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Abstract

We study the capture of a particle into resonance at a potential hole
with dissipative perturbation and periodic outside force. The measure of
resonance solutions is evaluated. We also derive an asymptotic formula for
the parameter range of those solutions which are captured into resonance.

1 Introduction

Second order differential equations are of fundamental importance for applica-
tions in physics. This is an obvious consequence of Newton’s second law. In
the case of one and a half freedom degrees this is a recognized testing area for
nonlinear equations. At the end of 19 th century Poincaré called the study of
such systems the most important problem of dynamics. In spite of progress
both in qualitative comprehension of processes in systems with one and a half
degrees of freedom and in quantitative investigation, analytic theory is by no
means completed.

The equation of motion for a particle at a potential hole with small almost
periodic outside force and dissipation

u′′ + g(u) = εf(t)− εΓu′ (1.1)

is an example of dissipative perturbed system with one and a half degrees of
freedom. Here ε is a small parameter, f(t) a smooth almost periodic function,
and Γ > 0 the parameter of dissipation.

This equation is a model for mathematical investigation of nonlinear oscil-
latory systems with dissipation. Dissipation leads to a decrease of energy and
so it results in a change of the oscillation period. The period of oscillations of
a system goes through resonance values under an outside force. Locally in a
neighbourhood of resonance the solution is determined by the equation of non-
linear resonance. In the dissipationless case, if moreover f(t) = cos(ωt), then
(1.1) is the equation of mathematical pendulum with outer momentum [1].

When passing through resonance without capture, the solution is known to
undergo a change as large as the square root of the perturbation parameter [2].
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Because of dissipation the phase portrait of the equation of nonlinear resonance
changes essentially and there appears a region of trajectories which are captured
into resonance. Estimates for the measure of the region of captured solutions are
obtained in [3]. The papers [4, 5, 6] give the complete qualitative investigation of
solutions to Duffing’s equation with dissipation in a neighbourhood of resonance
level. In [7], a qualitative approach to the study of resonances in nonlinear
systems is presented.

In spite of achievements in qualitative theory and the understanding of local
analysis, the capture into resonance is interpreted from the viewpoint of prob-
ability theory [9, 10, 11, 12] and symbolic dynamics [13, 14]. In problems on
perturbations near a separatrix there appear asymptotics on Cantor sets [15].
Hence the change to a mathematical tool which allows one to investigate the
measure of trajectory regions might be of use. However, this does not can-
cel the importance of investigations of the behaviour of single trajectories with
characteristic properties.

From the viewpoint of perturbation theory, in the problem of capture into
resonance one can distinguish three time intervals with distinctive behavior of
solution. Firstly, this is a time interval far off the resonance. Secondly, this is
a time interval near the resonance which is, however, outside of capture region.
Thirdly, this is the capture region. It turns out that for each of the intervals
there are specific small parameters which enable to construct an asymptotic
solution suitable for the region. Formulas for asymptotic solutions in these
regions represent intermediate asymptotics [16]. The regions of applicability
of the intermediate asymptotics meet each other. Hence, one can match the
parameters of constructed asymptotic in much the same way as one does in the
method of matching of asymptotic expansions [17]. As a result one manages
to construct an asymptotic solution of the original problem which is fit for all
concerned regions.

Away from resonance one uses the Krylov-Bogolyubov method to construct
asymptotics of solutions, see [20, 18, 19, 21]. In order to find the connection
of parameters, one exploits the Whitham method, see [22, 23, 21]. However,
the results of [22, 23, 21] do not apply directly in our case, for we deal with
non-periodical perturbations. We thus had to develop this approach by using
averaging over all fast time rather than averaging over a period.

Capture into resonance corresponds to crossing the separatrix in the pertur-
bed equation of nonlinear resonance. Under perturbation the separatrices of
non-perturbed equation split. The value of the splitting is determined by Mel’-
nikov’s integral [8]. Under crossing the separatrix, the values of action [9] and
phase [10] related to the non-perturbed equation of nonlinear resonance change.
Equations and their solutions under crossing the separatrix were considered in
[24, 25]. Formulas for solutions which are fit for all the regions enable one
to investigate the properties of single trajectories. The papers [26, 27, 28, 29]
contain such formulas for autoresonance problems, constructed by the method
of matching of asymptotic expansions [17].

In the present paper we obtain the following new results. First, we derive a
connection formula for asymptotics away from the region of capture into non-
linear resonance and the parameters of trajectories captured into resonance in
the capture region. In this formula the value of the phase shift of oscillations is
of crucial importance. It turns out that this value is singular in the parameter
of perturbation. Second, in order to compute connection formulas we ought to
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develop perturbation theory for trajectories which are similar to the trajectories
of angular motion of asymptotic pendulum away from the separatrix.

The setting of the problem and results of the paper are presented in Section
2. In Section 3 we construct an asymptotic solution outside the resonance. In
Section 4 we obtain an asymptotic solution in a neighbourhood of resonance.
Finally, in Section 5 we adjust the constructed asymptotics to each other and
obtain the desired formula for the parameter values of those solutions which will
be captured into resonance.

2 Formal setting and results

Before we formulate the problem, let us determine the properties of solutions
of the non-perturbed equation and admissible perturbations. By the non-
perturbed equation we mean

U ′′ + g(U) = 0. (2.1)

Let g(U) be a smooth function corresponding to a potential hole. We intro-
duce

G(U) =

∫ U

U∗
g(u)du,

where min
U

g(U) = g(U∗).

Denote by U(t− t0, E) the periodical general solution of the non-perturbed
equation. Here, t0 ∈ R and

E =
1

2
(U ′)2 +G(U)

are parameters of the solution. We will confine our consideration to those g(U),
for which the period of the solution of (2.1) depends monotonically on the
parameter E, i.e.

T (E) :=

∫
L

dU

U ′
<∞, dT

dE
6= 0, (2.2)

where L is the closed curve in the space of parameters (U,U ′) given implicitly

by the equation
1

2
(U ′)2 +G(U) = E.

In the paper we consider an interval of those values of E for which there
are periodical solutions of the form U(t − t0, E) real analytic in t ∈ R. As a
typical example one can consider the equation of mathematical pendulum. In
this latter case we have g(U) = sin(U), U∗ = −π/2, G(U) = − cos(U), and
E ∈ (−1, 1).

