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A journey of a thousand miles begins with a single step
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A B S T R A C T

The urban heat island (UHI) effect, describing an elevated tempera-
ture of urban areas compared with their natural surroundings, can
expose urban dwellers to additional heat stress, especially during hot
summer days. A comprehensive understanding of the UHI dynamics
along with urbanization is of great importance to efficient heat stress
mitigation strategies towards sustainable urban development. This
is, however, still challenging due to the difficulties of isolating the
influences of various contributing factors that interact with each other.
In this work, I present a systematical and quantitative analysis of how
urban intrinsic properties (e.g., urban size, density, and morphology)
influence UHI intensity.

To this end, we creatively combine urban growth modelling and
urban climate simulation to isolate the influence of urban intrinsic
factors from that of background climate, so as to focus on the impact of
urbanization on the UHI effect. The urban climate model can create a
laboratory environment which makes it possible to conduct controlled
experiments to separate the influences from different driving factors.
The urban growth model provides detailed 3D structures that can
be then parameterized into different urban development scenarios
tailored for these experiments. The novelty in the methodology and
experiment design leads to the following achievements of our work.

First, we develop a stochastic gravitational urban growth model
that can generate 3D structures varying in size, morphology, com-
pactness, and density gradient. We compare various characteristics,
like fractal dimensions (box-counting, area-perimeter scaling, area-
population scaling, etc.), and radial gradient profiles of land use share
and population density, against those of real-world cities from empiri-
cal studies. The model shows the capability of creating 3D structures
resembling real-world cities. This model can generate 3D structure
samples for controlled experiments to assess the influence of some
urban intrinsic properties in question. [Chapter 2]

With the generated 3D structures, we run several series of numer-
ical climate simulations with urban structures varying in properties
like size, density and morphology, under the same weather condition.
Analyzing how the 2m air temperature based canopy layer urban
heat island (CUHI) intensity varies in response to the changes of the
considered urban factors, we find the CUHI intensity of a city is di-
rectly related to the built-up density and an amplifying effect that
urban sites have on each other. We propose a Gravitational Urban
Morphology (GUM) indicator to capture the neighborhood warming
effect. We build a regression model to estimate the CUHI intensity
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based on urban size, urban gross building volume, and the GUM
indicator. Taking the Berlin area as an example, we show that the
regression model can predict the CUHI intensity under various urban
development scenarios. [Chapter 3]

Based on the multi-annual average summer surface urban heat
island (SUHI) intensity derived from Land surface temperature, we
further study how urban intrinsic factors influence the SUHI effect
of 5,000 largest urban clusters in Europe. We find a similar 3D GUM
indicator to be an effective predictor of the SUHI intensity of these
European cities. Together with other urban factors (vegetation condi-
tion, elevation, water coverage), we build different multivariate linear
regression models and a climate space based Geographically Weighted
Regression (GWR) model that can better predict SUHI intensity. By
investigating the roles background climate factors play in modulating
the coefficients of the GWR model, we extend the multivariate linear
model to a nonlinear one by integrating some climate parameters,
such as the average of daily maximal temperature and latitude. This
makes it applicable across a range of background climates. The non-
linear model outperforms linear models in SUHI assessment as it
captures the interaction of urban factors and the background climate.
[Chapter 4]

Our work reiterates the essential roles of urban density and mor-
phology in shaping the urban thermal environment. In contrast to
many previous studies that link bigger cities with higher UHI intensity,
we show that cities larger in the area do not necessarily experience
a stronger UHI effect. In addition, the results extend our knowledge
by demonstrating the influence of urban 3D morphology on the UHI
effect. This underlines the importance of inspecting cities as a whole
from the 3D perspective. While urban 3D morphology is an aggre-
gated feature of small-scale urban elements, the influence it has on the
city-scale UHI intensity cannot simply be scaled up from that of its
neighbourhood-scale components. The spatial composition and config-
uration of urban elements both need to be captured when quantifying
the influence of urban 3D morphology as nearby neighbourhoods
also cast influences on each other. Our model serves as a useful UHI
assessment tool for the quantitative comparison of urban interven-
tion/development scenarios. It can support harnessing the capacity
of UHI mitigation through optimizing urban morphology, with the
potential of integrating climate change into heat mitigation strategies.
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Z U S A M M E N FA S S U N G

Der städtische Wärmeinseleffekt (engl. Urban Heat Island effect – UHI
effect) beschreibt höhere Temperaturen in städtischen Gebieten im
Vergleich zur natürlichen Umgebung, was zu erhöhtem Hitzestress
für städtische Bewohner führt. Das Verständnis der Dynamik von
UHI in Bezug auf die Urbanisierung ist entscheidend für die Entwick-
lung effektiver Strategien zur Hitzestressminderung und nachhaltigen
städtischen Entwicklung. Es bleibt jedoch eine Herausforderung, die
Einflüsse der verschiedenen interagierenden Faktoren zu isolieren.
In dieser Arbeit präsentiere ich eine systematische und quantitative
Analyse, wie städtische intrinsische Eigenschaften wie Dichte und
Morphologie die UHI-Intensität beeinflussen.

Um dies zu erreichen, kombinieren wir städtisches Wachstumsmo-
dellieren und städtische Klimasimulation, um den Einfluss städtischer
intrinsischer Faktoren von Hintergrundklima zu trennen und den Fo-
kus auf die Auswirkungen der Urbanisierung auf den UHI-Effekt zu
legen. Durch Schaffung einer Laborumgebung mithilfe des städtischen
Klimamodells können kontrollierte Experimente zur Bewertung der
Einflüsse verschiedener Treiberfaktoren durchgeführt werden. Das
städtische Wachstumsmodell erzeugt detaillierte 3D-Strukturen, die in
verschiedene städtische Entwicklungsszenarien für diese Experimente
parametrisiert werden können.

Wir stellen ein stochastisches gravitatives städtisches Wachstums-
modell vor, das 3D-Strukturen mit unterschiedlicher Größe, Morpho-
logie, Kompaktheit und Dichtegradient erzeugen kann. Das Modell
wird durch den Vergleich seiner Eigenschaften mit denen realer Städte
validiert. Unter Verwendung der generierten 3D-Strukturen werden
mehrere Serien von Simulationen unter denselben Wetterbedingungen
durchgeführt, um zu analysieren, wie Änderungen städtischer Fakto-
ren wie Größe, Dichte und Morphologie die Intensität der städtischen
Wärmeinsel beeinflussen. Die Studie zeigt, dass die bebaute Dichte
und der Verstärkungseffekt der städtischen Standorte aufeinander di-
rekt mit der Intensität der städtischen Wärmeinsel zusammenhängen.
Wir schlagen einen Gravitational Urban Morphology (GUM)-Indikator
vor, um den Erwärmungseffekt in der Nachbarschaft zu erfassen, und
entwickeln ein Regressionsmodell, das die Intensität der städtischen
Wärmeinsel anhand der städtischen Größe, des Bruttogebäudevolu-
mens und des GUM-Indikators schätzt.

Darüber hinaus untersuchen wir, wie städtische intrinsische Fakto-
ren den Effekt der städtischen Wärmeinsel auf die Oberfläche (SUHI)
der 5.000 größten städtischen Ballungsräume in Europa basierend
auf dem mehrjährigen durchschnittlichen Sommerwärmeinsel (SU-
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HI) ableiten. Ein ähnlicher GUM-Indikator erweist sich als effektiver
Prädiktor für die SUHI-Intensität. Durch Berücksichtigung anderer
städtischer Faktoren wie Vegetationszustand, Höhe, Wasserversorgung
und Einbeziehung von Klimaparametern entwickeln wir verschiedene
Regressionsmodelle, die die SUHI-Intensität besser vorhersagen. Das
nichtlineare Modell, das Klimaparameter integriert und die Wech-
selwirkungen zwischen städtischen Faktoren und Hintergrundklima
erfasst, übertrifft lineare Modelle in der SUHI-Bewertung.

Die Arbeit betont die Bedeutung von städtischer Dichte und Mor-
phologie für die Gestaltung der städtischen thermischen Umgebung.
Sie stellt die Annahme in Frage, dass größere Städte zwangsläufig
einen stärkeren UHI-Effekt haben, und hebt den Einfluss der städti-
schen 3D-Morphologie hervor. Die Studie betont die Notwendigkeit,
Städte als Ganzes aus einer 3D-Perspektive zu betrachten, da der
Einfluss der städtischen Morphologie nicht einfach von ihren klei-
neren Bestandteilen hochskaliert werden kann. Unser Modell kann
als wertvolles Instrument zur quantitativen Vergleich verschiedener
urbaner Interventions- und Entwicklungsszenarien dienen und un-
terstützt Bemühungen zur UHI-Minderung durch die Optimierung
der städtischen Morphologie und die Integration des Klimawandels
in Hitzeminderungsstrategien.
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1
I N T R O D U C T I O N

1.1 research background and motivation

Cities are the centres where population and social-economic activities
concentrate (UN-Habitat, 2016). The period between 1975 and 2015

saw the staggering pace of global urbanization. The world urban pop-
ulation grew by almost 2.4 billion, and cities now house more than
half the global population (United Nations 2019, world population).
Urbanization improves people’s quality of life through better access to
jobs, services, education, housing, and health care (Vardoulakis et al.,
2019). However, various health, socioeconomic, and environmental
problems arise with the rapid urban growth, such as mental disorders
(Vlahov et al., 2002) due to stress, pollution and waste, inequality
of access to services, infrastructure and resources, traffic congestion,
environmental degradation, resource depletion and biodiversity loss
(UNEP et al., 2021). The global population is estimated to grow from
7.7 billion in 2019 to 9.7 billion by 2050, while its urban component
will experience an increment of 2.5 billion during the same time span,
reaching 68% of the world’s population. This means that urban areas
are expected to absorb virtually all the future growth of the world’s
population (United Nations Population Division, 2019). Populations,
economic activities, social and cultural interactions, as well as environ-
mental and humanitarian impacts, are increasingly concentrated in
cities (United Nations Population Division, 2019). This poses massive
sustainability challenges to cities in various aspects, especially in terms
of climate change and environmental degradation, and places cities
on the front line of the climate crises (van den Broek d’Obrenan et al.,
2022). The sixth Global Environment Outlook (GEO for Cities) identi-
fied five main drivers of environmental change: population growth,
urbanization, economic development, technology innovation and sus-
tainability, and climate change — all with strong linkage to cities
(UNEP et al., 2021).

Cities are the engines of global economic and development but
come with a huge environmental footprint (UNEP et al., 2021). Al-
though cities today occupy approximately only 2% of the total land,
they account for 70% economy (GDP), over 60% global energy con-
sumption, 70% global waste and 70% greenhouse gas Greenhouse
Gas (GHG) emissions (UN-Habitat, 2016). Therefore, cities have a piv-
otal role to play, and even have the potential to drive the progress
towards the Sustainable Development Goals and targets(UN-Habitat,
2016; UNEP et al., 2021). In 2016 the UN Conference on Housing
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and Sustainable Development established a New Urban Agenda (UN-
Habitat, 2016; UNEP et al., 2021) which envisages cities as part of the
solutions for sustainable development, climate change adaptation, and
mitigation (Masson-Delmotte et al., 2021).

At the global scale, cities contribute the majority of anthropogenic
GHG emissions, which is the primary cause of human-induced climate
warming. At the regional scale, cities cause local warming due to the
well-known urban heat island (UHI) effect (Oke, 1973) – enhanced
temperature experienced by urban areas compared with the outlying
areas, mainly due to the land surface modification from urbanization,
and more intensive anthropogenic heat emissions. Consequently, more
intense, longer and more frequent heatwaves are estimated to take
place in cities due to the warming climate (Masson-Delmotte et al.,
2021). This makes cities the hot spots of excessive heat. The heat bur-
dens come with costly impacts on public health and the economy,
especially when considering the increasingly concentrated trend of
population and infrastructure. Rapid urbanization and urban popu-
lation growth are expected to happen in the next few decades, with
more than half of the growth taking place in Africa and South Asia,
predominantly in the tropic areas, places that people are already under
severe heat stress. Worse still, elderly people aged 65 or over makes
up the world’s fastest-growing population group (United Nations
Population Division, 2019), increasing the heat venerability of the
population.

Therefore, integrated city planning towards urban heat mitigation
and reduction will be of particular importance, and the subsequent
benefits on health, economy and environment are far-reaching (UNEP,
2021). Most importantly, risks from heat related morbidity and mortal-
ity (Tan et al., 2010; He et al., 2022) will be reduced. Secondly, it helps
to avoid losses in productivity caused by extreme heat stress. Last
but not least, energy consumption for cooling will be saved, which
in turn reduces pollution and lowers the urban GHG emissions. Heat-
resilient urban planning cannot be achieved without a comprehensive
understanding of how urban areas experience and accumulate excess
heat – particularly due to the UHI effect, as well as how this process
is influenced by urban development. This knowledge is essential for
efficient urban planning practices aiming at healthy, climate-resilient,
and sustainable cities.

The overarching goal of this work is to advance our understanding
on how urban development (usually comes with the changes in, e.g.,
urban size, density, morphology) influences the UHI effect. So that
the improved understanding can be incorporated into urban planning
and design practices towards a better urban thermal environment.
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1.2 status quo of uhi studies

Figure 1.1: Top: Schematic of the structure of the boundary layer over urban areas, and the radiation and
energy flux, as well as different urban heat island (UHI) types, during the daytime, under calm and mostly
clear condition. Bottom: the surface radiation budget and surface energy balance (SEB) for both daytime and
nighttime (note that the size of arrows denotes only qualitatively the relative intensity of the radiation and
energy fluxes only under some generalized and simplified ideal conditions – calm and clear summer days,
flat terrain, etc. It does not reflect the absolute scale, nor does it necessarily cover all aspects and variations
of the complex urban climates. The magnitude and direction of the fluxes may vary depending on specific
conditions given the complexity of urban climate and the interactions between its components). The four
types of UHI compare at different levels the temperature difference between the city and the countryside at a
comparable height. Their detailed definitions can be found in section 1.2.2. (adapted from Oke et al., 2017;
Zhou, 2017; Li, 2018; Schubert, 2013; Zhou et al., 2019a; Stewart et al., 2021a. )

1.2.1 The definition of UHI

The urban heat island (UHI) effect, which refers to the phenomenon
that urban areas tend to experience higher temperatures than their
rural/non-urban surroundings, is one of the clearest examples of
anthropogenic climate modification (Oke et al., 2017). It can have
various impacts on the environment and human health (Grimm et al.,
2008). The UHI science has been studied for over 200 years, with its
origin dated back to the work by Howard (1818) on the Climate of
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London in 1818, which was based on the comparison of near-surface
air temperatures of a countryside site and an urban site in the city
centre (Stewart et al., 2021a).

Numerous scientific papers emerged along the history of urban
climate studies, making the UHI effect one of the most actively studied
topics. Especially in recent years, it has attracted considerable research
interests due to its association with rapid urbanization and global
warming which draw increasing attention (Zhou et al., 2019a). The
immense literature on this topic involves cities worldwide with a great
diversity of geographical locations and climate settings, including
almost all major cities on the globe (Stewart et al., 2021a). Studies on
the UHI effect cover a wide range of topics, including (but not limited
to):

• the spatial and temporal variations of the UHI (e.g., Zhou et al.,
2014; Zhou et al., 2016; Li et al., 2017; Zhou et al., 2018; Geletič
et al., 2019; Zhou et al., 2019a; Manoli et al., 2020),

• its influencing factors (e.g., Oke, 1981; Taha, 1997; Shahmohamadi
et al., 2011; Peng et al., 2012; Zhou et al., 2014; Zhou et al., 2016;
Estoque et al., 2017; Li et al., 2019b; Liu et al., 2021a; Liu et al.,
2021b),

• assessment of its impacts (e.g., Tan et al., 2010; Shahmohamadi
et al., 2011; Laaidi et al., 2012; Kolokotroni et al., 2012; Georgescu
et al., 2013; Estrada et al., 2017; He et al., 2022),

• as well as how UHI interacts with the climate at regional scale
(e.g., Georgescu et al., 2013; Li et al., 2013a; Zhao et al., 2014;
Chapman et al., 2017; Wouters et al., 2017; Zhao et al., 2018; Khan,
2022), and even beyond (e.g., Kalnay et al., 2003; Cao et al., 2018;
Ren et al., 2021; Khan, 2022).

1.2.2 Heat island types

There are four distinct types of UHI depending on the schemes used
to measure them (Oke et al., 2017; Stewart et al., 2021a). According to
the height at which the temperatures are measured, their definitions
are (also see Fig. 1.1):

• Subsurface UHI (GUHI) – difference between the temperature pat-
tern in the subsurface layer under the city, and that in the subsurface
layer under the surrounding non-urban area. The subsurface layer
extends from the ground surface (z0) down to the depth (zbot) of
active temperature change over the period of interest. It includes
soils and subterranean built fabric.

• Surface UHI (SUHI) – difference between the temperatures at the
solid-air interface in the city, and those in the rural area. In the
city, it is the interface of the outdoor atmosphere with the solid
materials, which ideally comprises the three-dimensional complete
surface including the ground surface and all exposed facets of
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urban elements, e.g., walls, and rooftops. In the rural area, the
air-to-ground interface is the equivalent surface.

• Canopy layer UHI (CUHI) – difference between the near-surface
(typically 2 m above ground) air temperature in the urban canopy
layer (UCL), and the near-surface air temperature at the correspond-
ing height in the rural area. The UCL lies between the urban ground
surface (0m) and the roof level (zH).

• Boundary layer UHI (BUHI) – difference between the air temperature
(typically 2-4 times the roof height) in the layer between the top (zH)
of the UCL and the top (zi) of urban boundary layer (UBL), and the
air temperature at a similar altitude in the rural boundary layer.

Among them, SUHI and CUHI are the most studied types. The
CUHI effect, based on the pedestrian level air temperature which is
directly related to thermal comfort of residents, is the UHI type that
has the longest study history and has been continuously receiving
great research interests. On the other hand, SUHI has gained increas-
ing popularity within the urban climate community in the past few
decades, due to the advantages (large spatial coverage, high resolution)
and advancement of thermal remote sensing techniques (Zhou et al.,
2019a).

However, despite the massive scientific literature on SUHI and
CUHI, by the time this work started, research on some important
aspects was missing. For example, due to the coverage of records, few
researchers investigated at city scale the response of CUHI to urban
development; studies linking the SUHI intensity with city-scale factors
usually do not consider the heterogeneity in the spatial arrangement
of urban elements.

1.2.3 The physical mechanism of UHI

Many of the factors and processes determining the UHI have been dis-
cussed nearly two hundred years ago by Luke Howard. Following-up
studies kept adding facts that confirm and broaden our understanding
of the formation of UHI and the underlying mechanisms (Zhou, 2017).

Given the temporally and spatially dynamic feature of the UHI
effect and the underneath processes, to slightly simplify the discussion,
hereafter throughout this text, we restrict the weather conditions
by referring to calm, clear sky, summertime cases unless explicitly
otherwise specified.

Energetic basis

The root cause of the UHI is the modification of land surface coming
along with urbanization, which leads to changes to the surface energy
balance (SEB). These alterations to SEB further lead to the divergence
in cooling/heating rates between the urban area and its surrounding
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rural area. The UHI effect logically begins at the urban surface (Stew-
art et al., 2021a), where sealed ground and built fabric (e.g., walls,
rooftops) differ from the natural landscape in their radiative, thermal,
moisture and aerodynamic properties. These differences, together with
the geometrical arrangements of the building elements, affect the SEB
through determining the distribution and partition of radiation ab-
sorbed by the surface (Mirzaei et al., 2010; Oke et al., 2017). Generally,
compared with the natural landscape, the urban surface favours more
heat storage and trapping and less evapotranspiration cooling.

Under calm conditions when the contribution from convection can
be ignored, the energy balance of the urban surface can be expressed
as:

Q∗ + QF = QH + QE + QS , (1.1)

where

QH is sensible heat flux to the atmosphere,

QE is the latent heat flux to the atmosphere,

QS is the heat stored in the substrate,

QF is the anthropogenic heat flux,

Q∗ is the net allwave radiation which is determined by the surface
radiation budget as:

Q∗ = K↓ − K↑ + L↓ − L↑ , (1.2)

where

K↓ is the incoming shortwave radiation,

K↑ is the outgoing shortwave radiation,

L↓ is the incoming longwave radiation,

L↑ is the outgoing shortwave radiation.

The energy balance of the urban surface differs from that of vege-
tated land in various aspects, resulting from many tangled processes
that cause the variations in the components of Eq. (1.1) and (1.2) (see
Fig. 1.1).

From the perspective of radiation budget, the urban surface gen-
erally has a smaller albedo than the land surface in the rural area,
which leads to less shortwave reflectance (K↑−). The geometry of
street canyons enables the multiple reflections (e.g., from wall to wall,
from lower roof to wall, as illustrated in Fig. 1.1) of both short and
longwave radiation between facades. This trapping effect results in
reduced outgoing shortwave (K↑−) and longwave (L↑−) radiation
(Oke, 1981).

From the perspective of SEB, the urban-rural Q∗ difference can be
ascribed to the unique thermal, moisture and aerodynamic properties
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of urban surface (Mirzaei et al., 2010; Oke et al., 2017). Firstly, urban
surface, composed of impervious sealing and building/infrastructure
with asphalt and concrete of high thermal capacity, and high thermal
conductivity, has a stronger ability to uptake and conduct heat into
the substrate, namely, into the fabric of the city which includes its
construction materials, trees and ground (QS+). Secondly, compared
with the natural surface with more vegetation, soil and surface water
moisture, the urban surface exhibits reduced latent heat flux (QE−)
due to less evapotranspiration. In addition, urban surfaces featuring
buildings and street canyons have reduced overall wind ventilation
as a consequence of increased roughness. This constrains the heat
dissipation through further more sensible heat (QH) transfer into the
atmosphere (note this does not mean the QH in the urban surface is
smaller than that in rural surface). Lastly, anthropogenic heat (QF+)
released from human activities also adds to the accumulation of heat.
Anthropogenic heat can warm both the atmosphere (car exhausts,
factory chimneys, air conditioning, etc.) and the surface (pipes, cables,
sewers, etc). It has to be noted that, when compared to net allwave
radiation, anthropogenic heat can range from dominant to negligible,
depending on the location, season, and energy consumption. The
combined effect of these features makes cities distinct in heat storage,
and consequently form the UHI (Oke et al., 2017).

The formation of different types of UHIs

In general, the dynamic of heat storage QS of the SEB over time is
the primary driver of different types of UHI and their diurnal courses.
Typically, in the morning during hot days, when the urban surface
is initially cool, a large proportion of the net allwave radiation Q∗

is transferred into heat storage. The QS accumulates as a result, and
the surface warms up, forming the SUHI gradually after the warming
rate of urban surface surpasses that of rural area. In the afternoon,
even the deeper canyon floor and shaded areas that cannot be reached
directly by solar radiation (K↓) warm up. The accumulated QS also
reaches the underground soil, creating the subsurface urban heat
island (GUHI). After building materials and soils arrive at equilibrium
and QS saturates. The surface discharges more heat in the form of
turbulent fluxes, namely, the latent heat fluxes QE and especially the
sensible heat fluxes QH (see bottom left on Fig. 1.1). During the night
when solar radiation is absent, the urban surface is still warmer than
that of the rural area due to the higher heat storage and slower cooling
rate (canyon trapping, polluted atmosphere, higher heat inertia). The
heat stored in the fabric (QS) is channelled as longwave radiation
(L↑) and slight sensible heat fluxes QH into the atmosphere (see the
bottom right on Fig. 1.1). This makes the air temperature warmer
than that of rural areas, resulting in more pronounced canopy layer
urban heat island (CUHI). At night, both urban canyon geometry and
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air pollutants contribute positively to CUHI formation by trapping
the longwave radiation. The sensible heat fluxes QH reach the upper
atmosphere and warm up the air in the UBL and contribute to the
boundary layer urban heat island (BUHI).

Other influencing factors

Aside from the urban intrinsic properties that distinguish the urban
surface from that of rural areas, the UHI effect, as per its definition, is
susceptible to the impacts of regional synoptic conditions, seasonal
climate, and topography (Stewart, 2011; Oke et al., 2017; Chapman
et al., 2017; Li, 2018; Zhou et al., 2019a). Particularly when it comes
to quantifying the UHI magnitude, the rural area, as the reference,
its surface energy balance (SEB) is primarily controlled by the surface
status (e.g., soil moisture, vegetation cover, aerodynamic roughness,
albedo, emissivity, and thermal admittance, etc.) (Oke et al., 2017;
Zhou et al., 2019a). Additionally, the cloud cover can narrow the
urban-rural difference in heat storage during the day, and lower the
cooling rate for both urban and rural areas during the night. Therefore,
the difference signal is attenuated, and it can be further diminished
by the wind that fosters urban-rural heat transfer through advection
(see the airflow as illustrated in Fig. 1.1).

1.2.4 Methodology of UHI studies

There are a great variety of methods for studying the UHI effect (Oke
et al., 2017; Deilami et al., 2018; Kim et al., 2021). Most of the studies
can be categorized into 2 groups with respect to the methodology:
empirical studies, and modelling studies. The former consists of diverse
observational techniques and the latter involves various modelling
strategies.

Empirical studies are based on observations obtained from sensors
onboard ground-based, aerial and remote sensing platforms (see on
the left of Fig. 1.1). Depending on the properties and processes of
interest, temperatures can be recorded from, either fixed or mobile
stations, or remote sensors, to sample within a certain range of space
and time (Oke et al., 2017; Stewart, 2011).

