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Abstract

The evaluation of process-oriented cognitive theories through time-ordered observations is
crucial for the advancement of cognitive science. The findings presented herein integrate in-
sights from research on eye-movement control and sentence comprehension during reading,
addressing challenges in modeling time-ordered data, statistical inference, and interindivid-
ual variability. Using kernel density estimation and a pseudo-marginal likelihood for fixation
durations and locations, a likelihood implementation of the SWIFT model of eye-movement
control during reading (Engbert et al., Psychological Review, 112, 2005, pp. 777–813) is
proposed. Within the broader framework of data assimilation, Bayesian parameter inference
with adaptive Markov Chain Monte Carlo techniques is facilitated for reliable model fitting.
Across the different studies, this framework has shown to enable reliable parameter recovery
from simulated data and prediction of experimental summary statistics. Despite its complex-
ity, SWIFT can be fitted within a principled Bayesian workflow, capturing interindividual
differences and modeling experimental effects on reading across different geometrical alter-
ations of text. Based on these advancements, the integrated dynamical model SEAM is pro-
posed, which combines eye-movement control, a traditionally psychological research area,
and post-lexical language processing in the form of cue-based memory retrieval (Lewis and
Vasishth, Cognitive Science, 29, 2005, pp. 375–419), typically the purview of psycholinguis-
tics. This proof-of-concept integration marks a significant step forward in natural language
comprehension during reading and suggests that the presented methodology can be useful
to develop complex cognitive dynamical models that integrate processes at levels of per-
ception, higher cognition, and (oculo-)motor control. These findings collectively advance
process-oriented cognitive modeling and highlight the importance of Bayesian inference, in-
dividual differences, and interdisciplinary integration for a holistic understanding of reading
processes. Implications for theory and methodology, including proposals for model compar-
ison and hierarchical parameter inference, are briefly discussed.
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Zusammenfassung

Die Evaluierung prozessorientierter kognitiver Theorien durch zeitlich geordnete Beobach-
tungen ist ein zentraler Baustein für die Weiterentwicklung der Kognitionswissenschaft. Die
hier präsentierten Ergebnisse integrieren Erkenntnisse aus der Forschung zur Blickbewe-
gungskontrolle und zur Satzverarbeitung beim Lesen und gehen dabei auf Herausforderun-
gen bei der Modellierung von zeitlich geordneten Daten, statistischer Inferenz und interindi-
vidueller Variabilität ein. Unter Verwendung von Kerndichteschätzung und einer pseudo-
marginalen Wahrscheinlichkeitverteilung für Fixationsdauern und -orte wird eine Imple-
mentation für die Likelihood des SWIFT-Modells zur Blickbewegungskontrolle beim Lesen
(Engbert et al., Psychological Review, 112, 2005, S. 777–813) eingeführt. Im breiteren Kon-
text der Datenassimilation wird Bayes’sche Parameterinferenz mit adaptiven Markov-Chain-
Monte-Carlo-Techniken verwendet, um eine zuverlässige Modellanpassung zu ermöglichen.
In verschiedenen Studien hat sich dieser methodische Rahmen als geeignet erwiesen, um zu-
verlässige Parameterrückgewinnung aus simulierten Daten und Vorhersage experimenteller
Zusammenfassungsstatistiken zu ermöglichen. Trotz dessen Komplexität kann SWIFT inner-
halb eines fundierten Bayes’schen Workflows angepasst werden und macht daraufhin zuver-
lässige Vorhersagen für interindividuelle Unterschiede sowie die Modellierung experimen-
teller Effekte bei verschiedenen geometrischen Änderungen von Text. Basierend auf diesen
Fortschritten wird das integrierte dynamische Modell SEAM eingeführt. Dieses kombiniert
die Forschungsgebiete der traditionell psychologisch geprägten Blickbewegungskontrolle
und der traditionell psycholinguistisch geprägten postlexikalischen Sprachverarbeitung in
Form von cue-basiertem Gedächtnisabruf (Lewis und Vasishth, Cognitive Science, 29, 2005,
S. 375–419). Der Nachweis der Durchführbarkeit solcher integrativer Modelle stellt einen
bedeutenden Fortschritt bei der natürlichen Sprachverarbeitung beim Lesen dar und legt na-
he, dass die vorgestellte Methodik nützlich sein kann, um komplexe kognitive dynamische
Modelle zu entwickeln, die Prozesse auf den Ebenen der Wahrnehmung, höheren Kogni-
tion, und (okulo-)motorischen Kontrolle integrieren. Diese Erkenntnisse fördern insgesamt
die prozessorientierte kognitive Modellierung und betonen die Bedeutung der Bayes’schen
Inferenz, individueller Unterschiede und interdisziplinärer Integration für ein ganzheitliches
Verständnis von Leseprozessen. Implikationen für Theorie und Methodologie, einschließlich
Vorschlägen für Modellvergleich und hierarchische Parameterinferenz, werden kurz disku-
tiert.
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1

Chapter 1

General Introduction

Reading is an extremely important skill, for most of us every single day in both personal
and professional regards. Most knowledge, especially in academic contexts, is preserved and
distributed in written form. That is why, perhaps unsurprisingly, reading skill is fundamental
for academic success (e.g., Aerila & Merisuo-Storm, 2017; Barredo et al., 2022; Boakye,
2017; Meyer & Pietzner, 2022). Also in many other everyday situations, reading guides our
actions and helps us navigate through society and our own personal development. We know,
however, that reading literally does not come naturally; it is not an evolutionary trait but a
cultural artifact. Nor is reading skill constant across the lifespan or task demands.

Understanding what processes are at play when we read has immense potential for both
basic and applied research. For example, a deeper knowledge of reading can help us iden-
tify reasons for reading disabilities and develop targeted interventions to foster reading skill.
Moreover, as reading draws on similar resources and mechanisms as other visual tasks, in-
sights into the processes during reading will also be valuable in the understanding of visual
cognition altogether.

The investigation of eye movements during reading has a long tradition in the cognitive
sciences. Rayner (1978; 1998) identified four stages of this research domain: The first stage
commenced with basic observations by the French ophthalmologist Javal in 1878. That era
coined central concepts and terminology of eye movements such as saccades and fixations

(see next Section for an introduction). Technical constraints quickly led to a second era of
decreasing interest in eye-movement research. Given the high velocity and frequency of
saccades during reading, observations under controlled experimental conditions were simply
not possible and hence not further investigated. A third, and exponentially more produc-
tive, era began with the technological advances brought forward by eye-tracking devices and
more sophisticated language models. Though, it was not until 2009 that Rayner identified a
fourth era of sophisticated computational modeling of eye movements during reading. The
abundance of experimental research in vision, cognition, and language had motivated highly
sophisticated reading models, some of which are extremely successful in predicting and ex-
plaining challenging empirical phenomena. What most of these models have in common
though is that they focus on single psychological or linguistic aspects of reading, which
potentially limits their generalizability and scientific value.

How does a cognitive representation of the sentence emerge? How do cognition, higher
language processing, and eye movements interact? Given the extremely fast and frequent
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gaze shifts during reading, how much of that is directed by language processing, and how
much is the result of noisy oculomotor execution? Without any doubt, during reading, a
lot of processes take place, such as visual perception, attention allocation, language pro-
cessing, and oculomotor movements. Agnostic to the concrete interaction between them,
it is arguably important to consider all of them to offer a statistically reliable and satisfac-
tory explanatory account of reading. After a brief chapter introducing basic concepts and
contemporary reading research I present results from three modeling studies that bridge psy-
chological and linguistic threads of reading research in SEAM, an integrated computational
model within a principled Bayesian modeling framework.

1.1 Eye Movements in Reading

What happens when we read? Reading is the intake of information from abstracted
language representations in visual or haptic form.1 This intake and further comprehension
presumably employs a large ensemble of processes, such as visual perception and lexical
and/or phonological identification of fixated words, syntactic parsing, semantic integration,
short-term memory storage, and eventually the planning and execution of the subsequent
gaze shift.

Experimental research has shown that manipulating text or the reading task can system-
atically affect behavioral and neuropsychological measures such as eye movements, com-
prehension tasks, or neuroimaging signals, and therefore suggests that such processes must
be involved during reading in some way. However, the isolated evidence for each of these
individual processes does not provide much clarity about the concrete order of events in the
processing cascade and how the individual processes are linked with each other. While it
seems trivial that the eyes can only perceive what lies within their view, our prior experi-
ence with the currently read sentence or other texts in general can affect reading as early as
word identification, which will in turn affect all processing that builds on word identification
(see Section 1.3 for an introduction to cognitive, linguistic, and oculomotor effects on eye
movements in reading).

However, there is intense debate in psychology and linguistics about the linking between
those processes. How is the visual input entered into the processing cascade, what processes
are involved in what order, and is there any backcoupling such that language processing de-
mands modulate the attention shifts, resulting in targeted saccades, for example? To address
those questions, it is necessary to take a closer look at eye movements in general and their
application in reading research.

1Due to the availability of technology (eye-tracking devices) and prior research, this dissertation focuses on
visual reading.
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1.1.1 Eye Movements

During the visual inspection of various natural and artificial stimuli (such as text), we
can mainly observe short, ballistic eye movements, saccades, followed by longer periods of
relative rest, fixations, which was first reported by French ophthalmologist Javal (1878) for
reading and subsequently confirmed for vertebrates and other vision tasks (see Land, 2011,
for a review). Saccadic eye movements are jerky radial movements of the ocular bulbs,
resulting in a transitional shift of the fovea (or gaze) relative to the environment.

Although the term “fixation” suggests that the eyes be motionless during those periods,
they never really are, as von Helmholtz (1896) noted shortly after. The largest and fastest type
of movements during fixations (i.e., fixational eye movements) are microsaccades. One of the
most likely functions of microsaccades is to prevent retinal fatigue, i.e. the perceptual fading
of the visual stimulus, as our visual system is primed to detect changes in the environment
(Ditchburn & Ginsborg, 1952; Martinez-Conde & Macknik, 2011; Martinez-Conde et al.,
2009). Similar to saccades, microsaccades are mostly linear, ballistic movements, though of
much smaller amplitude. Other fixational eye movements are the short, meandering drifts

between microsaccades and superimposed oscillatory tremor.2

Reading research usually focuses on saccades and collapses all fixational eye movements
as pseudo-stationary fixations. In a typical reading task, depending on context, language,
reader, and publication, fixations have average durations of about 150–300 ms and saccades
take about 20–40 ms, which results in alternating sequences of about three to four fixations
and saccades per second. Given the very short duration and long distances of saccades, they
are executed at very high velocities of about 400° visual angle3 per second (see Gilchrist,
2011, for a review).

In addition to counteracting visual fading, the eyes must frequently move across visual
stimuli because the surface area of the retina with sufficiently high acuity for detailed stimuli
such as words, the fovea, is quite limited to about 2° visual angle (Land, 2011). For example,
a segment of the stimulus greater than 1.4 cm, viewed at a distance of 40 cm, already exceeds
2° visual angle and cannot be processed at high acuity without additional cognitive inference,
a executing a refixation on a different subregion of the same stimulus, or compromising
visual input quality. This would already apply to many words in print, for example, but
also to larger objects in scene viewing. So, in order to allow for at least the most relevant
segments of the stimulus to be visually processed at adequate acuity, the eyes have to move

2For a comprehensive characterization of microsaccades, drift, and tremor, see Martinez-Conde et al.
(2009).

3Visual angle is a spatial measure relative to the spherical surface of the retina. The geometric relation of
size 𝑠, distance 𝑑 and visual angle 𝑣 is 𝑣 = 2arctan 𝑠

2𝑑 . Therefore, a larger object occupies more visual angle
than a smaller object, given equal distance. Likewise, an object at higher distance occupies less visual angle
than a closer object, given equal size. As a “rule of thumb”, the width of the thumbnail held at a distance of an
arm’s length occupies about 1° visual angle.
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across the stimulus, depending on various factors of stimulus, context, and observer, in order
to take in as much detailed visual information as possible.

Assuming that saccades are at at least under some volitional control, using the
double-step paradigm, Becker and Jürgens (1979) could demonstrate that saccades are
“programmed” in two stages and that at least the direction of a saccade is inevitably
programmed once a randomly varying point-of-no-return during a fixation is reached. This
suggests that, even though information processing may continue at all times, target
selection has to take place some time before the execution of the saccade, i.e. during the
fixation immediately preceding the saccade.

Due to the high velocity of saccades, which would smear the retinal image, visual per-
ception during saccades is suppressed. Instead, intake of visual information is more effective
when the image is relatively stationary on the retina (e.g., see Ross et al., 2001).4 During
a fixation, i.e. during the periods of relative rest after the covert attention shift and before
the initiation of the upcoming saccade, the visual stimulus is available to visual perception
and subsequent higher cognitive processing. Furthermore, if saccade execution is in any way
modulated by cognition, oculomotor processes such as saccade target selection (i.e., deciding
whether/when/where to move next) would have to be carried out during that time as well.

1.1.2 Eye-Movement Statistics

The execution of saccades, by definition, determines the sequence of fixations. Insofar,
statistics based on placement and timing of saccades/fixations should be understood as out-
comes of the same system, focusing on different phases of the eyes’ trajectory. Saccades are
movements, which is why they can be characterized by their duration, their velocity profiles,
their direction or angle, and spatial relations between their launch and landing sites (such as
saccade amplitudes or landing locations). Given that information intake during saccades is
severely limited, the duration of a fixation, being the time between two saccadic eye move-
ments, may indicate information processing and saccade planning demands. So, if a fixation
takes significantly longer under some specified condition, it may be inferred that this condi-
tion poses additional difficulty for the processing of the visual information and/or planning
of the upcoming saccade. Moreover, the locations of fixations may be aggregated in fixa-

tion maps or fixation probabilities, the latter of which are of particular interest for reading
research.5

4A normal exception to saccadic eye movements, besides some ocular pathologies, is the smooth pursuit of
a moving stimulus. However, even then the eyes only move in order to keep the stimulus stationary relative to
the retina.

5A fixation probability is typically the probability for some defined spatial region to receive a fixation
during some defined time period (such as the trial), 𝑃 (fixation | location). Fixation maps, on the other hand,
are conditional maps of fixation locations across the visual stimulus, 𝑃 (location | fixation).
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1.1.3 Reading-Related Statistics

In the context of reading research, eye movements have been established as an extremely
useful observable. Reasons include that eye trackers have much higher temporal and spatial
resolution and precision than behavioral measures but are more affordable than neuroimaging
(such as EEG or fMRI). Moreover, as texts are inherently artificial stimuli, compared to
other domains of vision research, it is relatively straightforward to generate, manipulate, or
annotate stimuli, and to analyze the eye movements in response to the presented materials.

Sentences in alphabetical languages are relatively standardized (or standardizable) stim-
uli such that they consist of visually delimited linguistic subunits, words. They are often pre-
sented in a single line on the screen to avoid line jumps, which naturally divides the screen
into potentially meaningful discrete target locations. When single-line displays are used, we
can also disregard vertical movements and only analyze horizontal gaze shifts. This simpli-
fies the analysis by enabling us to categorize all saccades into forward, skipping, regressive,
or refixating saccades, depending on the launch site (previous fixation location). In typical
reading tasks in German and English (Kliegl et al., 2004; Rayner, 1998), forward saccades
are most common (approx. 50%), followed by refixations and skippings (each approx. 20%),
and regressions (approx. 10%).

Most commonly, reading research considers fixation durations and fixation probabilities,
which are derived from the observed fixation sequences. Generally speaking, they are the
conditional mean duration of a fixation or the conditional probability to observe a fixation
on some region or word. When calculating these statistics, most frequently, only first-pass6

fixations are considered, unless specifically noted. Additionally, especially when considering
oculomotor execution, it is also possible to study the distribution of saccade amplitudes,
possibly conditional on saccade type.

This allows us to calculate a number of more or less gold-standard summary statistics,
which are commonly reported in the experimental and modeling literature. Fixation dura-
tions are thought of as a proxy for processing demand during the fixation. First fixation

durations (FFD) are first-pass fixations of the initial fixation on a word, excluding any con-
secutive (re-)fixations. Gaze durations (GD) or first-pass reading times (FPRT), include
all consecutive first-pass fixations (including the initial fixation and refixations) on the same
word until the gaze shifts away from the word. Skipping durations (SD) are first-pass fixation
durations on word following a skipping saccade. Go-past duration (GPD) or regression-path

duration (RPD) is the sum of all gaze durations from first fixating a word until (but exclud-
ing) the eyes have left to the right of the word or region (or the trial ends), which includes
all refixations and regressions immediately following first-pass reading. Re-reading times or

6For left-to-right languages, a fixation is considered first-pass if the eyes have not fixated the current word
or any word to the right of the current word previously in the fixation sequence. Refixations immediately
following a first-pass fixation are also considered first-pass.



6 General Introduction (1)

second-pass/n-pass fixation durations are fixation durations on words after first pass, which
includes words previously fixated or skipped. Total viewing time (TVT) or total reading

time (TRT) is the sum of all gaze durations on a word or region, including but not limited to
first-pass fixations.

Besides these temporal statistics, fixation probabilities can be thought of as a means for
the spatial distribution of attention allocation, since it is commonly assumed that words are
skipped or regressed more often if they pose lower or, respectively, higher processing de-
mand. Like fixation durations, they are conditional on the type of saccade. In that sense,
(first-pass) fixation probability, regression probability, skipping probability, or refixation

probability are the probability that a word or region has been fixated, regressed to, skipped, or
refixated, respectively, during first-pass reading. Besides fixation probabilities, researchers
concerned with oculomotor execution may also be interested in the distribution of saccade

amplitudes (usually in reference to the launch site) or within-word landing positions (usually
in reference to the word center).

1.2 Experimental Methods in Eye-Movement Research

Cognitive and linguistic theories, especially process-oriented ones, attempt to explain
how underlying cognitive or linguistic processes generate behavior in response to some (lan-
guage) stimulus. The general aim of a behavioral experiment is to test beliefs or predic-
tions from those theories about the relation between stimuli and resulting behavior by testing
whether the controlled experimental manipulation of a presented stimulus coincides with
different behavior. If we find effects across trials (i.e., experimental variations of stimuli be-
ing associated with consistent changes in behavioral patterns), we can conclude that there is
some systematic influence of the stimulus on the observed behavior. Variability or inconsis-
tencies are surprisingly often considered a nuisance or “measurement error” and not further
considered. Nevertheless, even if the human participant was the only mediator between stim-
ulus and response, that systematic influence may still include perception, higher processing,
and execution of the response, all of which are covert, likely vary between individuals, may
partially overlap or interact, and can contribute to the form and latency of the observable
response. Across the many different experimental paradigms in behavioral sciences, it is
therefore considered vital to attempt to reduce the contribution of any systematic influence
that is outside the scope of the research question. Often, this is carried out at the levels of the
proper experiment but also via statistical techniques.

In the context of reading research, a typical experiment entails the analysis of the effects
(and sometimes the variability) of eye movements in response to experimental manipulation
of the presented text. As for other behavioral experiments, the goal then is to test theories
about how humans perceive, process, and respond to the exposition with written language.
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The response of interest during reading are often saccadic eye movements, which are hy-
pothesized to reflect overt shifts of visual attention and therefore permit the investigation of
the spatial and temporal dimensions of the perception and cognitive processing of the stimuli
as well as the oculomotor execution of saccades.

During the first two eras of reading research (see Introduction above; Rayner, 1978;
Rayner, 1998), eye movements were directly observed by researchers. This very superficial
observation was of course inappropriate for the many subtle eye movements that occur within
even small timeframes. It was not until the mid-1900s that eye movements, particularly dur-
ing reading and image viewing, were systematically and non-intrusively recorded by optical
eye-tracking devices (e.g., see Yarbus, 2013). Eye trackers differ with regard to their spatial
and temporal resolutions. Modern scientific eye trackers record gaze positions at rates of
up to 2000 Hz, where sampling rates below 1000 Hz are impractical for the investigation of
fixational eye movements. Although technical specifications have changed, the optical eye
tracker is still the most common apparatus for studying eye movements in reading to this
day.

Technically, most optical eye trackers emit (invisible) infrared light, which is reflected
by the cornea. The distance vector between the center of the iris and the corneal reflection
can be determined to estimate the fixation location on the screen. As the corneal reflex
differs greatly between individuals, devices, experimental settings, etc., calibration of the
eye tracker is necessary before (and sometimes during) each experimental session. Likewise,
data quality critically depends on proper calibration.

1.3 Cognitive, Linguistic, and Oculomotor Effects During Reading

There is ongoing debate regarding the extent to which eye movement behavior is affected
by low-level oculomotor factors versus higher-level cognitive processes (Kliegl et al., 2006).
Some researchers argue that eye movements are primarily guided by visual or oculomotor
factors (e.g., see Adeli et al., 2016; Vitu et al., 1995), while others emphasize the role of
cognitive and/or linguistic processes (e.g., see Just & Carpenter, 1980; Reichle et al., 2010).
Over the previous decades, a lot of research has been accumulated that demonstrates the
relevance of cognitive, (psycho-)linguistic, and oculomotor aspects of sentence reading and
the view has emerged that neither low-level nor high-level processes alone can account for
all variability and complexity of eye movements in reading (Eskenazi & Folk, 2016; Kliegl
et al., 2006). In the following, I will summarize the most relevant experimental effects that
a complete theory of reading should ideally account for, or that theory-driven models should
be able to predict.7

7For brevity and since they are not uniquely applicable in reading research, purely perceptual effects (e.g.,
stimulus quality) are not considered in this overview.
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1.3.1 Oculomotor Effects

Arguably, the most direct influence on eye movements in reading (i.e., the spatial dimen-
sions of saccades and resulting fixation locations) comes from oculomotor processes, i.e. the
execution of eye movements itself. Across many different studies and contexts, and regard-
less of the linguistic qualities of the stimuli, experimental effects have been established in
the literature that show very stable effects independent of the actual displayed text. These
include preferred viewing/landing position (PVP/PLP; Rayner, 1979) and (inverted) optimal

viewing ([I]OVP; O’Regan, 1990; Vitu et al., 2001) effects.

Preferred viewing position. The PVP effect is a statistical bias for the eyes to land on
locations at a relatively consistent distance from the launch site. Assuming the center of
a word to be the “optimal viewing position”, the PVP manifests as a tendency to overshoot
close word centers and overshoot farther ones. Upon statistical analysis of targets at different
eccentricities, McConkie et al. (1988) demonstrated that saccade amplitudes follow a pattern
of systematic bias due to the saccadic range error, and unsystematic oculomotor noise, still a
very popular approach to model oculomotor error in reading models (e.g., see Engbert et al.,
2005; Reichle et al., 1998).

(Inverted) optimal viewing position. Besides this bias or preference to execute sac-
cades at certain amplitudes, it has also consistently been shown that the initial fixation loca-
tion within a word can have a strong influence on fixation durations (IOVP) and refixation
probabilities (OVP). Specifically, when the eyes initially land on non-central word locations,
compared to landing on the word center, it is more likely that the saccade is executed slightly
earlier and that a refixation follows. Both have been interpreted as evidence that the center
of a word is the optimal viewing position, since it will be perceived more efficiently by the
fovea. Consequently, earlier saccades and more likely refixations may be countermeasures
for correcting inefficiently placed initial (or “misplaced”) fixations.8

1.3.2 Cognitive Effects

Cognitive effects on eye movements in reading have been extensively studied in cognitive
psychology. These include but are not limited to effects of attention, working memory, and
parafoveal processing.

Attention. Attentional processes play a crucial role in guiding eye movements and allo-
cating visual processing resources to relevant information in the text. For example, inhibition

of return (IOR; Posner & Cohen, 1984), a prominent effect of visual attention, positing that
it takes more time to return to a previously attended location than to a novel fixation loca-
tion, has also been demonstrated in reading for both adults and children (e.g., see Chasteen

8The error-correction hypothesis, however, is hardly possible to test experimentally because saccade targets,
i.e. the intended landing positions, are not observable using eye tracking.
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& Pratt, 1999; Eskenazi & Folk, 2016; Parker et al., 2020; Rayner et al., 2003; Slattery &
Parker, 2019). Another convincing demonstration of the role of attention in reading is mind-

less reading, i.e. when readers do not fully attend to comprehension of the text being read.
Mindless readers tend to make more and longer fixations (Luke & Henderson, 2013; Reichle
et al., 2010), especially when fixations are close to the word center (i.e., the optimal viewing
position, see Nuthmann & Engbert, 2009; Nuthmann et al., 2007). Effects of attention are
on reading are, however, difficult to isolate from other effects, as we can assume that it is a
necessary precursor for efficient linguistic processing.

Working memory. Another important concept of cognitive psychology, working mem-

ory, has been found to be associated with eye movement characteristics in reading tasks.
Higher working memory scores have been linked to longer saccades during reading and
longer fixations during scene viewing (Luke et al., 2018). Other studies have shown that
working memory load affects eye movement behavior, with a shortage of working mem-
ory resources leading to deficits in attentional control and eye movement coordination (e.g.,
Azuma et al., 2014). This suggests that working memory plays a role in the allocation of
attention and the planning of eye movements during reading and visual exploration.

Often considered part of working memory, executive functions, which encompass cogni-
tive processes such as inhibition and cognitive flexibility, have also been found to influence
eye movements during reading. Reduced reading comprehension has been associated with
executive function deficits in both dyslexic and healthy young readers (Georgiou & Das,
2016; Locascio et al., 2010). In Parkinson’s disease, a neurological disorder with significant
impact on working memory, executive dysfunction has been linked to alterations in reading
speed and eye movement patterns (Stock et al., 2020).

Parafoveal processing. While it is undisputed that processing of the foveal informa-
tion affects reading, there is ongoing debate about the theoretical embedding of parafoveal

processing. The existence of parafoveal-on-foveal effects would speak for the parallel (vs.
serial) processing of words and challenge the more constrained assumption of serial process-
ing (see also Section 1.4 for an overview of serial and parallel processing models), at least
for models with strict coupling of attention and gaze.9 For example, there is evidence that
semantically related parafoveal words can facilitate the processing of foveal words, leading
to fewer errors and faster naming times (Rusich et al., 2020). Conversely, when the percep-
tual or processing span is limited by foveal processing load or a gaze-contingent boundary
paradigm, parafoveal processing is affected, resulting in effects on saccade targeting and at-
tenuated preview benefit (e.g., see Henderson & Ferreira, 1990; Risse, 2014; Risse & Seelig,
2019; Vasilev & Angele, 2017; Zhang et al., 2019).

9There are serial-attention shift models, where attention lags behind fixation location, which is the case
for E-Z Reader (Reichle et al., 1998, see Section 1.4) and derivative models. These can account for some
parafoveal-on-foveal effects without challenging the strict sequential attention allocation.
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1.3.3 Psycholinguistic Effects

Finally, in addition to the oculomotor and cognitive effects on eye movements in reading,
there has been research on the psychological and linguistic processes that must take place
in order to understand written language. Interfacing with the lower-lever cognitive aspects
described in the previous subsection, they are necessary to construct a mental representation
of the structure and content of the text, although there is disagreement about the linking
between them and the resulting relation to the observed eye movements. The most relevant
aspects include lexical (incl. phonological, orthographic, and morphological), syntactic, and
semantic effects, all of which are briefly introduced in the following.

Lexical effects. According to Kliegl et al. (2006), the “big three” lexical variables with
significant effects on eye movements in reading (particularly fixation durations) are corpus

frequency, word length, and predictability. Even though, when considering popular text
corpora, these measures are significantly correlated (e.g., see Balota et al., 2007; Brysbaert
& New, 2009; Heister et al., 2011; van Heuven et al., 2014) and therefore not completely
independent, they all have significant individual contributions to eye movements, even when
controlling for the respective others. Furthermore, orthography, phonology, and morphology

have been shown to significantly affect eye-movement statistics.

Frequency. The word frequency or corpus frequency is a measure of how frequently a
word occurs in natural language, or more specifically within a given text corpus. The fre-
quency is simply determined by counting its occurrences in a text corpus. It has a significant
impact on eye-movement behavior during reading. For example, words with high corpus
frequencies receive shorter fixations, and are skipped and refixated more often compared to
low-frequency words (Inhoff & Rayner, 1986; Kliegl et al., 2004; Rayner & Duffy, 1986).
This suggests that highly frequent words require less processing because readers have more
experience with them, facilitating lexical access in foveal and parafoveal vision.

Word length. The physical variable word length has a maybe more trivial effect: When
words are longer, they take up more area of the fovea or, for longer words, even exceed the
fovea. Therefore, longer words are fixated longer, receive more refixations, and are skipped
more often than shorter words (Kliegl et al., 2004). Likewise, shorter words allow for more
foveal and parafoveal processing of surrounding information, which has been shown to affect
following saccade amplitudes and fixation durations (e.g., see Morris et al., 1990; O’Regan,
1979; Rayner, 1979).

Predictability. Although the corpus frequency of a word can be seen as a general proxy
for the average exposure to a word, and hence of its identifiability, the same word can be more
or less predictable under different conditions or in different contexts. The predictability of a
word is the probability of a word being correctly guessed when absent. Predictability norms
must be collected experimentally because they can be expected to differ between contexts,
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task demands, and readers. When controlling for word length and corpus frequency, effects
of predictability are additive and can have qualitatively similar and quantitatively stronger
effects on eye-movement measures compared to word frequency (Kliegl et al., 2004; Rayner
et al., 2004), also confirmed by results of Kretzschmar et al. (2015) who found that only
predictability, but not corpus frequency, has an effect on N400 amplitudes in event-related
potentials (ERPs).

Orthography. Another factor that contributes to the identifiability of a word is its or-
thography, or more specifically its orthographic similarity (Andrews, 1997; Coltheart et al.,
1977). This refers to the number of words in a lexicon that can be constructed from a word
by replacing, adding, or deleting a single letter. Although orthographic similarity has con-
sistently been found to facilitate lexical decision (see Andrews, 1997, for a review), it has
been found to increase fixation durations in reading. Consequently, words are fixated longer
if they are orthographically similar to primes (such as preceding words; e.g., see Paterson
et al., 2009).

Research on the N400 amplitudes in ERPs suggest that high orthographic neighborhood
size increases processing demands (Holcomb et al., 2002) but only when attention is not
shared with concurrent tasks (Rabovsky et al., 2019). Effects of orthographic similarity
are especially strong if words have neighbors with significantly higher or lower frequency,
which results in a spillover of that neighbor’s frequency effects on the target word (Perea &
Pollatsek, 1998). Relatedly, there is some evidence by a follow-up study by Pollatsek et al.
(1999), that readers tend to make more regressive saccades to the target, presumably in order
to correct the erroneous identification.

Phonology. Even if orthography affects eye movements in reading and processing of
written language, there is still no consensus about whether that influence is direct or medi-
ated by additional serial or parallel processing such as for the phonology of a word. A classi-
cal example is a study by McCutchen and Perfetti (1982), who showed that silent reading of
tongue twisters tends to be slower than reading of control sentences. Though replications and
follow-up research had mixed results (e.g., Daneman et al., 1995), phonology at least has the
potential to modulate effects of semantics and orthography (e.g., Rayner et al., 1998). More-
over, when controlling for orthographic and other features of words, Inhoff and Topolski
(1994) and Sereno and Rayner (2000) found that fixation durations were increased when
words were phonologically irregular, such as pint, the so-called spelling-to-sound regularity

effect.

Morphology. There are different views regarding the role of the morphological represen-
tation of a word. While some researchers attribute morphemes a linking function between
form and meaning (Marslen-Wilson et al., 1994), others would attribute it a role at the level
of orthographic processing (Rastle & Davis, 2008). A very common method in the research
of morphology effects in reading is to prefix, suffix, or compound words and compare eye
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movement statistics on these morphemes compared to different morphemes or the word root.
Unsurprisingly, since the morphemes are longer than their root, this increases gaze durations,
refixation probabilities etc. However, after controlling for word length, there are still some
interesting findings, such as in Finnish, where the frequencies of the individual lexemes of
compound words have been shown to have independent contributions to gaze durations, but
non-additive effects for longer compounds (Pollatsek, Hyönä, & Bertram, 2000; Pollatsek,
Tan, & Rayner, 2000), where the overall frequency of the compound seems to drive the fre-
quency effect, which the authors interpreted as evidence for a dual-route word identification
process for compound words.

Syntactic effects. In addition to lexical effects of a word, the syntactic structure of a
sentence can affect eye movements, too. The effects range from spatially demarcated effects
to more global adjustments of eye-movement control (Huestegge & Bocianski, 2010). While
some phenomena such as garden-pathing can have severe effects on eye movements, most
effects of sentence processing (e.g., Jäger et al., 2020) are generally of smaller magnitude
compared to lexical effects (Boston et al., 2008).

One reason for the generally small magnitude of syntactic effects on eye movements
may be the popular rationale of the dominant interpretation, i.e. the reader extracts syntactic
information about the sentence as it is being read and sticks to the dominant parse. Effects
of language processing difficulty on eye movements are mostly only then observed once
new information challenges the dominant interpretation (Frazier & Rayner, 1987; Rayner
et al., 1983). If such misanalysis due to syntactic category ambiguity occurs, however, it
may be more costly for the reader to reconstruct the syntactic representation than to resolve
a lexical-semantic ambiguity (Jones et al., 2012).

Another piece of evidence in support of the dominant interpretation hypothesis are
garden-path sentences. In several studies (e.g., Frazier & Rayner, 1982; Rayner et al.,
1983), it has been demonstrated that reading a sentence like The old house their young will
lead to significantly increased reading times, in particular on regions that challenge the
previously dominant parse. According to the authors, in the example, the reader will
establish a syntactic representation with old as an adjective and house as a noun, as in The

old house was demolished. However, when the reader encounters their, this dominant
interpretation is challenged. Instead, old must be interpreted as a noun and house as a verb,
as in The old [people] house their young [children].

The role of memory in sentence processing has been proposed very early in psycholin-
guistics by Miller and colleagues (e.g., Miller, 1962; Miller & Isard, 1964). Especially, when
readers process very long sentences, it may be that processing words later in the sentence re-
quire the retrieval of dependents read very early in the sentence. For example, a sentence
like The mouse that the cat that the dog chased saw ate quietly could be difficult to inter-
pret, especially because three nouns (mouse, cat, and dog) must be matched with three verbs
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and when the first verb is read, all three subjects are still unmatched. Presumably, this can
cause memory interference and thereby pose additional cognitive demands when process-
ing the respective verbs (Gibson, 1998, 2000; Lewis et al., 2006). However, most evidence
for memory interference has not been collected in the context of eye movements and there,
evidence is inconclusive: Even though readers do take more time to read and make more
regressions in more complex sentences involving difficult memory retrievals (e.g., Gordon
et al., 2006; Jäger et al., 2015; Lee et al., 2007; Mertzen et al., 2023), regressions are far
less common in those trials than a strong eye-mind coupling would predict (Just & Car-
penter, 1980), suggesting a much more complicated influence of memory retrieval on eye
movements in reading.

Semantic effects. In two experiments, Rayner et al. (1983) showed that reading times
were more influenced by syntactic processing demands than by semantic processing but the
latter had a stronger influence on the final interpretation of the sentence. In the following
decades, there has not been very convincing evidence in favor of semantic effects on eye
movements in reading (e.g., see Luke & Henderson, 2016; Rayner & Morris, 1992). Though
some others suggested that semantic effects potentially manifest later during reading, not
during first-pass reading, which is often the main focus of reading research (Weiss et al.,
2018) and could therefore simply be a methodological problem. Further research beyond
first-pass and single-sentence reading is necessary in order to evaluate this hypothesis.

1.4 Computational Models of Reading

The accumulation of experimental evidence has motivated the development of different
theories about the reading process, some of which have been implemented in testable com-
putational models. Computational models have emerged as a powerful tool to test theories
across different scientific disciplines. By deriving a model from the theory, the modeler has
to transfer theoretical assumptions into an explicit form (Fum et al., 2007), making the theory
as a whole testable. It could even be argued that a theory without a model implementation is
useless because its assumptions are unfalsifiable and thus challenge the scientific value of the
theory. A computational model is typically a computer implementation of a model, making
it possible to run efficient simulations of the model outcome (i.e., the behavioral response
for cognitive models).

As typically in the behavioral sciences, reading patterns are often analyzed by focusing
on the commonalities derived from aggregating data across trials. While the rationale usually
is to decrease the “noise” caused by the inherent stochasticity, it also removes any sequential
information within trials, that could otherwise be of explanatory value, for both the inference
method and theory development. This is especially critical for eye movement research, where
stimuli are (visually) perceived and the behavior of interest (eye movements) is generated by
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the same system, i.e. the eye. Any observable eye movements are hence possibly influenced
by the sequence of preceding eye movements on the same trial. As a consequence, process-
oriented computational models considering the complex dynamics of fixation sequences have
been particularly successful in reading research. However, there are also models with a
stronger focus on modeling processing demand and less so the eye movements, particularly
in linguistics.

1.4.1 Psychological Reading Models

Psychological models often have a strong focus on cognitive domains with a predomi-
nantly psychological research tradition, such as attention, vision, and decision-making. A
main distinction between contemporary psychological models of reading is the assumption
of serial vs. parallel processing of words around foveal vision, grouping them into serial-

attention shift (SAS) models and parallel graded attention (PGA) models. This distinction
has been widely accepted (for reviews, see Engbert & Kliegl, 2011; Reichle, 2011) but of
course oversimplifies the characteristics of these models. Here, I will summarize key as-
pects of SWIFT (Engbert et al., 2005), Glenmore (Reilly & Radach, 2002; Reilly & Radach,
2006), E-Z Reader (Reichle et al., 1998), OB1-Reader (Snell et al., 2018), and the superior

colliculus model (Adeli et al., 2016).

Superior colliculus (SC) model (Adeli et al., 2016). Adeli et al. (2016) were the first to
present a reading model, which solely depends on oculomotor processes and works without
a lexicon, i.e. without knowledge of lexical, orthographic, syntactic, or semantic informa-
tion. Based on the central role in vision of the superior colliculus (SC), the image-based
processing model accumulates early visual input signals in order to generate saccadic eye
movements, mimicking basic neural circuitry of the SC. As visual input enters the system,
the model computes a luminance-contrast saliency map, connected to an oculomotor map,
representing ocular motoneuron populations. The most active region of the resulting motor
map determines the saccade. Given that oculomotor effects are the most reliable and sizable
effects in eye movements during reading, it is not surprising that the model performs well
with regard to eye movement statistics, especially word-length effects on skipping probabili-
ties, PVP effects, saccade amplitudes, and IOVP effects (Adeli et al., 2016). However, given
the lack of more detailed cognitive and linguistic processing, and the strongly constrained
focus on oculomotor effects, there has not been published any evidence that the model is able
to predict higher-level linguistic processing effects such as garden-path effects. Moreover it
does not consider temporal aspects of eye movements, such as fixation/saccade durations or
saccade velocities.