An external perturbation is an almost periodic smooth real-valued function
[30] with Fourier series

f(t) =

∞∑
k=−∞

fk e
ıωkt. (2.3)

We arrange for a special decomposition of f(t) into summands of different
orders in ε. For n = 1, 2, . . ., denote by Kn(ε) the set of those indices k, for which
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εn+1 < |fk| ≤ εn. For n = 0, we define k ∈ K0(ε) if fk > ε. Set fk = ε−nfk for
k ∈ Kn(ε). Then

f(t) =
∑
K0(ε)

fke
ıωkt +

∞∑
n=1

εn
∑
Kn(ε)

fke
ıωkt.

We introduce
fn(t) =

∑
k∈Kn(ε)

fke
ıωkt

for n = 0, 1, . . ..
Denote by Ω(E) the frequency of oscillations of solution of the non-perturbed

equation. A parameter value E = Enm,k satisfying

mΩ(Enm,k) = ωk,

for m ∈ Z and k ∈ Kn(ε), is called a resonant level at order n.
Since T (E) is monotonic, one can order the resonant levels according to

the increase of E. In this paper we consider functions g(U) and f(t) with the
property that the neighbouring resonant levels of E at order 0 differ from each
other by a quantity much larger than

√
ε, i.e.

min |E0
m1,k1 − E

0
m2,k2 | �

√
ε (2.4)

provided (m1, k1) 6= (m2, k2). This condition is called the asymptotic condition
of non-overlap of nonlinear resonances.

Remark 2.1. Condition (2.4) is wittingly weaker than the well-known non-
overlap condition for resonances by Chirikov [31].

Remark 2.2. Condition (2.4) may be violated close to separatrices. Consider
e.g. g(U) ≡ sinU in a neighbourhood of E = 1.

In this paper we evaluate, away from the resonance region, the parameters
of those asymptotic solutions of equation (1.1) which will be captured into
resonance. To this end, we construct an asymptotic solution which fits both
away from and nearby the resonance.

In order to formulate the main result it is convenient to use the following
designations related to asymptotics outside of resonance and in a neighbourhood
of resonance. Let u0(S,E) be an even periodic function of zero mean value in
S satisfying the equation

(σ′)2 ∂2Su0 + g(u0) = 0,

and

E =
1

2
(σ′)2 (∂Su0)

2
+G(u0).

Here, the variable S stands for the fast time while σ is a function of slow time
θ = εt. As is usual in the method of multiple scales, S and θ are thought of as
independent variables.

More precisely, the function σ(θ) is defined to be a solution of the Cauchy
problem (∫

L

du0
∂Su0

)
σ′ = 2π,

σ(θm,k) = 0,
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L being the closed curve in the space of parameters (u0, ∂Su0) given implicitly

by the equation
1

2
(∂Su0)2 +G(u0) = E.

We introduce also functions I0(θ) and α(θ) as solutions of the Cauchy prob-
lems

I ′0 + Γ I0 = 0,

I0(θm,k) = I := σ′
∫
L

∂Su0 du0,

with E = E0
m,k, and

α′ = σ′,
α(θm,k) = A.

Set

Ω(E) =

∫
L

∂Su0 du0,

q(φ) =
Ω

2I
lim
s→∞

1

s

∫ s

0

f(t) ∂Su0

(
t+

φ

Ω

)
dt,

where Ω := Ω(E0
m,k). Let {φJ} be the sequence of roots of the transcendental

equation q(φ) + 2ΩΓ = 0, such that q′(φ2j+1) < 0 and q′(φ2j) > 0. We now
define

E−2j+1 = Q(φ2j+1) + ΩΓφ2j+1,

E+2j+1 = E−2j+1 +
√
εΓ

∫
L
φ′dφ,

where Q is a primitive of q, i.e. Q′(φ) = q(φ), and L is the closed curve in the
space of parameters (φ, φ′) defined implicitly by

1

2
(φ′)2 +Q(φ) + ΩΓφ = E2j+1.

Under this notation, the main result of this paper reads as follows.

Theorem 2.3. The asymptotic solution of equation (1.1) on an interval of
length of order ε−1 for t < θk,m/ε has the form u ∼ u0(S,E), where the variable
S and parameter E(θ) are determined from the equalities θ = εt, S = σ(θ)/ε+α
and

I0(θ) = σ′
∫
L

∂Su0 du0.

This solution is captured into resonance in a neighbourhood of t = θm,k/ε if, for
any j, we get

E−2j+1

Ω(E0
m,k)

+
θm,k
ε

< A <
E+2j+1

Ω(E0
m,k)

+
θm,k
ε
.

3 Non-resonant regions of parameter

In this section we construct an asymptotic solution of equation (1.1) far away
from the resonant levels E0

m,k. The solution is built by the method of two
scales combined with the Whitham averaging method and Krylov-Bogolyubov
expansions for the parameters of solution. However, in contrast to the standard
approach, we trace accurately beginnings of singularities in a neighbourhood
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of resonant levels. Intimate knowledge of singularities allows one to determine
the applicability region of Krylov-Bogolyubov asymptotics when approaching
resonant levels of the parameter E.

3.1 An equation for averaged action

Here we introduce slow and fast variables and derive an integrate equation for
averaged action.

Outside of the resonant levels of the parameter E the asymptotic solution of
equation (1.1) is built by the method of two scales. We change the independent
variable by introducing the fast time variable

S =
σ(θ)

ε
+ α(θ, ε)

and the slow time variable θ = εt. In the new variables the original variable t is
given by

t =
θ

σ(θ)
S − θ

σ(θ)
α(θ, ε).

The differential equation (1.1) takes the form

(σ′)2∂2Su+ g(u) = ε f(t)− εD1u− ε2D2u, (3.1)

where

D1 = 2σ′α′∂2S + σ′′∂S + 2σ′∂θ∂S − Γσ′∂S ,

D2 = (α′)2∂2S + α′′∂S + 2α′∂S∂θ + ∂2θ + Γα′∂S + Γ∂θ.