Modelling studies usually resort to either physical models or nu-
merical models. Physical modelling is conducted in the manner of
mimicking real-world urban systems with a surrogate constructed
from simplified and scaled urban elements. Depending on the objec-
tives and experiment design, the climatic environment settings can
be realistic outdoor weather or artificial conditions generated in a
laboratory (Oke, 1981; Oke et al., 2017). Numerical models can simu-
late real-world processes using a set of governing equations based on
the principle of momentum, mass and energy conservation (Mirzaei
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et al., 2010). The models partition the space into different volumes, and
simulate the exchanges of energy, mass and momentum between them
by solving the equations with given boundary and lateral conditions
that usually come from field observations and from another model at
a larger scale, respectively (Mirzaei et al., 2010). A variety of models
have been developed for urban climate studies, with a great diversity
in sophistication and scale suitability (Mirzaei et al., 2010; Theeuwes
et al., 2014; Schubert, 2013; Oke et al., 2017; Li, 2018; Zhou, 2017).

Both empirical and modelling approaches come with advantages
and disadvantages (Mirzaei et al., 2010). For example, empirical studies
based on robust observations have the ability to resolve the influences
from all the real-world factors that cast their footprints. On the other
hand, it also means casual attributing can be very complicated due
to the entangled processes jointly controlled by different factors. In
addition, access restrictions, measurement errors, noise contamina-
tion, and discontinuous records can make the samples lack suitable
spatial-temporal coverage (Li, 2018; Oke et al., 2017). As a result, it is
impossible to record all combinations of scenarios, especially when the
occurrence possibility of the interested ones or their analogues is low
under the present context. Moreover, deployment and maintenance
of the instrument sometimes can be costly (Mirzaei et al., 2010; Oke
et al., 2017).

In contrast, modelling approaches enable well controlled experi-
ments that can greatly simplify the order of complexity by isolating
certain processes of interest (Mirzaei et al., 2010; Oke et al., 2017). In
some cases, studies can only be done through simulation as ideal ob-
servation scenarios cannot be satisfied due to the complex interactions
between different driving factors. Yet due to the simplified nature
of the simulations, not all processes can be captured in the model.
It also requires great effort in model design or input parameteriza-
tion to achieve appropriate similarity between the simulated and the
real-world conditions at different scales, thus reliability of the models
needs to be assessed against field observations (Mirzaei et al., 2010;
Oke et al., 2017). The time and resource expenses can be also high
considering the infrastructure (e.g., construction costs of a physical
model, computational resources for numerical modelling) required to
conduct the modelling.

1.2.5 SUHI vs. CUHI

While each type of UHI has a seemingly straightforward definition,
great methodological complexity can arise when it comes to studying
them. This complexness results from the mixed nature of the processes
that control the UHI formation. Each type of UHI is linked to its own
set of primary drivers, resulting in distinct spatial/temporal patterns
and dynamics of them (Oke et al., 2017). This in turn influences
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the suitability of how the temperatures are obtained and how the
UHI magnitude is quantified, especially when considering that scale
matters in the UHI studies. This is particularly true for the two most
studied UHI types — SUHI and CUHI.

The SUHI effect reflects the urban-rural difference in the surface
energy balance (SEB) which is responsible for many observed urban
climate effects (Oke et al., 2017; Zhou et al., 2019a; Stewart et al.,
2021b). Studying the SUHI effect helps to better understand the SEB
at different scales, and therefore are relevant to the mitigation of
many adverse urban climate effects. The underlying processes of
UHI formation (see 1.2.3) suggest that the surface temperature (Ts) is
critically important to near-surface air temperature (Ta), as it is mainly
the heat released from the surface during the night that slow down
the cooling rate of the near-surface air, and causes the CUHI.

Although SUHI and CUHI are closely connected through mass,
energy, and momentum exchanges primarily driven by the SEB (Stew-
art, 2011), they behave differently in their diurnal courses. Usually,
SUHI reaches its maximum during the day, while CUHI peaks in the
middle of the period of darkness. The diurnal profiles and the timing
of their peaks depend on the urban and rural surface properties.

CUHI and SUHI also intrinsically favour different monitoring
schemes and study methodologies, mainly due to different media for
which the temperatures are sensed, and where the media lie. Due
to the spatial heterogeneity of the myriad urban fabrics, the surface
temperature estimated by thermal remote sensing, provides the most
favourable data source for studying the SUHI, due to its unparalleled
advantages (e.g. high spatial resolution and coverage, cost-efficient,
easy data accessibility) (Zhou et al., 2019a). However, spatial and tem-
poral coverage of LST can be reduced to different extents due to the
trade-off issue between spatial and temporal resolution of satellite
imagery, and due to the missing values caused by the cloud contamina-
tion (Wan et al., 2015; Deilami et al., 2018). As for the air temperature
on which the CUHI is based, spatial characteristics of near-surface
temperature may be resolved with acceptable accuracy by interpolat-
ing records from sufficiently dense (though usually not available) in
situ observations. However, long time series of air temperature records
from dense observation networks usually are not available due to prac-
tical difficulties (see section 1.2.4) of obtaining high spatio-temporal
coverage air temperature observations.

Difference in the temperature records also leads to different man-
ners of quantifying the magnitude of SUHI and CUHI, especially
when taking into account that the UHI intensity is also critically sub-
ject to the properties of the rural surface (see the passage in 1.2.3).
The diverse data preprocessing operations for temperature records
screening, inevitably lead to inconsistency in the methodology of
individual studies of both CUHI and SUHI (Stewart, 2011; Stewart
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et al., 2021a; Stewart et al., 2006). This makes it rather difficult to
generalize the knowledge through comparing UHIs across cities or
studies, especially when they lack congruences and sometimes even
have contradictory findings. Moreover, the ambiguity in urban/rural
definition exacerbates further the incomparability due to the lack of a
common urban/rural delineation method.

1.3 the impacts of uhi

The UHI effect has various impacts on the local environment and
human health (Grimm et al., 2008).

During hot days, the UHI effect can raise energy demand for
cooling (Hsieh et al., 2007; Li et al., 2014), which in turn leads to an
increase in pollutant, greenhouse gas emissions and waste heat from
fossil fuel combustion for energy supply (UNEP, 2021; Khan, 2022).
The rural-urban air circulation driven by the UHI effect pulls more
moist air from the rural area and forms greater upward motion, which
is favourable conditions for cloud formation over the urban area and
thus induces additional shower and thunderstorm events (Li et al.,
2020b). UHI also impairs water quality as hot pavement and rooftop
surfaces transfer their excess heat to storm-water run-off, which can
lead to a raised temperature of local water bodies, stressing the aquatic
ecosystems (UNEP, 2021; Khan, 2022).

Apart from adverse impacts on the environment, the UHI effect
has various direct and indirect impacts on urban dwellers and their
health (Grimm et al., 2008; Patz et al., 2005; Eliasson, 2000). The most
direct impacts are heat-related health problems (Tan et al., 2010) and
increased risk of heat morbidity and mortality (Gabriel et al., 2011;
Krummenauer et al., 2019) during hot summer days, as in many cities
the UHI effect exposes urban dwellers to extra heat stress. In particular,
during heat wave events, the UHI effect increases the frequency of
extreme heat events, extends the duration of high temperatures, and
narrows the time window for relief from high-heat exposure (Zhao
et al., 2018; Schatz et al., 2015; Tan et al., 2010). As a result, the risk of
heat morbidity and mortality increases (Tan et al., 2010; Zhao et al.,
2018; Habeeb et al., 2015; Gabriel et al., 2011).

The impacts can be further exacerbated when the UHI effect
interacts with urbanization and climate change, since it will lead
to prolonged and intensified hot conditions (Heaviside et al., 2017;
Chapman et al., 2017). Warming enhanced by urbanization has been
identified in many cities and regions (Cao et al., 2018; Kalnay et al.,
2003; Argüeso et al., 2014; Georgescu et al., 2013), which implies more
severe heat stress in the future. Moreover, urban areas are expected to
absorb all the future global population growth which is estimated to
be 2.2 billion by the end of this century (United Nations Population
Division, 2019). This means in the future many more people will be
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exposed to more frequent and intense extreme heat events, let alone
the demographic change with an increasing proportion of vulnerable
elderly people. Therefore, urban development policies need to take
the UHI effect into account (Estrada et al., 2017) and make proper use
of effective ways to reduce excessive urban heat.

1.4 research gaps and research questions

1.4.1 Research gaps

As more than half of the world’s population now lives in cities and this
share is expected to continue growing in the future (United Nations
Population Division, 2019), urban development that avoids stronger
UHI can help to reduce the heat risk and costs, especially under the
background of global warming (Estrada et al., 2017). Rapid urban
growth poses challenges to urban heat mitigation, but it also presents
important opportunities to implement urban climate knowledge in
newly developing areas. In this way, urban development can take
place in a way that does not create a strong UHI effect in the first place
instead of reducing the urban heat after growth.

Since there is no single best design that meets climate objectives
at all scales, urban planning requires a multi-scale perspective (Oke,
1984; Oke, 2006; Mills, 2006; Mills et al., 2010; Oke et al., 2017). Design
interventions have to be conducted in a coordinated and balanced
manner that brings different parts together and evaluates the climate
impacts via tools suitable for different scales (Oke, 2006; Mills, 2006;
Mills et al., 2010). Benefits of some local interventions like increasing
vegetation space (Schubert et al., 2013), green roofs (Straka et al., 2019),
and cool coating of buildings and infrastructure (Ng, 2012) have been
proven by a great number of both numerical and empirical studies.

However, it is also necessary to inspect at the city scale and to
consider the urban system as a whole which is the totality of tightly
connected and constantly interacting components (Oke et al., 2017).
Especially, when there is a need for more built-up space to house
the growing population while the developable area is limited, where
and how to grow are equally important. Because the environmental
impacts of an area usually transcend the local scale, and the resource
quota for the whole city is bounded. This calls for a quantitative tool
that can evaluate the UHI effect from different urban development
scenarios at the city scale. Yet that is still challenging due to the
research gaps which impede robust quantitative assessment of the
UHI intensity in view of urban development. Mainly they are :

• At the city scale, studies linking the CUHI intensity to factors
like urban size, density, and morphology are missing.

• Although many researchers studied at the city scale the rela-
tionship between the SUHI intensity and urban size and 2D
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shape, few covered the influences of the internal configuration
urban components, for instance, urban density and its spatial
arrangement.

• Most studies analyse the influence of climate factors qualitatively,
a few studies integrate climate factors into their multilinear SUHI
predicting models, while the nonlinear influence is less explored.

This is partly due to the data availability issues (e.g., spatial-
temporal coverage of temperature data, 3D urban structure data).
Another major difficulty is to separate the influence of urban factors
from that of the background climate, due to the fact that a myriad of
factors influencing UHI, and they interact with each other in a super
complex manner (Chapman et al., 2017). For instance, studies that
compare the UHI of different cities face the problem of difference
in climate settings. Even when an individual city is studied, urban
development still involves the changes in urban size, density, and
morphology. Influence from a specific aspect can hardly be separated
from the others. In addition, the background climate varies over the
time of urban development.

In this work, we advance the knowledge by systematically de-
signing controlled experiments, and strive to get a comprehensive
understanding through quantitative analysis on how the intensity of
UHI (with a particular focus on CUHI) is determined by some key
urban intrinsic factors (e.g., urban size, density, morphology) at the
city scale, aiming to gain knowledge that can support quantitative
UHI assessment, and thus support urban heat mitigation practices in
view of urbanization.

The main research questions and the motivations are detailed
below.

1.4.2 Research Question 1

It is of great methodological complexity to study the UHI effect, mainly
due to the huge number of potential contributing factors and their
non-linear interactions through the mixed processes lying underneath.
Many factors and the relevant processes play a role in the formation
of UHI, which includes particularly, the background climate (Zhao
et al., 2014), thermal properties of the rural surface (Runnalls et al.,
2000), city size (Oke, 1973), density (Oke, 1987), urban form (Middel
et al., 2014), street geometry (Eliasson, 2000; Oke, 1987), and building
material (Chapman et al., 2017; Oke, 1987).

Case studies for a specific city based on observations with a
limited spatial-temporal resolution often end up with some simple
linear regression models (Zhou et al., 2018; Kim et al., 2021) while the
nonlinear interacting effects are rarely captured. Aside from that, it
is unlikely that the observed UHI variation results from the change
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of a single one of these factors, due to the fact that the city-scale
influencing factors (such as urban size, density, and morphology)
evolve together over time. Things become even more complicated
when taking the nonlinear effect from background climate parameters
into account (Manoli et al., 2019; Yu et al., 2018) as they also vary
temporally. Cities in existing studies vary from one to another on
their background climate and surrounding environment, as well as the
extremely diverse schemes (see section 1.2.5) for data acquiring and
UHI quantification, which makes it extremely difficult to put different
results together and to compare them to get a general quantitative
understanding (Chapman et al., 2017).

Facing these challenges, one can easily think of numerical mod-
elling approach, as it enables well controlled experiments to isolate
the influence from factors of interest. And meanwhile, it provides a
seamless temperature map at designed spatial/temporal coverage and
resolution. Despite that, the numerical modelling approach has its own
disadvantages as also discussed in the part 1.2.4, namely, the huge
effort for input data parameterization, numerical computations, and
model validation. Urban climate models that consider many factors
at high resolution, in turn, need detailed spatial distribution of these
factors so that they can be parameterized as input data (Schubert,
2013; Li, 2018). Most of the factors driving the UHI effect show great
heterogeneity and some are even featured with 3 dimensions (Schu-
bert et al., 2012; Li et al., 2019b). It is very difficult to find the suitable
sample from the real-world data to do controlled experiments.

Therefore, the first research question (RQ1) we need to address is:
How to systematically and quantitatively study the relationship be-
tween the UHI effect and some key urban intrinsic properties (e.g.,
urban size, density, morphology, etc.) at the city scale with reduced
complexity?

1.4.3 Research Question 2

The relationship between urban morphology and the UHI effect is a
long-standing topic that attracts plenty of research interest.

Logically, urban morphology, as a city scale indicator, should
be linked to the UHI effect also at the city scale. This is the reason
why most studies explore the relationship between SUHI and 2D
urban morphology since both of them can be quantified from spa-
tially explicit remote sensing maps at the city scale. Some previous
investigations have found that many aspects of urban form (such as
overall dimensions, skyline, poly-centricity and sprawling/compact-
ness) (Oke et al., 2017) are related to the SUHI intensity (Zhou et al.,
2018; Zhou et al., 2017). For example, in order to reduce the noise from
the background climate, Zhang et al. (2012) analysed the SUHI of 42

northeastern US urban areas within a similar ecological context, and
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they found a linear relationship between the SUHI intensity and an
urban shape indicator calculated as logarithmic urban area-perimeter
ratio. Some studies also qualitatively explored the climate sensitivity
of the relationship between SUHI and urban morphology. For instance,
from the statistics based on the 5,000 largest urban clusters in Europe,
Zhou et al. (2017) found that a compact urban form featured with
large box-counting fractal dimension and a smaller anisometry tends
to increase the summer SUHI intensity whilst the influence varies
regionally. In a more recent work, Liu et al. (2021b) examined the
relationships between different urban form metrics and the SUHI
intensity based on 1288 urban clusters in China, and they found these
relationships vary with the climate zones.

Results from SUHI studies suggests the potential of urban mor-
phology to mitigate urban heat stress. However, when it comes to the
relationship between the CUHI intensity and urban morphology, the
first challenge is that CUHI magnitude is usually calculated based on
2-m air temperature data from in situ observations. These temperature
records, cannot represent the CUHI pattern at the city scale unless
they come from a sufficiently dense station network, which is usually
not available due to practical reasons (see the disadvantages of field
observation of part 1.2.4). The mixed processes through which both
the urban intrinsic properties and background climates control the
CUHI effect present another challenge for addressing this question.
Therefore, it is hard to compare the CUHI intensities of different cities
of various forms, as their climate backgrounds also differ. Similar
problems arise when trying to look at the CUHI development along
with the growth of a specific city, due to the dynamic of climates
within the same time span. Apart from this, the availability of such
air temperature records with sufficient coverage of space and time is
another commonly existing problem.

Urban morphology is a factor highly relevant to the urbanization
process, better knowledge of the CUHI effect and urban morphology
relation helps to understand how UHI and the urban climate evolve
along with future urban growth. As the near air temperature is more
relevant to the thermal comfort of urban residents, the question that
would naturally emerge is that:
How does urban morphology influence canopy layer UHI?

This is the focus of our second research question (RQ2). The
major challenge being faced is to find a proper 3D urban morphology
indicator that links quantitatively with the CUHI intensity.

1.4.4 Research Question 3

With the great advantages of doing controlled simulations with a
high spatial-temporal resolution, numerical modelling provides a
powerful tool which makes it possible to address the research question
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above. At the same time, urban climate models suffer from limited
spatial/temporal coverage and difficulty in fast application, mainly
due to the high demand for computational resources and input data
parameterization. This further constrains the fast application of the
knowledge gained from urban climate simulations on other cities.
Without running more simulations for model validation, a regression
model developed from one specific city usually cannot be directly
applied to another one that has a different climate setting.

Instead, remote sensing data have been widely used for urban
thermal studies, and have great advantage of spatial coverage for
Land Surface Temperature (LST) based SUHI study (Manoli et al.,
2019). Although SUHI varies in physical mechanism from CUHI, they
are found to be highly related (Zhou, 2017; Li et al., 2019b), and both
of them are important indicators of urban thermal properties (Oke
et al., 2017; Zhou et al., 2019a). Studying how the background climate
factors influence relationships between the SUHI and some urban
intrinsic factors can improve our understanding of how they jointly
impact the SUHI effect (Oke et al., 2017).

Although many researchers studied at the city scale the relation-
ship between the SUHI intensity and urban factors (i.e., urban size
and morphology), few covered the influences of the internal configu-
ration urban components, for instance, urban density and its spatial
arrangement. In addition, how the background climate determines
the relationship is less explored. Despite that similar topic has been
covered in some existing studies and the influences from background
climate have also been discussed qualitatively (Zhang et al., 2012; Peng
et al., 2012; Zhou et al., 2013; Zhou et al., 2017; Li et al., 2017; Liang
et al., 2020; Liu et al., 2021a; Liu et al., 2021b), very little effort has been
addressed towards quantitative analysis of the interaction between
background climate and urban factors due to the complex non-linear
interactions of those factors (Manoli et al., 2020).

Therefore, our third research question is:
How do urban intrinsic factors, in particular urban density and mor-
phology, determine the SUHI effect? How is the process controlled by
the background climate?

1.5 structure and contents of the thesis

To address the research questions above, we combine urban growth
modelling and urban climate simulation to separate the urban struc-
ture factors from background climate influences, and to focus on the
impact of urbanization on the UHI effect. The urban climate model
enables to study driving factors separately by running controlled ex-
periments and the urban growth model provides detailed 3D urban
scenarios tailored for those experiments. The whole project is parti-
tioned into 3 parts, which are the urban growth model, CUHI analysis
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and SUHI analysis, respectively. While each subtopic provides support
for its following ones, the second part is the focal work.

In Chapter 2 we propose a 3D stochastic gravitational urban
growth model. The model provides artificial 3D urban structures for
controlled urban climate simulations.

In Chapter 3 we simulate the urban climate of various generated
cities under the same weather conditions. These controlled simulations
enable us to isolate the influence of a specific urban factor (i.e., city
size, density and urban morphology) from other urban factors and
background climate.

In Chapter 4 we explore spatial variation of the influence of urban
morphology and size on the SUHI intensity based on remotely sensed
land data. With a Geographically Weighted Regression (GWR) model
we analyse quantitatively how background climate parameters control
the influences of urban morphology and size on the SUHI intensity.
We propose nonlinear model that can predict SUHI intensity for cities
across climate zones by incorporating climate factors.

In Chapter 5, I summarize our findings and achievements, discuss
some limitations of this work, and shed light on potential future work.





2
S T O C H A S T I C G R AV I TAT I O N A L U R B A N G R O W T H
M O D E L 1

abstract

We propose an upgraded gravitational model which provides popu-
lation counts beyond the binary (urban/non-urban) city simulations.
Numerically studying the model output, we find that the radial pop-
ulation density gradients follow power-laws where the exponent is
related to the preset gravity exponent γ. Similarly, the urban fraction
decays exponentially, again determined by γ. The population density
gradient can be related to radial fractality, and it turns out that the
typical exponents imply that cities are basically zero-dimensional.
Increasing the gravity exponent leads to extreme compactness and
the loss of radial symmetry. We study the shape of the major central
cluster by means of another three fractal dimensions and find that
overall its fractality is dominated by the size and the influence of γ

is minor. The fundamental allometry, between population and area
of the major central cluster, is related to the gravity exponent but
restricted to the case of higher densities in large cities. We argue that
cities are shaped by power-law proximity. Our work contributes to
the understanding of gravitational effects, radial gradients, and ur-
ban morphology. The model allows to generate and investigate city
structures under laboratory conditions.
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Gravity models, population density, urban fraction, fractal geometry
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2.1 introduction

The large number of processes working in cities make them complex
objects extending over a range of spatio-temporal scales (White et al.,
2015; Barthelemy, 2016). As pointed out by Batty (2013), a city sci-
ence that explains city growth, sprawl, etc. needs to be supported
by theories about how people relate to each other. Despite ongoing
digitalization and globalization, geographical proximity still matters
(Morgan, 2004). The small distances within cities, as extreme agglom-
erations, attract urbanites and thereby enhance the proximity.

Certainly, ideas of geographical gravitation have a long tradition
and can be traced back to the middle of the 20th century and beyond
(Zipf, 1946; Stewart, 1948; Carrothers, 1956). In view of new empirical
findings we revisit and extend a probabilistic city model (Rybski et
al., 2013) from two states (non-urban, urban) to population counts.
Specifically, we validate it against recent findings of urban fraction
and population density gradients (Lemoy et al., 2020) as well as of
building heights within cities (Schläpfer et al., 2015).

The model to a large extent reproduces the features described
for real-world cities. The numerical simulations enable us to relate
both works to each other as well as to other properties including 4

different measures of city fractality and the fundamental allometry, i.e.
between population and area of cities. Interestingly, the population
density gradient decaying with the radial distance to the power −2
as found in Lemoy et al. (2017) corresponds to a fractal dimension
of 0, which supports the point character of cities, i.e. singularities in
space. We complement the numerical analysis by economics arguments
employing travel costs as well as housing rent determined by supply
and demand.

2.2 model

We consider a two-dimensional square lattice of size N × N whose
sites wj with coordinates j ∈ {(1 . . . N, 1 . . . N)} can be empty (0) or
occupied by an integer number of ‘inhabitants’. The probability that
an inhabitant is added to a site is

qj = G
∑k ̸=j wkd−γ

j,k

∑k ̸=j d−γ
j,k

, (2.1)

where dj,k is the Euclidean distance between the sites j and k. The
denominator compensates for the border effects of the finite system.
The exponent γ > 0 is a free parameter that determines how strong the
influence of occupied sites decays with the distance. The constant G
(exogenously) determines the overall growth rate and is given by
G = g/

(
max ∑ wd−γ

∑ d−γ

)
where the parameter g is used to tune the speed

of growth (0 < g ≤ 1).
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Figure 2.1: Examples of city structures generated by the model, Eq. (2.1).
For panels (a) and (b) γ = 2.25 was used and for (b) and (c) it was γ = 2.5.
For better comparability, in (a) and (c) as well as (b) and (d) iterations with
approximately the same fraction p of occupied cells were chosen. The colour
bar indicates the number of ‘inhabitants’ in the cells (in log scale). The red
line in (a)-(d) shows the boundary of the major central cluster. Panel (e) is a
3-dimensional illustration of the major cluster from (d), whereas the third
dimension is in linear scale.

We start with an empty grid (wj = 0 for all j) and, without loss
of generality, put one inhabitant on the single central site. In every
iteration, a random number z is drawn (from a uniform distribution
between 0 and 1) for each grid cell with coordinates j and if z < qj
then wj is incremented by 1. We consider w as population counts in
each grid cell. The procedure is repeated and stopped before the major
central cluster reaches any of the system boundaries. Figure 2.1 shows
examples of the emerging structures.

This version differs from the original model (Rybski et al., 2013)
only by (i) the wj which originally were 0 or 1 and (ii) the g which
originally was fixed to g = 1, so that the maximum probability was 1.
Please see Rybski et al. (2013) for details.

For some analyses, we extract the major cluster by applying the
City Clustering Algorithm (CCA) (Hoshen et al., 1976; Rozenfeld et al.,
2008; Rozenfeld et al., 2011; Fluschnik et al., 2016; Kriewald et al., 2016)
with l = 1, i.e. only connecting nearest neighbours. The area Ac of the
major cluster is given by the number of cells with w > 0 belonging
to the cluster. Analogously, the total population Sc of the cluster is
defined by the sum over w it consists of. For each major cluster, we
extract its envelope, i.e. those cells which have at least one empty
(nearest) neighbour which is not part of a hole within the cluster. We
denote the number of cells the envelope consists of as perimeter C,
and the largest distance from the envelope to the central cell of the
lattice as Rc.
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The cells of the grid can also be understood as plots for buildings
and the wj as the height of the buildings. Assuming each floor corre-
sponds to one apartment and each apartment is home to one person,
then wj corresponds to the number of inhabitants. More apartments
per floor or more persons per apartment only represent a factor. We as-
sume homogeneity, i.e. living space per person is constant throughout
the city.

2.3 analysis

On a square lattice of size 1000 × 1000 we run 10 realizations for vari-
ous γ-values. As with the same normalization constant g a larger γ

requires more iterations to fill the lattice, we take different normaliza-
tion constants g for different γ-values to balance between the need
of enough iterations and the computational time. Specifically, we run
simulations for γ = 2.0, 2.05, . . . , 2.7, 2.75 with g = 0.02, 0.02, 0.1,
0.1, 0.1, 0.1, 0.2, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1 respectively. All iterations
where the major central cluster is smaller than 200 occupied cells are
excluded during the post-processing. We end up with approximately
1700 useful iterations in total for γ = 2.0. The number of iterations
increases with γ.

2.3.1 Radial gradients

First we want to study the gradients generated by the model and
compare them with empirical results (Guérois et al., 2008; Peiravian
et al., 2014; Lemoy et al., 2020). Following Lemoy et al. (2020) we
define concentric rings around the initial central cell and calculate
within them the population density and urban fraction. We also apply
the rescaling proposed in (Lemoy et al., 2020).