E-Z Reader (Reichle et al., 1998). In 1998, Reichle et al. published the first imple-
mentation of the E-Z Reader model family, which has been augmented over the decades
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many times (e.g., Reichle, 2011; Reichle et al., 1999, 2003, 2012), and was the first model
that aimed at providing a complete account for eye movements during reading. It consid-
ers perceptual, cognitive, and oculomotor processes during sentence reading. Siding with
the predominant view of the experimental and modeling literature at the time, E-Z Reader
assumes serial (non-parallel) processing of words. Compared to other serial-attention shift
models such as Reader (Just & Carpenter, 1980), which predict a strong link between mind
and eye, however, E-Z Reader allows for more variability in the execution of eye movements
during reading.

All processes within E-Z Reader are discrete states, each of which, upon initiation, is
assigned a specific fixed or stochastic duration. In its initial configuration, the model en-
compasses three oculomotor processing stages: (1) a labile stage (𝑀1), (2) a non-labile stage
(𝑀2), and (3) a saccade-execution stage (𝑀3). Word processing within the model also en-
compasses three sequential stages: (1) attention allocation, followed by the lexical stages of
(2) familiarity checking (𝐿1), and (3) lexical completion (𝐿2). The conceptualization of these
two lexical processing stages draws inspiration from the dual-process theory of recognition,
as articulated by Reichle (2011).

Oculomotor processes and word processing can operate in parallel but motor processes
must be triggered by word processing. When a word is attended to, it undergoes two con-
secutive lexical processing stages, 𝐿1 and 𝐿2. When the familiarity check 𝐿1 has concluded,
the oculomotor programming cascade starts (𝑀1) in parallel to the lexical completion stage
(𝐿2). Attention is shifted to the next word 𝑛+1 once 𝐿2 completes, which could be before or
after the execution of the saccade. Once 𝑀1 concludes, the programmed saccade is executed.
If for some reason (such as in parafoveal processing) 𝐿1 on a new attention target completes
before a concurrent 𝑀1, the saccade is cancelled and reprogrammed to a new saccade target
(𝑛+1 in reference to the word whose 𝐿1 completed). Even though attention (and the saccade
target) is serially shifted to the right, there is additional stochasticity in the eye movements
due to an implementation of the McConkie et al. (1988) model of saccadic range error and
oculomotor noise.

Despite some deliberate simplifications of oculomotor control and cognition, the over-
arching objective of the model has been demonstrated to replicate many of the fundamental
effects observed during reading with a minimal set of underlying assumptions. This includes
but is not limited to parafoveal-on-foveal, frequency, word-length, predictability, saccade-
amplitude effects. A noteworthy limitation of the model, which is due to the strictly incre-
mental attention shift, is that the model does not predict long-range regressions, which is
problematic when fitting experimental data, where such saccades do occur.

Glenmore (Reilly & Radach, 2006). The Glenmore model was originally published by
Reilly and Radach (2006). Its essential components encompass a visual input module, a
word processing module that permits parallel processing of multiple words, a central fixa-
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tion point, and a saccade generator responsible for generating saccadic eye movements. The
input vector represents the current perceptual span and encodes the visual arrangement. Dur-
ing reading, information is passed to the saliency map and a linguistic processing module,
which implements operations at both the letter and word levels using an interactive activation
model. Activation values are computed as a cumulation of (a) bottom-up visual activation
originating from the input units and (b) top-down letter and word activation. The tempo-
ral dynamics of activation at the word level depend on competitive inhibition from adjacent
words and the frequency of fixated words. Additionally, words exert feedback onto the letter
level through inhibitory connections, thereby retarding the decay of letter units.

SWIFT (Engbert et al., 2005). Engbert et al. (2005) introduced the SWIFT model of
eye-movement control in reading, which was mainly motivated by the lack of alternative
models allowing for parallel word processing. In fact, parallel processing in SWIFT is not a
constraint of the model architecture but a result of parameter configuration. It can produce
eye movements under the assumption of (approximately) serial processing but Engbert et al.
(2005) demonstrated that the parallel configuration provides a better fit to experimental data.

In the model, each word of the sentence is associated with an activation value, which
changes over time from 0 to some threshold during the lexical processing stage and from
threshold back to 0 during the post-lexical processing stage. Depending on the concrete
model implementation, either the threshold or the processing rate of each word is modulated
by its corpus frequency and word predictability, resulting in less frequent or less predictive
words requiring more processing time than more frequent or more predictable words. Only
words that are within the processing span, which is centered around the current fixation
location at a given time, are processed.

A saccade timer cascade controls the programming and execution of saccades. At first,
a global timer starts, which in turn starts the labile saccade programming stage as soon as
the global timer reaches threshold. When the labile timer reaches its threshold, a saccade
is programmed to a word target probabilistically determined on the basis of relative word
activations at that time, i.e. every word can be selected as target at any point in time but the
word with the highest activation at the time the labile saccade stage concludes, very likely
wins. The programmed saccade, however, is not executed until the non-labile saccade stage,
following the labile stage, concludes. Finally, the saccade is executed and a new global timer
is started. The global timer may be restarted if a saccade ends before the global timer reaches
threshold. Likewise, the labile timer may be restarted if the global timer reaches threshold
before the labile timer does. Consequently, the saccade programming can be canceled if the
labile stage is prevented from reaching threshold. It is important to note that the saccade
timer cascade and word activation field are mostly independent. There are only slight inter-
actions by means of foveal load on the inhibition of the global timer. Otherwise, saccade
timing is relatively independent of target selection.
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OB1-Reader (Snell et al., 2018). Another model with particular focus on the interaction
of word recognition and eye-movement control in sentence reading is OB1-Reader (Snell et
al., 2018). The model can reliably recognize words in text and reproduce orthographic ef-
fects such as orthographic neighborhood size. It incorporates a spatiotopic sentence-level
representation, allowing for parallel processing of multiple words. The model’s attentional
distribution adapts to the skill of the reader and the difficulty of the text, increasing after suc-
cessful recognition and decreasing after failure. OB1-Reader accounts for various reading
phenomena, including word length, frequency, and predictability effects, as well as ortho-
graphic parafoveal-on-foveal effects (Snell et al., 2018).

1.4.2 Linguistic Reading Models

Unlike psychologically motivated models of reading, linguistic approaches tend to focus
on processing demands in the form of effects on fixation durations. Therefore, they often
neglect spatial aspects of reading and are rarely applied to sequences of fixations and sac-
cades. They are, however, frequently applied to isolated fixation durations or reading times
from self-paced reading experiments. There, the two theories of memory retrieval (Lewis &
Vasishth, 2005) and surprisal (Levy, 2008) have been particularly successful in predicting
and explaining language processing demand.

Cue-based memory retrieval (Lewis & Vasishth, 2005). According to the ACT-R-
based (Anderson & Lebiere, 1998) cue-based memory retrieval theory by Lewis and Vasishth
(2005), when words are processed, their linguistic features (e.g., syntactic category, locality,
etc.) are encoded in memory. If the reader subsequently encounters a word that requires
the attachment of a dependent, such as a verb requiring a subject, a cue-based retrieval is
triggered. Words in memory whose features match the retrieval cues are potentially retrieved.
The degree to which memory features and retrieval cues match, determines the memory
activation strength and consequent retrieval latency. The retrieval stops as soon as any word
has been matched, which will often be the word with the best feature-cue match. However, if
many words share the same features, the fan effect slows down processing of all these words,
resulting in slower overall processing of these words and potentially more stochasticity and
misretrievals. The model has been demonstrated to reproduce and explain effects of sentence
length, garden-path reanalysis, and structural complexity (Lewis & Vasishth, 2005). While
the model provides a very successful approach to syntax effects of sentence reading, it is not
frequently applied to fixation sequences. This is mainly due to the fact that the model only
predicts processing times and not saccadic eye movements.

Surprisal (Levy, 2008). The surprisal theory by Levy (2008) proposes a simple
information-theoretic characterization of processing difficulty as the processing demand
incurred by resource reallocation during probabilistic sentence comprehension. It assumes
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that readers draw on a probabilistic grammar, which allocates a probability to all
well-formed sentence structures that can follow from a given processed sentence portion.
Mathematically, surprisal is the negative log-probability of expecting a word in a given
context, resulting in high values for lower probabilities and a theoretical lower bound of
zero for a completely unambiguous word. The greater the distance between the predicted
word and the target word, the higher the surprisal and consequently the processing
difficulty. Surprisal has been shown to predict fixation durations and skipping probabilities
in various eye-tracking studies (e.g., see Ankener et al., 2018; Balling & Kizach, 2017;
Boston et al., 2008).

1.4.3 Contemporary Integrated Models

Some researchers have identified that psychological and linguistic threads of research
should be combined to provide a satisfactory account of eye movements during reading.
Instead of reinventing the wheel, however, researchers should embrace the success of the
individual models with regard to their specific domain. That is why the first attempts to
develop integrated reading models have taken advantage of established models, which were
then extended. Most importantly, these integrated models include Dotlačil (2018) and Über-
Reader (Reichle, 2021).

ACT-R-based reader (Dotlačil, 2018). Dotlačil (2018, 2021) published a noteworthy
implementation of an integrated model of eye movements in reading, which builds on
EMMA (Salvucci, 2001) within the ACT-R architecture as the eye movement module.
Dotlačil included an account for syntax processing using the Lewis and Vasishth (2005)
model of cue-based memory retrieval and demonstrated that model parameters can be
reliably fitted within a Bayesian inference framework. Due to the EMMA-based
oculomotor module, as discussed in Engelmann et al. (2013), the model comes with the
severe limitation that no long-range regressions are within the predictive and explanatory
scope of the model.

Über-Reader (Reichle, 2021). Based on the E-Z Reader architecture, Reichle (2021)
and Veldre et al. (2020) introduced a reading model that is designed to predict and ex-
plain various additional aspects of sentence reading, such as detailed word identification,
syntax parsing, discourse, and semantics. Even though, in his book, Reichle (2021) pro-
vided some high-level details about Über-Reader (such as the Lewis and Vasishth (2005)
memory-retrieval model), the model lacks an accessible computer implementation and suf-
ficient mathematical details for an independent implementation, it remains unclear to this
date how the model can actually generate quantitative predictions for experimental data and
how it compares to competitor models. In line with the shortcomings discussed in the previ-
ous subsection, this currently precludes the model from further consideration and systematic
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model comparison.

1.5 Common Shortcomings of Contemporary Reading Models

As mentioned before, there has been a long-standing debate, mostly between psycholin-
guists and cognitive psychologists, about the link between eye-movement control and lan-
guage processing. This is demonstrated by the focus on either in the development of the mod-
els mentioned above. Indisputably, there must be a bottom-up influence of eye-movement
control on language processing because textual information can only be processed if at least
partially perceived. So if for some reason the eyes move in a way that hinders visual iden-
tification of the words of a sentence and the true content cannot be reliably inferred, then
language processing is severely compromised. But what happens when processing difficulty
occurs in higher cognition or language comprehension? Are there likewise top-down mech-
anisms that enable the reader to execute targeted saccades to resolve the difficulty or is it all
just chance? After all, the possibility that a processing difficulty is resolved after fixating
the region in question does not necessarily mean that it was the processing difficulty that
caused the saccade in the first place. Previous models were unable to address this question
by leaving out either psychological or linguistic aspects of sentence reading, or neglecting
some of the observable eye movements (in particular long-range regressions).

1.5.1 Explanatory Deficiencies

The most common critique that applies to all models introduced in the previous section
is that they are explanatory deficiencies. Many models focus on a limited set of aspects,
such as oculomotor effects (e.g., Adeli et al., 2016), word recognition (e.g., Snell et al.,
2018), or memory retrieval (e.g., Lewis & Vasishth, 2005), while neglecting other processes.
This approach may be useful to explain sufficiently large isolated effects of the respective
domains on eye movements but if an explanation requires substantial oversimplification and
neglect of otherwise significant contributors to the same outcome, the models may provide
inaccurate explanations or predictions, limiting their value for research. For example, if a
purely oculomotor model and a purely memory-based model both predict a regression (or
activation) of a word in a sentence, which explanation is closer to the truth? Combining the
two theoretical accounts in different configurations in a single model with a single outcome
could provide a much more detailed and accurate account for the observed behavior, such as
detailed qualitative estimates for the relative contributions of the competing accounts.

Moreover, a model should always be able to predict an observation under some model
configuration. If not, it can only provide predictions and explanations for a subset of all
possible outcomes. For example, long-range regressions, which can occur especially in long
sentences, cannot be predicted and explained by most serial-attention shift models like E-Z
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Reader or derivative models. Not only are these models severely limited in their explanatory
value for more complex sentence reading, but also are they required to be fitted to a restricted
subset of the data, which is not necessarily representative of all observable behavior. Nev-
ertheless, even if a model can theoretically predict some observation, it should also be able
to reproduce qualitative patterns associated with established oculomotor, psychological, or
linguistic effects. If not, fitting a model to experimental data containing such effects can
cause the fitted model to exhibit implausible behavior for many elsewise likely observations
in order to compensate for few elsewise unlikely observations.

1.5.2 Material

Another problem, particularly with psychological models neglecting linguistic phenom-
ena, is that the models are optimized and evaluated on the basis of experimental fixation
sequences from comparably simplistic sentence material. Many sentences in popular sen-
tence corpora like the Potsdam Sentence Corpus (Boston et al., 2008) or the Schilling corpus
(Schilling et al., 1998) exhibit very few (if any) sentences that would allow for higher-level
psycholinguistic effects. This is mainly because (a) such effects are triggered by sentence
constructions that are relatively rare in a natural language context, and (b) corpus sentences
tend to be relatively short, precluding any “late” cognition to affect the eye movements. In
other words, if an effect is predicted to occur in higher cognition that depends on lower-level
processing, it necessarily takes place later during reading. At that point in time, there may
not be much of the sentence left to read, i.e. the effect cannot manifest in the observed behav-
ior. To account for such late effects, it may be necessary to use longer sentence material and
consider rereading measures in addition to the disproportionally preferred first-pass reading
measures.

1.5.3 Parameter Inference

Computational models in general, including computational models of reading, typically
have a number of free parameters that modulate the simulated response, e.g. by changing how
information is processed or the response is executed. We can expect that these parameters
differ between contexts, task demands, individuals, stimuli, or even between consecutive tri-
als. While the simulation of a response using a known set of parameters is relatively straight-
forward, it can be challenging to infer parameters from observations. If a model can be tuned
or fitted to experimental data so that the inferred model can reliably predict the observations,
the implemented theory could provide a viable explanation for patterns observed in the data.
However, unsurprisingly especially when models have many free parameters, reliable infer-
ence is extremely difficult because many parameter configuration can often lead to the same
observation and many observations can be the cause of a single parameter configuration.
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Another common problem across cognitive models is that data are inherently hierarchi-
cal, i.e. there are multiple observations by the same participant and there are multiple obser-
vations of the same stimulus across participants, all with their very unique potential impact
on the observable response. Ignoring the hierarchical nature and individual differences in
data can lead to severely biased results, especially for non-linear models.

Despite these issues, as in many domains of psychology, cognitive models often lack the
use of more sophisticated parameter inference methods and rely on simpler methodology (if
any). Even though hand-picking parameter values has become less common in reading mod-
els, the predominant parameter optimization on the basis of deviance measures can also pro-
duce biased and unreliable results. This may be especially true for biological systems such
as humans, where model parameters can be expected to be non-linear and highly correlated,
a circumstance referred to as sloppiness in biological systems (Apgar et al., 2010; Boehm
et al., 2023). In the following Section 1.6, I summarize and compare relevant methods of pa-
rameter inference, before synthesizing the research demand that motivated this dissertation
project.

1.6 Methods of Parameter Inference

The dimensionality of the parameter space is a significant consideration for the mod-
eler for at least two important reasons. Firstly, models are especially informative if they
can explain a range of stereotypical behavior with few free parameters because more of the
observation can be explained in terms of the implemented theory, than in terms of the ex-
perimental data. Secondly, with every free parameter, there are exponentially more possible
parameter configurations, which should be tested against the observed data, especially if the
parameters are continuous variables. Given that already very small parameter variations can
have severe effects on predicted patterns (e.g., see Engbert et al., 2005; Schütt et al., 2017),
parameter inference must be carried out in an extremely careful and sensitive manner.

1.6.1 Hand-Picked Values

For many of the models discussed above, especially for psychological models of the 20th

and early 21st century, parameter values were often hand-picked by the authors (e.g., Reichle
et al., 2003). Even though this can produce plausible behavior, often the rationale behind
specific parameter selections is obscure and irreproducible for different contexts. Moreover,
it is possible if not likely that the hand-picked selection of parameters is actually not the
optimum of the parameter space.
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1.6.2 Parameter Optimization

There is a number of more objective and automated parameter inference methods. The
most basic form, grid search, basically explores combinations of predefined parameter values
across the different dimensions of the parameter space, while considering all combinations.
As this includes the evaluation of a priori implausible parameter configurations, this can be
computationally costly, which in turn practically limits the number of testable parameter sets.
There exist a number of other techniques, which use a more sophisticated way of exploring
the parameter space, such as Nelder-Mead, quasi-Newton and conjugate-gradient algorithms
(Bélisle, 1992; Byrd et al., 1995; Fletcher, 1964; Nelder & Mead, 1965).

1.6.3 Goodness-Of-Fit

Both grid search and other optimization algorithms require some criterion of goodness-

of-fit, which is commonly some deviance measure between experimental and simulated data,
𝑓 (X,X′ | 𝜽), or a likelihood (see below for details). Deviance measures often are mean
squared errors between summary statistics of experimental and of simulated data, and opti-
mization algorithms are to find their minimum in parameter space 𝚯, so that

�̂� = argmin
𝜽∈𝚯

𝑓 (X,X′ | 𝜽) . (1.1)

The comparisons are usually not feasible at the level of single observations and must be
aggregated across many simulated or experimental trials. This can add more computational
cost to the process of parameter inference, in addition to the cost induced by the algorithm
itself. Moreover, the choice of the summary statistic, on which to evaluate goodness-of-fit
can introduce bias into the otherwise objective parameter inference (Schütt et al., 2017). For
example, if parameters of a reading model are evaluated by least-squared error optimization
based of single-fixation durations alone, the resulting model may not be a reliable predictor
for spatial aspects or even temporal aspects other than single-fixation duration. Even when
considering multiple summary statistics, the choice of weighting the different measures is
non-trivial and can introduce additional bias in the criterion.

1.6.4 Likelihood

A more objective way of evaluating the goodness-of-fit of a model is its likelihood. A
critical advantage over deviance measures is that a model likelihood can often be applied
at the level of single observations, sparing the need to aggregate across trials to calculate
summary statistics, which could result in a loss of statistical resolution. Generally, the model
likelihood is the probability to simulate or observe data X, given the parameter configuration
𝜽 ∈ 𝚯,
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𝐿𝑀 (𝜽 | X) = 𝑃𝑀 (X | 𝜽) . (1.2)

If the data X consist of several independent trials, the probability 𝑃𝑀 is the product of
each independent trial’s probability, such that

𝑃𝑀 (X | 𝜽) =
∏
𝑥∈X

𝑃𝑀 (𝑥 | 𝜽) . (1.3)

Note that, since the product of many relatively small probabilities is computationally not
tractable, usually, the log-likelihood is evaluated instead, so that

𝑙𝑀 (𝜽 | X) = log𝑃𝑀 (X | 𝜽) (1.4)

=
∑︁
𝑥∈X

log𝑃𝑀 (𝑥 | 𝜽) . (1.5)

This also entails that, as noted before, a model must always be able to attribute a non-zero
likelihood to all observations, i.e. offer an account for any observable pattern. Otherwise, if
only a single trial results in a zero likelihood, the model likelihood for the entire data set X
will also be zero. Consequently, this precludes some reading models that cannot predict the
entire range of observable eye movements.

Unlike deviance measures, within the domain of parameter optimization, the likelihood
𝐿𝑀 is to be maximized and the resulting parameter configuration is the maximum-likelihood

estimate (MLE; for a tutorial, see Myung, 2003),

�̂�ML = argmax
𝜽∈𝚯

𝐿𝑀 (𝜽 | X) . (1.6)

Practically, likelihood-based inference produces less biased and more reliable results
than parameter optimization involving other criteria of goodness-of-fit, such as deviance
measures. They are, however, not always mathematically tractable in analytical form. In
these cases, there exist different approximation techniques, including but not limited to
probability-density approximation (Holmes, 2015; Palestro et al., 2018; Turner & Sederberg,
2013), pseudo-marginal likelihoods (Andrieu & Roberts, 2009), and synthetic likelihoods
based on summary statistics (Wood, 2010).

Sequential likelihood. In dynamical cognitive models (see Engbert, 2021, for an intro-
duction), which consider sequential observations over time, X = {𝑥1, . . . , 𝑥𝑛}, it is possible to
formulate the likelihood of an observed sequence of events as a sequential likelihood,

𝐿𝑀 (𝜽 | X) = 𝑃𝑀 (𝑥1 | 𝜽)
𝑛∏
𝑖=2

𝑃𝑀 (𝑥𝑖 | 𝜽 , 𝑥1, . . . , 𝑥𝑖−1) , (1.7)



24 General Introduction (1)

where each 𝑃𝑀 (𝑥𝑖 | 𝜽 , . . .) depends on the previous states or steps in the sequence. This
approach can be subsumed under the general methodological approach of data assimilation

(Engbert et al., 2022; Reich & Cotter, 2015), which refers to the integration of complex
mathematical models with time-series data (e.g., see Morzfeld & Reich, 2018). Given the
general advantage of likelihood-based inference to consider data at the level of observations
(rather than aggregating), sequential likelihood allows not only the evaluation of the final
outcome of a trial but its temporal evolution. This enables much more reliable model fitting,
due to the higher resolution of the data, and more direct testing of latent model assumptions.

1.6.5 Bayesian Inference

Like parameter optimization techniques, Bayesian parameter inference attempts to find
plausible configurations for parameters 𝜽 ∈ 𝚯, given the observed data X. The minimum
requirements in order to use Bayesian parameter inference are a model likelihood 𝐿𝑀 (𝜽 | X),
as introduced above, and a prior 𝑄 (𝜽). While the likelihood is a strictly model-specific
evaluation of the probability of a parameter configuration given some observation, the prior
probability is usually conceptualized as a-priori knowledge or belief about the distribution of
the parameters. Essentially, it dictates which parameter values are most likely, possibly based
on knowledge about the model implementation or previous analyses. What is sometimes
neglected is the fact that priors thereby also guide the algorithm as to where in parameter
space 𝚯 to consider parameter configurations.

Instead of trying to find a single parameter configuration like maximum-likelihood esti-
mation, Bayesian parameter inference converges on a posterior probability over the parame-
ters, given the data,

𝑃 (𝜽 | X) = 𝑄 (𝜽) 𝐿𝑀 (𝜽 | X)
𝑃 (X) , (1.8)

which incorporates the uncertainty about the fitted parameter values (Nicenboim et al., 2023).

In most sampling methods, including the influential class of Markov Chain Monte Carlo
(MCMC) samplers (see Gilks et al., 1995, for an introduction), the denominator 𝑃 (X), which
is the likelihood of the data, integrated over all parameters, can be disregarded because the
iterative samplers usually only evaluate the relative posterior between two proposals, which
effectively only considers

𝑃 (𝜽 | X) ∝𝑄 (𝜽) 𝐿𝑀 (𝜽 | X) . (1.9)

The regularizing property of a prior distribution𝑄 (𝜽) is sometimes formulated as general
criticism of Bayesian inference, given that constraining the parameter space can theoretically
preclude the algorithm from converging on a plausible solution. Therefore, priors must be
chosen accordingly to allow any plausible parameter value, sometimes resulting in the selec-
tion of broad and weakly informative priors (Schütt et al., 2017). Likewise, the regularization
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has a considerable advantage over methods like parameter optimization or grid search, which
is the exclusion or attenuation of a-priori implausible parameter configurations during the
exploration of the parameter space. Under the consideration of the regularizing property of
priors, they can decrease the computational cost of complex and highly-dimensional models
by emphasizing parameter evaluation in more plausible regions and avoiding the sometimes
costly evaluation of a-priori unlikely parameter configurations.

1.7 Summary

As summarized above, in the light of continuously more complicated theoretical frame-
works in the cognitive sciences, contemporary reading models are facing severe shortcom-
ings. This includes explanatory deficiencies for purely psychological or linguistic mod-
els, inadequate corpus material (mostly for psychological models), and inefficient parameter
inference. Although there are at least two modeling approaches that attempt to integrate
psychological and linguistic aspects of eye movements in reading (Dotlačil, 2018; Reichle,
2021), they are either not testable, are not implemented for likelihood-based inference meth-
ods, or preclude experimental contexts, in which long-range regressions are known or ex-
pected to occur. What follows are three consecutive studies, which report on the advances
of the application of these principles in the context of reading research by using the example
of SWIFT (Engbert et al., 2005), culminating in the integrated reading model SEAM, which
considers basic concepts of linguistic sentence processing from the cue-based memory re-
trieval model by Lewis and Vasishth (2005).

The following Chapter 2 introduces a new version of SWIFT, a dynamical model of fix-
ational eye movements during reading. It presents an innovative data assimilation approach,
using a combination of approximative likelihood approaches for spatial and temporal aspects
of fixation sequences. Bayesian parameter inference, facilitated by an adaptive MCMC tech-
nique, demonstrates reliable estimation of model parameters for individual subjects, thereby
advancing computational models of eye-movement control in general and of SWIFT in par-
ticular.

The subsequent Chapter 3 discusses the limitations posed by model complexity and high
dimensionality in the context of process-oriented models of reading. A Bayesian framework
is proposed to address these issues for the SWIFT model. The approach is applied to ex-
perimental data across different conditions of geometrically altered text, capturing not only
differences in reading between conditions but also between individuals. Statistical analyses
of model parameters between experimental conditions provide insights into the experimental
effects on model behavior and thereby provide an explanation for different empirical patterns
in the experimental data.

In Chapter 4, the integrated model SEAM is introduced. It combines the SWIFT model
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of eye-movement control with components from a sentence processing model. Despite the
added model complexity and high computational demands, the integration becomes feasi-
ble through advancements in parameter identification. The integrated model is applied to
a challenging data set from a retroactive memory interference study and demonstrates the
successful reproduction of eye movement patterns arising from linguistic dependency com-
pletion processes in reading. SEAM represents a pioneering achievement in the integration
of process models for eye-movement control and linguistic comprehension, with implica-
tions for a comprehensive understanding of natural language comprehension in reading.

This dissertation closes with a General Discussion (Chapter 5), where I summarize and
discuss the most relevant results embedded in the context of the contemporary literature, and
propose directions for future research.
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Chapter 2

Bayesian Parameter Estimation for the SWIFT
Model of Eye-Movement Control During Reading

This chapter has been published as: Seelig, S. A., Rabe, M. M., Malem-Shinitski, N., Risse,
S., Reich, S., & Engbert, R. (2020). Bayesian parameter estimation for the SWIFT model
of eye-movement control during reading. Journal of Mathematical Psychology, 95, Article
102313. https://doi.org/10.1016/j.jmp.2019.102313

Abstract

Process-oriented theories of cognition must be evaluated against time-ordered observations.
Here we present a representative example for data assimilation of the SWIFT model, a dy-
namical model of the control of fixation positions and fixation durations during natural read-
ing of single sentences. First, we develop and test an approximate likelihood function of the
model, which is a combination of a spatial, pseudo-marginal likelihood and a temporal like-
lihood obtained by probability density approximation. Second, we implement a Bayesian
approach to parameter inference using an adaptive Markov chain Monte Carlo procedure.
Our results indicate that model parameters can be estimated reliably for individual subjects.
We conclude that approximative Bayesian inference represents a considerable step forward
for computational models of eye-movement control, where modeling of individual data on
the basis of process-based dynamic models has not been possible so far.

2.1 Introduction

Dynamical models represent an important theoretical approach to cognitive systems, in
particular, if we seek to explain time-ordered behavioral data such as sequences of move-
ments. In dynamical models, sequential dependencies between observations are naturally
explained by underlying dynamical principles that unfold over time when the model is sim-
ulated numerically (Beer, 2000; Van Gelder, 1998). Examples for the dynamical approach
can be found in many fields of cognitive research, triggered by early examples from motor

https://doi.org/10.1016/j.jmp.2019.102313
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control (Erlhagen & Schöner, 2002; Haken et al., 1985) or decision field theory (Busemeyer
& Townsend, 1993).

Dynamical models generate highly specific predictions on sequential data that include
statistical correlations between the subsequent observations over time. As a consequence,
parameter inference for dynamical models must be carried out with the fully dynamical
framework of data assimilation (Law et al., 2015; Reich & Cotter, 2015). Here we investi-
gate parameter inference in the SWIFT model of saccade generation during reading (Engbert
et al., 2005), where the numerical computation of the model’s likelihood function will be the
fundamental concept and main contribution of this work.

In the research area of eye-movements during reading, a number of competitor models
has been proposed. These models implement alternative assumptions on the interaction of
word recognition and saccade generation (see Rayner & Reichle, 2010; Reichle et al., 2003,
for overviews). However, there is currently a lack of quantitative model evaluations using
objective concepts. First, due to the number of different effects in experimental data, models
were often compared qualitatively: Does the model reproduce an experimentally-observed
effect or not? Second, in complex cognitive models, parameters were mostly hand-selected
or fitted based on minimization of an arbitrary loss-function that quantifies the difference
between experimental and simulated data. Third, typical models could not be fitted to data
from individual subjects so far. However, explaining interindividual differences is an impor-
tant aspect of model evaluation, which is precluded when fitting procedures are data hungry
and require pooling of data over a large number of participants. Since model identification
and model comparison are general problems in psychological and cognitive sciences, Schütt
et al. (2017) recently proposed a likelihood-based, statistically well-founded Bayesian frame-
work for parameter estimation in cognitive models. We will demonstrate the feasibility of
this approach in the case of the SWIFT model for eye-movement control during reading.

In the following, the data assimilation framework will be applied to the SWIFT model of
eye guidance in reading. The remaining part of this section consists of a short introduction to
eye movement data and the specifics of likelihood functions for models of fixation sequences.
In Section 2.2, we describe the details of the SWIFT model. A numerical approximation of
the likelihood function is proposed and tested in Section 2.3. In Section 2.4, we use data from
a set of readers to estimate SWIFT parameters and to model their interindividual differences.
We close with a discussion of our results in Section 2.5.

2.1.1 Eye-Movement Control During Reading

Reading is based on successful word recognition, however, processing of words requires
high-acuity vision that is confined to the center of the visual field (the fovea). Therefore, gaze
shifts via fast eye movements (saccades) need to be generated to move words into the fovea
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Figure 2.1
Sequence of Fixations During Reading
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for word identification. From this general behavioral pattern, reading may be looked upon as
an important example of active vision (Findlay & Gilchrist, 2003), which is the notion that
eye movements form an essential component for almost all visual perception.

When we read texts, we perform 3 to 4 saccades per second, resulting in fixations on
different words with durations between 150 and 300 ms, on average. An example is presented
in Figure 2.1, where 11 fixations are placed on the words of a given sentence. Fixation
durations range from 110 ms to 325 ms. In this example, some words are fixated more than
once. In the case of an immediate second saccade to the same word as the currently fixated
word, the event is called a refixation (e.g., fixations 3, a forward refixation, and 5, a backward
refixation). Some words are not fixated during first-pass reading, corresponding saccades
are termed skippings (e.g., word 6, the article “den”, was skipped in first-pass reading).
Furthermore, it happens in roughly 5 to 10% of the fixations that a corresponding saccade
returns to a previously passed region of text, which are called regressions (e.g., when word
6, the previously skipped article, receives fixation 9). Taken together, only about 50% of the
saccades are moving the gaze forward from word 𝑛 to the next word 𝑛+1, which generates
complicated scanpaths that are difficult to reproduce and predict by theoretical models of
eye guidance during reading.

Eye movement research in reading has evolved into one of the fields of cognitive psy-
chology that is strongly driven by computational models. Most of these models are based on
simplified assumptions for several cognitive subsystems (e.g., oculomotor circuitry, attention
and word recognition), while the core of the models is the orchestration of the subsystems to
produce purposeful saccades for reading in a psychologically plausible framework. The way
to this success has been paved by the E-Z Reader model (Reichle et al., 1998), a rule-based
stochastic automaton model that is based on specific assumptions for the coupling of eye
movements and visual attention. This model has been advanced over the years to include
more and more specific assumptions (e.g., Reichle et al., 2009).

One of the major differences between existing models lies in the generation of different
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types of saccades (forward saccades, skippings, refixations and regressions). While some
models make explicit assumptions on saccade types or are built to have internal states rep-
resenting saccade types, an alternative model considered here is motivated by the dynamical
field theory of movement preparation (S.-i. Amari, 1977; Erlhagen & Schöner, 2002), which
communicates the aspiration to form a general framework for human motor control. The
SWIFT10 model (Engbert et al., 2002, 2005; Schad & Engbert, 2012) provides a coherent
theoretical framework for reproducing all types of saccades that are observed during reading.
Word processing maps to a distributed activation field that serves as a temporally evolving
saccade targeting map. This model will be studied in detail with respect to parameter infer-
ence.

Given alternative theoretical models, model fitting and model comparisons will become
an increasingly important topic in eye-movement research, as in cognitive science in gen-
eral. So far, the minimization of ad-hoc statistical loss-functions has been used to obtain
estimates for model parameters (e.g., Engbert et al., 2005; Reichle et al., 1998). For exam-
ple, differences in word-frequency dependent distributions of fixation durations or skipping
probabilities have been implemented as a measure of goodness-of-fit. We will replace these
procedures by a Bayesian framework that exploits the likelihood function of the model.

Quantitative measures for eye movements during reading are characterized by strong
interindividual differences (e.g., Risse, 2014). However, current computational models of
eye-movement control could not reproduce and explain these obvious differences in human
performance. It is a key message of the current work that the problem of modeling interindi-
vidual differences in reading using complex simulation models can be overcome when a
likelihood-based framework of model identification, model parameter estimation, and model
comparison is applied. We start with a discussion of the general concept of the likelihood
function for dynamical cognitive models in the next section. The approximative computa-
tion of the likelihood function for the SWIFT model, which is the central contribution of the
current work, is discussed in Section 2.3.

2.1.2 The Likelihood Function for Dynamical Cognitive Models

The key theoretical concept for the current study is the likelihood function (see Myung,
2003, for a tutorial), which is a quantitative measure of the plausibility of an observation
under the assumption of a specific model 𝑀 . We assume that the model depends on a set
of parameters 𝜽 from parameter space 𝚯. In parameter inference, we are interested in the
likelihood of the model parameter values 𝜽 for model 𝑀 given the experimental data,

𝑃𝑀 (𝜽 | data) = 𝑃𝑀 (data | 𝜽) , (2.1)

10Saccade Generation With Inhibition by Foveal Targets
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where 𝑃𝑀 (data|𝜽) is the probability of the data given model 𝑀 with parameters 𝜽 .

The maximum likelihood estimator �̂�ML is obtained by maximization of the likelihood
function, i.e.,

�̂�ML = argmax
𝜽∈Θ

𝑃𝑀 (𝜽 | data) . (2.2)

In mathematical models of eye-movement control, a model must be evaluated against a
sequence of fixations. Thus, the data is a time-ordered sequence of fixations 𝐹 = { 𝑓𝑖}, where
each fixation 𝑓𝑖 is characterized by a position 𝑥𝑖 on the line of text, a fixation duration 𝑇𝑖, and,
depending on the model, also a saccade duration 𝑠𝑖 between fixation 𝑖−1 and fixation 𝑖.

In a dynamical model, fixation 𝑓𝑖 = (𝑥𝑖,𝑇𝑖, 𝑠𝑖) is generated from the sequence of previous
fixations 𝑓1 . . . 𝑓𝑖−1 under the control of the set of parameters 𝜽 and, possibly, influenced by
internal degrees of freedom 𝝃, which will be discussed in Section 2.3. Since fixations are
time-ordered, we can factorize the likelihood into a product of all fixations 𝑖 = 1,2, ..., 𝑛,
which are found in the experimental fixation sequence 𝐹 = { 𝑓𝑖}𝑛𝑖=1, i.e.,

𝑃𝑀 (𝜽 | 𝐹) = 𝑃𝑀 (𝜽 | 𝑓1, 𝑓2, . . . , 𝑓𝑛) (2.3)

= 𝑃𝑀 ( 𝑓1 | 𝜽)
𝑛∏
𝑖=2

𝑃𝑀 ( 𝑓𝑖 | 𝑓1, . . . , 𝑓𝑖−1,𝜽) ,

where 𝑃𝑀 ( 𝑓1 |𝜽) is the probability of the initial fixation starting at time 𝑡 = 0. In typical
experimental paradigms, however, this probability is one, since the experimental procedure
determines the initial fixation position.

For complex cognitive models, the likelihood function can often be computed numeri-
cally. If numerical computation of the likelihood function is possible, we must be able to
evaluate the likelihood for a large number of combinations of model parameter values 𝜽 to
find the maximum likelihood estimator, Equation (2.2), based on a given fixation sequence
𝐹.

For the implementation of numerical computations, it is advantageous to compute the
log-likelihood, given as

𝑙𝑀 (𝜽 | 𝐹) = log (𝑃𝑀 (𝜽 | 𝐹)) (2.4)

=

𝑛∑︁
𝑖=1

log (𝑃𝑀 ( 𝑓𝑖 | 𝑓1, . . . , 𝑓𝑖−1,𝜽)) ,

which prevents the addition of very small numerical values that typically occur for some of
the additive terms 𝑃𝑀 ( 𝑓𝑖 | 𝑓1, . . . , 𝑓𝑖−1,𝜽) for the fixations 𝑓𝑖.

If we can compute the log-likelihood 𝑙𝑀 (𝜽 |𝐹) for model 𝑀 efficiently using numerical
simulation, then it will be possible to apply Bayesian parameter inference (see Gelman et al.,
2013; Marin & Robert, 2007, for overviews). In Bayesian inference, we seek to compute the
posterior distribution 𝑃(𝜽 |𝐹) over the parameter vector 𝜽 after the observation of the fixation
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sequence 𝐹. In addition to the likelihood that represents constraints from the experimental
data, we specify a prior probability 𝑄(𝜽) that indicates our a-priori knowledge on the model
parameters. The posterior distribution is given by

𝑃 (𝜽 | 𝐹) ∝𝑄 (𝜽) 𝑃𝑀 (𝜽 | 𝐹) , (2.5)

where the constant of proportionality, which is the normalization constant of the posterior,
can be omitted, if Markov Chain Monte Carlo (MCMC) methods are used (Gilks et al., 1995;
Robert & Casella, 2013).

So far, we discussed the structure of the likelihood function for a single experimentally
observed fixation sequence 𝐹. In a typical experiment, however, we obtain a set of fixation
sequences 𝐹𝑠 from a participant who read a corpus of 𝑆 sentences (𝑠 = 1,2,3, ..., 𝑆), i.e., the
data set {𝐹𝑠} is composed of 𝑆 fixation sequences. Since fixation sequences are statistically
independent observations of the reading process, the numerical computation of the likelihood
can be carried out independently for each fixation sequence 𝐹𝑠. This statistical independence
can be exploited to accelerate computations via parallel evaluations of a large number of
fixation sequences, which we will discuss in Section 2.4.