Let G(y) be a primitive of g(y). On multiplying equation (3.1) by ∂Su and
integrating in S we get

(σ′)2
(∂Su)2

2
+G(u) = E + ε

∫ S

S0

(f(t)−D1u− εD2u)∂Su dS,

where E = E(θ) is a parameter of the solution.
Suppose

lim
S→∞

1

S

∫ S

S0

(f(t)−D1u− εD2u)∂Su dS = O(ε2), (3.2)

then the principal part in ε of the solution u of equation (3.1) is given by a
function u0 satisfying

(σ′)2 (∂Su0)
2

= 2E − 2G(u0).

This equation for u0 can be integrated in S by quadratures, namely

S = σ′
∫ u0

y0

dy√
2E − 2G(y)

where y0 is a constant in the interval u− ≤ y0 ≤ u+ whose bounds u+ and u−
are roots of the equation 2E − 2G(y) = 0, such that 2E − 2G(y) > 0 for all
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u− < y < u+. Following [25] we assume for definiteness that u0(S,E) is an even
function of S with zero mean value over the period. We require the period of
the function u0 in the variable S to be equal to one, i.e

σ′
∫

du0
∂Su0

= 2π. (3.3)

In the Krylov-Bogolyubov method formula (3.3) is regarded as differential equa-
tion for the unknown function σ(θ). The left-hand side of this equation is not
yet defined, for the function E(θ) has remained indetermined.

Define the averaged action by the formula

I(θ) = (σ′ + εα′) lim
S→∞

1

S

∫ S

S0

(∂Su)2 dS. (3.4)

Then equation (3.2) can be essentially simplified to

I ′ + Γ I + F (θ, I) = 0, (3.5)

where

F (θ, I) ≡ lim
S→∞

1

S

∫ S

S0

f(t)∂Su dS.

The function E(θ) is determined uniquely through I(θ). We have thus proved
the following lemma.

Lemma 3.1. Assume that E(θ), σ(θ) and α(θ, ε) satisfy equation (3.5). Then

u(t, ε) ∼ u0(S,E).

This assertion is a generalisation of the well-known Whitham method for
periodical solutions to the non-periodical case. Equation (3.2) is neither linear
nor autonomic. To study this equation we develop a perturbation theory below.
The properties of solutions to this equation differ essentially from those of known
solutions obtained in [25]. This distinction is due to the non-periodicity in S of
the solution of equation (3.1).

3.2 The substitution of Krylov-Bogolyubov

We look for a solution to (3.1) by the Krylov-Bogolyubov method in the form
of series in the powers of small parameter ε. That is,

u(t, ε) =
∞∑
n=0

εnun(S, θ, ε),

α(θ, ε) =
∞∑
n=0

εnαn(θ).

(3.6)

Substitute (3.6) into equation (3.1) and equate the coefficients of the same
powers of ε. As a result we get a recurrent system of equation for determining
the coefficients un.

The equation for u0 is

(σ′)2∂2Su0 + g(u0) = 0, (3.7)
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the equation for u1

(σ′)2∂2Su1 + g′(u0)u1 = f0(t)−D1u0, (3.8)

and the equation for u2

(σ′)2∂2Su2 + g′(u0)u2 = f1(t)− 1

2
g′′(u0)u21 −D1u1 −D2u0. (3.9)

The techniques of solving these equations for amendments is well understood.
The case f(t) ≡ 0 is treated in detail, e.g., in the paper [21]. The problem under
study does not fit into this theory, for the function f(t) on the right-hand side
of (1.1) need not be zero.

By parameters of asymptotic solution (3.6) we will mean an “initial” value
of slow time θ = θ0 and the values E0 = E(θ0) and a = α(θ0) at θ0. For
definiteness we also assume that u′(θ0) > 0.

3.3 Linearised equation

The equations for the amendments un, with n > 0, are linear. Their solutions
can be obtained by the variation of constants method, when one starts with two
linearly independent solutions

v1 = ∂Su0,

v2 =
Ω ′(E)

Ω(E)
S∂Su0 + ∂Eu0

of the corresponding homogeneous linear equation. To check that both v1 and
v2 satisfy the homogeneous linear equation, one differentiates immediately the
nonlinear equation (3.7) in S (for v1) and E (for v2).

We proceed by evaluating the Wronskian for v1, v2, namely

W = v1∂Sv2 − v2∂Sv1

= ∂Su0

(Ω ′(E)

Ω(E)
(∂Su0 + S∂2Su0) + ∂S∂Eu0

)
− ∂2Su0

(Ω ′(E)

Ω(E)
S∂Su0 + ∂Eu0

)
=

Ω ′(E)

Ω(E)
(∂Su0)2 + ∂Su0∂S∂Eu0 − ∂2Su0∂Eu0.

Using the equation for u0 yields

W =
Ω ′(E)

Ω(E)
(∂Su0)2 + ∂E

(1

2
(∂Su0)2

)
+

1

(Ω(E))2
∂EG(u0)

whence

(Ω(E))2W = ∂E

(1

2
(Ω(E))2(∂Su0)2 +G(u0)

)
.

In the final shape the Wronskian is

W =
1

(Ω(E))2
.

The general solution of the linearised equation

(Ω(E))2 ∂2Sun + g′(u0)un = Fn (3.10)
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for un can be written in the form

un(S, θ) = c1(θ) v1(S, θ) + c2(θ) v2(S, θ)

+ v1(S, θ)

∫ S

0

Fnv2(s, θ) ds− v2(S, θ)

∫ S

0

Fnv1(s, θ) ds.
(3.11)

Set
∂SJn(S, θ) = Fn ∂Su0(S, θ). (3.12)

Consider separately∫ S

0

Fn(s, θ)v2(s, θ)ds

=

∫ S

0

Fn(s, θ)
(Ω ′(E)

Ω(E)
s∂su0 + ∂Eu0

)
ds

=
Ω ′(E)

Ω(E)

∫ S

0

Fn(s, θ)s∂su0 ds+

∫ S

0

Fn(s, θ)∂Eu0 ds

=
Ω ′(E)

Ω(E)
SJn(S, θ)− Ω ′(E)

Ω(E)

∫ S

0

Jn(s, θ) ds+

∫ S

0

Fn(s, θ)∂Eu0 ds.

Introduce

∂San(S, θ) =
Ω ′(E)

Ω(E)
Jn(S, θ)− Fn(S, θ)∂Eu0. (3.13)

Using formulas for solutions v1 and v2 we can now transform equality (3.11)
to

un(S, θ) = c1(θ)v1 + c2(θ)v2

− ∂Su0an(S, θ) + ∂Su0
Ω ′(E)

Ω(E)
SJn(S, θ)−

(Ω ′(E)

Ω(E)
S∂Su0 + ∂Eu0

)
Jn(S, θ).

