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“True beauty is always intrinsic.”

Dedicated to my family, especially my parents.
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Abstract

Advancements in computer vision techniques driven by machine learning have

facilitated robust and efficient estimation of attributes such as depth, optical flow,

albedo, and shading. To encapsulate all such underlying properties associated

with images and videos, we evolve the concept of intrinsic images towards in-
trinsic attributes. Further, rapid hardware growth in the form of high-quality

smartphone cameras, readily available depth sensors, mobile GPUs, or dedicated

neural processing units have made image and video processing pervasive. In

this thesis, we explore the synergies between the above two advancements and

propose novel image and video processing techniques and systems based on

them.

To begin with, we investigate intrinsic image decomposition approaches and

analyze how they can be implemented onmobile devices. We propose an approach

that considers not only diffuse reflection but also specular reflection; it allows

us to decompose an image into specularity, albedo, and shading on a resource-

constrained system (e.g., smartphones or tablets) using the depth data provided

by the built-in depth sensors. In addition, we explore how on-device depth data

can further be used to add an immersive dimension to 2D photos, e.g., showcasing

parallax effects via 3D photography. In this regard, we develop a novel system

for interactive 3D photo generation and stylization on mobile devices. Further,

we investigate how adaptive manipulation of baseline-albedo (i.e., chromaticity)

can be used for efficient visual enhancement under low-lighting conditions. The

proposed technique allows for interactive editing of enhancement settings while

achieving improved quality and performance. We analyze the inherent optical

flow and temporal noise as intrinsic properties of a video. We further propose

two new techniques for applying the above intrinsic attributes for the purpose of

consistent video filtering. To this end, we investigate how to remove temporal

inconsistencies perceived as flickering artifacts. One of the techniques does not

require costly optical flow estimation, while both provide interactive consistency

control.

Using intrinsic attributes for image and video processing enables new solutions

for mobile devices – a pervasive visual computing device – and will facilitate novel

applications for Augmented Reality (AR), 3D photography, and video stylization.

The proposed low-light enhancement techniques can also improve the accuracy of

high-level computer vision tasks (e.g., face detection) under low-light conditions.

Finally, our approach for consistent video filtering can extend a wide range of

image-based processing for videos.





Zusammenfassung

Fortschritte im Bereich der Computer-Vision-Techniken, die durch Maschinelles

Lernen vorangetrieben werden, haben eine robuste und effiziente Schätzung von

Attributen wie Tiefe, optischer Fluss, Albedo, und Schattierung ermöglicht. Um

all diese zugrundeliegenden Eigenschaften von Bildern und Videos zu erfassen,

entwickeln wir das Konzept der intrinsischen Bilder zu intrinsischen Attributen

weiter. Darüber hinaus hat die rasante Entwicklung der Hardware in Form von

hochwertigen Smartphone-Kameras, leicht verfügbaren Tiefensensoren, mobilen

GPUs, oder speziellen neuronalen Verarbeitungseinheiten die Bild- und Videover-

arbeitung allgegenwärtig gemacht. In dieser Arbeit erforschen wir die Synergien

zwischen den beiden oben genannten Fortschritten und schlagen neue Bild- und

Videoverarbeitungstechniken und -systeme vor, die auf ihnen basieren.

Zunächst untersuchen wir intrinsische Bildzerlegungsansätze und analysieren,

wie sie auf mobilen Geräten implementiert werden können. Wir schlagen einen

Ansatz vor, der nicht nur die diffuse Reflexion, sondern auch die spiegelnde

Reflexion berücksichtigt; er ermöglicht es uns, ein Bild auf einem ressourcen-

beschränkten System (z. B. Smartphones oder Tablets) unter Verwendung der

von den eingebauten Tiefensensoren bereitgestellten Tiefendaten in Spiegelung,

Albedo und Schattierung zu zerlegen. Darüber hinaus erforschen wir, wie ge-

räteinterne Tiefendaten genutzt werden können, um 2D-Fotos eine immersive

Dimension hinzuzufügen, z. B. um Parallaxen-Effekte durch 3D-Fotografie dar-

zustellen. In diesem Zusammenhang entwickeln wir ein neuartiges System zur

interaktiven 3D-Fotoerstellung und -Stylisierung auf mobilen Geräten. Darüber

hinaus untersuchen wir, wie eine adaptive Manipulation der Grundlinie-Albedo

(d.h. der Farbintensität) für eine effiziente visuelle Verbesserung bei schlechten

Lichtverhältnissen genutzt werden kann. Die vorgeschlagene Technik ermög-

licht die interaktive Bearbeitung von Verbesserungseinstellungen bei verbesserter

Qualität und Leistung. Wir analysieren den inhärenten optischen Fluss und die

zeitliche Konsistenz als intrinsische Eigenschaften eines Videos. Darüber hinaus

schlagen wir zwei neue Techniken zur Anwendung der oben genannten intrin-

sischen Attribute zum Zweck der konsistenten Videofilterung vor. Zu diesem

Zweck untersuchen wir, wie zeitliche Inkonsistenzen, die als Flackerartefakte

wahrgenommen werden, entfernt werden können. Eine der Techniken erfor-

dert keine kostspielige optische Flussschätzung, während beide eine interaktive

Konsistenzkontrolle bieten.

Die Verwendung intrinsischer Attribute für die Bild- und Videoverarbeitung er-

möglicht neue Lösungen für mobile Geräte - ein visuelles Computergerät, das

aufgrund seiner weltweiten Verbreitung von großer Bedeutung ist - und wird neu-

artige Anwendungen für Augmented Reality (AR), 3D-Fotografie und Videostyli-
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sierung ermöglichen. Die vorgeschlagenen Low-Light-Enhancement-Techniken

können auch die Genauigkeit von High-Level-Computer-Vision-Aufgaben (z. B.

Objekt-Tracking) unter schlechten Lichtverhältnissen verbessern. Schließlich

kann unser Ansatz zur konsistenten Videofilterung eine breite Palette von bildba-

sierten Verarbeitungen für Videos erweitern.
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1. Introduction

1.1. Motivation

In its early days, image and video processing algorithms mainly dealt with the effi-

cient acquisition, storage, and enhancement of input data [32]. In the subsequent

years with the advent of computer vision, visual data in the form of images and

videos were used for scene analysis. A complete scene understanding requires

estimating all the physical attributes responsible for the formation of an image

or a video [260]. The above remains challenging to date, however, computing

only a few of such attributes can enable a variety of image and video processing

applications e.g., photorealistic editing, consistent video filtering. To address all

types of physical information derived from analyzing a given image or video we

evolve the concept of intrinsic images towards intrinsic attributes in this thesis.

Over the last decade, advancements in computer vision techniques enabled by

Machine/Deep Learning have facilitated robust and efficient estimation of various

intrinsic attributes such as albedo, shading, specularity, depth, and optical-flow

[67, 63, 182, 209]. On the other hand, rapid hardware growth in the form of

high-quality smartphone cameras, readily available depth sensors, mobile-GPU,

or dedicated neural processing units have facilitated pervasive image and video

processing [159, 47]. In this thesis, we build upon the synergies between the above

two improvements and propose novel image and video processing techniques

and systems around them.

Nowadays, with the ongoing improvements in mobile graphics and camera hard-

ware, smartphones and tablets have become pervasive devices for generating,

editing, and sharing high-quality image and video content [159]. Moreover, scene

understanding is becoming an integral aspect of mobile devices as part of a user-

centric approach, with a focus on offline processing of private data. However,

state-of-the-art intrinsic image decomposition techniques operate only on desk-

tops and are not designed for mobile devices [67]. Further, most of the existing

approaches assume only diffuse-reflection in the scene [23]. We go beyond the

above assumption and also consider shiny scene objects (contributing specular-

reflection) and propose the first approach for decomposing an image into intrinsic
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(a) Input (b) Edited

Figure 1.1: Photo editing examples using our mobile based intrinsic decomposition

application discussed in Chapter 3. In the top row, we edit the estimated albedo layer for

photorealistic recoloring of the skin. For the bottom row, we make use of depth data to

introduce a virtual light source in the scene and create the God-ray effect.

attributes of specularity, albedo, and shading on a resource-constrained environ-

ment of a smartphone. To this end, we make use of depth data provided by built-in

depth sensors on the mobile device (Fig. 1.1). On-device depth data can further

be used to provide an immersive dimension to vanilla 2D photos, showcasing

parallax effects via 3D photography. It has been a few years since the first method

for creating a 3D photo was proposed [80]. Most of the follow-up work or related

approaches mainly focus on improving the quality and ignore the user-interaction

during creation and any subsequent editing. Moreover, only one of the existing

methods is capable of running on a mobile device and again without any inter-

active capabilities [117]. However, with regards to editing, user-interaction is

paramount and for ease-of-use, a mobile deployment is more conducive. To fulfill

the above demands, we propose a novel system for interactive on-device 3D photo

generation and stylization (Figs. 1.2a and 1.2b). For both intrinsic decomposition

and creation of 3D photos we assume to have well-lit images, however, this might

not hold always.
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(a) Segmentation Screen (b) Stylization Screen

(c) Low-light Input (d) Enhanced version of (c)

Figure 1.2: First Row: Segmentation and stylization screen of our 3D photo generation

and stylization mobile app, discussed in Chapter 5. Second Row: Low-light image en-

hancement depiction, discussed in Chapter 4.

On certain occasions, due to unavoidable technical or environmental constraints,

images and videos captured in poor lighting conditions suffer from severe degra-

dation of visual quality [142, 131]. Subsequently, it is challenging for such visual

media to be consumed for high-level tasks such as object detection or tracking

due to deterioration or lack of information. Moreover, poor visual quality nega-

tively impacts the overall aesthetics, and thus, the experience of end-users [131].

Existing classical methods for low-light enhancement are relatively slow and have

long run-times due to CPU-based optimization solving. In comparison, recent

learning-based approaches are fast, however, do not allow interactive editing of

enhancement setting at the inference time [72, 101, 126, 239]. We analyze how

adaptive manipulation of an intrinsic scene attribute (i.e., baseline-albedo) can

efficiently prevent such degradation of visual information. Our approach runs

faster than most of the existing methods [142] and also allows interactive editing

of enhancement settings (Figs. 1.2c and 1.2d). The above-discussed ideas with

regards to intrinsic attributes are based around a single image and do not explore

the implications concerning a sequence of images.

As an image sequence, we consider its most commonly occurring variant, i.e., a

video, where the images are related by the factor of time. We consider the temporal

attribute and the inherent optical-flow as its intrinsic characteristics [247]. As far

as the processing of videos is concerned, one can think of applying image-based
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(a) Processed (b) Ours (c) Lai et al. [120]

Figure 1.3: First column depicts zoomed-in view of (a) per-frame processed result,

second and third column depicts the corresponding consistent output using (b) Ours and

(c) Lai et al. [120] method. Our approach is able to preserve the look and feel of the

per-frame processed result in comparison to the method of Lai et al. which suffers from

color bleeding artifacts, see Chapter 7 for more details.

methods on a per-frame basis. However, a per-frame application can lead to

temporal inconsistencies, seen as flickering artifacts [27]. Most of the existing

work to remove such artifacts suffer from one of the following limitations: non-

interactivity, offline processing, and no consistency-control. The above is due

to excessive focus on the consistency-aspect and not on the performance and/or

interactivity. In this work, we aim to address these limitations and propose two

different approaches for removing such flickering artifacts. To this end, we employ

intrinsic characteristics in the form of temporal-denoising and optical-flow-based

warping (Fig. 1.3). We demonstrate, how our techniques for enforcing temporal

consistency enables a straightforward video based extension for a variety of image

based processing.

1.2. Challenges

The major challenges faced while developing methods and systems proposed in

this thesis are as follows:

Intrinsic decomposition on a smartphone. The physical formation of an

image involves various unknowns at macroscopic and microscopic levels, and

decomposing them all together makes it ill-posed. To overcome the above we

make use of a relaxed approximation given by the Dichromatic Reflection Model
(DRM) [197] where an image is assumed to be composed of the sum of specular
and diffuse components. The diffuse component can be further expressed as



Challenges | 5

the product of albedo and shading. However, even this approximation is under-
constrained, because three unknowns need to be solved given only the pixel value.

Further, performing this on a smartphone makes it more challenging due to low

computational capacity of the device. Most learning-based models have high GPU

memory consumption, making them potentially unsuitable for mobile devices.

On the other hand optimization-based approaches have slow performance and do

not allow interactivity. In our case, the specularity removal is carried out as a pre-

processing step followed by a depth-based energy minimization for computing the

other two layers. To solve the energy minimization interactively on an iPhone we

make use of Apple’s proprietary graphical processing (Metal) APIs. Moreover, for

performance improvement, we employ an efficient iPiano optimization solver.

Trade-offs for low-light enhancement. Most of the existing methods [142,

131] for low-light enhancement, including ours, have to balance three different

aspects. First is the trade-off between under- and over- exposedness. To expose

the low-lit regions within an image, one might over-expose existing well-lit parts.

We address the above to a large extent via adaptive computation of chromaticity

and further by making use of an exposure sequence and pyramid-based blending.

Second is the introduction and amplification of noise while enhancing images. To

prevent the above we decompose the image into base and detail layers as the first
step. Moreover, among different choices of adaptive function, we select the one

which causes the least amount of noise amplification. Thirdly, the enhancement

process can result in changes in perceived color. For our approach, such changes

are limited due to the counter-balancing effect of the adaptive parameters.

Interactive 3D photo stylization on a mobile device. In the present scenario,

rapid advancements in mobile graphics and camera hardware has enabled on-

device visual processing. However, achieving consistent output while maintaining

interactivity remains challenging due to limited computational capacity [47, 159].

We attain the above by making use of GPU-aligned data structures and Apple’s

proprietary graphical processing (Metal) APIs. We make use of Layered Depth
Image (LDI) for 3D photo representation and its subsequent stylization. However,

decomposing an image into different layers based on depth thresholding or via

semantic segmentation remains challenging. To address this we employ mobile

variants of state-of-the-art depth-estimation and semantic-segmentation machine

learning models.

Temporally consistent video processing. As an application-agnostic tech-

nique, the difficulty with consistent per-frame processing is to establish a rea-

sonable trade-off between (𝑖) perceptual similarity with per-frame processed
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output and (𝑖𝑖) temporally consistent result. Similar to existing approaches we

also perform adaptive warping of neighboring frames using optical-flow for this

purpose. Another aspect that limits the practicality of existing solutions are the

issues associated with performance and interaction. We develop a lite optical-

flow network for online performance and construct an adaptive consistency prior

which allows for interactive consistency-control. In certain scenarios, optical-flow

computations might be expensive and/or potentially inaccurate, especially in case

of dis-occlusion(s). To tackle the above we also develop an offline method that

does not require optical-flow and enforces consistency via temporal denoising.

1.3. Contributions

This dissertation broadly proposes four main contributions, which are as fol-

lows:

• A novel, interactive specularity removal method that is well-suited for ca-

sually captured images. The above is used to develop an interactive system

for intrinsic decomposition of RGB-D images on smartphones (Chapter 3).

• Introduction of Adaptive-Chromaticity (AC) for efficient brightening of

images while preventing noise amplification. Further, an approach for low-

light image and video enhancement based on exposure fusion of multiple

ACs (Chapter 4).

• A novel system for 3D photo generation and stylization on a tablet that pro-

vides interactive editing of stylization parameters and camera animations

via a simple user-interface (Chapter 5).

• Two different methods that make per-image filtered image sequences tem-

porally consistent wherein both provide interactive consistency-control.

While one is an online method based on flow-based warping between con-

secutive frames, the other is an offline post-processing operation achieved

via temporal-denoising (Chapter 6 and Chapter 7).

1.4. Structure

This thesis is partitioned into eight different chapters.

• Chapter 1 motivates the topic of this thesis, provides an overview of the

work, outlines the structure of the exposition and stresses themain technical

contributions.
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• Chapter 2 describes the fundamental concepts of intrinsic decomposition,

optical-flow, temporally-consistent filtering, and 3D photography. The

mathematical notation used throughout this thesis is also introduced here.

• Chapter 3 to Chapter 7 presents the main technical contributions. The

related past literature is discussed at the beginning of each chapter, pro-

posed algorithms are compared against state-of-the-art approaches via

quantitative and qualitative evaluations, and applications or use cases of

the proposed work are discussed at the end.

• Chapter 8 concludes the thesis with discussions on the remaining challenges

and opportunities for future work.
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2. Theoretical Background

2.1. Photorealistic Image Formation

We visually perceive the physical world by analyzing the image formed on our

retina [216]. The retinal image is the resultant of light rays from the outside world

entering into our eyes via cornea. Something similar happens when external

light rays enters into a camera via its lens and forms an image onto the camera

sensor. In both the cases, the underlying principle remains the same wherein

light rays emitted from external scene objects converge on a sensor (or retina).

Even though it sounds quite simple, however, it involves various light transport

phenomena – such as emission, transmission, reflection, refraction, and scattering

– as light rays enters into the camera. Subsequently, scene radiance falling on

the sensor of a digital-camera are converted into digital signals which are then

quantized into pixel-values. As part of this work, the associated digital signal

processing and quantization aspects are out of scope. We start from the encoded

pixel-values of an image and estimate some of the intrinsic attributes responsible

for its formation.

2.1.1. The Rendering Equation

In the field of computer graphics the above light transport is efficiently mod-

elled via the rendering equation, simultaneously introduced by Kajiya [108] and

Immel et al. [91] at SIGGRAPH 1986. The equation is based on the law of conser-
vation of energy and states that the radiance leaving a 3D point in the scene can

be given as the sum of emitted and reflected radiance.

𝐿(𝒙,𝝎𝑜) = 𝐿𝑒(𝒙,𝝎𝑜) + 𝐿𝑟(𝒙,𝝎𝑜)

= 𝐿𝑒(𝒙,𝝎𝑜) + ∫
Ω+

𝑓𝑟(𝝎𝑖, 𝒙,𝝎𝑜)𝐿𝑖(𝒙,𝝎𝑖) cos 𝜃𝑖𝑑𝝎𝑖
(2.1)

The visible surface radiance 𝐿 coming from a point 𝒙 in the outgoing direction

𝝎𝑜 is given as the sum of emitted radiance 𝐿𝑒 and reflected radiance 𝐿𝑟 , wherein
the reflected part depends upon: direction-dependant reflectance 𝑓𝑟(𝝎𝑖, 𝒙,𝝎𝑜)
(also known as BRDF – Bidirectional Reflectance Distribution Function), incoming
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(a) Chess (b) Room (c) Face

Figure 2.1: Photorealistic images rendered based on the rendering equation (Eqn. (2.1)),

using the Blender rendering engine, Src. [199] .

radiance 𝐿𝑖 from the direction 𝝎𝑖, and the angle of incidence 𝜃𝑖. The reflected
radiance is integrated over a unit hemisphere Ω+ centered around the 3D point.

Thuswe observe how the scene radiance and hence the final image is dependent on

three different physical attributes, namely: (𝑖) surface reflectance (𝑓𝑟 ), (𝑖𝑖) incident
illumintaion (𝐿𝑖), and (𝑖𝑖𝑖) scene geometry (𝒙, 𝜃𝑖).

In computer graphics, we model these three attributes and then solve Eqn. (2.1)

to generate a photorealistic image, wherein this process is known as render-
ing [173]. As an inverse operation, we start with a real-world photograph and try

to estimate either of these three attributes, and that process is known as inverse
rendering [215]. Performing a full inverse rendering and estimating arbitrary re-

flectance, illumination, or geometry can be quite challenging. As a relaxed version

we can simplify the problem by considering only simple reflectance models.

2.1.2. Simple Reflectance Models

The reflectance function (BRDF) of any material describes the percentage of light

energy that will be reflected by its surface and is defined as the ratio of radiance to

the irradiance [164]. Since this depends on the type of object-material the space

for all possible BRDFs is huge. For simplification, several BRDF approximations

have been proposed in computer graphics for efficient rendering [22, 174, 197].

We will discuss three such relatively simple reflectance models within the scope

of this thesis.

Lambertian Model. For an ideal lambertian or diffuse material, light is equally

likely to be reflected in all directions and does not depend on the angle of incidence.

The above corresponds to a constant BRDF where the reflected light is given as
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following,

𝑓𝑟 𝑙𝑎𝑚𝑏𝑒𝑟𝑡(𝝎𝑖, 𝒙,𝝎𝑜) = 𝑘𝑑(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

𝐿𝑟(𝒙,𝝎𝑜)𝑙𝑎𝑚𝑏𝑒𝑟𝑡 = 𝑘𝑑 ∫
Ω+

𝐿𝑖(𝒙,𝝎𝑖) cos 𝜃𝑖𝑑𝝎𝑖
(2.2)

Phong Model. Most of the real-world objects are not perfect diffuse materials.

Thus a more realistic reflectance model also needs to consider specular reflection,

which is given by the Phong reflectance [174],

𝑓𝑟 𝑝ℎ𝑜𝑛𝑔(𝝎𝑖, 𝒙,𝝎𝑜) = 𝑘𝑑 + 𝑘𝑠(𝜔𝑜.𝒓)𝑘𝑒

𝐿𝑟(𝒙,𝝎𝑜) = 𝐿𝑟(𝒙,𝝎𝑜)𝑙𝑎𝑚𝑏𝑒𝑟𝑡 + 𝑘𝑠 ∫
Ω+

𝐿𝑖(𝒙,𝝎𝑖)(𝜔𝑜.𝒓)𝑘𝑒 cos 𝜃𝑖𝑑𝝎𝑖
(2.3)

The vector 𝒓 in Eqn. (2.3) represents the direction of reflection. For an incident

ray coming at direction 𝝎𝑖 which gets reflected at the surface point with a normal

vector 𝒏, the direction of reflection is calculated as, 𝒓 = 2(𝝎𝑖.𝒏)𝒏 −𝝎𝑖. Here, 𝑘𝑑 ,
𝑘𝑠 , and 𝑘𝑒 are constants where 𝑘𝑑 represents the diffuse reflectance, 𝑘𝑠 represents
the constant part of specular reflectance, and 𝑘𝑒 is the shininess coefficient which

is larger for smoother and more mirror-like surfaces.

Dichromatic Reflectance Model (DRM). It states that the light reflected from

an opaque surface consists of two parts namely – interface and body [197]. The

interface part represents the specularities, while the body part represents the

diffuse reflection. Total reflected radiance for a given spectral frequency 𝜆 is given
as:

𝐿𝑟(𝜆,𝝎𝑜,𝝎𝑖,𝒏) = 𝐿𝑟𝑖(𝜆,𝝎𝑜,𝝎𝑖,𝒏) + 𝐿𝑟𝑏(𝜆,𝝎𝑜,𝝎𝑖,𝒏)

= 𝑚𝑖(𝜆,𝝎𝑜,𝝎𝑖,𝒏)𝑐𝑖(𝜆) + 𝑚𝑟 (𝜆,𝝎𝑜,𝝎𝑖,𝒏)𝑐𝑟(𝜆)
(2.4)

(a) Diffuse (b) Albedo (c) Shading

Figure 2.2: Photorealistic images rendered based on the rendering equation (Eqn. (2.1)),

generated using the Blender rendering engine, Src [199] .
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where 𝐿𝑟𝑏 and 𝐿𝑟𝑖 represents the interface and body radiance respectively. Each

of these components can further be decomposed into composition and magni-
tude [197].

• composition: a relative spectral power distribution 𝑐𝑖 or 𝑐𝑏 which depends

only on wavelength but is independent of geometry.

• magnitude: a geometric scale factor 𝑚𝑖 or 𝑚𝑏 which depends only on

geometry but is independent of wavelength.

Phong reflectance model can be seen as a specific instance of DRM [174, 197].

2.1.3. Intrinsic Decomposition

Intrinsic decomposition, first introduced by Barrow and Tanebbaum [14], is a

simplistic form of inverse rendering. The underlying assumption is that we only

have diffuse reflection occuring within a scene and the reflected radiance 𝐿𝑟 can
be described using Eqn. (2.2),

𝐿𝑟(𝒙,𝝎𝑜)𝑙𝑎𝑚𝑏𝑒𝑟𝑡 = 𝑘𝑑⏟⏟⏟
albedo

∫
Ω+

𝐿𝑖(𝒙,𝝎𝑖) cos 𝜃𝑖𝑑𝝎𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
shading

(2.5)

where the constant diffuse reflectance on the R.H.S of Eqn. (2.5) is known as

albedo and the rest of R.H.S is termed as shading. In image-space we can say that

a given pixel-value is a product of its albedo (𝐴) and shading (𝑆) at each pixel

location 𝐱.
𝐼 (𝐱) = 𝐴(𝐱) ⋅ 𝑆(𝐱) (2.6)

Most of the existing work on Intrinsic Image Decomposition (IID) use the above

formulation for decomposing an image into two components [23].

Retinex Theory. We arrive at Eqn. (2.6) from the perspective of physical light-

transport. However, it has also been experimentally proven that we, humans,

perceive color (i.e., “reflectance”) of visible objects independent of incident “illu-

mination” [123, 121, 122]. The above observation, popularly known as Retinex
Theory [123], has been extensively employed for the application of low-light

image enhancement discussed in Chapter 4. Retinex-Theory further postulates

that for an image the edges due to "reflectance" vary more sharply in comparison

to the "illumination". The above is used as a prior in various IID techniques,

including the one introduced in Chapter 3.

Some IID approaches follow a more realistic reflectance model given by Phong

(Eqn. (2.3)) or DRM (Eqn. (2.4)) which assumes the image to be composed of diffuse
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and specular components, the diffuse part is further expressed as the product of

albedo and shading.

