event-based (ECA rules) rather than state-based. Hence the adapta-
tion rules capture the change events instead of being pre-assigned to certain system
configurations. In our approach, each adaptation rule has an initial condition, enabled
by a change (event) in the system. This condition needs to be satisfied, so that the
rule becomes applicable. However, the condition does not provide enough information
to drive the adaptation process. Thus, in contrary to rule-based approaches such as
Rainbow, Venus dynamically assigns applicable rules to issues based on the runtime
estimations of their costs and impacts on the utility using relevant fragments of the
RTM that provides the system state.

Regarding hybrid approaches, Pandey et al., similar to HypeZon, employ a coordi-
nating planner that coordinates off-the-shelf policies, thus optimality claims are only
applicable to intervals where the optimization-based solution is in charge of the plan-
ning. The remaining hybrid solutions, i.e., Caldas et al. and Qian et al., deliver adapta-
tion plans that are the outcomes of runtime search and optimization processes. In the
context of HypeZon, optimality claims are only partially supported, i.e., when runtime
circumstances allow HypeZon to execute the optimization-based policy.

R2: Solution is cost-effective
Reducing the adaptation cost is a first-class entity in several of the approaches; examples
are Moreno et al., MOSAICO, HERMES, IDES, Zhao et al., Rainbow, and Pandey et al.
An important observation is that, apart from Venus, only two approaches, i.e., Moreno et
al. and Zhao et al., simultaneously satisfy the quality satisfaction requirement R1 and
tend to operate cost-effectively—see Table 10.1. This is of course to be expected as the
quality and cost of the adaptation are contradiction objectives—see [137, 214]. Achieving
high quality adaptation plans often requires an exhaustive search in the possible adap-
tation space which renders attainment of optimal adaptation plans time-intensive [85].
While reactive condition-based solutions for adaptation deliver adaptation plans timely,
e.g., MOSAICO and Rainbow, they often cannot guarantee to provide the optimal so-
lutions. Additionally, solutions that execute expensive optimization at runtime, e.g.,
MADAM/MUSIC, Franco et al., Kim et al., FUSION, Caldas et al., and Qian et al.,
can manage to find the optimal configuration but there is no guarantee to reach the
result within a reasonable time. Among the learning-based solutions discussed in Sec-

212 related work

tion 10.2.2, the IDES framework extends Rainbow, thus inherits its cost-effective design
and execution. Zhao et al. leverage an off-line training step, thus avoids the cold start
issue affecting the performance of online learning solutions.

Among the hybrid solutions discussed in Section 10.2.4, only Pandey et al. and Hy-
peZon have a cost-effective approach for self-adaptation while executing time-intensive
optimization algorithms at runtime prevents Caldas et al. and Qian et al. to exhibit cost-
effective adaptation. In this context, as marked in Table 10.1, we consider HypeZon,
similar to the coordinating hybrid planner by Pandey et al., a cost-effective solution
for adaptation because both approaches employ off-the-shelf polices for planning, thus
compared to alternative solutions that design a planner from scratch, impose minimal
design and development effort. HypeZon is a generic hybrid planner that can coordi-
nated arbitrary adaptation policies and its application is not limited to the two show-
case, rule- and optimization-based policies demonstrated in this thesis.

R3: Solution is scalable
Scalability of the adaptation solutions is the most neglected requirement and has only
been partially evaluated in FUSION. Remaining of the studies, while in part report-
ing on the performance of the planning or the whole adaptation loop, either do not
report about the scalability, e.g., Moreno et al., PLASMA, MOSAICO, SASSY, Hermes,
Kim et al., IDES, Zhao et al., Rainbow, Pandey et al., and Qian et al., or explicitly
report that their approach cannot be executed in a scalable manner, e.g., MADAM/-
MUSIC, Franco et al., and Caldas et al. Venus has been extensively stress-tested and
evaluated for scalability across different architecture sizes, input trace complexities,
and different application examples in Section 7.3.1, Section 7.4.1, and Section 7.5.2.
In Section 9.3.3 we have investigated HypeZon for scalability. In the context of Hy-
peZon, while being integrated in an incremental adaptation loop where each activity
is executed in an event-based manner, unlike Venus, making scalability claims is not
straight forward, as the performance of the hybrid planner depends on the one of
its constituents. In this thesis, enabled by model-driven adaptation, state- and event-
based principles are explored for incremental adaptation, thus the adaptation mecha-
nism demonstrates scalability and runtime efficiency for large and dynamic software
architectures with growing size and complexity. Scalability in our solutions is achieved
through incremental processing of adaptation activities and leveraging the locality in-
formation of the changes affecting the self-adaptive software.

In our earlier work [176, 177], by means of an SLR, we identified a set of required
improvements in evaluation of self-healing systems. Our findings revealed that while
majority of the investigated work with performance claims use simulation-based evalua-
tions, only a few studies properly evaluate the self-adaptive software based on input rep-
resenting a realistic operation context. This entails evaluation of the proposed solution
with multiple input traces with volatile characteristics in their simulated evaluations—
see Section 6.3 for a detailed discussion. Our findings in [176, 177] suggested that proper
design and evaluation of self-adaptive software still remains an open issue, since critical
elements for the design space of a self-adaptive system under evaluation, as identified
by [270], are often missing. The result of investigating R3 in the state-of-the-art on so-
lutions for architecture-based self-adaptation in this section is inline with our previous
findings in [176, 177]. This phenomenon is captured and addressed in this thesis via im-
plementing an evaluation methodology based on the results of our SLR—see C8 in Sec-
tion 1.4.

10.2 planning mechanisms for architecture-based self-adaptation 213

R4: Solution explicitly captures quality-cost trade-off policies
The trade-off between the quality and cost of the adaptation is often explicitly captured
via a form of an objective (utility function) or a goal model, e.g., MADAM/MUSIC,
Moreno et al., Franco et al., MOSAICO, SASSY, Hermes, FUSION, IDES, Rainbow, and
Pandey et al. Approaches that achieve a cost-effective solution, captured by R2, consider
an explicit encoding of cost in the objective function, e.g., Moreno et al., MOSAICO,
Hermes, IDES, Rainbow, and Pandey et al. The only exception is Zhao et al., where the
authors use off-line training for the planner to avoid a time-intensive learning process
at runtime, thus achieving cost-effective execution while the adaptation cost is not con-
sidered as a defining factor during planning and therefore is not explicitly captured by
the utility function that defines system reward for learning.

In Venus and HypeZon, we employ utility functions to steer the adaptation. Our
notion of pattern-based utility definition, introduced in Section 3.1, allows us to not
only use utility values to capture system quality attributes, e.g., performance and re-
sponse time, but also capture the cost of each adaptation rule that yields the envisioned
improvements. Additionally, we consider the estimated execution time of individual
adaptation rules, i.e., adapting the software, during planning—see Section 4.3.4 and Sec-
tion 5.3.3. In this thesis, we do not distinguish between the execution time and latency
of rules, i.e., the time until an adaptation affects the system after its execution, as we
assume immediate adaptation effects (repairs). To explicitly consider latency, similarly
to Moreno et al., the latency of each adaptation rule needs to be estimated and then
added to the execution cost of the rule.

R5: Solution supports dynamic architectures
Adaptable software with dynamic architectures are prone to evolution during system
execution, thus adaptation complexity is subject to change [321]. MADAM/MUSIC,
PLASMA, SASSY, Kim et al., and FUSION support adaptation of dynamic architectures.
However, all five approaches provide flexible planning accommodating the runtime re-
quirements of dynamically evolving architectures at the price of time-intensive plan-
ning. Our investigation on the treatment of the adaptation cost (R2) revealed that the
five solutions that support adaptation of dynamic architectures are not cost-effective—
see satisfaction of cost (R2) and support for dynamic architectures (R5) in Table 10.1. We
attribute this observation to the employed mechanisms by the approaches to provide
for runtime flexibility and architecture evolution. PLASMA employs a varinat of online
planning based on model-checking where architecture evolution is considered before
generating plans. SASSY executes a hill-climbing heuristic during software execution
and allows for architecture evolution. MADAM/MUSIC use the runtime context to up-
date weights of a utility function. Kim et al. and FUSION employ online learning for
planning where dynamic architecture models are catered. In this thesis, we primarily
target dynamic architectures—see C2 in Section 1.4—that may change in size and com-
plexity by considering the architectural RTM of the adaptable software as a graph, con-
sequently, defining utility functions, adaptation rules, and adaptation issues as graph
patterns that may easily be modified or extended to support architecture evolution.

R6: Solution addresses problem of initially unknown runtime knowledge of user
and system preferences

214 related work

Similar to this thesis, R6 is satisfied by approaches that support systematic acquisition
of utility prediction models for black-box systems where prior knowledge is missing or
becomes invalid at runtime. Such approaches use machine learning to either train off-
line, e.g., Zhao et al. or learn online, e.g., Kim et al. and FUSION, predictors for the
effect of the adaptation decisions on the system utility and reward. These solutions ad-
dress the problem of initially unknown runtime knowledge to support adaptation. The
remaining solutions require the developer to provide a form of utility function based
on detailed knowledge of the user or system preferences for every specific adaptation
decisions necessary to restore the system to the desired states. As a result, these solution
cannot be deployed on black-box systems. In Section 3.3, we presented a methodology
to train utility-change prediction models for complex, highly configurable systems or
systems with a black-box model where it is often not trivial to obtain the relevant val-
ues to manually construct a utility function. The adaptation loop then, executing either
Venus or HypeZon, may use the prediction models to estimate the impact of the adap-
tation rule applications on system utility when a manually constructed utility function
is not available.

R7: Hybrid solution is generic
Similarly to HypeZon, Pandey et al. propose a coordinating hybrid planner for off-

the-shelf policies. However, while the design of HypeZon is independent of its con-
stituent policies, the solution by Pandey et al. requires the policies to conform to two
specific categories of formalisms, i.e., reactive policies with cost-efficiency guaranties
and optimization-based policies with quality guarantees. Therefore, their approach can
be considered generic in a sense that despite the constraint on the policy type, the
hybrid planner is designed to coordinate arbitrary policies of the expected type and
considers them as black-box planners. However, the said constraint limits the applica-
bility of the proposed solution by Pandey et al. to the specified categories. The other
two hybrid solutions, i.e., Caldas et al. and Qian et al., are designed around specific
policies and cannot be generalized for arbitrary policies. We distinguish HypeZon from
Caldas et al. and Qian et al. on the ground that the main focus in HypeZon is on the
orchestrating entity, i.e., the realization of the decision-making mechanism within the
hybrid planner. HypeZon has the characteristics of a generic hybrid planner since it con-
siders the employed adaptation policies as a black-box, thus can coordinate arbitrary
adaptation policies.

10.3 prediction model acquisition mechanisms

In this section, we discuss the related work for our approach to train prediction mod-
els for utility-change introduced in Section 3.3. The scope of the related work in this
section is not limited to the research field of self-adaptation and autonomic comput-
ing. The reason is that, as also confirmed by Gheibi et al. in their 2021 SLR [182], only
four studies, including our work [175], are concerned with addressing the problem of
initially unknown runtime knowledge to support adaptation [348, 384, 402]. We deem
the work by Qian et al. [348] slightly irrelevant to this list since, as discussed earlier
in Section 10.2.4, the approach requires a user-defined goal model that captures system
objectives and desired satisfaction levels, thus does not employ black-box performance
models as the other three studies.

10.3 prediction model acquisition mechanisms 215

Skałkowski et al. [384] and Tesauro et al. [402] use model-free RL to train predic-
tion models for action selection at runtime. Skałkowski et al. use RL during system
execution to discover adaptation actions that best satisfy system objectives, however,
they only provide early state research and offer proof-of-concept implementation and
do not report on runtime performance and quality of the adaptable software as well as
the learning mechanism. Tesauro et al. propose an RL-based solution where an off-line
training supports the runtime decision-making to identify management policies.

Runtime planning heavily depends on accurate performance reasoning. Black-box
performance models have been proven to ease understanding, debugging, and opti-
mization of configurable systems. Additionally, growing complexity of software sys-
tems makes the software reconfiguration challenging as complex software architectures
have considerably large number of configuration attributes that can be modified, mak-
ing the system highly configurable [383]. The exponential configuration space, complex
interactions, and unknown constraints make it difficult to attribute system performance
to different parameter configurations via a white-box performance model.

In the context of performance reasoning, model-based performance prediction tech-
niques have been vastly practiced [23, 33]. Time series techniques are applied for pre-
dictive modeling of response time [29]. Machine learning methods have been used to
model online QoS for cloud-based software services [85] and virtualized applications
[23]. Esfahani et al. propose a generic feature-oriented methodology to reduce the di-
mensions of the configuration space [129]. In this thesis, although we do not propose
a solution for feature selection, we avoided this problem by allowing the decision trees
to perform it automatically. Performance prediction and reasoning have also been used
extensively in control theory [see 138]. Kim et al. [255] employ RL for online planning.
Filho et al. [136] propose an online, unsupervised learning as a model-free solution to
explore alternative system assemblies and Porter et al. [341] use online learning to steer
adaptation at runtime. Online learning solutions suffer from challenges such as scala-
bility and cold starts. In this thesis, we opted for off-line learning which allowed us to
exclude problems of scalability and cold start.

Angelopoulos et al. [10] use machine learning to cope with dynamics that cannot
be captured by the analytical model, as a result of migrating from the simulator to
the real system. Tesauro et al. [401, 402], briefly discussed above, propose a hybrid
approach that combines queuing network with RL to make resource allocation decisions.
In multi-agent domains, the state space or configuration space is assumed to be fully
discoverable, while in the field of self-adaptive systems this space can be extremely
large and as pointed by Elkhodary et al. [126], the computational cost of the search for
an optimal architectural configuration increases exponentially. We tackled this problem
by systematically covering the configuration space via running a random simulator to
generate data and using complex functions with high variability as ground truth.

Standard machine learning techniques, such as support vector machines, decision
trees, and evolutionary algorithms have been tried to acquire performance models [61,
125, 219, 433]. These approaches trade simplicity and understandability of the learned
models for predictive power [182]. Other automated planning techniques, e.g., transfer
learning [325] and genetic algorithms [97], have been explored to generate adaptation
plans at runtime. Neural networks and deep learning have also been successfully ap-
plied in many settings, including dynamic programming for expectation maximization
[431] and learning hierarchical representations [361]. Nevertheless, they suffer from

216 related work

many problems, e.g., hyperparameter optimization, overfitting, scalability issues, and
are not well-controlled learning machines [407].

In transfer learning, system learns a prediction model from previous experiences
on cheaper sources, e.g., a simulator of the real system, with lower costs to accelerate
model learning and the experience is then transferred to the real system at a later point
in time. This technique has been explored for configuration optimizations by exploiting
the dependencies between configurations attributes. Jamshidi et al. [232] employ trans-
fer learning where a simulator of the real system is used to generate cheap samples and
a regression model is used to learn the relationship between simulator and real system.
A cost model is defined to transform the traditional view of model learning into a multi-
objective problem that considers model accuracy and measurement effort. Similarly, this
thesis also aims at learning the prediction models for self-adaptive systems, but in ad-
dition, we also propose a methodology that generates and selects models without the
need to run a real system. Ultimately, in preference learning [see 318], the goal is to
learn a utility function when the user preference information is uncertain. Conversely,
we do not require knowledge of user preferences or system internal performance model
to learn the system utility.

This thesis is concerned with model learning where sampling is a defining factor. Ran-
dom sampling is known to be the proper way to collect unbiased data but it requires
large sample set—see [383]. When sufficient data is not available, sparse sampling meth-
ods such as Box-Behnken and Plackett-Burman have been practiced in context of exper-
imental design to ensure certain statistical properties [195]. Sarkar et al. [368] determine
optimal sampling via considering cost as an explicit factor. Ye et al. [432] employ Recur-
sive Random Sampling (RRS) which integrates a restarting mechanism into the random
sampling to achieve high search efficiency. Employing a simulator makes it affordable
to have large volumes of training data for machine learning. In this thesis, we employ a
random adaptation policy to systematically generate unbiased data and broadly explore
the configuration space of the adaptable software.

10.4 summary

In this chapter, we investigated the related work in three categories; Section 10.1 dis-
cussed our approach to developing a solution for architecture-based self-adaptation in
comparison with the landscape of techniques for development of self-adaptive software,
where the artifact of concern is the software architecture. Our work was shown to be
well inline with the state-of-the-art regarding employing some form of software model
during development of the solution and at execution time. Our realization of an adap-
tation engine uses causally connected RTMs leveraging MDE techniques to support
consistent co-evolution of the software architecture and its RTM. While the technical
contributions of this thesis, i.e., HypeZon and Venus, mostly concern the Analyze and
Plan activities of the MAPE-K feedback loop, leveraging the incremental Monitor mod-
ule from Vogel et al. [418], the contributions are embodied in a MAPE-based adaptation
engine that is executed incrementally. Enabled by model-driven adaptation, this thesis
explores both state- and event-based principles for incremental adaptation, thus the
adaptation mechanism demonstrates scalability and runtime efficiency for large and
dynamic software architectures with growing size and complexity. This way, this thesis
offers supporting mechanisms for efficient execution of the adaptation loop.

10.4 summary 217

Section 10.2 discussed the related work regarding their treatment of quality-cost
trade-off in architecture-based adaptation of software systems. The state-of-the-art was
investigated against a list of six requirements, driven from literature, for the problem
at hand. An additional requirement R7 was added in this chapter for hybrid solutions.
Venus covers all of the requirements in contrast to the state-of-the-art. Embodied in
an incremental framework for execution of the MAPE-K loop activities, Venus brings
together the timeliness and cost-effectiveness of the adaptation rules and the high qual-
ity of utility-based optimization, thus satisfies R1 and R2. Furthermore, owing to the
event-based detection of the adaptation triggers followed by incremental execution of
the Analyze and Plan activities, Venus provides for a scalable and runtime efficient
solution, thus satisfies R3. Scalability of Venus is its most notable feature that has been
extensively investigated in this thesis. One of the major contributions in this thesis,
leveraged by both Venus and HypeZon, is the unique way of defining utility values for
architectural patterns. Analogously, defining ECA rules as graph transformation rules
where the LHS captures matches for issues in the RTMs, utility values are mapped to
the matches of the rules. Thus, runtime context, including cost of the adaptation rules,
is considered in calculation of utility values satisfying R4. Venus stands out among the
state-of-the-art regarding its efficient execution and support for large, dynamic architec-
tures with growing size and complexity R5. Finally, the adaptation engine proposed in
this thesis my leverage utility-change prediction models that are constructed during an
off-line training phase and executed at runtime. Consequently, the non-trivial process
of utility elicitation for complex and black-box systems can be addressed R6.

HypeZon offers only partial coverage to some of the requirements, i.e., R1 and R3,
but still performs relatively better in comparison to the state-of the-art. As a coordi-
nating hybrid planner, the quality and scalability features of HypeZon are determined
by its constituting polices. Therefore, while the incremental adaptation loop embodying
HypeZon supports scalable execution, we cannot guarantee this feature for HypeZon in
general as it is dependent on the execution complexity of the off-the-shelf policies that
are coordinated by HypeZon. The same arguments apply for the quality of the adapta-
tions performed by HypeZon. Similar to Venus, HypeZon builds on the unique features
of the general MAPE-K loop realization in this thesis, thus satisfies R4., R5., and R6 on
the same grounds as Venus that we discussed above. Finally, HypeZon is designed as a
generic hybrid planner to coordinate arbitrary policies (R7); the scheme focuses on the
coordinating mechanism, rather than the inner-workings of the off-the-shelf- policies.

Section 10.3 discussed the related work for our methodology to obtain prediction
models for utility-change values. In this thesis, we introduced an off-line learning-based
solution whereby, provided randomly generated training data, three different model-
free learners were employed to learn prediction models for rule-based adaptation. Our
solution, in comparison to the state-of-the-art, has the following points of strength: the
solution is off-line, thus does not introduce any runtime overhead during software adap-
tation allowing us to exclude problems of scalability and cold start. However, dynamic-
ity of the software architecture and its context might render the learned models out of
context, thus demanding the models to be re-trained. The choice of learning algorithms
has been made such that hyperparameter optimization is automated. The solution is
distinguished from the state-of-the-art as we mitigated the common issues of overfit-
ting via employing ensemble machine learning methods, i.e., building a collection, or
an ensemble of learners, as apposed to employing a single strong predictive model, for
data-driven modeling tasks and combining their predictions.

218 related work

Overall, this thesis goes beyond the state-of-the-art in architecture-based software
self-adaptation by putting forward two alternative solutions, varying in expressiveness
and development effort, while addressing the requirements for software self-adaptation
relatively well. In contrast to existing approaches that often provide either high quality
or cost-effective solution for software adaptation, this thesis fulfills both requirements in
a scalable manner while supporting dynamic architectures as well as black-box systems.

11
C O N C L U S I O N A N D F U T U R E W O R K

11.1 conclusion

We described the scope of the problem that is addressed by this thesis via a set of re-
quirements for architecture-based self-adaption of software systems (summarized in Ta-
ble 1.1). The solution is required to satisfy the system quality objectives at a desirable
level (R1) and in a cost-effective manner (R2). Being concerned with the adaptations
of large and highly configurable software systems, the solution should be scalable to
cope with the complexity caused by the possible combinatorial explosion of the solu-
tion space (R3). To address the systematic development of self-adaptive software that is
capable of maintaining multiple quality objectives, cost-effectively and at runtime, we
need models that explicitly capture the quality-cost trade-off policies in the adaptation
mechanism (R4). Such an explicit model enables the engineers of the adaptable systems
to decide on how to reflect on the quality-cost trade-off according to the runtime con-
dition. Adaptable software with dynamic architectures are expected to evolve during
system execution, thus the solution is required to support dynamic architectures (R5).
The runtime uncertainty affecting the self-adaptive software hinders the expectation to
have an omniscient decision-maker that knows user/system preferences at any given
time and under different operation conditions. The solution should address the problem
of initially unknown runtime knowledge of user and system preferences (R6).

This thesis addresses these requirements via a twofold solution for incremental self-
adaptation of dynamic software architectures based on (i) design-time combination
(Venus) and (ii) runtime coordination (HypeZon) of rule- and optimization-based for-
malisms of adaptation policies. The proposed approaches build on the notion of pattern-
based utility to evaluate dynamic architectures. Venus is a utility-driven rule-based
scheme for engineering self-adaptation of large dynamic architectures. The scheme com-
bines Event-Condition-Action (ECA) rule- and optimization-based formalisms in its de-
sign. The rule-based approach defines failures or performance issues that can be directly
identified and localized as faults or bottlenecks in architectural Runtime Model (RTM);
the RTMs are then evaluated by assigning utility values to fragments of the architecture
(patterns). Consequently, the impact of the rule applications on the RTM can be mapped
to utility values. In addition to considering the expected impact of the adaptation rules
on utility, the cost of the rule applications affect the decision-making in Venus, thus the
scheme obtains optimal adaptation decisions that maximize the utility (R1) in a cost-
effective manner (R2). Scalability in Venus is achieved through incremental execution
of the adaptation loop activities. Incremental processing of the changes are supported
via leveraging the locality information of the change events, thus avoiding the search in
possibly large adaptation spaces (R3). Leveraging utility functions to steer the adapta-
tions, Venus explicitly captures the quality-cost trade-off policies (R4). As a result, the
utility values capture system quality attributes, e.g., performance and response time,
but also capture the cost of each adaptation rule that yields the envisioned improve-

219

220 conclusion and future work

ment. Dynamic architectures are supported via realizing the architectural RTMs of the
software as graphs that are then evaluated using our novel approach for pattern-based
utility and are modified using graph-transformation rules (R5). The problem of ini-
tially unknown knowledge of user and system preferences is addressed via proposing
a methodology to systematically train utility-change prediction models for black-box
systems (R6).

The second part of the solution is HypeZon. HypeZon complements Venus by bal-
ancing the quality-cost trade-off in software self-adaptation via runtime coordination of
off-the-shelf policies. HypeZon is integrated in our incremental adaptation engine and
offers an alternative solution for the Plan activity of the adaptation loop. The scheme
supports cost-effective achievement of system quality objectives while, compared to so-
lutions such as Venus, reduces development cost, since it omits the effortful process
of developing new algorithms/heuristics from scratch (R2). However, hybrid solutions
are by definition bounded by their individual constituent approaches in terms of cost
and quality. Conforming to meta-self-aware architectures, we proposed two designs
for HypeZon that support explicit separation of concerns, i.e., adaptation and policy
coordination, at the architecture level; as a result, reusability, easier maintenance, and
independent evolution of each level are supported in HypeZon. This allows for separate
mechanisms for observing and reasoning logic to be employed by each level. HypeZon,
analogously to Venus, is integrated in an incremental adaptation engine, thus supports
incremental execution improving scalability (R3). HypeZon satisfies the requirements
for architecture-based self-adaptation listed in Table 1.1 on the same grounds as Venus

with two exceptions; the quality (optimality) and scalability guarantees in HypeZon,
i.e., R1 and R5 respectively, depend on its constituent policies. Finally, HypeZon is a
generic hybrid planner, i.e., it considers the individual policies as black-box and can
coordinate arbitrary policies (see R7 for hybrid solutions in Table 10.1).

The majority of the planning mechanisms for architecture-based self-adaptation ei-
ther provide optimality guarantees regarding system quality objectives (R1) or are cost-
effective (R2). The few exceptions that satisfy both the quality and cost requirements do
not consider adaptations of large and dynamic architectures (R5). The state-of-the-art
offers only partial solutions for quality-cost trade-off without providing any support-
ing evidence for scalability of the proposed solutions (R3). The trade-off between the
quality and cost of the adaptation is often explicitly captured via a form of an objec-
tive (utility) function or a goal model (R4). Furthermore, apart from few exceptions,
the planning mechanisms rely on availability of a well-defined and representative util-
ity (reward) function that captures the runtime knowledege on the preferences (R6). In
contrast to other proposals for architecture-based self-adaptation, Venus satisfies the
quality and cost requirements of software adaptation and in a scalable manner. The
unique way of defining utility values for architectural fragments in the architectural
RTM in combination with pattern-based realization of the adaptation issues and of the
adaptation rules results in efficient and scalable execution of Venus over large and dy-
namic software architectures with increasing adaptation complexity. Therefore, Venus

goes beyond the state-of-the-art in providing guarantees for optimality, cost-efficiency,
scalability, and support for dynamic architectures. Furthermore, we extended the con-
ventional supervised learning methods and developed a systematic methodology to
train prediction models for changes of utility during adaptation. As a result, in contrast
to the majority of the related work, both Venus and HypeZon may operate on systems
with black-box models where prior knowledge is not available or becomes obsolete.

11.1 conclusion 221

HypeZon contrasts the existing hybrid solutions for software self-adaptation because it
offers explicit design at the architecture level and is designed to be generic and indepen-
dent of the inner-workings of its individual constituent policies. Finally, in the context
of re-engineering and using our solution, this thesis contrasts the existing work on two
grounds: (i) it provides two complementary solutions for addressing the quality-cost
trade-off; (ii) it decouples the design and engineering of the utility function element
from the elements of the feedback loop. The former provides the user of our solutions
to select the adaptation scheme that fits the complexity of the problem at hand; the
latter allows the engineers to freely construct their desired utility function module as
long as it complies to the provided input and required output format for rule-based
systems—see Figure 1.2 for an overview of the utility function building block and the
adaptation engine.

Therefore, this thesis makes the following contributions to the state-of-the-art in
architecture-based self-adaptation of software systems. C1: incremental execution of
the adaptation loop, thus attaining scalability. Both Venus and HypeZon are integrated
in an adaptation engine that leverages state- and event-based principles to enable in-
cremental adaptation. Event-based execution of the adaptation loop activities allows
for only processing the changes, rather than the complete state, while the architec-
tural RTM provide system state as context, thus supporting cost-effective execution
of the adaptation and attaining scalability. C2: defining pattern-based utility functions
for dynamic architectures. Via introducing the notion of pattern-based utility, utility
values are defined for graph patterns that represent architectural fragments. Pattern-
based utility supports incremental computation of impact of rule applications on the
utility by constraining the computation effort to the modified architecture fragments.
Consequently, dynamic architectures are evaluated with respect to the present positive
and negative architectural utility patterns. C3: training utility-change prediction models
for rule-based self-adaptive software. The problem of initially unknown knowledge to
support adaptation is addressed via a methodology to systematically train prediction
models for utility-changes in rule-based, self-adaptive software systems. The standard
supervised learning process is modified and extended to find a proper approximation
for the analytical utility-change function by means of prediction models. C4: combin-
ing rule- and optimization-based formalism of adaptation policies at design time, thus
bringing together their benefits, i.e., timeliness and scalability of the former and opti-
mality of the latter. The pattern-based characterization of adaptation rules and utility
functions allows Venus to map rule applications to utility values; consequently, Venus

can compute (predict) the impact of each rule application, in terms of utility and cost,
during planning. C5: an optimal solution for self-adaptation with negligible runtime
overhead. For a class of adaptation problems that satisfy the greedy choice property,
Venus guarantees optimality of system utility and reward. Capturing the adaptation de-
cisions via ECA rules, pattern-based characterization of runtime issues, rules, and util-
ity values over architectural RTM, and finally, incremental execution of the adaptation
loop activities, collectively, contribute to a solution that introduces negligible runtime
overhead. C6: a robust solution. Venus is a robust approach, i.e., it consistently shows
timeliness (high performance), scalability, high utility, and effectiveness in the presence
of exceptional inputs, stressful environmental conditions, and even during violation
of its validity assumptions. C7: a generic scheme for hybrid self-adaptation. HypeZon

uses off-the-shelf policies for adaptation and balances the quality-cost trace-off during
adaptation via runtime coordination of multiple policies. HypeZon is intended for the

222 conclusion and future work

fragment of adaptation problems that either do not satisfy the greedy choice property,
thus render Venus sub-optimal, or when Venus is deemed as over-engineering solution
for the problem at hand. C8: coverage of a wide spectrum of self-adaptation problem
space beyond the state-of-the-art. The solutions in this thesis are evaluated according
to an evaluation methodology derived from our Systematic Literature Review (SLR) on
self-healing systems. The methodology entails the evaluation of the solutions across a
large and diverse set of input traces to verify the generalizability and conclusiveness of
the results.