The terms containing the factor S cancel and we arrive at

un(S, θ) = c1(θ)v1 + c2(θ)v2 − ∂Su0an(S, θ)− ∂Eu0Jn(S, θ), (3.14)

where an and Jn are solutions of equations (3.13) and (3.12). The coefficients
c1(θ) and c2(θ) are so far not determined. We have thus proved the following
assertion.

Lemma 3.2. The solution of equation (3.10) can be represented in the form
(3.14), where an(S, θ) and Jn(S, θ) are solutions of system (3.13), (3.12) and
c1(θ) and c2(θ) arbitrary functions of θ.

Our next goal is to derive a boundedness condition for the solution of equa-
tion (3.10) for the almost periodic in S right-hand side Fn(S, θ). If

lim
S→∞

1

S

∫ S

0

Fn(s, θ)∂Su0(s, θ) ds = 0, (3.15)

then Jn(S, θ) is almost periodic in S. Under condition (3.15) one can always
choose c2(θ) in such a way that un is bounded. Namely,

c2(θ) = lim
S→∞

1

S

∫ S

0

Fn(s, θ)∂Eu0(s, θ) ds. (3.16)

As a result we deduce that un is an almost periodic function of S. We have thus
proved
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Theorem 3.3. Let (3.15) be fulfilled. Then the solution of equation (3.10) is an
almost periodic function, where an(S, θ) and Jn(S, θ) are solutions of triangular
system (3.13), (3.12) and c2(θ) is given by equality (3.16).

Corollary 3.4. Suppose

Fn(S, θ) =
∞∑

k=−∞

Fn,keıνkS

is an almost periodic function and there are integers m and k, such that mσ/θ →
νk as θ → θm,k. Then

uk = O
( Fn,k

(m− νkθ/σ)2

)
as θ → θm,k.

To prove this assertion it suffices to represent ∂Su0 and ∂Eu0 as Fourier series
and integrate explicitly equations (3.15) and (3.16). Then, the result should be
substituted into (3.14).

3.4 Construction of the first amendment

In this section we compute the first amendment and derive an equation for the
principal term of averaged action.

Write the solution of equation (3.8) in the form

u1(S,E) = U1,f (S,E) + U1,Γ (S,E), (3.17)

where U1,f (S,E) and U1,Γ (S,E) are solutions of the equations

(σ′)2∂2SU1,f + g′(u0)U1,f = f0(t), (3.18)

(σ′)2∂2SU1,Γ + g′(u0)U1,Γ = −D1u0, (3.19)

respectively. Here, we study the non-resonant case of outside force f0(t). To
pass to the fast variable S, set t = (S − α)θ/σ. The independent variable θ is
considered in an interval of the real axis where m 6= ωkθ/σ for all m ∈ Z and
k ∈ K0.

In this case the boundedness condition for the solution of equation (3.18)
is fulfilled identically in θ. To construct an explicit formula for U1,f one can
exploit Corollary 3.4. Let there be integers m and k with the property that
mσ(θ)→ ωk as θ → θm,k. Then

U1,f = O
( 1

(m+ ωkθ/σ)2

)
. (3.20)

The right-hand side of (3.19) is periodic in S, hence the averaging of it over
an unbounded interval can be replaced by averaging over the period. In this
way the equality

lim
S→∞

1

S

∫ S

0

(
2σ′α′∂2Su0 + σ′′∂Su0 + 2σ′∂θ∂Su0 − Γσ′∂Su0

)
∂Su0ds = 0

10



can be rewritten as ordinary differential equation for the function

I0 = σ′
∫ 1

0

(∂Su0(S,E))
2
dS

of θ. More precisely, we get
I ′0 + Γ I0 = 0.

Hence it follows that
I0 = Ie−Γθ, (3.21)

where I = I0(θ0) is an arbitrary constant. When assuming the function E(I)
to be invertible, we determine in this way the dependence of the parameter E
on θ.

Let us sum up what we obtained in this section.

Lemma 3.5. Equation (3.8) has a bounded solution if the parameter E evolves
in accordance with equation (3.21) for E 6≡ Em,k.

Obviously, the solution of the equation for the first amendment fails to work
for the zeroes of the denominator in (3.20), which are the resonant values E0

m,k

of the parameter E. For each ε, the set of values of k is finite. Hence, the
resonant values are bounded away from each other. The distance between two
neighbouring resonances depends on the behavior of the Fourier series of f(t)
and is determined by the asymptotic condition of non-overlap of resonances, see
(2.4).

We now ascertain the applicability domain of asymptotic expansion (3.6).
To this end we consider higher-order amendments.

3.5 Construction of the second amendment

In this section we derive an evolution equation for the phase shift and construct
a two-parameter asymptotic solution which suits well outside of the resonant
levels of the parameter E.

Let us discuss the influence of outside force on solutions of the equation for
the second amendment. In general, the formula for f1(t) may contain resonant
summands in the fast variable S at some point θ. Since the dependence σ(θ) has
been determined at the previous step when constructing u1, the resonances in
the second amendment are local with respect to the slow variable. For passing
through a local resonance it is necessary to change the averaging operator.

It is well understood that passing through local resonances leads in generic
situation to a change in amendments as large as ε−1/2, see [2]. From the formal
view point this means that in generic situation one can consider the averaging
operator of the form

lim
S→∞

1

S

∫ S

f1

( θ
σ

(s− α)
)
∂Su0(s, θ) ds

∼ 1

σ + εα

∫ α+σ/ε

σ0

f1

(θ
ε

)
u′0(α+ σ/ε)(σ′ + εα′)dθ

= O(
√
ε).

In order to establish this formula one substitutes Fourier series for the inte-
grands which converge absolutely. Then, one passes on to termwise integration
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and applies the stationary phase method for evaluating rapidly oscillating inte-
grals.

Let us now compute the action of the averaging operator on the remaining
summands of the right-hand side of (3.9),

lim
S→∞

1

S

∫ S (
− 1

2
g′′(u0)u21 −D1u1 −D2u0

)
∂Su0(s, θ) ds. (3.22)

It is convenient to break down the computation for the averaging operator into
single terms. The integral of the first summand is∫ S

−1

2
g′′(u0)u21∂Su0(s, θ) ds = −1

2
g′(u0)

u21
2

∣∣∣S +

∫ S

g′(u0)u1u
′
1 ds.

