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B.2. Hölder Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.3. Differentiability of Solutions and Schauder Estimates . . . . . . . . . . . . 96

i



Contents

B.4. Embedding Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.5. Linear parabolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.6. Classical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.7. Elliptic Operators and Spectral Theory . . . . . . . . . . . . . . . . . . . 100

Bibliography 101

ii



1. Introduction and Outline

Before introducing the notion of Dirac-harmonic maps, we want to give a short overview
of both harmonic maps and harmonic spinors.

Harmonic maps

Among variational problems in Riemannian geometry, harmonic maps are probably the
richest ones. Harmonic maps are critical points of the energy functional

E(φ) =
1

2

ˆ

M
|dφ|2dM, (1.1)

where φ : M → N is a smooth map from a closed Riemannian manifold M to another
Riemannian manifold N . Critical points of E(φ) satisfy

τ(φ) = ∇eαdφ(eα) = 0, τ(φ) ∈ Γ(φ−1TN). (1.2)

The operator τ(φ) is called the tension field of the map φ. Often, one likes to apply
the Nash embedding theorem to isometrically embed the manifold N into some R

q of
sufficiently large dimension q. Then, the Euler-Lagrange equation for φ acquires the
form

∆φ = II(φ)(dφ, dφ), (1.3)

where II denotes the second fundamental form of the embedding. Harmonic maps play
an important role in

1. Differential geometry
Minimal immersions from surfaces are harmonic maps which are also conformal.
In this context, we have to mention the work of Sacks and Uhlenbeck [SU81], who
used harmonic maps to establish the existence of a minimal immersion from S2 to
another Riemannian manifold. However, also such ordinary objects like geodesics
are captured by the theory of harmonic maps.

2. Partial differential equations
The Euler-Lagrange equation for harmonic maps (1.3) is of the form Laplacian of φ
is equal to the square of the gradient of φ. Although this equation is non-linear and
hence standard methods for linear partial differential equations cannot be applied,
many results about the existence of solutions of the harmonic map equation and
their properties have been obtained.
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CHAPTER 1. INTRODUCTION AND OUTLINE

3. Theoretical physics
In theoretical physics harmonic maps appear on several occasions, for example
in the context of σ-models in particle physics. In the context of string theory,
harmonic maps arise as the Polyakov action.

In the case thatM is two-dimensional, the functional E(φ) is conformally invariant, such
that harmonic maps from Riemann surfaces share special properties. For more details
about harmonic maps, see the classical survey papers [EL95a] and [EL95b].

A natural question arising is the question concerning the existence of harmonic maps.
We will briefly present two different approaches. The first one is due to Sacks-Uhlenbeck
and uses the following regularization of the energy functional

Eα(φ) =
1

2

ˆ

M
(1 + |dφ|2)αdM.

For α = 1, the regularized functional has the same critical points as E(φ). For α > 1,
the functional Eα satisfies the Palais-Smale condition, which guarantees the existence
of critical points. Consequently, one has to carefully study the limit α → 1, which was
done in

Theorem 1.1 (Sacks-Uhlenbeck(1981)). Suppose that M is a compact Riemann surface
without boundary and N a closed Riemannian manifold. Let φα ∈ C∞(M,N) be critical
points of Eα with Eα(φα) < K for α > 1 and φα → φ weakly in H1,2(M,N) as α → 1.
Then there exists a subsequence {β} ⊂ {α} and a finite number of points {x1, . . . , xk} ⊂
M such that φβ → φ in C2

loc(M \{x1, . . . , xk}, N). Moreover, φ ∈ C∞(M,N) is a smooth
harmonic map.

Closely related to the work of Sacks-Uhlenbeck is the following

Theorem 1.2 (Lemaire(1978), Schoen-Yau(1979)). Assume thatM is a closed Riemann
surface and π2(N) = 0. Then any map φ0 ∈ C∞(M,N) is homotopic to a smooth
harmonic map.

This result was proven independently by Lemaire [Lem78] and Schoen, Yau [SY79].

The second approach due to Eells and Sampson [ES64] uses the L2 gradient flow of the
energy E(φ). More precisely, the gradient flow is given by the following parabolic partial
differential equation

∂φ

∂t
= τ(φ), φ(·, 0) = φ0. (1.4)

In the case that the target manifold N has non-positive curvature, Eells and Sampson
proved

Theorem 1.3 (Eells-Sampson(1964)). Suppose M and N are compact Riemannian
manifolds without boundary and the sectional curvature KN of N is non-positive. Then
for any φ0 ∈ C∞(M,N) the evolution problem (1.4) admits a unique smooth solution
φ ∈ C∞(M × [0,∞), N), which, as t → ∞ suitably, converges to a harmonic map
φ ∈ C∞(M,N) in C2(M,N).
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Of course one may be tempted to try to relax the curvature condition on N . But
on the other hand, Eells and Wood proved that there does not exist a harmonic map
φ : T 2 → S2 with deg φ = ±1 [EW76]. Thus, the question comes up what happens if
one tries to deform a given map φ0 by the gradient flow in this case. The first answer
to this question was given by Struwe [Str85], he showed that the flow has to become
singular in this case.

Theorem 1.4 (Struwe(1985)). Suppose M is a compact Riemannian surface without
boundary and N is a compact Riemannian manifold without boundary. Then for any
smooth map φ0 :M → N there exists a global distribution solution φ :M × [0,∞) → N
with finite energy E(φt) ≤ E(φ0), which is regular on M × [0,∞) with exception of at
most finitely many singular points (xk, tk), 1 ≤ k ≤ K. The solution is unique in this
class.
At each singular point (xk, tk) a non-constant, smooth harmonic map φ̄ : S2 → N
separates in the sense that for sequences Rm → 0, tm → t, xm → x as m→ ∞,

φm(x) = φ(expxm(Rmx), tm) → φ̄ in H2,2
loc (R

2, N).

Finally, φ(·, t) converges weakly in H1,2(M,N) to a smooth harmonic map φ∞ :M → N
as t → ∞ suitably.

For the current known results about harmonic maps and their heat flows see the book
[LW08].

Harmonic spinors

Spinors and especially harmonic spinors are rather different objects than harmonic maps.
Spinors are sections in the spinor bundle ΣM , which is a vector bundle over a Riemannian
spin manifold M . In contrast to harmonic maps, we thus require more structure on the
manifold M , but we do not need a target manifold N . The definition of spinors involves
the Riemannian metric of the manifold M and the choice of a spin structure. The
natural operator acting on spinors is the Dirac operator /∂ : Γ(ΣM) → Γ(ΣM). The
Dirac operator is of first order, weakly elliptic, and is self-adjoint with respect to the L2

norm. One calls ψ a harmonic spinor if it satisfies

/∂ψ = 0. (1.5)

Spinors and especially harmonic spinors appear in

1. Differential geometry
The Atiyah-Singer index theorem links topological data of the manifold M with
the index of elliptic differential operators, like for example the Dirac operator. In
addition, the Dirac operator can be used to study the existence of metrics with
positive scalar curvature.

3



CHAPTER 1. INTRODUCTION AND OUTLINE

2. Theoretical physics
In particle physics fermions, for example electrons, are described by spinors. The
mass of these fermions is given by the eigenvalues of the Dirac operator /∂. Conse-
quently, massless fermions are characterized by harmonic spinors.

The methods to study the existence of harmonic spinors are quite different from the
ones used to study the existence of harmonic maps. The results about the existence of
harmonic spinors differ depending on the dimension of the manifoldM . We want to give
a brief summary of the known results, for more details see [Bär98].

Starting in dimension one, we note that the only compact manifold is the unit circle S1.
There exist two spin structures on S1, but only one of them admits harmonic spinors.

In the case that M is a closed Riemannian surface, the existence of harmonic spinors
depends on the genus of the surface in the following way

• gM = 0: No harmonic spinors exist [Bär92].

• gM = 1, 2: The existence of harmonic spinors is independent of the metric, but
depends on the spin structure.

• gM = 3, 4: In general, the existence of harmonic spinors depends on both spin
structure and metric.

• gM ≥ 5: The existence of harmonic spinors varies with the choice of metric.

In addition, we would like to point out that on any closed surface of genus gM ≥ 1,
one can always choose the metric and the spin structure such that there exist harmonic
spinors. For a detailed discussion see [Hit74] and [BS92]. For dimM ≥ 3, we have the
following

Theorem 1.5 (Hitchin(1974), Bär(1996)). Let (M,h) be a closed Riemannian spin
manifold of dimension m = 0, 1,−1 mod 8 or m = 3 mod 4 with fixed spin structure.
Then there exists a Riemannian metric h on M such that the Dirac operator /∂ has a
non-trivial kernel, i.e. there exist non-trivial harmonic spinors.

This theorem was proven by Hitchin for m = 0, 1,−1 mod 8 using the Atiyah-Singer
index theorem [Hit74]. For m = 3 mod 4, the theorem was shown by Bär [Bär96] by
considering the Dirac spectrum of the connected sum of two manifolds.

For the current known results about the existence of harmonic spinors, the reader may
take a look at [Gin09], p. 94, section 6.2. The latest developments regarding the existence
of harmonic spinors are covered in [ADH11].
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Dirac-harmonic maps

Dirac-harmonic maps are a combination of harmonic maps and harmonic spinors. They
are critical points of the functional

E(φ,ψ) =
1

2

ˆ

M
(|dφ|2 + 〈ψ, /Dψ〉)dM

and satisfy the Euler-Lagrange equations

τ(φ) = R(φ,ψ), (1.6)

/Dψ = 0.

Here, ψ is a spinor along the map φ (we will later give a precise definition of the func-
tional) and the curvature term R(φ,ψ) depends on ψ, dφ, and the curvature of the
manifold N . In addition, we assume that M is a compact Riemannian spin mani-
fold without boundary. The study of this functional is motivated by what physicists
call non-linear supersymmetric σ-models, see, e.g. [Del99], chapter 3. For the sake of
completeness, we want to mention that when talking about non-linear supersymmetric
σ-models, physicists usually refer to the functional

Ec(φ,ψ) =
1

2

ˆ

M
|dφ|2 + 〈ψ, /Dψ〉 − 1

6
Rikjl〈ψi, ψj〉〈ψk, ψl〉dM,

involving an additional curvature term. This functional has also been investigated
from the perspective of geometric analysis, see [CJW07]. Both functionals E(φ,ψ) and
Ec(φ,ψ) are especially interesting if M is a compact Riemann surface, since they are
conformally invariant in that case.
We would also like to point out that harmonic maps and harmonic spinors can be thought
of as limiting cases of Dirac-harmonic maps.

Dirac-harmonic maps were introduced in [CJLW06] together with a first analysis includ-
ing a removable singularity theorem. Most of the subsequent publications analyzed the
regularity of Dirac-harmonic maps. First of all, it was shown that Dirac-harmonic maps
from S2 → Sn are smooth [CJLW05], which was later extended to Dirac-harmonic maps
from Riemann surfaces to hypersurfaces [Zhu09b]. The regularity of Dirac-harmonic
maps in general was studied in [WX09]. All of these results made use of the fact that
the inhomogeneity R(φ,ψ) has a Jacobian determinant structure, such that the powerful
tools from Helein [Hél02] and Riviere [Riv07] are applicable.

An important tool in the analysis of harmonic maps is the so called energy identity.
The energy identity for Dirac-harmonic maps from S2 → Sn was proven in [CJLW05]
and generalized to Dirac-harmonic maps from arbitrary Riemannian spin surfaces in
[Zha07b]. In [Zhu09a], the energy identity was established for a sequence of Dirac-
harmonic maps from Riemann surfaces, where the surface M is allowed to vary as well.
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CHAPTER 1. INTRODUCTION AND OUTLINE

Concerning the existence of Dirac-harmonic maps much less is known. Some explicit so-
lutions of the Euler-Lagrange equations for Dirac-harmonic maps have been constructed
in [JMZ09]. General existence results could be obtained in the case that M is two-
dimensional Minkowski space, see [Han05] and [Zha07a].

Recently, several publications regarding the existence of Dirac-harmonic maps appeared.
In [Iso12], the author studies the case that M = S1 and adds a non-linear interaction
term F (φ,ψ) to the functional originally considered, namely

EF (φ,ψ) =
1

2

ˆ

S1

(|dφ|2 + 〈ψ, /Dψ〉 − F (φ,ψ))dM. (1.7)

Using Hilbert space methods, the author could establish existence results for the func-
tional EF (φ,ψ) under assumptions on the interaction term F (φ,ψ).

A different approach was pursued by Ammann et.al. Using index-theoretical methods it
was shown that for a given harmonic map φ one can construct a spinor ψ such that one
gets a Dirac-harmonic map [AG11], more precisely:

Theorem 1.6. Assume that M is a closed Riemannian spin manifold and N a closed
Riemannian manifold. Consider the homotopy class [φ] of maps φ : M → N such that
the index α(M, [φ]) is non-trivial. Furthermore, assume that φ0 ∈ [φ] is a harmonic
map. Then there is a linear space V such that all (φ0, ψ), ψ ∈ V are Dirac-harmonic
maps.

The solutions constructed above are uncoupled in the sense that they satisfy

τ(φ) = 0 = R(φ,ψ), /Dψ = 0.

A criterion for the decoupling of Dirac-harmonic maps between surfaces was given in
[Yan09]. The decoupling of the Euler-Lagrange equations for Dirac-harmonic maps seems
to be a general phenomena. Almost all explicit solutions of the Euler-Lagrange equations
share this property. Nevertheless, a few coupled solutions were constructed in [JMZ09].

Shortly before this thesis was completed, the boundary value problem for Dirac-harmonic
maps was successfully treated in [CJW].

Finally, let us mention that in his survey paper “Perspectives on geometric analysis”,
[Yau06], p. 31, Yau suggests to study supersymmetric σ-models from the point of view
of geometric analysis.

This thesis investigates the existence of Dirac-harmonic maps by using a combination
of the heat flow method from Eells-Sampson and a regularization in the spirit of Sacks-
Uhlenbeck. Let us mention the following preprint aiming in a similar direction as this
thesis: In [HY10], the gradient flow for the Sacks-Uhlenbeck functional Eα(φ) was in-
vestigated.

6



1.1. OUTLINE

1.1. Outline

In Chapter two we introduce the notion of Dirac-harmonic maps and present a regular-
ization prescription for the energy functional E(φ,ψ), which will be denoted as Eε(φ,ψ).
We compute the critical points of Eε(φ,ψ). In addition, we derive the second variation
of the energy functional E(φ,ψ).

In the third Chapter, we introduce the evolution equations associated to the regularized
functional Eε(φ,ψ). With the help of the evolution equations, we compute the behaviour
of certain “energies” under the evolution of φ and ψ. This allows us to compare the
evolution equations for regularized Dirac-harmonic maps with the well-studied evolution
equation for harmonic maps. For the further analysis, we deal with the situation that the
target manifold N is isometrically embedded in some R

q of sufficiently large dimension.
Moreover, we derive the evolution equations for N being embedded in some R

q. In the
last part of the chapter we prove the existence of a short-time solution.

The fourth Chapter analyzes the evolution equations in the case that M = S1. First of
all, we study some simple examples, for which the evolution equations can be solved ex-
plicitly. As a next step, we use the scalar maximum principle to derive energy estimates.
With the help of these energy estimates we can then establish the long-time existence
of the evolution equations. We finish this chapter by exploring the convergence of the
evolution equations. We also address the question if we can remove the regularization.

Chapter five investigates the evolution equations for M being a closed Riemannian spin
surface. Similar to the previous chapter, we first of all derive energy estimates. However,
we cannot apply the scalar maximum principle any longer due to the presence of multiple
non-linearities. Consequently, we are forced to derive integral estimates. The most
important tool here is a local Sobolev inequality. By application of these estimates we
can guarantee the existence of a long-time solution, but only up to a finite number of
singular points. Afterwards, we sketch how one can perform a blowup analysis of the
singular points. Moreover, we show that the evolution equations weakly converge to a
limiting map.
In addition, we study the structure of Dirac-harmonic maps between some surfaces of
lower genus.
Finally, we discuss the removal of the regularization for the limiting map constructed
before.

7





2. Dirac-harmonic Maps and Regularization

2.1. Dirac-harmonic Maps

Throughout this thesis, (M,hαβ) and (N, gij) are compact, smooth Riemannian man-
ifolds without boundary. In addition, we assume that the manifold M admits a spin
structure. Coordinates on M are denoted by x, whereas coordinates on the target man-
ifold N are denoted by y. Indices on M are labeled by Greek letters, whereas indices
on N are labeled by Latin letters. We use the Einstein summation convention, which
means that we will sum over repeated indices.
Given a map φ : M → N , we consider the pull-back bundle φ−1TN of TN . Since M
admits a spin structure by assumption, we can twist the spinor bundle ΣM with the
pull-back bundle φ−1TN . On this twisted bundle ΣM ⊗ φ−1TN there is a metric in-
duced from the metrics on ΣM and φ−1TN . The induced connection on ΣM ⊗ φ−1TN
will be denoted by ∇̃. We will always assume that all connections are metric and free
of torsion. Locally, sections of ΣM ⊗ φ−1TN can be expressed as

ψ(x) = ψi(x)⊗ ∂

∂yi
(φ(x)).

We denote the Dirac operator on ΣM by /∂ and the Dirac operator on the twisted bundle
by /D. In terms of local coordinates /Dψ can be expressed as

/Dψ = /∂ψi ⊗ ∂

∂yi
(φ(x)) + Γijk

∂φj

∂xα
eα · ψk(x)⊗ ∂

∂yi
(φ(x)).

It is easy to see that /D is self-adjoint with respect to the L2 norm. After these preliminary
definitions we study the following energy functional:

E(φ,ψ) =
1

2

ˆ

M
(|dφ|2 + 〈ψ, /Dψ〉)dM.

Concerning the first term, the scalar product is taken on the bundle T ∗M ⊗ φ−1TN .
For the second term we use the metric on ΣM ⊗ φ−1TN . The critical points of E(φ,ψ)
were calculated in [CJLW06], p. 413, Prop. 2.1:

Proposition 2.1. The Euler-Lagrange equations for the functional E(φ,ψ) are given by

τ(φ) = R(φ,ψ), (2.1)

/Dψ = 0, (2.2)

9



CHAPTER 2. DIRAC-HARMONIC MAPS AND REGULARIZATION

where τ(φ) is the tension field of the map φ and the right hand side R(φ,ψ) is explicitly
given by

R(φ,ψ) =
1

2
RN (eα · ψ,ψ)dφ(eα).

Written in coordinates, the Euler-Lagrange equations acquire the form

τm(φ)− 1

2
Rmlij(φ)〈ψi,∇φl · ψj〉ΣM = 0,

/∂ψi + Γijk(φ)
∂φj

∂xα
eα · ψk = 0.

Solutions of the system (2.1), (2.2) are called Dirac-harmonic maps from M → N .

Proposition 2.2 (Second Variation of E(φ,ψ)). Assume that (φ,ψ) is a smooth Dirac-
harmonic map. Then the second variation of the energy functional E(φ,ψ) is given
by

δ2

δφ2
E(φ,ψ) =

ˆ

M

(

|∇η|2 − 〈RN (η, dφ(eα))η, dφ(eα)〉 (2.3)

+
1

2
〈(∇ηR

N )(eα · ψ,ψ)dφ(eα), η〉 +
1

2
〈η,RN (eα · ψ,ψ)∇η〉

+〈RN (eα · ψ,ψi ⊗∇η
∂

∂yi
)dφ(eα), η〉

)

dM,

δ2

δψ2
E(φ,ψ) =

ˆ

M
〈ξ, /Dξ〉dM. (2.4)

Proof. We choose a local orthonormal basis {eα} on M such that [eα, ∂t] = 0 and also
∇∂teα = 0 at a considered point. First, we compute the second variation of E(φ,ψ)
with respect to φ. Therefore, consider a family of smooth variations of φ satisfying
∂φt
∂t

∣

∣

t=0
= η, while keeping the ψi in ψ(x) = ψi(x) ⊗ ∂

∂yi
(φ(x)) fixed. It is well known

that the second variation of the Dirichlet energy is given by

∂2

∂t2

∣

∣

∣

∣

t=0

1

2

ˆ

M
|dφt|2dM =

ˆ

M
(|∇η|2 − 〈RN (η, dφ(eα))η, dφ(eα)〉+ 〈∇ηη, τ(φ)〉)dM

([LW08], p. 8, Prop.1.6.2). In addition, we find

∂2

∂t2

∣

∣

∣

∣

t=0

1

2

ˆ

M
〈ψ, /Dψ〉dM =

∂

∂t

∣

∣

∣

∣

t=0

ˆ

M
〈∂φt
∂t

,R(φt, ψ)〉dM

=

ˆ

M
(〈∇ηη,R(φ,ψ)〉 + 〈η, ∇

∂t

∣

∣

t=0
R(φt, ψ)〉)dM.

Differentiating R(φt, ψ) with respect to t yields

∇
∂t

R(φt, ψ) =
∇
∂t

1

2
RN (eα · ψ,ψ)dφt(eα)

=
1

2
(∇dφt(∂t)R

N )(eα · ψ,ψ)dφt(eα) +RN (eα · ψ, ∇
∂t
ψ)dφt(eα)

+
1

2
RN (eα · ψ,ψ)∇∂φt

∂t
.

10



2.1. DIRAC-HARMONIC MAPS

The second term involving the derivative of ψ with respect to t should be understood as
follows:

∇
∂t
ψ = ψi ⊗∇dφt(∂t)

∂

∂yi
(φt(x)).

Summing up the different contributions, evaluating at t = 0, and using the fact that
φ solves the Euler-Lagrange equation for Dirac-harmonic maps, the second variation
formula for φ follows.
As a second step, we derive the second variation of E(φ,ψ) with respect to ψ. Therefore,

consider a family of smooth variations of ψ satisfying ∇̃ψt
∂t

∣

∣

t=0
= ξ and keeping φ fixed.

We know that
∂

∂t

∣

∣

∣

∣

t=0

1

2

ˆ

M
〈ψt, /Dψt〉dM =

ˆ

M
〈ξ, /Dψ〉dM.

Differentiating again with respect to t and evaluating at t = 0, we get

∂2

∂t2

∣

∣

∣

∣

t=0

1

2

ˆ

M
〈ψt, /Dψt〉dM =

ˆ

M
(〈 /Dψ, ∇̃

2

∂t2
ψt

∣

∣

∣

∣

t=0

〉+ 〈ξ, /Dξ〉)dM.

The claim now follows since ψ solves /Dψ = 0 by assumption.

We denote the curvature operator on ΣM ⊗ φ−1TN by R̃(·, ·). It can naturally be
decomposed into

R̃(eα, eβ) = RΣM (eα, eβ)⊗ 1φ−1TN + 1ΣM ⊗RN (dφ(eα), dφ(eβ)).

Lemma 2.3 (Weitzenböck formula for the twisted Dirac operator /D). Assume that
ψ ∈ C2(M,ΣM ⊗ φ−1TN). Then the square of the twisted Dirac operator /D satisfies

/D
2
ψ = −∆̃ψ +

1

4
Rψ +

1

2
eα · eβ · RN (dφ(eα), dφ(eβ))ψ. (2.5)

Proof. We choose a local orthonormal basis {eα} on M such that ∇eαeβ = 0 at a
considered point. We compute

/D
2
ψ = eα · eβ · ∇̃eα∇̃eβψ

= −∆̃ψ +
∑

eα<eβ

eα · eβ · R̃(eα, eβ)ψ

= −∆̃ψ +
1

2
eα · eβ · R̃(eα, eβ)ψ

= −∆̃ψ +
1

2
eα · eβ · RΣM(eα, eβ)ψ +

1

2
eα · eβ ·RN (dφ(eα), dφ(eβ))ψ

= −∆̃ψ +
1

4
Rψ +

1

2
eα · eβ ·RN (dφ(eα), dφ(eβ))ψ.

This could of course also be deduced from the general Weitzenböck formula for twisted
Dirac operators, see for example [LM89], p. 164, Theorem 8.17.
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CHAPTER 2. DIRAC-HARMONIC MAPS AND REGULARIZATION

We will often encounter the situation that the Euler-Lagrange equations for Dirac-
harmonic maps decouple. Therefore, we make the following

Definition 2.4. A Dirac-harmonic map (φ,ψ) is called uncoupled if φ is a harmonic
map, otherwise it is called coupled.

2.2. Regularization of the Energy Functional

In the analysis of the energy functional E(φ,ψ) one often faces the problem that the
energy is unbounded from below. This problem originates in the fact that the Dirac-
operator is unbounded. To overcome these analytical difficulties, we propose a method
to “improve” the energy functional by adding a small regularizing term. More precisely,
we consider

Eε(φ,ψ) =
1

2

ˆ

M
(|dφ|2 + 〈ψ, /Dψ〉+ ε|∇̃ψ|2)dM

with ε > 0. Unless stated otherwise, we will always assume that ε < 1. Note that
for ε → 0 the regularized functional coincides with E(φ,ψ). Before deriving the Euler-
Lagrange equations for Eε(φ,ψ), we make the following

Remark 2.5. The functional Eε(φ,ψ) satisfies

−m
8ε

ˆ

M
|ψ|2dM ≤ Eε(φ,ψ) ≤ ∞,

where m is the dimension of the manifold M .

Proof. The estimate follows from combining the inequalities

〈ψ, /Dψ〉 ≥ −m
4ε

|ψ|2 − ε

m
| /Dψ|2, |∇̃ψ|2 ≥ 1

m
| /Dψ|2.

As a next step we derive the Euler-Lagrange equations for Eε(φ,ψ).

Proposition 2.6 (Euler-Lagrange equations of Eε(φ,ψ)). The critical points of the
functional Eε(φ,ψ) are given by

τ(φ) = R(φ,ψ) + εRc(φ,ψ), (2.6)

ε∆̃ψ = /Dψ (2.7)

with the vector fields

R(φ,ψ) =
1

2
RN (eα · ψ,ψ)dφ(eα) ∈ Γ(φ−1TN),

Rc(φ,ψ) = RN (∇̃eαψ,ψ)dφ(eα) ∈ Γ(φ−1TN)

and ∆̃ denoting the connection Laplacian on the bundle ΣM ⊗ φ−1TN .
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2.2. REGULARIZATION OF THE ENERGY FUNCTIONAL

Proof. We choose a local orthonormal basis {eα} on M such that [eα, ∂t] = 0 and also
∇∂teα = 0 at a considered point. We start by deriving the Euler-Lagrange equation for

the spinor ψ. Therefore, we consider a variation of ψ with φ fixed and ∇̃ψt
∂t

∣

∣

t=0
= χ. We

find

δ

δψ
Eε(φ,ψt) =

1

2

ˆ

M
(〈χ, /Dψ〉+ 〈ψ, /Dχ〉+ 2ε〈χ, ∇̃∗

eα∇̃eαψ〉)dM

=

ˆ

M
〈χ, /Dψ − ε∆̃ψ〉dM.

To derive the Euler-Lagrange equation for φ, consider a family of smooth variations
of φ satisfying ∂φt

∂t

∣

∣

t=0
= η, while keeping the ψi in ψ(x) = ψi(x) ⊗ ∂

∂yi
(φt(x)) fixed.

The variation with respect to φ of the following terms has already been computed in
[CJLW06], p. 413, Prop. 2.1.:

δ

δφ

1

2

ˆ

M
|dφt|2dM = −

ˆ

M
〈τ(φ), η〉dM,

δ

δφ

1

2

ˆ

M
〈ψ, /Dψ〉dM =

ˆ

M
(〈∇ψ
∂t

, /Dψ〉+ 〈R(φ,ψ), η〉)dM.

Finally, we compute the variation of the regularizing term, namely

∂

∂t

∣

∣

∣

∣

t=0

ε

2

ˆ

M
|∇̃ψ|2dM = ε

ˆ

M

(

〈∇ψ
∂t

, ∇̃∗
eα∇̃eαψ〉+ 〈RE(∂t, eα)ψ, ∇̃eαψ〉

)∣

∣

t=0
dM,

where RE denotes the curvature tensor on the the bundleE = T ∗M⊗ΣM⊗φ−1
t TN . The

only curvature contribution arises from the pull-back bundle φ−1
t TN and we compute

〈Rφ−1
t TN (∂t, eα)ψ, ∇̃eαψ〉

∣

∣

t=0
= 〈RN (dφt(∂t), dφ(eα))ψ, ∇̃eαψ〉

∣

∣

t=0

= 〈RN (∇̃eαψ,ψ)dφ(eα),
∂φt
∂t

〉
∣

∣

t=0

= 〈Rc(φ,ψ), η〉.

Adding up the different contributions, we get

δ

δφ
Eε(φt, ψ) =

ˆ

M

(

〈−τ(φ) +R(φ,ψ) + εRc(φ,ψ), η〉+ 〈 /Dψ+ ε∇̃∗
eα∇̃eαψ,

∇ψ
∂t

∣

∣

t=0
〉
)

dM.

Using the Euler-Lagrange equation for ψ, which was deduced before, the result follows.
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CHAPTER 2. DIRAC-HARMONIC MAPS AND REGULARIZATION

Written in local coordinates, the new terms arising from the variation of Eε(φ,ψ) acquire
the following form:

Rc(φ,ψ) = Rmlij
∂

∂ym
∂φl

∂xα
〈∇ΣM

eα ψi, ψj〉ΣM

+Rmlij
∂

∂ym
Γjrs

∂φl

∂xα
〈ψi, ψr〉ΣM

∂φs

∂xα
,

∆̃ψ = ∆ΣMψi ⊗ ∂

∂yi
+ 2∇ΣM

eα ψi ⊗ Γkij
∂φj

∂xα

∂

∂yk

+ψi ⊗ Γkij,p
∂φp

∂xα

∂φj

∂xα

∂

∂yk
+ ψi ⊗ Γkij

∂2φj

∂x2α

∂

∂yk

+ψi ⊗ ΓkijΓ
r
ks

∂φj

∂xα

∂φs

∂xα

∂

∂yr
.

Solutions of the system (2.6), (2.7) will be called regularized Dirac-harmonic maps from
M → N .
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3. Dirac-harmonic Maps and Gradient

Flows

3.1. Introduction and Overview

In this chapter we want to introduce the L2-gradient flow for regularized Dirac-harmonic
maps. Since (regularized) Dirac-harmonic maps form a pair of a map φ and a spinor
ψ along that map, the gradient flow is given by a system of two coupled evolution
equations. Ultimately, we want to achieve that we can deform given initial data (φ0, ψ0)
into a Dirac-harmonic map. Here, φ0 : M → N and ψ0 ∈ Γ(ΣM ⊗ φ−1

0 TN) is defined
along the map φ0. More precisely, the evolution equations we want to use are

{

∂φt
∂t = τ(φt)−R(φt, ψt)− εRc(φt, ψt),

φ(x, 0) = φ0(x),
(3.1)

{

∇̃ψt
∂t = ε∆̃ψt − /Dψt,

ψ(x, 0) = ψ0(x).
(3.2)

Throughout this thesis, we will refer to the system (3.1), (3.2) as evolution equations for
regularized Dirac-harmonic maps or regularized Dirac-harmonic map heat flow.