To provide evidence for the contributions of the thesis, we assessed the impact of
the incremental execution of the adaptation engine on the runtime performance and
scalability of the adaptations. We comprehensively evaluated Venus with respect to
the quality attributes of performance, scalability, optimality, and robustness. We in-
vestigated the impact of hybrid planning and different designs for HypeZon on the
quality and cost of the adaptation. To assess the generalizability of the results, large
variety of the input traces were used across different architecture sizes. The solutions
were instantiated to several self-adaptation problems based on two different applica-
tion examples. Venus was compared with several alternative solutions for planning
and HypeZon was compared against an alternative solution for hybrid planning. We
discussed how Venus and HypeZon fulfill the requirements for architecture-based self-
adaptation. Finally, we systematically evaluated the proposed methodology for training
prediction models and assessed the quality and the performance of the methodology,
of the prediction models, and of the model selection mechanism. The results from the
evaluations indicate that: (i) we have achieved an incremental adaptation engine that
can integrate arbitrary planning mechanisms and improves the base-line for the execu-
tion time. (ii) We have achieved in this thesis an optimal, cost-effective, scalable, and
robust approach for self-adaptation of large and dynamic architectures with Venus. (iii)
We have trained utility-change prediction-models for rule-based systems that can ap-
proximate an analytically-defined optimum with minimal error. (iv) We have achieved
with HypeZon a generic and cost-effective hybrid approach for self-adaptation of large
and dynamic architectures that improves the quality and timeliness of the adaptation.

11.2 future work

This section presents the outlook for the future work of the thesis. We outline the as-
pects that are the logical next steps to either realize the full potential of the current
contributions or to address the existing limitations.

11.2.1 Learning

Closing the loop with online learning. Regarding the methodology to train utility-
change prediction models, a natural next step is extending it to online learning. Online
learning consists of training the system after deployment, with the intent of restoring
the prediction accuracy of a machine learning component, i.e., the utility-change pre-
diction models. The current limitation of our solution is that evolution of the adaptable
software or its context might render the prediction models obsolete at some point dur-
ing the software lifetime. The extension would entail closing the learning loop in the
proposed methodology. This way, the accuracy of the prediction models are continu-

11.2 future work 223

ously evaluated during system execution and re-training of the models can be initiated
upon a certain prediction error threshold. Extending the methodology towards online
learning require methods that support modularity in learning and account for data spar-
sity [231] and catastrophic forgetting [256]. Modularity entails part-wise training of the
prediction models and only involves parts of the models that need to be improved. Data
sparsity makes the online learning in self-adaptive systems challenging. The reason is
that in the context of self-adaptive systems, and more specifically, self-healing systems,
the runtime failures are in essence rare events to the extent that certain runtime issues
might occur seldom during the software lifetime. Finally, catastrophic forgetting is the
tendency of the learners to abruptly and drastically forget previously learned informa-
tion upon learning new information. In the direction towards online learning, selecting
the learning method should be based on these concerns. Some of the mitigation tech-
niques comprise domain generalization [439] and its extensions based on techniques
like meta-learning [411], domain adaptation [428], and representation learning [371].
Extending the scope of learning. In this thesis, we learned the impact of the adaptation
rules on system utility, i.e., utility-change. In addition to the changes of utility, aspects
such as the synthesis of new rules should be explored, thus extending the subject of
learning. The rules in our instantiation of rule-based systems constitute the atomic units
of change to a software architecture, therefore, software evolution might modify the ar-
chitecture in ways that new kinds of change are applicable; this requires the addition
of new rules. In turn, learning new rules requires data on how to change the system.
This data should be in the form of (input, output) that result from observing the system
before (input) and after (output) the change. This data is referred to as meta-data that is
observable from a higher-level, i.e., meta-level. This includes using meta-learning meth-
ods. Meta-learning involves defining the meta-data to learn a new task/phenomenon
by generalizing from existing ones in an unsupervised manner using reward functions
learned from data [212].

11.2.2 Venus

Software improvement We have presented our contributions, i.e., utility functions and
planning mechanisms, as building blocks of (or attached to) a MAPE-K-based adapta-
tion engine that is engineered to support incremental execution. Building a self-adaptive
system is a costly proposition if the important components such as the incremental mon-
itoring, incremental analysis, and incremental execution have to be built from scratch.
For this reason, improving the implementation to be presented as a framework with
shared infrastructure for Monitor, Analyze, and Execute activities is beneficial. This
process would promote reusability of incremental adaptation functionalities and reduce
the cost of achieving self-adaptation for arbitrary self-adaptation policies that may be
used as plugins to implement the Plan functionality.
Extending applicability of Venus. The presented adaptation scheme has limitations
that should be addressed in future work. The limitations refer to the validity assump-
tions for Venus. Future extension of Venus should explore whether similar or suffi-
ciently good, i.e., not necessarily optimal, results can be achieved by relaxing these as-
sumptions. This direction has already started in the thesis by relaxing assumption (A2)
(see Table 4.1) with probabilistic adaptation rules. As next steps, relaxing assump-
tions (A3b) and (A4) could be explored. Relaxing assumption (A3b) entails support

224 conclusion and future work

for the case where applying rules in Venus impacts the applicability of other rules.
Relaxing assumption (A4) entails support for cases where executing a rule affects the
impact of executing another rule on the overall utility. As a result, Venus would support
dependencies among the adaptation rules. Regardless whether on the rule applicability
level or rule impact on utility. This way, the applicability of Venus can be extended to
software systems where defining independent rules is not feasible.
Support for integrated learning module. In line with the proposal for online learning,
a foreseeable direction to extend Venus is to integrate the learning element in the design
of Venus. The current design supports the deployment of the trained prediction mod-
els in an ad-hoc manner. Closing the loop via online learning requires an embedded
element in the architecture of Venus. Venus may integrate the learning element as an
additional loop to have separation of concerns at the architecture level. The separation
would support easier testing, maintenance, and modifications to the loop. Furthermore,
the potential for meta-self-adaptation together with meta-learning could be explored.
In this thesis, we took a glimpse at meta-self-aware architectures with HypeZon. Com-
bining these architectures with online learning should be investigated. As discussed
in Section 11.2.1, meta-learning requires meta-data that is observable form a higher-
level, i.e., meta-level. Therefore, meta-self-aware architectures with leaning capabilities
is a promising direction to extend Venus towards supporting online learning. We have
started a line of collaboration on the topic of learning in collective adaptive systems
in [102, 103] that can contribute to this extension.
Proactive Venus. An interesting feature that we would like to add to Venus is incor-
porating proactive behavior. The scheme is designed to be reactive and uses change
events as triggers. Reactiveness to software failures is necessary yet insufficient for
some domains, e.g., safety-critical systems. Proactiveness decreases the aftereffects of
changes, or improves control of change propagation. Proactiveness requires predictive
capabilities. For this purpose, the Left-hand Side (LHS) of the adaptation rules should
capture the symptoms that can predict an adaptation issue such that a proactive (pre-
ventive) adaptation action can be taken. We envision that the incremental behavior of
the MAPE activities can support the proactive adaptation rules similarly to the reactive
ones. There are various ways in which we may acquire predictive capabilities in Venus:
model-based predictive approaches, e.g., model-predictive control [see 68], may be ap-
plied; predictive analytics methods, e.g., classifications, time-series analysis, regression
methods, and linear and non-linear modeling also can be considered. Adopting a pre-
dictive approach in Venus requires the scheme to take into consideration the previous
history data (from past monitoring data). Consequently, we should investigate efficient
ways to capture, store, and retrieve history in Venus. We have started a line of collabora-
tion on the topic of history-aware self-adaptation—see [362–364]. Future work on Venus

should consider keeping the history of the adaptation as well as the system changes to
enable proactive adaptations.

11.2.3 HypeZon

Evaluation. We have instantiated HypeZon on two application examples and for two
off-the-shelf planning policies. HypeZon should be evaluated for multiple additional
planning policies to further investigate its generalizability and its insensitivity to its

11.2 future work 225

constituent policies. HypeZon variants include a set of control parameters whose full
range has not been investigated during our evaluation. A more systematic evaluation of
the variants that instantiates them in all their possible settings is beneficial and can im-
prove algorithmic or design inefficiencies. So far, the focus of the evaluation has been on
the functional aspects enabled by each design rather than the architectural aspects. Fur-
ther evaluation of HypeZon should investigate the HypeZon variants regarding their
differences in the architectural aspects. This allows for alternative features (besides the
currently considered execution interval) to distinguish between the two variants of Hy-
peZon and investigate the benefits of a certain variant over the other.
Technical features. One of the key areas of HypeZon that can be improved is its pre-
dictive aspect. Currently, HypeZon relies on average observation from limited number
of system past executions and interpolates the measurements as expectations for fu-
ture. Similarly to the discussion on adding prediction capabilities to Venus, applying
predictive mechanisms to HypeZon improves its performance in case of non-stationary
characteristics [see 392]. Because HypeZon uses expected system load during planning,
techniques such as parametric and AI–based methods for load forecasting can enable
HypeZon with for informed decisions regarding policy switch and control parameter
tuning. Furthermore, HypeZon currently requires the expected utility and cost of the
planning policies to be provided as input. Future improvements of HypeZon should re-
move this requirement by enabling the scheme to maintain performance profiles of the
policies, i.e., their execution history, and instead use prediction methods to approximate
the quality and cost of the policies for a given planning problem.

Balancing the quality-cost trade-off in HypeZon can be improved. Currently, we use
step-wise reduction of the planning horizon until an affordable policy with the highest
expected utility is found. Ideally, this process should be formulated as an optimization
problem with constrains on the budget. This way, we can then claim that the optimal
trade-off between the cost and quality is reached—this claim does not hold for the
current instantiation of HypeZon. Similar improvements should be made for the execu-
tion horizon size tuning. The concern however is that this might add some additional
overhead to the planning which should be taken into consideration.

Apart from the goal of explicitly separating the control loops at the architecture level
that allowed for different execution timescales, we did not explore the potential of the
two different designs for Venus; the aspect that should be investigated in the future
work is exploring the potential of the meta-awareness loop in HypeZon, and HZe in
particular. Certain tasks that are currently configured manually can be delegated to
the meta-awareness loop. For instance, definition and modification of the policy switch
thresholds should be done by the meta-loop as it holds a global view on the system
and the adaptation loop. Additionally, to increase runtime flexibility of HypeZon, the
ability to observe the adaptation loop could be navigated by the meta-loop.

Finally, concurrent planning in HypeZon is an aspect that is excluded from this the-
sis. Adding this feature to HypeZon can be studied in the future. While concurrent
planning introduces the burden of consistency among multiple plans and between
the plans and the planning problem, existing work suggests that it can be beneficial
for optimization-based policies that require a fairly long time to provide an optimal
plan [see 326]. Concurrent planning allows HypeZon to execute the time-intensive poli-
cies in the background while a fast, reactive policy runs in the foreground. The hybrid
planner then switches to the optimal plan when ready. Going towards this direction
however requires measures to obtain consistency between the output of the planners.

B I B L I O G R A P H Y

[1] Agnar Aamodt and Enric Plaza. “Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches.” In: AI Communications 7.1
(1994), pp. 39–59. doi: 10.3233/AIC-1994-7104.

[2] Alex Alexandridis, Panagiotis Patrinos, Haralambos Sarimveis, and George Tsek-
ouras. “A Two-Stage Evolutionary Algorithm for Variable Selection in the Devel-
opment of RBF Neural Network Models.” In: Chemometrics and Intelligent Labora-
tory Systems 75.2 (Feb. 28, 2005), pp. 149–162. issn: 0169-7439. doi: 10.1016/j.
chemolab.2004.06.004. (Visited on 03/24/2022).

[3] Germán H. Alférez and Vicente Pelechano. “Dynamic Evolution of Context-
Aware Systems with Models at Runtime.” In: Model Driven Engineering Languages
and Systems. Ed. by Robert B. France, Jürgen Kazmeier, Ruth Breu, and Colin
Atkinson. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012,
pp. 70–86. isbn: 978-3-642-33666-9. doi: 10.1007/978-3-642-33666-9_6.

[4] Ahmed Ali-Eldin, Maria Kihl, Johan Tordsson, and Erik Elmroth. “Efficient Pro-
visioning of Bursty Scientific Workloads on the Cloud Using Adaptive Elasticity
Control.” In: Proceedings of the 3rd Workshop on Scientific Cloud Computing. Science-
Cloud ’12. New York, NY, USA: Association for Computing Machinery, June 18,
2012, pp. 31–40. isbn: 978-1-4503-1340-7. doi: 10.1145/2287036.2287044. (Visited
on 05/16/2022).

[5] David M. Allen. “The Relationship between Variable Selection and Data Agu-
mentation and a Method for Prediction.” In: Technometrics 16.1 (1974), pp. 125–
127. issn: 00401706. doi: 10.2307/1267500. JSTOR: 1267500.

[6] Muhammad H. Alsuwaiyel. Algorithms: Design Techniques and Analysis. Vol. 5.
Lecture Notes Series on Computing. World Scientific, 2021. isbn: 978-981-02-
3740-0.

[7] Ivan Dario Paez Anaya, Viliam Simko, Johann Bourcier, Noel Plouzeau, and Jean-
Marc Jézéquel. “A Prediction-driven Adaptation Approach for Self-adaptive Sen-
sor Networks.” In: Proceedings of the 9th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems. SEAMS 2014. New York, NY, USA:
ACM, 2014, pp. 145–154. doi: 10.1145/2593929.2593941.

[8] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns. “Model-
ing Dimensions of Self-Adaptive Software Systems.” In: Software Engineering for
Self-Adaptive Systems. Ed. by Betty H. C. Cheng, Rogério de Lemos, Holger Giese,
Paola Inverardi, and Jeff Magee. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2009, pp. 27–47. isbn: 978-3-642-02161-9. doi: 10.1007/978-3-
642-02161-9_2. (Visited on 01/21/2022).

[9] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns. “Reflect-
ing on Self-Adaptive Software Systems.” In: 2009 ICSE Workshop on Software Engi-
neering for Adaptive and Self-Managing Systems. 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems. May 2009, pp. 38–47. doi:
10.1109/SEAMS.2009.5069072.

227

https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.1016/j.chemolab.2004.06.004
https://doi.org/10.1016/j.chemolab.2004.06.004
https://doi.org/10.1007/978-3-642-33666-9_6
https://doi.org/10.1145/2287036.2287044
https://doi.org/10.2307/1267500
http://www.jstor.org/stable/1267500
https://doi.org/10.1145/2593929.2593941
https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1109/SEAMS.2009.5069072

228 bibliography

[10] Konstantinos Angelopoulos, Alessandro Vittorio Papadopoulos, Vítor E. Silva
Souza, and John Mylopoulos. “Model Predictive Control for Software Systems
with CobRA.” In: Proceedings of the 11th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems. SEAMS ’16. New York, NY, USA:
ACM, 2016, pp. 35–46. doi: 10.1145/2897053.2897054.

[11] Konstantinos Angelopoulos, Vítor E. Silva Souza, and John Mylopoulos. “Deal-
ing with Multiple Failures in Zanshin: A Control-Theoretic Approach.” In: Pro-
ceedings of the 9th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. SEAMS 2014. New York, NY, USA: Association for
Computing Machinery, June 2, 2014, pp. 165–174. isbn: 978-1-4503-2864-7. doi:
10.1145/2593929.2593936. (Visited on 07/14/2022).

[12] Karen Appleby, Sameh Fakhouri, Liana Fong, Germán Goldszmidt, Michael
Kalantar, Srirama Krishnakumar, Donald P Pazel, John Pershing, and Benny
Rochwerger. “Oceano-SLA Based Management of a Computing Utility.” In: 2001
IEEE/IFIP International Symposium on Integrated Network Management Proceedings.
Integrated Network Management VII. Integrated Management Strategies for the New
Millennium (Cat. No. 01EX470). IEEE. 2001, pp. 855–868. doi: 10.1109/INM.2001.
918085.

[13] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. “Modeling and Ana-
lyzing MAPE-K Feedback Loops for Self-Adaptation.” In: 2015 IEEE/ACM 10th
International Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems. 2015 IEEE/ACM 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. May 2015, pp. 13–23. doi: 10.1109/
SEAMS.2015.10.

[14] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. “Formal Design and
Verification of Self-Adaptive Systems with Decentralized Control.” In: ACM
Trans. Auton. Adapt. Syst. 11.4 (Jan. 10, 2017), 25:1–25:35. issn: 1556-4665. doi:
10.1145/3019598. (Visited on 10/25/2022).

[15] Rick Archibald and George Fann. “Feature Selection and Classification of Hyper-
spectral Images With Support Vector Machines.” In: IEEE Geoscience and Remote
Sensing Letters 4.4 (Oct. 2007), pp. 674–677. issn: 1558-0571. doi: 10.1109/LGRS.
2007.905116.

[16] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. “Henshin: Advanced Concepts and Tools for In-Place EMF Model
Transformations.” In: Model Driven Engineering Languages and Systems. Ed. by
Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 121–135. isbn: 978-3-
642-16145-2. doi: 10.1007/978-3-642-16145-2_9.

[17] Martin Arlitt and Tai Jin. “A Workload Characterization Study of the 1998 World
Cup Web Site.” In: IEEE Network 14.3 (May 2000), pp. 30–37. issn: 1558-156X. doi:
10.1109/65.844498.

[18] Uwe Aßmann, Nelly Bencomo, Betty H. C. Cheng, and Robert B. France. “Mod-
els@run.Time (Dagstuhl Seminar 11481).” In: Dagstuhl Reports 1.11 (2012). Ed. by
Uwe Aßmann, Nelly Bencomo, Betty H. C. Cheng, and Robert B. France, pp. 91–
123. issn: 2192-5283. doi: 10.4230/DagRep.1.11.91.

https://doi.org/10.1145/2897053.2897054
https://doi.org/10.1145/2593929.2593936
https://doi.org/10.1109/INM.2001.918085
https://doi.org/10.1109/INM.2001.918085
https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1145/3019598
https://doi.org/10.1109/LGRS.2007.905116
https://doi.org/10.1109/LGRS.2007.905116
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1109/65.844498
https://doi.org/10.4230/DagRep.1.11.91

bibliography 229

[19] Karl Johan Åström and Richard M. Murray. Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press, Apr. 12, 2010. isbn: 978-1-
4008-2873-9. doi: 10.1515/9781400828739.

[20] Karl Johan Åström and Björn Wittenmark. Adaptive Control (2nd Ed.) Reprint of
the Addison-Wesley, Reading Massachusetts. Courier Corporation, 2013. isbn:
0-486-31914-8.

[21] Colin Atkinson and Thomas Kuhne. “Model-Driven Development: A Metamod-
eling Foundation.” In: IEEE Software 20.5 (Sept. 2003), pp. 36–41. issn: 1937-4194.
doi: 10.1109/MS.2003.1231149.

[22] Özalp Babaoglu, Márk Jelasity, Alberto Montresor, Christof Fetzer, Stefano
Leonardi, Aad Moorsel, and Maarten van Steen, eds. Self-Star Properties in Com-
plex Information Systems. Vol. 3460. Lecture Notes in Computer Science, Hot Top-
ics. 2005. url: https://doi.org/10.1007/b136551.

[23] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Paola Simeoni.
“Model-Based Performance Prediction in Software Development: A Survey.” In:
IEEE Transactions on Software Engineering 30.5 (May 2004), pp. 295–310. issn: 1939-
3520. doi: 10.1109/TSE.2004.9.

[24] Carlos A. Bana e Costa and Jean-Claude Vansnick. “MACBETH — An Interactive
Path towards the Construction of Cardinal Value Functions.” In: International
Transactions in Operational Research 1.4 (Oct. 1, 1994), pp. 489–500. issn: 0969-6016.
doi: 10.1016/0969-6016(94)90010-8. (Visited on 02/16/2022).

[25] Franck Barbier, Eric Cariou, Olivier Le Goaer, and Samson Pierre. “Software
Adaptation: Classification and a Case Study with State Chart XML.” In: IEEE
Software 32.5 (Sept. 2015), pp. 68–76. issn: 1937-4194. doi: 10.1109/MS.2014.130.

[26] Luciano Baresi and Carlo Ghezzi. “The Disappearing Boundary between
Development-Time and Run-Time.” In: Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research (Santa Fe, New Mexico, USA). FoSER ’10.
New York, NY, USA: Association for Computing Machinery, 2010, pp. 17–22.
isbn: 978-1-4503-0427-6. doi: 10.1145/1882362.1882367.

[27] Luciano Baresi and Reiko Heckel. “Tutorial Introduction to Graph Transforma-
tion: A Software Engineering Perspective.” In: Graph Transformation. Ed. by An-
drea Corradini, Hartmut Ehrig, Hans -Jörg Kreowski, and Grzegorz Rozenberg.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2002, pp. 402–
429. isbn: 978-3-540-45832-6. doi: 10.1007/3-540-45832-8_30.

[28] André Bauer, Nikolas Herbst, Simon Spinner, Ahmed Ali-Eldin, and Samuel
Kounev. “Chameleon: A Hybrid, Proactive Auto-Scaling Mechanism on a Level-
Playing Field.” In: IEEE Transactions on Parallel and Distributed Systems 30.4 (Apr.
2019), pp. 800–813. issn: 1558-2183. doi: 10.1109/TPDS.2018.2870389.

[29] André Bauer, Marwin Züfle, Nikolas Herbst, Albin Zehe, Andreas Hotho, and
Samuel Kounev. “Time Series Forecasting for Self-Aware Systems.” In: Proceed-
ings of the IEEE 108.7 (July 2020), pp. 1068–1093. issn: 1558-2256. doi: 10.1109/
JPROC.2020.2983857.

https://doi.org/10.1515/9781400828739
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1007/b136551
https://doi.org/10.1109/TSE.2004.9
https://doi.org/10.1016/0969-6016(94)90010-8
https://doi.org/10.1109/MS.2014.130
https://doi.org/10.1145/1882362.1882367
https://doi.org/10.1007/3-540-45832-8_30
https://doi.org/10.1109/TPDS.2018.2870389
https://doi.org/10.1109/JPROC.2020.2983857
https://doi.org/10.1109/JPROC.2020.2983857

230 bibliography

[30] Eric Baum and Frank Wilczek. “Supervised Learning of Probability Distributions
by Neural Networks.” In: Neural Information Processing Systems. Ed. by D. Ander-
son. American Institute of Physics, 1987. url: https://proceedings.neurips.
cc/paper/1987/file/eccbc87e4b5ce2fe28308fd9f2a7baf3-Paper.pdf.

[31] Mark Bearden, Sachin Garg, and Woei-jyh Lee. “Integrating Goal Specification in
Policy-Based Management.” In: Policies for Distributed Systems and Networks. Ed.
by Morris Sloman, Emil C. Lupu, and Jorge Lobo. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2001, pp. 153–170. isbn: 978-3-540-44569-2.
doi: 10.1007/3-540-44569-2_10.

[32] Basil Becker and Holger Giese. “Modeling of Correct Self-Adaptive Systems: A
Graph Transformation System Based Approach.” In: Proceedings of the 5th Inter-
national Conference on Soft Computing as Transdisciplinary Science and Technology.
CSTST ’08. New York, NY, USA: Association for Computing Machinery, Oct. 28,
2008, pp. 508–516. isbn: 978-1-60558-046-3. doi: 10.1145/1456223.1456326. (Vis-
ited on 11/19/2021).

[33] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “Model-Based Performance
Prediction with the Palladio Component Model.” In: Proceedings of the 6th Inter-
national Workshop on Software and Performance. WOSP ’07. New York, NY, USA:
Association for Computing Machinery, Feb. 5, 2007, pp. 54–65. isbn: 978-1-59593-
297-6. doi: 10.1145/1216993.1217006. (Visited on 10/17/2022).

[34] Nelly Bencomo. “On the Use of Software Models during Software Execution.” In:
Proceedings of the 2009 ICSE Workshop on Modeling in Software Engineering. MISE
’09. USA: IEEE Computer Society, May 17, 2009, pp. 62–67. isbn: 978-1-4244-3722-
1. doi: 10.1109/MISE.2009.5069899. (Visited on 11/11/2021).

[35] Nelly Bencomo and Gordon Blair. “Using Architecture Models to Support the
Generation and Operation of Component-Based Adaptive Systems.” In: Software
Engineering for Self-Adaptive Systems. Ed. by Betty H. C. Cheng, Rogério de Lemos,
Holger Giese, Paola Inverardi, and Jeff Magee. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2009, pp. 183–200. isbn: 978-3-642-02161-9.
doi: 10.1007/978-3-642-02161-9_10. (Visited on 10/21/2022).

[36] Nelly Bencomo, Sebastian Götz, and Hui Song. “Models@run.Time: A Guided
Tour of the State of the Art and Research Challenges.” In: Softw Syst Model 18.5
(Oct. 1, 2019), pp. 3049–3082. issn: 1619-1374. doi: 10.1007/s10270-018-00712-x.
(Visited on 11/11/2021).

[37] Nelly Bencomo, Paul Grace, Carlos Flores, Danny Hughes, and Gordon Blair.
“Genie: Supporting the Model Driven Development of Reflective, Component-
Based Adaptive Systems.” In: Proceedings of the 30th International Conference on
Software Engineering. ICSE ’08. New York, NY, USA: Association for Computing
Machinery, May 10, 2008, pp. 811–814. isbn: 978-1-60558-079-1. doi: 10.1145/
1368088.1368207. (Visited on 11/11/2021).

[38] Nelly Bencomo, Jon Whittle, Pete Sawyer, Anthony Finkelstein, and Emmanuel
Letier. “Requirements Reflection: Requirements as Runtime Entities.” In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 2. ICSE ’10. New York, NY, USA: Association for Computing Machin-
ery, May 1, 2010, pp. 199–202. isbn: 978-1-60558-719-6. doi: 10.1145/1810295.
1810329. (Visited on 11/11/2021).

https://proceedings.neurips.cc/paper/1987/file/eccbc87e4b5ce2fe28308fd9f2a7baf3-Paper.pdf
https://proceedings.neurips.cc/paper/1987/file/eccbc87e4b5ce2fe28308fd9f2a7baf3-Paper.pdf
https://doi.org/10.1007/3-540-44569-2_10
https://doi.org/10.1145/1456223.1456326
https://doi.org/10.1145/1216993.1217006
https://doi.org/10.1109/MISE.2009.5069899
https://doi.org/10.1007/978-3-642-02161-9_10
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1145/1368088.1368207
https://doi.org/10.1145/1368088.1368207
https://doi.org/10.1145/1810295.1810329
https://doi.org/10.1145/1810295.1810329

bibliography 231

[39] Mohamed N. Bennani and Daniel A. Menasce. “Resource Allocation for Auto-
nomic Data Centers Using Analytic Performance Models.” In: Second Interna-
tional Conference on Autonomic Computing (ICAC’05). IEEE, June 2005, pp. 229–
240. doi: 10.1109/ICAC.2005.50.

[40] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András Balogh,
Zoltán Balogh, and András Ökrös. “Incremental Evaluation of Model Queries
over EMF Models.” In: Model Driven Engineering Languages and Systems. Ed. by
Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 76–90. isbn: 978-3-642-
16145-2. doi: 10.1007/978-3-642-16145-2_6.

[41] Jean Bézivin. “On the Unification Power of Models.” In: Software & Systems Mod-
eling 4.2 (May 1, 2005), pp. 171–188. issn: 1619-1374. doi: 10.1007/s10270-005-
0079-0.

[42] Jean Bézivin. “Model Driven Engineering: An Emerging Technical Space.” In:
Generative and Transformational Techniques in Software Engineering: International
Summer School, GTTSE 2005, Braga, Portugal, July 4-8, 2005. Revised Papers. Ed.
by Ralf Lämmel, João Saraiva, and Joost Visser. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2006, pp. 36–64. isbn: 978-3-540-46235-4. doi:
10.1007/11877028_2. (Visited on 10/27/2021).

[43] Jean Bézivin, Sébastien Gérard, Pierre-Alain Muller, and Laurent Rioux. “MDA
Components: Challenges and Opportunities.” In: Workshop on Metamodelling for
MDA. York, England, United Kingdom, 2003, pp. 23–41. url: https : / / hal .

archives-ouvertes.fr/hal-00448057.

[44] Jean Bézivin, Richard F. Paige, Uwe Aßmann, Bernhard Rumpe, and Douglas C.
Schmidt. “08331 Manifesto – Model Engineering for Complex Systems.” In: Per-
spectives Workshop: Model Engineering of Complex Systems (MECS). Ed. by Uwe Aß-
mann, Jean Bézivin, Richard Paige, Bernhard Rumpe, and Douglas C. Schmidt.
Vol. 8331. Dagstuhl Seminar Proceedings (DagSemProc). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2008, pp. 1–4. doi: 10.4230/
DagSemProc.08331.2. (Visited on 03/14/2023).

[45] Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns, Gabriele
Taentzer, and Eduard Weiss. “Graphical Definition of In-Place Transformations
in the Eclipse Modeling Framework.” In: Proceedings of the 9th International Con-
ference on Model Driven Engineering Languages and Systems. MoDELS’06. Berlin,
Heidelberg: Springer-Verlag, Oct. 1, 2006, pp. 425–439. isbn: 978-3-540-45772-5.
doi: 10.1007/11880240_30. (Visited on 04/07/2022).

[46] George David Birkhoff. Dynamical Systems. Vol. 9. Bibliolife DBA of Bibilio
Bazaar II LLC, 2015, 1927. isbn: 1-296-02664-7.

[47] Gordon Blair, Nelly Bencomo, and Robert B. France. “Models@ Run.Time.” In:
Computer 42.10 (Oct. 2009), pp. 22–27. issn: 1558-0814. doi: 10.1109/MC.2009.
326.

[48] Han Bleichrodt, Jason N. Doctor, Martin Filko, and Peter P. Wakker. “Utility In-
dependence of Multiattribute Utility Theory Is Equivalent to Standard Sequence
Invariance of Conjoint Measurement.” In: Journal of Mathematical Psychology 55.6

https://doi.org/10.1109/ICAC.2005.50
https://doi.org/10.1007/978-3-642-16145-2_6
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1007/11877028_2
https://hal.archives-ouvertes.fr/hal-00448057
https://hal.archives-ouvertes.fr/hal-00448057
https://doi.org/10.4230/DagSemProc.08331.2
https://doi.org/10.4230/DagSemProc.08331.2
https://doi.org/10.1007/11880240_30
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1109/MC.2009.326

232 bibliography

(Dec. 1, 2011), pp. 451–456. issn: 0022-2496. doi: 10.1016/j.jmp.2011.08.001.
(Visited on 02/18/2022).

[49] Anton A. Bougaev. “Pattern Recognition Based Tools Enabling Autonomic Com-
puting.” In: Second International Conference on Autonomic Computing (ICAC’05).
IEEE, June 2005, pp. 313–314. doi: 10.1109/ICAC.2005.45.

[50] Craig Boutilier. “A POMDP Formulation of Preference Elicitation Problems.” In:
Eighteenth National Conference on Artificial Intelligence. USA: American Association
for Artificial Intelligence, July 28, 2002, pp. 239–246. isbn: 978-0-262-51129-2.

[51] Craig Boutilier, Rajarshi Das, Jeffrey O. Kephart, Gerald Tesauro, and William
E. Walsh. “Cooperative Negotiation in Autonomic Systems Using Incremental
Utility Elicitation.” In: Proceedings of the Nineteenth Conference on Uncertainty in
Artificial Intelligence. UAI’03. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., Aug. 7, 2002, pp. 89–97. isbn: 978-0-12-705664-7.