In summary, the likelihood function for dynamical models of sequential data factorizes
as explained in Equation (2.3), which turns out to be basis for incremental numerical com-
putation. If we implement the computation in an efficient way numerically, then Bayesian
parameter inference is available using MCMC methods. Before we discuss and apply the
MCMC framework, we introduce the SWIFT model in the next section. In Section 2.3, we
present the numerical computation of the likelihood function. The MCMC simulation for
Bayesian inference will be discussed in Section 2.4.

2.2 The SWIFT Model of Saccade Generation During Reading

Since word recognition is the key process driving eye movements during reading, a nat-
ural assumption is that the time-course of ongoing word processing is closely linked to tar-
get selection for saccades. In the SWIFT model, each word is represented by a separate
activation variable (lexical activation) that is tracking the word’s current progress in word
recognition. The resulting set of lexical activations determines the probability for saccade
target selection (so-called spatial or where pathway). Whenever a saccade is prepared, the
set of lexical activations provides a flexible mechanism for target selection. As time evolves,
the relative activations change, so that a continuous-time representation of the next saccade
target exists.

Fixation times are adjusted to the fixated (foveal) word by an inhibitory mechanism (the
temporal or when pathway). According to an influential proposal (Findlay & Walker, 1999)
the spatial and temporal pathways of saccade generation are partially independent. The
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SWIFT model is compatible with this view, in the sense that control of fixation duration
and saccade target selection are basically independent, however, interactions exist due to the
coupling of both pathways via the set of lexical activations.

2.2.1 Saccade Target Selection and Temporal Evolution of Activations

Each word 𝑚 in a sentence of 𝑁𝑤 words is represented by a time-dependent activa-
tion 𝑎𝑚 (𝑡). The activation is initially increasing during lexical access (word recognition),
and later decreasing during post-lexical processing. The set of activations {𝑎 𝑗 (𝑡)}, ( 𝑗 =
1,2,3, ..., 𝑁𝑤) must be built up by parallel processing of words, which is the key assumption
that distinguishes SWIFT from other models (e.g., Engbert & Kliegl, 2011; Reichle et al.,
2003). If a saccade target has to be selected at time 𝑡, then the probability 𝜋𝑚 (𝑡) for target
selection of word 𝑚 is given by the relative activation, i.e.,

𝜋 (𝑚, 𝑡) = (𝑎𝑚 (𝑡))𝛾
𝑁𝑤∑︁
𝑗=1

(
𝑎 𝑗 (𝑡)

)𝛾 , (2.6)

which is normalized as
∑𝑁𝑤

𝑚=1 𝜋𝑚 (𝑡) = 1 for all 𝑡 > 0. The parameter 𝛾 introduces a weighting
of the set of lexical activations, so that switching between different selection schemes is
controlled by a variation of 𝛾:

𝜋𝑚 (𝑡) →


winner-takes-all : 𝛾 →∞
Luce’s choice rule : 𝛾 = 1 .

random selection : 𝛾 → 0
(2.7)

An example for a simulated scanpath and the full time-series of lexical activation is illus-
trated in Figure 2.2. As one can see from figure, all internal sub-processes of the model are
implemented by discrete random walks. In the leftmost column, the saccade timer increases
as a one-step process from 𝑛1 = 0 up to a maximum number 𝑁𝑡 with transition rate 𝑤1. The
stepping rate was chosen as 𝑁𝑡/𝑡sac, so that the mean time to reach state 𝑁𝑡 is the mean time
inter-saccadic time 𝑡sac of the model.

When the saccade timer terminates at state 𝑁𝑡 , a new saccade timer run is initiated at
𝑛1 = 0 and, at the same time, a labile saccade program start with 𝑛2 = 0 until its threshold
𝑁𝑙 is reached. If this labile program terminates, a saccade target is chosen (see asterisks in
Figure 2.2). After the non-labile stage, which is described by state variable 𝑛3, the corre-
sponding saccade (state variable 𝑛4) is executed.

In addition to the saccadic processes, lexical activations are also described by discrete
random walks (note, however, the increasing and decreasing parts in the case of lexical
activations). Thus, all sub-processes saccade timing, labile and non-labile saccade pro-
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Figure 2.2
Simulation Example for the SWIFT Model
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Note. The activation field (colored lines) determines the target selection probability 𝜋𝑚 (𝑡)
that evolves dynamically over time (running downwards). The resulting scanpath (fixation
sequence) is indicated by the black line. Several random walks (grey, left) generate saccade
timer intervals and labile and non-labile saccade latencies. The transition between labile and
non-labile stage is the point in time for saccade target selection (asterisk). The saccade timer
sends commands to the saccade programming cascade, but also receives inhibition during
foveal load (visible shortly after 1000 ms in the example) and is reset for refixations (e.g.,
second fixation).

gramming, saccade execution, and change of lexical activations are represented as one-step
stochastic processes between discrete states.

The state of the model at time 𝑡 is given by the vector 𝑛 = (𝑛1, 𝑛2, ..., 𝑛4+𝑁𝑤
), where the

components 𝑛 𝑗 represent the states of the subprocesses with transition rates 𝑤 𝑗 . Components
1 to 4 are saccade-related processes and additional stochastic variables 𝑛5 to 𝑛4+𝑁𝑤

are keep-
ing track of the (post-)lexical processing of words. We assume a discrete-state, continuous-
time stochastic process with Markov property, so that a one-step transition table describes
all possible transitions between internal states (Table 2.1). In each of the possible transitions
from state 𝑛 = (𝑛1, 𝑛2, ...) to 𝑛′ = (𝑛′1, 𝑛

′
2, ...) only one of the components 𝑛𝑖 is changes by one

unit, e.g., if the saccade timer generates a transition, then the model’s internal change steps
from 𝑛 = (𝑛1, 𝑛2, 𝑛3, ...) to 𝑛′ = (𝑛1 +1, 𝑛2, 𝑛3, ...).
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Table 2.1
Stochastic Transitions Between Adjoined States From 𝑛 = (𝑛1, 𝑛2, . . .) ↦→ 𝑛′ = (𝑛′1, 𝑛

′
2, . . .)

Process Transition to ... Transition rate 𝑊𝑛′𝑛

Saccade timer 𝑛′1 = 𝑛1 +1 𝑤1 = 𝑁t/𝑡sac · (1+ ℎ𝑎𝑘 (𝑡)/𝛼)−1

Labile program 𝑛′2 = 𝑛2 +1 𝑤2 = 𝑁l/𝜏l
Non-labile program 𝑛′3 = 𝑛3 +1 𝑤3 = 𝑁n/𝜏n
Saccade execution 𝑛′4 = 𝑛4 +1 𝑤4 = 𝑁x/𝜏x
Word processing 𝑛′4+ 𝑗 = 𝑛4+ 𝑗 ±1 𝑤4+ 𝑗 = 𝑁a/𝛼 ·Λ 𝑗 (𝑡) (for word 𝑗)

A numerical algorithm for the simulation of a trajectory of the SWIFT model can be
derived easily from our assumptions. The temporal evolution of the probability over the
model’s internal states is given by the master equation11,

𝜕

𝜕𝑡
𝑝 (𝑛, 𝑡 | 𝑛′′) =

∑︁
𝑛′

[𝑊𝑛𝑛′ 𝑝 (𝑛′, 𝑡 | 𝑛′′) −𝑊𝑛′𝑛𝑝 (𝑛, 𝑡 | 𝑛′′)] , (2.8)

which is specified by the transition probabilities 𝑊𝑛′𝑛 for transitions between state vectors
𝑛 ↦→ 𝑛′ shown in Table 2.1 with initial condition 𝑝(𝑛′′,0), the probability of state 𝑛′′ at time
𝑡 = 0. When simulating a single trajectory, the system is in a specific state 𝑛 with certainty and
the transition probabilities determine both the waiting time distribution for the next transition
and the relative stepping probability to the adjoined states given in Table 2.1, which will be
explained below.

2.2.2 Temporal Control of Saccades and Foveal Inhibition

Gaze duration, defined as the sum of the durations of all immediately consecutive fix-
ations on a word, is probably the best measure of required processing time for this word
during natural reading (Rayner, 1998). Gaze durations and word recognition times depend
linearly on the logarithm of the word’s frequency (printed word frequency can be estimated
from the word’s occurrences in large text corpora). Since word recognition is the basis for
text comprehension, an adaptive mechanism for the modulation of fixation duration by word
frequency is essential for all models of eye-movement control.

In general, the required fixation duration for successful word recognition can be attained
by two opposing mechanisms: The current fixation can be prolonged by inhibiting the next
saccade or, alternatively, the word can be refixated to increase gaze duration. Experimentally,
there is only a weak influence of word frequency on the mean first-fixation duration (Kliegl

11The master equation can be interpreted as a conservation equation for probability (Gardiner, 1985; Van
Kampen, 1992), where the temporal change of probability in state 𝑛 on the left side of the equation equals the
gain in probability for state 𝑛 that is generated by transitions from neighboring states 𝑛′ ↦→ 𝑛 and the loss in
probability generated by transitions from 𝑛 to neighboring states 𝑛 ↦→ 𝑛′.
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et al., 2004). In contrast, we find a strong effect of word frequency on the probability for
refixation. Therefore, there is a preferred strategy for extending the processing time (gaze
duration) via generation of a refixation. However, saccade-inhibiting processes can be as-
sumed to contribute a weaker effect (compared to refixation) to the increase in gaze duration
by prolonging the ongoing fixation (Engbert et al., 2002, 2005).

Motivated by these observations, the second central assumption in the SWIFT model is
random timing of fixation duration with additional foveal inhibition (Engbert et al., 2002)
that delays the start of the next saccade program to extend the current fixation. We assume
that foveal inhibition modulates the transition rate 𝑤1 for transitions between elementary
steps of a random-walk that implements the saccade timer (leftmost column in Fig. 2.2), i.e.,

𝑤1 =
𝑁t
𝑡sac

·
(
1+ ℎ

𝛼
𝑎𝑘 (𝑡)

)−1
, (2.9)

where 𝑁t is the number of states of the timer’s random walk and 𝑡sac is the mean value of
the timer; the activation 𝑎𝑘 (𝑡) of the fixated word 𝑘 (i.e., the word in the fovea) at time 𝑡 is
the key variable that modulates the transition rate of the timer. Using numerical simulations
of the model, it can be shown that for ℎ > 0, foveal inhibition can produce a modulation of
the fixation duration that is in good agreement with experimental data (Engbert et al., 2002,
2005).

2.2.3 Character-Based Visual Processing

Word recognition starts with visual processing of letters, which is done in parallel for
all the letters of a given word. We define the spatial region where word activations can be
influenced in the model as the processing span. Within this region, parallel processing is
limited by the fact that processing rate depends on the letter’s eccentricity (i.e., the distance
of the letter position from the position of the current fixation). Mathematically, we define an
inverted parabolic processing span from the fovea to position −𝛿𝐿 on the left and to position
+𝛿𝑅 on the right of fixation, i.e.,

𝜆(𝜖) = 𝜆0 ·


0 , for 𝜖 < −𝛿𝐿

1− 𝜖2/𝛿2
𝐿
, for −𝛿𝐿 ≤ 𝜖 < 0

1− 𝜖2/𝛿2
𝑅
, for 0 ≤ 𝜖 ≤ 𝛿𝑅

0 , for 𝛿𝑅 < 𝜖

, (2.10)

where 𝜆0 is a constant given as

𝜆0 =
3
2
· 1
𝛿𝐿 + 𝛿𝑅

, (2.11)

which is necessary to normalize the total processing rate, i.e.,
∫ +∞
−∞ 𝜆(𝜖)d𝜖 = 1.
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Experimentally, a strong asymmetry of the perceptual span with an extension of 4 to 5
letters to the left of the fixation position and up to 15 letters to the right was found (Rayner
et al., 1980). Therefore, parameters 𝛿𝐿 and 𝛿𝑅 should be estimated separately from experi-
mental data. In the following, we estimate 𝛿0 ≡ 𝛿𝐿 = 𝛿𝑅 for simplicity.

2.2.4 Word-Based Processing Rate

Because of the assumption of a processing span, Equation (2.10), processing rates for
letters depend on spatial eccentricities. Letter 𝑗 of word 𝑖 is processed with rate 𝜆(𝜖𝑖 𝑗 ), if it
is located at a spatial position with eccentricity 𝜖𝑖 𝑗 (𝑡) relative to gaze position at time 𝑡. This
letter-based processing rate must be related to the effective word-based processing rate Λ𝑖 (𝑡)
of word 𝑖 at time 𝑡.

Because of parallel processing of the letters of a given word, each letter contributes to
word recognition. In the case of long words, some letters will have large eccentricities, so
that their processing rate will be small (or zero) according to Equation (2.10). To capture
these opposing effects in a parametric model, we make the assumption that the word-based
processing rate has the form

Λ𝑖 (𝑡) = 𝑀
−𝜂
𝑖

𝐿𝑖∑︁
𝑗=1

𝜆
(
𝜖𝑖 𝑗 (𝑡)

)
, (2.12)

where 𝑀𝑖 is the word length (i.e., number of letters) of word 𝑖 and 𝜂 is the word length
exponent, with 0 < 𝜂 < 1. For 𝜂 = 0, long words will have a processing advantage. For 𝜂 = 1,
word processing rate is the arithmetic mean of the letter-based processing rates (mean over
all letters of a given word); therefore, we will observe a disadvantage for long words in the
case 𝜂 = 1. We expect a numerical value for 𝜂 about 0.5.

With the assumptions on spatial aspects of letter- and word-based processing rates, the
temporal aspects of word processing need to be specified. As discussed for the motivation
of the SWIFT model, a time-dependent activation field will provide probabilistic control of
saccadic eye movements. Word-based activations 𝑎𝑖 (𝑡) for the words of a given sentence
are increasing during the initial stage of processing called lexical processing. After reach-
ing the maximum of activation 𝐷𝑖 for word 𝑖, the activation starts to decrease (post-lexical

processing). The maximum of activation is interpreted as processing difficulty, which is a
logarithmic function of word frequency Ω𝑖, i.e.,

𝐷𝑖 = 𝛼

(
1− 𝛽

logΩ𝑖

logΩmax

)
, (2.13)

where Ωmax is the highest word frequency in a given language and parameter 𝛽 determines
the strength of the word frequency effect.
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For word processing, we assume that current activation for each word 𝑖 = 1,2,3, ..., 𝑁𝑤 is
related to the discrete state 𝑛4+𝑖 of word processing (Table 2.1), given by

𝑎𝑖 (𝑡) = 𝐷𝑖

𝑛4+𝑖
𝑁𝑎

, (2.14)

where 𝐷𝑖 is the word’s processing difficulty, Equation (2.13).

Global decay of activation. Maintaining words in working memory during reading can-
not be done without loss. Since word activations {𝑎𝑛 (𝑡)} represent the state-of-processing,
we introduce a global decay of activation. If the processing rate of a word is smaller than the
constant 𝜔, then we assume a decay of activation with rate 𝜔.

Processing during saccades. During saccadic eye movements, lexical processing is
paused because of saccadic suppression (Matin, 1974). In the SWIFT model, lexical pro-
cessing is paused during saccades in the lexical processing stage (increasing activation),
while post-lexical processing (decreasing activation) continues during saccades.

2.2.5 Oculomotor Assumptions

Our assumption of two-stage saccade programming are motivated by the experimental
findings of the double-step paradigm (Becker & Jürgens, 1979). A saccade program starts
with a labile stage; during this stage, the saccadic gaze center is forced to prepare the next
saccade (Findlay & Walker, 1999), however, a new decision to start a labile saccade program
during an ongoing labile stage leads to cancelation and replacement of the earlier saccade
program. After the transition to the non-labile stage, the saccade can no longer be canceled
or modified.

Oculomotor errors make an important contribution to eye-movement control during read-
ing. In 1988, based on the analysis of initial fixation positions within words, McConkie and
coworkers suggested that a considerable fraction of saccades landed on different words than
the intended target words (McConkie et al., 1988). Using an iterative oculomotor modeling
approach, Engbert and Nuthmann (2008) showed that about 10% to 20% of the saccades
during natural text reading are mislocated on an unintended word.

McConkie et al. (1988) showed that saccadic errors can be decomposed into a random
(approximately Gaussian) error component and a systematic shift (called saccadic range er-
ror). The critical variable that determines the size of both random and systematic error
components turned out to be the intended saccade length (distance 𝑑 from the launch site of
the saccade to the center of the target word). Therefore, saccades targeting a word center at
𝑥 = 0 will be normally distributed with

𝑥 ∼ N
(
𝜖sre,𝜎

2
sre

)
, (2.15)
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Figure 2.3
Oculomotor Error Model

Launch site         wordi-1 wordi wordi+1

0 1 2 3 0 1 2 … (letters)... 3 4 5Saccades

intended length d

Note. Saccades start at a launch site and aim at the word center of the selected target word
𝑖. Oculomotor errors are normally distributed, which can lead to misplaced fixations on word
𝑖−1 (undershoot error) or word 𝑖 +1 (overshoot error). Both the standard deviation 𝜎sre and
the mean shift 𝜖sre from the intended word’s center depend on the intended saccade length 𝑑.

where both parameters depend linearly on the intended saccade length 𝑑, i.e.,

𝜖sre = 𝑟1 − 𝑟2 𝑑 (2.16)

𝜎sre = 𝑠1 + 𝑠2 𝑑 , (2.17)

where 𝑑 is the physical distance between the launch site of the saccade and the word center
of the target word, measured in units of character spaces. The oculomotor parameters 𝑟1, 𝑟2,
𝑠1, and 𝑠2 will vary depending on the type of saccade (e.g., refixation or skipping), which is
discussed in earlier papers (Engbert et al., 2005; Krügel & Engbert, 2010). We would like
to remark that McConkie et al.’s descriptive model of saccadic errors could be replaced by
a process-oriented Bayesian model (Engbert & Krügel, 2010; Krügel & Engbert, 2014) in
perspective.

2.2.6 Modulation of the Duration of the Labile Stage

An important problem is the observation of a reduced average fixation duration for refix-
ations. As a solution, we assume that the duration of the labile stage of saccade programming
is reduced by factor 𝑅 (0 < 𝑅 ≤ 1), if the fixation is a refixation.

Closely related is the phenomenon of mislocated fixations (Engbert & Nuthmann, 2008).
If the realized fixation position (the saccadic landing position) strongly deviates from the
word center, so that the landing position will fall onto the neighboring word, then a mis-
located fixation will occur. In this case, the duration of the next saccade program will be
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reduced by factor 𝑀 (0 < 𝑀 ≤ 1). Such a mechanism is a possible explanation of the in-
verted optimal viewing-position effect (Nuthmann et al., 2005; Vitu et al., 2001) of fixation
durations that indicates reduced average fixation duration at word edges compared to the
word center. In the SWIFT version used here, the probability of misplaced fixation is given
as 𝑝mis = 0.9 · (2𝛿/𝑀)4, where 𝛿 is the fixation error (distance from word center) and 𝑀 is
the length of the fixated word.

2.2.7 Numerical Simulation and Model Parameters

For numerical simulations of single trajectories of the SWIFT model, the minimal process

method by Gillespie (1976), an exact and efficient numerical algorithm, can be derived from
the master equation, Equation (2.8). If the model is in state 𝑛 at time 𝑡0 = 0 with certainty,
all other states will have zero probability, i.e., 𝑝(𝑛′, 𝑡 |𝑛) for 𝑛′ ≠ 𝑛. Therefore, the master
equation, Equation (2.8), reduces to

𝜕

𝜕𝑡
𝑝 (𝑛, 𝑡 | 𝑛) = −

∑︁
𝑛′

𝑊𝑛′𝑛 𝑝 (𝑛, 𝑡 | 𝑛) = −𝑊𝑛 𝑝 (𝑛, 𝑡 | 𝑛) , (2.18)

where 𝑊𝑛 =
∑

𝑛′𝑊𝑛′𝑛 is the total transition probability from state 𝑛. From Equation (2.18),
we obtain an exponentially distributed waiting time for the next transition from state 𝑛 to
an adjoined state 𝑛′ ≠ 𝑛. Following Gillespie (1976), a two-step algorithm can be derived:
In step 1, an exponentially-distributed random number is generated; in step 2, a transition
(Table 2.1) is chosen according to relative transition probabilities, 𝑊𝑛′𝑛/𝑊𝑛 with 𝑛′ ≠ 𝑛. This
algorithm is numerically efficient, since it restricts computations to the transitions when
simulating the system’s trajectory.

For the simulations in this paper we used a restricted version of the SWIFT model to
reduce the number of free parameters to 11 (see Table 2.2, cf. Engbert et al., 2005). More-
over, we fixed seven of these parameters to estimate four free parameters in the simulation
examples. Future simulation studies will be carried out with more free parameters (see Sec-
tion 2.5). The number of possible random-walk states varies between subprocesses; based
on earlier simulations (Schad & Engbert, 2012), we used the following numbers: 𝑁t = 15
(saccade timer), 𝑁l = 12 (labile saccade stage), 𝑁n = 10 (non-labile saccade stage), 𝑁x = 20
(saccade execution), and 𝑁a = 30 (word activations).

2.3 Likelihood Function for the SWIFT Model

For the parameter estimation procedure discussed in the introduction, we aim at a
framework that computes the likelihood of a series of experimentally observed fixations
incrementally, Equation (2.3). For fixation 𝑓𝑖, we need to compute the likelihood function
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Table 2.2
Model Parameters of the SWIFT Model

Parameter Symbol Typical Value Reference

Lexical difficulty: Intercept 𝛼 50 Equation (2.13)
Lexical difficulty: Slope 𝛽 0.75 Equation (2.13)
Processing span 𝛿0 = 𝛿𝐿,𝑅 8 Equation (2.10)
Word-length exponent 𝜂 0.5 Equation (2.12)
Saccade timer 𝑡sac 250 ms Table 2.1
Foveal inhibition ℎ 0.6 Equation (2.9)
Labile saccade program 𝜏l 120 ms Table 2.1
Non-labile program 𝜏n 80 ms Table 2.1
Saccade execution 𝜏x 20 ms Table 2.1
Refixation factor 𝑅 0.9 Section 2.2.6
Mislocated fixation 𝑀 1.5 Section 2.2.6

Note. Numerical values are chosen in agreement with earlier publications (see text).

𝑃𝑀 ( 𝑓𝑖 | 𝑓1, . . . , 𝑓𝑖−1,𝜽 ,𝝃) given the previous fixations 𝑓1, 𝑓2, ..., 𝑓𝑖−1, the model parameters 𝜽 ,
and the internal states 𝝃 of model 𝑀 , which we not addressed in Equation (2.3). In SWIFT
each fixation event 𝑓𝑖 = (𝑥𝑖,𝑇𝑖, 𝑠𝑖) is defined by a fixation position 𝑥𝑖 given by the fixated
word 𝑣𝑖 and the fixated letter 𝑙𝑖 within the word, the fixation duration 𝑇𝑖, and the saccade
duration 𝑠𝑖. The likelihood for fixation 𝑓𝑖 is composed of a spatial contribution and a
temporal contribution. At time 𝑡, fixation 𝑖 starts on letter 𝑙𝑖 of word 𝑣𝑖, which is predicted
by the SWIFT model with a probability determined by word activations and oculomotor
assumptions. After fixation 𝑖 started, the model can make another prediction for the fixation
duration 𝑇𝑖 of fixation 𝑖. Next, the likelihood for fixation 𝑖 can be decomposed into the
spatial and temporal contributions, i.e.,

𝑃𝑀 (𝑣𝑖, 𝑙𝑖,𝑇𝑖 | 𝐹𝑖−1,𝜽 ,𝝃) = 𝑃temp (𝑇𝑖 | 𝑣𝑖, 𝑙𝑖, 𝐹𝑖−1,𝜽 ,𝝃) ·𝑃spat (𝑣𝑖, 𝑙𝑖 | 𝐹𝑖−1,𝜽 ,𝝃) , (2.19)

where we introduced 𝐹𝑖−1 ≡ { 𝑓1, 𝑓2, . . . , 𝑓𝑖−1} to simplify the notation.
For the spatial likelihood 𝑃spat, the dynamically evolving word activations in SWIFT

determine the time-dependent probability for selecting a particular word as the next target
word. Additionally, the target-selection probability is modified by oculomotor noise. Due
to dynamical dependencies, we compute the likelihood of an experimentally realized fixa-
tion position based on the previous fixations. However, the internal states 𝝃 are given by the
stochastic dynamics and are, therefore, unknown. In principle, we could integrate over many
possible realizations of the internal states 𝝃, which is, however, time-consuming for the nu-
merical computations. Therefore, we compute 𝑃spat for one realization of the internal states
𝝃, which results in fluctuating numerical values for 𝑃spat. Thus, instead of integrating out the
internal degrees of freedom 𝝃, we used a pseudo-marginal likelihood (Andrieu & Roberts,
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2009) and eliminated the dependence on 𝝃 for the spatial likelihood in Equation (2.19).

For the temporal likelihood 𝑃temp, SWIFT computations start with a realized fixation po-
sition on letter 𝑙𝑖 of word 𝑣𝑖, however, with internal states 𝝃. Given this fixation position, the
distribution of fixation durations can be predicted by the model. The generated estimate of
the likelihood of the experimentally realized fixation duration is approximated by averaging
over many realizations of the internal states 𝝃 (e.g., the internal states of the various saccade
programming stages). As a result, both 𝑃temp and 𝑃spat are random variables, which will be
discussed in detail in the next two sections.

2.3.1 Spatial Likelihood

In SWIFT, saccadic gaze shifts are generated in two steps: First, a target word is deter-
mined in a probabilistic selection process based on relative word activations. Second, after
a short delay generated by saccade programming, the saccade is executed with oculomo-
tor errors influenced by the saccadic landing position distribution. These oculomotor errors
induce stochastic variability in the within-word fixation position and can also induce mis-
located fixations (Engbert & Nuthmann, 2008; Nuthmann et al., 2005), where the realized
fixation position is placed on a different word than the selected target.

The combination of activation-based saccadic selection and oculomotor errors generates
a non-zero probability for all fixation positions (Fig. 2.3). The target selection probability
𝜋 (𝑚, 𝑡 − 𝜏n − 𝜏x) (see. Equation 2.6) is the probability of selecting word 𝑚 as a saccade
target for a fixation starting at time 𝑡. It is important to note that target selection occurs at the
time of transition from the labile to the non-labile saccade program, so that the probability
𝜋(.) for selecting the next target word has to be evaluated with an average time delay 𝜏n +
𝜏x. According to our oculomotor assumptions, the saccadic error generates a probability
𝑞
(
𝑣, 𝑙 | 𝑚,𝑥gaze

)
of fixating word 𝑣 at letter 𝑙 given that word 𝑚 is the selected target word

and 𝑥gaze is the previous gaze position (or saccade launch site). Thus, the spatial likelihood
of an observed saccade starting at time 𝑡𝑖 towards letter position 𝑙 of word 𝑣 is therefore given
by

𝑃spat (𝑣, 𝑙 | 𝐹𝑖−1,𝜽) =
𝑁𝑤∑︁
𝑚=1

𝜋 (𝑚, 𝑡𝑖 − 𝜏n − 𝜏x) 𝑞
(
𝑣, 𝑙 | 𝑚,𝑥gaze

)
, (2.20)

where we dropped the conditional arguments to simplify the notation. Moreover, the time-
dependency is now written explicitly, since 𝑡𝑖 for the computation of the spatial likelihood
of fixation 𝑖 is given by the sum of fixation durations and saccade durations of the previous
fixations in the sequence, 𝑡𝑖 =

∑𝑖−1
𝑙=1𝑇𝑙 + 𝑠𝑙 .

The oculomotor system generates systematic and random errors that introduce deviations
between the target word’s center and the realized fixation position. In SWIFT, we adopt
McConkie et al.’s (1988) range-error framework by assuming a Gaussian distribution that is
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shifted with respect to the target word’s center. Thus, the probability of landing at letter 𝑙 of
word 𝑣, given a target word 𝑚, is given by

𝑞
(
𝑣, 𝑙 | 𝑚,𝑥gaze

)
=

1
√

2𝜋𝜎sre
exp

(
−

[
(𝑣𝑚 + 𝜖sre) − 𝑥𝑛,𝑙

]2

2𝜎2
sre

)
·Δ𝑥 , (2.21)

where 𝑣𝑚 is the spatial position of the target word’s center, 𝑥𝑣,𝑙 is the spatial position of the
fixated letter 𝑙 of word 𝑣, and Δ𝑥 = 1 is the unit width of a letter. The oculomotor parameters
𝜖sre(𝑑) and 𝜎sre(𝑑) of the range-error model specify systematic shift (saccadic range error)
and standard deviation of the random error (oculomotor noise), respectively, Equations (2.16,
2.17); the intended saccade length 𝑑 = ∥𝑣𝑚−𝑥gaze∥ is given as the distance between the target
word’s center 𝑣𝑚 and the fixation position before the saccade 𝑥gaze.

2.3.2 Temporal Likelihood

Because of two-stage saccade programming and due to the fact that fixations are bounded
by two saccades in time, SWIFT’s fixation durations are given as linear combinations of real-
izations of random variables. For the saccade timer and saccade programming stages, result-
ing durations are gamma-distributed random variables, which are generated by continuous-
time discrete-state random walks according to the master equation, Equation (2.8).

The saccade timer controls the initiation of the saccade programming cascade with con-
secutive labile and non-labile stages and a saccade execution stage. The time interval be-
tween the end point of the previous and the beginning of the next saccade execution is defined
as the experimentally observed fixation duration. However, the saccade timer is continuously
inhibited by word activations. As a consequence, the mean waiting times (the inverse of the
transition probabilities) of the elementary steps of the saccade timer’s random walk will be
time-dependent. Additionally, the mean durations of the labile stages of saccade program-
ming depend on the type of fixation (i.e., whether it is a refixation, a mislocated fixation, or
neither of these). Finally, if the saccade timer produces a short interval, then saccade cance-
lation will be likely, which results in a higher mean value of the predicted fixation duration.

Since each fixation duration is bounded by two saccades (i.e., the 𝑖th fixation duration
lies between (𝑖−1)th saccade offset and 𝑖th saccade onset), each observed fixation duration
𝑇𝑖 is compared to the simulated realization 𝑇𝑖 that is given as the sum of the following terms
(see Fig. 2.4a),

𝑇𝑖 = 𝑐𝑖 + 𝜏𝑙𝑖 + 𝜏𝑛𝑖 − 𝜏𝑙𝑖−1 − 𝜏𝑛𝑖−1 − 𝜏𝑥𝑖−1 , (2.22)

where 𝑐𝑖 is the realized saccade timer duration, 𝜏𝑙
𝑖

and 𝜏𝑛
𝑖

are realized durations of the la-
bile and non-labile saccade programming stages respectively, and 𝜏𝑥

𝑖
is the realized saccade

duration.
Our strategy for the computation of the temporal likelihood of the 𝑖th fixation duration
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Figure 2.4
Schematic Illustrations of the Generation of Fixation Durations for Different Types of
Fixations in SWIFT
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Note. (a) Standard case: The fixation duration is calculated from the difference of the sum
of the saccade timer 𝑐𝑖, the labile and non-labile saccade latencies 𝜏𝑙

𝑖
and 𝜏𝑛

𝑖
, respectively,

and the sum of saccade latencies 𝜏𝑙
𝑖−1, 𝜏𝑛

𝑖−1 and 𝜏𝑙
𝑖−1. (b) Labile pausing: If a saccade pro-

gram reached the non-labile stage it cannot be aborted anymore. A newly started labile
programming stage will transition to its non-labile stage only after the current saccade pro-
gram is terminated at saccade offset. (c) Saccade cancelation: If the saccade timer finishes
earlier than the concurrent labile saccade program, the ongoing labile saccade program is
canceled—consequently, both the labile program and the saccade timer are restarted. The
realized duration of the premature saccade timer 𝑐∗

𝑖
is added to the new realization 𝑐𝑖. (d)

Refixation and Mislocated Fixation: If the current fixation is either a refixation or considered
to be a mislocated fixation, the saccade timer realization 𝑐𝑖 is reset immediately at fixation
onset and a new labile saccade program is initiated. The fixation duration is then given as
the sum of the current labile and non-labile durations 𝜏𝑙

𝑖
and 𝜏𝑛

𝑖
respectively.

𝑇𝑖 is to simulate many realizations of 𝑇𝑖 from Equation (2.22) to numerically approximate
the theoretical distribution of fixation durations with kernel density estimation12. In the con-
text of Bayesian analysis, this approach is termed probability density approximation (PDA)
(Holmes, 2015; Palestro et al., 2018; Turner & Sederberg, 2013), which falls into the broad
class of likelihood-free procedures in approximate Bayesian computation (ABC; see Sisson
& Fan, 2011, for a review).

Since all of the terms in Equation (2.22) are random realizations of stochastic variables,
the order of terminations of the subprocesses shown in Fig. 2.4(a) can be violated. In the
following, we discuss all possible cases:

1. Labile pausing happens if the labile saccade program terminates during an ongoing
non-labile saccade program. Since we assume that there cannot be more than one

12While it is possible to derive an iterative algorithm for the distribution of linear combinations of gamma-
distributed random numbers (S. V. Amari & Misra, 1997; Coelho, 1998), it turned out that these solutions are
numerically unstable.
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non-labile saccade program active at a time, the current labile program is paused im-
mediately before termination, thus its duration is extended until the current non-labile
program and saccade execution finish (Fig. 2.4b). Formally, this situation is encoun-
tered if 𝑐𝑖 + 𝜏𝑙

𝑖
< 𝜏𝑙

𝑖−1 + 𝜏𝑛
𝑖−1 + 𝜏𝑥

𝑖−1. In this case, the interval 𝜏𝑙
𝑖

is increased and the
calculation of 𝑇𝑖 is simplified to the duration of the non-labile saccade program, i.e.,

𝑇𝑖 = 𝜏𝑛𝑖 . (2.23)

Since the duration of the labile program is extended, however, there will be increased
probability for the saccade timer to terminate during the ongoing labile program, while
will cause saccade cancelation.

2. Saccade cancelation occurs if the main saccade timer realization 𝑐𝑖+1 terminates during
an ongoing labile saccade programming stage 𝜏𝑙

𝑖
, i.e., 𝑐★

𝑖
< 𝜏𝑙★

𝑖
, which is illustrated in

Figure 2.4c. In this case the labile saccade program is canceled and replaced with the
new labile saccade program initiated by restarting of the saccade timer. As a result, the
duration of the timer 𝑐𝑖 in Equation (2.22) is replaced by the sum 𝑐𝑖 + 𝑐★𝑖 . Therefore,
the corresponding distribution 𝑇𝑖 for saccade cancelation is given by

𝑇𝑖 = 𝑐𝑖 + 𝑐★𝑖 + 𝜏𝑙𝑖 + 𝜏𝑛𝑖 − 𝜏𝑙𝑖−1 − 𝜏𝑛𝑖−1 − 𝜏𝑥𝑖−1 , if 𝑐★𝑖 < 𝜏𝑙★𝑖 . (2.24)

In principle, saccade cancelation can happen repeatedly within the same fixation, de-
pending on the choice of parameters.

3. Refixations and mislocated fixations represent another special case, where a new sac-
cade program is triggered immediately after the fixation onset (Fig. 2.4d). In both
cases the saccade timer realization 𝑐𝑖 is reset and a new labile saccade program is ini-
tiated. The mean duration of the new labile stage is modified by coefficients 𝑓 𝑟 = 1/𝑅
and 𝑓 𝑚 = 1/𝑀 for refixations and mislocated fixation, resp. (see 2.2.5). As a result,
the observed fixation duration is given as

𝑇𝑖 = 𝑓 𝑟,𝑚𝜏𝑙𝑖 + 𝜏𝑛𝑖 . (2.25)

The SWIFT model includes inhibition of fixation durations by word activation; in its simplest
form, the activation of the fixated (foveal) word inhibits the fixation duration by decreasing
the transition rates of the saccade timer (Equation 2.9). Because of the complicated time-
course of the activation field (i.e., sudden changes of activation evolution due to saccades),
stochastic simulations are necessary to estimate the distribution of 𝑇𝑖.

To compute the likelihood 𝐿temp(𝑇𝑖) of an observed fixation duration 𝑇𝑖 we first simulate
the activation evolution for words in the perceptual span from time 𝑡 = 0 until the point in time
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that corresponds to the end of fixation 𝑖. We start simulating the stochastic contributions by
initially going backwards from the time of fixation onset by sampling the saccade latencies
𝜏𝑥
𝑖−1, 𝜏𝑛

𝑖−1, and 𝜏𝑙
𝑖−1 to determine the onset of the saccade timer 𝑐𝑖. The previously sampled

activations provide information for the simulation of the saccade timer with inhibition by
foveal word activations, similar to the generative process. If 𝑐𝑖 < 𝜏𝑙

𝑖−1, both realizations
are discarded and sampled again with the same procedure (we are not interested in saccade
cancelation events which do not affect the fixation duration under consideration). The offset
of 𝑐𝑖 demarks the onset of 𝑐𝑖+1 and, following the rules of the previously discussed order
violations, we can easily simulate the timer cascade until fixation offset and hence obtain a
sample from the distribution of fixation durations as provided by the SWIFT framework with
respect to the history of the fixation sequence.

Once 𝑁 = 300 fixation durations are sampled, the distribution of 𝑇exp
𝑖

is approximated
via KDE. Increasing the number of samples increases the accuracy of the approximation but
is costly in terms of computation time. For the density estimation we use the Epanechnikov
kernel (Epanechnikov, 1969) with a bandwidth setting according to Scott’s rule (2015). The
Epanechnikov kernel is computationally efficient as it only integrates samples within its
limited interval given by the bandwidth. However this can result in situations where no data
point is covered by the kernel. To prevent estimates with zero probability, the bandwidth of
the kernel was adjusted to the 1.1-fold of the distance between 𝑇

exp
𝑖

and the nearest sample
of 𝑇𝑖, so that at least one sample will lie within the kernel.

2.3.3 Evaluation of the Log-Likelihood Using Single-Parameter Varia-
tions

A simple test of the likelihood function and its inherent stochastic contributions can be
done by repeatedly evaluating the likelihood of a simulated dataset for which the parameters
are known and keeping all parameters but one at their respective true values (i.e., the values
used in generating the data). Systematically varying the parameter under consideration re-
veals its impact on the likelihood. Since the likelihood function is composed of two terms
from spatial and temporal contributions (Equation 2.19), separating both components can
also prove insightful with regard to the strength and direction of the parameter’s influence.

To investigate the properties of the likelihood function for a relevant subset of param-
eters, we simulated 1624 fixations on 114 sentences (Figure 2.5) from the sentence corpus
of Risse and Seelig (2019). The examined parameters are given in Table 2.3, with the re-
maining parameters set according to Table 2.2. The likelihood was then evaluated for 1000
different, evenly spaced values within the given interval (Table 2.3) separately for each pa-
rameter. Since all other parameters were fixed at their true values, any systematic change in
the resulting log-likelihood can only be attributed to the parameter under consideration.