The study of the evolution equations involves the following steps:

1. Short-time existence
Roughly speaking, the existence of a short-time solution of the evolution equa-
tions guarantees that we can start deforming. More precisely, we expect that for
M,N, ε, φ0, ψ0 arbitrary, there exists a small time Tmax > 0 such that the evolution
equations admit a solution for 0 ≤ t < Tmax.

2. Long-time existence
We cannot expect that we can solve the evolution equations for 0 ≤ t < ∞ in the
most general situation. In particular, it could happen that the evolution equations
blow-up after a finite time. Consequently, we have to find conditions on M,N and
the initial data that guarantee the existence of a long-time solution.

3. Convergence
After having established the existence of a long-time solution, we can study the
limit t → ∞. The natural question arising is, if the evolution equations converge
to a limiting map (φ∞, ψ∞).
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CHAPTER 3. DIRAC-HARMONIC MAPS AND GRADIENT FLOWS

4. Removing the regularization
So far, our analysis is based on the evolution equations for the regularized func-
tional Eε(φ,ψ), but we finally want to find critical points of E(φ,ψ). Hence, we
have to study the limit ε→ 0 after letting t → ∞.

We will see that the more steps we want to establish, the more restrictions we get.

Remark 3.1. Of course, we could also try to apply the L2-gradient flow to the functional
E(φ,ψ), which would lead to the set of equations

∂φt
∂t

= τ(φt)−R(φt, ψt), φ(x, 0) = φ(x),

∇̃ψt
∂t

= − /Dψt, ψ(x, 0) = ψ0(x).

Let us make some comments about this system of evolution equations: The evolution
equation for the map φt is non-linear, but parabolic. Hence, for this equation, analytical
tools like the maximum principle are applicable. The evolution equation for the spinor
ψt is of a different nature. In contrast to the equation for φt, it is a first order evolution
equation. An evolution equation of this type was already considered in [Che73], p. 403.
It was pointed out that such an equation is a first-order symmetric hyperbolic system.
Consequently, one cannot expect that such an equation tends to an equilibrium state as
t→ ∞. This behaviour is also reflected in the fact that the energy functional E(φ,ψ) is
unbounded from below. Since the gradient flow tries to decrease the energy, we cannot
expect that the evolution equation for the spinor ψt will converge to a limiting spinor
ψ∞.

Another approach one could pursue is to try to deform only one of the fields (φ,ψ) by an
evolution equation and use a different method for the other one, like for example index
theory. On the other hand, we note that our ansatz, the simultaneous deformation of φ
and ψ, seems to be the most general one.
Almost all estimates derived later on depend on the regularization parameter ε in a
non-trivial fashion. We will make the dependence on ε explicit only when it is necessary.
Moreover, C will denote a generic constant changing from line to line.

Lemma 3.2. Let (φt, ψt) ∈ C∞(M × [0, T ), N) × C∞(M × [0, T ),ΣM ⊗ φ−1
t TN) be a

solution of (3.1) and (3.2). Then we have for all t ∈ [0, T )

Eε(φt, ψt) +

ˆ t

0

ˆ

M

(

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

∣

∣

2

)

dMdt = Eε(φ0, ψ0)

and also

−m
8ε

ˆ

M
|ψt|2dM ≤ Eε(φt, ψt) ≤ Eε(φ0, ψ0),

where m is the dimension of M .
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3.2. EVOLUTION OF ENERGIES

Proof. This is a direct consequence of the gradient flow.

Remark 3.3. In the last Lemma, we saw that the regularized energy Eε(φ,ψ) is bounded
from below by the L2-norm of the spinor ψt. Hence, we may expect that this L2-norm
will play an important role whenever we will discuss the convergence of the gradient
flow. Moreover, the inequality tells us that the energy is decreasing, which is of course
a general feature of the gradient flow.

Remark 3.4. For simplicity we will mostly assume that the initial data (φ0, ψ0) is
smooth. Of course, we could also admit initial data of lower regularity. Since the
evolution equations (3.1) and (3.2) form a parabolic system, they will have a smoothing
effect on the solution anyway.

3.2. Evolution of Energies

In this section we analyze how the norms of ψt, dφt and ∇̃ψt behave under the evolution
of φt and ψt. Later, we will use these equations to derive energy estimates.

Lemma 3.5. Let ψt ∈ C∞(M × [0, T ),ΣM ⊗ φ−1
t TN) be a solution of (3.2). Then we

have for all t ∈ [0, T )

∂

∂t

1

2
|ψt|2 = ε∆

1

2
|ψt|2 − ε|∇̃ψt|2 − 〈ψt, /Dψt〉.

Proof. The statement follows directly from the evolution equation (3.2).

Lemma 3.6. Let φt ∈ C∞(M × [0, T ), N) be a solution of (3.1). Then we have for all
t ∈ [0, T )

∂

∂t

1

2
|dφt|2 = ∆

1

2
|dφt|2 − |∇dφt|2 + 〈RN (dφt(eα), dφt(eβ))dφt(eα), dφt(eβ)〉

−〈dφt(RicM (eα)), dφt(eα)〉 − 〈∇eαR(φt, ψt), dφt(eα)〉
−ε〈∇eαRc(φt, ψt), dφt(eα)〉. (3.3)

Proof. We calculate

∂

∂t

1

2
|dφt|2 = 〈∇

∂t
dφt(eα), dφ(eα)〉

= 〈∇eα

∂φt
∂t

, dφt(eα)〉
= 〈∇eατ(φt), dφt(eα)〉 − 〈∇eαR(φt, ψt), dφt(eα)〉

−ε〈∇eαRc(φt, ψt), dφt(eα)〉,

where we used that ∇∂φt
∂t = ∇

∂tdφt, which is due to the torsion freeness of the connection.
In order to manipulate the first term, we use the formula for the curvature on the bundle
T ∗M ⊗ φ−1TN . Namely,

∇eβ∇eαdφ(eα) = ∇eα∇eβdφ(eα) +RN (dφ(eα), dφ(eβ))dφ(eα)− dφ(RicM (eβ)).
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Since τ(φ) = ∇eαdφ(eα) and ∇eβdφ(eα) = ∇eαdφ(eβ), we find that

∆
1

2
|dφt|2 = |∇dφt|2 + 〈∆dφt(eα), dφ(eα)〉

= −〈RN (dφt(eα), dφt(eβ))dφt(eβ), dφt(eα)〉+ 〈dφt(RicM (eα)), dφt(eα)〉
+〈∇eατ(φt), dφt(eα)〉,

which finally proves the assertion.

Lemma 3.7. Let ψt ∈ C∞(M × [0, T ),ΣM ⊗ φ−1
t TN) be a solution of (3.2). Then we

have for all t ∈ [0, T )

∂

∂t

1

2
|∇̃ψt|2 = ε∆

1

2
|∇̃ψt|2 − ε|∇̃2ψt|2 − 〈∇̃ψt, ∇̃ /Dψt〉+ 〈∂φt

∂t
,Rc(φt, ψt)〉 (3.4)

−ε〈∇̃∗
eβ
RE2(eα, eβ)ψt, ∇̃eαψt〉 − ε〈RE1(eα, eβ)∇̃eβψt, ∇̃eαψt〉

with the bundles E1 = T ∗M ⊗ ΣM ⊗ φ−1
t TN and E2 = T ∗M ⊗E1.

Proof. Using the evolution equation (3.2), we compute

∂

∂t

1

2
|∇̃ψt|2 = 〈 ∇̃

∂t
∇̃eαψt, ∇̃eαψt〉

= 〈RE1(∂t, eα)ψt, ∇̃eαψt〉+ 〈∇̃eα

∇̃
∂t
ψt, ∇̃eαψt〉

= 〈∂φt
∂t

,Rc(φt, ψt)〉 − 〈∇̃eαψt, ∇̃eα /Dψt〉+ ε〈∇̃eαψt, ∇̃eα∆̃ψt〉,

where RE1(·, ·) denotes the curvature on the bundle E1 = T ∗M ⊗ΣM ⊗ φ−1
t TN . Since

only the bundle φ−1
t TN is t-dependent, we only get one curvature term. In addition, we

compute

∆
1

2
|∇̃ψ|2 = |∇̃2ψ|2 + 〈∆̃∇̃ψ, ∇̃ψ〉.

To proceed, we have to interchange the connection Laplacian on T ∗M ⊗ ΣM ⊗ φ−1
t TN

with the covariant derivative ∇̃. Namely,

∆̃∇̃eαψt = ∇̃∗
eβ
∇̃eβ∇̃eαψt

= ∇̃∗
eβ
RE2(eα, eβ)ψt + ∇̃∗

eβ
∇̃eα∇̃eβψt

= ∇̃∗
eβ
RE2(eα, eβ)ψt +RE1(eα, eβ)∇̃eβψt + ∇̃eβ∆̃ψt

with the bundles E1 = T ∗M ⊗ΣM⊗φ−1
t TN and E2 = T ∗M ⊗E1. Combining the three

equations proves the assertion.

Lemma 3.8. Let φt ∈ C∞(M × [0, T ), N) be a solution of (3.1). Then we have for all
t ∈ [0, T )

∂

∂t

1

2
|∂φt
∂t

|2 = ∆
1

2
|∂φt
∂t

|2 − |∇∂φt
∂t

|2 + 〈RN (dφt(eα),
∂φt
∂t

)dφt(eα),
∂φt
∂t

〉 (3.5)

−〈∇
∂t

R(ψt, φt),
∂φt
∂t

〉 − ε〈∇
∂t

Rc(ψt, φt),
∂φt
∂t

〉.
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3.2. EVOLUTION OF ENERGIES

Proof. We compute

∂

∂t

1

2
|∂φt
∂t

|2 = 〈∇
∂t

(τ(φt)−R(φt, ψt)− εRc(φt, ψt)) ,
∂φt
∂t

〉.

On the other hand, we have

∆
1

2
|∂φt
∂t

|2 = |∇∂φt
∂t

|2 + 〈∆∂φt
∂t

,
∂φt
∂t

〉

= |∇∂φt
∂t

|2 + 〈∇
∂t
τ(φt),

∂φt
∂t

〉+ 〈RN (dφt(eα),
∂φt
∂t

)dφt(eα),
∂φt
∂t

〉,

where we used the same Bochner technique as in the evolution equation for |dφt|2.
Combining both equations yields the result.

Lemma 3.9. Let ψt ∈ C∞(M × [0, T ),ΣM ⊗ φ−1
t TN) be a solution of (3.2). Then we

have for all t ∈ [0, T )

∂

∂t

1

2

∣

∣

∇̃ψt
∂t

∣

∣

2
= ε∆

1

2

∣

∣

∇̃ψt
∂t

∣

∣

2 − ε|∇̃∇̃ψt
∂t

|2 − 〈eα ·RN (dφt(∂t), dφt(eα))ψt,
∇̃ψt
∂t

〉

−〈∇̃ψt
∂t

, /D
∇̃ψt
∂t

〉 − ε〈RN (dφt(∂t), dφt(eα))∇̃eαψt,
∇̃ψt
∂t

〉

−ε〈∇̃eα(R
N (dφt(∂t), dφt(eα))ψt),

∇̃ψt
∂t

〉. (3.6)

Proof. We choose a local orthonormal basis {eα} on M such that [eα, ∂t] = 0 and also
∇∂teα = 0 at a considered point. Moreover, we compute

∂

∂t

1

2

∣

∣

∇̃ψt
∂t

∣

∣

2
= −〈 ∇̃

∂t
/Dψ,

∇̃ψ
∂t

〉+ ε〈 ∇̃
∂t

∆̃ψ,
∇̃ψ
∂t

〉.

To interchange the covariant derivative with respect to t with the spatial derivatives, we
need the following formulas:

∇̃
∂t

/Dψt = eα · R̃(∂t, eα)ψt + /D
∇̃
∂t
ψt,

∇̃
∂t

∆̃ψt = Rφ
−1
t TN (∂t, eα)∇̃eαψt + ∇̃∗

eα(R
φ−1
t TN (∂t, eα)ψt) + ∆̃

∇̃
∂t
ψt,

where we used that only the bundle φ−1
t TN depends on t. Computing the Laplacian

∆
1

2

∣

∣

∇̃ψt
∂t

∣

∣

2
= |∇̃∇̃ψt

∂t
|2 + 〈∆̃∇̃ψt

∂t
,
∇̃ψt
∂t

〉

and applying the curvature formulas from above, we get the result.
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Remark 3.10. Some of the non-linear terms in the evolution equations for |dφt|2 and
|∂φt∂t |2 can be controlled by curvature assumptions on the target manifold N . If we
assume that N has negative sectional curvature, the terms

〈RN (dφt(eα), dφt(eβ))dφt(eα), dφt(eβ)〉, 〈RN (dφt(eα),
∂φt
∂t

)dφt(eα),
∂φt
∂t

〉

can be estimated by zero. This is the reason why Eells and Sampson [ES64] succeeded
in their work on the existence of harmonic maps.

Unfortunately, the curvature terms appearing in the evolution equation for 1
2 |∇̃ψt|2, as

for example

〈RE1(eα, eβ)∇̃eβψt, ∇̃eαψt〉,

cannot be related to geometric properties of the manifolds M and N . Here, E1 denotes
the vector bundle ΣM ⊗ φ−1

t TN ⊗ T ∗M . The curvature RΣM on the spinor bundle is
related to the curvature tensor on M by the following formula

RΣM (eα, eβ)ψ =
1

4
h(RM (eα, eβ)eγ , eδ)eδ · eγ · ψ =

1

4
Rαβγδ eδ · eγ · ψ.

In the case that M is a Riemannian surface, we find

〈RΣM (eα, eβ)∇̃eβψt, ∇̃eαψt〉 =
R

2
(| /Dψt|2 − |∇̃ψt|2),

where R is the scalar curvature of M . The other two curvature contributions from
Rφ

−1
t TN and RT

∗M cannot be transformed into a nicer form.

3.3. A first Estimate

In this section we want to analyze the maximal time of existence of the evolution equa-
tions (3.1), (3.2) by application of the pointwise maximum principle. In other words,
we want to determine how far we can go beyond the short-time solution. From the
abstract theory of semi-linear parabolic partial differential equations one knows that the
lower order terms on the right hand side determine Tmax. In the case of the regularized
Dirac-harmonic map heat flow this means that we have to derive estimates of ψt, dφt
and ∇̃ψt.
For the rest of this section, we will rescale the variable t in the spinor ψt, by t→ εt. Since
the evolution equation for the spinor ψt is linear, we can directly apply the maximum
principle to get a first estimate.

Lemma 3.11. Let ψt ∈ C∞(M×[0, T ),ΣM⊗φ−1
t TN) be a solution of (3.2) and perform

the rescaling t→ εt. Then the norm of the spinor ψt satisfies the following estimate:

|ψt|2 ≤ e
m

2ε2
t|ψ0|2. (3.7)
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Proof. Taking into account the rescaling of t in the evolution equation for ψt, we directly
find

∂

∂t

1

2
|ψt|2 = ∆

1

2
|ψt|2 − |∇̃ψt|2 −

1

ε
〈ψt, /Dψt〉.

Applying the Cauchy-Schwarz inequality (| /Dψ|2 ≤ m|∇̃ψ|2, where m is the dimension
of the manifold M) and in addition Young’s inequality, we get the estimate

∂

∂t

1

2
|ψt|2 ≤ ∆

1

2
|ψt|2 +

m

4ε2
|ψt|2.

Finally, we apply the maximum principle to the function e−
m

2ε2
t|ψt|2.

With the help of the estimate on ψt, we now estimate dφt and ∇̃ψt.

Lemma 3.12. Let (φt, ψt) ∈ C∞(M × [0, T ), N)×C∞(M × [0, T ),ΣM ⊗ φ−1
t TN) be a

solution of (3.1) and (3.2). Assume that we have performed the rescaling t → εt in the
evolution equation for ψt. Then for all t ∈ [0, T ) the quantity

Ft :=
1

2
(|dφt|2 + ε|∇̃ψt|2) (3.8)

satisfies the following inequality:

∂Ft
∂t

≤ ∆Ft + (C1 + C2e
C3t)(Ft + F 2

t ), (3.9)

where the constant C1 depends on M,N and ε, the constant C2 depends on M,N, ε and
ψ0 and the constant C3 depends on M,ε. In particular, C2 = 0 for ψ = 0.

Proof. Using the evolution equations for |dφt|2 and |∇̃ψt|2, taking into account the
rescaling, we find that the quantity Ft defined above, satisfies

∂

∂t
Ft = ∆Ft − |∇dφt|2 − |∇̃2ψt|2

+〈RN (dφt(eα), dφt(eβ))dφt(eα), dφt(eβ)〉 − 〈dφt(RicM (eα)), dφt(eα)〉
−〈∇eβR(φt, ψt), dφt(eβ)〉 − ε〈∇eβRc(φt, ψt), dφt(eβ)〉
−〈∇̃ψt, ∇̃ /Dψt〉+ ε〈RE1(eα, eβ)∇̃eαψt, ∇̃eβψt〉+ ε〈∇̃eαR

E2(eα, eβ)ψt, ∇̃eβψt〉
+ε〈Rc(φt, ψt), τ(φt)〉 − ε〈R(φt, ψt),Rc(φt, ψt)〉 − ε2|Rc(φt, ψt)|2

with the vector bundles E1 = T ∗M ⊗ ΣM ⊗ φ−1
t TN and E2 = T ∗M ⊗ E1. First of all,

we estimate

|〈RN (dφt(eα), dφt(eβ))dφt(eα), dφt(eβ)〉| ≤ C|dφt|4,
|〈dφt(RicM (eα)), dφt(eα)〉| ≤ C|dφt|2.
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We choose a local orthonormal basis {eα} on M such that ∇eαeβ = 0 at a considered
point and compute

∇eβR(φ,ψ) =
1

2
(∇dφ(eβ)R

N )(eα · ψ,ψ)dφ(eα) +RN(eα · ψ, ∇̃eβψ)dφ(eα)

+
1

2
RN (eα · ψ,ψ)∇eβdφ(eα),

∇eβRc(φ,ψ) = (∇dφ(eβ)R
N )(∇̃eαψ,ψ)dφ(eα) +RN (∇̃eβ∇̃eαψ,ψ)dφ(eα)

+RN(∇̃eαψ, ∇̃eβψ)dφ(eα) +RN (∇̃eαψ,ψ)∇eβdφ(eα)

and therefore we get the estimates

|〈∇eβR(φt, ψt), dφt(eβ)〉| ≤ C(|ψt|2|dφt|3 + |ψt||∇̃ψt||dφt|2 + |ψt|2|∇dφt||dφt|),
|〈∇eβR(φt, ψt), dφt(eβ)〉| ≤ C(|ψt||∇̃ψt||dφt|3 + |ψt||∇̃2ψt||dφt|2

+|∇̃ψt|2|dφt|2 + |ψt||∇̃ψt||∇dφt||dφt|).

The terms involving the curvature of the vector bundles E1 and E2 can be estimated by

|〈RE1(eα, eβ)∇̃eαψt, ∇̃eβψt〉| ≤ C(|∇̃ψt|2 + |∇̃ψt|2|dφt|2),
|〈∇̃eαR

E2(eα, eβ)ψt, ∇̃eβψt〉| ≤ C(|ψ||∇̃ψt|+ |ψt||∇̃ψt||dφt|3 + |∇̃ψt|2

+|ψt||∇̃ψt||∇dφt||dφt|+ |dφt|2|∇̃ψt|2).

Again, by Young’s inequality, we find

ε〈Rc(φt, ψt), τ(φt)〉 − ε〈R(φt, ψt),Rc(φt, ψt)〉−ε2|R(φt, ψt)|2

≤ 1

8
|τ(φt)|2 + C|ψt|4|dφt|2.

Estimating very roughly, using Young’s inequality once more to get rid of the second
order derivatives on the right hand side, and applying the estimate on the norm of ψ,
we finally get

∂Ft
∂t

≤ ∆Ft + (C1 + C2e
C3t)(Ft + F 2

t ),

which proves the assertion.

The next Lemma is the analogue of [CD90], p. 570, Lemma 2.1 for the regularized Dirac-
harmonic map heat flow. It provides an estimate on the maximal time of existence in
terms of ε,M,N,ψ0, dφ0 and ∇̃ψ0.

Lemma 3.13. Let (φt, ψt) ∈ C∞(M × [0, T ), N)×C∞(M × [0, T ),ΣM ⊗ φ−1
t TN) be a

solution of (3.1) and (3.2). As long as

t ≤ 1

C1 + C2eC3t
log

(

1 + F0

F0

)

, (3.10)

the evolution equations (3.1) and (3.2) do not blow up. The constant C1 depends on
M,N and ε, the constant C2 on M,N, ε and ψ0. The constant C3 depends on M,ε and
we abbreviate F0 = F (φ0, ψ0). In particular, C2 = 0 for ψ = 0.
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Proof. We use the inequality (3.9) derived in the last Lemma to obtain a first estimate
for the function Ft. Therefore, we drop the term involving the Laplacian and consider
the ordinary differential equation

∂Ft
∂t

≤ (C1 + C2e
C3t)(Ft + F 2

t ), F0 = F (φ0, ψ0),

which can be integrated as

Ft ≤
F0

(1 + F0)e−C1t−C2eC3tt − F0

,

giving the result.

In principle, we can now estimate the maximal time of existence Tmax of the regularized
Dirac-harmonic map heat flow by solving (3.10).

Remark 3.14. With the help of the last Lemma we can draw a comparison between
the usual harmonic map heat flow and the regularized Dirac-harmonic map heat flow.
Instead of the quantity Ft, the behaviour of the harmonic map heat flow is governed by
the evolution of e(φ) = 1

2 |dφt|2. Namely,

∂e(φ)

∂t
≤ ∆e(φ) + C(e(φ) + e(φ)2).

This corresponds to the inequality (3.9) for the function Ft with C2 = 0. Comparing the
inequality for e(φ) with the evolution equation (3.9) for the function Ft, we realize that
in the inequality for Ft there is an additional exponential factor on the right hand side.
Consequently, we expect that the regularized Dirac-harmonic map heat flow behaves
worse than the usual harmonic map heat flow.
Another difference between the two heat flows, we would like to mention, is that the
non-positive curvature condition on N controls all non-linear terms in the harmonic map
heat flow. On the contrary the worst non-linearities in the regularized Dirac-harmonic
map heat flow originate in the curvature terms that couple the fields φ and ψ.
Note, that by the above argument, the evolution equations for (φt, ψt) do not necessarily
have to blow-up in finite time. We have only seen that we cannot expect to establish a
global existence result by the pointwise maximum principle.

3.4. Some Differential Geometry

The aim of this section is to develop formulas for composite Dirac-harmonic maps. In
the end, we want to apply the Nash embedding theorem to isometrically embed the
manifold N in some R

q of sufficiently large dimension via the map ι.
To this end, let N ′ be another compact Riemannian manifold. Assume that f : N → N ′

such that we can consider the composite function φ′ = f ◦ φ :M → N ′.
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Lemma 3.15 (Composite tension fields). Let M,N,N ′ be Riemannian manifolds. As-
sume that φ : M → N and f : N → N ′. Then the tension field τ applied to the composite
map f ◦ φ satisfies

τ(f ◦ φ) = Tr∇df(dφ, dφ) + df(τ(φ)). (3.11)

Proof. For X,Y ∈ Γ(TM), we compute

∇d(f ◦ φ)(X,Y ) = ∇X(df ◦ dφ(Y ))− d(f ◦ φ)(∇XY )

= (∇dφ(X)df)(df(Y )) + df(∇Xdφ(Y ))− df ◦ dφ(∇XY )

= ∇df(dφ(X), dφ(Y )) + df(∇dφ(X,Y )).

Taking the trace, yields the result.

From the point of view of the manifold N , the spinor ψ behaves like a tangent vector.
This is the reason why we have to use the differential of the map f if we want to define
a spinor along the composite map φ′. More precisely, if ψ is a spinor along φ, then ψ′ is
a spinor along φ′. Both are related by

ψ′ = df(ψ). (3.12)

We now derive the relations between the Dirac operator and the connection Laplacian
acting on ψ and ψ′.

Lemma 3.16 (Composite operators on ΣM ⊗ φ−1TN). Let M,N,N ′ be Riemannian
manifolds, where N ⊂ N ′ is a Riemannian submanifold. Suppose that φ : M → N ,
f : N → N ′ and set φ′ = f ◦ φ : M → N ′. Let ψ be a spinor along φ and ψ′ = df(ψ) a
spinor along φ′. Then the following relations hold

∇̃′ψ′

∂t
= df(

∇̃ψ
∂t

) +A(
∂φ

∂t
, ψ), (3.13)

/D
′
ψ′ = df( /Dψ) +A(dφ(eα), eα · ψ), (3.14)

∆̃′ψ′ = df(∆̃ψ) + 2A(dφ(eα), ∇̃eαψ)

+(∇eαA)(dφ(eα), ψ) +A(τ(φ), ψ), (3.15)

where A denotes the second fundamental form of f in N ′.

Proof. We choose a local orthonormal basis {eα} on M such that ∇eαeβ = 0 at a
considered point. To prove the first statement, we compute

∇̃′ψ′

∂t
= (∇dφ(∂t)df)(ψ) + df(

∇̃ψ
∂t

)

= A(
∂φ

∂t
, ψ) + df(

∇̃ψ
∂t

),

the second one follows similarly (see [CJLW05], p. 64):

/D
′
ψ′ = eα · ∇̃′

eα(df(ψ))

= (∇dφ(eα)df)(eα · ψ) + df( /Dψ)

= A(dφ(eα), eα · ψ) + df( /Dψ).
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Finally, we compute

∇̃′∗
eα∇̃

′

eαψ
′ = ∇̃′∗

eα

(

A(dφ(eα), ψ) + df(∇̃eαψ)
)

= df(∇̃∗
eα∇̃eαψ) + 2A(dφ(eα), ∇̃eαψ) + (∇eαA)(dφ(eα), ψ) +A(τ(φ), ψ),

which completes the proof.

Lemma 3.17 (Composite curvature terms). Let M,N,N ′ be Riemannian manifolds,
where N ⊂ N ′ is a Riemannian submanifold. Suppose that φ : M → N , f : N → N ′ and
set φ′ = f ◦ φ : M → N ′. Let ψ be a spinor along φ and ψ′ = df(ψ) a spinor along φ′.
The curvature terms in the Euler-Lagrange equations for φ then satisfy

R(φ,ψ) = P (A(dφ(eα), eα · ψ), ψ) +R′(φ,ψ), (3.16)

Rc(φ,ψ) = P (A(dφ(eα), ∇̃eαψ), ψ) − P (A(dφ(eα), ψ), ∇̃eαψ) (3.17)

+R′
c(φ,ψ),

where A denotes the second fundamental form of f in N ′ and P the shape operator.

Proof. The first formula was already computed in [CJLW05], p. 65. For X ∈ Γ(TN),
we calculate, using the equation of Gauss,

〈R(φ,ψ)〉,X〉 =
1

2
〈RN (eα · ψ,ψ)dφ(eα),X〉

=
1

2
〈RN ′

(eα · ψ,ψ)dφ(eα),X〉+ 1

2
〈A(eα · ψ, dφ(eα)), A(ψ,X)〉

−1

2
〈A(ψ, dφ(eα)), A(eα · ψ,X)〉

=
1

2
〈RN ′

(eα · ψ,ψ)dφ(eα),X〉+ 〈A(dφ(eα), eα · ψ), A(ψ,X)〉.

We apply the fundamental relation of the shape operator

〈P (ξ,X), Y 〉TN = 〈A(X,Y ), ξ)〉TN ′

with X,Y ∈ Γ(TN), ξ ∈ Γ(T⊥N) and find

〈A(dφ(eα), eα · ψ), A(ψ,X)〉TN ′ = 〈P (A(dφ(eα), eα · ψ), ψ),X〉TN .

Since X was arbitrary, we conclude

R(φ,ψ) = P (A(dφ(eα), eα · ψ), ψ) +R′(φ,ψ).

Regarding the second equation, we again use the equation of Gauss with X ∈ Γ(TN)

〈Rc(φ,ψ)〉,X〉 = 〈RN ′
(∇̃eαψ,ψ, )dφ(eα),X〉 + 〈A(∇̃eαψ, dφ(eα)), A(ψ,X)〉

−〈A(ψ, dφ(eα)), A(∇̃eαψ,X)〉.

25



CHAPTER 3. DIRAC-HARMONIC MAPS AND GRADIENT FLOWS

Again, X being arbitrary and utilizing the fundamental relation of the shape operator
once more, we find

Rc(φ,ψ) = P (A(dφ(eα), ∇̃eαψ), ψ) − P (A(dφ(eα), ψ), ∇̃eαψ) +R′
c(φ,ψ),

which completes the proof.

In the following, we apply the embedding theorem of Nash. We consider the case that
N ′ = R

q and f = ι, where ι denotes the isometric embedding. Then, u : M → R
q can be

thought of as a vector-valued function. The spinor ψ turns into a vector of usual spinors
ψ = (ψ1, . . . , ψq) with ψi ∈ Γ(ΣM), i = 1, . . . , q. The condition that ψ is along the map
φ is encoded by

q
∑

i=1

νiψ
i = 0 for a normal vector νi ∈ R

q at φ(x).

With the help of these preparations, we now have the following

Corollary 3.18 (Applying the embedding theorem of Nash). Assume that the manifold
N ′ is isometrically embedded in some R

q via the map ι. For u = ι ◦ φ : M → R
q and

ψ′ = dι(ψ) : M → ΣM⊗TRq, the terms appearing in the evolution equation for φ acquire
the form

dι(τ(φ)) = ∆u− II(du, du), (3.18)

dι(R(φ,ψ) = P (II(du(eα), eα · ψ′), ψ′), (3.19)

dι(Rc(φ,ψ) = P (II(du(eα),∇eαψ
′), ψ′)− P (II(du(eα), ψ

′),∇eαψ
′) (3.20)

+Bu(du, ψ
′, du, ψ′).

with

Bu(du, ψ, du, ψ) =
(

P (IIu(∂yi , ∂ym), ∂yj )Γ
m
kl − P (IIu(∂yi , ∂yj ), ∂ym)Γ

m
kl

) ∂ui

∂xα

∂uk

∂xα
ψ′lψ′j .

Similarly, we have for the terms in the evolution equation of ψ

dι(
∇̃ψ
∂t

) =
∇ψ′

∂t
− II(

∂u

∂t
, ψ′), (3.21)

dι( /Dψ) = /∂ψ′ − II(du(eα), eα · ψ′), (3.22)

dι(∆̃ψ) = ∆ψ′ − 2II(du(eα), ∇̃eαψ
′)− (∇eαII)(du(eα), ψ

′)− II(τ(u), ψ′). (3.23)

Here, II denotes the second fundamental form of N in R
q. In addition, we identified φ

with u.

Proof. The first two formulas for φ follow directly from the formulas for composite maps
applied to u = ι ◦ φ. Concerning the third formula, we use

∇̃eαψ = ∇ΣM
eα ψi ⊗ ∂yi + ψk ⊗ ∂φj

∂xα
Γijk∂yi
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and the formula for composite maps.
The statements regarding the spinor ψ follow directly from the formulas for spinors along
composite maps.

