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Evolutive two-level population process and large
population approximations

Sylvie Méléard and Sylvie Rœlly

February 26, 2013

Abstract - We are interested in modeling the Darwinian evolution of
a population described by two levels of biological parameters: individuals
characterized by an heritable phenotypic trait submitted to mutation and
natural selection and cells in these individuals influencing their ability to
consume resources and to reproduce.

Our models are rooted in the microscopic description of a random (dis-
crete) population of individuals characterized by one or several adaptive
traits and cells characterized by their type. The population is modeled as
a stochastic point process whose generator captures the probabilistic dy-
namics over continuous time of birth, mutation and death for individuals
and birth and death for cells. The interaction between individuals (resp.
between cells) is described by a competition between individual traits (resp.
between cell types). We are looking for tractable large population approxi-
mations. By combining various scalings on population size, birth and death
rates and mutation step, the single microscopic model is shown to lead to
contrasting nonlinear macroscopic limits of different nature: deterministic
approximations, in the form of ordinary, integro- or partial differential equa-
tions, or probabilistic ones, like stochastic partial differential equations or
superprocesses.

Key words and phrases : two-level interacting processes, birth-death-
mutation-competition point process, nonlinear integro-differential equations,
nonlinear partial differential equations, superprocesses.

Mathematics Subject Classification (2000) : 35Q92, 60G55, 60G57,
60J68, 60J80, 92D25

1 Introduction

In this paper, we are interested in modeling the effects of natural selection
and adaptation for a multi-cell population. We model a two-level popula-
tion dynamics, resulting from the interplay between individuals submitted
to mutation and competition for resources and their composition in multi-
type cells. The individuals are characterized by an heritable phenotypic trait
submitted to mutation and natural selection and cells in these individuals
influencing their ability to consume resources and to reproduce. The cells
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play a parasite role in the sense that the individual death rate can be an
increasing function of the number of its cells (Hypothesis 2.1). In difference
with host-parasite models, the individual duplicates all its cells at reproduc-
tion and the cell repartition of the offsprings in the different types is assumed
to be identical to the one of the progenitor. For instance, in [2], [11], [13],
examples where host fecundity is reduced by the presence of pathogens are
presented. Note that host reproduction rates may also increase with some
types of cells ([12]).

We consider a two-level population model evolving in continuous time. The
first level is composed of individuals governed by a mutation-selection birth
and death process. Moreover each individual is a collection of cells of two
types (types 1 and 2) which have their own dynamics and compose the sec-
ond level. The model can easily be generalized to cells with a finite number
of different types. We denote by ni1 (resp. by ni2) the number of cells of
type 1 (resp. of type 2) living in the individual i. This individual is more-
over characterized by a continuous quantitative phenotypic trait xi. The
individual i can be removed or copied according a birth-and-death process
depending on xi, ni1, n

i
2. An offspring inherits the trait value of its progeni-

tor except when a mutation occurs during the reproduction mechanism. In
that case the offspring takes instantaneously a new trait value. The death
of an individual can be natural or can be due to the competition exerted by
the other individuals, for example for the fight in sharing food. This com-
petition between individuals is modeling by a competition kernel and will
induce a nonlinear convolution term. Appendix A in [?] summarizes the
long tradition of representation of competitive interactions by competition
kernels. The cells in the individual i also reproduce and remove according
to another birth-and-death process, depending on xi, ni1, n

i
2. At this second

level, cell competition occurs and depends on the number of cells of each
type.

Our model generalizes the works developed by Dawson and Hochberg [6] and
by Wu [16], [17]. In these papers, individuals and cells follow a branching
dynamics but there is no interaction between individuals and between cells.
Thus all the specific techniques these authors use - as Laplace transforms -
are no more available for our model. In Bansaye and Tran [1], another two-
level stochastic model is studied. These authors introduce an host-parasite
model where the dynamics at the parasite level is much faster than the one
at the host level and they don’t renormalize the first-level dynamics, as we
do.

In our paper, we focus on the behavior of the individual and cell populations
on the long time scale of evolution where phenotypic mutations can be fixed.

In Section 2, we rigorously construct the underlying mathematical model
and prove its existence. Thus we obtain moment and martingale properties
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which are the key point to deduce approximations for large individual and
cell populations. By combining various scalings on population size, birth
and death rates and mutation step, the single microscopic model is shown
to lead to contrasting macroscopic limits of different nature: deterministic
approximations, in the form of ordinary, integro- or partial differential equa-
tions (Section 3.1), or probabilistic ones, like stochastic partial differential
equations or superprocesses (Section 4). The study of the long time behavior
of these processes seems very hard and we only develop some simple cases
enlightening the difficulties involved (Section 3.2).

2 Population point process

2.1 The model

We model the evolving population by a stochastic interacting individual
system, where each individual i is characterized by a vector phenotypic trait
value xi and by the number of its cells of type 1, ni1 ∈ N = {0, 1, 2, · · · }, and
of type 2, ni2 ∈ N. The trait space X is assumed to be a compact subset of
R
d, for some d ≥ 1. We denote by MF = MF (X × N × N) the set of finite

non-negative measures on X ×N×N, endowed with the weak topology. Let
also M be the subset of MF consisting of all finite point measures:

M =

{
I∑

i=1

δ(xi,ni
1,n

i
2)
, xi ∈ X , (ni1, ni2) ∈ N× N, 1 ≤ i ≤ I, I ∈ N

}
.

Here and below δ(x,n1,n2) denotes the Dirac mass at (x, n1, n2). In case where
I = 0, the measure is the null measure.
Therefore, for a population modelled by ν =

∑I
i=1 δ(xi,ni

1,n
i
2)
, the total num-

ber of its individuals is 〈ν, 1〉 = I and, if we denote by n := n1+n2 the num-
ber of cells of an individual (irrespective of type), then 〈ν, n〉 = ∑I

i=1(n
i
1+n

i
2)

is the total number of cells in the population ν.

Let us now describe the two-level dynamics. Any individual of the popu-
lation with trait x and cell state (n1, n2) follows a mutation-selection-birth-
and-death dynamics with

• birth (or reproduction) rate B(x, n1, n2),

• the reproduction is clonal with probability 1 − p(x) (the offspring in-
herits the trait x),

• a mutation occurs with probability p(x),

• the mutant trait x+ z is distributed according to the mutation kernel
M(x, z) dz which only weights z such that x+ z ∈ X ,



4

• death rate D(x, n1, n2) + α(x, n1, n2)
∑I

j=1 U(x− xj).

Thus the interaction between individuals is modeled by a comparison be-
tween their respective trait values described by the competition kernel U .
By simplicity, the mutations parameters p and M are assumed to be only
influenced by the trait x. They could also depend on the cell composition
(n1, n2) without inducing any additional technical difficulty.

Any cell of type 1 (resp. of type 2) inside an individual with trait x and cell
state (n1, n2) follows a birth-and-death dynamics with

• birth rate b1(x), (resp. b2(x)),

• death rate d1(x)+ β1(x)(n1λ11 +n2λ12), (resp. d2(x)+ β2(x)(n1λ21 +
n2λ22)).

The nonnegative parameters λ11, λ22, λ12, λ21 quantify the cell interactions.
The rate functions b1, b2, d1, d2, β1, β2 are assumed to be continuous (and
thus bounded on the compact set X ).

The population dynamics can be described by its possible transitions from
a state ν to the following other states:
Individual dynamics due to an individual with trait x and cell state (n1, n2):

ν �→ ν + δ(x,n1,n2) with rate B(x, n1, n2)(1− p(x)) ;

ν �→ ν − δ(x,n1,n2) with rate D(x, n1, n2) + α(x, n1, n2)
I∑

j=1

U(x− xj) ;

ν �→ ν + δ(x+z,n1,n2) with rate B(x, n1, n2) p(x),

where z is distributed following M(x, z) dz.

Cell dynamics:

ν �→ ν + δ(x,n1+1,n2) − δ(x,n1,n2) with rate b1(x) ;

ν �→ ν + δ(x,n1,n2+1) − δ(x,n1,n2) with rate b2(x) ;

ν �→ ν + δ(x,n1−1,n2) − δ(x,n1,n2) with rate d1(x) + β1(x)(λ11n1 + λ12n2) ;

ν �→ ν + δ(x,n1,n2−1) − δ(x,n1,n2) with rate d2(x) + β2(x)(λ21n1 + λ22n2).

Let us now prove the existence of a càdlàg Markov process (νt)t≥0 belonging
to D(R+,M) modeling the dynamics of such a discrete population. More
precisely, we consider

νt =

I(t)∑
i=1

δ(Xi(t),N i
1(t),N

i
2(t))

(1)
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where I(t) ∈ N stands for the number of individuals alive at time t, X1(t), ...,
XI(t)(t) ∈ X describes the traits of these individuals at time t and N1

1 (t), ...,

N
I(t)
1 (t) (resp. N1

2 (t), ..., N
I(t)
2 (t)) are the numbers of cells of type 1 (resp.

of type 2) for the individuals alive at time t.
To write down the infinitesimal generator of ν, we need an appropriate class
of test functions. For bounded measurable functions φ, f , g1, g2 defined
respectively on R, Rd, N and N, φfg1g2 is given by

φfg1g2(ν) := φ(< ν, fg1g2 >) = φ
(∫

X×N2

f(x)g1(n1)g2(n2)ν(dx, dn1, dn2)
)

= φ
( ∑

n1,n2∈N2

∫
X
f(x)g1(n1)g2(n2)ν(n1, n2, dx)

)
. (2)

The infinitesimal generator L of the Markov process (νt, t ≥ 0) applied to
such function φfg1g2 is given by:

Lφfg1g2(ν) =

I∑
i=1

(
φ(〈ν, fg1g2〉+ f(xi)g1(n

i
1)g2(n

i
2))− φ(〈ν, fg1g2〉)

)
B(xi, ni1, n

i
2)(1− p(xi))