(2.4) Likelihood-Based Parameter Inference Using MCMC 47

Table 2.3
Parameters of the SWIFT Model Considered in Bayesian Estimation

Parameter Symbol Range True value

Saccadic timer 𝑡sac 150 ...350 ms 260 ms
Refixation factor 𝑅 0.2 ...1.8 0.9
Processing span 𝛿0 4 ...15 8.5
Word length exponent 𝜂 0 ...1 0.4

Note. True values apply to the synthetic data generated for verification of the likelihood
function.

Figure 2.5a indicates that the saccade timer 𝑡sac influences the temporal likelihood, while
there is no influence on the spatial likelihood. A similar behavior is observed for the refixa-
tion factor 𝑅 (Figure 2.5b). In both cases, there is a clear maximum in the likelihood profile
at the true parameter values, 𝑡sac = 260 ms and 𝑅 = 0.9, resp. A different dependence can be
seen for the processing span 𝛿0, which clearly influences the spatial likelihood (maximum at
the true value 𝛿0 = 8.5), but exerts only a minimal influence on the temporal likelihood (Fig-
ure 2.5c). For the word-length exponent 𝜂, there is an influence on both spatial and temporal
likelihoods (Fig. 2.5d), with a maximum for both likelihood profiles at the true parameter
value 𝜂 = 0.4.

Thus, our numerical implementation of the likelihood function indicates clear maxima at
the true parameter values for simulated data, while stochastic fluctuations due to the approxi-
mative account for internal degrees of freedom 𝝃 are small. In the next section, we will apply
an adaptive MCMC framework for Bayesian parameter estimation using simulated and real
(experimental) data.

2.4 Likelihood-Based Parameter Inference Using MCMC

With the implementation of the numerical computation of the likelihood function for
the SWIFT model from the previous section, we developed the critical step for adopting
the Bayesian framework for parameter inference. We will discuss the Markov Chain Monte
Carlo approach used for inference, discuss the efficient implementation on a digital com-
puter, present results for parameter recovery from simulated data with known parameters,
and, finally, estimate parameters for experimental data.

2.4.1 Markov Chain Monte Carlo Simulation for the SWIFT Model

As described in Section 2.1.2, the computability of the likelihood 𝐿𝑀 (𝜽 |𝐹),
Equation (2.3), for a given set of parameters 𝜽 and a given fixation sequence 𝐹 is critical for
maximum-likelihood and Bayesian inference. For the numerical procedures of Markov



48 Bayesian Parameter Estimation for SWIFT (2)

Figure 2.5
Temporal, Spatial and Total Log-Likelihood Profiles
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Note. Temporal contributions in red and spatial contributions in blue to the total log-
likelihoods in black. Likelihood was evaluated for a simulated dataset of 1624 fixations
on 114 sentences from the Risse and Seelig (2019) corpus. Single parameters were varied
within an interval around the respective true parameter value used in creating the data. The
log-likelihoods were centered around their respective mean value.

Chain Monte Carlo type, we use a variant of the Metropolis Hastings (MH) algorithm
(Hastings, 1970). In the random-walk MH algorithm, a random walk in the parameter space
is generated, where the probability of the random-walk steps depends on the ratio of the
likelihoods associated with the random walk’s current and proposed new positions.

Starting from an arbitrary initial point 𝑋0 in parameter space, every move is determined
by two steps:
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1. A proposal 𝑌𝑛 is generated by a random-walk step from position 𝑋𝑛−1,

𝑌𝑛 = 𝑋𝑛−1 + 𝑆𝑈𝑛, (2.26)

where 𝑈𝑛 ∼ N(0,𝜎). Both the shape matrix 𝑆 and the width 𝜎 of the proposal distri-
bution must be chosen beforehand and kept constant during a run of the algorithm.

2. The proposal is then accepted with the probability

𝛼𝑛 := 𝛼 (𝑋𝑛−1,𝑌𝑛) := min
{
1,

𝜋 (𝑌𝑛)
𝜋 (𝑋𝑛−1)

}
, (2.27)

in which case 𝑋𝑛 = 𝑌𝑛, i.e. the walker moves to the proposed position. If the proposal
is rejected, then the random walk remains at the current position 𝑋𝑛 = 𝑋𝑛−1.

By recursively following these rules the chain of accepted samples of the algorithm asymp-
totically converges to the true distribution of 𝜋. However, the speed of convergence greatly
depends on an optimal choice of both the shape matrix 𝑆 and the width parameter 𝜎 of the
proposal distribution. Poor choices lead to abundant rejections (i.e. the chain is station-
ary most of the time if 𝑆 is chosen badly or 𝜎 is too large) or strong autocorrelations of
the samples (i.e., movements are very small if 𝜎 is chosen too small, even if 𝑆 is optimal).
Both parameters are however not known in advance and cannot be obtained due to analytical
intractability of SWIFT model’s likelihood function.

Therefore, we used the Robust Adaptive Metropolis (RAM) algorithm by Vihola (2012)
which progressively captures the parameters’ covariance structure shape and at the same time
attains a predefined acceptance rate (see G. O. Roberts et al., 1997). The speed of the adapta-
tion can also be specified parametrically. Although the RAM algorithm is a good strategy for
parameter estimation, it is still computationally expensive, as exploration is naturally slow,
if subsequent samples are dependent. Furthermore, it is necessary to use several independent
chains with randomly dispersed initial values, each requiring a burn-in phase necessary for
the sampler to progress to the vicinity of the stationary distribution.

An additional modification of the MCMC algorithm is necessary because of the stochas-
tic pseudo-likelihood function of the SWIFT model. If, by chance, an exceptionally high
log-likelihood value is obtained for a proposal, the acceptance rate for the subsequent pro-
posal will be very low, which might stall the chain (Holmes, 2015). Therefore we re-evaluate
𝜋(𝑋𝑛−1) for every iteration of the algorithm, which, however, doubles the computation time
of the sampling.

To increase computational efficiency, we introduced parallel computation at two lev-
els. First, while the likelihood of a fixation is dependent on all preceding fixations in the
respective fixation sequence, likelihoods of whole fixation sequences can be computed in-
dependently from each other and added up later. This procedure enables computing the
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log-likelihood for independent fixation sequences in 𝐹 in parallel using a multi-core com-
pute cluster. Second, different chains are independent of each other and can therefore be
calculated in parallel as well.

2.4.2 Parameter Recovery Using Simulated Data

Before we demonstrate the application of the MCMC framework for the SWIFT model
to experimental data, we investigate its performance for simulated data with known param-
eters. While we tested the likelihood function using single-parameter variation around the
true value in Section 2.3.3, we now estimate all four selected parameters (Table 2.3 simul-
taneously using the MCMC procedure for the same dataset. We specified truncated normal
distributions centered at parameter ranges (see Table 2.3). The standard deviation was set
to one half of the estimation range in order to obtain an uninformative prior. We ran 5 in-
dependent chains with 𝑁 = 4,000 iterations each and the default adaptation parameter value
of 𝛾 = 2/3. The resulting marginal posterior distributions are given in Figure 2.6. The re-
sults suggest that the likelihood-based MCMC framework is very promising for parameter
estimation based on data from single participants.

2.4.3 Estimation of Parameters Based on Experimental Data

In the next step, we estimated the same parameters for data from an eye tracking ex-
periment. We used the control condition from a larger experimental study on parafoveal
processing using the boundary paradigm (see Risse & Seelig, 2019, for a detailed descrip-
tion of the boundary paradigm). We ran 10 chains per participant, each with 4,000 iterations.
We used the last 2,000 samples (50%) after the burn-in to estimate the posterior density.
The resulting marginal posterior densities for a single participant are plotted in Figure 2.8.
While there is an increased variance in the posterior densities for the estimation using exper-
imental data compared to the simulated data (Fig. 2.6, we observe clear convergence of the
independent chains to a common posterior estimate. Since there is qualitative agreement for
the results on simulated and experimental data, the method seems promising to investigate
interindividual differences via parameter estimation, which is discussed in the next section.

2.4.4 Interindividual Differences and Model Parameters

In this section we study interindividual differences in model parameters across 34 sub-
jects that served as participants in the experiment by Risse and Seelig (2019). Figure 2.8
shows the posterior densities for all subjects, demonstrating considerable interindividual dif-
ferences over the model parameters 𝑡sac, 𝑅, and 𝛿0, whereas estimates of 𝜂 fall close to zero.
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Figure 2.6
Exemplary Posterior Distributions
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Note. Distributions are from five individual chains (different colors) for four parameters
based on simulated data. The black vertical lines indicate the true parameter values. Grey
areas indicate the 40% HPDI of all chains. The scale of the parameter range reflects the
width of the prior (black, dotted).

A critical question is how much of the differences in reading behavior could be explained
by the estimated differences in model parameters. Therefore, we used the maximum a pos-
teriori (MAP) estimator (i.e. the mode) of the pooled chains for each subject as input pa-
rameters for the generative model and created a simulated data set that corresponds to the
experimental data.

Fixation durations. For both the experimental and the artificial data, we calculated
participant-wise averages in different measures of fixation durations. Specifically we com-
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Figure 2.7
Example Posterior Densities for Single Participants
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Note. Posterior densities for 10 independent chains (colored) for experimental data from
a single participant. The MAP estimator for the pooled chains (black) of each respective
parameter is in indicated by the black vertical line. The prior is indicated by the black dotted
line.

pared durations of single fixations (SFD; when the word was fixated only once in first-pass),
first fixations (FFD; when the word was fixated once or more in first-pass), refixations (RFD;
the second fixation on words, which were fixated more than once consecutively in first-pass),
gaze durations (GD; the total time spent on a word in first-pass) and total viewing time
(TVT; the total time spent on a word regardless of first, second or more passes). The results
(Fig. 2.10a) indicate a remarkably good fit between the experimental data and model pre-
dictions for individual participants for RFD and GD. Mean FFD and SFD generated by the
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Figure 2.8
Posterior Distributions of 34 Participants
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Note. Each density is calculated from the pooled data of 10 chains after the burn-in interval.
Black ticks at the bottom indicate the MAP estimators for the individual chains. The prior
distributions are indicated by the dotted, black line. Curves with the same color correspond
to 4 highlighted participants.

model tend to be slightly underestimated for participants with longer initial fixations. Mean
TVT, however, is higher in the model predictions than in the experiment. It is important to
note that the TVT measure captures more complex gaze behavior, since it also incorporates
additional fixation time due to regressions.

Fixation probabilities. Similar to the analysis of fixation durations, we calculated word-
based probabilities for single fixations (SF), refixations (RF), regressions (RG), and word
skipping (SK) (Fig. 2.10b). While in the experiment words are more likely to receive single
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Figure 2.9
Relationship Between True Parameters and Estimated Parameter Values of Generated Data
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Note. Relationship between true parameters (horizontal axis) and estimated parameter val-
ues of generated data (vertical axis). Parameters used are the MAP estimators for the exper-
imental data. The colored points correspond to the same participants as in Figure 2.8.

fixations as compared to the simulated data, they consequently have a lower probability
of receiving refixations. Additionally, the model predicts higher skipping probabilities and
also higher probabilities of serving as regression target. It should be noted that the mismatch
between experimental and simulated regression probabilities and experimental and simulated
TVT (discussed above) is closely related. In general, part of the regressions might be looked
upon as a more complicated psycholinguistic measure related to various aspects of post-
lexical processing (Rayner, 1998) that cannot be captured in the SWIFT model, while another
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Figure 2.10
Correlation of Empirical and Simulated Fixation Durations and Probabilities
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Note. (a) Means of different measures of fixation duration for experimental and corre-
sponding simulated data. Each point represents one participant. Simulated data were created
using the mean estimated parameters for each respective participant. The colored ellipses
represent the 95% confidence boundaries. (b) Means of word based fixation probabilities.
Again each point represents one participant.

portion of the regressions might be of oculomotor origin and can be found even in scanning
tasks (Nuthmann et al., 2005).

In summary, our results indicate that estimated parameters can explain some of the in-
terindividual differences in fixation durations and fixation probabilities. Thus, the likelihood-
based MCMC approach to parameter inference could be applied successfully to estimate
model parameters from individual behavioral data.

2.5 Discussion

Current approaches to parameter inference and model comparison (e.g., Reichle et al.,
2003) for dynamical cognitive models are insufficient in at least three ways: First, dynami-
cal models need to be tested against time-ordered observations. Second, a likelihood-based
procedure is necessary for statistical inference. Third, parameter estimates are needed for in-
dividual subjects to explain interindividual differences based on specific model assumptions
or components. We set out to solve these three issues in current modeling in computational
cognitive science using the SWIFT model of eye-movement control during reading (Engbert
et al., 2005) as a case study.

The approach discussed here is fundamentally based on the likelihood function of the
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model. Therefore, we proposed and investigated the numerical likelihood computation of
the SWIFT model. This approach is based on the observation that incremental prediction of
fixation positions and fixation durations by the generative model can be exploited to deter-
mine the likelihood of the next fixation.

Since the likelihood can be decomposed into a spatial (i.e., fixation position) and a tem-
poral part (i.e., fixation duration), we tried to find separate solutions to both problems. In
the spatial part of the likelihood function, internal degrees of freedom (stochastic internal
states) could not be integrated out due to numerical efficiency considerations; therefore, we
computed a (stochastic) pseudo-likelihood (see Andrieu & Roberts, 2009). In the temporal
part, the theoretical likelihood function was unavailable. Therefore, we constructed an ap-
proximate likelihood function using a sufficient number of predicted fixation durations from
the SWIFT model and KDE for the approximation of the likelihood. In sum, we combined
a pseudo-marginal spatial likelihood and an approximated pseudo-likelihood (see Holmes,
2015, for nomenclature) function to obtain the likelihood function of the model (Sisson &
Fan, 2011).

Before we applied our framework to real data, we demonstrated that, in a simplified
model version with 4 free parameters, we could reconstruct the true parameter values from
simulated data. We used a Bayesian approach using MCMC sampling from the posterior
distribution based on an adaptive sampling algorithm (Vihola, 2012). The size of the sim-
ulated data-set was comparable to a typical experimental data set that is recorded from an
individual participant during a one-hour session of eye-tracking experimentation. Next, the
same procedure was applied to experimental data. Motivated by the results from simulated
data, we estimated model parameters independently for 34 subjects.

Finally, our results indicate that it is possible to relate interindividual differences in read-
ing behavior (characterized by 5 different measures of fixation durations and 4 different
measures of fixation probabilities) to differences in the estimated model parameters. Given
the typical state-of-the-art models of eye-movement control in reading, this is a major step
for generating hypotheses on the observed interindividual differences in a task as complex
as reading.

Throughout the current work, we focused on the numerical implementation of the like-
lihood function for the SWIFT model. Since likelihood-based Bayesian inference turned
out to be a viable and sound alternative to ad-hoc parameter estimation procedures, we ex-
pect that our approach can be further advanced for both theory building and modeling of
interindividual differences. For example, for higher dimensional parameter spaces Differen-
tial Evolution MCMC algorithms (see, e.g., ter Braak, 2006; ter Braak & Vrugt, 2008) might
be more adequate. Additionally, we expect that a hierarchical Bayesian design will help to
increase the stability of the posterior estimates for individual subjects—even if we apply our
methods to data sets smaller than used in the current work.
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Chapter 3

A Bayesian Approach to Dynamical Modeling of
Eye-Movement Control in Reading of Normal,

Mirrored, and Scrambled Texts

This chapter has been published as: Rabe, M. M., Chandra, J., Krügel, A., Seelig, S. A.,
Vasishth, S., & Engbert, R. (2021). A Bayesian approach to dynamical modeling of eye-
movement control in reading of normal, mirrored, and scrambled texts. Psychological Re-

view, 128(5), 803–823. https://doi.org/10.1037/rev0000268

Abstract

In eye-movement control during reading, advanced process-oriented models have been de-
veloped to reproduce behavioral data. So far, model complexity and large numbers of model
parameters prevented rigorous statistical inference and modeling of interindividual differ-
ences. Here we propose a Bayesian approach to both problems for one representative com-
putational model of sentence reading (SWIFT; Engbert et al., Psychological Review, 112,
2005, pp. 777–813). We used experimental data from 36 subjects who read text in a nor-
mal and one of four manipulated text layouts (e.g., mirrored and scrambled letters). The
SWIFT model was fitted to subjects and experimental conditions individually to investigate
between-subject variability. Based on posterior distributions of model parameters, fixation
probabilities and durations are reliably recovered from simulated data and reproduced for
withheld empirical data, at both the experimental condition and subject levels. A subsequent
statistical analysis of model parameters across reading conditions generates model-driven
explanations for observable effects between conditions.

3.1 Introduction

Reading is an important everyday task that is characterized by high adaptivity. As a con-
sequence, behavioral measures like reading rates or fixation durations vary strongly during
silent vs. oral reading, reading of easy vs. difficult texts, and differ between proof-reading,

https://doi.org/10.1037/rev0000268
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mindless reading, or reading of scrambled texts. Such variations and adaptivity represent
a key challenge for mathematical models of eye-movement control. Recent advances in
Bayesian model inference for dynamical cognitive models (Schütt et al., 2017) provide the
tools for rigorous evaluation of model generalizability. Here we investigate the generalizabil-
ity of the SWIFT model (Engbert et al., 2005) from normal reading to several manipulations
of the spatial layout of texts, i.e., text composed of words with mirrored, inverted, and scram-
bled letters, which are known to induce strong effects on reading performance (Kolers, 1976;
Rayner et al., 2006).

During reading of normal texts, the reader generates 3 to 4 saccades per second; word
processing occurs during fixations on different words with average durations in a range be-
tween 150 and 300 ms (Rayner, 1998). The number of fixations in a given text is of the same
order as the number of words, however, some words do not receive a fixation (word skip-
ping) while others are targeted multiple times. A secondary fixation of the same word as the
currently fixated word is denoted as a refixation. However, the eye’s scanpath is even more
complicated, since some saccades go against the reading direction to previously inspected
regions of text. Such regressions represent about 5 to 10% of the saccades in a typical text.

Two typical eye trajectories are presented in Figure 3.1. In both examples, forward sac-
cades occur most frequently, as observed on average. As far as other fixation types are
concerned, for example in the upper panel, the eyes generate refixations of the same word
(e.g., fixations 8, 9 and 14), skip words between fixations 5 and 6 (the skipped word is the
German conjunction “und”), and produce a regression from fixation 9 to 10.

Everyday circumstances require reading geometrically altered or manipulated words or
sentences. As an example, reading transformed texts is necessary when reading mirror re-
flections of text on signs. Such manipulations do occur in everyday life and invoke drastic
changes in reading patterns, even after training (Kolers, 1976; Kolers & Perkins, 1975). An-
other common type of text manipulation is intentional or unintentional scrambling of letters
within words (Table 3.1).

A popular internet myth of the early 2000s claimed that reading sentences of words
with scrambled letters were still readable and easy to understand. (Rayner et al., 2006)
investigated the statement and found that contrary to the claim, which was in fact not backed
up by any scientific evidence, there is indeed a cognitive cost even though reading of such
sentences is not greatly impaired.

In the present theoretical study, we fitted the SWIFT model to diverse reading patterns
to evaluate whether the model can reproduce the variability between experimental condi-
tions and baseline, following a principled workflow that improves model fit, inferences, and
comparability (Schad et al., 2021). In this approach, the likelihood function plays a key
role as an objective optimization target for model fitting that was introduced in an earlier
publication by Seelig et al. (2020). What is novel here is that we (a) run more extensive
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Figure 3.1
Typical Eye Trajectories During Reading
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Note. The upper panel represents the normal reading condition, whereas the lower panel
represents an example of the scrambled reading condition.

simulations using more free parameters, (b) use a more powerful MHMC algorithm in the
Bayesian framework, (c) reproduce a more representative range of reading behaviors using
the full covariance structure of the fitted posterior distributions, (d) evaluate an experiment
with 5 different reading conditions, and (e) develop an improved oculomotor model of sac-
cadic landing positions. We will present subject-level results, so that observed patterns could
be reproduced for each particular subject showing that between-subject variability can be
captured by the model. Due to the principled Bayesian workflow (Schad et al., 2021), our
approach includes (a) rigorous statistical inference, (b) an evaluation of goodness-of-fit for
specific effects, and (c) explanations for findings via effects found in model parameters. All
source code that was used for the analyses reported in this article is publicly available on-
line.13

For the current work, we use eye-movement data from reading experiments on geometric
alterations of text layout and scrambled-letter words. We expect this data-set to posit a
challenge for dynamical reading models; mathematical models should be challenged to fit
observed reading behavior across tasks, while readers should be challenged with respect to
their performance. We also expect substantial interindividual differences; thus, the model
should also be able to detect, reproduce, and explain the observed level of between-subject
variability.

13Analyses are available online at https://doi.org/10.17605/osf.io/t9sbf.

https://doi.org/10.17605/osf.io/t9sbf
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Table 3.1
Reading Conditions Used As Modeling Targets

Code Description Order Example

N Normal LR Jede Sprache der Welt besitzt eine Grammatik

mL Mirrored letters LR edeJ ehcarpS red tleW tztiseb enie kitammarG

sL Scrambled LR Jdee Scrahpe der Wlet bsizett enie Gmartimak

iW Reversed letters RL edeJ ehcarpS red tleW tztiseb enie kitammarG

mW Mirrored word RL Jede Sprache der Welt besitzt eine Grammatik

Note. Letter order applies with regard to first and last letter of the word. LR = left-to-right,
RL = right-to-left

3.1.1 The Bayesian Approach to Dynamical Cognitive Models

Dynamical cognitive models represent a framework that permits the test of very specific
hypotheses about cognitive processes underlying human behavior (Schütt et al., 2017), in
particular when such models are investigated in a principled Bayesian workflow (Schad et al.,
2021). A strong test of dynamical models, however, requires time-ordered observations, such
as eye movements, brain imaging, or single-cell recordings or other types of high-density
behavioral data. As we will demonstrate, dynamical models are highly flexible and can
implement processes for many observable dimensions, assuming that the same implemented
processes can make predictions for all considered observables.

Generally, experimental data 𝑋𝑛 for a dynamical model are sequences of 𝑛 observed
discrete instances (𝑥1, . . . , 𝑥𝑛), expandable to an 𝑛×𝑚 matrix,

𝑋𝑛 =

©«
𝑥1
...

𝑥𝑛

ª®®®¬ =
©«
𝑥11 · · · 𝑥1𝑚
...

. . .

𝑥𝑛1 𝑥𝑛𝑚

ª®®®¬ , (3.1)

where 𝑛 is the number of time-ordered instances and 𝑚 is the number of considered observ-
ables or measures. Typically, we assume that 𝑛 is clearly greater than 1; for eye movements,
𝑛 might be on the order of 10. Critically, each of these instances should provide data on all
𝑚 measures.

A mathematical model with a computable likelihood function (as function of free model
parameters and for a given dataset) can be fitted in a Bayesian inference framework if the
necessary numerical implementation is efficient. In contrast to maximum-likelihood (MLE)
or frequentist methods, Bayesian methods provide inference based on credible intervals for
model parameters (see Schütt et al., 2017, for a dynamical cognitive model). The credible
intervals relate to model plausibility and stability. To obtain a posterior probability distribu-
tion 𝑃𝑀 (𝜽 | 𝑋) for a model 𝑀 specified by a set of parameters 𝜽 after observing data 𝑋 , we
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first need to determine the likelihood 𝐿𝑀 (𝜽 | 𝑋) of the data 𝑋 given some parameter set 𝜽
and the prior probability distribution 𝑄 (𝜽) over parameters 𝜽 , so that

𝑃𝑀 (𝜽 | 𝑋) ∝ 𝐿𝑀 (𝜽 | 𝑋) ·𝑄 (𝜽) . (3.2)

While the definition of 𝐿𝑀 (𝜽 | 𝑋) is typically objective and based on stringent math-
ematical formulation, the prior parameter distribution should ideally be based on domain
expertise, which might include various forms of knowledge from cognitive to physiological
processes.

In contrast to maximum likelihood estimation (MLE), which can quickly be
overwhelmed by high dimensionality (i.e., many free model parameters), the definition of a
prior is what makes fitting complex models possible in the first place. This is because priors
bound the parameter space to a computationally tangible subspace and avoid sampling of a

priori unlikely model configurations. If domain expertise on model parameters is not
readily available, uninformative priors with support on a wider range of values and weak
maxima can be a sensible fallback option and tend to converge on similar solutions as MLE.

Bayesian parameter estimation enables us to infer statistically rigorous credible intervals
for model parameters. Credible intervals can serve (a) to characterize different theoretical
entities (i.e., subjects or items) and (b) to account for variability induced due to the exper-
imental manipulation. In order to permit Bayesian parameter inference, the model needs
to provide a likelihood function 𝐿𝑀 (𝑋𝑛 | 𝜽) for time-ordered dataset 𝑋𝑛 given some model
configuration 𝜽 . The likelihood function is the product of the likelihood of all instances 𝑥𝑖 of
𝑋𝑛, each conditional on model parameters 𝜽 and all previous instances 𝑋𝑖−1 = (𝑥1, . . . , 𝑥𝑖−1),
i.e.,

𝐿𝑀 (𝑋𝑛 | 𝜽 , 𝜉) = 𝐿𝑀 (𝑥1 | 𝜽 ,𝝃)
𝑛∏
𝑖=2

𝐿𝑀 (𝑥𝑖 | 𝜽 ,𝝃, 𝑋𝑖−1) . (3.3)

The additional variable 𝝃 denotes internal degrees of freedom, which are stochastic states
of saccade programming and word activation in the SWIFT model (Seelig et al., 2020).
As a consequence, the likelihood is inherently stochastic and we will use an approximate
pseudo-marginal likelihood 𝐿𝑀 (𝑋𝑛 | 𝜽 ,𝝃) (Andrieu & Roberts, 2009) with internal degrees
of freedom 𝝃.

Given a likelihood function and specified prior distributions, there exist different meth-
ods of sampling from the posterior distribution of model parameters. The most important
numerical algorithm is the Metropolis-Hastings (MH) algorithm, which was developed by
Metropolis et al. (1953) and subsequently generalized by Hastings (1970). The class of
Metropolis-Hastings Monte Carlo (MHMC) algorithms can become demanding in terms of
computational resources, but requires less mathematical prerequisites (such as the definition
of likelihood derivatives) than more advanced approaches. Therefore, the MHMC can be
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considered an adequate choice for complex models (Schütt et al., 2017), which is particu-
larly true for models without an exact closed-form likelihood and stochastic internal degrees
of freedom requiring a pseudo-marginal approach (Seelig et al., 2020).

In the MHMC methods, the sampler builds a chain in parameter space step by step. For
each iteration, the sampler makes a proposal for a new parameter set based on its current
state and evaluates whether the proposal provides a better fit than the previous one. If it
does, it is accepted with certain probability. If not, it is rejected and stays with the previous
proposal. Each accepted proposal represents a new sample from the posterior distribution
and, therefore, the chain in its entirety will approach the desired posterior probability of the
parameters.

3.1.2 Principled Bayesian Workflow in Model Inference

In the following, several procedures are implemented to ensure computational faithful-
ness of model and sampling method, to evaluate the predictive power of the fitted model, and
to make inferences to explain observed variability with assumed underlying model behav-
ior. We adopted the principled Bayesian workflow discussed in Schad et al. (2021) to secure
validity and reliability of our numerical inferences. The steps taken are as follows:

1. Definition of a generative model and derivation of an (approximate) likelihood func-
tion,

2. Check of the computational faithfulness of the model by inspecting likelihood profiles,

3. Prior predictive simulations,14

4. Test of the computational faithfulness of the sampling algorithm via parameter recov-
ery,

5. Split of empirical datasets into fitting (train) and validation (test) datasets for cross-
validation,

6. Analysis of posterior predictive checks on test datasets (cross-validation) and model
predictions based on the generative model and fitted parameter values, and

7. Statistical evaluation of model parameters between experimental condition.

14As we are currently using weakly informative priors, we are not reporting prior predictive checks in this
paper. Future publications should incorporate expectations based on prior observations and theory and use
more informative priors. These should then be evaluated using prior predictive checks.
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3.1.3 Summary Statistics

In a successful mathematical model, simulated and empirical data will be in good agree-
ment at the level of global summary statistics commonly reported in the literature. In our
approach, summary statistics are not the primary target of model optimization, since the ob-
jective likelihood-based model fitting technique is neutral to the outcome at the level of spe-
cific summary statistics. Instead, summary statistics are applied for the comparison between
withheld empirical data and data simulated with the generative after model after parameter
fitting to evaluate goodness-of-fit (S. Roberts & Pashler, 2000). From this perspective, our
approach might be looked upon as a case study for other models in eye-movement research in
reading (e.g., Reichle et al., 2012; Reilly & Radach, 2006; Snell et al., 2018). Related analy-
ses in the principled Bayesian workflow are prior and posterior predictive checks discussed
below.

Since our model aims at capturing and explaining both temporal and spatial aspects of
eye movements in reading, it must be evaluated via spatial and temporal summary statistics.
As discussed in the Introduction, saccades do not always move the eye’s fixation point from
word 𝑛 to 𝑛 + 1; beyond such one-step saccades, there are word skippings, refixations, and
regressions. Thus, a successful reading model should reproduce and predict fixation patterns,
quantitatively described by fixation probabilities, i.e., the probability to fixate (or skip) a
word in given context.

To investigate whether the model makes viable predictions, we evaluated first-pass fixa-
tion probabilities, which we defined as follows. The single-fixation probability is the propor-
tion of times for a word to receive a fixation that is not followed by a refixation. Conversely,
the refixation probability is the proportion of times for a word to receive at least one refix-
ation. A word’s skipping probability denotes whether it is fixated at all (i.e., skipped) in
first-pass. Finally, the (outgoing) regression probability of a word is its probability to be
fixated before a regressive saccade.

While fixation probabilities more closely relate to cognitive processing load in SWIFT,
saccade lengths and landing positions are additionally modulated by low-level oculomotor
processes (noise and biases occurring at the level of the motor implementation). We therefore
also evaluate distributions of saccade lengths and within-word landing positions to verify
that the oculomotor assumptions of the model are in line with the empirical data. This is
particularly relevant for our investigation, since we expected to optimize statistics via the
modified Gamma-distributed saccade lengths (Appendix C).

In order to evaluate the goodness-of-fit at a temporal level of eye guidance, we compare
simulated and empirical fixation duration measures. A word’s first-fixation duration and
refixation duration describe how long the eyes dwell on a word given that it is the first
fixation or the second fixation (refixation) on that word, respectively. The gaze duration is
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the total time of all consecutive fixations on the same word given that it was the first time
that word was encountered.

3.2 The SWIFT Model of Eye-Movement Control

The SWIFT model (Engbert et al., 2005; Seelig et al., 2020) is a dynamical cognitive
model of eye-movement control during reading. The model can describe, explain, and pre-
dict temporal and spatial aspects that are commonly observed in eye trajectories recorded
during natural reading. It is among several competitor models that aim at predicting and
explaining similar eye movement statistics (e.g., see Reichle et al., 1998; Reilly & Radach,
2006; Snell et al., 2018). In Figure 3.2, a simulated eye trajectory as generated by SWIFT is
presented.

A core concept of the model is parallel processing of several words at a time. All words
within the processing span around the current fixation location are processed in parallel
(Engbert et al., 2002; Snell & Grainger, 2019). As long as a word’s recognition is ongoing,
its activation will rise up to a threshold that is modulated by word frequency and related
model parameters. Once the threshold is reached, lexical processing is complete and post-
lexical processing begins, which is reflected by decreasing activation. The word has been
fully processed as soon as the activation returns to zero.

In SWIFT, saccade target selection is inherently stochastic. At any given time 𝑡, the
probability to select a target word is computed from the relative word activations. If a word
is more highly activated than any other word in the activation field, it is the most likely word
to be selected as the next target. This also implies that words that are processed faster are
on average less likely to be selected as saccade targets. This mechanism provides the basis
for the generation of all types of saccades (including skippings, refixations, and regressions)
from a single theoretical principle (Engbert et al., 2002).

The decision when to move the eyes is basically independent of the decision where to
move the eyes (see Findlay & Walker, 1999). A cascade of random timers (gray lines in the
left-hand panel of Figure 3.2) implement the temporal programming of saccades. A global
saccade timer starts whenever the eyes settle on a fixation location. As soon as it reaches
threshold, the labile saccade program begins. The saccade at this point can still be cancelled
and target selection is still variable. It is not until the start of the non-labile phase that
the saccade is inevitably programmed and a target has been selected. Once the non-labile
saccade phase reaches its maximum value, the saccade is executed to the previously selected
target.

Saccade execution is modulated by oculomotor errors (Engbert & Krügel, 2010; Krügel
& Engbert, 2014). In fact, McConkie et al. (1988) proposed the saccadic range error (SRE)
model, stating that the landing position is driven by systematic and random contributions,
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Figure 3.2
An Eye Trajectory As Simulated in SWIFT
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Note. The thick black line is the simulated eye trajectory. Colored lines are word activa-
tions and gray lines on the left are saccade timer random walks, each as a function of time.
Asterisks mark the points in time when the labile stage is complete and the target is selected.

both of which depend on the distance between launch site and intended target. The system-
atic error describes saccade amplitudes as having an optimal expected value (mean), as close
targets tend to be overshot and far targets undershot. The unsystematic error, sometimes
termed oculomotor noise, also proposes a relationship between the variance of saccade am-
plitudes and the target distance, with amplitudes having a higher variance for more distant
intended targets. In current versions of SWIFT, spatial aspects of saccade execution imple-
ment this model. Appendix B provides more mathematical details of key aspects of SWIFT,
while Appendix C extends on the oculomotor assumptions.

3.3 The Likelihood Function for SWIFT

If model inference is done in a Bayesian framework, the computation of the likelihood
for a given fixation sequence (such as the one shown in Figure 3.2) is required. While the
concept of the likelihood function is well-established (see Myung, 2003, for a tutorial) , the
calculations can be difficult. Alternatively, approximate versions of the likelihood function
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can be implemented (Palestro et al., 2018).

For generative models of eye movements in reading, data are given as sequences of fixa-
tions in an 𝑛× 4 matrix 𝐹𝑛. In a sequence, each fixation 𝑓𝑖 = (𝑘𝑖, 𝑙𝑖,𝑇𝑖, 𝑠𝑖) is associated with
the fixated word 𝑘𝑖, the landing position 𝑙𝑖 within word 𝑘𝑖, the duration 𝑇𝑖 of that fixation,
and the duration of the consecutive saccade 𝑠𝑖,

𝐹𝑛 =

©«
𝑓1
...

𝑓𝑛

ª®®®¬ =
©«
𝑘1 𝑙1 𝑇1 𝑠1
...

...
...

...

𝑘𝑛 𝑙𝑛 𝑇𝑛 𝑠𝑛

ª®®®¬ (3.4)

Recently, Seelig et al. (2020) have proposed and investigated an approximate likelihood
function for the SWIFT model. In this approach, the likelihood of a fixation 𝑓𝑖 is given as
the combined spatial and temporal likelihood components, i.e.,

𝐿𝑀 (𝑘𝑖, 𝑙𝑖,𝑇𝑖 | 𝐹𝑖−1,𝜽 ,𝝃) = 𝑃temp (𝑇𝑖 | 𝑘𝑖, 𝑙𝑖, 𝐹𝑖−1,𝜽 ,𝝃) ·𝑃spat (𝑘𝑖, 𝑙𝑖 | 𝐹𝑖−1,𝜽 ,𝝃) , (3.5)

where both spatial and temporal components are conditional on all preceding fixations 𝐹𝑖−1,
model parameters 𝜽 and internal degrees of freedom 𝜉 that generate model stochasticity.

The internal degrees of freedom 𝜉 are due to the unknown states of the random walks
governing target selection and saccade programming. This results in stochastic values that
are obtained for multiple evaluations of the likelihood function. In principle, we could over-
come the stochasticity via averaging, which is, however, computationally costly. Moreover,
previous work indicated that stochasticity of the likelihood is effectively averaged out over
the evaluations generating the Markov chain, if the likelihood of the previously accepted pro-
posal is re-evaluated every time; this approach is is denoted as pseudo-marginal likelihood

(Andrieu & Roberts, 2009). While the spatial likelihood 𝑃spat is available in closed form and
exact, it does depend on the stochastic word activations, thus, the pseudo-marginal approach
is used here.

The spatial likelihood 𝑃spat is further decomposed into the probability 𝑞 to land on word
𝑘𝑖 and letter 𝑙𝑖 within word 𝑘𝑖 after having selected word 𝑚 with selection probability15 𝜋

following the initiation of a saccade at time 𝑇𝑖 (see Equation 3.6). For an observed fixation 𝑖,
it is unknown which word was the intended target word. Therefore, 𝑃spat equals the proba-
bility of landing on (𝑘𝑖, 𝑙𝑖), integrating the product of word targeting probability 𝜋(𝑚 |.) and
oculomotor error probability 𝑞(𝑘𝑖, 𝑙𝑖 |𝑚, .) by summation over all words 𝑚 of the sentence
(𝑚 = 1,2, ..., 𝑁W), i.e.,

𝑃spat (𝑘𝑖, 𝑙𝑖 | 𝑇𝑖, 𝐹𝑖−1,𝜽 ,𝝃) =
𝑁W∑︁
𝑚=1

𝜋 (𝑚 | 𝑇𝑖, 𝐹𝑖−1,𝜽 ,𝝃) · 𝑞 (𝑘𝑖, 𝑙𝑖 | 𝑚,𝐹𝑖−1,𝜽) (3.6)

15The selection probabilities 𝜋 are normalized so that
∑𝑁W

𝑚=1 𝜋(𝑚) = 1.
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Figure 3.3
Empirical and Previously Simulated Gaussian Saccade Amplitudes Aggregated Across All
Subjects in Each Experimental Condition
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Note. For saccade amplitudes generated with improved oculomotor assumptions, see Fig-
ure 3.10.

According to the SRE model of saccade amplitudes (McConkie et al., 1988), the system-
atic component 𝜖sre, Equation C.5, mainly shifts the mean landing position and the random
component 𝜎sre, Equation C.6, modulates the variance of the distribution of landing posi-
tions (see Appendix C for mathematical details). While the selection probability 𝜋(.) in
SWIFT is driven by a time-dependent word activation field, the observable landing position,
or its probability 𝑞(.), depends on oculomotor process assumptions and only indirectly on
the implementation of the word activation field.

The oculomotor assumptions, explicitly given by the probability 𝑞(.), Equation (3.6),
strongly influence model performance, in particular, if difficult reading conditions with in-
creased refixation and regression probabilities are investigated. Previous parameter estima-
tions using the Gaussian saccade model (Engbert et al., 2005) did not fit the shape of the
bimodal saccade amplitude distributions satisfactorily, in particular for refixation with very
short shifts of the gaze position (see Figure 3.3). The fit was particularly concerning for
the reverse letter and mirrored words conditions investigated in this article. Therefore, we
introduced an optimized oculomotor model within McConkie et al.’s (1988) framework that
replaces normal distributions by Gamma distributions to improve model fits (for mathemati-
cal details see Appendix C).