To simplify the notation, we will drop the superscript at the spinors from now on.

With the help of the last corollary, we can write down the evolution equations for the
case that the target manifold N is embedded in some Rq. Then, u : M× [0, T ) → R

q and
ψ is a spinor along u. More precisely, ψ ∈ Γ(ΣM ⊗ TRq). Now, the function u satisfies
the following equation:

(

∂

∂t
−∆

)

u =− IIu(du, du) − P (II(du(eα), eα · ψ), ψ) + εP (II(du(eα), ψ),∇eαψ)

− εP (II(du(eα),∇eαψ), ψ) − εB(du, ψ, du, ψ) (3.24)

with the initial condition u0 = ι(φ0). For the spinor ψ ∈ Γ(ΣM ⊗ TRq), we get

(∇
∂t

− ε∆

)

ψ =− /∂ψ + II(du(eα), eα · ψ) + II(
∂u

∂t
, ψ) − 2εII(du(eα), ∇̃eαψ)

− ε(∇eαII)(du(eα), ψ)) − εII(τ(u), ψ) (3.25)

with the initial condition ψ′
0 = dι(ψ0).

Remark 3.19. It is not hard to establish the equivalence of the initial value problems
(3.1), (3.2) and (3.24), (3.25). This can be achieved by the methods presented in [Nis02],
Prop. 4.6, p. 133. The first part of the equivalence follows directly by considering the
formulas for composite maps and spinors along them. The other part of the equivalence
uses the canonical projection into a tubular neighbourhood.

In the following, we will address the problem how to compare spinors in a reasonable
way. More precisely, we want to get an estimate on expressions like ψ− χ, where ψ and
χ are sections in different vector bundles. The classical references dealing with this issue
are [BG92] and [BGM05], but we will resolve the problem by introducing a suitable
notion of parallel transport. For two points y1, y2 ∈ N with dN (y1, y2) < iN , where
dN (y1, y2) denotes the Riemannian distance between y1 and y2 and iN the injectivity
radius of N , there exists a unique length minimizing geodesic, which depends smoothly
on y1 and y2. By

Py1,y2 : Ty1N → Ty2N

we denote the parallel transport along this geodesic. The map Py1,y2 also depends
smoothly on y1 and y2. For φ1, φ2 ∈ C∞(M,N), we define the operator

Tφ1,φ2(x) : E ⊗ φ−1
1 TN → E ⊗ φ−1

2 TN

by

Tφ1,φ2(x) := 1E ⊗ Pφ1(x),φ2(x). (3.26)
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Here, E is a vector bundle over the manifold M . Later, E will mostly be ΣM or T ∗M .
The map Tφ1,φ2(x) acts trivially on E and by parallel transport on the tangent bundle
in N . The next Lemma contains some important properties of the map Tφ1,φ2(x). Some
of these were already proven in [Iso12], Lemma 7.4.

Lemma 3.20 (Properties of the parallel transporter). Assume that M and N are com-
pact Riemannian manifolds, φ1, φ2 ∈ C∞(M,N), and let E be a vector bundle over M .
Furthermore, let ψ1 ∈ Γ(ΣM ⊗ φ−1

1 TN) and ψ2 ∈ Γ(ΣM ⊗ φ−1
2 TN). Then the operator

Tφ1,φ2(x) defined in (3.26) has the following properties:

1. Tφ1,φ2(x) is an isometry.

2. Interchanging covariant derivatives and the parallel transporter gives

∇̃eα(Tφ1,φ2ψ2)(x) − (Tφ1,φ2∇̃eαψ2)(x) (3.27)

= 1E ⊗ (∇dφ1(eα)Pφ1(x),φ2(x))ψ1(x) + 1E ⊗ (∇dφ2(eα)Pφ1(x),φ2(x))ψ1(x).

3. We have the following estimate

|∇̃eαψ1 − Tφ1,φ2∇̃eαψ2| ≤|∇̃eα(ψ1 − Tφ1,φ2ψ2)| (3.28)

+ C|φ1(x)− φ2(x)|(|dφ1(eα)|+ |dφ2(eα)|)|ψ(x)|
+ C|dφ1(eα)− Tφ1,φ2dφ2(eα)||ψ(x)|.

Proof. Parallel translation defines an isometry. Hence, the operator Tφ1,φ2 also does.
The second statement follows by a direct computation. Namely,

∇̃eα(Tφ1,φ2ψ1)(x) = (∇eαTφ1,φ2)ψ1(x) + (Tφ1,φ2∇̃eαψ1)(x).

Concerning the third claim, we use the second statement and rewrite

∇dφ1(eα)Pφ1(x),φ2(x) +∇dφ2(eα)Pφ1(x),φ2(x)

= ∇dφ1(eα)Pφ1(x),φ2(x)−φ1(x) +∇dφ1(eα)Pφ1(x),φ1(x)

+∇dφ2(eα)Pφ1(x),φ1(x)−φ2(x) +∇dφ1(eα)Pφ1(x),φ1(x).

Estimating the right hand side and using ∇dφ2(eα)Pφ1(x),φ1(x) = −∇dφ1(eα)Pφ1(x),φ1(x),
the result follows.
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3.5. Short-time Existence

In this section we will set up the short-time existence for the regularized Dirac-harmonic
map heat flow. We start by analyzing the general structure of the evolution equations

∂φ

∂t
(x, t) = τ(φ)(x, t) −R(φ,ψ)(x, t) − εRc(φ,ψ)(x, t), (3.29)

∇̃ψ
∂t

(x, t) = ε∆̃ψ(x, t) − /Dψ(x, t) (3.30)

with (x, t) ∈ M × [0, T ) and initial data (φ0, ψ0). To get a better understanding of the
equations above, we compute the principal symbols of the differential operators involved

σ2(τ, ξ) = −|ξ|2, σ2(ε∆̃, ξ) = −ε|ξ|2, σ1( /D, ξ) = ·ξ.

We conclude that the operators τ and ∆̃ are uniformly elliptic, whereas the twisted Dirac
operator /D is weakly elliptic. The connection Laplacian on the bundle ΣM ⊗ φ−1TN is
a linear operator, whereas the tension field τ is a non-linear operator. In addition, we
note that the principal symbols do not depend on t. Hence, the evolution equations do
not change the defining structure of the operators τ, ∆̃ and /D.
As soon as we start evolving, the connections on the bundles ΣM ⊗φ−1TN and φ−1TN
become t-dependent. Thus, the operators τ, ∆̃ and /D also become t-dependent. But
since the principal symbols do not depend on t, the t-dependence of, for example the
Dirac-operator /D, can be extracted in an endomorphism V (t), such that we have the
following splitting

/Dtψt = ( /D0 + V (t))ψt.

Unfortunately, we cannot formulate any statement about the endomorphism V (t), apart
from the fact that V (t) is small for t sufficiently small due to continuity.
The twisted spinors ψ take their values in the vector bundle ΣM ⊗ φ−1TN . As long as
we have enough control over φt, we can always use parallel transport in N defined before
to identify

ΣM ⊗ φ−1
t TN ∼= ΣM ⊗ φ−1

0 TN.

Remark 3.21. When considering the operator Pt := ε∆̃t − /Dt, we remember that we
can always choose the connection on ΣM ⊗ φ−1

t TN in such a way that the differential
operator P is of the form

Pt = ∆̃t +Kt

with an endomorphism Kt, see [BGV92], p. 64, Prop. 2.5. But on the other hand, the
connection varies as t varies. Thus, we cannot guarantee the splitting from above for all t
without further assumptions. In addition, this splitting is not useful to derive estimates.

We want to establish the short-time existence of the coupled system (3.29), (3.30) via
the Banach fixed-point theorem. Since the evolution equation for φ depends on ψ, and
the evolution equation for ψ depends on φ, we have to solve the coupled system (φ,ψ)
simultaneously.
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Theorem 3.22 (Short-time existence). Suppose that both (M,h) and (N, g) are compact
Riemannian manifolds without boundary. Furthermore, assume that M is a Riemannian
spin manifold with fixed spin structure. Then, for any

(φ0, ψ0) ∈ C2+α(M,N)× C2+α(M,ΣM ⊗ φ−1
0 TN)

there exists a maximal time

0 < Tmax = Tmax(M,N,φ0, ψ0, ε, α) <∞,

such that the system (3.29), (3.30) admits a unique solution

(φt, ψt) ∈ C2+α,1+α/2(M × [0, Tmax), N)× C2+α,1+α/2(M × [0, Tmax),ΣM ⊗ φ−1
t TN).

Proof. First of all, we rescale the time parameter t in the evolution equation for the
spinor ψ to get rid of the ε in front of the Laplacian. More precisely, we rescale t → εt,
such that ψ solves

∇̃
∂t
ψ(x, εt) = ∆̃ψ(x, εt)− 1

ε
/Dψ(x, εt).

For the further analysis, we write the tension field τ(φ) in the following form (see for
example [Str88a], p. 294):

τ(φ) = ∆φ+ Γ(φ)(dφ, dφ).

We set Q =M × [0, T ), E = ΣM ⊗ φ−1TN and define the spaces

X = {(φ,ψ) ∈ C1+α(Q,N)× C1+α(Q,E) | φ(x, 0) = φ0(x), ψ(x, 0) = ψ0(x)},
Y = {(φ,ψ) ∈ Cα(Q,N)× Cα(Q,E) | φ(x, 0) = φ0(x), ψ(x, 0) = ψ0(x)}

with 0 < α < 1. With these preparations, the combined system (3.29), (3.30) can be
written as

∇
∂t

(φt, ψt) = ∆(φt, ψt) + P (φt, ψt) (3.31)

with the map P (φ,ψ) : X → Y defined by

P (φ,ψ) =
(

Γ(φ)(dφ, dφ) −R(φ,ψ) − εRc(φ,ψ),−
1

ε
/Dψ).

Moreover, for δ > 0 we define the space

Xδ = {(φt, ψt) ∈ C0(M × [0, δ), N) × C0(M × [0, δ), Et)

| (φ(·, t), ψ(·, t)) ∈ C1(M × [0, δ), N) ×C1(M × [0, δ), Et),

(φ(·, 0), ψ(·, 0)) = (φ0, ψ0), 0 ≤ t ≤ δ}.

We equip the space Xδ with the following norm

|(φt, ψt)|Xδ := sup
t∈[0,δ)

|φ(·, t)|C0(M×[0,δ),N) + sup
t∈[0,δ)

|dφ(·, t)|C0(M×[0,δ),N)

+ sup
t∈[0,δ)

|ψ(·, t)|C0(M×[0,δ),Et) + sup
t∈[0,δ)

|∇̃ψ(·, t)|C0(M×[0,δ),Et)
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with the vector bundle Et := ΣM⊗φ−1
t TN . In addition, we define the integral operator

W : Xδ → Xδ by

(φ,ψ)(x, t) = et∆(φ0, ψ0)(x) +

ˆ t

0
e(t−s)∆P (φ,ψ)(x, s)ds := W (φ,ψ)(x, t) (3.32)

with the operator P (φ,ψ) from above. If one wants to be more precise, one would have
to use an appropriate heat kernel in the integral operator above. Since we are only
interested in the short-time asymptotic, the above definition suffices for our needs.
Consequently, finding a fixed-point for the operatorW (φ,ψ) is equivalent to establishing
a short-time solution to the system (3.29), (3.30). For γ > 0 fixed, we set

Bγ = {(φ,ψ) ∈ Xδ | |(φ,ψ)(x, t) − (φ0, ψ0)(x)|Xδ ≤ γ},

where we use the isometric embedding ι and the parallel transporter Tφ1,φ2 to compare
(φ,ψ)(x, t) with (φ0, ψ0)(x). The operator norm of the Laplacian can be estimated as,
(see [Tay11], p. 274)

|et∆|L(Cα,Cα+s) ≤ Cst
− s

2 , 0 < t ≤ 1

for s > 0. In the following, we want to show that for any γ > 0, there exists a δ > 0
such that

1. W (φt, ψt) : Bγ → Bγ ,

2. W (φt, ψt) is a contraction, i.e. there exists a β ∈ (0, 1) such that

|W (φ1, ψ1)−W (φ2, ψ2)|Xδ ≤ β|(φ1, ψ1)− (ψ2, ψ2)|Xδ ,

where we again use the parallel transporter Tφ1,φ2 and the isometric embedding ι.

To prove the first assertion, we choose the time T1 such that

|et∆(φ0, ψ0)− (φ0, ψ0)|Xδ ≤
γ

2
, t ∈ [0, T1).

For (φ0, ψ0) ∈ Bγ we find that |P (φ,ψ)(s)|Xδ ≤ C for s ∈ [0, T1). Hence, we deduce that

∣

∣

∣

∣

ˆ t

0
e(t−s)∆P (φ,ψ)(x, s)ds

∣

∣

∣

∣

Xδ

≤ Ct|et∆| ≤ Ct1−
s
2 .

We choose T2 ≤ T1 small enough, such that the above expression is bounded by γ
2 for

t ∈ [0, T1). But then for T ≤ T2, we have W (φ,ψ) : Bγ → Bγ .
Proving the second statement is more involved. We assume both (φ1, ψ1), (φ2, ψ2) ∈ Bγ ,
where ψ1 is a spinor along φ1 and ψ2 is a spinor along φ2. To show that the operator
W (φ,ψ) defines a contraction, we calculate

(W (φ1, ψ1)−W (φ2, ψ2))(x, t) =

ˆ t

0
e(t−s)∆(P (φ1, ψ1)− P (φ2, ψ2))(x, s)ds
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and, therefore, we can estimate

|W (φ1, ψ1)−W (φ2, ψ2)|Xδ ≤ t|et∆|L(Cα,Cα+s)|P (φ1, ψ1)− Tφ1,φ2(P (φ2, ψ2))|Xδ .

To estimate |P (φ1, ψ1)−Tφ1,φ2(P (φ2, ψ2))|Xδ , we have to deal with the following expres-
sions:

I1 := Γ(φ1)(dφ1, dφ1)− Tφ1,φ2(Γ(φ2)(dφ2, dφ2)),

I2 := R(φ1, ψ1)− Tφ1,φ2(R(φ2, ψ2)),

I3 := Rc(φ1, ψ1)− Tφ1,φ2(Rc(φ2, ψ2)),

I4 := /Dψ1 − Tφ1,φ2( /Dψ2).

We start by rewriting the I1 term

Γ(φ1)(dφ1, dφ1)− Tφ1,φ2Γ(φ2)(dφ2, dφ2)

= (Γ(φ1)− Tφ1,φ2Γ(φ2))(dφ1, dφ1) + Γ(φ1)(Tφ1,φ2dφ2 − dφ1, dφ1)

+ Γ(φ1)(dφ1 − Tφ1,φ2dφ2, Tφ1,φ2dφ2).

Applying the mean value theorem to the first contribution, we find

|Γ(φ1)(dφ, dφ) − Tφ1,φ2Γ(φ2)(dφ2, dφ2)|Xδ
≤ C(|dφ1|2|φ1 − φ2|+ (|dφ1|+ |dφ2|)|dφ1 − Tφ1,φ2dφ2|)
≤ C|φ1 − φ2|Xδ .

To estimate I2, we rewrite

R(φ1, ψ1)− Tφ1,φ2R(φ2, ψ2)

=
1

2

(

RN (eα · ψ1, ψ1)dφ1(eα)− Tφ1,φ2(R
N (eα · ψ2, ψ2)dφ2(eα))

)

=
1

2

(

RN (eα · (ψ1 − Tφ1,φ2ψ2), ψ1)dφ1(eα)

+RN (eα · Tφ1,φ2ψ2, Tφ1,φ2ψ2)(dφ1(eα)− Tφ1,φ2dφ2(eα))

+RN (eα · Tφ1,φ2ψ2, ψ1 − Tφ1,φ2ψ2)dφ1(eα)
)

,

and hence we may estimate

|R(φ1, ψ1)− Tφ1,φ2R(φ2, ψ2)|Xδ
≤ C(|dφ1||ψ1 − Tφ1,φ2ψ2||ψ1|+ |dφ1(eα)− Tφ1,φ2dφ2(eα)||ψ2|2

+ |ψ2||dφ1||ψ1 − Tφ1,φ2ψ2|)
≤ C|(φ1, ψ1)− Tφ1,φ2(φ2, ψ2)|Xδ .
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To estimate I3, we rewrite

Rc(φ1, ψ1)− Tφ1,φ2Rc(φ2, ψ2)

= RN (ψ1, ∇̃eαψ1)dφ1(eα)− Tφ1,φ2(R
N (ψ2, ∇̃eαψ2)dφ2(eα))

= RN (ψ1 − Tφ1,φ2ψ2, ∇̃eαψ1)dφ1(eα)

+RN (Tφ1,φ2ψ2, ∇̃eαψ1)(dφ1(eα)− Tφ1φ2dφ2(eα))

+RN (Tφ1,φ2ψ2, (∇̃eαψ1 − Tφ1,φ2∇̃eαψ2))dφ2(eα),

and again we estimate

|Rc(φ1, ψ1)− Tφ1,φ2Rc(φ2, ψ2)|Xδ
≤ C(|dφ1||ψ1 − Tφ1φ2ψ2||∇̃ψ1|+ |dφ1(eα)− Tφ1φ2dφ2(eα)||ψ2||∇̃ψ1|

+ |ψ2||dφ2||∇̃ψ1 − Tφ1,φ2(∇̃ψ2)|)
≤ C|(φ1, ψ1)− Tφ1,φ2(φ2, ψ2)|Xδ ,

where we interchanged the covariant derivative with the parallel transporter in the last
step, applying Lemma 3.20.

To estimate the I4 term, we note that

/Dψ1 − Tφ1,φ2( /Dψ2) = eα · (∇̃eαψ1 − Tφ1,φ2∇̃eαψ2).

Using Lemma 3.20 again, we find

| /Dψ1 − Tφ1,φ2( /Dψ2)|Xδ ≤ |(φ1, ψ1)− Tφ1,ψ2(φ2, ψ2)|Xδ .

Adding up I1, I2, I3, I4, we obtain

|P (φ1, ψ1)− Tφ1,φ2(P (φ2, ψ2))|Xδ ≤ C|(φ1, ψ1)− Tφ1,φ2(φ2, ψ2)|Xδ .

Applying the bound on the operator norm of the Laplacian from above, we find

|W (φ1, ψ1)− Tφ1,φ2(W (φ2, ψ2))|Xδ ≤ Ct1−
s
2 |(φ1, ψ1)− Tφ1,φ2(φ2, ψ2)|Xδ .

Choosing t sufficiently small, we realize that the map W (φ,ψ) is a contraction mapping
and thus has a unique fixed-point. The regularity of the solution is determined by
(B.11).

Remark 3.23. Now, that the existence of a short-time solution is guaranteed, we can
scale back the time parameter in the evolution equation for ψt such that the ε is in front
of the connection Laplacian ∆̃. This of course also changes the value of Tmax.
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Theorem 3.24 (Regularity of short-time solution). Let (M,h) and (N, g) be compact,
oriented Riemannian manifolds. Moreover, we assume that M is a spin manifold with
fixed spin structure. For (φ0, ψ0) ∈ C2+α(M,N)×C2+α(M,ΣM ⊗ φ−1

0 TN) there exists
a positive number Tmax = Tmax(M,N, ε, φ0, ψ0, α) > 0 such that the system

∂φ

∂t
(x, t) = τ(φ)(x, t) −R(φ,ψ)(x, t) − εRc(φ,ψ)(x, t), (3.33)

∇̃ψ
∂t

(x, t) = ε∆̃ψ(x, t)− /Dψ(x, t)

admits a solution, which is

φt ∈ C2+α,1+α/2(M × [0, T ), N) ∩ C∞(M × (0, T ), N),

ψt ∈ C2+α,1+α/2(M × [0, T ),ΣM ⊗ φ−1
t TN) ∩ C∞(M × (0, T ),ΣM ⊗ φ−1

t TN).

Proof. We choose local coordinates to analyze the regularity of the solution (φt, ψt),
leading to the following system:

(

∂

∂t
−∆

)

φm = Γmjk
∂φj

∂xα

∂φk

∂xα
+Rmlij

∂φl

∂xα
〈ψi, eα · ψj〉ΣM (3.34)

+εRmlij
∂φl

∂xα
〈∇ΣM

eα ψi, ψj〉ΣM + εRmlijΓ
j
rs

∂φl

∂xα
〈ψi, ψr〉ΣM

∂φs

∂xα
,

(∇
∂t

− ε∆

)

ψm = 2εΓmij∇ΣM
eα ψi

∂φj

∂xα
+ εΓmij,pψ

i ∂φ
p

∂xα

∂φj

∂xα
+ εΓmijψ

i ∂
2φj

∂x2α
(3.35)

+εΓkijΓ
m
ksψ

i ∂φ
j

∂xα

∂φs

∂xα
− /∂ψm − Γmjk

∂φj

∂xα
eα · ψk − Γmjk

∂φj

∂t
ψk.

To establish the regularity statement, we apply estimates concerning the differentiability
for solutions of parabolic partial differential equations (B.7). By assumption, we have
that φ ∈ C2+α,1+α/2(M × [0, T ), N) and also ψm ∈ C2+α,1+α/2(M × [0, T ),ΣM). Hence,
the right hand side of (3.34) is in C1+α,α/2, and by B.7, we get that φ ∈ C3+α,1+α/2.
Using this estimate on φ, we can improve the regularity of ψm. Since the right hand
side of (3.35) is in C1+α,α/2, we get, again by B.7, that ψm ∈ C3+α,1+α/2. Then, this
estimate can be used to improve the regularity of φ. By iteration of this procedure, we
find that the pair (φt, ψt) is smooth.

Remark 3.25. Looking back at the the proof leading to the short-time existence, we
clearly see that the existence interval [0, Tmax) depends crucially on the regularizing
parameter ε. Consequently, in general we have

lim
ε→0

Tmax = 0. (3.36)

In addition, it is not hard to see that we can only apply the estimates ensuring the
regularity of ψm in (3.35) as long as ε 6= 0.
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4. Dirac-harmonic Maps from Curves

4.1. Introduction and Results

Throughout this chapter, we assume that the manifold M is one-dimensional. The
only compact one-dimensional manifold is the circle S1. It is well known that Clifford
multiplication on S1 is given by multiplication with the imaginary unit i.
On S1 there are two spin structures, which will be abbreviated by σ1 and σ2. In the case
of σ1, spinors can be identified as periodic complex-valued functions on S1 satisfying
ψ(x + 2π) = ψ(x). Regarding the other spin structure σ2, spinors can be identified as
antiperiodic complex-valued functions on S1 satisfying ψ(x+ 2π) = −ψ(x).
We will study the following set of equations

∂φt
∂t

= τ(φt)−R(φt, ψt)− εRc(φt, ψt), (4.1)

∇̃ψt
∂t

= ε∆̃ψt − /Dψt (4.2)

together with the initial data φ(x, 0) = φ0(x) and ψ(x, 0) = ψ0(x).
The final purpose of this chapter is to prove the following

Theorem 4.1. Assume that M = S1 with fixed spin structure and N is a compact
Riemannian manifold without boundary. Then for any smooth initial data (φ0, ψ0) and
ε small, there exists a unique smooth solution of (4.1) and (4.2) for all t ∈ [0,∞).
If ε ≥ 1, the evolution equations converge in C2(S1, N) × C2(S1,ΣS1 ⊗ φ−1

t TN) to a
regularized Dirac-harmonic map from S1 → N .
Finally, the limit ε→ 0 exists and we obtain a smooth Dirac-harmonic map.

Before addressing the general case, let us discuss some illuminating examples.

Example 4.2. Assume that M = N = S1. Then the evolution equations for (φt, ψt)
are given by











∂tφ(x, t) = ∂2xφ(x, t),

φ(x, 0) = φ0(x),

φ(0, t) = φ(2π, t),











∂tψ(x, t) = ε∂2xψ(x, t) − i∂xψ(x, t),

ψ(x, 0) = ψ0(x),

ψ(0, t) = ±ψ(2π, t).
The sign in the boundary condition for the spinor depends on the chosen spin structure.
The fundamental solution for the heat equation on S1 can be obtained by a Fourier
decomposition and is given by

ξ(x, t) =
∞
∑

k=−∞

ake
−k2teikx,
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with coefficients ak. To incorporate the initial condition φ0(x), we have to calculate the
convolution of ξ(x, t) with φ0(x).

To derive the fundamental solution for the evolution equation for ψ(x, t), we make a
separation ansatz of the form χ(x, t) = A(x)B(t) leading to

Ḃ(t)

B(t)
= C =

−iA′(x) + εA′′(x)

A(x)

with a constant C. By λk we denote the k-th eigenvalue of the Dirac operator on S1,
such that we get

χ(x, t)σi =
∞
∑

k=−∞

bke
iλkxe−(λk+ελ

2
k
)t, i = 1, 2

with coefficients bk. It is known, that for the spin structure σ1, the eigenvalues of the
Dirac operator are all integer numbers λk = k whereas for the second spin structure
σ2 the eigenvalues are given by λk = k + 1

2 with k ∈ Z. Consequently, only σ1 admits
harmonic spinors. To incorporate the initial condition at t = 0, we again consider the
convolution

ψ(x, t) =
1

2π

ˆ 2π

0
ψ0(y)χσi(x− y, t)dy, i = 1, 2.

We will analyze the evolution equation for different spin structures and different choices
of ψ0(x). To this end, we first fix σ1.

• If ψ0(x) =
∑∞

k=0 bke
ikx, then

ψ(x, t) =

∞
∑

k=0

bke
ikxe(k−k

2ε)t.

Without any further restriction on bk, ε or k, we cannot make any statement about
ψ(x, t) as t → ∞.

• Since − 1
4ε ≤ λk+ελ

2
k ≤ ∞, there exists a k0 such that for all k > k0 the expression

λk + ελ2k > 0. If we now choose ψ0(x) =
∑∞

k>k0
bke

−ikx, then

ψ(x, t) =

∞
∑

k>k0

bke
ikxe−(k+k2ε)t.

In this case the limit t→ ∞ exists and we find

ψ∞(x) = b0.

As a second step we fix the other spin structure σ2.
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• If ψ0(x) =
∑∞

k=0 bke
i(k+ 1

2
)x, then again we cannot make a general statement as

t→ ∞.

• If ψ0(x) =
∑∞

k>k0
bke

−i(k+ 1
2
)x with k0 as before, then

ψ(x, t) =

∞
∑

k>k0

bke
−i(k+ 1

2
)xe−((k+ 1

2
)+ε(k+ 1

2
)2)t.

Again, for this special initial data, the limit t→ ∞ exists, but the limiting spinor
ψ∞ will vanish.

From the simple example above, we learned that the convergence of the evolution equa-
tion for the spinor ψ(x, t) will depend both on the initial spinor ψ0(x) and the spin
structure σi. Note that the above example could also be studied for ε = 0. The condi-
tion on the initial data can be thought of as an APS type condition, as it appears in the
context of boundary value problem for Dirac operators.
If we drop the compactness assumption on M , we can find another example in which
the evolution equations for φ and ψ can be solved explicitly.

Example 4.3. Assume that M = N = R. In this case the evolution equations acquire
the form

{

∂tφ(x, t) = ∂2xφ(x, t),

φ(x, 0) = φ0(x),

{

∂tψ(x, t) = ε∂2xψ(x, t)− i∂xψ(x, t),

ψ(x, 0) = ψ0(x).

These equations can be integrated directly. For φ(x, t), we get the solution to the one-
dimensional heat equation

φ(x, t) =
1√
t
e−

x2

4t ,

whereas for ψ(x, t), we find the formal solution

ψ(x, t) =
1√
t
e

1
4ε
t+ i

2ε
x− x2

4εt .

Concerning the solution ψ(x, t), we realize that both limits t → ∞ and ε → 0 are not
well defined. This is not surprising since M is non-compact.

Following the ideas from [CJLW06], p. 415, Prop. 2.2, we can give a construction for
Dirac-harmonic maps from a closed curve to a Riemannian manifold N .

Proposition 4.4. Assume that M = S1 and N a compact Riemannian manifold. If φ
is a harmonic map and the spinor ψ is of the form

ψ = eα · χ⊗ dφ(eα) (4.3)

with χ being a harmonic spinor, then the pair (φ,ψ) is a Dirac-harmonic map.
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Proof. By assumption φ is harmonic. Hence, we have τ(φ) = 0. By a direct computation,
we find that R(φ,ψ) is real. Inserting ψ as defined above into R(φ,ψ) and using that
the expression

〈eα · χ, χ〉 = 〈χ, eα · χ〉 = −〈eα · χ, χ〉

is purely imaginary, we conclude that R(φ,ψ) vanishes.

On the other hand, applying the twisted Dirac operator /D to the spinor ψ yields

/Dψ = eα · ∇̃eα(eα · χ⊗ dφ(eα))

= eα · /∂χ⊗ dφ(eα)− χ⊗ τ(φ)

= 0

by assumption, which concludes the proof.

Let us make two comments about the solution constructed above. First of all, it is
uncoupled. Secondly, a harmonic spinor on S1 only exists for the trivial spin structure
σ1 and is given by a constant.

Lemma 4.5. The Dirac-harmonic maps constructed above are not stable.

Proof. To check if the Dirac-harmonic maps constructed above are stable, we have to
insert the solution into the second variation of the energy functional (2.3), (2.4) and
check if it is positive. It is known that for harmonic maps the second variation of the
energy functional is positive if the target manifold N has non-positive curvature. In that
case, the second term in (2.3) is positive. Let us evaluate the other terms in (2.3). We
have seen that the expression 〈eα · χ, χ〉 is purely imaginary. On the other hand, it is
easy to check that

〈η,RN (eα · ψ,ψ)∇eαη〉 = Rmlijη
m ∂ηl

∂xα
〈eα · ψi, ψj〉,

〈η, (∇ηR
N )(eα · ψ,ψ)dφ(eα)〉, = Rmlij;kη

mηk
∂φl

∂xα
〈eα · ψi, ψj〉

are both real. Consequently, both terms vanish when inserting the spinor ψ from above.
Unfortunately, the term

〈η,RN (eα · ψ,ψi ⊗∇η
∂

∂yi
)dφ(eα), η〉 = RmlijΓ

i
rkη

m ∂φl

∂xα
ηk〈eα · ψj , ψr〉

does not vanish on the solution (φ,ψ) from above. The contribution from the second
variation of E(φ,ψ) with respect to ψ, (2.4), does not have a definite sign either.