+
I∑

i=1

∫ (
φ(〈ν, fg1g2〉+ f(xi + z)g1(n

i
1)g2(n

i
2))− φ(〈ν, fg1g2〉)

)
B(xi, ni1, n

i
2)

p(xi)M(xi, z)dz

+
I∑

i=1

(
φ(〈ν, fg1g2〉 − f(xi)g1(n

i
1)g2(n

i
2))− φ(〈ν, fg1g2〉)

)
(D(xi, ni1, n

i
2) + α(xi, ni1, n

i
2)U ∗ ν(xi, ni1, ni2))

+
I∑

i=1

(
φ(〈ν, fg1g2〉+ f(xi)(g1(n

i
1 + 1)− g1(n

i
1))g2(n

i
2))− φ(〈ν, fg1g2〉)

)
b1(x

i)ni1

+
I∑

i=1

(
φ(〈ν, fg1g2〉+ f(xi)g1(n

i
1)(g2(n

i
2 + 1)− g2(n

i
2)))− φ(〈ν, fg1g2〉)

)
b2(x

i)ni2

+
I∑

i=1

(
φ(〈ν, fg1g2〉+ f(xi)(g1(n

i
1 − 1)− g1(n

i
1))g2(n

i
2))− φ(〈ν, fg1g2〉)

)
(d1(x

i) + β1(x
i)(λ11n

i
1 + λ12n

i
2))n

i
1

+

I∑
i=1

(
φ(〈ν, fg1g2〉+ f(xi)g1(n

i
1)(g2(n

i
2 − 1)− g2(n

i
2)))− φ(〈ν, fg1g2〉)

)
(d2(x

i) + β2(x
i)(λ21n

i
1 + λ22n

i
2))n

i
2. (3)

The three first terms of (3) capture the effects of births and deaths of in-
dividuals of the population and the for last terms that of the cells. The
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competition makes the death terms nonlinear.

2.2 Process construction

Let us give a pathwise construction of a Markov process admitting L as
infinitesimal generator.

Hypothesis 2.1 There exist constants B̄, D̄, Ḡ ᾱ, Ū and C̄ and a proba-
bility density function M̄ on R

d such that for x, z ∈ X , n1, n2 ∈ R+,

B(x, n1, n2) ≤ B̄ ;

D(x, n1, n2) ≤ D̄ (n1 + n2) = D̄ n ;

α(x, n1, n2) ≤ ᾱ (n1 + n2) = ᾱ n ;

U(x) ≤ Ū , M(x, z) ≤ C̄M̄(z).

Remark that the jump rate of an individual with n cells in the population
ν is then upper-bounded by a constant times n (1+ 〈ν, 1〉) and that the cell
jump rate of such individual is upper-bounded by a constant times n(1+n).
Thus the model presents a double nonlinearity since the population jump
rates may depend on the product of the size of the population times the
number of cells and quadratically on the number of cells. But in fact, all
nonlinear rates decrease the number of individuals or cells so that explosion
is not an issue.

Let us now give a pathwise description of the population process (νt)t≥0.

Notation 2.1 We associate to any population state ν =
∑I

i=1 δ(xi,ni
1,n

i
2)

in M the triplet H i(ν) = (Xi(ν), N i
1(ν), N

i
2(ν)) as the trait and state of

the ith-individual, obtained by ordering all triplets with respect to some
arbitrary order on R

d × N× N ( for example the lexicographic order).

We now introduce the probabilistic objects we will need.

Definition 2.1 Let (Ω,F , P ) be a probability space on which we consider
the following independent random elements:

(i) An M-valued random variable ν0 (the initial distribution),

(ii) A Poisson point measure Q(ds, di, dz, dθ) on R+ × N
∗ × X × R+ with

intensity measure ds
(∑

k≥1 δk(di)
)
M̄(z)dzdθ .

Let us denote by (Ft)t≥0 the canonical filtration generated by ν0 and Q.



7

Let us finally define the quantities θi1(s), θ
i
2(s), θ

i
3(s), θ

i
4(s), θ

i
5(s), θ

i
6(s),

θi7(s) related to the different jump rates at time s as:

θi1(s) = B(H i(νs−))(1− p(Xi(νs−)));

θi2(s)− θi1(s) = B(H i(νs−))p(Xi(νs−))
M(X i(νs−), z)

M̄(z)
;

θi3(s)− θi2(s) = D(H i(νs−)) + α(H i(νs−)) U ∗ νs−(Xi(νs−));
θi4(s)− θi3(s) = b1(X

i(νs−)) N i
1(νs−);

θi5(s)− θi4(s) = b2(X
i(νs−)) N i

2(νs−);
θi6(s)− θi5(s) = d1(X

i(νs−)) + β1(X
i(νs−))(N i

1(νs−)λ11 +N i
2(νs−)λ12)N

i
1(νs−);

θi7(s)− θi6(s) = d2(X
i(νs−)) + β2(X

i(νs−))(N i
1(νs−)λ21 +N i

2(νs−)λ22)N
i
2(νs−).

We finally define the population process in terms of these stochastic objects.

Definition 2.2 Assume Hypothesis 2.1. A (Ft)t≥0-adapted stochastic pro-
cess ν = (νt)t≥0 is called a population process if a.s., for all t ≥ 0,

νt = ν0 +

∫
(0,t]×N∗×X×R+

{
δ(Xi(νs−),N i

1(νs−),N i
2(νs−))1{i≤〈νs−,1〉}1{θ≤θi1(s)}

+ δ(Xi(νs−)+z,N i
1(νs−),N i

2(νs−))1{i≤〈νs−,1〉}1{θi1(s)≤θ≤θi2(s)}
− δ(Xi(νs−),N i

1(νs−),N i
2(νs−))1{i≤〈νs−,1〉}1{θi2(s)≤θ≤θi3(s)}

+

(
δ(Xi(νs−),N i

1(νs−)+1,N i
2(νs−)) − δ(Xi(νs−),N i

1(νs−),N i
2(νs−))

)
1{i≤〈νs−,1〉}1{θi3(s)≤θ≤θi4(s)}

+

(
δ(Xi(νs−),N i

1(νs−),N i
2(νs−)+1) − δ(Xi(νs−),N i

1(νs−),N i
2(νs−))

)
1{i≤〈νs−,1〉}1{θi4(s)≤θ≤θi5(s)}

+

(
δ(Xi(νs−),N i

1(νs−)−1,N i
2(νs−)) − δ(Xi(νs−),N i

1(νs−),N i
2(νs−))

)
1{i≤〈νs−,1〉}1{θi5(s)≤θ≤θi6(s)}

+

(
δ(Xi(νs−),N i

1(νs−),N i
2(νs−)−1) − δ(Xi(νs−),N i

1(νs−),N i
2(νs−))

)
1{i≤〈νs−,1〉}1{θi6(s)≤θ≤θi7(s)}

}
Q(ds, di, dz, dθ) (4)

Let us now show that if ν solves (4), then ν follows the Markovian dynamics
we are interested in.

Proposition 2.1 Assume Hypothesis 2.1 and consider a process (νt)t≥0 de-
fined by (4) such that for all T > 0, E

(
supt≤T (〈νt, 1〉3 + 〈νt, n2〉)

)
< +∞.

Then (νt)t≤0 is a Markov process. Its infinitesimal generator L applied to
any bounded and measurable maps φfg1g2 : M �→ R and ν ∈ M satisfies
(3). In particular, the law of (νt)t≥0 does not depend on the chosen order in
Notation 2.1.
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Proof. The fact that (νt)t≥0 is a Markov process is immediate. Let us now
consider a function φfg1g2 as in the statement. Using the decomposition (4)
of the measure νt and the fact that

φfg1g2(νt) = φfg1g2(ν0) +
∑
s≤t

(
φfg1g2(νs− + (νs − νs−))− φfg1g2(νs−)

)
, (5)

we get a decomposition of φfg1g2(νt).
Thanks to the moment assumptions, φfg1g2(νt) is integrable. Let us check it
for the nonlinear individual death term (which is the more delicate to deal
with):

E

(∫
(0,t]×N∗×X×R+

(
φ(〈νs− − δ(Xi(νs−),N i

1(νs−),N i
2(νs−)), fg1g2〉 − φ(〈νs−, fg1g2〉)

)
1{i≤〈νs−,1〉}1{θi2(s)≤θ≤θi3(s)}Q(ds, di, dz, dθ)

)
= E

(∫ t

0
〈νs,

(
φ(〈νs, fg1g2〉 − f(x)g1(n1)g2(n2))− φ(〈νs, fg1g2〉)

)
(
D(x, n1, n2) + α(x, n1, n2) U ∗ νs(x)

)〉ds).
Since φ is bounded and thanks to Hypothesis 2.1, the right hand side term
will be finite as soon as

E

(
sup
t≤T

(〈νt, n〉+ 〈νt, n〉〈νt, 1〉)
)
<∞.

Remark firstly that 〈ν, n〉 ≤ 〈ν, n2〉. Moreover, we get from n〈ν, 1〉 ≤
1/2(n2 + 〈ν, 1〉2) the inequality

〈ν, n〉 〈ν, 1〉 ≤ 1/2(〈ν, n2 + 〈ν, 1〉2〉) = 1/2(〈ν, n2〉+ 〈ν, 1〉3).
The moment assumptions allow us to conclude and to show that the expec-
tation is differentiable in time at t = 0. It leads to (3). �
Let us show existence and moment properties for the population process.