𝐿𝑟(𝒙,𝝎𝑜) = 𝐿𝑟(𝒙,𝝎𝑜)𝑙𝑎𝑚𝑏𝑒𝑟𝑡⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
diffuse

+ 𝑘𝑠 ∫
Ω+

𝐿𝑖(𝒙,𝝎𝑖)(𝜔𝑜.𝒓)𝑘𝑒 cos 𝜃𝑖𝑑𝝎𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
specular

(2.7)

(a) Input (b) Diffuse (c) Specularity

Figure 2.3: Photorealistic images rendered based on the rendering equation (Eqn. (2.1)),

generated using the Blender rendering engine ([199]). The input image can be expressed

as the sum of diffuse and specular components.

In image-space we can express the given pixel-value as the sum of specular(𝐼𝑑)
and diffuse (𝐼𝑠) parts where the diffuse part is the product of its albedo (𝐴) and
shading (𝑆), at each pixel location 𝐱.

𝐼 (𝐱) = 𝐼𝑑(𝐱) + 𝐼𝑠(𝐱)

𝐼𝑑(𝐱) = 𝐴(𝐱) ⋅ 𝑆(𝐱)
(2.8)

For decomposing an image into albedo, shading, and specularity, discussed in-

Chapter 3, we make use of Eqn. (2.8) . To efficiently perform low-light image

enhancement by reducing the effects of shading, discussed in Chapter 4, we make

use of Eqn. (2.6).

2.2. Video Formation
From a visual perspective, a video can be seen as a sequence of images correlated

by the factor of time. It is represented as a three-dimensional signal 𝐼 (𝑥, 𝑦, 𝑡)
that provides image intensities at pixel coordinates 𝑥 and 𝑦, at time instance 𝑡
(Fig. 2.4). Even though a video is represented as a three-dimensional signal, they

are usually acquired as two-dimensional image slices at any given instance. If

we consider processing one such image-slice a variety of techniques exist that

deal with manifold applications, such as tone-mapping, contrast enhancement,

color constancy, color grading, etc. However, extending such processing for the

complete video is challenging, due to an extra temporal dimension within the input
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X

Y

Figure 2.4: Visualization of video as a sequence of images correlated by the factor of

time.

T

X
X

Y

Figure 2.5: Temporal slicing of the per-frame processed video.

data. One naive, yet generic way of extending image-based filtering techniques

for a video is to apply them individually on a per-frame basis. However, this

approach may lead to temporal inconsistencies seen as flickering artifacts.

Temporal Slicing and Denoising. One way of analyzing temporal flicker-

ing [27] artifacts is by performing temporal slicing of the video sequence (Fig. 2.5).

In comparison to input video, the temporal slice of the per-frame processed video

looks noisy (Fig. 2.6). In Chapter 6, we assume such noise as representative

of temporal flickering. Thus, by performing effective denoising of such noisy

temporal slices we are able to significantly reduce flickering artifacts.

Optical Flow. For any kind of video processing we would like the output to be

as temporally consistent as the input video. To achieve this we make use of the

movement of pixels from one image to the other, referred to as optical-flow [83].

Optical flow describes the apparent motion of pixels in a sequence of images. It

is expressed as a two-dimensional vector field with components 𝑢 and 𝑣 for the
relative displacement in horizontal and vertical direction respectively (Fig. 2.7).
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(a) Input TSI

(b) Processed TSI

(c) Processed TSI + Denoised

Figure 2.6: Temporal-Slice Image (TSI) of the processed video (b) looks noisy in com-

parison to that of the input video (a). However after denoising (c) (using the method of

FFDNet [249]) we are able to make it similar to that of the input video.

The problem of optical-flow estimation involves computing the components 𝑢 and
𝑣 from a given image sequence. As per the Brightness Constancy [83] assumption,

the intensities of corresponding pixels do not change between two neighboring

frames. The above is used to formally define optical flow with the following

constraint:

𝐼 (𝑥, 𝑦, 𝑡) = 𝐼 (𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1). (2.9)

For real-world scenarios optic flow estimation becomes challenging due to chang-

ing illumination patterns (caused by shadows and reflections), occlusions, motion

boundaries, and sensor noise.

To make the output video temporally consistent we can warp the neighboring

processed frame to the current frame, i.e., warp 𝑂𝑡−1 towards 𝑂𝑡 , using optic flow.

Subsequently, similarity is enforced between the warped frame and the current

frame via priors, see Eqn. (2.10).

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ||𝑂𝑡 − Γ(𝑂𝑡−1)|| (2.10)

where Γ is a warping function. In Chapter 7 we show how to make per-frame pro-
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(a) Frame 𝑡 (b) Frame 𝑡 + 1

𝐼 (𝑥,𝑦,𝑡)

𝐼 (𝑥+𝑢,𝑦+𝑣,𝑡+1)

𝑢

𝑣
−→𝑢𝑣

(c) Frames overlayed

Figure 2.7: Example of motion vectors within Brightness Constancy. Motion vectors

describe corresponding pixels with same intensities in a pair of frames.

cessed video temporally consistent at interactive rates, via fast optical-flow com-

putation. For scenario where optical-flow estimation might be expensive and/or

potentially inaccurate we demonstrate how to achieve temporal-consistency via

temporal denoising in Chapter 6.

2.3. 3D Photography

The visual experience of the world around us is unlike an image or a video

projected on a flat screen. We explore the scene around us in a much more

immersive fashion in contrast to an image or a video [70]. To overcome the

limitation of a flat screen, Virtual Reality (VR) technology allows us to immerse

ourselves in a computer-generated environment. The virtual environment is

usually perceived through a costly hardware setup popularly known as a VR

headset or helmet. 3D Photograhy [80] captures this immersiveness upto a

certain extent and allow users to also experience it on a flat screen. In general, 3D

photo refers to any representation that can be displayed with parallax induced

by viewpoint motion at viewing time. The ability to move the camera around an

image, still in time, is a compelling way to make it immersive and lively.

Layered Depth Image as 3D Photos. A 3D photo can be represented as a

mesh [80, 117], a point-cloud [165], or a multiplane image [202, 94]. We employ

Layered Depth Image (LDI) as a type of multiplane image to represent 3D photos.

LDIs are a useful representation for our case as (1) they can naturally handle

an arbitrary number of layers, (2) are memory and storage efficient for mobile

deployment, and (3) allows straightforward per-layer stylization. To this end we

take an RGB or RGB-D image as an input. For the former we estimate the depth

in a pre-processing step. In case of LDI representation quality of the depth input
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(a) Input (b) Acquired depth (c) Normalized depth (d) Quantized depth

Figure 2.8: Visualization of exemplary depth data during different stages of pre-

processing. First, the acquired depth values are normalized to span the complete range of

possible depth values. Subsequently, normalized values are then quantized uniformly

into a number of bins specified by the user.

need not be perfect, as long as depth discontinuities are reasonably well aligned

with the discontinuities in the color channels. The obtained depth data (either

estimated or given as input) is further processed and quantized into user specified

bins (Fig. 2.8). The depth-based bins forms the basis for decomposing the image

into different layers. Based on the depth data, LDI is generated by separating

the RGB-D data into individual layers of unique depth complexity (Fig. 2.9).

Subsequently, for each layer the RGB regions that possibly become subject to

disocclusions during 3D photo rendering are either inpainted or linearly blended.

These steps yield a number of RGB-D layers that can be stylized individually in

an art-directed way. Thus, the multiplane LDI representation is employed for

our purpose of layer-based stylization to generate stylized 3D photos, for details

check Chapter 5.

(a) Input (b) Background (c) Midground (d) Foreground

Figure 2.9: Example visualization of separating an input image into individual LDI

layers based on quantized depth data (Fig. 2.8d). White indicates pixels assigned to other

layers.
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Part I.

Image Processing based on
Intrinsic Attributes





3. Intrinsic Image Decomposition on
a Smartphone

The contents of this chapter is based on the following original publication(s):

Sumit Shekhar, Max Reimann, Maximilian Mayer, Amir Semmo, Sebastian Pasewaldt, Jürgen Döll-

ner, and Matthias Trapp. “Interactive Photo Editing on Smartphones via Intrinsic Decomposition”.

In: Computer Graphics Forum (Proceedings of Eurographics 2021) (2021) [L4]

On a bright sunny day, it is quite easy for us to identify objects like a wall, a car,

or a bike irrespective of their color, material or whether they are partially shaded.

This remarkable capacity of human visual system (HVS) to disentangle visual

ambiguities due to color, material, shape, and lighting is a result of many years of

evolution [18]. Replicating this ability for machine vision—to enable better scene

understanding—has been a widely researched topic, but ever has been challenging

because of its ill-posed and under-constrained nature. In this chapter we describe

the first method to decompose an image into intrinsic layers of albedo, shading,

and specularity on a smartphone. In the decomposition process we utilize the

readily available depth data provided by the built-in depth sensors on modern

smartphones. Subsequently several new photo editing applications enabled by

this approach are demonstrated.

3.1. Challenges and Contributions

The physical formation of an image involves various unknowns at macroscopic

and microscopic levels, and decomposing them altogether makes it ill-posed.

A relatively relaxed approximation is given by the Phong Reflection Model or
Dichromatic Reflection Model (Chapter 2) where an image (𝑰 ) is assumed to be

composed of the sum of specular (𝑰𝒔) and diffuse (𝑰𝒅) components (at every pixel

location 𝐱) [197]:
𝑰(𝐱) = 𝑰𝒅(𝐱) + 𝑰𝒔(𝐱). (3.1)
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(a) Input (b) Tattoo (c) Glass (d) Mystique (e) Divine

Figure 3.1: Different types of effects produced with our mobile app. It is the first that

supports a large variation of image manipulation tasks within a unified framework, which

is based on intrinsic image decomposition.

The diffuse component (𝑰𝒅) can be further expressed as the product of albedo (𝑨)
and shading (S) [14]:

𝑰𝒅(𝐱) = 𝑨(𝐱) ⋅ 𝑆(𝐱). (3.2)

However, even this approximation is under-constrained, because three unknowns—

𝑨(𝐱), 𝑆(𝐱) and 𝑰𝒔(𝐱)—need to be solved given only the image color 𝑰(𝐱). In this

chapter, we propose a novel smartphone-based system to extract intrinsic layers

of albedo, shading, and specularity. In our system, the specularity removal is car-

ried out as a pre-processing step followed by a depth-based energy minimization

for computing the other two layers. The computed layers, apart from offering

better scene understanding, facilitate a range of image-editing applications such

as recoloring, retexturing, relighting, and appearance editing (Fig. 3.1).

Compared to many previous works, ours is not limited in assuming a complete dif-

fuse reflection. In general, the decomposition of an image into diffuse reflectance

(albedo) and shading is referred to as Intrinsic Image Decomposition (IID). The

existing IID algorithms can be broadly classified into two categories:

Learning-based methods: the priors on albedo and shading are incorporated as

loss functions, and the decomposition is learned by training. In the past

few years—with the significant improvement in deep-learning technology—

such methods have become quite popular [256, 113, 43, 129]. However,

capturing real-world training data for IID is challenging and the existing

datasets might not be sufficient [71, 15, 16, 199]. Unsupervised learning

does not require any training data, however, the results are generally of

inferior quality [128, 148, 138]. Most learning-based models have high

GPU memory consumption, making them potentially unsuitable for mobile

devices—especially at those image resolutions which an image-editing

application typically requires. Furthermore, these models are generally not

controllable at run-time, i.e., the decomposition cannot be fine-tuned to

the image at hand, which is a significant limitation for interactive editing

applications.
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Optimization-based methods: a cost function based on priors is minimized to

find an approximate solution. Initial techniques use simplistic priors, which

are not suitable for real-world scenes [207]. More complex priors improve

the accuracy at the cost of associated computational complexity [254, 18,

13, 227]. Readily available depth sensors fostered depth-based methods for

IID [41, 98]. Nowadays, with easily available mobile devices equipped with

depth sensors, a depth-based intrinsic image decompositionmethod can be a

preferred choice for an intrinsic-image application in mobile environments.

As an additional constraint, only a few previous methods perform both IID and

specularity extraction together. Innamorati et al. [92] and Shi et al. [201] employ a

learning-based technique: both of them train and test for single objects but do not

consider a realistic scene withmany objects. The algorithm byAlperovich et al. [5]
is designed for light-fields but cannot be used for a single image. The method

of Beigpour et al. [17] is applicable for a single image and, like ours, removes

specularities in a pre-processing step. However, for specularity extraction, they

do not consider chroma channels leading to artifacts in highly saturated image

regions. Moreover, their method is an order of magnitude slower than ours.

Unlike most of the previous standalone specularity removal techniques, we show

our results on a broad range of realistic images [8]. Because we treat high- and

low-frequency specularities differently, we obtain seamless outputs.

Finally, the processing schemes of many state-of-the-art techniques are com-

parably slow (optimization-based and learning-based), resource intensive and

are limited to low image resolutions (learning-based). Thus, using an intrinsic

decomposition for interactive image editing on mobile devices is considered chal-

lenging. We propose a system that provides a more practical approach to intrinsic

decomposition. Specifically, we address the following design objectives:

Accessibility: a decomposition is provided on readily available mobile devices

with depth sensors.

Speed: all post-capture processing takes at most a few seconds (on the mobile

device) before the edited photo can be viewed, even when the device is

offline. Thus, we cannot delegate processing to a desktop computer or the

cloud.

Interaction: interacting with the decomposition and editing pipeline is possible

in real-time, and the navigation affordances are fairly obvious.

Quality: the rendered application outputs looks plausible with respect to appear-

ance and material editing tasks.

To this end, we split our processing pipeline into pre-processing and image-editing

stages, of which the specularity removal and image editing perform at interactive
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frame rates. Thereby, we provide the first mobile app that performs intrinsic

decomposition in a unified framework and supports a large variation of image

editing tasks (Fig. 3.1). This is technically achieved by utilizing the built-in depth

sensor and dedicated GPU of modern smartphones for real-time capturing and

interactive processing of RGB-D data.

The contributions described in this chapter are as follows, we propose:

1. A novel, interactive specularity removal method that treats high-frequency

and low-frequency specularities differently, performs chroma-inpainting

to address the problem of missing or little chromaticity information for

saturated pixels, and that is well-suited for real-world images,

2. A fast and robust system for intrinsic decomposition of RGB-D images on

smartphones that makes use of depth-data for local shading smoothness and

enforce albedo (L1-)sparsity by employing the efficient iPiano optimization

solver [166],

3. A variety of mobile-based applications—to show the ubiquitous accessibil-

ity, speed, and quality of our method—using the given depth data and/or

computed intrinsic layers of albedo, shading, and specularity.

3.2. Related Work

Specularity Removal: Some of the earliest methods for specularity removal

were based on color segmentation, thus they were not robust against textures [115,

11]. Mallik et al. [149] introduce a partial differential equation (PDE) in the SUV

color space that iteratively erodes the specular component. A class of algorithms

use the concept of specular-free image based on chromaticity values [206, 200].

Yang et al. [237] use a similar approach, and achieve real-time performance by

employing parallel processing. Kim et al. [112] use a dark channel prior to obtain

specular-free images, followed by an optimization framework. Guo et al. [73]
propose a sparse low-rank reflection model and use a 𝐿1 norm constraint in their

optimization to filter specularities. A broad survey of specularity removal methods

is provided by Artusi et al. [8]. Recently, Li et al. [130] utilize both image and depth

data for removing specularity from human facial images. Most of these methods,

however, employ specific object(s) or scene settings to evaluate their methods

and do not consider generic real-world images. A recent method by Fu et al. [62]
aims to address this issue; the authors assume that specularity is generally sparse

and the diffuse component can be expressed as a linear combination of basis

colors. They present a wide range of results, however, the optimization solving

is comparably slow and is limited to low-resolution images. By contrast, our
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Figure 3.2: An overview of our complete framework showing extraction of intrinsic

layers (Sec. 3.3) followed by image editing (Sec. 3.5).

method is aimed for generic real-world high-resolution images with interactive

performance on mobile devices.

Intrinsic Image Decomposition: The term intrinsic decomposition was in-

troduced in the literature by Barrow and Tenenbaum [14]. The Retinex theory

by Land and McCann proved to be a crucial finding, which became part of many

following algorithms as a prior [123, 121, 122]. In the course of previous decades,

intrinsic decomposition algorithms have been proposed for image [207, 18, 13,

254, 256, 113, 43, 148, 138, 139, 137], video [242, 25, 151], multiple-views [119, 53,

152], and light-fields [5, 66, 6, 17]. A survey covering many of these algorithms is

provided by Bonneel et al. [23]. A particular class of algorithms use depth as an

additional information for IID. Lee et al. [127] use normals to impose constraints

on shading and also use temporal constraints to obtain smooth results. Chen and

Koltun [41] further decompose shading into direct and indirect irradiance; the

authors use depth to construct position-normal vectors for regularizing them.

Hachama et al. [76] use a single image or multiple RGB-D images to construct

a point cloud. The normal vectors along with low dimensional global lighting

model is used to jointly estimate lighting and albedo. Similarly, we use depth

information to impose local shading smoothness constraints. However, unlike

previous methods, a pre-processing step of specularity removal makes our method

robust against specular image pixels. Moreover, we employ an efficient iPiano

optimization solver [166] for our fast and robust mobile-based solution.

3.3. Method

A pre-processing step removes the specular highlights from the input image

(Sec. 3.3.1), the diffuse component is further decomposed into albedo and shading

layers using an efficient intrinsic decomposition optimization (Sec. 3.3.2). The re-

sulting intrinsic layers are used to demonstrate various image editing applications

(Sec. 3.5). An overview of our full pipeline is depicted in Fig. 3.2.
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Figure 3.3: Flowchart of our specularity removal pipeline described in Sec. 3.3.1. Note

the chroma inpainting depicted by the inset.

3.3.1. Specularity Removal Filtering

It has been shown that the perception of lightness and gloss is related to image

statistics and can be altered by modifying the skewness of sub-bands of luminance

histogram [198]. Our specularity removal step is motivated from the above

observation. Further, in order to make our method robust against color artifacts

we use image intensity 𝐿 instead of luminance for the above [17]. The chromaticity

𝑪 of the input image 𝑰 (with color channels 𝑅, 𝐺, and 𝐵) is processed separately

to handle missing color information for saturated specular pixels.

𝐿(𝐱) =
√
𝑅2 + 𝐺2 + 𝐵2, 𝑪(𝐱) =

𝑰(𝐱)
𝐿(𝐱)

(3.3)

A flowchart for our specularity removal algorithm is depicted in Fig. 3.3, the

method broadly consists of three major steps as the following.

Identification of Specularity

In general, specular reflection increases the intensity of output spectrum and,

furthermore, makes it more uniform. Both of these factors are efficiently captured

by the unnormalized Wiener entropy (𝐻 ) introduced by Tian and Clark [213]. It

can concisely be expressed as the product of input-image color channels 𝑅, 𝐺,
and 𝐵 (refer to Eqns. 1 - 6 in [213] for a detailed derivation):

𝐻 (𝑰) = 𝑅 ⋅ 𝐺 ⋅ 𝐵. (3.4)

The proposed unnormalizedWiener (UW) entropy encapsulates the color-direction-
changing and intensity-increasing aspect of specularities. We can describe a spec-

ularity as a region where 𝐻 of the total-reflection is significantly higher than the
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(a) Input (b) 𝜏 = 0.08 (c) 𝜏 = 0.12 (d) 𝜏 = 0.17

Figure 3.4: Input image and corresponding specularity mask with increasing value of

threshold 𝜏. Note that with a low threshold value, even diffuse pixels are marked as

specular. On the other hand, with a higher threshold, some of specular pixels are missed.

corresponding diffuse-reflection.

𝐻 (𝑇 𝑜𝑡(𝜆)) − 𝐻 (𝐷𝑖𝑓 (𝜆)) > 𝜏′ (3.5)

𝐻 (𝑇 𝑜𝑡(𝜆)) > 𝜏′ + 𝐻 (𝐷𝑖𝑓 (𝜆))

where 𝑇 𝑜𝑡(𝜆) is the spectrum of the total reflection, 𝐷𝑖𝑓 (𝜆) is the spectrum of the

diffuse component and 𝜏′ is a particular threshold.

The UW entropy for the diffuse component is assumed to have little variation

within the scene and is considered a constant. Thus, a single universal threshold

𝜏 = 𝜏′ + 𝐻 (𝐷𝑖𝑓 (𝜆)) can be applied to the UW-entropy map for specular pixel

identification. An image pixel is identified as specular if 𝐻 (𝑇 𝑜𝑡(𝜆)) is above a
threshold 𝜏. We assume that an image pixel is equal to the spectrum of total

reflection (i.e., 𝐻 (𝑇 𝑜𝑡(𝜆)) = 𝐻 (𝐼 )), thus the specular mask (𝑆𝑀) is given as:

𝑆𝑀(𝐱) =
⎧⎪⎪
⎨⎪⎪⎩

1, if 𝐻 (𝐼 ) > 𝜏

0, otherwise.
(3.6)

For our experiments, 𝜏 ∈ (0, 0.5) has been empirically determined to give plausible

results (Fig. 3.4). The above specularity identification approach is inspired by the

work of Tian and Clark [213]. Please refer to this work for details.

Intensity Reduction of Specular Pixels

The highlights or specularity is efficiently captured by the positive coefficients in a

luminance or intensity sub-band [33, 17]. For this purpose, we performmulti-scale

decomposition of the intensity image (𝐿) by repetitive edge-aware image filtering
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(a) Input image (b) Only HF removed (c) Only LF removed (d) Diffuse image

Figure 3.5: Effect of high frequency (HF) and low frequency (LF) specularity removal

on an input image. For the resultant diffuse image Fig. 3.5d we remove both HF and LF

specularities.

to obtain an intensity scale-space. In each repetition the spatial extent for the

edge-aware filter is doubled producing a series of images of increasing smoothness.

A fast way to achieve this on an iPhone is by downsampling the intensity image

and then performing edge-preserving upsampling (CIEdgePreserveUpsample)

with original intensity image as guide, while the downsampling factor is doubled

in each repetition. Subsequently a sub-band (or a frequency band) is obtained by

taking the difference between the current and the next scale. A straightforward

way to reduce the specular component is to scale the positive coefficients in a

sub-band with a constant 𝜅 < 1. In principle, the above operation will also erode

image regions which are both, diffuse and bright. We omit such cases by checking

for positive coefficients only within the specular mask (Sec. 3.3.1).

A common observation regarding specularity is its occurrence as smooth patches

of highlights alongwith some sparse irregularities due to rough object surfaces. To

address these two aspects of specularity distribution, we reduce the positive coeffi-

cients of high-frequency (𝜅ℎ) and low-frequency (𝜅𝑙) sub-bands separately (Fig. 3.5).
For all of our experiments, we use the values −0.5 ≤ 𝜅ℎ, 𝜅𝑙 ≤ 0.2. Even though we

use this approach to reduce specularities, it can be easily extended to seamlessly

enhance it (by using 𝜅ℎ, 𝜅𝑙 > 1) for appearance editing [33].

Chroma Inpainting of Specular Pixels

For saturated specular pixels, the chromaticity image might have little or no

information. We fill in this missing detail from neighboring pixels using iterative

bilateral filtering [214]. The initial chromaticity image with the missing informa-

tion in specular pixels is considered as 𝑪0
, and after 𝑘 + 1 iteration the modified

image is given as

𝑪𝑘+1(𝒑) =
1
𝑊𝑝

∑
𝒒∈𝑀(𝒑)

𝐺𝜎𝑠 (||𝒑 − 𝒒||) 𝐺𝜎𝑟 (||𝑪
𝑘(𝒑) − 𝑪𝑘(𝒒)||) 𝑪𝑘(𝒒), (3.7)
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where the normalization factor 𝑊𝑝 is computed as:

𝑊𝑝 = ∑
𝒒∈𝑀(𝒑)

𝐺𝜎𝑠 (||𝒑 − 𝒒||) 𝐺𝜎𝑟 (||𝑪
𝑘(𝒑) − 𝑪𝑘(𝒒)||). (3.8)

The amount of filtering in each iteration is controlled by parameters 𝜎𝑠 and 𝜎𝑟
for image 𝑪𝑘

. As seen in Eqn. (3.7), the next iteration of chromaticity image

is a normalized weighted average of the current one: where 𝐺𝜎𝑠 is a spatial

Gaussian that decreases the contribution of distant pixels, 𝐺𝜎𝑟 is a range Gaussian

that decreases the contribution of pixels that vary in intensity from 𝑪𝑘(𝒑). We

search for neighboring pixels in a square pixel window, 𝑀(𝒑), of length (5, 15)
pixels. In principal, any sophisticated inpainting algorithm can be used for this

purpose. However, we chose the above procedure because of its locality enabling

parallel processing. The range of the inpainting parameters is: 𝜎𝑠 ∈ (2, 8) and
𝜎𝑟 ∈ (0.2, 4.0).

3.3.2. Intrinsic Decomposition of RGB-D Images

In this section, we describe our optimization framework for decomposition of the

resulting diffuse image (Fig. 3.7). We assume monochromatic, white illumination

similar to previous IID methods, thus shading is scalar-valued and image intensity

𝐿 (Eqn. (3.3)) is used as shading initialization for the optimization framework.

Initial albedo is defined accordingly using Eqn. (3.2). We logarithmically linearize

the constraints to enable simpler optimization strategies, a common practice in

previous methods [23].