[52] Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans.
“Constraint-Based Optimization and Utility Elicitation Using the Minimax De-
cision Criterion.” In: Artificial Intelligence 170.8 (June 1, 2006), pp. 686–713. issn:
0004-3702. doi: 10.1016/j.artint.2006.02.003. (Visited on 02/16/2022).

[53] Jeremy S. Bradbury, James R. Cordy, Juergen Dingel, and Michel Wermelinger.
“A Survey of Self-Management in Dynamic Software Architecture Specifica-
tions.” In: Proceedings of the 1st ACM SIGSOFT Workshop on Self-managed Systems.
WOSS ’04. New York, NY, USA: Association for Computing Machinery, Oct. 31,
2004, pp. 28–33. isbn: 978-1-58113-989-1. doi: 10.1145/1075405.1075411. (Visited
on 11/12/2021).

[54] Richard Bradley. Decision Theory with a Human Face. Cambridge: Cambridge Uni-
versity Press, 2017. isbn: 978-1-107-00321-7. doi: 10.1017/9780511760105.

[55] Leo Breiman. “Random Forests.” In: Machine Learning 45.1 (Oct. 1, 2001), pp. 5–
32. issn: 1573-0565. doi: 10.1023/A:1010933404324. (Visited on 03/23/2022).

[56] Leo Breiman and Richard A. Olshen. Classification and Regression Trees. !st. Jan. 1,
1984. isbn: 978-1-315-13947-0.

[57] Frederick P. Brooks. “No Silver Bullet Essence and Accidents of Software Engi-
neering.” In: Computer 20.4 (Apr. 1987), pp. 10–19. issn: 1558-0814. doi: 10.1109/
MC.1987.1663532.

[58] Alan W. Brown. “Model Driven Architecture: Principles and Practice.” In: Softw
Syst Model 3.4 (Dec. 1, 2004), pp. 314–327. issn: 1619-1374. doi: 10.1007/s10270-
004-0061-2. (Visited on 10/18/2022).

[59] Yuriy Brun, Ron Desmarais, Kurt Geihs, Marin Litoiu, Antonia Lopes, Mary
Shaw, and Michael Smit. “A Design Space for Self-Adaptive Systems.” In: Soft-
ware Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle,
Germany, October 24-29, 2010 Revised Selected and Invited Papers. Ed. by Rogério
de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 33–50. isbn: 978-3-642-35813-5. doi: 10.
1007/978-3-642-35813-5_2.

https://doi.org/10.1016/j.jmp.2011.08.001
https://doi.org/10.1109/ICAC.2005.45
https://doi.org/10.1016/j.artint.2006.02.003
https://doi.org/10.1145/1075405.1075411
https://doi.org/10.1017/9780511760105
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1007/s10270-004-0061-2
https://doi.org/10.1007/s10270-004-0061-2
https://doi.org/10.1007/978-3-642-35813-5_2
https://doi.org/10.1007/978-3-642-35813-5_2

bibliography 233

[60] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Hol-
ger Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. “Engi-
neering Self-Adaptive Systems through Feedback Loops.” In: Software Engineer-
ing for Self-Adaptive Systems. Ed. by Betty H. C. Cheng, Rogério de Lemos, Holger
Giese, Paola Inverardi, and Jeff Magee. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2009, pp. 48–70. isbn: 978-3-642-02161-9. doi: 10.1007/978- 3- 642-
02161-9_3.

[61] Robert Burbidge, Matthew Trotter, Bernard Buxton, and SI Holden. “Drug De-
sign by Machine Learning: Support Vector Machines for Pharmaceutical Data
Analysis.” In: Computers & Chemistry 26.1 (Dec. 1, 2001), pp. 5–14. issn: 0097-
8485. doi: 10.1016/S0097-8485(01)00094-8. (Visited on 10/10/2022).

[62] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. “Hyper-Heuristics: A Survey of the State
of the Art.” In: Journal of the Operational Research Society 64.12 (Dec. 1, 2013),
pp. 1695–1724. issn: 0160-5682. doi: 10 . 1057 / jors . 2013 . 71. (Visited on
08/31/2022).

[63] Edmund K Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and So-
nia Schulenburg. “Hyper-Heuristics: An Emerging Direction in Modern Search
Technology.” In: Handbook of Metaheuristics. Ed. by Fred Glover and Gary A.
Kochenberger. International Series in Operations Research & Management Sci-
ence. Boston, MA: Springer US, 2003, pp. 457–474. isbn: 978-0-306-48056-0. doi:
10.1007/0-306-48056-5_16. (Visited on 05/16/2022).

[64] Michael Buro. “Improving Heuristic Mini-Max Search by Supervised Learning.”
In: Artificial Intelligence 134.1 (Jan. 1, 2002), pp. 85–99. issn: 0004-3702. doi: 10.
1016/S0004-3702(01)00093-5. (Visited on 02/18/2022).

[65] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture - Volume 1: A System of Pat-
terns. Wiley Publishing, 1996. 476 pp. isbn: 978-0-471-95869-7.

[66] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. “Cloud Computing and Emerging IT Platforms: Vision, Hype, and Re-
ality for Delivering Computing as the 5th Utility.” In: Future Generation Computer
Systems 25.6 (June 1, 2009), pp. 599–616. issn: 0167-739X. doi: 10.1016/j.future.
2008.12.001. (Visited on 08/16/2022).

[67] Ricardo Diniz Caldas, Arthur Rodrigues, Eric Bernd Gil, Genaína Nunes Ro-
drigues, Thomas Vogel, and Patrizio Pelliccione. “A Hybrid Approach Com-
bining Control Theory and AI for Engineering Self-Adaptive Systems.” In: Pro-
ceedings of the IEEE/ACM 15th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. New York, NY, USA: Association for Com-
puting Machinery, June 29, 2020, pp. 9–19. isbn: 978-1-4503-7962-5. url: https:
//doi.org/10.1145/3387939.3391595 (visited on 01/25/2022).

[68] Eduardo F Camacho and Carlos Bordons Alba. Model Predictive Control. Springer
science & business media, 2013. isbn: 1-85233-694-3.

https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1016/S0097-8485(01)00094-8
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1007/0-306-48056-5_16
https://doi.org/10.1016/S0004-3702(01)00093-5
https://doi.org/10.1016/S0004-3702(01)00093-5
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1145/3387939.3391595
https://doi.org/10.1145/3387939.3391595

234 bibliography

[69] Javier Cámara and Rogério de Lemos. “Evaluation of Resilience in Self-Adaptive
Systems Using Probabilistic Model-Checking.” In: 2012 7th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
June 2012, pp. 53–62. doi: 10.1109/SEAMS.2012.6224391.

[70] Javier Cámara, David Garlan, Bradley Schmerl, and Ashutosh Pandey. “Opti-
mal Planning for Architecture-Based Self-Adaptation via Model Checking of
Stochastic Games.” In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing (New York, NY, USA). SAC ’15. ACM, 2015, pp. 428–435. url: http:
//doi.acm.org/10.1145/2695664.2695680.

[71] Javier Cámara, Antónia Lopes, David Garlan, and Bradley Schmerl. “Adapta-
tion Impact and Environment Models for Architecture-Based Self-Adaptive Sys-
tems.” In: Science of Computer Programming. Special Issue of the 11th Interna-
tional Symposium on Formal Aspects of Component Software 127 (Oct. 1, 2016),
pp. 50–75. issn: 0167-6423. doi: 10.1016/j.scico.2015.12.006. (Visited on
09/27/2022).

[72] Javier Cámara, Bradley Schmerl, Gabriel A. Moreno, and David Garlan. “MO-
SAICO: Offline Synthesis of Adaptation Strategy Repertoires with Flexible Trade-
Offs.” In: Automated Software Engg. 25.3 (Sept. 2018), pp. 595–626. issn: 0928-8910.
doi: 10.1007/s10515-018-0234-9.

[73] Mauro Caporuscio, Antinisca Di Marco, and Paola Inverardi. “Model-Based Sys-
tem Reconfiguration for Dynamic Performance Management.” In: Journal of Sys-
tems and Software. Software Performance 80.4 (Apr. 1, 2007), pp. 455–473. issn:
0164-1212. doi: 10.1016/j.jss.2006.07.039. (Visited on 11/12/2021).

[74] Rich Caruana and Alexandru Niculescu-Mizil. “An Empirical Comparison of Su-
pervised Learning Algorithms.” In: Proceedings of the 23rd International Conference
on Machine Learning. ICML ’06. New York, NY, USA: Association for Computing
Machinery, June 25, 2006, pp. 161–168. isbn: 978-1-59593-383-6. doi: 10.1145/
1143844.1143865. (Visited on 03/26/2022).

[75] Antonio Carzaniga, Alessandra Gorla, and Mauro Pezzè. “Self-Healing by
Means of Automatic Workarounds.” In: Proceedings of the 2008 International Work-
shop on Software Engineering for Adaptive and Self-Managing Systems (New York,
NY, USA). SEAMS ’08. ACM, 2008, pp. 17–24. url: http://doi.acm.org/10.
1145/1370018.1370023.

[76] Paulo Casanova, David Garlan, Bradley Schmerl, and Rui Abreu. “Diagnosing
Architectural Run-Time Failures.” In: 2013 8th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS). 2013 8th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). May 2013, pp. 103–112. doi: 10.1109/SEAMS.2013.6595497.

[77] X. Castillo, S. R. McConnel, and D. P. Siewiorek. “Derivation and Calibration
of a Transient Error Reliability Model.” In: IEEE Transactions on Computers 31.07

(July 1, 1982), pp. 658–671. issn: 0018-9340. doi: 10.1109/TC.1982.1676063.
(Visited on 03/14/2023).

https://doi.org/10.1109/SEAMS.2012.6224391
http://doi.acm.org/10.1145/2695664.2695680
http://doi.acm.org/10.1145/2695664.2695680
https://doi.org/10.1016/j.scico.2015.12.006
https://doi.org/10.1007/s10515-018-0234-9
https://doi.org/10.1016/j.jss.2006.07.039
https://doi.org/10.1145/1143844.1143865
https://doi.org/10.1145/1143844.1143865
http://doi.acm.org/10.1145/1370018.1370023
http://doi.acm.org/10.1145/1370018.1370023
https://doi.org/10.1109/SEAMS.2013.6595497
https://doi.org/10.1109/TC.1982.1676063

bibliography 235

[78] Urszula Chajewska, Lise Getoor, Joseph Norman, and Yuval Shahar. “Utility
Elicitation as a Classification Problem.” In: Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence. UAI’98. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., July 24, 1998, pp. 79–88. isbn: 978-1-55860-555-8.

[79] Urszula Chajewska, Daphne Koller, and Ronald Parr. “Making Rational Deci-
sions Using Adaptive Utility Elicitation.” In: Proceedings of the Seventeenth Na-
tional Conference on Artificial Intelligence and Twelfth Conference on Innovative Ap-
plications of Artificial Intelligence. AAAI Press, July 30, 2000, pp. 363–369. isbn:
978-0-262-51112-4.

[80] Kitty S Chan and Judith Bishop. “The Design of a Self-Healing Composition
Cycle for Web Services.” In: 2009 ICSE Workshop on Software Engineering for Adap-
tive and Self-Managing Systems. May 2009, pp. 20–27. doi: 10.1109/SEAMS.2009.
5069070.

[81] Herve Chang, Leonardo Mariani, and Mauro Pezzè. “Self-Healing Strategies for
Component Integration Faults.” In: 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering - Workshops. Sept. 2008, pp. 25–32. doi: 10.
1109/ASEW.2008.4686290.

[82] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. “Expected
Reciprocal Rank for Graded Relevance.” In: Proceedings of the 18th ACM Confer-
ence on Information and Knowledge Management. CIKM ’09. New York, NY, USA:
Association for Computing Machinery, Nov. 2, 2009, pp. 621–630. isbn: 978-1-
60558-512-3. doi: 10.1145/1645953.1646033. (Visited on 03/31/2022).

[83] Bihuan Chen, Xin Peng, Yijun Yu, Bashar Nuseibeh, and Wenyun Zhao. “Self-
Adaptation through Incremental Generative Model Transformations at Run-
time.” In: Proceedings of the 36th International Conference on Software Engineering.
ICSE 2014. New York, NY, USA: Association for Computing Machinery, May 31,
2014, pp. 676–687. isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.2568310. (Vis-
ited on 09/12/2022).

[84] DeJiu Chen and Zhonghai Lu. “A Model-Based Approach to Dynamic Self-
assessment for Automated Performance and Safety Awareness of Cyber-Physical
Systems.” In: Model-Based Safety and Assessment. Ed. by Marco Bozzano and Yian-
nis Papadopoulos. Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2017, pp. 227–240. isbn: 978-3-319-64119-5. doi: 10.1007/978-
3-319-64119-5_15.

[85] Tao Chen and Rami Bahsoon. “Self-Adaptive and Online QoS Modeling for
Cloud-Based Software Services.” In: IEEE Transactions on Software Engineering
43.5 (May 2017), pp. 453–475. issn: 1939-3520. doi: 10.1109/TSE.2016.2608826.

[86] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System.”
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. New York, NY, USA: Association for Com-
puting Machinery, Aug. 13, 2016, pp. 785–794. isbn: 978-1-4503-4232-2. doi: 10.
1145/2939672.2939785. (Visited on 03/23/2022).

[87] Xue-wen Chen. “An Improved Branch and Bound Algorithm for Feature Selec-
tion.” In: Pattern Recogn. Lett. 24.12 (Aug. 1, 2003), pp. 1925–1933. issn: 0167-8655.
doi: 10.1016/S0167-8655(03)00020-5. (Visited on 03/28/2022).

https://doi.org/10.1109/SEAMS.2009.5069070
https://doi.org/10.1109/SEAMS.2009.5069070
https://doi.org/10.1109/ASEW.2008.4686290
https://doi.org/10.1109/ASEW.2008.4686290
https://doi.org/10.1145/1645953.1646033
https://doi.org/10.1145/2568225.2568310
https://doi.org/10.1007/978-3-319-64119-5_15
https://doi.org/10.1007/978-3-319-64119-5_15
https://doi.org/10.1109/TSE.2016.2608826
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/S0167-8655(03)00020-5

236 bibliography

[88] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. “A Goal-Based
Modeling Approach to Develop Requirements of an Adaptive System with Envi-
ronmental Uncertainty.” In: Model Driven Engineering Languages and Systems. Ed.
by Andy Schürr and Bran Selic. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2009, pp. 468–483. isbn: 978-3-642-04425-0. doi: 10.1007/978-
3-642-04425-0_36.

[89] Betty H.C. Cheng, Holger Giese, Paola Inverardi, Jeff Magee, and Rogério de
Lemos, eds. Software Engineering for Self-Adaptive Systems. Vol. 5525. Lecture
Notes in Computer Science (LNCS). Springer, 2009. url: http://dx.doi.org/
10.1007/978-3-642-02161-9.

[90] Shang-Wen Cheng. “Rainbow: Cost-Effective Software Architecture-Based Self-
Adaptation.” PhD thesis. Pittsburgh, USA: School of Computer Science,
Carnegie Mellon University, 2008.

[91] Shang-Wen Cheng and David Garlan. “Stitch: A Language for Architecture-
Based Self-Adaptation.” In: Journal of Systems and Software 85.12 (2012), pp. 2860–
2875. issn: 0164-1212. doi: 10.1016/j.jss.2012.02.060.

[92] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. “Making Self-
Adaptation an Engineering Reality.” In: Self-Star Properties in Complex Information
Systems. Ed. by Ozalp Babaoglu, Márk Jelasity, Alberto Montresor, Christof Fet-
zer, Stefano Leonardi, Aad van Moorsel, and Maarten van Steen. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2005, pp. 158–173. isbn: 978-
3-540-32013-5. doi: 10.1007/11428589_11.

[93] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. “Architecture-Based
Self-Adaptation in the Presence of Multiple Objectives.” In: Proceedings of the
2006 International Workshop on Self-adaptation and Self-Managing Systems. SEAMS
’06. New York, NY, USA: Association for Computing Machinery, May 21, 2006,
pp. 2–8. isbn: 978-1-59593-403-1. doi: 10.1145/1137677.1137679. (Visited on
09/16/2021).

[94] Michael R. Chernick and Robert A. LaBudde. An Introduction to Bootstrap Methods
with Applications to R. 1st. Wiley Publishing, 2011. 240 pp. isbn: 978-0-470-46704-
6.

[95] David Christensen. “Fast Algorithms for the Calculation of Kendall’s Tau.” In:
Computational Statistics 20.1 (Mar. 1, 2005), pp. 51–62. issn: 1613-9658. doi: 10.
1007/BF02736122. (Visited on 04/04/2022).

[96] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford. “Documenting Soft-
ware Architectures: Views and Beyond.” In: 25th International Conference on Soft-
ware Engineering, 2003. Proceedings. May 2003, pp. 740–741. doi: 10.1109/ICSE.
2003.1201264.

[97] Zack Coker, David Garlan, and Claire Le Goues. “SASS: Self-Adaptation Using
Stochastic Search.” In: 2015 IEEE/ACM 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. 2015 IEEE/ACM 10th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing
Systems. May 2015, pp. 168–174. doi: 10.1109/SEAMS.2015.16.

https://doi.org/10.1007/978-3-642-04425-0_36
https://doi.org/10.1007/978-3-642-04425-0_36
http://dx.doi.org/10.1007/978-3-642-02161-9
http://dx.doi.org/10.1007/978-3-642-02161-9
https://doi.org/10.1016/j.jss.2012.02.060
https://doi.org/10.1007/11428589_11
https://doi.org/10.1145/1137677.1137679
https://doi.org/10.1007/BF02736122
https://doi.org/10.1007/BF02736122
https://doi.org/10.1109/ICSE.2003.1201264
https://doi.org/10.1109/ICSE.2003.1201264
https://doi.org/10.1109/SEAMS.2015.16

bibliography 237

[98] Eric Connally, Andrew M. Gleason, and Deborah Hughes-Hallett. Functions Mod-
eling Change, Test Bank: A Preparation for Calculus. John Wiley & Sons, Incorpo-
rated, 2003. isbn: 978-0-471-46827-1.

[99] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. Third Edition. Cambridge, MA, USA: The MIT Press,
2009. isbn: 978-0-262-03384-8.

[100] Carlos E. Cuesta, Pablo de la Fuente, and Manuel Barrio-Solárzano. “Dynamic
Coordination Architecture through the Use of Reflection.” In: Proceedings of the
2001 ACM Symposium on Applied Computing. SAC ’01. New York, NY, USA: Asso-
ciation for Computing Machinery, Mar. 1, 2001, pp. 134–140. isbn: 978-1-58113-
287-8. doi: 10.1145/372202.372298. (Visited on 11/11/2021).

[101] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. “Supervised
Learning.” In: Machine Learning Techniques for Multimedia: Case Studies on Orga-
nization and Retrieval. Ed. by Matthieu Cord and Pádraig Cunningham. Berlin,
Heidelberg: Springer, 2008, pp. 21–49. isbn: 978-3-540-75171-7. doi: 10.1007/978-
3-540-75171-7_2. (Visited on 03/26/2022).

[102] Mirko D’Angelo, Simos Gerasimou, Sona Ghahremani, Johannes Grohmann, In-
grid Nunes, Evangelos Pournaras, and Sven Tomforde. “On Learning in Col-
lective Self-Adaptive Systems: State of Practice and a 3D Framework.” In: 2019
IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). 2019 IEEE/ACM 14th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
May 2019, pp. 13–24. doi: 10.1109/SEAMS.2019.00012.

[103] Mirko D’Angelo, Sona Ghahremani, Simos Gerasimou, Johannes Grohmann, In-
grid Nunes, Sven Tomforde, and Evangelos Pournaras. “Learning to Learn in
Collective Adaptive Systems: Mining Design Patterns for Data-driven Reason-
ing.” In: 2020 IEEE International Conference on Autonomic Computing and Self-
Organizing Systems Companion (ACSOS-C). 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-
C). Aug. 2020, pp. 121–126. doi: 10.1109/ACSOS-C51401.2020.00042.

[104] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. “The
Ponder Policy Specification Language.” In: Policies for Distributed Systems and
Networks. Ed. by Morris Sloman, Emil C. Lupu, and Jorge Lobo. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2001, pp. 18–38. isbn: 978-3-
540-44569-2. doi: 10.1007/3-540-44569-2_2.

[105] Dani Yogatama and Gideon Mann. “Efficient Transfer Learning Method for
Automatic Hyperparameter Tuning.” In: Proceedings of the Seventeenth Interna-
tional Conference on Artificial Intelligence and Statistics. Ed. by Samuel Kaski and
Jukka Corander. Vol. 33. PMLR, Apr. 2, 2014, pp. 1077–1085. url: https : / /

proceedings.mlr.press/v33/yogatama14.html.

[106] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. “A Highly-
Extensible, XML-based Architecture Description Language.” In: Proceedings
Working IEEE/IFIP Conference on Software Architecture. Proceedings Working
IEEE/IFIP Conference on Software Architecture. Aug. 2001, pp. 103–112. doi:
10.1109/WICSA.2001.948416.

https://doi.org/10.1145/372202.372298
https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1109/SEAMS.2019.00012
https://doi.org/10.1109/ACSOS-C51401.2020.00042
https://doi.org/10.1007/3-540-44569-2_2
https://proceedings.mlr.press/v33/yogatama14.html
https://proceedings.mlr.press/v33/yogatama14.html
https://doi.org/10.1109/WICSA.2001.948416

238 bibliography

[107] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. “Towards
Architecture-Based Self-Healing Systems.” In: Proceedings of the First Workshop
on Self-healing Systems. WOSS ’02. New York, NY, USA: Association for Comput-
ing Machinery, Nov. 18, 2002, pp. 21–26. isbn: 978-1-58113-609-8. doi: 10.1145/
582128.582133. (Visited on 11/15/2021).

[108] Pierre-Charles David, Thomas Ledoux, et al. “Safe Dynamic Reconfigurations
of Fractal Architectures with Fscript.” In: Proceeding of Fractal CBSE Workshop,
ECOOP. Vol. 6. Citeseer. 2006. url: https://web.imt-atlantique.fr/x-info/
ledoux/Publis/ws-fractal-ecoop06.pdf.

[109] Morris H DeGroot. Optimal Statistical Decisions. John Wiley & Sons, 2005. isbn:
978-0-471-68029-1.

[110] Rogerio de Lemos et al. “Software Engineering for Self-Adaptive Systems: A Sec-
ond Research Roadmap.” In: Software Engineering for Self-Adaptive Systems. Ed. by
Rogerio de Lemos, Holger Giese, Hausi Müller, and Mary Shaw. Vol. 10431.
Dagstuhl Seminar Proceedings (DagSemProc). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2011. doi: 10.4230/DagSemProc.
10431.3.

[111] Rogério de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese. “Software
Engineering for Self-Adaptive Systems: Assurances (Dagstuhl Seminar 13511).”
In: Dagstuhl Reports 3.12 (2014). Ed. by Rogerio de Lemos, David Garlan, Carlo
Ghezzi, and Holger Giese, pp. 67–96. issn: 2192-5283. doi: 10.4230/DagRep.3.
12.67. (Visited on 03/16/2023).

[112] Rogério de Lemos et al. “Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap.” In: Software Engineering for Self-Adaptive Systems II:
International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected
and Invited Papers. Ed. by Rogério de Lemos, Holger Giese, Hausi A. Müller, and
Mary Shaw. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–32. isbn:
978-3-642-35813-5. doi: 10.1007/978-3-642-35813-5_1.

[113] Rogério de Lemos et al. “Software Engineering for Self-Adaptive Systems: Re-
search Challenges in the Provision of Assurances.” In: Software Engineering for
Self-Adaptive Systems III. Assurances (Cham). Ed. by Rogério de Lemos, David
Garlan, Carlo Ghezzi, and Holger Giese. Springer International Publishing, 2017,
pp. 3–30. isbn: 978-3-319-74183-3.

[114] Marcus Denker, Jorge Ressia, Orla Greevy, and Oscar Nierstrasz. “Modeling
Features at Runtime.” In: Model Driven Engineering Languages and Systems. Ed. by
Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 138–152. isbn: 978-3-642-16129-2. doi: 10.
1007/978-3-642-16129-2_11.

[115] Mahdi Derakhshanmanesh, Mehdi Amoui, Greg O’Grady, Jürgen Ebert, and
Ladan Tahvildari. “GRAF: Graph-Based Runtime Adaptation Framework.” In:
Proceedings of the 6th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems. SEAMS ’11. New York, NY, USA: Association for
Computing Machinery, May 23, 2011, pp. 128–137. isbn: 978-1-4503-0575-4. doi:
10.1145/1988008.1988026. (Visited on 11/16/2021).

https://doi.org/10.1145/582128.582133
https://doi.org/10.1145/582128.582133
https://web.imt-atlantique.fr/x-info/ledoux/Publis/ws-fractal-ecoop06.pdf
https://web.imt-atlantique.fr/x-info/ledoux/Publis/ws-fractal-ecoop06.pdf
https://doi.org/10.4230/DagSemProc.10431.3
https://doi.org/10.4230/DagSemProc.10431.3
https://doi.org/10.4230/DagRep.3.12.67
https://doi.org/10.4230/DagRep.3.12.67
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/978-3-642-16129-2_11
https://doi.org/10.1007/978-3-642-16129-2_11
https://doi.org/10.1145/1988008.1988026

bibliography 239

[116] Antinisca Di Marco, Paola Inverardi, and Romina Spalazzese. “Synthesizing Self-
Adaptive Connectors Meeting Functional and Performance Concerns.” In: Pro-
ceedings of the 8th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (Piscataway, NJ, USA). SEAMS ’13. IEEE Press, 2013,
pp. 133–142. url: http://dl.acm.org/citation.cfm?id=2487336.2487358.

[117] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and
Klaus Pohl. “A Journey to Highly Dynamic, Self-Adaptive Service-Based Ap-
plications.” In: Autom Softw Eng 15.3 (Dec. 1, 2008), pp. 313–341. issn: 1573-7535.
doi: 10.1007/s10515-008-0032-x. (Visited on 01/27/2022).

[118] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaïti, Erol Ge-
lenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco
Zambonelli. “A Survey of Autonomic Communications.” In: ACM Trans. Auton.
Adapt. Syst. 1.2 (Dec. 2006), pp. 223–259. issn: 1556-4665. doi: 10.1145/1186778.
1186782.

[119] Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Padu-
raru, Sven Gowal, and Todd Hester. “Challenges of Real-World Reinforcement
Learning: Definitions, Benchmarks and Analysis.” In: Mach Learn 110.9 (Sept. 1,
2021), pp. 2419–2468. issn: 1573-0565. doi: 10.1007/s10994-021-05961-4. (Vis-
ited on 02/18/2022).

[120] Subhasri Duttagupta, Rupinder Virk, and Manoj Nambiar. “Predicting Perfor-
mance in the Presence of Software and Hardware Resource Bottlenecks.” In: In-
ternational Symposium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS 2014). International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS 2014). July 2014, pp. 542–
549. doi: 10.1109/SPECTS.2014.6879991.

[121] Jack Edmonds. “Matroids and the Greedy Algorithm.” In: Mathematical program-
ming 1.1 (1971), pp. 127–136. doi: 10.1007/BF01584082.

[122] Bradley Efron and Robert J Tibshirani. An Introduction to the Bootstrap. CRC press,
1994. isbn: 978-0-412-04231-7.

[123] Jens Ehlers, Andre van Hoorn, Jan Waller, and Wilhelm Hasselbring. “Self-
Adaptive Software System Monitoring for Performance Anomaly Localization.”
In: Proceedings of the 8th ACM International Conference on Autonomic Computing
(New York, NY, USA). ICAC ’11. ACM, 2011, pp. 197–200. url: http://doi.acm.
org/10.1145/1998582.1998628.

[124] H Ehrig, H-J Kreowski, U Montanari, and G Rozenberg. Handbook of Graph Gram-
mars and Computing by Graph Transformation: Volume 3: Concurrency, Parallelism,
and Distribution. WORLD SCIENTIFIC, Aug. 1999. isbn: 978-981-02-4021-9. doi:
10.1142/4181.

[125] Ibrahim Elgendi, Md. Farhad Hossain, Abbas Jamalipour, and Kumudu S.
Munasinghe. “Protecting Cyber Physical Systems Using a Learned MAPE-K
Model.” In: IEEE Access 7 (2019), pp. 90954–90963. issn: 2169-3536. doi: 10.1109/
ACCESS.2019.2927037.

http://dl.acm.org/citation.cfm?id=2487336.2487358
https://doi.org/10.1007/s10515-008-0032-x
https://doi.org/10.1145/1186778.1186782
https://doi.org/10.1145/1186778.1186782
https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.1109/SPECTS.2014.6879991
https://doi.org/10.1007/BF01584082
http://doi.acm.org/10.1145/1998582.1998628
http://doi.acm.org/10.1145/1998582.1998628
https://doi.org/10.1142/4181
https://doi.org/10.1109/ACCESS.2019.2927037
https://doi.org/10.1109/ACCESS.2019.2927037

240 bibliography

[126] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. “FUSION: A Framework
for Engineering Self-Tuning Self-Adaptive Software Systems.” In: Proceedings of
the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE ’10) (New York, NY, USA). ACM, 2010, pp. 7–16. url: http:
//doi.acm.org/10.1145/1882291.1882296.

[127] Edward Elliott. “Normative Decision Theory.” In: Analysis 79.4 (Oct. 1, 2019),
pp. 755–772. issn: 0003-2638. doi: 10 . 1093 / analys / anz059. (Visited on
02/16/2022).

[128] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Service
Technology. Upper Saddle River: Pearson Education Incorporated, 2016. isbn: 0-
13-452445-4.

[129] Naeem Esfahani, Ahmed Elkhodary, and Sam Malek. “A Learning-Based Frame-
work for Engineering Feature-Oriented Self-Adaptive Software Systems.” In:
IEEE Transactions on Software Engineering 39.11 (Nov. 1, 2013), pp. 1467–1493. issn:
0098-5589. doi: 10.1109/TSE.2013.37. (Visited on 03/14/2023).

[130] Gabriele Fanelli, Matthias Dantone, Juergen Gall, Andrea Fossati, and Luc Van
Gool. “Random Forests for Real Time 3D Face Analysis.” In: Int J Comput Vis
101.3 (Feb. 1, 2013), pp. 437–458. issn: 1573-1405. doi: 10.1007/s11263- 012-
0549-0. (Visited on 03/30/2022).

[131] Eugene A Feinberg and Adam Shwartz. Handbook of Markov Decision Processes:
Methods and Applications. Vol. 40. Springer Science & Business Media, 2012.