Theorem 2.1 Assume Hypothesis 2.1.
(i) If E (〈ν0, 1〉) < +∞, then the process (νt)t introduced in Definition

2.2 is well defined on R+.
(ii) Furthermore, if for some p ≥ 1, E (〈ν0, 1〉p) < +∞, then for any

T <∞,

E( sup
t∈[0,T ]

〈νt, 1〉p) < +∞. (6)

(iii) If moreover E
(〈
ν0, n

2
〉)
< +∞, then for any T <∞,

E( sup
t∈[0,T ]

〈
νt, n

2
〉
) < +∞. (7)
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Proof. We compute φ(< νt, 1 >) using (4) and (5) for f ≡ g1 ≡ g2 ≡ 1:
we get

φ(< νt, 1 >) = φ(< ν0, 1 >)

+

∫
(0,t]×N∗×X×R+

{(
φ(< νs−, 1 > +1)− φ(< νs−, 1 >)

)
1{θ≤θi2(s)}

+
(
φ(< νs−, 1 > −1)− φ(< νs−, 1 >)

)
1{θi2(s)≤θ≤θi3(s)}

}
1{i≤〈νs−,1〉}Q(ds, di, dz, dθ)

and for g1(n1) = n1,

< νt, n1 > =< ν0, n1 > +∫
(0,t]×N∗×X×R+

{
N i

1(νs−)
(
1{θ≤θi2(s)} − 1{θi2(s)≤θ≤θi3(s)}

)
+ 1{θi3(s)≤θ≤θi4(s)} − 1{θi5(s)≤θ≤θi6(s)}

}
1{i≤〈νs−,1〉}Q(ds, di, dz, dθ).

A similar decomposition holds for < νt, n2 >.
The proof of (i) and (ii) is standard and can easily be adapted from [10]: we
introduce for each integer k the stopping time τk = inf {t ≥ 0, 〈νt, 1〉 ≥ k}
and show that the sequence(τk)k tends a.s. to infinity, using that

sup
s∈[0,t∧τk]

〈νs, 1〉 ≤ 〈ν0, 1〉+
∫

1{i≤〈νs−,1〉} 1{θ≤θi2(s)}Q(ds, di, dz, dθ),

and the estimates of moments up to time τk deduced from the latter and
Hypothesis 2.1 and Gronwall’s lemma.
Further, one may build the solution (νt)t≥0 step by step. One only has to
check that the sequence of jump instants (Tk) goes a.s. to infinity as k tends
to infinity, which follows from the previous result.

The proof of (iii) follows a similar argument with τ1k := inf
{
t ≥ 0,

〈
νt, n

2
1

〉 ≥ k
}
.

From

sup
s∈[0,t∧τ1k ]

〈
νs, n

2
1

〉 ≤ 〈
ν0, n

2
1

〉
+

∫
(0,t∧τ1k ]×N∗×X×R+

1{i≤〈νs−,1〉}
{
(N i

1(νs−))
21{θ≤θi2(s)} + (2N i

1(νs−) + 1)1{θi3(s)θ≤θi4(s)}
}
Q(ds, di, dz, dθ),

and E
(〈
ν0, n

2
〉)
< +∞ and (ii) since 2n1 + 1 ≤ n21 + 2, we firstly get, using

Hypothesis 2.1 and Gronwall’s lemma, that

E( sup
t∈[0,T∧τ1k ]

〈
νt, n

2
1

〉
) ≤ CT .

Then we deduce that τ1k tends to infinity and that E(supt∈[0,T ]

〈
νt, n

2
1

〉
) <∞.

The same is true replacing n1 by n2. �
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2.3 Martingale Properties

We finally give some martingale properties of the process (νt)t≥0, which are
the key point of our approach. For measurable functions f, g1, g2, let us
denote by Ffg the function defined on MF by

Ffg(ν) :=< ν, fg1g2 > .

Theorem 2.2 Assume Hypothesis 2.1 together with E
( 〈ν0, 1〉3 ) < +∞ and

E
( 〈
ν0, n

2
〉 )

< +∞.
(i) For all measurable functions φ, f, g1, g2 such that
|φfg1g2(ν)|+ |Lφfg1g2(ν)| ≤ C(1 + 〈ν, 1〉3 + 〈ν, n2〉), the process

φfg1g2(νt)− φfg1g2(ν0)−
∫ t

0
Lφfg1g2(νs)ds (8)

is a càdlàg (Ft)t≥0-martingale starting from 0, where Lφfg1g2 has been de-
fined in (3).

(ii) For all measurable bounded functions f, g1, g2, the process

Mfg
t = 〈νt, fg1g2〉 − 〈ν0, fg1g2〉 −

∫ t

0
LFfg(νs)ds (9)

is a càdlàg square integrable (Ft)t≥0-martingale starting from 0, where

LFfg(ν) =∫
X×N2

{(
B(x, n1, n2)(1− p(x, n1, n2))− (D(x, n1, n2) + α(x, n1, n2)U ∗ ν(x))

)
f(x)g1(n1)g2(n2)

+ p(x, n1, n2)B(x, n1, n2)

∫
f(x+ z)g1(n1)g2(n2)M(x, z)dz

+ f(x)
(
g1(n1 + 1)− g1(n1)

)
g2(n2)b1(x)n1 + f(x)g1(n1)

(
g2(n2 + 1)− g2(n2)

)
b2(x)n2

+ f(x)
(
g1(n1 − 1)− g1(n1)

)
g2(n2)

(
d1(x) + β1(x)(λ11n1 + λ12n2)

)
n1

+ f(x)g1(n1)
(
g2(n1 − 1)− g2(n2)

)(
d2(x) + β2(x)(λ21n1 + λ22n2)

)
n2

}
ν(dx, dn1, dn2).
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Its quadratic variation is given by

〈Mfg〉t =∫ t

0

∫
X×N2

{(
(1− p(x, n1, n2))B(x, n1, n2) + (D(x, n1, n2) + α(x, n1, n2)U ∗ νs(x))

)
f2(x)g21(n1)g

2
2(n2)

+ p(x, n1, n2)B(x, n1, n2)

∫
f2(x+ z)g21(n1)g

2
2(n2)M(x, z)dz

+ f2(x)
(
g1(n1 + 1)− g1(n1)

)2
g22(n2)b1(x)n1

+ f2(x)g21(n1)
(
g2(n2 + 1)− g2(n2)

)2
b2(x)n2

+ f2(x)
(
g1(n1 − 1)− g1(n1)

)2
g22(n2)

(
d1(x) + β1(x)(λ11n1 + λ12n2)

)
n1

+ f2(x)g21(n1)
(
g2(n1 − 1)− g2(n2)

)2(
d2(x) + β2(x)(λ21n1 + λ22n2)

)
n2

}
νs(dx, dn1, dn2)ds.

Proof. The martingale property is immediate by Proposition 2.1 and
Theorem 2.1. Let us justify the form of the quadratic variation process.
Using a localization argument as in Theorem 2.1, we may compare two
different expressions of 〈νt, fg1g2〉2. The first one is obtained by applying (8)
with φ(ν) := 〈ν, fg1g2〉2. The second one is obtained by applying Itô’s
formula to compute 〈νt, fg1g2〉2 from (9). Comparing these expressions leads
to the above formulation of the quadratic variation. We may let go the
localization stopping time sequence to infinity since E

( 〈ν0, 1〉3 ) < +∞ and
E
(〈
ν0, n

2
〉)

< +∞. Indeed, in this case, E(〈Mfg〉t) < +∞ thanks to
Theorem 2.1 and to the proof of Proposition 2.1. �

3 Deterministic large population approximations

We are interested in studying large population approximations of our indivi-
dual-based system. We rescale the size of individual population byK and the
size of the cell populations by K1 respectively K2. With κ = (K,K1,K2),
the process of interest is now the Markov process (Y κ

t )t≥0 defined as

Y κ
t =

1

K

Iκ(t)∑
i=1

δ
(Xi

κ(t),
Ni
1,κ(t)

K1
,
Ni
2,κ(t)

K2
)
∈MF (X × R+ × R+)

in which cells of type 1 (resp. of type 2) have been weighted by 1
K1

(resp. by
1
K2

) and individuals by 1
K . The dynamics of the process (X i

κ(t), N
i
1,κ(t), N

i
2,κ(t))

is the one described in Section 2 except some coefficients are depending on
the scaling κ as described below.
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The individual dynamics depends on Bκ, pκ, Mκ, Dκ, ακ, Uκ which are
assumed to satisfy the Hypothesis 2.1 of Section 2 for any fixed κ.

Notation 3.1 : We say that κ→ ∞ when the three parameters K,K1,K2

tend to infinity.

Hypothesis 3.1 1) There exist continuous functions B, D and α on X ×
R+ × R+ such that

lim
κ→∞ sup

x,y1,y2

|Bκ(x,K1y1,K2y2)−B(x, y1, y2)|+ |Dκ(x,K1y1,K2y2)−D(x, y1, y2)| = 0,

lim
κ→∞ sup

x,y1,y2

|ακ(x,K1y1,K2y2)− α(x, y1, y2)| = 0. (10)

We assume that the functions B, D and α satisfy Hypothesis 2.1.
2) The competition kernel Uκ satisfies

Uκ(x) =
U(x)

K
, (11)

where U is a continuous function.

3) The others parameters pκ = p and Mκ = M stay unchanged, as also
the cell ecological parameters: b1,κ = b1, b2,κ = b2, d1,κ = d1,d2,κ = d2,
β1,κ = β1, β2,κ = β2. The functions p and M are assumed to be continuous
and the functions bi, di and βi are of class C1.
We assume

ri = bi − di > 0 , i ∈ {1, 2}.
4) Similarly to (11), the interaction rates between cells satisfy

λκij =
λij
Kj

, i, j ∈ {1, 2}. (12)

Remark that Hypothesis 3.1 1) means that at a large scale K, the indi-
viduals are influenced in their ecological behavior by the cells if the number
of the latter is of order K1 for cells of type 1, resp. of order K2 for cells of
type 2. On the other side the Hypothesis 3.1 2) may be a consequence of a
fixed amount of available resources to be partitioned among all the individ-
uals. Larger systems are made up of smaller interacting individuals whose
biomass is scaled by 1/K, which implies that the interaction effect of the
global population on a focal individual is of order 1.

Example 3.1 (i) If K1 = K2 and if the individual rates Bκ, Dκ, ακ depend
on x, n1, n2 by the proportion of cells of type 1, then (10) is satisfied.