Finally, for the temporal probability density 𝑃temp in Equation (3.6), exact computation
is precluded by the complexity of the cascade of random timers. Here, the probability den-
sity can be approximated via kernel density estimation (Epanechnikov, 1969), an approach
termed probability density approximation (Holmes, 2015; Palestro et al., 2018; Turner &
Sederberg, 2013).
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3.4 Computational Methods

The modified SWIFT model was fitted independently to the available training datasets
(see below). For data obtained from each subject in the normal as well as their respec-
tive manipulated reading condition, a vector of 15 free model parameters (see Table 3.2)
was sampled using five Markov Chains Monte Carlo (MCMC) runs with 20,000 iterations
each. This number of free parameters is, first of all, a computational challenge for numerical
simulations, which could, however, be solved in our implementation, since corresponding
computer code was implemented parallelization using OpenMP 3.0 in the C programming
language.

Another remark with respect to the number of free parameter seems necessary. We would
like to argue that even with 15 free parameters considered here, the SWIFT model should
still be perceived as a parsimonious model. We are aiming at reproducing a number of spatial
and temporal observables (describing where and how long we fixate) from a single model
fit across participants and tasks. Those observables will include three fixation probabilities
and four fixation durations as functions of word length, saccade amplitude distributions, and
within-word landing positions as a function of launch-site distance. Let us consider the case
that all of those observables were analyzed statistically using multiple multivariate regression
analyses, for example, this will likely require an approximate number of roughly 20 degrees
of freedom. That would include two parameters per fixation probability and fixation duration
(each with one intercept and linear slope), three for saccade amplitudes (shape, scale and
proportion) and three for within-word landing positions (intercept, linear slope and quadratic
slope). From this perspective, the SWIFT model would be more parsimonious in degrees of
freedom and offer model parameters which are theoretically motivated and refer directly to
specific processes assumed to be underlying reading behavior. Additionally, SWIFT offers
explanation for more specific effects, discussed earlier by Engbert et al. (2005), such as
the fixation-duration inverted optimal viewing position (IOVP; Nuthmann et al., 2005; Vitu
et al., 2001) or lag and successor effects as indicators for spatially distributed processing
(Kliegl et al., 2006).

Our Monte Carlo approach was numerically challenging, mainly due to higher dimen-
sionality of the parameter space compared to the previous study (Seelig et al., 2020). After
evaluation of different MHMC sampling algorithms, the algorithm tested most convincingly
when fitting the SWIFT model was the DREAM (𝑍𝑆) algorithm (Laloy & Vrugt, 2012; ter
Braak & Vrugt, 2008; Vrugt et al., 2009), which we thus used for the present analyses. A
modified version of PyDREAM (Shockley, 2019), a Python implementation of DREAM(ZS) ,
was implemented in high-performance compute (HPC) facilities. Modifications of the im-
plementation were motivated by the necessity to re-evaluate accepted proposals due to the
stochasticity of the pseudo-marginal likelihood. The total computing time amounted to ap-
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Table 3.2
Fitted SWIFT Model Parameters

Parameter Description

𝛼 Baseline word difficulty

𝛽 Word frequency modulation

𝜔 Global decay during postlexical processing

𝛿 Non-dynamical processing span in letter spaces

𝜂 Word length modulation

𝛾 Target selection exponent

𝑀 Relative duration of the labile saccade stage for misplaced fixations

𝑡sac Relative duration of global saccade program

omn1 Intercept term for random oculomotor noisea

omn2 Slope term for random oculomotor noisea

𝑅 Relative duration of the labile saccade stage for well-placed refixations

sre1 Intercept term for saccadic range error for forward fixations and skippingb

sre(RF)
1 Intercept term for saccadic range error for refixationsb

sre(FS)
2 Slope term for saccadic range error for forward fixationsb

sre(RF)
2 Slope term for saccadic range error for refixationsb

sre(SK)
2 Slope term for saccadic range error for skippingsb

𝜏n/l Mean durations of the labile and non-labile saccade programsc

Note. aParameters omn1 and omn2 can be defined separately for each saccade type. All
saccade types were assigned the value of the same coupled parameter. b Parameters sre1 and
sre2 can be defined separately for each saccade type. We defined coupled parameters and
chose the same value for the mentioned saccade types. For regressions, the parameters were
set to sre1 = sre2 = 0 to disable saccadic range error. cParameters 𝜏n (for the non-labile stage)
and 𝜏l (for the labile stage) can be defined separately. We chose to couple the parameters so
that 1

2𝜏l = 𝜏n = 𝜏n/l.
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prox. 10,000 core hours, scaling to 3.5 hours total run time on 72 independent parallel nodes
with 40 cores per node.

Bayesian model fitting requires the definition of priors, which are probability distribu-
tions describing plausible parameter values. In the SWIFT model, we have expectations
on the ranges of plausible parameter values but, due to lack of prior research, no informed
knowledge how these expectations would be distributed within those ranges. Therefore, we
used weakly informative truncated Gaussian priors with mean 𝜇 and standard deviation 𝜎,
truncated at 𝜇−𝜎 and 𝜇+𝜎, where the truncation points are equal to the respective range of
plausible parameter values and 𝜇 to their respective mean (see Figure 3.6). We chose trun-
cated Gaussian priors over uniform priors to allow the model to converge on the center of the
range of plausible parameter values in the case that the data do not constrain that parameter’s
marginal likelihood.

3.5 Experiment

In order to demonstrate our approach and validate the model, we chose an experimental
study16 recently published by Chandra et al. (2020), in which experimental conditions were
established to induce strong effects on oculomotor control. These effects provide a challenge
to model generalizability (due to broad ranges of realized average fixation durations and
fixation probabilities) and to interindividual differences.

From each of 36 participants in the experiment, eye trajectories were recorded in a normal
reading condition (N) and in one of four manipulated reading conditions with manipulated
visual layout. Each of the manipulated reading conditions altered the visual representation of
the items by scrambling letters (sL), reversing letter order within the word (iW), mirroring the
entire word (mW) or mirroring the individual letters within the word (mL). Table 3.1 contains
example items for each of the experimental conditions. Chandra et al. (2020) showed that
the manipulated reading conditions have significant and specific effects on reading, which
vary considerably between participants.

3.5.1 Data Preprocessing

From the initially recorded data, all trials including blinks were discarded. We used the
velocity-based algorithm by Engbert et al. (2015) to detect saccades and fixations in the raw
data. We removed single fixations with durations below 40 ms, landing outside the text
rectangle, or shorter than one character space. Trials were cut off after either of the last
two words of the item had been fixated, keeping subsequent refixations if any and keeping
the full sequence if those words were not fixated at all. Ultimately, trials were excluded if

16The experimental data are available at https://osf.io/bmvrx/.

https://osf.io/bmvrx/


(3.6) Results 71

they contained fixations with durations greater than 99.5% of all fixation durations in that
experimental condition. We thus excluded trials with fixation durations over 900 ms for
normal reading (N), 1605 ms for mirrored letters (mL), 1892 ms for scrambled letters (sL),
2518 ms for inverted words (iW), and 3170 ms for mirrored words (mW).

For each subject in each condition, remaining datasets were split into a fitting (training)
and validation (test) dataset. Trials within each dataset were shuffled, keeping the sequence
of fixations within a trial intact, and the split criterion incrementally shifted trial by trial until
70% of all fixations for that subject in that condition fell under the criterion. Those were
marked as the training dataset to which SWIFT should be fitted. The remaining 30% were
marked as the test dataset. This ensured that for each subject and condition there was an
approximately equal ratio of data for fitting and for model validation.

3.6 Results

We investigated the SWIFT model for a range of reading tasks using an advanced method
for parameter inference. Consequently, our results refer to both methodological and reading-
related aspects. First, we present likelihood profiles to demonstrate the validity of the like-
lihood function. Next, we simulate data using the SWIFT model and investigate parameter
recovery based on our methods to check the identifiability of model parameters. Second,
we present summary statistics for the experimental results (Chandra et al., 2020) and apply
SWIFT parameter inference to the corresponding fixations sequences in the training data set.
Posterior predictive checks are obtained for the posteriors on model parameters applied to
the test data. Finally, we present a statistical analysis of model parameter estimates across
participants and experimental conditions.

3.6.1 Likelihood Profiles

We start our analyses with a numerical test of the likelihood function. Likelihood pro-
files are generated by varying only one of the model parameters along an informative inter-
val while holding constant all other parameters. The resulting likelihood curvature should
be dominated by the effect of the varied parameter. For a simulated dataset with known
(true) parameter values, we evaluate a spatial and a temporal likelihood component (𝐿spat

and 𝐿temp, respectively, Equation 3.5) as well as the combined likelihood (𝐿𝑀), which is ex-
clusively used for further fitting purposes. As shown below, likelihood profiles (a) peak at the
true value, (b) have identical maxima for simulated data, and (c) show selective influences on
the spatial vs. temporal component for parameters that are designed to have predominantly
spatial vs. temporal effects. Severe divergence would necessitate a revision of the likelihood
function, which is not the case here (see Figure 3.4).
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Figure 3.4
Centered Likelihood Components for Selected Model Parameters
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3.6.2 Parameter Recovery

While the inspection of likelihood profiles validates the likelihood itself, a parameter
recovery study additionally validates the sampling procedure, which is another necessary
precondition for fitting the model to empirical data. We generated 48 datasets for which the
selected parameter values (i.e., the “true” values for the recovery analysis) were randomly
and independently sampled from the chosen prior distributions; we assumed uncorrelated
parameters for this analysis.

We fitted the model to each generated dataset, using the same priors. Subsequently, we
calculated 60% highest posterior density intervals (HPDIs) for each parameter and dataset in
order to evaluate whether the true value was recovered, i.e., included in the credible interval.
As can be seen in Figure 3.5, most true values are recovered reliably. Parameters 𝛽, 𝜂,
log10𝜔, and 𝛿 appear to have a somewhat systematic bias, possibly due to their interactions
with other model parameters. Fitted parameter values in biased regions should therefore be
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Figure 3.5
Scatterplot of True and Recovered Parameters With 60% HPDIs
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interpreted with caution. Overall, however, these results lend support to the computational
faithfulness of the model and the method of statistical inference. We therefore proceed to
fitting the model to the empirical datasets.

3.6.3 Experimental Data: Summary Statistics

In Table 3.3, we report summary statistics derived from the experimental data published
by Chandra et al. (2020). The manipulated reading conditions are associated with signifi-
cantly different patterns in fixation probabilities and durations compared to the normal read-
ing condition. Moreover, high standard errors (in parentheses) suggest high between-subject
variability overall, in particular, in the manipulated reading conditions. Thus, the experimen-
tal data pose a challenge for our mathematical model.

With regard to accuracy in response to the comprehension questions asked after each
session, subjects answered an average of 2.58 (𝑆𝐸 = 0.115) out of three correctly in the
normal reading (N) condition. In the manipulated reading conditions, those were 2.44 (𝑆𝐸 =

0.176) for mirrored letters, 2.11 (𝑆𝐸 = 0.261) for scrambled reading, 2.89 (𝑆𝐸 = 0.111) for
reversed letters, and 2.78 (𝑆𝐸 = 0.147) for mirrored words. A linear regression analysis
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Table 3.3
Empirical Means and Standard Errors in Summary Statistics Aggregated Across Subjects

Metric Normal Mirrored letters Scrambled Reversed letters Mirrored words

Fixation probabilities
Regression .035 (.004) .036 (.007) .040 (.009) .029 (.006) .057 (.013)
Refixation .097 (.006) .203 (.018) .148 (.020) .246 (.044) .240 (.039)
Skipping .267 (.011) .156 (.024) .181 (.018) .079 (.019) .113 (.023)

Fixation durations
Gaze 287.4 (5.7) 455.5 (31.7) 414.7 (30.2) 843.0 (67.5) 885.4 (68.1)
First-fix. 251.1 (5.6) 313.8 (20.8) 289.1 (19.2) 538.9 (57.4) 546.6 (73.2)
Refixation 224.7 (6.0) 311.3 (21.9) 315.6 (23.9) 504.5 (59.1) 520.6 (50.6)
Single-fix. 248.2 (5.7) 313.5 (21.1) 287.4 (18.3) 540.5 (57.4) 539.6 (68.3)

Note. Estimates are means of fixation probability or duration subject means with standard
errors in parentheses.

indicated none of these as statistically different from the accuracy observed in the normal
reading condition.

3.6.4 Parameter Estimates

For every participant of the experiment, posteriors were generated using MCMC sam-
pling in both the normal and a manipulated reading conditions. In Figure 3.6, all samples
were aggregated across subjects for the five experimental conditions. The corresponding dis-
tributions indicate how the posteriors deviate, on average, between experimental conditions.
It appears that some model parameters (e.g., sre(RF)

1 ) converge on similar values, while others
(e.g., 𝛿) differ quite substantially between experimental conditions.

While the likelihood-based Bayesian inference provides an objective approach to statisti-
cal inference on model parameters, it is important to note that the convergence of parameters
to specific posterior distributions does not prove the model’s adequacy in terms of experi-
mentally observed effects. Therefore, the numerical computation of posteriors needs to be
combined with an analysis of the model behavior with respect to relevant characteristics of
fixation sequences.

3.6.5 Posterior Predictive Checks

Next we validate that the estimated parameters drive the model’s behavior into psycho-
logically plausible regimes and, thus, provide an explanation for reading behavior across
experimental conditions. These posterior predictive checks can be accomplished by cross-
validation. Having fitted the model to a portion of the data (training dataset) only, we can
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Figure 3.6
Posterior Densities for All Fitted Model Parameters
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Table 3.4
Change in MSE Across Subject-Level Summary Statistics Between Posterior Sampling and
Point Estimates

Metric Normal Mirrored letters Scrambled Reverse letters Mirrored words

Fixation probabilities
Skipping −48.0% −73.7% −11.0% +21.7% −64.8%
Refixation −40.6% −68.3% −37.2% −14.7% −32.4%
Regression −39.6% −21.3% −35.6% −45.0% −18.1%

Fixation durations
First-fix. +36.7% +17.7% −60.5% −89.7% −99.2%
Refixation −46.0% +59.9% −13.7% −83.3% −98.8%
Gaze −12.5% −80.2% −66.2% −89.8% −97.6%
Single-fix. +17.3% +15.2% −62.5% −89.8% −99.1%

Note. Negative percentages are reductions of the mean squared error (MSE) when using
posterior sampling relative to the MSE when using point estimates. Positive percentages are
increases.

compare summary statistics of derived model simulations to the remaining experimental data
(i.e., test or validation datasets).

For each subject, we obtained empirical summary statistics from the observed (empiri-
cal) eye trajectories of the test dataset and simulated summary statistics from eye trajectories
generated for the same trials. Instead of using point estimates for the validation checks,
we randomly sampled parameter configurations from the posterior parameter distributions.
For each subject and condition, 20 distinct parameter configurations 𝜽 were randomly sam-
pled from the respective posterior distribution, i.e., the fitted posterior for that subject in that
condition. For each sampled 𝜽 , fixation sequences were generated for the trials previously
withheld from fitting. Simulated summary statistics were derived as the average of each
respective summary statistic across simulated datasets for each respective subject and con-
dition. We employed this technique in order account for the full covariance structure of the
parameter distributions and thus the full range of plausible model behavior. As can be seen
in Table 3.4 and Figure 3.7, the mean squared error across subject-level summary statistics
is considerably reduced for most of the combinations of dependent variables and conditions.
As a result, simulated quantities more closely approximate the empirical summary statis-
tics when sampling parameter combinations from the full posterior than when using point
estimates for each parameter.

Spatial summary statistics. For the evaluation of spatial aspects of model validation,
we analyze fixation probabilities. In most summary statistics, SWIFT can reliably reproduce
different reading characteristics. Especially notable are skipping and refixation probabilities
in all experimental conditions (see Figure 3.8), including word length effects on those at a
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Figure 3.7
Comparison of Simulated Summary Statistics When Sampling From the Posterior Vs. using
Point Estimates
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Figure 3.8
Empirical and Simulated Spatial Summary Statistics (Fixation Probabilities) for Different
Experimental Conditions, Aggregated Across Subjects, As a Function of Word Length
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Figure 3.9
Correlation Between Empirical (Horizontal Axis) and Simulated (Vertical Axis) Spatial
Summary Statistics (Fixation Probabilities)
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Figure 3.10
Empirical and Simulated Saccade Amplitudes Aggregated Across All Subjects in Each
Experimental Condition
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Figure 3.11
Empirical and Simulated Landing Positions for Single Fixations, First Fixations, and
Second Fixations
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Table 3.5
Correlations Across Subjects for Empirical Vs. simulated Summary Statistics

Metric Normal Mirrored letters Scrambled Reverse letters Mirrored words

Fixation probabilities
Skipping 0.91 (.001) 0.86 (.004) 0.52 (.148) 0.20 (.605) 0.76 (.018)
Refixation 0.65 (.001) 0.81 (.009) 0.70 (.038) 0.27 (.485) 0.73 (.026)
Regression 0.88 (.001) 0.74 (.023) 0.93 (.001) 0.59 (.094) 0.70 (.037)

Fixation durations
First-fix. 0.94 (.001) 0.98 (.001) 0.89 (.002) 0.95 (.001) 0.92 (.001)
Refixation 0.63 (.001) 0.97 (.001) 0.93 (.001) 0.91 (.001) 0.54 (.134)
Gaze 0.90 (.001) 0.96 (.001) 0.81 (.009) 0.91 (.001) 0.81 (.009)
Single-fix. 0.94 (.001) 0.98 (.001) 0.87 (.003) 0.95 (.001) 0.90 (.002)

Note. Estimates are two-sided Pearson correlation coefficients with 𝑝S-values in parenthe-
ses (bold font for 𝑝S < 0.01).

global level. There is, however, still some divergence with regard to regression probabilities,
namely that the models predicts too few regressions, in particular, in the mirrored letter and
scrambled letter conditions.

To analyze that the model captures and reproduces between-subject variability, we used
scatterplots and correlation analyses of summary statistics across subjects between simulated
and experimental data. A significant correlation can be interpreted as statistical evidence that
the approach was successful with regard to the respective summary statistic. According to
this criterion, spatial summary statistics are reliably reproduced for the set of participants.
As can be seen in Figure 3.9 and Table 3.5, most conditions, the averages across subjects (el-
lipsis midpoints) correlate closely across statistics and the subject-level variance (covariance
within each ellipsis) is captured very reliably.

Moreover, results for saccade amplitudes are clearly important (see Figure 3.10), support-
ing the notion of Gamma-distributed saccade length distributions. In contrast to the previous
Gaussian saccade amplitudes (see Figure 3.3), the bimodality of the distribution is clearly
visible for all experimental conditions. Interestingly, the model can even capture differences
between experimental conditions, with saccade amplitudes being more widely spread in the
right-to-left reading conditions compared to the baseline or other left-to-right conditions.
Figure C.1 in Appendix C also shows a comparison to previously Gaussian distributed sac-
cade amplitudes, which fit the data less satisfactorily. As depicted in Figure 3.11, the model
can also capture and reproduce word length effects on within-word landing positions.

Temporal summary statistics. Similarly for temporal summary statistics, global av-
erages and slight word-length effects are reproduced quite reliably for the test datasets in
fixation durations. As for spatial summary statistics, there is some divergence for the right-
to-left conditions (reverse letters and mirrored words, see Figure 3.12). When compared at
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a by-subject level (see Figure 3.13 and Table 3.5), it is clear that for most conditions, the
model can again successfully replicate different temporal reading measures. This can most
clearly be seen for fixation durations in the normal reading condition (N).

3.6.6 Statistical Evaluation of Model Parameters

The modeling of interindividual differences permits a new analysis for cognitive models
of eye-movement control, since we are able to observe the specific responses of participants
to experimental conditions. We carried out a multiple multivariate linear regression analysis
(see Figure 3.14) for model parameters to statistically infer how and which aspects of the
reading manipulations caused which type of change in reading pattern.

As linear regressions were conducted by model parameter, to control for multiple test-
ing, 𝑝-values were corrected according to Šidák (1967), denoted by 𝑝S. In order to test how
specific characteristics of the experimental manipulations had an effect on model parame-
ters, we tested four null hypotheses, from which we derived a contrast matrix for regression
analysis using the hypr package (Rabe et al., 2020; Schad et al., 2020) in the R programming
language. The tested null hypotheses are given as

𝐻01 : 𝜇mL = 𝜇N

𝐻02 : 𝜇iW = 𝜇N

𝐻03 : 𝜇mW = 𝜇N + (𝜇mL − 𝜇N) + (𝜇iW − 𝜇N)
𝐻04 : 𝜇sL = 𝜇mL ,

where each null hypothesis relates to one contrast in a linear regression model. 𝐻01 and
𝐻02 test the effects of letter flipping (mL, mirrored letters condition) and word inversion
(iW, reverse letters condition), respectively, with regard to the baseline. 𝐻03 tests whether
the mirrored words condition (mW), which combines characteristics of letter flipping and
word inversion, is different from an addition of the effects of the letter-flipping (mL) and
word inversion (iW) conditions to the baseline. As scrambled reading only shares reading
direction (i.e., whether letter sequences have been inverted or not) with the letter-flipping
condition (mL) but no other characteristics with any other condition other than the baseline,
𝐻04 was formulated to test whether the effects on model parameters of scrambled reading
are statistically distinct from the mirrored letters condition (mL).

Effects of inverting words. The inversion of the sequences of letters within words is
associated with a narrower processing span 𝛿 (𝑏 = −8.91, 𝑝S < 0.001) compared to normal
reading. A reduced processing span is psychologically plausible because of the higher visual
difficulty. The reduced processing span is associated with smaller optimal saccade ampli-
tudes for forward fixations and skippings sre1 (𝑏 = −2.46, 𝑝S < 0.001) as well as refixations
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Figure 3.12
Empirical and Simulated Temporal Summary Statistics (Fixation Durations) for Different
Experimental Conditions, Aggregated Across Subjects, As a Function of Word Length
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Figure 3.13
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Figure 3.14
Linear Regression Results for Model Parameters
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(sre(RF)
1 , 𝑏 = −0.59, 𝑝S < 0.003), which contribute to the reduced average saccade length.

Moreover, saccade execution is less sensitive to the actual target distance for refixations
sre(RF)

2 (𝑏 = 0.15, 𝑝S < 0.044) compared to refixations in normal reading but more sensitive
for forward saccades sre(FS)

2 (𝑏 = −0.18, 𝑝S < 0.030). This indicates more well-placed for-
ward fixations and fewer well-placed refixations than in the normal reading condition. In
default of knowing which empirical fixation is well-placed or not, such a pattern is difficult
to test experimentally. Nevertheless, it could indicate that the certainty about a word’s loca-
tion before it is fixated is higher than in normal reading, possibly due to the many refixations.
However, once it has been fixated, the difficulty of the manipulation decreases the certainty
for the optimal within-word target location below the level observed in normal reading.

With regard to the timing of saccades, the global timer 𝑡sac is shorter than in the baseline
(𝑏 = −0.34, 𝑝S < 0.002), which in itself would cause more frequent saccades. However,
longer labile and non-labile saccade programs 𝜏n/l (𝑏 = 0.37, 𝑝S < 0.001) can counteract
this effect, as the global timer reaching threshold during the labile saccade stage can cancel
the saccade and actually cause a longer fixation duration. In addition, the global timer is
significantly slower than in the normal reading condition (parameter 𝑅, 𝑏 = 0.15, 𝑝S < 0.007),
leading to longer refixation durations in relation to baseline fixation durations.

Effects of letter flipping. Analogous to inverting letter sequences, the horizontal flip-
ping of letters at their respective (normal or inverted) location is also associated with longer
labile and non-labile saccade programs 𝜏n/l (𝑏 = 0.26, 𝑝𝑆 < 0.001). However, effects on 𝛿,
sre1, sre(RF)

1 or 𝑡sac are not significant.

In contrast to the inversion of letter sequences, flipping letters, however, causes the global
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saccade timer to slow down after misplaced fixations (parameter 𝑀 , 𝑏 = 0.30, 𝑝S < 0.001).
Potentially related to this is the less precise execution of saccades to intended forward fix-
ations, skippings, or refixations, as suggested by greater SRE slopes and thus reduced ocu-
lomotor control, sre(FS)

2 (𝑏 = 0.20, 𝑝S < 0.002), sre(SK)
2 (𝑏 = 0.19, 𝑝S < 0.001), and sre(RF)

2
(𝑏 = 0.09, 𝑝S < 0.017), respectively.

Interactive effects. When reversed letter sequence and mirrored letters are combined,
i.e., the word is mirrored as a whole rather than by letters individually, most model param-
eters are affected additively, given that the interaction terms are not statistically significant.
In two timing parameters, however, there were significant interaction effects. Significant in-
teractions in 𝑀 (𝑏 = −0.31, 𝑝S < 0.010) and 𝜏n/l (𝑏 = −0.26, 𝑝S < 0.020) effectively cancel
out the magnitude of the effect of mirrored letters on those parameters. This result might
indicate that the presence of reversed letter order overrides the effects of mirroring letters in
terms of saccade timing.

Effects of scrambling words. None of the effects of scrambled letters on the model
parameters was significant. Given the null hypothesis comparing against letter flipping, this
means that there is no statistical evidence for scrambling letters being different from letter
flipping with regard to SWIFT model parameters.

3.7 Discussion

Following a principled Bayesian workflow, we fitted the SWIFT model (Engbert et al.,
2005) in a new version with oculomotor improvements to experimental data from 36 subjects
who read text in a baseline (control) condition and in four different reading conditions with
manipulated text layout.

Our approach is fundamentally based on a recently proposed likelihood function for the
SWIFT model (Seelig et al., 2020), which is a prerequisite for Bayesian inference. This
is a major advance compared to earlier parameter fitting based on ad-hoc discriminating
statistics, which were mainly taken over from experimental research and not theoretically
motivated (Engbert et al., 2005). The lack of objective statistical treatment is characteristic
for the field of dynamical eye-movement modeling. For example, the E-Z Reader model (Re-
ichle et al., 1998) has been investigated in the context of different reading and non-reading
tasks (Pollatsek et al., 2006; Reichle et al., 2012), however, without objective statistical pa-
rameter inference. Therefore, the latter results can be interpreted as viability tests rather than
statistically approved evidence. In our current approach, however, models are fitted on the
basis of an objective likelihood and summary statistics are not used as optimization targets
but as model validation criteria after parameter fitting.

We demonstrated that model parameters could be estimated reliably—even after split-
ting data into training and test data. While interindividual differences are an important
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topic in eye movement research during reading, so far dynamical cognitive models could
not be fitted to individual datasets. Therefore, our results suggest that the Bayesian approach
will strengthen cognitive modeling of eye-movement control to include the prediction of
interindividual differences.

As a first step, we investigated computational faithfulness of the model by examining
likelihood profiles and recovering known (true) parameter values from simulated data. The
results indicated that the likelihood and sampling algorithm converges reliably for almost
all model parameter and thus yielded plausible credible intervals. Recovery studies for
model parameters represent a substantial progress to the field of cognitive modeling of eye-
movement control (cf. Engbert et al., 2005).

Next, the model was fitted to individual data in the pre-defined training dataset. To
investigate whether the estimated parameters can in fact account for the observed behavior,
we simulated eye trajectories for the withheld test subsets and compared summary statistics
between empirical and simulated data. The presented temporal and spatial summary statistics
(fixation durations and fixation probabilities, respectively) indicate a convincing model fit
to the data. In particular, in the normal reading condition and those with normal reading
direction (letter flipping, mL, and scrambled letters, sL), the model was shown to predict
empirical fixation durations and probabilities very reliably, across groups and subjects.

An important improvement of the current computational approach relates to a balance be-
tween underlying cognitive and oculomotor processing. While earlier computational models
were in a first step ignoring oculomotor processes (e.g., Engbert et al., 2002; Reichle et al.,
1998) and later extended to include oculomotor variability (Engbert et al., 2005; Reichle
et al., 1999), our approach is fully integrating oculomotor and cognitive models on the level
of parameter inference. This might be a promising approach to future integration of further
processes, e.g., word recognition (Snell et al., 2018) or higher-level language processing
(Reichle et al., 2009). We suppose that such an integration will improve the predictive and
explanatory power in various facets of the model dynamics, in particular with regard to
regressive saccades, as those may be partly triggered by top-down linguistic processes (En-
gelmann et al., 2013) in addition to baseline regressions observed even during scanning of
meaningless strings (Nuthmann & Engbert, 2009).

In general, we observed that the high reliability is partly achieved by simulating behavior
for different parameter configurations sampled from the fitted posterior distributions rather
than using only point estimates. This approach makes use of the distributional properties
of the fitted model parameters such as their covariance structure. Consequently, parameter
configurations that were used for simulating fixation sequences were in their entirety more
representative of the range of explainable behavior under the model assumptions.

Given that the model can capture the differences in summary statistics between reading
conditions and that all model parameters are theoretically motivated, the differences in model
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parameters between experimental conditions can help explain why reading behavior differs
between those. Essentially, this approach is similar to statistical models such as regression
models in which the parameters are effects on the dependent variable. In this approach,
however, the parameters are directly related to the assumed underlying cognitive processes
and their variability.

Our results also provide specific insights into the reading patterns for manipulated text
layouts. In an analysis of model parameters between experimental conditions, we observed
statistically significant changes in model parameters that indicate distinct adaptations to
processing demands as well as temporal control of fixation duration and oculomotor er-
rors. Inverting letter sequences is associated with a significant reduction of the processing
span, which is a psychologically plausible adaptation that leads to a reduced average saccade
length and is related to other, more specific changes. This prediction could be tested in ex-
periments using the moving window paradigm (see Starr & Rayner, 2001, for an overview).
Similarly, letter flipping slows the saccade timer and produces a number of other effects,
which can be mainly associated with an increased processing difficulty and heightened un-
certainty about word locations. Our results also indicated two significant interactions of
letter flipping and reversed letter sequences (i.e., flipping the word as a whole) on model pa-
rameters, suggesting that the presence of both manipulations may lead to the effects of letter
flipping being overridden by the effects of reversed letters. Interestingly, the well-known
scrambled-letter manipulation is largely similar to the letter-flipping condition or at least not
significantly different.

For future modeling work, it is important to note that we have not yet taken advantage
of hierarchical modeling techniques. We expect that a hierarchical Bayesian approach will
noticeably improve model fits, especially for cases in which less data was available due to
exclusions etc. In addition, as hierarchical models are fitted to all subjects in concert, it
would be possible to reduce degrees of freedom by limiting the number of parameters vary-
ing between subjects. Due to the stochasticity of the likelihood function, however, numer-
ical MCMC algorithms are related to a subset of MCMC methods. For example, gradient-
based MCMC methods such as Hamiltonian Monte Carlo (HMC) are precluded in the current
model formulation (Seelig et al., 2020).

In the scope of this research, we make predictions for data the model has not been fitted
to as part of the model validation procedure. Future research should evaluate how reliable
predictions are for unseen experimental conditions and subjects, e.g., by first predicting pa-
rameters based on pooled inferences of a subject’s behavior in other conditions and/or other
subjects’ behavior in the condition to be predicted and subsequent model simulations for
validation. Our regression analyses could in principle be used to predict model parame-
ter values for a subject and/or condition and these should subsequently be used to simulate
trials, from which summary statistics can be derived and compared to withheld data. The
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successful posterior predictive checks and other validity checks suggest that this is generally
possible. However, it should be noted that our fitted and “predicted” data originate from each
respective same subject and condition.

To conclude, we presented results from an improved version of the SWIFT model, eval-
uated against a challenging data set, and fitted along a Bayesian workflow. The Bayesian
approach turned out to be sensitive enough to reproduce effects at the level of individual sub-
jects and across a set of strong experimental manipulations of text layout. Point estimates of
model parameters over the set of subjects provided theory-driven qualitative and quantitative
explanations for variability in reading behavior as induced by experimental manipulations.
This approach can in principle be used with other dynamical cognitive models (Schütt et al.,
2017) and provides a basis for model comparisons within and between different models and
theories.
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Chapter 4

SEAM: An Integrated Activation-Coupled Model
of Sentence Processing and Eye Movements in

Reading

This chapter has been submitted for publication to the Journal of Memory and Language
and posted as a preprint: Rabe, M. M., Paape, D., Mertzen, D., Vasishth, S., & Engbert,
R. (2023). SEAM: An integrated activation-coupled model of sentence processing and eye

movements in reading. https://doi.org/10.48550/arXiv.2303.05221

Abstract

Models of eye-movement control during reading, developed largely within psychology,
usually focus on visual, attentional, lexical, and motor processes but neglect post-lexical
language processing; by contrast, models of sentence comprehension processes, developed
largely within psycholinguistics, generally focus only on post-lexical language processes.
We present a model that combines these two research threads, by integrating eye-movement
control and sentence processing. Developing such an integrated model is extremely chal-
lenging and computationally demanding, but such an integration is an important step toward
complete mathematical models of natural language comprehension in reading. We com-
bine the SWIFT model of eye-movement control (Seelig et al., Journal of Mathematical

Psychology, 95, 2020, Article 102313) with key components of the Lewis and Vasishth sen-
tence processing model (Lewis and Vasishth, Cognitive Science, 29, 2005, pp. 375–419).
This integration becomes possible, for the first time, due in part to recent advances in suc-
cessful parameter identification in dynamical models, which allows us to investigate profile
log-likelihoods for individual model parameters. We present a fully implemented proof-of-
concept model demonstrating how such an integrated model can be achieved; our approach
includes Bayesian model inference with Markov Chain Monte Carlo (MCMC) sampling as a
key computational tool. The integrated model, SEAM, can successfully reproduce eye move-
ment patterns that arise due to similarity-based interference in reading. To our knowledge,
this is the first-ever integration of a complete process model of eye-movement control with

https://doi.org/10.48550/arXiv.2303.05221


(4.1) Introduction 89

linguistic dependency completion processes in sentence comprehension. In future work, this
proof of concept model will need to be evaluated using a comprehensive set of benchmark
data.

4.1 Introduction

What is the relationship between sentence processing and eye movements during read-
ing? As an answer to this question, Just and Carpenter (1980, pp. 330–331) famously coined
the eye-mind assumption, which states that “the eye remains fixated on a word as long as the
word is being processed”, and that “there is no appreciable lag between what is being fixated
and what is being processed”. But what does it mean for a word to be “processed”? Just and
Carpenter’s model of reading has three stages: Encoding of the word form and lexical access,
identification of relationships between the words in a sentence (such as agent-action-object),
and integration with information from previous sentences. Once these three stages are fin-
ished, the eyes proceed to the next word.17 Just and Carpenter’s processing model is highly
serial, which matches most readers’ subjective experience that sentences are processed in an
incremental, left-to-right fashion (Snell & Grainger, 2019). However, while readers do tend
to make fixations incrementally in the reading direction, fixation sequences are not always
in serial order: Instead of systematically shifting the gaze from one word to the next – some-
thing that only happens in about 50% of fixations – readers also skip words, refixate the same
word, or regress to previous words (Kliegl et al., 2004; Rayner, 1998).

This more complicated picture of reading aligns with the fact that the structure of many
sentences in natural language does not correspond to simple agent-action-object sequences.
Consider a sentence like (1), taken from Mertzen et al. (2023):

(1) It turned out that the attorney whose secretary had forgotten that the visitor was impor-
tant frequently complained about the salary at the firm.

In this sentence, there are several dependencies between non-adjacent words, most strik-
ingly the long-distance dependency between the noun attorney and the verb complained. It
is difficult to argue that the processing of the word attorney is finished once the preamble
It turned out that the attorney . . . has been read: It is clear that a verb must arrive at some
point of which attorney is the subject. Complete integration of attorney can thus only be
achieved when complained is read after ten intervening words have been processed. It is
therefore clear that the eyes will have to move forward even if the current word has not been
completely integrated into the sentence structure.

17There is a fourth stage in the model, called wrap-up, which only occurs at the end of a sentence, and whose
purpose is to finish any processing that could not be completed at a previous point during reading (but see
Warren et al., 2009, for a critical discussion).
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A well-established assumption in sentence processing is that a noun like attorney is held
in working memory until the dependency is completed, and needs to be retrieved when the
verb is reached (Gibson, 1998, 2000; Lewis et al., 2006). A strong interpretation of the
eye-mind assumption would predict that, given that the processing of attorney is finalized at
complained, readers should refixate attorney once lexical access of complained is complete.
However, this is not what usually happens: While readers do make more regressions in
more complex sentences that involve memory retrievals (e.g., Gordon et al., 2006; Jäger
et al., 2015; Lee et al., 2007; Mertzen et al., 2023), regressive eye movements nevertheless
occur only in a minority of trials. Furthermore, even in difficult sentences that may require
multiple passes to parse correctly, readers do not necessarily regress to the most syntactically
informative words in the sentence (e.g., Christianson et al., 2017; Engelmann et al., 2013;
von der Malsburg & Vasishth, 2011; von der Malsburg & Vasishth, 2013). Thus, while there
is undoubtedly a connection between sentence processing and eye movements (Clifton et al.,
2007; Frazier & Rayner, 1982; Rayner, 1998), it is much less direct than posited by the strong
version of the eye-mind assumption, as Reichle et al. (2009) have pointed out. On the other
hand, there is evidence that readers can and do move their eyes into the vicinity of critical
words (Inhoff & Weger, 2005; Meseguer et al., 2002; Mitchell et al., 2008; Schotter et al.,
2014; Weger & Inhoff, 2007), which suggests the need for a model with some linguistically-
mediated guidance of regressive eye movements.

Psycholinguistic studies of sentence processing typically rely on aggregated reading mea-
sures such as total fixation times, and models of language processing during reading, such as
the classic Just and Carpenter (1980) model, usually ignore the complexity of eye-movement
control. However, highly detailed models of eye-movement control do exist. An impor-
tant line of work in cognitive psychology seeks to explain reading processes at the level of
individual fixations and saccades by unpacking the underlying dynamics of the latent sub-
processes involved. Several influential mathematical models of eye-movement control exist;
a prominent example is the E-Z Reader model (Reichle et al., 2003). These models have
historically focused on the effects of word-level properties such as word length, frequency,
and predictability, and do not take into account higher-level processes such as linguistic de-
pendency completion. However, there have been several attempts at integrating models of
sentence processing difficulty with eye-movement control, including E-Z Reader (Reichle
et al., 2009), the model of Engelmann et al. (2013), and Über-Reader (Reichle, 2021; Vel-
dre et al., 2020). These models focus on different aspects of sentence processing, and have
been evaluated against corpus data, such as the Schilling corpus (Schilling et al., 1998). Two
models that investigate the interaction between eye-movement control and sentence com-
prehension using data from planned experiments are reported in Vasishth and Engelmann
(2022) and Dotlačil (2021); both these investigations use a highly simplified version of E-Z
Reader, that is, the Eye Movements and Movement of Attention (EMMA) model embedded
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within the ACT-R architecture (Salvucci, 2001). The simplified EMMA model has impor-
tant limitations; for example, as discussed in Engelmann et al. (2013), the model only allows
regressive eye movements to the preceding word.