[132] Gabriela Félix Solano, Ricardo Diniz Caldas, Genaína Nunes Rodrigues, Thomas
Vogel, and Patrizio Pelliccione. “Taming Uncertainty in the Assurance Process of
Self-Adaptive Systems: A Goal-Oriented Approach.” In: 2019 IEEE/ACM 14th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS). 2019 IEEE/ACM 14th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS). May 2019, pp. 89–
99. doi: 10.1109/SEAMS.2019.00020.

[133] Ji Feng, Yang Yu, and Zhi-Hua Zhou. “Multi-Layered Gradient Boosting Decision
Trees.” In: Proceedings of the 32nd International Conference on Neural Information
Processing Systems. NIPS’18. Red Hook, NY, USA: Curran Associates Inc., Dec. 3,
2018, pp. 3555–3565. url: https://dl.acm.org/doi/10.5555/3327144.3327273.

[134] Artur J. Ferreira and Mário A. T. Figueiredo. “Efficient Feature Selection Filters
for High-Dimensional Data.” In: Pattern Recognition Letters 33.13 (Oct. 1, 2012),
pp. 1794–1804. issn: 0167-8655. doi: 10.1016/j.patrec.2012.05.019. (Visited
on 03/28/2022).

[135] Nicolas Ferry, Vincent Hourdin, Stéphane Lavirotte, Gaëtan Rey, Jean-Yves Tigli,
and Michel Riveill. “Models at Runtime: Service for Device Composition and
Adaptation.” In: 4th International Workshop Models@run.Time. IEEE Computer So-
ciety and ACM. Denver, United States, Oct. 2009. url: https://hal.archives-
ouvertes.fr/hal-00481778.

[136] Roberto Rodrigues Filho and Barry Porter. “Defining Emergent Software Us-
ing Continuous Self-Assembly, Perception, and Learning.” In: ACM Trans. Au-
ton. Adapt. Syst. 12.3 (Sept. 20, 2017), 16:1–16:25. issn: 1556-4665. doi: 10.1145/
3092691. (Visited on 10/10/2022).

http://doi.acm.org/10.1145/1882291.1882296
http://doi.acm.org/10.1145/1882291.1882296
https://doi.org/10.1093/analys/anz059
https://doi.org/10.1109/TSE.2013.37
https://doi.org/10.1007/s11263-012-0549-0
https://doi.org/10.1007/s11263-012-0549-0
https://doi.org/10.1109/SEAMS.2019.00020
https://dl.acm.org/doi/10.5555/3327144.3327273
https://doi.org/10.1016/j.patrec.2012.05.019
https://hal.archives-ouvertes.fr/hal-00481778
https://hal.archives-ouvertes.fr/hal-00481778
https://doi.org/10.1145/3092691
https://doi.org/10.1145/3092691

bibliography 241

[137] Antonio Filieri, Carlo Ghezzi, Alberto Leva, and Martina Maggio. “Self-Adaptive
Software Meets Control Theory: A Preliminary Approach Supporting Reliability
Requirements.” In: 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011). 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011). Nov. 2011, pp. 283–292. doi:
10.1109/ASE.2011.6100064.

[138] Antonio Filieri, Henry Hoffmann, and Martina Maggio. “Automated Multi-
Objective Control for Self-Adaptive Software Design.” In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2015.
New York, NY, USA: Association for Computing Machinery, Aug. 30, 2015,
pp. 13–24. isbn: 978-1-4503-3675-8. doi: 10.1145/2786805.2786833. (Visited on
10/02/2022).

[139] Antonio Filieri, Giordano Tamburrelli, and Carlo Ghezzi. “Supporting Self-
Adaptation via Quantitative Verification and Sensitivity Analysis at Run Time.”
In: IEEE Transactions on Software Engineering 42.1 (Jan. 2016), pp. 75–99. issn:
1939-3520. doi: 10.1109/TSE.2015.2421318.

[140] Antonio Filieri et al. “Software Engineering Meets Control Theory.” In: 2015
IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. 2015 IEEE/ACM 10th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems. May 2015, pp. 71–
82. doi: 10.1109/SEAMS.2015.12.

[141] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. “Story Dia-
grams: A New Graph Rewrite Language Based on the Unified Modeling Lan-
guage and Java.” In: Theory and Application of Graph Transformations. Ed. by Hart-
mut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2000, pp. 296–309.
isbn: 978-3-540-46464-8. doi: 10.1007/978-3-540-46464-8_21.

[142] Peter C Fishburn. Utility Theory for Decision Making. Publications in Operations
Research. McLean VA: Wiley, 1970. isbn: 0-471-26060-6.

[143] Camilo Fitzgerald, Benjamin Klöpper, and Shinichi Honiden. “Utility-Based Self-
Adaption with Environment Specific Quality Models.” In: Adaptive and Intelligent
Systems. Ed. by Abdelhamid Bouchachia. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2011, pp. 107–118. isbn: 978-3-642-23857-4. doi: 10.
1007/978-3-642-23857-4_14.

[144] Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, and Jean-Marc
Jézéquel. “Modeling and Validating Dynamic Adaptation.” In: Models in Software
Engineering: Workshops and Symposia at MODELS 2008, Toulouse, France, September
28 - October 3, 2008. Reports and Revised Selected Papers. Ed. by Michel Chaudron.
Vol. 5421. LNCS. Springer-Verlag, 2009, pp. 97–108. isbn: 978-3-642-01648-6.

[145] Franck Fleurey and Arnor Solberg. “A Domain Specific Modeling Language Sup-
porting Specification, Simulation and Execution of Dynamic Adaptive Systems.”
In: Model Driven Engineering Languages and Systems. Ed. by Andy Schürr and Bran
Selic. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2009,
pp. 606–621. isbn: 978-3-642-04425-0. doi: 10.1007/978-3-642-04425-0_47.

https://doi.org/10.1109/ASE.2011.6100064
https://doi.org/10.1145/2786805.2786833
https://doi.org/10.1109/TSE.2015.2421318
https://doi.org/10.1109/SEAMS.2015.12
https://doi.org/10.1007/978-3-540-46464-8_21
https://doi.org/10.1007/978-3-642-23857-4_14
https://doi.org/10.1007/978-3-642-23857-4_14
https://doi.org/10.1007/978-3-642-04425-0_47

242 bibliography

[146] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund,
and Eli Gjorven. “Using Architecture Models for Runtime Adaptability.” In: IEEE
Software 23.2 (Mar. 2006), pp. 62–70. issn: 1937-4194. doi: 10.1109/MS.2006.61.

[147] Francois Fouquet, Brice Morin, Franck Fleurey, Olivier Barais, Noel Plouzeau,
and Jean-Marc Jezequel. “A Dynamic Component Model for Cyber Physical Sys-
tems.” In: Proceedings of the 15th ACM SIGSOFT Symposium on Component Based
Software Engineering. CBSE ’12. New York, NY, USA: Association for Computing
Machinery, June 25, 2012, pp. 135–144. isbn: 978-1-4503-1345-2. doi: 10.1145/
2304736.2304759. (Visited on 11/11/2021).

[148] Robert France and Bernhard Rumpe. “Model-Driven Development of Complex
Software: A Research Roadmap.” In: Future of Software Engineering (FOSE ’07).
Future of Software Engineering (FOSE ’07). May 2007, pp. 37–54. doi: 10.1109/
FOSE.2007.14.

[149] João M. Franco, Francisco Correia, Raul Barbosa, Mário Zenha-Rela, Bradley
Schmerl, and David Garlan. “Improving Self-Adaptation Planning through Soft-
ware Architecture-Based Stochastic Modeling.” In: Journal of Systems and Software
115 (May 1, 2016), pp. 42–60. issn: 0164-1212. doi: 10.1016/j.jss.2016.01.026.
(Visited on 10/05/2022).

[150] David A. Freedman. Statistical Models: Theory and Practice. Cambridge Univer-
sity Press, Apr. 27, 2009. 459 pp. isbn: 978-1-139-47731-4. Google Books: fW_
9BV5Wpf8C.

[151] Felix C. Freiling, Rachid Guerraoui, and Petr Kuznetsov. “The Failure Detector
Abstraction.” In: ACM Comput. Surv. 43.2 (Feb. 4, 2011), 9:1–9:40. issn: 0360-0300.
doi: 10.1145/1883612.1883616. (Visited on 01/19/2022).

[152] Simon French. Decision Theory: An Introduction to the Mathematics of Rationality.
USA: Halsted Press, 1986. 448 pp. isbn: 978-0-470-20308-8.

[153] Jerome H. Friedman. “Stochastic Gradient Boosting.” In: Computational Statis-
tics & Data Analysis. Nonlinear Methods and Data Mining 38.4 (Feb. 28, 2002),
pp. 367–378. issn: 0167-9473. doi: 10.1016/S0167-9473(01)00065-2. (Visited on
03/23/2022).

[154] Thomas Gabor, Lenz Belzner, Thomy Phan, and Kyrill Schmid. “Preparing for
the Unexpected: Diversity Improves Planning Resilience in Evolutionary Algo-
rithms.” In: 2018 IEEE International Conference on Autonomic Computing (ICAC).
Sept. 2018, pp. 131–140. doi: 10.1109/ICAC.2018.00023.

[155] Matthieu Gallet, Nezih Yigitbasi, Bahman Javadi, Derrick Kondo, Alexandru Io-
sup, and Dick Epema. “A Model for Space-Correlated Failures in Large-Scale
Distributed Systems.” In: Euro-Par 2010 - Parallel Processing. Ed. by Pasqua
D’Ambra, Mario Guarracino, and Domenico Talia. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2010, pp. 88–100. isbn: 978-3-642-15277-1.
doi: 10.1007/978-3-642-15277-1_10.

[156] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang.
“Modeling the Impact of Workload on Cloud Resource Scaling.” In: 2014 IEEE
26th International Symposium on Computer Architecture and High Performance Com-
puting. 2014 IEEE 26th International Symposium on Computer Architecture and

https://doi.org/10.1109/MS.2006.61
https://doi.org/10.1145/2304736.2304759
https://doi.org/10.1145/2304736.2304759
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1016/j.jss.2016.01.026
http://books.google.com/books?id=fW_9BV5Wpf8C
http://books.google.com/books?id=fW_9BV5Wpf8C
https://doi.org/10.1145/1883612.1883616
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1109/ICAC.2018.00023
https://doi.org/10.1007/978-3-642-15277-1_10

bibliography 243

High Performance Computing. Oct. 2014, pp. 310–317. doi: 10.1109/SBAC-PAD.
2014.16.

[157] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A. Kozuch.
“AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Cen-
ters.” In: ACM Trans. Comput. Syst. 30.4 (Nov. 1, 2012), 14:1–14:26. issn: 0734-2071.
doi: 10.1145/2382553.2382556. (Visited on 08/18/2022).

[158] Alan G. Ganek and Thomas A. Corbi. “The Dawning of the Autonomic Com-
puting Era.” In: IBM Systems Journal 42.1 (2003), pp. 5–18. issn: 0018-8670. doi:
10.1147/sj.421.0005.

[159] Hector Garcia-Molina, Jeffrey Ullman, and Jennifer Widom. Database Systems:
The Complete Book. 2nd ed. Pearson Deutschland, 2013. 1140 pp. isbn: 978-1-292-
02447-9.

[160] Vijay K. Garg and J. Roger Mitchell. “Implementable Failure Detectors in Asyn-
chronous Systems.” In: Foundations of Software Technology and Theoretical Computer
Science. Ed. by Vikraman Arvind and Sundar Ramanujam. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 1998, pp. 158–169. isbn: 978-3-540-
49382-2. doi: 10.1007/978-3-540-49382-2_14.

[161] David Garlan. “Software Architecture: A Travelogue.” In: Future of Software En-
gineering Proceedings. FOSE 2014. New York, NY, USA: Association for Comput-
ing Machinery, May 31, 2014, pp. 29–39. isbn: 978-1-4503-2865-4. doi: 10.1145/
2593882.2593886. (Visited on 11/12/2021).

[162] David Garlan, Robert Allen, and John Ockerbloom. “Exploiting Style in Ar-
chitectural Design Environments.” In: SIGSOFT Softw. Eng. Notes 19.5 (Dec. 1,
1994), pp. 175–188. issn: 0163-5948. doi: 10.1145/195274.195404. (Visited on
11/15/2021).

[163] David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter Steenkiste.
“Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.” In:
Computer 37.10 (Oct. 2004), pp. 46–54. issn: 1558-0814. doi: 10.1109/MC.2004.
175.

[164] David Garlan, Robert T Monroe, and David Wile. “Acme: Architectural Descrip-
tion of Component-Based Systems.” In: Foundations of component-based systems 68

(2000), pp. 47–68. doi: 10.1184/R1/6602945.v1.

[165] David Garlan and Bradley Schmerl. “Model-Based Adaptation for Self-Healing
Systems.” In: Proceedings of the First Workshop on Self-healing Systems. WOSS ’02.
New York, NY, USA: Association for Computing Machinery, Nov. 18, 2002,
pp. 27–32. isbn: 978-1-58113-609-8. doi: 10.1145/582128.582134. (Visited on
09/24/2021).

[166] David Garlan and Bradley Schmerl. “Using Architectural Models at Runtime:
Research Challenges.” In: Software Architecture. Vol. 3047. Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2004, pp. 200–205. doi: 10.1007/
978-3-540-24769-2_15.

[167] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. “Software Architecture-
Based Self-Adaptation.” In: Autonomic Computing and Networking. Ed. by Yany-
ong Zhang, Laurence Tianruo Yang, and Mieso K. Denko. Springer, 2009, pp. 31–
55. url: http://dx.doi.org/10.1007/978-0-387-89828-5_2.

https://doi.org/10.1109/SBAC-PAD.2014.16
https://doi.org/10.1109/SBAC-PAD.2014.16
https://doi.org/10.1145/2382553.2382556
https://doi.org/10.1147/sj.421.0005
https://doi.org/10.1007/978-3-540-49382-2_14
https://doi.org/10.1145/2593882.2593886
https://doi.org/10.1145/2593882.2593886
https://doi.org/10.1145/195274.195404
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1184/R1/6602945.v1
https://doi.org/10.1145/582128.582134
https://doi.org/10.1007/978-3-540-24769-2_15
https://doi.org/10.1007/978-3-540-24769-2_15
http://dx.doi.org/10.1007/978-0-387-89828-5_2

244 bibliography

[168] Kurt Geihs et al. “A Comprehensive Solution for Application-Level Adaptation.”
In: Software: Practice and Experience 39.4 (Mar. 25, 2009), pp. 385–422. issn: 0038-
0644. doi: 10.1002/spe.900. (Visited on 11/02/2022).

[169] John C. Georgas, Andre van der Hoek, and Richard N. Taylor. “Using Architec-
tural Models to Manage and Visualize Runtime Adaptation.” In: Computer 42.10

(Oct. 2009), pp. 52–60. issn: 1558-0814. doi: 10.1109/MC.2009.335.

[170] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. “Self-Organising Software Ar-
chitectures for Distributed Systems.” In: Proceedings of the First Workshop on Self-
healing Systems. WOSS ’02. New York, NY, USA: Association for Computing Ma-
chinery, Nov. 18, 2002, pp. 33–38. isbn: 978-1-58113-609-8. doi: 10.1145/582128.
582135. (Visited on 11/15/2021).

[171] Simos Gerasimou, Radu Calinescu, and Alec Banks. “Efficient Runtime Quanti-
tative Verification Using Caching, Lookahead, and Nearly-Optimal Reconfigura-
tion.” In: Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. SEAMS 2014. New York, NY, USA: Associa-
tion for Computing Machinery, June 2, 2014, pp. 115–124. isbn: 978-1-4503-2864-7.
doi: 10.1145/2593929.2593932. (Visited on 09/27/2022).

[172] Eva Gerbert-Gaillard and Philippe Lalanda. “Self-Aware Model-Driven Perva-
sive Systems.” In: 2016 IEEE International Conference on Autonomic Computing
(ICAC). July 2016, pp. 221–222. doi: 10.1109/ICAC.2016.26.

[173] Alfonso Gerevini and Ivan Serina. “Planning as Propositional CSP: From Walk-
sat to Local Search Techniques for Action Graphs.” In: Constraints 8.4 (Oct. 1,
2003), pp. 389–413. issn: 1572-9354. doi: 10.1023/A:1025846120461. (Visited on
02/19/2022).

[174] Sona Ghahremani. Training Datasets of Size 1K, 3K, and 9K for Four Utility Function
Variants. Feb. 2023. doi: 10.5281/zenodo.7681170. (Visited on 03/14/2023).

[175] Sona Ghahremani, Christian M. Adriano, and Holger Giese. “Training Prediction
Models for Rule-Based Self-Adaptive Systems.” In: 2018 IEEE International Con-
ference on Autonomic Computing (ICAC). Sept. 2018, pp. 187–192. doi: 10.1109/
ICAC.2018.00031.

[176] Sona Ghahremani and Holger Giese. “Performance Evaluation for Self-Healing
Systems: Current Practice & Open Issues.” In: 2019 IEEE 4th International Work-
shops on Foundations and Applications of Self* Systems (FAS*W). June 2019, pp. 116–
119. doi: 10.1109/FAS-W.2019.00039.

[177] Sona Ghahremani and Holger Giese. “Evaluation of Self-Healing Systems: An
Analysis of the State-of-the-Art and Required Improvements.” In: Computers 9.1
(1 Mar. 2020), p. 16. issn: 2073-431X. doi: 10.3390/computers9010016. (Visited
on 02/08/2022).

[178] Sona Ghahremani and Holger Giese. “Hybrid Planning with Receding Horizon:
A Case for Meta-self-awareness.” In: 2021 IEEE International Conference on Auto-
nomic Computing and Self-Organizing Systems Companion (ACSOS-C). 2021 IEEE
International Conference on Autonomic Computing and Self-Organizing Sys-
tems Companion (ACSOS-C). Sept. 2021, pp. 131–138. doi: 10 . 1109 / ACSOS -

C52956.2021.00045.

https://doi.org/10.1002/spe.900
https://doi.org/10.1109/MC.2009.335
https://doi.org/10.1145/582128.582135
https://doi.org/10.1145/582128.582135
https://doi.org/10.1145/2593929.2593932
https://doi.org/10.1109/ICAC.2016.26
https://doi.org/10.1023/A:1025846120461
https://doi.org/10.5281/zenodo.7681170
https://doi.org/10.1109/ICAC.2018.00031
https://doi.org/10.1109/ICAC.2018.00031
https://doi.org/10.1109/FAS-W.2019.00039
https://doi.org/10.3390/computers9010016
https://doi.org/10.1109/ACSOS-C52956.2021.00045
https://doi.org/10.1109/ACSOS-C52956.2021.00045

bibliography 245

[179] Sona Ghahremani, Holger Giese, and Thomas Vogel. “Towards Linking Adapta-
tion Rules to the Utility Function for Dynamic Architectures.” In: 2016 IEEE 10th
International Conference on Self-Adaptive and Self-Organizing Systems (SASO). Sept.
2016, pp. 142–143. doi: 10.1109/SASO.2016.21.

[180] Sona Ghahremani, Holger Giese, and Thomas Vogel. “Efficient Utility-Driven
Self-Healing Employing Adaptation Rules for Large Dynamic Architectures.” In:
2017 IEEE International Conference on Autonomic Computing (ICAC). IEEE, 2017,
pp. 59–68. doi: doi:10.1109/ICAC.2017.35.

[181] Sona Ghahremani, Holger Giese, and Thomas Vogel. “Improving Scalability and
Reward of Utility-Driven Self-Healing for Large Dynamic Architectures.” In:
ACM Trans. Auton. Adapt. Syst. 14.3 (Feb. 25, 2020), 12:1–12:41. issn: 1556-4665.
doi: 10.1145/3380965.

[182] Omid Gheibi, Danny Weyns, and Federico Quin. “Applying Machine Learning
in Self-adaptive Systems: A Systematic Literature Review.” In: ACM Trans. Auton.
Adapt. Syst. 15.3 (Aug. 18, 2021), 9:1–9:37. issn: 1556-4665. doi: 10.1145/3469440.
(Visited on 09/28/2022).

[183] Carlo Ghezzi. “Evolution, Adaptation, and the Quest for Incrementality.” In:
Large-Scale Complex IT Systems. Development, Operation and Management. Ed. by
Radu Calinescu and David Garlan. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2012, pp. 369–379. isbn: 978-3-642-34059-8. doi: 10.1007/
978-3-642-34059-8_19.

[184] Carlo Ghezzi and Amir Molzam Sharifloo. “Dealing with Non-Functional Re-
quirements for Adaptive Systems via Dynamic Software Product-Lines.” In: Soft-
ware Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle,
Germany, October 24-29, 2010 Revised Selected and Invited Papers. Ed. by Rogério
de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 191–213. isbn: 978-3-
642-35813-5. doi: 10.1007/978-3-642-35813-5_8. (Visited on 10/02/2022).

[185] Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya. “Self-
Healing Systems — Survey and Synthesis.” In: Decision Support Systems 42.4
(2007), pp. 2164–2185. issn: 0167-9236. doi: 10.1016/j.dss.2006.06.011.

[186] Holger Giese, Leen Lambers, Basil Becker, Stephan Hildebrandt, Stefan Neu-
mann, Thomas Vogel, and Sebastian Wätzoldt. “Graph Transformations for
MDE, Adaptation, and Models at Runtime.” In: Formal Methods for Model-Driven
Engineering: 12th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012.
Advanced Lectures. Ed. by Marco Bernardo, Vittorio Cortellessa, and Alfonso
Pierantonio. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2012, pp. 137–191. isbn: 978-3-642-30982-3. doi: 10.1007/978-3-642-30982-3_5.
(Visited on 11/15/2021).

[187] Holger Giese, Thomas Vogel, Ada Diaconescu, Sebastian Götz, and Samuel
Kounev. “Architectural Concepts for Self-aware Computing Systems.” In: Self-
Aware Computing Systems. Ed. by Samuel Kounev, Jeffrey O. Kephart, Aleksandar
Milenkoski, and Xiaoyun Zhu. Cham: Springer International Publishing, 2017,
pp. 109–147. isbn: 978-3-319-47474-8. doi: 10.1007/978- 3- 319- 47474- 8_5.
(Visited on 05/12/2022).

https://doi.org/10.1109/SASO.2016.21
https://doi.org/doi: 10.1109/ICAC.2017.35
https://doi.org/10.1145/3380965
https://doi.org/10.1145/3469440
https://doi.org/10.1007/978-3-642-34059-8_19
https://doi.org/10.1007/978-3-642-34059-8_19
https://doi.org/10.1007/978-3-642-35813-5_8
https://doi.org/10.1016/j.dss.2006.06.011
https://doi.org/10.1007/978-3-642-30982-3_5
https://doi.org/10.1007/978-3-319-47474-8_5

246 bibliography

[188] Holger Giese and Robert Wagner. “Incremental Model Synchronization with
Triple Graph Grammars.” In: Model Driven Engineering Languages and Systems.
Ed. by Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 543–557. isbn:
978-3-540-45773-2. doi: 10.1007/11880240_38.

[189] Holger Giese and Robert Wagner. “From Model Transformation to Incremental
Bidirectional Model Synchronization.” In: Softw Syst Model 8.1 (Feb. 1, 2009),
pp. 21–43. issn: 1619-1374. doi: 10 . 1007 / s10270 - 008 - 0089 - 9. (Visited on
11/15/2021).

[190] Heather J. Goldsby, Pete Sawyer, Nelly Bencomo, Betty H.C. Cheng, and
Danny Hughes. “Goal-Based Modeling of Dynamically Adaptive System Re-
quirements.” In: 15th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (Ecbs 2008). 15th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems (Ecbs
2008). Mar. 2008, pp. 36–45. doi: 10.1109/ECBS.2008.22.

[191] Ian Gorton. “Software Quality Attributes.” In: Essential Software Architecture.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 23–38. isbn: 978-3-642-
19176-3. doi: 10.1007/978-3-642-19176-3_3.

[192] Donald W. Green and Robert H. Perry. Perry’s Chemical Engineers’ Handbook. 8th
Revised edition. New York: McGraw-Hill Education Ltd, Oct. 23, 2007. 2400 pp.
isbn: 978-0-07-142294-9.

[193] Rean Griffith, Gail Kaiser, and Javier Alonso López. “Multi-Perspective Evalua-
tion of Self-Healing Systems Using Simple Probabilistic Models.” In: Proceedings
of the 6th International Conference on Autonomic Computing. ICAC ’09. New York,
NY, USA: Association for Computing Machinery, June 15, 2009, pp. 59–60. isbn:
978-1-60558-564-2. doi: 10.1145/1555228.1555245.

[194] Xiaodong Gu. “IDES: Self-adaptive Software with Online Policy Evolution Ex-
tended from Rainbow.” In: Computer and Information Science 2012. Ed. by Roger
Lee. Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2012,
pp. 181–195. isbn: 978-3-642-30454-5. doi: 10.1007/978- 3- 642- 30454- 5_13.
(Visited on 09/28/2022).

[195] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wąsowski. “Variability-Aware Performance Prediction: A Statistical Learning
Approach.” In: 2013 28th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). 2013 28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). Nov. 2013, pp. 301–311. doi: 10.1109/ASE.
2013.6693089.

[196] Isabelle Guyon and André Elisseeff. “An Introduction to Variable and Feature
Selection.” In: J. Mach. Learn. Res. 3 (Mar. 1, 2003), pp. 1157–1182. issn: 1532-4435.

[197] Robrecht Haesevoets, Danny Weyns, Tom Holvoet, and Wouter Joosen. “A For-
mal Model for Self-Adaptive and Self-Healing Organizations.” In: 2009 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems. 2009

ICSE Workshop on Software Engineering for Adaptive and Self-Managing Sys-
tems. May 2009, pp. 116–125. doi: 10.1109/SEAMS.2009.5069080.

https://doi.org/10.1007/11880240_38
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.1109/ECBS.2008.22
https://doi.org/10.1007/978-3-642-19176-3_3
https://doi.org/10.1145/1555228.1555245
https://doi.org/10.1007/978-3-642-30454-5_13
https://doi.org/10.1109/ASE.2013.6693089
https://doi.org/10.1109/ASE.2013.6693089
https://doi.org/10.1109/SEAMS.2009.5069080

bibliography 247

[198] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. “Using Product Line Techniques
to Build Adaptive Systems.” In: 10th International Software Product Line Conference
(SPLC’06). Aug. 2006. isbn: 0-7695-2599-7. doi: 10.1109/SPLINE.2006.1691586.

[199] Deshuai Han, Qiliang Yang, Jianchun Xing, Juelong Li, and Hongda Wang.
“FAME: A UML-based Framework for Modeling Fuzzy Self-Adaptive Software.”
In: Information and Software Technology 76 (Aug. 1, 2016), pp. 118–134. issn: 0950-
5849. doi: 10.1016/j.infsof.2016.04.014. (Visited on 10/25/2022).

[200] Jun Han and Claudio Moraga. “The Influence of the Sigmoid Function Param-
eters on the Speed of Backpropagation Learning.” In: From Natural to Artificial
Neural Computation. Ed. by José Mira and Francisco Sandoval. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 1995, pp. 195–201. isbn: 978-3-
540-49288-7. doi: 10.1007/3-540-59497-3_175.

[201] L.K. Hansen and P. Salamon. “Neural Network Ensembles.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 12.10 (Oct. 1990), pp. 993–1001. issn:
1939-3539. doi: 10.1109/34.58871.

[202] Frank E. Harrell. Regression Modeling Strategies: With Applications to Linear Models,
Logistic and Ordinal Regression, and Survival Analysis. Springer Series in Statistics.
Cham: Springer International Publishing, 2015. isbn: 978-3-319-19424-0. doi: 10.
1007/978-3-319-19425-7.

[203] Sara Hassan, Nelly Bencomo, and Rami Bahsoon. “Minimizing Nasty Surprises
with Better Informed Decision-Making in Self-Adaptive Systems.” In: 2015
IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. May 2015, pp. 134–145. doi: 10.1109/SEAMS.2015.13.

[204] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Linear Methods for Re-
gression.” In: The Elements of Statistical Learning: Data Mining, Inference, and Pre-
diction. Ed. by Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Springer
Series in Statistics. New York, NY: Springer, 2009, pp. 43–99. isbn: 978-0-387-
84858-7. doi: 10.1007/978-0-387-84858-7_3. (Visited on 03/15/2022).

[205] Tomasz Haupt. “Towards Mediation-Based Self-Healing of Data-Driven Business
Processes.” In: 2012 7th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS). 2012 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). June
2012, pp. 139–144. doi: 10.1109/SEAMS.2012.6224400.

[206] Taliver Heath, Richard P. Martin, and Thu D. Nguyen. “Improving Cluster Avail-
ability Using Workstation Validation.” In: SIGMETRICS Perform. Eval. Rev. 30.1
(June 2002), pp. 217–227. url: http://doi.acm.org/10.1145/511399.511362.

[207] Robert Heinrich, Eric Schmieders, Reiner Jung, Kiana Rostami, Andreas Metzger,
Wilhelm Hasselbring, Ralf Reussner, and Klaus Pohl. “Integrating Run-Time Ob-
servations and Design Component Models for Cloud System Analysis.” In: [Pa-
per] In: 9th Workshop on Models@run.Time, September 30, 2014, Valencia, Spain . Pro-
ceedings of the 9th Workshop on Models@run.Time ; Pp. 41-46 . 9th Workshop on
Models@run.Time. Vol. 1270. Valencia, Spain: CEUR, Sept. 2014, pp. 41–46. url:
http://ceur-ws.org/Vol-1270/ (visited on 11/12/2021).

[208] Joseph L Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M Tilbury. Feedback
Control of Computing Systems. John Wiley & Sons, 2004. isbn: 978-0-471-26637-2.

https://doi.org/10.1109/SPLINE.2006.1691586
https://doi.org/10.1016/j.infsof.2016.04.014
https://doi.org/10.1007/3-540-59497-3_175
https://doi.org/10.1109/34.58871
https://doi.org/10.1007/978-3-319-19425-7
https://doi.org/10.1007/978-3-319-19425-7
https://doi.org/10.1109/SEAMS.2015.13
https://doi.org/10.1007/978-0-387-84858-7_3
https://doi.org/10.1109/SEAMS.2012.6224400
http://doi.acm.org/10.1145/511399.511362
http://ceur-ws.org/Vol-1270/

248 bibliography

[209] Elia Henrichs, Veronika Lesch, Martin Straesser, Samuel Kounev, and Christian
Krupitzer. “A Literature Review on Optimization Techniques for Adaptation
Planning in Adaptive Systems: State of the Art and Research Directions.” In:
Information and Software Technology 149 (Sept. 1, 2022), p. 106940. issn: 0950-5849.
doi: 10.1016/j.infsof.2022.106940. (Visited on 09/27/2022).

[210] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control and Artificial Intelligence. Cambridge, MA,
USA: MIT Press, 1992. 228 pp. isbn: 978-0-262-08213-6.