(ii) Assume that K1 = K2 = K and that the functions Bκ, Dκ, ακ depend
on the weighted total number of cells 1

K (n1 + n2).
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3.1 A convergence theorem

We assume that the sequence of random initial conditions Y κ
0 converges in

law to some finite measure v0 ∈MF (X ×R+ ×R+) when κ→ ∞. Our aim
is to study the limiting behavior of the processes Y κ· as κ→ ∞.
The generator Lκ of (Y κ

t )t≥0 is easily obtained by computing, for any mea-
surable function φ from MF (X × R+ × R+) into R and any μ ∈ MF (X ×
R+ × R+),

Lκφ(μ) = ∂tEμ(φ(Y
κ
t ))t=0.

In particular, similarly as in Theorem 2.2, we may summarize the moment
and martingale properties of Y κ for any fixed κ.

Proposition 3.1 Assume that there exists p ≥ 3 such that E(〈Y κ
0 , 1〉p +

〈Y κ
0 , y

2
1 + y22〉) < +∞. Then

(1) For any T > 0, E
(
supt∈[0,T ]〈Y κ

t , 1〉p + supt∈[0,T ]〈Y κ
t , y

2
1 + y22〉

)
< +∞.

(2) For any measurable bounded functions f, g1, g2, the process

M̃κ,fg
t =

〈Y κ
t , fg1g2〉 − 〈Y κ

0 , fg1g2〉 −
∫ t

0

∫
X×R2

+

{(
Bκ(x,K1y1,K2y2)(1− p(x))

− (
Dκ(x,K1y1,K2y2) + ακ(x,K1y1,K2y2) U ∗ Y κ

s (x, y1, y2)
))

f(x)g1(y1)g2(y2)

+ p(x)Bκ(x,K1y1,K2y2)

∫
f(x+ z)g1(y1)g2(y2)M(x, z)dz

+ f(x)
(
g1(y1 +

1

K1
)− g1(y1)

)
g2(y2) b1(x) K1y1

+ f(x)g1(y1)
(
g2(y2 +

1

K2
)− g2(y2)

)
b2(x) K2y2

+ f(x)
(
g1(y1 − 1

K1
)− g1(y1)

)
g2(y2)

(
d1(x) + β1(x)(λ11y1 + λ12y2)

)
K1y1

+ f(x)g1(y1)
(
g2(y1 − 1

K2
)− g2(y2)

)(
d2(x) + β2(x)(λ21y1 + λ22y2)

)
K2y2

}
Y κ
s (dx, dy1, dy2) ds (13)

is a càdlàg square integrable martingale starting from 0 with quadratic
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variation

〈M̃κ,fg〉t = 1

K

∫ t

0

∫
X×R2

+

{(
Bκ(x,K1y1,K2y2)(1− p(x))

+
(
Dκ(x,K1y1,K2y2) + ακ(x,K1y1,K2y2) U ∗ Y κ

s (x, y1, y2)
))

f2(x)g21(y1)g
2
2(y2)

+ p(x)Bκ(x,K1y1,K2y2)

∫
f2(x+ z)g21(y1)g

2
2(y2)M(x, z)dz

+ f2(x)
(
g1(y1 +

1

K1
)− g1(y1)

)2
g22(y2) b1(x) K1y1

+ f2(x) g21(y1)
(
g2(y2 +

1

K2
)− g2(y2)

)2
b2(x) K2y2

+ f2(x)
(
g1(y1 − 1

K1
)− g1(y1)

)2
g22(y2)

(
d1(x) + β1(x)(λ11y1 + λ12y2)

)
K1y1

+ f2(x) g21(y1)
(
g2(y2 − 1

K2
)− g2(y2)

)2 (
d2(x) + β2(x)(λ21y1 + λ22y2)

)
K2y2

}
Y κ
s (dx, dy1, dy2) ds. (14)

We can now state our convergence result.

Theorem 3.1 Assume Hypothesis 3.1. Assume moreover that the sequence
of initial conditions Y κ

0 ∈ MF (X × R
2
+) satisfies supκ E(〈Y κ

0 , 1〉3) < +∞
and supκ E(〈Y κ

0 , y
2
1 + y22〉) < +∞. If Y κ

0 converges in law, as κ tends to
infinity, to a finite deterministic measure v0, then the sequence of processes
(Y κ

t )0≤t≤T converges in law in the Skorohod space D([0, T ],MF (X × R
2
+)),

as κ goes to infinity, to the unique (deterministic) measure-valued flow v ∈
C([0, T ],MF (X × R

2
+)) satisfying for any bounded and continuous function

f and any bounded functions g1, g2 of class C1
b ,

〈vt, fg1g2〉 = 〈v0, fg1g2〉+
∫ t

0

∫
X×R2

+

{(
B(x, y1, y2)(1− p(x))

− (
D(x, y1, y2) + α(x, y1, y2) U ∗ vs(x, y1, y2)

))
f(x)g1(y1)g2(y2)

+ p(x)B(x, y1, y2)

∫
f(x+ z)M(x, z)dz g1(y1)g2(y2)

+ f(x)
[
g′1(y1)g2(y2)b1(x) y1 + g1(y1)g

′
2(y2)b2(x) y2

− g′1(y1)g2(y2)
(
d1(x) + β1(x)(λ11y1 + λ12y2)

)
y1

− g1(y1)g
′
2(y2)

(
d2(x) + β2(x)(λ21y1 + λ22y2)

)
y2

]}
vs(dx, dy1, dy2) ds.

(15)
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Note that for this dynamics, a transport term appears at the level of cells.

Remark 3.1 • A solution of (15) is a measure-valued solution of the
nonlinear integro-differential equation

∂

∂t
vt =

(
B(1− p)− (

D + α U ∗ vt
))
vt +Bpvt ∗M − �y(cvt)(16)

with c1(x, y) := y1
(
r1(x)− β1(x)

(
λ11y1 + λ12y2

))
c2(x, y) := y2

(
r2(x)− β2(x)

(
λ21y1 + λ22y2

))
. (17)

Thus, the existence of a weak solution for Equation (16) is obtained
as corollary of Theorem 3.1.

• We deduce from (15) the limiting dynamics of the total number of
individuals:

〈vt, 1〉 = 〈v0, 1〉+∫ t

0

∫
X×R2

+

(
B −D − α U ∗ vs

)
vs(dx, dy1, dy2) ds, (18)

while the total number 〈vt, yi〉 of cells of type i at time t is obtained
by taking f ≡ 1, gi(y) = y, gj ≡ 1 (i �= j) in (15) :

〈vt, yi〉 = 〈v0, yi〉

+

∫ t

0

∫
X×R2

+

(
B −D − α U ∗ vs

)
yi vs(dx, dy1, dy2)ds

+

∫ t

0

∫ (
(bi(x)− di(x))yi − βi(x)(λiiyi + λijyj)yi

)
vs(dx, dy1, dy2) ds.

(19)

Proof. The proof of the theorem is obtained by a standard compactness-
uniqueness result (see e.g. [7]). The compactness is a consequence, using
Prokhorov’s Theorem, of the uniform tightness of the sequence of laws of
(Y κ

t , t ≥ 0). This uniform tightness derives from uniform moment esti-
mates. Their proof is standard and we refer for details to [15], [10] Theorem
5.3 or to [5]. To identify the limit, we first remark using (14) that the
quadratic variation tends to 0 when K tends to infinity. Thus the lim-
iting values are deterministic and it remains to prove the convergence of
the drift term in (13) to the one in (15). The drift term in (13) has the
form

∫ t
0 〈Y κ

s , A
κ(Y κ

s )(fg1g2)〉ds and the limiting term in (15) has the form∫ t
0 〈vs, A(vs)(fg1g2)〉ds. (The exact values of Aκ and A are immediately
given by (13) and (15)).
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Thus, let us show that if Y κ is a sequence of random measure-valued pro-
cesses weakly converging to a measure-valued flow Y and satisfying the
moment assumptions

sup
κ

E(sup
t≤T

〈Y κ
t , 1〉3) + sup

κ
E(sup

t≤T
〈Y κ

t , y
2〉) < +∞, (20)

then 〈Y κ
t , A

κ(Y κ
t )(fg1g2)〉 converges in L1 to 〈Yt, A(Yt)(fg1g2)〉 uniformly

in time t ∈ [0, T ]. We write

〈Y κ
t , A

κ(Y κ
t )(fg1g2)〉 − 〈Yt, A(Yt)(fg1g2)〉 = 〈Y κ

t , A
κ(Y κ

t )(fg1g2)−A(Y κ
t )(fg1g2)〉

+ 〈Y κ
t , A(Y

κ
t )(fg1g2)−A(Yt)(fg1g2)〉+ 〈Y κ

t − Yt, A(Yt)(fg1g2)〉. (21)

The convergence of the first term to zero follows from Hypothesis 3.1 and
(20) and from the following remark, that for C1

b -functions g1 and g2, the
terms

Ki

(
gi(yi − 1

Ki
)− gi(yi)

)
+ g′i(yi)

converge to 0 in a bounded pointwise sense, which allows us to apply the
Lebesgue’s theorem.
The convergence of the second term to 0 is immediately obtained by use of
(20), since the functions α and U are continuous and bounded.
The convergence of the third term of (21) is due to the weak convergence
of Y κ to Y . We know that for all bounded and continuous functions φ, the
quantity 〈Y κ

t − Yt, φ〉 tends to 0. The function A(Yt)(fg1g2) is a continuous
function which is not bounded because of linear terms in y and y2. Thus
we need to cutoff at a level M replacing y by y ∧M . The remaining terms
are proved to go to 0 using (20). Hence we have proved that each limiting
value satisfies (15).

We have now to prove the uniqueness of the solution v ∈ C([0, T ],MF (X ×
R
2
+)) of (15). Our argument is based on properties of Lotka-Volterra’s flows.

Firstly we need the following comparison lemma.

Lemma 3.1 If ut is a non negative function with positive initial value and
satisfying for some a, b ∈ R

∗
+ the inequality

∀t > 0,
∂

∂t
ut ≤ aut − bu2t ,

then 0 ≤ sup
t≥0

ut =: u < +∞.