𝒊𝒅(𝒙) = 𝒂(𝒙) + 𝑠(𝒙) (3.9)

In the above formulation, the lower case letters of 𝒊𝒅 , 𝒂, and 𝑠 denotes log values

of 𝑰𝒅 , 𝑨, and 𝑆 respectively at pixel location 𝒙. In order to avoid log indeterminacy

at close to zero values we add an offset for logarithm computation i.e., 𝒊𝒅 =
𝑙𝑜𝑔(𝑰𝒅 + 𝜖), for all our experiments we set 𝜖 = 1.4. We enforce the constraints

per color channel in the log-domain, i.e., 𝑖𝑑[𝑐] ≈ 𝑎[𝑐] + 𝑠 for 𝑐 ∈ {𝑅, 𝐺, 𝐵}. For
our decomposition, we solve for both 𝒂 and 𝑠 simultaneously by minimizing the

energy function,

𝐸(𝒙) =
1
2(

𝜆𝑑𝐸𝑑(𝒙) + 𝜆𝑟𝑎𝐸𝑟𝑎(𝒙) + 𝜆𝑟𝑠𝐸𝑟𝑠(𝒙))
+ 𝜆𝑠𝑝 ||𝒂(𝒙)||1 (3.10)

where 𝜆𝑑𝐸𝑑 , 𝜆𝑟𝑎𝐸𝑟𝑎, and 𝜆𝑟𝑠𝐸𝑟𝑠 are data, retinex-albedo smoothness, and retinex-

shading smoothness terms respectively with their corresponding weights. We

use a 𝐿1 regularizer to enforce sparsity in the resulting albedo controlled by the

weight 𝜆𝑠𝑝 .
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Data Term

The data term ensures that the diffuse image is equal to the sum of resulting

albedo and shading in the log-domain. To make the solution robust, this term

is weighted by pixel intensity to avoid contributions from noisy low-intensity

pixels:

𝐸𝑑(𝒙) = 𝐿(𝒙)(||𝒊𝒅(𝒙) − 𝑠(𝒙) − 𝒂(𝒙)||2). (3.11)

We minimize the energy function (Eqn. (3.10)) with respect to albedo and shad-

ing separately using an iterative solver. The data term exclusively contributes

in the gradient-of-energy w.r.t. both albedo as well as shading, thus coupling

both the minimization. The weighting of the energy term is controlled by

𝜆𝑑 ∈ (0.005, 0.05).

Retinex Terms

The Retinex Theory [123] forms the basis of many intrinsic decomposition tech-

niques [23]. It imposes priors on how edges vary differently for albedo and

shading. Most of the existing methods assume that an image edge is either an

albedo or a shading edge. However, this is not always true and an edge can be

present due to both albedo and shading. Moreover, we can identify the shading

edges efficiently using the given depth data. Thus, we utilize the Retinex theory

and impose constraints on albedo and shading smoothness separately.

Albedo Smoothness. For most cases, an albedo image should be piece-wise

smooth. A straightforward way to achieve this is to perform edge-preserving

smoothing. We employ a weighting function to identify and prevent smoothing

at prominent albedo edges,

𝐸𝑟𝑎(𝒙) = ∑
𝒚∈𝑁 (𝒙)

𝑤𝑎(𝒙, 𝒚)||𝒂(𝒙) − 𝒂(𝒚)||2 (3.12)

The edge weight is controlled by a parameter 𝛼𝑟𝑎, where a relatively higher value

ensures texture preservation,

𝑤𝑎(𝒙, 𝒚) = exp( − 𝛼𝑟𝑎||𝒂(𝒙) − 𝒂(𝒚)||2) (3.13)

For all our experiments, we use 𝛼𝑟𝑎 ∈ (5.0, 20.0) and consider a 3 × 3 pixel neigh-
borhood 𝑁 (𝒙) around pixel 𝒙. The weighting of the energy term is regulated by

𝜆𝑟𝑎 ∈ (2.0, 40.0).



Method | 31

Shading Smoothness. Ideally, a shading image should be smooth except for

discontinuities due to irregular scene geometry or indirect illumination (such as

inter-reflections and shadows). We assume only direct-illumination and ignore

discontinuities due to the latter. By only taking scene geometry into consideration,

we expect two scene points to have similar shading if they have similar position

and normal vectors [179]. The position vectors are constructed as [𝑥, 𝑦, 𝑧]⊤ where

𝑥, 𝑦 are pixel coordinates and 𝑧 is the corresponding depth. The normal vector

[𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧]⊤ is constructed using the depth 𝐷(𝒙) as,

𝒏 = [∇𝑥𝐷,∇𝑦𝐷, 1.0]⊤ (3.14)

∇𝑥𝐷 and ∇𝑦𝐷 represent depth gradients in horizontal and vertical directions. The

normalized position vector and normal vector is combined to construct a feature

vector 𝒇 (for a given pixel 𝒙): [𝑥, 𝑦, 𝑧, 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧]⊤. Thus, all pixels are embedded in

a six-dimensional feature space. The distance between two pixels in this feature

space is used to construct a weight map,

𝑤𝑠(𝒙, 𝒚) = exp(−𝛼𝑟𝑠 ||𝒇(𝒙) − 𝒇(𝒚)||2) (3.15)

The above weight preserves shading variations, captured as distance in feature

space and the overall constraint is formulated as,

𝐸𝑟𝑠(𝒙) = ∑
𝒚∈𝑁 (𝒙)

𝑤𝑠(𝒙, 𝒚)||𝑠(𝒙) − 𝑠(𝒚)||2 (3.16)

Similar to the previous term, 𝑁 (𝒙) represents the 3×3 pixel neighborhood around
pixel 𝒙. The weight is controlled by a parameter 𝛼𝑟𝑠; for all our experiments

we use 𝛼𝑟𝑠 ∈ (20.0, 200.0). The weightage of the energy term is regulated by

𝜆𝑟𝑠 ∈ (15.0, 100.0). The feature space introduced above is based on the work

of Chen and Koltun [41]. However, we consider this distance only in a local

neighborhood to increase runtime performance.

Optimization Solver

All the energy terms discussed above are smooth and convex except for the 𝐿1
regularizer, which is specific for albedo. This allows for a straightforward energy

minimization w.r.t. shading. For both albedo and shading we minimize the energy

iteratively. By using an iterative solver, we overcome the limitation of storing a

large matrix in memory and calculating its inverse. Moreover, an iterative scheme

allows us to stop the solver once we achieve plausible results. A shading update

𝑠𝑘+1 is obtained by employing Stochastic Gradient Descent (SGD) with momentum
[178],

𝑠𝑘+1 = 𝑠𝑘 − 𝛼∇𝐸(𝑠𝑘) + 𝛽(𝑠𝑘 − 𝑠𝑘−1) (3.17)
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where 𝛼 and 𝛽 are the step size parameters, ∇𝐸 is the energy gradient w.r.t. shading

and 𝑘 is the iteration count.

In order to enforce albedo sparsity, we utilize an 𝐿1 regularizer for albedo. The
regularizer is convex but not smooth and thus makes the minimization of energy

w.r.t. albedo challenging. The solution for a class of problems that aim to solve

for,

argmin
𝑎∈ℝ𝑁

𝑔(𝒂) + ℎ(𝒂) (3.18)

where 𝑔(𝒂) is smooth and ℎ(𝒂) is non-smooth while both are convex, is generally

given by proximal gradient descent (PGD) [140]. A more efficient way to solve the

above is proposed by Ochs et al. [166] in their iPiano algorithm with the following

update scheme,

𝒂𝑘+1 = (𝑰 + 𝛼𝛿ℎ)−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
backward step

( 𝒂𝑘 − 𝛼∇𝑔(𝒂𝑘)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

forward step

+ 𝛽(𝒂𝑘 − 𝒂𝑘−1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
inertial term

) (3.19)

the step size parameters 𝛼 and 𝛽 are same as in 3.17. The inertial term makes

iPiano more effective than PGD, where the update scheme comprises of only

forward descent step and backward proximal mapping. For the special case where

ℎ(𝑎) = 𝜆||𝑎||1 the proximal operator is given by soft thresholding,

(𝑰 + 𝛼𝛿ℎ)−1(𝑢) = max{|𝑢| − 𝛼𝜆, 0} ⋅ sgn(𝑢) (3.20)

For our problem, the data (3.3.2) and retinex terms (3.3.2) are smooth and their

sum can replace 𝑔 in Eqn. (3.18). The 𝐿1 regulariztion is achieved with ℎ = 𝜆𝑠𝑝 ||𝒂||1.
The regularized albedo is solved for iteratively using Eqns. (3.19) and (3.20). For

most of our experiments, 𝛼 = 0.003, 𝛽 = 0.015, and 𝜆𝑠𝑝 = 0.15 yield plausible

results.

Our stopping criteria is a trade-off between performance and accuracy, we do

not compute energy residue for this purpose. We aim to achieve a close to

interactive performance with visually convincing application results. To this

end, we empirically determine 100 iterations to be a sufficient approximation

(Fig. 3.9).

3.4. Evaluation

We evaluated our approach for a variety of real-world images and ground truth

data. We perform qualitative comparisons with recent methods and quantitative

evaluations with existing datasets for both specularity removal and intrinsic

decomposition. For the intrinsic decomposition we also perform an ablation

study to show the significance of energy components.
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(a) Input (b) Only 𝐸1 (c) 𝐸1 + 𝐸2 (d) 𝐸1 + 𝐸2 + 𝐸3

Figure 3.6: Input image and corresponding albedo as we add different components to

the energy formulation. Note, how the fine details in the resulting albedo becomes more

visible with each component.

Ablation Study

For decomposing the diffuse image, we solve for both albedo (𝒂) and shading (𝑠)
simultaneously by minimizing the below energy function (Sec. 3.3.2),

𝐸(𝒙) =
1
2(

𝜆𝑟𝑎𝐸𝑟𝑎(𝒙)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐸1

+ 𝜆𝑟𝑠𝐸𝑟𝑠(𝒙) + 𝜆𝑑𝐸𝑑(𝒙)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐸2

)
+ 𝜆𝑠𝑝 ||𝒂(𝒙)||1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐸3

(3.21)

We classify the energy 𝐸 into three parts for the ablation study: (𝑖) 𝐸1 – responsible
for edge-preserving smoothing of initial albedo, (𝑖𝑖) 𝐸2 – is the contribution of

shading smoothing and its coupling with albedo optimization and (𝑖𝑖𝑖) 𝐸3 – that

controls the sparsity in the resulting albedo, as depicted in Eqn. (3.21). For the

ablation study, we build our energy one component at a time and analyze how it

improves the final output. In Fig. 3.6 we show how the fine details in the resulting

albedo is better preserved with each additional energy component.

Specularity Removal. We compare our method against recent specularity

removal techniques by Fu et al. [62], Akashi et al. [3], Yang et al. [237], and Shen

et al. [200]. For the method of Fu et al. , the results were generously provided by

the authors, and for others we use the implementation by Vítor Ramos [181] to

generate the results. We observe that most of the existing specularity removal

techniques are not well suited for real-world images. The method by Fu et al. ,
which is especially tailored for real-world scenario, also struggles to handle high-

resolution images. Our proposed algorithm performs better than state-of-the-art

works for natural images (Fig. 3.7). It is comparable to results in a controlled lab

setting. Moreover, our method works at interactive rates on a mobile device for

high-resolution images.

Note that the comparisons for specularity removal are performed using the

desktop-based implementation of our algorithm, which makes use of guided
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Input Ours Fu et al. [62] Akashi et al. [3]Yang et al. [237]Shen et al. [200]

Figure 3.7: Comparison of specularity removal for real-world images. The figure con-

tains input image and the corresponding diffuse image obtained using ours, Fu et al. [62],
Akashi et al. [3], Yang et al. [237], and Shen et al. [200] specularity removal methods

image filtering for multi-scale decomposition of image intensity. For our mobile

version, we replace guided filtering by inbuilt edge-aware filters on iOS (iPhone)

to achieve interactive performance while compromising on quality.

Intrinsic Decomposition. We compare our intrinsic decomposition results

with a RGB (Bell et al. [18]), a RGB-D (Jeon et al. [98]) and a learning (Lettry

et al. [128]) based technique to cover a broad range of methods. We use the

implementations provided by the authors. Our results are comparable to the above

methods (Fig. 3.8). Note that the methods of Bell et al. and Jeon et al. perform
at an order of magnitude slower than ours on a GPU-enabled desktop system.

Moreover, unlike ours the quality of their result for indoor and outdoor scene is

not consistent. They perform quite well for indoor scenes however, their output

quality degrade significantly for outdoor scenes. Even though the time taken

by Lettry et al. is comparable to our mobile-phone based technique, we perform

comparatively better in terms of output quality.

Quantitative Evaluation. For a quantitative evaluation, we require a dataset

that includes ground truth depth, albedo, shading, and specularity. To this end,

we use the Light-Field Intrinsic Dataset (LFID) [199]. We also test only the intrinsic

decomposition component of our approach on the MPI-Sintel dataset [34]. We

use MSE and DSSIM as error metric while comparing the computed albedo (for

intrinsic decomposition evaluation) and diffuse image (for specularity removal
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Input Ours Bell et al. [18] Jeon et al. [98] Lettry et al. [128]

Figure 3.8: Comparison of estimated albedo with other methods. The figure contains

input image and the corresponding albedo obtained using ours, Bell et al. [18], Jeon
et al. [98] and Lettry et al. [128] intrinsic decomposition methods.

Datset MSE (↓) DSSIM (↓)
Ours Bell Lettry Jeon Ours Bell Lettry Jeon

LFID 0.075 0.056 0.012 0.085 0.191 0.144 0.158 0.274

MPI-Sintel 0.145 0.041 0.044 0.042 0.325 0.244 0.253 0.288

Table 3.1: Quantitative evaluation for intrinsic decomposition (pixel value is scaled

between 0 to 1), the lower the error value, the better.

evaluation) with the respective ground truth. We compare our intrinsic decom-

position results with other methods (specified in Fig. 3.8) in Tab. 3.1. For the

MPI-Sintel case, we consider one frame from all the scenes, and for LFID we use

three views from Street Guitar andWood Metal light-fields. Our method performs

comparatively better on LFID than MPI-Sintel dataset because the modeling as-

sumptions for LFID is similar to ours which is physically more accurate. For

specularity removal we employ the desktop implementation of our approach and

achieve MSE and DSSIM values of 0.001 and 0.018 respectively. Even though

quantitatively we do not perform well, the decomposition quality is sufficient

enough for plausible photo-realistic editing Sec. 3.5.

Run-time Performance. Our whole processing pipeline has been implemented

on an iPhone 11 Pro smartphone running on the iOS 13 operating system with an

Apple A 13 Bionic processor and 4GB of RAM. We make use of Apples Metal API
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Figure 3.9: Performance of the iterative optimization solver for different kernel widths

and number of iterations. The values are computed after an average of seven runs.

for GPU-based processing. The captured image is downscaled by a factor of 0.3
for interactive performance while maintaining sufficient quality. The resulting

image resolution is of 1128 × 1504 pixels and the corresponding depth map is

either of resolution 480 × 640 pixels for the front facing true-depth sensor or

240 × 320 pixels for the back camera passive stereo setup. We scale the depth map

using built-in filters to match the image resolution, for consistent processing. On

average, the pre-processing step of specularity removal takes 0.1 seconds. For
solving the optimization described in Sec. 3.3.2, we employ an iterative solver

and analyze its performance with an increase in number of iterations for two

kernel resolutions of 3 × 3 and 5 × 5 pixels. Our goal is to achieve visibly plausible

results with interactive processing. We empirically determine 100 iterations as a
good trade-off for the above requirement with an execution time of ≈ 1.5 seconds
for a 3 × 3 pixels kernel resolution (Fig. 3.9). Our material editing pass requires

to compute sub-bands in a pre-processing stage for each intrinsic layer, which

takes ≈ 3.5 seconds. Subsequent thereto, the editing is interactive. The other

application components run interactively allowing for seamless editing.

3.5. Applications

A perfect, physically accurate editing of a photo would require full inverse ren-

dering with high precision. However, one can achieve convincing material [17,

111] and volumetric media [160] editing even without the above. The following

applications in our work are based on the above observations.

3.5.1. Material Appearance Editing

Our material editing framework is based on the work of Beigpour et al. [17],
where the authors modify the intensity of albedo, shading, and specularity using
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Input Ours Bell et al. [18] Jeon et al. [98] Lettry et al. [128]

Figure 3.10: Comparison of estimated shading with other methods. The figure contains

input image and the corresponding shading obtained using ours, Bell et al. [18], Jeon
et al. [98] and Lettry et al. [128] intrinsic decomposition methods.

band-sifting filters [33]. The modified intrinsic layers are merged to form the

output image (𝑰𝑜𝑢𝑡 ) with edited appearance,

𝑰𝑜𝑢𝑡 = 𝑨(𝑟1𝑚1𝑔1, 𝜂1) ⋅ 𝑆(𝑟2𝑚2𝑔2, 𝜂2) + 𝑰𝒔(𝑟3𝑚3𝑔3, 𝜂3) (3.22)

where 𝑟𝑖𝑚𝑖𝑔𝑖 with 𝑖 ∈ {1, 2, 3} represents a component of respective intrinsic layer—

𝑨, 𝑆, and 𝑰𝒔 (described in Eqns. (3.1) and (3.2))—intensity, that is band-sifted. The

component categorization is based on the following signal attributes: spatial

frequency (𝑟), magnitude (𝑚), and sign (𝑔). Only a predefined set of sub-categories
is defined: 𝑟𝑖 ∈ {𝐻, 𝐿, 𝐴}, 𝑚𝑖 ∈ {𝐻, 𝐿, 𝐴}, 𝑔𝑖 ∈ {𝑃, 𝑁 , 𝐴}, where 𝐻 and 𝐿 denote high

and low frequency/magnitude range, 𝑃 and 𝑁 represent positive and negative

(a) Input (b) Beigpour et al. [17] (c) Ours

Figure 3.11: Comparing our translucency effect with Beigpour et al. [17].
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(a) Input (b) Low-density fog (c) High-density fog

Figure 3.12: Input image and atmospheric edit with virtual fog.
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Figure 3.13: Showing results of our full pipeline.

values, and 𝐴 denote “all”, i.e., the complete category. The amount of sifting is

controlled by the scaling factor 𝜂𝑖. We can boost (𝜂𝑖 > 1), reduce (0 < 𝜂𝑖 < 1), or
invert (𝜂𝑖 < 0) the selected component respectively.

In our framework, we replace the original manual object-segmentation with a

mask generation step based on machine learning [190] or iPhone segmentation

mattes [58]. We enhance their transparency appearance edit by using depth-based

texture warping (Fig. 3.11). Our framework is also able to introduce new textures

in the albedo layer for the purpose of coherent retexturing (Fig. 3.13(a) - (c)).

Moreover, our editing framework allows for multiple edit passes, which was not

addressed in previous works.

3.5.2. Atmospheric Appearance Editing

We perform atmospheric editing as de-weathering and relighting in the form

of God rays. Our de-weathering approach is based on the work of Narasimhan
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et al. [160], which enables to synthesize an image-based fog-like appearance.

According to their de-weathering model, the output image (𝑰𝑜𝑢𝑡 ) can be expressed

as a linear combination of the input image (𝑰𝑖𝑛) and the brightness of the sky (𝑭 )
using the given depth data (𝐷):

𝑰𝑜𝑢𝑡 = 𝑰𝑖𝑛 ⋅ 𝑒𝑥𝑝(−𝜃𝐷) + 𝑭 ⋅ (1 − 𝑒𝑥𝑝(−𝜃𝐷)) (3.23)

The scattering parameter 𝜃 ∈ (0.2, 7) controls the above linear combination. We

further improved the result by using an advanced atmospheric-scattering model

that accounts for absorption, in-scattering, and out-scattering independently [82]

(Fig. 3.12).

Our scene relighting approach is based on the image-based volumetric light scat-

tering model of Mitchell [156]. It consists of two steps: (1) creating an occlusion

map with respect to a defined point light source using depth data and (2) subse-

quently using the occlusion map to cast rays from the light source to every pixel.

The use of an occlusion map creates an appearance of light rays shooting from

the background to simulate the appearance of God rays.

For both of the above edits, we make use of depth data captured by the smart-

phone instead of manual generation or prediction as done in previous works. We

combine relighting with de-weathering to create new enhanced atmospheric edits

(Fig. 3.13(d) - (f)).

3.6. Discussion

Our goal is to provide photorealistic, interactive image editing using readily

available RGB-D data on high-end smartphones. To this end, we implement an

intrinsic decomposition technique capable of running on smartphones. The trade-

offs between performance and accuracy (Sec. 3.4) is biased towards performance

for the sake of interactivity, but nonetheless we are able to obtain high quality

results. Unlike most of the previous methods, we perform a pre-processing step

of specularity removal and do not assume “only diffuse reflection” in the scene.

We observe that the above ambiguity, apart from state-of-the-art methods, is also

present in the popular intrinsic dataset – MPI-Sintel [34]. For MPI-Sintel, specular-

ity is encoded as part of the shading information, which is physically inaccurate.

Our observations suggest that specularities are formed as a complex interplay

between reflectance and shading, and thus should be handled separately.

The extracted intrinsic layers—along with available depth data—allows for a

variety of imagemanipulations. However, wemake some simplifying assumptions

to achieve interactive processing and cope with the limited computing capabilities

of mobile phones—note that most of these assumptions are also common for
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many state-of-the-art desktop-based methods. First of all, we only consider

direct illumination and ignore the multi-bounce effects of light, such as color

bleeding and soft shadows. The assumption of white colored illumination is also

not valid for many real-world scenes. A multi-color illuminant can cause color

variations which can be mistakenly classified as albedo instead of shading. We

initialize albedo with a chromaticity image for improved performance [151], and

do not perform clustering in the chromaticity domain, which leads to color shifts

especially in regions with low pixel-intensity. Despite the above limitations, our

technique gives plausible application results at interactive rates.

3.7. Conclusions
In this chapter, we present a system approach that performs intrinsic image

decomposition on smartphones. To the best of our knowledge, it is the first

such approach for smartphones. Using the depth data captured by built-in depth

sensors on smartphones, together with a novel specularity removal pre-processing

step, we are able to obtain high-quality results. A GPU-based implementation

using the Metal API allows for close-to-interactive optimization solving and

interactive image editing. A qualitative evaluation shows that our specularity

removal method performs better than state-of-the-art approaches for real-world

images. The albedo and shading layer results are on par with state-of-the-art

desktop-based methods. Finally, we showcase how the intrinsic layers can be

used for a variety of image-editing applications.

Amobile-based intrinsic decomposition, as provided in this work, could be used for

photo-realistic image editing in Augmented Reality (AR) applications. As part of

future work, we aim to relax some of the existing assumptions and address image

scenes with multi-color illuminant [23] and indirect illumination effects [150].

We also assume that the super-resolution of depth maps can further enhance our

results [223]. Moreover, we believe that our specular pixel detection can be made

more robust with a non-binary thresholding and better handling of bright image

regions.
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4. Adaptive-Chromaticity for
Low-light Enhancement

The contents of this chapter is based on the following original publication(s):

Sumit Shekhar, Max Reimann, Jobin Idiculla Wattasseril, Amir Semmo, Jürgen Döllner, and

Matthias Trapp. “Adaptive-Chromaticity for Interactive Low-light Image and Video Enhancement”.

In: Journal of WSCG (JWSCG). In Submission. 2023 [L9]

Due to unavoidable technical or environmental constraints, images and videos

captured in poor lighting conditions suffer from severe degradation of visual

quality. On most occasions, it is challenging for such visual media to be consumed

for high-level tasks such as object detection or tracking due to deterioration

or lack of information. Moreover, poor visual quality negatively impacts the

overall aesthetics, and thus, the experience of end-users. In this chapter, we

present a technique to efficiently increase the brightness of low-light images and

videos while being robust against dark (or low-intensity) pixels. The basis of our

technique is that an image can be expressed as a product of two components

“illumination” and “reflectance” respectively (Chapter 2). However, unlike the

previous chapter (Chapter 3) we do not decompose the image into individual

components rather we perform an adaptive computation of baseline reflectance

(i.e., chromaticity) for our purpose.

4.1. Challenges and Contributions

Numerous algorithms have been proposed for Low-light Image Enhancement
(LLIE) (Fig. 4.1) and a few for video enhancement as well. A class of methods

is based on Retinex theory [121, 122] which assumes the image to be a product

of illumination and reflectance. Such Retinex-based approaches decompose the

image into illumination and/or reflectance components, based on specific priors.

However, finding effective priors is challenging and inaccuracies can result in

artifacts and color deviations in the enhanced output. Further, the runtime for

such a decomposition, employing a complex optimization process, is relatively
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(a) Input image (b) LIME [74] (c) MBLLEN [147]

(d) Zero-DCE [72] (e) LLVE [248] (f) Ours

Figure 4.1: Comparison of LLIE results for three image-based (b to d) and one video-

based (e) method. Our method (f) can brighten image while preserving details and

avoiding artifacts in terms of over-exposedness, noise, and desaturation.

long [142]. In comparison, deep-learning-based approaches are faster than con-

ventional methods and learn the underlying prior using the given data distribution.

However, they tend to suffer from limited generalization capability. The above

could be due to limited/synthetic training data, ineffective network structures,

or unrealistic assumptions [131]. Therefore, we aim to develop a practical so-

lution for LLIE, which adapts to different low-light conditions and also has low

computational complexity for enabling interactive performance on commodity

hardware.

To achieve the above objective, we develop a method based on Retinex theory,

the basis for various conventional and learning-based techniques. We avoid the

compute-intensive decomposition step and propose an adaptive way to transition

into baseline-reflectance (i.e., chromaticity) [23] via parameter tuning. We refer

to it as Adaptive Chromaticity (AC), which forms the basis for our approach.

The adaptive transition into chromaticity can efficiently increase the output

brightness while being robust against dark (or low-intensity) pixels. Moreover, it

prevents amplification of sensor noises, which are common in low-light images.

To further prevent noise amplification during enhancement, we decompose the

input image into coarse and fine attributes, generally referred to as base and
detail components respectively [10]. We generate multiple ACs for the base layer
with varying levels of brightness followed by a multi-scale fusion step. Different

levels of brightness prevents over/under-exposedness, while multi-scale fusion

maintains spatial consistency. The detail layer is finally added to the result, thus

preserving fine image details.