[211] Paul Horn. “Autonomic Computing: IBM’s Perspective on the State of Informa-
tion Technology.” In: IBM White Paper (2001).

[212] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey.
“Meta-Learning in Neural Networks: A Survey.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 44.9 (Sept. 2022), pp. 5149–5169. issn: 1939-3539.
doi: 10.1109/TPAMI.2021.3079209.

[213] Gang Huang, Hong Mei, and Qian-xiang Wang. “Towards Software Architecture
at Runtime.” In: SIGSOFT Softw. Eng. Notes 28.2 (Mar. 1, 2003), p. 8. issn: 0163-
5948. doi: 10.1145/638750.638780. (Visited on 11/12/2021).

[214] Markus C. Huebscher and Julie A. McCann. “A Survey of Autonomic Com-
puting—Degrees, Models, and Applications.” In: ACM Comput. Surv. 40.3 (Aug.
2008). issn: 0360-0300. doi: 10.1145/1380584.1380585.

[215] IBM. “An Architectural Blueprint for Autonomic Computing.” In: IBM White
Paper. Autonomic Computing 31.2006 (2006), pp. 1–6.

[216] IBM. IBM ILOG CPLEX Optimizer. Sept. 30, 2021. url: https://www.ibm.com/
analytics/cplex-optimizer (visited on 03/14/2023).

[217] “IEEE Standard for a Software Quality Metrics Methodology.” In: IEEE Std 1061-
1992 (Mar. 1993), pp. 1–96. doi: 10.1109/IEEESTD.1993.115124.

[218] M. Usman Iftikhar, Gowri Sankar Ramachandran, Pablo Bollansée, Danny
Weyns, and Danny Hughes. “DeltaIoT: A Self-Adaptive Internet of Things Exem-
plar.” In: Proceedings of the 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. SEAMS ’17. Buenos Aires, Argentina: IEEE
Press, May 20, 2017, pp. 76–82. isbn: 978-1-5386-1550-8. doi: 10.1109/SEAMS.
2017.21. (Visited on 05/17/2022).

[219] Christian Igel. “Multi-Objective Model Selection for Support Vector Machines.”
In: Evolutionary Multi-Criterion Optimization. Ed. by Carlos A. Coello Coello, Ar-
turo Hernández Aguirre, and Eckart Zitzler. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2005, pp. 534–546. isbn: 978-3-540-31880-4.
doi: 10.1007/978-3-540-31880-4_37.

[220] Dmitry Ignatov and Andrey Ignatov. “Decision Stream: Cultivating Deep Deci-
sion Trees.” In: 2017 IEEE 29th International Conference on Tools with Artificial Intel-
ligence (ICTAI). 2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI). Nov. 2017, pp. 905–912. doi: 10.1109/ICTAI.2017.00140.

[221] Shigeru Imai. “Elastic Cloud Computing for QoS-aware Data Processing.” Rens-
selaer Polytechnic Institute, Troy, NY, 2018.

https://doi.org/10.1016/j.infsof.2022.106940
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1145/638750.638780
https://doi.org/10.1145/1380584.1380585
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1109/IEEESTD.1993.115124
https://doi.org/10.1109/SEAMS.2017.21
https://doi.org/10.1109/SEAMS.2017.21
https://doi.org/10.1007/978-3-540-31880-4_37
https://doi.org/10.1109/ICTAI.2017.00140

bibliography 249

[222] Alexandru Iosup, Catalin Dumitrescu, Dick Epema, Hui Li, and Lex Wolters.
“How Are Real Grids Used? The Analysis of Four Grid Traces and Its Implica-
tions.” In: Proceedings of the 7th IEEE/ACM International Conference on Grid Com-
puting (Washington, DC, USA). GRID ’06. IEEE Computer Society, 2006, pp. 262–
269. url: https://doi.org/10.1109/ICGRID.2006.311024.

[223] Alexandru Iosup, Mathieu Jan, Ozan Sonmez, and Dick Epema. On the Dynamic
Resources Availability in Grids. Research report. INRIA, 2007. url: https://hal.
inria.fr/inria-00143265.

[224] Dennis Ippoliti and Xiaobo Zhou. “A Self-Tuning Self-Optimizing Approach for
Automated Network Anomaly Detection Systems.” In: Proceedings of the 9th In-
ternational Conference on Autonomic Computing (New York, NY, USA). ICAC ’12.
ACM, 2012, pp. 85–90. url: http://doi.acm.org/10.1145/2371536.2371551.

[225] Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek. “Adaptive
Resource Provisioning for Read Intensive Multi-Tier Applications in the Cloud.”
In: Future Generation Computer Systems 27.6 (June 1, 2011), pp. 871–879. issn: 0167-
739X. doi: 10.1016/j.future.2010.10.016. (Visited on 05/16/2022).

[226] Mohammad A. Islam, Shaolei Ren, A. Hasan Mahmud, and Gang Quan. “Online
Energy Budgeting for Cost Minimization in Virtualized Data Center.” In: IEEE
Transactions on Services Computing 9.3 (May 2016), pp. 421–432. issn: 1939-1374.
doi: 10.1109/TSC.2015.2390231.

[227] “ISO/IEC/IEEE International Standard - Systems and Software Engineering –
Vocabulary.” In: ISO/IEC/IEEE 24765:2010(E) (Dec. 2010), pp. 1–418. doi: 10 .

1109/IEEESTD.2010.5733835.

[228] Ravishankar K. Iyer, S. E. Butner, and E. J. McCluskey. “A Statistical Fail-
ure/Load Relationship: Results of a Multicomputer Study.” In: IEEE Transactions
on Computers C-31.7 (July 1982), pp. 697–706.

[229] Paul Jaccard. “The Distribution of the Flora in the Alpine Zone.” In: New Phytol-
ogist 11.2 (1912), pp. 37–50. issn: 1469-8137. doi: 10.1111/j.1469-8137.1912.
tb05611.x. (Visited on 03/06/2023).

[230] E. Jacquet-Lagreze and J. Siskos. “Assessing a Set of Additive Utility Functions
for Multicriteria Decision-Making, the UTA Method.” In: European Journal of Op-
erational Research 10.2 (June 1, 1982), pp. 151–164. issn: 0377-2217. doi: 10.1016/
0377-2217(82)90155-2. (Visited on 02/16/2022).

[231] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduc-
tion to Statistical Learning: With Applications in R. Springer Texts in Statistics. New
York, NY: Springer US, 2021. isbn: 978-1-07-161417-4. doi: 10.1007/978-1-0716-
1418-1. (Visited on 03/14/2023).

[232] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Norbert Siegmund, and
Prasad Kawthekar. “Transfer Learning for Improving Model Predictions in
Highly Configurable Software.” In: 2017 IEEE/ACM 12th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). 2017

IEEE/ACM 12th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS). May 2017, pp. 31–41. doi: 10.1109/
SEAMS.2017.11.

https://doi.org/10.1109/ICGRID.2006.311024
https://hal.inria.fr/inria-00143265
https://hal.inria.fr/inria-00143265
http://doi.acm.org/10.1145/2371536.2371551
https://doi.org/10.1016/j.future.2010.10.016
https://doi.org/10.1109/TSC.2015.2390231
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1016/0377-2217(82)90155-2
https://doi.org/10.1016/0377-2217(82)90155-2
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1109/SEAMS.2017.11
https://doi.org/10.1109/SEAMS.2017.11

250 bibliography

[233] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated Gain-Based Evaluation of
IR Techniques.” In: ACM Trans. Inf. Syst. 20.4 (Oct. 1, 2002), pp. 422–446. issn:
1046-8188. doi: 10.1145/582415.582418. (Visited on 03/31/2022).

[234] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Additive Logistic Re-
gression: A Statistical View of Boosting (With Discussion and a Rejoinder by
the Authors).” In: The Annals of Statistics 28.2 (Apr. 1, 2000), pp. 337–407. doi:
10.1214/aos/1016218223.

[235] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boosting
Machine.” In: The Annals of Statistics 29.5 (Oct. 1, 2001), pp. 1189–1232. doi: 10.
1214/aos/1013203451.

[236] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. “ATL: A Model
Transformation Tool.” In: Science of Computer Programming. Special Issue on
Second Issue of Experimental Software and Toolkits (EST) 72.1 (June 1, 2008),
pp. 31–39. issn: 0167-6423. doi: 10.1016/j.scico.2007.08.002. (Visited on
01/31/2023).

[237] Ari Juels and Martin Wattenberg. “Stochastic Hillclimbing as a Baseline Method
for Evaluating Genetic Algorithms.” In: Advances in Neural Information Process-
ing Systems. Ed. by D. Touretzky, M. C. Mozer, and M. Hasselmo. Vol. 8. MIT
Press, 1995. url: https : / / proceedings . neurips . cc / paper / 1995 / file /

36a1694bce9815b7e38a9dad05ad42e0-Paper.pdf.

[238] Elsy Kaddoum, Claudia Raibulet, Jean-Pierre Georgé, Gauthier Picard, and
Marie-Pierre Gleizes. “Criteria for the Evaluation of Self-* Systems.” In: Pro-
ceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems. SEAMS ’10. New York, NY, USA: Association for Comput-
ing Machinery, May 3, 2010, pp. 29–38. isbn: 978-1-60558-971-8. doi: 10.1145/
1808984.1808988. (Visited on 11/23/2022).

[239] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Planning
and Acting in Partially Observable Stochastic Domains.” In: Artificial Intelligence
101.1 (May 1, 1998), pp. 99–134. issn: 0004-3702. doi: 10.1016/S0004-3702(98)
00023-X. (Visited on 10/04/2022).

[240] Abram Kagan and Lawrence A. Shepp. “Why the Variance?” In: Statistics &
Probability Letters 38.4 (July 1, 1998), pp. 329–333. issn: 0167-7152. doi: 10.1016/
S0167-7152(98)00041-8. (Visited on 03/31/2022).

[241] Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard Lipson, and
Jeromy Carriere. “The Architecture Tradeoff Analysis Method.” In: Proceedings.
Fourth IEEE International Conference on Engineering of Complex Computer Systems
(Cat. No. 98EX193). IEEE. 1998, pp. 68–78.

[242] Michael Kearns, Yishay Mansour, and Andrew Ng. “Approximate Planning
in Large POMDPs via Reusable Trajectories.” In: Advances in Neural Informa-
tion Processing Systems. Ed. by S. Solla, T. Leen, and K. Müller. Vol. 12. MIT
Press, 1999. url: https : / / proceedings . neurips . cc / paper / 1999 / file /

4f398cb9d6bc79ae567298335b51ba8a-Paper.pdf.

https://doi.org/10.1145/582415.582418
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.scico.2007.08.002
https://proceedings.neurips.cc/paper/1995/file/36a1694bce9815b7e38a9dad05ad42e0-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/36a1694bce9815b7e38a9dad05ad42e0-Paper.pdf
https://doi.org/10.1145/1808984.1808988
https://doi.org/10.1145/1808984.1808988
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0167-7152(98)00041-8
https://doi.org/10.1016/S0167-7152(98)00041-8
https://proceedings.neurips.cc/paper/1999/file/4f398cb9d6bc79ae567298335b51ba8a-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/4f398cb9d6bc79ae567298335b51ba8a-Paper.pdf

bibliography 251

[243] John Keeney and Vinny Cahill. “Chisel: A Policy-Driven, Context-Aware, Dy-
namic Adaptation Framework.” In: Proceedings of the 4th IEEE International Work-
shop on Policies for Distributed Systems and Networks. POLICY ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 3–. url: http://dl.acm.org/citation.
cfm?id=826036.826854.

[244] John Keeney, Vinny Cahill, and Mads Haahr. “Techniques for Dynamic Adapta-
tion of Mobile Services.” In: The Handbook of Mobile Middleware. Auerbach Publi-
cations, 2006. isbn: 978-0-429-13308-4.

[245] R. L. Keeney, H. Raiffa, and David W. Rajala. “Decisions with Multiple Objec-
tives: Preferences and Value Trade-Offs.” In: IEEE Transactions on Systems, Man,
and Cybernetics 9.7 (July 1979), pp. 403–403. issn: 2168-2909. doi: 10.1109/TSMC.
1979.4310245.

[246] Ralph L. Keeney. “Utility Independence and Preferences for Multiattributed
Consequences.” In: Operations Research 19.4 (1971), pp. 875–893. issn: 0030364X,
15265463. JSTOR: 169048. url: http://www.jstor.org/stable/169048.

[247] Ralph L. Keeney. “Utility Functions for Multiattributed Consequences.” In: Man-
agement Science 18 (5-part-1 Jan. 1972), pp. 276–287. issn: 0025-1909. doi: 10 .

1287/mnsc.18.5.276. (Visited on 02/16/2022).

[248] Ralph L. Keeney. “Multiplicative Utility Functions.” In: Operations Research 22.1
(1974), pp. 22–34. issn: 0030364X, 15265463. JSTOR: 169209. url: http://www.
jstor.org/stable/169209.

[249] Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Preferences
and Value Trade-Offs. Cambridge: Cambridge University Press, 1993. isbn: 978-0-
521-43883-4. doi: 10.1017/CBO9781139174084.

[250] M. G. Kendall. “A New Measure of Rank Correlation.” In: Biometrika 30.1/2

(1938), pp. 81–93. issn: 00063444. doi: 10.2307/2332226. JSTOR: 2332226. (Vis-
ited on 04/03/2022).

[251] Stuart Kent. “Model Driven Engineering.” In: Integrated Formal Methods. Ed. by
Michael Butler, Luigia Petre, and Kaisa Sere. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2002, pp. 286–298. isbn: 978-3-540-47884-3. doi: 10.
1007/3-540-47884-1_16.

[252] J.O. Kephart and D.M. Chess. “The Vision of Autonomic Computing.” In: Com-
puter 36.1 (Jan. 2003), pp. 41–50. issn: 1558-0814. doi: 10.1109/MC.2003.1160055.

[253] J.O. Kephart and W.E. Walsh. “An Artificial Intelligence Perspective on Auto-
nomic Computing Policies.” In: Proceedings. Fifth IEEE International Workshop
on Policies for Distributed Systems and Networks, 2004. POLICY 2004. Proceedings.
Fifth IEEE International Workshop on Policies for Distributed Systems and Net-
works, 2004. POLICY 2004. Yorktown Heights, NY, USA: IEEE, 2004, pp. 3–
12. isbn: 978-0-7695-2141-1. doi: 10.1109/POLICY.2004.1309145. (Visited on
09/22/2021).

[254] Jeffrey O. Kephart and Rajarshi Das. “Achieving Self-Management via Utility
Functions.” In: IEEE Internet Computing 11.1 (Jan. 2007), pp. 40–48. issn: 1941-
0131. doi: 10.1109/MIC.2007.2.

http://dl.acm.org/citation.cfm?id=826036.826854
http://dl.acm.org/citation.cfm?id=826036.826854
https://doi.org/10.1109/TSMC.1979.4310245
https://doi.org/10.1109/TSMC.1979.4310245
http://www.jstor.org/stable/169048
http://www.jstor.org/stable/169048
https://doi.org/10.1287/mnsc.18.5.276
https://doi.org/10.1287/mnsc.18.5.276
http://www.jstor.org/stable/169209
http://www.jstor.org/stable/169209
http://www.jstor.org/stable/169209
https://doi.org/10.1017/CBO9781139174084
https://doi.org/10.2307/2332226
http://www.jstor.org/stable/2332226
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/POLICY.2004.1309145
https://doi.org/10.1109/MIC.2007.2

252 bibliography

[255] Dongsun Kim and Sooyong Park. “Reinforcement Learning-Based Dynamic
Adaptation Planning Method for Architecture-Based Self-Managed Software.”
In: 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems. May 2009, pp. 76–85. doi: 10.1109/SEAMS.2009.5069076.

[256] James Kirkpatrick et al. “Overcoming Catastrophic Forgetting in Neural Net-
works.” In: Proceedings of the National Academy of Sciences 114.13 (Mar. 28, 2017),
pp. 3521–3526. doi: 10.1073/pnas.1611835114. (Visited on 03/14/2023).

[257] Kirkpatrick S., Gelatt C. D., and Vecchi M. P. “Optimization by Simulated An-
nealing.” In: Science 220.4598 (May 13, 1983), pp. 671–680. doi: 10.1126/science.
220.4598.671. (Visited on 02/19/2022).

[258] Barbara A. Kitchenham, Guilherme H. Travassos, Anneliese von Mayrhauser,
Frank Niessink, Norman F. Schneidewind, Janice Singer, Shingo Takada, Risto
Vehvilainen, and Hongji Yang. “Towards an Ontology of Software Maintenance.”
In: Journal of Software Maintenance: Research and Practice 11.6 (1999), pp. 365–389.
doi: 10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-
W.

[259] Benjamin Klöpper, Shinichi Honiden, Jan Meyer, and Matthias Tichy. “Plan-
ning with Utility and State Trajectory Constraints in Self-Healing Automotive
Systems.” In: 2010 Fourth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems. 2010 Fourth IEEE International Conference on Self-Adaptive
and Self-Organizing Systems. Sept. 2010, pp. 74–83. doi: 10.1109/SASO.2010.16.

[260] J.C. Knight. “Safety Critical Systems: Challenges and Directions.” In: Proceedings
of the 24th International Conference on Software Engineering. ICSE 2002. May 2002,
pp. 547–550.

[261] Mykel J Kochenderfer. Decision Making under Uncertainty: Theory and Application.
MIT press, 2015.

[262] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Planning.”
In: Machine Learning: ECML 2006. Ed. by Johannes Fürnkranz, Tobias Scheffer,
and Myra Spiliopoulou. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2006, pp. 282–293. isbn: 978-3-540-46056-5. doi: 10.1007/11871842_29.

[263] S. Kodase, Shige Wang, and K.G. Shin. “Transforming Structural Model to Run-
time Model of Embedded Software with Real-Time Constraints.” In: Automation
and Test in Europe Conference and Exhibition 2003 Design. Automation and Test in
Europe Conference and Exhibition 2003 Design. Mar. 2003, 170–175 suppl. doi:
10.1109/DATE.2003.1186690.

[264] Sven Koenig. “Exploring Unknown Environments with Real-Time Search or Re-
inforcement Learning.” In: Proceedings of the 11th International Conference on Neu-
ral Information Processing Systems. NIPS’98. Cambridge, MA, USA: MIT Press,
Dec. 1, 1998, pp. 1003–1009.

[265] M.M. Kokar, K. Baclawski, and Y.A. Eracar. “Control Theory-Based Foundations
of Self-Controlling Software.” In: IEEE Intelligent Systems and their Applications
14.3 (May 1999), pp. 37–45. issn: 2374-9423. doi: 10.1109/5254.769883.

https://doi.org/10.1109/SEAMS.2009.5069076
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W
https://doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W
https://doi.org/10.1109/SASO.2010.16
https://doi.org/10.1007/11871842_29
https://doi.org/10.1109/DATE.2003.1186690
https://doi.org/10.1109/5254.769883

bibliography 253

[266] Mausam Kolobov and Andrey Kolobov. Planning with Markov Decision Processes:
An AI Perspective. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Cham: Springer International Publishing, 2012. isbn: 978-3-031-00431-
5. doi: 10.1007/978-3-031-01559-5.

[267] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. “The Case for
Reflective Middleware.” In: Commun. ACM 45.6 (June 1, 2002), pp. 33–38. issn:
0001-0782. doi: 10.1145/508448.508470. (Visited on 11/10/2021).

[268] Derrick Kondo, Gilles Fedak, Franck Cappello, Andrew A. Chien, and Henri
Casanova. “Characterizing Resource Availability in Enterprise Desktop Grids.”
In: Future Generation Computer Systems 23.7 (Aug. 1, 2007), pp. 888–903. issn:
0167-739X. doi: 10.1016/j.future.2006.11.001. (Visited on 03/14/2023).

[269] Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick Epema. “The Failure
Trace Archive: Enabling Comparative Analysis of Failures in Diverse Distributed
Systems.” In: Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (Washington, DC, USA). CCGRID ’10. IEEE
Computer Society, 2010, pp. 398–407. url: http://dx.doi.org/10.1109/CCGRID.
2010.71.

[270] Philip Koopman. “Elements of the Self-Healing System Problem Space.” In:
WADS 2003 Workshop on Software Architectures for Dependable Systems (Portland,
OR). May 2003, pp. 31–36. url: http://repository.cmu.edu/cgi/viewcontent.
cgi?article=1679&context=isr.

[271] Samuel Kounev et al. “The Notion of Self-aware Computing.” In: Self-Aware
Computing Systems. Ed. by Samuel Kounev, Jeffrey O. Kephart, Aleksandar
Milenkoski, and Xiaoyun Zhu. Cham: Springer International Publishing, 2017,
pp. 3–16. isbn: 978-3-319-47474-8. doi: 10.1007/978-3-319-47474-8_1. (Visited
on 11/15/2022).

[272] Jeff Kramer. “Is Abstraction the Key to Computing?” In: Commun. ACM 50.4
(Apr. 1, 2007), pp. 36–42. issn: 0001-0782. doi: 10.1145/1232743.1232745. (Vis-
ited on 11/12/2021).

[273] Jeff Kramer and Jeff Magee. “Self-Managed Systems: An Architectural Chal-
lenge.” In: FOSE ’07: 2007 Future of Software Engineering (Washington, DC, USA).
IEEE Computer Society, 2007, pp. 259–268.

[274] Ben J. A. Kröse. “Learning from Delayed Rewards.” In: Robotics and Autonomous
Systems 15.4 (1995), p. 233. issn: 0921-8890. url: https://www.academia.edu/
3294050/Learning_from_delayed_rewards.

[275] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. “A Survey on Engineering Approaches for Self-Adaptive
Systems.” In: Pervasive and Mobile Computing 17 (2015), pp. 184–206. issn: 1574-
1192. doi: 10.1016/j.pmcj.2014.09.009.

[276] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. New York, NY:
Springer, 2013. isbn: 978-1-4614-6848-6. doi: 10. 1007 /978 - 1- 4614 - 6849 - 3.
(Visited on 03/14/2023).

https://doi.org/10.1007/978-3-031-01559-5
https://doi.org/10.1145/508448.508470
https://doi.org/10.1016/j.future.2006.11.001
http://dx.doi.org/10.1109/CCGRID.2010.71
http://dx.doi.org/10.1109/CCGRID.2010.71
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1679&context=isr
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1679&context=isr
https://doi.org/10.1007/978-3-319-47474-8_1
https://doi.org/10.1145/1232743.1232745
https://www.academia.edu/3294050/Learning_from_delayed_rewards
https://www.academia.edu/3294050/Learning_from_delayed_rewards
https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1007/978-1-4614-6849-3

254 bibliography

[277] Marta Kwiatkowska and David Parker. “Automated Verification and Strategy
Synthesis for Probabilistic Systems.” In: Automated Technology for Verification and
Analysis. Ed. by Dang Van Hung and Mizuhito Ogawa. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2013, pp. 5–22. isbn:
978-3-319-02444-8. doi: 10.1007/978-3-319-02444-8_2.

[278] Philippe Lalanda, Julie A. McCann, and Ada Diaconescu. Autonomic Computing:
Principles, Design and Implementation. Undergraduate Topics in Computer Science.
London: Springer, 2013. isbn: 978-1-4471-5006-0. doi: 10.1007/978- 1- 4471-
5007-7.

[279] I.D. Landau and Y.D. Landau. Adaptive Control: The Model Reference Approach.
Control and System Theory. Taylor & Francis, 1979. isbn: 978-0-8247-6548-4.

[280] Ioan Doré Landau, Rogelio Lozano, Mohammed M’Saad, and Alireza Karimi.
Adaptive Control: Algorithms, Analysis and Applications. Springer Science & Busi-
ness Media, June 6, 2011. 595 pp. isbn: 978-0-85729-664-1.

[281] J. C. Laprie. “Dependability: Basic Concepts and Terminology.” In: Dependabil-
ity: Basic Concepts and Terminology: In English, French, German, Italian and Japanese.
Ed. by J. C. Laprie. Dependable Computing and Fault-Tolerant Systems. Vienna:
Springer, 1992, pp. 3–245. isbn: 978-3-7091-9170-5. doi: 10.1007/978-3-7091-
9170-5_1. (Visited on 02/25/2022).

[282] Daniel Le Métayer. “Software Architecture Styles as Graph Grammars.” In: Pro-
ceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software Engineer-
ing. SIGSOFT ’96. New York, NY, USA: Association for Computing Machinery,
Oct. 1, 1996, pp. 15–23. isbn: 978-0-89791-797-1. doi: 10.1145/239098.239105.
(Visited on 11/24/2021).

[283] David B. Leake. Case-Based Reasoning: Experiences, Lessons and Future Directions.
1st. Cambridge, MA, USA: MIT Press, 1996. isbn: 0-262-62110-X.

[284] Peter Lewis, Kirstie L. Bellman, Christopher Landauer, Lukas Esterle, Kyrre
Glette, Ada Diaconescu, and Holger Giese. “Towards a Framework for the Levels
and Aspects of Self-aware Computing Systems.” In: Self-Aware Computing Sys-
tems. Ed. by Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski, and Xi-
aoyun Zhu. Cham: Springer International Publishing, 2017, pp. 51–85. isbn: 978-
3-319-47474-8. doi: 10.1007/978-3-319-47474-8_3. (Visited on 01/27/2022).

[285] Peter R Lewis, Marco Platzner, Bernhard Rinner, Jim Tørresen, and Xin
Yao. “Self-Aware Computing Systems.” In: Natural Computing Series. https://doi.
org/10.1007/978-3-319-39675-0 (2016).

[286] Tong Li, Fan Zhang, and Dan Wang. “Automatic User Preferences Elicitation:
A Data-Driven Approach.” In: Requirements Engineering: Foundation for Software
Quality. Ed. by Erik Kamsties, Jennifer Horkoff, and Fabiano Dalpiaz. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2018,
pp. 324–331. isbn: 978-3-319-77243-1. doi: 10.1007/978-3-319-77243-1_21.

[287] Sarah Lichtenstein and Paul Slovic, eds. The Construction of Preference. Cam-
bridge: Cambridge University Press, 2006. isbn: 978-0-521-83428-5. doi: 10.1017/
CBO9780511618031. (Visited on 03/16/2023).

https://doi.org/10.1007/978-3-319-02444-8_2
https://doi.org/10.1007/978-1-4471-5007-7
https://doi.org/10.1007/978-1-4471-5007-7
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1145/239098.239105
https://doi.org/10.1007/978-3-319-47474-8_3
https://doi.org/10.1007/978-3-319-77243-1_21
https://doi.org/10.1017/CBO9780511618031
https://doi.org/10.1017/CBO9780511618031

bibliography 255

[288] Bing Liu. “Supervised Learning.” In: Web Data Mining: Exploring Hyperlinks, Con-
tents, and Usage Data. Ed. by Bing Liu. Berlin, Heidelberg: Springer, 2011, pp. 63–
132. isbn: 978-3-642-19460-3. doi: 10.1007/978-3-642-19460-3_3. (Visited on
03/26/2022).

[289] Hua Liu, M. Parashar, and S. Hariri. “A Component-Based Programming Model
for Autonomic Applications.” In: International Conference on Autonomic Comput-
ing, 2004. Proceedings. International Conference on Autonomic Computing, 2004.
Proceedings. May 2004, pp. 10–17. doi: 10.1109/ICAC.2004.1301341.

[290] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data
Mining. Vol. 454. Springer Science & Business Media, 2012.

[291] Yue Liu, Yuan Wang, Yuan Li, Bofeng Zhang, and Gengfeng Wu. “Earthquake
Prediction by RBF Neural Network Ensemble.” In: Advances in Neural Networks
- ISNN 2004. Ed. by Fu-Liang Yin, Jun Wang, and Chengan Guo. Berlin, Heidel-
berg: Springer, 2004, pp. 962–969. isbn: 978-3-540-28648-6. doi: 10.1007/978-3-
540-28648-6_153.

[292] Markus Luckey and Gregor Engels. “High-Quality Specification of Self-Adaptive
Software Systems.” In: Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS ’13. San Francisco,
California: IEEE Press, May 20, 2013, pp. 143–152. isbn: 978-1-4673-4401-2.

[293] Frank D. Macías-Escrivá, Rodolfo Haber, Raul del Toro, and Vicente Hernandez.
“Self-Adaptive Systems: A Survey of Current Approaches, Research Challenges
and Applications.” In: Expert Systems with Applications 40.18 (2013), pp. 7267–
7279. issn: 0957-4174. doi: 10.1016/j.eswa.2013.07.033.

[294] Pattie Maes. “Concepts and Experiments in Computational Reflection.” In: Con-
ference Proceedings on Object-oriented Programming Systems, Languages and Applica-
tions. OOPSLA ’87. New York, NY, USA: Association for Computing Machinery,
Dec. 1, 1987, pp. 147–155. isbn: 978-0-89791-247-1. doi: 10.1145/38765.38821.
(Visited on 11/01/2021).

[295] João Paulo Magalhães and Luis Moura Silva. “SHõWA: A Self-Healing Frame-
work for Web-Based Applications.” In: ACM Trans. Auton. Adapt. Syst. 10.1
(Mar. 9, 2015), 4:1–4:28. issn: 1556-4665. doi: 10 . 1145 / 2700325. (Visited on
07/14/2022).

[296] Jeff Magee and Jeff Kramer. “Dynamic Structure in Software Architectures.” In:
SIGSOFT Softw. Eng. Notes 21.6 (Nov. 1996), pp. 3–14. issn: 0163-5948. doi: 10.
1145/250707.239104. (Visited on 09/16/2021).

[297] Sara Mahdavi-Hezavehi, Vinicius H.S. Durelli, Danny Weyns, and Paris Avge-
riou. “A Systematic Literature Review on Methods That Handle Multiple Qual-
ity Attributes in Architecture-Based Self-Adaptive Systems.” In: Information and
Software Technology 90 (2017), pp. 1–26. issn: 0950-5849. doi: 10.1016/j.infsof.
2017.03.013.

[298] Jacob Mattingley, Yang Wang, and Stephen Boyd. “Receding Horizon Control.”
In: IEEE Control Systems Magazine 31.3 (June 2011), pp. 52–65. issn: 1941-000X.
doi: 10.1109/MCS.2011.940571.

https://doi.org/10.1007/978-3-642-19460-3_3
https://doi.org/10.1109/ICAC.2004.1301341
https://doi.org/10.1007/978-3-540-28648-6_153
https://doi.org/10.1007/978-3-540-28648-6_153
https://doi.org/10.1016/j.eswa.2013.07.033
https://doi.org/10.1145/38765.38821
https://doi.org/10.1145/2700325
https://doi.org/10.1145/250707.239104
https://doi.org/10.1145/250707.239104
https://doi.org/10.1016/j.infsof.2017.03.013
https://doi.org/10.1016/j.infsof.2017.03.013
https://doi.org/10.1109/MCS.2011.940571

256 bibliography

[299] Mausam, Piergiorgio Bertoli, and Daniel S. Weld. “A Hybridized Planner for
Stochastic Domains.” In: Proceedings of the 20th International Joint Conference on
Artifical Intelligence. IJCAI’07. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., Jan. 6, 2007, pp. 1972–1978.