Moreover 0 is an absorbing value: if ut0 = 0 then for all t ≥ t0, ut ≡ 0.

Proof. of Lemma 3.1. Let us define Ut as solution of the associated logistic
equation

∂Ut

∂t
= aUt − bU2

t , U0 = u0.
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Then ∂
∂t(Ut − ut) ≥ a(Ut − ut)− b(U2

t − u2t ). With δt := Ut − ut it holds

∂

∂t
δt ≥

(
a− b(Ut + ut)

)
δt, δ0 = 0.

Let us show that t �→ δt increases, and therefore is positive. For t = 0, since
δ0 = 0, ∂δt

∂t |t=0 ≥ 0. Thus δt ≥ 0 in a neighborhood of 0.
Let define t0 := sup{t > 0 : δt = 0}. If t0 = +∞ the problem is solved.
If not, Ut ≡ ut on [0, t0]. Let us now define t1 := inf{t > t0 : δt < 0}. If
t1 = +∞ the problem is solved. If t1 < +∞, by continuity δt1 = 0 and
then ∂δt

∂t |t=t1 ≥ 0. Thus, in a small time intervall after t1, δt would increase
and be positive, which is a contradiction with the definition of t1. Therefore
t �→ δt increases and stays positive, which implies that

0 ≤ u := sup
t≥0

ut ≤ sup
t≥0

Ut < +∞.

�
Let us now recall some properties of the Lotka-Volterra’s flow involved in
the cell dynamics.

Lemma 3.2 Let t0 ∈ [0, T ], x ∈ X and y = (y1, y2) ∈ R
2
+ be given. The

differential equation

∂

∂t
y(t) = c(x, y(t)), t ∈ [t0, T ], with y(t0) = y (22)

where c defined in (17), admits in R
2
+ a unique solution t �→ ϕt0,y

x (t) =

(ϕt0,y
x,1 (t), ϕ

t0,y
x,2 (t)). Moreover the mapping (x, t, s, y) �→ ϕs,y

x (t) is C0 in x ∈
X and C∞ in t, s, y ∈ [0, T ]2 × R

2
+ and is a characteristic flow in the sense

that for all s, t, u,

ϕs,y
x (t) = ϕu,z

x (t), where z = ϕs,y
x (u). (23)

Proof. of Lemma 3.2. Since the coefficients ci are of class C1 and thus
locally bounded with locally bounded derivatives, the lemma is standard
(cf. [3]) as soon as the solution does not explode in finite time. The latter
is obvious, since the quadratic terms are non positive. Indeed, the functions
(y1, y2) are dominated by the solution (z1, z2) of the system

∂

∂t
zi(t) = ri(x)zi(t)− βi(x)λiiz

2
i ; zi(0) = yi, i = 1, 2,

and we use Lemma 3.1.
The flow clearly satisfies

ϕt0,y
x,1 (t) = y1 exp

(∫ t

t0

(r1(x)− β1(x)
(
λ11ϕ

t0,y
x,1 (s) + λ12ϕ

t0,y
x,2 (s)

)
ds

)
,

ϕt0,y
x,2 (t) = y2 exp

(∫ t

t0

(r2(x)− β2(x)
(
λ21ϕ

t0,y
x,1 (s) + λ22ϕ

t0,y
x,2 (s)

)
ds

)
,



18

which proves (23), a deterministic version of the Markov property. �

The proof of uniqueness will be based on the mild equation satisfied by any
solution of (15). Let us consider a function G defined on X × R

2
+ of class

C1 on the two last variables and for any x ∈ X , let us define the first-order
differential operator

LG(x, y) := c1(x, y)
∂G

∂y1
(x, y) + c2(x, y)

∂G

∂y2
(x, y) = c · �yG (x, y), (24)

where the notation · means the scalar product in R
2.

Then the function G̃(s, t, x, y) := G(x, ϕs,y
x (t)) satisfies

∂

∂t
G̃(s, t, x, y) = �yG(x, ϕ

s,y
x (t)) · ∂

∂t
ϕs,y
x (t)

= c(x, ϕs,y
x (t)) · �yG(x, ϕ

s,y
x (t))

= LG(x, ϕs,y
x (t)) = LG̃(s, t, x, y). (25)

Let us fix t > 0. We deduce from (25) and from the flow property (23) that
G̃ satisfies the backward transport equation:

∂

∂s
G̃+ LG̃ = 0, ∀s ≤ t with G̃(t, t, x, y) = G(x, y). (26)

We now write (15) applying the measure vt to the time-dependent func-
tion (s, x, y) �→ G̃(s, t, x, y) where G(x, y) = f(x)g(y) and obtain the mild
equation

〈vt, fg〉 = 〈v0, f g ◦ ϕ0,y
x (t)〉+

∫ t

0

∫
X×R2

+

{(
B(x, y1, y2)(1− p(x))

− (
D(x, y1, y2) + α(x, y1, y2) U ∗ vs(x, y1, y2)

))
f(x)g ◦ ϕs,y

x (t)+

p(x)B(x, y1, y2)

∫
f(x+ z)g ◦ ϕs,y

x+z(t)M(x, z)dz

}
vs(dx, dy1, dy2)ds. (27)

(The last term involving ∂
∂sg ◦ ϕs,y

x (t) + Lg(ϕs,y
x (t)) vanishes by (26).)

Let us now consider two continuous functions v and v̄ in C([0, T ],MF (X ×
R
2
+)) solutions of (15) with the same initial condition v0. Then the difference

of both solutions satisfies

〈vt − v̄t, fg1g2〉 =
∫ t

0

∫
X×R2

+

{[(
B(1− p(x))−D

)
f(x)g ◦ ϕs,y

x (t)

+ p(x)B

∫
f(x+ z)g ◦ ϕs,y

x+z(t)M(x, z)dz

]
(vs(dx, dy1, dy2)− v̄s(dx, dy1, dy2))

− α(x, y1, y2)f(x)g ◦ ϕs,y
x (t)

(
U ∗ vsvs(dx, dy1, dy2)− U ∗ v̄sv̄s(dx, dy1, dy2)

)}
ds.
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The total variation norm of a measure v is denoted as usual by ‖v‖TV . Since
all coefficients are bounded as well as the total masses of vt and v̄t, it is easy
to show that there exists a constant CT such that

‖vt − v̄t‖TV ≤ CT

∫ t

0
‖vs − v̄s‖TV ds,

which implies, by Gronwall’s Lemma, that v and v̄ are equal . �
Let us now prove that if the initial measure has a density with respect to
Lebesgue measure, then there exists a unique function solution of (16). That
gives a general existence and uniqueness result for such nontrivial equations
with nonlinear reaction and transport terms, and a nonlocal term involved
by the mutation kernel. The existence takes place in a very general set of
L1-functions.

Proposition 3.2 Assume that the initial measure v0 admits a density φ0
with respect to the Lebesgue measure dxdy1dy2; then for each t > 0, the
measure vt solution of (16) also admits a density.

Proof. Let us come back to the equation (27) satisfied by v. Using basic
results on linear parabolic equations, we construct by induction a sequence
of functions (φn)n satisfying in a weak sense the following semi-implicit
scheme: φn+1

0 ≡ φ0 and

〈φn+1
t , fg〉 = 〈φ0, f g ◦ ϕ0,y

x (t)〉+
∫ t

0

∫
X×R2

+

[{(
B(1− p(x))f(x)g ◦ ϕs,y

x (t)

+ p(x)B

∫
f(x+ z)g ◦ ϕs,y

x+z(t)M(x, z)dz

}
φns (x, y1, y2)

− (
D + α U ∗ φns

))
f(x)g ◦ ϕs,y

x (t)φn+1
s (x, y1, y2)

]
dxdy1dy2ds. (28)

Thanks to the nonnegativity of φ0 and of the parameters B, p, 1 − p, and
applying the maximum principle for transport equations (cf. [3]), we can
show that the functions φn are nonnegative. Taking f = g = 1 and thanks

to the nonnegativity of the functions φn and to the boundedness of the
coefficients we get

sup
s≤t

‖φn+1
s ‖1 ≤ ‖φ0‖1 + C1

∫ t

0
sup
u≤s

‖φnu‖1du,

where the constant C1 does not depend on n and can be chosen uniformly
on [0,T]. By Gronwall’s Lemma, we conclude that

sup
n

sup
t≤T

‖φnt ‖1 ≤ ‖φ0‖1 eC1T . (29)
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Let us now prove the convergence of the sequence φn in L∞([0, T ], L1).
A straightforward computation using (28), (29), the assumptions on the
coefficients and similar arguments as above yields

sup
s≤t

‖φn+1
s − φns ‖1 ≤ C2

∫ t

0

(
sup
u≤s

‖φn+1
u − φnu‖1 + sup

u≤s
‖φnu − φn−1

u ‖1
)
ds,

where C2 is a positive constant independent of n and t ∈ [0, T ]. It follows
from Gronwall’s Lemma that for each t ≤ T and n,

sup
s≤t

‖φn+1
s − φns ‖1 ≤ C3

∫ t

0
sup
u≤s

‖φnu − φn−1
u ‖1 ds.

We conclude that the series
∑

n supt∈[0,T ] ‖φn+1
t − φnt ‖1 converges for any

T > 0. Therefore the sequence of functions (φn)n converges in L∞([0, T ], L1)
to a continuous function t �→ φt satisfying

sup
t≤T

‖φt‖1 ≤ ‖φ0‖1 eC1T .

Moreover, since the sequence converges in L1, the limiting measure
φt(x, y1, y2)dxdy1dy2 is solution of (27) and then it is its unique solution.
Hence, that implies that for all t,

vt(dx, dy1, dy2) = φt(x, y1, y2) dxdy1dy2.

�
We have thus proved that the nonlinear integro-differential equation (16) ad-
mits a unique weak function-valued solution as soon as the initial condition
φ0 is an L1-function, without any additional regularity assumption.