On evaluating g′(u)u1 from the equation for the first amendment we get∫ S

g′(u0)u1u
′
1 ds =

∫ S (
− (σ′)2∂2Su1 + f0(t)−D1u0

)
∂Su1 ds.

The first summand under the integral is explicitly integrable, its average just
amounts to zero. As a result the average (3.22) reduces to

lim
S→∞

1

S

∫ S

((f0(t)−D1u0) ∂Su1 −D2u0∂Su0(s, θ)) ds.

The last summand is evaluated immediately, namely

lim
S→∞

1

S

∫ S

−D2u0∂Su0(s, θ) ds = (α′′ + Γα′)
I0
σ′

+ α′
(I0
σ′

)′
=

(α′
σ′
I0

)′
+ Γ

α′

σ′
I0.

For evaluating other summand we make use of representation (3.17) for the first
summand, obtaining

lim
S→∞

1

S

∫ S

(f0(t)−D1u0) ∂Su1 ds

= lim
S→∞

1

S

∫ S

(f0(t)−D1u0) (∂SU1,f + ∂SU1,Γ ) ds

= lim
S→∞

1

S

∫ S

(f0(t)−D1u0) ∂SU1,fds+ lim
S→∞

1

S

∫ S

(f0(t)−D1u0) ∂SU1,Γds.

We claim that

lim
S→∞

1

S

∫ S

(f0(t)−D1u0) ∂SU1,Γds

= lim
S→∞

1

S

∫ S

f0(t) ∂SU1,Γds− lim
S→∞

1

S

∫ S

D1u0 ∂SU1,Γds

= 0.

Indeed, the integrand in the first summand is a conditionally periodic function
of zero mean value, hence, the average vanishes. The second summand coincides

12



with the integral treated in [25]. This integral vanishes, for its integrand is the
product of an even function and an odd function of S. Integrating it over the
entire period yields zero.

It remains to consider the average of two summands which do not encounter
in [25]. These are

lim
S→∞

1

S

∫ S

f0(t)∂SU1,f ds− lim
S→∞

1

S

∫ S

D1u0∂SU1,f ds.

Since the function D1u0∂SU1,f is conditionally periodic and of mean value zero,
we deduce readily that the second limit vanishes.

To compute the remaining average we write

u0(S,E) =
∞∑
k=0

u0,k(E) cos(kS),

whence

−∂Su0 =

∞∑
k=0

ku0,k(E) sin(kS),

∂Eu0 =
∞∑
k=0

v0,k(E) cos(kS).

Besides, represent f0 in the form

f0(t) =
∑
k∈K0

|fk| cos
(
ωk
θ

σ
S + δk

)
,

where δk = arg(fk)− θ

σ
α.

Further computations may be done in explicit form, e.g., if one uses the
programme of analytic computations [32]. One substitutes the series for u0 and
f0 into (3.12) and (3.13), interchanges the integral and infinite sum and then
integrates termwise, thus arriving at an explicit expression for U1,f . Then it is
straightforward to compute the integral and the limes of the overaging operator.
As a result we obtain

lim
S→∞

1

S

∫ S

f0(t)∂SU1,f ds = 0.

Thus, the averaging procedure leads to the equation(α′
σ′
I0

)′
+ Γ

α′

σ′
I0 = 0. (3.23)

Write a particular solution of this equation in the form

α0(θ) = σ(θ) +A, (3.24)

where A is a parameter of the solution.

Theorem 3.6. Suppose that I0 and α0 are determined in (3.21) and (3.24),
respectively. Then u ∼ u0(S,E) is a two-parameter asymptotic solution of the
form (3.6) defined up to o(1) for θ 6≡ θm,k. The quantities I and A are param-
eters of the solution.
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Denote

F2(S, θ) =

∫ S

0

F2(s, θ)∂Su0 ds.

By the properties of averaging and integration of summands with local resonance
it follows that

F2(S, θ) = o(t) +O(1/
√
ε).

Letting θ → θm,k we deduce from Theorem 3.3 that

u2 = O((m+ ωkθ/σ)−6).

In much the same way we construct higher-order amendments. One can
show that the singularity of un for θ → θm,k increases with n, namely

un = O
(( 1

m+ ωkθ/σ

)4(n−1)+2)
for k ∈ K0(ε). Then the appropriateness domain of asymptotic u ∼ u0(S,E) is
described by

ε

(m+ ωkθ/σ)4
� 1.

This just amounts to saying that in generic situation the condition of applica-
bility of asymptotic (3.6) is

|θ − θm,k| � ε1/4. (3.25)

3.6 Resonances in higher-order amendments

By the above, the constructed asymptotics no longer work close to the resonant
values of θ. Such resonant values of θ are determined starting from the set K0(ε)
and an integer k. For passing through the resonances related to the set K0(ε)
one ought to change the structure of asymptotic at the order of smallness

√
ε,

see [2]. For higher-order amendments similar resonances appear also for the
values of θ, such that Ω(E(θ))/ωk ∈ Z with some k belonging to the union of
the sets K0(ε), . . . ,Kn−1(ε), where n is the amendment number. The passage
through a resonant value of θ in higher-order amendments leads to a structure
change of asymptotics at the order of smallness εn−1/2. Asymptotic expansions
in neighbourhoods of resonant values of θ are studied in the next section.

4 Asymptotics in resonant regions

4.1 Formal derivation of nonlinear resonance equation

In this section we build an asymptotic solution in a neighbourhood of resonant
value E0

m,k. A particular attention is paid to the applicability intervals of the
asymptotic. We compute also an intermediate asymptotic, when approaching
the capture region, and derive a formula of connection between this intermediate
asymptotic and parameters of captured solutions.

The equation of nonlinear resonance was derived by Chirikov in the dissipat-
ionless case for f(t) ∼= cos(ωt) in [1]. This is the equation of mathematical
pendulum with outer momentum. Since then the derivation of this equation
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was reproduced by diverse methods in a great number of papers. Here the
nonlinear resonance equation is obtained by the Whitham method for equation
(1.1) with periodic function f(t) in the presence of dissipative summand.