One should expect that the second variation of the Dirac-energy
´

M 〈ψ, /Dψ〉dM is in-
definite since the Dirac-energy itself is unbounded from below.
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4.2. Energy Estimates by the Maximum Principle

From now on, we study the evolution equations in general. Therefore, we fix one of
the two spin structures. Since for M = S1 we have /D

2
= −∇̃∗∇̃, we do not need

to distinguish between the connection Laplacian and the square of the twisted Dirac
operator /D.
It turns out to be useful to rescale the t-parameter in the spinor ψ(x, t) in the following
way

ψ(x, t) → ψ(x, εt),

such that the pair (φt, ψt) solves the following set of equations
{

∂φt
∂t = τ(φt)−R(φt, ψt)− εRc(φt, ψt),

φ(x, 0) = φ0(x).
(4.4)

{

∇̃ψt
∂t = − /D

2
ψt − 1

ε
/Dψt,

ψ(x, 0) = ψ0(x),
(4.5)

We will now use the maximum principle (B.12) to establish pointwise energy estimates.

Lemma 4.6. Assume that M = S1 and let ψt ∈ C∞(M × [0, T ),ΣM ⊗ φ−1
t TN) be a

solution of (4.5). Then the norm of the spinor ψt satisfies the following estimate:

|ψt|2 ≤ e
1

2ε2
t|ψ0|2. (4.6)

Proof. Due to the rescaling of t in (4.5), the norm of ψt satisfies the following evolution
equation

∂

∂t

1

2
|ψt|2 = ∆

1

2
|ψt|2 −

1

ε
〈ψt, /Dψt〉 − |∇̃ψt|2.

For M = S1 we have | /Dψ|2 = |∇̃ψ|2. By Young’s inequality we get the estimate

∂

∂t

1

2
|ψt|2 ≤ ∆

1

2
|ψt|2 +

1

4ε2
|ψt|2.

Now, apply the maximum principle to the function e−
1

2ε2
t|ψt|2.

As a next step, we want to derive pointwise estimates on the norms of dφt and /Dψt.

Theorem 4.7. Suppose that M = S1 with fixed spin structure. Moreover, let the pair
(φt, ψt) ∈ C∞(M × [0, T ), N)×C∞(M × [0, T ),ΣM ⊗φ−1

t TN) be a solution of (4.4) and
(4.5). The function Ft defined by

Ft :=
1

2
(|dφt|2 + ε| /Dψt|2) (4.7)

satisfies the following evolution equation:

∂Ft
∂t

≤ ∆Ft +
C

ε2
e
t

ε2 Ft. (4.8)

The constant C depends on N and ψ0.

39



CHAPTER 4. DIRAC-HARMONIC MAPS FROM CURVES

Proof. We use the equations derived in (3.3) and (3.4), remembering the rescaling of t
in the equation for ψt. Since M = S1 most of the curvature terms drop out and we find

∂Ft
∂t

= ∆Ft − |∇dφt|2 − 〈∇eβR(φt, ψt), dφt(eβ)〉 − ε〈∇eβRc(φt, ψt), dφt(eβ)〉

+ε〈∂φt
∂t

,Rc(φt, ψt)〉 − 〈 /D2
ψt, /Dψt〉 − ε|∇̃ /Dψt|2.

A direct computation yields

〈R(φ,ψ), dφ(eβ )〉φ−1TN =
1

2
〈eα · RN (dφ(eα), dφ(eβ))ψ,ψ〉φ−1TN .

By assumption, M is a curve. Therefore, we have

−〈∇eβR(φt, ψt), dφt(eβ)〉 = 〈R(φt, ψt), τ(φt)〉
and similarly for Rc(φt, ψt). Applying this identity we find

∂Ft
∂t

= ∆Ft − |∇dφt|2 − ε2|Rc(φt, ψt)|2 − ε〈Rc(φt, ψt),R(φt, ψt)〉

+〈2εRc(φt, ψt) +R(φt, ψt), τ(φt)〉 − 〈 /D2
ψt, /Dψt〉 − ε|∇̃ /Dψt|2.

As a next step, we use the estimate

−|∇dφt|2 − ε2|R(φt, ψt)|2 − ε〈Rc(φt, ψt),R(φt, ψt)〉
+ 〈2εRc(φt, ψt) +R(φt, ψt), τ(φt)〉

≤ 1

4
|R(φt, ψt) + 2εRc(φt, ψt)|2 − ε2|Rc(φt, ψt)|2 − ε〈Rc(φt, ψt),R(φt, ψt)〉

=
1

4
|R(φt, ψt)|2

and apply Young’s inequality again

−〈 /D2
ψt, /Dψt〉 − ε|∇̃ /Dψt|2 ≤

1

4ε
| /Dψt|2.

Finally, we calculate

∂Ft
∂t

≤ ∆Ft +
1

4
|R(φt, ψt)|2 +

1

4ε
| /Dψt|2

≤ ∆Ft + C

(

|ψt|4|dφt|2 +
1

ε
| /Dψt|2

)

≤ ∆Ft + C

(

e
1
ε2
t|dφt|2 +

1

ε
| /Dψt|2

)

≤ ∆Ft + Ce
1
ε2
t

(

|dφt|2 +
1

ε
| /Dψt|2

)

≤ ∆Ft + Ce
1
ε2
t 1

ε2
(

|dφt|2 + ε| /Dψt|2
)

≤ ∆Ft +
C

ε2
e

1
ε2
tFt,

where we used the fact that ε < 1.
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Corollary 4.8. Suppose that M = S1 with fixed spin structure. Moreover, let the pair
(φt, ψt) ∈ C∞(M × [0, T ), N)×C∞(M × [0, T ),ΣM ⊗φ−1

t TN) be a solution of (4.4) and
(4.5). Then we have for all t ∈ [0, T )

Ft =
1

2
(|dφt|2 + ε| /Dψt|2) ≤ CeCe

t

ε2 . (4.9)

The constant C depends on N, ε, ψ0, dφ0 and /Dψ0.

Proof. The evolution equation for Ft (4.8) can be rewritten as

∂

∂t
(e−Ce

t
ε2 Ft) ≤ ∆(e−Ce

t
ε2 Ft).

Applying the maximum principle, we find

Ft ≤ e−CeCe
t
ε2 F0.

Rearranging the constants yields the result.

Having obtained pointwise estimates for |dφt|2 and | /Dψt|2, we can now derive estimates
on the t-derivatives of φt and ψt.

Theorem 4.9. Suppose that M = S1 with fixed spin structure. Moreover, let the pair
(φt, ψt) ∈ C∞(M × [0, T ), N)×C∞(M × [0, T ),ΣM ⊗φ−1

t TN) be a solution of (4.4) and
(4.5). The quantity defined by

Gt :=
1

2

(

|∂φt
∂t

|2 + | ∇̃ψt
∂t

|2
)

(4.10)

satisfies
∂Gt
∂t

≤ ∆Gt + Z(t)Gt (4.11)

with the function Z(t) depending on |ψt|, |dφt|, and | /Dψt|.

Proof. Using the equations derived in (3.5), (3.6), taking into account the rescaling of t
in the evolution equation for ψt and the fact that M = S1, we find

∂Gt
∂t

=∆Gt − |∇∂φt
∂t

|2 − |∇̃∇̃ψt
∂t

|2 + 〈RN (dφt(eα),
∂φt
∂t

)dφt(eα),
∂φt
∂t

〉

− 〈∇
∂t

R(φt, ψt),
∂φt
∂t

〉 − ε〈∇
∂t

Rc(φt, ψt),
∂φt
∂t

〉

− 1

ε
〈eα · RN (dφt(∂t), dφt(eα))ψt,

∇̃ψt
∂t

〉 − 1

ε
〈∇̃ψt
∂t

, /D
∇̃ψt
∂t

〉

− 〈eα ·RN (dφt(∂t), dφt(eα)) /Dψt,
∇̃ψt
∂t

〉 − 〈 /D(eα · RN (dφt(∂t), dφt(eα))ψt),
∇̃ψt
∂t

〉.
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Again, we have to estimate all terms on the right hand side. First of all, we estimate
the term containing the curvature of φ−1TN as

〈RN (dφt(eα),
∂φt
∂t

)dφt(eα),
∂φt
∂t

〉 ≤ C|dφt|2|
∂φt
∂t

|2 := I1.

For the next term we calculate

∇
∂t

R(φt, ψt) =
1

2
(∇dφt(∂t)R

N )(eα · ψt, ψt)dφt(eα) +RN (eα · ψt,
∇̃ψt
∂t

)dφt(eα)

+
1

2
RN (eα · ψt, ψt)

∇
∂t
dφt(eα)

and make the following estimate

|〈∇
∂t

R(φt, ψt),
∂φt
∂t

〉| ≤ C

(

|∂φt
∂t

|2|dφt||ψt|2 + |ψt||dφt||
∂φt
∂t

|| ∇̃ψt
∂t

|+ |ψt|2|
∇
∂t
dφt||

∂φt
∂t

|
)

:= I2 + I3 + I4.

To take care of the next term, we first compute

∇
∂t

Rc(φt, ψt) = (∇dφt(∂t)R
N )(∇̃eαψt, ψt)dφt(eα) +RN (

∇̃
∂t

∇̃eαψt, ψt)dφt(eα)

+RN (∇̃eαψt,
∇̃ψt
∂t

)dφt(eα) +RN (ψt, ∇̃eαψt)
∇
∂t
dφt(eα)

and then estimate

|〈∇
∂t

Rc(φt, ψt),
∂φt
∂t

〉| ≤ C

(

|ψt||
∂φt
∂t

|2|dφt|| /Dψt|+ | /Dψt||dφt||
∂φt
∂t

|| ∇̃ψt
∂t

|

+|ψt||
∇̃
∂t

/Dψt||dφt||
∂φt
∂t

|+ |ψt|| /Dψt||
∇
∂t
dφt||

∂φt
∂t

|
)

:= I5 + I6 + I7 + I8.

Having estimated the terms from the evolution equation for φt, we now deal with the
contributions originating from the evolution equation for ψt

1

ε

∣

∣〈∇̃ψt
∂t

, /D
∇̃ψt
∂t

〉
∣

∣ ≤ 2

ε2
| ∇̃ψt
∂t

|2 + 1

8
|∇̃∇̃ψt

∂t
|2 := I9 + I10,

∣

∣〈eα ·RN (dφt(∂t), dφt(eα))ψt,
∇̃ψt
∂t

〉
∣

∣ ≤ C|∂φt
∂t

|| ∇̃ψt
∂t

||ψt||dφt| := I11,

|〈eα ·RN (dφt(∂t), dφt(eα)) /Dψt,
∇̃ψt
∂t

〉| ≤ C|∂φt
∂t

|| ∇̃ψt
∂t

|| /Dψt||dφt| := I12.

To estimate the last term, we first of all note that since M = S1, we have

/D(eα · RN (dφt(∂t), dφt(eα))ψt) = −∇̃eα(R
N (dφt(∂t), dφt(eα))ψt)
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such that we can differentiate

∇̃eα(R
N (dφt(∂t), dφt(eα))ψt) = ((∇dφt(eα)R

N )(dφt(∂t), dφt(eα))ψt

+RN(∇eαdφt(∂t), dφt(eα))ψt +RN (dφt(∂t), τ(φt))ψt

+RN(dφt(∂t), dφt(eα))∇̃eαψt.

The first, second and fourth term can easily be estimated as

|〈(∇dφt(eα)R
N )(dφt(∂t), dφt(eα))ψt,

∇̃ψt
∂t

〉| ≤ C|dφt|2|
∂φt
∂t

||ψt||
∇̃ψt
∂t

|,

|〈RN (∇eαdφt(∂t), dφt(eα))ψt,
∇̃ψt
∂t

〉| ≤ C|∇∂φt
∂t

||dφt||ψt||
∇̃ψt
∂t

|,

|〈RN (dφt(∂t), dφt(eα))∇̃eαψt,
∇̃ψt
∂t

〉| ≤ C|∂φt
∂t

||dφt||∇̃ψt||
∇̃ψt
∂t

|.

To take care of the third term, we use the evolution equation for φt and obtain

RN (dφt(∂t), τ(φt))ψt = RN (dφt(∂t),R(φt, ψt))ψt + εRN (dφt(∂t),Rc(φt, ψt))ψt.

This allows us to derive the following estimate

|〈RN (dφt(∂t), τ(φt))ψt,
∇̃ψt
∂t

〉|

≤ |〈RN (dφt(∂t),R(φt, ψt))ψt,
∇̃ψt
∂t

〉|+ ε|〈RN (dφt(∂t),Rc(φt, ψt))ψt,
∇̃ψt
∂t

〉|

≤ C

(

|dφt||ψt|3|
∇̃ψt
∂t

||∂φt
∂t

|+ ε|dφt||ψt|2|
∇̃ψt
∂t

||∂φt
∂t

|| /Dψt|
)

and, finally, we have

|〈 /D(eα·RN (dφt(∂t), dφt(eα))ψt,
∇̃ψt
∂t

)〉|

≤ C

(

|dφt|2|
∂φt
∂t

||ψt||
∇̃ψt
∂t

|+ |∇∂φt
∂t

||dφt||ψt||
∇̃ψt
∂t

|+ |∂φt
∂t

||dφt||ψt|3|
∇̃ψt
∂t

|

+ ε|∂φt
∂t

||dφt||ψt|2| /Dψt||
∇̃ψt
∂t

|+ |∂φt
∂t

||dφt|| /Dψt||
∇̃ψt
∂t

|
)

:= I13 + I14 + I15 + I16 + I17.

Collecting all the estimates, the function Gt satisfies

∂Gt
∂t

≤ ∆Gt +
17
∑

j=1

Ij − |∇∂φt
∂t

|2 − |∇̃∇̃ψt
∂t

|2.

43



CHAPTER 4. DIRAC-HARMONIC MAPS FROM CURVES

We want to use −|∇∂φt
∂t |2 − |∇̃ ∇̃ψt

∂t |2 in order to control I4, I7, I8, I10, I14. Namely,

− |∇∂φt
∂t

|2 − |∇∇̃ψt
∂t

|2 + I4 + I7 + I8 + I10 + I14

≤ C

(

|ψt|4|
∂φt
∂t

|2 + ε2|∂φt
∂t

|2| /Dψt|2|ψt|2 + |dφt|2|ψt|2|
∇̃ψt
∂t

|2 + ε|∂φt
∂t

|2|ψt|2|dφt|2
)

.

To estimate the I7 contribution we interchanged covariant derivatives and estimated the
resulting terms. Hence, we can write

17
∑

j=1

Ij − |∇∂φt
∂t

|2 − |∇̃∇̃ψt
∂t

|2 ≤ At|
∂φt
∂t

|2 +Kt|
∇̃ψt
∂t

|2 +Wt|
∂φt
∂t

|| ∇̃ψt
∂t

|

with the terms

At = C
(

|ψt|2|dφt|2 + ε| /Dψt|dφt||ψt|+ |ψt|2 + ε| /Dψt|2|ψt|2 + |ψt|4 + |dφt|2
)

,

Kt = C

(

|ψt|2|dφt|2 +
1

ε2

)

,

Wt = C

(

|ψt||dφt|+ ε| /Dψt||dφt|+
1

ε
|dφt||ψt|+ |dφt|| /Dψt|+ |dφt|2|ψt|

+|ψt|3|dφt|+ ε|dφt||ψt|2| /Dψt|
)

.

By the bounds on ψt, dφt, and ∇̃ψt all terms appearing in At,Kt and Wt can be con-
trolled. We combine them into one function Z(t), which completes the proof.

Corollary 4.10. Suppose that M = S1 with fixed spin structure. Moreover, let the pair
(φt, ψt) ∈ C∞(M × [0, T ), N)×C∞(M × [0, T ),ΣM ⊗φ−1

t TN) be a solution of (4.4) and
(4.5). For all (x, t) ∈ S1 × [0, T ), we have the following estimate

Gt =
1

2

(

|∂φt
∂t

|2 + | ∇̃ψt
∂t

|2
)

≤ Cf(t), (4.12)

where f(t) only depends on t and is finite for finite values of t. The constant C depends
on N, ε, ψ0, dφ0 and ∇̃ψ0.

Proof. We use the inequality for Gt and apply the maximum principle to e−
´ T
0
Z(τ)dτGt.

The function Z(t) can be explicitly expressed in terms of exponentials and double ex-

ponentials. These are bounded for finite t and, consequently, the integral
´ T
0 Z(τ)dτ is

also finite.
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4.3. Long-time Existence

The goal of this section is to establish the existence of a long-time solution to the
evolution equations (4.5), (4.4) for all t ∈ [0,∞). We will use a standard technique for
parabolic equations to show this result. Since this involves choosing a subsequence, we
begin by proving a uniqueness statement.

Theorem 4.11 (Stability and uniqueness). Assume that M = S1 and N compact.
Furthermore, let (φt, ψt) and (ξt, χt) be smooth solutions of (4.4) and (4.5). The spinor
ψt ∈ Γ(ΣM ⊗φ−1

t TN) is defined along the map φt and the spinor χt ∈ Γ(ΣM ⊗ ξ−1
t TN)

along the map ξ. If the initial data coincide, i.e. (φ0, ψ0) = (ξ0, χ0), then we have
(φt, ψt) = (ξt, χt) throughout M × [0, T ).

Proof. We use the Nash embedding theorem to isometrically embed the manifold N
into some R

q via the map ι. We set u := ι ◦ φ, v := ι ◦ ξ and ψ′ = dι(ψ), ξ′ = dι(ξ).
To simplify the notation, we omit the superscript at the spinors. We regard u, v as
vector valued functions in R

q, i.e. u, v : S1 × [0, T ) → ι(N) ⊂ R
q, and the spinors as

ψ,χ : S1 × [0, T ) → ΣS1 ⊗ TRq. First of all, we define functions h1, h2

h1 : M × [0, T ) → R
q, h2 : M × [0, T ) → ΣM ⊗ TRq

by
h1 = (u− v), h2 = (ψ − χ).

Using the evolution equation for u derived in (3.24), we calculate

∂

∂t

1

2
|h1|2 = ∆

1

2
|h1|2 − |dh1|2 + 〈IIu(du, du) − IIv(dv, dv), h1〉

+ 〈h1, P (IIu(du(eα), eα · ψ), ψ) − P (IIv(dv(eα), eα · χ), χ)〉
+ ε〈h1, P (IIu(du(eα), eα · /∂ψ), ψ) − P (IIv(dv(eα), eα · /∂χ), χ)〉
+ ε〈h1, P (IIu(du(eα), eα · ψ), /∂ψ)− P (IIv(dv(eα), eα · χ), /∂χ)〉
+ ε〈h1, Bu(du, ψ, du, ψ) −Bv(dv, χ, dv, χ)〉.

We want to estimate the right hand side in terms of the functions h1 and h2. To this
end, we use the bounds on dφt, /Dψt, and ψt derived before. Rearranging the second
fundamental forms,

IIu(du, du) − IIv(dv, dv) = (IIu − IIv)(du, du) + IIv(du− dv, du) + IIv(dv, du − dv),

and applying the mean value theorem, we find

|〈IIu(du, du) − IIv(dv, dv), u − v〉| ≤ C(|u− v|2 + |du− dv||u− v|).

We rewrite

P (IIu(du(eα), eα · ψ), ψ) − P (IIv(dv(eα), eα · χ), χ)
= P (IIu−v(du(eα), eα · ψ), ψ) + P (IIv(du(eα)− dv(eα), eα · ψ), ψ)
+ P (IIv(dv(eα), eα · (ψ − χ)), ψ) + P (IIv(dv(eα), eα · ψ), ψ − χ)
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and estimate again

|〈u− v,P (IIu(du(eα), eα · ψ), ψ) − P (IIv(dv(eα), eα · χ), χ)〉|
≤ C(|du||u− v|2|ψ|2 + |du− dv||ψ|2|u− v|+ |dv||ψ||ψ − χ||u− v|)
≤ C(||u− v|2 + |du− dv||u − v|+ |ψ − χ||u− v|).

Again, we rewrite

P (IIu(du(eα), eα · ψ), /∂ψ)− P (IIv(dv(eα), eα · χ), /∂χ)
= P (IIu−v(du(eα), eα · ψ), /∂ψ) + P (IIv(du(eα)− dv(eα), eα · ψ), /∂ψ)
+ P (IIv(dv(eα), eα · (ψ − χ)), /∂ψ) + P (IIv(dv(eα), eα · ψ), /∂(ψ − χ))

and estimate

|〈u− v, P (IIu(du(eα), eα · ψ), /∂ψ)− P (IIv(dv(eα), eα · χ), /∂χ)〉|
≤ C(|du||u − v|2|ψ||/∂ψ|+ |du− dv||ψ||/∂ψ||u− v|+ |dv||/∂ψ||ψ − χ||u− v|
+ |dv||ψ||/∂ψ − /∂χ||u− v|)

≤ C(||u− v|2 + |du− dv||u− v|+ |ψ − χ||u− v|+ |/∂ψ − /∂χ||u− v|).
The term

〈u− v, P (IIu(du(eα), eα · /∂ψ), ψ) − P (IIv(dv(eα), eα · /∂χ), χ)〉
can be treated by the same methods and estimated like the previous one. Finally, we
rewrite

Bu(du, ψ, du, ψ) −Bv(dv, χ, dv, χ)

= Bu−v(du, ψ, du, ψ) +Bv(du− dv, ψ, du, ψ) +Bv(dv, ψ − χ, du, ψ)

+Bv(dv, χ, du − dv, ψ) +Bv(dv, χ, dv, ψ − χ)

such that we can estimate

|〈u− v,Bu(du, ψ, du, ψ) −Bv(dv, χ, dv, χ)〉|
≤ C(|u− v|2|ψ|2|du|2 + |u− v||du− dv||ψ|2|du|+ |du||ψ||dv||ψ − χ||u− v|
+ |u− v||dv|χ||ψ||du − dv|+ |u− v||dv|2|χ||ψ − χ|)

≤ C(|u− v|2 + |u− v||du− dv|+ |ψ − χ||u− v|).
Collecting all the terms and applying Young’s inequality, we find that the norm of h1
satisfies

∂

∂t

1

2
|h1|2 ≤ ∆

1

2
|h1|2 −

1

2
|dh1|2 +

1

2
|∇h2|2 + C(|h1|2 + |h2|2).

Now, we turn to the function h2. Using the evolution equation (3.25) a direct computa-
tion yields

∂

∂t

1

2
|h2|2 =∆

1

2
|h2|2 − |∇h2|2 −

1

ε
〈/∂(ψ − χ), ψ − χ〉

+ 〈ψ − χ, (∇eαIIu)(du(eα), ψ) − (∇eαIIv)(dv(eα), χ)〉.
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The other terms involving the second fundamental form II vanish since II ⊥ ψ. The last
term in the equation for h2 can be rewritten as

(∇eαIIu)(du(eα), ψ) − (∇eαIIv)(dv(eα), χ)

= (∇eαIIu−v)(du(eα), ψ) + (∇eαIIv)(du(eα)− dv(eα), ψ) + (∇eαIIv)(dv(eα), ψ − χ)

and we may estimate

|〈ψ − χ, (∇eαIIu)(du(eα), ψ)− (∇eαIIv)(dv(eα), χ)〉|
≤ C(|ψ − χ||du− dv||du||ψ| + |dv||du − dv||ψ||ψ − χ|+ |dv|2|ψ − χ|2)
≤ C(|u− v|2 + |du− dv||ψ − χ|+ |ψ − χ|2).

Hence, after applying Young’s inequality we find for the norm of h2

∂

∂t

1

2
|h2|2 ≤ ∆

1

2
|h2|2 −

1

2
|∇h2|2 +

1

2
|dh1|2 +C(|h1|2 + |h2|2).

Finally, we define the function h : M × [0, T ) → R as h := 1
2(|h1|2 + |h2|2). One can

think of h as the norm of (u− v, ψ − χ). Clearly, h satisfies the following inequality

∂h

∂t
≤ ∆h+ Ch.

By the maximum principle we get

max
M×[0,T )

h(x, t) ≤ max
M

h(x, 0)eCt,

but by assumption h(x, 0) = 0. Thus, we have u = v and also ψ = χ throughout
M × [0, T ).

In the next Proposition, we improve the regularity of the pair (φt, ψt) by application of
the classical Schauder estimates.

Proposition 4.12 (Applying Schauder theory). Assume that M = S1, N compact and
let (φt, ψt) ∈ C∞(M × [0, T ), N)×C∞(M × [0, T ),ΣM ⊗ φ−1

t TN) be a solution of (4.4)
and (4.5). Then for any 0 < α < 1, there exists a positive number C such that

|φ(·, t)|C2+α(M,N) +
∣

∣

∂φ

∂t
(·, t)

∣

∣

Cα(M,N)
≤ C, (4.13)

|ψ(·, t)|C2+α(M,ΣM⊗φ−1
t TN) +

∣

∣

∇̃ψ
∂t

(·, t)
∣

∣

Cα(M,ΣM⊗φ−1
t TN)

≤ C (4.14)

hold for all t ∈ [0, T ), where both constants depend on M,N, ε, α, T, ψt, dφt and /Dψt.

Proof. Again, we assume that N is isometrically embedded in a q-dimensional Euclidean
vector space R

q and that the vector valued function u is a solution of (3.24) and the
spinor ψ a solution of (3.25).
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Depending on the point of view, the function u and the spinor ψ both satisfy an ellip-
tic and a parabolic partial differential equation. This allows us to apply the classical
Schauder estimate for both elliptic and parabolic equations. First of all, u satisfies the
elliptic system

∆u = IIu(du, du) + P (IIu(du(eα), eα · ψ), ψ) + εP (IIu(du(eα), eα · /∂ψ), ψ)

−εP (IIu(du(eα), eα · ψ), /∂ψ) + εBu(du, ψ, du, ψ) +
∂u

∂t

with the Laplacian ∆ on M . Let us estimate the right hand side

|∆u| ≤ C(|du|2 + |ψ|2|du|+ |ψ||/∂ψ||du| + |∂u
∂t

|+ |ψ|2|du|2)
≤ C,

where we used the estimates derived before. Using Schauder estimates for solutions to
an elliptic partial differential equation, we find

|u(·, t)|C1+α(S1,Rq) ≤ C

(

sup
t∈[0,T )

|∆u(·, t)|L∞(S1,Rq) + sup
t∈[0,T )

|u(·, t)|L∞(S1,Rq)

)

≤ C,

since u takes values in a compact region of Rq. Here, in the one-dimensional case elliptic
Schauder theory is of course not more than just integrating the right hand side. We can
improve the regularity of the spinor ψ by the same method. Remember that the spinor
ψ ∈ Γ(ΣM ⊗ TRq) solves the elliptic equation

∆ψ =
1

ε
/∂ψ − 1

ε
IIu(du(eα), eα · ψ) + IIu(

∂u

∂t
, ψ) +

∇ψ
∂t

+ 2IIu(du(eα),∇eαψ)

+ (∇eαIIu)(du(eα), ψ) + IIu(τ(u), ψ)).

Again, we estimate the right hand side with the help of the previous estimates

|∆ψ| ≤ C
(

|/∂ψ|+ |du||ψ| + |∂u
∂t

||ψ|+
∣

∣

∇ψ
∂t

∣

∣+ |du||∇ψ| + |du|2|ψ|+ |∇2u||ψ|
)

≤ C

and apply Schauder estimates for elliptic equations

|ψ(·, t)|C1+α(S1,ΣS1⊗TRq)

≤ C

(

sup
t∈[0,T )

|∆ψ(·, t)|L∞(S1,ΣS1⊗TRq) + sup
t∈[0,T )

|ψ(·, t)|L∞(S1,ΣS1⊗TRq)

)

≤ C.

After exploiting the elliptic nature of the evolution equations for (φt, ψt), we now take
the parabolic point of view. Note that u is also a solution of the parabolic system

Lu = IIu(du, du) + P (IIu(du(eα), eα · ψ), ψ) + εP (IIu(du(eα), eα · /∂ψ), ψ)
−εP (IIu(du(eα), eα · ψ), /∂ψ) + εBu(du, ψ, du, ψ)
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with L = ∆− ∂
∂t denoting the heat operator on S1. Utilizing the previous estimate, we

can bound the right hand side by

|IIu(du, du) + P (IIu(du(eα), eα · ψ), ψ) + εP (IIu(du(eα), eα · /∂ψ), ψ)
− εP (IIu(du(eα), eα · ψ), /∂ψ) + εBu(du, ψ, du, ψ)|Cα(S1,Rq) ≤ C.

Finally, we employ Schauder estimates for linear parabolic partial differential equations

|u(·, t)|C2+α(S1,Rq) + |∂u
∂t

(·, t)|Cα(S1,Rq)

≤ C

(

sup
t∈[0,t)

|Lu(·, t)|Cα(S1,Rq) + sup
t∈[0,t)

|u(·, t)|L∞(S1,Rq)

)

≤ C,

which proves the statement concerning the regularity of u.
Again, taking the parabolic point of view, ψ satisfies

Lψ =
1

ε
/∂ψ − 1

ε
IIu(du(eα), eα · ψ) + IIu(

∂u

∂t
, ψ) + IIu(du(eα),∇eαψ) + 2IIu(du(eα),∇eαψ)

+ (∇eαIIu)(du(eα), ψ) + IIu(τ(u), ψ).

with the heat operator L = ∆− ∇
∂t . The right hand side is bounded in Cα such that

|ψ(·, t)|C2+α(S1,ΣS1⊗TRq) + |∇ψ
∂t

(·, t)|Cα(S1,ΣS1⊗TRq)

≤ C

(

sup
t∈[0,t)

|Lψ(·, t)|Cα(S1,ΣS1⊗TRq) + sup
t∈[0,t)

|ψ(·, t)|L∞(S1,ΣS1⊗TRq)

)

≤ C,

which establishes the regularity of the spinor ψ.

Based on the estimates deduced so far, the uniqueness and stability result and the
Schauder theory, we can establish the long-time existence of the evolution equations.