All of these existing models do capture a range of selected empirical phenomena and
furnish important insights into the interaction between eye-movement control and sentence
parsing processes. However, to our knowledge, no model exists that uses a fully specified
mainstream model of eye-movement control that is integrated with a model of dependency
completion in language comprehension; furthermore, as far as we are aware, such a detailed
process model has never been evaluated using data from a planned psycholinguistic experi-
ment.

A major difficulty in developing a more complex integrated model is that a considerable
number of model parameters will need to be estimated using empirical data. For models of
such complexity, conventional methods like grid search will lead to intractability. In order
to implement such a complex model, Bayesian parameter estimation using the model’s like-
lihood function (or an approximation) provides a rigorous approach to statistical inference
(Rabe et al., 2021; Schütt et al., 2017). Two major advantages of the Bayesian approach
are that parameters can be regularized or constrained a priori, which makes computation
more efficient compared to the traditional grid search method, and that the uncertainty of
the parameter estimates can be taken into account when evaluating model fit. Regularization
makes parameter estimation more tractable, and incorporating the uncertainty of parame-
ter estimates gives a more realistic picture of model fit (Nicenboim et al., 2023). Although
Bayesian model fitting has been implemented for a basic reading model (Dotlačil, 2018), this
line of work currently still neglects many low-level physiological and higher-level cognitive
aspects of reading.

In this context, the major recent advance in Bayesian parameter inference for modeling
process-based models has been proposed by Rabe et al. (2021) and Seelig et al. (2020) (for
an overview, see Engbert et al., 2022). This line of work relies on the dynamical model of eye
movement control developed by Engbert et al. (2005), and demonstrates how the Bayesian
approach can be deployed in highly complex process models. Compared to other models
of eye-movement control in reading such as E-Z Reader (Reichle et al., 2003), SWIFT has
several advantages that make it a potentially better candidate for the purpose of integrat-
ing higher-level processing: It (1) is available for Bayesian parameter inference due to the
likelihood implementation (Rabe et al., 2021; Seelig et al., 2020), (2) has a time-dependent
word-activation field that can serve as the basis for memory encodings, and (3) has mecha-
nisms that allow for long-range regressions, which are of particular interest when investigat-
ing dependencies that span several words. SWIFT and E-Z Reader also differ with regard to
theoretical assumptions such as serial vs. parallel processing of words, but these are not our
primary focus. Based on the methodological advances by Rabe et al. (2021) and Seelig et al.
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(2020), we are able to find an objective answer to the question: Can the complex lower-level
cognitive and physiological principles of eye movements be integrated with a computational
model of higher-level linguistic processing, taking into account the cost of long-distance
dependency completion?

Below, we present the Sentence-Processing and Eye-Movement Activation-Coupled
Model (SEAM), a novel integrated model of sentence processing and eye movement control
in reading. By combining the Saccade-Generation With Inhibition by Foveal Targets
(SWIFT) model with the cue-based memory retrieval model proposed by Lewis and
Vasishth (2005), we can integrate spatially-distributed processing in eye movement control
with rule-based dependency completion in a Bayesian model-fitting framework. We carry
out model simulation using a principled Bayesian workflow (Schad et al., 2021) to
demonstrate the activation-based coupling between SWIFT and the Lewis and Vasishth
(2005) model. As a result, our model yields reliable Bayesian parameter estimates by
generating simulated data with known parameters, and then recovering these parameters
using the Bayesian parameter estimation approach.

We also fit SEAM to recently-published empirical data from an eye-tracking experiment
investigating similarity-based interference (Mertzen et al., 2023), providing model-driven
explanations for the observed eye movement patterns. Given that SEAM simulates time-
ordered fixation sequences, the model makes predictions for all spatial and temporal sum-
mary statistics that are relevant in the reading research literature (e.g., fixation probabilities,
landing positions/saccade amplitudes, and fixation durations/reading times). This capability
of the SEAM architecture makes it an important candidate model for theory development in
psycholinguistics.

We will first introduce the Lewis and Vasishth (2005) model of sentence processing, then
introduce the basic workings of SWIFT, and finally proceed to our integrated model SEAM.

4.1.1 The Activation-Based Model of Sentence Processing (Lewis & Va-
sishth, 2005)

During sentence reading, the human sentence processor has to incrementally integrate
individual words into a syntactic structure, based on which sentence meaning can be derived.
Lewis and Vasishth (2005) proposed a model of sentence processing (hereafter, we refer to
this model as LV05) that is based on the cognitive architecture ACT-R (Anderson & Lebiere,
1998; Anderson, 2005). In the LV05 model, incoming words are incrementally integrated
into syntactic constituents that are stored in memory as chunks. Memory chunks in LV05
carry information in the form of features, which can be used to access them in memory later
on. Chunks also have fluctuating activation values that are determined by recency and by
cue match during retrieval events. For instance, in a sentence like (2), as the sentence is read
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word-by-word, the noun phrases the robber and the policeman are stored as memory chunks
as soon as they are read. The verbs chased and escaped then each trigger retrievals of their
respective arguments from memory.

(2)

The robber that the policeman in the patrol car chased escaped.

subject

object
subject

Taking the retrieval at the verb escaped as an example, the dependency needs to be com-
pleted by searching working memory for a suitable memory chunk to serve as a syntactic
subject. The search process is cue-based, that is, the verb specifies a set of linguistic features
such as ±noun or ±animate to identify the correct dependent, and existing memory chunks
are reactivated based on their feature specifications. The best-matching candidate is usu-
ally retrieved, but because memory activation is noisy, misretrievals occasionally occur. In
addition, processing is slowed when multiple memory chunks, such as the robber and the

policeman in (2), match the retrieval cues and compete for activation, which is called the fan
effect (e.g., Anderson, 1990).

In LV05, the latency of a given retrieval is governed by a set of equations taken from
the ACT-R architecture (Anderson et al., 2004), which determine each chunk’s activation at
a given point in time. Suppose that a noun phrase, say the robber in (2), has been stored
in memory as memory chunk 𝑘 . When a retrieval is triggered while processing word 𝑛

(escaped) later on, chunk 𝑘’s activation value at word 𝑛 is calculated as

𝐴𝑘,𝑛 (𝑡) = 𝑆𝑘 (𝑡) +𝑃𝑘 (𝑡) +𝐵𝑘 (𝑡) , (4.1)

where 𝑆𝑘 is the memory association strength, 𝑃𝑘 is the mismatch penalty, and 𝐵𝑘 is the
chunk-specific base-level activation. The fan effects 𝜙𝑘𝑙 (𝑡) of competing retrieval candidates
of all 𝑙 features of memory chunk 𝑘 decrease the chunk’s activation strength, which also
depends on the 𝑆max (maximum activation strength) parameter, i.e.,

𝑆𝑘 (𝑡) =
∑︁
𝑙

[𝑆max − log𝜙𝑘𝑙 (𝑡)] . (4.2)

The fan effect variable 𝜙𝑘𝑙 (𝑡) is defined as the number of memory chunks with feature 𝑙 at
time 𝑡, including memory chunk 𝑘 itself so that 𝜙𝑘𝑙 (𝑡) ≥ 1.

The mismatch penalty decreases activation for all retrieval cues 𝑙 that do not match the cor-
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responding feature of memory chunk 𝑘 , i.e.,

𝑃𝑘 (𝑡) =
∑︁
𝑙

Δ𝑘𝑙 , (4.3)

where

Δ𝑘𝑙 :=


0 if cue𝑙 = feature𝑘𝑙

−𝑝 otherwise
(4.4)

and 𝑝 ≥ 0 is a free parameter specifying the mismatch penalty incurred by each unmatched
feature.

Chunks become active when words are encoded or when retrievals are performed, and
then start to decay. The resulting base-level activation at time 𝑡 is given by

𝐵𝑘 (𝑡) =
∑︁
𝑖

exp (−𝑑 · ⌊𝑡 − 𝑡𝑖𝑘⌋) (4.5)

where 𝑑 is a decay parameter and 𝑡𝑖𝑘 is the 𝑖-th memory access (encoding or retrieval) of
memory chunk 𝑘 .

Note that in our implementation, in contrast to the original LV05 model, 𝑆𝑘 , 𝜙𝑘𝑙 , and
𝑃𝑘 are functions of time. This is because the memory schedule, that is, the set of words
encoded in memory chunks, changes dynamically each time a word is encoded in memory.
As encodings can happen at any time 𝑡, the memory schedule, and therefore the predicted
fan effects and penalties, may change even while a retrieval is ongoing. This assumption is
necessary to allow for dependency resolution in the case that a retrieval trigger is processed
before a potential target has been stored in memory.

Activation values are subject to stochastic noise controlled by the ans (activation noise)

parameter, so that

𝐴′
𝑘,𝑛 (𝑡) ∼ Logistic

(
𝐴𝑘,𝑛 (𝑡),ans

)
. (4.6)

The memory chunk 𝑘★𝑛 with the highest memory activation 𝐴′
𝑘,𝑛

is matched for the re-
trieval 𝑛, and the retrieval latency is computed as

𝑡𝑘,𝑛 = 𝐹 · exp
[
−𝐴′

𝑘,𝑛 (𝑡)
]
, (4.7)

where 𝐹 is the latency factor, a free linear scaling parameter.

Equation (4.7) can be used to make quantitative predictions for reading times, and the
LV05 model has been used to model a variety of phenomena in the sentence-processing
literature (for a review, see Engelmann et al., 2019; Vasishth et al., 2019). However, the
LV05 model can only be straightforwardly applied to paradigms in which sentences are read
strictly incrementally, such as self-paced reading: The model can create chunks, track their
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activations, and integrate them with each other via retrievals, but it does not account for
eye fixations, and cannot capture cases in which the order of fixations mismatches the serial
word order due to skippings and regressions. To fully capture “natural” sentence reading, the
LV05 model thus needs to be interactively integrated with a model that accounts for spatial
and temporal aspects of eye movements.

The dynamical SWIFT model (Engbert et al., 2002, 2005) is a good candidate for inte-
gration with the LV05 model. Its main advantages are that it

• has recently been implemented for Bayesian parameter inference (Rabe et al., 2021;
Seelig et al., 2020),

• predicts and explains all empirically observable saccades in sentence reading, and

• allows for (but does not enforce) parallel processing of words.

Even though SWIFT itself does not follow an ACT-R based architecture like EMMA (Engel-
mann et al., 2013; Salvucci, 2001; Vasishth et al., 2019), an integration with ACT-R-based
models such as LV05 is possible via activation-based coupling, as we will detail below after
a brief introduction of SWIFT.

4.1.2 The SWIFT Model of Eye-Movement Control (Engbert et al.,
2005)

SWIFT is a model of eye-movement control in reading implemented in a dynamical
cognitive modeling framework (Beer, 2000; Engbert, 2021). At its core, its internal timing
processes and word activations govern the temporal control and target selection for saccadic
eye movements. Words with high activation values are more likely to be selected as saccade
targets. SWIFT assumes that all words that fall within a processing span around the current
fixation location are processed in parallel (Engbert et al., 2002).18 The processing rate Λ 𝑗 (𝑡)
of any given word 𝑗 at time 𝑡 depends on a number of factors such as gaze eccentricity,
that is, the distance between word 𝑗 and the currently fixated word, such that words that are
further away from the visual focus are processed more slowly.

In SWIFT, each word in the sentence passes through a lexical and post-lexical processing
stage. During lexical processing, word recognition and identification take place. As word
recognition is ongoing, the discrete activation associated with the processed word 𝑗 , 𝑛 𝑗 (𝑡),
rises up to a maximum threshold, 𝑁 𝑗 . The threshold is modulated by the word’s corpus
frequency, as frequent words generally require less processing than less frequent words, and
word predictability. Note, however, that we did not include predictability effects in our

18Other examples of parallel processing models include Glenmore (Reilly & Radach, 2006) and OB1-Reader
(Snell et al., 2018). These models contrast with sequential attention shift models such as E-Z Reader (Reichle
et al., 1998).
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model implementation. SWIFT also largely ignores low-level sensory perception and letter-
level processing, which can have effects on the further (post-lexical) processing of a word
and the sentence as a whole. In future work, processes such as bigram identification (Snell
et al., 2018) and surprisal (Huang et al., 2023) are worth considering as extensions to SWIFT
(or derivative models) to account for more aspects of lexical processing.

Once the word is identified, post-lexical processing begins and word activation decreases
again. Post-lexical processing, however, is not explicitly modeled in SWIFT. Although
SWIFT keeps track of the processing stage of words in the sentence, it has no higher-level
representation of its constituents or of the entire word sequence. Adjacent words may have
an influence on processing difficulty, but there is no mechanism to account for difficulty due
to dependency completion processes at the sentence level.

While the relative word activations at the time of programming a saccade determine the
relative probability of each word to be selected as the upcoming target, the timing of sac-
cades is relatively independent (Findlay & Walker, 1999) and involves a cascade of several
processes. The cascade starts with a global timer, which triggers the labile and subsequent
non-labile saccade stages, a distinction motivated by oculomotor performance in the double-
step paradigm (Becker & Jürgens, 1979). During the labile stage, saccades can be canceled
and a new target can be selected. During the non-labile stage, cancellation is no longer pos-
sible. The execution of the saccade itself is a noisy process subject to systematic (range)
and random error (McConkie et al., 1988), where the systematic error component can be ex-
plained by a Bayesian-optimal estimation of the saccade target position (Engbert & Krügel,
2010). for saccade amplitudes based on significantly better model fits in previous work (Rabe
et al., 2021).

Target selection in SWIFT is inherently stochastic, as it depends on the dynamic, relative
word activations at any given point in time. Words with high activation values are more
likely to be selected as targets than words with lower activation. The probability 𝜋 𝑗 (𝑡) to
select word 𝑗 at time 𝑡 as the next saccade target is given as

𝜋 𝑗 (𝑡) =
[
𝑎 𝑗 (𝑡)

]𝛾∑𝑁W
𝑘=1 [𝑎𝑘 (𝑡)]

𝛾
(4.8)

where 𝑁W is the number of words in the sentence and

𝑎 𝑗 (𝑡) =
𝑛 𝑗 (𝑡)
𝑁a

(4.9)

is the normalized activation of word 𝑗 at time 𝑡, which is the processing state of the word,
normalized by parameter 𝑁a, the highest possible threshold of a word in a given corpus.

The relation between the activation 𝑎 𝑗 (𝑡) of a word and its selection probability 𝜋 𝑗 (𝑡)
also entails that words requiring little processing (i.e., “easy-to-process” words)
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pass through lexical and post-lexical processing faster than less frequent (i.e.,
“difficult-to-process”) words. The former words are therefore in a state of higher activation
for a shorter time period, consequently less likely to be fixated, and thus often skipped. The
free parameter 𝛾 modulates the relationship between word activations and selection
probabilities. For 𝛾 → 0, words are selected randomly with equal probability, regardless of
their actual activation values (if greater than zero). If 𝛾 → 1, there is a perfect linear
relationship between activations and selection probabilities (Luce’s choice rule). Higher
values 𝛾 → ∞ enforce a winner-takes-all principle so that the word with the highest
activation always “wins.”

The evolution of word activations in the original version of SWIFT (Engbert et al., 2002,
2005) was governed by ordinary differential equations (ODEs). In the more recent versions
by Rabe et al. (2021) and Seelig et al. (2020), the dynamics of SWIFT changed toward a
model with discrete internal states that evolve stochastically over continuous time. Word ac-
tivations and saccade timers are random walks that increase/decrease over time with different
transition rates for different timers and individual word activations. The state of the model
at time 𝑡 is given by a vector 𝑛 = (𝑛1, 𝑛2, ..., 𝑛4+𝑁W), where the components 𝑛 𝑗 represent the
states of the subprocesses. Components 1 to 𝑁W are keeping track of the (post-)lexical pro-
cessing of words, while components 𝑁W + 1 to 𝑁W + 4 are saccade-related and additional
stochastic variables (Table 4.1). In each of the possible transitions from state 𝑛 = (𝑛1, 𝑛2, ...)
to 𝑛′ = (𝑛′1, 𝑛

′
2, ...) only one of the sub-processes 𝑛𝑖 is changed by one unit. The discrete

stochastic variables {𝑛 𝑗 } at time 𝑡 map to the activation variables {𝑎 𝑗 (𝑡)}.
For the numerical simulation of the model, an algorithm can be derived from the master

equation (see Seelig et al., 2020, for details),

𝜕

𝜕𝑡
𝑝 (𝑛, 𝑡 | 𝑛′′) =

∑︁
𝑛′

[𝑊𝑛𝑛′ 𝑝 (𝑛′, 𝑡 | 𝑛′′) −𝑊𝑛′𝑛𝑝 (𝑛, 𝑡 | 𝑛′′)] , (4.10)

which describes the temporal evolution of the model’s internal states (Gardiner, 1985; Van
Kampen, 1992). It is specified by the transition rates 𝑊𝑛′𝑛, which in turn govern the transi-
tions between state vectors 𝑛 ↦→ 𝑛′.

Table 4.1
Stochastic Transitions Between Internal States From 𝑛 = (𝑛1, 𝑛2, . . .) ↦→ 𝑛′ = (𝑛′1, 𝑛

′
2, . . .)

Process Transition to . . . Transition rate 𝑊𝑛′𝑛

Word processing 𝑛′
𝑗

= 𝑛 𝑗 ±1 see Equation (4.11) for 𝑤 𝑗 ,...,𝑁W

Saccade timer 𝑛′
𝑁W+1 = 𝑛𝑁W+1 +1 𝑤𝑁W+1 = 𝑁t/𝑡sac · (1+ ℎ𝑎𝑘 (𝑡)/𝛼)−1

Labile program 𝑛′
𝑁W+2 = 𝑛𝑁W+2 +1 𝑤𝑁W+2 = 𝑁l/𝜏l

Non-labile program 𝑛′
𝑁W+3 = 𝑛𝑁W+3 +1 𝑤𝑁W+3 = 𝑁n/𝜏n

Saccade execution 𝑛′
𝑁W+4 = 𝑛𝑁W+4 +1 𝑤𝑁W+4 = 𝑁x/𝜏x
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Implementation of more detailed assumptions on the post-lexical stage can be achieved
by changing the transitions rates {𝑤 𝑗 (𝑡)} that control the stochastic transitions for the in-
ternal states {𝑛 𝑗 (𝑡)} and thus for activations {𝑎 𝑗 (𝑡)}. Transition rates are a measure of the
expected number of transitions in a given time unit (milliseconds in SWIFT) and are the
inverse of the expected time between two consecutive transitions. Transition rates, in com-
bination with thresholds 𝑁 𝑗 , are therefore directly related to processing speed. While the
rates for the saccade timers are either constant or determined according to an invariant rule
(see Table 4.1), the determination of transition rates for word processing components varies
between processing stages, i.e.,

𝑤 𝑗 (𝑡) =


𝛼 ·Λ 𝑗 (𝑡) in lexical stage

max
[
𝛼 ·Λ 𝑗 (𝑡) ·proc,𝜔

]
in post-lexical stage

0 otherwise (complete)

, (4.11)

where 𝛼 is the baseline processing difficulty, Λ is the processing rate, proc is the relative
processing speed for post-lexical processing, and 𝜔 is a minimum decay parameter.19 In the
integrated SEAM model, word activations in SWIFT are coupled with memory activations
in LV05 in a Bayesian modeling framework by adapting the formula in Equation (4.11).

The fact that the SWIFT implements detailed mechanisms on word processing and sac-
cade preparation is reflected by the number of parameters. Fitting the eye-movement model
to experimental data started with hand-picking plausible parameter values, grid search (Re-
ichle et al., 1998), genetic algorithms (Engbert et al., 2002), while optimizing the fit between
empirical and simulated summary statistics. Based on the development of a likelihood ap-
proximation (Seelig et al., 2020), a fully Bayesian framework is now available for parameter
inference (Rabe et al., 2021). The likelihood framework permits objective parameter fitting
independent of a set of selected summary statistics, since fixation sequences are involved
for likelihood computation. Using large-scale numerical simulations, it has been shown
that SWIFT can reliably reproduce fixation durations, fixation probabilities and saccade am-
plitudes at the level of global and by-participant summary statistics, without using those
summary statistics for the purpose of parameter fitting.

4.1.3 SEAM: Activation-Based Coupling of SWIFT and LV05

In baseline SWIFT, processing a word always starts out in the lexical processing stage.
Once the word activation 𝑛 𝑗 (𝑡) has reached its threshold 𝑁 𝑗 at time 𝑡, it begins post-lexical
processing, and activation starts to decrease. When the activation has returned to zero, the

19The transition rate for post-lexical word 𝑗 cannot be lower than 𝜔, which ensures a decaying word acti-
vation even if there is no or little processing at a given time 𝑡, e.g. when the word is not within the processing
span.



(4.1) Introduction 99

Figure 4.1
Word Activation in SWIFT

NA

NB

NC

A

B

C

t1 t2 t3 t4 t5 t6 t8 t9

Processing stage lexical post−lexical complete

Note. Theoretical activation history of three words (A, B, and C). Colors of line segments
correspond to the processing stage active at that given time. Activation maxima are 𝑁A, 𝑁B,
and 𝑁C, respectively. Activations are displayed as continuous but are actually implemented
as discrete counters.

word is completely processed.

Figure 4.1 abstractly shows the activation histories of three hypothetical words. The
figure assumes that the eyes move sequentially from word (a), to (b), to (c), leading to a
somewhat sequential onset of their first processing (𝑡1, 𝑡2, and 𝑡5). The first stage of process-
ing is the lexical stage. During this stage, activations rise until they reach their respective
maxima (𝑁A, 𝑁B, and 𝑁C), which depend on printed word frequency. Given that saccade
targeting depends on activation, the words in question are most likely to be selected as a sac-
cade target if the upcoming saccade is programmed at times 𝑡3, 𝑡4, and 𝑡6. This happens as
well when the words enter the post-lexical processing stage. During post-lexical processing,
activations decrease again, making it in turn less likely for the respective word to be selected
as a target. Once the activation returns to zero (𝑡5, 𝑡8, and 𝑡9), the word is assumed to have
completed processing.

A feature common to the SWIFT and LV05 is that both models use activation values to
guide processing. SWIFT uses word activations to select words as saccade targets, while
LV05 uses memory activations to select memory chunks as retrieval targets. Our integrated
model SEAM keeps these activations separate, but implements an interaction, so that mem-
ory activations in LV05 modulate word activations in the SWIFT model. Therefore, rather
than assuming that the sentence processor has direct control of the eye-movement targeting
system, we propose an indirect, stochastic influence on saccade targeting via memory activa-
tions. This is in good agreement with eye-tracking studies carried out with larger-than-usual
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sample sizes that show that the effects of sentence processing cost due to memory inter-
ference on fixation and other measures have relatively small magnitudes (e.g., Jäger et al.,
2020); larger effect sizes are generally driven by lower-level factors such as frequency and
word length (Boston et al., 2008).

In SEAM, activations in the LV05 component reflect the construction of a sentence repre-
sentation, which affect word activations and thereby stochastically influences target selection
in the eye-movement component. As in SWIFT, the activation gradient of a word in SEAM is
mainly determined by the transition rate, which varies between processing stages. Compared
to SWIFT, the sequence of processing stages in SEAM is extended by stages that reflect the
cost of memory retrieval, which can account for additional processing difficulty. Possible
interactions of memory retrieval and the word activations during dependency resolution in-
clude: (a) the retrieval process delays post-lexical processing of the the currently fixated
region that caused the retrieval (that is, the retrieval trigger); and (b) retrieval candidates are
reactivated so that they attract regressions from the retrieval trigger.

In Figure 4.2, activation histories of the same three words from the SWIFT example
in Figure 4.1 are shown. Like the baseline SWIFT model, words in SEAM go through a
lexical and post-lexical processing stage before they are considered completely processed.

However, SEAM additionally accounts for the resolution of a linguistic dependency during
post-lexical processing of word C. Once the words are lexically accessed (𝑡3, 𝑡4, and 𝑡6), they
are encoded as chunks in SEAM’s memory module, along with their features, as in the LV05
model. Words A and B are assumed to not trigger a dependency completion process; this is
the case for most nouns. However, when word C, which could be a verb, is processed and
the associated chunk is stored in memory, a subject-verb dependency must be resolved. A
retrieval is thus triggered. The assumption that nouns do not trigger a dependency comple-
tion process is obviously an oversimplification; but this simplification is reasonable for the
data being modeled in this paper, as in the experiment design of Mertzen et al. (2023), the
theoretically interesting dependency completion occurs at the verb.

During retrieval, all words that are fully processed before the processing of word C com-
pletes are counted as retrieval candidates. Candidate words enter into a retrieval stage in
which activation increases until the retrieval process finishes.20 The activation increase dif-
fers by the degree to which the retrieval candidate features match the retrieval cues, imple-
menting a core assumption of the LV05 model.

The effect of the memory activations on word activations is mainly modulated by the
new parameters 𝜇2 and 𝜇3. The retrieval stage ends when one candidate reaches a threshold

20A word can also become a candidate after the retrieval process has started. Word A, for example, is
already a candidate at the time the post-lexical processing of word C starts at time 𝑡6, given that it was already
completely processed at time 𝑡5. Therefore, the retrieval stage of word A starts immediately with the start of
the post-lexical stage of word C. This mechanism is necessary for the rare but possible case that a retrieval is
triggered before any candidate word has been encoded as a chunk in memory.
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Figure 4.2
Word Activation in SEAM
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Processing stage lexical post−lexical retrieval post−retrieval complete

Note. Theoretical activation history of three words (A, B, and C). Colors of line segments
correspond to the processing stage active at that given time. Activation maxima are 𝑁A,
𝑁B, and 𝑁C, respectively, for the transition from lexical to post-lexical processing, 𝜇2𝑁C .
Activations are displayed as continuous but are actually implemented as discrete counters.

value, which is a fraction 𝜇3 of the maximum activation of the retrieval trigger 𝑁C. Because
post-lexical processing in SEAM is only finished after all dependencies have been resolved,
the post-lexical activation of the retrieval trigger is guaranteed not to fall below a fraction 𝜇2

of its maximum activation during retrieval. This is why the post-lexical activation of word C
does not change between 𝑡7 and 𝑡10. In this example, despite entering the retrieval phase at
a later time, word B reaches the retrieval threshold at time 𝑡10 before word A, thereby con-
cluding the retrieval process. Consequently, the post-lexical processing of word C continues
and all retrieval candidates, that is, word A and word B, enter a post-retrieval stage, which is
equivalent to an additional post-lexical processing stage. This also entails that the retrieval
phase of word A is aborted, which would otherwise have reached threshold at time 𝑡11.

The transition rates of the baseline SWIFT model for word 𝑗 , Equation (4.11), are re-
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placed by

𝑤′
𝑗 (𝑡) =



𝛼 ·Λ 𝑗 (𝑡) in lexical stage

max
[
𝛼 ·Λ 𝑗 (𝑡) ·proc,𝜔

]
as retrieval trigger ( 𝑗 = 𝑚∧𝑛 𝑗 (𝑡) > 𝜇2𝑁 𝑗 )

0 as retrieval trigger ( 𝑗 = 𝑚∧𝑛 𝑗 (𝑡) ≤ 𝜇2𝑁 𝑗 )

max
[
𝛼 ·Λ 𝑗 (𝑡) ·proc,𝜔

]
in post-lexical stage

𝜇3𝑁𝑚𝐹
−1 exp

[
𝐴′
𝑗 ,𝑚

(𝑡)
]

as retrieval candidate ( 𝑗 ≠ 𝑚)

max
[
𝛼 ·Λ 𝑗 (𝑡) ·proc,𝜔

]
in post-retrieval stage

0 otherwise (complete)

(4.12)

where 𝑚 is the current retrieval trigger that needs to form a dependency. The transition
rate for the retrieval candidate 𝑗 , triggered by dependency resolution for word 𝑚, is chosen
to ensure that the total duration of reaching threshold (i.e., the time for 𝑗 to be matched
as a dependent of 𝑚), matches the retrieval latency predicted by LV05. Therefore, it is
computed as the threshold value 𝜇3𝑁𝑚 divided by the expected total duration of 𝑗 in that
stage, 𝐹 exp

[
−𝐴′

𝑗 ,𝑚
(𝑡)

]
.

Altogether, SEAM extends the baseline SWIFT model parameters (Rabe et al., 2021;
Seelig et al., 2020) with seven additional model parameters. The parameters 𝑑 (decay), 𝑆max

(maximum memory activation strength), 𝐹 (retrieval latency scaling factor) and 𝑝 (mismatch
penalty), which modulate 𝑤′ (𝑡) through 𝐴′

𝑗 ,𝑚
(𝑡), are directly based off their LV05 imple-

mentations (Lewis & Vasishth, 2005). Moreover, the link between word activations in LV05
and processing rate in SWIFT is complemented by the three new model parameters 𝜇1, 𝜇2,
and 𝜇3, as detailed above. Some parameters of the LV05 model, in particular for goal acti-
vation and noise (𝐺, and ans), are ignored in the present implementation. Variation in the
goal activation parameter is usually used to model individual-level capacity differences (e.g.,
Daily et al., 2001; Mätzig et al., 2018; Vasishth & Engelmann, 2022), which is not of inter-
est in the present work. The goal activation is fixed at 1.0, which gives equal weight to all
retrieval cues. The noise parameter ans is replaced by the built-in stochasticity of SWIFT.
Moreover, the parameters 𝑆max and 𝐹 are not independent in terms of the resulting retrieval
latency and transition rate, which is why we will only estimate 𝐹 as a free parameter and
keep 𝑆max at a fixed default value of 1.5. In the present study, we also exclude 𝜇1, the fixed
time needed to execute a production rule, by setting it to 0, because we assume this time to
overlap with some of the oculomotor processes already present in the model. Since 𝑆max is
fixed, we also decided to fix mismatch penalty 𝑝 at its default value, as the relation of the
two parameters is critical. Thus, the only parameters that were fit to the Mertzen et al. (2023)
data were 𝐹, 𝑑, 𝜇2, and 𝜇3. For a complete list of model parameters and default values in
SEAM, see Appendix D.
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For our implementation of SEAM, we opted for a simplified version of the LV05 model
(Engelmann, 2015) and the latest version of SWIFT (Rabe et al., 2021).21 SEAM con-
nects the baseline eye-movement control architecture of SWIFT with the interactive working
memory module of LV05 via activation-based coupling: reading words in SWIFT leads to
the creation of memory chunks and can trigger retrievals in LV05, whereas chunk activations
computed by LV05 modulate word activations in SWIFT.

4.2 Data Availability

All experimental and simulated data, analysis code, and computational models (SEAM
and SWIFT) reported in this paper are available at the Open Science Framework (https://doi.
org/10.17605/osf.io/ad5nx) and at GitHub (https://github.com/mmrabe/SEAM-2023-Paper).

4.3 Experimental Study (Mertzen et al., 2023)

To test the predictions of the integrated model, we use data from a memory interference
experiment conducted with 61 English native speakers (Mertzen et al., 2023). This experi-
ment was originally planned with 120 participants, but due to the pandemic, data collection
had to be aborted. Our inability to reach the target number of participants has consequences
for model evaluation, as discussed later.

The Mertzen et al. (2023) experiment employed a fully crossed distractor subjecthood (2)
× animacy (2) design that closely mirrored an experiment reported in Van Dyke (2007).
Examples of the four conditions are shown below in example (3).

(3) a. It turned out that the attorney+subj
+anim whose secretary had forgotten about the impor-

tant meeting−subj
−anim frequently complained

{
subj
anim

}
about the salary at the firm.

b. It turned out that the attorney+subj
+anim whose secretary had forgotten about the impor-

tant visitor−subj
+anim frequently complained

{
subj
anim

}
about the salary at the firm.

c. It turned out that the attorney+subj
+anim whose secretary had forgotten that the

meeting+subj
−anim was important frequently complained

{
subj
anim

}
about the salary at the

firm.

d. It turned out that the attorney+subj
+anim whose secretary had forgotten that the

visitor+subj
+anim was important frequently complained

{
subj
anim

}
about the salary at the

firm.
21The principal reason for using the simplified version of the LV05 model is tractability. Using the full ACT-

R architecture, which is Lisp-based, would require much more complex engineering decisions, and would make
the model inaccessible to researchers unfamiliar with Lisp but who are interested in exploring its behavior with
novel data.

https://doi.org/10.17605/osf.io/ad5nx
https://doi.org/10.17605/osf.io/ad5nx
https://github.com/mmrabe/SEAM-2023-Paper
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In the example above, processing the verb complained is expected to trigger a retrieval
for an animate subject noun phrase. In all sentences, attorney is the grammatically correct
subject of complained, and should thus be retrieved. However, the distractor noun phrase
(meeting or visitor) may interfere with the retrieval of attorney. The distractor is visitor in
the +animate or meeting in the −animate condition, and it is either a subject (+subject) or an
object (−subject) of the embedded clause.

According to cue-based retrieval theory, both subjecthood and animacy of the distractor
should lead to additional difficulty for resolving the critical dependency. This is due to the
fan effect (e.g., Anderson, 1990), which is also known as similarity-based interference (Jäger
et al., 2017): When the feature specification of a distractor overlaps with that of the retrieval
target, it diverts some of the retrieval activation from the target to itself. The activation of
both the target and distractor are reduced, leading to longer retrieval time; what ends up
being retrieved in a particular simulation run (target or distractor) depends on which chunk
happens to have higher activation (this can vary in simulation runs due to stochastic noise
in the activation). It is therefore possible that the distractor is sometimes erroneously re-
trieved. As indices of increased processing difficulty, we expect additive effects of animacy
and subjecthood of the distractor on regression path duration and outgoing regression prob-
abilities on the critical verb (complained). The primary region of interest where the effect
of the subjecthood and animacy manipulation should manifest is the verb; however, because
similarity-based interference effects have been shown to occur in the region just before the
verb (Lago et al., 2021; Van Dyke, 2007), Mertzen et al. (2023) also investigated the effect at
the adverb (frequently) that preceded the critical verb. For this reason, in our investigations
we also report model fits for this pre-critical region.

In summary, similarity-based interference accounts predict that conditions (3b,d) should
be more difficult to process than conditions (3a,c) due to the animacy of visitor, and condi-
tions (3c,d) should be more difficult to process than conditions (3a,b) due to the distractor
being in subject position.

As indices of increased processing difficulty, additive effects of distractor animacy and
distractor subjecthood were expected in reading times and outgoing regression probabilities.
An interaction of distractor subjecthood and animacy was not predicted but is reported in
Mertzen et al. (2023) for completeness; in the Mertzen et al. (2023) analysis, there was no
evidence for an interaction.

In this summary of the Mertzen et al. (2023) results, we report only regression path
duration and first-pass regressions out (FPR) from the pre-critical adverb and the critical
verb; for full details of all experimental results, please see the original paper.

The effects of animacy and subjecthood (coded as sum contrasts) were analyzed using
Bayesian mixed-effects models. Subject and item were specified as random effects in the
models, with a full variance-covariance matrix for subject and item random effects. The
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Figure 4.3
Experimental Effects of Mertzen et al. (2023)
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Note. Plotted violins are the estimated posterior distributions of experimental effects of
subjecthood (subj) and animacy (anim) on regression path duration (RPD) and first-pass
outgoing regression probability (FPR) from Bayesian mixed-effects regressions, as analyzed
and reported by Mertzen et al. (2023). Posteriors are backtransformed linear effects in ms
(for RPD) or % (for FPR).

models were implemented with brms (Bürkner, 2017, 2018, 2021), an interface to Stan (Car-
penter et al., 2017). Priors were mildly informative Gaussian distributions for the linear
model coefficients (intercept and slopes) and mildly informative regularizing Lewandowski-
Kurowicka-Joe (LKJ) priors (Lewandowski et al., 2009) for random effects correlation matri-
ces; setting the LKJ prior’s parameter 𝜈 to 2 downweights extreme correlations like ±1. For a
detailed tutorial on linear mixed models in the Bayesian setting, see chapter 5 of Nicenboim
et al. (2023), or Sorensen et al. (2016).

The results in Mertzen et al. (2023) showed reading time patterns consistent with ef-
fects of subjecthood (syntactic interference) and effects of animacy (semantic interference).
Figure 4.3 shows that on the pre-critical adverb, the effect of subjecthood shows longer re-
gression path duration (RPD) and more first-pass regressions out for conditions that have a
+subject distractor (95% credible intervals (CrIs): RPD [17,63] ms, FPR [3,11]%). Sim-
ilarly, the effect of animacy shows longer regression-path duration and an increase in first-
pass regressions out for conditions with animate distractors compared to conditions with
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inanimate distractors (95% CrIs: RPD [8,57] ms, FPR [2,8]%). The subjecthood × ani-
macy interaction in regression-path duration is centered on zero; for first-pass regressions,
the interaction has a negative sign ([−7,0]%).

On the critical verb, the effects of subjecthood and animacy show a similar pattern
of longer regression path duration and an increase in first-pass regressions out (Subject-
hood 95% CrIs: RPD [3,52] ms, FPR [1,8]%; Animacy 95% CrIs: RPD [0,39] ms, FPR
[−1,5]%). The interaction is centered around zero for regression path duration and regres-
sions out. The increased reading times and regressions for conditions that have subject or
animate distractors indicate that syntactically and semantically similar distractors can inter-
fere during long-distance dependency formation.

4.4 Simulation Study

The reliability of computational cognitive models critically depends on the availability
of appropriate methods for statistical inference (Engbert et al., 2022; Schütt et al., 2017).
We previously applied a broader principled Bayesian workflow (Schad et al., 2021) for the
baseline SWIFT model in Rabe et al. (2021), which is used as the eye-movement platform
in SEAM.

In Figures 4.4 and 4.5, we visualized the word activation field and eye trajectory for a
simulated trial in SWIFT and SEAM, respectively. As can be seen, SEAM behaves simi-
larly to SWIFT throughout most of the trial. However, the models’ behaviors start to diverge
when the verb complained is processed and triggers a retrieval in SEAM. During the re-
trieval phase, word activations of previous words that have been encoded as memory chunks
increase. Words with better cue match for the retrieval approach the activation threshold
faster than those with lower cue match. If a saccade is triggered during the retrieval phase,
the reactivated words can attract regressions.

Without proper checks, it is not self-evident that Bayesian model fitting of SEAM can be
carried out in the same way as for SWIFT. However, we expect that our implementation of
SEAM will exhibit correct inference because it meets the following three critical conditions:
First, for all observables that were taken into account (i.e., fixation positions and durations),
a model likelihood has already been implemented in SWIFT (Seelig et al., 2020). Sec-
ondly, both SWIFT and LV05 are dynamic in the sense that they describe activation values
as a function of time, which allows us to let them interact dynamically without a significant
modification of their initial conceptualization. Thirdly, the dynamics of eye movements and
sentence processing interact in the integrated SEAM model and will thus affect the observ-
able temporal and spatial aspects of fixation sequences due to the activation coupling of the
constituent SWIFT and LV05 components. The coupling via word activations permits in-
direct fitting of model parameters related to memory retrieval, as long as they have some
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Figure 4.4
Example Simulation in SWIFT
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Note. SWIFT simulation for Example (1). The bold black line is the simulated fixation
location (x-axis) as a function of time (y-axis). Saccades are horizontal displacements of
the black line. Word activations are depicted by gradients in the background, with darker
shades referring to higher activation. The target selection preceding each executed saccade
is depicted by a red cross, marking both the time and intended saccade target. Target selection
is based on the relative word activations at the respective time point of saccade programming.
Saccade timers, which are also components of the internal states, are omitted for brevity. For
more details, see Rabe et al. (2021) and Seelig et al. (2020).
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Figure 4.5
Example Simulation in SEAM
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Note. SEAM simulation for Example (1). As in Figure 4.4, the black line is the simulated
fixation location (x-axis) as a function of time (y-axis), gradients in the background are word
activations, and red crosses are selected targets. Note that, in comparison to Figure 4.4,
processing of forgotten and complained triggers retrievals, which prolongs processing of
the trigger and reactivates potential retrieval candidates. In this simulation, during both
retrievals, regressive saccades are programmed and executed.
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probabilistic effect on the outcome variables captured by SWIFT.