Let us look for an asymptotic (in ε) solution of equation (1.1) in a neighbour-
hood of resonant level E = E0

m,k by the Whitham method. For this purpose we
substitute a function u of the form

u = u(t+ ϕ(τ))

with τ =
√
εt into (1.1). After differentiation we get

u′′ + g(u) = −
√
εϕ′u′′ + ε(f(t)− ϕ′′u′ − Γu′ − (ϕ′)2u′′)− ε

√
εΓϕ′u′. (4.1)

We shall build a solution which is periodic in the fast variable with period
T = 2π/Ω(E0

m,k). Let us multiply the equation by u′ and average it in the fast
variable S.

The necessary condition of boundedness of solution is

(−ϕ′′−Γ −
√
εΓϕ′) lim

S→∞

1

S

∫ S

0

(u′)2ds+ lim
S→∞

1

S

∫ S

0

f(s)u′(s+ϕ)ds = 0. (4.2)

Denote by

I = I(T ) := lim
S→∞

1

S

∫ S

0

(u′)2ds

the action for a given T to be treated as parameter independent of τ .
Represent u = u(t+ ϕ) and f(t) by their Fourier series

u =
∞∑
j=0

(aj cos(jΩ(t+ ϕ)) + bj sin(jΩ(t+ ϕ))) ,

f(t) =
∞∑
l=0

(gk cos(ωkt) + hk sin(ωkt)) .

Differentiate the series for u termwise in t, multiply the series for u′ by the series
for f(t) and transform the products of trigonometric functions into trigonometric
functions of the sum and difference of arguments. Then apply the averaging
operator to the series obtained in this way. As a result we conclude that the
action of averaging operator is different from zero only for j and k, such that
jΩ = ωk. Hence

lim
S→∞

1

S

∫ S

0

f(s)u′(s+ ϕ) ds =
∞∑
k=0

(Ak cos(kΩϕ) +Bk sin(kΩϕ)) .

Denoting the right-hand side of this equality by Σ (ϕ), we rewrite (4.2) as equa-
tion for ϕ,

(−ϕ′′ − Γ −
√
εΓϕ′)I + Σ (ϕ) = 0.

The change of variables

φ = ϕ/Ω , γ = Γ/Ω , ε =
√
εΓ , q(φ) = − 1

IΩ
Σ (Ωφ)
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reduces the above equation to

φ′′ + q(φ) + γ = −εφ′. (4.3)

Here, q(φ) is a periodic function of period 2π/Ω and zero mean value. From
the convergence of Fourier series for the functions ∂Su0 and f(t) it follows that
q(φ)→ 0 as m, k →∞.

Consider for instance g(u) := sinu and f(t) := A cos(ωt). Then, for ω < 1,
there may occur resonances on subharmonics, i.e. mΩ(E) = ω. As a result we
get an equation of the form

φ′′ + h sin(φ+ a) + γ = −εφ′,

where

γ =
Γ

mΩ
, h =

A

mΩI

√
a2m + b2m, a = arctan

am
bm

,

am and bm being the Fourier coefficients of the elliptic function ∂Su0. For ε = 0
this is the well-known equation of nonlinear resonance.

4.2 Inner asymptotic

Equations (4.1) and (4.3) constitute a system. The equations of this system
separate asymptotically provided that

√
εϕ � 1. We’ll look for a solution of

equation (4.1) in the form of power series in powers of
√
ε, namely

u(t, ε) =

∞∑
k=0

εk/2uk(t+ ϕ). (4.4)

To obtain equations for uk one substitutes (4.4) into equation (4.1) and equates
the coefficients of the same powers of

√
ε. The equation for the principal term

u0 looks like
u′′0 + g(u0) = 0,

the equation for the first amendment is

u′′1 + g′(u0)u1 = −ϕ′u′′0 ,

the equation for the second amendment is

u′′2 + g′(u0)u2 = −1

2
g′0(u0)u21 − ϕ′u′′1 + f(t)− ϕ′′u′0 − γu′0 − (ϕ′)2u′′0 ,

and similarly for higher order amendments. Notice that the equation for the
amendment un contains a term proportional to (φ′)n. One can prove that,
if secular terms cancel in all amendments, expansion (4.4) is asymptotic for√
εϕ′ � 1. Equation (4.2) is a necessary condition for the expansion to be

uniform.

4.3 Capture into resonance

This section is aimed at evaluating the measure of resonance solutions in the
space of parameters of solutions. A solution of equation (4.3), for which there
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is a constant C with the property that |φ| < C as τ → ∞, is called captured
into resonance.

The solutions of equation (4.3) can be parametrised with the help of three
parameters. These are an initial value τ = τ0 and “initial data” φ(τ0) = v0
and φ′(τ0) = v1, all the parameters are real numbers. In the phase plane the
trajectories of solutions are characterised by two parameters φ′ and φ.

The existence of equilibrium states of equation (4.3) is determined by the
inequality |γ| ≤ max |q(φ)|. The equilibrium states are saddle and focal points.
They are solutions of the transcendent equation

γ + q(φj) = 0.

It is easily seen that the saddles and foci are situated on the axis φ′ = 0 and
alternate with each other. We enumerate these solutions with index j. Then,
the saddles are at the points (0, φ2j+1), such that q′(φ2j+1) < 0, and the foci
are at the points (0, φ2j), such that q′(φ2j) > 0.

The capture into resonance is possible not at all resonant levels E0
m,k. From

the asymptotic property q(φ) → 0, as m, k → ∞, it follows that for large m
and k equation (4.3) has no stationary solutions, and so there might be no
capture into resonance. Although one ought to take proper account of equation
(4.3) for passing through such resonant levels, no capture into resonance occurs
nevertheless. When passing through a resonant level for which |γ| > max |q(φ)|,
the solution changes by an amount O(

√
ε).

Write p = φ′, then the equation for phase trajectories is

p
dp

dφ
= −q(φ)− γ − εp.

For ε = 0 this equation is integrated explicitly, giving

E = (φ′)2 +Q(φ) + γφ, (4.5)

where Q(φ) is a primitive of q(φ). The parameter E varies slowly on solutions
of equation (4.3), for

dE
dt

= ε (φ′)2.

Hence, it is convenient to use E for parametrising the trajectories. At the phase
curve we have

dE
dφ

= εφ′.