Theorem 4.13 (Long-time Existence). Assume that M = S1, N compact and let
(φt, ψt) ∈ C∞(M × [0, T ), N)×C∞(M × [0, T ),ΣM ⊗φ−1

t TN) be a solution of (4.4) and
(4.5).
Then for any (φ0, ψ0) ∈ C2+α(M,N) × C2+α(M,ΣM ⊗ φ−1

0 TN), there exists a unique

φt ∈ C2+α,1+α/2(M × [0,∞), N) ∪C∞(M × (0,∞), N),

ψt ∈ C2+α,1+α/2(M × [0,∞),ΣM ⊗ φ−1
t TN) ∪ C∞(M × (0,∞),ΣM ⊗ φ−1

t TN),

such that
{

∂φt
∂t = τ(φt)−R(φt, ψt)− εRc(φt, ψt), (x, t) ∈ S1 × (0,∞),

φ(x, 0) = φ0(x),
(4.15)

{

∇̃ψt
∂t = ∆̃ψt − 1

ε
/Dψt, (x, t) ∈ S1 × (0,∞),

ψ(x, 0) = ψ0(x)
(4.16)

holds.
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Proof. The short-time existence of the evolution equations is guaranteed by Theorem
3.22 for a time interval 0 ≤ t ≤ Tmax. We now demonstrate that, for N being compact,
the regularized Dirac-harmonic map heat flow cannot blow up and will exist for all
t ∈ [0,∞). We set

T0 = sup{t ∈ [0,∞) | (4.4), (4.5) have a solution in M × [0, t)}

and show that T0 = ∞. Let us assume the opposite case. We choose a sequence
of numbers {ti} ⊂ [0, T0) such that ti → T0 as i → ∞ and set 0 < α < α′ < 1.
Since S1 is compact, the embeddings Ck+α

′
(S1, N) →֒ Ck+α(S1, N) and in addition

Ck+α
′
(S1,ΣS1 ⊗ φ−1TN) →֒ Ck+α(S1,ΣS1 ⊗ φ−1TN) are compact. By Proposition

4.12, the sequences

{φ(·, ti), ψ(·, ti)} and {∂tφ(·, ti), ∇̃tψ(·, t)}

are in C2+α′
(S1, N)×C2+α′

(S1,ΣS1⊗φ−1TN) and Cα
′
(S1, N)×Cα′

(S1,ΣS1⊗φ−1TN).
Hence, there exists a subsequence {tik} of {ti} with

(φ(·, T0), ψ(·, T0)) ∈ C2+α′
(S1, N)× C2+α′

(S1,ΣS1 ⊗ φ−1TN),

(∂tφ(·, T0), ∇̃tψ(·, T0)) ∈ Cα
′
(S1, N)× Cα

′
(S1,ΣS1 ⊗ φ−1TN)

such that
{φ(·, tik ), ψ(·, tik )} and {∂tφ(·, tik ), ∇̃tψ(·, tik)}

converge uniformly to (φ(·, T0), ψ(·, T0)) and (∂tφ(·, T0), ∇̃tψ(·, T0)), as tik → T0. This is
true for each tik

∂φ

∂t
(·, tik) = (τ(φ) −R(φ,ψ) − εRc(φ,ψ))(·, tik ),

∇̃ψ
∂t

(·, tik) = (∆̃ψ − 1

ε
/Dψ)(·, tik )

and, consequently, also at T0. Hence, (4.15), (4.16) have a solution in S1 × [0, T0].
We can now again apply the short-time existence Theorem 3.22 with initial values
(φ(·, T0), ψ(·, T0)). For δ > 0 we then get a solution

{

∂φt
∂t = τ(φt)−R(φt, ψt)− εRc(φt, ψt), (x, t) ∈ S1 × (T0, T0 + δ),

φ(x, T0) = φ0(x),
{

∇̃ψt
∂t (x) = ∆̃ψt(x)− 1

ε
/Dψt(x), (x, t) ∈ S1 × (T0, T0 + δ),

ψ(x, T0) = ψ0(x)

in

φ ∈ C2+α,1+α/2(S1 × [T0, T0 + δ), N),

ψ ∈ C2+α,1+α/2(S1 × [T0, T0 + δ),ΣS1 ⊗ φ−1TN).
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We realize that both solutions coincide on S1 × {T0} and for this reason, we can glue
them to a solution with existence interval [0, T0 + δ). Moreover, applying the regularity
Theorem 3.24, we find that this solution is smooth. As a matter of fact, the system
(4.15), (4.16) has a smooth solution in [0, T0 + δ) contradicting the definition of T0. The
uniqueness of (φt, ψt) follows from Theorem 4.11.

4.4. Convergence

In this section, we want to discuss under which assumptions and in which sense the evo-
lution equations for regularized Dirac-harmonic maps converge as t→ ∞. To this end, it
is necessary to improve the estimates derived in the previous sections. In particular, we
need uniform estimates that do not depend on t. We have already seen in the previous
analysis that restrictions on the manifolds M and N do not improve the behaviour of
the evolution equations. First of all, we will see that the issue of convergence depends
crucially on the norm of the spinor ψt.

Proposition 4.14. Assume that M = S1 with fixed spin structure, N compact and let
(φt, ψt) ∈ C∞(M × [0,∞), N) × C∞(M × [0,∞),ΣM ⊗ φ−1

t TN) be a solution of (4.4)
and (4.5). If we find a uniform bound on the spinor ψt, namely

|ψt|2 ≤ C,

then we get a uniform bound on

|dφt|2 + ε| /Dψt|2 ≤ C (4.17)

for all t ∈ [0,∞). The constant C depends on M,N, ε, ψ0, dφ0 and /Dψ0.

Proof. By assumption, we have a uniform bound on |ψt|2. To derive the uniform bound
on |dφt|2 and | /Dψt|2, we go back into the proof of Theorem 4.7. By the bound on |ψt|2,
we find that the quantity Ft :=

1
2(|dφt|2 + ε| /Dψt|2) satisfies

∂Ft
∂t

≤ ∆Ft +
C

ε2
Ft.

From the inequality Eε(φt, ψt) ≤ Eε(φ0, ψ0), the bound on ψt and Young’s inequality,
we deduce

ˆ

M
(|dφt|2 + ε| /Dψt|2)dM ≤ C.

Applying (B.13), the estimates on |dφt|2 and | /Dψt|2 follow.

By the estimate just derived, we are now able to bound the t derivatives of φt and ψt
uniformly.
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Lemma 4.15. Assume that M = S1 with fixed spin structure, N compact and let
(φt, ψt) ∈ C∞(M × [0,∞), N) × C∞(M × [0,∞),ΣM ⊗ φ−1

t TN) be a solution of (4.4)
and (4.5). If we can control the norm of ψt uniformly, then we find

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

∣

∣

2 ≤ C (4.18)

for all t ∈ [0,∞). The constant C depends on M,N, ε, ψ0, dφ0 and /Dψ0.

Proof. By Theorem 4.9, the quantity Gt :=
1
2

(

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

∣

∣

2
)

satisfies the inequality

∂Gt
∂t

≤ ∆Gt + Z(t)Gt.

Applying the bounds on |ψt|2, |dφt|2 and | /Dψt|2, we find that Z(t) is uniformly bounded
such that Gt satisfies

∂Gt
∂t

≤ ∆Gt + CGt.

Integrating over M and with respect to t yields

ˆ

M

(

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

∣

∣

2

)

dM ≤ C

ˆ ∞

0

ˆ

M

(

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

∣

∣

2

)

dMdt

+

ˆ

M

(

∣

∣

∂φt
∂t

∣

∣

2

t=0
+
∣

∣

∇̃ψt
∂t

∣

∣

2

t=0

)

dM

≤ Eε(φ0, ψ0) + C

≤ C.

The assertion follows from applying (B.13) again.

We realize that the convergence of the evolution equations depends crucially on the
norm of ψt. One way of controlling the norm of ψt is to choose the parameter ε large
enough such that the parabolic nature of the evolution equation for ψt dominates, which
basically means that the second order term is sufficiently large to control the first order
one.

Proposition 4.16. Assume that M = S1 with fixed spin structure, N compact and let
(φt, ψt) ∈ C∞(M × [0,∞), N) × C∞(M × [0,∞),ΣM ⊗ φ−1

t TN) be a solution of (4.4)
and (4.5). For ε ≥ 1 we get a uniform bound of |ψt|2 for all t ∈ [0,∞).

Proof. Using the evolution equation (4.5), we calculate

∂

∂t

1

2

ˆ

M
|ψt|2dM = −

ˆ

M
| /Dψt|2dM +

1

ε

ˆ

M
〈ψt, /Dψt〉dM

≤ −
ˆ

M
|∇̃ψt|2dM +

1

ε

ˆ

M
|ψt||∇̃ψt|dM

≤ (
1

ε
− 1)

ˆ

M
|∇̃ψt|2dM,
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where we used the Cauchy-Schwarz inequality and the Poincaré inequality on S1. After
integration with respect to t we find for ε ≥ 1

ˆ

M
|ψt|2dM ≤

ˆ

M
|ψ0|2dM.

We have already seen that |ψt|2 satisfies the pointwise equation

∂

∂t

1

2
|ψt|2 ≤ ∆

1

2
|ψt|2 +

1

4ε2
|ψt|2,

and by (B.13) we get a uniform bound on |ψt|2.

Remark 4.17. Of course, it would be much nicer if one could bound the norm of ψt
while keeping the regularizing parameter ε small. Unfortunately, this does not seem to
be possible.

After having derived pointwise uniform bounds, the regularity of (φt, ψt) can be improved
by applying Schauder estimates again. The convergence of the evolution equations can
now be derived by standard methods.

Lemma 4.18 (Convergence). Assume that M = S1, N compact and suppose that
(φt, ψt) ∈ C∞(M× [0,∞), N)×C∞(M× [0,∞),ΣM⊗φ−1

t TN) is a solution of (4.4) and
(4.5). If ε ≥ 1 then (φt, ψt) converges to a regularized Dirac-harmonic map (φ∞, ψ∞) in
C2(M,N) ×C2(M,ΣM ⊗ φ−1

t TN).

Proof. First of all, we improve the regularity of our estimates with the help of Schauder
theory, as in Proposition 4.12 and find

sup
t∈[0,∞)

(

|φ(·, t)|C2+α(M,N) +
∣

∣

∂φ

∂t
(·, t)

∣

∣

Cα(M,N)

)

≤ C,

sup
t∈[0,∞)

(

|ψ(·, t)|C2+α(M,ΣM⊗φ−1
t TN) +

∣

∣

∇̃ψ
∂t

(·, t)
∣

∣

Cα(M,ΣM⊗φ−1
t TN)

)

≤ C,

but now the constants C do not depend on t. In addition, we have the estimate from
the inequality for the energy Eε(φ,ψ)

ˆ ∞

0

ˆ

M

(

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

∣

∣

)

dMdt ≤ C.

Hence, there exists a subsequence tk such that as k → ∞ we have

∣

∣

∂φ(·, tk)
∂t

∣

∣

2

L2(M×[0,∞))
→ 0,

∣

∣

∇̃ψ(·, tk)
∂t

∣

∣

2

L2(M×[0,∞))
→ 0.
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Using Schauder estimates again,

sup
t∈[0,∞)

(

|φ(·, tk)|C2+α(M,N) +
∣

∣

∂φ

∂t
(·, tk)

∣

∣

Cα(M,N)

)

≤ C,

sup
t∈[0,∞)

(

|ψ(·, tk)|C2+α(M,ΣM⊗φ−1
t TN) +

∣

∣

∇̃ψ
∂t

(·, tk)
∣

∣

Cα(M,ΣM⊗φ−1
t TN)

)

≤ C,

it follows from the Theorem of Arzela Ascoli that there exists a convergent subse-
quence, which is also denoted by tk, such that the pair (φtk , ψtk) converges in the space
C2(M,N)×C2(M,ΣM ⊗φ−1

t TN) to a limiting map (φ∞, ψ∞). Since (φt, ψt) is smooth
in t, we find that (φ∞, ψ∞) is homotopic to (φ0, ψ0).

The smoothness of the limiting map (φ∞, ψ∞) follows from elliptic estimates, see Theo-
rem 3.24.

Remark 4.19. In the case of the harmonic map heat flow and the assumption KN ≤ 0,
it is known that the limit k → ∞ is independent of the chosen subsequence. This result
is known as Hartmann’s theorem [Har67] and makes use of the fact that the second
variation of the energy functional is positive. In the case of regularized Dirac-harmonic
maps, the second variation of the energy functional Eε(φ,ψ) is not positive and we
cannot derive an analogue of Hartmann’s theorem.

The next Lemma shows that the critical points of E(φ,ψ) and Eε(φ,ψ) are related to
each other.

Lemma 4.20 (Critical points of Eε(φ,ψ) and E(φ,ψ)). For ε 6= − 1
λ , where λ is an

eigenvalue of the twisted Dirac-operator /D, the regularized functional Eε(φ,ψ) has the
same critical points as E(φ,ψ).

Proof. The critical points of the functional E(φ,ψ) are given by

τ(φ) = R(φ,ψ), /Dψ = 0

whereas the critical points of the regularized functional Eε(φ,ψ) are given by

τ(φ) = R(φ,ψ) + εRc(φ,ψ), /Dψ + ε /D
2
ψ = 0.

It is clear, that if (φ,ψ) is a Dirac-harmonic map, then it is also a regularized Dirac-
harmonic map.
The other direction is slightly more subtle. Assume that (φ,ψ) is a regularized Dirac-
harmonic map. Using the equation for ψ and integrating over S1, we obtain

ˆ

M
〈ψ, /Dψ〉dM + ε

ˆ

M
| /Dψ|2dM = 0.

For this equation to hold, either ψ must be trivial or ψ+ε /Dψ = 0. But we have chosen ε
in such a way that the second possibility is excluded. We conclude that /Dψ = 0. Hence,
Rc(φ,ψ) = 0 and therefore the pair (φ,ψ) is a Dirac-harmonic map.
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4.5. Removing the Regularization

By the considerations we did so far, we have obtained a regularized Dirac-harmonic map.
Namely, we constructed a smooth solution to the problem

∆φ∞ = Γ(φ∞)(dφ∞, dφ∞) +R(φ∞, ψ∞) + εRc(φ∞, ψ∞),

ε∆̃ψ∞ = /Dψ∞.

To obtain a Dirac-harmonic map, we have to remove the regularization and let ε→ 0. It
is easy to see that all estimates that were derived when studying the evolution equations
for (φ,ψ) do not survive the limit ε → 0. But since we are dealing with a variational
problem, we still have an inequality for the energy Eε(φ,ψ) and together with the Euler-
Lagrange equations for Dirac-harmonic maps we can infer estimates.
After taking the limit ε→ 0, the pair (φ∞, ψ∞) solves

∆φ∞ = II(dφ∞(eα), dφ∞(eα)) + P (II(eα · ψ∞, dφ∞(eα)), ψ∞), (4.19)

/∂ψ∞ = II(eα · ψ∞, dφ∞(eα)), (4.20)

where we again embedded the target manifold N in some R
q.

An important tool for our analysis will now be Morrey’s inequality in one dimension,
which states

|φ|
C0, 12

≤ C|φ|H1,2 .

Plugging the equation for /Dψ∞ into the inequality for the energy functional E(φ,ψ), we
acquire the uniform bound

ˆ

M
|dφ∞|2dM ≤ E(φ0, ψ0) ≤ C,

which enables us to deduce
ˆ

M
|∆φ∞|dM ≤ C

ˆ

M
(|dφ∞|2 + |ψ∞|2|dφ∞|)dM.

Since ψ∞ takes its values on S1, its L∞ norm can be bounded by a constant. Hence, we
get that φ∞ ∈ H2,1(S1, N). Applying the Sobolev embedding theorem in one dimension,
we find φ∞ ∈ H1,p(S1, N) for some p < ∞. Utilizing the equation for φ∞ again, we
conclude that φ∞ ∈ H2,q(S1, N) for some q ≥ 2. By the Sobolev embedding theorem
we get that dφ∞ ∈ L∞(S1, N), and by the Schauder estimates, we may conclude that
φ∞ ∈ C1+α(S1, N). From the equation for ψ∞, we deduce

ˆ

M
|/∂ψ∞|2dM ≤ C

ˆ

M
|dφ∞|2dM ≤ C.

Using Morrey’s inequality, we find ψ∞ ∈ C0, 1
2 (S1,ΣS1⊗φ−1

∞ TN). Using the equation for
φ∞ again, we find φ∞ ∈ C2+α(S1, N). This can then be used to improve the regularity
of ψ∞. Iterating this procedure, we conclude that the pair (φ∞, ψ∞) is smooth.
This completes the proof of Theorem 4.1.
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Remark 4.21. Unfortunately, it is not possible to decide if the limiting map (φ∞, ψ∞)
is a coupled or an uncoupled Dirac-harmonic map. Moreover, it could also happen that
the spinor ψ becomes trivial as ε→ 0.
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5. Dirac-harmonic Maps from Riemann

Surfaces

5.1. Introduction and Results

Throughout this chapter we assume that (M,h) is a closed, oriented Riemannian surface
with fixed spin structure. It is known that every orientable Riemannian surface admits
a spin structure, the number of different spin structures can be counted by the genus of
the surface, see for example [LM89], p. 88. Thus, it is a topological information.
Again, we study the evolution equations (with (φ0(x), ψ0(x)) = (φ(x, 0), ψ(x, 0)))

∂φt
∂t

= τ(φt)−R(φt, ψt)− εRc(φt, ψt), (5.1)

∇̃ψt
∂t

= ε∆̃ψt − /Dψt. (5.2)

The aim of this chapter is to prove a result similar to Struwe’s result [Str85] for the
harmonic map heat flow from surfaces. Due to the coupling between the fields φ and ψ
new analytical difficulties arise. Our final result is given by the following

Theorem 5.1. Suppose (M,h) is a closed Riemannian surface with fixed spin structure
and (N, g) is a closed Riemannian manifold. Then for any smooth initial data (φ0, ψ0)
and ε sufficiently large, there exists a global distribution solution

φ : M × [0,∞) → N, ψ : M × [0,∞) → ΣM ⊗ φ−1TN

of (5.1) and (5.2) on M × [0,∞), which is smooth away from at most finitely many
singular points (xk, tk), 1 ≤ k ≤ K with K = K(ε). The solution is unique in this class.
The pair (φ(·, t), ψ(·, t)) converges weakly in H1,2(M,N)×H1,2(M,ΣM ⊗ φ−1

t TN) to a
regularized Dirac-harmonic map (φ∞, ψ∞) as t → ∞ suitably and smoothly away from
finitely many points (xk, tk = ∞). The pair (φ∞, ψ∞) is smooth on M \ {x1, . . . , xK}.

In addition, we sketch how to perform a blowup analysis of the singular points. Namely,
at each singular point (xk, tk) a non-constant, smooth harmonic map φ̄ : S2 → N
separates such that for sequences Rm → 0, tm → t, xm → x as m→ ∞, we have

φm(x) = φ(expxm(Rmx), tm) → φ̄ in H2,2
loc (R

2, N).

The spinor ψ becomes trivial during the blowup process.
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CHAPTER 5. DIRAC-HARMONIC MAPS FROM RIEMANN SURFACES

Remark 5.2. By studying the classical results for the harmonic map heat flow in dimen-
sion two we can get an idea what to expect when analyzing the evolution equations for
regularized Dirac-harmonic maps. It would be quite a surprise if the more complicated
regularized Dirac-harmonic map heat flow would behave better analytically than the
harmonic map heat flow. We cannot hope to find a global smooth solution, as already
the harmonic map heat flow develops singularities in finite time [CD90]. In addition,
we cannot expect to find a unique solution in general since in [BDPvdH02] and [Top02],
solutions that are different from Struwe’s solution, were constructed.

Remark 5.3. Assume that M is a compact Riemann surface. Then the following terms
are invariant under conformal transformations:

ˆ

M
|dφ|2dM,

ˆ

M
〈ψ, /Dψ〉dM,

ˆ

M
|ψ|4dM.

A proof can for example be found in [CJLW06], p. 416, Lemma 3.1. In particular,
this means that the Dirac-harmonic map functional E(φ,ψ) is conformally invariant in
dimension two. We will see later that the L4 norm of the spinor ψ plays an important
role in the context of a removable singularity theorem. On the other hand, we note that
through the regularization the conformal invariance is broken.

5.2. Energy Estimates and Monotonicity Formulas

In the case that M = S1 we could derive pointwise energy estimates by the maximum
principle. These estimates cannot be carried over for M being a closed Riemannian
surface due to several non-linearities. Consequently, we are forced to establish integral
estimates, both locally on balls and globally on the whole surface M . Before we do so,
we will shortly present the tools that we are using in the following.
The first one is a covering argument due to Struwe [Str85], p. 563, Lemma 3.3.

Lemma 5.4. There exist constants K,R0 > 0 depending only on the manifold M such
that for any R ∈ (0, R0], there exists a cover on M by balls BR

2
(xi) with the property

that at any point x ∈M at most K of the balls BR(xi) meet.

We will often make use of the following Sobolev type inequality:

Lemma 5.5. Assume that v ∈ H1,2(M). Then the following inequality holds:
ˆ

M
|v|4dM ≤ C

ˆ

M
|v|2dM

ˆ

M
|∇v|2dM. (5.3)

Proof. The statement follows directly from the two-dimensional Sobolev embedding
|v|L2 ≤ C|∇v|L1 and the Cauchy-Schwarz inequality.

In addition, we need a local version of the Sobolev inequality from above. Therefore, we
set Q =M×[0, T ). By BR(x) we denote the geodesic ball of radius R around x ∈M and
iM denotes the injectivity radius of M . In terms of these quantities we can formulate
the following:
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Lemma 5.6 (Local Sobolev inequality). Assume that v ∈ H1,2(M). Then there exists
a constant C such that for any R ∈ (0, iM ) the following inequality holds:

ˆ

Q
|∇v|4dMdt ≤ C sup

(x,t)

ˆ

BR(x)

|∇v|2dM
(
ˆ

Q
|∇2v|2dMdt+

1

R2

ˆ

Q
|∇v|2dMdt

)

. (5.4)

Proof. A proof can for example be found in [Str08], p. 225, Lemma 6.7.

Lemma 5.7. If dim(M) = 2 the space C∞(M,N) is dense in H1,2(M,N).

Due to this Lemma sequences in H1,2(M,N) can be approximated by smooth ones.

As a first step, we want to obtain a pointwise bound for the norm of the spinor ψt.

Lemma 5.8. Let ψt ∈ C2(M × [0, T ),ΣM ⊗ φ−1
t TN)) be a solution of (5.2). We get a

uniform bound on ψt

|ψt|2L∞(M×[0,T )) ≤ Ce
1
ε , (5.5)

if ε is large enough. The constant C depends on M and the L2 norm of ψ0.

Proof. First of all, we derive a pointwise estimate using (5.2)

∂

∂t

1

2
|ψt|2 =

ε

2
∆|ψt|2 − 〈ψt, /Dψt〉 − ε|∇̃ψt|2

≤ ε

2
∆|ψt|2 +

√
2|ψt||∇̃ψt| − ε|∇̃ψt|2

≤ ε

2
∆|ψt|2 +

1

2ε
|ψt|2.

If in addition we can also bound the L2 norm of the spinor ψt, we get a uniform pointwise
bound on ψt by (B.13). Therefore, we compute

∂

∂t

1

2

ˆ

M
|ψt|2dM = −

ˆ

M
〈ψt, /Dψt〉dM − ε

ˆ

M
|∇̃ψt|2dM

≤
(
ˆ

M
|ψt|2dM

)
1
2
(
ˆ

M

√
2|∇̃ψt|2dM

)
1
2

− ε

ˆ

M
|∇̃ψt|2dM

≤ (2
1
4CS

√

vol(M) − ε)

ˆ

M
|∇̃ψ|2dM,

where we used the Sobolev embedding theorem in dimension two. Thus, if the regular-
izing parameter ε is large enough, we have obtained a uniform bound on the L2 norm of
ψt.

Since our evolution equations are originating from a variational problem, we get bounds
in terms of the initial data (φ0, ψ0).
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Lemma 5.9. Let (φt, ψt) ∈ C2(M × [0, T ), N) × C2(M × [0, T ),ΣM ⊗ φ−1
t TN) be a

solution of (5.1) and (5.2). If
´

M |ψt|2dM ≤ C we have for all t ∈ [0, T )

ˆ

M
(|dφt|2 + ε|∇̃ψt|2)dM +

ˆ

Q

(

∣

∣

∣

∣

∂φt
∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∇̃ψt
∂t

∣

∣

∣

∣

2
)

dMdt ≤ C.

The constant C depends on M,ε,Eε(φ0, ψ0) and ψ0.

Proof. A direct consequence of the gradient flow is the following equality

Eε(φt, ψt) +

ˆ

Q

(

∣

∣

∣

∣

∂φt
∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∇̃ψt
∂t

∣

∣

∣

∣

2
)

dMdt = Eε(φ0, ψ0).

Subtracting 1
2〈ψt, /Dψt〉 on both sides and using

−1

2
〈ψt, /Dψt〉 ≤

ε

8
|∇̃ψt|2 +

1

2ε
|ψt|2,

we get the desired result.

In the following we will often need the following combination of quantities

Eε(φt, ψt, BR) :=
1

2

ˆ

BR

(|dφt|2 + 〈ψt, /Dψt〉+ ε|∇̃ψt|2)dM,

F (φt, ψt, BR) :=
1

2

ˆ

BR

(|dφt|2 + ε|∇̃ψt|2)dM,

F (φt, ψt) :=
1

2

ˆ

M
(|dφt|2 + ε|∇̃ψt|2)dM.

For the further analysis it turns out to be useful to introduce the following function
space:

V :=

{

sup
0≤t≤T

F (φt, ψt) +

ˆ

Q
(|∇2φ|2 + |∇̃2ψ|2)dQ+

ˆ

Q

(

∣

∣

∣

∣

∂φt
∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∇̃ψt
∂t

∣

∣

∣

∣

2
)

dQ

}

.

The next Lemma is the analogue of Lemma 3.6 from [Str85]. We want to get local
bounds of the L2 norms of dφt and ∇̃ψt.

Lemma 5.10. Let (φt, ψt) ∈ V be a solution of (5.1) and (5.2). There exists a constant
C such that for R ∈ (0, iM ) and any (x, t) ∈ Q there holds the estimate

Eε(φt, ψt, BR) ≤
C

R2

ˆ

Q
(|dφt|2 + |ψt|2 + ε2|∇̃ψt|2)dMdt+ Eε(φ0, ψ0, B2R), (5.6)

where the constant C only depends on M .
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Proof. First of all, we choose a smooth cut-off function η with the following properties

η ∈ C∞(M), η ≥ 0, η = 1 on BR(x0),

η = 0 on M \B2R(x0), |∇η|L∞ ≤ C

R
,

where again BR(x0) denotes the geodesic ball of radius R around x0 ∈M . In addition,
we choose an orthonormal basis {eα, α = 1, 2} on M such that ∇eαeβ = ∇∂teα = 0 at
the considered point. By a direct calculation we find

∂

∂t

1

2
|dφt|2 = ∂eα〈

∂φt
∂t

, dφt(eα)〉 − 〈∂φt
∂t

, τ(φt)〉,

∂

∂t

1

2
〈ψt, /Dψt〉 = −∂eα

1

2
〈∇̃ψt
∂t

, eα · ψt〉+ 〈∇̃ψt
∂t

, /Dψt〉+ 〈∂φt
∂t

,R(φt, ψt)〉,

∂

∂t

1

2
|∇̃ψt|2 = 〈Rc(φt, ψt),

∂φt
∂t

〉+ ∂eα〈
∇̃ψt
∂t

, ∇̃eαψt〉 − 〈∇̃ψt
∂t

, ∇̃eα∇̃eαψt〉.

Multiplying each of the terms with the cut-off function η2, adding up the three terms
and using the evolution equations (5.1) and (5.2), we find

∂

∂t

1

2

ˆ

M
η2(|dφt|2 + 〈ψt, /Dψt〉+ ε|∇̃ψt|2)dM +

ˆ

M
η2

(

∣

∣

∣

∣

∇̃ψt
∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂φt
∂t

∣

∣

∣

∣

2
)

dM

=

ˆ

M
η2∂eα

(

〈∂φt
∂t

, dφt(eα)〉 −
1

2
〈∇̃ψt
∂t

, eα · ψt〉 − ε〈∇̃ψt
∂t

, ∇̃eαψt〉
)

dM.

Using integration by parts we derive
ˆ

M
η2∂eα〈

∂φt
∂t

, dφt(eα)〉dM ≤ C

ˆ

M
|η||∇η||∂φt

∂t
||dφt|dM,

ˆ

M
η2∂eα〈

∇̃ψt
∂t

, eα · ψt〉dM ≤ C

ˆ

M
|η||∇η|| ∇̃ψt

∂t
||ψt|dM,

ˆ

M
η2∂eα〈

∇̃ψt
∂t

, ∇̃eαψt〉dM ≤ C

ˆ

M
|η||∇η|| ∇̃ψt

∂t
||∇̃ψt|dM.

Applying Young’s inequality and by the properties of the cut-off function η, we find

∂

∂t
Eε(φt, ψt, BR) ≤

C

R2

ˆ

M
(|dφt|2 + |ψt|2 + ε2|∇̃ψt|2)dM.

Integration with respect to t yields the result.

We can use the previous Lemma to formulate monotonicity formulas for F (φt, ψt, BR),
namely by Young’s inequality and the “monotonicity formula” for the local energy
Eε(φt, ψt, BR), we get

F (φt, ψt, BR) ≤ 2Eε(φ0, ψ0, B2R) + C
T

R2
+

1

2ε

ˆ

BR

|ψt|2dM. (5.7)
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Roughly speaking, we want to make the left hand side of this inequality as small as we
have to. This can be achieved by choosing the initial data (φ0, ψ0), the radius R of the
ball BR and the time T appropriately. More precisely, we get the following

Corollary 5.11. Let (φt, ψt) ∈ V be a solution of (5.1) and (5.2). Assume that
|ψt|L∞(M×[0,T )) ≤ C. Then there exists a constant δ1 such that for R ∈ (0, iM ) and
any (x, t) ∈ Q there holds the estimate

sup
(x,t)∈Q

F (φt, ψt, BR) ≤ δ1. (5.8)

Proof. From Lemma 5.10 and the bound on the norm of ψt, it follows that for any δ1
and (φ0, ψ0) suitably, there exists a number R > 0 for which

sup
x∈M

(

2Eε(φ0, ψ0, B2R) +
1

2ε

ˆ

BR

|ψt|2dM
)

<
δ1
2
. (5.9)

For T1 =
δ1R2

2C we then get

sup
x∈M

0≤t≤T1

F (φt, ψt, BR(x)) ≤ δ1,

such that the desired estimate holds.

In order to turn the Laplace type terms into full second derivatives, we will make use of
the following Bochner type formulas:

Lemma 5.12 (Bochner type formulas). For a map φ : M → N and a spinor along the
map ψ ∈ Γ(ΣM ⊗ φ−1TN) the following Bochner type formulas hold:
ˆ

M
|τ(φ)|2dM =

ˆ

M
|∇dφ|2dM −

ˆ

M
〈RN (dφ(eα), dφ(eβ))dφ(eα), dφ(eβ)〉dM

+

ˆ

M
〈dφ(RicM (eβ)), dφ(eβ)〉dM. (5.10)

ˆ

M
|∆̃ψ|2dM =

ˆ

M
|∇̃2ψ|2dM + 〈RE1(eα, eβ)∇̃eβψ, ∇̃eαψ〉E1dM

+〈RE2(eα, eβ)ψ, ∇̃eβ∇̃eαψ〉E2dM (5.11)

with the vector bundles E1 = T ∗M ⊗ΣM ⊗ φ−1TN and E2 = T ∗M ⊗ E1.

Proof. The first statement follows from

∇eβ∇eαdφ(eα) = ∇eα∇eβdφ(eα) +RN (dφ(eβ), dφ(eα))dφ(eα)− dφ(RicM (eβ))

and integration by parts. For the second statement we compute
ˆ

M
|∇̃∗

eα∇̃eαψ|2dM =

ˆ

M
〈∇̃eβ∇̃∗

eα∇̃eαψ, ∇̃eβψ〉dM

=

ˆ

M
〈∇̃∗

eα∇̃eβ∇̃eαψ, ∇̃eβψ〉dM + 〈RE1(eα, eβ)∇̃eβψ, ∇̃eαψ〉dM.
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Using integration by parts again and interchanging second derivatives the curvature term
on the bundle E2 pops up.

We are now able to bound the L2 norm of the second derivatives of (φt, ψt) onM×[0, T ).