3.2 Stationary states under a mean field assumption and
without trait mutation

This part is a first step in the research of stationary states for the deter-
ministic measure-valued process (vt, t ≥ 0) defined above. We firstly remark
that equation (18), which determines the evolution of the total number of
individuals t �→ 〈vt, 1〉, is not closed if the functions U,B,D or α are not con-
stant, which makes the problem very hard. In this section we consider the
simplest case where the individual ecological parameters B and D and the
cell ecological parameters bi and di are constant and where the mutation
probability p vanishes. Moreover, we work under the mean field assump-
tion, that is the competition/selection kernel U is a positive constant. We
consider two different cases corresponding to different selection rates α.
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3.2.1 Case with constant selection rate

Let us assume that the selection rate α is a positive constant. In this case,
the mass equation (18) is closed and reduces to the standard logistic equation

〈vt, 1〉 = 〈v0, 1〉+
∫ t

0
〈vs, 1〉

(
(B −D)− αU〈vs, 1〉

)
ds, (30)

whose asymptotical behavior is well known: the mass of any stationary
measure v∞ satisfies

(B −D)〈v∞, 1〉 = αU〈v∞, 1〉2.
Either R := B −D ≤ 0 and there is extinction of the population, that is

lim
t→+∞〈vt, 1〉 = 〈v∞, 1〉 = 0.

Or R > 0 and the mass of the population converges to a non degenerate
value

lim
t→+∞〈vt, 1〉 = 〈v∞, 1〉 = R

αU
. (31)

Furthermore, the convergence of the mass holds exponentially fast: due to
(30),

∂

∂t
〈vt − v∞, 1〉 = −αU〈vt, 1〉〈vt − v∞, 1〉.

Thus 〈vt − v∞, 1〉 = 〈v0 − v∞, 1〉 e−αU
∫ t
0 〈vs,1〉 ds (32)

which vanishes exponentially fast.

Assume R > 0 in such a way that the mass of the population does not
vanish. In what follows we will need the following notations:

〈v, 1〉 := sup
t
〈vt, 1〉 < +∞

and

ᾱ := sup
t
αt(< +∞) where αt := R− αU〈vt, 1〉 = −αU〈vt − v∞, 1〉.

Let us now consider the weak convergence of the measures vt towards the
stationary measure v∞, which is concentrated on the equilibrium state of
the Lotka-Volterra dynamics.
Applying equation (15) to any bounded smooth function g(y) = g1(y1)g2(y2),

∂

∂t
〈vt, g〉 = αt〈vt, g〉+ 〈vt, r1y1 ∂g

∂y1
+ r2y2

∂g

∂y2
〉

−〈vt, β1 ∂g
∂y1

(
λ11y1 + λ12y2

)
y1 + β2

∂g

∂y2

(
λ21y1 + λ22y2

)
y2〉

= αt〈vt, g〉+ 〈vt,Lg〉 (33)
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where the differential first order operator L = c · � is the same as in (24)
but without dependence on the trait x. Using the flow of Lotka-Volterra
equation (see (22)), we represent the mild solution of (33) as

〈vt, g〉 =
∫
R2
+

g ◦ ϕ0,y(t) v0(dy) +

∫ t

0
αs

∫
R2
+

g ◦ ϕs,y(t) vs(dy) ds. (34)

Let us firstly recall the long-time behavior of the Lotka-Volterra system (22)
in case where the coefficients ci don’t depend on x.

Lemma 3.3 (Champagnat [4], Annexe A). Any solution of

∂

∂t
y1(t) = y1(t)

(
r1 − β1

(
λ11y1(t) + λ12y2(t)

))
∂

∂t
y2(t) = y2(t)

(
r2 − β2

(
λ21y1(t) + λ22y2(t)

))
(35)

with initial condition in (R∗
+)

2 converges when t tends to infinity to a limit

π ∈
{
( r1
β1λ11

, 0), (0, r2
β2λ22

),
(

β1λ12r2−β2λ22r1
β1β2(λ12λ21−λ11λ22)

, β2λ21r1−β1λ11r2
β1β2(λ12λ21−λ11λ22)

)}
.

Except in the case where λ22λ11 < λ12λ21 (inter-specific competition stronger
than intra-specific competition), the equilibrium is globally asymptotically
stable.

Therefore we obtain the following convergence result.

Proposition 3.3 Assume λ22λ11 ≥ λ12λ21. The deterministic measure-
valued process vt converges when t tends to infinity - in the weak topology -
towards the singular measure concentrated on the equilibrium state π of the
associated Lotka-Volterra dynamics:

lim
t→+∞ vt =

R

αU
δπ,

where π is defined in Lemma 3.3.

Proof. First, the Lotka-Volterra flow ϕ0,y(t) converges as t tends to infinity
and for all y, towards the given value π given by Lemma 3.3. Since the test
function g is continuous and bounded and v0 has a finite mass, Lebesgue’s
dominated theorem implies that the first term in the right hand side of (34)
converges:

lim
t

∫
R2
+

g ◦ ϕ0,y(t) v0(dy) =

∫
R2
+

lim
t
g ◦ ϕ0,y(t) v0(dy) = g(π) 〈v0, 1〉.
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Secondly, as already seen in (32), the mass 〈vt, 1〉 of the total population
converges exponentially fast to its equilibrium size, that is αt converges
exponentially fast to 0:

∃c > 0, ∃t0, ∀s > t0 αs ≤ e−cs.

Therefore the second term in the right hand side of (34) can be disintegrated,
for t larger than t0, in the sum of two integrals over [0, t0] and [t0, t]. The
control of the integral over [t0, t] is simple:∣∣∣∣∣

∫ t

t0

αs

∫
R2
+

g ◦ ϕs,y(t) vs(dy) ds

∣∣∣∣∣ ≤ 〈v, 1〉 sup
y

|g(y)|
∫ t

t0

e−csds

which is as small as one wants, when t0 is large enough.
On the compact time interval [0, t0] the following convergence holds:

lim
t

∫ t0

0
αs

∫
R2
+

g ◦ ϕs,y(t) vs(dy) ds =

∫ t0

0
αs

∫
R2
+

lim
t
g ◦ ϕs,y(t) vs(dy) ds

= g(π)

∫ t0

0
αs

∫
R2
+

vs(dy) ds.

Therefore for large time t > t0, 〈vt, g〉 is as close as one wants to

g(π) 〈v0, 1〉 + g(π)

∫ t0

0
αs

∫
R2
+

vs(dy) ds = g(π) 〈vt0 , 1〉.

For t0 large enough, this last quantity is close to

g(π) 〈v∞, 1〉 = R

αU
〈δπ, g〉.

This completes the proof of the weak convergence of the measures vt. �

Remark 3.2 The stationary state is a singular one even if the initial mea-
sure v0 has a density: the absolute continuity property of the measure vt is
conserved for any finite time t, but it is lost in infinite time.

Convergence of the number of cells
First we prove the boundedness of the number of cells of each type and the
boundedness of its second moment. To this aim, we compare the multitype
dynamics with a dynamics where the different types do not interact, which
corresponds to two independent monotype systems.

Lemma 3.4 Suppose that for any i, βiλii > 0. If 〈v0, 1〉 + 〈v0, y2i 〉 < +∞
then supt≥0 〈vt, y2i 〉 < +∞.
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Proof. Let us firstly prove that supt≥0 〈vt, yi〉 < +∞.
At time t = 0 , 〈v0, yi〉 ≤ 〈v0, 1〉 + 〈v0, y2i 〉 < +∞. Moreover, equation (19)
reads now

∂

∂t
〈vt, yi〉 =

(
R− αU〈vt, 1〉+ bi − di

)〈vt, yi〉 − βi(λii〈vt, y2i 〉+ λij〈vt, yiyj〉)
≤ (αt + bi − di)〈vt, yi〉 − βiλii〈vt, y2i 〉
≤ (αt + bi − di)〈vt, yi〉 − βiλii

〈vt, 1〉〈vt, yi〉
2

≤ (ᾱ+ ri)〈vt, yi〉 − βiλii

〈v, 1〉〈vt, yi〉
2. (36)

This inequality is a logistic one in the sense of Lemma 3.1. Therefore one
deduces that the number of cells of type i is uniformly bounded in time:

sup
t≥0

〈vt, yi〉 < +∞, i = 1, 2.

By (15) applied with f ≡ 1, g1(y1) = y21, g2 ≡ 1, one obtains

∂

∂t
〈vt, y21〉 = αt〈vt, y21〉+ 2r1〈vt, y21〉 − 2β1

(
λ11〈vt, y31〉+ λ12〈vt, y21y2〉

)
≤ (αt + 2r1)〈vt, y21〉 − 2β1λ11〈vt, y31〉
≤ (αt + 2r1)〈vt, y21〉 − 2β1λ11

1

〈vt, y1〉〈vt, y
2
1〉2

≤ (ᾱ+ 2r1)〈vt, y21〉 − 2β1λ11
1

〈v, y1〉〈vt, y
2
1〉2

since
〈vt, y21〉2 ≤ 〈vt, y31〉〈vt, y1〉.

This inequality on 〈vt, y21〉 is of logistic type as (36). Lemma 3.1 implies

〈v, y21〉 := sup
t≥0

〈vt, y21〉 < +∞.

The same holds for 〈v, y22〉. �

Proposition 3.4 If 〈v0, yi〉 < +∞ and 〈v0, y2i 〉 < +∞, then the total num-

ber of cells of each type per individual 〈vt,yi〉
〈vt,1〉 stabilizes for t large:

lim
t→+∞

〈vt, yi〉
〈vt, 1〉 = πi.

Proof. Due to Proposition 3.3, the family of measures (vt)t converge
weakly towards v∞. Moreover, by Lemma 3.4, the second moments of vt are
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uniformly bounded. Therefore yi is uniformly integrable under the family
of (vt : t ≥ 0) which leads to :

lim
t→+∞〈vt, yi〉 = 〈 lim

t→+∞ vt, yi〉 = 〈v∞, yi〉.