2.3.1.1 Population density gradient

The density is given by D(r) = ∑k wk/ ∑k 1, where k is the index
representing all cells at a distance between r and r + δr from the
centre. In this study the width of the rings is δr = 1. We only take
rings up to Rc into account.

We rescale the population density according to

r∗ =
r

S1/3 D∗(r) =
D(r)
S1/3 (2.2)

as proposed in Lemoy et al. (2020). It can be seen in Fig. 2.2, that the
rescaled curves collapse (Stanley, 1999; Malmgren et al., 2009), i.e. they
reasonably well fall onto each other.
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Figure 2.2: Population density gradients. The rescaled population density is
plotted as a function of the rescaled distance to the centre, both according
to Eq. (2.2), for (a) γ = 2.25, (b) γ = 2.5, and (c) γ = 2.75. All panels are in
log-log scale. Due to rescaling the values of all realizations and iterations
fall onto each other. The shades of blue represent densities, the red line
corresponds to the data of an individual curve, and the straight green line
is a guide to the eye with slope given by Eq. (2.5). The population density
asymptotically decays as power-law.

Specifically, we find that the population density decays following
a power-law

D(r)
S1/3 ∼

( r
S1/3

)−α
(2.3)

for r∗ > r∗p, where r∗p is the rescaled radius at which the plateau ends
and the power-law decay begins. Rescaling does not affect the power-
law relation, and we conclude that the population density generated
by our model follows

D(r) ∼ r−α (2.4)

for r∗ > r∗p. The power-law reasonably well agrees with the empirical
results (Lemoy et al., 2020). Since Lemoy et al. (2020) and Lemoy et al.
(2017) study profiles across many cities at the same time step and
we rescale various realizations but across time (instead of only across
samples) we hypothesize ergodicity, in a sense that cross-sectional and
temporal behaviour are the same.

As can be seen in Fig. 2.2, the density gradient exponent α depends
on the gravity exponent γ. We find

α = 2γ − 3 . (2.5)

Small γ-values lead to scattered/sprawled structures and large γ-
values lead to compact patches. The value γ ≃ 2.5 as estimated for
Paris (Rybski et al., 2013) agrees well with α ≃ 2 as indicated in Lemoy
et al. (2020).

2.3.1.2 Urban fraction gradient

Analogously to the population density, the urban fraction is given by
u(r) = ∑k θ(wk)/ ∑k 1, where θ(wk) = 0 for wk = 0 and θ(wk) = 1
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Figure 2.3: Urban fraction gradients. The urban fraction is plotted as a
function of the rescaled distance to the centre according to Eq. (2.6), for
(a)+(b) γ = 2.25, (c)+(d) γ = 2.5, and (e)+(f) γ = 2.75. Panels (a), (c), (d)
are in lin-lin scale and in panels (b), (d), (f) the vertical axis is logarithmic.
Due to rescaling the values of all realizations and iterations fall onto each
other. The shades of blue represent densities. The red line in (b), (d), and (f)
corresponds to the data of an individual curve, and the straight green line is
a guide to the eye from Eq. (2.7). The urban fraction decays exponentially.

for wk > 0. Again, as proposed in Lemoy et al. (2020), we rescale the
urban fraction according to

r∗ =
r

S1/2 u∗(r) = u(r) . (2.6)

Similar to the population density, the rescaled curves of urban fraction
collapse onto each other in Fig. 2.3. For the urban fraction we find an
exponential decay

u(r) = exp
(
− b

S1/2 r
)

(2.7)

for r∗ > r∗p. The urban fraction gradient parameter depends on
the gravity exponent, i.e. b/S1/2 ∼ exp (c γ) with c ≈ 10/3, see
Fig. 2.3(b),(d),(f).

Equation (2.7) seems to hold reasonably well (Makse et al., 1995),
but overall Lemoy et al. (2020) find a slower than exponential decay.

2.3.2 Urban fractality

Next we want to argue that Eq. (2.4) is related to fractality (Batty et al.,
1994; Frankhauser, 2008; Encarnação et al., 2012; Zhou et al., 2017). The
fractal dimension d is commonly defined by M ∼ Ld, i.e. by the way
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Figure 2.4: Area-perimeter relation. (a) The area and perimeter of the major
central cluster are correlated according to a power-law Eq. (2.9), here shown
for γ = 2.5. In the panel all realizations have been combined. (b) Fractal
dimension of the perimeter d◦apr according to the area-perimeter relation as
a function of the gravity exponent γ. The red dots represent the averages
among the realizations.

how the mass M of the considered structure changes with linear size
L, see Bunde et al., 1995, e.g. In our case the relation between M and L
can be expressed as a mass-radius relation (Makse et al., 1998; Daqing
et al., 2011). Moreover, we are studying the density D = M/L2. In
combination we can write D(r) ∼ rdrad−2 (Batty et al., 1994, Eq. (8.12)).
Comparison with Eq. (2.4) leads to α = 2 − drad and with Eq. (2.5) to

drad = 5 − 2γ . (2.8)

For γ = 2.5 the resulting structures are zero-dimensional in terms of
fractal geometry, i.e. essentially corresponding to a point. For γ > 2.5
we obtain negative fractal dimensions, from which we infer that the
mass-radius relation is not valid anymore, i.e. radial symmetry is lost.

2.3.2.1 Area-perimeter relation

While so far we have studied the resulting w-values of the whole
system, from now on we focus on the properties of the major central
cluster. To be more specific, here we consider its shape. As introduced
by Lovejoy (1982) we first investigate the area-perimeter relation [see
also Batty et al., 1994, Ch. 6.2], according to which the area A· and
the perimeter C of the object under consideration are related by a
power-law

C ∼ A
d◦apr/2
· (2.9)

where d◦apr is the fractal dimension of the perimeter. By A· we denote
the area of the cluster where we fill any empty cells (holes) within the
perimeter, accordingly, Ac ≤ A·.

Figure 2.4(a) shows an example of the correlations between area
and perimeter. As expected there is a power-law relation. We have
fitted the exponent in Eq. (2.9) based on the evolution of the major
central cluster of each realization separately. In Fig. 2.4(b) the resulting
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fractal dimensions of all realizations are plotted as a function of
the various γ-values. There is considerable spreading among the
realizations but a minor increase of the average values can be observed
from d◦apr ≈ 1.25 . . . 1.32 for γ = 2.1 . . . 2.75, respectively. This range
is comparable to the range achieved by the Correlated Percolation
Model (CPM) (Makse et al., 1998). Any size dependence of d◦apr cannot
be studied since in this case size variation defines the dimension.

2.3.2.2 Box-counting dimensions

Next we employ box-counting to characterize the structure of the
major central cluster. The method consists of counting the number of
non-overlapping square-shaped boxes necessary to cover an object,
see Bunde et al. (1995) and references therein. By varying the size of
the box the dimension is quantified via

Nbc ∼ Ld (2.10)

where Nbc is the number of boxes, L their size, and d the dimension.
We assess the cluster as a whole as well as the envelope of the cluster
and denote the dimensions d•bc and d◦bc, respectively.

In Fig. 2.5 we plot the resulting fractal dimensions as a function
of the size of the major central cluster Ac. It can be seen that the
fractal dimensions tend to increase with Ac, which is qualitatively
consistent with empirical findings and previous results (Shen, 2002;
Rybski et al., 2013; Zhou et al., 2017). The correlations are non-linear
and more pronounced for d•bc, i.e. the fractal dimension of the entire
cluster correlates better with the size.

In (Zhou et al., 2017), based on 5,000 clusters of urban land-
cover in Europe, the fractal dimension of the envelope roughly varies
between 1.3 and 1.5, while for the cluster itself it varies between 1.3
and 1.7. From our simulations we obtain d◦bc roughly between 1.1 and
1.4 [Fig. 2.5(a),(b)] and d•bc roughly between 1.5 and 1.9 [Fig. 2.5(c),(d)].
However, Zhou et al. (2017) also report an anisometry of the clusters
which could affect the fractal dimension. The influence of γ is small
and can be seen in Fig. 2.5(e) where we plot the fractal dimensions
against each other. The smaller γ = 2.25 leads to slightly larger d◦bc.
Overall, the dependence on the size is more pronounced than the
influence of the gravity exponent γ.

It needs to be noted that while drad in Eq. (2.8) describes the
fractality of the entire cluster, including the population (i.e. the third
dimension), d◦apr in Eq. (2.9) and d◦bc characterize what in the context of
the CPM is called percolation front (Makse et al., 1998), i.e. the fuzziness
of the envelope [see Fig. 2.5(f)]. The measure d•bc is a combination of
both, but does not consider the third dimension.
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Figure 2.5: Box-counting fractal dimensions of major central cluster and
its envelope. The fractal dimensions are plotted vs. cluster size in (a)-(d)
for the envelope, d◦bc, in (a)+(b), and the entire cluster, d•bc, in (c)+(d). As
examples, we use (a)+(c) γ = 2.25 and (b)+(d) γ = 2.75. The different colours
represent the various realizations. The two fractal dimensions are plotted
against each other in (e), where it can be seen that the fractal dimension of the
envelope is slightly smaller for the larger γ-value. Overall, the influence of
the cluster size is stronger than the gravity exponent. Panel (f) illustrates for
an example of the population density gradient (semi-log) how the different
fractal dimensions are defined by different features of the simulations. The
orange curves represent the major central cluster and the green one the entire
system, i.e. including small surrounding clusters.

2.3.3 Fundamental allometry

Schläpfer et al. (2015) find a power-law between the average building
height and city size. In our context the building height translates into
population density so that their relation corresponds to Sc/Ac ∼ Sϕ

c .
This power-law, in turn, is associated with the fundamental allom-
etry relating the population and area of cities (Stewart et al., 1958;
Nordbeck, 1971; Batty et al., 2011; Fluschnik et al., 2016; Rybski, 2016;
Rybski et al., 2017)

Sc ∼ Aδ
c (2.11)

via ϕ = 1 − 1/δ. Accordingly, in the following we analyse Eq. (2.11)
for our model, i.e. the major central cluster.

In Fig. 2.6(a) one can see that the resulting populations and areas
follow power-laws according to Eq. (2.11). The allometry exponent
δ depends on the gravity exponent γ, approximately following a
parabolic relationship, see Fig. 2.6(b). Schläpfer et al. (2015) report
ϕ ≃ 0.34 – considering buildings within 2 km from the city centre –
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Figure 2.6: Fundamental allometry. The population of the major central
cluster as a function of its area is plotted in panel (a) for various γ-values as
indicated in the legend. The dotted line has slope 1. Values of all realizations
and iterations are shown. The scaling exponent δ according to Eq. (2.11) is
plotted in panel (b) together with a parabolic regression. The 10 realizations
for each γ-value are represented by a box plot. Larger values of γ lead to
increased population density in big cities.

which corresponds to δ ≃ 1.52 and γ ≈ 3 according to our numerical
results. Our model seems to be restricted to δ > 1, which is consistent
with the results for the majority of real-world cities (Batty et al., 2011;
Bettencourt et al., 2016).

2.4 summary & discussion

In summary, our simulations show that the gravitational approach –
according to which the probability of incremental growth is propor-
tional to d−γ – is capable of reproducing radial gradients of real-world
cities. We numerically find a relation between the gravity exponent
γ and the population density exponent α, suggesting equivalence i.e.
the power-law population gradient is an expression of the gravitation
(or vice versa). Accordingly, our results confirm the idea of a friction of
distance (Batty et al., 2011), (Benenson et al., 2004, Sec. 3.2.2). However,
the strength of proximity follows a power-law and it can be antici-
pated that an exponential function instead of d−γ in Eq. (2.1) will not
lead to rich spatial complexity. If we accept that the model generates
structures that resemble real-world cities, then we can conclude that
gravitation represents a composite mechanism of the various attractive
processes influencing location choices (proximity to friends and work,
availability of infrastructure, clustering of business types, etc.).

Our results add to the pioneering work by Batty et al. (1992) who
described a power-law population density gradient – in contrast to
an exponential one (Clark, 1951). However, the proposed range of α

between 0 and 1 corresponds to γ between 1.5 and 2, which is below
the range investigated here. For γ < 2 the emerging structures are
too noisy (Rybski et al., 2013) and unrealistic compared with real-
world cities. A recently suggested value is α ≃ 2 (Lemoy et al., 2017)
which corresponds to γ ≃ 2.5 (Rybski et al., 2013). Interestingly, at this
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precise value of α = 2 and γ = 2.5 the fractal dimension is drad = 0
which agrees with the perception of cities as (zero-dimensional) points.
For γ > 2.5 a transition occurs where the fractal dimension is not
defined or does not well-behave which we denote singularity.

Moreover, it needs to be mentioned that we study our model
results in terms of mono-centric cities. If the main cluster merges with
surrounding smaller ones, then sub-centres can appear, but overall
the main centre dominates, as illustrated in Fig. 2.1. It remains to be
studied what happens in the regime γ > 2.5. In any case, a coherent
definition and an appropriate measure for poly-centrism are lacking.

We investigate additional three fractal dimensions characterizing
the structure of the major central cluster, disregarding the population
density. Overall we find that the fractality is dominated by the size of
the cluster while the gravity exponent γ has a minor influence. This is
consistent with various previous papers.

Our approach also leads to urban allometry between population
and area, although the scaling seems to be restricted to δ > 1 in
Eq. (2.11), i.e. the case where large cities exhibit higher densities. In
a sense the exponent γ determines how sprawled or compact the
emergent cities are. If one could find a policy instrument to control γ,
then one could use it to influence urban development in the desired
way. This could address sustainability questions, e.g. related to the
ratio of land consumption rate to population growth. Specifically,
larger γ-values lead to more compact cities – due to the fundamental
allometry Eq. (2.11) this influences mostly the large ones.

An alternative model that elegantly generates spatial complexity
and radial gradients is Diffusion-Limited Aggregation (DLA) (Witten Jr.
et al., 1981; Fotheringham et al., 1989; Batty et al., 1989; Batty et al.,
1994; Batty, 2013). Contrasting Eq. (2.7), DLA leads to a power-law
gradient of the urban fraction (Fotheringham et al., 1989, Eq.(3)). A
form of allometry, Eq. (2.11), is also obtained from DLA (Fotheringham
et al., 1989, Eq.(5)). The fractal dimension of the DLA in its basic form
is ≈ 1.71 (Batty et al., 1994, e.g.). However, as the present model also
grows in the third dimension, DLA can rather be compared to the
binary gravitational model (Rybski et al., 2013).

In contrast to the Correlated Percolation Model (CPM) proposed
in (Makse et al., 1995; Makse et al., 1998), where the urban fraction
gradient and the structure are introduced artificially, in the gravita-
tional approach presented here they are emergent. Moreover, it is not
straightforward to extend the CPM to also simulate population density.
It would be interesting to analyse which gradients are generated by the
Spatial Network Model (SNM) (Frasco et al., 2014; Wickramasinghe
et al., 2018).

The qj in Eq. (2.1) are often interpreted as the potential of a
gravitational force Fj,k (Batten et al., 1987). In physics, they are related
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via F = −∇q and as the distance appears ∼ d−γ in the potential, it
should be ∼ d−(γ+1) in the force. However, the analogy only works
partly. First, the system does not have any dynamics and the kinetic
energy as the counterpart to the potential is missing. Second, the qj
are probabilities and more similar to the probability density of finding
a particle at a given place, i.e. the squared modulus of a wave function,
but it is questionable if a wave function makes sense in this context.

We also would like to discuss some limitations of our gravitational
model. (i) The maximum urban fraction reaches 1 which is higher than
in real cities. Analogously, the population shows unbounded growth
in the core and not a plateau as in real cities (although in Fig. 2.2
a plateau can be seen in the log-log scale, in lin-lin representation
it is negligible). (ii) The assumed proportionalities between the w-
values, population density, and building height do not affect the
model interpretations but for the comparison with real-world cities
they represent rough assumptions and might require refinements
from follow-up studies (Biljecki et al., 2016). In particular, a central
business district and similar features would require to distinguish
residential from commercial and other uses. (iii) Real-world cities are
rarely radial and many exhibit anisometry (Zhou et al., 2017), which
in most cases results from landscape constraints (e.g. coastlines). Our
model apparently does not reproduce such anisometry but was also
not intended to do so. (iv) The growth is exogenous and the constant
growth parameter g leads to idealized urban development trajectories.

In principle the model can be extended by another exponent ϵ, i.e.
wϵ

kd−γ
j,k in Eq. (2.1), giving more or less dense cells more or less weight.

For the sake of simplicity we did not follow this approach. Moreover,
in the context of complex networks it has been shown that “nonlinear
preferential attachment” (ϵ ̸= 1) leads to degree distributions which
are different from power-laws (Krapivsky et al., 2000). For systems of
cities this would imply deviations from Zipf’s law.

Last but not least we would like to discuss an outlook for future
work. (i) Recently, Volpati et al. (2018) proposed a dispersion index to
characterize the degree of localization in populous areas. A direction
of future research could be to apply it to our model output and
establish a relation. (ii) It could also be of interest to operationalize the
gravitational approach in order to apply it to real-world data (Jones
et al., 2016). More landscape features need to be taken into account
for realistic modelling. (iii) The described gradients could be related
to other quantities, such as the urban heat island (UHI) effect (Watkins
et al., 2002, Fig. 6), (Zhou et al., 2017).
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abstract

The canopy layer urban heat island (CUHI) effect, as manifested by
elevated near-surface air temperatures in urban areas, exposes urban
dwellers to additional heat stress in many cities, specially during heat
waves. We simulate the urban climate of various generated cities under
the same weather conditions. For mono-centric cities, we propose a
linear combination of logarithmic city area and logarithmic gross
building volume, which also captures the influence of building density.
By studying various city shapes, we generalize and propose a reduced
form to estimate CUHI intensities based only on the structure of urban
sites as well as their relative distances. We conclude that in addition to
the size, the CUHI intensity of a city is directly related to the density
and an amplifying effect that urban sites have on each other. Our
approach can serve as a CUHI rule of thumb for the comparison of
urban development scenarios.
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3.1 introduction

The canopy layer urban heat island (UHI) effect, a phenomenon man-
ifested by elevated near-surface air temperatures in cities compared
with their non-urban surroundings, is mainly due to land surface mod-
ification in connection with urbanization. The surface energy balance
of urban areas differs from that of vegetated land in various aspects.
First, as impervious surfaces replace the natural land cover of low
albedo, high thermal capacity, and high thermal conductivity, urban
areas exhibit reduced latent heat flux and increased heat absorption
(Oke et al., 2017). Second, the geometry of urban surfaces featuring
buildings and street canyons leads to reduced overall wind ventilation
as a consequence of increased roughness, and to more radiation trap-
ping due to in-canyon reflections (Chapman et al., 2017; Oke, 1982).
Anthropogenic heat release from human activities also adds to the
accumulation of heat. The combined effect of these properties causes
the UHI phenomenon. Usually, the canopy layer UHI (CUHI) intensity
peaks at night (Oke, 1981) as heat stored in the urban surfaces during
daytime is released (Zhao et al., 2014) resulting in a lower cooling rate
compared with vegetated surfaces.

The UHI effect has various direct and indirect impacts on urban
dwellers and their health (Grimm et al., 2008; Patz et al., 2005; Eliasson,
2000). In many cities, it exposes urban dwellers to extra heat stress
and thus leads to thermal discomfort as well as heat-related health
problems during hot summer days (Tan et al., 2010; Cao et al., 2018).
In particular during heat wave events, the risk of heat morbidity and
mortality increases (Tan et al., 2010; Zhao et al., 2018; Habeeb et al.,
2015; Gabriel et al., 2011) as the UHI effect interacts with heat waves by
prolonging and intensifying hot conditions (Schatz et al., 2015; Zhao
et al., 2018; Li et al., 2013a). Warming enhanced by urbanization has
been identified in many cities and regions (Cao et al., 2018; Kalnay
et al., 2003; Argüeso et al., 2014; Georgescu et al., 2013), which implies
more severe heat stress in the future.

The impacts are further exacerbated when taking climate change
into consideration (Chapman et al., 2017; Zhao et al., 2018; Heaviside
et al., 2017), though they interact non-linearly and are found to pro-
duce warming that is less than the simple sum of their individual
contributions (Krayenhoff et al., 2018). Apart from health risks, the
joint economic costs of urban impacts from the UHI effect and climate
change have been estimated to be 2.6 times those without the UHI
effect (Estrada et al., 2017). Although UHIs do not remain stable under
climate change (Chapman et al., 2017; Grossman-Clarke et al., 2017) or
urban development (Krayenhoff et al., 2018), future strong nocturnal
warming due to urban effects has been found in many cities (Zhao
et al., 2018; Krayenhoff et al., 2018; Schatz et al., 2015; Cao et al., 2018;
Georgescu et al., 2013). This may not be too critical under normal
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temperature conditions. However, during heat waves this aggravated
heat stress can create significant risks to urban residents as mortality
risk is found to be significantly associated with minimum tempera-
tures (Laaidi et al., 2012; Kalkstein et al., 1989). Therefore, measures
to reduce the impact of UHI will also contribute to urban heat stress
mitigation, especially in the future with more frequent and stronger
extreme heat events due to the interactions between urban climate,
heat waves, climate change, and urbanization.

Many studies on the neighbourhood or block scale have related
higher temperature to urban characteristics such as impervious surface
fraction (or its opposite, nature surface fraction), building density
(Gabriel et al., 2011), and street canyon aspect ratio (Marciotto et al.,
2010; Oke, 1981). Some researchers have also tried to quantify the
neighbourhood scale UHI intensity based on this knowledge (Van
Hove et al., 2015; Li et al., 2019b). Those findings not only help to
advance our understanding of the physical mechanism behind the
UHI formation, but also shed light on useful measures to alleviate heat
stress in hot spots, or to generally create a better thermal environment.
Benefits of some local interventions like increasing vegetation space
(Schubert et al., 2013), green roofs (Straka et al., 2019), and cool coating
of buildings and infrastructure (Ng, 2012) have been proven by both
numerical studies and practical applications.

However, such mitigation strategies have very local influences on
climate (Zhou et al., 2017) and may not always work as efficiently at
night as during hot afternoons (Krayenhoff et al., 2018). Besides, many
aspects of urban form (such as overall dimensions, skyline and poly-
centricity, sprawling and compactness) (Oke et al., 2017) can affect the
spatial pattern of urban climates (Zhou et al., 2018; Zhou et al., 2017).
This suggests the potential of urban form and structure to mitigate
urban heat stress. For example, urban characteristics measured by a
sprawling index were found to be strongly related to the growth rate
of extreme heat event frequency (Stone et al., 2010). Thus, rapid urban
growth poses challenges to urban heat mitigation, but it also presents
an important opportunity to implement urban climate knowledge
in newly developing areas. A quantitative assessment is needed to
support urban decision-making that takes the UHI effect into account.
In this work, we quantify the relationship between canopy layer urban
heat island (CUHI) and the urban form, namely the three-dimensional
configuration of urban elements. With this, urban growth can be
developed in a way that does not create a strong CUHI effect in the first
place instead of reducing the urban heat after expanding. As the CUHI

effect has the greatest impact during heat waves and usually reaches
its maximum at nighttime, we focus on these conditions.

Here we simulate the urban climate of hypothetical cities with
variable size, density, and compactness/sprawling. To this end, we
use the surface and vegetation characteristics of the region around
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Berlin (Germany), replace the city with generated clusters, run the
urban climate model driven by the same lateral climate conditions,
and extract the CUHI intensity. By repeating the procedure for different
mono-centric clusters we infer an expression for the CUHI intensity
that is solely based on the area and the gross building volume. By
studying a wider range of city shapes, we generalize and propose a
reduced form to estimate CUHI intensities based only on the structure
of urban sites as well as their relative distance. We conclude that in
addition to the size, the CUHI intensity of a city is directly related to
the building density and an amplifying effect that urban sites have on
each other.

3.2 methods

3.2.1 Climate model and urban canyon scheme

The mesoscale non-hydrostatic climate model CCLM (Steppeler et
al., 2003) coupled with a multi-layer urban canopy model (UCM),
the Double Canyon Effect Parametrization (DCEP) Scheme (Schubert
et al., 2012), was used in this study. Previous work has shown that
diurnal variation and magnitude of CUHI can be well represented in
CCLM/DCEP during summer months (Schubert et al., 2014; Schubert
et al., 2013).

CCLM was developed from the operational weather forecast Lo-
cal Model (LM) of the German Meteorological Service by the CLM-
Community and has been the community model of German climate
research since 2005. In the standard CCLM, cities are represented by a
bulk-transfer scheme with modified soil and vegetation parameters.
An urban scheme is necessary to represent important urban character-
istics in terms of thermal properties and vertical effects of buildings
(Schubert et al., 2013). The DCEP scheme, based on the Building Effect
Parametrization (Martilli et al., 2002) (BEP), accounts for the effects of
buildings and streets configuration on the atmosphere. When coupled
with CCLM, DCEP is only applied to the urban fraction of a mesoscale
model grid cell, the remaining natural surface fraction is treated by the
land surface scheme of CCLM. In DCEP, the urban surface is conceptu-
alized as multiple series of identical street canyon elements which are
characterized by canyon direction, street width, building height, and
building width. Therefore, urban canopy parameters (UCP) required
by DCEP for each urban grid cell are: urban surface fraction, canyon
direction distribution, building height distribution, street width, and
building width.
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3.2.2 Simulation setup and data analysis

We conducted a chain of 3 nested CCLM simulations with resolu-
tions of 0.165◦, 0.025◦, 0.009◦, see coverage of each model domain in
Appendix B, Fig. B.6b. The domain of the innermost simulation was
centred at Berlin. A period of one week during a heat wave event was
simulated (Schubert et al., 2013). The coarsest simulation was driven
by ERA-Interim reanalysis data with a spin-up time of 5 years. The re-
maining two nesting steps started 6 months and 12 days, respectively,
before the analysed period.