Theorem 5.13. Let (φt, ψt) ∈ V be a solution of (5.1) and (5.2) and moreover, as-
sume that |ψt|L∞(M×[0,T )) ≤ C. For R ∈ (0, iM ) there exists δ1 > 0 such that if
sup(x,t)∈M×[0,T ) F (φt, ψt, BR(x)) < δ1, we have for all t ∈ [0, T )

ˆ

Q

(

|∇dφt|2 + ε2|∇̃2ψt|2
)

dMdt ≤ C

(

1 +
T

R2

)

, (5.12)

where the constant C depends on M,N, ε, ψ0, dφ0 and ∇̃ψ0.

Proof. Using the evolution equations (5.1) and (5.2), we compute

∂

∂t

1

2

ˆ

M
(|dφt|2 + ε|∇̃ψt|2)dM +

ˆ

M
(|τ(φt)|2 + ε2|∆̃ψt|2)dM

=

ˆ

M
(ε〈R(φt, ψt),Rc(φt, ψt)〉+ ε〈∆̃ψt, /Dψt〉 − ε2|Rc(φt, ψt)|2)dM

+

ˆ

M
(〈τ(φt),R(φt, ψt) + 2εRc(φt, ψt)〉)dM.

Applying Young’s inequality and estimating the terms on the right hand side, we get

∂

∂t

1

2

ˆ

M
(|dφt|2 + ε|∇̃ψt|2)dM +

1

2

ˆ

M
|τ(φt)|2 + ε2|∆̃ψt|2)dM

≤
ˆ

M

(1

2
|R(φt, ψt)|2 + ε〈R(φt, ψt),Rc(φt, ψt)〉+ ε2|Rc(φt, ψt)|2 +

1

2
| /Dψt|2

)

dM

≤ C

ˆ

M
(|dφt|2|ψt|4 + ε2|dφt|2|∇̃ψt|2|ψt|2 + |∇̃ψt|2)dM

≤ C

ˆ

M
(|dφt|2 + ε2|dφt|2|∇̃ψt|2 + |∇̃ψt|2)dM.

As a next step we transform the Laplace type terms into second derivatives, therefore
we apply the Bochner type formulas (5.10), (5.11), from which we get

∂

∂t

1

2

ˆ

M
(|dφt|2 + ε|∇̃ψt|2)dM + C

ˆ

M
(|∇dφt|2 + ε2|∇̃2ψt|2)dM

≤ C

(
ˆ

M
(|dφt|2 + |∇̃ψt|2)dM +

ˆ

M
(|dφt|4 + ε2|∇̃ψt|4)dM + C

)

,

where we estimated all curvature contributions. Finally, we apply the local Sobolev
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inequality (5.4) to
´

M |dφt|4dM and
´

M |∇̃ψt|4dM , which leads to

∂

∂t

1

2

ˆ

M
(|dφt|2 + ε|∇̃ψt|2)dM + C

ˆ

M
(|∇dφt|2 + ε2|∇̃2ψt|2)dM

≤ C

(
ˆ

M
(|dφt|2 + |∇̃ψt|2)dM +

δ1
R2

ˆ

M
(|dφt|2 + ε|∇̃ψt|2)dM

+ δ1

ˆ

M
(|∇dφt|2 + ε2|∇̃2ψt|2)dM + C

)

.

Choosing δ1 small enough, the terms containing the second derivatives on the right hand
side can be absorbed into the left hand side. Integrating with respect to t yields the
result.

Using the bounds on the second derivatives, we can apply the Sobolev embedding theo-
rem to bound

´

Q |dφt|4dMdt and
´

Q |∇̃ψt|4dMdt.

Corollary 5.14. Let (φt, ψt) ∈ V be a solution of (5.1) and (5.2). In addition, as-
sume that |ψt|L∞(M×[0,T )) ≤ C. Then for R ∈ (0, iM ) there exists δ1 > 0 such that if
sup(x,t)∈M×[0,T ) F (φt, ψt, BR(x)) < δ1, we have for all t ∈ [0, T )

ˆ

Q
|dφt|4dMdt ≤ Cf1(t), (5.13)

ˆ

Q
|∇̃ψt|4dMdt ≤ Cf2(t), (5.14)

with fi(t) satisfying fi(t) → 0 as t→ 0 for i = 1, 2. In particular, we also get the bounds

ˆ

Q
|du|4dMdt ≤ Cf1(t), (5.15)

ˆ

Q
(|∇ψ|4 + |II(ψ, du(eα))|4)dMdt ≤ Cf2(t) (5.16)

using the isometric embedding ι. Here, u = ι ◦φ :M → R
q and ψ ∈ Γ(ΣM ⊗TRq). The

constant C depends on M,N, ε, ψ0, dφ0 and ∇̃ψ0.

Proof. The bounds follow from the Sobolev embedding in two dimensions and the pre-
vious estimates, namely

ˆ

Q
|dφt|4dMdt ≤ C

ˆ

Q
|dφt|2dMdt

ˆ

Q
|∇dφt|2dMdt

≤ Cf1(t).

The estimate on
´

Q |∇̃ψt|4dMdt can be derived by the same method.
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Corollary 5.15. Choosing δ1 small enough and integrating over a small time interval
|t− s| ≤ δ2, we can achieve

ˆ t

s

ˆ

M
|dφt|4dMdt ≤ C,

ˆ t

s

ˆ

M
|∇̃ψt|4dMdt ≤ C (5.17)

and the right hand side can be made as small as needed. The constant C depends on
M,N,R, δ1, δ2, ε, ψ0, dφ0 and ∇̃ψ0.

So far, we have derived integral estimates of the second derivatives on Q = M × [0, T ).
In order to turn these estimates into estimates on M , we have to gain control over the
derivatives with respect to t of the pair (φt, ψt). For this purpose we make use of the
following

Lemma 5.16. Let (φt, ψt) ∈ V be a solution of (5.1) and (5.2). Then we have for all
t ∈ [0, T )

∂

∂t

1

2

ˆ

M

∣

∣

∂φt
∂t

∣

∣

2
dM =

ˆ

M

(

− |∇∂φt
∂t

|2 + 〈RN (dφt(eα),
∂φt
∂t

)dφt(eα),
∂φt
∂t

〉 (5.18)

−〈∇
∂t

R(ψt, φt),
∂φt
∂t

〉 − ε〈∇
∂t

Rc(ψt, φt),
∂φt
∂t

〉
)

dM

∂

∂t

1

2

ˆ

M

∣

∣

∇̃ψt
∂t

∣

∣

2
dM =

ˆ

M

(

− ε
∣

∣∇̃∇̃ψt
∂t

∣

∣

2 − 〈∇̃ψt
∂t

,
∇̃
∂t

/Dψt〉 (5.19)

+ε〈∇̃ψt
∂t

,RE1(∂t, eα)∇̃eαψt〉 − ε〈∇̃eα

∇̃ψt
∂t

,RE1(∂t, eα)ψt〉
)

dM

with the vector bundle E1 = T ∗M ⊗ ΣM ⊗ φ−1
t TN .

Proof. The first equation directly follows from integrating the pointwise equation (3.8)
and the divergence theorem. For the second one consider

∂

∂t

1

2

∣

∣

∇̃ψt
∂t

∣

∣

2
= 〈 ∇̃

∂t
(− /Dψt + ε∆̃ψt),

∇̃ψt
∂t

〉.

Commuting space and time derivatives, we find

∇̃
∂t

∇̃∗
eα∇̃eαψ = RE1(∂t, eα)∇̃eαψ + ∇̃eαR

E1(∂t, eα)ψ + ∇̃∗
eα∇̃eα

∇̃ψ
∂t

with the vector bundle E1 = T ∗M ⊗ ΣM ⊗ φ−1
t TN . Combining both equations and

integrating by parts yields the result.

Theorem 5.17. Let (φt, ψt) ∈ V be a solution of (5.1) and (5.2). Furthermore, assume
that |ψt|L∞(M×[0,T )) ≤ C. For τ > 0, provided sup(x,t)∈M×[0,T ) F (φt, ψt, BR(x))) < δ1 is
small enough, we get that

sup
2τ≤t≤T

ˆ

M

(

|∂φ(·, t)
∂t

|2 + | ∇̃ψ(·, t)
∂t

|2
)

dM ≤ C(1 + τ−1), (5.20)

where the constant C depends on M,N,R, δ1, δ2, ε, τ, ψ0, dφ0 and ∇̃ψ0.
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Proof. First of all, we choose an orthonormal basis {eα, α = 1, 2} on M such that
∇∂teα = 0 at a considered point. Combining both equations from Lemma 5.16 we get

∂

∂t

1

2

ˆ

M

(

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

∣

∣

2
)

dM +

ˆ

M

(

|∇∂φt
∂t

|2 + ε
∣

∣∇̃∇̃ψt
∂t

∣

∣

2
)

dM

=

ˆ

M

(

〈RN (dφt(eα),
∂φt
∂t

)dφt(eα),
∂φt
∂t

〉 − 〈∇
∂t

R(ψt, φt),
∂φt
∂t

〉 − ε〈∇
∂t

Rc(ψt, φt),
∂φt
∂t

〉

− 〈∇̃ψt
∂t

,
∇̃
∂t

/Dψt〉+ ε〈∇̃ψt
∂t

,RE1(∂t, eα)∇̃eαψt〉 − ε〈∇̃eα
∇̃ψt
∂t

,RE1(∂t, eα)ψt〉
)

dM

= A1 +A2 +A3 +A4 +A5 +A6.

We have to estimate all terms on the right hand side, starting with the A1 term
ˆ

M
〈RN (dφt(eα),

∂φt
∂t

)dφt(eα),
∂φt
∂t

〉dM ≤ C

ˆ

M
|dφt|2|

∂φt
∂t

|2dM := I1.

Using the pointwise estimate

|〈∇
∂t

R(φt, ψt),
∂φt
∂t

〉| ≤ C
(

|∂φt
∂t

|2|dφt||ψt|2 + |dφt||
∂φt
∂t

|| ∇̃ψt
∂t

||ψt|

+|∇
∂t
dφt||

∂φt
∂t

||ψt|2
)

and the fact that ψt is bounded uniformly, we estimate the A2 term as

ˆ

M
|〈∇
∂t

R(φt, ψt),
∂φt
∂t

〉|dM ≤ C

(
ˆ

M
|∂φt
∂t

|2|dφt|dM +

ˆ

M
|dφt||

∂φt
∂t

|| ∇̃ψt
∂t

|dM

+

ˆ

M
|∇
∂t
dφt||

∂φt
∂t

|dM
)

:= I2 + I3 + I4.

To proceed we again consider the pointwise estimate

|〈∇
∂t

Rc(φt, ψt),
∂φt
∂t

〉| ≤ C
(

|∂φt
∂t

|2|dφt||∇̃ψt||ψt|+ |∇̃ψt||dφt||
∂φt
∂t

|| ∇̃ψt
∂t

||ψt|

+| ∇̃
∂t

∇̃ψt||dφt||
∂φt
∂t

||ψt|+ |∇̃ψt||
∇
∂t
dφt||

∂φt
∂t

||ψt|
)

and together with the bound on ψt, we estimate the A3 term as
ˆ

M
|〈∇
∂t

Rc(φt,ψt),
∂φt
∂t

〉|dM

≤C
(
ˆ

M
|∂φt
∂t

|2|dφt||∇̃ψt|dM +

ˆ

M
|∇̃ψt||dφt||

∂φt
∂t

|| ∇̃ψt
∂t

|dM

+

ˆ

M
| ∇̃
∂t

∇̃ψt||dφt||
∂φt
∂t

|dM +

ˆ

M
|∇̃ψt||

∇
∂t
dφt||

∂φt
∂t

|dM
)

:= I5 + I6 + I7 + I8.
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As a next step, we want to control the terms arising from interchanging covariant spino-
rial derivatives, namely A4, A5 and A6. Starting with A4, we first of all calculate

∇̃
∂t

∇̃eαψt = RN (dφt(∂t), dφt(eα))ψt + ∇̃eα
∇̃ψt
∂t

,

and by Young’s inequality we get the following estimate

ˆ

M
|〈∇̃ψt
∂t

,
∇̃
∂t

/Dψt〉|dM

≤C
(
ˆ

M
|∂φt
∂t

||dφt||ψt||
∇̃ψt
∂t

|dM +

ˆ

M
| ∇̃ψt
∂t

||∇̃∇̃ψt
∂t

|dM
)

≤C
(
ˆ

M
|∂φt
∂t

|2|dφt|2dM +

ˆ

M
| ∇̃ψt
∂t

|2dM
)

+
ε

8

ˆ

M
|∇̃∇̃ψt

∂t
|dM,

where we again used the bound on ψt. We continue with the A5 and A6 term

A5 ≤
ˆ

M
|〈∇̃ψt
∂t

,RE1(∂t, eα)∇̃eαψt〉|dM ≤ C

ˆ

M
|dφt||

∂φt
∂t

|| ∇̃ψt
∂t

||∇̃ψt|dM := I9,

A6 ≤
ˆ

M
|〈∇̃eα

∇̃ψt
∂t

,RE1(∂t, eα)ψt〉|dM ≤ C

ˆ

M
|dφt||

∂φt
∂t

||∇̃∇̃ψt
∂t

|dM := I10,

and move on by rearranging the terms I1 up to I10. The I1 term is already in the shape
that we need it. Concerning the other contributions, we apply Young’s inequality several
times:

I2 =

ˆ

M
|∂φt
∂t

|2|dφt|dM ≤ 1

2

ˆ

M
|∂φt
∂t

|2|dφt|2dM +
1

2

ˆ

M
|∂φt
∂t

|2dM,

I3 =

ˆ

M
|dφt||

∂φt
∂t

|| ∇̃ψt
∂t

|dM ≤ 1

2

ˆ

M
|dφt|2|

∂φt
∂t

|2dM +
1

2

ˆ

M
| ∇̃ψt
∂t

|2dM,

I4 = C

ˆ

M
| ∇
∂t
dφt||

∂φt
∂t

|dM ≤ 1

4

ˆ

M
| ∇
∂t
dφt|2dM + C2

ˆ

M
|∂φt
∂t

|2dM,

I5 =

ˆ

M
|∂φt
∂t

|2|dφt||∇̃ψt|dM ≤ 1

2

ˆ

M
|∂φt
∂t

|2|dφt|2dM +
1

2

ˆ

M
|∂φt
∂t

|2|∇̃ψt|2dM,

I6 =

ˆ

M
|∇̃ψt||dφt||

∂φt
∂t

|| ∇̃ψt
∂t

|dM ≤ 1

2

ˆ

M
|dφt|2|

∂φt
∂t

|2dM +
1

2

ˆ

M
|∇̃ψt|2|

∇̃ψt
∂t

|2dM.

We note that the I10 contribution can be absorbed into the I7 term, which may be
estimated as

I7 = C

ˆ

M
|dφt||

∂φt
∂t

|| ∇̃
∂t

∇̃ψt|dM ≤ C

ˆ

M
|dφ|2|∂φt

∂t
|2dM +

ε

8

ˆ

M
|∇̃∇̃ψt

∂t
|2dM.

We interchanged covariant derivatives and estimated the curvature contributions. To
estimate the I8 term, we apply Young’s inequality once more

I8 = C

ˆ

M
|∇̃ψt||

∇
∂t
dφt||

∂φt
∂t

|dM ≤ 1

4

ˆ

M
|∇
∂t
dφt|2dM + C2

ˆ

M
|∂φt
∂t

|2|∇̃ψt|2dM.
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Finally, the I9 term can be absorbed into the I6 term. Note that ∇∂φ
∂t = ∇

∂tdφ, which
is due to the torsion freeness of the connection. We sum up the different contributions
and find the following inequality

∂

∂t

1

2

ˆ

M

(

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

∣

∣

2

)

dM +
1

2

ˆ

M

(

∣

∣∇∂φt
∂t

∣

∣

2
+ ε
∣

∣∇̃∇̃ψt
∂t

∣

∣

2

)

dM

≤C
(
ˆ

M
|dφt|2|

∂φt
∂t

|2dM +

ˆ

M
|∂φt
∂t

|2|∇̃ψt|2dM

+

ˆ

M
| ∇̃ψt
∂t

|2|∇̃ψt|2dM +

ˆ

M

(

|∂φt
∂t

|2 + | ∇̃ψt
∂t

|2
)

dM

)

.

We used part of the second order terms on the left hand side to absorb the second order
terms from the right hand side.
Integrating with respect to t over the domain τ ≤ s < t ≤ T we get

ˆ t

s
dt
∂

∂t

1

2

ˆ

M

(

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

|2
)

dM +
1

2

ˆ t

s

ˆ

M

(

∣

∣∇∂φt
∂t

∣

∣

2
+ ε
∣

∣∇̃∇̃ψt
∂t

∣

∣

2

)

dMdt

≤C
(
ˆ t

s

ˆ

M
|dφt|2|

∂φt
∂t

|2dMdt+

ˆ t

s

ˆ

M
|∂φt
∂t

|2|∇̃ψt|2dMdt

+

ˆ t

s

ˆ

M
| ∇̃ψt
∂t

|2|∇̃ψt|2dMdt+

ˆ t

s

ˆ

M

(

|∂φt
∂t

|2 + | ∇̃ψt
∂t

|2
)

dMdt

)

.

The last term can be bounded in terms of the initial data and the L2-norm of ψt by
Lemma 5.9. We use another type of Sobolev inequality(similar to (5.4) for |t − s| ≤ 1)
to bound the mixed terms like

´ t
s

´

M |∂φt∂t |2|∇̃ψt|2dMdt, more precisely

ˆ t

s

ˆ

M
|dφt|2|

∂φt
∂t

|2dMdt

≤
(
ˆ t

s

ˆ

M
|dφt|4dMdt

)

1
2

(

sup
s≤θ≤t

ˆ

M
|∂φ
∂t

(·, θ)|2dM +

ˆ t

s

ˆ

M
|∇∂φt

∂t
|2dMdt

)

and similarly for both of the other two terms.

Choosing t− s < δ2 sufficiently small, applying the Sobolev inequality and the estimates
from Corollary 5.15, we can absorb part of the right hand side in the left and obtain

ˆ

M

(

|∂φt(·, t)
∂t

|2 + | ∇̃ψt(·, t)
∂t

|2
)

dM

≤ inf
t−δ2≤s≤t

C

ˆ

M

(

|∂φt(·, s)
∂t

|2 + | ∇̃ψt(·, s)
∂t

|2
)

dM +C.
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Finally, we estimate the infimum by the mean value, more precisely

sup
2τ≤t≤T

ˆ

M

(

|∂φ(·, t)
∂t

|2 + | ∇̃ψ(·, t)
∂t

|2
)

dM

≤ C(1 + τ−1)

ˆ t

s

ˆ

M

(

|∂φt
∂t

|2 + | ∇̃ψt
∂t

|2
)

dMdt+ C

≤ C(1 + τ−1) + C.

Hence, we get the desired bound.

Theorem 5.18 (Bounding second derivatives). Let (φt, ψt) ∈ V be a solution of (5.1)
and (5.2). Assume that |ψt|L∞(M×[0,T )) ≤ C and sup(x,t)∈M×[0,T ) F (φt, ψt, BR(x))) < δ1,
then we have

ˆ

M
(|∇2φ(·, t)|2 + ε2|∇̃2ψ(·, t)|2)dM ≤ C, (5.21)

where the constant C depends on M,N,R, δ1, δ2, ε, τ, ψ0, dφ0 and ∇̃ψ0.

Proof. With the help of the previous estimates we can now bound the full second deriva-
tives of (φt, ψt) in L2. By the evolution equations (5.1), (5.2) and Young’s inequality,
we find

ˆ

M
|τ(φt)|2dM ≤ C

ˆ

M
(|R(φt, ψt)|2 + ε2|Rc(φt, ψt)|2 + |∂φt

∂t
|2)dM

≤ C

ˆ

M
(|ψt|4|dφt|2 + ε2|ψt|2|∇̃ψt|2|dφt|2 + |∂φt

∂t
|2)dM,

ˆ

M
ε2|∇̃∗

eα∇̃eαψt|2dM ≤ C

ˆ

M
(| /Dψt|2 + | ∇̃ψt

∂t
|2)dM.

Applying the pointwise bound on ψt, the Bochner formulas (5.10), (5.11) and using

∇dφ = ∇2φ+ Γ(φ)(dφ, dφ),

we turn the Laplace type terms into full second derivatives and obtain

ˆ

M
|∇2φt|2dM ≤ C

(
ˆ

M
(|dφt|4 + ε4|∇̃ψt|4)dM +

ˆ

M
|dφt|2dM +

ˆ

M

∣

∣

∂φt
∂t

∣

∣

2
dM

)

,

ε2
ˆ

M
|∇̃2ψt|2dM ≤ C

(
ˆ

M
|∇̃ψt|2dM +

ˆ

M
(|dφt|4 + ε4|∇̃ψt|4)dM

+

ˆ

M

∣

∣

∇̃ψt
∂t

∣

∣

2
dM + C

)

.

69



CHAPTER 5. DIRAC-HARMONIC MAPS FROM RIEMANN SURFACES

Applying the previous estimates and Young’s inequality, we get

ˆ

M
(|∇2φ|2+ε2|∇̃2ψ|2)dM

≤C
ˆ

M
(|dφt|2 + ε|∇̃ψt|2)dM + C

ˆ

M
(|dφt|4 + ε2|∇̃ψt|4)dM + C

+ C

ˆ

M

(

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

∣

∣

2

)

dM

≤C + C

ˆ

M

(

|dφt|4 + ε2|∇̃ψt|4
)

dM

≤C + Cδ1

ˆ

M
(|∇2φt|2 + ε2|∇̃2ψt|2)dM,

where we again applied the local Sobolev inequality (5.4) in the last step. Choosing δ1
small enough, such that the right hand side can be absorbed into the left hand side, the
result follows.

Corollary 5.19 (Higher regularity). Suppose that M is a closed Riemann surface and
assume that the pair (φt, ψt) : (M × [0, T ) → N) × (M × [0, T ) → ΣM ⊗ φ−1

t TN) is a
regular solution of (5.1) and (5.2). The pair (φt, ψt) is smooth as long as δ1, δ2 are small
enough.

Proof. Since we have a bound on the L2 norm of the second derivatives of φt and ψt by
(5.21), we can apply the Sobolev embedding theorem and get that both |dφt| ∈ Lp and
|∇̃ψt| ∈ Lp for p < ∞. From the evolution equations (5.1) and (5.2) we may conclude

that
∣

∣

∂φt
∂t

∣

∣, |∇2φt| ∈ Lp and also
∣

∣

∇̃ψt
∂t

∣

∣, |∇̃2ψt| ∈ Lp. By the embedding H2,2 →֒ Cα for

some α < 1 we get that |dφt| and |∇̃ψt| are Hölder continuous. At this point the same
reasoning as in Theorem 3.24 yields that the pair (φt, ψt) is smooth.

5.3. Long-time Existence and Singularities

As in the one-dimensional case, we first of all derive a uniqueness statement before
turning to the proof of the long-time existence of the evolution equations, see Theorem
4.11. To avoid the problem of identifying sections in different vector bundles, we will
make use of the Nash embedding theorem.

Proposition 5.20 (Stability and uniqueness). Assume that M is a closed Riemann
surface with fixed spin structure, N compact and let (φ,ψ) ∈ V and (ξ, χ) ∈ V be
solutions of (5.1) and (5.2). The spinor ψ ∈ Γ(ΣM ⊗ φ−1TN) is defined along the map
φ and the spinor χ ∈ Γ(ΣM⊗ξ−1TN) along the map ξ. Suppose that |χ|L∞(M×[0,T )) ≤ C
and |χ|L∞(M×[0,T )) ≤ C. If the initial data coincide, (φ0, ψ0) = (ξ0, χ0), then we have
(φ,ψ) = (ξ, χ) throughout M × [0, T ).
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Proof. We follow [Str08], p. 235. We apply the embedding theorem of Nash and regard
u, v as vector valued functions in R

q, more precisely u, v : M × [0, T ) → ι(N) ⊂ R
q with

u = ι ◦ φ, v = ι ◦ ξ. The spinors ψ and χ are defined along the maps u and v. We set

h1 = u(x, t)− v(x, t), h2 = ψ(x, t)− χ(x, t)

with χ,ψ ∈ Γ(ΣM ⊗ TRq) and combine h1 and h2 into a function h(x, t) by

h = (h1, h2) = (u(x, t)− v(x, t), ψ(x, t) − χ(x, t)).

First, we study the evolution of h1 and h2 separately and add up both contributions in
the end. We compute using the evolution equation for u (3.24)

∂

∂t

1

2

ˆ

M
|h1|2dM = −

ˆ

M
|dh1|2dM +

ˆ

M
〈IIu(du, du) − IIv(dv, dv), h1〉dM

+

ˆ

M
〈h1, P (IIu(du(eα), eα · ψ), ψ) − P (IIv(dv(eα), eα · χ), χ)〉dM

+ ε

ˆ

M
〈h1, P (IIu(du(eα),∇eαψ), ψ) − P (IIv(dv(eα),∇eαχ), χ)〉dM

+ ε

ˆ

M
〈h1, P (IIu(du(eα), ψ),∇eαψ)− P (IIv(dv(eα), χ),∇eαχ)〉dM

+ ε

ˆ

M
〈h1, Bu(du, ψ, du, ψ) −Bv(dv, χ, dv, χ)〉dM.

After integrating with respect to t, we estimate the right hand side in terms of h1 and h2,
where we apply the estimates derived previously. We set Q =M×[0, T ) and dQ = dMdt.
Applying the mean value theorem, we find
ˆ

Q
|〈IIu(du, du)−IIv(dv, dv), h1〉|dQ

≤ C

ˆ

Q
|h1|2(|du|2 + |dv|2)dQ+ C

ˆ

Q
|h1||dh1|(|du| + |dv|)dQ.

Both of these terms can be further manipulated, the first one as
ˆ

Q
|h1|2(|du|2 + |dv|2)dQ ≤ C

(
ˆ

Q
|h1|4dQ

)
1
2
(
ˆ

Q
(|du|4 + |dv|4)dQ

)
1
2

≤ C
√

f1(t)

(
ˆ

Q
|h1|4dQ

)
1
2

and the second one as
ˆ

Q
|h1||dh1|(|du| + |dv|)dQ

≤ C

(
ˆ

Q
|h1|4dQ

)
1
4
(
ˆ

Q
|dh1|2dQ

)
1
2
(
ˆ

Q
(|du|4 + |dv|4)dQ

)
1
4

≤ C
√

f1(t)

(
ˆ

Q
|h1|4dQ

)
1
2

+ Cf1(t)

ˆ

Q
|dh1|2dQ.
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As in the one-dimensional case, we rewrite and estimate

|〈h1, P (IIu(du(eα), eα · ψ), ψ) − P (IIv(dv(eα), eα · χ), χ)〉|
≤ C(|du||h1|2|ψ|2 + |dh1||ψ|2|h1|+ |dv||ψ||h1||h2|).

Integrating over the manifold M and with respect to t for 0 ≤ t ≤ T , we estimate

ˆ

Q
|du||h1|2|ψ|2dQ ≤ C

(
ˆ

Q
|du|2dQ

)
1
2
(
ˆ

Q
|h1|4dQ

)
1
2

≤ C
√
t

(
ˆ

Q
|h1|4dQ

)
1
2

.

The next term can easily be estimated as

C

ˆ

Q
|ψ|2|dh1||h1|dQ ≤ C

ˆ

Q
|h1|2dQ+

1

8

ˆ

Q
|dh1|2dQ

≤ C
√
t

(
ˆ

Q
|h1|4dQ

)
1
2

+
1

8

ˆ

Q
|dh1|2dQ,

where we used Young’s and Hölder’s inequality. Applying Young’s inequality to

|dv||ψ||h1||h2| ≤ C(|dv||h1|2 + |dv||h2|2),

we realize that the first term has already been estimated, whereas the second one can
be rearranged as

ˆ

Q
|dv||h2|2dQ ≤

(
ˆ

Q
|dv|2dQ

)
1
2
(
ˆ

Q
|h2|4dQ

)
1
2

≤ C
√
t

(
ˆ

Q
|h2|4dQ

)
1
2

.

Again, as in the one-dimensional case we rewrite

|〈h1, P (IIu(du(eα), ψ),∇eαψ)− P (IIv(dv(eα), χ),∇eαχ)〉|
≤ C(|du||h1|2|ψ||∇ψ| + |dh1||ψ||∇ψ||h1|+ |dv||∇ψ||h1||h2|+ |dv||ψ||∇h2||h1|),

such that we can estimate again

ˆ

Q
|du|h1|2|ψ||∇ψ|dQ ≤ C

(
ˆ

Q
|du|4dQ

)
1
4
(
ˆ

Q
|∇ψ|4dQ

)
1
4
(
ˆ

Q
|h1|4dQ

)
1
2

≤ C(
√

f1(t) +
√

f2(t))

(
ˆ

Q
|h1|4dQ

)
1
2

.

For the next term we perform the following manipulation

C

ˆ

Q
|dh1||ψ||∇ψ||h1|dQ ≤ C

(
ˆ

Q
|h1|4dQ

)
1
4
(
ˆ

Q
|dh1|2dQ

)
1
2
(
ˆ

Q
|∇ψ|4dQ

)
1
4

≤ C
√

f2(t)

(
ˆ

Q
|h1|4dQ

)
1
2

+
1

8

ˆ

Q
|dh1|2dQ.
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Again, by Young’s inequality we have

|dv||∇ψ||h1||h2| ≤ C(|∇ψ|2|h1|2 + |dv|2|h2|2).

We already took care of the first term, the second term can be estimated by the same
method. Finally, we manipulate

ˆ

Q
|dv||ψ||h1||∇h2|dQ ≤ C

(
ˆ

Q
|dv|4dQ

)
1
4
(
ˆ

Q
|h1|4dQ

)
1
4
(
ˆ

Q
|∇h2|2dQ

)
1
2

≤ C
√

f1(t)

(
ˆ

Q
|h1|4dQ

)
1
2

+
ε

8

ˆ

Q
|∇h2|2dQ.

Note that the contribution

ε〈h1, P (IIu(du(eα),∇eαψ), ψ) − P (IIv(dv(eα),∇eαχ), χ)〉

can be estimated by the same methods. As in the one-dimensional case we have

|〈h1, Bu(du, ψ, du, ψ) −Bv(dv, χ, dv, χ)〉|
≤ C(|h1|2|ψ|2|du|2 + |h1||dh1||ψ|2|du|+ |du||ψ||dv||h2 ||h1|
+ |h1||dv||χ||ψ||dh1 |+ |h1||dv|2|χ||h2|).

By application of Young’s inequality we find

|〈h1, Bu(du, ψ, du, ψ)−Bv(dv, χ, dv, χ)〉| ≤ C(|h1|2(|du|2 + |dv|2)+ |h2|2|dv|2) +
1

8
|dh1|2.