[300] Dennis McCarthy and Umeshwar Dayal. “The Architecture of an Active
Database Management System.” In: SIGMOD Rec. 18.2 (June 1, 1989), pp. 215–
224. issn: 0163-5808. doi: 10.1145/66926.66946. (Visited on 09/20/2021).

[301] Philip K McKinley, Seyed Masoud Sadjadi, Eric P Kasten, and Betty H.C. Cheng.
A Taxonomy of Compositional Adaptation. Technical Report MSU-CSE-04-17. 2004.

[302] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng.
“Composing Adaptive Software.” In: Computer 37.7 (July 1, 2004), pp. 56–64. issn:
0018-9162. doi: 10.1109/MC.2004.48. (Visited on 09/24/2021).

[303] N. Medvidovic and R.N. Taylor. “A Classification and Comparison Framework
for Software Architecture Description Languages.” In: IEEE Transactions on Soft-
ware Engineering 26.1 (Jan. 2000), pp. 70–93. issn: 1939-3520. doi: 10.1109/32.
825767.

[304] Daniel Menasce, Hassan Gomaa, sam Malek, and Joao Sousa. “SASSY: A Frame-
work for Self-Architecting Service-Oriented Systems.” In: IEEE Software 28.6
(Nov. 2011), pp. 78–85. issn: 1937-4194. doi: 10.1109/MS.2011.22.

[305] Danilo Filgueira Mendonça, Genaína Nunes Rodrigues, Raian Ali, Vander Alves,
and Luciano Baresi. “GODA: A Goal-Oriented Requirements Engineering Frame-
work for Runtime Dependability Analysis.” In: Information and Software Technol-
ogy 80 (Dec. 1, 2016), pp. 245–264. issn: 0950-5849. doi: 10.1016/j.infsof.2016.
09.005. (Visited on 11/11/2021).

[306] Zoltán Micskei, Henrique Madeira, Alberto Avritzer, István Majzik, Marco
Vieira, and Nuno Antunes. “Robustness Testing Techniques and Tools.” In: Re-
silience Assessment and Evaluation of Computing Systems. Ed. by Katinka Wolter, Al-
berto Avritzer, Marco Vieira, and Aad van Moorsel. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 323–339. isbn: 978-3-642-29032-9. doi: 10.1007/978-
3-642-29032-9_16.

[307] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. “Proac-
tive Self-Adaptation under Uncertainty: A Probabilistic Model Checking Ap-
proach.” In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software En-
gineering. ESEC/FSE 2015. New York, NY, USA: Association for Computing Ma-
chinery, Aug. 30, 2015, pp. 1–12. isbn: 978-1-4503-3675-8. doi: 10.1145/2786805.
2786853. (Visited on 05/13/2022).

[308] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. “Ef-
ficient Decision-Making under Uncertainty for Proactive Self-Adaptation.” In:
2016 IEEE International Conference on Autonomic Computing (ICAC). July 2016,
pp. 147–156. doi: 10.1109/ICAC.2016.59.

[309] Gabriel A. Moreno, Ofer Strichman, Sagar Chaki, and Radislav Vaisman.
“Decision-Making with Cross-Entropy for Self-Adaptation.” In: 2017 IEEE/ACM
12th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). 2017 IEEE/ACM 12th International Symposium on

https://doi.org/10.1145/66926.66946
https://doi.org/10.1109/MC.2004.48
https://doi.org/10.1109/32.825767
https://doi.org/10.1109/32.825767
https://doi.org/10.1109/MS.2011.22
https://doi.org/10.1016/j.infsof.2016.09.005
https://doi.org/10.1016/j.infsof.2016.09.005
https://doi.org/10.1007/978-3-642-29032-9_16
https://doi.org/10.1007/978-3-642-29032-9_16
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1109/ICAC.2016.59

bibliography 257

Software Engineering for Adaptive and Self-Managing Systems (SEAMS). May
2017, pp. 90–101. doi: 10.1109/SEAMS.2017.7.

[310] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Sol-
berg. “Models@ Run.Time to Support Dynamic Adaptation.” In: Computer 42.10

(Oct. 2009), pp. 44–51. issn: 1558-0814. doi: 10.1109/MC.2009.327.

[311] Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jézéquel. “Taming
Dynamically Adaptive Systems Using Models and Aspects.” In: 2009 IEEE 31st
International Conference on Software Engineering. May 2009, pp. 122–132. doi: 10.
1109/ICSE.2009.5070514.

[312] Brice Morin, Franck Fleurey, Nelly Bencomo, Jean-Marc Jézéquel, Arnor Solberg,
Vegard Dehlen, and Gordon Blair. “An Aspect-Oriented and Model-Driven Ap-
proach for Managing Dynamic Variability.” In: Model Driven Engineering Lan-
guages and Systems. Ed. by Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel,
Axel Uhl, and Markus Völter. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2008, pp. 782–796. isbn: 978-3-540-87875-9. doi: 10.1007/978-
3-540-87875-9_54.

[313] Brice Morin, Thomas Ledoux, Mahmoud Ben Hassine, Franck Chauvel, Olivier
Barais, and Jean-Marc Jézéquel. “Unifying Runtime Adaptation and Design Evo-
lution.” In: 2009 Ninth IEEE International Conference on Computer and Information
Technology. Vol. 1. Oct. 2009, pp. 104–109. doi: 10.1109/CIT.2009.94.

[314] Brice Morin, Grégory Nain, Olivier Barais, and Jean-Marc Jézéquel. “Leveraging
Models From Design-time to Runtime. A Live Demo.” In: 4th International Work-
shop on Models@Run.Time (at MODELS’09). 2009. url: https://hal.inria.fr/
inria-00468520 (visited on 09/12/2022).

[315] Gunter Mussbacher et al. “The Relevance of Model-Driven Engineering Thirty
Years from Now.” In: Model-Driven Engineering Languages and Systems. Ed. by
Juergen Dingel, Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and Emilio Ins-
fran. Cham: Springer International Publishing, 2014, pp. 183–200. isbn: 978-3-
319-11653-2.

[316] Sangeeta Neti and Hausi A. Muller. “Quality Criteria and an Analysis Frame-
work for Self-Healing Systems.” In: International Workshop on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS ’07). International Workshop
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS ’07).
May 2007. doi: 10.1109/SEAMS.2007.15.

[317] Arnold Neumaier. “Solving Ill-Conditioned and Singular Linear Systems: A Tu-
torial on Regularization.” In: SIAM Rev. 40.3 (Jan. 1998), pp. 636–666. issn: 0036-
1445. doi: 10.1137/S0036144597321909.

[318] Thomas D. Nielsen and Finn V. Jensen. “Learning a Decision Maker’s Utility
Function from (Possibly) Inconsistent Behavior.” In: Artificial Intelligence 160.1
(Dec. 1, 2004), pp. 53–78. issn: 0004-3702. doi: 10.1016/j.artint.2004.08.003.
(Visited on 10/10/2022).

[319] Mohammed Nuseir and Hilda Madanat. “4Ps: A Strategy to Secure Customers’
Loyalty via Customer Satisfaction.” In: International Journal of Marketing Studies
7.4 (4 July 30, 2015), p78. issn: 1918-719X. doi: 10.5539/ijms.v7n4p78. (Visited
on 03/16/2023).

https://doi.org/10.1109/SEAMS.2017.7
https://doi.org/10.1109/MC.2009.327
https://doi.org/10.1109/ICSE.2009.5070514
https://doi.org/10.1109/ICSE.2009.5070514
https://doi.org/10.1007/978-3-540-87875-9_54
https://doi.org/10.1007/978-3-540-87875-9_54
https://doi.org/10.1109/CIT.2009.94
https://hal.inria.fr/inria-00468520
https://hal.inria.fr/inria-00468520
https://doi.org/10.1109/SEAMS.2007.15
https://doi.org/10.1137/S0036144597321909
https://doi.org/10.1016/j.artint.2004.08.003
https://doi.org/10.5539/ijms.v7n4p78

258 bibliography

[320] Object Management Group OMG. Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification Version 1.2. Feb. 2015. url: https://www.omg.org/
spec/QVT (visited on 03/14/2023).

[321] P. Oreizy, N. Medvidovic, and R.N. Taylor. “Architecture-Based Runtime Soft-
ware Evolution.” In: Proceedings of the 20th International Conference on Software
Engineering. Apr. 1998, pp. 177–186. doi: 10.1109/ICSE.1998.671114.

[322] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and
Alexander L. Wolf. “An Architecture-Based Approach to Self-Adaptive Soft-
ware.” In: IEEE Intelligent Systems 14.03 (May 1, 1999), pp. 54–62. issn: 1541-1672.
doi: 10.1109/5254.769885.

[323] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. “Runtime Software
Adaptation: Framework, Approaches, and Styles.” In: Companion of the 30th Inter-
national Conference on Software Engineering. ICSE Companion ’08. New York, NY,
USA: Association for Computing Machinery, May 10, 2008, pp. 899–910. isbn:
978-1-60558-079-1. doi: 10.1145/1370175.1370181.

[324] Overengineering. In: Wikipedia. Feb. 18, 2023. url: https://en.wikipedia.org/w/
index.php?title=Overengineering&oldid=1140099554 (visited on 03/14/2023).

[325] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning.” In: IEEE
Transactions on Knowledge and Data Engineering 22.10 (Oct. 2010), pp. 1345–1359.
issn: 1558-2191. doi: 10.1109/TKDE.2009.191.

[326] Ashutosh Pandey. “Hybrid Planning in Self-Adaptive Systems.” In: (Mar. 2020).
doi: 10.1184/R1/11926836.v1.

[327] Ashutosh Pandey, Gabriel A. Moreno, Javier Cámara, and David Garlan. “Hy-
brid Planning for Decision Making in Self-Adaptive Systems.” In: 2016 IEEE 10th
International Conference on Self-Adaptive and Self-Organizing Systems (SASO). Sept.
2016, pp. 130–139. doi: 10.1109/SASO.2016.19.

[328] Ashutosh Pandey, Ivan Ruchkin, Bradley Schmerl, and Javier Cámara. “To-
wards a Formal Framework for Hybrid Planning in Self-Adaptation.” In: 2017
IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). 2017 IEEE/ACM 12th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
May 2017, pp. 109–115. doi: 10.1109/SEAMS.2017.14.

[329] Ashutosh Pandey, Bradley Schmerl, and David Garlan. “Instance-Based Learn-
ing for Hybrid Planning.” In: 2017 IEEE 2nd International Workshops on Founda-
tions and Applications of Self* Systems (FAS*W). 2017 IEEE 2nd International Work-
shops on Foundations and Applications of Self* Systems (FAS*W). Sept. 2017,
pp. 64–69. doi: 10.1109/FAS-W.2017.122.

[330] Vassilis A. Papavassiliou and Stuart Russell. “Convergence of Reinforcement
Learning with General Function Approximators.” In: Proceedings of the 16th Inter-
national Joint Conference on Artificial Intelligence - Volume 2. IJCAI’99. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., July 31, 1999, pp. 748–755.

https://www.omg.org/spec/QVT
https://www.omg.org/spec/QVT
https://doi.org/10.1109/ICSE.1998.671114
https://doi.org/10.1109/5254.769885
https://doi.org/10.1145/1370175.1370181
https://en.wikipedia.org/w/index.php?title=Overengineering&oldid=1140099554
https://en.wikipedia.org/w/index.php?title=Overengineering&oldid=1140099554
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1184/R1/11926836.v1
https://doi.org/10.1109/SASO.2016.19
https://doi.org/10.1109/SEAMS.2017.14
https://doi.org/10.1109/FAS-W.2017.122

bibliography 259

[331] Gustavo G. Pascual, Mónica Pinto, and Lidia Fuentes. “Run-Time Adaptation of
Mobile Applications Using Genetic Algorithms.” In: 2013 8th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
2013 8th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). May 2013, pp. 73–82. doi: 10.1109/SEAMS.
2013.6595494.

[332] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. “A Sys-
tematic Survey on the Design of Self-Adaptive Software Systems Using Control
Engineering Approaches.” In: 2012 7th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS). 2012 7th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). June 2012, pp. 33–42. doi: 10.1109/SEAMS.2012.6224389.

[333] Relu Patrascu, Craig Boutilier, Rajarshi Das, Jeffrey O. Kephart, Gerald Tesauro,
and William E. Walsh. “New Approaches to Optimization and Utility Elicitation
in Autonomic Computing.” In: Proceedings of the 20th National Conference on Ar-
tificial Intelligence - Volume 1. AAAI’05. Pittsburgh, Pennsylvania: AAAI Press,
July 9, 2005, pp. 140–145. isbn: 978-1-57735-236-5.

[334] Nicolò Perino. “A Framework for Self-Healing Software Systems.” In: 2013 35th
International Conference on Software Engineering (ICSE). 2013 35th International
Conference on Software Engineering (ICSE). May 2013, pp. 1397–1400. doi: 10.
1109/ICSE.2013.6606726.

[335] Sanja Petrovic and Rong Qu. “Case-Based Reasoning as a Heuristic Selector in
a Hyper-Heuristic for Course Timetabling Problems.” In: Knowledge-Based Intel-
ligent Information Engineering Systems and Allied Technologies. Vol. 82. Frontiers in
Artificial Intelligence and Applications. IOS Press, 2002. isbn: 978-1-58603-280-7.

[336] Mauro Pezzè. “From Off-Line to Continuous on-Line Maintenance.” In: 2012
28th IEEE International Conference on Software Maintenance (ICSM). Sept. 2012,
pp. 2–3. doi: 10.1109/ICSM.2012.6405244.

[337] É. Piel, A. Gonzalez-Sanchez, H. G. Gross, and A. J. C. v. Gemund. “Spectrum-
Based Health Monitoring for Self-Adaptive Systems.” In: 2011 IEEE Fifth Inter-
national Conference on Self-Adaptive and Self-Organizing Systems. Oct. 2011, pp. 99–
108.

[338] Gabriella Pigozzi, Alexis Tsoukiàs, and Paolo Viappiani. “Preferences in Artifi-
cial Intelligence.” In: Ann Math Artif Intell 77.3 (Aug. 1, 2016), pp. 361–401. issn:
1573-7470. doi: 10.1007/s10472-015-9475-5.

[339] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. “Point-Based Value Iteration:
An Anytime Algorithm for POMDPs.” In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence. IJCAI’03. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., Aug. 9, 2003, pp. 1025–1030.

[340] Robert A. Pollak. “Additive von Neumann-Morgenstern Utility Functions.”
In: Econometrica 35.3/4 (1967), pp. 485–494. issn: 00129682, 14680262. JSTOR:
1905650. url: http://www.jstor.org/stable/1905650.

https://doi.org/10.1109/SEAMS.2013.6595494
https://doi.org/10.1109/SEAMS.2013.6595494
https://doi.org/10.1109/SEAMS.2012.6224389
https://doi.org/10.1109/ICSE.2013.6606726
https://doi.org/10.1109/ICSE.2013.6606726
https://doi.org/10.1109/ICSM.2012.6405244
https://doi.org/10.1007/s10472-015-9475-5
http://www.jstor.org/stable/1905650
http://www.jstor.org/stable/1905650

260 bibliography

[341] Barry Porter and Roberto Rodrigues Filho. “Losing Control: The Case for
Emergent Software Systems Using Autonomous Assembly, Perception, and
Learning.” In: 2016 IEEE 10th International Conference on Self-Adaptive and Self-
Organizing Systems (SASO). 2016 IEEE 10th International Conference on Self-
Adaptive and Self-Organizing Systems (SASO). Sept. 2016, pp. 40–49. doi: 10.
1109/SASO.2016.10.

[342] Barry Porter, Roberto Rodrigues Filho, and Paul Dean. “A Survey of Method-
ology in Self-Adaptive Systems Research.” In: 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS). 2020 IEEE Interna-
tional Conference on Autonomic Computing and Self-Organizing Systems (AC-
SOS). Aug. 2020, pp. 168–177. doi: 10.1109/ACSOS49614.2020.00039.

[343] Harald Psaier and Schahram Dustdar. “A Survey on Self-Healing Systems: Ap-
proaches and Systems.” In: Computing 91.1 (Jan. 1, 2011), pp. 43–73. issn: 1436-
5057. doi: 10.1007/s00607-010-0107-y.

[344] P. Pudil, F.J. Ferri, J. Novovicova, and J. Kittler. “Floating Search Methods for
Feature Selection with Nonmonotonic Criterion Functions.” In: Proceedings of the
12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Sig-
nal Processing (Cat. No.94CH3440-5). Proceedings of the 12th IAPR International
Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing
(Cat. No.94CH3440-5). Vol. 2. Oct. 1994, 279–283 vol.2. doi: 10.1109/ICPR.1994.
576920.

[345] Martin L. Puterman. “Chapter 8 Markov Decision Processes.” In: Handbooks in
Operations Research and Management Science. Vol. 2. Stochastic Models. Elsevier,
Jan. 1, 1990, pp. 331–434. doi: 10.1016/S0927-0507(05)80172-0. (Visited on
10/04/2022).

[346] Kashifuddin Qazi, Yang Li, and Andrew Sohn. “Workload Prediction of Virtual
Machines for Harnessing Data Center Resources.” In: 2014 IEEE 7th International
Conference on Cloud Computing. 2014 IEEE 7th International Conference on Cloud
Computing. June 2014, pp. 522–529. doi: 10.1109/CLOUD.2014.76.

[347] Yanjun Qi. “Random Forest for Bioinformatics.” In: Ensemble Machine Learning:
Methods and Applications. Ed. by Cha Zhang and Yunqian Ma. Boston, MA:
Springer US, 2012, pp. 307–323. isbn: 978-1-4419-9326-7. doi: 10.1007/978-1-
4419-9326-7_11. (Visited on 03/30/2022).

[348] Wenyi Qian, Xin Peng, Bihuan Chen, John Mylopoulos, Huanhuan Wang, and
Wenyun Zhao. “Rationalism with a Dose of Empiricism: Combining Goal Rea-
soning and Case-Based Reasoning for Self-Adaptive Software Systems.” In: Re-
quirements Eng 20.3 (Sept. 1, 2015), pp. 233–252. issn: 1432-010X. doi: 10.1007/
s00766-015-0227-1. (Visited on 10/07/2022).

[349] J. R. Quinlan. “Induction of Decision Trees.” In: Mach Learn 1.1 (Mar. 1, 1986),
pp. 81–106. issn: 1573-0565. doi: 10.1007/BF00116251. (Visited on 03/16/2023).

[350] Yang Qun, Yang Xian-chun, and Xu Man-wu. “A Framework for Dynamic Soft-
ware Architecture-Based Self-Healing.” In: 2005 IEEE International Conference on
Systems, Man and Cybernetics. Vol. 3. Oct. 2005, 2968–2972 Vol. 3.

https://doi.org/10.1109/SASO.2016.10
https://doi.org/10.1109/SASO.2016.10
https://doi.org/10.1109/ACSOS49614.2020.00039
https://doi.org/10.1007/s00607-010-0107-y
https://doi.org/10.1109/ICPR.1994.576920
https://doi.org/10.1109/ICPR.1994.576920
https://doi.org/10.1016/S0927-0507(05)80172-0
https://doi.org/10.1109/CLOUD.2014.76
https://doi.org/10.1007/978-1-4419-9326-7_11
https://doi.org/10.1007/978-1-4419-9326-7_11
https://doi.org/10.1007/s00766-015-0227-1
https://doi.org/10.1007/s00766-015-0227-1
https://doi.org/10.1007/BF00116251

bibliography 261

[351] Rahul Raheja, Shang-Wen Cheng, David Garlan, and Bradley R. Schmerl.
“Improving Architecture-Based Self-Adaptation Using Preemption.” In: Self-
Organizing Architectures, First International Workshop SOAR 2009, Cambridge, UK,
September 14, 2009, Revised Selected and Invited Papers. Ed. by Danny Weyns, Sam
Malek, Rogério de Lemos, and Jesper Andersson. Vol. 6090. Lecture Notes in
Computer Science. Springer, 2010, pp. 21–37.

[352] Andres J. Ramirez, Betty H.C. Cheng, Philip K. McKinley, and Benjamin E. Beck-
mann. “Automatically Generating Adaptive Logic to Balance Non-Functional
Tradeoffs during Reconfiguration.” In: Proceedings of the 7th International Confer-
ence on Autonomic Computing. ICAC ’10. New York, NY, USA: Association for
Computing Machinery, June 7, 2010, pp. 225–234. isbn: 978-1-4503-0074-2. doi:
10.1145/1809049.1809080. (Visited on 10/05/2022).

[353] Andres J. Ramirez, David B. Knoester, Betty H.C. Cheng, and Philip K. McKin-
ley. “Applying Genetic Algorithms to Decision Making in Autonomic Com-
puting Systems.” In: Proceedings of the 6th International Conference on Autonomic
Computing. ICAC ’09. New York, NY, USA: Association for Computing Machin-
ery, June 15, 2009, pp. 97–106. isbn: 978-1-60558-564-2. doi: 10.1145/1555228.
1555258. (Visited on 10/05/2022).

[354] David Redlich, Gordon Blair, Awais Rashid, Thomas Molka, and Wasif Gi-
lani. “Research Challenges for Business Process Models at Run-Time.” In: Mod-
els@run.Time: Foundations, Applications, and Roadmaps. Ed. by Nelly Bencomo,
Robert France, Betty H. C. Cheng, and Uwe Aßmann. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2014, pp. 208–236. isbn: 978-
3-319-08915-7. doi: 10.1007/978-3-319-08915-7_8. (Visited on 02/19/2022).

[355] Mark Richters and Martin Gogolla. “OCL: Syntax, Semantics, and Tools.” In:
Object Modeling with the OCL: The Rationale behind the Object Constraint Language.
Ed. by Tony Clark and Jos Warmer. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2002, pp. 42–68. isbn: 978-3-540-45669-8. doi: 10.1007/3-
540-45669-4_4. (Visited on 06/30/2022).

[356] Peter Ross, Emma Hart, and Dave Corne. “Some Observations about GA-based
Exam Timetabling.” In: Practice and Theory of Automated Timetabling II. Ed. by
Edmund Burke and Michael Carter. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1998, pp. 115–129. isbn: 978-3-540-49803-2. doi: 10.1007/
BFb0055884.

[357] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. “Online Planning Algorithms for
POMDPs.” In: Journal of Artificial Intelligence Research 32 (July 29, 2008), pp. 663–
704. issn: 1076-9757. doi: 10.1613/jair.2567. (Visited on 10/27/2022).

[358] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Program-
ming. USA: Elsevier Science Inc., 2006. 978 pp. isbn: 978-0-08-046380-3.

[359] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen,
Jorge Lorenzo, Alessandro Mamelli, and Ulrich Scholz. “MUSIC: Middleware
Support for Self-Adaptation in Ubiquitous and Service-Oriented Environments.”
In: Software Engineering for Self-Adaptive Systems. Ed. by Betty H.C. Cheng,
Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee. Vol. 5525.
Lecture Notes in Computer Science (LNCS). Springer Berlin / Heidelberg, 2009,
pp. 164–182. url: http://dx.doi.org/10.1007/978-3-642-02161-9_9.

https://doi.org/10.1145/1809049.1809080
https://doi.org/10.1145/1555228.1555258
https://doi.org/10.1145/1555228.1555258
https://doi.org/10.1007/978-3-319-08915-7_8
https://doi.org/10.1007/3-540-45669-4_4
https://doi.org/10.1007/3-540-45669-4_4
https://doi.org/10.1007/BFb0055884
https://doi.org/10.1007/BFb0055884
https://doi.org/10.1613/jair.2567
http://dx.doi.org/10.1007/978-3-642-02161-9_9

262 bibliography

[360] Romain Rouvoy, Frank Eliassen, Jacqueline Floch, Svein Hallsteinsen, and Erlend
Stav. “Composing Components and Services Using a Planning-Based Adapta-
tion Middleware.” In: Software Composition. Ed. by Cesare Pautasso and Éric
Tanter. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008,
pp. 52–67. isbn: 978-3-540-78789-1. doi: 10.1007/978-3-540-78789-1_4.

[361] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[362] Lucas Sakizloglou, Sona Ghahremani, Matthias Barkowsky, and Holger Giese.
“A Scalable Querying Scheme for Memory-Efficient Runtime Models with His-
tory.” In: Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. MODELS ’20. New York, NY, USA:
Association for Computing Machinery, Oct. 16, 2020, pp. 175–186. isbn: 978-1-
4503-7019-6. doi: 10.1145/3365438.3410961.

[363] Lucas Sakizloglou, Sona Ghahremani, Matthias Barkowsky, and Holger Giese.
“Incremental Execution of Temporal Graph Queries over Runtime Models with
History and Its Applications.” In: Softw Syst Model 21.5 (Oct. 1, 2022), pp. 1789–
1829. issn: 1619-1374. doi: 10.1007/s10270-021-00950-6.

[364] Lucas Sakizloglou, Sona Ghahremani, Thomas Brand, Matthias Barkowsky, and
Holger Giese. “Towards Highly Scalable Runtime Models with History.” In: Pro-
ceedings of the IEEE/ACM 15th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. SEAMS ’20. New York, NY, USA: Association
for Computing Machinery, Sept. 18, 2020, pp. 188–194. isbn: 978-1-4503-7962-5.
doi: 10.1145/3387939.3388614.

[365] M. Salama, R. Bahsoon, and N. Bencomo. “Chapter 11 - Managing Trade-Offs in
Self-Adaptive Software Architectures: A Systematic Mapping Study.” In: Manag-
ing Trade-Offs in Adaptable Software Architectures. Ed. by Ivan Mistrik, Nour Ali,
Rick Kazman, John Grundy, and Bradley Schmerl. Boston: Morgan Kaufmann,
2017, pp. 249–297. isbn: 978-0-12-802855-1. doi: 10.1016/B978-0-12-802855-
1.00011-3.

[366] Mazeiar Salehie and Ladan Tahvildari. “A Coordination Mechanism for Self-
healing and Self-optimizing Disciplines.” In: Proceedings of the 2006 International
Workshop on Self-adaptation and Self-managing Systems. SEAMS ’06. New York, NY,
USA: ACM, 2006, pp. 98–98. url: http://doi.acm.org/10.1145/1137677.
1137701.

[367] Mazeiar Salehie and Ladan Tahvildari. “Self-Adaptive Software: Landscape and
Research Challenges.” In: ACM Trans. Auton. Adapt. Syst. 4.2 (May 21, 2009), 14:1–
14:42. issn: 1556-4665. doi: 10.1145/1516533.1516538. (Visited on 06/28/2021).

[368] Atrisha Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czar-
necki. “Cost-Efficient Sampling for Performance Prediction of Configurable Sys-
tems (T).” In: 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). Nov. 2015, pp. 342–352. doi: 10.1109/ASE.2015.45.

[369] Matthias Schmid, Torsten Hothorn, Kelly O. Maloney, Donald E. Weller, and
Sergej Potapov. “Geoadditive Regression Modeling of Stream Biological Condi-
tion.” In: Environ Ecol Stat 18.4 (Dec. 1, 2011), pp. 709–733. issn: 1573-3009. doi:
10.1007/s10651-010-0158-4. (Visited on 03/30/2022).

https://doi.org/10.1007/978-3-540-78789-1_4
https://doi.org/10.1145/3365438.3410961
https://doi.org/10.1007/s10270-021-00950-6
https://doi.org/10.1145/3387939.3388614
https://doi.org/10.1016/B978-0-12-802855-1.00011-3
https://doi.org/10.1016/B978-0-12-802855-1.00011-3
http://doi.acm.org/10.1145/1137677.1137701
http://doi.acm.org/10.1145/1137677.1137701
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1109/ASE.2015.45
https://doi.org/10.1007/s10651-010-0158-4

bibliography 263

[370] Julia Schmitt, Michael Roth, Rolf Kiefhaber, Florian Kluge, and Theo Ungerer.
“Realizing Self-x Properties by an Automated Planner.” In: Proceedings of the 8th
ACM International Conference on Autonomic Computing. ICAC ’11. New York, NY,
USA: ACM, 2011, pp. 185–186. url: http://doi.acm.org/10.1145/1998582.
1998620.

[371] Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal
Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. “Toward Causal Representa-
tion Learning.” In: Proceedings of the IEEE 109.5 (May 2021), pp. 612–634. issn:
1558-2256. doi: 10.1109/JPROC.2021.3058954.

[372] Patrick Schratz, Jannes Muenchow, Eugenia Iturritxa, Jakob Richter, and Alexan-
der Brenning. “Hyperparameter Tuning and Performance Assessment of Sta-
tistical and Machine-Learning Algorithms Using Spatial Data.” In: Ecological
Modelling 406 (Aug. 24, 2019), pp. 109–120. issn: 0304-3800. doi: 10.1016/j.
ecolmodel.2019.06.002. (Visited on 03/24/2022).

[373] Andy Schürr. “Specification of Graph Translators with Triple Graph Grammars.”
In: Graph-Theoretic Concepts in Computer Science. Ed. by Ernst W. Mayr, Gunther
Schmidt, and Gottfried Tinhofer. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1995, pp. 151–163. isbn: 978-3-540-49183-5. doi: 10.1007/3-
540-59071-4_45.

[374] Dale E. Seborg, Duncan A. Mellichamp, Thomas F. Edgar, and Francis J. Doyle.
Process Dynamics and Control. 3rd. John Wiley & Sons, 2011.

[375] B. Selic. “The Pragmatics of Model-Driven Development.” In: IEEE Software 20.5
(Sept. 2003), pp. 19–25. issn: 1937-4194. doi: 10.1109/MS.2003.1231146.

[376] Bran Selic. “The Theory and Practice of Modeling Language Design for Model-
Based Software Engineering—A Personal Perspective.” In: Generative and Trans-
formational Techniques in Software Engineering III: International Summer School,
GTTSE 2009, Braga, Portugal, July 6-11, 2009. Revised Papers. Ed. by João M. Fer-
nandes, Ralf Lämmel, Joost Visser, and João Saraiva. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2011, pp. 290–321. isbn: 978-3-642-18023-1.
doi: 10.1007/978-3-642-18023-1_7.

[377] S. Sendall and W. Kozaczynski. “Model Transformation: The Heart and Soul
of Model-Driven Software Development.” In: IEEE Software 20.5 (Sept. 2003),
pp. 42–45. issn: 1937-4194. doi: 10.1109/MS.2003.1231150.

[378] Peter Sestoft. Microbenchmarks in Java and C#. url: http://www.itu.dk/people/
sestoft/papers/benchmarking.pdf (visited on 03/14/2023).