The DCEP scheme is only applied in the finest simulations. To val-
idate our model configuration we conducted a reference run with UCP

data derived from a 3D dataset of Berlin at 1 km resolution (Schubert
et al., 2013). Statistics of the model performance against observational
data (measured at 6 weather stations located in and near Berlin, see
Appendix B, Fig B.6b) are shown in Appendix B, Table B.1. In terms of
mean error (ME), mean absolute error (MAE), and root mean-square
error (RMSE), the model satisfactorily reproduces the 2 m air tempera-
ture.

Configurations for the simulations with generated UCP data were
the same with the reference run except that the external data such as
vegetation, orography and soil parameters were made homogeneous
based on the mean value of the finest domain. This minimizes the
effect of non-urban parameters on our results.

For each generated urban cluster we define a non-urban boundary
of approximately the same area by determining several layers of cells
surrounding the urban area (Zhou et al., 2013). The difference between
average 2 m air temperatures of the urban area and rural boundary
area was taken as the CUHI intensity.

3.2.3 Stochastic gravitational urban growth model

We used a stochastic gravitational urban growth model (Li et al., 2021a)
to create realistic 3D urban canopy data. This model, based on the
concept that growth is more likely to take place close to high densities,
is capable of reproducing various attributes of real-world cities, such
as the radial gradients of population density, radial gradients of urban
fraction, and the power-law between the population and city area.
On a square grid, the probability of growth in cell i is given by
pi =

G
Mi

∑j ̸=i vjd
−γ
i,j , where γ is the main parameter, di,j is the Euclidean

distance from cell i to j, vj is the value in cell j, Mi is a site-specific
normalization constant (Li et al., 2021a; Rybski et al., 2013), and G is
another parameter determining the overall rate of growth. Starting
with a single v = 1 cell in the centre, the model is run iteratively
incrementing the counts vi → vi + 1, if z < pi, where z is a random
number between 0 and 1. The exponent γ controls the shape of the



36 influence of urban density and morphology on cuhi

emerging urban clusters, i.e. small γ lead to sprawled and radial
symmetric structures and large γ lead to compact forms with less
radial symmetry. Consistent with Li et al. (2021a) we explored γ ∈
{2.0, 2.05, . . . , 2.7, 2.75} and 1000×1000 system size.

From the resulting 141758 clusters, for each γ value we first select
one cluster with an area of approximately 2000 cells (as we put these
clusters in the climate model domain with 1km2 resolution, its area
corresponds to 2000km2). The corresponding gross building volume
increases with γ. We name these clusters set 1 and took the cluster for
γ = 2.5 in set 1 as reference cluster Cref. Similarly, we select one cluster
for each γ value which has approximately the same gross building
value as Cref. The corresponding cluster areas decrease with γ. We
name these clusters set 2. At last, another 9 clusters emerging from
the same growth sequence (realization) as Cref are selected. Together
with Cref, they make up set 3. In addition, 10 clusters from different γ

values are selected according to the criterion that they are close to Cref
in terms of gross building volume and size. They constitute set 4. See
Appendix B, Fig. B.1 for the cross plot of size versus gross building
volume of all selected clusters and some of them depicted.

3.2.4 3D urban canopy parameter (UCP) data

In order to make use of the gravitational urban growth model output,
the grid value vi in pixel i was taken as the floor count of the building
in this pixel. The system was aggregated into to a coarser domain of
200×200, thus each coarse pixel consists of 25 finer pixels with values
{v1, v2, ..., v25}. Then the urban fraction fu of this coarse pixel was
calculated as N(vi>0)

25 , where N(·) is a function that counts the number
of considered values that match the criterion of it. Only coarse pixels
with urban fraction no less than 20% were taken as urban cells (Stewart
et al., 2012), in the end, we got a 200×200 urban/non-urban matrix
for each output. For some outputs from large γ values, the v values
of pixels near the centre become very large after many iterations. In
order to have more realistic city centres, we applied a threshold of
30 for the maximum average number of building storeys on each
coarse pixel and rescaled the building height distribution as follows.
If v̄ = ∑ vi

N(vi>0) > 30, vi =
30vi

v̄ , thus the average building height v̄ for
all coarse pixels will not exceed 30 storeys. Then for each coarse pixel
marked as an urban cell, we calculated the building height distribution
{ fh1, fh2, ..., fhj} following fhi =

N(vi=i)
N(vi>0) , where fhi denotes the share

of buildings with a height of i storeys, j is the maximum value of the
original 1000×1000 lattice.

We applied the City Clustering Algorithm (CCA) algorithm (Rozen-
feld et al., 2008) on the aggregated urban/non-urban matrix to assign
all urban pixels into clusters. In this study, we only focus on the cen-
tral, the largest cluster of each output. In addition, only the central
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clusters with more than 200 pixels which do not touch any edge of
the coarse domain were considered.

For each coarser grid cell, the proportion of urban surface occu-
pied by building footprints was calculated (Schubert et al., 2013) as
fb = Wb

Y+Wb
, where Wb and Y are building width and street width,

respectively. The building volume w for each grid was calculated
according to

w = Agrd × fu × fb × v̄ × Hf , (3.1)

where Agrd is the area of the grid cell (1 × 1 km2 throughout all the
simulations), fu is urban fraction measured as urban surface fraction,
v̄ is the aforementioned average building height measured by the
number of storeys, and Hf is the floor height (we assume constant
floor height of 3 m for all buildings to further simplify conditions in
this study), see the notation in Appendix B, Table B.3. We take the
number of pixels of the considered cluster as the urban size A, and
the sum of the building volume covered by the cluster as the gross
building volume, namely S = ∑ wi.

For other parameters required by the DCEP scheme, such as street
direction distribution, street width and building width (Schubert et al.,
2013), we first assumed they are distributed homogeneously within the
urban area in order not to introduce further variability. The fraction
for each direction (−45◦, 0◦, 45◦, 90◦ to the north clockwise) in each
pixel is 25%. For street width Y and building width Wb, 20 m and 15 m
are taken, respectively. Based on the selected clusters, 50 urban canopy
parameters (UCP) datasets are created.

We create additional 42 UCP datasets that feature 10 spatial pat-
terns (see Appendix B, Fig. B.3 and Table B.2 for examples of each
pattern), which are named set 5. For these clusters, we chose a street
canyon width of 15 m and a building width of 20 m. We take a differ-
ent street canyon width compared with sets 1-4 since in set 5 some
clusters are rather small and as smaller canyon width leads to stronger
CUHI intensities, we have a better signal-to-noise ratio.

To study how the street canyon width influences the parame-
ters a1, a2, a3 in Eq. (3.2), we pick 5 UCP datasets from set 1 and an-
other 5 from set 3 to create additional UCP data. Based on each
of these UCP datasets, we then create 4 new UCP datasets by only
changing the street canyon width to 10 m, 15 m, 25 m and 30 m, re-
spectively, and changing the building width accordingly to keep the
fraction of building plan area unchanged. Then for each street width
in {10, 15, 20, 25, 30}m, we get 10 simulations and fit the results with
Eq. (3.2). Comparing the resulted a1, a2, a3, we are able to study the in-
fluence of the street width. These modified UCP datasets are together
named set 6.

The Parameters taken for different UCP datasets can be found in
Appendix B, Table B.4.
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3.2.5 UCP data from different urbanization scenarios of Berlin

To illustrate how our findings can be used for real-world cities, we
create a series of urban canopy parameters (UCP) data based on dif-
ferent hypothetical urbanization scenarios for Berlin. This is done by
modifying the real UCP data taken for the reference run. Assuming
that the change of living space only happens in the vertical direction,
we increased (or decreased) the average building height proportionally
by -50 %, -25 %, +25 %, +50 %, +100 %. Thus, we get 5 UCP scenarios
with a gross building volume increment of -50%, -25%, 25%, 50%,
100% relative to the real UCP data.

Similarly, we can also allocate the change by altering the urban
fraction. For the scenarios of decreasing gross building volume by
50% and 25%, we simply decrease the urban fraction of each grid
cell by 50% and 25%. However, for increasing gross building volume
scenarios, we decrease the vegetation surface of each grid cell by
the same percentages to get 3 scenarios with gross building volume
increased by 25%, 50%, 100%. A similar method has been used by
Schubert et al. (2013).

It has to be noted that both vertical changes and horizontal
changes are constrained within already urbanized grid cells, that
is, without changing the shape of the urban cluster. In the third sce-
nario, the change in gross building volume is achieved by modifying
the extent of the urban cluster. This is implemented by randomly
adding or removing urban grid cells. For decreased gross building
volume scenarios, we simply repeated the process of randomly re-
moving an urban grid cell from the edge of the cluster. For increased
gross building scenarios, the following steps are repeated until the
gross building volume of the expanded urban cluster approximately
agrees with the desired size. Step 1: randomly pick a grid cell from the
urban cluster; Step 2: randomly select a non-urban grid cell which is
adjacent to an urban grid cell; Step 3: replace this non-urban cell with
the urban cell selected by step 1. At the end, we get 10 scenario UCP
datasets with gross building volume changed by -50%, -25%, -10%,
+10%, +25%, +40%, +50%, +60%, +75%, 100% respectively,

3.3 results

3.3.1 Modelling setup and CUHI definition

We start by generating urban clusters resembling real-world cities and
define the urban canopy parameters (UCP) accordingly. Then we use
the physical characteristics of the region around Berlin to simulate
the urban climate employing the CCLM/DCEP urban climate model
(Schubert et al., 2012), always driven by the same lateral climate
conditions (see Methods) An example urban cluster and its building
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Figure 3.1: Example of generated urban clusters and resulting heat patterns.
a, 3-dimensional illustration of average building height in each grid cell
of a considered cluster. b, Gross building volume in the cluster together
with cluster edge and surrounding boundary. c, Simulated temperature
field at night (02:00 local time). The canopy layer urban heat island (CUHI)
intensity is defined as ∆Ta = ⟨Ta,C⟩ − ⟨Ta,B⟩, where ⟨Ta,C⟩ and ⟨Ta,B⟩ are the
average 2 m air temperatures in the city (blue line) and boundary (green
line), respectively.

information are illustrated in Fig. 3.1a. With each configuration we
simulate the 2 m air temperature in the period of August 1st-7th, 2003,
i.e. during a heat wave characterized by predominately clear skies
and light winds (Schubert et al., 2013). In order to analyse the overall
urban heat island intensity of the city, we consider the urban cluster
and a non-urban belt with an approximately equal area (Fig. 3.1b), as
used for remote sensing data (Peng et al., 2012; Zhou et al., 2013). Then
we define the hourly canopy layer urban heat island (CUHI) intensity
∆Ta,i as the difference between the average 2 m air temperatures
in both areas, i.e. Ta,i = ⟨Ta,Ci⟩ − ⟨Ta,Bi⟩, where ⟨Ta,Ci⟩ and ⟨Ta,Bi⟩
are the average temperatures at local time i in the cluster and the
boundary, respectively (see Fig. 3.1c). We extract the daily maximum
CUHI magnitude, and average it over 7 days for each simulation.
For simplicity, CUHI intensity and ∆Ta henceforth refer to the 7-day-
average maximum CUHI magnitude based on 2 m air temperature
difference, unless otherwise indicated. A more general discussion of
the UHI intensity and shortcomings of how to measure it can be found
in previous studies (Oke, 2006; Stewart et al., 2006). Finally, we build
models expressing ∆Ta as a function of building parameters.

3.3.2 Simulations with mono-centric urban clusters

We repeat the analysis for 50 clusters (generated by a gravitational
urban growth model (Li et al., 2021a; Rybski et al., 2013), see Methods)
which vary by size and compactness. In Appendix B, Fig. B.1 we
provide details on the clusters. The clusters are characterized by their
size A (km2), which is given by the number of urban cells, and by the
gross building volume S (km3), which is given by the sum of building
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Figure 3.2: Canopy layer urban heat island (CUHI) intensity ∆Ta as a function
of city characteristics and fitting performance of Eq. (3.2). a, the CUHI
intensity is plotted vs. gross building volume for constant city size. b, the
CUHI intensity is plotted vs. city size for constant gross building volume.
c, predicted and simulated CUHI intensities are plotted against each other.
Appendix B, Fig. B.1 illustrates the various sets of generated clusters.

volumes wi over all urban cells i (for calculation of wi, see Methods).
Assuming constant floor height and constant floor area per person, S
is proportional to the population size of the entire city. If we keep the
cluster size constant, we can study how the CUHI intensity depends
on the gross building volume. As shown in Fig. 3.2a, ∆Ta increases
approximately linearly with ln S. Analogously, we can keep the gross
building volume constant and test how the CUHI intensity depends
on the cluster size (Fig. 3.2b). In this case, ∆Ta decreases approximately
linearly with ln A. It is plausible that given the same urban area, cities
with higher density exhibit more pronounced CUHI intensities and
less dense cities exhibit reduced CUHI intensities (Chapman et al.,
2017; Straka et al., 2019).

Combining both results, we find that the CUHI intensity can be
described by

∆Ta = a1 ln A + a2 ln S + a3 , (3.2)

where a1, a2, a3 are parameters. When fitting this form to all 50 in-
vestigated clusters we obtain a1 = −0.43 K, a2 = 0.65 K, a3 = 3.90 K
and R2 = 0.96. In Fig. 3.2c we plot predicted and simulated CUHI
intensities against each other. From these results we conclude that
the CUHI intensity can be described by a linear combination of the
logarithmic city area and logarithmic gross building volume (resem-
bling city population), which is a generalization of previous findings
(Oke, 1973; Zhou et al., 2013; Zhao et al., 2014; Li et al., 2017; Zhou
et al., 2017; Manoli et al., 2019). If we introduce the urban density
(Chapman et al., 2017; Oke et al., 2017) and define it as S/A, then
we can rewrite Eq. (3.2), ∆Ta = (a1 + a2) ln A + a2 ln(S/A) + a3 or
∆Ta = −a1 ln(S/A) + (a1 + a2) ln S + a3, showing that the CUHI in-
tensity increases linearly with the logarithm of the density (given
a1 < 0 and a2 > 0). Moreover, in Appendix B, Fig. B.2 we show that
according to the simulations the parameters ai approach 0 with grow-
ing street canyon width. Certainly, the parameters ai also depend on
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additional factors, in particular the background climate (Zhao et al.,
2014; Oke, 1973; Oke, 1987) (such as wind speed, precipitation, and
cloud cover) and thermal properties of the rural surface (Chapman
et al., 2017; Oke, 1987; Runnalls et al., 2000).

3.3.3 Simulations with a wide range of urban forms

One can easily think of configurations where A and S are unchanged,
but the urban form is very different. The investigated urban clus-
ters do exhibit a range of compact or scattered shapes (Appendix B,
Fig. B.1), but more complex spatial features, e.g. as captured by the
fractal dimension (Batty et al., 1994; Zhou et al., 2017), can hardly be
analysed based on those clusters since their fractal dimension covers
a comparably small range (Li et al., 2021a). Accordingly, we perform
further simulations with more extreme urban forms that are beyond
real-world cities. We generate 10 different spatial patterns with a range
of sizes and repeat the urban climate simulations. In order to avoid ad-
ditional complexity, here we use constant building height and canyon
width throughout the urban sites and simulations. The shapes consid-
ered range from the rather sparse Cantor Dust to the more compact
Sierpinski Carpet. In addition to these regular fractals, the patterns
also include irregular ones, e.g. Diffusion-Limited Aggregation (DLA)
(Witten Jr. et al., 1981; Fotheringham et al., 1989; Batty et al., 1994)
clusters, and non-fractal shapes such as the filled circle (Appendix B,
Fig. B.3 and Table B.4).

As the density here held constant, i.e. A ∼ S, it is sufficient to plot
∆Ta as a function of the area A if we want to apply Eq. (3.2). The results
are shown in Fig. 3.3, demonstrating that overall, the CUHI intensity
tends to increase with the logarithmic size, but that for a given size, the
resulting ∆Ta-values spread over a wide range which is certainly due
to the variety of shapes that have been used. Although fractal geometry
represents a convenient formalism to characterize spatial structures,
we found that the fractal dimension is not a sufficient indicator to
describe the CUHI intensities, and we propose an alternative ansatz as
follows. Motivated by the perception that any urban site has a heating
influence on other urban cells that declines with the distance between
the urban cells, we explore the following educated guess combining a
size term and a form term

∆Ta = b1 ln A + b2
1
N

N

∑
j

N

∑
i ̸=j

d−δ
ij + b3 with δ ≃ 3/2 , (3.3)

where dij is the Euclidean distance (km) between the urban sites i and
j, N is the total number of urban cells, and b1, b2, b3 are parameters.
If hij is the heat influence that site i has on j, then Hj = ∑i hij is the
influence that site j receives from all other sites. Since for ∆Ta we
calculate the average over all the cells of a city, we need an additional
sum over all sites and a division by their number, i.e. 1

N ∑j Hj, which
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Figure 3.3: Canopy layer urban heat island (CUHI) intensity as a function of
city size and form attributes. a, the CUHI intensity is plotted against the city
size of corresponding spatial patterns (Appendix B, Fig. B.3 and Table B.4). b,
the CUHI intensity predicted by Eq. (3.3) is plotted against simulated CUHI
intensity. c, for the realistic urban clusters (Appendix B, Fig. B.1) the CUHI
intensity predicted by Eq. (3.4) is plotted against simulated CUHI intensity.

with hij ∼ d−δ
ij corresponds to the second term in Eq. (3.3). When fitting

Eq. (3.3) to all 10 patterns (42 simulations) we obtain b1 = −0.19 K,
b2 = 0.04 K km3/2, b3 = 1.60 K and R2 = 0.95. The performance is
visualized in Fig. 3.3b where predicted and simulated CUHI intensities
are plotted against each other. In the Appendix B, Fig. B.4 we show
how we found the value of the exponent δ based on the simulations
of pattern 10 (Appendix B, Fig. B.3), i.e. a square of constant N but
with varying space between the urban pixels. Equation (3.3) suggests
that the distribution of distances between the urban sites contains the
information necessary to capture the CUHI intensity of basically any
urban shape.

3.3.4 General regression model

A naturally emerging question is if Eq. (3.3) can also be used to
estimate the CUHI intensity of the generated urban clusters which
led to Eq. (3.2). In order to unify both approaches, we introduce a
weighting factor f ( fui, wi, Yi) into the second term of Eq. (3.3), i.e. as
a function of the building volume wi, the urban fraction fui, and the
street canyon width Yi for each urban cell. We find reasonable fitting

for f ( fui, wi, Yi) ∼
(

fu iwi
Yi

)1/2
. Moreover, we have to include the ln S

term as in Eq. (3.2). Thus, in general,

∆Ta = c1 ln A + c2 ln S + c3D + c4

with:

D =
1
N

N

∑
j

N

∑
i ̸=j

(
fuiwi

Yi

)1/2

d−3/2
ij ,

(3.4)

where c1, c2, c3, c4 are parameters. Fitting leads to c1 = −0.26 K,
c2 = 0.28 K, c3 = 0.07 K km1/2, c4 = 2.43 K and R2 = 0.99. In Fig. 3.3c
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we again plot predicted and simulated values against each other
and find similar agreement as in Fig. 3.2c, despite the more general
approach. We would like to note that we also obtain decent fitting if we
employ f ( fui, wi, Yi) ∼ ln

(
fu iwi

Yi
+ 1

)
, as the forms of power-laws with

small exponents and of the logarithmic function are quite similar. We
find that regressing ∆Ta = c1 ln A+ c2D+ c3, i.e. without the ln S term,
also provides reasonable fitting but Eq. (3.4) is preferable according
to the Akaike Information Criterion (AIC) (Wagenmakers et al., 2004).
Moreover, Eq. (3.4) can be rewritten into another form which includes
urban street canyon aspect ratio (Marciotto et al., 2010; Ali-Toudert
et al., 2006) (see Appendix B, Note B.1). Overall, Eq. (3.4) represents a
comparatively simple way to estimate the CUHI intensities based on
urban form and size. Given that the parameters ci are known, all that
is necessary to estimate the CUHI intensity is the spatial information
of urban sites and building heights.

3.3.5 Application to a real-world example

Here we briefly illustrate how the above findings can be applied to
idealized urbanization scenarios of the (real) city of Berlin. We re-
strict the simulations to urban development that takes place vertically
(decrease/increase in building height), horizontally (shrinking/ex-
panding the extent of the urban cluster), or that decreases/increases
the urban fraction. For each of these three urbanization types, we have
created several configurations with changes in gross building volume
varying between -50% and +100% compared to the present urban
canopy data of Berlin (see "Methods" section). The parametrization
is then used both to run the urban climate model and to calculate
the quantity D in Eq. (3.4). Of course, in addition to urban structure
factors, weather conditions (e.g. cloud cover and type, wind speed and
direction) and rural surface conditions (such as thermal admittance
and surface wetness) are very important factors influencing the CUHI
intensity (Runnalls et al., 2000). Together with the reference run (the
simulation with real urban canopy data for Berlin that was used to
validate the configuration of the climate model, see "Methods" section),
we performed 21 simulations.

The simulated CUHI intensities from these scenarios are plotted
against the change in gross building volume in Fig. 3.4a. We find
that the increases in building height and urban fraction both lead to
increases in CUHI intensity, yet they behave differently, as the latter
leads to a faster CUHI intensity increase. This is probably due to
the stronger shadow effects from taller buildings, which reduce heat
storage during the day. For the scenarios with changed urban cluster
size, the trends are less clear. The fluctuations may be caused by the
fact that the randomly removed or added urban cells vary in urban
surface fraction, building structure, and street canyon configurations.
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Figure 3.4: Canopy layer urban heat island (CUHI) intensity from urbanization
scenarios of Berlin. a, the CUHI intensity is plotted against the gross building
volume S for corresponding urbanization scenarios. b, the CUHI intensity
predicted by Eq. (3.4) is plotted against simulated CUHI intensity. c, as
panel b but with out-of-sample validation, i.e. the value to be validated is
removed from the sample and the regression is based on the remaining ones
(repeated for each value).

In addition, the background climate and rural surface characteristics
are heterogeneous throughout the domain, so that different expansion
directions of the urban cluster will have slightly different influences
on the resulting CUHI intensity. The higher than reference run CUHI
intensity of the scenarios with decreased urban cluster size can be
understood, when considering that outer cells normally exhibit lower
urban surface fraction and building height. When these cells are
removed, the remaining central urban core has relatively high building
density, leading to higher CUHI intensity.

When regressing Eq. (3.4) on the urban climate results from these
scenarios, we obtain c1 = −0.25 K, c2 = 0.13 K, c3 = 0.18 Kkm1/2,
c4 = 1.85 K and R2 = 0.99. As for these simulations, we use heteroge-
neous real-world external data (such as vegetation, orography and soil
parameters, etc.) instead of homogeneous external data for simulations
with model-generated mono-centric urban structures, the coefficients
here differ slightly from before. The predicted and simulated values
are plotted against each other in Fig. 3.4b. Considering the high het-
erogeneity of the urban structure factors within the real urban canopy
parameters (UCP) data and the derived scenario UCP data, we can
conclude that our general regression form as in Eq. (3.4) holds not
only for model-created urban structures but also for real-world urban
structures. In order to test the robustness of these results, we last
perform an out-of-sample validation: we remove one simulation from
the 21 samples, regress Eq. (3.4), and obtain a prediction which is
independent of its corresponding simulated value. Then we repeat the
procedure for each sample in the set (leave-one-out cross-validation).
Comparing the predicted and simulated values, we can see that the
CUHI intensities predicted by our approach show agreement with the
simulated CUHI intensities. Except for two values with a deviation
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of −0.21 K and 0.14 K, the rest of the predictions have an error within
±0.1 K.

3.4 discussion

The UHI effect can increase the frequency of extreme heat events, ex-
tend the duration of high temperatures, and narrow the time window
for relief from high-heat exposure (Zhao et al., 2018; Schatz et al.,
2015; Tan et al., 2010). This heat stress may deteriorate further when
taking climate change and rapid ongoing urbanization into account.
Moreover, as the majority of the world’s population already lives in
cities, urban areas are expected to absorb the lion’s share of global pop-
ulation growth which is estimated to be 2.2 billion by the end of this
century (United Nations Population Division, 2019). This means that
in the future many more people will be exposed to more frequent and
intensified extreme heat events, not to mention demographic change
and an increasing proportion of vulnerable elderly people. Therefore,
urban development policies need to take the UHI effect into account
(Estrada et al., 2017) and make proper use of effective ways to reduce
excessive urban heat.

Achieving this goal requires a more comprehensive understanding
of how the UHI effect is influenced by key local- and regional-scale
factors such as urban canyon structure, building density, urban surface
fraction, and urban form. A challenge in the study of cities is that
many factors and characteristics vary among cities, most notably the
background climate (Zhao et al., 2014), thermal properties of the rural
surface (Runnalls et al., 2000), city size (Oke, 1973), density (Oke, 1987),
urban form (Middel et al., 2014), street geometry (Eliasson, 2000; Oke,
1987), and building material (Chapman et al., 2017; Oke, 1987). Here,
by employing simulated cities, we can keep the climate conditions
constant and clearly define these factors and thus investigate the UHI
phenomenon for cities over almost two orders of magnitude.

We quantify the relationship between key urban factors and the
CUHI intensity and propose a regression model to quantitatively
estimate the CUHI intensity based on detailed 3D urban structure
data. Our results show that: firstly, given the same urban area or gross
building volume, the CUHI intensity is strongly influenced by the
building density (gross building volume per unit area, calculated as the
product of total building plan area and average building height within
an urban area unit); secondly, increasing building density will lead to
stronger CUHI intensity. However, due to different effects of aspect
ratio, increasing building plan area causes a more rapid increase in
CUHI intensity than adding vertical building height. Given knowledge
about the coefficients, Eq. (3.4) can serve to quantify the effect of
interventions on the city in question and to investigate scenarios of
urban development.
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Our results confirm that increasing urban fraction and building
height will enhance the CUHI intensity, which is consistent with
previous studies (Li et al., 2019b; Yin et al., 2018; Schubert et al.,
2013; Van Hove et al., 2015; Straka et al., 2019; Oke, 1981; Oke, 1973).
Although increasing building height means more shading effect and
less heat storage within a street canyon during the day, it also leads to
larger aspect ratios and lower nighttime cooling rates due to stronger
trapping of outgoing radiation. The extent to which one of these two
effects offsets another still requires further investigation. According to
our results, increasing the building density through taller buildings
leads to a slower increase in CUHI intensity, and the increase rate gets
smaller for larger street canyon aspect ratio (Oke, 1981). On the other
hand, based on numerical modelling, Marciotto et al. (2010) found a
peak point of aspect ratio at around 3.5, beyond which the maximum
CUHI intensity will decrease with increasing aspect ratio. This is not
a contradiction as in our work, most of the street canyons still have an
aspect ratio below 3.5 even when the height of all buildings is doubled.
However, it is also unrealistic to have that large average aspect ratio
within many grid cells at 1 km resolution.