Unlike images, low-light video enhancement has received less attention. Applica-
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tion of image-based methods to videos on a per-frame basis is usually temporally

incoherent and leads to flickering artifacts. Dark pixels, significantly contributing

to noise amplification, is often the major source of temporal incoherence. Due to

the ability of our method to robustly handle such pixels, the degree of incoher-

ence is reduced significantly. Even the per-frame application of our image-based

approach is superior to an existing video-specific approach. Our contributions

are summarized as follows, we propose:

1. Adaptive Chromaticity (AC) to efficiently increase image brightness while

preventing noise amplification.

2. An approach for low-light image enhancement based on exposure fusion

of multiple ACs.

3. A per-frame application of our image-based approach for videos which

performs out-of-the-box without introducing significant temporal incoher-

ence.

4.2. Related Work

Low-Light Enhancement of Images: One of the earliest algorithms for low-

light image enhancement is based on Retinex theory. Jobson et al. [105, 104] pro-
pose center/surround Retinex at single-scale and multi-scale to achieve plausible

results for dynamic range compression and color restoration. Various follow-up

methods employ Retinex theory as their basis and propose complex optimiza-

tion strategies to estimate reflectance and/or illumination for the purpose of

low-light image enhancement [225, 64, 65, 74, 35, 134, 251, 61, 250, 186, 78]. Fu

et al. [65] propose a weighted variational model for simultaneous reflectance

and illumination estimation. Guo et al. [74] perform refinement of an initial

illumination map via a structure prior to obtain a well constructed illumination

map thereby enabling enhancement. Ren et al. [186] propose a robust model to

estimate reflectance and illumination maps simultaneously, with provision to

suppress noise in the reflectance map. Most of the above techniques have long

run-time involving CPU-based complex optimization solving for image decompo-

sition. We also use the Retinex image-formation model as our premise. However,

unlike existing techniques we do not perform the decomposition of image into

reflectance and/or illumination layers, thus, achieving interactive performance

on commodity hardware.

Another class of methods for low-light image enhancement is based on Histogram
Equalization (HE), wherein the histogram of the input image is stretched thereby

improving its contrast [175]. Similar to Retinex-based approaches, various ex-

tension to the basic principle have been proposed [42, 2, 37, 125]. Celik and
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Tjahjadi [37] employ a variational approach for contrast enhancement using

inter-pixel contextual information. Lee et al. [125] use a layered difference of 2D

histograms and thus achieve better results than previous HE-based approaches.

However, the primary focus of HE-based methods is contrast enhancement in-

stead of physically-based illumination editing, thus having the potential risk of

over- and/or under- exposed pixels.

Recently, deep learning has also been used substantially to address the problem

of low-light image enhancement. Methods based on various learning strategies,

such as supervised [145, 147, 230, 36, 185, 253, 235, 258], semi-supervised [239],

unsupervised [72, 101, 126], and reinforcement learning [245] have been proposed.

Lore et al. [145] present the first deep learning-based method in this context (LL-

Net) that employs stacked-sparse denoising autoencoder to lighten and denoise

low-light images simultaneously. Lv et al. [147] propose an end-to-end multi-

branch network for simultaneous enhancement and denoising. Ren et al. [185]
design an encoder-decoder network for global image enhancement and a sep-

arate recurrent neural network for further edge enhancement. Similar to Ren

et al. , Zhu et al. [258] propose a method called EEMEFN, which consists of two

stages: multi-exposure fusion and edge enhancement. Wang et al. [224] propose
a network called DeepUPE to model image-to-image illumination and collect

an expert-retouched dataset. Zhang et al. [253] propose a network called KinD

based on Retinex theory and design a restoration module to counterbalance noise.

Chen et al. [39] collect a dataset named SID and train a U-Net [188] to estimate

enhanced sRGB images from raw low-light images. Although learning-based

methods can produce visually plausible results, they have limited generalization

capability in comparison to conventional methods [131]. Moreover, unlike ours,

most of the learning-based methods do not allow interactive editing of enhance-

ment at inference time. For a new enhancement setting one has to re-train the

network. Two methods which are closely related to our approach are that of

Ying et al. [244] and Zheng et al. [255], both generate multiple images with

different exposures followed by exposure fusion. Ying et al. employ a complex

strategy with multiple steps to generate the exposure sequence followed by a com-

putationally expensive optimization solving for fusion. The exposure sequence

generation for Zheng et al. is relatively simpler than above, however, they make

use of deep-learning to further enhance the sequence as an intermediate step. In

comparison, our exposure sequence generation is straightforward and does not

require any learning-based post-processing.

Apart from the above, existing techniques when applied on a per-frame basis,

e.g., for videos, usually suffer from temporal incoherence. We prevent such

inconsistency to a large degree by resorting to only point-based operations and

high- or low- pass filtering.
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Low-Light Enhancement of Videos: In comparison to images, low-light video

enhancement has received significantly less attention. One straightforward way

to do so would be to stabilize a per-frame based application of low-light image

enhancement technique using blind video consistent filtering approaches [27,

120, L1]. These techniques inherently make use of vision-based attributes such as

optical flow [27, 120] or saliency masks [L1] for temporal stabilization. However,

computation of above vision-based attributes itself can be inaccurate/challenging

for low light videos. Lv et al. [147] propose an extension for their learning based

approach for images by replacing their 2D convolution layers with 3D ones and

train it on synthetic video data. In order to collect real-world training data, Chen

et al. [38] capture videos for static scenes with the corresponding long-exposure

ground truths and ensure generalization for dynamic scenes by using a Siamese

network. Jian and Zheng [99] develop a setup to capture bright and dark dynamic

video pairs and subsequently train it using a modified 3D U-Net. However, with

their sophisticated setup – consisting of two cameras, a relay lens and a beam

splitter – the authors do not capture diverse scenes and objects as part of training

data. Triantafyllidou et al. [218] propose a low-light video synthesis pipeline

(SIDGAN) that maps “in the wild” videos into a corresponding low-light domain.

The above approach employs a semi-supervised dual CycleGAN to produce dy-

namic video data (RAW-to-RGB) with intermediate domain mapping. In a recent

work, Zhang et al. [248] enforce temporal stability for low-light video enhance-

ment by predicting optical flow for a single image and synthesizing short range

video sequences. However, their quality of enhancement is low in comparison to

existing techniques (Sec. 4.4.4). We do not perform any temporal processing spe-

cific for videos, however our low-light image enhancement algorithm introduces

only negligible temporal incoherence.

4.3. Method

According to the Retinex model, an image 𝑰 can be expressed as the product of

a reflectance layer 𝑹 ∈ ℝ3
and an illumination layer 𝐿 ∈ ℝ [121, 122]: 𝑰(𝒙) =

𝑹(𝒙) × 𝐿(𝒙), where the operator × denotes pixel-wise (𝒙) multiplication. For

the above equation to hold we assume only diffuse-reflection in the scene with

monochromatic illumination. As a baseline, image “intensity” and “chromaticity”

can be considered as the illumination and the reflectance layer, respectively [23].

To compute image intensity one can employ different approaches, such as: norm

or the maximum of the individual color channels. However, both does not yield

desirable results for our purpose of perceptually plausible editing. To this end,

we consider the luma (Y-channel in YCbCr color space) as our intensity operator

𝐼𝑛(⋅), since this satisfies the above objective. Chromaticity is correspondingly

obtained by dividing the image with its intensity (Eqn. (4.1)). The above division
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operation is able to significantly reduce shading and shadows in the scene, which

only affects the intensity, thus making the chromaticity relatively brighter than

the input image. Moreover, it also acts as a normalizing factor for pixel color and

saturates it, further making it appear perceptually bright. For an input image 𝑰
with color channels 𝑟 , 𝑔 , and 𝑏 in sRGB color space using 8-bit per channel (i.e.,

24-bit color depth), we define intensity (following ITU-R BT.601) by the operator

𝐼𝑛(⋅) and chromaticity 𝑪 as follows:

𝐼𝑛(𝑰) = 0.299 ⋅ 𝑟 + 0.587 ⋅ 𝑔 + 0.144 ⋅ 𝑏 & 𝑪 =
𝑰

𝐼𝑛(𝑰)
. (4.1)

The brightening aspect of chromaticity is a preferable characteristic for low-light

image enhancement. However, chromaticity suffers from undesirable artifacts in

terms of noise and color-shifts, especially for low-intensity pixels (Fig. 4.2b).

4.3.1. Adaptive Chromaticity

In order to preserve the brightening effect of chromaticity while avoiding artifacts,

we introduceAdaptive Chromaticity (AC). For identifying a low-intensity pixel, we
compute the difference between pixel intensity, 𝐼𝑛(⋅), and the maximum intensity

value𝑀𝑎𝑥𝐼𝑛. For low-intensity pixels, this difference defined as 𝑦 = 𝑀𝑎𝑥𝐼𝑛−𝐼𝑛(⋅)
would be comparatively larger. For example, for an intensity image encoded in

the range of 0 to 1, 𝑀𝑎𝑥𝐼𝑛 = 1 and for a low-intensity pixel 𝒑 with 𝐼𝑛(⋅) = 0.05
the difference 𝑦(𝒑) = 0.95 is large. Similarly, for a high-intensity pixel 𝒒 with

𝐼𝑛(⋅) = 0.8 the difference 𝑦(𝒒) = 0.2 is small (Fig. 4.2c). The above forms the basis

for defining adaptive chromaticity (𝑨𝒄), wherein we add an adaptive term, as a

function of 𝑦, in the denominator while computing chromaticity (Eqn. (4.1)). To

further increase the brightness and prevent color-shifts, we perform a non-linear

scaling, similar to gamma correction

𝑨𝒄(𝑰 , 𝛼, 𝛾) = (
𝑰

𝐼𝑛(𝑰) + 𝛼𝑓 (𝑦))

𝛾

. (4.2)

Here, 𝑓 (𝑦) is a function in terms of 𝑦, 𝛼 is a control parameter, and 𝛾 is a parameter

for gamma correction. The adaptive function 𝑓 (𝑦) should be chosen such that its

value is close to zero when 𝑦 is small and is substantially high for large values of

𝑦. Thus, by tuning the control parameter 𝛼, we can smoothly transition between

the bright chromaticity (when 𝛼 → 0) and a complete dark image (when 𝛼 → ∞).

The intuition behind the adaptive denominator in Eqn. (4.2) is that we divide by a

larger value for low-intensity pixels as compared to high-intensity pixels, thereby,

reducing undesirable artifacts. For adaptivity, a function 𝑓 should be chosen

that satisfies the above property and is efficient to compute. Among possible

variants, 𝑦2 and exp(𝑦) produces desirable results. However, 𝑓 (𝑦) = tan(𝑦 ⋅ 𝜋2 )
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(a) Input image (b) Chromaticity (c) Intensity Diff. 𝑦 (d) Adap. Chromaticity

Figure 4.2: Given an input image (a), the noise in the chromaticity (b) is higher for

low-intensity pixels with a larger intensity difference (c), which is significantly reduced

for (d) adaptive chromaticity (with 𝛼 = 0.3 and 𝛾 = 0.8).

(a) Input (b) 𝑓 (𝑦) = 𝑦2 (c) 𝑓 (𝑦) = exp(𝑦) (d) 𝑓 (𝑦) = tan(𝑦 ⋅ 𝜋
2 )

Figure 4.3: Our Single-Exposure (SE) output for 𝛼 = 0.05, and 𝛾 = 0.7 employing different

adaptive functions 𝑓 (𝑦). Note how noise is significantly reduced for 𝑓 (𝑦) = tan(𝑦 ⋅ 𝜋2 ) (in
d) as compared to other variations of 𝑦2 (in b) and exp(𝑦) (in c).

works significantly better in terms of noise reduction and also gives plausible

results, see Fig. 4.3. The AC brightens an image while significantly reducing

chromaticity-related artifacts (Fig. 4.2d) and forms the basis for our low-light

image and video enhancement methodology.

Parameter Analysis: We analyse the changes in the characteristics of resultant

AC in terms of image intensity, colorfulness and noisewhile varying the parameters

𝛼 and 𝛾 in Fig. 4.4. Decreasing 𝛼 leads to a quadratic increase in all three metrics

(Fig. 4.4a). Moreover, note the significant decline in noise for higher values of alpha

(> 0.8). On the other hand, decreasing 𝛾 linearly increases noise and intensity,

while at the same time desaturates the image (Fig. 4.4b). The desaturating nature

of 𝛾 plays a counter-balancing role to the effect of 𝛼 in terms of colorfulness
thereby preventing color-shifts. It is thus evident, that both 𝛼 and 𝛾 needs to

be adjusted to brighten the image while retaining the original saturation level,

and also highlights that denoising is an essential requirement during low-light

enhancement.
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(a) Impact of varying 𝛼 on the resultant AC.
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(b) Impact of varying 𝛾 on the resultant AC.

Figure 4.4: Changes in the characteristics of resultant Adaptive Chromaticity in terms

of intensity, colorfulness and noise while varying 𝛼 (Fig. 4.4a) and 𝛾 (Fig. 4.4b). Intensity
is computed using Eqn. (4.1). Colorfulness represents the perceptual amount of saturation

following [79]. Image noise is calculated using skimage estimate_sigma [50] based on

a wavelet-based estimator [52] of the gaussian noise standard deviation 𝜎. Metrics are

computed and averaged over the LIME dataset [74].

4.3.2. Our Approach for Low-light Image Enhancement

To further reduce noise amplification during enhancement, we decompose the

input image into Base (𝑩) and Detail (𝑫) components [10]. We assume that most

of the noise due to low-light conditions is captured in the high-frequency Detail
layer. Thus, enhancing only Base layer will lead to negligible noise amplification.

For base-detail decomposition we make use of Bilateral Filter [214], however, in

principle, one can use any edge-preserving filter for this purpose.

𝑩 = BilatFilt(𝑰 , 𝜎𝑠 , 𝜎𝑡) 𝑫 = 𝑰 − 𝑩 (4.3)

where 𝜎𝑠 = 1.0 (spatial width) and 𝜎𝑡 = 0.5 (tonal range) works fine with most

images (or video-frames). Following the above decomposition, the Base layer is
enhanced via AC using a single-exposure (SE) or multiple-exposure (ME) setting.

In either case, subsequently the Detail layer is added to the enhanced Base to
obtain the final result (Fig. 4.7). For single-exposure, a single AC of base layer is

assigned as its enhanced version (Fig. 4.7e). Multi-exposure enhancement involves

computing multiple ACs of the base layer and is proposed as a two-step process
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Virtual Exposure Sequence (VES)
generated by multiple Adaptive-Chromaticities

Blending Weights

𝑨𝒄(𝑩, 𝜶𝟏 , 𝜸𝟏) 𝑨𝒄(𝑩, 𝜶𝟐 , 𝜸𝟐) 𝑨𝒄(𝑩, 𝜶𝟑 , 𝜸𝟑)

Exposure Fusion of VES using the method of Mertens et al. [2009]

+

Input ( 𝑰 )

Detail ( 𝑫 )

Base ( 𝑩 )

Output ( 𝑶 )Enh. Base 
( 𝑩𝑬 )

𝑩 = 𝑩𝒊𝒍𝒂𝒕. 𝑭𝒊𝒍𝒕. (𝑰)

𝑫 = 𝑰 − 𝑩

Figure 4.5: Flowchart of our low-light image enhancement algorithm. To prevent

noise amplification we decompose the input image into Base and Detail layers. Sub-
sequently, multiple Adaptive Chromaticities (ACs) are generated (Sec. 4.3.1) for the

Base layer to create a Virtual Exposure Sequence (VES) (Sec. 4.3.2). Following to that,

these images are blended guided by quality measures of contrast, saturation, and well-

exposedness (Sec. 4.3.2). The above is performed in amulti-resolution fashion, as proposed

by Mertens et al. [153]. Finally, the Detail layer is added to the enhanced Base layer to

obtain the final output.

consisting of Virtual Exposure Sequence (VES) generation and fusion. A flowchart

of our multi-exposure (or full) pipeline is depicted in Fig. 4.5.

VES Generation: The overall exposedness of an image is increased by lowering

𝛼 and/or 𝛾 values in Eqn. (4.2). However, the brightening effect of either of these

parameters 𝛼 or 𝛾 is slightly different. For lower values of 𝛼, increase in brightness
comes at the cost of color-shifts (Fig. 4.6a, Fig. 4.6d). On the other hand, for lower

𝛾 values, an increase in brightness is accompanied with desaturation (Figs. 4.6d

to 4.6f). For both 𝛼 and 𝛾 , lower values leads to increase in noise (Fig. 4.6d) (see

Sec. 4.3.1). Increasing the exposedness by tuning either 𝛼 or 𝛾 is a point-based
operation and does not respect the relative contrast within the image. The above

leads to the problem, wherein already visible regions in the low-light image are

over-exposed while increasing the brightness. It is similar to challenges in High
Dynamic Range (HDR) photography, which aims to preserve all the details within

an HDR scene.

We do not assume an HDR version of the image at our disposal, however we

can generate different levels of brightness by varying the values of 𝛼 and 𝛾
respectively. Thus, we generate a virtual exposure sequence for the given base

layer by computing multiple ACs. For the base layer 𝐵, an exposure sequence

{𝑬𝒌| 𝑘 = 1…𝑁 } is obtained based on the parameter series {(𝛼𝑘 , 𝛾𝑘) | 𝑘 = 1…𝑁 },
with

𝑬𝒌 = 𝑨𝒄(𝑩, 𝛼𝑘 , 𝛾𝑘). (4.4)
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(a) 𝛾 = 1.0, 𝛼 = 0.1 (b) 𝛾 = 1.0, 𝛼 = 0.5 (c) 𝛾 = 1.0, 𝛼 = 0.9

(d) 𝛾 = 0.5, 𝛼 = 0.1 (e) 𝛾 = 0.5, 𝛼 = 0.5 (f) 𝛾 = 0.5, 𝛼 = 0.9

Figure 4.6: Virtual Exposure Sequence (VES) for the input image in Fig. 4.2: as a sequence

of ACs generated by varying values of 𝛼 and 𝛾 .

Subsequently, an HDR image can be generated using the above sequence of images

and further tone-mapping can preserve details in both bright and dark regions

while enhancing it [184].

VES Fusion: For efficiency, we avoid the step of computing an HDR image,

and directly fuse the multiple exposures into a high-quality, low dynamic range

image using the exposure-fusion technique of Mertens et al. [153]. The well-

exposedness of an image in the exposure sequence is determined based on quality

measures of contrast (𝑐𝑘), saturation (𝑠𝑘), and well-exposedness (𝑒𝑘) on a per-pixel

basis. The three quality measures are combined into a joint weighting function

𝑤𝑘 = 𝑐𝑘𝜐𝑐 ⋅ 𝑠𝑘𝜐𝑠 ⋅ 𝑒𝑘𝜐𝑒 , (4.5)

where the above product can be seen as logical conjunction and the parameters

𝜐𝑐 , 𝜐𝑠 , and 𝜐𝑒 control the influence of individual quality measures. Finally, the

obtained sequence of weight maps are normalized such that they sum up to one

at each pixel location, thereby ensuring consistent results, as follows:

𝑤𝑘 =
𝑤𝑘

∑𝑁
𝑘=1 𝑤𝑘

. (4.6)

Once the weight maps are computed, a Laplacian pyramid 𝑳(𝑬𝒌) of each image

and a Gaussian pyramid of each normalized weight map 𝑮(𝑤𝑘) are generated. At
each pyramid level 𝑙, the images are fused on per-pixel and per-color channel

basis as,
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(a) Input image (b) Chromaticity (c) Base

(d) Detail (e) Single Exp. (SE) (f) Multi Exp. (ME)

Figure 4.7: For, a low-light image (a), the corresponding chromaticity (b) has artifacts

in terms of color-shifts and noise. To overcome noise amplification, we decompose

the image into Base (c) and Detail (d) layers using a bilateral filter (𝜎𝑠 = 1.0, 𝜎𝑡 = 0.5).
Further, chromaticity-based artifacts are reduced by employing Adaptive Chromaticity
(AC) and for the single-exposure approach, an enhanced image is obtained as the sum

of AC (𝛼 = 0.1, 𝛾 = 0.8) of Base layer and Detail layer (e). To further preserve details

during enhancement, we use a multi-exposure fusion technique (3 exposure levels –

𝛼1 = 0.03, 𝛼2 = 0.1, 𝛼3 = 2.0 and 𝛾1 = 0.7, 𝛾2 = 0.8, 𝛾3 = 0.5 – and 4 pyramid levels) to

obtain a high-quality output (f).

𝑳(𝑩𝑬)𝑙 =
𝑁
∑
𝑘=1

𝑮(𝑤𝑘)𝑙𝑳(𝑬𝒌)𝑙 . (4.7)

The enhanced base layer, 𝑩𝑬 , is obtained by collapsing the computed Laplacian

pyramid 𝑳(𝑩𝑬). Following the above, we sum the detail layer (𝑫) and the enhanced

base layer (𝑩𝑬) to obtain the final output 𝑶 where,

𝑶 = 𝑩𝑬 + 𝜂𝑫, (4.8)

and 𝜂 > 1 is used to amplify the details in the final output [161]. However, large

values of 𝜂 (> 4.0) leads to halo-artifacts and unnatural looks. For most images

𝜂 = 2.0 gives visually plausible results, see Fig. 4.7. Note that the operations

defined in Eqn. (4.1) till Eqn. (4.8) are all point-based where we have omitted the

pixel-location 𝒙 for the sake of clarity. All the steps in our method are efficiently

summarized in Algo. 1.
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Algorithm 1: Our Low-light Image Enhancement Algorithm

Input: Input image 𝑰 , Bilateral Filter parametrs 𝜎𝑠 , 𝜎𝑡 , Adaptivity parameters 𝛼1,… , 𝛼𝑁 ,
Gamma correction parameters 𝛾1,… , 𝛾𝑁 , Exposure fusion parameters 𝜎, 𝜐𝑐 , 𝜐𝑠 , 𝜐𝑒 ,
Exposure levels – 𝑁 , Pyramid levels – 𝑀 , Additive parameter 𝜂

Output: Enhanced output image 𝑶
1 𝑩 ← BilateralFilter(𝑰 , 𝜎𝑠 , 𝜎𝑡) // Base Layer

2 𝑫 ← 𝑰 − 𝑩 // Detail Layer
3 𝑤𝑡𝑆𝑢𝑚 ← 0
4 for 𝑘 ≤ 1 to 𝑁 do
5 𝑬𝒌 ← 𝑨𝒄(𝑩, 𝛼𝑘 , 𝛾𝑘) // Generate exposure series

6 𝑤𝑘 ← ComputeWeights(𝑬𝒌, 𝜎, 𝜐𝑐 , 𝜐𝑠 , 𝜐𝑒) // Eq. 5
7 𝑤𝑡𝑆𝑢𝑚 ← 𝑤𝑡𝑆𝑢𝑚 + 𝑤𝑘

8 𝒐𝒖𝒕𝒆𝒓𝑺𝒖𝒎 ← 0
9 for 𝑘 ≤ 1 to 𝑁 do
10 𝒊𝒏𝒏𝒆𝒓𝑺𝒖𝒎 ← 0
11 𝑤𝑘 ← 𝑤𝑘/𝑤𝑡𝑆𝑢𝑚
12 𝒕𝒎𝒑𝟏 ← 𝑬𝒌
13 𝑮(𝑤𝑘)𝑙 ← 𝑤𝑘
14 for 𝑙 ≤ 1 to 𝑀 do
15 𝒕𝒎𝒑𝟐 ← GaussianFilter(𝒕𝒎𝒑𝟏, 𝜎 = 𝑙) // "l" is the Gaussian

Filter kernel width

16 𝑳(𝑬𝒌)𝑙 ← 𝒕𝒎𝒑𝟏 − 𝒕𝒎𝒑𝟐 // Laplacian pyramid of Base exposure

levels
17 𝑮(𝑤𝑘)𝑙 ← GaussianFilter(𝑮(𝑤𝑘)𝑙 , 𝜎 = 𝑙)
18 𝒊𝒏𝒏𝒆𝒓𝑺𝒖𝒎 ← 𝒊𝒏𝒏𝒆𝒓𝑺𝒖𝒎 + 𝑮(𝑤𝑘)𝑙 ⋅ 𝑳(𝑬𝒌)𝑙
19 𝒕𝒎𝒑𝟏 ← 𝒕𝒎𝒑𝟐
20 𝒊𝒏𝒏𝒆𝒓𝑺𝒖𝒎 ← 𝒊𝒏𝒏𝒆𝒓𝑺𝒖𝒎 + 𝑮(𝑤𝑘)𝑙 ⋅ 𝒕𝒎𝒑𝟐
21 𝒐𝒖𝒕𝒆𝒓𝑺𝒖𝒎 ← 𝒐𝒖𝒕𝒆𝒓𝑺𝒖𝒎 + 𝒊𝒏𝒏𝒆𝒓𝑺𝒖𝒎

22 𝑩𝑬 ← 𝒐𝒖𝒕𝒆𝒓𝑺𝒖𝒎 // Enhanced Base Layer

23 𝑶 ← 𝑩𝑬 + 𝜂𝑫 // Enhanced Output Image

4.4. Results

4.4.1. Parameter Settings for Base Enhancement

The enhancement of the base layer for our Multi-Exposure (ME) version consists

of two steps, for which the parameter settings are discussed as follows.

VES Generation: Ideally, to capture fine details at different exposure levels,

multiple images are required for the exposure sequence. However, the processing

time will increase according to the number of images. Empirically, we determine

three exposure levels (𝑁 = 3) as sufficient to preserve details at different levels

of brightness. Further, we empirically determine 𝛾 ∈ [0.6, 1.0] and 𝛼 ∈ [0.01, 3.0]
to result in well-exposed and less-noisy outputs. For most of the images, 𝛾1 =
0.7, 𝛼1 = 0.03 (high-exposure level), 𝛾2 = 0.8, 𝛼2 = 0.1 (mid-exposure level), and
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𝛾3 = 0.5, 𝛼3 = 2.0 (low-exposure level) yield desirable results. For all the results
in the paper, unless stated otherwise, we use the above parameter settings.