[379] Amir Molzam Sharifloo, Andreas Metzger, Clément Quinton, Luciano Baresi,
and Klaus Pohl. “Learning and Evolution in Dynamic Software Product Lines.”
In: 2016 IEEE/ACM 11th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS). 2016 IEEE/ACM 11th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). May 2016, pp. 158–164. doi: 10.1145/2897053.2897058.

[380] Mary Shaw. “Beyond Objects: A Software Design Paradigm Based on Process
Control.” In: SIGSOFT Softw. Eng. Notes 20.1 (Jan. 1, 1995), pp. 27–38. issn: 0163-
5948. doi: 10.1145/225907.225911. (Visited on 01/27/2022).

http://doi.acm.org/10.1145/1998582.1998620
http://doi.acm.org/10.1145/1998582.1998620
https://doi.org/10.1109/JPROC.2021.3058954
https://doi.org/10.1016/j.ecolmodel.2019.06.002
https://doi.org/10.1016/j.ecolmodel.2019.06.002
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1007/978-3-642-18023-1_7
https://doi.org/10.1109/MS.2003.1231150
http://www.itu.dk/people/sestoft/papers/benchmarking.pdf
http://www.itu.dk/people/sestoft/papers/benchmarking.pdf
https://doi.org/10.1145/2897053.2897058
https://doi.org/10.1145/225907.225911

264 bibliography

[381] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996.

[382] Chang Shu and Donald H. Burn. “Artificial Neural Network Ensembles and
Their Application in Pooled Flood Frequency Analysis.” In: Water Resources
Research 40.9 (2004). issn: 1944-7973. doi: 10.1029/2003WR002816. (Visited on
03/30/2022).

[383] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner.
“Performance-Influence Models for Highly Configurable Systems.” In: Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ES-
EC/FSE 2015. New York, NY, USA: Association for Computing Machinery,
Aug. 30, 2015, pp. 284–294. isbn: 978-1-4503-3675-8. doi: 10 . 1145 / 2786805 .

2786845.

[384] Kornel Skałkowski and Krzysztof Zieliński. “Automatic Adaptation of SOA Sys-
tems Supported by Machine Learning.” In: Technological Innovation for the Internet
of Things. Ed. by Luis M. Camarinha-Matos, Slavisa Tomic, and Paula Graça. IFIP
Advances in Information and Communication Technology. Berlin, Heidelberg:
Springer, 2013, pp. 61–68. isbn: 978-3-642-37291-9. doi: 10.1007/978- 3- 642-
37291-9_7.

[385] C.U. Smith and L.G. Williams. “Software Performance Engineering: A Case
Study Including Performance Comparison with Design Alternatives.” In: IEEE
Transactions on Software Engineering 19.7 (July 1993), pp. 720–741. issn: 1939-3520.
doi: 10.1109/32.238572.

[386] Ronald D. Snee. “Validation of Regression Models: Methods and Examples.”
In: Technometrics 19.4 (Nov. 1977), pp. 415–428. issn: 0040-1706. doi: 10.1080/
00401706.1977.10489581.

[387] Hui Song, Stephen Barrett, Aidan Clarke, and Siobhán Clarke. “Self-Adaptation
with End-User Preferences: Using Run-Time Models and Constraint Solving.”
In: Model-Driven Engineering Languages and Systems. Ed. by Ana Moreira, Bern-
hard Schätz, Jeff Gray, Antonio Vallecillo, and Peter Clarke. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 555–571. isbn: 978-3-
642-41533-3. doi: 10.1007/978-3-642-41533-3_34.

[388] Hui Song, Xiaodong Zhang, Nicolas Ferry, Franck Chauvel, Arnor Solberg, and
Gang Huang. “Modelling Adaptation Policies as Domain-Specific Constraints.”
In: Model-Driven Engineering Languages and Systems. Ed. by Juergen Dingel, Wol-
fram Schulte, Isidro Ramos, Silvia Abrahão, and Emilio Insfran. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2014, pp. 269–285.
isbn: 978-3-319-11653-2. doi: 10.1007/978-3-319-11653-2_17.

[389] Gustavo Sousa, Walter Rudametkin, and Laurence Duchien. “Extending Dy-
namic Software Product Lines with Temporal Constraints.” In: 2017 IEEE/ACM
12th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). 2017 IEEE/ACM 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). May
2017, pp. 129–139. doi: 10.1109/SEAMS.2017.6.

https://doi.org/10.1029/2003WR002816
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1007/978-3-642-37291-9_7
https://doi.org/10.1007/978-3-642-37291-9_7
https://doi.org/10.1109/32.238572
https://doi.org/10.1080/00401706.1977.10489581
https://doi.org/10.1080/00401706.1977.10489581
https://doi.org/10.1007/978-3-642-41533-3_34
https://doi.org/10.1007/978-3-319-11653-2_17
https://doi.org/10.1109/SEAMS.2017.6

bibliography 265

[390] Michael Stein, Alexander Frömmgen, Roland Kluge, Frank Löffler, Andy Schürr,
Alejandro Buchmann, and Max Mühlhäuser. “TARL: Modeling Topology Adap-
tations for Networking Applications.” In: 2016 IEEE/ACM 11th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
2016 IEEE/ACM 11th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). May 2016, pp. 57–63. doi: 10.
1109/SEAMS.2016.014.

[391] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework 2.0. 2nd ed. Addison-Wesley Professional, 2009. isbn:
978-0-321-33188-5.

[392] Christopher Stewart, Terence Kelly, and Alex Zhang. “Exploiting Nonstation-
arity for Performance Prediction.” In: Proceedings of the 2nd ACM SIGOPS/Eu-
roSys European Conference on Computer Systems 2007. EuroSys ’07. New York, NY,
USA: Association for Computing Machinery, Mar. 21, 2007, pp. 31–44. isbn: 978-
1-59593-636-3. doi: 10.1145/1272996.1273002. (Visited on 03/02/2023).

[393] J. Strassner. “How Policy Empowers Business-Driven Device Management.” In:
Proceedings Third International Workshop on Policies for Distributed Systems and Net-
works. Proceedings Third International Workshop on Policies for Distributed Sys-
tems and Networks. June 2002, pp. 214–217. doi: 10.1109/POLICY.2002.1011311.

[394] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. “Plan-Directed Ar-
chitectural Change for Autonomous Systems.” In: Proceedings of the 2007 Confer-
ence on Specification and Verification of Component-Based Systems: 6th Joint Meeting
of the European Conference on Software Engineering and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering. SAVCBS ’07. New York, NY,
USA: Association for Computing Machinery, Sept. 3, 2007, pp. 15–21. isbn: 978-
1-59593-721-6. doi: 10.1145/1292316.1292318.

[395] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. “From Goals to
Components: A Combined Approach to Self-Management.” In: Proceedings of the
2008 International Workshop on Software Engineering for Adaptive and Self-Managing
Systems. SEAMS ’08. New York, NY, USA: Association for Computing Machinery,
May 12, 2008, pp. 1–8. isbn: 978-1-60558-037-1. doi: 10.1145/1370018.1370020.
(Visited on 10/04/2022).

[396] Michael Szvetits and Uwe Zdun. “Systematic Literature Review of the Objectives,
Techniques, Kinds, and Architectures of Models at Runtime.” In: Softw Syst Model
15.1 (Feb. 1, 2016), pp. 31–69. issn: 1619-1374. doi: 10.1007/s10270-013-0394-9.
(Visited on 10/26/2022).

[397] Gabriele Taentzer, Michael Goedicke, and Torsten Meyer. “Dynamic Change
Management by Distributed Graph Transformation: Towards Configurable Dis-
tributed Systems.” In: Theory and Application of Graph Transformations. Ed. by Hart-
mut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2000, pp. 179–193.
isbn: 978-3-540-46464-8. doi: 10.1007/978-3-540-46464-8_13.

[398] Hossein Tajalli, Joshua Garcia, George Edwards, and Nenad Medvidovic.
“PLASMA: A Plan-Based Layered Architecture for Software Model-Driven Adap-
tation.” In: Proceedings of the IEEE/ACM International Conference on Automated

https://doi.org/10.1109/SEAMS.2016.014
https://doi.org/10.1109/SEAMS.2016.014
https://doi.org/10.1145/1272996.1273002
https://doi.org/10.1109/POLICY.2002.1011311
https://doi.org/10.1145/1292316.1292318
https://doi.org/10.1145/1370018.1370020
https://doi.org/10.1007/s10270-013-0394-9
https://doi.org/10.1007/978-3-540-46464-8_13

266 bibliography

Software Engineering. ASE ’10. New York, NY, USA: Association for Computing
Machinery, Sept. 20, 2010, pp. 467–476. isbn: 978-1-4503-0116-9. doi: 10.1145/
1858996.1859092. (Visited on 05/16/2022).

[399] Abhijeet Tallavajhula, Sanjiban Choudhury, Sebastian Scherer, and Alonzo Kelly.
“List Prediction Applied to Motion Planning.” In: 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA). 2016 IEEE International Conference on
Robotics and Automation (ICRA). May 2016, pp. 213–220. doi: 10.1109/ICRA.
2016.7487136.

[400] D. Tang and Ravishankar K. Iyer. “Dependability Measurement and Modeling
of a Multicomputer System.” In: IEEE Transactions on Computers 42.1 (Jan. 1993),
pp. 62–75.

[401] G. Tesauro, N.K. Jong, R. Das, and M.N. Bennani. “A Hybrid Reinforcement
Learning Approach to Autonomic Resource Allocation.” In: 2006 IEEE Interna-
tional Conference on Autonomic Computing. 2006 IEEE International Conference on
Autonomic Computing. June 2006, pp. 65–73. doi: 10.1109/ICAC.2006.1662383.

[402] Gerald Tesauro, Nicholas K. Jong, Rajarshi Das, and Mohamed N. Bennani. “On
the Use of Hybrid Reinforcement Learning for Autonomic Resource Allocation.”
In: Cluster Comput 10.3 (Sept. 1, 2007), pp. 287–299. issn: 1573-7543. doi: 10.1007/
s10586-007-0035-6. (Visited on 10/07/2022).

[403] Matthias Tichy and Holger Giese. “A Self-optimizing Run-Time Architecture for
Configurable Dependability of Services.” In: Architecting Dependable Systems II.
Ed. by Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2004, pp. 25–50. isbn:
978-3-540-25939-8. doi: 10.1007/978-3-540-25939-8_2.

[404] Matthias Tichy and Benjamin Klöpper. “Planning Self-adaption with Graph
Transformations.” In: Applications of Graph Transformations with Industrial Rele-
vance. Ed. by Andy Schürr, Dániel Varró, and Gergely Varró. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 137–152. isbn: 978-3-
642-34176-2. doi: 10.1007/978-3-642-34176-2_13.

[405] Frank Trollmann, Johannes Fähndrich, and Sahin Albayrak. “Hybrid Adapta-
tion Policies: Towards a Framework for Classification and Modelling of Differ-
ent Combinations of Adaptation Policies.” In: Proceedings of the 13th International
Conference on Software Engineering for Adaptive and Self-Managing Systems. SEAMS
’18. New York, NY, USA: Association for Computing Machinery, May 28, 2018,
pp. 76–86. isbn: 978-1-4503-5715-9. doi: 10.1145/3194133.3194137. (Visited on
05/12/2022).

[406] Tom van Dijk. “Analysing and Improving Hash Table Performance.” In: 10th
Twente Student Conference on IT. Twente: University of twente, 2009. url: https:
//www.tvandijk.nl/pdf/bscthesis.pdf (visited on 03/14/2023).

[407] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer science & busi-
ness media, 1999. isbn: 0-387-98780-0.

[408] Dániel Varró. “Model Transformation by Example.” In: Model Driven Engineering
Languages and Systems. Ed. by Oscar Nierstrasz, Jon Whittle, David Harel, and
Gianna Reggio. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2006, pp. 410–424. isbn: 978-3-540-45773-2. doi: 10.1007/11880240_29.

https://doi.org/10.1145/1858996.1859092
https://doi.org/10.1145/1858996.1859092
https://doi.org/10.1109/ICRA.2016.7487136
https://doi.org/10.1109/ICRA.2016.7487136
https://doi.org/10.1109/ICAC.2006.1662383
https://doi.org/10.1007/s10586-007-0035-6
https://doi.org/10.1007/s10586-007-0035-6
https://doi.org/10.1007/978-3-540-25939-8_2
https://doi.org/10.1007/978-3-642-34176-2_13
https://doi.org/10.1145/3194133.3194137
https://www.tvandijk.nl/pdf/bscthesis.pdf
https://www.tvandijk.nl/pdf/bscthesis.pdf
https://doi.org/10.1007/11880240_29

bibliography 267

[409] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and
Zoltán Ujhelyi. “Road to a Reactive and Incremental Model Transformation Plat-
form: Three Generations of the VIATRA Framework.” In: Softw Syst Model 15.3
(July 1, 2016), pp. 609–629. issn: 1619-1374. doi: 10.1007/s10270-016-0530-4.
(Visited on 11/29/2021).

[410] Paolo Viappiani and Craig Boutilier. “Regret-Based Optimal Recommendation
Sets in Conversational Recommender Systems.” In: Proceedings of the Third ACM
Conference on Recommender Systems. RecSys ’09. New York, NY, USA: Association
for Computing Machinery, Oct. 23, 2009, pp. 101–108. isbn: 978-1-60558-435-5.
doi: 10.1145/1639714.1639732. (Visited on 02/16/2022).

[411] Ricardo Vilalta and Youssef Drissi. “A Perspective View and Survey of Meta-
Learning.” In: Artificial Intelligence Review 18.2 (June 1, 2002), pp. 77–95. issn:
1573-7462. doi: 10.1023/A:1019956318069. (Visited on 01/23/2023).

[412] Attila Vizhanyo, Aditya Agrawal, and Feng Shi. “Towards Generation of Efficient
Transformations.” In: Generative Programming and Component Engineering. Ed. by
Gabor Karsai and Eelco Visser. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2004, pp. 298–316. isbn: 978-3-540-30175-2. doi: 10.1007/978-
3-540-30175-2_16.

[413] Thomas Vogel. “Model-Driven Engineering of Self-Adaptive Software.” PhD the-
sis. Universität Potsdam, 2018.

[414] Thomas Vogel. “mRUBiS: An Exemplar for Model-Based Architectural Self-
Healing and Self-Optimization.” In: Proceedings of the 13th International Confer-
ence on Software Engineering for Adaptive and Self-Managing Systems. SEAMS ’18.
New York, NY, USA: Association for Computing Machinery, May 28, 2018,
pp. 101–107. isbn: 978-1-4503-5715-9. doi: 10.1145/3194133.3194161. (Visited
on 11/17/2021).

[415] Thomas Vogel and Holger Giese. “Adaptation and Abstract Runtime Models.”
In: Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems. SEAMS ’10. New York, NY, USA: Association for Comput-
ing Machinery, May 3, 2010, pp. 39–48. isbn: 978-1-60558-971-8. doi: 10.1145/
1808984.1808989. (Visited on 09/16/2021).

[416] Thomas Vogel and Holger Giese. “Model-Driven Engineering of Self-Adaptive
Software with EUREMA.” In: ACM Trans. Auton. Adapt. Syst. 8.4 (Jan. 1, 2014),
18:1–18:33. issn: 1556-4665. doi: 10.1145/2555612.

[417] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese, and Basil
Becker. “Model-Driven Architectural Monitoring and Adaptation for Autonomic
Systems.” In: Proceedings of the 6th International Conference on Autonomic Com-
puting. ICAC ’09. New York, NY, USA: Association for Computing Machinery,
June 15, 2009, pp. 67–68. isbn: 978-1-60558-564-2. doi: 10.1145/1555228.1555249.
(Visited on 11/19/2021).

[418] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese, and Basil
Becker. “Incremental Model Synchronization for Efficient Run-Time Monitor-
ing.” In: Models in Software Engineering. Ed. by Sudipto Ghosh. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 124–139. isbn: 978-
3-642-12261-3. doi: 10.1007/978-3-642-12261-3_13.

https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1145/1639714.1639732
https://doi.org/10.1023/A:1019956318069
https://doi.org/10.1007/978-3-540-30175-2_16
https://doi.org/10.1007/978-3-540-30175-2_16
https://doi.org/10.1145/3194133.3194161
https://doi.org/10.1145/1808984.1808989
https://doi.org/10.1145/1808984.1808989
https://doi.org/10.1145/2555612
https://doi.org/10.1145/1555228.1555249
https://doi.org/10.1007/978-3-642-12261-3_13

268 bibliography

[419] John von Neumann, Oskar Morgenstern, and Ariel Rubinstein. Theory of Games
and Economic Behavior. Princeton University Press, 1944. isbn: 978-0-691-13061-3.

[420] Peter Walley. Statistical Reasoning With Imprecise Probabilities. London ; New York:
Chapman & Hall/CRC, Mar. 1, 1991. 720 pp. isbn: 978-0-412-28660-5.

[421] W.E. Walsh, G. Tesauro, J.O. Kephart, and R. Das. “Utility Functions in Auto-
nomic Systems.” In: International Conference on Autonomic Computing, 2004. Pro-
ceedings. International Conference on Autonomic Computing, 2004. Proceedings.
May 2004, pp. 70–77. doi: 10.1109/ICAC.2004.1301349.

[422] Shengquan Wang, Dong Xuan, R. Bettati, and Wei Zhao. “Providing Absolute
Differentiated Services for Real-Time Applications in Static-Priority Scheduling
Networks.” In: IEEE/ACM Transactions on Networking 12.2 (Apr. 2004), pp. 326–
339. issn: 1558-2566. doi: 10.1109/TNET.2004.826286.

[423] Tianhan Wang and Craig Boutilier. “Incremental Utility Elicitation with Minimax
Regret Decision Criterion.” In: Proceedings of the 18th International Joint Conference
on Artificial Intelligence. IJCAI’03. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., Aug. 9, 2003, pp. 309–316.

[424] Michel Wermelinger and José Luiz Fiadeiro. “A Graph Transformation Ap-
proach to Software Architecture Reconfiguration.” In: Science of Computer Pro-
gramming. Special Issue on Applications of Graph Transformations (GRATRA
2000) 44.2 (Aug. 1, 2002), pp. 133–155. issn: 0167-6423. doi: 10.1016/S0167-
6423(02)00036-9. (Visited on 11/16/2021).

[425] Danny Weyns and Tanvir Ahmad. “Claims and Evidence for Architecture-Based
Self-adaptation: A Systematic Literature Review.” In: Software Architecture. Ed. by
Khalil Drira. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2013, pp. 249–265. isbn: 978-3-642-39031-9. doi: 10.1007/978- 3- 642- 39031-
9_22.

[426] Danny Weyns, M. Usman Iftikhar, Sam Malek, and Jesper Andersson. “Claims
and Supporting Evidence for Self-Adaptive Systems: A Literature Study.” In:
Proceedings of the 7th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. SEAMS ’12. Zurich, Switzerland: IEEE Press, June 4,
2012, pp. 89–98. isbn: 978-1-4673-1787-0.

[427] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Miran-
dola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and
Karl M. Göschka. “On Patterns for Decentralized Control in Self-Adaptive Sys-
tems.” In: Software Engineering for Self-Adaptive Systems II: International Seminar,
Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers.
Ed. by Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 76–107.
isbn: 978-3-642-35813-5. doi: 10 . 1007 / 978 - 3 - 642 - 35813 - 5 _ 4. (Visited on
01/28/2022).

[428] Garrett Wilson and Diane J. Cook. “A Survey of Unsupervised Deep Domain
Adaptation.” In: ACM Trans. Intell. Syst. Technol. 11.5 (July 5, 2020), 51:1–51:46.
issn: 2157-6904. doi: 10.1145/3400066. (Visited on 01/23/2023).

https://doi.org/10.1109/ICAC.2004.1301349
https://doi.org/10.1109/TNET.2004.826286
https://doi.org/10.1016/S0167-6423(02)00036-9
https://doi.org/10.1016/S0167-6423(02)00036-9
https://doi.org/10.1007/978-3-642-39031-9_22
https://doi.org/10.1007/978-3-642-39031-9_22
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1145/3400066

bibliography 269

[429] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslén. Experimentation in Software Engineering. Berlin, Heidelberg:
Springer, 2012. isbn: 978-3-642-29043-5. doi: 10.1007/978-3-642-29044-2.

[430] Murray Woodside, Greg Franks, and Dorina C. Petriu. “The Future of Software
Performance Engineering.” In: Future of Software Engineering (FOSE ’07). Future
of Software Engineering (FOSE ’07). May 2007, pp. 171–187. doi: 10.1109/FOSE.
2007.32.

[431] Di Wu and Ling Shao. “Leveraging Hierarchical Parametric Networks for Skele-
tal Joints Based Action Segmentation and Recognition.” In: Proceedings of the
2014 IEEE Conference on Computer Vision and Pattern Recognition. CVPR ’14. USA:
IEEE Computer Society, June 23, 2014, pp. 724–731. isbn: 978-1-4799-5118-5. doi:
10.1109/CVPR.2014.98. (Visited on 10/10/2022).

[432] Tao Ye and Shivkumar Kalyanaraman. “A Recursive Random Search Algorithm
for Large-Scale Network Parameter Configuration.” In: Proceedings of the 2003
ACM SIGMETRICS International Conference on Measurement and Modeling of Com-
puter Systems. SIGMETRICS ’03. New York, NY, USA: Association for Comput-
ing Machinery, June 10, 2003, pp. 196–205. isbn: 978-1-58113-664-7. doi: 10.1145/
781027.781052. (Visited on 10/10/2022).

[433] Nezih Yigitbasi, Theodore L. Willke, Guangdeng Liao, and Dick Epema. “To-
wards Machine Learning-Based Auto-tuning of MapReduce.” In: 2013 IEEE 21st
International Symposium on Modelling, Analysis and Simulation of Computer and
Telecommunication Systems. 2013 IEEE 21st International Symposium on Mod-
elling, Analysis and Simulation of Computer and Telecommunication Systems.
Aug. 2013, pp. 11–20. doi: 10.1109/MASCOTS.2013.9.

[434] Jianfeng Zhan, Lei Wang, Xiaona Li, Weisong Shi, Chuliang Weng, Wenyao
Zhang, and Xiutao Zang. “Cost-Aware Cooperative Resource Provisioning for
Heterogeneous Workloads in Data Centers.” In: IEEE Transactions on Computers
62.11 (Nov. 2013), pp. 2155–2168. issn: 1557-9956. doi: 10.1109/TC.2012.103.

[435] Du Zhang. “Machine Learning in Value-Based Software Test Data Generation.”
In: 2006 18th IEEE International Conference on Tools with Artificial Intelligence (IC-
TAI’06). 2006 18th IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI’06). Nov. 2006, pp. 732–736. doi: 10.1109/ICTAI.2006.77.

[436] Yanyong Zhang, Mark S. Squillante, Anand Sivasubramaniam, and Ramendra
K. Sahoo. “Performance Implications of Failures in Large-Scale Cluster Schedul-
ing.” In: Job Scheduling Strategies for Parallel Processing: 10th International Workshop,
JSSPP 2004. Revised Selected Papers. Ed. by Dror G. Feitelson, Larry Rudolph, and
Uwe Schwiegelshohn. Springer Berlin Heidelberg, 2005, pp. 233–252.

[437] Tianqi Zhao, Wei Zhang, Haiyan Zhao, and Zhi Jin. “A Reinforcement Learning-
Based Framework for the Generation and Evolution of Adaptation Rules.” In:
2017 IEEE International Conference on Autonomic Computing (ICAC). July 2017,
pp. 103–112. doi: 10.1109/ICAC.2017.47.

[438] Yujun Zheng, Chuanqing Xu, and Jinyun Xue. “A Simple Greedy Algorithm for
a Class of Shuttle Transportation Problems.” In: Optim Lett 3.4 (Sept. 1, 2009),
pp. 491–497. issn: 1862-4480. doi: 10.1007/s11590- 009- 0126- 9. (Visited on
02/03/2022).

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/FOSE.2007.32
https://doi.org/10.1109/FOSE.2007.32
https://doi.org/10.1109/CVPR.2014.98
https://doi.org/10.1145/781027.781052
https://doi.org/10.1145/781027.781052
https://doi.org/10.1109/MASCOTS.2013.9
https://doi.org/10.1109/TC.2012.103
https://doi.org/10.1109/ICTAI.2006.77
https://doi.org/10.1109/ICAC.2017.47
https://doi.org/10.1007/s11590-009-0126-9

270 bibliography

[439] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. “Domain
Generalization: A Survey.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022), pp. 1–20. issn: 1939-3539. doi: 10.1109/TPAMI.2022.3195549.

[440] Shlomo Zilberstein. “Using Anytime Algorithms in Intelligent Systems.” In:
AIMag 17.3 (Mar. 15, 1996), p. 73. doi: 10.1609/aimag.v17i3.1232. (Visited
on 10/06/2022).

https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1609/aimag.v17i3.1232

Part IV

A P P E N D I X

A
T E C H N I C A L S U P P L E M E N T

This chapter introduces the Story Diagram (SD) formalism and its application in this
thesis to operationalize the adaptation engine activities.

a.1 introduction to story diagram formalism

Structural changes of models in this thesis are implemented via a mechanism based
on graph transformations [27]. We used the Story-driven Modeling (SDM) tool1 that is a
model execution engine comprising an editor, interpreter, and debugger for SDs. Mod-
ifications to the RTM are done via SDs as the modeling language that realizes the
graph (model) transformation rules. SDs, originally introduced by [141], combine the
notion of UML Activity Diagrams and graph transformations, whereby each action
node of an activity describes and executes a graph transformation. An SD structures
an initial, a final, and one or more action node(s); all action nodes of an activity are
structured in a control flow. Action nodes are realized by Story Patterns (SPs) (yellow
nodes) or Call Actions (gray nodes). An SP describes and executes a graph transforma-
tion while a Call Action invokes either another SD or code. Code may replace the graph
transformation if code is the more suitable formalism to specify the behavior, e.g., to
realize mathematical algorithms that do not work on the graph structure of the model.
Consequently, an SD specifies an activity as a flow of action nodes that are usually
graph transformations. An SD has one or more input parameters and may also have
output parameters to define return values.

SDs are similar to Event-Condition-Action (ECA) rules and capture the Left-hand Side
(LHS) and Right-hand Side (RHS) within the action nodes. They allow to specify patterns
at the same level of abstraction as the RTM. the Analyze, Plan, and Execute activities
of the MAPE-K loop in this thesis are realized via SD-based rules and are referred to
as analysis, planning, and execution rules, respectively. In Chapter 6, we briefly intro-
duced the SD formalism via the examples of the Analyze, Plan, and Execute rules for
the overBudget issue in Znn.com—see Figure 6.4, Figure 6.5a, and Figure 6.5b, respec-
tively. In this chapter, we present the Analyze, Plan, and Execute rules for the CF2 issue
in mRUBiS as another set of examples to discuss the SD formalism—see Figure A.1,
Figure A.2, and Figure A.3. Each of these activities are SDs with one initial and one
final node and two input parameters.

A graph transformation expressed in an SP defines a graph rewriting, i.e., an in-place
model transformation. Therefore, an SP refers to the elements of a model, which are
represented in the abstract syntax of the corresponding language within the SP. An
SP denotes the model elements in three forms: (i) black nodes and edges without any
annotation, (ii) red nodes and edges annotated with «DESTROY» respectively «destroy»,
and (iii) green nodes and edges annotated with «CREATE» respectively «create». The

1 Story-Driven Modeling (SDM) Tools: http://www.mdelab.de/mdelab-projects/story-diagram-tools– ac-
cessed 18 March 2023.

273

http://www.mdelab.de/mdelab-projects/story-diagram-tools

274 bibliography

mark failures

check for failures

[utilityDrop] := [OCL: component.type.reliability * component.criticality * (component.requiredInterfaces.connector->size()
+component.providedInterfaces.connectors->size())]

Figure A.1: Analyze SD for CF2 issue.

Figure A.2: Plan SD for CF2 issue.

bibliography 275

Figure A.3: Execute SD for CF2 issue.

application of an SP entails finding in the model a match for the pattern consisting of the
black and red elements. Upon finding a match, the black elements remain unchanged,
the red elements are removed, and the green elements are added to the model. Thereby,
attribute values of the green and black nodes can be initialized respectively modified.
The pattern and the side effect, i.e., the RHS, can be extended with constraints expressed
in the Object Constraint Language (OCL).

Considering the examples in this chapter, the SDs operate on an architectural RTM.
The SD in Figure A.1 uses its input parameter, i.e., the ProvidedInterface element, to find
the Component whose providedInterface has five or more exceptions, i.e., matches for a
CF2 issue in mRUBiS—see the constraint in the ProvidedInterface element expressed in
the OCL. The nac node in the check for failures SP checks for the negative application
condition, i.e., existing markings of the same issue (CF2) for the the same Component.
If the SD cannot match the pattern in the first SP, the control flow continues along the

276 bibliography

[failure] edge and terminates, otherwise, the mark failures SP is executed to mark the failure
in the RTM via the annotations—see the [success] edge in Figure A.1. The mark failures SP
in Figure A.1 creates a new CF2 marker in the object Annotations. CF2 refers to the faulty
Component via the affectedComponent relationship. Upon creation, the attribute UtilityDrop
of the CF2 element is also set via an OCL expression. The SD in Figure A.1 particularly
illustrates how the control flow is branched depending on the success of identifying a
match and how constraints extending a pattern are specified.

The Plan SD in Figure A.2 takes the specific CF2 marker as input and creates markers
for the applicable rules that can potentially resolve CF2. The rules of four different types
are linked to CF2 through the handledBy relationships. The rule markers are also added
to the Annotations element. The second action node in the SD is a Call Action node that
executes a code snippet to select the rule for execution. After the code is executed, the
SD terminates. This SD particularly illustrates how nodes and edges are added to the
model and how Call Actions are used to invoke code.

Finally, the Execute SD in Figure A.3 uses its input parameters, i.e., the CF2 marker
and the Rule marker, to execute the rule on the Component. The first SP checks for the
pattern again, if it cannot be matched for the given inputs, the control flow continues
along the [failure] edge and terminates. If the pattern is matched, the control flow con-
tinues to match the type of the Rule via executing four SPs. A match in one of the four
SPs containing the specific rule type continues along the [success] edge and executes a
Call Action node that invokes another SD, e.g., Restart component action node, to execute
the corresponding rule. Next, the control flow continues to Remove Failures SP. The SP is
cascaded such that it identifies all matches of its pattern, that is, it finds and destroys all
Failure elements by navigating the failures relationship from the ProvidedInterface element.
Once the Remove Failures SP is executed for all the matches, the Rule and CF2 markers are
destroyed, thereby, removed from the RTM in the final SP and the SD terminates. Con-
sequently, upon a successful execution of the SD in Figure A.3, a CF2 issue in mRUBiS
is resolved and removed from the RTM. This SD particularly illustrates how nodes and
edges are removed from the model and how Call Actions are used to invoke other SDs.