An equivalent formulation of this equation is

dE
dφ

= sgn (φ′) ε
√
E −Q(φ)− γφ. (4.6)

The trajectories captured into resonance are located between separatrices
which tend to a saddle as τ →∞. At the saddle point

E(φ2j+1) = E−2j+1 := Q(φ2j+1) + γφ2j+1.

It should be noted that the separatrix which loops round the focus φ2j has
actually two different values at φ = φ2j+1 as τ → ∞. The corresponding
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values E±2j+1 of E differ by the value of Mel’nikov’s integral over the loop of the
separatrix, i.e.

E+2j+1 = E−2j+1 + ε

∫
L
φ′dφ.

The trajectories of resonance solutions lie between the separatrices with
values E(φ2j+1) = E+2j+1 and E(φ2j+1) = E−2j+1. One uses these values to ap-
proximate the bounds of the region of capture into resonance in the phase plane.

Our next objective is to construct an asymptotic solution of the Cauchy
problem for the parameter E with data E(φ2j+1) = E0. Let

E = E0 +
∞∑
k=1

Ek(ϕ) εk. (4.7)

Substitute this expression into differential equation (4.3) and equate the coeffi-
cients of the same powers of ε. As a result we get a series of Cauchy problems

dE1
dφ

=
√
E0 −Q(φ)− γφ, E1(φ2j+1) = 0;

dE2
dφ

=
E1(φ)

2
√
E0 −Q(φ)− γφ

, E2(φ2j+1) = 0;

dE3
dφ

=
E2(φ)

2
√
E0 −Q(φ)− γφ

− E1(φ)2

8(
√
E0 −Q(φ)− γφ)3

, E3(φ2j+1) = 0,

etc., provided that φ′ > 0.
The measure of trajectories in the phase plane, which are captured into

resonance, amounts to the sum of the area of separatrix loop

Sj =

∫ E+2j+1

E−2j+1

φ′dφ

and the area of the region between the separatrices towards the saddle point
φ2j+1

∆j(φ) =

∫ φ

φ2j+1

(
φ′(E+2j+1)− φ′(E−2j+1)

)
dφ.

It follows that the measure of trajectories captured into resonance of level E0
m,k

near the focus φj , for |φ| � ε−1, is

µm,k ∼ Sj + ∆j = O(1).

In this way we arrive at

Theorem 4.1. The measure of trajectories captured into resonance in a neigh-
bourhood of the 2j + 1 th focus has smallness order µm,k.

If φ → −∞ then E1 = O(φ3/2), E2 = O(φ2) and E3 = O(φ5/2). Moreover,
one can show that Ek = O(φk/2+1) for all integers k ≥ 4. This estimate allows
one to directly evaluate the region of applicability of asymptotic (4.7). More
precisely,

εk+1Ek+1

εkEk
� −1, (4.8)

and so ε(−φ)1/2 � 1 whence −φ� ε−2.
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4.4 Asymptotic solutions of the equation of nonlinear reson-
ance

In this section we build an unbounded asymptotic solution of equation (4.3)
for τ → ∞. Besides, we derive a connection formula for the parameters of the
asymptotic and parameters of solution in a small neighbourhood of capture into
resonance.

The solution is searched for in the form

φ = s(τ, ε) + ψ(s, ε), (4.9)

where
s′′ + λ(s, ε) = −εs′.

The summand λ(s, ε) will be determined below under constructing an asymp-
totic for the function ψ.

Substitute expression (4.9) into equation (4.3), obtaining

(−λ− εs′) + (s′)2ψ′′ + (−λ− εs′)ψ′ + q(s+ φ) + γ = −εs′ − εs′ψ′.

Elementary transformations yield an equation for ψ, namely

(s′)2ψ′′ − λψ′ + q(s+ ψ) + (γ − λ) = 0.

Our concern is the behaviour of ψ as s′ → ∞. To this end it is convenient to
rewrite the equation in the form

ψ′′ =
1

(s′)2
(λψ′ − q(s+ ψ)− (γ − λ)) .

Set z(s) = 1/s′. We look for a solution of the form ψ(s, ε) = ψ(s, z) by
the method of two scales. Here, s is thought of as fast variable and z as slow
variable. The total derivative in s is

d

ds
= ∂s +

dz

ds
∂z.

To evaluate z′, we make use of the equation for s in the form

s′
ds′

ds
= −λ− εs′,

implying
dz

ds
=
−1

(s′)2
ds′

ds
=
−1

(s′)2

(
− λ

s′
− ε
)

= λz3 + εz2.

Hence, the total derivative in s just amounts to

dψ

ds
= ∂sψ + (λz3 + εz2) ∂zψ

and the second derivative is

d2ψ

ds2
= ∂2sψ

+
(
λz3 + εz2

) (
2∂s∂zψ +

(
3λz2 + z3∂zλ+ 2εz

)
∂zψ +

(
λz3 + εz2

)
∂2zψ

)
.
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As a result the equation of the method of two scales for ψ takes the form

∂2sψ = (λz3 + εz2)
(
−2∂s∂zψ − (3λz2 + z3∂zλ+ 2εz)∂zψ − (λz3 + εz2)∂2zψ

)
+ λz2∂sψ + λ(λz3 + εz2)∂zψ − q(s+ ψ)− (γ − λ).

(4.10)

We look for a solution of this equation of the form

ψ(s, z) =
∞∑
k=2

ψk(s) zk (4.11)

for small values of z. Assume that the parameter λ is represented by a similar
series in powers of z, i.e.

λ(s, ε) =
∞∑
k=0

λk z
k, (4.12)

λk being undetermined constant coefficients. As usual, we substitute expres-
sions (4.10) and (4.12) into equation (4.10), equate the coefficients of the same
powers of z and arrive at a recurrent system of second order ordinary differential
equations for the unknown functions ψk(s). In particular,

ψ′′2 = −q(s)− (γ − λ0).

This equation possesses a (bounded) periodic solution if λ0 = γ. We take
such a periodic solution as ψ2(s). The equation for ψ3(s) is

ψ′′3 = −4εψ′2 + λ1.

This equation has a periodic solution if λ1 = 0. The equation for ψ4 is in turn

ψ′′4 = −6ε2ψ2 − 5γψ′2 − 6εψ′3 − 3ε2ψ2 − q′(s)ψ2 + λ2.

