
53

Environments for programming in primary education 

Monika Gujberová and Peter Tomcsányi 

Department of Informatics Education, Faculty of Mathematics, Physics and Informatics, 
Comenius University, 842 48 Bratislava, Slovakia  

{gujberova, tomcsanyi}@fmph.uniba.sk 

Abstract. The aim of our article is to collect and present information about con-
temporary programming environments that are suitable for primary education. 
We studied the ways they implement (or do not implement) some programming 
concepts, the ways programs are represented and built in order to support young 
and novice programmers, as well as their suitability to allow different forms of 
sharing the results of pupils’ work. We present not only a short description of 
each considered environment and the taxonomy in the form of a table, but also 
our understanding and opinions on how and why the environments implement 
the same concepts and ideas in different ways and which concepts and ideas 
seem to be important to the creators of such environments. 

Keywords: Primary informatics, Programming environments for children, 
Comparing programming environments 

1 Introduction 

At the beginning of our work there was an idea to look at the programming environ-
ments used in Slovak schools from a technical point of view, from the point of view 
of a developer of such environments rather than from the point of view of their users. 
Our interest was based on our previous experience with developing such environ-
ments. We wanted to know the ways they implement (or do not implement) some 
programming concepts, the ways programs are represented and built in order to sup-
port young and novice programmers, as well as their ability to enable different forms 
of sharing the results of pupils’ work. 

The second section shortly describes the considered environments that were chosen 
based mainly on our knowledge of their widespread use in Slovak schools. 

The third section shortly describes how we chose our initial set of criteria and how 
we iteratively enhanced them. Then it presents our final list of features as well as the 
knowledge that we gained in the process of studying the environments. Finally we 
present a grid of features for the selected ten environments in a form of a table. 

2 The Environments 

For our study, we chose at first eight environments, knowing from our contact with 
schools and our in-service courses for primary teachers that they are actually wide-



54

spread in Slovak schools (sections 2.1 and 2.2). Later we added two environments 
that are not yet commonly used in Slovakia, but we consider them worth comparing to 
the other environments as well as to present them to our teachers (section 2.3). 

Our choice includes not only worldwide well-known environments (like Scratch or 
Alice), but also less known ones (like Karel or Baltie) and others specific to our coun-
try (like The Jumper or Phillip the Ant). 

2.1 Logo descendants  

Logo has been developed not only for children, but also for teachers [1]. First imple-
mentations were text-based. The turtle came later, at first as a physical robot turtle, 
later as the on-screen light turtle [2]. 

Imagine Logo is a full implementation of Logo developed in Slovakia and used in 
several countries [3]. It supports pure textual programming, but parts of the programs 
(especially parameters of standard procedures) can be constructed by selecting from 
lists, and its visual objects can be constructed by direct manipulation. 

Scratch is a well-known modern descendant of Logo created by the Lifelong Kin-
dergarten Group at the MIT Media Lab [4].  It has been localised to Slovak [5]. It uses 
puzzle-like construction of programs. The program is constructed from jigsaw puzzle-
like pieces containing commands and parameters. The pieces either fit together or do 
not fit together depending on their shape. 

EasyLogo (Izy Logo in Slovak language) [6] is a simplified turtle graphics pro-
gram that has been implemented in a form accessible to pupils in primary education. 
It limits the turns to multiples of 45 degrees and redefines the metrics of the screen so 
that fd 1 always moves to the next grid point. The programs are constructed by drag-
ging the icons of actions into the program. The parameters are set by choosing them 
from lists. It allows defining one’s own new commands without parameters. 

Lively picture is another simplified version of Logo. It has been implemented in 
Imagine Logo. It focuses on a widespread simple Logo activity – constructing lively 
pictures, which are stories or animations. They contain static or moving graphical 
objects. Some of them may react to user interaction (clicking or dragging by mouse). 
Its programming language is purely iconic, only the parameters of some commands 
are expressed in numbers. 

2.2 Programming specialised robots 

Karel 3D for Win32 is the most widespread implementation in Slovakia. Karel was 
originally developed as an introductory programming language for university students 
[7]. The robot can move and sense walls. It can put and collect marks (beepers), in 
newer implementations it can also put and collect bricks. The programs are written in 
text form, it includes procedures. It has no variables. Karel became popular in Czech-
oslovakia in the late 80s and it has been re-implemented for several kinds of comput-
ers.  

Baltie (Baltík in Czech and Slovak) is an iconic programming language that origi-
nated in Czech Republic and is quite popular in the Czech Republic as well as in  Slo-



55

vakia. The main character is a young magician Baltie, who can move around a 2D 
scene and conjure objects (square pictures). There are three modes of operation: creat-
ing the scene, direct mode conjuring and programming. 