To summarize, SDs enable in-place model transformation, i.e., modifications of mod-
els. Since SDs are executable, we use them to operationalize the Analyze, Plan, and
Execute activities of our adaptation engine for each specific application example. In the
following, we show listings of executing SDs from Java.

a.2 example of loading sds from java

The adaptation engine implementation includes Java code snippets wrapped around
the SDM tools including an editor, an interpreter, and a debugger for the SDs. List-
ing A.1 shows the initialization of the SD environment for Znn.com where the SD
rules, i.e., files with the .mlsdm extensions, to detect the four potential issues affect-
ing Znn.com, i.e., overBudget, lowQuality, latency, and underUtilized are loaded.

Listing A.1: Loading SD rules for Analyze, Plan, and Execute in Znn.com.

EnvSetUp.initialize();

/*

* load rules

*/

//Analyze

bibliography 277

Activity A_Budget= EnvSetUp

.getStoryDiagramActivityFromFile("A_Budget.mlsdm");
Activity A_Quality= EnvSetUp

.getStoryDiagramActivityFromFile("A_Quality .mlsdm");
Activity A_Latency= EnvSetUp

.getStoryDiagramActivityFromFile("A_Latency.mlsdm");
Activity A_Utilization= EnvSetUp

.getStoryDiagramActivityFromFile("A_Utilization .mlsdm");

//Plan

Activity P_Budget= EnvSetUp

.getStoryDiagramActivityFromFile("P_Budget .mlsdm");
Activity P_Quality= EnvSetUp

.getStoryDiagramActivityFromFile("P_Quality .mlsdm");
Activity P_Latency= EnvSetUp

.getStoryDiagramActivityFromFile("P_Latency .mlsdm");
Activity P_Utilization= EnvSetUp

.getStoryDiagramActivityFromFile(" P_Utilization .mlsdm");

//Execute

Activity E_Budget= EnvSetUp

.getStoryDiagramActivityFromFile("E_Budget .mlsdm");
Activity E_Quality= EnvSetUp

.getStoryDiagramActivityFromFile("E_Quality .mlsdm");
Activity E_Latency= EnvSetUp

.getStoryDiagramActivityFromFile("E_Latency .mlsdm");
Activity E_Utilization= EnvSetUp

.getStoryDiagramActivityFromFile(" E_Utilization .mlsdm");

We have implemented Monitor activity independently and external to the approaches—
see Section 4.3.2. To make the monitoring runtime-efficient, we use a change tracking
mechanism enabled by the notification feature of the EMF, which provides notifications
about the individual changes of any EMF-based models [391]. Thus, the monitoring
activity consumes the EMF events notifying about changes of the RTM—see attaching
event listeners to the architecturalRTM in Listing A.2.

Listing A.2: Simulation initialization including method calls for Analyze and Plan activities.

/*attach event listener*/

architecturalRTM.eAdapters().add(new EventListener());

Annotations annotations = architecturalRTM.getAnnotations();

/*call the simulator to generate traffic for the ZNN website*/

simulation.simulateTraffic.generateTraffic(architecturalRTM,interpreter);

/*validate the simulator*/

simulation.InitialValidation.validate(architecturalRTM);

// Analyze

analyze(interpreter, annotations, A_Budget, A_Quality, A_Latency,

A_Utilization);

// Plan

plan(interpreter, annotations, P_Budget, P_Quality, P_Latency,

P_Utilization);

278 bibliography

The implementation of the remaining MAPE activities then consists of Java code snip-
pets that consumes the change events for the architectural RTM. Based on these events,
relevant checks are conducted via invoking the SD interpreter to execute the correspond-
ing SDs. Listing A.3 shows excerpt of the analyze method that is called in Listing A.2.
The code checks if a change event suggests that the pre-conditions of A_Budget and
A_Utilization analyze SDs should be evaluated—see the corresponding SD for A_Budget
in Figure 6.4.

Listing A.3: Excerpt of Analyze method in Znn.com.

private static void analyze(MLSDMInterpreter interpreter, Annotations annotations,

Activity A_Budget, sActivity A_Quality, Activity A_Latency, Activity

A_Utilization) throws SDMException {

/*for each event in queue check which Analyze SD is triggered*/

while (!EventQueue.EVENTS.isEmpty()) {

Notification notification = EventQueue.EVENTS.poll();

Object notifier = notification.getNotifier();

Object feature = notification.getFeature();

/*change of Pool serverCount --> check for overBudget or underUtilized

issues*/

if(feature==ZnnPackage.Literals.SERVER_POOL__SERVER_COUNT){

ServerPool serverPool = (ServerPool) notifier;

Collection<Variable<EClassifier>> parameters = new ArrayList<

Variable<EClassifier>>();

parameters.add(createParameter("serverPool", serverPool));

parameters.add(createParameter("annotations", annotations));

/* execute A_Budget SD*/

interpreter.executeActivity(A_Budget, parameters);

/* execute A_Utilization SD*/

interpreter.executeActivity(A_Utilization, parameters);}

Finally, once the execution of the adaptation is completed, we compute the overall utility
of the RTM, i.e., the architecture, and validate the model to check for any unhandled
issue—see Listing A.4. The SD interpreter is used to parse the architectural RTM and
check if any adaptation issue exists—see Listing A.2.

Listing A.4: Calling Execute SDs in Znn.com.

//Execute

execute(interpreter, allIssues, E_Budget, E_Quality, E_Latency, E_Utilization);

overalUtility=computeOverallUtility(architecturalRTM);

if (!validateArcitectureForIssues(architecturalRTM)) {

System.out.print(" Issues remaning in the model. ");
/*end of one adaptation loop run*/

B
E VA L U AT I O N S U P P L E M E N T

This chapter presents supplementary technical and evaluation materials for our method-
ology to train utility-change prediction models and complements the evaluation results
in Chapter 8.

b.1 training and testing

All the datasets are publicly available [see 174]. We selected the regression trees as
training model for two reasons: it automatically selects the features to be part of the
model and it captured discontinuities and non-linearities. Among various options for
decision trees, we used XGB with 10-fold Cross Validation. To validate the results from
training, we make different splits of the original training dataset: 70/30, 80/20, and
90/10—see the results of training with these splits in Figure B.1.

b.2 validating

For validation we measured the prediction error, i.e., Mean Absolute Deviation Percent
(MADP), for data that was not used during training. Column “MADP_%” in Figure B.1
shows the results of validating the prediction models using 30%, 20%, and 10% of
the original data. We can see that even though 90/10 split shows lower MADP, the
difference is very small, i.e., less than 1%. To be pessimistic, we decided to use the
70/30 split (larger prediction error).

XGB model: We first investigated how XGB performed with different dataset sizes
under different splits of data between training and validation. Since the results of 70/30
split was better, we adopted this split for the other two method types (GBM and RF).
We also trained XGB with other dataset sizes, i.e., 10K and 100k, however, the values for
MADP saturated after the 10K dataset—see Figure B.2.

RF model: We investigate if the performance of the RF model would improve with
larger dataset sizes in Figure B.3a. We trained a forest with 200 trees to investigate if
we could improve MADP without impacting much the execution time, the results did
not improve while the training time (“elapsed time” column) increased significantly—
see Figure B.3.

GBM model: GBM required the largest number of trees, compared to the other mod-
els. For this reason, it also took the longer to be trained as the “elapsed time” column
shows. We trained with 10K and 15K trees—see Figure B.4 for the results.

279

280 bibliography

Complexity Dataset_size Split Train_RMSE_MEAN Train_RMSE_STD Test_RMSE_MEAN Test_RMSE_STD RMSE R_Squared MAPD_%
Discontinuous 1k 90_10 0.003 0.000 26.774 16.521 3.350 1.000 0.643
Discontinuous 1k 80_20 0.002 0.000 26.879 11.300 22.850 0.990 1.968
Discontinuous 1k 70_30 0.002 0.000 26.091 14.796 32.464 0.980 2.657
Discontinuous 3k 90_10 0.003 0.000 18.549 6.138 6.823 0.999 0.197
Discontinuous 3k 80_20 0.003 0.000 18.275 5.494 11.043 0.998 0.479
Discontinuous 3k 70_30 0.018 0.003 16.528 7.459 13.210 0.997 1.256
Discontinuous 9k 90_10 0.008 0.001 21.963 9.060 4.923 1.000 0.127
Discontinuous 9k 80_20 0.005 0.000 21.739 11.884 5.393 1.000 0.185
Discontinuous 9k 70_30 0.069 0.007 20.633 9.277 21.539 0.994 0.912

Linear 1k 90_10 0.001 0.000 0.237 0.220 0.048 1.000 0.022
Linear 1k 80_20 0.001 0.000 0.294 0.294 0.106 1.000 0.048
Linear 1k 70_30 0.002 0.000 0.277 0.254 0.068 1.000 0.062
Linear 3k 90_10 0.002 0.000 0.584 0.556 0.066 1.000 0.013
Linear 3k 80_20 0.003 0.001 0.553 0.572 0.237 1.000 0.044
Linear 3k 70_30 0.002 0.000 0.726 0.606 0.342 1.000 0.066
Linear 9k 90_10 0.002 0.000 0.200 0.190 0.202 1.000 0.013
Linear 9k 80_20 0.002 0.000 0.137 0.099 0.300 1.000 0.022
Linear 9k 70_30 0.002 0.000 0.206 0.200 0.326 1.000 0.018

Saturating 1k 90_10 0.003 0.001 9.902 4.861 1.800 1.000 0.180
Saturating 1k 80_20 0.019 0.002 11.844 6.543 3.023 0.999 0.479
Saturating 1k 70_30 0.002 0.000 13.409 6.000 4.439 0.999 0.788
Saturating 3k 90_10 0.004 0.000 8.169 3.216 3.174 1.000 0.152
Saturating 3k 80_20 0.141 0.011 7.500 2.315 3.880 0.999 0.419
Saturating 3k 70_30 0.003 0.000 8.263 1.962 5.353 0.999 0.627
Saturating 9k 90_10 0.008 0.001 9.501 3.616 3.299 1.000 0.113
Saturating 9k 80_20 0.035 0.003 9.124 1.958 4.690 0.999 0.248
Saturating 9k 70_30 0.006 0.000 10.182 2.974 6.286 0.999 0.473

MADP_%

Figure B.1: XGB trained with 500 trees over different datasets and data splits.

Figure B.2: XGB trained with 500 trees with 10K data points.

j
(a) RF across different dataset sizes.

(b) RF with 200 trees.

Figure B.3: RF across different dataset sizes (top) and with 200 trees (bottom).

bibliography 281

(a) GBM with 10K trees.

(b) GBM with 15K trees.

Figure B.4: GBM across different dataset sizes.

Table B.1: Final prediction models.

Method Number of Trees Specific hyper-parameters

XGB 500

objective=“reg:linear"
base_score=0.5
early_stopping_rounds=500

metrics=“RMSE”

GBM 15K

distribution=“Gaussian”
interaction.depth=10

n.minobsinnode=5

shrinkage=1

bag.fraction=1

RF 100
node.size=5

metrics=“RMSE”

282 bibliography

0.
98

2

0.
95

4

0.
96

2

0.
99

6

0.
95

6

0.
99

5

0.
99

8

0.
96

1

0.
99

8

1 1 1

0
0.25

0.5
0.75

1

RF GBM XGBN
or

m
al

ize
d

Re
w

ar
d

(L
in

ea
r V

ar
ia

nt
)

Prediction Models

1K
3K
9K
Optimal

(a) Linear varinat.

0.
88

0

0.
92

9

0.
93

8

0.
92

7

0.
96

3

0.
97

1

0.
95

6

0.
99

5

0.
99

6

1 1 1

0
0.25

0.5
0.75

1

RF GBM XGBN
or

m
al

ize
d

Re
w

ar
d

(S
at

ur
at

in
g

va
ria

nt
)

Prediction Models

1K
3K
9K
Optimal

(b) Saturating varinat.

0.
92

6

0.
88

4

0.
89

5

0.
96

5

0.
94

7

0.
95

5

0.
99

7

0.
98

7

0.
99

0

1 1 1

0
0.25

0.5
0.75

1

RF GBM XGBN
or

m
al

ize
d

Re
w

ar
d

(D
isc

on
tin

uo
us

 v
ar

ia
nt

)

Prediction Models

1K
3K
9K
Optimal

(c) Discontinuous varinat.

Figure B.5: Normalized reward across prediction models for Linear, Saturating, and Continuous
variants computed with DEUG trace.

b.3 final prediction models

Table B.1 shows the features of the final prediction models. The models are exported
to pmml format1.To evaluate the prediction model performance, we measure the nor-
malized reward of the adaptations applied to the simulator variants and the runtime
effort of the models. The normalized reward is calculated according to Equation 8.1
for two scalability scenarios: different datasets sizes and mRUBiS architectures sizes.
Prediction models trained with larger dataset sizes acquire larger values of normalized
reward. Figure B.5 shows results for the Linear, Saturating, and Discontinuous variants.
The results also suggest that selecting the larger datasets, i.e., 9K, is a correct decision.
The maximum reward loss of the 9K models compared to the optimal reward belongs
to the RF model in the Combined variant (Normalized reward = 0.945) in Figure 8.5.
The reward loss in the other variants as shown in Figure B.5 is below 5.5%

1 http://dmg.org/pmml/v4-0-1/GeneralStructure.html—accessed 07 March 2023.

http://dmg.org/pmml/v4-0-1/GeneralStructure.html

C
P U B L I C AT I O N S

The contributions of this thesis have been published in peer-reviewed conferences and
Journals. In the following, we provide an overview of the publications in the context of
the thesis as well as the additional publications.
Publications on Venus

• Sona Ghahremani, Holger Giese, and Thomas Vogel. “Towards Linking Adapta-
tion Rules to the Utility Function for Dynamic Architectures.” In: 2016 IEEE 10th
International Conference on Self-Adaptive and Self-Organizing Systems (SASO). Sept.
2016, pp. 142–143. doi: 10.1109/SASO.2016.21

• Sona Ghahremani, Holger Giese, and Thomas Vogel. “Efficient Utility-Driven Self-
Healing Employing Adaptation Rules for Large Dynamic Architectures.” In: 2017
IEEE International Conference on Autonomic Computing (ICAC). IEEE, 2017, pp. 59–
68. doi: doi:10.1109/ICAC.2017.35

• Sona Ghahremani, Holger Giese, and Thomas Vogel. “Improving Scalability and
Reward of Utility-Driven Self-Healing for Large Dynamic Architectures.” In: ACM
Trans. Auton. Adapt. Syst. 14.3 (Feb. 25, 2020), 12:1–12:41. issn: 1556-4665. doi: 10.
1145/3380965

Publication on Learning Methodology

• Sona Ghahremani, Christian M. Adriano, and Holger Giese. “Training Prediction
Models for Rule-Based Self-Adaptive Systems.” In: 2018 IEEE International Confer-
ence on Autonomic Computing (ICAC). Sept. 2018, pp. 187–192. doi: 10.1109/ICAC.
2018.00031

Publications on Evaluation Methodology

• Sona Ghahremani and Holger Giese. “Performance Evaluation for Self-Healing
Systems: Current Practice & Open Issues.” In: 2019 IEEE 4th International Work-
shops on Foundations and Applications of Self* Systems (FAS*W). June 2019, pp. 116–
119. doi: 10.1109/FAS-W.2019.00039

• Sona Ghahremani and Holger Giese. “Evaluation of Self-Healing Systems: An
Analysis of the State-of-the-Art and Required Improvements.” In: Computers 9.1
(1 Mar. 2020), p. 16. issn: 2073-431X. doi: 10.3390/computers9010016. (Visited on
02/08/2022)

Publication on HypeZon

• Sona Ghahremani and Holger Giese. “Hybrid Planning with Receding Horizon: A
Case for Meta-self-awareness.” In: 2021 IEEE International Conference on Autonomic

283

https://doi.org/10.1109/SASO.2016.21
https://doi.org/doi: 10.1109/ICAC.2017.35
https://doi.org/10.1145/3380965
https://doi.org/10.1145/3380965
https://doi.org/10.1109/ICAC.2018.00031
https://doi.org/10.1109/ICAC.2018.00031
https://doi.org/10.1109/FAS-W.2019.00039
https://doi.org/10.3390/computers9010016

284 bibliography

Computing and Self-Organizing Systems Companion (ACSOS-C). 2021 IEEE Interna-
tional Conference on Autonomic Computing and Self-Organizing Systems Com-
panion (ACSOS-C). Sept. 2021, pp. 131–138. doi: 10.1109/ACSOS-C52956.2021.
00045

Additional publications
In parallel to this thesis, I have been involved with two additional lines of research
that resulted in the following publications in the context of learning in collective adaptive
systems and history-aware self-adaptation.

• Mirko D’Angelo, Simos Gerasimou, Sona Ghahremani, Johannes Grohmann, In-
grid Nunes, Evangelos Pournaras, and Sven Tomforde. “On Learning in Collective
Self-Adaptive Systems: State of Practice and a 3D Framework.” In: 2019 IEEE/ACM
14th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). 2019 IEEE/ACM 14th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS). May 2019, pp. 13–
24. doi: 10.1109/SEAMS.2019.00012

• Mirko D’Angelo, Sona Ghahremani, Simos Gerasimou, Johannes Grohmann, In-
grid Nunes, Sven Tomforde, and Evangelos Pournaras. “Learning to Learn in Col-
lective Adaptive Systems: Mining Design Patterns for Data-driven Reasoning.”
In: 2020 IEEE International Conference on Autonomic Computing and Self-Organizing
Systems Companion (ACSOS-C). 2020 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems Companion (ACSOS-C). Aug. 2020, pp. 121–
126. doi: 10.1109/ACSOS-C51401.2020.00042

• Lucas Sakizloglou, Sona Ghahremani, Thomas Brand, Matthias Barkowsky, and
Holger Giese. “Towards Highly Scalable Runtime Models with History.” In: Pro-
ceedings of the IEEE/ACM 15th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. SEAMS ’20. New York, NY, USA: Association
for Computing Machinery, Sept. 18, 2020, pp. 188–194. isbn: 978-1-4503-7962-5.
doi: 10.1145/3387939.3388614

• Lucas Sakizloglou, Sona Ghahremani, Matthias Barkowsky, and Holger Giese. “A
Scalable Querying Scheme for Memory-Efficient Runtime Models with History.”
In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems. MODELS ’20. New York, NY, USA: Association
for Computing Machinery, Oct. 16, 2020, pp. 175–186. isbn: 978-1-4503-7019-6. doi:
10.1145/3365438.3410961

• Lucas Sakizloglou, Sona Ghahremani, Matthias Barkowsky, and Holger Giese. “In-
cremental Execution of Temporal Graph Queries over Runtime Models with His-
tory and Its Applications.” In: Softw Syst Model 21.5 (Oct. 1, 2022), pp. 1789–1829.
issn: 1619-1374. doi: 10.1007/s10270-021-00950-6

https://doi.org/10.1109/ACSOS-C52956.2021.00045
https://doi.org/10.1109/ACSOS-C52956.2021.00045
https://doi.org/10.1109/SEAMS.2019.00012
https://doi.org/10.1109/ACSOS-C51401.2020.00042
https://doi.org/10.1145/3387939.3388614
https://doi.org/10.1145/3365438.3410961
https://doi.org/10.1007/s10270-021-00950-6

I N D E X

action policy, 28

adaptation engine, 26, 70

adaptation issue, 8, 38, 71

adaptation logic, 26

adaptation mechanism, 25

adaptation plan, 27, 100

adaptation rule, 72

adaptive control, 18

additive utility, 22

analytical utility function, 50

annotations, 77

architectural runtime model, 70

architecture model, 1, 33

autonomic computing, 1, 24

awareness level, 104

awareness object, 103

awareness subject, 104

baseline strategy, 175

batch, 139

behavioral model, 33

best rule, 82

best sequence of adaptation rules, 73

bias, 59

bigburst model, 132

burst, 127

burst model, 131

call action, 77

causal connection, 32

combination, 6

combined utility, 54, 175

computational reflection, 32

configuration attribute, 27, 48

configuration space, 27

connectivity, 47

context locality for adaptation action/rule, 50, 55

context of a match, 43, 46

context-awareness, 24

control action, 17

control horizon, 20, 101

control parameter tuning, 106

coordination, 6, 30

285

coordination-based hybrid planner, 95

cost function, 83

count-based metric, 65

critical failure (CF), 35

criticality, 47

cross-validation score, 56

data generation, 56

data split, 56

decision tree, 59

deterministic failure model, 128, 129, 132

deterministic solution (CHPdtr), 182

discontinuous utility, 53, 175

discounted cumulative gain (DCG), 66

distance-based metric, 65

dynamic architectures, 3

dynamic decision-making, 29

dynamic policy, 29

ensemble machine learning methods, 59

evaluation methodology, 127

event-based principles, 9

event-condition-action rule, 28

execution horizon, 101

expected utility, 21

external approach for self-adaptation, 26

external design (HZe), 106, 183

extreme gradient boosting trees (XGB), 61

failure density, 129

failure exposure time (FET), 128

failure group size (FGS), 128

feature selection, 56, 61

feedback control, 17

goal policy, 28

gradient boosting models (GBM), 60

graph pattern, 36

graph pattern matching, 36

graph query, 38

graph rewriting rule, 36

graph transformation, 36

graph transformation rule, 36

greedy-choice property, 75

ground truth, 174

high zone, 109

hybrid planning, 5, 30, 99

hypezon, 95

incremental utility-change calculation, 50, 79

injection strategy, 141

input trace, 126

inter arrival time (IAT), 128

internal approach for self-adaptation, 26

internal design (HZi), 105, 183

jaccard similarity index, 65

k-fold cross-validation, 56

kendall-tau, 65

knowledge, 26

left-hand side, 36

linear utility, 52, 175

long trace, 129, 133

look-ahead horizon, 100

LRA-M, 103

MAPE-K, 7, 26

match, 36

maximum expected utility, 21

mean absolute deviation percent (MADP), 63

meta-awareness level, 104

meta-self-awareness, 102

metamodel, 31

model predictive control, 19

model query, 71

model transformation, 33

model transformation rule, 36

model-driven engineering, 31

models(at)run.time, 32

mrubis, 34, 117

multi-objective utility function, 50

mutual utility independence, 22, 43

negative application condition, 124

negative architectural utility pattern, 7, 45

negative pattern, 45

normalized reward, 175

observation attribute, 27, 48

old issues, 77

optimal list, 65

optimal zone, 109

optimization-based, 5, 23

optimum ranking, 64

overall system utility, 43, 48

overfitting, 56, 59

parameter adaptation, 27

pattern, 71

pattern-based utility, 7, 46

performance, 48

performance issue (PI), 35

planning horizon, 100

planning problem, 100

policy, 4, 27, 100

policy cost, 100

policy switch, 101, 109

position-based metric, 66

positive architectural utility pattern, 7, 43

positive pattern, 43

predicted list, 65

predicted utility, 55

prediction error, 56

prediction horizon, 20, 101

prediction model, 55

preference elicitation, 21, 23

probabilistic failure model, 127, 128

quality attribute, 48

quality-cost trade-off, 2, 84

random forest (RF), 60

realistic failure model, 128, 129, 133

receding horizon control, 20

reinforcement learning, 23

reliability, 48

reward, 12, 42

right-hand side, 36

robustness, 12

root mean square error (RMSE), 62

rule application, 72, 74

rule-based, 4

rule/ action policy, 28

runtime model (RTM), 32

sampling interval, 19

saturating utility, 52, 175

scalable, 9

self-* properties, 24

self-adaptation, 1, 24

self-adaptive software, 1, 24

self-awareness, 25, 103

self-configuration, 24

self-healing, 24

self-optimization, 24

self-protection, 25

set-point, 17, 19

short trace, 129, 133

similarity aggregation metric (SAM), 66

similarity metric, 65

single model, 131

slashdot effect, 120

software quality, 48

solver, 139

state, 27

static, 138

static decision-making, 29

static policy, 29

story diagram (SD), 71, 77

story pattern (SP), 71, 77

structural adaptation, 27

structural model, 33

supervised learning, 23

synthetic failure model, 128, 130

transformation rule, 36

uniform model, 131

user, 48

utility elicitation, 21

utility function, 3, 21, 29, 41, 48

utility function building block, 41

utility function policy, 28

utility of plan, 100

utility space, 49

utility sub-function of a pattern, 44, 45

utility-change, 8, 49, 74

utility-driven adaptation, 28, 42

utilityIncrease, 83

venus, 69, 139

znn.com, 120

	Title
	Imprint

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.2.1 Requirements for Architecture-based Self-adaption of Software Systems
	1.2.2 State-of-the-art Policy Formalisms for Self-adaptation

	1.3 Overview of Proposed Solutions
	1.3.1 Utility Functions for Dynamic Software Architectures
	1.3.2 Venus: Combining Utility- and Rule-based Policies
	1.3.3 HypeZon: Coordinating Off-the-shelf Policies

	1.4 Contributions
	1.5 Thesis Evaluation Plan
	1.6 Document Roadmap

	Preliminaries
	2 Foundation
	2.1 Control Theory
	2.1.1 Adaptive Control
	2.1.2 Model Predictive Control

	2.2 Utility Theory for Decision-making
	2.2.1 Analytics of Preferences: Engineering and Learning

	2.3 Self-adaptive Software
	2.3.1 Vision
	2.3.2 Realization
	2.3.3 Hybrid Planning for Self-adaptive Software

	2.4 MDE for Runtime Adaptability
	2.5 Running Example: mRUBiS
	2.6 Graph Transformation
	2.6.1 Adaptation via Graph Transformation

	Approach
	3 Utility Functions for Dynamic Software Architecture
	3.1 Pattern-based Utility
	3.1.1 Positive Architectural Utility Patterns
	3.1.2 Negative Architectural Utility Patterns

	3.2 Engineering Utility Functions
	3.2.1 Utility Space
	3.2.2 Utility-change
	3.2.3 Utility Function Construction for mRUBiS

	3.3 Learning Utility-change Prediction Models
	3.3.1 Supervised Machine Learning
	3.3.2 Modifications to Standard Supervised Learning Steps
	3.3.3 Methodology

	3.4 Summery

	4 Venus: Utility-driven Rule-based Scheme for Architecture-based Self-adaptation
	4.1 Graph-based Realization of Adaptation Concepts
	4.2 Linking Adaptation Rules to Utility
	4.3 Realizing Venus in a Feedback Loop
	4.3.1 Feedback Loop
	4.3.2 Monitor
	4.3.3 Analyze
	4.3.4 Plan
	4.3.5 Execute

	4.4 Assessment of Venus
	4.4.1 Detailed Algorithms for Analyze and Plan
	4.4.2 Computational Effort of Analyze and Plan in Venus
	4.4.3 Optimality of a Single MAPE-K Run with Venus
	4.4.4 Discussion of Assumptions

	4.5 Summary

	5 HypeZon: Hybrid Self-adaptation with receding horizon control
	5.1 Motivating Example
	5.2 Hybrid Planning for Self-adaptation with HypeZon
	5.2.1 Hybrid Planning: Preliminary Definitions
	5.2.2 Receding Horizon in HypeZon

	5.3 HypeZon: a Case for Meta-self-awareness
	5.3.1 Self-awareness and Meta-self-awareness
	5.3.2 Meta-self-aware Designs to Realize Hybrid Planning
	5.3.3 HypeZon as Meta-awareness Subject

	5.4 Summary

	Evaluation and Conclusion
	6 Experimental Application Examples
	6.1 mRUBiS
	6.1.1 Self-healing and Self-optimizing mRUBiS

	6.2 ZNN.com
	6.2.1 Analyze, Plan, and Execute Activities with SD
	6.2.2 Utility Function for Znn.com

	6.3 Evaluation Methodology and Input Traces
	6.3.1 Input Traces for mRUBiS
	6.3.2 Input Traces for Znn.com

	7 Evaluation of Venus
	7.1 Implementation
	7.1.1 Adaptable Software
	7.1.2 Architectural Runtime Model
	7.1.3 Adaptation Engine

	7.2 Alternative Solutions for Architecture-based Self-adaptation
	7.3 Qualitative and Quantitative Evaluation with mRUBiS
	7.3.1 Evaluation of Runtime Performance and Scalability
	7.3.2 Qualitative Assessment of Reward and Optimality
	7.3.3 Quantitative Evaluation of Reward and Optimality

	7.4 Quantitative Evaluation with Znn.com
	7.4.1 Evaluation of Runtime Performance and Scalability
	7.4.2 Evaluation of Reward and Optimality

	7.5 Possible Violation of Assumptions
	7.5.1 Violation of [A:A2]A2: Impact on Reward
	7.5.2 Violation of Assumptions: Impact on Scalability

	7.6 Threats to Validity
	7.7 Summary
	7.7.1 Fulfillment of Requirements

	8 Learning Utility-change Prediction Models: Application and Evaluation
	8.1 Application
	8.1.1 Step 1: Data Generation
	8.1.2 Iterate Step 2, 3, and 1: Training, Validating, and Preparing
	8.1.3 Step 4: Select Prediction Model

	8.2 Evaluation
	8.2.1 Ground Truth and Experiment Design
	8.2.2 Evaluating Prediction Model Performance - Q8.2
	8.2.3 Evaluating Prediction Model Selection - Q8.3
	8.2.4 Threats to Validity

	8.3 Summary
	8.3.1 Fulfillment of Requirements

	9 Evaluation of HypeZon
	9.1 Implementation
	9.2 Alternative Solutions for Hybrid Adaptation
	9.3 Evaluation
	9.3.1 Policies
	9.3.2 Experiment Design
	9.3.3 Results: Answering Q9.1, Q9.2, and Q9.3

	9.4 Threats to Validity
	9.5 Summary
	9.5.1 Fulfillment of Requirements

	10 Related work
	10.1 Landscape of Techniques for Architecture-based Self-adaptation
	10.1.1 Runtime Models and MDE
	10.1.2 Architecture Models Defined with ADLs
	10.1.3 Discussion

	10.2 Planning Mechanisms for Architecture-based Self-adaptation
	10.2.1 Search and Optimization-based Planning
	10.2.2 Learning-based Planning
	10.2.3 Rule-based Planning
	10.2.4 Hybrid Planning
	10.2.5 Discussion

	10.3 Prediction Model Acquisition Mechanisms
	10.4 Summary

	11 Conclusion and Future Work
	11.1 Conclusion
	11.2 Future Work
	11.2.1 Learning
	11.2.2 Venus
	11.2.3 HypeZon

	Bibliography

	Appendix
	A Technical Supplement
	A.1 Introduction to Story Diagram Formalism
	A.2 Example of Loading SDs from Java

	B Evaluation Supplement
	B.1 Training and Testing
	B.2 Validating
	B.3 Final Prediction Models

	C Publications
	Index