The first terms on the right hand side have already been estimated, the last one can
later be absorbed into the left hand side.
As a second step, we turn to the function h2. With the the help of (3.25) we find

∂

∂t

1

2

ˆ

M
|h2|2dM = −

ˆ

M
〈/∂h2, h2〉dM − ε

ˆ

M
|∇h2|2dM

−ε
ˆ

M
〈h2, (∇eαIIu)(du(eα), ψ) − (∇eαIIv)(dv(eα), χ)〉dM.

The other terms involving the second fundamental form vanish since II ⊥ ψ. Again, we
first of all integrate with respect to t and estimate

ˆ

Q
〈/∂h2, h2〉 ≤ C

√
t

(
ˆ

Q
|h2|4dQ

)
1
2

+
ε

8

ˆ

Q
|∇h2|2dQ.

To estimate the last term, we rearrange

|〈ψ − χ, (∇eαIIu)(du(eα), ψ)− (∇eαIIv)(dv(eα), χ)〉|
≤ C(|h1||h2||du||dv| + |dv||dh1||ψ||h2|+ |dv|2|h2|2).
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Again, by Young’s inequality we may estimate

|〈ψ − χ, (∇eαIIu)(du(eα), ψ)− (∇eαIIv)(dv(eα), χ)〉| ≤ C(|h1||du|2 + |dv|2|h2|2) +
1

4
|dh1|2

and all of the terms on the right hand side have already been considered. Adding up the
inequalities for |h1|2 and |h2|2 and applying the Sobolev embedding theorem, we find

1

2

ˆ

M
(|h1|2 + |h2|2)dM +

1

2

ˆ T

0

ˆ

M
(|dh1|2 + ε|∇h2|2)dQ

≤ Cf(t)

(

sup
[0,T )

ˆ

M
(|h1|2 + |h2|2)dM +

ˆ T

0

ˆ

M
(|dh1|2 + ε|∇h2|2)dQ

)

+
1

2

ˆ

M
(|h1(0)|2 + |h2(0)|2)dM,

where f(t) denotes the supremum of
√

f1(t),
√

f2(t) and
√
t. We know that f(t) → 0 as

t → 0 and by assumption h1(0) = h2(0) = 0. Choosing t small enough, we have u = v
and ψ = χ throughout Q.

Proposition 5.21 (Long-time existence). Let (φt, ψt) ∈ V be a solution of (5.1) and
(5.2). Assume that |ψt|L∞(M×[0,T )) ≤ C. Then the evolution equations admit a solution
for 0 ≤ t <∞.

Proof. The first singular time T0 is characterized by the condition

lim sup
t→T0

F (φt, ψt, BR(x)) ≥ δ1.

Since we have ∂tφ, ∇̃tψ ∈ L2(M × [0, T )) and also F (φt, ψt) ≤ CF (φ0, ψ0) + C for
0 < t < T , there exists (φ(·, T ), ψ(·, T )) ∈ H1,2(M,N) × H1,2(M,ΣM ⊗ φ−1

t TN) such
that (φ(·, t), ψ(·, t)) → (φ(·, T ), ψ(·, T )) weakly in H1,2(M,N)×H1,2(M,ΣM ⊗φ−1

t TN)
as t approaches T . In particular, we have

F (φT , ψT ) ≤ lim inf
s→t

CF (φs, ψs) + C ≤ CF (φt, ψt) +C, 0 ≤ t ≤ T.

Now let (φ̃t, ψ̃t) : (M × [T, T + T1) → N) × (M × [T, T + T1) → ΣM ⊗ φ−1
t TN) be a

solution of (5.1) and (5.2). Assume that (φ̃, ψ̃)(x, t) = (φ,ψ)(x, t). We define

(φ̂t, ψ̂t) =

{

(φt, ψt), 0 ≤ t ≤ T,

(φ̃t, ψ̃t), T ≤ t ≤ T + T1.

One can now verify that (φ̂t, ψ̂t) : (M × [0, T1) → N)× (M × [0, T1) → ΣM × φ̂−1
t TN) is

a weak solution of (5.1) and (5.2). By iteration, we obtain a weak solution (φt, ψt) on a
maximal time interval T + δ for some δ > 0. If T + δ <∞ then by the above argument
the solution (φt, ψt) may be extended to infinity, hence T = ∞. The uniqueness follows
from Proposition (5.20).
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Theorem 5.22 (Finitely many singularities). Assume that M is a closed Riemann
surface and suppose the pair (φt, ψt) is a solution of (5.1) and (5.2). Assume that
|ψt|L∞(M×[0,∞)) ≤ C. There are only finitely many singular points (xk, tk), 1 ≤ k ≤ K.

The number K depends on M,ε, ψ0, dφ0 and ∇̃ψ0.

Proof. We follow the presentation in [LW08], p. 138, for the harmonic map heat flow.
To prove that there exist only finitely many singular points for the regularized Dirac-
harmonic map heat flow, we assume that T0 > 0 is the first singular time and define the
singular set as

S(φ,ψ, T0) =
⋂

R>0

{

x ∈M | lim sup
t→T0

F (φt, ψt, BR(x)) ≥ δ1

}

.

Now, let {xj}Kj=1 be any finite subset of S(φ,ψ, T0). Then we have for R > 0

lim sup
t→T0

ˆ

BR(xj)
(|dφ|2 + ε|∇̃ψ|2)dM ≥ δ1, 1 ≤ j ≤ K.

By (5.7) we have the following local inequality for the quantity F (φt, ψt, BR)

F (φt, ψt, BR(x)) ≤ 2Eε(φ0, ψ0, B2R(x)) + δ3
T

R2
+

1

ε

ˆ

BR

|ψt|2dM (5.22)

with δ3 = C
´

M (|dφt|2 + ε2|∇̃ψt|2 + |ψt|2)dM . Moreover, we have the global estimate

F (φt, ψt) ≤ δ4F (φ0, ψ0) + δ5

with δ4 = 2 and δ5 =
4
ε

´

M |ψ0|2. We choose R > 0 such that all B2R(xj), 1 ≤ j ≤ K are
mutually disjoint and small enough to have

1

ε

ˆ

BR

|ψt|2dM ≤ δ1
4
.

Then, we have by (5.22)

Kδ1 ≤
K
∑

j=1

lim sup
t→T0

F (φt, ψt, BR(xj))

≤
K
∑

j=1

(

lim sup
t→T0

2Eε(φτ , ψτ , B2R(xj)) +
δ1
2

)

≤ 2Eε(φτ , ψτ ) +
Kδ1
2

≤ 2Eε(φ0, ψ0) +
Kδ1
2
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for any τ ∈ [T0 − δ1R2

4δ3
, T0]. We conclude that

K ≤ 4
Eε(φ0, ψ0)

δ1
,

which implies the finiteness of the singular set S(φ,ψ, T0). Our next aim is to show that
there are only finitely many singular spatial points. Therefore we set

M̃ =M \
⋃

1≤j≤K

B2R(xj)

and in addition, we calculate

F (φT0 , ψT0) = lim
R→0

F (φT0 , ψT0 , M̃) (5.23)

≤ lim
R→0

lim sup
t→T0

F (φt, ψt, M̃)

≤ F (φt, ψt)− lim
R→0

K
∑

j=1

lim inf
t→T0

F (φt, ψt, B2R(xj))

≤ δ4F (φ0, ψ0) + δ5 − lim
R→0

K
∑

j=1

lim sup
t→T0

F (φt, ψt, BR(xj))

≤ δ4F (φ0, ψ0) + δ5 −Kδ1.

Now suppose T0 < . . . < Tj are j singular times and byK0, . . . ,Kj we denote the number
of singular points at each singular time. Set

(φi, ψi) = lim
t→Ti

(φt, ψt), 0 ≤ i ≤ j.

By iterating (5.23) we get

F (φj , ψj) ≤ δ4F (φj−1, ψj−1) + δ5 − δ1Kj−1

≤ δ24F (φj−2, ψj−2) + δ5(1 + δ4)− δ1(Kj−1 + δ4Kj−2)

≤ . . .

≤ δj4F (φ0, ψ0) + δ5

j−1
∑

i=0

δi4 − δ1

j−1
∑

i=0

Kiδ
i
4,

which can be rearranged as

j−1
∑

i=0

Kiδ
i
4 ≤

δj4F (φ0, ψ0) + δ5
∑j−1

i=0 δ
i
4

δ1
. (5.24)

We conclude that there are only finitely many singularities.

Remark 5.23. If we compare the bound on the number of singularities for the regu-
larized Dirac-harmonic map heat flow with the bound on the number of singularities in
the harmonic map heat flow, then we realize that the former one will encounter more
singularities. In the case of the harmonic map heat flow we would have δ4 = 1, δ5 = 1
and F (φ0, ψ0) =

1
2

´

M |dφ0|2, which lowers the upper bound in (5.24).
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5.4. Convergence and Blowup Analysis

In this section we discuss the convergence of the evolution equations (5.1) and (5.2). In
addition, we sketch how to perform a blowup analysis of the singular points.

Theorem 5.24. Let (φt, ψt) ∈ V be a solution of (5.1) and (5.2). Moreover, assume
that |ψt|L∞(M×[0,∞)) ≤ C. Then the pair (φt, ψt) converges strongly in L2 to a regularized
Dirac-harmonic map on the set M \{x1, . . . , xk}. The limiting map (φ∞, ψ∞) is smooth
on M \ {x1, . . . , xk}.
Proof. Since we have a uniform bound on the L2 norm of the t derivatives of (φt, ψt) by
Lemma 5.9, we can achieve for tm → ∞ suitably

ˆ

M

(

∣

∣

∂φt
∂t

∣

∣

2
+
∣

∣

∇̃ψt
∂t

∣

∣

2

)

dM
∣

∣

t=tm
→ 0

and in addition, we suppose that T = ∞ is non-singular

lim sup
t→∞

( sup
x∈M

F (φt, ψt, BR(x))) ≤ δ1

for some R > 0. By (5.21) we have a bound on the second derivatives
ˆ

M

(

|∇2φ|2(·, tm) + ε2|∇̃2ψ|2(·, tm)
)

dM ≤ C,

such that due to the Rellich-Kondrachov embedding theorem we may assume that

φ(·, tm) → φ∞ strongly in H1,p(M,N),

ψ(·, tm) → ψ∞ strongly in H1,p(M,ΣM ⊗ φ−1
tmTN)

for any p <∞. But then by (5.1) and (5.2) we get convergence of the evolution equations

τ(φ∞) = R(φ∞, ψ∞) + εRc(φ∞, ψ∞), (5.25)

ε∆̃ψ∞ = /Dψ∞ (5.26)

in L2 and hence the pair (φ∞, ψ∞) is a regularized Dirac-harmonic map, which satisfies
(φ∞, ψ∞) ∈ H2,2(M,N)×H2,2(M,ΣM ⊗ φ−1

∞ TN).
If T = ∞ is singular, meaning that at the points {x1, . . . , xk}

lim sup
t→∞

F (φt, ψt, BR(xj)) ≥ δ1, 1 ≤ j ≤ k

for all R > 0, then for suitable numbers tm → ∞ the family (φtm , ψtm) will be bounded
in H2,2(M,N)×H2,2(M,ΣM ⊗φ−1

tmTN) on the set M \{x1, . . . , xk}. Consequently, the
family (φtm , ψtm) will accumulate as follows

φ∞ : M \ {x1, . . . , xk} → N,

ψ∞ : M \ {x1, . . . , xk} → Σ(M \ {x1, . . . , xk})⊗ φ−1
∞ TN.
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We set M̃ := M \ {x1, . . . , xk}. Concerning the regularity of (φ∞, ψ∞) on M̃ , we have
φ∞ ∈ H1,p(M̃,N) for any 0 < p < ∞, since φ∞ ∈ H2,2(M̃,N). In addition, we have
ψ∞ ∈ H2,2(M̃,ΣM̃ ⊗ φ−1

∞ TN) and consequently also ψ∞ ∈ H1,p(M̃,ΣM̃ ⊗ φ−1
∞ TN) for

any 0 < p < ∞. Hence, the right hand sides of both (5.25) and (5.26) are in Lp for
2 < p <∞. Writing τ(φ) = ∆φ+Γ(φ)(dφ, dφ) and by elliptic estimates for second order
operators we then get φ∞ ∈ H2,p for any 0 < p < ∞ and by the Sobolev embedding
theorem it follows that φ∞ ∈ C1,α(M̃,N). By the same argumentation we find that
also ψ∞ ∈ C1,α(M̃,ΣM̃ ⊗ φ−1

∞ TN). The smoothness of (φ∞, ψ∞) then follows from a
standard bootstrap argument.

Of course, one would like to apply a removable singularity theorem to get a smooth
solution not only on M̃ , but on the whole manifold M . This issue will be addressed in
the next section.

This completes the proof of Theorem 5.1.

Our next aim is to get a better understanding of the singular points (xk, tk). In the case
of the harmonic map heat flow one can perform a blowup analysis, which finally leads to
the “bubbling off of harmonic spheres”, see for example [Str85]. An important ingredient
in that calculation is the scaling behaviour of the evolution equation for harmonic maps.
Therefore, let us analyze the scaling of the regularized Dirac-harmonic heat flow.

Remark 5.25 (Scaling of the evolution equations). By regularizing the functional
E(φ,ψ), we haven broken the conformal invariance and consequently the evolution equa-
tions for (φt, ψt) do not scale in a “nice” way. Nevertheless, it is possible to do a rescaling
if one allows to rescale ε as well. It is easy to see that the evolution equations

∂φt
∂t

= τ(φt)−
1

2
RN (eα · ψt, ψt)dφt(eα)− εRN (∇̃eαψt, ψt)dφt(eα),

∇̃ψt
∂t

= ε∆̃ψt − /Dψt

are invariant under the following rescaling

φ(x, t) → φ(x0 +Rx, t0 +R2t), (5.27)

ψ(x, t) →
√
Rψ(x0 +Rx, t0 +Rt),

ε → ε

R

for R > 0. We would like to mention that also a dimensional analysis of the evolution
equation for ψ motivates to also rescale ε. Unfortunately, the two evolution equations
scale differently. The evolution equation for φ scales like a heat type equation, whereas
the evolution equation for ψ scales like a first order evolution equation. We should also
mention that it may be problematic to rescale the regularizing parameter ε. First of
all, all the estimates we derived so far depend on ε in a non-trivial way. Even worse,
remember that the maximal existence interval Tmax of the short-time solution (3.22) in
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general also depends on ε. Another problem we would like to address, is that up to
now we have deformed the pair (φ,ψ) simultaneously. But the rescaling presented above
requires to deform φ and ψ independently of each other.

If we ignore the problems just mentioned, we can analyze the singular points as in
the harmonic map heat flow. To perform a blowup analysis of the singular points, we
recall Moser’s Harnack inequality for subsolutions of the heat equation [Mos64]. To
this end, we define the parabolic cylinder PR(z0) for z0 = (x0, t0) ∈ M × (0,∞) and
0 < R < min{iM ,

√
t0} by

PR(z0) = {z = (x, t) ∈M × [0, t)
∣

∣|x− x0| ≤ R, t0 −R2 ≤ t ≤ t0}. (5.28)

With these preparations we can state

Lemma 5.26 (Moser’s parabolic Harnack inequality). Suppose v ∈ C∞(PR(z0)) is non-
negative and satisfies

(

∂

∂t
−∆

)

v ≤ Cv

with C > 0. Then there exists a constant C1 > 0 such that

v(z0) ≤
C1

Rm+2

ˆ

PR(z0)
v dxdt, (5.29)

where m is the dimension of the manifold M .

With the help of Moser’s Harnack inequality we can sketch how to perform a blowup
analysis.

Theorem 5.27 (Blowup analysis). Suppose that M is a closed Riemann surface and
assume that the pair (φt, ψt) is a solution of (5.1) and (5.2) and |ψt|L∞(M×[0,∞)) ≤ C.
At the singular points (x̄, t̄) harmonic spheres φ : S2 → N separate and the spinor ψ
becomes trivial during the blowup process.

Proof. We follow the presentation in [Str08], p. 233, for the blowup analysis of the
harmonic map heat flow. Suppose (x̄, t̄) is a singular point in the sense that for any
R ∈ (0, 12 iM ) we have

lim sup
t→t̄

F (φt, ψt, BR(x̄)) ≥ δ1.

By finiteness of the singular set we know that x̄ is isolated among concentration points.
Consequently, for Rm → 0 we may choose x̄m → x̄ and t̄m → t̄ such that for R0 > 0 we
have

F (φt̄m , ψt̄m , BRm(x̄m)) = sup
x∈B2R0(x̄)

t̄m−τm≤t≤t̄m

F (φt, ψt, BRm(x)) =
δ1
4
.
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where τm = δ1R2
m

8δ3
. We assume that x̄m ∈ BR0(x̄) and perform the rescaling

φm(x, t) := φ(x̄m +Rmx, t̄m +R2
mt),

ψm(x, t) :=
√

Rmψ(x̄m +Rmx, t̄m +Rmt),

εm :=
ε

Rm
.

We have to assume that the rescaling of ε does not get in conflict with the existence of
the short-time solution (3.22). Since the norm of the rescaled spinor ψm(x, t) satisfies

|ψm(x, t)|2 = Rm|ψ(x̄m +Rmx, t̄m +Rmt)|2,

we get a first hint that ψ will become trivial as Rm → 0. Note that

φm : B R0
Rm

× [t0, 0] → N

ψm : B R0
Rm

× [t0, 0] → ΣM ⊗ φ−1
m TN

solve (5.1) and (5.2) classically with t0 = − δ1
8δ3

. Moreover, we have

sup
Rm|x|<R0
t0<t<0

F (φm(·, t), ψm(·, t), B1(x)) ≤ F (φm(·, 0), ψm(·, 0), B1(0)) =
δ1
4
.

In addition, we find
τφm = −R2

mt0, τψm = −Rmt0,
which reflects the first and second order character of the evolution equations. We deduce

ˆ 0

t0

ˆ

B R0
Rm

∣

∣

∂φm
∂t

∣

∣

2
dxdt ≤

ˆ t̄m

t̄m−τφm

ˆ

M

∣

∣

∂φt
∂t

∣

∣

2
dMdt → 0,

ˆ 0

t0

ˆ

B R0
Rm

∣

∣

∇̃ψm
∂t

∣

∣

2
dxdt ≤

ˆ t̄m

t̄m−τψm

ˆ

M

∣

∣

∇̃ψt
∂t

∣

∣

2
dMdt → 0,

as m→ ∞. To get a better understanding how the spinor ψt behaves during the blowup
process, we apply Moser’s Harnack inequality to

∂

∂t
|ψt|4 ≤ ε∆|ψt|4 +

2

ε
|ψt|4

and find

|ψ|4(x0, t0) ≤ C

( R0
Rm

)4

ˆ 0

t0

ˆ

B R0
Rm

|ψt|4dxdt

≤ C

( R0
Rm

)4

ˆ 0

t0

ˆ

M
|ψt|4dMdt

≤ −C t0R
4
m

R4
0
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with the parabolic cylinder P R0
Rm

around (x0, t0) defined by

P R0
Rm

= {z = (x, t) ∈M × [t0, 0)||x − x0| ≤
R0

Rm
, t0 ≤ t < 0}.

Note that P R0
Rm

→ R
2 × R− as m → ∞. Consequently, ψ → 0 in the limit Rm → 0.

Of course, one would like to localize the bound on the second derivative of φt (5.21) to
B R0

2Rm

. Therefore, we need to analyze the behaviour of the curvature terms during the

blowup process

ˆ 0

t0

ˆ

B R0
2Rm

|R(φm, ψm)|2dxdt ≤
ˆ t

0

ˆ

M
|R(φt, ψt)|2dMdt

≤ C

ˆ t

0

ˆ

M
|dφt|2|ψt|4dMdt ≤ Ct|ψt|4L∞(M×[0,T ))

ˆ 0

t0

ˆ

B R0
2Rm

ε2m|R(φm, ψm)|2dxdt ≤
ˆ t

0

ˆ

M
ε2|Rc(φt, ψt)|2dMdt

≤ Cε2|ψt|2
ˆ t

0

ˆ

M
|dφt|2|∇̃ψt|2dMdt

≤ Cε2|ψt|2L∞(M×[0,T ))(f1(t))
1
2 (f2(t))

1
2 .

By application of Moser’s Harnack inequality to the norm of ψt both of these integrals
tend to zero as m → ∞. Consequently, we can apply the estimates for the harmonic
heat map flow from the original proof of Struwe, see for example [Str08], p. 234, and
find

ˆ 0

t0

ˆ

B R0
2Rm

|∇2φm|2dxdt ≤ C.

Hence, φm converges strongly locally in H2,2(R2, N) against a limiting map φ∞. Since

1

2

ˆ

M
|dφ∞|2dM ≤ Eε(φ0, ψ0)

we can apply a classical theorem from Sacks-Uhlenbeck ([SU81], Theorem 3.6) and ex-
tend φ∞ to a non-constant harmonic map from φ : S2 ∼= R

2 → N .

When analyzing the bubbling phenomena of Dirac-harmonic maps, it is important to
have control over the energy of the bubbles, such that now concentration phenomena
can happen. This control is usually given by what is called energy identity. For Dirac-
harmonic maps the energy identity was first proven for the caseM = S2, N = Sn ⊂ R

n+1

in [CJLW05], which was later generalized to the case ofM being an arbitrary Riemannian
spin surface and N a compact Riemannian manifold in [Zha07b], p. 131.
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Definition 5.28 (Blowup Set). Let (φk, ψk) : M → N be a sequence of smooth Dirac-
harmonic maps with uniformly bounded energy

ˆ

M
(|dφk|2 + |ψk|4)dM ≤ C

and furthermore assume that (φk, ψk) converges weakly to a Dirac-harmonic map (φ,ψ)
in H1,2(M,N) × L4(ΣM ⊗ TRq), then we call

S :=
⋂

R>0

{x ∈M | lim inf
k→∞

ˆ

BR(x)
(|dφk|2 + |ψk|4)dM > δ}

the blow-up set of {φk, ψk}.

Theorem 5.29 (Energy identity for Dirac-harmonic maps). Consider a sequence of
smooth Dirac-harmonic maps (φk, ψk) with uniformly bounded energy

ˆ

M
|(dφk|2 + |ψk|4)dM ≤ C

and assume that (φk, ψk) weakly converges to a Dirac-harmonic map (φ,ψ) in the space
H1,2(M,N)×L4(ΣM ⊗R

q) with a finite set of blow-up points denoted by {p1, · · · , pm}.
Then after passing to a subsequence, still denoted by (φk, ψk), we can find a finite set of
Dirac-harmonic spheres

(σli, ξ
l
i) : S

2 → N, i = 1, · · · , I, l = 1, · · · , Li,

such that the following energy identities hold

lim
k→∞

E(φk) = E(φ) +

I
∑

i=1

Li
∑

l=1

E(σLi ), (5.30)

lim
k→∞

E(ψk) = E(ψ) +
I
∑

i=1

Li
∑

l=1

E(ξLi ). (5.31)

Note that the quantity we need to control to apply the energy identity is different from
what we needed to control the evolution equations. In addition, the energy identity deals
with a sequence of Dirac-harmonic maps, whereas we have a sequence of regularized
Dirac-harmonic maps.

Remark 5.30. In the context of the regularity of harmonic maps, one important in-
gredient is the so called ε-regularity theorem. This was first proven in the stationary
case by Schoen [Sch84] and then extended to the parabolic case by Struwe [Str88b]
and Chen-Struwe [CS89]. Once again the important point is the scaling behaviour of
the corresponding equations. To establish the regularity for Dirac-harmonic maps an
ε-regularity theorem was established in [WX09]. It was used that

ˆ

M
(|dφ|2 + |ψ|4)dM
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is scale invariant in dimension two. If one tries to extend these ideas to the evolution
equations for regularized Dirac-harmonic maps, one encounters a scaling problem. The
scaling

φ(x, t) → φ(Rx,R2t), ψ(x, t) =
√
Rψ(Rx,Rt), ε→ ε

R

leaves the evolution equations (5.1) and (5.2) invariant. On the other hand, the linear
combination

F (x, t, ε) :=
1

2
(|dφ|2 + ε|∇̃ψ|2)

satisfies
F (Rx, t,

ε

R
) = R2F (x, t, ε),

but to set up a parabolic ε-regularity theorem, we would also need a nice scaling be-
haviour in the t variable.

Before discussing the limiting process ε→ 0, we analyze the structure of Dirac-harmonic
maps for the case that M and N are surfaces of lower genus.

5.5. Dirac-harmonic Maps between Surfaces

In this section we discuss Dirac-harmonic maps between surfaces. We will assume thatM
is compact and oriented. A criterion if the Euler-Lagrange equations for Dirac-harmonic
maps decouple, is given by the following theorem from [Yan09], p. 410:

Theorem 5.31. Let M and N both be compact oriented Riemann surfaces and suppose
that (φ,ψ) is a Dirac-harmonic map from M to N . If

gM = 0 or |gM − 1| < |deg(φ)||2gN − 2|, (5.32)

then φ has to be a harmonic map.

We now analyze Dirac-harmonic maps between some explicit surfaces. To this end, we
make the following definition

Definition 5.32 (Twistor spinor). A spinor χ ∈ Γ(ΣM) is called twistor spinor if it
satisfies

Pχ := ∇ΣM
eα χ+

1

2
eα · /∂χ = 0. (5.33)

Note that this equation is conformally invariant in dimension two. Dirac-harmonic maps
from S2 → S2 are characterized by the following theorem, also from [Yan09], p. 410:

Theorem 5.33. Let M = N = S2 with arbitrary metric and suppose that (φ,ψ) is
a non-trivial Dirac-harmonic map from M to N . Then φ has to be holomorphic or
antiholomorphic and the spinor ψ can be written in the form

ψ = eα · χ⊗ dφ(eα), (5.34)

where χ is a twistor spinor.
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For the sake of completeness we want to mention that several generalizations of The-
orem 5.33 are given in [Mo10]. Twistor spinors on S2 can be further characterized by
[BFGK91]:

Lemma 5.34. Suppose that χ ∈ Γ(ΣM). If M is closed, then ker(P ) is finite dimen-
sional. In the case χ 6= 0 and if furthermore R is constant, then either R = 0 and χ
is parallel or R > 0 and χ is the sum of two real non-parallel Killing spinors. Here, R
denotes the scalar curvature on M .

Hence, the spinor χ in (5.34) is actually the sum of two Killing spinors.
Furthermore, it is known that the the only compact orientable surfaces admitting twistor-
spinors are S2 and T 2 carrying any conformal class, the latter one being endowed with
its trivial spin structure. The space of twistor spinors on S2 is four-dimensional, whereas
on T 2 it has only dimension two [Gin09], p. 126.
Consequently, one has to be careful when generalizing the construction (5.34) to arbitrary
surfaces and arbitrary target manifolds N as was done in [JMZ09], since as we have just
seen the only compact, orientable surfaces admitting twistor spinors are S2 and T 2. This
fact has already been noted in [Gin11].

Corollary 5.35. There is no Dirac-harmonic map from T 2 → S2 with deg φ = ±1.

Proof. The proof is by contradiction. Assume that (φ,ψ) is a Dirac-harmonic map from
T 2 → S2 with deg(φ)± 1. By Theorem 5.31 the map φ has to be harmonic in this case.
But on the other hand, Eells and Wood showed in [EW76] that there is no harmonic
map from T 2 → S2 of degree ±1 independently of the metrics chosen on M and N .

Remark 5.36. Since the degree of a map is homotopy-invariant, we cannot find a Dirac-
harmonic map from T 2 → S2 in the homotopy class of φ with deg φ = ±1. This example
motivates the occurrence of singularities in the heat flow for Dirac-harmonic maps.

Since the twisted Dirac operator /D is elliptic and self-adjoint, one can analyze its spec-
trum. A fundamental inequality regarding the spectrum of the usual Dirac operator /∂
is Friedrich’s inequality [Fri80]. This inequality can easily be generalized to the Dirac-
harmonic map case.

Lemma 5.37 (Friedrich inequality for Dirac-harmonic maps). All Eigenvalues of the
Dirac operator /D on ΣM ⊗ φ−1TN satisfy the inequality

λ2 ≥ 1

4

m

m− 1
inf
M
R− 1

´

M |ψ|2dM
m

m− 1

ˆ

M
Rijkl〈∇φl · ψi,∇φk · ψj〉dM, (5.35)

where m is the dimension of the manifold M .

Proof. By the Weitzenboeck formula (2.5) we have

ˆ

M
| /Dψ|2dM =

ˆ

M
|∇̃ψ|2dM +

ˆ

M

(R

4
|ψ|2 + 1

2
〈eα · eβ ·RN (dφ(eα), dφ(eβ))ψ,ψ〉

)

dM
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and by the Cauchy Schwarz inequality on the other hand

| /Dψ|2 ≤ m|∇̃ψ|2.

Combining both equations yields the result.

Corollary 5.38. In particular, this means that there are no non-trivial Dirac-harmonic
maps from S2 to N with N = R

n, T n.

Proof. For M = S2, the first term on the right hand side in (5.35) is always positive.
On the other hand, for N = T n or Rn, the second term on the right hand side in (5.35)
vanishes.

We want to summarize our considerations in the following tabular:

M N Existence of Dirac-harmonic maps?

S2 S2 φ conformal, ψ is of the form (5.34)
S2 T 2 no non-trivial Dirac-harmonic map
T 2 S2 no Dirac-harmonic maps if deg(φ) = ±1
T 2 T 2 φ harmonic map, ψ harmonic spinor

If we further increase the genus of the surfaceM , for example gM = 2, it is not that easy
to state some general results. The existence of harmonic spinors on surfaces of genus
gM ≥ 2 and their dependence on the spin structure and the Riemannian metric was
investigated in [BS92].

5.6. Removing the Regularization

In this section we analyze the limit ε→ 0. We saw in Theorem 5.24 that the regularized
Dirac-harmonic map heat flow converges to a smooth regularized Dirac-harmonic map
(φ∞, ψ∞) onM away from finitely many singular points. The smoothness of the limiting
map depends on the estimates that were derived before. Therefore the question is, which
of these estimates we still need to control after taking the limit ε→ 0.
In particular, we would like to

1. Keep the number of singularities bounded,

2. Remove the singularities of the solution (φ∞, ψ∞),

3. Control the regularity of the solution (φ∞, ψ∞).

In general, we cannot expect that the limit ε → 0 will exist. First of all, we study two
simple examples.

Example 5.39. 1. Assume that M = S2 and N = T 2. We have seen that in this
case there exist no non-trivial Dirac-harmonic maps. Consequently, the limit ε→ 0
cannot exist and this fact should be reflected by the calculation.
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2. If both M = N = T 2, we have seen that the system decouples and we have to look
for harmonic spinors ψi on T 2. The two-dimensional torus has four spin structures
and not all of them admit harmonic spinors. Hence, the limit ε → 0 cannot be
trivial in this case, too.

Number of singularities after ε→ 0

To study the dependence of the bound on the number of singularities on ε, we perform
the following analysis. First of all, we supposed that t = ∞ is non-singular, in particular

lim sup
t→∞

( sup
x∈M

F (φt, ψt, BR(x))) ≤ δ1.