The Jumper [8] can jump up and down, step left and right and  can repeat a list of 
statements. The pupils construct programs that lead the Jumper from its starting posi-
tion to the doors leading to the next level by clicking on icons representing com-
mands. The program must first be fully constructed and only then can it be run to see 
whether it is correct. The number of statements is limited so that the pupil must rec-
ognise repeated actions. 

Phillip the Ant has to find a path through a maze, collect candies, avoid spider 
nets, collect other useful things and move things to their correct places. Phillip can be 
controlled in three modes: direct mode, arrows mode and iconic mode. The environ-
ment has been created in Imagine Logo as part of a master thesis [9], later extended 
for the use in in-service training courses in Slovakia [8]. 

2.3 Advanced environments 

Microsoft Kodu Game Lab (Kodu) [10] has been designed for creating and playing 
one’s own games. The whole program is event-based – it is a sequence of When 
something happens do something statements. The conditions and commands are ex-
pressed by icons selected from menus (repositories). The Web page of Kodu contains 
many tutorials that help to learn its handling. 

Alice 3D is a programming environment that allows creating animations, interac-
tive stories, videos and games. Originally it has been developed for teaching the ba-
sics of programming especially targeting pupils with no pre-knowledge in program-
ming or little interest in maths. Another goal was to attract more girls to programming 
[11]. 

3 The features 

We started to observe the ten environments using the criteria derived from the exten-
sive work of Kelleher and Pausch [12], even if the goal of their work has been some-
what different from ours. Then we iterated these three steps: (1) studying the envi-
ronments and coding their properties according to the existing set of criteria, (2) gain-
ing knowledge about the properties of the environments, and (3) reflecting the gained 
knowledge by modifying the set of criteria to better meet our specific goals. This sec-
tion presents the final set of criteria. We describe them in detail and give examples of 
the environments that meet or do not meet the specific criteria. Table 1 presents the 
complete grid of criteria and environments. 

3.1 General vs. Specialised 

Some of the considered environments are strictly specialised microworlds, like The 
Jumper and Phillip the Ant. Other environments include general programming lan-



56

guages like Imagine Logo, Scratch, Kodu and Alice. In primary education both these 
types of environment are useful for the teacher even if they serve different purposes. 

Specialised environments usually include some number of prepared tasks and it is 
possible for the teacher (or even for pupils) to prepare their own tasks within the 
bounds of the environment. Sometimes it is possible to do this inside the environment 
in an interactive and visual way. We coded such environments as internal in the row 
creating tasks. Sometimes an external program is needed (usually a plain text editor),   
coded as external. 

3.2 Programming style 

For our purposes the programming style is the way of thinking while programming. 
The considered environments use three programming styles: procedural, object-
oriented and event-based. The procedural style uses lists of statements that are exe-
cuted from the beginning to the end. Most of them also allow the users to define their 
own procedures and/or functions. The object-oriented style uses the abstraction of 
object which is very common in professional programming environments. The envi-
ronments for children often include partially implemented object-orientation, which 
we code as the level of object orientation in a next criterion. 

The event-based style allows defining snippets of code that run when an event 
happens. Typical events are mouse clicks and drags, keyboard key pushes/releases or 
collisions of objects. 

3.3 Level of object orientation 

Blaho and Kalaš [3] defined a hierarchy of several levels of using object-oriented 
features. For our purposes we slightly modified their hierarchy as follows: 

• objects – existence of objects as entities that encapsulate data (internal state) and 
procedures (methods) that can change the data 

• cloning – a command or a user interface action that allows the user to create an 
identical copy of a complete object 

• own variables – the users can define their own state variables in objects 
• own methods – the users can define their own methods in objects that may override 

the standard behaviour of the object 
• inheritance – one object can serve as a parent of another object that inherits all the 

behaviour of its parent (and may override some behaviour by defining its own 
methods) 

• classes – special entities that serve only as parents (or prototypes) for creating ob-
jects (instances of the class)  and themselves are not valid objects 

• multiple inheritance – one object can inherit behaviour from several parent objects 
or classes. 



57

One more criterion is outside the hierarchy – whether the programming language 
allows to programmatically create and destroy objects or instances of classes. Kodu 
and Imagine allow it while Alice and Scratch do not. 