Regarding the influence of urban form, our results show that
sprawling development will lead to a better thermal environment
when considering the entire urban area. Stone et al. (2010) found that
sprawled cities show a greater rate of increase in the frequency of
annual extreme heat events. A reason for this difference could be their
use of observational data acquired at weather stations that are often
located near the airport instead of the city centre. Moreover, when the
urban area and the gross building volume are controlled, the factors
within the term D in Eq. (3.4) still interact with each other non-linearly.
Under the premise that the street canyon geometry is homogeneous
over all urban sites, the term D clearly indicates that more compact
urban clusters will lead to higher CUHI intensities. However, without
this precondition, the situation is more complex. Future work that
links the quantity D to factors like urban fractality (Batty et al., 1994;
Batty et al., 1989; Zhou et al., 2017), urban centrality/poly-centrism
(Stone et al., 2010; Batty, 2013), anisometry (Zhou et al., 2017), and
intra-urban street canyon geometry will further our understanding of
the influence of the urban form on the UHI effect.

Our results, to some extent, cross the scale hierarchy with regards
to urban heat stress mitigation by aggregating the complex interactions
of vegetation fraction and canyon geometry at the neighbourhood scale
grid cell (in our case, at the scale of 1 km2) into an impact at the city
scale. This means that city-scale UHI intensity cannot simply be scaled
up from that of the neighbourhood scale, as nearby neighbourhoods
also influence each other. Since there is no single best design that meets
all climate objectives (Oke et al., 2017), a quantitative assessment of
the impact of different designs can help to balance between different
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objectives (Oke, 1984; Oke, 2006; Mills, 2006; Mills et al., 2010; Ng,
2012). However, it is beyond the scope of this paper to integrate
our findings into a more holistic frame, since decision-making on
urban design is a very complex process that requires consideration
of many other aspects. For example, a denser city can be preferable
regarding energy efficiency but will lead to greater UHI intensity
(Mills, 2006), a proper comparison requires a quantitative assessment
of both objectives. Even for the same objective of urban heat stress
mitigation, it is difficult to clearly prefer one development design over
another one before their detailed 3D urban structures are available, or
at least some of the factors are fixed. The main reason is that the factors
in Eq. (3.4), in particular building height and street width, interact
and impose limits on each other. Instead, our approach permits an
assessment (Mills et al., 2010; Ng, 2012; Oke, 1984) that takes the 3D
urban structures of different urban development scenarios as inputs
and enables the comparison between these scenarios with regard to
heat stress mitigation on the city scale.

Some limitations exist in this work and the application of our
results. Firstly, besides urban form and factors related to street canyon
geometry (Oke et al., 2017), weather conditions and rural surface
characteristics (Runnalls et al., 2000; Oke, 1987) play an important
role in determining CUHI intensities. To apply Eq. (3.4) to another
city, one would need to derive the coefficients of the regression again,
requiring around 20 simulations. This hampers the fast application of
our results, especially for those without expertise in running numerical
climate simulations. Properly identifying a representative heat wave
event and always using it as standard driving data could help to
avoid unnecessary simulations. Secondly, with the coefficients known,
applying Eq. (3.4) still requires detailed 3D urban structure data
for the development scenarios under consideration. This data will
become increasingly available with the rapid development of spatial
information technology. Lastly, for simplification and to better separate
the influences of the various factors, we excluded anthropogenic heat
in this study. For Berlin, the influence of anthropogenic heat release
on nocturnal UHI effect should be relatively small during summer
according to studies on other temperate cities (Runnalls et al., 2000;
Bohnenstengel et al., 2014; Shahmohamadi et al., 2011; Taha, 1997).
Moreover, during the night, anthropogenic heat release from cooling
should be negligible as the majority of households do not use air
conditioning. However, for cities or scenarios where cooling equipment
is widely operated during hot summer, UHI intensity can be increased
by more than 1

◦C (Li et al., 2014; Salamanca et al., 2014; De Munck
et al., 2013). Further work on the influence of anthropogenic heat will
be helpful for more accurate UHI prediction for cities where cooling
devices are widely used.
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abstract

In this study, we analysed the multi-annual (2002-2011) average sum-
mer surface urban heat island surface urban heat island (SUHI) inten-
sity of the 5,000 largest urban clusters in Europe. We investigated its
relationship with a proposed Gravitational Urban Morphology (GUM)
index that can capture the local context sensitivity of SUHI. The GUM
index was found to be an effective predictor of SUHI intensity. To-
gether with other urban factors we built different multivariate linear
regression models and a climate space based Geographically Weighted
Regression (GWR) model that can better predict SUHI intensity. As
the GWR model captures the variation of influence from different
urban factors on SUHI, it considerably outperformed linear models in
predicting SUHI intensity in terms of R2 and other statistical criteria.
By investigating the variation of GWR coefficients against background
climate factors, we further built a nonlinear regression model that
takes into account the sensitivity of SUHI to regional climate context.
The nonlinear model showed comparable performance to that of the
GWR model, and it prevailed against all the linear models. Our work
underlines the potential of SUHI reduction through optimizing urban
morphology, as well as the importance of integrating future urban-
ization and climate change into the implementation of urban heat
mitigation strategies.

keywords :

Urban form, surface urban heat island, climate context, geographically
weighted regression

1 This chapter is based on the published paper: Y. Li et al. (2021b). “Context sensitivity
of surface urban heat island at the local and regional scales.” Sustain. Cities Soc. 74,
p. 103146. doi: 10.1016/j.scs.2021.103146, © Elsevier Ltd. Used with permission.
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Notations

∆Ts surface urban heat island intensity, [◦C]

A urban area, [km2]

D Gravitational Urban Morphology (GUM) index

U∆Wat water surface fraction difference between urban area and boundary area

U∆Veg EVI difference between urban area and boundary area

U∆Ele elevation difference between the urban area and boundary area, [m]

BEle average elevation of boundary area, [m]

BWin average summer wind speed of boundary area, [ms−1]

BPre average summer precipitation of boundary area, [mm]

BTmx average summer maximum daily temperature of boundary area, [◦C]

BLat Latitude of the urban centroid

4.1 introduction

The urban heat island (UHI) effect, which refers to the phenomenon
that urban areas tend to experience higher temperatures than their
rural surroundings, is one of the clearest examples of anthropogenic
climate modification (Oke et al., 2017). The UHI effect has various im-
pacts on the local environment and human health (Grimm et al., 2008).
The most direct adverse impacts are heat-related health problems
(Tan et al., 2010) and increased risk of heat morbidity and mortality
(Gabriel et al., 2011; Krummenauer et al., 2019) during hot summer
days, as in many cities the UHI effect exposes urban dwellers to extra
heat stress.

There are several types of UHIs according to the schemes used
to measure them (Oke et al., 2017). Among them, the surface urban
heat island (SUHI), measured by urban/non-urban radiative tempera-
ture differences derived usually from Land Surface Temperature (LST)
data, has attracted considerable interest in recent years due to the
advancement of remote sensing techniques, as well as its association
with rapid urbanization and global warming which draw increasing
attention (Zhou et al., 2019a). The advantages (e.g. spatial/temporal
resolution and coverage, data accessibility) of remote sensing data en-
able researchers to conduct spatially-explicit studies at various spatial
and temporal scales (Deilami et al., 2018; Zhou et al., 2019a).

Case studies on small scales (e.g. raster pixel, block, and district
level) usually try to explore spatial or temporal SUHI variations to
examine statistically a wide range of factors (for example, the share
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of vegetation and impervious surface, building density, etc.) and their
contributions to SUHI (Deilami et al., 2018; Li et al., 2018; Yang et al.,
2019). Studies at this scale often take the LST as a proxy of SUHI
intensity and mainly use ordinary least squares (OLS) regression with
one or more factors as predictors (Deilami et al., 2018). Recently, an
increasing number of studies on the relationship between Local Cli-
mate Zones (LCZs) and SUHI intensity (Demuzere et al., 2019; Geletič
et al., 2019; Ochola et al., 2020) have been published with resort to
the LCZ classification scheme proposed by Stewart et al. (2012). Some
researchers also try to link SUHI variations across time with the dy-
namic of land use/land cover (LULC) (Singh et al., 2017; Sultana et al.,
2020).

However, due to fluxes and energy flows between different LULC
types, the landscape heterogeneity also plays an important role (Li
et al., 2017; Zhou et al., 2019b) and therefore the SUHI is context-
sensitive at the local scale (Song et al., 2014). It was found when taking
the effects of neighbouring elements (e.g. grid cell or landscape patch)
into account by using spatial regression models (Chun et al., 2018; Yin
et al., 2018; Dai et al., 2018; Galletti et al., 2019; Guo et al., 2020) or
Geographically Weighted Regression (GWR) models (Buyantuyev et al.,
2010; Li et al., 2010; Su et al., 2012; Szymanowski et al., 2012; Deilami
et al., 2018; Liu et al., 2019; Zhang et al., 2019), higher explanatory
or predictive power can be obtained to model/assess the relationship
between SUHI variations and the contributing factors. This implies
that SUHI at the local scale is influenced by the proximity to and
the spatial distribution of nearby warming/cooling factors, and this
influence decays as the distance increases.

With this in mind, one could easily arrive at the presumption that
when the city is considered as a whole, urban morphology (used in
the narrow sense, refers mainly to geometric form) could also have
an impact on the city-scale SUHI effect, as urban morphology per
se is the aggregated result of the spatial configuration/placement of
the fine-scale urban elements. Although many studies (Deilami et al.,
2018; Zhou et al., 2019a) have compared SUHI intensities of different
cities and attempted to explore the influence of city-level factors (e.g.
urban size and density) (Zhou et al., 2013; Li et al., 2017; Song et al.,
2020) on SUHI, only a few efforts have been addressed regarding the
influence of urban morphology on SUHI. The reasons may be twofold.
On the one hand, cities are complex systems with high heterogeneity
in various aspects, a less pronounced association between the urban
morphology and SUHI intensity is more likely to be obscured by the
noise. For example, “compact city” means denser land utilization but
probably also leads to less traffic emission (Wang et al., 2015), to which
extent the influence from one of these two aspects prevails the other
varies across cities. On the other hand, the difference in the biophysical
background may further dim the signal from intercity statistics as the
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SUHI effect is also sensitive to the regional background climate (Peng
et al., 2012; Zhao et al., 2014; Zhou et al., 2014; He, 2018; Manoli et al.,
2019).

Regardless of the challenges, some previous investigations pro-
vided important insights on this topic. For example, Zhang et al.
(2012) analysed the SUHI of 42 northeastern US urban areas within
the same ecological context, and they found a linear relationship be-
tween SUHI intensity and an urban shape indicator calculated as
logarithmic urban area/perimeter ratio. In order to reduce the noise
from the background climate, Liang et al. (2020) studied the SUHI of
150 cities with a relatively uniform climate condition in the Jing-Jin-Ji
region of China. Based on various regression models, urban form
indicators like fractal dimension, contiguity, and elongation have been
found to have a stronger positive contribution to the summer day-
time SUHI, whereas for SUHI during nights or other seasons, their
contributions vary both quantitatively and qualitatively. Some studies
also explored qualitatively the climate sensitivity of the relationship
between SUHI and urban morphology. For instance, from the statistics
based on the 5,000 largest urban clusters in Europe, Zhou et al. (2017)
found that a compact urban form featured with large box-counting
fractal dimension and small anisometry tends to increase the summer
SUHI intensity whilst the influence varies regionally. In more recent
work, Liu et al. (2021b) examined the relationships between different
urban form metrics and SUHI intensity based on 1288 urban clusters
in China, and they found these relationships vary against the climate
zones.

These findings advance our understanding of the influence of
urban morphology on SUHI as well as its sensitivity to the climate
context. However, the quantitative understanding of this sensitivity,
which is important for fast SUHI assessment across climate regions, is
still lacking. Moreover, urban morphology indicators used in previous
studies focus mainly on the 2D morphology of the urban clusters
or their component elements, while the spatial pattern of the intra-
city heterogeneity in density, which is key to capturing the context
sensitivity of SUHI at the local scale, is largely underrepresented.

Recently, based on numerical climate simulations with generated
3D urban structure data (Li et al., 2021a), Li et al. (2020c) proposed
a 3D urban morphology indicator that was found to be an effective
quantitative indicator linking urban form and canopy layer urban
heat island (CUHI) intensity. Although physical processes behind the
SUHI effect and the CUHI effect are different (Oke et al., 2017; Peng
et al., 2012), the underlying assumption may still apply in both cases,
i.e. individual urban cells exert a warming/cooling effect on each
other which decays with distance. This assumption is consistent with
the context sensitivity of SUHI at the local scale. Therefore, whether
a similar indicator also applies to SUHI is worth exploration. As
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in (Li et al., 2020c) the urban morphology indicator was calculated
resembling the gravitational force, hereafter we name it Gravitational
Urban Morphology index and GUM index in short.

In this work, we extract the 5,000 largest urban clusters in Europe
and calculate their SUHI intensities as well as the GUM index similar
to Li et al. (2020c) and analyse the correlations between both. Further,
various regression models are built by taking several city-level vari-
ables as predictors, such as urban size, the urban-rural difference in
vegetation, and water surface share. We explore quantitatively the con-
text sensitivity of SUHI to the regional climate with resort to climate
space based GWR model. We explore quantitatively the background
climates governed influences of urban factors on SUHI and illustrate
how background climate factors can be integrated into a nonlinear
model that outperforms linear ones.

4.2 data and methods

4.2.1 Data

The binary urban/non-urban Urban Morphological Zones 2006 (UMZ2006)
data-set at 250 m resolution from the European Environment Agency
(EEA) was used to delineate the urban/non-urban area. It was created
from CORINE Land Cover data of the year 2006 (CLC2006) follow-
ing the reclassification method as described in (Simon et al., 2010).
UMZ2006 covers 38 European EEA member states and cooperating
countries except Greece.

The Land Surface Temperature (LST) data set from the Moderate
Resolution Imaging Spectroradiometer (MODIS) onboard the NASA
Aqua platform was used, i.e. the 8-day composite product (MYD11A2,
version 6 (Wan et al., 2015)). For this work, we only analysed the LST
at around 13:30 local time during summer months (June, July, and
August) from the years 2002-2011. The LST data set was then processed
to get multi-annual summer mean LST following the method used in
(Zhou et al., 2017).

Auxiliary data considered in this work include vegetation, back-
ground climate, topography, water bodies, as well as urban impervious
density.

The vegetation information was extracted from MODIS Enhanced
Vegetation Index (EVI) data (MOD13Q1, version 6, Didan (2015)). We
downloaded the 16-day composite product during all summer months
from the years 2002-2011 and calculated the multi-annual average of
the summer EVI.

Regarding the background climate conditions, the multi-annual
average of summer precipitation, summer daily maximum 2 m tem-
perature, and summer 10 m wind speed were calculated based on
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the corresponding monthly values from two data sets. The monthly
precipitation and daily maximum air temperature during summer
from 2002-2011 were taken from CHELSA (climatologies at high res-
olution for the Earth’s land surface areas) climate data set. CHELSA
is based on a quasi-mechanistical statistical downscaling global re-
analysis and global circulation model output (Karger et al., 2017) and
has a resolution of 30 arc seconds (∼1km). It is hosted by the Swiss
Federal Institute for Forest, Snow and Landscape Research (WSL)
and freely available at https://chelsa-climate.org/. The monthly
10 m wind speed data set comes from the German Weather Service
(Deutscher Wetterdienst, DWD) Climate Data Centre. This data set con-
sists of gridded monthly mean near-surface (10 m) wind speed values
(Brinckmann, 2016) for Europe, and it was created by the project De-
cReg/MiKlip (Brinckmann et al., 2016) using an interpolation model
which combines observation data and reanalysis data. The data set
covers the period of 2001–2010 and has a resolution of 0.044

◦ (∼5km).
Similar to the precipitation data, only values from the summer months
were processed.

Another data source is the Copernicus Land Monitoring Ser-
vice (CLMS, https://land.copernicus.eu/) funded by the European
Union. From CLMS we downloaded the Imperviousness Density 2006

(IMD2006) at 20 m resolution, and the European Digital Elevation
Model (EU-DEM, version 1.0) with 25 m resolution, as well as the
CLC2006 at 100 m resolution. We aggregated the IMD2006 and EU-
DEM data to a coarser resolution of 250 m by assigning each coarse
cell the mean value from the fine cells it covers. The CLC2006 was
first reclassified into binary water/land map according to whether the
cells belong to the level-1 class “Water” (which includes watercourses,
water bodies, coastal lagoons, estuaries, sea and ocean, see (Büttner et
al., 2012)). The binary map was then resampled to a 250 m resolution
with each coarse cell receiving a value of water surface fraction.

To overlay the various quantities, all the processed data sets were
reprojected to the sinusoidal coordinate system as used by the LST
data set.

4.2.2 Methods

4.2.2.1 SUHI intensity calculation

We follow a similar methodology as Peng et al. (2012) and Zhou et al.
(2013) and Zhou et al. (2017). First, we apply the City Clustering Algo-
rithm (CCA) (Rozenfeld et al., 2008; Rozenfeld et al., 2011; Fluschnik
et al., 2016) to the UMZ2006 map, with the parameter l = 250m, to
assign all cells which are no more than 250 m apart from each other
to the same urban cluster. Then we identify the 5,000 largest urban
clusters (in terms of area) and the centroid location of each cluster

https://chelsa-climate.org/
https://land.copernicus.eu/
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(indicated in Fig. 4.1(h)). For each of the selected urban clusters, a
boundary area with approximately the same size as the urban cluster
is created following the method used in (Zhou et al., 2013). Cells
that have a water surface fraction over 50% or belong to other urban
clusters are excluded when creating the boundary area. Some example
urban clusters and the corresponding boundary areas are shown in
Fig. 4.1(a-f). Last we define the SUHI intensity (◦C) as ∆Ts = Tu − Tb,
where Tu and Tb are the average LST of the urban cluster and of the
boundary area, respectively.

4.2.2.2 Extraction of other variables

Analogously, for each urban cluster, we calculate the difference be-
tween the average value of water surface fraction, summer EVI, and
elevation of the urban area and the corresponding average value
of the boundary area, and denote them as U∆Wat, U∆Veg, U∆Ele (m),
respectively.

Moreover, we calculate the average value (summer if applicable)
of elevation, EVI, wind speed, precipitation, and maximum temper-
ature within each boundary area and denote them as background
biophysical factors BEle (m), BVeg, BWin (ms−1), BPre (mm) and BTmx

(◦C), respectively. As an important factor controlling solar radiation,
the latitude of the centre of mass for each urban cluster is also ex-
tracted and is denoted as BLat (◦).

4.2.2.3 Geographically weighted regression model

In addition to ordinary least squares (OLS) regression models, we
performed a Geographically Weighted Regression (GWR) to explore
spatially varying relationships between the SUHI intensity and its
explanatory variables. GWR is a non-parametric model that takes
spatial non-stationary influences from associated factors into account
by applying a locally weighted linear regression (Jian et al., 1996) for
each observation with a subset of nearby observations (Fotheringham
et al., 2003), and therefore allows parameters to vary across space.
GWR usually takes the form

yi = θ0(ui, vi) +
n

∑
k

θk(ui, vi)xk,i + ϵi , (4.1)

where n is the number of independent variables; i denotes the ith
observation; (ui, vi) is the coordinate of the ith location; θ0(ui, vi) is
the constant intercept depending on the coordinate (ui, vi); yi, xk,i,
and ϵi are dependent variables, independent variable and the error
term respectively; and the coefficients θk(ui, vi) are varying condi-
tionals of the observation locations (Nakaya et al., 2014). The prox-
imity of geographical positions can, to some extent, represent the
similarity of climate conditions, but not always. For example, two
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cities located in proximity to each other but on opposite sides of
a ridge may largely differ in background climate, especially in the
patterns of precipitation and wind. One of our goals is to investi-
gate climate control on the SUHI. Therefore, instead of a common
GWR that takes only geographical location (u, v) as coordinates into
account for Eq. (4.1), in this work we project the 5,000 cities into a
6-dimension space using their corresponding background biophysi-
cal factors, namely BPre, BTmx, BVeg, BWin, BEle, and BLat – forming a
kind of climate space. A similar application of GWR can be found in
(Hooker et al., 2018). To remove the influence of the magnitude of
different climate variables, z-score normalization is applied to each of
them. The coordinate of the ith city in the constructed space will be
P⃗i = {z(BPre)i, z(BTmx)i, z(BLat)i, z(BVeg)i, z(BEle)i, z(BWin)i}. This way,
the distance between city i and j within the 6-dimension space can be

calculated as di,j = |−→PiPj| =
√

∑6
k=1(Pi,k − Pj,k)2.

For a city at location i, coefficients θk,i and ϵi are estimated by
locally fitting a weighted linear regression that only takes its neigh-
bouring cities within a certain distance L in the constructed climate
space into account. In this work, the weight of city j is calculated using
a tricube function, i.e. wj = (1 − (di,j/L)3)1/3, with di,j ≤ L. The local
WLR leads to a set of coefficients {θ0(P⃗i), θ1(P⃗i), ..., θn(P⃗i), ϵi } and
after application to each of the 5,000 cities we get 5,000 sets of coeffi-
cients. The GWR is implemented using the R-package "GWmodel" (Lu
et al., 2014). An optimally fixed bandwidth L is estimated using the
leave-one-out cross-validation method, technical details can be found
in Lu et al. (2014).

4.2.2.4 GUM index calculation

In the work of Li et al. (2020c), a Gravitational Urban Morphol-
ogy (GUM) index was found to be capable of capturing the influence
of urban form on canopy layer urban heat island (CUHI) intensity. This
index is calculated as 1

N ∑N
j ∑N

i ̸=j f (xi)d
−β
ij , where N is the number of

cells of the considered urban cluster, dij is the distance between two
urban cells i and j, and f (xi) is the function of the urban metric x
influencing the temperature at site i. This was based on the hypothesis
that an urban cell is affected by the warmth of other urban cells and
this effect declines with the distance between them, also warmer urban
cells have stronger effects on their neighbouring cells. Many studies
show that the land surface temperature is highly related to character-
istics like impervious surface fraction (Morabito et al., 2020; Li et al.,
2011), building density (Song et al., 2020; Yin et al., 2018), vegetation
fraction (Mathew et al., 2017; Li et al., 2011; Zhou et al., 2014), etc.
Particularly, Li et al. (2018) revealed a linear relationship between
land surface temperature and regionalized impervious surface area.
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Therefore, in this work, we include impervious surface fraction and
calculate our GUM index according to

D =
1
N

N

∑
j

N

∑
i ̸=j

uα
i d−β

ij , (4.2)

where ui is the impervious surface fraction of urban grid cell i, α and
β are key exponent parameters. We calculate D for each of the 5,000

urban clusters and examine whether it also has an impact on the SUHI
intensity.

4.3 results

4.3.1 Influence of urban size and morphology on SUHI

We find that SUHI intensity ∆Ts is moderately related to urban area
A, see Appendix C, Table C.1 and Fig. C.1. There is roughly a linear
relationship between ∆Ts and logarithmic A, which is consistent with
previous studies (Zhang et al., 2012; Zhou et al., 2017; Li et al., 2017).
This implies that with the same amount of urban area increment, a
larger city tends to experience a smaller increase in SUHI intensity.
However, this does not mean it is preferable to have urban expansion
concentrated in large cities, as the cost from heat stress is a super-
linear function of temperature and population size (Estrada et al., 2017;
Krummenauer et al., 2019).

Regarding the urban morphology, the relationship between GUM

index D and SUHI intensity ∆Ts varies with the exponents α and β.
Specifically, when α = 0.2 and β = 2, D has a high correlation with
∆Ts, the Pearson correlation coefficient r reaches 0.64 (see Appendix C,
Table C.1 and Fig. C.1 for the correlation and the spreading range of D).
In Fig. 4.1(a-f) we show six example urban clusters with approximately
the same area and corresponding D values when α = 0.2 and β = 2
are used. It can be seen – when keeping the urban size constant –
compact cities generally tend to have a larger D value. However, it has
to be noted that this does not always hold as the impervious surface
density also has an influence on D. As D is a very complex indicator
which involves the spatial configuration of the urban cells as well as
their built-up density, without some preconditions (i.e., same size or
same impervious surface fraction), it is hard to get the conceptual
impression of whether one city is more compact than another through
comparison of their value D. Generally, cities with a rounder shape
and higher impervious density will have a larger D value. Fig. 4.1(g)
shows ∆Ts against D (with α = 0.2, β = 2) of some example cities
with approximately the same area (15 ± 0.06km2, for other areas sizes,
see Appendix C, Fig. C.2). As shown, ∆Ts is positively related to the D
value despite the fluctuation that might be attributed to the influence
of other factors, in particular background climate and water bodies.
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This implies that more compact and denser urban structures tend to
have higher SUHI intensities. Moreover, urban heat mitigation strategy
through optimizing urban morphology should carefully consider the
local scale context sensitivity of SUHI, as this neighbourhood effect
can impact the city scale thermal environment when aggregated.

Figure 4.1: Some example urban clusters with approximately the same size,
their boundary areas, as well as the corresponding D values and surface
urban heat island (SUHI) intensities. Panel (a-f) show the clusters of the
highlighted clusters in panel g, the size of these six clusters ranges from
14.94-15.06 km2. Panel (g) shows the SUHI intensity against D value of 41

urban clusters with approximately the same size, where the points in colours
represent the clusters in Panel (a-f). Panel (h) shows the spatial locations of
all 5,000 clusters with the clusters in panel (a-f) highlighted in colours.