�
Let us underline the decorrelation at infinity between cell and individual
dynamics.

3.2.2 Case with linear selection rate

Suppose now that the selection rate α does not depend on the trait x but is
linear as function of the number of cells of each type :

∃α1, α2 ∈]0, 1[, α(x, y1, y2) = α1y1 + α2y2 =: α · y.

With other words the selection increases linearly when the number of cells
increases.
The new main difficulty comes from the fact that the mass equation is no
more closed :

〈vt, 1〉 = 〈v0, 1〉+
∫ t

0
〈vs, 1〉

(
R− U〈vs, α · y〉) ds, (37)

which has as (implicit) solution

〈vt, 1〉 = 〈v0, 1〉e−
∫ t
0

(
U〈vs,α·y〉−R

)
ds. (38)

For this reason, unfortunately, we did not succeed in proving the convergence
in time of 〈vt, 1〉. Nevertheless, we can conjecture some limiting behavior of
the process.

Conjecture: The deterministic measure-valued process vt converges for
large time t towards the following stationary value

lim
t→+∞ vt = v∞ :=

R

U(α1π1 + α2π2)
δ(π1,π2), (39)

where π = (π1, π2) is given in Lemma 3.3.

In this case too, the asymptotic proportions of the cells of different types
per individual would become deterministic and independent.

Some partial answers
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• Equation (37) implies that any stationary measure v∞ should satisfy

〈v∞, 1〉
(
R− U〈v∞, α · y〉) = 0.

Then, either 〈v∞, 1〉 = 0, that means the extinction of the individual
population holds, or

〈v∞, α · y〉 = 〈v∞, α1y1 + α2y2〉 = B −D

U
=
R

U
(40)

which describes a constraint between the limiting number of the dif-
ferent types of cells.

• Boundedness of the number of cells.

Lemma 3.5

〈v0, yi〉 < +∞ =⇒ sup
t≥0

〈vt, yi〉 < +∞.

Proof. The number of cells of type i satisfies

∂

∂t
〈vt, yi〉 =

(
R+ ri

)〈vt, yi〉 − U〈vt, yiα · y〉〈vt, 1〉
−βi

(
λii〈vt, y2i 〉+ λij〈vt, yiyj〉

)
≤ (R+ ri)〈vt, yi〉 − αiU〈vt, yi〉2

which reduces to the monotype case solved in Lemma 3.1. �

• Identification of a unique possible non trivial equilibrium.

Applying Equation (15) to f ≡ 1, gi(yi) = e−ziyi and letting t tend
to infinity, we remark that the Laplace transform L∞(z) of any non
vanishing stationary state v∞ should satisfy

RL∞(z)− U〈v∞, 1〉〈v∞, (α · y)e−z·y〉

−
2∑

i=1

zi

(
ri〈v∞, yie−z·y〉 − βi

(
λii〈v∞, y2i e−z·y〉+ λij〈v∞, yiyje−z·y〉)) = 0

(with the natural notation j for the type index different from i)

⇒ RL∞ + UL∞(0)(α1
∂L∞
∂z1

+ α2
∂L∞
∂z2

)

+
2∑

i=1

(
ziri

∂L∞
∂zi

+ ziβi
(
λii
∂2L∞
∂z2i

+ λij
∂2L∞
∂zi∂zj

))
= 0 (41)

with usual boundary conditions

L∞(0) = 〈v∞, 1〉, ∂L∞
∂zi

(0) = −〈v∞, yi〉.
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The unique non trivial solution of this p.d.e. is

L∞(z) = 〈v∞, 1〉 e−π̃·z,

where 〈v∞, 1〉 = U
α·π̃ and where π̃i, the equilibrium proportion of cells

of type i in the global population, has to be equal to the equilibrium
proportion given in Lemma 3.3: π̃ = π.

• Local stability of the non trivial equilibrium v∞ := R
Uα·π δ(π1,π2).

Although we cannot control the convergence of 〈vt, 1〉 to a positive
number, we can analyze the stability of the nontrivial stationary state
v∞ in the following sense.

Stability of the mass around its positive stationary value R
Uα·π

Let start with v0 = v∞ + εδ(ζ1,ζ2), where ε is small and (ζ1, ζ2) ∈ R
2
+.

¿From the mass equation (37) one obtains for t small :

∂

∂t
〈vt, 1〉 = 〈vt, 1〉

(
R− U〈vt, α · y〉)

� (〈v∞, 1〉+ ε)
(
R− U〈v∞, α · y〉 − εU α · ζ)

� −ε α · ζ
α · π + o(ε).

This quantity is negative for small ε, which implies the stability of the
mass around its positive stationary value.

Stability of the number of cells of each type around its limit value if
max(r1, r2) < R
We prove it only for the type 1. From (19) we get an expansion in ε
of the variation of the global number of cells of type 1 for small time :

∂

∂t
〈vt, y1〉

= 〈vt, y1〉
(
R+ r1

)− U〈vt, y1 α · y〉〈vt, 1〉 − β1
(
λ11〈vt, y21〉+ λ12〈vt, y1y2〉

)
� (〈v∞, y1〉+ εζ1

)(
R+ r1

)− U
(〈v∞, y1 α · y〉+ εζ1 α · ζ)(〈v∞, 1〉+ ε)

−β1
(
λ11〈v∞, y21〉+ λ12〈v∞, y1y2〉

)− εβ1(λ11ζ
2
1 + λ12ζ1ζ2)

= ε
(
(R+ r1)ζ1 − U〈v∞, y1α · y〉 − Uζ1 α · ζ〈v∞, 1〉

−β1(λ11ζ21 + λ12ζ1ζ2)
)
+ o(ε)

= P̄1(ζ1, ζ2) + o(ε)

where P̄1(y1, y2) ≤ P1(y1) for all y2 > 0, with

P1(X) := −(
Uα1〈v∞, 1〉+ β1λ11

)
X2 + (R+ r1)X − Uα1π

2
1〈v∞, 1〉.

As second degree polynomial P1 is negative if its discriminant is non
positive. This condition is fulfilled when

(R+ r1)
2 − 4Uα1π

2
1〈v∞, 1〉

(
Uα1〈v∞, 1〉+ β1λ11

)
< 0.
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It is true as soon as

(R+ r1)
2 − 4R2 < 0 ⇔ r1 < R.

Thus if max(r1, r2) < R, the number of cells of each type is stable
around its limiting value.

4 Diffusion and superprocess approximations

As in the above section we introduce the renormalization κ = (K,K1,K2)
both for individuals and for cells. Moreover we introduce an acceleration of
individual births and deaths with a factor Kη (and a mutation kernel MK

with amplitude of order Kη/2 ) and an acceleration of cell births and deaths
with a factor K1 (resp. K2).

We summarize below the assumptions we need on the model and which will
be considered in all this section.

Hypothesis 4.1 : 1) There exist continuous functions Γ, B,D, α on X ×
R+ × R+ such that

Bκ(x, n1, n2) = Kη Γ(x,
n1
K1

,
n2
K2

) +B(x,
n1
K1

,
n2
K2

);

Dκ(x, n1, n2) = Kη Γ(x,
n1
K1

,
n2
K2

) +D(x,
n1
K1

,
n2
K2

);

ακ(x, n1, n2) ≡ α(x,
n1
K1

,
n2
K2

). (42)

The function Γ is assumed to be bounded and B,D,α satisfy Hypothesis
2.1.
2) As before, the competition kernel satisfies

Uκ(x) =
U(x)

K
,

where U is a continuous function which satisfies Assumption (H1).
3) The mutation law z �→ MK(x, z) is a centered probability density on

X − x. Its covariance matrix is σ(x)2

Kη Id, where σ is a continuous function.
We also assume that

lim
K→∞

Kη sup
x

∫
|z|3MK(x, z)dz = 0.

The parameter pκ stays unchanged: pκ(x) = p(x).
4) At the cell level, we introduce Lipschitz continuous functions bi, di on X
and a continuous function γ such that

bi,κ(x) = Ki γ(x) + bi(x);

di,κ(x) = Ki γ(x) + di(x), i = 1, 2. (43)
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The interaction between the cells is rescaled according on their type :

λκij =
λij
Kj

, i, j ∈ {1, 2}. (44)

The other parameters stay unchanged: β1,κ = β1, β2,κ = β2.
5) Ellipticity: The functions p, σ, γ and Γ are lower bounded by positive

constants and σ
√
pΓ and

√
γ are Lipschitz continuous.

As in Section 3, we define the measure-valued Markov process (Zκ
t )t≥0 as

Zκ
t =

1

K

Iκ(t)∑
i=1

δ
(Xi

κ(t),
Ni
1,κ(t)

K1
,
Ni
2,κ(t)

K2
)
.

We may summarize as in Proposition 3.1 the moment and martingale prop-
erties of Zκ.

Proposition 4.1 Assume that for some p ≥ 3, E(〈Zκ
0 , 1〉p+〈Zκ

0 , y
2
1+y

2
2〉) <

+∞. Then

(1) For any T > 0, E
(
supt∈[0,T ]〈Zκ

t , 1〉3 + supt∈[0,T ]〈Zκ
t , y

2
1 + y22〉

)
< +∞.