VES Fusion: For exposure fusion, we set the weighting exponents for the

quality measures to 𝜐𝑐 = 𝜐𝑠 = 𝜐𝑒 = 1, as suggested by Mertens et al. [153]. During
fusion, higher number of pyramid-levels facilitate the preservation of fine details.

However, processing time increases with the number of levels, which is more

pronounced for high-resolution images. Empirically, we determine four pyramid

levels (𝑀 = 4) as a good trade-off between performance and quality.

4.4.2. Qualitative and Quantitative Evaluation

We compare our results with state-of-the-art image-based methods: two con-

ventional methods (SRIE [134] and LIME [74]), two supervised-learning based

methods (MBBLEN [147] and RetinexNet [230]), an unsupervised-learning based

method (Zero-DCE [72]), and a video-based method (LLVE [248]). The results

are produced from publicly available source codes with respective parameter

settings.

Images: We test the above methods on images taken from the following

datasets: LIME [74] (10 images), DICM [125] (44 images), NPE [225] (72 images),

and VV [222] (24 images). For quantitative evaluation, we employ the Natural
Image Quality Evaluator (NIQE) [158] metric to compare the performance of

different methods on the above datasets. We choose this metric, as it is provides a

completely blind quality measure for images and is based on only deviations from

statistical regularities in natural images. Tab. 4.1 shows that overall we perform

better than compared approaches except for Zero-DCE. We present qualitative

comparison for enhanced image outputs in Fig. 4.8. The results of LIME(Fig. 4.8(b))

tends to be over-exposed, MBLLEN provides satisfactory brightening (Fig. 4.8(d))

however tends to over-smooth image details, the output of RetinexNet (Fig. 4.8(e))

seems to look unnatural, and for LLVE the results (Fig. 4.8(g)) appear to be hazy

and desaturated. Our results are visually comparable to Zero-DCE and SRIE.

However, in contrast to Zero-DCE, which requires a re-training of the complete

network for a different degree of enhancement, our approach allows for interac-

tive enhancement manipulation. Further, the slow optimization solving in SRIE

makes it orders of magnitude slower than our approach (see Tab. 4.2). Moreover,

the outcome of our user study, which includes a broad range of images, indicates

that overall our method is preferred over them (Fig. 4.9).

For subjective evaluation of our method in the context of images, we perform a

user study similar to Zhang et al. [248] comparing different techniques. We employ
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(a) Input (b) LIME [74] (c) SRIE [134] (d) MBLLEN [147]

(e) RetinexNet [230] (f) Zero-DCE [72] (g) LLVE [248] (h) Ours

(i) Input (j) LIME [74] (k) SRIE [134] (l) MBLLEN [147]

(m) RetinexNet [230] (n) Zero-DCE [72] (o) LLVE [248] (p) Ours

(q) Input (r) LIME [74] (s) SRIE [134] (t) MBLLEN [147]

(u) RetinexNet [230] (v) Zero-DCE [72] (w) LLVE [248] (x) Ours

(y) Input (z) LIME [74] (aa) SRIE [134] (ab) MBLLEN [147]

(ac) RetinexNet [230] (ad) Zero-DCE [72] (ae) LLVE [248] (af) Ours

Figure 4.8: Low-light image enhancement results. Input images are taken from

LIME [74], DICM [125], and VV [222] datasets.
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Method DICM LIME NPE VV Avg.

LIME 2.99 3.67 3.02 2.99 3.05

SRIE 3.27 4.29 3.45 3.25 3.42

MBLLEN 3.16 3.69 3.15 3.31 3.21

RetinexNet 3.59 3.63 3.62 2.62 3.45

LLVE 3.10 3.65 2.98 2.86 3.04

Zero-DCE 2.48 3.10 2.92 2.87 2.79
Ours 2.84 3.22 3.00 2.66 2.92

Table 4.1: Natural Image Quality Evaluator (NIQE) [158] (↓) values for images in

LIME [74], DICM [125], NPE [225], and VV [222] datasets. The best value is shown

in red and the next best in blue.

9 different images (2 from LIME [74], 2 from DICM [125], 2 from NPE [225], and

3 from VV [222] datasets respectively) and compare 6 other techniques (5 image-

based and 1 video-based) against our method. Thereby constituting 54 blind A/B

tests which are presented in a random fashion to each participant. In total, 13
persons (7 female and 6 male) within the ages of 22 to 38 years participated in

the study. We asked the participants to focus on the following aspects during

comparison:

Exposure: As compared to the input, the enhanced image should be well-exposed,

neither under- nor over- exposed.

Noise (and flickering): The enhanced image should have less noise (and flickering

– in case of videos). However, the denoising should not be excessive as to

remove details.

Color: The colors in the enhanced image should appear natural and it should not

look over- or under- saturated.

For every low-light image, the participant is shown two enhanced versions of the

image simultaneously (one of them is ours) and is asked to pick the version of

their choice based on the above criteria. For the majority of cases, participants

prefer our method against the existing approaches, see Fig. 4.9.

Videos: To evaluate video-enhancement results, we perform a subjective user

study similar to that of images explained in the previous paragraph. As test data,

we make use of the challenging low-light videos provided by Li et al. in their

survey LLIV [131]. In total, 13 persons (3 female, and 10 male) within the ages of

19 to 42 years participated in the study. Note that the above group of participants

did not participate in the images-based user study to avoid any inherent bias

between both the studies. The experiment consisted of 7 different low-light videos
enhanced by ours and 6 other (5 image-based and 1 video-based) approaches.

Two enhanced videos are shown to a participant simultaneously (one of them is
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Figure 4.9: Statistics of user study results on low-light image enhancement. For 13
participants and 9 different images, we compare each existing method against ours

through a total of 117 randomized A/B tests.
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Figure 4.10: Statistics of the user study results on low-light video enhancement. For 13
participants and 7 different videos from LLIV [131] dataset, we compare each existing

method against ours through a total of 91 randomized A/B tests.

ours), thereby constituting 42 blind A/B tests which are shown in a randomized

order to each participant. Fig. 4.10 shows that our method surpasses all other

methods including LLVE (a video-based technique) by a large margin.

4.4.3. Face Detection in the Dark

We further investigate the performance of low-light enhancement methods for

increasing the face-detection accuracy on low-light images. Specifically, following

the settings presented in Li et al. [131], we use 500 randomly sampled images from

the DARK FACE dataset [240] to measure performance of the state-of-the-art Dual
Shot Face Detector (DSFD) [133] trained on the WIDER FACE dataset [238]. We

use the author’s DSFD implementation [132] with a non-maximum suppression

threshold of 0.3 and evaluate using the dark face UG2 challenge evaluation tool

[234]. Fig. 4.11 depicts the precision-recall curves as well as average precision

(AP) under a 0.5 IoU threshold. The results show that all low-light enhancement

methods achieve a substantial improvement in precision and recall over the
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Figure 4.11: Precision-recall curves for face detection on dark-face images [240] en-

hanced using different LLIE methods. Average precision (AP) of each method is indi-

cated in the legend. Our method uses adaptive chromaticity (AC) without exposure

fusion, we compare two variants for 𝑓 (𝑦), namely 𝑓 (𝑦) = 𝑦2 with 𝛼 = 0.25, 𝛾 = 0.6 and
𝑓 (𝑦) = tan(𝑦 𝜋

2 ) with 𝛼 = 0.25, 𝛾 = 0.3.

unprocessed images (baseline result). For our method, the ME setting does not

increase detection rates significantly. Moreover, we observe that shifting faces

into a brightness and contrast range that the classifier has been trained on is

crucial for accuracy improvement irrespective of overall image aesthetics. Thus

we employ only Adaptive Chromaticity (AC) for this purpose. We investigate

the performance of 𝐴𝑐 (Eqn. (4.2)) for two different versions of 𝑓 (𝑦), and find

that while 𝑓 (𝑦) = tan(𝑦 𝜋
2 ) achieves visually more pleasing results, 𝑓 (𝑦) = 𝑦2

outperforms all other LLIE methods for the task of face detection. Overall our

results show that AC adjustment is a simple and efficient pre-processing method

for boosting detection accuracy on low-light images which outperforms more

sophisticated techniques.

4.4.4. Run-time Performance Evaluation

All our experiments were performed on a consumer PC using Microsoft Windows

10 as operating system, with a 2.2 GHz (Intel i7) CPU, 16 GB of RAM, and a

Nvidia GTX 1050 Ti graphics card with 4 GB VRAM. Our complete algorithm,

implemented with C++ and CUDA (v10.0), runs at real-time for VGA resolution

images (Tab. 4.2) and at interactive frame rates on HD and FHD resolution images.

Unlike ours, most of the existing techniques are either not able to handle QHD

resolution or are significantly slower for the given hardware configuration. Ex-

cluding the SE setting, our ME version performs better than all the other methods

except Zero-DCE [72]. While AC forms the basis of our approach, more than

90% of the processing time is spent on multi-pyramid based exposure fusion. For

the SE setting, the result obtained has artifacts in the form of over-exposedness
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Method

VGA

640 × 480
HD

1280 × 720
FHD

1920 × 1080
QHD

2560 × 1440
LIME 580 1940 6450 10.18e3
SRIE 11.82e3 49.83e3 OOM OOM

MBLLEN 430 1300 3010 OOM

RetinexNet 1030 3710 7590 17.54e3

LLVE 110 310 700 OOM

Zero-DCE 4.69 11.77 25.75 OOM

Ours SE 4.87 12.91 28.59 49.49
Ours ME 59.58 180 410 740

Table 4.2: Run-time performance of various methods in milliseconds. The top three

run-time performance values for each resolution are shown in red, blue, and green colors

respectively. Note, that all methods except LIME and SRIE make use of the GPU. We

were not able to run certain methods at higher resolutions due to Out-of-Memory (OOM)

exceptions.

(a) Input (b) Ours (c) Ours + Denois-

ing

(d) MBLLEN (e) SRIE

Figure 4.12: Our result can further be improved by a post-processing denoising operation.

Here, we compare our denoised-output (denoising done using FFDNET [249]) with that

of MBLLEN [147] and SRIE [134].

and color-shifts, however, provides a reasonable approximation for the enhanced

image. Thus, the SE version, our fast variant, can potentially serve as a preview

of the enhanced output and allow for further interactive parameter editing.

4.5. Discussion

Most of the existing methods, including ours, face three major challenges for

LLIE. First is the trade-off between under- and over-exposedness. In order to

expose the low-lit regions within an image, one might over-expose existing well-

exposed parts. We addressed the above to a large extent via adaptive computation

of chromaticity and further by making use of an exposure sequence and multi-

pyramid based blending. As a generic approach, one can compute the degree of

exposure for different image regions, as an exposure mask, in a pre-processing

step and use it for further processing. Second is the introduction and amplification

of noise while enhancing images. To prevent the above we first decompose the

image into base and detail layers. However, more sophisticated denoising scheme

specifically tailored for low-light noise might perform better for this purpose.

Thirdly, the enhancement process can result in changes in perceived color. For
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our approach, such changes are limited due to the counter-balancing effect of 𝛼
and 𝛾 on the perceived colorfulness.

Limitations: In order to tackle the issue of noise most of the existing techniques

either employ denoising priors in their objective formulation [134], perform de-

noising as a post-processing operation [74], or introduce synthetic noise during

training [147, 248]. We do not include any explicit denoising step in our method-

ology and still perform better both qualitatively and quantitatively. However,

among the possible challenges in low-light image enhancement we are less effec-

tive in terms of noise-removal. The above is reflected to a certain degree during

the user study where we observe that on certain occasions participants prefer

the method of Lv et al. [147] and Li et al. [134] due to their less-noisy results.

We conjecture that this preference can be shifted in our favor by performing a

post-processing denoising operation. Note, that our denoised output in Fig. 4.12c

has better quality and does not suffer from artifacts such as over-exposure (as in

Fig. 4.12d) or color-shifts (as in Fig. 4.12e).

4.6. Conclusions
This chapter presents a simple yet effective technique to enhance low-light images

and videos. The key to our approach is Adaptive Chromaticity (AC) which allows

to efficiently increase the image brightness. Our SE version can be used for a

fast enhancement preview. To further improve results, we generate a virtual

exposure sequence by computing multiple adaptive chromaticities for the base
layer followed by a multi-pyramid based fusion. Experimental results validate

the advancement of our approach in comparison to various state-of-the-art alter-

natives. For the above, we perform both quantitative and qualitative evaluation

including subjective user studies. As part of future work we plan to include a

denoising step in our algorithm and potentially use the multi-scale nature of

exposure-fusion for this purpose. For videos, we plan to use the neighboring

frames to improve the denoising as well as enhancement quality.
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5. 3D Photo Stylization on
Mobile-devices

The contents of this chapter is based on the following original publication(s):

Ulrike Bath, Sumit Shekhar, Hendrik Tjabben, Amir Semmo, Sebastian Pasewaldt, Jürgen Döllner,

and Matthias Trapp. “Trios: Stylistic Rendering of 3D Photos”. In: ACM SIGGRAPH 2022 Appy
Hour. 2022 [L6]

Ulrike Bath, Sumit Shekhar, Hendrik Tjabben, Amir Semmo, Jürgen Döllner, and Matthias Trapp.

“Trios: A Framework for Interactive 3D Photo Stylization on Mobile Devices”. In: 2022 International
Conference on Graphics and Interaction (ICGI). 2022 [L5]

Traditional 2D photo captures a scene as a frozen moment in time. Recently

3D photos have emerged as a new medium to make such moments more im-

mersive [80]. We refer to 3D photo as a representation which introduces scene

parallax – difference in the apparent position of scene-objects due to change in

viewpoint (and not the traditional stereo-pair images for perceived 3D effect).

The ability to explore parallax effects, especially on the flat-screen of a mobile

device, is compelling [117]. On the other hand, with the advancement in mobile

graphics, advanced stylistic rendering techniques have been successfully deployed

on mobile devices [118, 170]. As compared to traditional stylization techniques,

3D photos offer new possibilities with respect to stylization and visualization.

Moreover, a mobile-based approach will have implications in terms of ease of

use. In this chapter, we describe a framework that extends the visual-richness of

image-stylization approaches for 3D photos and which is also deployable on a

mobile-device.

5.1. Challenges and Contributions

To this end, we develop a mobile-based framework for generation and stylization

of 3D photos given RGB or RGB-D input data (Fig. 5.1). We identify and address

the following challenges:
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Figure 5.1: Our mobile app enables users to render and stylize 3D photos. The user

interface provides interactive control over a variety of artistic filters, both classical and

neural, as well as rendering aspects of 3D photos. Note, how the background is stylized

differently than the foreground.

Interactivity. Most of the existing approaches for creating 3D photos do not

involve users in the generation step. The end user only views the final output while

the generation pipeline remains a black-box. We offer a simple user-interface to

interact with the generation and the stylization aspects.

Consistency. For traditional 2D photos any editing should be spatially consis-

tent across semantic similar regions for visually aesthetic output. In case of 3D

photos, the above requirement becomes paramount as any spatial inconsistencies

also reflect temporally while viewing/exporting the 3D photo. We address the

above via (semantic-)segment-wise stylization of the image and smooth virtual-

camera movement while viewing/exporting the 3D photo.

Throughput. To achieve consistent output while maintaining interactivity, we

require fast throughput on a mobile device. We achieve the above by making

use of GPU-aligned data structures and Apple’s proprietary graphical processing

(Metal) Application Programming Interfaces (APIs).

Our Approach. To address the above challenges, our proposed framework

adopts the following approach. As the first step, if no depth data is given, we

estimate the depth for the given input image using a mobile version of a state-

of-the-art depth-estimation technique [182]. The given/estimated depth data is
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used to decompose the RGB image into layers at different depth levels and is

represented as an LDI [196], stored in a 2D texture array for Graphics Processing
Unit (GPU)-based processing. Unlike Kopf et al. [117] we do not convert the

LDI representation into a 3D-mesh, as LDI-space allows for efficient image-based

stylization. For each layer, potential dis-occlusions which might get visible due

to viewpoint change are identified and inpainted. The inpainted layers can be

visualized as a 3D photo within the app via viewpoint variations induced due to

device movement or via traversing a particular trajectory by the virtual camera.

Subsequently, the generated 3D photo can be exported as a video file. For spatially

consistent stylization, the input image is divided into (semantic-)segments and

the user performs stylization on a per-segment basis. Similar to input-image, the

stylized image is decomposed into depth-based layers which can then be exported

as a 3D photo.

Our contributions are summarized as follows, we propose: (𝑖) a novel framework

for 3D photo generation and stylization on mobile devices, and (𝑖𝑖) a respec-

tive user-interface for interactive editing of stylization parameters and camera

animations.

5.2. Related Work

3D Photo Generation: Hedman et al. [80] introduce the concept of 3D photog-

raphy by using a set of input photos to construct a 3D panorama. In a follow-up

work, Hedman and Kopf [81] propose a novel optimization which speeds up the

panorama generation step by two orders of magnitude. The focus of both of these

work is to capture large panoramas to be viewed in a VR setup. The approaches

are inconvenient regarding usability and requires capturing multiple photos.

Mildenhall et al. [155] propose an algorithm that guides users to capture a grid

of sampled views, wherein each sample is expanded to a local light-field which

are then fused for virtual scene exploration. Similar to previous techniques, the

above requires capturing of multiple images for light-field fusion. Shih et al. [202]
propose the first method for converting a single RGB-D image into a 3D photo

employing a multi-layer representation for novel view synthesis. The authors

make use of LDI as a multi-layer representation for efficient editing [196, 217].

We also employ this representation for novel view synthesis and exploration.

Jampani et al. [94] utilize depth-aware inpainting for improved segmentation and

layering, thereby preserving fine image details in the foreground. Kopf et al. [117]
for the first time proposed a method wherein the entire 3D photo generation

pipeline is carried out on a mobile device. Our framework is also implemented

on a mobile-device, however, unlike previous approach we provide user control

in the generation process. Further, we allow interactive stylization of 3D photos

for enhanced visual aesthetics.
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Figure 5.2: Data model for 3D photo stylization. A 3D photo basically resembles an

Layered Depth Image (LDI) comprising multiple color and depth layers, each referencing a

stylization technique that is parameterized by a number of parameters, which are grouped

to presets. For rendering and export, a number of virtual camera animations can be used.

Image Stylization on Mobile Devices: Due to advances in mobile graphics

hardware, on-device image stylization is not only becoming feasible but also

increasingly popular via casual creativity apps. Durschmid et al. [54] present a
generic GPU-based app that allows to design on-device stylization components

by reusing building blocks. Pasewaldt et al. [170] demonstrate a broad range of

Image-based Artistic Rendering (IB-AR) techniques running on a mobile device.

The above mobile-based methods consider only RGB data as input. Recently,

Shekhar et al. [L4] demonstrate depth-based stylization methods running interac-

tively on a mobile device. As part of our approach we employ depth data only for

3D photo generation and as future work would also incorporate it for stylization.

Note that there are already consumer mobile applications (e.g., Loopsie, PopPic,

Parallax, DazzCam) that allow on-device 3D photo generation and limited editing.

However, unlike these, we provide a broad range of advanced IB-AR techniques

for editing the 3D photo. Further, we provide more control to the user in terms of

generation and editing.

5.3. Data Modeling

Prior to focusing on 3D photo synthesis and stylization (Sec. 5.4), this section

briefly describes the basic data model used by our approach. Fig. 5.2 shows an

overview of the respective data structures.

3D Photo: A 3D photo is represented as an LDI [196], i.e., a number of layers, as

well as respective camera animation data required for viewing and export.

Layer: Fundamentally, a layer associates required (color and depth) and optional

(normal, mask) image data with reference to a depth-level.

Image Data: In addition to color and depth images, image data instances can

comprise masks and intermediate representations required for processing.
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Figure 5.3: Schematic overview of the processing pipeline implemented in our app Trios,
where steps 1-3 depict the creation of a 3D Photo and another set of steps 1-5 show

the creation of a Stylized 3D Photo.

Stylization Technique: An instance of a stylization technique defines the

order of algorithms applied to a semantic segment yielding an abstraction

or stylized image.

Stylization Parameter & Preset: Stylization techniques are parameterized by

a number of parameters whose values can be controlled directly by a user

or defined via presets.

Camera Path & Setting: To represent animations of the virtual camera, for 3D

photo synthesis, a camera path instance stores an ordered list of camera

settings. A camera setting comprises a 2D camera position, 2D look-to

vector, and a zoom parameter.

5.4. Method

Fig. 5.3 shows an overview of the presented framework. Its modular design

comprises the following conceptual processing stages, which are described in the

remainder of this section.

Input Data Acquisition & Preprocessing: This stage acquires the data re-
quired to synthesize and stylize a 3D photo. It can consume RGB and

RGB-D data and optionally compute additional raster data used within the

framework and perform any preprocessing if required (Sec. 5.4.1).

LDI Generation & Inpainting: For 3D photo synthesis, our approach is

based on the concept of LDIs. For it, this stage separates individual colors

layers and perform inpainting necessary to generate a plausible parallax

effect (Sec. 5.4.2).
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(a) Input (b) Depth (c) Normal (d) Matte (e) Salience

Figure 5.4: Examples of additional raster data that can be automatically derived based

on a color input image and used as input for image stylization and 3D photo rendering.

Per-Segment Stylization: The depth-based layer generation do not respect

image semantics. To address this issue and produce a spatially consistent

output, we divide the image into semantic-segments. This core stage enables

the above and further application of stylization techniques on a per-segment

basis (Sec. 5.4.3).

Rendering & Export: This stage exports the synthesized 3D photo animation

as a video, based on the virtual camera path specified by the user (Sec. 5.4.4).

5.4.1. Acquisition and Preprocessing of Input Data

This stage prepares the input data to be used in the subsequent stages of our

framework.

Input Data Acquisition and Generation. Fig. 5.4 shows examples of data our

framework can consume for 3D photo stylization. Besides depth, it computes

normal vectors for surface orientation [246], as well as matte and saliency data;

the last two acquired using the Apple Vision framework. To support a potentially

wide range of mobile devices, this stage can handle two types of input data: (1)

RGB-only images and (2) RGB-D images, depending on the respective mobile

hardware available to a user. In case of RGB-only input image, the pre-processing

stage uses MiDaS [182] to compute relational depth information based on color

values. In case the depth data is provided by the device depth-sensors, it is usually

of lower spatial resolution than the respective color image. For it, the depth map

is upsampled to the color image resolution using a standard upsampling filter,

e.g., joint-bilateral upsampling [116].

Preprocessing of Depth Data. Following to that, further depth data processing

is performed as depicted in Fig. 5.5. After acquisition (Fig. 5.5a), the depth map (𝐷)
is normalized (Fig. 5.5b) based on a pre-computed depth histogram. The histogram
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(a) Acquired depth 𝐷 (b) Norm. depth 𝐷𝑁 (c) Quantized depth 𝐷𝑄

Figure 5.5: Visualization of exemplary depth data during different stages of pre-

processing. First, the acquired depth values (a) are normalized to span the complete

range of possible depth values (b). Subsequently, normalized values are then quantized

uniformly into a number of bins specified by the user (c).

yields the minimum (𝑑min) and maximum (𝑑max) depth values. Normalization is

then performed:

𝐷𝑁 (𝑥, 𝑦) =
𝐷(𝑥, 𝑦) − 𝑑min

𝑑max − 𝑑min

Subsequently, the normalized values are thresholded (Fig. 5.5c) based on uniform

quantization:

𝐷𝑄(𝑥, 𝑦) ∶=

{
⌊𝐷𝑁 (𝑥, 𝑦) ⋅ 𝑏⌋ 𝐷𝑁 (𝑥, 𝑦) < 1
𝑏 − 1 otherwise

The number of bins 𝑏 ∈ ℤ0+
represents layers of unique depth value, and can be

set by the user as a parameter. In general, the number of depth layers account for

the resulting rendering quality and processing performance, i.e., lower enables

faster rendering, higher increases visual quality – depending on the distribution

of depth values. In our experiments, we found that 𝑏 = 3, i.e., the separation
between background, midground, and foreground is sufficient for most scenes

(Fig. 5.6).

5.4.2. LDI Computation and Inpainting

Based on the pre-processed depth data, this stage first performs LDI generation

by separating the RGB-D data into individual layers of unique depth complexity.

Following to that, for each layer the RGB regions that possibly become subject

to disocclusions during 3D photo rendering are inpainted. These steps yield a

number of RGB-D layers which can be stylized individually in an art-directed

way (Sec. 5.4.3).
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(a) Input (b) Background (c)Midground (d) Foreground

Figure 5.6: Example visualization of separating an input image (a) into individual LDI

layers (b)-(d), based on quantized depth data (Fig. 5.5c). White indicates pixels associated

to other layers.

(a) Input color (b) Coverage (c) Inpainting

Figure 5.7: Visualization of the layer processing stages performed by the framework

prior to the stylization and rendering of 3D photos. For the input color layer (a), regions

are inpainted that would dis-occlude during camera animation (c). All other pixel data

will remain unchanged, visualized by the coverage (b) (white: requires inpainting, gray:

no inpainting required).

Layer Separation. Fig. 5.6 shows an example of the separated LDI layer, based

on the pre-processing results depicted in Fig. 5.5c. The layer segmentation is

performed based on a per-pixel level using depth data as follows. For each depth

bin 𝑖 ∈ 0,… , 𝑏 − 1, the input image 𝐼 is copied into a respective layer 𝐿𝑖. The
transparency value of pixels is set to zero if the depth value at that location does

not belong to the respective bin.