Similar to the approach used by Li et al. (2020c), we regress ∆Ts

with A and D as:

∆Ts = a1 ln A + a2D + a3 with D =
1
N

N

∑
j

N

∑
i ̸=j

uα
i d−β

ij , (4.3)

where a1, a2, a3 are parameters. Fitting Eq. (4.3) using the data of all
5,000 cities with different combinations of α and β, we obtain varying
R2 (see Fig. 4.2).

We find α = 0.2, β = 2 leads to best results in terms of R2

(which is 0.40). These values differ from the ones found by Li et al.
(2020c) for canopy layer UHI intensity (α = 0.5, β = 1.5). Since the
canopy layer and surface UHI involve different processes, we cannot
directly compare them, but it is still worth thinking about possible
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implications for the conceptualization. A larger β value implies that
the neighbourhood influence of the LST decays faster and thus has a
shorter range than the canopy layer temperature. It is plausible that
air temperature has a smoother spatial gradient than the LST as the
former is more easily influenced by energy and airflow. This indicates
that at the local scale, SUHI is less context-sensitive than CUHI. For
SUHI, the influence from nearby urban cells decays very fast with
increasing distance. Thus, the neighbourhood influence can only reach
a rather small range.

Figure 4.2: The R2 of the ordinary least squares (OLS) fitting on Eq. (4.3) as a
function of α and β values. (a) 2D visualization, deeper red for higher R2. (b)
R2 profile when β = 2. (c) R2 profile when α = 0.2.

The coefficients from the fitting for Eq. (4.3) with α = 0.2, β = 2
are also shown in Table 4.1, all of them are above 95% significance
level. It is also worth mentioning that although D and ln A are not in-
dependent, a variance inflation factor of 2.21 suggests an insignificant
impact of the co-linearity between ln A and D on the reliability of the
regression, as usually a value > 10 is considered severe (Neter et al.,
1996).

To avoid ambiguity, the GUM index D refers to the one calculated
with α = 0.2, β = 2 for the remainder of this paper.

4.3.2 Influence of additional urban factors

Although we obtain a slightly higher R2 when using Eq. (4.3) as
regression with fewer parameters compared to the multivariate linear
regression in (Zhou et al., 2017), there is still a large part of the variance
of ∆Ts that is not explained by ln A and D (see Appendix C, Fig. C.5
and Fig. C.3). This is due to the influences of many other factors. As
reported in various studies, water bodies (Zhou et al., 2014; Yin et al.,
2018; Wang et al., 2019), vegetation (Zhou et al., 2011; Zhou et al., 2014;
Yu et al., 2018), and altitude (Mathew et al., 2017; Guo et al., 2020)
are also associated with SUHI intensity. This is further confirmed by
our results, as we can see in Fig. 4.3, there is a statistically significant
correlation between ∆Ts and urban-boundary difference in EVI (U∆Veg),
in water surface fraction (U∆Wat), and in elevation (U∆Ele). In general,
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Figure 4.3: ∆Ts against additional urban factors. (a) U∆Veg, urban-boundary
difference in EVI, (b) U∆Ele, urban-boundary difference in elevation, and (c)
U∆Wat, urban-boundary difference in water surface fraction. On the top of
each panel, Pearson Correlation (r) and p value are listed.

cities with less vegetation, lower altitude, and less water surface than
their surroundings, tend to experience stronger SUHI intensities. This
is consistent with previous studies on the contributions of green and
blue infrastructure to urban heat mitigation. Our results particularly
underpin the effect of urban greening on SUHI reduction. Including
these factors in Eq. (4.3) and using the regression

∆Ts = b1 ln A + b2D + b3U∆Wat + b4U∆Veg + b5U∆Ele + b6 , (4.4)

we obtain coefficients detailed in Table 4.1, where all coefficients are
above 99% significance level. Including U∆Wat, U∆Veg, and U∆Ele in the
regression model, Eq. (4.4) achieved a clear improvement of R2 and of
RMSE in contrast to Eq. (4.3).

4.3.3 Sensitivity of SUHI to regional climate context

Besides the intrinsic urban factors that denote the urban-boundary
differences due to land surface modification from urbanization, SUHI
has been reported to be associated also with various background
biophysical factors such as precipitation, temperature, humidity, wind
speed, latitude, and altitude, among which precipitation (Peng et al.,
2012; Zhao et al., 2014; Manoli et al., 2019), and temperature (Peng
et al., 2012; Zhou et al., 2016; Manoli et al., 2019) seem to be most
documented. Therefore, SUHI is also context-sensitive to regional
climate background.

This regional scale context sensitivity can be seen in Fig. 4.4.
When plotting ∆Ts against each of the 6 background factors, ∆Ts has
a clear correlation with BPre and with BTmax, which is consistent with
previous studies (Peng et al., 2012; Zhou et al., 2014). The positive
relationship between ∆Ts and Bveg can be explained by the tendency
of boundary areas with higher EVI to be generally cooler due to
stronger evapotranspiration. There is a positive correlation between
∆Ts and BLat, which is consistent with the finding in (Li et al., 2017).
However, beyond a certain latitude, ∆Ts seems to decrease when
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latitude increases. Our results do not show a statistically significant
correlation between ∆Ts and BEle or BWin, which might be due to the
correlation being too weak to stand out from noises caused by other
factors. The correlation between the residuals from the regression

Figure 4.4: SUHI intensity ∆Ts against background biophysical factors: (a)
summer precipitation BPre. (b) summer mean maximum temperature BTmx.
(c) latitude BLat. (d) summer EVI of boundary area Bveg. (e) elevation BEle. (f)
summer 10 m wind speed BWin. r and p on the top of each panel indicate
the Pearson correlation coefficient and the significant level of the plotted
variables.

of Eq. (4.4) and the six background biophysical factors (as shown
in Appendix C, Fig. C.4) indicate that the explanatory power of the
regression model could be improved by including these background
factors. In principle, one could just extend the regression by including
them in the multivariate linear model. However, those background
factors are likely to interact with urban factors and the interactions are
not necessarily linear (Li et al., 2019a; Manoli et al., 2019). Moreover, It
is plausible that the dependence of SUHI on climate context results
from the role of background climate in controlling how SUHI respond
to urban factors.

4.3.4 Geographically Weighted Regression

We are interested in exploring how the influence of urban factors on
the SUHI intensity varies regionally across the climate context. To this
end, we apply the GWR

∆Ti = θ0(P⃗i) +
5

∑
k

θk(P⃗i)xk,i + ϵi , (4.5)
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where θ0(P⃗i) is the intercept of the regression for the ith city, xk,i is the
kth independent variable as that used in Eq. (4.4) of the ith city.

Fitting Eq. (4.5) leads to a set of coefficients {θ0,i, θ1,i, ..., θ5,i, ϵi }
for each of the 5,000 cities, and thus we get 5,000 sets of coefficients.
We notice that Li et al. (2017) applied GWR on 5,000 urban clusters
across the conterminous US based on their geographical location and
then investigated the spatial variation of the relationship between
SUHI and urban area. In our work, the GWR is applied based on
a constructed 6-dimension biophysical space in order to study the
variation of the relationship between SUHI and various urban factors
against each background biophysical factor.

The statistics of GWR results can be found in Table 4.1. Com-
pared with the regression of Eq. (4.3) and Eq. (4.4), it shows apparent
improvement in R2 and RMSE. This indicates that the relationship
between SUHI and urban factors is not stationary across the climate
context. The density plot of residuals from all three regression models
are also compared in Appendix C, Fig. C.5.

Model Eq. (4.3) Eq. (4.4) GWR

coef. ln A 5.13 × 10−2
0.17 5.44 × 10−2(0.10)

coef. D 1.31 × 10−2 6.15 × 10−3 1.09 × 10−2(6.05 × 10−3)

coef. U∆Wat – -6.00 -4.90 (2.03)

coef. U∆Veg – -6.53 -4.27 (3.24)

coef. U∆Ele – −3.90 × 10−3 −5.69 × 10−3(2.21 × 10−3)

intercept -0.90 -0.79 -0.86 (0.21)

R2
0.40 0.55 0.74

RMSE 0.63 0.54 0.41

AICc 1161.56 395.67 -979.27

Table 4.1: Comparison of OLS fitting and GWR fitting. Numbers within the
bracket are the standard deviations of corresponding values. AICc (corrected
AIC) is calculated following Zhou et al. (2016).

We also plot the residuals of the GWR model against the back-
ground biophysical factors as in Fig. 4.5. Compared to Appendix C,
Fig. C.4 where residuals from the linear regression of Eq. (4.4) are
plotted against the background biophysical factors, we can clearly
see that the residuals from the GWR model are much less correlated
with background factors. This implies that the variation of coefficients
of the GWR model to a large extent resolves the sensitivity of SUHI
to regional climate context and the background factors that impact
SUHI by affecting the way that SUHI responds to urban factors. These
varying relationships also suggest that the cost-efficiency of differ-
ent urban heat mitigation strategies is highly dependent on climate
context. Special caution should be exercised when extending lessons
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learned from one city to another, especially when they share less in
common regarding background climate.

Figure 4.5: residuals from GWR model against background factors: (a) summer
precipitation BPre. (b) summer mean maximum temperature BTmx. (c) latitude
BLat. (d) summer EVI of boundary area Bveg. (e) elevation BEle. (f) summer
10 m wind speed BWin.

4.3.5 Non-stationary influences of urban factors governed by background
climates

The GWR model gives flexibility to the coefficients of the regression.
Thus, it takes the non-stationary associations of different factors with
SUHI into consideration. As this non-stationarity is also believed to
be modulated by climate context, we apply the GWR based on a
constructed climate space. In this way, the local regression is applied
on the clusters of cities with the most similar background climate,
so that the influence from background factors is minimized and the
statistical contribution of each urban factor can be examined regionally.

In Appendix C, Table C.2 we show the Pearson correlation coeffi-
cients between the GWR coefficients and the background biophysical
factors. Some background factors, such as precipitation BPre, air tem-
perature BTmx, latitude BLat, and vegetation condition BVeg, have a
clear correlation with GWR coefficients, where the highest correlation
coefficient reaches 0.84, indicating the strong influence of the back-
ground factors on the variation of the GWR coefficients. This is not
surprising as in previous studies it has been found that precipita-
tion and temperature show a strong control on daytime SUHI (Zhao
et al., 2014; Zhou et al., 2016; Manoli et al., 2019). We can also see
that some coefficients show a strong correlation with more than one
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Figure 4.6: Relationship between some coefficients from GWR and back-
ground climate factors. The dashed lines are a guide to the eye from LOWESS
(Locally Weighted Scatter plot Smoothing) regression.

background factor. However, without comprehensively studying the
underlying dynamics it is difficult to prioritize one background factor
over another.

We plot each GWR coefficient against its highest correlated back-
ground factor in Fig. 4.6. Despite some noise, all the GWR coefficients
except that of ln A generally maintain the sign while varying in quan-
tity. This implies that strategies for SUHI reduction through changing
one of the urban factors might show different efficiency under dif-
ferent biophysical contexts – the consequence seems to be consistent
qualitatively. Our results indicate that when other urban factors re-
main constant, urban sprawl tends to cause smaller SUHI increment
for cities in northern European, or more specifically, in colder, wetter,
windier and more vegetated areas (see Appendix C, Fig. C.6). Like-
wise, with similar preconditions, we can infer that a colder, wetter,
windier and more vegetated context would favour the contribution
of urban morphology D to SUHI, but weaken the contribution of
water surface share difference U∆Wat and EVI difference U∆Veg (see
Appendix C, Fig. C.7-C.9). However, a general trend on the variation
of coefficient of elevation difference U∆Ele is more complex and can
hardly be drawn qualitatively (Appendix C, Fig. C.10).
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4.3.6 Nonlinear model considering climate influence on SUHI

In principle, all the factors used in this study can be fed into a multiple
linear regression model of the form

∆Ts =c1 ln A + c2D + c3U∆Wat + c4U∆Veg + c5U∆Ele+

c6BPre + c7BTmx + c8BVeg + c9BEle + c10BLat + c11 ,
(4.6)

and with more variables, we could obtain an RMSE of 0.46, which is
better than that of fitting Eq. (4.4), but still larger than the RMSE from
the GWR model. As there are complex dynamic processes controlling
the SUHI, the factors, both from urban metrics and from background
biophysical factors, tend to interact with each other non-linearly. A
linear regression model certainly cannot capture the interacting effect
as it is just a combination of the linear approximation for each factor.

Figure 4.7: GWR coefficients as a function of background biophysical factors.
The solid line is the fitted curve as expressed on top of each panel.

Although regression with the GWR model has higher accuracy,
it does not necessarily mean the GWR model has better practical us-
ability. The parameter estimation of GWR comes from local fitting
with location-specific information, which limits the generality of the
model and a better understanding cannot be obtained without further
exploration. Instead, by examining the linkages between the variation
of the GWR coefficients of each urban factor and background factors,
the effect of interactions between the background factors and urban
factors can be quantitatively studied. This could help to formulate a
more general regression model to estimate the SUHI intensity. For
example, in Fig. 4.7(a), after having a closer look at the relationship
between the GWR coefficients of D and the latitude BLat, and consid-
ering that the total solar irradiance should be a trigonometric function
of the latitude, we could fit the coefficient of D with latitude BLat in
the form of e1 sin (x + e2) + e3. Similarly, for the coefficient of U∆Wat
and the coefficient of U∆Veg, we find they can be roughly expressed as
a linear function of BTmx. With this knowledge, we extend the global
linear regression of Eq. (4.4) by replacing the coefficients of D, U∆Wat
and U∆Veg with functions of the above-mentioned climate factors

∆Ts =d1 ln A + [d2 sin (BLat + d3) + d4] D+

d5BTmxU∆Wat + (d6BTmx + d7)U∆Veg + d8U∆Ele + d9,
(4.7)
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and we obtain an RMSE of 0.44 from fitting Eq. (4.7), which is better
than the multivariate linear fitting with all considered factors (Eq. (4.6))
and very close to the RMSE from the GWR model.

In Appendix C, Fig. C.5, we compare all the regression models
mentioned in this work in terms of their residuals, RMSE, and AICc
Zhou et al. (2016). It can be seen that the GWR model outperforms all
other models, which is followed by the nonlinear regression of Eq. (4.7).
Particularly, if we compare the regression of Eq. (4.7) with that of
Eq. (4.6), a smaller RMSE is achieved with fewer parameters when
some interactions between the factors are taken into account. This
shows that the GWR model can help to find a better SUHI prediction
model as it enables us to explore the interactions between some factors.
Thus, the model based on Eq. (4.7) is preferable as a tool for SUHI
prediction and may have even more implications for SUHI assessment
under the scenarios of future urbanization and climate change, as the
model uses both urban factors and background biophysical factors as
predictors for SUHI intensity.

It has to be noted that the nonlinear model in the form of Eq. (4.7)
may not be the optimal one as different background factors can be
introduced with functions taking different forms (see Supplementary
Fig. C.6-C.10). Rather, we illustrate here how the GWR model can help
to obtain a better model that captures the context sensitivity of SUHI
to regional background climate.

4.4 discussion

4.4.1 Urban morphology and SUHI

Taking a similar form as the one proposed in (Li et al., 2020c) which
was used to link CUHI intensity with urban morphology, the GUM

index in this work turns out to be also an effective indicator to capture
the relationship between SUHI intensity and urban morphology. Our
results agree with previous studies on the contribution both of 2D
urban compactness (Zhang et al., 2012; Zhou et al., 2017) and of the
urban density (Zhang et al., 2012; Li et al., 2018; Song et al., 2020)
to SUHI intensity. Compared with various metrics for quantifying
2D urban morphology in previous studies, our approach underlines
the importance of looking at cities from a 3D perspective, as 2D
urban morphology neglects the influences from urban development
within already urbanized areas (i.e., urban densification). The GUM
index combines the 2D geometry of the urban clusters and the spatial
heterogeneity of the impervious density inside, where the latter is
key to capturing the local scale context sensitivity of SUHI and could
affect the city scale SUHI when aggregated. It can serve as an effective
predictor for SUHI intensity assessment in view of urbanization which
usually involves both densification and sprawl.
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Also similar to (Li et al., 2020c), generally the GUM index indi-
cates that cities with higher compactness and density tend to have
stronger SUHI. However, specific implications regarding the influence
of urban morphology on SUHI intensity could only be interpreted
with some preconditions. For example, assuming the urban area A
remains unchanged and the impervious surface fraction u is homo-
geneous within the urban cluster, the GUM index D degrades to an
indicator that measures the compactness of the 2D urban morphology.
Under this circumstance, it implies that from a 2D perspective cities
with a rounder shape will have larger SUHI intensity.

In principle, the weight function used in calculating the GUM
index D should not be limited to a function of only urban impervious
surface fraction u. Other indices like urban canyon geometry, building
density, water surface fraction, and vegetation fraction can also modu-
late the LST at the local scale (Zhang et al., 2012; Mathew et al., 2017;
Song et al., 2020; Liu et al., 2021a). Therefore, a more complex indicator
that considers the heterogeneous configuration of and the interaction
between these indices within the urban cluster probably can carry
more prediction power on the resulted SUHI intensity. However, this
requires much more effort and a more comprehensive understanding
of the underlying biophysical processes (Manoli et al., 2019) through
which the considered factors influence the LST. Future work in this
direction is needed.

4.4.2 Drivers of SUHI

While it is easy to infer the statistical linkages between SUHI and
related factors, revealing the causality is a very different challenge,
especially given the fact that many natural and socioeconomic factors
found to be associated with SUHI are correlated among themselves.
Therefore, efforts to identify the driving factors as well as their corre-
sponding contribution to SUHI might lead to discrepant and some-
times contradicting conclusions. This is either due to the combination
of factors chosen or due to the studied samples that are not suitable
for factor separating.

For example, although the association between SUHI and the
urban area has been examined by studies at different scales (Peng
et al., 2012; Zhou et al., 2017; Li et al., 2017), community consensus
over the understanding of this statistical correlation still lacks. Peng
et al. (2012) find no obvious effect of urban size on the SUHI for
419 global big cities, but a significant positive correlation exists for
56 European cities, they surmise that the effect of urban size at the
global scale might be masked by the differences in background cli-
mate or economic development. Zhou et al. (2017) take a logarithmic
function to capture the relationship between SUHI and urban size,
meanwhile, they also illustrate the suitability of a log-logistic function
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as an alternative. Li et al. (2017) point out that although the log-linear
relationship between SUHI and urban area exists across the continen-
tal US with local variation attributed to contextual biome, the urban
area is only a useful surrogate of other factors determining SUHI
instead of being a major direct driving factor. This is plausible, espe-
cially considering the fact that urban area is strongly correlated with
population size, infrastructure size, energy consumption, and many
other city-level socioeconomic metrics via well-documented urban
scaling laws (Gudipudi et al., 2019).

For other factors, attempts to quantify their contribution as a driv-
ing factor of UHI face similar problems as when studying urban areas
as driving factors. Thus, without a general understanding, results
from one region carry little application capability for another region,
or at least, it is risky to extrapolate the implication from one study be-
yond space and time. Therefore, causal attribution requires more than
statistical analyses between SUHI and the potential driving factors. A
combination of a statistical with a proper analytical attribution model
(Li et al., 2019a; Chen et al., 2020) based on energy balance could
help to advance our understanding of the SUHI and thus guide the
inference of causality between SUHI and related factors. For instance,
in the work by Manoli et al. (2019), various urban characteristics and
aerodynamic properties are expressed using urban population size re-
sorting to the urban scaling law and a coarse-grained model has been
developed to foster the general understanding of SUHI and the model
has been shown capable of explaining the seasonal SUHI hysteresis
(Zhou et al., 2013; Manoli et al., 2020).

Partitioning the contribution from different factors to the SUHI is
beyond the scope of this work. With the observed results, we could
only draw the implication that in general, larger, more compact cities
with less water surface, less vegetation and lower than surrounding
area altitude tend to experience a stronger SUHI. When taking these
factors as predictors, the regression model works quite well. With the
help of the GWR model, we are also able to see how the influence of
each urban factor varies across background biophysical space. Gener-
ally, cities in Europe with colder, wetter, windier and more vegetated
backgrounds tend to experience stronger SUHI increment due to in-
creased compactness, but less SUHI reduction due to increased water
surface and vegetation. Moreover, with the help of the GWR model,
we are able to build a more general nonlinear model that can take
the context sensitivity of SUHI at both local and regional scales. This
model could serve as a useful quantitative tool for SUHI intensity
assessment with different urbanization scenarios and climate change
scenarios as input.
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4.4.3 Possible explanation of outliers

In addition to the factors considered in this study, many others like
building density, albedo, humidity, wind direction, and water prox-
imity also play a role in the formation of SUHI (Peng et al., 2012;
Oke et al., 2017), and we assume they can be neglected. Although the
urban-boundary differences in water surface fraction and in elevation
are considered in the regression model, they cannot fully capture the
influence of water proximity and topography on SUHI.

In Appendix C, text, by further analysing the cities with large
errors (|ϵ| > 1) of the GWR regression, we examine qualitatively
how water proximity affects the SUHI intensity of a city in some
cases. Specifically, the proximity to the nearby large water bodies and
particularly, whether the urban area is closer to the water body than the
boundary area, can strongly influence their difference in the received
cooling effect (see Fig. C.13). However, a proper indicator is in need to
quantitatively capture this difference. Based on fine resolution Landsat
LST image, Wang et al. (2019) proposed a gravitational water index that
measures the cooling effect from nearby water cells received by grid
cell i as GWIi = ∑

dij<R

Aj

dγ
ij

, where Aj is the water area in cell j. This index

considers the influence from other water surfaces within a certain
distance R for each grid cell and the influence decays as a power-
law function of the distance to the water surface. The gravitational
water index was found to be able to explain the LST variation at
different grid scales. Probably a similar index can be developed for
quantifying city-scale influence from nearby water surfaces, and it
may be an effective predictor of SUHI intensity. However, as two major
parameters of the gravitational water index, the exponent γ which
defines how stark the cooling effect decays and the distance threshold
R up to which the cooling effect can reach, are very likely to vary even
within one city (Du et al., 2016), not to mention for whole Europe.
Therefore, it is beyond our scope to verify such an index or its variant.

Moreover, we also observe some cities with a larger positive pre-
diction error which are situated in a valley like in Fig. C.12(b-c). This
might imply that topography also plays a role by influencing heat
dissipation. Although the GWR model already showed that cities
with larger elevation differences between urban and boundary ar-
eas tend to have stronger SUHI, the topography characteristics as in
Fig. C.12(b-c) may not be simply quantified by elevation differences.
Future efforts for proper indicators that consider the spatial pattern
of the topography can help with a better SUHI intensity estimation
model.
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4.5 conclusion

In this study, we investigate the summer daytime SUHI intensity
of the 5,000 largest urban clusters in Europe and demonstrate the
capability of the proposed GUM index as an effective predictor of
SUHI intensity. The GUM index is designed to capture the context
sensitivity of SUHI to the local neighbourhood effect and it quantifies
the urban structure from a 3D perspective. The regression model can
be improved when taking other urban factors like urban-boundary
differences in vegetation, water surface fraction and elevation into
account. The regression models show that generally larger, denser,
and more compact cities tend to experience stronger SUHI, whereas
cities with a larger urban-boundary difference in elevation, vegetation
cover and water surface cover tend to have lower SUHI intensity.

To explore the sensitivity of SUHI to regional climate context, we
then project all the cities in a 6-dimension climate space constructed
using six background biophysical factors. The GWR model is applied
based on the constructed climate space to explore how the coefficients
vary against different background biophysical factors. The GWR model
shows further considerable improvement in terms of R2 and RMSE
compared with multivariate linear models. By enabling the variation
of coefficients, the control from the background climate on the non-
stationary contribution of different urban factors to SUHI can be
captured by the GWR model. As the influence of different urban
factors on SUHI is context-sensitive to regional climate, extrapolating
knowledge from one area to another should be done with great caution,
especially between areas with disparate climates.

Investigating how the GWR coefficients vary against different
background biophysical factors, we demonstrate how to replace the
coefficients in the multivariate linear model with the background
factors and propose a nonlinear model that can capture some of the
interactions between the urban factors and the background biophysical
factors. It carries fewer parameters but outperforms multivariate linear
models. The nonlinear model considers the context sensitivity of SUHI
at both local and regional scales, it is a more general model that can
be used for SUHI assessment under different urbanization and climate
change scenarios.

Our results could provide useful information regarding urban
heat reduction strategies, especially considering the ongoing rapid
global urbanization and climate change. A better urban development
plan that takes the influence of urban morphology into account could
benefit the urban thermal environment. Moreover, measures for urban
heat mitigation should also consider the predicted climate change. As
the climate context of a city may change in the future, heat mitiga-
tion strategies that are effective for the short term might show little
efficiency in the long term.



5
S Y N T H E S I S

5.1 general achievements

The urban heat island (UHI) effect exposes urban dwellers to additional
heat stress (Chapman et al., 2017). A comprehensive understanding of
the UHI dynamics along with urbanization is of great importance for
efficient heat stress mitigation strategies towards sustainable urban
development. In this work, we present a quantitative analysis of how
urban intrinsic properties (e.g., urban size, density, morphology, etc.)
influence the most studied UHI types – CUHI and SUHI.