Given these properties, we tested the computational faithfulness of SEAM using the
Markov Chain Monte Carlo (MCMC) sampling algorithm DREAMzs (Laloy & Vrugt, 2012)
based on profile log-likelihoods and model parameter recovery, similar to the approach taken
in Rabe et al. (2021). The DREAMzs (Laloy & Vrugt, 2012; ter Braak & Vrugt, 2008; Vrugt
et al., 2009) sampler has previously been successfully used with complex dynamical models
of eye-movement control, including SWIFT for reading (Rabe et al., 2021) and SceneWalk
for scene viewing (Schwetlick et al., 2020, 2022).

After confirming the computational faithfulness of the model, we fitted the model to a
training subset of the experimental data and compared predictions for a withheld test portion
using relevant global summary statistics and the predicted experimental effects of similarity-
based interference22 described in the previous section.

4.4.1 Method

Data assimilation. In eye-movement research, the experimental (observed) data are fix-
ation sequences consisting of time-ordered sequential observations. In such a case, the iden-
tification of model parameters is possible within the field of data assimilation (Engbert et al.,
2022; Reich & Cotter, 2015). Data assimilation refers to the integration of complex math-
ematical models with time-series data (see Morzfeld & Reich, 2018, for an introduction).
In this framework, the SWIFT model has previously been implemented for Bayesian model
fitting (Seelig et al., 2020). Rabe et al. (2021) showed that, in a principled Bayesian work-
flow (Schad et al., 2021), SWIFT can be reliably fitted to simulated and experimental data
even with many free parameters and sparse data that resulted from splitting by participant
and experimental condition.

Sequential likelihood. The time-ordered nature of fixational eye movements make them
a suitable target for data assimilation (Engbert et al., 2002). To exploit the sequential infor-
mation of the data, some of those models use sequential likelihoods for parameters 𝜽 ∈ 𝚯

such that

𝐿𝑀 (𝜽 | 𝑋𝑛) = 𝑃𝑀 (𝑥1 | 𝜽)
𝑛∏
𝑖=2

𝑃𝑀 (𝑥𝑖 | 𝑋𝑖−1,𝜽) , (4.13)

where 𝑋𝑛 = (𝑥1, . . . , 𝑥𝑛) is the entire sequence of 𝑛 events and 𝑃𝑀 (𝑥𝑖 | 𝑋𝑖−1,𝜽) is the likeli-
hood of the 𝑖-th event of the sequence given all previous events 𝑋𝑖−1 = (𝑥1, . . . , 𝑥𝑖−1).

Successful examples of applying data assimilation for visual tasks are, for example, Sce-

22We will focus on effects of subjecthood and animacy cues, since those were of main interest in the
experimental study. Additional features/cues such as clause locality were also encoded but are not of pri-
mary interest here. The full memory and retrieval schedules are available in the model supplement at
https://github.com/mmrabe/SEAM-2023-Paper/tree/main/SEAM/DATA.

https://github.com/mmrabe/SEAM-2023-Paper/tree/main/SEAM/DATA
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neWalk (Schwetlick et al., 2020, 2022) for scene viewing and SWIFT (Rabe et al., 2021;
Seelig et al., 2020) for reading. There, each event of the sequence, 𝑥𝑖, is a fixation. Since the
location and temporal onset of the first fixation are typically known due to the experimental
paradigm, e.g., sequences always starting at a fixation cross, the likelihood for 𝑥1 is given by
𝑃𝑀 (𝑥1 | 𝜽) = 1. SceneWalk and SWIFT further decompose the likelihood into spatial and
temporal components, since each fixation has a spatial location on the screen and a duration.

As SEAM is based on SWIFT and we only changed the latent transition rates rather than
the saccade execution itself, we can easily use the data assimilation methods implemented
for SWIFT. This is especially useful because we fit the model on a by-participant basis
and hence only have little data for parameter estimation. The decomposition of temporal
and spatial likelihood components is also theoretically interesting since we can expect the
modification of the transition rates to affect both the temporal control and target selection of
the (simulated) saccadic eye movements.

Profile likelihoods. As SEAM modifies model dynamics and thus the likelihood func-
tion of SWIFT, a reevaluation of the profile log-likelihoods is crucial. Those are generated by
first simulating data with known parameter values, and then systematically varying param-
eter values and inspecting the likelihood of the data for each value. Ideally, the likelihood
of the data should be highest for the true parameter values. In order to assess whether the
modifications introduced in SEAM are appropriately captured in its likelihood, it should be
ensured that the newly introduced free parameters affect the outcome likelihood. Thus, the
behavior of the likelihood as a function of each of the new parameters represents a neces-
sary condition for identifiability and statistical inference of the full model (Rabe et al., 2021;
Seelig et al., 2020).

Parameters were inspected if they were going to be fitted later on and/or were added in
this model implementation compared to the reference SWIFT implementation (Rabe et al.,
2021). This was the case for a total of 11 parameters (see Figure 4.6). Parameters 𝜇1 and
𝑆max were also inspected even though they were not selected to be fitted to the recovery and
experimental data. This is because the parameters themselves are identifiable, as can be seen
in Figure 4.6, but they are not independent from other model parameters in terms of an effect
on model behavior. All other shown model parameters are also fitted to simulated data for
parameter recovery as well as to experimental data.

Parameter estimation and recovery. As a last step for the verification of the computa-
tional faithfulness of the approach, we applied a sampling algorithm to simulated data with
known true parameter values in order to ensure the validity of the computational approach.
We generated 100 unique data sets with different sets of true parameters 𝜽★ randomly sam-
pled from the prior distribution later used for parameter estimation. Parameters would be
considered successfully recovered if the correlation between true and recovered parameters
was sufficiently high and the normalized root mean squared error (NRMSE) was sufficiently
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low.

Summary statistics and experimental effects. Even though we are using an objective
likelihood-based approach for model fitting, it is important that simulated and empirical data
are in good agreement at the level of relevant summary statistics, especially with regard to
comparability with competitor models and theory testing (S. Roberts & Pashler, 2000). Be-
cause the goal for SEAM is to explain both spatial and temporal aspects of eye movements in
reading, we consider a number of different spatial and temporal summary statistics frequently
used in reading research. For the spatial dimension, we are looking at several fixation prob-
abilities, that is, probabilities to fixate (or skip) specific words under different conditions.
For the quantification of the temporal aspects of the model fit, we evaluate different fixation
durations, that is, average reading times under different conditions.

A subset of the experimental test data set is withheld from parameter estimation, and
this held-out set will then be compared on the basis of summary statistics against predicted
data from SEAM and SWIFT using estimated parameters. Specifically, we first split the
experimental data into a training and test subset, fitting the model to 70% of the data (training
set) of each participant and condition, subsequently predicting eye trajectories for the other
30% (test set). For each withheld trial, we generated a fixation sequence using the HPDI
(highest posterior density interval) midpoint of the sampled posterior distribution of a given
participant and parameter (Rabe et al., 2021). We also present the predictions of SEAM and
SWIFT for the experimental memory interference effects, which can be similarly derived
from the simulated and experimental data alike.

4.4.2 Results

Profile likelihoods. We evaluated the likelihood for a typically sized simulated data set
where all parameters had been set to default values23 (see Appendix D). For each parameter,
the respective true value, that is, the value used for simulating the data set, is shown with
a vertical dashed red line. Then, for each parameter, for 50 equidistant parameter values in
the intervals shown, the likelihood for the data given the model was evaluated. Ideally, the
likelihood should be maximal around the true value.

In Figure 4.6 we observe that the likelihood peaks, as expected, around the true value
for most of the parameters. This means that (i) the parameters affect the likelihood and (ii)
the likelihood may be used to recover their values. Individual likelihood evaluations are
represented by dots. The plotted line smooths are just for guidance and do not represent the
true likelihoods. The important observation here is that the highest evaluated likelihoods are
always relatively close to the true value, even for the case of 𝜇2, where the smoothed lines

23These values vary slightly from the defaults used in Rabe et al. (2021) and Seelig et al. (2020). They are
not to be understood as universally valid defaults but as fixed values wherever they are not fitted, and are merely
reported here for reasons of transparency and reproducibility.
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falsely suggest a flat likelihood.

Since not every fixation involves a retrieval, the new SEAM parameters can only have a
very limited effect on the likelihood. Therefore, effects observed in the likelihood function
are less pronounced than for the established SWIFT parameters such as processing span 𝛿0.
The fact that that higher likelihood evaluations nevertheless cluster around the true values is
an indication that the parameters are identifiable, but their fitted values should be interpreted
with caution.

For one of the parameters, 𝜇2, the likelihood does not peak at all, which is probably
because 𝜇2 only affects the model’s behavior in rare instances. As 𝜇2 only determines the
threshold value of a retrieval trigger, the likelihood is only affected for the small subset of
words that trigger retrievals. By contrast, 𝜇3 affects the threshold of multiple words at the
same time, i.e., all words previously processed. Also note that the profile likelihoods as well
as the parameter recovery reported below are based on simulated data sets comparable in
size to the experimental data of Mertzen et al. (2023). We would expect 𝜇2 to exhibit a more
pronounced effect on the likelihood for larger data sets with more retrieval events. Despite
the noise level of the profile likelihood of 𝜇2, we decided to fit 𝜇2 as a free parameter. This
means that different plausible values from the prior are considered throughout the sampling
procedure instead of keeping 𝜇2 fixed at a (possibly implausible) default value.

Parameter recovery. Analogous to the inspection of the profiles log-likelihoods, we
simulated data from the known model but generated 50 data sets, each with a unique combi-
nation of random parameter values within the bounds of the previously inspected intervals,
effectively sampling from the prior distribution. Then, we fitted the model to each of the
data sets, using uninformative uniform priors over the bounds shown in Figure 4.6. Each fit
is represented with one point per panel in Figure 4.7, showing 95% credible intervals (CrIs)
on the y-axis and the true parameter value on the x-axis. Ideally, CrIs would be narrow
intervals spanning around the identity diagonal.

We can see that the 95% CrIs almost always include the true value but are relatively wide,
especially for the added parameters 𝐹, 𝑑, 𝜇2, and 𝜇3. Nevertheless, the agreement is gener-
ally good, as can be seen in the low normalized root mean square error or NRMSE values24

and high correlations between true parameter values and CrI midpoints. This suggests that
in general, true parameter values of simulated data sets can be recovered sufficiently well or
at least with an acceptable level of uncertainty. As before, we note that parameter values,
especially point estimates, should be interpreted with caution.

The reason for the high uncertainty for the new parameters is very similar to that for
the profile log-likelihoods: Over the course of the entire fixation sequence, there are only
very few retrieval events where these parameters could possibly have an effect on model

24The NRMSE is the mean root mean squared deviation from the true value across all samples of the poste-
rior, normalized on the sample range.
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Figure 4.6
Example Profile Log-Likelihoods
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Note. Centered profile log-likelihoods log𝐿𝑀 (𝜽 | 𝑋) for a simulated data set 𝑋 with
known/true parameters 𝜃★. Profiles are generated by varying one parameter (dimension)
of 𝜽 at a time while holding the others constant at their respective true parameter value.
True parameter values are denoted by the vertical red line. Dots in the background are indi-
vidual stochastic pseudo-likelihood evaluations, each with a spatial and temporal likelihood
component, and their combination (sum). Curves are GAM smooths on those individual
evaluations.
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behavior. Additionally, even when there is a retrieval, it is not guaranteed that it actually
affects the activation of the currently fixated word, as the eyes may, for instance, already
have continued past the retrieval trigger. Given these limitations, the recovery performance
is surprisingly good, and the high correlations between true and recovered parameters appear
very promising.

Summary statistics. So far, we have demonstrated that SEAM, like SWIFT in its most
current version (Rabe et al., 2021), can be successfully fitted to simulated data: The true
parameter values are in the vicinity of profile log-likelihood peaks and are contained within
parameter recovery CrIs. This means that if we assume the true underlying cognitive ar-
chitecture to be similar to SEAM, we can reliably use fitted parameters (or their credible
intervals) to make inferences about it. However, as the true underlying cognitive architecture
is unknown, such checks are per se impossible on experimental data. Instead, we compare
simulated and experimental behavior on the basis of relevant summary statistics. For this, as
explained earlier, we first split the experimental data into a training and test subset, fitting
the model to 70% of the data of each participant and condition (training set), subsequently
predicting eye trajectories for the other 30% (test set).

Rabe et al. (2021) had previously noted that SWIFT, with the cross-validation method
described above, is unable to make reliable predictions for regressive eye movements. How-
ever, given that SEAM now incorporates processes for cue-based memory encoding and
retrieval, and given that memory retrieval processes are specifically hypothesized to trigger
regressions by modulating the activation of retrieval candidates, in SEAM we should see an
improvement in regression-related statistics such as incoming/outgoing regression probabil-
ities, as well as regression path durations. These are also two important dependent measures
in which effects were found in the experimental data set (see Section 4.3 for a short summary;
see Mertzen et al., 2023, for details).

In Figure 4.8, we show the comparison of summary statistics between experimental data
and simulated data from the baseline SWIFT model (without memory retrieval) and SEAM
(with memory retrieval). In all cases, SEAM predicts regression-related fixation probabilities
and fixation durations more reliably than SWIFT. It is also noteworthy that not only the av-
erage across all word frequency bins but even word-frequency effects on summary statistics
are reliably predicted.

Experimental effects of memory interference. Arguably the most critical test for the
SEAM architecture is to evaluate whether the model can predict differences in summary
statistics between experimental conditions in the design of Mertzen et al. (2023), which
manipulates effects of memory retrieval on reading.

Based on a different experimental design, Rabe et al. (2021) were previously successful
in demonstrating that SWIFT can be used to predict and explain differences in reading be-
havior when fitted to each participant and experimental condition separately. In our study
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Figure 4.7
Parameter Recovery of SEAM Parameters
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Note. Results of a parameter recovery for 50 simulated data sets, for which the parameters
were randomly drawn from a uniform distribution with the bounds shown on the x-axes. 95%
credible intervals (CrIs) are shown as error bars, centered around a point which is the mean
of their lower and upper bounds. The diagonal is the identity line. Parameter recoveries with
error bars spanning around the diagonal predict the true value within their CrI. Moreover,
each panel shows the correlation between the true value and the point estimate as well as the
normalized root mean squared error (NRMSE) of the CrI vs. the true value.
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Figure 4.8
Spatial and Temporal Summary Statistics
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RPD = Regression path duration (go-past time), TVT = Total viewing/reading time. Words
were not grouped into regions and all words of the sentences were considered.
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Table 4.2
Summary of Empirical Vs. model Estimates From SEAM and SWIFT of the Subjecthood and
Animacy Effects on Regression Path Durations and First-Pass Regressions

Region of interest Empirical estimates SEAM SWIFT
subj anim subj anim subj anim

Regression-path duration (ms)
pre-critical [7,77] [−12,60] [−5,55] [−14,50] [−27,12] [−33,6]
critical verb [−6,64] [−16,57] [−49,58] [−37,70] [−26,16] [−25,15]

First-pass regressions (percentage)
pre-critical [−2,11] [−4,9] [−3,6] [−3,7] [−2,1] [−1,3]
critical verb [2,15] [−2,11] [0,16] [−1,16] [−3,2] [−4,1]

Note. Shown are the 95% credible intervals of the estimated effects from the data and from
the two models. The empirical estimates are from the held-out data (30% of the data). subj
= Effect of subjecthood, anim = Effect of animacy.

Figure 4.9
Posterior Distributions of Estimated Experimental Effects
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Note. Experimental effects on outgoing first-pass regression probabilities (FPR, top row)
and first-pass regression path durations (RPD, bottom row), as found in the experimental data
(gray), baseline SWIFT (purple), and SEAM (orange). Violin plots are posterior distributions
of mixed-effects models.
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Figure 4.10
Distribution of Absolute Prediction Errors for Estimated Experimental Effects
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presented here, however, we are only fitting one model at a time to each participant’s data
across all conditions, thereby considerably reducing the degrees of freedom. If the model is
able to predict differences between experimental conditions, these do not originate from dif-
ferent parameter values for each condition but from the model dynamics, which are affected
by the different feature specifications of the memory chunks across conditions. Therefore,
capturing differences between conditions is a direct test of SEAM’s added memory mod-
ule. To illustrate the gain in empirical fit over baseline SWIFT, we also report predictions
from SWIFT for reference. In SWIFT, no differences between experimental conditions are
expected, because SWIFT has no parameters that could account for the processing cost of
memory retrievals.

In order to evaluate the empirical fit of SEAM and baseline SWIFT, we conducted the
same set of analyses for the observed experimental data and for the data predicted by SEAM
and by SWIFT, after fitting each of the models to the training data sets. For both sets of
data, we conducted a Bayesian mixed-effects regression for regression-path durations and
outgoing regression probabilities as predicted by region and experimental condition (syntac-
tic/semantic interference).

Table 4.2, and Figures 4.9 and 4.10 summarize the comparisons between the held-out
empirical data and the predictions of SEAM and SWIFT. In order to interpret these compar-
isons, we compare SEAM and SWIFT against the empirical estimates from the held-out data
using a region of practical equivalence (ROPE) approach (Freedman et al., 1984; Kruschke,
2014; Spiegelhalter et al., 1994) rather than formal model comparison methods such as k-
fold cross validation, Bayes factors, or the like (for tutorial introductions to these topics, see
Nicenboim et al., 2023). The ROPE approach is a graphical model comparison method that
involves comparing model predictions against observed estimates from data; overlap in the
posterior distribution of estimates provides an informal basis for deciding whether a model
approximately matches observed estimates. In this approach, there is no notion of statistical

significance; rather, the focus is on whether the model predictions are approximately consis-
tent with the data. One important reason for taking this informal model comparison approach
is the fact that the held-out data are relatively sparse. For this reason, the present evaluation
should be seen rather as a proof-of-concept rather than a comprehensive evaluation. Such an
evaluation would require significant amounts of benchmark data (for examples of such ex-
tensive evaluations, see Engelmann et al., 2019; Nicenboim et al., 2020; Yadav et al., 2022)
and must be left for future work.

Table 4.2, and Figures 4.9 and 4.10 show that the predictions for the experimental effects
of animacy (semantic interference) and subjecthood (syntactic interference) in the experi-
mental data are generally more in agreement with SEAM than with SWIFT: the violin plots
in Figure 4.9 from SEAM have a better overlap than the observed data than the predictions
from SWIFT. This is true in both the pre-critical and critical regions, in both the first-pass
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Figure 4.11
Effect of Subjecthood on the Contributions of First-Pass Reading and Rereading Times to
Regression Path Durations
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Note. Columns are sums of first-pass reading time on the launch site and rereading times
on refixated previous regions until the (simulated) eye leaves to the right of the initial launch
site.

regression and regression path duration measures. One exception is the subjecthood effect
at the critical verb (see the bottom right panel in Figure 4.9); SEAM predicts essentially
no effect of subjecthood, just like SWIFT. This is mainly because the regression paths pre-
dicted by SEAM are somewhat too short, i.e. return too early, in the +subject conditions (see
Figure 4.11). We return to this in the Discussion section.

Given that SWIFT does not have any mechanism that accounts for cue-based memory
retrieval, it is expected that the model predicts no effects of memory interference. Notice
that the violin plots for the data as well as the SEAM and SWIFT predictions shown in
Figures 4.9 and 4.10 are relatively wide; this is due to the fact that only 30% of the test
portion of experimental data (the held-out data) are compared to the model predictions.

A main motivation of SEAM was to develop a model in which low-level psychologi-
cal and high-level linguistic processes interact. The integration of the LV05-based memory
module is expected to affect eye movements especially in cases of demanding dependency
resolution and there, particularly strongly if there is high ambiguity between the correct de-
pendents and distractors. Even though we already know that the Mertzen et al. (2023) data do
not provide unequivocal evidence in support of this hypothesis, we can look at the distribu-
tion of regressions across trials conditional on launch and landing sites in order to investigate
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Figure 4.12
Conditional Means of Experimental and Simulated Regression Probabilities
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Note. Shown are estimates and 95% CrIs from nested logistic regressions. Each panel
shows the mean proportion of trials with a critical regression given the launch site (rows)
and landing site (columns). Estimates have been backtransformed to the linear scale. Re-
gions Int 1 and Int 2 are intervening regions between target and distractor, and between
distractor and adverb, respectively. Conditions a–d refer to the four conditions –subj/–anim,
–subj/+anim, +subj/–anim, and +subj/+anim, respectively, as shown in Example 3.

where regressions from the (pre-)critical region tend to land in the experimental data and in
the simulations. Figure 4.12 and Appendix E show that regressions in general have a ten-
dency to land on the preceding word.25 In these cases, SEAM is in better agreement with
the experimental data than SWIFT. For regressions launched from the verb, however, SEAM
currently predicts too many regressions on average, although the experimental effects (i.e.,
differences between conditions, see Figure E) are still in agreement with the experimental
data. As there are generally very few regressions, both in the experimental and in the sim-
ulated data, analysis of regression durations is problematic but Figure 4.13 shows that they
are also generally in good agreement with each other.

As SEAM and SWIFT are nested models,26 the fact that SEAM but not SWIFT can
predict different summary statistics is a first indicator that the differences in predictive power

25Note that in conditions a and b in Figure 4.12, the distractor immediately precedes the pre-critical adverb,
while conditions c and d have an intervening region between the distractor and pre-critical adverb.

26SWIFT is nested within the more complex SEAM, and the effects of the memory retrieval submodule on
the word activations can be completely turned off by setting 𝐹 = 0 and 𝜇3 = 0 because that immediately ends
any started retrieval and does not reactivate any previously encoded words.
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Figure 4.13
Conditional Means of Experimental and Simulated Regression Durations
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Note. Shown are means and 95% quantiles of the raw data. Each panel shows the mean
second-pass reading time (regression duration) following a critical regression given the
launch site (rows) and landing site (columns). Regions Int 1 and Int 2 are intervening regions
between target and distractor, and between distractor and adverb, respectively. Conditions
a–d refer to the four conditions –subj/–anim, –subj/+anim, +subj/–anim, and +subj/+anim,
respectively, as shown in Example 3.
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Figure 4.14
Effects of Experimental Condition on SEAM Word Activations at Encoding of the Critical
Verb
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Note. SEAM word activation of the target, distractor, pre-critical adverb, critical verb, and
post-critical region of a sentence grouped by experimental condition. Activations are aver-
aged across 500 independent simulations of the same item in all four conditions. For each
simulation, 𝑡 = 0 is adjusted to the time of the start of post-lexical processing of the critical
verb, that is, the start of the retrieval.
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between the models may be due to the added memory retrieval submodule. To verify this and
to attempt an explanation of the differences in observed behavior, we look at the differences
in the internal model dynamics under the different experimental conditions.

In particular, we can examine the word activation field, which is the main driver for target
selection probabilities in SEAM and SWIFT (Equation 4.8), including regressive saccades.
In Figure 4.14, we show word activations in SEAM, averaged across 500 independent simu-
lations, using the mean estimated model parameters across all model fits. Before averaging
across simulations, all word activations are centered on the temporal dimension so that 𝑡 = 0
is the time when the activation of the critical verb reaches its maximum, that is, when post-
lexical processing of the critical verb starts and triggers the memory retrieval.

First, it is important to note that the activations of the critical verb, when normalized
in time, do not vary substantially between experimental conditions. Although some con-
ditions seem to have a slower decrease than others, overall the curves are very similar in
all conditions. When the retrieval starts at 𝑡 = 0, retrieval candidates are reactivated, with
their memory activation 𝐴′

𝑗 ,𝑚
(𝑡) modulating the transition rate 𝑤′

𝑗
(𝑡) (see Equation 4.12)

of word/memory chunk 𝑗 . While the activation for the target word seems to be very simi-
lar over time between conditions as well, there is some variability in the time course of the
activations of the distractor noun and of the adverb around the retrieval.

Regarding the adverb, the main reason it is reactivated during retrieval is that it has
the highest base-level activation 𝐵(𝑡), as it was most recently encoded/accessed in memory
before the retrieval started. The later processing of object noun distractors also attenuates the
processing that the adverb receives, which leads to weaker reactivation of the adverb during
the retrieval.

We can also observe that the distractor word activations prior to the retrieval peak earlier
for the two conditions where the distractor is a subject noun, that is, in the conditions where
there is syntactic interference. This effect is not related to the retrieval at the critical verb
(which has not started at this time), but is due to the distractor appearing earlier in the sen-
tence when it is a syntactic subject. Interestingly, the distractor noun only significantly peaks
during the retrieval in the +animate/+subject condition, that is, when both features match the
retrieval cues. The distractor thus only attracts regressions when both the animacy and sub-
jecthood features match, i.e., when there is both syntactic and semantic interference. Despite
this difference in word activations, there is no significant difference between the proportions
of observable targeted regressions from the critical verb to the distractor noun between any
of the experimental conditions. This is true for the experimental data as well as for the data
simulated by SEAM and SWIFT, as shown in Figure 4.12 and Appendix E.

As the estimates show, there is no indication in the experimental data that the distractor
is regressed to more often in the +animate/+subject condition. The distractor’s activation
pattern in Figure 4.14 is simply a consequence of the hard-coded assumption in LV05 that
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it has the highest feature match in this condition. Interestingly, however, the predicted data
from SEAM do not show an increase in incoming regressions to the distractor either. An
increase in word activation thus does not necessarily translate into a change in observed eye
movements. The lack of a direct effect on distractor refixations is likely due to oculomotor
error, which is more influential for long-range saccades, and due to upcoming words having
even higher activations than the distractor.

Based on results from preliminary post-hoc analyses, the overestimation of the average
regression probability from the critical verb to preceding regions (see Figure 4.12) is also
probably due to the hard-coded retrieval schedules. Even though the times of memory en-
coding, and therefore the base-level activation, are stochastic and completely governed by
the eye’s trajectory, the feature match is deterministic. Future work could investigate alter-
native links between memory activation 𝐴′

𝑗 ,𝑚
(𝑡) and word activation 𝑎 𝑗 (𝑡) or transition rates

𝑤′
𝑗
(𝑡), as they currently implement a very strong linking hypothesis.

In this context, we also note that – as far as we are aware – the only study that has
previously looked at word-level rereading as a function of similarity-based interference is
Lee et al. (2007). The authors report longer rereading times for a sentence-initial region
containing both the retrieval target and the distractor in their high-interference conditions,
but the Korean sentences used in their study were relatively short compared to those used by
Mertzen et al. (2023). In future work, shorter sentences should be a fruitful testing ground
for SEAM. If SEAM generates more linguistically mediated targeted regressions in shorter
sentences, this would be in line with human data (Inhoff & Weger, 2005).

Summary. We showed that both SEAM and SWIFT can be fitted to the Mertzen et al.
(2023) experimental data set. In contrast to SWIFT, however, SEAM’s predictions are in
good agreement with the overall and by-frequency regression probabilities and regression-
path durations. SEAM shows the more specific memory interference effects, that is, dif-
ferences in regression probabilities and regression-path durations due to differences in the
animacy and subjecthood of a distractor noun.

Given that the compared models SEAM and SWIFT only differ in the supplemental cue-
based memory retrieval processes contributed by the LV05 component, we can attribute the
better performance of SEAM in these metrics to LV05 principles with the four additional
parameters that were fit to the training data from Mertzen et al. (2023) (𝐹, 𝑑, 𝜇2, and 𝜇3).
It is also noteworthy that these parameters were estimated based on a restricted training data
set for each participant, and that the model can make reasonable predictions on the held-out
test data for all experimental conditions with a single model fit for each participant.

Furthermore, even though the models are compared to each other and to the experimental
data using summary statistics and predicted experimental effects, neither SWIFT nor SEAM
was directly optimized to reproduce these measures. Instead, both models were fitted directly
to the raw, unbiased fixation sequences of each participant. Therefore, the models can make
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reasonably accurate predictions for summary statistics and experimental effects although
they are not specifically fitted to them.

4.4.3 Discussion

We showed that adding a memory interference mechanism in the SWIFT architecture—
resulting in the SEAM model—allows us to bring together eye-movement control theory
and a psycholinguistic account of dependency completion. We demonstrated that that the key
regressive eye-movement related patterns in an experimental psycholinguistic data set can be
accounted for by the SEAM architecture. Specifically, we showed that first-pass regressions
and regression path duration patterns that occur due to the interference manipulation in the
Mertzen et al. (2023) data can be accounted for by SEAM, but not by SWIFT; in SEAM, as
in the data, both syntactic and semantic interference have an impact on the two dependent
measures at the pre-critical region and the critical verb.

The main results of our simulations are summarized in Table 4.2 and Figures 4.9, 4.10,
and 4.14. There were three interesting patterns in the SEAM fit that deserve discussion.
First, as shown in Figure 4.9, at the critical verb, regression path durations from SEAM
show essentially no effect of subjecthood; this is surprising because the data do show such an
effect. At the same time, in SEAM, first-pass regressions at the verb show a clear subjecthood
effect. This is because even though regressions were triggered at the verb, which should itself
increase the mean RPD, regression paths predicted by SEAM return too early in the +subject
conditions, thereby masking the effect on RPD27.

The second interesting pattern relates to the effects observed at the pre-critical adverb
region (the attorney whose secretary had forgotten [. . . ] frequently complained, see Ex-
ample 3). Recall that in the original LV05 model, sentences are processed in strictly serial
order. Effects of similarity-based interference at the pre-critical adverb are thus unexpected
under this model: Given the assumption that the verb is the retrieval trigger, there should
be no retrieval-related effects before it is read. Nevertheless, Mertzen et al. (2023) did ob-
serve interference effects at the pre-critical adverb (others have found similar patterns in the
pre-critical region; see Lago et al., 2021; Van Dyke, 2007). Mertzen and colleagues discuss
several possible reasons for these effects: Differential processing spillover from previous
regions due to differences in sentence complexity between conditions, lingering memory in-
terference during encoding of the noun phrases, and predictive processing of the verb. A
final important possibility considered by Mertzen et al. (2023) is parafoveal preview of the
verb while the adverb is being processed, so that the verb can trigger the retrieval prior to

27As the regression path duration is the sum of gaze durations on the current word and on all preceding
regions until the (simulated) eye leaves to the right of the current word, an effect in regression path durations
could be due to (a) an effect on gaze durations on preceding regions, (b) an effect on gaze duration on the
current word, (c) a combination of both. Likewise, a null effect could be a masked effect of gaze durations on
the launch site vs. gaze durations on preceding regions.
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being fixated. Our SEAM simulations are partly consistent with this last account: In 25%
of our simulations, the verb reaches the retrieval stage while the adverb is being fixated.
However, there is also processing spillover in the form of residual word activation in SEAM.
Especially in the +subject conditions, where there is an additional retrieval in the embedded
sentence at was important, and the activation of the retrieval target may not have fully de-
cayed when the adverb is read, leading to more regressions. Based solely on the Mertzen
et al. (2023) data and the small sample size of the held-out data, it is difficult to quantify
the relative contributions of preview and spillover, and we leave this issue to future research.
Nevertheless, SEAM provides a promising starting pointing for tackling possible pre-critical
retrieval effects.

A third noteworthy pattern occurs in Figure 4.14; the +subject/+animate condition causes
a large increase in the distractor’s word activation after the critical verb is encoded. This sug-
gests that the probability of the distractor to attract regressions should be much higher in that
condition than the sum of the +subject/–animate and –subject/+animate conditions. Even
though the combination of the two retrieval cues is additive at the level of the LV05 mem-
ory activation (see Equation 4.1), the exponential transformation of 𝐴(𝑡) in Equation (4.11)
significantly amplifies it. Nevertheless, the superadditive effect on the distractor’s activation
when it matches both retrieval cues does not generate any detectable overadditive effects in
the analyzed regression-related dependent measures (regression path duration and first-pass
regressions). As discussed in the previous section, the spike in activation does not neces-
sarily translate into observed regressions, partly because the large distance between the verb
and the distractor amplifies the influence of oculomotor error. With less complex sentences,
it is thus possible that SEAM would show effects on the observed regression probabilities.

4.5 General Discussion

From the very beginning of eye-movement research in reading, a dominant idea has been
that the eye and mind are tightly coupled (e.g., Just & Carpenter, 1980). After psycholin-
guists started looking at fixation patterns in reading as a function of language comprehension
difficulty, an important idea that was expressed in a now-classic paper by Frazier and Rayner
(1982) was the selective reanalysis hypothesis: this was the idea that increased compre-
hension difficulty (e.g., due to garden-pathing) leads to targeted regressions to a preceding
region that caused the processing difficulty. Although the strongest version of selective re-
analysis, and thus of the eye-mind assumption, is difficult to uphold given subsequent inves-
tigations (e.g., Mitchell et al., 2008; von der Malsburg & Vasishth, 2011), it is nevertheless
well-established that increased regressions are triggered when language processing difficulty
occurs (e.g., Clifton et al., 2007), and that rereading can aid comprehension (Schotter et al.,
2014). We assume that the mixed evidence in the psycholinguistic literature regarding se-
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lective rereading (see Paape et al., 2022, for a review) may be the result of a more indirect
linkage between higher-level sentence processing and saccade targeting: In our model, re-
trieval events during dependency completion affect the activation values of previous words in
the sentence. Words with higher activation will tend to attract saccades, but due to the inher-
ent stochasticity of the eye-movement control system and oculomotor error, subtle linguistic
manipulations do not necessarily engender measurable effects at typical sample sizes.

Most of the psycholinguistic work carried out on reading until now has side-stepped the
underlying complex latent processes involved in reading, and instead focused only on key
events involved in linguistic dependency completion. Abstracting away from these underly-
ing latent reading processes has had many advantages, a major one being that it allows us to
focus exclusively on the psycholinguistically interesting aspects of processing at the level of
the sentence representation. On the other hand, the simplification comes at a cost, because
interactions between constraints on eye-movement control and language comprehension end
up being ignored.

Interestingly, cognitive psychology has gone in a completely different direction than psy-
cholinguistics: there, the focus has been on spelling out detailed process models of eye-
movement control that rely primarily on relatively low-level drivers of eye movements, such
as frequency and word length. Models of eye-movement control such as E-Z Reader (Re-
ichle et al., 1998) and SWIFT (Engbert et al., 2005) have shown excellent performance in
explaining benchmark data in reading, without modeling the higher-level cognitive processes
such as linguistic dependency completion in any great detail.

One major gap in the literature is that these two threads—psycholinguistic explanations
of reading difficulty versus cognitive psychology models of reading—have only rarely been
considered to be joint actors in explaining key effects observed in experimental data from
psycholinguistics. Our paper makes an attempt to fill this gap: using data from a classic
similarity-based interference design, we demonstrate one way in which an eye-movement
control model, SWIFT, can be extended to include dependency completion processes. We
show that such an extended model (SEAM) can produce regressive eye movements triggered
by retrieval that occurs during linguistic dependency completion. Developing such models is
the only way to unpack the latent processes involved in reading and to investigate how low-
and high-levels of cognitive processes interface dynamically. To our knowledge, SEAM
is the only model to date that extends a complete model of eye-movement control with a
detailed model of linguistic dependency completion, using data from a planned experiment
in psycholinguistics and rigorous statistical inference.

Apart from using SWIFT as the eye-movement module, SEAM differs in important ways
from previous integrative models of eye movement control and higher-level sentence pro-
cessing. For instance, Über-Reader (Reichle, 2021), whose eye movement module is highly
similar to that of E-Z Reader (Reichle et al., 1998), has a parsing module that builds syntac-
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tic structure, but each parsing step is assumed to take the same amount of time. In SEAM,
by contrast, completing syntactic dependencies takes a variable amount of time that is deter-
mined by the LV05 equations (which originally come from ACT-R). Furthermore, regressive
saccades are not captured by Über-Reader, but are modeled dynamically in SEAM.

Another integrative model proposed by Dotlačil (2021), whose eye movement module
is also based on E-Z Reader, makes use of ACT-R Equations, but in a different way from
SEAM: In Dotlačil’s model, the latency with which a given dependent word is integrated into
the sentence’s syntactic representation depends on the retrieval time for the dependent words
and additionally on the retrieval time for the relevant parsing rule from declarative memory.
SEAM does not assume retrieval of parsing rules, which are assumed to be represented
as procedural knowledge, as in the LV05 model. Another salient difference between the
models is that regressions in Dotlačil’s model are only triggered when parsing failure occurs,
while regressions in SEAM are driven by the dynamic target selection processes taken over
from SWIFT. As a final comparison, the model of Engelmann et al. (2013) and (Vasishth
& Engelmann, 2022) combines an LV05 sentence processing module with eye movement
control based on EMMA (Salvucci, 2001), but also does not provide a detailed model of
saccade targeting, unlike SEAM.

There are of course several limitations to the present work. First and foremost, the cur-
rent implementation of SEAM and its evaluation are only a proof-of-concept. Because of the
absence of large-scale data sets with psycholinguistically interesting manipulations, it is dif-
ficult to present a comprehensive evaluation of the proposed SEAM architecture. However,
such an investigation is in principle possible to carry out, given (i) the progress on Bayesian
inference for process-based models and (ii) the fact that more and more researchers are re-
leasing data and code associated with their published papers. We expect that in future work,
more comprehensive evaluations of architectures like ours can be carried out, using large-
scale data from a broad range of phenomena in psycholinguistics. At a minimum, such an
investigation would need to include cross-linguistic data from garden-path sentences of dif-
ferent types (e.g., Frazier, 1979), predictability manipulations (e.g., Levy, 2008), the full
spectrum of similarity-based interference effects (e.g., Jäger et al., 2017), underspecification
effects (e.g., Swets et al., 2008), etc. This would be a sizable project, but one which would
significantly advance our understanding of how eye-movement control and parsing interface
during reading.