Inpainting. Subsequent to the layer separation, inpainting is performed for

each layer 𝐿𝑖 with 𝑖 = 0,… , 𝑏 − 2, i.e., the foreground layer remains unaffected.

Inpainting is required to hallucinate color information which was occluded during

acquisition and becomes visible during 3D photo rendering. For each layer 𝐿𝑖, a
coverage value 𝑐 at each pixel position (𝑥, 𝑦) is determined based on the depth
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(a) Quantized Depth map (b) Per-Layer Stylization.

(c) Semantic segmentation map (d) Per-Segment Stylization

Figure 5.8: For an input image (a) depth-map (b) is used to break image into multiple

layers. For a spatially consistent stylization we perform semantic segmentation (c). The

stylization can be performed using a per depth-based layer approach (d) or a per semantic-

segment approach (e). Note how semantic segmentation reduces spatial inconsistencies

due to stylization.

values in 𝐷𝑄 :

𝑐(𝑥, 𝑦) ∶=

{
1 𝐷𝑄(𝑥, 𝑦) > 𝑖
0 otherwise

With the coverage data 𝑐 (c.f. Fig. 5.7b), we make use of Bilateral Filter for in-

painting similar to Shekhar et al. [L4]. The filter is applied on a per-layer basis

for the image regions that are qualified with 𝑐(𝑥, 𝑦) = 1 and within a specified

distance to the visible pixels. For bilateral filter parameters, we use 𝜎𝑠 = 5 for
spatial range and 𝜎𝑟 = 12 for the tonal range. The above is an efficient approach

which gives visually plausible output. However, as part of future work it can be

improved using learning-based techniques.

5.4.3. Per-Segment Stylization

The layers generated based on depth do not respect the image semantics, (Fig. 5.8).

To obtain a consistent output, semantically similar regions should be stylized

in a similar fashion. Thus, we divide the input image into segments based on a

semantic segmentation model. We integrate different artistic rendering effects

for stylizing these segments [195]. Specific to Trios, these comprise variants of

Cartoon [232], Watercolor [30], Oil paint [192], and Hatching [194]. In case, inte-

grated stylization techniques require depth data, it is facilitated via our framework.

Sec. 5.6.1 describes the possibilities of the per-layer stylization approach.
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(a) Segmentation Screen (b) Stylization Screen

(c) Touch-Up Screen (d) Export Screen

Figure 5.9: Overview of the main user interface screens provided by our prototypical

application for a stylization session. Starting with the segmentation screen (a), a user

can load or capture an image and define the basic properties of the 3D photo, e.g., the

segmentation method and desired number of segment-layers. The stylization screen

enables the user to select and adjust stylization effects (b). If a user is not satisfied with

layer borders, it can be adjusted by directly drawing on the image (c). After finishing the

editing process, the export screen provides result preview and allow the user to export

different file formats (d).

5.4.4. Rendering for Preview and Export

This stage synthesizes a 3D photo animation for preview and exports based on the

(stylized) LDI layer and camera settings. For rendering a single frame of 3D photo

animation, we implement the approach given by Shade et al. [196]. To achieve

interactive performance, we make use of GPU-aligned implementation based on

custom data structures for image storage and representation. Our framework

allows setting the number of LDI layers generated during export to achieve

varying intensities of parallax.

Figure 5.10: Diagram showing the control flow between the individual screens of our

prototypical application.
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5.5. User Interface

We prototypically implement the proposed framework based on iOS and iPadOS.

The code is based on Swift, UIKit, CoreImage, CoreML, and Metal APIs. However,

the implementation methodology is not device-specific and can also be extended

for other high-end mobile devices. Our prototypical app reflects our method’s

structure by offering a dedicated screen for each step. The modular structure

allows for easy transitions between these (Fig. 5.10). Further, the user experience

is designed to accommodate editing on multiple levels-of-control [93].

Fig. 5.9 shows an overview of the main views, whose functionalities are briefly

outlined in the remainder of this section. As a main feature for visual feedback

during editing, every screen allows for selecting and playing a 3D photo animation.

The animation is described via a virtual camera path wherein a user can select

from a number of pre-defined paths.

5.5.1. Segmentation Screen

Fig. 5.9a shows an example of the segmentation screen, the first screen provided

after on-boarding. It allows the user to load a RGB(-D) image or acquire one using

built-in camera functionality. The screen allows for previewing the synthesized 3D

photo using pre-defined or custom animation modes (Sec. 5.5.4). Further, the user

can choose between a “coarse” (𝑏 = 3) or “detailed” (𝑏 = 5) LDI representation. In
addition to depth-based layers (5.4.3) a semantic-segmentation-map is also created

here. To provide visual feedback to the user, the boundaries of the respective layers

are depicted using white lines. This separation is only used for the stylization

phase.

At this point, a user can already choose to export the 3D photo animation

(Sec. 5.5.5) which represents the standard functionality of existing 3D photo

apps.

5.5.2. Stylization Screen

For design reasons, we assume that the target audience is familiar with raster-

image editing apps and therefore decide to re-use Graphical User Interface (GUI)
concepts from common image-editing applications [114]. It offers different levels-

of-control, ranging from choosing stylization presets (high-level) to adjusting

individual parameters (low-level) [93]. An icon indicates, if a layer has a stylization

technique applied.
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(a) (b) (c)

Figure 5.11: Layer controls.

For it, the stylization screen (Fig. 5.9b) presents

the individual layers on the right screen side us-

ing an ordered list, descending from background

(top) to foreground (bottom). Upon layer selec-

tion, the user can choose from various artistic

effect presets displayed below the preview im-

age. Thus, a user can rapidly switch between stylization variants and control

the overall results in an art-directed manner. Additionally, the stylization screen

offers access to further low-level layer-management operations, such as param-

eter control (Fig. 5.11a), touch-up for the layer mask (Fig. 5.11b, Sec. 5.5.3), as

well as merging selected layers. Specific parameter controls can be used to make

adjustments to the selected preset. The touch-up button opens a screen described

in the next paragraph.

5.5.3. Touch-Up Screen

Fig. 5.9c shows the screen that offers layer-based touch-up functionality. If the

user is not satisfied with the generated segments, the borders can be corrected

by simply drawing on the image. The respective pixels are added to the mask of

the selected segment. The current segment is highlighted with a red overlay. The

drawn path is displayed directly and added to the path after the touch is finished.

The radius of the brush can be adjusted with the slider at the bottom.

5.5.4. Camera Controls & Edit Screen

In order to enable easy exploration of preliminary editing results, our GUI offers

control over the virtual camera in every screen, located above the 3D photo pre-

view. It enables a user to play a camera animation and select from three different

predefined animation modes as follows. The pre-selected camera animation mode

(Fig. 5.12b) interpolates between a fixed number of virtual camera positions and

orientations.

(a) (b) (c) (d) (e)

Figure 5.12: Camera controls.

Further, for fast exploration of the re-

sult and detection of possible artifacts

due to discontinuities or dis-occluded

areas, the GUI enables the traversal

along a spiral path (Fig. 5.12c) – usual

for 3D photo exploration. Finally, the

position and orientation of the virtual camera can be directly controlled by the

device gyroscope or accelerometer data (Fig. 5.12c). To allow for additional control

over the virtual camera, a user can specify custom camera animations by switch-

ing to the camera edit screen (Fig. 5.12e). Here, the user can specify their own
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(a) Cartoon stylization with

more abstraction towards the

background.

(b)Watercolor stylization using

different accent colors per layer.

(c) Pencil-hatching stylization ap-
plied on each layer except the

main focus area.

Figure 5.13: Images stylized by Trios using different presets and stylization parameter

configurations on a per-layer basis.

camera animation path by replacing the predefined one. For it, camera settings

are generated by storing positions tapped on the image view. Subsequently, the

camera settings can be manipulated with respect to the look-to vector, zoom level,

traversal timing, and interpolation functions.

5.5.5. 3D Photo Export Screen

Finally, the user can export the 3D photo stylization results. For this, Trios offers
a dedicated screen (Fig. 5.9d) for settings regarding the “level-of-depth” as well as

the output file “format”. The number of layers reflects the perceived intensity of

the resulting parallax effect. We choose 𝑏 = 3 for a “flat” and 𝑏 = 7 for the “deep”
option. This way, the user need not edit all layers that contribute to the parallax

effect during final 3D photo rendering and can focus on the major composition

elements (e.g., background, foreground, etc.). With respect to the export-file

format, our prototype currently supports videos and as future work we would

also like to include animated images.

5.6. Results
This section evaluates our approach regarding runtime performance (Sec. 5.6.2)

and discusses limitations (Sec. 5.7) by means of different application examples

(Sec. 5.6.1).

5.6.1. Application Examples

Fig. 5.13 shows exemplary results generated using our framework and a pro-

totypical mobile application. On an average, the users required 1min to 3min
for stylization. The per-segment stylization approach offers a high degree of

flexibility. For example, all segments can be stylized with the same stylization

technique but using a single or multiple different presets. Usually, users tends to

apply more aggressive stylization on background segments and maintain high
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Image Resolution Pre-processing #Layers Segmentation Stylization per layer Rendering Overall

HD (1280 × 720 px) 0.15 s 3 0.14 s 0.4 s (0.15 s × 3) 0.11 s 0.85 s
5 0.31 s 0.75 s (0.15 s × 5) 0.15 s 1.21 s

FHD (1920 × 1080 px) 0.17 s 3 0.15 s 0.57 s (0.19 s × 3) 0.16 s 1.05 s
5 0.32 s 0.95 s (0.19 s × 5) 0.24 s 1.68 s

QHD (2560 × 1440 px) 0.19 s 3 0.15 s 0.63 s (0.21 s × 3) 0.17 s 1.14 s
5 0.33 s 1.05 s (0.21 s × 5) 0.27 s 1.84 s

Table 5.1: Runtime performance of the individual stages in our framework different

input image resolutions.

level of detail in the foreground. Further, users are allowed to use different styliza-

tion techniques per-segment or do not even apply any stylization to a particular

segment.

5.6.2. Performance Evaluation

System & Setup. We test the performance of Trios using the following setup.

Tests on a mobile device were executed using an iPad Pro 3
rd
generation equipped

with an Apple A12X Bionic processor and 4GB of Random Access Memory (RAM).

With respect to the test data, we perform runtime analysis using images of

three different resolutions: High Definition (HD) (1280 × 720 pixels), Full High
Definition (FHD) (1920×1080 pixels), andQuad High Definition (QHD) (2560×1440
pixels).

Run-time Performance Results. Tab. 5.1 shows the runtime performance

results for each pipeline stage with increasing image resolutions. We record the

processing time for the steps of segmentation, stylization of all layers, and the

final rendering. One can observe, that the runtime performance of each step scales

with the image resolution and the number of layers to stylize. The type of effect,

selected for stylization, has negligible impact on the overall performance. During

the export, the rendered 3D photo is displayed on the screen and is simultaneously

written to the memory. Thus, saving the 3D photo takes approximately as long

as the final result visualization. Note, that for depth estimation and/or object

segmentation we use trained neural-network models. These models are only

loaded once and have an initial loading overhead of approx. 5 s.

Memory Consumption. The prototypical app itself has a storage size of 1.8GB
on the iPad. The memory consumption of our prototype scales linearly with the

resolution of the input image. For a spatial resolution of 1920 × 1080 pixels, the
memory usage is approx. 35MB without stylization and approx. 135MB with

stylization applied. The final 3D rendering step increases the memory usages to

275MB. The exported 3D file itself, e.g., M4V, of 5 s has a size of 7MB. Thus, the
application has a reasonable memory footprint.
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5.6.3. Usability Evaluation

The prototype was presented at an international conference on computer graphics

using the same setup described in Sec. 5.6.2. We gave a brief introduction to Trios
to approximately 40 people, who then choose example images or took photos

and edited these accordingly. A user spent on average 2min to 5min to create

a stylized 3D photo. Most users were familiar with the general concepts of 3D

photos and stylization, thus immediately understood the concept of layer-wise

combination of both. The working modes were well understood, however some

functionalities had to be pointed out repeatedly, e.g., multi-selection and layer

merging.

The device motion was mostly used to view the parallax effect since it had

the most immersive effect for the users. When handed the device, users often

directly tried to move the photos using device rotation. However, the responding

transformation of the 3D photo was often found to be slightly contra-intuitive or

not always reliable.

Of particular interest to most users was switching between different stylization

presets rather than using the fine-tuning option. In most cases, two different styl-

izations were chosen – one for background and one for foreground. Regarding the

type of stylization, either strongly varying styles were chosen for more contrast

or similar stylization techniques with different level-of-abstraction to increase

depth sensation. Overall the user’s feedback was positive. Especially people

from non-technical background were excited to have on-device 3D stylization.

However, as per the feedback, the experience can be further improved by more

reliable device motion and better layer separation.

5.7. Discussion

Our goal is to develop a framework for interactive stylization of 3D photos on mo-

bile devices. To this end, we deploy depth-estimation and semantic-segmentation

neural-network models on the device. We observe that the optimized mobile-

based models perform significantly worse than their desktop counterparts, while

still giving plausible results for our purpose. For high-quality results, better

depth-quality and inpainting techniques are required. However, increased layer

numbers and a sophisticated inpainting algorithm impacts interactivity.

Although, our app shows the feasibility of our framework and achieve sufficient

interactive characteristics, we plan to address several aspects as future work. The

presented modular framework provides the basis for straightforward integration

of alternative or additional image processing operations. For example, we plan

to use live-photos or videos to improve the resulting inpainting quality, e.g.,
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inspired from the work of Shih et al. [202]. With a combination of depth- and

semantic-estimation, the resulting depth map can be further improved to avoid

objects being split into different layers [165]. Further, depth-map upsampling

can be improved using guided filtering [85] and can form the basis to implement

stylized atmospheric effects [L4].

5.8. Conclusions
In this chapter, we present a framework for implementing 3D photo stylization

techniques on mobile devices. Our approach is based on layered depth-images and

proposes a modular concept for data acquisition, pre-processing, stylization, and

rendering of 3D photos. We demonstrate and evaluate the feasibility by providing

an initial implementation based on Apple consumer devices. Our integrated

approaches enable users to rapidly create stylized variants of 3D photos, which

can easily be shared using common interchange file formats such as animated

images or videos.
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Part II.

Video Processing based on
Intrinsic Attributes





6. Consistent Filtering of Videos and
Dense Lightfields

The contents of this chapter is based on the following original publication(s):

Sumit Shekhar, Amir Semmo, Matthias Trapp, Okan Tursun, Sebastian Pasewaldt, Karol

Myszkowski, and Jürgen Döllner. “Consistent Filtering of Videos and Dense Light-Fields Without

Optic-Flow”. In: Vision, Modeling and Visualization. 2019 [L1]

Due to rapid advancements in the field of visual computing in the past few

decades, a plethora of image-processing techniques have been developed which

deals with manifold applications, such as tone-mapping, contrast enhancement,

color constancy, color grading, and style transfer. However, extending such

techniques for video is not a trivial task. The difficulty arises due to an extra

temporal dimension in the input data. One naive, yet generic way of extending

image-based filtering techniques for video is to apply them individually on a

per-frame basis. However, this approach may lead to temporal inconsistencies

seen as flickering artifacts.

6.1. Challenges and Contributions

Existing works to remove such inconsistencies are based on the idea of performing

per-frame filtering and applying temporal consistency as a constraint during pro-

cessing or as a post-processing step. Most of these techniques implicitly require

optical-flow. For instance, Bonneel et al. [27] use flow-based image warping in a

gradient-domain-based optimization to enforce consistency between neighboring

views, and Lai et al. [120] use optical-flow to train a neural network by minimiz-

ing short-term and long-term temporal loss for enforcing consistency. However,

optical-flow computations may be expensive and/or potentially inaccurate espe-

cially in case of disocclusion(s) [59].

In this chapter, we present a consistent filtering technique for image sequences

that does not rely on optical-flow and still can attain temporal consistency in a

generalized way (Fig. 6.1). In particular, we show that a careful combination of
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(a) Input (b) Per-frame Processed (c) Lai et al. [120] (d) Ours

Figure 6.1: Comparison of angular (in-)consistency for (a) Lego light-field (taken

from [219]) processed with (b) per-frame water-color stylization using the method of

Bousseau et al. [31]. As can be observed in this example, (c) the output produced with the

technique of Lai et al. [120] introduce visible artifacts as compared to (d) our approach.

low-frequency content from the temporally denoised output and high-frequency

content from the per-frame processed result can significantly reduce temporal

flickering. We use saliency-based weights for such an adaptive combination, i.e.,

to identify and preserve visually important details. Unlike most of the previous

methods, our algorithm is well suited for image-abstraction applications e.g.,

neural style transfer.

Moreover, our method is also applicable for filtering dense light-fields, which

gained major attention in the past decade [233, 167] with the advent of Virtual
Reality (VR). Manifold image processing methods [233] have been extended

to dense light-fields for applications such as denoising [4, 228, 157], intrinsic

decomposition [5, 66, 17], and depth estimation [97, 106, 191]. Our video-based

solution is applicable to a wide variety of image filters and can be easily extended

to dense light-fields.

To summarize, this chapter presents the following contributions:

1. A method that makes per-image filtered image sequences consistent by

denoising image slices across the sequence without using optical-flow.

2. An interactive real-time processing framework that enables direct control

of the amount of temporal or angular consistency, based on image saliency,

thus producing user-defined outputs.
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3. Applications demonstrate the versatile usage of our method to a wide-range

of image filters for videos and dense light-fields, such as color grading, color

constancy, dehazing, colorization, and neural style transfer.

6.2. Related Work

Task-Specific Consistent Video Filtering: Many application-specific tech-

niques have been extended to achieve temporal consistency based on the type

of image filter. For instance, Aydin et al. [9] propose to use edge-aware spatio-
temporal filtering of HDR videos to obtain base and detail layers and perform

coherent video tone-mapping. Temporal coherence is a particular challenge for

video tone-mapping as surveyed by Eilertsen et al. [55]. For the application

of color grading, Bonneel et al. [24] employ an approximate curvature-flow

technique to enforce temporal consistency in a post-processing step. In the

context of color constancy, Farbman et al. [56] use the tonal settings of few

anchor frames to process in-between frames to ensure consistency. In case of

video stylization optical-flow is typically used for automated coherent parame-

terization, e.g., in bi-directional texture advection of watercolor stylizations [31],

to compute object flow—robust against inaccurate optical-flow—for generalized
video stylization [146], and in machine learning for coherent style transfer [189].

For the task of intrinsic decomposition Meka et al. [151] use a global spatio-

temporal reflectance consistency prior ensuring temporal consistency. The above

application-specific examples show the variety of techniques used to overcome

the common underlying problem of temporal inconsistency. Most of them utilize

optical-flow to enforce temporal coherence. Unlike the above approaches, we

develop a generic algorithm that is filter or task agnostic. Moreover, our method

does not rely on optical-flow.

Task-Agnostic Consistent Video Filtering: Apart from application-specific

approaches, generic methods have also been proposed to address the problem

of temporal inconsistency for various filters. Paris [168] extends image-based

isotropic diffusion and Gaussian convolution for video streamswith an application

towards bilateral filtering, anisotropic diffusion, and mean-shift segmentation.

Lang et al. [124] create motion paths using dense optical-flow, which are then

filtered after undergoing a 1D domain transform. Dong et al. [51] divide in-

dividual frames of a video into multiple regions and perform a region-based

spatio-temporal optimization. Bonneel et al. [27] combine the high-frequency

gradients from the per-frame processed output and the low-frequency content

from the warped version of the previous frame using a gradient-domain based

optimization scheme. Yao et al. [241] use key frames to avoid the inconsistency
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problem that occur due to occlusion. Finally, Lai et al. [120] use a machine-

learning technique and introduce short-term and long-term temporal losses as

well as a perceptual loss to balance temporal coherence between frames and

perceptual similarity with the individually processed frames. Our method also

belongs to this category of generic approaches to attain the goal of temporal

consistency, but—unlike previous methods—does not require optical-flow.

Light-Field Filtering: Many generic methods have been recently proposed to

propagate per-view edits consistently across dense light-fields [96, 7, 60]. Jarabo

et al. [96] downsample the light-field data based on an affinity function. The

edits are propagated in the downsampled domain. Ao et al. [7] build upon the

work of Jarabo et al. and perform an improved downsampling and upsampling

on reparameterized light-fields to explicitly enforce consistency between views.

Frigo et al. [60] perform diffusion in the Epipolar Plane Images (EPIs) for an
angularly-coherent light-field editing. In a follow-up work, Bonneel et al. [26]
extend their previous work [27] on single-camera videos to multi-camera array

videos, which is also applicable to light-fields. These techniques are examples

on how to approach the common problem of angular inconsistency. However,

for light-fields we aim to preserve angular consistency analogous to temporal

consistency in videos. Our approach for the removal of temporal inconsistencies

can be extended to achieve angular consistency for light-field filtering with

only minor modifications. Moreover, in case of light-fields, our denoising step

corresponds to EPI denoising and such EPI manipulation is an integral aspect of

various light-field processing methods [233].

6.3. Method

For an input image sequence {𝐼𝑖 | 𝑖 = 1…𝑁 }, its per-image processed version

{𝑃𝑖 | 𝑖 = 1…𝑁 }, and per-image saliency map {𝑆𝑖 | 𝑖 = 1…𝑁 }, we seek to find a

consistent output {𝑂𝑖 | 𝑖 = 1…𝑁 }. Our method is agnostic to the filter 𝑓 applied

on each image. As an intermediate step, 𝑃𝑖 is denoised across the image sequence

(Secs. 6.3.1 and 6.3.2) to obtain {𝐶𝑖 | 𝑖 = 1…𝑁 }. We then solve a gradient-domain

optimization scheme in the image domain Ω (Fig. 6.3),

𝐸(𝑂𝑖) = ∫
Ω( ||∇𝑂𝑖 − ∇𝑃𝑖||2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
data

+ 𝑤𝑠 ||𝑂𝑖 − 𝐶𝑖||2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

smoothness

) 𝑑Ω
(6.1)

The data term in this optimization approach enforces similarity with the per-

image processed result 𝑃𝑖 in the gradient-domain. Thus, only the high-frequency

details are taken from 𝑃𝑖. The low-frequency consistent content is taken from the
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Figure 6.2: Exemplary processed image sequence and its corresponding Temporal-Slice
Image (TSI).
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Figure 6.3: Flowchart of our system for consistent filtering of an image sequence as

described in Sec. 6.3.

denoised image 𝐶𝑖. The influence of smoothness term is controlled by per-pixel

saliency weights 𝑤𝑠 (Fig. 6.7).

6.3.1. Temporal Denoising

Our assumption is that the temporal inconsistencies in a video are represented as

temporal noise across a given scanline. We arrange the video frames of 𝑃𝑖 to form
an image sequence where—apart from the spatial dimension—the third dimension

represents time. The image sequence is horizontally sliced across a given scanline

to obtain a respective TSI (Fig. 6.2). The temporal inconsistencies in the video

can be seen as noise in the processed TSI (Fig. 6.4b). A straightforward approach

to remove inconsistencies is to perform denoising in the TSI domain (Fig. 6.4).
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(a) Input TSI (b) Processed TSI

(c) Denoised TSI: Gaussian (d) Denoised TSI: Bilateral Filter

(e) Denoised TSI: BM3D (f) Denoised TSI: FFDNet

Figure 6.4: Example of a TSI for the correspondent (a) input, (b) processed, and denoised

videos. Compared denoised versions: (c) Gaussian, (d) Bilateral Filter, (e) BM3D, and

(f) FFDNet. Note how the noise reduces significantly using FFDNet while still maintaining

similarity with the per-frame processed result.

A side-effect of the denoising step is the introduction of motion blur along the

horizontal direction (Fig. 6.7b). It is also possible to slice the image sequence

vertically, thereby causing blur in the vertical direction. However, the direction

of slicing does not affect the final output noticeably (Fig. 6.5). Our approach of

denoising image slices is inspired from the work of Khazdan et al. [110], where
the authors use a similar technique for the denoising of electron microscopy

image stacks.

In order to denoise a temporal slice, a method of choice should be the one that

reduces temporal inconsistencies without introducing motion-blur in the image

sequence. We experimented with four image denoising methods for this purpose:

naive Gaussian smoothing, Bilateral filtering [214], BM3D [44], and FFDNet [249].

In comparison to others the learning-based denoising of FFDNet can handle

spatially variant noise, wide range of noise levels and is also fast. It is based on an

end-to-end trainable deep CNN which incorporates residual learning. Moreover,

we empirically identified FFDNet to be the best choice for our use case w.r.t the

above mentioned criteria (Fig. 6.4).

6.3.2. Angular Denoising

In case of dense light-fields, the third dimension in the stacked image sequence rep-

resents the angular dimension. The sequence of processed sub-aperture views are

traversed in horizontal and vertical directions from the top-left to bottom-right to
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Figure 6.5: Comparing the outputs after denoising (top row) and outputs after consistent

filtering (bottom row) with respect to computing horizontal and vertical TSIs. Note how

the choice of slicing (vertically or horizontally) does not affect the final output noticeably.

obtain horizontally and vertically traversed image-sequences respectively (Fig. 6.6).

Each of these image sequences is sliced along a given scanline to obtain an ASI

comprising of multiple EPIs (Fig. 6.8). The sliced images—representing the EPI

domain—are denoised for removing angular inconsistencies. The denoised hori-

zontal and vertical traversed image sequences are averaged to obtain the final

angularly-denoised light-field. We employ the same denoising algorithm as in

case of temporal denoising.