We first combine urban growth modelling and urban climate
simulation to separate the influence of urban intrinsic factors from that
of background climate, so as to focus on the impact of urbanization
on the UHI effect. The urban climate model (Schubert et al., 2012)
makes it possible to conduct controlled experiments to separate the
influences from different driving factors. We develop a stochastic
gravitational urban growth model that can generate 3D structures
varying in size, morphology, compactness, and density gradient. The
urban growth model provides detailed 3D structures that can be then
parameterized into different urban development scenarios tailored for
these experiments. We run several series of simulations with urban
structures varying in properties like size, density and morphology,
under the same forcing background climate. Based on the analysis
of how the CUHI intensity varies in response to the variation of the
considered urban factors, we propose a regression model to predict
the CUHI intensity as a function of urban size, urban gross building
volume, and a newly proposed indicator to capture the 3D urban
morphology. The regression model can accurately predict the CUHI
intensity under various urban development scenarios of Berlin area
when compared to the numerically simulated CUHI intensity. Our
regression model can be used to quantitatively assess the UHI intensity
for different urban development scenarios of real-world cities that are
heterogeneous in the configuration and composition regarding urban
density.

We find a similar regression model that also works for predicting
the SUHI intensity of 5000 European cities. By analysing the spa-
tial variation of the regression coefficients through geographically
weighted regression, we extend the model to a nonlinear one by inte-
grating some climate parameters, such as the average of daily maximal
temperature and latitude, to make it applicable across a range of back-
ground climates.

71
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5.2 answers to research questions

In this section, I will wrap up the knowledge gained through the
efforts addressing each of our research questions, and discuss the
respective implications.

5.2.1 Research Question 1 (RQ1)

The complex interactions among the myriads of contributing factors of
UHI pose a great challenge for UHI attributing study. The modelling
approach is the most viable and probably the only practicable solution
to properly separate the influence of a specific urban factor from
that of background climate and of other urban factors, so that the
contribution from the very factor can be rigorously analysed.

But there are two fundamental obstacles to overcome:

1. Choosing an appropriate urban climate model,

2. Designing and running controlled simulation experiments.

To meet the challenges faced by the specific goal of this work,
the urban climate model should properly resolve the 3D urban struc-
ture (during the parametrization process) with relatively high spatio-
temporal resolution and coverage but with acceptable computational
demand. Depending on the model chosen, efficiently controlled simu-
lation experiments have to be designed with prepared 3D urban struc-
tures. Apart from that, the place and time for the reference simulation
have to be carefully identified, taking into account the availability of
in situ records for validating the model.

Considering the factors above, we chose the CCLM/DCEP model.
The Double Canyon Effect Parametrization (DCEP) urban scheme takes
parameterized 3D urban structure data as inputs, and it has been
verified for its performance in some previous studies (Schubert et al.,
2012; Schubert et al., 2013; Schubert et al., 2014; Schubert, 2013). We
chose the Berlin area for the reference simulation and decided to take
the condition during a typical heatwave event of a week in 2003 as the
forcing climate.

Therefore, with the climate model, we build a laboratory environ-
ment within which we run urban climate simulations with different
urban structures under the same driving climate. In this way, the
influence of urban factors is isolated from that of background climate.
To further harness the advantages of numerical modelling for factor
separating, we feed the climate model with tailored urban canopy pa-
rameters (UCP) from generated 3D structures that resemble real-world
cities.

The most effort was devoted to preparing the UCP datasets tai-
lored for the controlled experiments. To this end, we updated a 2D
gravitational model (Rybski et al., 2013) and proposed a 3D variant of
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it. The stochastic urban growth model as described in Chapter. 2 has
only two parameters but with enough flexibility to generate 3D struc-
tures varying in size, geometry, compactness, and density gradient.
After comparing various characteristics, like fractal dimensions (Batty
et al., 1994) (obtained through box-counting, area-perimeter scaling,
area-population scaling, etc.) and radial gradient profile (Lemoy et al.,
2020) of land use share and of population density, with properties
of real cities in empirical studies, we found this model is capable of
reproducing these characteristics.

By using the 3D stochastic gravitational model, we create a huge
pool of 3D structures of more than 200000 3D structures that resemble
real-world cities. Out of this pool, we select several groups of structures
with the purpose of controlled experiments on urban size, density, and
morphology, and then parameterize them into the input of the urban
climate model. This makes it possible to further isolate the influence
from a specific urban factor (i.e., fixing size and density but varying
morphology). This innovative method enables us to systematically
study the relationship between the UHI intensity and some key urban
intrinsic properties through controlled experiments. It lays the basis on
which we can quantitatively analyse the relationship, and generalize
the obtained knowledge with a regression model.

5.2.2 Research Question 2 (RQ2)

Urban morphology has been shown to influence the SUHI effect in
some studies (Zhang et al., 2012; Zhou et al., 2013; Oke et al., 2017;
Zhou et al., 2017; Zhou et al., 2018; Liang et al., 2020; Liu et al., 2021b;
Liu et al., 2021a). Many metrics have been used, for example, the fractal
dimension and shape indices like area-perimeter ratio, elongation,
anisometry, eccentricity. However, We find they do not provide good
predicting indicators for the CUHI intensities. The reason might be that
these metrics are all 2D indicators and do not capture the information
on the 3rd dimension. This major challenge is to find a proper urban
morphology indicator, yet there is no shortcut around a great number
of tests.

We develop a hypotheses based on the reacting curve of CUHI
intensity to each specific factor and on knowledge from the literature
(Oke, 1981; Oke, 1982; Marciotto et al., 2010; Oke et al., 2017). After
having tested hundreds of combinations of the hypotheses, we pick
out the best one according to different statistical criteria. As a result,
some factors were not included to balance the fitting performance
and the model complexity. The hypothesis that each urban grid has a
warming effect on others and this effect decays as a power function
of the distance between them, leads to an efficient indicator that
relates 3D urban morphology to CUHI intensity (namely term D
in Eq. (3.4)). We name it Gravitational Urban Morphology (GUM)
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indicator, and it captures the internal spatial configuration of urban
density. Together with the urban size A and gross building volume S,
we build a regression model (∆Ta = c1 ln A + c2 ln S + c3D + c4, as in
Eq. (3.4)) that can reproduce the CUHI intensity.

The empirically obtained regression model provides us helpful
insights on how urban morphology, together with the urban size and
gross building volume, influences the CUHI intensity. Our results
(Fig. 3.2b) clearly show that urban size is not a primary determiner of
the CUHI intensity. Instead, it is the urban density that fundamentally
determines the CUHI intensity of a city (Schubert et al., 2013; Van
Hove et al., 2015; Yin et al., 2018; Li et al., 2019b; Straka et al., 2019).

Regarding the influence of urban morphology, our model shows
that sprawling development will lead to a better thermal environment
when considering the entire urban area (note the parameter c1 in
Eq. (3.4) carries a negative sign). However, without some preconditions,
it is difficult to clearly prefer one development design over another
before their detailed 3D urban structures are available, or at least some
factors are fixed. The main reason is that the factors in Eq. (3.4), in
particular building height and street width, interact and impose limits
on each other. Under the premise that the street canyon geometry is
homogeneous over all urban sites, the term D clearly indicates that
more compact urban clusters will lead to higher CUHI intensities.
In addition to that, when the urban area A and the gross building
volume S are controlled, some implications from a simplified situation
can be derived:

• with homogeneous canyon geometry (building width, street
width, building height throughout the city), cities with scat-
tered/slender shapes will have smaller CUHI intensity,

• with homogeneous building density, cities with taller build-
ings (i.e., taller buildings instead of fatter buildings) experience
smaller CUHI intensity,

• with homogeneous building density, less sealed surface (includ-
ing building footprints, street, and other impervious surfaces)
will lead to a smaller CUHI intensity.

The regression model as in Eq. (3.4), to some extent, crosses the
scale hierarchy in regard to urban heat stress mitigation. By aggre-
gating the complex interactions of vegetation fraction and canyon
geometry at the neighbourhood scale grid cell into an impact at the
city scale, the GUM proposed indicator captures the influence of inter-
nal urban density configuration on the UHI effect. It also clearly shows
that city-scale UHI intensity cannot simply be scaled up from that of
the neighbourhood scale, as nearby neighbourhoods also influence
each other.

Most importantly, our model can serve as an assessment tool (Mills
et al., 2010; Ng, 2012; Oke, 1984) that takes the 3D urban structures
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of different urban development scenarios as inputs and enables the
comparison between these scenarios in terms of heat stress mitigation
on the city scale.

5.2.3 Research Question 3 (RQ3)

To answer this question, we investigate the summer daytime SUHI
intensity of the 5,000 largest urban clusters in Europe. Due to the
data availability problem, we reduce the complexity of the GUM index
that worked well for predicting CUHI intensity (as in Eq. (3.4)) to a
simplified version (as D in Eq. (4.3)) – in a way that the urban imper-
vious surface fraction is treated like the 3rd dimension information.
The simplified GUM index demonstrates the capability of effectively
predicting the SUHI intensity. This agrees with previous studies on
the contribution of both 2D urban compactness (Zhang et al., 2012;
Zhou et al., 2017) and the urban density (Zhang et al., 2012; Li et
al., 2018; Song et al., 2020) to SUHI intensity. Our results underline
the importance of investigating cities from a 3D perspective, as 2D
urban morphology neglects the influences from urban development
within already urbanized areas (i.e., urban densification). Therefore,
our model can serve as an effective predictor for SUHI intensity as-
sessment in view of urbanization which usually involves both internal
densification and outward sprawl.

Generally, the model can be interpreted similarly as in the an-
swers to RQ2. Specifically, the GUM index indicates that cities with
higher compactness and density tend to have stronger SUHI. However,
specific implications regarding the influence of urban morphology on
SUHI intensity could only be interpreted with some preconditions.
For example, assuming the urban area A remains unchanged and
the impervious surface fraction u is homogeneous within the urban
cluster, the GUM index D degrades to an indicator that measures the
compactness of the 2D urban morphology. Under this circumstance, it
implies that from a 2D perspective cities with a rounder shape will
have larger SUHI intensity whilst a more stretched shape leads to less
surface warming (Zhou, 2017; Liu et al., 2021b).

To explore the influence of background climate factors, we then
project all the cities into a 6-dimensioned climate space constructed us-
ing six background biophysical factors. The Geographically Weighted
Regression (GWR) model is applied based on the constructed climate
space to explore how the coefficients vary against different background
climate factors. The GWR model shows further considerable improve-
ment in its predictive ability. Investigating how the GWR coefficients
vary against different background climate factors, we integrate some
of the factors by replacing the coefficients in the multivariate linear
model. This results in a nonlinear model that can capture some inter-
actions between the urban factors and the background climate factors.
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The nonlinear model, though with fewer parameters, outperforms mul-
tivariate linear models. It can be used for SUHI intensity assessment
under different urbanization scenarios and climate backgrounds.

Results from Chapter 4 could provide useful information regard-
ing urban heat reduction strategies, especially considering the ongoing
rapid global urbanization and climate change. A better urban develop-
ment plan that takes the influence of urban morphology into account
could benefit the urban thermal environment. Moreover, measures
for urban heat mitigation should also consider the predicted climate
change. For instance in Table (C.2) we can see with same urban com-
pactness (measured by GUM indicator D), cities in wetter area tend to
experience higher SUHI intensity. As the climate context of a city may
change in the future, heat mitigation strategies that are effective for the
short term might become less beneficial in the long run (Fitzpatrick
et al., 2019).

5.2.4 Summary of research findings

To sum up, this work investigates quantitatively how the UHI ef-
fect is influenced by several key city scale factors (e.g., urban size,
density, morphology, background climates). We further advance our
understanding of the formation of UHI by adding two major findings:

• The urban density and morphology are the major factors that
determine the UHI intensity. In contrast to previous studies that
link stronger UHI to larger city, we show that urban sprawl (the
increase of urban size A) can lead to a UHI reduction if the
urban density decreases.

• Compared with commonly used 2D shape indices, a quantitative
3D urban morphology indicator can better predict the intensity
of both CUHI and SUHI.

• With same building volume increment, increasing urban density
will lead to stronger UHI than expanding urban area.

• When city is constrained from sprawling outward, growing
vertically will lead to smaller CUHI intensity increment than
increasing building footprints.

Taking Berlin city as an example, our results show that doubling
the gross building volume of the city by expanding urban area will
lead to less than 0.1 ◦C increase in the CUHI intensity. However, by
increasing the building height, the CUHI intensity will be around 0.4
◦C stronger, whereas by increasing the fraction of building footprint,
the CUHI intensity can be 0.8 ◦C stronger.

Our Gravitational Urban Morphology (GUM) indicator provides a
more generalized quantitative urban morphology measurement. When
density is homogeneous throughout the city, our 3D Gravitational Ur-
ban Morphology (GUM) indicator degrades to a 2D indicator, showing
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that rounder and less stretched urban shape favours the urban heat
accumulation, which is consistent with previous studies (Zhang et al.,
2012; Zhou et al., 2017; Liu et al., 2021b).

Our work reiterates the essential role of urban density and mor-
phology in shaping the urban thermal environment (Oke, 1984; Zhang
et al., 2012; Zhou et al., 2017; Liu et al., 2021b). In addition, the results
further our knowledge by demonstrating the influence of urban 3D
morphology on the UHI effect. This underlines the importance of
inspecting cities as a whole from a 3D perspective. While urban 3D
morphology is an aggregated feature of small-scale urban elements,
the influence it has on the city-scale UHI intensity cannot simply
be scaled up from that of its neighbourhood-scale components. The
spatial composition and configuration of urban elements both need
to be captured when quantifying urban 3D morphology as nearby
neighbourhoods also cast influence on each other. Our models can
serve as useful UHI assessment tools for the quantitative comparison
of urban intervention/development scenarios.

5.3 constraints and considerations

The results of this study provide valuable insights into the UHI ef-
fect and advance our understanding of the relationship between the
UHI intensity and some major urban intrinsic properties. Despite
the achievements, we also acknowledge a number of constraints and
limitations of this study.

Firstly, some factors are simplified in the urban climate simula-
tions. For example, building geometry, materials and properties of
urban fabrics like walls and roofs, as well as street directions, are ex-
tremely heterogeneous in realistic cities, this cannot be resolved in our
mesoscale urban climate model due to the simplification during urban
canopy data parametrization. To date, in order to conduct sensitivity
tests on a certain factor and separate the factor of interest from others,
most local-scale 3D urban climate models reduce the complexity of
the urban structure to idealized street canyons composed of cubic
building elements (Martilli et al., 2002; Marciotto et al., 2010; Schubert
et al., 2012; Theeuwes et al., 2014; Oke et al., 2017; Zhou et al., 2018).
As the simple models may perform as well as the complex ones Best
et al., 2015; Zhou, 2017, our choice of the model makes trade-offs
between the computational requirement and the scale of our study.
Simplification of these factors is necessary for running the model at
the city scale and for isolating the factors we are interested in.

Secondly, also for simplification and to better separate the influ-
ences of the various factors, we do not consider anthropogenic heat in
the simulations. The influence of anthropogenic heat release on noc-
turnal UHI effect should be relatively small during summer according
to studies on other temperate cities (Taha, 1997; Runnalls et al., 2000;
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Shahmohamadi et al., 2011; Bohnenstengel et al., 2014; Oke et al., 2017).
Moreover, during the night, anthropogenic heat release from cooling
should be negligible as the majority of households in Berlin do not
use air conditioning so far. However, for cities or scenarios where cool-
ing equipment is widely operated during hot summer, UHI intensity
can be increased by more than 1

◦C (Li et al., 2014; Salamanca et al.,
2014; De Munck et al., 2013). A model that integrates the influence of
anthropogenic heat will be helpful for more accurate UHI prediction
for cities where cooling devices are widely used.

In addition, background climate (Runnalls et al., 2000; Oke, 1987;
Oke et al., 2017) plays an important role in determining the UHI
intensity, which means extrapolating knowledge from one area to
another should be done with great caution, especially between areas
with distinct climates. To apply our regression model (as Eq. (3.4)) to
another city for the CUHI assessment, one would need to derive the
coefficients of the regression again. This hampers the fast application
of our CUHI predicting model, especially for those without exper-
tise in running numerical climate simulations. As for our regression
model for SUHI, the uncertainty of the predicted SUHI intensities
can be high if the background climate differs from that of the studied
cities. Therefore, a bigger sample set from a large range of climate
backgrounds will improve the generality of the model.

5.4 future work

Looking ahead, there are several directions in which this research
could be extended. One possibility is to explore the linkage between
the Gravitational Urban Morphology (GUM) indicator and some more
intuitive morphology indicators, to gain a more intuitive understand-
ing of this quantitative indicator. Another possibility is to extend our
UHI predicting model into a more generalized one with the back-
ground climate more comprehensively integrated.

5.4.1 A better understanding of the GUM indicator

Despite the capability of our proposed models in UHI intensity predic-
tion, the complex form of the Gravitational Urban Morphology (GUM)
indicator D makes it rather difficult to draw an intuitive expression
from the number, especially considering the great heterogeneity that
cities have in their density. Future work that links the quantity D to
factors like urban fractality (Batty et al., 1994; Batty et al., 1989; Zhou
et al., 2017), urban centrality/poly-centrism (Stone et al., 2010; Batty,
2013), anisometry (Zhou et al., 2017), and urban gradient profile in
built density will further our understanding of the influence of the
urban form on the UHI effect.
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Besides, instead of being limited to a function of only urban im-
pervious surface fraction u, the weight function used in calculating the
GUM index D for predicting SUHI may work better in different forms.
Many other street canyon morphology indices like aspect ratio, build-
ing density, water surface fraction, and vegetation fraction can also
modulate the SUHI effect at the local scale (Zhang et al., 2012; Mathew
et al., 2017; Song et al., 2020; Liu et al., 2021a). This is rather challeng-
ing due to the availability of fine-scale 3D building structure datasets.
Things are changing recently as some datasets with global coverage
are becoming available with the help of machine learning techniques
(Li et al., 2020a; Biljecki et al., 2022; Li et al., 2022). Future efforts in
this regard would be helpful for broadening our understanding.

5.4.2 Generalized UHI predicting model integrating climate factor

Urbanization and climate change are widely recognized as two of
the most pressing challenges for sustainable development (Baer et
al., 2016; Zhou, 2017; UNEP, 2021). Considering that the two are
closely intertwined, a holistic and integrated approach is essential
to address them (UN-Habitat, 2016; Oke et al., 2017; UNEP et al.,
2021; UNEP, 2021). A more generalized UHI predicting model that
integrates climate factors, when combine with models that predict
future urban growth (Glockmann et al., 2022; Rybski et al., 2021b), can
support long term urban heat mitigation decisions.

The gap of our CUHI predicting models in their application across
climate backgrounds (as discussed in section 5.3) suggests the ex-
tension of the model with the background climate integrated. This
challenge asks for further comprehensive and quantitative studies on
how the background climate influence plays a role in controlling the
UHI effect jointly with other factors.

The benefits brought by a more generalized UHI predicting model
would be twofold:

• Under the current climate, it provides a readily usable UHI
assessment tool for fast applications on cities with various back-
ground climates.

• For future scenarios, it enables UHI assessment in view of ur-
banization under the context of climate change.

Potentially, the SUHI analysis in this work can be extended to a
global scale, so that the influence from a much wider range of climate
backgrounds can be studied. This requires high-resolution 3D urban
structure and background climate data with global coverage (Biljecki
et al., 2022; Li et al., 2022; Zhou et al., 2022; Zhang et al., 2022a; Zhang
et al., 2022b; Zhao et al., 2022), which are increasingly available in
the big earth data era. Regarding CUHI assessment, the simulation
experiment in our work can be repeatedly driven by different weather
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conditions, and ideally, with extended temporal coverage. This de-
mands huge computational resources, carefully designed experiments
with properly selected representative driving data could help to avoid
unnecessary simulations.
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A P P E N D I X C H A P T E R 2

a.1 supplementary notes for chapter 2

Here we want to complement the numerical analysis on our stochastic
urban growth model proposed in Chapter 2, by economics arguments
employing travel costs as well as housing rent determined by supply
and demand.

a.1.1 Economics Reasoning of the population gradient

We want to motivate Eq. (2.4), i.e. propose a setting under which the
density gradient goes as

D(r) ∼ r−α (A.1)

whereas α ≈ 2. The population density is given by population per
area. The area of concentric rings is proportional to the distance from
the center, i.e. ∼ 2πr. Then D(r) = S(r)

A(r) ∼ S(r)
r and the population

follows S(r) ∼ r−α+1. If we normalize to the total population, then we
have a probability density

p(r) ∼ r−α+1 . (A.2)

We begin with the common approach according to which the
commodity Z is given by the wages W minus the housing rent R and
the transportation costs T, see e.g. (Barthelemy, 2016, Ch. 3.3), i.e.

Z = W − R − T , (A.3)

which is maximized by minimizing expenses

max(Z) = W − min(R + T) . (A.4)

In the mono-centric case it is common sense that the rents decrease
further away from the city center but the transportation costs increase.
We assume power-law relations

R = a r−ρ (A.5)

T = b rτ , (A.6)

with the distance r from the center and ρ, τ > 0. The power-law rent
profile is motivated below, for the power-law transportation costs see
e.g. (Fabinger, 2012, Sec. 1.4.3) and references therein. Delloye et al.
(2018) use linear transportation costs (τ = 1).
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Figure A.1: Illustration of the sum of housing rent and transportation costs
as well as the influence of the weight a. The values ρ = 2, τ = 3, and b = 1
have been used exemplary. With decreasing a the minimum moves towards
the center.

In order to find the optimal distance to the center, the derivative
of R + T needs to be zero, i.e.

ropt =
( ρa

τb

)1/(ρ+τ)
. (A.7)

By summing R with T we are essentially comparing apples with
oranges. However, the prefactors a and b determine the weights they
have relative to each other. Certainly, for wealthy people the rent
becomes less of an issue and the weight should be smaller while
transportation is similar for everyone [people spend 20 % to 30 % of
their time commuting (Kahneman et al., 2006)]. We assume a ∼ W−1,
b = const (see Fig. A.1) and obtain

ropt ∼ W−1/(ρ+τ) . (A.8)

Wealthier people can afford living close to the city center while low
income population is pushed outward.

Further, we take the power-law income or wealth distribution

p(W) ∼ W−ζ (A.9)

with ζ ≈ 2.5 [ζUSA ≃ 2.4 (Levy et al., 1997; Brzezinski, 2014)]. The
exponent ζ is also related to the Gini coefficient via ζ = 1

2G + 3
2

(Pfähler, 1985). Typical values are between G = 0.65 and G = 0.80
corresponding to ζ ≃ 2.27 and ζ ≃ 2.13, respectively.

If two quantities A and B follow power-law distributions with pdfs
p(A) ∼ A−ζA and p(B) ∼ B−ζB , then the transformation B ∼ Aβ with
β = (ζA − 1)/(ζB − 1) translates one into the other (Gomez-Lievano
et al., 2012). Comparison leads to ζA = ζ, ζB = α − 1, and

−1
ρ + τ

=
ζ − 1
α − 2

. (A.10)
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The lhs is negative and since ζ ≫ 1 the rhs can only become negative
if α < 2. At α = 2 a transition occurs and for α > 2 the mono-centric
assumption does not hold. This is consistent with the transition at
γ = 2.5 in Eq. (2.8). From α = 2 − (ζ − 1)(ρ + τ) it can be seen that
only small values of τ and ρ lead to α close to 2.

As a critical remark, we need to add that it is not a surprise
to obtain a power-law (or a relation between exponents) when the
derivation itself is based on power-laws. However, in economics power-
laws are theoretically understood and empirically established (Gabaix,
2016).

a.1.2 Housing rent

Here we want to motivate Eq. (A.5) and the exponent ρ. The housing
rent is determined by supply and demand. We postulate that the
number of people willing to pay rent larger than R decreases as a
power-law with R

PD(X ≥ R) ≃ R−ϵD . (A.11)

Analogously, the number of people willing to sell property or rent it
out for a price lower than R decreases as a power-law with R

PS(X ≤ R) ≃ 1 − R−ϵS . (A.12)

The market price is then given by the price where both curves cross
each other

aDPD(X ≥ R×) = aSPS(X ≤ R×) (A.13)

aDR−ϵD
× + aSR−ϵS

× = aS , (A.14)

where the factors aD and aS are required to adjust for the amount
and convert the cdfs into cumulative frequency distributions. Increas-
ing availability should decrease the price and increasing demand
should increase the price. We assume aD ∼ 1/r and aS ∼ r leading
to 1/r R−ϵD

× + rR−ϵS
× ∼ r. For large r the second term dominates, im-

plying R× = const. Thus, large supply leads to a (low) price that
is independent of the location. For small r the first term dominates,
leading to

R× ∼ r−2/ϵD , (A.15)

i.e. ρ = 2/ϵD. The price is dominated by the demand.

Linearity should work if we consider the area. In case of liv-
ing space/apartments another exponent might be necessary to take
changes of density into account, i.e. aD ∼ r−δD and aS ∼ rδS . With the
same reasoning as before, we then obtain R× ∼ r−(δS+δD)/ϵD . In particu-
lar, if we consider Eq. (A.2) and δD = δS = α− 1, then ρ = (2α− 2)/ϵD.
For α ≈ 2 we have ρ ≈ 2/ϵD.
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A P P E N D I X C H A P T E R 3

b.1 supplementary notes for chapter 3

b.1.1 Introduction of street canyon width and aspect ratio

If we include Bi, Hi, λi as building footprint area, average building
height, and street canyon aspect ratio, respectively, for grid cell i
(Appendix B.3, Table B.3), then they are related by building volume
wi = Bi Hi, street canyon aspect ratio λi = Hi/Yi, and we can further
rewrite D in Eq. (3.4) as:

D =
1
N

N

∑
j

N

∑
i ̸=j

( fuiBiλi)
1/2d−3/2

ij , (B.1)

Fitting Eq. (B.1) leads to identical to those of Eq. (3.4). This implies
that for a specific city with preset area A and gross building volume
S, larger sealed surface fraction, building footprint area and street
canyon aspect ratio tend to intensify the canopy layer urban heat
island (CUHI) effect.

b.2 supplementary tables for chapter 3

Lind. Alex. Tegel Temp. Dahlem Schön.