3.4 Programming Constructs 

• conditional (if statements) 
• count loop – a loop with a known number of repetitions but without an explicit 

loop variable (like repeat in Logo without using the repcount function) 
• for loop 
• while loop 
• variables (global, local or object variables) 
• own procedures or methods 
• parameters in own procedures or methods 

3.5 Code Representation 

We consider the representation being textual only if it can be fully edited letter by 
letter. The other two representations are card or puzzle-like and iconic. The former 
still uses text to represent the program, but parts of the text are written on either rec-
tangular cards or puzzle-like pieces, while the latter uses a purely graphical way of 
expressing the commands (even if sometimes it still needs numbers). 

Some environments use two representations. EasyLogo represents the basic actions 
(commands) as icons that the user must drag into the program, but after one such icon 
is dragged, it changes into a textual card that shows the name of the command. 

3.6 Project Construction 

Modern programming environments for children tend to minimise typing or try to 
abandon it completely. However, an interesting research study suggests that it is not 
easy to predict whether these kinds of simplification will really make the learning of 
programming easier or not [13]. We distinguish six types of project construction: 

• typing code  
• selecting pieces of code from menus or similar user interface elements  
• assembling code from rectangular cards  
• assembling from puzzle-like pieces  
• assembling from icons 
• direct manipulation for creating (visual) objects 

Imagine Logo allows typing, but specific parts of the code can also be selected from 
menus and special helper dialogs (choosers). Additionally objects (e. g. turtles) can be 
created by direct manipulation, too. Karel allows constructing the program only by 
typing, but the environment of the robot can be created by direct manipulation. 
Scratch and Alice construct code by assembling from pieces. 



58

3.7 Preventing (syntax) Errors 

Alternative ways of program representation and/or construction can usually prevent 
syntax errors. Sometimes also semantic errors can be avoided, e.g. Scratch does not 
allow the user to place a number in a place where a Boolean expression belongs. 

We distinguish three approaches: shape matching (the shapes of pieces must 
match, otherwise a part of the program cannot be constructed), selection from valid 
options (a list of valid options is presented as a menu, pop-up window, a pile of se-
lectable cards etc.), and syntax directed editing. 

Syntax directed editing recognises the structure of the program and allows the user 
to drag/select only complete structures (e. g. complete if-then-else command or while 
loop), thus not allowing the user to make errors by forgetting a part of the command. 

3.8 Saving and Exporting 

Being able to show the results of their work to others is an important point for chil-
dren. Some environments are able to export the whole project or at least its result in a 
form that can be run or at least shown, using only standard software with no need to 
install the environment itself. Sharing the result of one's work on the Web is another 
important feature. We distinguish the following features of the environments: 

• own format – whether it is possible to save the project into a file that can be later 
loaded by the same environment and used further 

• result – whether the environment can save only the resulting static picture or series 
of pictures (video or animation) that can be shown later using a player of a stand-
ard file format without the ability to continue the work on the project 

• standalone project – whether it is possible to create a standalone executable file 
that can be run without the need of having the whole environment available 

• Web site – whether the creators of the program provide a Web site to share the pro-
grams created by pupils 

• save for Web – whether it is possible to save the resulting program in a form that 
can be run inside a browser, in which case we list the additional software that is 
needed (except the browser itself) to run it. 

3.9 Localization 

In primary schools it is very important to present the computer programs to pupils 
using their native language. Several environments on our list originate from Slovakia, 
other environments can be localised by the end-users (Scratch and Kodu), and for 
some others several localisations already exist. In our table we also present the num-
ber of localizations that we know about. 



59

Table 1. The resulting grid of features and environments 

Th
e 

Ju
m

pe
r

Al
ice

 2
.2

x x x x x x

ext int int ext int
x x x x x x
x x x
x x x x x
x x x x x x
x x x x
x x
x x** x
x x
x x
x

x x
x x x x x x
x x x x x x x x
x x x x
x x x x x
x x x x x
x x x*** x x x
x x x
x x

x x x x
x x x x x x

x x**** x
x x x x x x x

x
x

x x x x x x
x x x x x

x

x x x x x x x x

x x x x x
x x x x x x x x x

Web site x x

by the end user x x

7 4 1 50 4 2 1 1 7 2*

*
**
***
****

Im
ag

ine
 L

og
o

Ea
sy

Lo
go

Li
ve

ly 
pi

ct
ur

e

Sc
ra

tc
h

Ka
re

l 3
D 

fo
r W

in
32

Ba
ltie

 3

Fi
lip

 th
e 

An
t

Ko
du

General vs. 
Specialised

specialised
way of defining the 
tasks

Programming 
style

procedural
object-oriented
event-based

Level of Object 
Orientation

objects
cloning
own variables
own methods
inheritance
classes
multiple inheritance
programatically 
create/destroy

Programming 
Constructs 

conditional
count loop
for loop
while loop
variables
procedures/methods
parameters