In addition, we have to ensure that there are only finitely many spatial singularities at
t = ∞. Therefore, let us analyze how the bound (5.24) depends on ε. Rearranging (5.24)
yields

j−1
∑

i=0

Ki ≤ C
F (φ0, ψ0)(ε) + δ5(ε)

δ1(ε)
. (5.36)

It is easy to see that

lim
ε→0

F (φ0, ψ0) = E(φ0) ≤ C,

but on the other hand the limits

lim
ε→0

δ1(ε), lim
ε→0

δ5(ε)

do not exist in general as can easily be seen from the definitions of δ1 and δ5. Moreover,
there is no cancellation of the different ε’s on the right hand side of (5.36).

Removal of singularities after ε→ 0

To remove the singularities of the solution (φ∞, ψ∞) we would like to apply the following
(Theorem 4.6 in [CJLW06], p. 426):

Theorem 5.40 (Removable singularity theorem). For U ⊂ M let (φ,ψ) be a Dirac-
harmonic map which is C∞ on U \ {p} for some p ∈ U . If

ˆ

U

(

|dφ|2 + |ψ|4
)

dM ≤ C

then (φ,ψ) extends to a C∞ solution on U .

In our case, the L2 norm of dφ∞ can be controlled, but in general we cannot bound the
L4 norm of ψ∞ after ε→ 0. By the Sobolev embedding theorem it would be enough to
control the L2 norm of ∇̃ψ. If ψi∞ ∈ Γ(ΣM) would be a Killing spinor, then ψ∞ ∈ L4.

86



5.6. REMOVING THE REGULARIZATION

Regularity of (φ∞, ψ∞) after ε→ 0

The question of the regularity of Dirac-harmonic maps has been studied in ([WX09]).

Definition 5.41 (Weakly Dirac-harmonic map). A weakly Dirac-harmonic map is a

pair (φ,ψ) ∈ H1,2(M,N)× S1, 4
3 (M,ΣM ⊗ φ−1TN), which is a critical point of E(φ,ψ)

over the Sobolev space H1,2(M,N) × S1, 4
3 (M,ΣM ⊗ φ−1TN). The spinor ψ is in the

space S1, 4
3 (M,ΣM ⊗ φ−1TN) if ψi ∈ L4(ΣM) and ∇ΣMψi ∈ L

4
3 (ΣM).

The relation between weak and smooth Dirac-harmonic maps in dimension two is given
by the following ([WX09], Theorem 1.5, p. 3764)

Theorem 5.42. Assume that M is a compact Riemannian spin surface and that the
pair (φ,ψ) ∈ H1,2(M,N) × S1, 4

3 (M,ΣM ⊗ φ−1TN) is a weakly Dirac-harmonic map.
Then (φ,ψ) ∈ C∞(M,N) × C∞(M,ΣM ⊗ φ−1TN).

Hence, we have to ensure that the estimates necessary for the existence of a weakly
Dirac-harmonic map can be carried over to the limit ε→ 0. By the Sobolev embedding
theorem in two dimensions ψi ∈ L4(ΣM) if ∇ΣMψi ∈ L

4
3 (ΣM). The regularity of the

map φ can easily be assured by plugging the spinor ψ∞ into the inequality for the energy
functional Eε(φ,ψ)

ˆ

M
|dφ∞|2dM ≤ Eε(φ0, ψ0).

The difficult question is, if we can also achieve that ψ ∈ S1, 4
3 (M,ΣM ⊗ φ−1TN) after

taking the limit ε→ 0. When analyzing the regularity of solutions of

ε∆̃ψ = /Dψ

as a function of ε, we first of all note that the operator L := ε∆̃− /D is uniformly elliptic
as long as ε 6= 0. In the limit ε → 0 the operator L becomes weakly elliptic and we
cannot apply estimates for uniformly elliptic operators any longer. Hence, we should
think of

/Dψ = ε∆̃ψ (5.37)

as a Dirac equation with right hand side. It is well known that the right hand side de-
termines the regularity of the solution. Consequently, we should utilize elliptic estimates
for first order operators in combination with the regularity theory for Dirac-harmonic
maps developed so far.
A rough attempt to ensure ∇ψi ∈ L

4
3 (ΣM) is to try to bound the H1 norm. To control

the H1 norm of the spinor ψi we make use of elliptic estimates for first order equations.
Expanding (5.37) we find

|ψi|H1 ≤ C(|ψi|L2 + |/∂ψi|L2)

≤ C(|ψi|L2 + ||ψi||dφ||L2

+ε2(||∇ΣMψi||dφ||L2 + ||ψi||dφ|2|L2 + ||ψi||∆φ||L2 + ||∆ΣMψi|||L2)).

We would get a smooth Dirac-harmonic map fromM → N if the right hand side survives
the limit ε→ 0.
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1. Decoupling
If the limiting map (φ∞, ψ∞) decouples, then φ∞ becomes a smooth harmonic map
from M → N . Nevertheless, we still have to ensure the regularity of the spinors
ψi ∈ Γ(ΣM) after ε→ 0.

2. Killing spinor
If the limiting spinor ψi∞ ∈ Γ(ΣM) would be a Killing spinor, then we would have
|ψi∞|2 ≤ C, independently of ε. Unfortunately, the existence of Killing spinors is
heavily restricted.

We may summarize that in general we cannot expect that the limit ε → 0 exists in a
reasonable sense.
We want to finish this section by stating some general properties of the spinor ψ∞.
We can analyze the local behaviour of the spinor ψ∞ by

Remark 5.43 (Morrey type estimate). If we have a smooth spinor ψ satisfying

ε∆̃ψ = /Dψ,

then we find the following Bochner-type formula

∆|ψ|2 = 2|∇̃ψ|2 + 2〈ψ, ∆̃ψ〉

= 2|∇̃ψ|2 + 2

ε
〈ψ, /Dψ〉

≥ −C

ε2
|ψ|2.

Applying a Morrey type estimate [Mor08], Theorem 5.3.1, we find for any x0 ∈ M and
ρ > 0, that

sup
Bx0 (ρ)

|ψ|2 ≤ C

ε2R2

ˆ

Bx0 (R+ρ)
|ψ|2dM. (5.38)

If the manifold M would be non-compact and we would have a bound on the L2 norm
of ψ, then we can conclude that ψ is trivial by letting ρ→ ∞.

Lemma 5.44 (Rayleigh quotient). Assume that ψ is a smooth solution of ε∆̃ψ = /Dψ.

Then the Rayleigh quotient of /D
2
evaluated at ψ satisfies the inequality

c1ε
2 ≤
´

M | /Dψ|2dM
´

M |ψ|2dM ≤ c2
ε2

(5.39)

with the constants c1 = 1
C4
S
V ol(M)2

and c2 = 4. A consequence of this inequality is that

in the limit ε→ 0 the spectrum of the operator /D becomes unbounded again.

Proof. We compute

ε

ˆ

M
|∇̃ψ|2dM = −

ˆ

M
〈ψ, /Dψ〉dM ≤

ˆ

M
|ψ|

√
2|∇̃ψ|dM

≤ 1

ε

ˆ

M
|ψ|2dM +

ε

2

ˆ

M
|∇̃ψ|2dM
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and hence we find

ε

ˆ

M
|∇̃ψ|2dM ≤ 2

ε

ˆ

M
|ψ|2dM.

Together with
ˆ

M
| /Dψ|2dM ≤ 2

ˆ

M
|∇̃ψ|2dM

the first inequality follows. For the other direction we calculate

(
ˆ

M
|ψ|2dM

)
1
2

≤ CS

ˆ

M
|∇̃ψ|dM ≤ CS

√

V ol(M)

(
ˆ

M
|∇̃ψ|2dM

)
1
2

,

where we used the Sobolev embedding theorem. Of course, one could also apply the
Poincaré inequality here. With the help of the equation for ψ again, we find

ˆ

M
|ψ|2dM ≤ C2

SV ol(M)

ˆ

M
|∇̃ψ|2dM = C2

S

V ol(M)

ε

ˆ

M
〈ψ, /Dψ〉dM

≤ C4
S

V ol(M)2

2ε2

ˆ

M
| /Dψ|2dM +

1

2

ˆ

M
|ψ|2dM

and hence the result follows. The constants c1 and c2 may not be optimal. The statement
concerning the spectrum of /D relies on the min-max principle for self-adjoint elliptic
operators, see [Cha84], pp. 16-17.

Remark 5.45. If we assume that the spinor ψ ∈ Γ(ΣM ⊗ φ−1TN) is of the form
ψ = eα · χ⊗ dφ(eα), then a direct calculation yields ([AG11], p. 4)

/Dψ = −2Peαχ⊗ dφ(eα) +
2−m

m
eα · /∂χ⊗ dφ(eα)− χ⊗ τ(φ), (5.40)

where P denotes the twistor operator and m denotes the dimension of M . In addition,
one can check that R(φ,ψ) = 0, when inserting ψ from above. We realize that form = 2,
φ harmonic and Peαχ = 0 we get a Dirac-harmonic map (φ,ψ). The last condition
Peαχ = 0 is satisfied if the spinor χ ∈ Γ(ΣM) is a twistor spinor, or a constant. It may
be possible that our solution (φ∞, ψ∞) is of the form φ∞ harmonic, χ is constant and
ψ = eα · χ⊗ dφ(eα).
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A. Spin Geometry

We briefly recall the basic notions of spin geometry, see for example [Hij01].

Definition A.1 (Spin structure). Let (M,h) be an m-dimensional oriented Riemannian
manifold. A spin structure on M is a pair (Spin(M), η), where Spin(M) is a Spinm-
principal fibre bundle over M and η a 2-fold covering such that the following diagram
commutes:

Spin(M)× Spinm

η×Ad

��

// Spin(M)

η

��

π

$$IIIIIIIII

M

SO(M)× SOm
// SO(M)

π

::uuuuuuuuu

The maps in the rows are the actions of Spinm and SOm on the principal fibre bundles
Spin(M) and SO(M).

The existence of a spin structure on M is equivalent to the second Stiefel-Whitney class
ω2(M) being zero, which is a topological restriction.

Definition A.2 (Spinor bundle). The (complex) spinor bundle associated to a spin
structure Spin(M) of M is the (complex) vector bundle

ΣM := Spin(M)×ρ Σm,

where ρ : Spinn → Aut(Σm) is the (complex) Spinn representation.

On the spinor bundle ΣM we have the Clifford relations

X · Y · ψ + Y ·X · ψ = −2h(X,Y )ψ

for all X,Y ∈ Γ(TM), ψ ∈ Γ(ΣM) and the metric h onM . We choose a hermitian metric
on the spinor bundle ΣM . The Clifford multiplication is skew-symmetric, namely

〈X · ψ,χ〉ΣM = −〈ψ,X · χ〉ΣM

for all X ∈ Γ(TM) and ψ,χ ∈ Γ(ΣM). On the spinor bundle ΣM we have a connection,
denoted by ∇ΣM , which is induced from the connection on the manifold M .
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Proposition A.3 (Local description of ∇ΣM and RΣM ). The covariant derivative on
ΣM is locally given by

∇ΣMψ =
1

4
h(∇eα, eβ)eα · eβ · ψ.

If RM (X,Y ) denotes the curvature tensor on the tangent bundle of M , then it can be
related to the curvature on ΣM by

RΣM (X,Y )ψ =
1

4
h(RM (X,Y )eα, eβ)eα · eβ · ψ

for all X,Y ∈ Γ(TM) and {eα} denoting a local orthonormal basis of TM .

Proposition A.4. The connection on the spinor bundle ∇ΣM is compatible with both
Clifford multiplication and the bundle metric, namely

∂X〈ψ,χ〉ΣM = 〈∇ΣM
X ψ,χ〉ΣM + 〈ψ,∇ΣM

X χ〉ΣM ,
∇ΣM
X (Y · ψ) = (∇XY ) · ψ + Y · ∇ΣM

X ψ

for all X,Y ∈ Γ(TM) and ψ,χ ∈ Γ(ΣM).

Definition A.5 (Dirac operator). The Dirac operator /∂ is the composition of the co-
variant derivative acting on sections of ΣM with Clifford multiplication, which is locally
given by

/∂ψ := eα · ∇ΣM
eα ψ,

where {eα} is a local orthonormal basis of TM .

Lemma A.6 (Properties of the Dirac operator). The Dirac operator is a first order
partial differential operator, which is

1. (weakly) elliptic,

2. self-adjoint in L2 for compact M

3. and the square of the Dirac operator satisfies the Schrödinger-Lichnerowicz formula

/∂
2
= ∇∗∇+

1

4
R,

where R denotes the scalar curvature of the manifold M .
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B.1. Differential Operators on Manifolds

Most of the definitions made here follow [Aub98]. Assume that (M,h) is a compact
Riemannian manifold and let E →M be a Riemannian or hermitian vector bundle over
M .

Definition B.1 (Principal symbol). Let P : Γ(E) → Γ(E) be a differential operator of
order k. For a point x ∈ M and a covector ξ ∈ T ∗M we want to define the principal
symbol σk(P, ξ) : Ex → Ex. Assume that the operator P can be expressed as

P =
∑

|α|≤k

Aα(x)
∂|α|

∂xα
, ξ =

∑

l

ξldxl.

Then the principal symbol is given by

σk(P, ξ) =
∑

|α|=k

Aαξ
α. (B.1)

Roughly spoken, the principal symbol picks the coefficient of the highest order term of
a given differential operator P . The principal symbol encodes most of the important
properties of a differential operator.

Definition B.2. A linear differential operator P of order k is (weakly) elliptic if the
principal symbol σk(P, ξ) is an isomorphism for every ξ 6= 0.

Definition B.3. A linear differential operator P is uniformly elliptic if the principal
symbol σk(P, ξ) satisfies the following inequality

〈σk(P, ξ)η, η〉 ≥ C|η|2 (B.2)

for all η ∈ Γ(E). The scalar product is taken with respect to the bundle metric on E.

Definition B.4. A differential operator P : Γ(E) → Γ(E)

Pη = F (x, η,∇η, . . . ,∇kη),

where F is assumed to be a differentiable map of its arguments, will be elliptic (uniformly
elliptic) with respect to η if the linearized operator is elliptic (uniformly elliptic).

Definition B.5. A strictly parabolic equation is an equation of the type

∂ηt
∂t

= Ptηt, (B.3)

where ηt is a t-dependent section of E and Pt : Γ(E) → Γ(E) is a smooth family of
uniformly elliptic operators.
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B.2. Hölder Spaces

We define Hölder spaces adapted to second order parabolic equations, see [LSU67] and
[Kry96]. For T > 0 we set Q = M × [0, T ) and 0 < α < 1. We first of all define
Hölder spaces for functions taking values in R

q and then generalize them to functions
on Riemannian manifolds and sections in vector bundles. For a function u : M → R

q we
define

|u|Q = sup
(x,t)∈Q

|u(x, t)|,

〈u〉(α)x = sup
(x,t)(x′,t)∈Q

x 6=x′

|u(x, t)− u(x′, t)|
dM (x, x′)α

, 〈u〉(α)t = sup
(x,t)(x,t′)∈Q

t 6=t′

|u(x, t)− u(x, t′)|
|t− t′|α ,

and the norms |u|(α,α/2)Q , |u|(2+α,1+α/2)Q by

|u|(α,α/2)Q = |u|Q + 〈u〉(α)x + 〈u〉(α/2)t ,

|u|(2+α,1+α/2)Q = |u|Q + |∂tu|Q + |Dxu|Q + |D2
xu|Q

+〈∂tu〉(α/2)t + 〈Dxu〉(1/2+α/2)t + 〈D2
xu〉

(α/2)
t

+〈∂tu〉(α)x + 〈D2
xu〉(α)x .

Here dM (x, x′) denotes the Riemannian distance between x and x′ on M . With the help
of these norms we can define the following function spaces

Cα,α/2(Q,Rq) = {u ∈ C0(Q) | |u|(α,α/2)Q <∞},

C2+α,1+α/2(Q,Rq) = {u ∈ C2,1(Q) | |u|(2+α,1+α/2)Q <∞}.

We want to sketch how these definitions can be extended to functions taking values in
Riemannian manifolds and sections in vector bundles. Differences of vectors are replaced
by differences of parallel transports of vectors along the shortest geodesic. This involves
the Riemannian distance function on M .

B.3. Differentiability of Solutions and Schauder Estimates

The estimates presented in this section can for example be found in [WYW06], chapters
6 and 7. Let U ⊂ R

n be a bounded, connected and open set and let P be a second order
linear elliptic differential operator of the form

P = aij(x)
∂2

∂xi∂xj
+ bi(x)

∂

∂xi
+ d(x). (B.4)

Theorem B.6. For 0 < α < 1, assume that aij , bi, d, f ∈ Cα(U). If u ∈ C2(U)
satisfies the linear parabolic equation Pu(x) = f(x), then u ∈ C2+α(U). Additionally, if
aij , bi, d, f ∈ Ck+α(U) for a given k ≥ 1, then a solution of Pu(x) = f(x) is Ck+2+α(U).
In particular, if aij, bi, d, f ∈ C∞(U), then u ∈ C∞(U).
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A similar result holds for parabolic differential operators. Set Q = U × [0, T ).

Theorem B.7. 1. For 0 < α < 1, assume that aij , bi, d ∈ Cα(U) and f ∈ Cα,α/2(Q).
If u ∈ C2,1(Q) satisfies the following linear parabolic equation

(

P − ∂

∂t

)

u(x, t) = f(x, t), (B.5)

then u ∈ C2+α,1+α/2(Q).

2. Let p, q be nonnegative integers. For given β, δ with |β| ≤ p, |β| + 2δ ≤ p, δ ≤ q,

assume that Dβ
xaij ,D

β
xbi,D

β
xd ∈ Cα(U) and Dβ

xDδ
t f ∈ Cα,α/2(Q). Then a solution

u of (B.5) satisfies Dβ
xDδ

t f ∈ Cα,α/2(Q) for any β, δ with |β|+2δ ≤ p+2, δ ≤ q+1.
In particular, aij , bi, d, f ∈ C∞(U) and f ∈ C∞(Q) imply that u ∈ C∞(Q).

In the following, we state the classical Schauder estimates for elliptic and parabolic
partial differential equations. For 0 < α < 1, assume that

aij , bi, d ∈ Cα(Br(0)), 1 ≤ i, j ≤ n,

and additionally that the operator P is uniformly elliptic

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2

for some constants 0 < λ ≤ Λ <∞, for any x ∈ Br(0) and ξ ∈ R
n. For the linear elliptic

differential operator P defined above and the linear parabolic differential operator

L = P − ∂

∂t
,

we then have the following

Theorem B.8 (Schauder estimates). 1. If f ∈ Cα(Br(0)) and u ∈ C2(Br(0)) satisfy

Pu(x) = f(x),

then u ∈ C2+α(Br(0)) and the following inequalities hold

|u|C1+α(B r
2
(0)) ≤ C(|f |L∞(Br(0)) + |u|L∞(Br(0))), (B.6)

|u|C2+α(B r
2
(0)) ≤ C(|f |Cα(Br(0)) + |u|L∞(Br(0))). (B.7)

The constant C depends on n, α, λ,Λ, |aij |Cα(B(0,r)), |bi|Cα(B(0,r)), |d|Cα(B(0,r)).

2. Let 0 ≤ t ≤ T . If f(·, t) ∈ Cα(Br(0)) and u(·, t) ∈ C2(Br(0) satisfy

Lu(x, t) = f(x, t),
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then u(·, t) ∈ C2+α(Br(0)) and we have the estimates

|u(·, t)|Cα(B r
2
(0)) ≤ C

(

sup
t∈[0,T )

|f(·, t)|L∞(Br(0)) + sup
t∈[0,T )

|u(·, t)|L∞(Br(0))

)

(B.8)

and

|u(·, t)|C2+α(B r
2
(0)) +

∣

∣

∂u(·, t)
∂t

∣

∣

Cα(Br(0))

≤ C

(

sup
t∈[0,T )

|f(·, t)|Cα(Br(0)) + sup
t∈[0,T )

|u(·, t)|L∞(Br(0))

)

. (B.9)

The constant C depends on n, α, λ,Λ, |aij |Cα(B(0,r)), |bi|Cα(B(0,r)), |d|Cα(B(0,r)).

All of these estimates can be carried over to the case that instead of u, we consider
sections in a vector bundle over M .

B.4. Embedding Theorems

Theorem B.9 (Sobolev embedding theorem). Let (M,h) be a compact Riemannian
manifold of dimension m. Let k, l ∈ N, p, q,∈ [1,∞) and α ∈ (0, 1). Then the following
statements hold:

1. If 1
p ≤ 1

q +
k−l
m , then W k,p(M) embeds continuously into W l,q(M) by inclusion.

2. If k − m
p ≥ l + α, then W k,p(M) embeds continuously into Ck,α(M) by inclusion.

For M = R
m a proof can be found in [GT01], Thm. 7.10. In the case of M being a

compact Riemannian manifold, see [Aub98], Thm. 2.20.

Theorem B.10 (Rellich-Kondrachov embedding theorem). Let (M,h) be a compact
Riemannian manifold. Let k, l ∈ N, p, q ∈ [1,∞) and α ∈ (0, 1). Then the following
statements hold:

1. If 1
p <

1
q +

k−l
m , then the inclusion of W k,p into W l,q(M) is compact.

2. If k − m
p > l + α, then the inclusion of W k,p(M) into C l,α(M) is compact.

For M = R
m a proof can be found in [GT01], Thm. 7.22. In the case of M being a

compact Riemannian manifold, see [Aub98], Thm. 2.34.

B.5. Linear parabolic Equations

Theorem B.11. Let (M,h) be a compact Riemannian manifold without boundary. For
a vector valued function u : Q→ R

q we consider the linear parabolic differential operator

Lu =
∂u

∂t
−∆u+ bi(x, t)Diu+ c(x, t)u (B.10)
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and the initial value problem

{

Lu(x, t) = F (x, t), (x, t) ∈ Q,

u(x, 0) = f(x).
(B.11)

If bi, c ∈ Cα,α/2(Q,Rq) for 0 < α < 1, then for any

F ∈ Cα,α/2(Q,Rq), f ∈ C2+α(M,Rq),

there exists a unique solution u ∈ C2+α,1+α/2(Q,Rq) of (B.11) satisfying

|u|(2+α,1+α/2)Q ≤ C(|F |(α,α/2)Q + |f |(2+α)M ). (B.12)

The constant C depends on M,L, q, T, α.

A proof can be found in [WYW06], p. 251. The above theorem can be generalized for
functions between Riemannian manifolds and sections in vector bundles.

B.6. Classical Tools

The most prominent tool to obtain pointwise estimates is the maximum principle. We
state the following simple version:

Lemma B.12 (Maximum principle). Let (M,h) be a compact Riemannian manifold
and let L = ∆− ∂

∂t be the heat operator on M . If u ∈ C0(M × [0, T ))∩C2,1(M × [0, T ))
satisfies Lu ≥ 0 in M × (0, T ) then the following estimate holds

max
M×[0,T )

u = max
M×{0}

u. (B.13)

A proof can for example be found in [Lie96], p. 7. The following extension combines the
pointwise maximum principle with an integral norm.

Lemma B.13. Assume that (M,h) is a compact Riemannian manifold. If a function
u(x, t) ≥ 0 satisfies

∂u

∂t
≤ ∆u+ Cu,

and if in addition we have the bound

U(t) =

ˆ

M
u(x, t)dM ≤ U0,

then there exists a uniform bound on

u(x, t) ≤ eCKU0

with the constant K depending on M .
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Proof. A proof can for example be found in [Tay11], p. 284.

It is also possible to express the constant K in terms of geometric quantities, therefore
see [Jos88], p. 86, Lemma 2.3.1.

Lemma B.14 (Mean Value Theorem). Let (M,h) be a Riemannian manifold and fur-
thermore u ∈ C1(M). By dM (x, y) we denote the Riemannian distance function on M .
Then for any compact convex subset K ⊂M the following inequality holds

|u(x)− u(y)| ≤ sup
K

|du|dM (x, y)

for all x, y ∈ K.

B.7. Elliptic Operators and Spectral Theory

Assume that (M,h) is a compact Riemannian manifold and E →M is a Riemannian or
hermitian vector bundle over M . All of the following statements can be found in [LM89],
p. 192 ff., for more details the reader may take a look a the survey article [AB02]. Note
that all of the statements here are true for weakly elliptic operators.

Theorem B.15 (Elliptic estimates). Let P : Γ(E) → Γ(E) be an elliptic operator of
order m. Then the following assertions hold:

1. For any open set U ⊂M and u ∈ Hk(E) we have

Pu
∣

∣

U
∈ C∞ ⇒ u

∣

∣

U
∈ C∞.

2. For each s there is a constant C such that the following inequalities hold:

|u|Hs ≤ C(|u|Hs−m + |Pu|Hs−m) (B.14)

and
|u|Hms ≤ C(|u|L2 + |P su|L2). (B.15)

Theorem B.16. Let P : Γ(E) → Γ(E) be a self-adjoint elliptic differential operator of
order m > 0 over a compact Riemannian manifold. Then each eigenspace of P is finite-
dimensional and consists of smooth sections. The eigenvalues of P are real, discrete and
tend rapidly to infinity. Furthermore, the eigenspaces of P furnish complete orthonormal
systems for L2(E).

As a direct consequence we get

Corollary B.17. Let P : Γ(E) → Γ(E) be a self-adjoint elliptic differential operator of
order m > 0 over a compact Riemannian manifold. Then there exists a Hilbert space
orthonormal basis ψ1, ψ2, . . . of L

2(E) and real numbers λ1, λ2, . . . such that

Pψk = λkψk

with λ1 ≤ λ2 ≤ λ3, . . . ,∞. Each of the λk is repeated only finitely many times and all
ψk are smooth, ψk ∈ C∞(E).
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[LSU67] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva. Linear and
quasilinear equations of parabolic type. Translated from the Russian by
S. Smith. Translations of Mathematical Monographs, Vol. 23. American
Mathematical Society, Providence, R.I., 1967.

[LW08] Fanghua Lin and Changyou Wang. The analysis of harmonic maps and
their heat flows. World Scientific Publishing Co. Pte. Ltd., Hackensack,
NJ, 2008.

[Mo10] Xiaohuan Mo. Some rigidity results for Dirac-harmonic maps. Publ. Math.
Debrecen, 77(3-4):427–442, 2010.

[Mor08] Charles B. Morrey, Jr. Multiple integrals in the calculus of variations.
Classics in Mathematics. Springer-Verlag, Berlin, 2008. Reprint of the
1966 edition [MR0202511].

[Mos64] Jürgen Moser. A Harnack inequality for parabolic differential equations.
Comm. Pure Appl. Math., 17:101–134, 1964.

[Nis02] Seiki Nishikawa. Variational problems in geometry, volume 205 of Transla-
tions of Mathematical Monographs. American Mathematical Society, Prov-
idence, RI, 2002. Translated from the 1998 Japanese original by Kinetsu
Abe, Iwanami Series in Modern Mathematics.

[Riv07] Tristan Rivière. Conservation laws for conformally invariant variational
problems. Invent. Math., 168(1):1–22, 2007.

[Sch84] Richard M. Schoen. Analytic aspects of the harmonic map problem.
In Seminar on nonlinear partial differential equations (Berkeley, Calif.,
1983), volume 2 of Math. Sci. Res. Inst. Publ., pages 321–358. Springer,
New York, 1984.

[Str85] Michael Struwe. On the evolution of harmonic mappings of Riemannian
surfaces. Comment. Math. Helv., 60(4):558–581, 1985.

104



Bibliography

[Str88a] Michael Struwe. Heat-flow methods for harmonic maps of surfaces and
applications to free boundary problems. In Partial differential equations
(Rio de Janeiro, 1986), volume 1324 of Lecture Notes in Math., pages
293–319. Springer, Berlin, 1988.

[Str88b] Michael Struwe. On the evolution of harmonic maps in higher dimensions.
J. Differential Geom., 28(3):485–502, 1988.

[Str08] Michael Struwe. Variational methods, volume 34 of Ergebnisse der Math-
ematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Se-
ries of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth
edition, 2008. Applications to nonlinear partial differential equations and
Hamiltonian systems.

[SU81] J. Sacks and K. Uhlenbeck. The existence of minimal immersions of 2-
spheres. Ann. of Math. (2), 113(1):1–24, 1981.

[SY79] R. Schoen and Shing Tung Yau. Existence of incompressible minimal
surfaces and the topology of three-dimensional manifolds with nonnegative
scalar curvature. Ann. of Math. (2), 110(1):127–142, 1979.

[Tay11] Michael E. Taylor. Partial differential equations III. Nonlinear equations,
volume 117 of Applied Mathematical Sciences. Springer, New York, second
edition, 2011.

[Top02] Peter Topping. Reverse bubbling and nonuniqueness in the harmonic map
flow. Int. Math. Res. Not., 2002.

[WX09] Changyou Wang and Deliang Xu. Regularity of Dirac-harmonic maps. Int.
Math. Res. Not. IMRN, (20):3759–3792, 2009.

[WYW06] Zhuoqun Wu, Jingxue Yin, and Chunpeng Wang. Elliptic & parabolic
equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2006.

[Yan09] Ling Yang. A structure theorem of Dirac-harmonic maps between spheres.
Calc. Var. Partial Differential Equations, 35(4):409–420, 2009.

[Yau06] Shing-Tung Yau. Perspectives on geometric analysis. In Surveys in differ-
ential geometry. Vol. X, volume 10 of Surv. Differ. Geom., pages 275–379.
Int. Press, Somerville, MA, 2006.

[Zha07a] Yan Zhang. The Cauchy problem about Dirac-wave map from the 2-
dimension Minkowski space to a complete Riemannian manifold. Sci.
China Ser. A, 50(6):859–874, 2007.

105



Bibliography

[Zha07b] Liang Zhao. Energy identities for Dirac-harmonic maps. Calc. Var. Partial
Differential Equations, 28(1):121–138, 2007.

[Zhu09a] Miaomiao Zhu. Dirac-harmonic maps from degenerating spin surfaces.
I. The Neveu-Schwarz case. Calc. Var. Partial Differential Equations,
35(2):169–189, 2009.

[Zhu09b] Miaomiao Zhu. Regularity for weakly Dirac-harmonic maps to hypersur-
faces. Ann. Global Anal. Geom., 35(4):405–412, 2009.

106



Acknowledgements

First of all, I am greatly indebted to Prof. Christian Bär for suggesting the topic and
for stimulating discussions. I really enjoyed the warm atmosphere in his research group
over the years.

I also would like to thank Prof. Klaus Ecker for his vivid lectures on differential geometry
and partial differential equations, which introduced me to the world of geometric analysis.

I wish to express my thanks to my officemates Ariane Beier and Ramona Ziese for
numerous discussions about mathematics, physics and lots of other stuff... Thanks for
proofreading this thesis and the many answers to my Tex questions. I hope we will still
have lots of coffees in the future!

I would like to express my cordial thanks to the members and former members of the ge-
ometry research group Christian Becker, Florian Hanisch, Klaus Kröncke, Frank Pfäffle,
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