ME -0.19 -0.51 -0.77 0.42 0.77 0.58

MAE 0.77 0.74 1.04 1.02 1.45 0.81

RMSE 0.94 0.93 1.26 1.27 1.85 1.07

Table B.1: 2m air temperature [K] statistics of the reference run (see "Methods"
section of Chapter 3) against observational data.
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notation meaning unit

S city gross building volume km3

A urban area km2

∆Ta canopy layer urban heat island intensity K

wi building volume of grid i km3

dij distance between grid i, j km

N number of urban grid cells -

vi value of cell i in gravitational model output -

fu urban surface fraction -

fb share of building plan area in urban surface -

Wb building width km ∗

Y street canyon width km ∗

v̄ average building height storey

Agrd area of simulation grid cell km2

Hf height per floor, 0.003km ∗ -

γ parameter in the gravitational model -

Bi building plan area in grid cell i km2

Hi average building height in grid cell i km ∗

λi urban street canyon aspect ratio in grid cell i -

Table B.3: Notation table. ∗) We use km instead of m because otherwise the
parameters of Eq. (3.4) would become very small.

Exp. series gravitational clusters spatial patterns canyon width tests

UCP data-set set 1, 2, 3, 4 set 5 set 6

number of simulation 50 42 50

description Fig. B.1 Fig. B.3
5 from set 1,

5 from set 3

urban fraction fu 0 - 1 0.53 0 - 1

average building height [m] 3 - 90 8.63 3 - 90

street canyon Y [m] 20 15 10,15,20,25,30

building width Wb [m] 15 20 Wb/Y = 15/20

regression applied Eq. (3.2), (3.4), (B.1) Eq. (3.3) Eq. (3.4), (B.1)

Table B.4: Information about urban canopy parameters (UCP) parameters
taken in different simulations.
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b.3 supplementary figures for chapter 3

Examples from set 2

Examples from set 3

Examples from set 1
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Figure B.1: Examples of analysed urban clusters. From the large number of
previously generated urban clusters (Li et al., 2021a), 50 have been selected
which are illustrated here. The clusters are organized into sets according to
the criteria they have been chosen by, i.e. same area (set 1, blue), same gross
building volume (set 2, green), same growth sequence (set 3, violet), and
similar size and similar gross building volume (set 4, orange), see details
in the "Methods" section of Chapter 3. The surrounding panels display 4

examples each and the colour scale indicates the urban fraction in each urban
site.
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Figure B.2: Parameters from Eq. (3.2) depending on the canyon width. In
order to assess the influence of the canyon width on the pre-factors in Eq. (3.2)
we run the urban climate simulations for 10 generated urban clusters (see
Fig. B.1 and "Methods" section of Chapter 3) and repeat for different canyon
widths between 10 m and 30 m. The panels show box plots of the parameters
vs. the canyon width, i.e. for a1 in a, for a2 in b, and for a3 in c. The spreading
is obtained from bootstrapping (200 repetitions) and the red dots represent
the estimated parameters without bootstrapping.
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p 1 p 2 p 3

p 4 p 5 p 6

p 7 p 8 p 9

p 10

Figure B.3: Examples of analysed spatial patterns in set 5. Different sizes of
these patterns were used for the urban climate simulations. Details on the
patterns are provided in Table B.2. The building volume in each pixel is set
constant throughout the patterns. Pattern 2 resembles the Ville Contempo-
raine as envisioned by Le Corbusier; pattern 9 resembles the Apple Park in
Cupertino, California.
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Figure B.4: Estimation of exponent δ in Eq. (3.3). For pattern 10 (see Extended
Data Fig. B.3) with variable spacing and constant size we plot the UHI
intensity ∆Ta as a function of Dwi=const. =

1
N ∑ ∑N,N

i,j d−δ
i,j for δ = 1 (panel a),

δ = 1.5 (panel b), and δ = 2 (panel c). For δ = 1.5 we find an approximately
linear relation implying that D linearly relates to the canopy layer urban heat
island intensity given the constant number of urban sites and only capturing
the spatial organization.
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Figure B.5: Visualization of some urban canopy parameters (UCP) datasets
from different urbanization scenarios based on the UCP dataset of Berlin.
The first column shows the average building height map, the second and
third show the urban surface fraction maps, respectively. Panels in the first
row are from real UCP dataset of Berlin used in the reference run, whereas
Panels in other rows are from UCP datasets where gross building volume is
increased by -50%, +25%, and +100%.
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is the administrative boundary of Berlin city.
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width tests (see "Methods" section of Chapter 3). b, Fitting for both canyon
width tests and simulations with clusters in Extended Data Fig. B.1.
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A P P E N D I X C H A P T E R 4

c.1 supplementary notes for chapter 4

To examine influence of water proximity on canopy layer urban heat
island (CUHI), we plot the spatial distribution of the residuals from
the Geographically Weighted Regression (GWR) model as in Fig. C.12.
Most of the cities with large errors (|ϵ| > 1) of the GWR regression
are located at the coast of the sea or a big lake. This might be due
to the urban-boundary difference in received cooling effect of the
breeze from large water bodies. This difference could be influenced by
wind direction and the proximity to water bodies. The influence from
wind speed and urban-boundary difference in water surface share
can be captured by the GWR model, so we assume the cooling effect
from nearby water bodies not considered in the regression model can
explain large predicting errors, as the cooling effect of water bodies
has been found to decay along the distance (Su et al., 2012; Du et al.,
2016; Wang et al., 2019).

As an attempt to quantify the difference in water body proximity
between urban area and boundary area, for each city we calculate the
ratio of neighbouring water cells for both urban area and boundary
area (namely the number of water cells adjacent to urban cells divided
by the number of urban cells, and the number of water cells adjacent
to boundary area cells divided by the number of boundary area cells,
respectively) and take the difference in the ratios as an indicator. From
the supplementary Fig. C.13 we can see that the majority of the cities
with large negative prediction errors (∆Ts − ∆Ts,predicted < −1◦C) have
a larger ratio of neighbouring water cells for the boundary area than
for the urban area and a majority of the cities with large positive
prediction errors (∆Ts − ∆Ts,predicted > 1◦C) have a larger ratio of
neighbouring water cells of the urban area than of the boundary
area. However, Fig. C.13 also shows that a large difference in ratio of
neighbouring water cells does not necessarily lead to a large prediction
error. This means that a better indicator is needed to quantify the
influence of water proximity on SUHI.

We explore the influence of water bodies rather qualitatively. In
Fig. C.12(d-i) we show the maps of some example urban clusters as
well as their boundary areas. In the panels (d) and (e) the GWR pre-
diction error is larger than 1

◦C, which means the SUHI intensity is
larger than the GWR model predicted. It might be due to their bound-
ary areas which are relatively close to water compared to the urban
clusters. For example, in panels (f)-(i) the predicted SUHI intensity
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is much larger than observed, as the GWR prediction error is always
smaller than -1◦C. A possible reason is that urban clusters are much
closer to water bodies than the corresponding boundary area, thus the
urban clusters are exposed to more cooling. We find that similar to the
examples in Fig. C.12(f)-(i), most of the cities spreading in a strip shape
along the coast of the sea or a lake, tend to have a larger negative
prediction error. Whereas only a few exceptions exist, which might
be because the influence from topography or the summer prevailing
wind direction that does not favour the penetration of cool breeze into
urban area.

c.2 supplementary tables for chapter 4
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BPre BTmx BLat BVeg BEle BWin

Intercept -0.61 0.64 -0.59 -0.71 0.43 -0.21

Coef. D 0.74 -0.84 0.78 0.80 -0.33 0.32

Coef. ln A -0.48 0.84 -0.74 -0.57 0.41 -0.64

Coef. U∆Wat 0.49 -0.66 0.66 0.49 -0.04 0.15

Coef. U∆Veg 0.76 -0.83 0.77 0.80 -0.31 0.29

Coef. U∆Ele -0.56 0.49 -0.53 -0.54 -0.09 0.02

Table C.2: Pearson correlation coefficient between the Geographically
Weighted Regression (GWR) coefficients and the background biophysical
factors.

c.3 supplementary figures for chapter 4

Figure C.1: Pearson correlation coefficient between (a) ∆Ts and ln A, (b) ∆Ts
and D.

Figure C.2: Pearson correlation coefficient between the ∆Ts and D of the
sample set selected by a sliding window, plotted against the average area A
of the sample set. The sample sets are selected using a window size (number
of cities within each sample set) of 50 (panel a) and 200 (panel b) according
to their ranking in area, so that cities within one sample set have a similar
value of area A, the smaller the window size, the closer the area values.
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Figure C.3: Residuals from regression of Eq. (4.3) against U∆Wat, U∆Veg and
U∆Ele.

Figure C.4: Residuals from fitting of Eq. (4.4) against background biophysical
factors. (a) summer precipitation BPre. (b) summer mean maximum tem-
perature BTmx. (c) latitude BLat. (d) summer EVI of boundary area Bveg. (e)
elevation BEle. (f) summer 10 m wind speed BWin.
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Figure C.5: Comparison of residuals from fitting of Eq. (4.3), Eq. (4.4), GWR,
Eq. (4.6), Eq. (4.7).

Figure C.6: Coefficient of ln A from Geographically Weighted Regression
(GWR) against the background biophysical factors.
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Figure C.7: Coefficient of D from GWR against the background biophysical
factors.

Figure C.8: Coefficient of U∆Wat from GWR against the background biophys-
ical factors.
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Figure C.9: Coefficient of U∆Veg from GWR against the background biophysi-
cal factors.

Figure C.10: Coefficient of U∆Ele from GWR against the background biophys-
ical factors.
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Figure C.11: Intercept from GWR against the background biophysical factors.

Figure C.12: Examples with large residuals (observed ∆Ts - model predicted
∆Ts) of the GWR model. (a) the spatial distribution of the residuals overlap-
ping on the elevation map. (b-e) examples of cities with very large positive
residual (ϵ). (f-i) examples of cities with very large negative residual.
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Figure C.13: ∆Ts plotted against the water-cell-neighbour ratio difference
between urban area and boundary area. The water-cell-neighbour ratio is
calculated as number of neighbouring water body cells of a cluster divided
by the number of cells of this area. For each city the water-cell-neighbour
ratio is calculated for the urban cluster and its boundary area respectively,
and then the difference between them is calculated (ratio of urban cluster
minus ratio of boundary area). Points highlighted in red are the ones with
residual from GWR larger than 1

◦C, which means they have much larger
∆Ts than the GWR model predicted. While the ones in green have residual
smaller than -1◦C.



B I B L I O G R A P H Y

Ali-Toudert, F. and H. Mayer (2006). “Numerical study on the effects
of aspect ratio and orientation of an urban street canyon on outdoor
thermal comfort in hot and dry climate.” Build. Environ. 41.2, pp. 94–
108. doi: 10.1016/j.buildenv.2005.01.013 (cit. on p. 43).

Argüeso, D. et al. (2014). “Temperature response to future urbanization
and climate change.” Clim. Dyn. 42.7-8, pp. 2183–2199. doi: 10.1007/
s00382-013-1789-6 (cit. on pp. 11, 32).

Baer, H. and M. Singer (2016). Global warming and the political ecology
of health: Emerging crises and systemic solutions. Routledge. doi: 10.
4324/9781315428017 (cit. on p. 79).

Barthelemy, M. (2016). The Structure and Dynamics of Cities – Urban
Data Analysis and Theoretical Modeling. Cambridge, UK: Cambridge
University Press. isbn: 9781316271377. doi: 10.1017/9781316271377
(cit. on pp. 20, 81).

Batten, D. F. and D. E. Boyce (1987). “Spatial interaction, transportation,
and interregional commodity flow models.” Handbook of regional and
urban economics 1, pp. 357–406. doi: 10.1016/S1574-0080(00)80012-
7 (cit. on p. 29).

Batty, M. (2013). The New Science of Cities. Cambridge, MA: MIT Press.
isbn: 978-0262019521 (cit. on pp. 20, 29, 46, 78, 86).

Batty, M. and P. Ferguson (2011). “Defining city size.” Environ. Plan. B
38.5, pp. 753–756. doi: 10.1068/b3805ed (cit. on pp. 27, 28).

Batty, M. and P. Longley (1994). Fractal Cities: A Geometry of Form and
Function. San Diego, CA and London: Academic Press Inc. isbn: 978-
0124555709. url: http://www.fractalcities.org/ (cit. on pp. 24,
25, 29, 41, 46, 73, 78, 86).

Batty, M., P. Longley, and S. Fotheringham (1989). “Urban growth and
form: scaling, fractal geometry, and diffusion-limited aggregation.”
Environ. Plan. A 21.11, pp. 1447–1472. doi: 10.1068/a211447 (cit. on
pp. 29, 46, 78, 86).

Batty, M. and K. Sik Kim (1992). “Form follows function: reformulating
urban population density functions.” Urban Stud. 29.7, pp. 1043–
1069. doi: 10.1080/00420989220081041 (cit. on p. 28).

Benenson, I. and P. M. Torrens (2004). Geosimulation: Automata-based
modeling of urban phenomena. West Sussex, England: John Wiley &
Sons Ltd. isbn: 9780470843499 (cit. on p. 28).

Best, M. and C. Grimmond (2015). “Key conclusions of the first inter-
national urban land surface model comparison project.” Bull. Amer.
Meteorol. Soc. 96.5, pp. 805–819. doi: 10.1175/BAMS-D-14-00122.1
(cit. on p. 77).

103

https://doi.org/10.1016/j.buildenv.2005.01.013
https://doi.org/10.1007/s00382-013-1789-6
https://doi.org/10.1007/s00382-013-1789-6
https://doi.org/10.4324/9781315428017
https://doi.org/10.4324/9781315428017
https://doi.org/10.1017/9781316271377
https://doi.org/10.1016/S1574-0080(00)80012-7
https://doi.org/10.1016/S1574-0080(00)80012-7
https://doi.org/10.1068/b3805ed
http://www.fractalcities.org/
https://doi.org/10.1068/a211447
https://doi.org/10.1080/00420989220081041
https://doi.org/10.1175/BAMS-D-14-00122.1


104 bibliography

Bettencourt, L. M. A. and J. Lobo (2016). “Urban scaling in Europe.” J.
Roy. Soc. Interface 13.116, p. 20160005. doi: 10.1098/rsif.2016.0005
(cit. on p. 28).

Biljecki, F. et al. (2016). “Population estimation using a 3D city model:
A multi-scale country-wide study in the Netherlands.” PLoS One
11.6, e0156808. doi: 10.1371/journal.pone.0156808 (cit. on p. 30).

Biljecki, F. and Y. S. Chow (2022). “Global Building Morphology Indi-
cators.” Comput. Environ. Urban Syst. 95, p. 101809. doi: 10.1016/j.
compenvurbsys.2022.101809 (cit. on p. 79).

Bohnenstengel, S. et al. (2014). “Impact of anthropogenic heat emis-
sions on London’s temperatures.” Q. J. R. Meteorol. Soc. 140.679,
pp. 687–698. doi: 10.1002/qj.2144 (cit. on pp. 47, 78).

Brinckmann Sven; Bissolli, P. (2016). DecReg/MiKlip gridded data of
near-surface temperature (2m) and wind speed (10m) in Europe for the
period 2001-2010.Version v002. doi: 10.5676/DWD_CDC/DECREG0110v2
(cit. on p. 54).

Brinckmann, S., S. Krähenmann, and P. Bissolli (2016). “High-resolution
daily gridded data sets of air temperature and wind speed for Eu-
rope.” Earth Syst. Sci. Data 8.2, pp. 491–516. doi: 10.5194/essd-8-
491-2016 (cit. on p. 54).

Brzezinski, M. (2014). “Do wealth distributions follow power laws?
Evidence from ‘rich lists’.” Phys. A 406, pp. 155–162. doi: 10.1016/
j.physa.2014.03.052 (cit. on p. 82).

Bunde, A. and S. Havlin (1995). “Fractals in Science.” Ed. by A. Bunde
and S. Havlin. Berlin: Springer-Verlag. Chap. 1, pp. 1–25. isbn: 3-540-
56221-4. url: https://books.google.de/books?id=dh7rCAAAQBAJ
(cit. on pp. 25, 26).

Büttner, G. et al. (2012). Implementation and achievements of CLC2006.
Tech. Rep. Barcelona: European Topic Centre Land Use and Spatial
Information, Eur. Environ. Agency. url: https://land.copernicus.
eu/user-corner/technical-library/implementation-and-achievements-

of-clc2006 (cit. on p. 54).
Buyantuyev, A. and J. Wu (2010). “Urban heat islands and landscape

heterogeneity: linking spatiotemporal variations in surface tempera-
tures to land-cover and socioeconomic patterns.” Landsc. Ecol. 25.1,
pp. 17–33. doi: 10.1007/s10980-009-9402-4 (cit. on p. 51).

Cao, C. et al. (2016). “Urban heat islands in China enhanced by haze
pollution.” Nat. Commun. 7, p. 12509. doi: 10.1038/ncomms12509.

Cao, Q. et al. (2018). “Impacts of future urban expansion on summer
climate and heat-related human health in eastern China.” Environ.
Int. 112, pp. 134–146. doi: 10.1016/j.envint.2017.12.027 (cit. on
pp. 4, 11, 32).

Carrothers, G. A. P. (1956). “An historical review of the gravity and
potential concepts of human interaction.” J. Am. I. Planners 22.2,
pp. 94–102. url: http://www.jstor.org/stable/2785468 (cit. on
p. 20).

https://doi.org/10.1098/rsif.2016.0005
https://doi.org/10.1371/journal.pone.0156808
https://doi.org/10.1016/j.compenvurbsys.2022.101809
https://doi.org/10.1016/j.compenvurbsys.2022.101809
https://doi.org/10.1002/qj.2144
https://doi.org/10.5676/DWD_CDC/DECREG0110v2
https://doi.org/10.5194/essd-8-491-2016
https://doi.org/10.5194/essd-8-491-2016
https://doi.org/10.1016/j.physa.2014.03.052
https://doi.org/10.1016/j.physa.2014.03.052
https://books.google.de/books?id=dh7rCAAAQBAJ
https://land.copernicus.eu/user-corner/technical-library/implementation-and-achievements-of-clc2006
https://land.copernicus.eu/user-corner/technical-library/implementation-and-achievements-of-clc2006
https://land.copernicus.eu/user-corner/technical-library/implementation-and-achievements-of-clc2006
https://doi.org/10.1007/s10980-009-9402-4
https://doi.org/10.1038/ncomms12509
https://doi.org/10.1016/j.envint.2017.12.027
http://www.jstor.org/stable/2785468


bibliography 105

Chapman, S. et al. (2017). “The impact of urbanization and climate
change on urban temperatures: a systematic review.” Landsc. Ecol.
32.10, pp. 1921–1935. doi: 10.1007/s10980-017-0561-4 (cit. on
pp. 4, 8, 11, 13, 14, 32, 40, 41, 45, 71).

Chen, C. et al. (2020). “Attribution of Land-Use/Land-Cover Change
Induced Surface Temperature Anomaly: How Accurate Is the First-
Order Taylor Series Expansion?” J. Geophys. Res. Biogeosciences 125.9,
e2020JG005787. doi: 10.1029/2020JG005787 (cit. on p. 68).

Chun, B. and J.-M. Guldmann (2018). “Impact of greening on the urban
heat island: Seasonal variations and mitigation strategies.” Comput.
Environ. Urban Syst. 71, pp. 165–176. doi: 10.1016/j.compenvurbsys.
2018.05.006 (cit. on p. 51).

Clark, C. (1951). “Urban population densities.” J. R. Stat. Soc. Ser. A –
G. 114.4, pp. 490–496. doi: 10.2307/2981088 (cit. on p. 28).

Dai, Z., J.-M. Guldmann, and Y. Hu (2018). “Spatial regression models
of park and land-use impacts on the urban heat island in central
Beijing.” Sci. Total Environ. 626, pp. 1136–1147. doi: 10.1016/j.
scitotenv.2018.01.165 (cit. on p. 51).

Daqing, L. et al. (2011). “Dimension of spatially embedded networks.”
Nat. Phys. 7.6, p. 481. doi: 10.1038/nphys1932 (cit. on p. 25).

De Munck, C. et al. (2013). “How much can air conditioning increase
air temperatures for a city like Paris, France?” Int. J. Climatol. 33.1,
pp. 210–227. doi: 10.1002/joc.3415 (cit. on pp. 47, 78).

Deilami, K., M. Kamruzzaman, and Y. Liu (2018). “Urban heat island
effect: A systematic review of spatio-temporal factors, data, methods,
and mitigation measures.” Int. J. Appl. Earth Obs. Geoinf. 67, pp. 30–
42. doi: 10.1016/j.jag.2017.12.009 (cit. on pp. 8, 10, 50, 51).

Delloye, J., R. Lemoy, and C. Geoffrey (2018). “Alonso and the Scal-
ing of Urban Profiles.” arXiv.org e-Print archive arXiv:1801.07512

[physics.soc-ph]. url: https://arxiv.org/abs/1801.07512 (cit. on
p. 81).

Demuzere, M., B. Bechtel, and G. Mills (2019). “Global transferability
of local climate zone models.” Urban Clim. 27, pp. 46–63. doi: 10.
1016/j.uclim.2019.01.005 (cit. on p. 51).

Didan, K. (2015). MOD13A3 MODIS/Terra vegetation indices monthly L3
global 1km SIN grid V006 (Data set) NASA EOSDIS Land Process. doi:
10.5067/MODIS/MOD13Q1.006 (cit. on p. 53).

Du, H. et al. (2016). “Research on the cooling island effects of water
body: A case study of Shanghai, China.” Ecol. Indic. 67, pp. 31–38.
doi: 10.1016/j.ecolind.2016.02.040 (cit. on pp. 69, 93).

Eliasson, I. (2000). “The use of climate knowledge in urban planning.”
Landsc. Urban Plan. 48.1-2, pp. 31–44. doi: 10.1016/S0169-2046(00)
00034-7 (cit. on pp. 11, 13, 32, 45).

Encarnação, S. et al. (2012). “Fractal cartography of urban areas.” Sci.
Rep. 2.527, srep00527. doi: 10.1038/srep00527 (cit. on p. 24).

Estoque, R. C., Y. Murayama, and S. W. Myint (2017). “Effects of
landscape composition and pattern on land surface temperature:

https://doi.org/10.1007/s10980-017-0561-4
https://doi.org/10.1029/2020JG005787
https://doi.org/10.1016/j.compenvurbsys.2018.05.006
https://doi.org/10.1016/j.compenvurbsys.2018.05.006
https://doi.org/10.2307/2981088
https://doi.org/10.1016/j.scitotenv.2018.01.165
https://doi.org/10.1016/j.scitotenv.2018.01.165
https://doi.org/10.1038/nphys1932
https://doi.org/10.1002/joc.3415
https://doi.org/10.1016/j.jag.2017.12.009
https://arxiv.org/abs/1801.07512
https://doi.org/10.1016/j.uclim.2019.01.005
https://doi.org/10.1016/j.uclim.2019.01.005
https://doi.org/10.5067/MODIS/MOD13Q1.006
https://doi.org/10.1016/j.ecolind.2016.02.040
https://doi.org/10.1016/S0169-2046(00)00034-7
https://doi.org/10.1016/S0169-2046(00)00034-7
https://doi.org/10.1038/srep00527


106 bibliography

An urban heat island study in the megacities of Southeast Asia.” Sci.
Total Environ. 577, pp. 349–359. doi: 10.1016/j.scitotenv.2016.10.
195 (cit. on p. 4).

Estrada, F., W. W. Botzen, and R. S. Tol (2017). “A global economic
assessment of city policies to reduce climate change impacts.” Nat.
Clim. Chang. 7.6, p. 403. doi: 10.1038/nclimate3301 (cit. on pp. 4,
12, 32, 45, 57).

Fabinger, M. (2012). “Essays on Trade and Imperfectly Competitive
Markets.” Doctoral dissertation. Harvard University. url: http:
//nrs.harvard.edu/urn-3:HUL.InstRepos:9548614 (cit. on p. 81).

Fitzpatrick, M. C. and R. R. Dunn (2019). “Contemporary climatic
analogs for 540 North American urban areas in the late 21st cen-
tury.” Nat. Commun. 10.1, pp. 1–7. doi: 10.1038/s41467-019-08540-
3 (cit. on p. 76).

Fluschnik, T. et al. (2016). “The size distribution, scaling properties
and spatial organization of urban clusters: a global and regional
percolation perspective.” Int. J. Geo-Information 5.7, p. 110. doi: 10.
3390/ijgi5070110 (cit. on pp. 21, 27, 54).

Fotheringham, A. S., C. Brunsdon, and M. Charlton (2003). Geographi-
cally weighted regression: the analysis of spatially varying relationships.
John Wiley & Sons (cit. on p. 55).

Fotheringham, A. S., M. Batty, and P. A. Longley (1989). “Diffusion-
limited aggregation and the fractal nature of urban growth.” Pap.
Reg. Sci. Assoc. 67.1, pp. 55–69. doi: 10.1007/BF01934667 (cit. on
pp. 29, 41, 86).

Frankhauser, P. (2008). “Fractal geometry for measuring and modelling
urban patterns.” The dynamics of complex urban systems. Springer,
pp. 213–243. doi: 10.1007/978-3-7908-1937-3_11 (cit. on p. 24).

Frasco, G. F. et al. (2014). “Spatially distributed social complex net-
works.” Phys. Rev. X 4.1, p. 011008. doi: 10.1103/PhysRevX.4.
011008 (cit. on p. 29).

Gabaix, X. (2016). “Power laws in economics: An introduction.” J. Econ.
Perspect. 30.1, pp. 185–206. doi: 10.1257/jep.30.1.185 (cit. on
p. 83).

Gabriel, K. M. and W. R. Endlicher (2011). “Urban and rural mortality
rates during heat waves in Berlin and Brandenburg, Germany.”
Environ. Pollut. 159.8-9, pp. 2044–2050. doi: 10.1016/j.envpol.
2011.01.016 (cit. on pp. 11, 32, 33, 50).

Galletti, C. S., X. Li, and J. P. Connors (2019). “Establishing the rela-
tionship between urban land-cover configuration and night time
land-surface temperature using spatial regression.” Int. J. Remote
Sens. 40.17, pp. 6752–6774. doi: 10.1080/01431161.2019.1594432
(cit. on p. 51).
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