A periodic solution of this equation exists if

1

T

∫ T

0

q′(s)ψ2(s) ds+ λ2 = 0,

which is the case for λ2 = 0, as is easy to check.
In this way we determine the periodic coefficients ψk(s) and λk−2 one after

another. The coefficient ψk(s) is evaluated from an equation

ψ′′k = Fk(s, ψ2, . . . , ψk−2, ψ
′
2, . . . , ψ

′
k−1, λ0, . . . , λk−4) + λk−2,

where k > 2. The parameter λk−2 is determined from the condition that the
mean value over the period of the right-hand side of equation for ψk vanishes.
To wit,

λk−2 = − 1

T

∫ T

0

Fk(s, ψ2, . . . , ψk−2, ψ
′
2, . . . , ψ

′
k−1, λ0, . . . , λk−4) ds.

On having constructed λ(z, ε) we pass to the study of equation for s. Up to
terms of smallness order o(z2) the equation has the form

s′′ + γ ∼ −εs′.

We are now in a position to formulate the result of this section.
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Theorem 4.2. The solution of equation (4.3) behaves like

s ∼
( γ
ε2
− γ

ε2
e−ε(τ−τ0) − γ(τ − τ0)

ε

)
+ s0

∼ s0 +
γ(τ − τ0)2

2

(
1 + ε

τ − τ0
3

+O(ε2(τ − τ0)2)
)

as s′ →∞. Here, s0 and τ0 are constants of integration.

The theorem implies that unbounded solutions of equation (4.3) behave like

φ ∼ 1

2
γm,k(τ − τ0)2

for 1 � (τ − τ0) � ε−1. Substituting this asymptotic in the estimate (4.8) for
the appropriateness region of expansion (4.7) yields an estimate for the region
of appropriateness of (4.7). Namely,

ε(τ − τ0)� 1, (4.13)

i.e. (τ − τ0)� ε−1.
The connection between the parameters of the asymptotic of φ in (4.9),

(4.11) and the parameter E is obtained by substitution of asymptotic (4.9),
(4.11) into formula (4.5). We get

s0 ∼ E

as (τ − τ0)→∞ and ε→ 0.
Asymptotic solution (4.9), (4.11) will be captured in the resonance in a

neighbourhood of the 2j th equilibrium state, if

E−2j+1 < s0 < E+2j+1.

for τ →∞.

5 Matching of asymptotic expansions

In this section we match the parameters of asymptotic solutions outside of non-
linear resonances and in neighbourhoods of them.

We first rewrite the applicability region of the inner asymptotic expansion
in terms of t and ε. Namely, since τ =

√
εt, from (τ − τ0)� ε−1 it follows that√

ε(t− τ0/
√
ε)� ε−1 which is equivalent to (t− τ0/

√
ε)� ε−3/2.

The outer asymptotic is valid in the region (θ − θm,k) � ε1/4 which is
equivalent to (t − θm,k/ε) � ε−3/4. Hence, if we choose τ0 = θm,k/

√
ε, the

appropriateness regions for the constructed asymptotics meet each other.
Our next goal is to match the formulas for the asymptotic in the non-resonant

region (3.6) and asymptotic (4.4) in a neighbourhood of each resonant level
E = E0

m,k.
Suppose the parameter E(θ) evaluated from formula (3.21) takes on the

value E0
m,k at some point θ = θm,k. We determine the function σ(θ) starting

from equation (3.3) and condition σ(θm,k) = 0. Let moreover α(θm,k) = A.
Then asymptotic solution (3.6) has three independent parameters θ0, I0, and
A.
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The asymptotic solution in a neighborhood of resonance level E = E0
m,k has

parameters s0 and τ0.
From formulas for the applicability intervals of asymptotics (3.25) and (4.13)

one sees readily that the regions of appropriateness of these asymptotics overlap.
Set τ0 = θm,k/

√
ε. Since E(θ) → E0

m,k as θ → θm,k, we conclude that the
principal terms of the asymptotics, which are the function u0(S/σ′, E) of (3.6)
and u0(t + ϕ) of (4.4), respectively, coincide. We now match the arguments of
these asymptotics which contain fast variables. In these arguments one ought to
single out and equate the parameters which are independent of the variables t, θ,
τ , for these parameters are precisely the parameters of the asymptotic solution.
Let us compute the asymptotic of the fast argument of S/σ′ for θ → θm,k. We
have

S ∼ σ′(θm,k)
(
t− θm,k

ε

)
+ ε

σ′′(θm,k)

2

(
t− θm,k

ε

)2
+ σ′(θm,k)A

+ εα′(θm,k)
(
t− θm,k

ε

)
,

1

σ′
∼ 1

σ′(θm,k)

(
1− εσ

′′(θm,k)

σ′(θm,k)

(
t− θm,k

ε

))
whence

S

σ′
∼ A+

(
t− θm,k

ε

)
,

t+ ϕ(τ) ∼ t+
s0

Ω(E0
m,k)

=
s0

Ω(E0
m,k)

+
θm,k
ε

+
(
t− θm,k

ε

)
.

The matching condition
S

σ′
∼ t+ ϕ leads to the following assertion.

Theorem 5.1. The asymptotic solution, which applies uniformly in the param-
eter θ in each interval including a neighbourhood of nonlinear resonance point
θm,k, has parameters

A =
θm,k
ε

+
s0

Ω(E0
m,k)

, τ0 = θm,k. (5.1)

The principal significance of formula (5.1) is that it provides the matching
of phase shifts of fast variables.

Corollary 5.2. Assume that in a resonant layer at E0
m,j the capture into res-

onance is possible, i.e. the condition |γ| ≤ max |q(φ)| is fulfilled. Then, a
trajectory with parameter A will be captured into resonance if this parameter
satisfies

E−2j+1

Ω(E0
m,k)

+
θm,k
ε

< A <
E+2j+1

Ω(E0
m,k)

+
θm,k
ε

(5.2)

for all integers j.

6 Conclusion

In the paper we establish the values of parameters of asymptotic solutions which
are captured into nonlinear resonance. We also evaluate the measure of such
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solutions amongst those which oscillate at a potential hole. The results of the
paper, in particular, formula (5.2) show rather strikingly that the parameter
set of captured solutions depends on the perturbation parameter ε in a singular
way.
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