(2) For any measurable bounded functions f, g1, g2, the process

M̄κ,fg
t = 〈Zκ

t , fg1g2〉 − 〈Zκ
0 , fg1g2〉

−
∫ t

0

∫
X×R2

+

{(
B −D − α U ∗ Zκ

s

)
f(x)g1(y1)g2(y2)

+ p(x)
(
Kη Γ +B

) ∫ (
f(x+ z)− f(x)

)
g1(y1)g2(y2)MK(x, z)dz

+ f(x)
(
g1(y1 +

1

K1
)− g1(y1)

)
g2(y2) (K1γ(x) + b1(x)) K1y1

+ f(x)g1(y1)
(
g2(y2 +

1

K2
)− g2(y2)

)
(K2γ(x) + b2(x)) K2y2

+ f(x)
(
g1(y1 − 1

K1
)− g1(y1)

)
g2(y2) (K1γ + d1 + β1(y1λ11 + y2λ12))K1y1

+ f(x)g1(y1)
(
g2(y1 − 1

K2
)− g2(y2)

)
(K2γ + d2 + β2(y1λ21 + y2λ22))K2y2

}
Zκ
s (dx, dy1, dy2) ds (45)

is a càdlàg square integrable (Ft)t≥0-martingale with quadratic varia-
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tion

〈M̄κ,fg〉t = 1

K

∫ t

0

∫
X×R2

+

{(
2Kη Γ +B +D + α U ∗ Zκ

s

)
f2(x)g21(y1)g

2
2(y2)

+ p(x)
(
Kη Γ +B

) ∫ (
f(x+ z)− f(x)

)2
MK(x, z)dz g21(y1)g

2
2(y2)

+ f2(x)
(
g1(y1 +

1

K1
)− g1(y1)

)2
g22(y2) (K1γ(x) + b1(x)) K1y1

+ f2(x) g21(y1)
(
g2(y2 +

1

K2
)− g2(y2)

)2
(K2γ(x) + b2(x)) K2y2

+ f2(x)
(
g1(y1 − 1

K1
)− g1(y1)

)2
g22(y2)

(
K1γ(x) + d1(x)

+ β1(x)(y1λ11 + y2λ12)
)
K1y1

+ f2(x) g21(y1)
(
g2(y2 − 1

K2
)− g2(y2)

)2 (
K2γ(x) + d2(x)

+ +β2(x)(y1λ21 + y2λ22)
)
K2y2

}
Zκ
s (dx, dy1, dy2) ds. (46)

We assume that the sequence of initial conditions Zκ
0 converges in law to

some finite measure ζ0. Let us study the limiting behavior of the processes
Zκ as κ tends to infinity. It depends on the value of η and leads to two
different convergence results.
As before we denote by ri the rate bi − di.

Theorem 4.1 Assume Hypothesis 4.1 and η ∈]0, 1[; suppose that the initial
conditions Zκ

0 ∈MF (X ×R
2
+) satisfies supκE(〈Zκ

0 , 1〉3) < +∞. If further,
the sequence of measures (Zκ

0 )κ converges in law to a finite deterministic
measure w0, then the sequence of processes (Zκ

t )0≤t≤T converges in law in
the Skorohod space D([0, T ],MF (X×R

2
+)), as κ goes to infinity, to the unique

(deterministic) flow of functions w ∈ C([0, T ],L1(X × R
2
+)) weak solution

of

∂

∂t
wt =

(
B −D − α U ∗ wt

)
wt +�x

(
p σ2 Γwt

)
+ �y(γ wt)− �y · (cwt).(47)

Remark 4.1 One obtains the existence and uniqueness of function-valued
solutions of (47) even if the initial measure w0 is a degenerate one without
density.

Proof. The proof follows the same steps as the one of Theorem 3.1 except
that the mutation term will lead to a Laplacian term in f since the mutation
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kernel is centered and the mutation steps converge to 0 in the appropriate
scale. We first obtain the tightness of the sequence (Zκ) and the fact that
each subsequence converges to a measure-valued flow w ∈ C([0, T ],MF (X ×
R
2
+)) satisfying for bounded C2-functions f, g1, g2,

〈wt, fg1g2〉 = 〈w0, fg1g2〉+
∫ t

0

∫
X×R2

+

{(
B(x, y1, y2)

−D(x, y1, y2)− α(x, y1, y2) U ∗ ws(x, y1, y2)
)
f(x)g1(y1)g2(y2)

+ p(x)σ2(x)Γ(x, y1, y2)� f(x) g1(y1)g2(y2)

+ f(x)�g1(y1)g2(y2)
(
r1(x)− β1(x)(y1λ11 + y2λ12)

)
y1

+ f(x)g1(y1)�g2(y2)
(
r2(x)− β2(x)(y1λ21 + y2λ22)

)
y2

+ f(x)γ(x) (�g1(y1)g2(y2) + g1(y1)� g2(y2))

}
ws(dx, dy1, y2) ds. (48)

We can also apply wt to smooth time-dependent test functions h(t, x, y)
defined on R+ × X × R

2
+ . That will add a term of the form 〈∂sh,ws〉 in

(48).
Let us now sketch the uniqueness argument. Thanks to the Lipschitz con-
tinuity and ellipticity Hypothesis 4.1, the semigroup associated with the
infinitesimal generator

A := p σ2 Γ�x + γ �y + c · �y

admits at each time t > 0 a smooth density denoted by ψx,y(t, ·, ·) on X×R
2
+.

That is, for any bounded continuous function G on X × R
2
+, the function

Ǧ(t, x, y) =

∫
ψx,y(t, x′, y′)G(x′, y′)dx′dy′

satisfies
∂

∂t
Ǧ = AǦ; Ǧ(0, ·, ·) = G.

Thus (48) applied to the test function (s, x, y) �→ Ǧ(t − s, x, y) leads to
the mild equation: for any continuous and bounded function G,

〈wt, G〉 = 〈w0, Ǧ(t, ·)〉+
∫ t

0
〈ws, (B −D − αU ∗ ws)Ǧ(t− s, ·)〉 ds

=

∫
X×R2

+

G(x′, y′)
∫
X×R2

+

ψx,y(t, x′, y′)w0(dx, dy) dx
′dy′

+

∫
G(x′, y′)

∫ t

0

∫ (
B −D − αU ∗ ws

)
(x, y)ψx,y(t− s, x′, y′)ws(dx, dy)dsdx

′dy′.
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It is simple to deduce from this representation the uniqueness of the measure-
valued solutions of (48). Moreover, by Fubini’s theorem and (H3) and since
supt≤T 〈wt, 1〉 < +∞, one observes that

〈wt, G〉 =
∫
X×R2

+

G(x′, y′)Ht(x
′, y′)dx′dy′,

with H ∈ L
∞([0, T ],L1(X × R

2
+)). Thus for any t ≤ T , the finite measure

wt is absolutely continuous with respect to the Lebesgue’s measure and the
solution of (48) is indeed a function for any positive time. �

If η = 1 the limiting process of Zκ is no more deterministic but is a random
superprocess with values in C([0, T ],MF (X × R

2
+)).

Theorem 4.2 Assume Hypothesis 4.1 and η = 1. Assume moreover that
the initial conditions Zκ

0 ∈ MF (X × R
2
+) satisfy supκE(〈Zκ

0 , 1〉3) < +∞.
If they converge in law as κ tends to infinity to a finite deterministic mea-
sure ζ0, then the sequence of processes (Zκ

t )0≤t≤T converges in law in the
Skorohod space D([0, T ],MF (X × R

2
+)), as κ goes to infinity, to the contin-

uous measure-valued semimartingale ζ ∈ C([0, T ],MF (X × R
2
+)) satisfying

for any bounded smooth functions f, g1, g2:

Mfg
t := 〈ζt, fg1g2〉 − 〈ζ0, fg1g2〉

−
∫ t

0

∫
X×R2

+

{(
B −D − α U ∗ ζs

)
f(x)g1(y1)g2(y2)

+ p(x)σ2(x)Γ(x, y1, y2)� f(x)g1(y1)g2(y2)

+ f(x)�g1(y1)g2(y2)
(
r1(x)− β1(x)(y1λ11 + y2λ12)

)
y1

+ f(x)g1(y1)�g2(y2)
(
r2(x)− β2(x)(y1λ21 + y2λ22)

)
y2

+ f(x)γ(x) (�g1(y1)g2(y2) + g1(y1)� g2(y2))

}
ζs(dx, dy1, dy2) ds (49)

is a continuous square integrable (Ft)t≥0-martingale with quadratic variation

〈Mfg〉t =
∫ t

0

∫
X×R2

+

2Γ(x, y1, y2)f
2(x)g21(y1)g

2
2(y2)ζs(dx, dy1, dy2) ds.

Proof. The convergence is obtained by a compactness-uniqueness argu-
ment. The uniform tightness of the laws and the identification of the limiting
values can be adapted from [10] with some careful moment estimates and
an additional drift term as in the proof of Theorem 3.1.
The uniqueness can be deduced from the one with B = D = α = 0 by us-
ing the Dawson-Girsanov transform for measure-valued processes (cf. The-
orem 2.3 in [8]), as soon as the ellipticity assumption for Γ is satisfied.
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Indeed,

E

(∫ t

0

∫
X×R2

+

(
B −D − α U ∗ ζs

)2
ζs(dx, dy1, dy2)ds

)
< +∞,

which allows us to use this transform.

In the case B = D = α = 0 the proof of uniqueness can be adapted from the
general results of Fitzsimmons, see [9] Corollary 2.23: the Laplace trans-
form of the process is uniquely identified using the extension of the mar-
tingale problem (49) to test functions depending smoothly on the time like
(s, x, y1, y2) �→ ψt−sf(x, y1, y2) for bounded functions f (see [9] Proposition
2.13).

�
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References

[1] Bensaye, V., Tran, C.V.. Branching Feller diffusion for cell division with parasite
infection. ALEA, Vol 8, 81–127, 2011.

[2] Bonds, M.H.. Host life-history strategy explains pathogen-induced sterility. The
American Naturalist, 168 (3), 2006.

[3] Bouchut, F., Golse, F., Pulvirenti, M.. Kinetic equations and asymptotic theory.
Edited by B. Perthame and L. Desvillettes. Series in Applied Mathematics (Paris),
4, Gauthier-Villars, Editions Scientifiques et Médicales Elsevier, Paris, 2000.

[4] Champagnat, N.. Mathematical study of stochastic models of evolution belonging
to the ecological theory of adaptive dynamics. Ph.D. Thesis, University of Nanterre
(Paris 10), 2004. (http://www.iecn.u-nancy.fr/ champagn/thesis.html)
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