6.3.3. Saliency Weight

The minimization of the energy function in Eqn. (7.1) aims to achieve two main

goals: (a) perceptual-similarity with the per-image processed result and (b) re-

duced inconsistencies. The consistent image 𝐶𝑖 is smoothed due to denoising;

however, such smoothing also blurs image details. To enforce consistency and

also preserve important details, we make use of a per-pixel perceptually salient

weight 𝑤𝑠 Fig. 6.7c. The idea is to allow for more smoothing in those regions that

are either not salient (1 − 𝑆𝑖) or where the difference in intensities of 𝑃𝑖 and 𝐶𝑖

is not noticeable (1 − 𝐷𝑖) (Eqns. (6.2) to (6.3)). The scaling and offset parameters

𝛽 ∈ [0.1, 10.0] and 𝜖 ∈ [0.02, 1.0] facilitate tuning this weight, respectively:

𝑤𝑠 = 𝛽[(1 − 𝑆𝑖)(1 − 𝐷𝑖) + 𝜖] (6.2)

The definition of the binary just-noticeable-difference function 𝐷𝑖 uses a diff
value threshold. The threshold parameter 𝜇 ∈ [0.01, 10.0] provides further tuning
control. The diff function (Eqn. (6.4)) is based on the definition of Weber contrast
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Figure 6.6: Schematic overview of how the image sequences are horizontally and verti-

cally traversed.

and uses image intensity as a measure [229]. In this respect, we observe that

the image intensity measure (Eqn. (6.5)) empirically performs better than the

luminance for the purpose of consistency [162].

𝐷𝑖 =
⎧⎪⎪
⎨⎪⎪⎩

1, if 𝑑𝑖𝑓 𝑓 ≥ 𝜇

0, otherwise

(6.3)

𝑑𝑖𝑓 𝑓 =
|𝐼𝑛(𝑃𝑖) − 𝐼𝑛(𝐶𝑖)|

𝐼𝑛(𝑃𝑖)
(6.4)

𝐼𝑛( 𝐼𝑖 ) =
√
𝑟2 + 𝑔2 + 𝑏2 (6.5)

In order to compute saliency maps, we experimented with (1) the image-based

method of Liu et al. [144] and (2) the video-based method of Wang et al. [226].
Here, we observe that the spatial resolution of saliency maps are better with (1)

while the temporal consistency is better with (2), we thus favor the technique of

Wang et al. for our purpose. The resultant weight is smoothed with a Gaussian

filter (𝜎 ∈ [0.1, 5.0]) to improve its spatial consistency. By tuning the parameters

we make sure that saliency weights vary smoothly between frames.

6.3.4. Optimization Solver

The output 𝑂𝑖, which minimizes the energy 𝐸(𝑂𝑖) in Eqn. (6.1), must satisfy

Eqn. (6.6) as per the Euler-Lagrange formulation [231]:

𝑤𝑠 ⋅ 𝑂𝑖 − Δ𝑂𝑖 = 𝑤𝑠 ⋅ 𝐶𝑖 − Δ𝑃𝑖 (6.6)

For solving the system of linear equations represented by Eqn. (6.6), we use

the iterative scheme of Stochastic Gradient Descent (SGD) with momentum [178].

By choosing an iterative solver, we overcome the limitation of storing a large
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(a) Processed Image 𝑃𝑖 (b) Denoised Image 𝐶𝑖

(c) Perceptually-salient Weight 𝑤𝑠 (d) Output 𝑂𝑖

Figure 6.7: Adaptive combination of a per-frame processed image and its denoised

version using perceptually-salient weights. Note how the perceptually salient face details

in foreground are preserved in the output while the background is temporally smoothed.

matrix in memory and calculating its inverse. Moreover, with an iterative scheme

we can stop the solver once we have achieved a solution without noticeable

inconsistencies. At this, our interactive interface allows users to control the

degree of convergence by providing the number of iterations. In practice, with a

fast convergence rate of SGD with momentum, 20 - 30 iterations are sufficient for

a consistent output. All the steps of our consistent video filtering algorithm is

outlined in Algo. 2.

Algorithm 2: Consistent Filtering of a Video-Sequence
1 for 𝑖 ≤ 1 to 𝑁 do

// 𝑁 number of images

2 𝑃𝑖 ← 𝑓 (𝐼𝑖) // Per-image filtering

3 for 𝑘 ≤ 1 to 𝐻 do
// 𝐻 is height (in pixels) of each image

4 𝑇 𝑆𝐼 𝑘 ← 𝑆𝑙𝑖𝑐𝑒({𝑃𝑖 | 𝑖 = 1…𝑁 }) // Slice across 𝑃𝑖 sequence
5 𝐷𝑒𝑛𝑜𝑖𝑠𝑒(𝑇 𝑆𝐼 𝑘)

6 for 𝑖 ≤ 1 to 𝑁 do
7 𝐶𝑖 ← MergeSlices(𝑇 𝑆𝐼 𝑘 | 𝑘 = 1…𝐻)
8 𝑆𝑖 ← ComputeSaliency(𝐼𝑖)
9 𝑤𝑠 ← ComputeSaliencyWeights(𝑆𝑖, 𝛽, 𝜖)

10 𝑂𝑖 ← SolveOptimization(𝑃𝑖, 𝐶𝑖, 𝑤𝑠)
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Figure 6.8: Exemplary overview of an input, processed and denoised Angular-Slice
Image (ASI). The inset shows an enlarged EPI.

6.4. Results

Our approach is independent of the underlying image filtering applied on the

video frames or light-field sub-aperture views, and is suitable for a wide range of

applications (Fig. 6.10 and Fig. 6.11).

Neural Style Transfer. We apply the feed-forward neural style transfer of

Johnson et al. [107] per video frame. Using our consistent filtering approach,

high-frequency temporal flickering can be reduced in the stylized output. Recent

works argue that many filtering approaches have become too successful at co-

herent stylization, as the outputs loose the “visual richness comparable to real

artwork” [57] or have “the uncanny and unappealing effect of a 3D world covered

in paint” [46]. In this respect, the proposed interactive framework and saliency

maps can help to locally control the amount of temporal or angular consistency,

and thus preserve detail of the transferred style.

Image enhancement. In order to enhance individual images, we use the low-

light image enhancement technique by Chen et al. [230]. The per-image operation

introduces high-frequency flickering like film-grain noise. Our method provides

inherent denoising and is able to provide a consistent output.

Colorization. We use the image colorization algorithm of Zhang et al. [252] to
colorize individual frames of a video. The temporal flickering is caused due to
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color variations between frames as well as color bleeding within scene objects.

Our method is able to significantly reduce these artifacts.

Color Grading. Applying the first part of the color grading algorithm proposed

by Bonneel et al. [24] to videos results in obvious temporal inconsistencies. These

can be noticeably removed using our method.

HDR Toning. We apply tone-mapping using the method of Paris et al. [169]
on a per-frame basis. The toning technique—based on subband decomposition—

causes flickering in consecutive frames due to different high and low frequency

luminance details. Our algorithm is able to rectify these luminance variations

between separately tone-mapped images.

6.4.1. Comparative Evaluation

We compare our algorithm with the previous methods of Bonneel et al. [27] and
Lai et al. [120] for the above mentioned applications (Fig. 6.10 and Fig. 6.11). In

case of videos, we use the test dataset provided by Lai et al. for relative com-

parison and for light-fields we generate the corresponding results. We observe

that the method of Bonneel et al. is not suitable for applications where new

image edges are generated as part of the filtering process, e.g., stylization and

neural style transfer. Moreover, since their method is based on the accuracy of

the optical-flow, they suffer from artifacts when occlusion occurs in large spatial

regions (Fig. 6.11(b)). Since our approach does not require optical-flow, it is robust

to problems due to occlusion and can also handle creation of new edges. The ap-

proach of Lai et al. addresses the problem of occlusions by introducing a long-term

temporal loss. However, such long-term loss also propagates the inconsistencies

from temporally or angularly distant frames. We observed such inconsistency

propagation in the form of subtle luminance or color variations (Fig. 6.1 and

Fig. 6.10). In comparison, our approach is based on denoising of TSI or ASI images

using a local-denoising method that does not affect regions that are spatially

distant in the TSI or ASI domain.

6.4.2. User Study

We conducted a user study to qualitatively evaluate the output of our approach.

We ask the participants to watch the consistent outputs produced by our method

and competingmethods and subsequently rate their preference on a Likert scale.
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Figure 6.9: Likert scale score of ours and previous methods as per the user

study (Sec. 6.4.2).

Bonneel et al. [27] Lai et al. [120] Ours

Mean (𝜇) 2.49 3.06 3.56
Std. Error of Mean (𝜎𝜇) 0.10 0.08 0.06

Table 6.1: Statistics of the Likert scale score for evaluated techniques

Setup. For each scenario we show a participant five videos, two on the top

row and three on the bottom. On the top row, we have the original video and its

per-frame processed version. We make the per-frame processed video consistent

using our, Boneel et al. [27], and Lai et al. [120] methods and place them in the

bottom row. The order of videos in the bottom row is randomized for each sample.

At first the videos in the top row are played while those in the bottom row are

stopped. After the user has seen the top row videos, bottom row videos are played.

The videos are played continuously in a playback loop. For each case, participants

were asked to rate the overall visual quality of outputs on a Likert scale from

1 (low) to 5 (high) based on two criteria: (1) the consistency of the output and

(2) its resemblance with the per-frame result. A total of 18 people (4 female, 13

male, 1 no answer) within an age group of 20 - 40 participated in the above study

and each looked at 10 (6 video and 4 light-field) filtering examples. The distance

between the screen and the observer was fixed to 1 m for all participants. The

group of participants included users with and without prior knowledge of image

and video processing.
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Input Processed Bonneel et al. [27] Lai et al. [120] Ours
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Figure 6.10: Comparison of our video consistency filtering technique with previous

methods by applying per-frame (a) Neural Style transfer by Johnson et al. [107] (b) Color
constancy by Gijsenij et al. [69] (c) Image-colorization by Zhang et al. [252] (d) HDR
Toning by Paris et al. [169]. Input videos are taken from the work of Bonneel et al. [27]
and the DAVIS dataset [171].

Analysis. In comparison to others, our method was able to improve over the

per-frame result for most of the cases (Fig. 6.9). In case of light-fields, we perform

significantly better than the previous methods. We compute mean and standard

error of mean of Likert scale scores (Tab. 6.1) and perform “Two-Sample t-Test

for Equal Means” for validation. We observe a significant difference between

the average scores of our method vs Lai et al. and Boneel et al. (p < 0.005, t-test)

respectively.

6.4.3. Performance

All our experiments were performed on a PC using Microsoft Windows 7 as

operating system, with a 3.5 GHz CPU, 16 GB of RAM, and a Nvidia GTX 1050 Ti

graphics card with 4 GB VRAM. The processed images are denoised to obtain 𝐶𝑖

and the saliency maps 𝑆𝑖 are computed in a pre-processing step. The denoising

of image slices is implemented in Python using the PyTorch [208] reference

implementation of the FFDNet [249]. For a video sequence of 219 frames, each
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Input Processed Bonneel et al. [27] Lai et al. [120] Ours

(
a
)
I
m
a
g
e
E
n
h
a
n
c
e
m
e
n
t

(
b
)
N
e
u
r
a
l
S
t
y
l
e
T
r
a
n
s
f
e
r

(
c
)
W
a
t
e
r
-
C
o
l
o
r
S
t
y
l
i
z
a
t
i
o
n

Figure 6.11: Comparison of our light-field consistency filtering technique with previous

methods by applying per-frame (a) Low-light image enhancement by Chen et al. [230]
(b) Neural Style Transfer by Johnson et al. [107] (c) Water-color stylization with pigment

dispersion as proposed by Bousseau et al. [31]. Input light-fields are taken from the work

of Shekhar et al. [199] and the Stanford light-field archive [219].

with a spatial resolution of 1024 × 576 pixels, computing 𝐶𝑖 takes approx. 50

seconds for all frames. The dynamic video saliency map is computed using the

original implementation by Wang et al. [226], which takes approx. 135 seconds

for all frames. Our interactive system is able to perform steps 6 to 10 of Algo. 2 in

real-time for each frame. It is implemented with C++ and CUDA (v10.0) and takes
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30 to 35 milliseconds per-frame to perform 30 iterations of SGD with momentum
to solve Eqn. (6.6).

6.5. Discussion
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Figure 6.12: The per-frame processed and denoising output where objects are moving in

arbitrary trajectory. We observe motion artifacts similar to ghosting along the trajectory

of spheres.

Our findings suggest that a careful combination of per-image processed results

and their temporal/angular denoised versions can be used to generate perceptu-

ally consistent outputs. It implies that selective denoising of a processed image

sequence is effective in removing noticeable inconsistencies. In comparison, pre-

vious methods mainly relied on optical-flow based image warping of consecutive

frames for enforcing consistency. The image-based warping technique might not

be effective for cases where optical-flow computation is challenging.

Our algorithm performs consistent filtering based on denoising of TSI or ASI

images. The above denoising step requires the complete sequence as an input

and can only be applied as a post-processing step. Thus, our approach is not

suitable for video streaming applications. We use carefully designed optimization

weights to strike a balance between preserving details and enforcing consistency.

However, we believe that this trade-off can be further improved by performing

a thorough analysis of the spatio-temporal/spatio-angular contrast sensitivity

[49].

We perform horizontal slicing of image and also evaluate vertical slicing in the

denoising step. As part of future work, we would analyze stochastic sampling

of both the horizontal and vertical neighborhood to avoid any potential residual

bias. In case of large or arbitrary movement of objects the denoising approach

cannot avoid introducing noticeable motion blur, Fig. 6.12. However, even in such

cases we perform relatively better than previous methods.
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6.6. Conclusions
In this chapter, we propose an algorithm to reduce incoherencies in per-frame

filtering of image sequences without relying on optical-flow. At this, denoising is

performed across image sequences in a pre-processing stage and a least-squares

energy minimization is solved in real-time. By carefully designing optimization

weights, the algorithm is able to preserve visual details and maintain coherence

in videos and dense light-fields. Our results for image and video processing

techniques demonstrate that our approach is filter-agnostic and indicate improved

output quality over state-of-the-art methods for certain types of filters and popular

applications. As part of future work, we plan to make our approach causal and

applicable to streams of image sequences.
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7. Interactive Control over
Consistency for Video Stylization

The contents of this chapter is based on the following original publication(s):

Sumit Shekhar, Max Reimann, Moritz Hilscher, Amir Semmo, Jürgen Döllner, and Matthias

Trapp. “Interactive Control over Temporal Consistency for Stylizing Video Streams”. In: Computer
Graphics Forum. In Submission. 2023 [L8]

It is only since the late 20
th
century that computers have been used to artificially

create paintings [77]. In the course of following decades, the field of artistic

stylization [118] have been significantly developed and extended by Neural Style
Transfers (NSTs) [193, 103]. Even though a large number of image stylization

techniques exist, extending these to video remains challenging. A major obstacle

in this regard is the enforcement of temporal coherence between stylized video

frames.

In the previous chapter, a generic consistent video filtering technique was pre-

sented, which can handle various image-processing applications. The approach

works as a post-processing operation applicable for both videos and dense light-

fields. By definition, it is not causal, and the focus is mainly to remove the

temporal flickering artefacts. For stylization tasks, however, consistency-control

is an essential requirement where a certain amount of flickering can add to the

artistic look and feel. Moreover, making this control interactive is paramount

from a usability perspective.

7.1. Challenges and Contributions

Various specialized approaches have been proposed to address the problem of

temporal coherence while stylizing videos [20]. Most of the existing methods, to

address the above, can be classified into one of the following four categories:

Style Specific. A common approach is to develop a specific method for a particu-

lar artistic style and exploit its characteristics for temporal coherency [31].
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(a) Input (b) Processed (c) Ours (d) Lai et al. (e) Bonneel et al.

Figure 7.1: For the top-row: first two columns depicts (a) input and (b) processed result

for frame-24, column three to five depict the corresponding consistent output using (c)

Ours (d) Lai et al. [120], and (e) Bonneel et al. [27] method. For the mid-row: depict

the corresponding results for frame-80. For the bottom-row: we show the temporal

slice, along a particular scan-line, for the entire video sequence depicting long-term

temporal similarity with the per-frame processed output. Note, that our method is able to

preserve the look and feel of the per-frame processed result in comparison to the method

of Lai et al. which suffers from color bleeding artifacts while the stylized textures are lost

for the output of Bonneel et al. .

Such methods work effectively for the specific target style, however, do not

generalize well. Many of these specialized approaches have been discussed

by Bénard et al. [20].

Coherent Noise. Another class of techniques adopt and transform a generic,

temporally-coherent noise function to yield a visually plausible stylized

output [19, 109]. Compared to target-based coherence enforcement [31],

these are applicable to a wider range of techniques but are limited for

scenarios with rapid temporal changes.

Stylization by Example. More recently, authors have adopted a stylization-by-

example approach to support a wide range of stylization techniques [21,

95]. However, this approach requires the paring of the complete video and

keyframe marking. Thus, by design it is not applicable to video streams.

Consistent Video Filtering. One can also enable stylization of video streams us-

ing consistent video filtering techniques. Existing approaches are either

not well-suited for IB-AR [27, 241] (Fig. 4.1) or do not provide interac-

tive consistency control [120, 212], which is an essential requirement for

artistic rendering [57]. Currently, the only method that provides inter-

active consistency-control is limited to offline processing and requires

pre-processing [L1].

We aim to develop a temporal-consistency enforcement approach for artistic

stylization techniques that provides (1) interactive consistency-control and (2)

online processing to facilitate the application to video streams.



Related Work | 103

Bonneel et al. Yao et al. Lai et al. Shekhar et al. Thiomonier et al. Ours

Requires pre-processing? No Yes No Yes No No

Provides consistency-control at inference time? Yes No No Yes No Yes

Is the consistency-control interactive? No NA NA Yes NA Yes

Table 7.1: Comparing existing consistent video filtering methods of Bonneel et al. [27],
Yao et al. [241], Lai et al. [120], Shekhar et al. [L1], and Thiomonier et al. [212] with the

proposed method with regards to consistency-control. Here, the color green denotes the

aspect which is favourable to interactive consistency-control while the color red denotes

otherwise (“NA” stands for Not-Applicable).

A determining factor towards the slow performance of existing online and inter-

active consistent video filtering technique [27] is the costly step of optical-flow

computation. Previous works using learning-based methods are able to achieve

a considerable accuracy for optical-flow estimation [209, 100]. However, we

argue that such a high accuracy is not particularly necessary to enforce temporal

consistency for artistic rendering tasks. To validate our conjecture, we conduct

a user study, wherein the participants prefer the final consistent video output

generated using our flow network as compared to that being obtained using State
Of The Art (SOTA) approaches. In contrast to accuracy, less attention has been

paid to improve the run-time performance of optical-flow estimation, but which is

essential for online-interactive editing. To this end, we develop a lite optical-flow

neural network that runs at a high-speed (approx. 80 Frames per second (FPS)

on mid-tier desktop GPUs) while maintaining sufficient accuracy. The compact

network is also deployable on mobile devices (iPhones and iPads) where it runs at

interactive frame rates (24 FPS on iPad Pro 2020). We use the optical-flow output

from the above network to enforce warping-based consistency at interactive

frame rates. Moreover, we construct an adaptive consistency prior which allows

for global and local temporal-consistency control. To summarize we present the

following contributions in this chapter:

1. A novel approach for making per-frame stylized videos temporally con-

sistent via adaptive combination of local and global consistency features

which allows for interactive consistency-control.

2. A lite optical-flow network, to achieve interactive performance, that runs

at 80 FPS on a mid-tier desktop PC and at 24 FPS on a mobile device while

achieving reasonable accuracy.

7.2. Related Work

Consistent Video Filtering: Lang et al. [124] propose a solution to enforce

temporal consistency for a large-class of optimization-based problems via itera-

tive filtering along the motion path. Bonneel et al. [27] was the first to present a

generalized approach for consistent video filtering which is agnostic to the type
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of filtering applied on individual video-frames. The method combines gradient-

based characteristics of the per-frame processed result with the warped version

of the previous-frame output using a gradient-domain based optimization scheme.

Yao et al. [241] propose a similar approach however considers multiple key-

frames for warping-based consistency to avoid problems due to occlusion. Both

of the approaches assume that the gradient of the processed video is similar to

that of the input video and thus cannot handle artistic rendering tasks where

new gradients, resembling brush strokes, are generated as part of the stylization

process. Moreover, due to slow optical-flow computation they are non-interactive

in nature. Shekhar et al. [L1] employs a similar formulation as Bonneel et al. ,
with the difference of using a temporally denoised version of the current-frame for

consistency guidance. Lai et al. [120] propose the first learning-based technique

in this context. The authors use perceptual loss to enforce similarity with the

processed frames and for consistency make use of short-term and long-term tem-

poral losses. Thimonier et al. [212] employ a ping-pong loss and a corresponding

training procedure for temporal consistency. Both the learning based technique

are faster than their optimization-based counterpart since they do not perform

optical-flow computation at test time. However, these learning based techniques

do not allow for controlling the degree of consistency in the final output, which

is vital for the task of stylization. Thus, the above discussed methods are either

non-interactive/offline or do not provide any consistency control at inference

time. Our approach addresses these limitations (Tab. 7.1).

Optical-Flow for Consistent Filtering: Both Booneel et al. and Yao et al. use
the PatchMatch algorithm [12] for flow-based warping, however, the slow per-

formance of PatchMatch makes them non-interactive. Lai et al. use FlowNet

2.0 [90] for flow-based warping to design their short-term and long-term tempo-

ral consistency losses. FlowNet 2.0 is on par with the quality of state-of-the-art

classical methods, however, due to large number of parameters and operations,

achieves only interactive frame rates even on high-end desktop GPUs. An im-

proved compact optical-flow Convolutional Neural Network (CNN) is proposed by

Sun et al. [204] – PWC-Net. It combines coarse-to-fine estimation with pyramidal

image features, correlation, warping, and CNN-based estimation. Furthermore, a

refinement CNN is stacked at the end to improve the final flow estimate. PWC-Net

is orders of magnitude smaller than FlowNet 2.0, runs at real-time frame rates

using desktop GPUs. Liu et al. [143] apply their approach to train a similar archi-

tecture in an unsupervised setting and achieve reasonable accuracy – ARFlow.

LiteFlowNet and its successor LiteFlowNet2, both proposed by Hui et al. [89,
88], have similar compact architectures. Further improvement in accuracy is

achieved by models using iterative refinement, such as RAFT [209] and trans-

former modules such as GMA [100], however they heavily trade runtime for
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accuracy. LiteFlowNet2 is about twice as fast as LiteFlowNet, and is also faster

than PWC-Net, while having better accuracy on standard optical-flow bench-

marks. However, LiteFlowNet2 [88] is already an optimized version of FlowNet

2.0 [90], in comparison PWC-Net [204] has more potential for optimization/com-

pression (see Sec. 7.3.2). Hence, we select PWC-Net as a base network to develop

a further "Lite" version with improved performance for interactive consistent

filtering.

Temporal Consistency for Video Stylization: Litwinowicz [141] describes a

technique to apply an impressionist effect on images and videos. For enforcing

temporal coherence, optical-flow was used to transform the brush strokes from

one frame to the next. Winnemöller et al. [232] develop a real-time video and

image abstraction framework. The authors make use of soft quantization that

spreads over a larger area, thus significantly reducing temporal incoherence.

Bousseau et al. [31] advects texture in forward and backward direction using

optical-flow for coherent water-colorization of videos. Numerous such specialized

video-based approaches have been discussed by Bénard et al. [20]. The above
classical IB-AR techniques approximate rendering primitives by modifying tradi-

tional image filters. Most often, they use low-level image features for modeling

and fail to model structures resembling a particular style. Recently, deep CNNs

have been successfully used to transfer high-level style attributes from a painting

onto a given image [68]. Various methods have been proposed to extend the

above for videos [87, 40, 75, 189, 135, 177, 48]. Ruder et al. [189] propose novel
initialization technique and loss functions for consistent stylized output even in

cases with large motion and strong occlusion. The methods of Gupta et al. [75],
Chen et al. [40], and Huang et al. [87] enforce consistency via certain formulation

of temporal loss and use optical-flow based warping only during the training

phase thus achieving fast performance. Puy and Pérez [177] develop a flexible

deep CNN for controllable artistic style transfer that allows for addition of a

temporal regularizer at testing time to remove the flickering artefacts. The above

method comes closest in terms of providing some consistency control at test

time for NST-based methods. However, they cannot handle classical stylization

techniques. Stylization by example caters to both (classical and neural) paradigms

via priors involving keyframe-based warping but can only be applied as an offline

process. We propose a generic solution that is agnostic to the type of stylization

and provides online performance and interactive consistency-control.
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7.3. Method
Method Weight Consistent Image
Ours 𝑤𝑐 𝐴𝑡
Boneell et al. [27] 𝑤𝑝 Γ(𝑂𝑡−1)
Shekhar et al. [L1] 𝑤𝑠 𝑇𝑑

Table 7.2: Constituent elements of smoothness term in Eqn. (7.1) for different methods.

Here, 𝑤𝑠 and 𝑇𝑑 refers to saliency-based weights and temporally-denoised image respec-

tively, introduced by Shekhar et al.

7.3.1. Temporal Consistency Enforcement

Given an input video stream … 𝐼𝑡−1, 𝐼𝑡 , 𝐼𝑡+1,… and its per-frame processed

version … 𝑃𝑡−1, 𝑃𝑡 , 𝑃𝑡+1,… , we seek to find a temporally consistent output

…𝑂𝑡−1, 𝑂𝑡 , 𝑂𝑡+1… . To obtain the output (𝑂𝑡 ) at any given instance 𝑡 we re-

quire only a snippet of input (𝐼𝑡−1, 𝐼𝑡 , 𝐼𝑡+1) and processed streams (𝑃𝑡−1, 𝑃𝑡 , 𝑃𝑡+1).
Further, to enforce global consistency we employ the previous frame output 𝑂𝑡−1.