Code 
Representation

textual
card or puzzle-like
iconic

Project 
Construction

typing
selecting
rectangular cards
puzzle-like pieces
icons
direct manipulation

Preventing 
(syntax) Errors

shape matching
selection from valid 
options

syntax directed editing

Saving and 
Exporting

own format

result
anim. gif
gif, jpg wmf gif

mov
jpeg

standalone project exe

save for Web plugin
Java
3D

Localisation
number of localisations

Legend:
Applies to Alice 2.3
Kodu has no real methods, but object can define their own reactions to events
Only with an extension called BYOB (Bring your own blocks)
Typing is very limited in Scratch – e.g. number ant text data



60

4 Conclusion 

Our work started as a trial to make a systematic list of environments useful for prima-
ry education in our country. After a few iterations we found the result interesting not 
only for us, but also for a broader audience. The list itself shows the variability of the 
environments from specialised ones to general ones, from those inspired by Logo to 
others allowing the user to create complex videos, from textual programming through 
puzzle-like programming to iconic programming. 

We believe that the information is valuable both to developers of such environ-
ments and their users. The developers get a new overview of all possible approaches 
used, while the teachers get acquainted with environments they did not yet know 
about or get more information about environments that they have already heard about. 

References 

1. Feuerzeig, W. et al.: Programming-Languages as a Conceptual Framework for Teach-
ing Mathematics. Final Report on the First Fifteen Months of the LOGO Project: Bolt, 
Beranek and Newman, Inc., Cambridge, MA (1969) 

2. Papert, S. et al.: Logo Philosophy and Implementation, LCSI (1999) 
3. Blaho, A., Kalaš, I.: Object Metaphor Helps Create Simple Logo Projects. In Proceed-

ings of EuroLogo 2001. Edited by G. Futschek. Linz, August. pp. 39–43 (2001) 
4. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The Scratch Pro-

gramming Language and Environment. In ACM Transactions on Computing Education, 
Vol. 10, No. 4, Article 16 (2010) 

5. Drahošová, M.: Úvod do programovania v prostredí Scratch. Master thesis FMFI UK, 
Bratislava, Slovakia, (2010) [Introduction to programming in Scratch. Master thesis, 
Comenius University, Bratislava. In Slovak language] 

6. Salanci, L.: EasyLogo – discovering basic programming concepts in a constructive 
manner. In: Proceedings Constructionism 2010, Paris (2010) 

7. Pattis, R. E.: Karel – the robot, a gentle introduction to the art of programming. Wiley, 
London (1981) 

8. Tomcsányiová, M. a kol.: Ďalšie vzdelávanie učiteľov základných škôl a stredných škôl 
v predmete informatika – Riešenie problémov a základy programovania 1. 1. Vydanie  
(2009) [Problem solving and programming basics, Textbook for an in-service teacher 
training course. In Slovak language] 

9. Ondková, J.: Detský programovací jazyk Mravec pre 1. stupeň ZŠ. Diplomová práca. 
Bratislava: FMFI UK (2006) [Children's programming language The Ant for the prima-
ry school. Master thesis, Comenius University, Bratislava. In Slovak language] 

10. http://kodu.blob.core.windows.net/kodu/Curriculum_MARS/Lev
el%202%20-%20Search%20and%20Explore%20Mars.pdf (last checked 
1/31/2013) 

11. Utting, I. et al.: Alice, greenfoot and scratch – A discussion. [online] ACM Transac-
tions on Computing Education, Vol. 10, No. 4, Article 17 (2010) http://www.cs. 
kent.ac.uk/pubs/2010/3071/content.pdf (last checked 1/31/2013) 

12. Kelleher, C., Pausch, R.: Lowering the barriers to programming: a taxonomy of pro-
gramming environments and languages for novice programmers. ACM Computing 
Surveys, 37(2), pp. 88–137, (2005) 

13. Lewis, C. M., “How Programming Environment Shapes Perception, Learning and 
Goals: Logo vs. Scratch”, Proc. SIGCSE’10, ACM Press, WI, USA, (2010) 


	Environments for programming in primary education (Monika Gujberová and Peter Tomcsányi)
	Abstract
	1 Introduction
	2 The Environments
	2.1 Logo descendants
	2.2 Programming specialised robots
	2.3 Advanced environments

	3 The features
	3.1 General vs. Specialised
	3.2 Programming style
	3.3 Level of object orientation
	3.4 Programming Constructs
	3.5 Code Representation
	3.6 Project Construction
	3.7 Preventing (syntax) Errors
	3.8 Saving and Exporting
	3.9 Localization

	4 Conclusion
	References