A second limitation is that, due to the computational complexity of investigating such
a detailed model of reading, formal model comparison between the baseline SWIFT model
and the SEAM model is difficult to carry out. We avoided overfitting the models to data by
separating the empirical data into a training set and a held-out set, and evaluating the model fit
only on the held-out set. This is already a significant advance over conventional approaches
to model evaluation; in both cognitive psychology and psycholinguistics, it is common to
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evaluate a model on the same data that it is trained on. In principle, it is possible to go even
further than we did in this paper, and to evaluate predictive performance by using k-fold
cross-validation. This would involve creating 𝑘 (usually, in machine learning, 𝑘 = 10) subsets
of the data to train on, and then use the 𝑘 held-out data sets for evaluation; this would allow
us to compute a quantitative measure of average fit, such as expected log pointwise density
(e.g., Gelman et al., 2014). We did not carry out such a quantitative evaluation because it
would have been computationally extremely costly. For example, just the pure SWIFT model
discussed in Rabe et al. (2021) required a high-performance computing environment, and the
total computing time was approximately 10,000 core hours, amounting to 3.5 hours run time
on 72 independent parallel nodes with 40 cores per node. Our goal in the present work was
to get as close as possible to the underlying processes involved in reading, but obviously this
comes with an unavoidable computational cost.

4.6 Conclusion

We present an integrated model of eye-movement control and linguistic dependency com-
pletion while reading. The model, called SEAM, is an integration of the SWIFT model of
eye-movement control and the Lewis-Vasishth model of sentence processing. SEAM is eval-
uated using experimental data from a similarity-based interference experiment. We show
that the SEAM model can account for empirically observed regressive eye movements; in
the model, regressive eye movements are shown to be triggered by retrieval processes that
result from higher-level dependency completion during sentence parsing. To our knowledge,
this is the first demonstration of how eye-movement control and sentence comprehension
processes can interact in explaining data from a psycholinguistically controlled experiment.
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Chapter 5

General Discussion

In this dissertation, I presented results from three modeling studies embedded in the do-
mains of eye movements and reading. The studies address several key issues of contempo-
rary reading models, including parameter inference, model comparison, and the integration
of eye-movement models with linguistic dependency completion processes. Collectively,
they contribute to advancing the field of computational cognitive science, particularly in the
context of eye-movement control during reading, and motivate further methodological and
theoretical work.

5.1 Summary

In Chapter 2, we highlighted three main limitations in existing approaches to parameter
inference and model comparison for dynamical cognitive models of of reading: (1) neglect of
the time-ordered nature of observations, (2) lack of likelihood implementations, and (3) in-
ability to explain interindividual differences. These limitations were addressed through the
development of a likelihood-based framework for the SWIFT model. By combining ap-
proximated spatial and temporal likelihood components, we demonstrated the feasibility of
likelihood-based Bayesian inference for individual subjects. Interindividual differences in
reading behavior correlated with differences in estimated model parameters, providing a sig-
nificant advancement for understanding complex reading tasks.

The formulation of a likelihood for a complex dynamical model like SWIFT is expected
to be non-trivial. Nevertheless, in Chapter 2, we showed that it is possible to implement
dynamical cognitive models using sequential likelihoods, embedded in the broader theo-
retical approach of data assimilation. Even when the analytical form of the likelihood is
intractable, methods such as probability density approximation or pseudo-marginal likeli-
hoods are worthwhile. Generally, this approach is also applicable to models outside the
realm of reading and even besides eye-movement research.

The subsequent Chapter 3 focused on the application of the SWIFT model to demanding
experimental data, emphasizing the importance of Bayesian inference and likelihood func-
tions in contrast to other types of parameter estimation. We proposed a more realistic model
of oculomotor error, demonstrated the reliable estimation of model parameters for individ-
ual subjects, and were able to capture interindividual differences in reading behavior across
various experimental conditions. This work represents a significant step toward integrating
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cognitive modeling of eye-movement control with the prediction of interindividual differ-
ences.

The final study presented in Chapter 4 delved into a broader theoretical context of eye-
movement research in reading, emphasizing the interplay between eye and mind in the
investigation of syntactic processing difficulty during reading. Highlighting the different
theoretical angles of linguistic explanations of reading difficulty and psychological mod-
els of eye-movement control, SEAM bridges this gap by combining eye-movement control
with linguistic dependency completion processes. It should be noted that SEAM is a proof-
of-concept, and comprehensive evaluations across various psycholinguistic phenomena are
needed to validate its architecture.

5.2 Statistical Rigor Through Bayesian Inference

After introducing a likelihood model for SWIFT, all three studies have highlighted that
likelihood-based Bayesian inference is a powerful and theoretically grounded approach for
parameter estimation in cognitive models. Unlike measures based on deviance between ex-
perimental and simulated summary statistics, likelihood-based parameter inference offers
several advantages:

1. There is no need to aggregate experimental data across participants and/or items in
order to calculate summary statistics. Instead, especially given sequential likelihoods,
the model can be fitted directly to the unaggregated observations, which greatly im-
proves the precision and spares the selection and weighting of different summary
statistics.

2. Even though summary statistics are not used for model fitting, when aggregating across
simulated data, the models are still able to produce reliable predictions at the level of
summary statistics.

3. The implementation of likelihoods is necessary for using Bayesian parameter inference
methods. Especially when working with models with highly dimensional parameter
space, the regularization of the parameter search is critical for efficient and timely
inference and results. This also allows for efficient hierarchical model fitting within a
Bayesian framework (see Section 5.8 for more details).

Critically, further research should also address the efficiency of simulated, pseudo-marginal
likelihood, proposed in Chapter 2. Although it was demonstrated in all studies that param-
eter inference is reliable, given the results of profile-likelihood evaluations and parameter
recoveries, the computation of the approximate likelihood is costly. Particularly, a replace-
ment of simulation-based likelihood components, i.e. the temporal likelihood approximated
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by kernel density estimation, could potentially increase the computational performance of
the algorithm.

5.3 Individual Differences in Eye Movements During Reading

Reading is subject to a variety of individual factors, e.g. age, experience, domain knowl-
edge, etc. Therefore, we can expect and have indeed observed considerable interindividual
differences in both the observed summary statistics and estimated model parameters. In par-
ticular, the following observations and conclusions can be made with regard to individual
differences:

1. Modeling individual differences allows us to move beyond a one-size-fits-all approach
and gain a deeper understanding of the complexity of reading behavior. It acknowl-
edges that readers vary in their cognitive processes and strategies, and this variability
can be essential to understanding the mechanisms underlying reading.

2. Considering individual differences in model parameters also allows us to estimate in-
dividual estimates for particular participants. In turn, this also makes it easier to detect
and reliably predict commonalities across participants.

3. Understanding individual differences in reading behavior can have practical applica-
tions in education and clinical settings. Tailoring interventions or support to an indi-
vidual’s reading profile can be more effective in improving reading skills or addressing
reading-related disorders.

While the discussed research represents significant progress in modeling individual differ-
ences, there are challenges to overcome. Hierarchical Bayesian approaches and the integra-
tion of larger datasets are mentioned as potential future directions to increase the reliability
of estimates for individual subjects.

5.4 Integration of Cognitive Processes During Reading

The integration of eye-movement control models with linguistic dependency completion
processes represents a significant step toward bridging the gap between cognitive psychology
and psycholinguistics. While cognitive psychology models have focused on low-level drivers
of eye movements, psycholinguistics has explored comprehension difficulty and regressions
during reading. The model SEAM, introduced in Chapter 4, aims to bring these two threads
of research together. There are a number of implications for theory and further research:

1. Integrative models that consider processes at different “levels” such as perception,
higher cognition, language, and oculomotor execution, provide a more comprehen-
sive understanding of reading. By incorporating accounts for different aspects of the
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behavioral response, researchers can improve the predictive power of their models, ex-
plaining not only isolated patterns in the data but also complex reading behaviors that
span over the entire sentence or beyond.

2. SEAM is a proof-of-concept model. In addition to the added Lewis and Vasishth
(2005) memory-retrieval model, other models could be integrated to account for addi-
tional aspects. For example, the concept of predictability in SWIFT and SEAM, which
is fixed a property of the word fixed in the corpus, could be dynamically determined
by means of surprisal (Levy, 2008). Moreover, lower-level cognitive processes with
regard to word identification could partially or fully replace the “lexical” processing
stage of words.

3. While the introduction of models like SEAM is promising, with increased complexity,
there is a need for comprehensive evaluations using large-scale data sets and various
psycholinguistic phenomena. Researchers should strive to validate these integrative
models across a wide range of reading scenarios, such as garden-path sentences, pre-
dictability manipulations, and interference effects. This validation will help establish
the credibility and generalizability of these models.

5.5 Effects of Similarity-Based Interference

In Chapter 4, it was shown that SEAM has an overall better predictive power for the con-
sidered experimental data set than the baseline SWIFT model. That was particularly true for
“later” reading measures such as regression-path durations (go-past durations), total reading
times, or re-rereading times. This suggests that the effects, for which SEAM can account,
occur later during reading and may not be well described by earlier (first-pass) reading mea-
sures, which is in line with previously published literature on syntactic and semantic effects
on eye movements during reading (e.g., see Huestegge & Bocianski, 2010; Weiss et al.,
2018).

The model did have difficulties predicting the precise distribution of landing sites of
retrieval-induced regressions. Presumably, this was the case because (1) retrievals were
hard-coded, (2) not all words in the sentence were fully coded in the predefined memory
schedule, (3) reading a sentence with a retrieval always triggered a retrieval, and (4) cue-
feature matches were identical across participants and trials, i.e. the same word is identically
encoded and retrieved across all trials and participants. However, it is plausible that words
are encoded with different features and cues between participants or across trials, e.g. de-
pending on reading skill, language proficiency, task motivation, or overall accuracy. Conse-
quently, there is no guarantee that interference even occurs at all for a given experimental
trial, whereas the model always assumes it. An improved version of SEAM could therefore
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also consider a more complete feature schedule across all words of the sentence and a noisy
encoding or retrieval of features during dependency resolution to add more stochasticity.

5.6 Accessibility of Model Implementations

Another issue to consider is the extreme model complexity of SEAM and the complex
implementation in the C programming language. Already simpler models that do not require
compiling the model code before using it, have usability and accessibility issues, making it
difficult for other researchers to use the models for predicting data, let alone model com-
parison or fitting. This can also make it more difficult to evaluate the models against other
data sets or using different inferential methods, which can threaten the scientific value of the
underlying theories.

Therefore, simpler model implementations should be provided for interested researchers
to become acquainted with key concepts of the model. Building on the simplified R-based
toySWIFT version proposed by Engbert and Rabe (2023), which greatly simplifies key char-
acteristics of SWIFT and offers an accessible interface for model simulations and parameter
inference, a simplified version of SEAM could be equally helpful in advancing the scien-
tific outreach. It is also possible to establish models within larger frameworks, in which
components of the models can be selectively switched on and off or integrated with other
approaches.

5.7 Model Comparison of Complex Models

Integrated reading models are powerful but also complex. Given the increasing number
of competitors, a model comparison is in order to evaluate their relative usefulness. Ideally,
likelihood-based approaches could be entertained but the lack of a likelihood implementa-
tion for some of these models complicates this endeavor. Even if a likelihood has been im-
plemented, though, likelihood-based model comparison is computationally costly and, due
to the objectivity of the likelihood, does not permit model comparison with regard to very
specific patterns of the predicted behavioral response, e.g. comparing which model makes
“better” predictions for regression probabilities under different experimental manipulations.
Moreover, reading models are often evaluated on different corpora, sometimes using very
simplistic stimuli. This makes a direct comparison based on published metrics alone impos-
sible.

Instead, assuming availability of model implementations, it may be worthwhile to estab-
lish a reading benchmark similar to the MIT Saliency Benchmark (https://saliency.tuebingen.
ai/; Kümmerer et al., 2018) that compares predictions of reading models. Modelers would
retrieve a standardized training data and sentence corpus and return their predictions for sen-

https://saliency.tuebingen.ai/
https://saliency.tuebingen.ai/
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tences that were withheld from the training subset. Those would then be compared against
the true withheld data along some set of “gold-standard” summary statistics that are often re-
ported in the field, such as different fixation durations and probabilities, within-word landing
positions etc.

5.8 Hierarchical Bayesian Modeling

It has been demonstrated in this dissertation and elsewhere that there are considerable
individual differences in reading, which manifests both in interindividual variability in ob-
served summary statistics as well as in fitted model parameters. A clear disadvantage of the
approach applied in the presented studies is that each individual participant’s data were fitted
separately, without considering the data of other participants. This means that, effectively,
for 𝑛 participants, all fitted parameters 𝜽 = {𝜃1, . . . , 𝜃𝑛} were fitted exactly 𝑛 times. This is
inefficient for at least three reasons:

1. Parameter values 𝜽 can be expected to differ between participants but only with some
variance (𝜎2

𝜃
, random effect) around a mean (𝜇𝜃 , fixed effect). Estimating those dis-

tributional hyperparameters in addition to the participant-level parameter values can
help regularizing the estimates. For example, we can expect the processing span of
a participant to vary maybe between 4–14 letters around the fovea. However, if all
participants cluster around an average of ~7 characters, it is more likely that an ex-
treme estimate closer to the edges of the prior is due to inefficiencies of the sampler
than a truly extreme parameter value. In such cases, the fitted parameters of the other
participants can help shrink the outlier toward a more reliable estimate.

2. The parameters could be correlated across participants. For example, a participant with
a very narrow processing span 𝛿 could be expected to make more frequent saccades, i.e.
have a shorter global timer 𝑡sac. Like the variances described above, these correlations
can be fitted as part of the participant-level parameter covariance matrix.

3. For some participants, data quality or quantity will be lower-than-average. In those
cases, their parameter fits could “borrow” statistical power from other participants.
This generally applies to all parameters fitted across subjects but could be especially
useful for parameters that are not expected to vary between subjects, i.e. where the
hyperprior is maximally regularizing.

Of course, the introduction of a hierarchical prior adds some complexity to the sampling
algorithm. Assume for simplicity that the 𝑛 true parameter values of the single parameter
𝜽 = {𝜃1, . . . , 𝜃𝑛} are normally distributed. Then, the MCMC sampler, instead of sampling
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proposals for 𝜽 directly from a specified prior, will first sample the distributional hyperpa-
rameters

𝜇𝜃 ∼ N
(
𝜈𝜇,Σ

2
𝜇

)
and (5.1)

𝜎2
𝜃 ∼ IG (𝑎𝜎, 𝑏𝜎) , (5.2)

where 𝜈𝜇, Σ2
𝜇, 𝑎𝜎, and 𝑏𝜎 define the shape of the (known or assumed) hyperpriors of the hy-

perparameters, which is Gaussian for the fixed effect 𝜇𝜃 and inverse-gamma for the random
effect 𝜎2

𝜃
. Subsequently, the sampler will generate a proposal

𝜽 ∼ N
(
𝜇𝜃 ,𝜎

2
𝜃

)
(5.3)

with mean 𝜇𝜃 (fixed effect) and variance 𝜎2
𝜃
. The proposal then consists of the 𝑛 samples

of 𝜽 and its distributional hyperparameters 𝜇𝜃 and 𝜎2
𝜃
. Consequently, the posterior of the

parameters, given the data X = {X1, . . . ,X𝑛} and the hyperpriors, is

𝑃

(
𝜽 , 𝜇𝜃 ,𝜎

2
𝜃 | X, 𝜈𝜇,Σ

2
𝜇, 𝑎𝜎, 𝑏𝜎

)
∝

𝑛∏
𝑖=1

[
𝑃𝜃

(
𝜃𝑖 | 𝜇𝜃 ,𝜎2

𝜃

)
𝐿𝑀 (𝜃𝑖 | X𝑖)

]
×

𝑃𝜇

(
𝜇𝜃 | 𝜈𝜇,Σ2

𝜇

)
𝑃𝜎

(
𝜎2
𝜃 | 𝑎𝜎, 𝑏𝜎

)
, (5.4)

where 𝐿𝑀 is the participant-level likelihood (see also Equations 1.3 and 1.7), 𝑃𝜃 is the
participant-level Gaussian prior conditional on the sampled hyperparameters 𝜇𝜃 and 𝜎2

𝜃
, 𝑃𝜇

is the Gaussian hyperprior for 𝜇𝜃 , and 𝑃𝜎 is the inverse-gamma hyperprior for 𝜎2
𝜃
.

Note that this approach assumes that hierarchical priors are normally distributed. Al-
though there is no theoretical constraint to a Gaussian distribution, it has at least the follow-
ing four practical reasons:

1. The hyperparameters 𝜇𝜃 and 𝜎2
𝜃
, which are fitted in addition to the participant-level

parameters 𝜽 , are intuitively interpretable as empirical characteristics of 𝜽 across par-
ticipants, namely the mean and variance (or relatedly, the standard deviation).

2. While analytical probability density functions exist for numerous other distributions,
it has to be ensured that the sampled hyperparameters represent the empirical (not
population-level) distributional characteristics of 𝜽 . That means, that 𝜇𝜃 must match
exactly the mean and 𝜎2

𝜃
must match exactly the variance of the sampled 𝜽 values.

For non-Gaussian distributions, there are few if any tractable and numerically stable
solutions for such purposes.

3. Using a Gaussian distribution for more than one hierarchical parameters permits the
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use of a covariance matrix instead of a scalar variance parameter for 𝜎2
𝜃
. This permits

sampling and estimation of parameter correlations across participants.

4. Generally, if parameters are to have finite lower and/or upper bounds, the sampled 𝜽

can be transformed using analytical, monotonic functions, for example

exp : R→ {𝜽′ ∈ R : 0 ≤ 𝜽′ ≤ +∞} or (5.5)

tanh : R→ {𝜽′ ∈ R : −1 ≤ 𝜽′ ≤ 1} . (5.6)

Given the individual differences and high dimensionality of SWIFT and SEAM, the hierar-
chical approach may be particularly useful for fitting those models to appropriate experimen-
tal data. Presumably, as a first step, a proof-of-concept hierarchical fitting of the simplified
toySWIFT (Engbert & Rabe, 2023) would be a powerful demonstration that should be con-
sidered for future research.

5.9 Conclusion

In summary, the work presented in this dissertation offers valuable insights into the inte-
gration of likelihood-based Bayesian inference, interindividual differences in reading behav-
ior, and the dynamic interaction between eye-movement control and linguistic processing.
Further research and validation are needed to fully explore the potential of these models and
methodologies in advancing our understanding of reading processes. The SEAM model in
particular affords more validation with regard to other syntactic phenomena, e.g., more spe-
cific effects such as local coherence effects or classical effects such as garden-path effects.
Moreover, further research should address the methodological issues of model comparison,
accessibility, and hierarchical modeling, which would be major advancements in the field
of reading models and, consequently, in our understanding of the fundamental processes
involved during reading.
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Appendix A

Experimental Data and Sentence Material

All eye-tracking data used in our simulation studies originate from Risse and Seelig
(2019), who collected data for an experiment that was a version of the 𝑛 + 1 boundary
paradigm (Rayner, 1975) to investigate effects of parafoveal word difficulty on
fixation durations and distinguish them from preview benefit effects (see Vasilev
& Angele, 2017, for a comprehensive review). Their data is available online at
https://doi.org/10.17605/OSF.IO/KZ483.

In the experiment, 34 participants, mostly students of psychology at the University of
Potsdam, read 114 single sentences presented on a computer screen while their eyes were
being tracked. The simple structured German sentences consisted of six to 12 words with an
average length of 9 words. Every sentence contained a gaze contingent invisible boundary
before a specific target word. Before the eyes crossed the boundary, the preview of the target
word could either be of low, high or medium frequency (i.e. high, low or medium difficulty
respectively). During the saccade in which the boundary was crossed, the target word was
always exchanged with the medium frequency word. Word frequencies were taken from the
dlexDB database (Heister et al., 2011) based on The DWDS corpus: A reference corpus for

the German language of the 20th century (Geyken, 2007).
Data treatment and preprocessing. The data were collected using an Eyelink II Sys-

tem (SR Research, Osgoode/Ontario, Canada) with a temporal resolution of 1,000 Hz. Since
spatial resolution was preprocessed to letter accuracy. Within-letter position was random-
ized by added small random numbers to avoid artifacts from discretization. Basically, the
data used here were treated by the same preprocessing as reported in the statistical analy-
sis of the experiment. Additionally, fixation durations smaller than 25 ms were discarded
(550 fixations in 338 trials). Trials that included fixation durations larger than 1,000 ms
were discarded (45). Trials consisting of less than three fixations were also removed from
the data-set. Additionally, re-readings signaled by regressions starting from the second
last or last word of the sentence and all subsequent fixations were discarded (5,773 fixa-
tions). After preprocessing, 30,639 fixations from 3,422 trials were included in the data-set
for estimation. The implementations of the model, the estimation algorithm, and scripts
for analyses and plots, along with the corpus data and fixation sequences are available at
https://doi.org/10.17605/OSF.IO/XDKWQ

https://doi.org/10.17605/OSF.IO/KZ483
https://doi.org/10.17605/OSF.IO/XDKWQ
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Appendix B

The SWIFT Model: Some Mathematical Details

From its first proposal, SWIFT (Engbert et al., 2002) incorporated two basically indepen-
dent mechanisms for target selection and saccade timing, which are integrated through word
activations. Word activations keep track of word processing, but also control target selection
probabilities and modulate saccade timing. The state of the model (see Seelig et al., 2020,
for an introduction) at time 𝑡 is given as 𝑛 = (𝑛1, 𝑛2, ..., 𝑛4+𝑁𝑊

) where 𝑛1, ..., 𝑛4 are saccade
timers and 𝑛5, ...𝑛4+𝑁𝑊

are word activations with 𝑁𝑊 as the number of words in a given sen-
tence. Word activations rise during word recognition and fall during postlexical processing,
where all 𝑛𝑖 are discrete states, so that the internal state of SWIFT is a continuous-time,
discrete state random walk. The temporal evolution of states is given by a master equation,
which can be simulated efficiently on a computer (Seelig et al., 2020).

Words that fall within a processing span centered at the current gaze location are pro-
cessed in parallel (Snell & Grainger, 2019). Processing starts at the letter level. We denote
the eccentricity of letter 𝑗 in word 𝑖 (i.e., the distance from the current gaze position) by
𝜖𝑖 𝑗 (𝑡). The width of the processing span is given by 𝛿 letter spaces to the left and to the
right of the current fixation position. Using an inverse parabolic (asymmetric) processing
function, a letter at eccentricity 𝜖 receives a processing rate

𝜆(𝜖) = 𝜆0 ·
{

1− 𝜖2/𝛿2 , for |𝛿 | ≤ 𝜖

0 , otherwise
, (B.1)

with 𝜆0 = 3/4𝛿 a normalization constant. For the simulations in the current study, we are
assuming a symmetric processing span given by Equation (B.1); for a version with an asym-
metric processing span extended to 𝛿𝐿 to left and to 𝛿𝑅 to right see Engbert et al. (2005) and
Seelig et al. (2020).

Next, the word-level processing rate Λ𝑖 (𝑡) for word 𝑖 is computed by

Λ𝑖 (𝑡) = 𝐿
−𝜂
𝑖

𝐿𝑖∑︁
𝑗=1

𝜆(𝜖𝑖 𝑗 (𝑡)) , (B.2)

where 𝐿𝑖 is the word length of word 𝑖 in number of letters and parameter 𝜂 is a word-length
exponent.

During processing, a word’s activation increases with rate Λ𝑖 (𝑡) to a word-frequency
dependent maximum and decreases until activation returns to zero. During the decreasing
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part, word activations also decay with rate 𝜔 to account for memory leakage.
In SWIFT, a saccade is programmed to target a single word. Whenever a saccade target

needs to be determined at time 𝑡, the target is selected according to a dynamic word activation
field 𝑎𝑚 (𝑡), with targeting probability 𝜋(𝑚, 𝑡) for word 𝑚 given by relative activation, i.e.,

𝜋(𝑚, 𝑡) = 𝑎𝑚 (𝑡)∑𝑁𝑊

𝑗=1 𝑎 𝑗 (𝑡)
, (B.3)

which is implementing Luce’s choice rule (Luce & Raiffa, 1989).
In SWIFT, saccades are generated by random timing (see also Engbert & Kliegl, 2001)

that is modulated by foveal word activation (i.e., activation 𝑎𝑘 (𝑡) of the fixated word 𝑘 at
time 𝑡) with strength given by parameter ℎ (see Seelig et al., 2020, for details).
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Appendix C

Improved Oculomotor Assumptions

Oculomotor assumptions are critical for mathematical models of eye-movement control.
For example, oculomotor noise generates about 10 to 15% of mislocated fixations (Engbert
& Nuthmann, 2008; Krügel & Engbert, 2014; Nuthmann et al., 2005) as suggested by earlier
work by McConkie et al. (1988).

For simplicity, most oculomotor models were based on normally distributed errors (Eng-
bert & Nuthmann, 2008; McConkie et al., 1988). However, it should be noted that a normal
distribution of saccade lengths will assign a non-zero likelihood to zero-length saccades (see
Figure C.1), in particular, in the case of refixations as their mean is often not significantly
different from 𝑑 = 0. Gamma distributions, however, specifically exclude values of zero,
which means that a saccade length of 𝑑 = 0 violates the model, i.e., it is assigned a likelihood
of 𝑃spat (𝑑 = 0) = 0 and will thus never stay at the exact same location after initiating a sac-
cade, independent of the intended saccade target. In line with these assumptions, we propose
a modified version of SWIFT which implements Gamma-distributed rather than normally
distributed saccade lengths. Figure C.1 compares the theoretical distributions of saccade
amplitudes following a Gamma vs. a Gaussian distribution.

The likelihood (probability density function, PDF) 𝑓 (𝑥) and cumulative density function
(CDF) 𝐹 (𝑥) of a Gamma distributed variable 𝑥 ∈ 𝑋 are defined as follows, where Γ(𝛼) is the
gamma function and 𝛾(𝛼, 𝛽𝑥) is the lower incomplete gamma function. The likelihood and
CDF of a truncated Gamma distribution are normalized through division by the CDF of the
upper bound, i.e.,

𝑓 (𝑥;𝛼, 𝛽) = 𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

Γ (𝛼) (C.1)

𝐹 (𝑥;𝛼, 𝛽) =
∫ 𝑥

0
𝑓 (𝑢;𝛼, 𝛽) 𝑑𝑢 =

𝛾 (𝛼, 𝛽𝑥)
Γ (𝛼) (C.2)

The saccade length 𝑑 ∈ 𝐷 is a random variable that describes the one-dimensional spatial
difference between two fixation locations. In reading research, it is often normalized to
represent letter units, such that a saccade length of 𝑑 = 1.0 describes a movement to the right
by one letter width, whereas negative values denote movements to the left. In SWIFT, it has
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Figure C.1
Theoretical Distribution of Saccade Amplitudes Assuming a Gamma vs. Gaussian
Distribution
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Note. Both distributions have a theoretical expected value (mean) of E[𝑋] = 2.0 and vari-
ance of Var[𝑋] = 1.0 originating from the gaze position 𝑥0 = 0.

an expected value (mean) and variance of

E [𝐷] = 𝑣𝑚 + 𝜖sre − 𝑥𝑖−1 (C.3)

Var [𝐷] = 𝜎2
sre , (C.4)

where 𝑥𝑖−1 is the launch site 28 and 𝑣𝑚 is the target word center of word 𝑚. 𝜖sre and 𝜎sre are
further decomposed into a fixed intercept and distance-dependent slope term where

𝜖sre = sre1 − sre2 · (𝑣𝑚 − 𝑥𝑖−1) (C.5)

𝜎sre = omn1 +omn2 · |𝑣𝑚 − 𝑥𝑖−1 | , (C.6)

which is in line with McConkie et al. (1988) and previous versions of SWIFT (Engbert et al.,
2005; Seelig et al., 2020). Fixed and distance-dependent contributions to 𝜎sre are simply
additive. As the expected value of the saccade amplitude E [𝐷] is the sum of target distance
(𝑣𝑚−𝑥𝑖−1) and 𝜖sre, saccade execution is more sensitive to the actual target distance for values
of sre2 closer to 0 and less sensitive for values closer to 1.

In our current work, we have changed the underlying distribution from Gaussian to

28Note that any within-word fixation location can be translated to a global (sentence-level) gaze position
𝑥𝑖 = 𝑙𝑖 +

∑𝑘𝑖−1
𝑚=1 (1+ 𝐿𝑚), which is the cumulative letter position starting at the first letter of the first word, and

vice versa. The global notation 𝑥𝑖 in favor of (𝑘𝑖 , 𝑙𝑖) simplifies the computation of the spatial likelihood without
any loss of precision.
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Gamma with identical means and variances. The modification does not introduce any addi-
tional model parameters. Nor does it change the interpretation of existing model parameters
with respect to the effect on mean (sre1 and sre2) and variance (omn1 and omn2) of saccade
amplitudes. Note that the expected value of the saccade length is corrected to a half letter
space if it occurs to be smaller (see Equations C.8 and C.9), so that the expected value is
always in the direction of the respective intended target.

𝑑 = 𝑥𝑖 − 𝑥𝑖−1 (C.7)

EF [𝐷] = max (𝑣𝑚 + 𝜖sre − 𝑥𝑖−1,0.5) (C.8)

EB [𝐷] = max (𝑥𝑖−1 − 𝑣𝑚 − 𝜖sre,0.5) (C.9)

Var [𝐷] = 𝜎2
sre (C.10)

Depending on the relative location of the gaze position 𝑥𝑖 and the center 𝑣𝑚 of word 𝑚,
the parameters of the Gamma distribution are chosen to be:

𝛼(.) =

(
E(.) [𝐷]

)2

Var [𝐷] (C.11)

𝛽(.) =

��E(.) [𝐷]
��

Var [𝐷] (C.12)

After the target 𝑘𝑖 has been selected (see Seelig et al., 2020, for an introduction), the
landing position 𝑥𝑖 is determined by the sum of the launch site 𝑥𝑖−1 and the saccade amplitude
𝑑 where 𝑑 < 0 is a saccade directed to the left and 𝑑 > 0 is a saccade directed to the right.
The saccade length 𝑑 always follows a truncated Gamma distribution Γ𝑇 in either direction.
For forward saccades, the distributional parameters are determined by 𝛼F and 𝛽F with 𝑑 ∈
(0, 𝑥max − 𝑥𝑖−1), i.e. a landing position between 𝑥𝑖−1 and 𝑥max. For backward saccades, the
distributional parameters are determined by 𝛼B and 𝛽B with 𝑑 ∈ (−𝑥𝑖−1,0), i.e. a landing
position between 0 and 𝑥𝑖−1.

For forward fixations (𝑘𝑖 = 𝑘𝑖−1 + 1), skippings (𝑘𝑖 > 𝑘𝑖−1 + 1), and forward refixations
(𝑘𝑖 = 𝑘𝑖−1 ∧ 𝑧 > 𝑠), 𝑑 ∈ 𝐷 is Gamma-distributed with the tail to the right of the launch site.
For regressions (𝑘𝑖 < 𝑘𝑖−1) and backward refixations (𝑘𝑖 = 𝑘𝑖−1 ∧ 𝑧 ≤ 𝑠), 𝑑 ∈ 𝐷 is Gamma-
distributed with the tail to the left of the launch site:

𝐷 ∼

Γ𝑇 (𝛼F, 𝛽F, 𝑥max − 𝑥𝑖−1) for 𝑘𝑖 > 𝑘𝑖−1 ∨ (𝑘𝑖 = 𝑘𝑖−1 ∧ 𝑧 > 𝑠)

−Γ𝑇 (𝛼B, 𝛽B, 𝑥𝑖−1) otherwise
(C.13)

For refixations, the saccade length follows a weighted mixture distribution, composed of
a positive Gamma distribution Γ𝑇 with weight 1−𝑅 and a negative Gamma distribution −Γ𝑇
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with weight 𝑅, where 𝑅 is the relative position of 𝑥𝑖−1 within the word with 0.0 being the
leftmost (including trailing whitespace) and 1.0 being the rightmost relative position. There-
fore, a backward refixation following −Γ𝑇 is most likely for launch sites on the right word
boundary and forward refixations are most likely for launch sites on the left word boundary.
Thus, a backward refixation is executed if a uniformly distributed random number 𝑧 is greater
than the CDF of the backward refixation saccade length distribution (𝑠, see Equation C.15).
If not, a forward refixation is executed. 𝑅 (see Equation C.14) depends on the previous fixa-
tion location 𝑥𝑖−1, the location of the right border of the previously fixated word 𝑏𝑘𝑖−1−1 and
the length of that word 𝐿𝑘𝑖−1 .

𝑅 =
𝑥𝑖−1 − 𝑏𝑘𝑖−1−1

𝐿𝑘𝑖−1 +1
;𝑅 ∈ [0,1] (C.14)

𝑠 =
𝑅 ·𝐹 (𝑥𝑖−1;𝛼B, 𝛽B)

(1−𝑅) ·𝐹 (𝑥max − 𝑥𝑖−1;𝛼F, 𝛽F) +𝑅 ·𝐹 (𝑥𝑖−1;𝛼B, 𝛽B)
(C.15)

The probability 𝑞 of a landing position 𝑥𝑖 differs between planned saccade directions.
It always depends on the target 𝑚 and the launch site 𝑥𝑖−1. For forward fixations and skip-
pings (i.e., forward saccades), the likelihood is 𝑞F (see Equation C.17). For regressions, the
likelihood is determined with 𝑞B (see Equation C.18). For refixations, the likelihood is the
weighted sum of forward and backward saccade likelihoods, 𝑞R (see Equation C.19).

𝑞 (𝑘𝑖, 𝑙𝑖 | 𝑚,𝐹𝑖−1, 𝜃) = 𝑞 (𝑥𝑖 | 𝑚,𝑥𝑖−1, 𝜃)

=


𝑞F (𝑥𝑖 | 𝑚,𝑥𝑖−1, 𝜃) , for 𝑘𝑖 > 𝑘𝑖−1

𝑞B (𝑥𝑖 | 𝑚,𝑥𝑖−1, 𝜃) , for 𝑘𝑖 < 𝑘𝑖−1

𝑞R (𝑥𝑖 | 𝑚,𝑥𝑖−1, 𝜃) , for 𝑘𝑖 = 𝑘𝑖−1

(C.16)

𝑞F (𝑥𝑖 | 𝑚,𝑥𝑖−1, 𝜃) =
𝑓 (𝑥𝑖 − 𝑥𝑖−1;𝛼F, 𝛽F)

𝐹 (𝑥max − 𝑥𝑖−1;𝛼F, 𝛽F)
(C.17)

𝑞B (𝑥𝑖 | 𝑚,𝑥𝑖−1, 𝜃) =
𝑓 (𝑥𝑖−1 − 𝑥𝑖;𝛼B, 𝛽B)
𝐹 (𝑥𝑖−1;𝛼B, 𝛽B)

(C.18)

𝑞R (𝑥𝑖 | 𝑚,𝑥𝑖−1, 𝜃) =
𝑅 · 𝑓 (𝑥𝑖 − 𝑥𝑖−1;𝛼F, 𝛽F) + (1−𝑅) · 𝑓 (𝑥𝑖−1 − 𝑥𝑖;𝛼B, 𝛽B)
(1−𝑅) ·𝐹 (𝑥max − 𝑥𝑖−1;𝛼F, 𝛽F) +𝑅 ·𝐹 (𝑥𝑖−1;𝛼B, 𝛽B)

(C.19)
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Appendix D

SEAM Model Parameters

Parameter Default Description

𝐹 0.14 Retrieval latency scaling factor
𝑆max 1.5 Maximum activation strength
𝑑 0.5 Exponential decay of memory activation
𝑝 –1.5 Additional penalty for word-category mismatch
𝜇1 0.0 Fixed production time (50 ms in original LV05 model)
𝜇2 0.5 Relative minimum activation of retrieval trigger during retrieval
𝜇3 0.2 Relative activation threshold for retrieval candidates

𝛿0 7.23 Non-dynamical (fixed) processing span width (in letter spaces)
𝛿1 1.0 Dynamical processing span width (in letter spaces)
asym 1.0 Relative width of the processing span to the left of the fixation location
𝜂 0.5 Word-length exponent
𝛼 1.50 Baseline word difficulty
𝛽 0.5 Word-frequency effect on word difficulty
𝛾 1.0 Target selection exponent
minact –5.0 Minimum activation threshold of words for target selection
𝜃 0.0 Effect of predictability on processing speed
𝑡sac0 1.0 Relative duration of the first fixation of the sequence
𝑡sac 2.2 Mean saccade interval (fixation duration)
ℎ 0.64 Foveal inhibition factor
ℎ1 0.0 Parafoveal inhibition factor
ppf 0.0 Inhibition from words to the left of the fixation location
𝜄 1.0 Transfer across saccades (activation loss during saccade)
𝑀 1.25 Relative fixation duration of misplaced fixations
𝑅 0.8 Relative fixation duration of well-placed refixations
𝜅0 0.0 Non-labile latency dependence on target distance (factor)
𝜅1 0.0 Non-labile latency dependence on target distance (exponent)
proc 1.0 Relative processing speed for postlexical processing
decay 0.07 Global decay of word activations during postlexical processing
𝜏l 1.2 Mean duration of the labile saccade program
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Parameter Default Description

𝜏n 0.8 Mean duration of the non-labile saccade program
𝜏x 0.2 Mean duration of saccade execution
aord 30 Order of random walks for word activation
cord 15 Order of random walks for global saccade program
lord 12 Order of random walks for labile saccade program
nord 10 Order of random walks for non-labile saccade program
xord 20 Order of random walks for saccade execution
ocshift 0.0 Fixed oculomotor shift parameter
omn(FS)

1 0.80 Oculomotor noise intercept parameter for forward saccades
omn(FS)

2 0.03 Oculomotor noise slope parameter for forward saccades
omn(SK)

1 0.80 Oculomotor noise intercept parameter for skipping saccades
omn(SK)

2 0.14 Oculomotor noise slope parameter for skipping saccades
omn(FRF)

1 0.80 Oculomotor noise intercept parameter for forward refixations
omn(FRF)

2 0.03 Oculomotor noise slope parameter for forward refixations
omn(BRF)

1 0.80 Oculomotor noise intercept parameter for backward refixations
omn(BRF)

2 0.03 Oculomotor noise slope parameter for backward refixations
omn(RG)

1 0.80 Oculomotor noise intercept parameter for regressions
omn(RG)

2 0.03 Oculomotor noise slope parameter for regressions
sre(FS)

1 5.0 Saccadic range error intercept parameter for forward saccades
sre(FS)

2 0.5 Saccadic range error slope parameter for forward saccades
sre(SK)

1 5.0 Saccadic range error intercept parameter for skipping saccades
sre(SK)

2 0.75 Saccadic range error slope parameter for skipping saccades
sre(FRF)

1 2.5 Saccadic range error intercept parameter for forward refixations
sre(FRF)

2 0.5 Saccadic range error slope parameter for forward refixations
sre(BRF)

1 –2.5 Saccadic range error intercept parameter for backward refixations
sre(BRF)

2 –0.5 Saccadic range error slope parameter for backward refixations
sre(RG)

1 –2.5 Saccadic range error intercept parameter for regressions
sre(RG)

2 –0.9 Saccadic range error slope parameter for regressions
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Appendix E

Effects of Memory Interference on Experimental
and Simulated Regression Probabilities
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Note. Effects are estimates and 95% CrIs from logistic regressions. Each panel shows
the effect on the proportion of trials with a critical regression given the launch site (rows) and
landing site (columns). Estimates have been backtransformed to the linear scale. Regions
Int 1 and Int 2 are intervening regions between target and distractor, and between distractor
and adverb, respectively.
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