Our method is agnostic to the stylization technique 𝑓 applied to each frame,

where 𝑃𝑡 = 𝑓 (𝐼𝑡). Thus, by design our method is causal and can be used to

enforce temporal consistency on an online fashion. We solve a gradient-domain

optimization scheme for this purpose:

𝐸(𝑂𝑡) = ∫
Ω( ||∇𝑂𝑡 − ∇𝑃𝑡 ||2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
data

+ 𝑤𝑐 ||𝑂𝑡 − 𝐴𝑡 ||2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

smoothness

) 𝑑Ω
(7.1)

where Ω represents the image domain. The data term in this optimization en-

forces similarity with the per-frame processed result 𝑃𝑡 in the gradient-domain.

Thus, high-frequency details are taken from 𝑃𝑡 and smoothness term enforces

temporal-consistency where low-frequency content is taken from the image

𝐴𝑡 . The optimization formulation in Eqn. (7.1) was first introduced by Bon-

neel et al. [27] and then was later used by Shekhar et al. [L1] (Tab. 7.2). However,
our novelty is the way in which we construct our smoothness term which, unlike

previous approaches, considers both global and local consistency aspects. Our

novel smoothness term is able to better preserve the color and textures in the styl-

ized output while providing both short-term and long-term temporal consistency.

A schematic overview of our approach is depicted in Fig. 7.2.

Local Consistency. For enforcing temporal consistency at a local level, we

use optical-flow to warp neighboring per-frame processed results to the current

time instance 𝑡. This is perfomred by computing an adaptive combination of (1)

warped previous per-frame processed image Γ(𝑃𝑡−1), (2) warped next per-frame

processed image Γ(𝑃𝑡+1), and (3) the current per-frame processed image 𝑃𝑡 , where
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Figure 7.2: Schematic overview of our approach: (1) We start by calculating the warping

weights𝑤𝑝 and𝑤𝑛 using Eqn. (7.3). (2) The computed weights are used to linearly combine

𝑃𝑡 , 𝑃𝑡−1, and 𝑃𝑡+1 to obtain the locally consistent image Θ𝑙 , see Eqn. (7.2). (3) To obtain

the globally consistent version Θ𝑔 we warp the output at previous time instance 𝑂𝑡−1 as

depicted in Eqn. (7.4). (4) The local and global consistent images are linearly combined

to obtain a temporally smooth version 𝐴𝑡 , see Eqn. (7.5). (5) To include high-frequency

details from the per-frame processed result, 𝐴𝑡 and 𝑃𝑡 are adaptively combined via the

optimization in Eqn. (7.1) using the weights 𝑤𝑐 (Eqn. (7.7)) to obtain the final result 𝑂𝑡 .

Γ is the warping function. By including both backward and forward warping in

our formulation, we are able to significantly reduce artefacts due to occlusion

and flow inaccuracies. The linear combination of (1), (2), and (3) gives us a locally

consistent version Θ𝑙 where,

Θ𝑙 = (1 − (𝑤𝑝 + 𝑤𝑛)) ⋅ 𝑃𝑡 + 𝑤𝑝 ⋅ Γ(𝑃𝑡−1) + 𝑤𝑛 ⋅ Γ(𝑃𝑡+1) (7.2)

The weights 𝑤𝑝 and 𝑤𝑛 capture the inaccuracies in the warping of previous and

next frames respectively and are defined as follows:

𝑤𝑝 = exp (−𝛼||𝐼𝑡 − Γ(𝐼𝑡−1)||2)
𝑤𝑛 = exp (−𝛼||𝐼𝑡 − Γ(𝐼𝑡+1)||2)

(7.3)

In order to also incorporate contribution from 𝑃𝑡 , we clamp the weights 𝑤𝑝 and

𝑤𝑛 as follows: ⌈𝑤𝑝⌉ = 𝑘1 and ⌈𝑤𝑛⌉ = 𝑘2, where 𝑘1 and 𝑘2 are two constants. The

locally consistent image sequence given by Θ𝑙 has improved temporal consistency

over the per-frame processed output, however, it still has visible flickering artifacts.

Thus, the reduction in flickering due to warping of only one temporal neighbor

is not sufficient. To further improve consistency, one can warp more neighboring

frames around the current time instance 𝑡. For example, instead of warping just

one frame one can warp ten neighboring frames to the current instance and

adaptively combine those. As we increase the temporal window-size for such

an adaptive combination it has a pronounced denoising effect leading to further

reduction in flickering. The temporal denoising for consistency, performed by

Shekhar et al. [L1] can be considered as an specific example of the above scenario.
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However, for interactive stylization of video streams warping more frames to the

current instance is not feasible due to time constraint.

Global Consistency. In order to overcome this limitation, existing approaches

[27, 120] adopt a global approach. For global consistency, one can consider the

previous stabilized output 𝑂𝑡−1 and enforce similarity with its warped version Θ𝑔

where,

Θ𝑔 = Γ(𝑂𝑡−1). (7.4)

To enforce only global temporal smoothness, we replace 𝐴𝑡 with Θ𝑔 in Eqn. (7.1).

Further, in order to compensate for optical-flow inaccuracies, the smoothness term

is weighted using𝑤𝑝 (i.e.,𝑤𝑐 = 𝑤𝑝) in Eqn. (7.1). However, considering only global

consistency for flicker reduction leads to loss of local temporal variations in the

final output. Moreover, in this case any warping-error (due to flow-inaccuracies)

or noise (as part of stylization process) keeps getting propagated to future frames.

Due to the above factors, such an approach only gives plausible results where the

gradients of the original video are similar to the gradients of the processed video.

The above does not hold for the task of stylization where stylistic elements such

as brush strokes, textures or stroke textons [259], in general, can vary largely

between frames even for small changes in gradient.

Combining Global and Local Consistency. For preserving local temporal

variations (in terms of look and feel) while significantly reducing the flickering

artifacts, we linearly combine globally and locally consistent images Θ𝑔 and Θ𝑙

respectively.

𝐴𝑡 = 𝑤𝑝 ⋅ Θ𝑔 + (1 − 𝑤𝑝) ⋅ Θ𝑙 (7.5)

We use the adaptively combined image 𝐴𝑡 as our reference while enforcing tempo-

ral smoothness in Eqn. (7.1). The ⌈𝑤𝑝⌉ can be increased to increase the influence of
global-temporal smoothness and vice versa. Further, the influence of the smooth-

ness term is controlled by per-pixel consistency weights 𝑤𝑐 . We would like to

invoke the smoothness term only when the warping accuracy is sufficiently high.

To this end, we construct a warped version of the input image similar to Θ𝑙 as,

𝐴𝐼
𝑡 = (1 − (𝑤𝑝 + 𝑤𝑛)) ⋅ 𝐼𝑡 + 𝑤𝑝 ⋅ Γ(𝐼𝑡−1) + 𝑤𝑛 ⋅ Γ(𝐼𝑡+1) (7.6)

Only when the input image 𝐼𝑡 is similar to 𝐴𝐼
𝑡 , the smoothness term is invoked.

To measure this similarity, we use the weight 𝑤𝑐 ,

𝑤𝑐 = 𝜆 ⋅ exp(−𝛼||𝐼𝑡 − 𝐴𝐼
𝑡 ||
2
) (7.7)

The parameter 𝜆 is used to scale up or down the weight 𝑤𝑐 .
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Figure 7.3: Accuracy vs. run-time performance of existing methods measured on

Sintel Final (Test set) [34]. The Endpoint Error (EPE) metric measures Euclidean distance

(in pixels) between ground-truth and predicted optical-flow vectors.

Optimization Solver. The energy terms in Eqn. (7.1) are smooth and convex

in nature, which allows a straightforward energy minimization with respect to

𝑂𝑡 . To this end, we employ an iterative approach thus avoiding – storage of a

large matrix in memory and further estimating its inverse. Moreover, an iterative

approach allows us to stop the solver once we have achieved visually plausible

results. An iterative update 𝑂𝑡
𝑘+1

is obtained by employing SGD with momentum

[178],

𝑂𝑡
𝑘+1 = 𝑂𝑡

𝑘 − 𝜂∇𝐸(𝑂𝑡
𝑘) + 𝜅(𝑂𝑡

𝑘 − 𝑂𝑡
𝑘−1) (7.8)

where 𝜂 and 𝜅 are the step size parameters, ∇𝐸 is the energy gradient with respect

to 𝑂𝑡 , and 𝑘 is the iteration count. For most of our experiments, 𝜂 = 0.15 and
𝜅 = 0.2 yield plausible results. We consider the trade-off between performance

vs. accuracy as a stopping criteria and do not compute energy residue for this

purpose. We empirically determine 150 iterations to be sufficient for obtaining a

consistent output while having interactive performance.

An integral aspect common to both our local and global consistency is the warping
function Γ. Apart from the number of solver iterations, for interactive performance

the above warping should also happen at a fast rate – which in turn necessitates

fast optical-flow estimation.

7.3.2. Lite Optical-Flow Network

We aim to develop a flow network capable of running at high-speed on consumer

hardware with reasonable accuracy. To this end, we start by selecting an existing

CNN-based optical-flow estimation technique, based on accuracy vs. run-time

analysis. After the selection of a base network, we perform further optimization

steps to increase the performance as outlined in Fig. 7.4.
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Figure 7.4: Modification of the PWC-Net [204] architecture for real-time performance.

We apply following network compression steps: (a) Replace DenseNet connections with

light ones, (b) Reduce the number of flow estimators, and (c) Replace dense connections

in the refinement module with separable convolutions.

Base Network Selection for Compression. In Fig. 7.3, we compare several

well-known optical-flow methods to find a base network candidate that best

matches our runtime/accuracy requirements. We compare FlowNet 2.0 [90],

SpyNet [183], LiteFlowNet2 [88], PWCNet [204], ARFlow [143], VCN [236],

RAFT [209] and finally GMA [100] (state-of-the-art in terms of EPE-based accu-

racy). Our experiments are carried out on a Nvidia RTX 2070 GPU, which we deem

to be a good representative of a current mid-to higher-end consumer GPU. Under

a constraint of interactive performance on consumer hardware, LiteFlowNet2 [88]

and PWC-Net [204] offers the best trade-off between run-time performance and

accuracy (Fig. 7.3). LiteFlowNet2 [88] is already an optimized version of FlowNet

2.0 [90], in comparison PWC-Net [204] has more potential for optimization/com-

pression. Moreover, recently it has been shown that PWC-Net can achieve similar

accuracy to RAFT when trained on a large-scale synthetic dataset [205] and that

PWC-Net achieves favourable trade-offs vs. other state-of-the-art methods when

selecting for runtime performance or higher image resolutions [203]. Hence, we

select PWC-Net for further compression.

Optimized Network Architecture. We start with the base architecture of

PWC-Net. As the first compression step we reduce the computationally expensive

DenseNet [86] connections in the flow estimators to retain connections only in

the last two layers ("-light" in Fig. 7.5b) . Similar to LiteFlowNet2 [88], we remove

the fifth flow estimator – operating on the highest resolution – as it heavily trades

off run-time for only marginal increase in accuracy (compare "4light" vs "5light"

in Fig. 7.5b). We replace the standard convolutions in the refinement by depthwise

separable convolutions [84] ("-sepref" in Fig. 7.5b). Moreover, we also explore
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Figure 7.5: Accuracy vs. run-time performance of our CNN variants on desktop, mea-

sured on Sintel Final (Train) [34]. (a) Our architectural modifications to PWC-Net [204]

are detailed on the top, e.g., our-4light-sepref denotes a 4 light flow estimators and re-

finement using depthwise separable convolutions. (b) Optimization steps that lead to

significant improvement in run-time are connected by a line.

reducing the number of channels [84], but find that reducing channels results in

a worse trade-off as compared to other optimizations.

Our Final Model. We analyze various optimization options and chose “our-
4light-sepref ” as our final model for desktop systems as it provides the best

trade-off between accuracy vs. run-time. As depicted in Fig. 7.5, our method

improves run-time performance of PWC-Net from 30 FPS to 85 FPS – a speed-

up of factor 2.8. Accuracy drops by ≈ 0.5px of EPE, however is still superior

to FlowNet 2.0 [90]. Furthermore, we tune our architecture for optical-flow

calculation on mobile devices using channel pruning and quantization. Here,

we improve run-time performance from 2.8 FPS to 24 FPS (iPad Pro 2020), and

1.5 FPS to 13 FPS (iPad Air) – an improvement of factor 8. Next to showing the
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Task Optical-flow Stabilization Total

↓ Res. / GPU 1080Ti 3090 1080Ti 3090 1080Ti 3090

1920 × 1080 px 66.8 40.0 184.1 42.7 250.8 82.7
1280 × 720 px 31.3 19.7 86.5 21.1 117.8 40.8
640 × 480 px 12.6 6.2 20.6 6.3 33.2 12.5

Table 7.3: Runtime performance in milliseconds per frame. We measure the total pro-

cessing time (without disk IO) and the individual stages for a mid-tier GPU (Nvidia GTX

1080Ti) and a higher-end GPU (Nvidia RTX 3090), results are averaged over 100 runs.

general applicability of optical-flow CNNs on mobile devices, this demonstrates

that real-time on-device stabilization of videos using our presented approach

will become feasible with a further moderate increase in mobile GPU computing

power. A fast optical-flow based warping enables our framework to interactively

control the degree of consistency and generate visually plausible results.

7.4. Experimental Results

7.4.1. Implementation Details

All our experiments were performed on an consumer PC with an AMD Ryzen

1920X 12-Core CPU, 48 GB of RAM, and a Nvidia GTX 1080Ti and RTX 3090 graph-

ics cards with VRAMs of 11 GB and 24 GB respectively. We implement a real-time

video-consistency framework in C++, using ONNXRuntime for cross-platform

acceleration of our lite optical-flow network and implement the stabilization code

using Nvidia CUDA (v11.4). In Tab. 7.3, we measure the runtime performance

of our system. We find that an incoming stream of frames can be stabilized at

real-time performance for VGA resolution even on low- and mid-tier GPUs and

higher-tier GPUs (such as a RTX 3090) can stabilize HD at common video frame

rates (approx. 24 FPS) and full-HD resolutions at interactive frame rates (> 10 FPS)

for different parameter settings (Tab. 7.3).

7.4.2. Parameter Settings

Initially, we tune the parameters of our consistency framework towards achieving

a low warping error (Tab. 7.5). We refer to this setting as Ours-objective with the

following parameter values 𝑘1 = 𝑘2 = 0.3, 𝛼 = 10 × 103, and 𝜆 = 0.7. However, we
observed that even though the warping error indicated a good temporal stability,

subjectively flickering and artefacts were noticeable. Unlike existing approaches,

our framework allows for interactive parameter adjustment. Thus, a parameter

set that subjectively produces well-stabilized results on a broad range of tasks and

videos was obtained experimentally. As our final version, we use the values of

𝑘1 = 0.3, 𝑘2 = 0.5, 𝛼 = 6.5×103, and 𝜆 = 2.0 to generate all the images in the paper
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and the videos provided in the supplementary. We further compare Ours-objective
settings with our final version as part of our user study to validate our parameter

choices. The consistent outputs obtained using the above parameter settings are

compared against state of the art approaches thereby showcasing its efficacy.

7.4.3. Consistent Outputs

We use videos from DAVIS [171] dataset and other open source videos (taken

from [221] and [172]) for comparison. For per-frame stylization, we employ the

following stylization techniques: Fast NST [107], WCT [136], and CycleGAN [257].

The results for the method of Lai et al. and Bonneel et al. on videos taken from

DAVIS [171] and Videvo ([221]) are borrowed from the results dataset provided
by Lai et al. . For other videos we employ the source code provided by the

authors to generate the results. We compare our consistent outputs with that of

Bonneel et al. [27] and Lai et al. [120] in Fig. 7.6. Among the three competing

methods Bonneel et al. is the least effective in preserving the underlying style

for the final output (compare second column with the fourth one in Fig. 7.6).

For the method of Lai et al. , we observe some color bleeding or darkening in

the output frames (compare second column with the third one in Fig. 7.6). In

comparison we are able to preserve the style, color and textures, while being

consistent (Fig. 7.10).

7.4.4. Consistency Control Modes

We provide two different ways to control the degree of consistency in the final

output. By increasing ⌈𝑤𝑝⌉ we can increase the proportion of global consistency

in the adaptively combined image 𝐴𝑡 and vice versa. On the other hand the

optimization parameter 𝜆 dictates how close the output𝑂𝑡 will be to the adaptively

combined image 𝐴𝑡 . Thus, the level of consistency in the final output can be

controlled in two different ways: (1) by setting up the limit of parameter 𝑤𝑝 , i.e.,

⌈𝑤𝑝⌉ or (2) by scaling the weight parameter 𝜆. For lower values of ⌈𝑤𝑝⌉ (Fig. 7.7b),
the consistency enforced is negligible and the final result resembles the per-frame

processed output (Fig. 7.7f), however, for higher values we start observing noisy

ghosting artefacts (Fig. 7.7e). Similarly, for lower values of 𝜆 (Fig. 7.7g), the final

result is visually similar to the per-frame processed output (Fig. 7.7f), however, for

higher values we start observing noisy optimization-based artefacts (Fig. 7.7j).

7.4.5. Optical-Flow Results

We visualize optical-flow on frames from the Sintel [34] dataset in Fig. 7.8 and

compare to state-of-the-art methods. All depicted methods have been fine-tuned

on Sintel. We find that our optimized method has more blurry motion boundaries
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(a) Input (b) Processed (c) Ours (d) Lai et al. (e) Bonneel et al.

Figure 7.6: Comparing our results with Lai et al. [120] and Bonneel et al. [27] for three
different video sequences: Cow (top two rows), Farming (mid two rows), andWoman (last

two rows). Note how the consistent output for Lai et al. and Bonneel et al. look different

from the corresponding per-frame processed results.

(a) Input (b) ⌈𝑤𝑝⌉ = 0.3 (c) ⌈𝑤𝑝⌉ = 0.5 (d) ⌈𝑤𝑝⌉ = 0.7 (e) ⌈𝑤𝑝⌉ = 0.9

(f) Processed (g) 𝜆 = 0.1 (h) 𝜆 = 1.0 (i) 𝜆 = 5.0 (j) 𝜆 = 7.06

Figure 7.7: The level of consistency in the final output can be controlled via parameters

⌈𝑤𝑝⌉ and 𝜆. Here we show how the final result vary by increasing these, for lower values

the consistency is negligible and the results (Fig. 7.7b and Fig. 7.7g) visually look similar to

the per-frame processed output (Fig. 7.7b). For higher values we start observing artefacts

due to ghosting and/or optimization (Fig. 7.7e and Fig. 7.7j)
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(f) Frame Overlay (g) Ground-truth (h) RAFT [209] (i) PWC-Net [204] (j) Ours

Figure 7.8: Optical-flow estimated using the synthetic Sintel dataset[34].

(e) Frame Overlay (f) RAFT [209] (g) PWC-Net [204] (h) Ours

Figure 7.9: Optical-flow estimated for the real-world dataset DAVIS [176].

and misses to estimate some details correctly (e.g., the hand in the first row,

however, PWCNet also fails at this), but still captures overall motion direction of

objects correctly with a smooth flow field. Fig. 7.9 shows results for real-world

videos on the DAVIS dataset [176] (no ground-truth flow available). We find that

some real-world image phenomena, such as complex/ambiguous occlusions (e.g.,

bus behind tree) are not well-handled by state-of-the-art methods like RAFT [209]

or PWC-Net [204], and thus results are degraded for our optimized method as

well. Besides the stronger blurred motion boundaries, we find that our network

generally performs well and is robust on real-world videos.

7.5. Evaluation

7.5.1. Quantitative

Following Lai et al. [120], we measure the similarity between per-frame processed

output and stabilized results, and the temporal warping error between consecutive

stabilized frames.
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DAVIS VIDEVO

Task [27] [120] Ours [27] [120] Ours

CycleGAN/photo2ukiyoe [257] 0.693 0.781 0.978 0.626 0.743 0.980
CycleGAN/photo2vangogh [257] 0.707 0.792 0.961 0.679 0.789 0.965
fast-neural-style/rain-princess [107] 0.553 0.799 0.921 0.491 0.796 0.920
fast-neural-style/udnie [107] 0.597 0.785 0.956 0.579 0.747 0.959
WCT/antimonocromatismo [136] 0.389 0.811 0.915 0.388 0.761 0.914
WCT/asheville [136] 0.329 0.801 0.904 0.348 0.771 0.901
WCT/candy [136] 0.289 0.763 0.882 0.310 0.738 0.885
WCT/feathers [136] 0.418 0.863 0.891 0.415 0.848 0.888
WCT/sketch [136] 0.370 0.845 0.923 0.370 0.833 0.922
WCT/wave [136] 0.358 0.700 0.902 0.352 0.637 0.899
Average 0.470 0.794 0.923 0.456 0.766 0.923

Table 7.4: Quantitative evaluation on perceptual distance using SSIM (higher = more

similar to per-frame processed result).

For the fomer, we report the similarity in form of the SSIM metric in Tab. 7.4.

We achieve significantly higher similarity scores than the methods of Bonneel

et al. [27] and Lai et al. [120]. Following [27] and [120], we also measure the

temporal warping error between a frame 𝑉𝑡 and the warped consecutive frame

�̂�𝑡+1, defined as:

𝐸warp (𝑉𝑡 , 𝑉𝑡+1) =
1

∑𝑁
𝑖=1𝑀

(𝑖)
𝑡

𝑁
∑
𝑖=1

𝑀 (𝑖)
𝑡

‖‖‖𝑉
(𝑖)
𝑡 − �̂� (𝑖)

𝑡+1
‖‖‖1 , (7.9)

where 𝑀𝑡 ∈ {0, 1} is a non-occlusion mask [120, 189], indicating non-occluded

regions. The warped frame �̂�𝑡+1 is obtained by calculating the optical-flow (using

GMA [100]) between frames 𝑉𝑡 , 𝑉𝑡+1, and applying a backwards warping to frame

𝑉𝑡+1. We compute 𝐸warp for every frame of a video and then average to obtain

the warping error of a video 𝐸warp(𝑉 ). In Tab. 7.5 we report the average warping

error per dataset (see the supplementary for a per-task breakdown). We find

that the warping error is slightly higher than that of Bonneel et al. [27] and Lai

et al. [120]. However, as Lai et al. [120] notes, results with high temporal stability

(as expressed by a low warping error) can also be achieved by blurring the video,

which can be seen in many results of Bonneel et al. [27]. Our qualitative results
in form of a user study Sec. 7.5.2 further substantiate the divide between warping

error (as a stability metric) and perceived stability.

7.5.2. Qualitative

For qualitative evaluation we perform a subjective user study where we ask

participants to compare the temporally-consistent result obtained using our

method with that of Lai et al. , Bonneel et al. , and Ours-objective – a different
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Dataset 𝑉𝑝 [27] [120] Ours

DAVIS 0.056 0.034 0.040 0.046

VIDEVO 0.051 0.036 0.036 0.042

Table 7.5: Flow warping error average over tasks shown in Tab. 7.4. A per-task break-

down is shown in the supplementary. Note that the slightly higher warping error of our

method is subjectively not noticeable as we show in a user study.
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Figure 7.10: Statistics of the user study results on removal of temporal flickering from

per-frame stylized videos. For 19 participants and 9 different videos we compare our

method against Bonneel et al. , Lai et al. , and Ours-objective through a total of 171
randomized A/B tests.

parameter setting of ours. We use 9 different videos for this purpose: 3 from

DAVIS [171], 3 from Videvo [221], and 3 from Pexels [172] datasets respectively.

For each of the above video we stylize them using either the Fast NST [107] (in

the styles of udnie, rain-princess, and mosaic) or WCT [136] (in the styles of wave
and antimono) or Cycle-GAN (in the styles of photo2vangogh and photo2ukiyoe).
For each sample, we show the input video and its per-frame stylized version on

the top row of user-study interface for inference. In the bottom row we show two

different version of the temporally stabilized output where one of them is ours.

We ask the participants to select the output which best preserves: (𝑖) temporally

consistency and (𝑖𝑖) similarity with the per-frame processed video. For 9 videos
and 3 other competing methods each user sees a total of 27 blind A/B tests which

are shown in a randomized order to each participant. In total, 19 persons (3 female

and 16 male) within the ages of 22 to 43 years participated in the study. Fig. 7.10

shows that our method surpasses all others by a large margin. It was interesting

to observe that for certain cases the method of Bonneel et al. which degrades the

processed style significantly was still preferred by users over ours due to its high

consistency quality.
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7.6. Discussion

Our approach takes a video pair as an input: (𝑖) the original and (𝑖𝑖) its per-frame

stylized version. We assume that the stylization is based on the image-textures of

the original video and thus employ the original video as a guide for enforcing

consistency. However, for text-guided generative arts such as recent diffusion

model-based approaches [180, 187] the stylized frames are often only weakly

correlated with the original input, we cannot handle such cases.

For the evaluation we mainly use CNN-based stylization techniques. However our

approach can also handle classical stylization approaches [118], we show few such

examples in the supplementary. Our local-consistency component comprising

of convex combination of temporal neighbors can be seen as crude form of local

temporal denoising. Previously it has been shown that temporal denoising is

effective in enforcing consistency [L1]. We conjecture that efficient temporal-

denoising combined with flow-based warping can further improve temporal

stabilization not only for stylization but also for other tasks.

We start with the assumption that temporal flickering is not completely unde-

sirable for the task of stylization and thus we provide interactive consistency

control. However, during the subjective user study we observed that participants

had different tolerance levels for flickering in the foreground as compared to

that in the background. As part of future work, one can use depth-based or

saliency-based masks to vary the consistency control parameters spatially for a

more visually pleasing result.

Limitation: Our approach tends to have ghosting artifacts for fast moving ob-

jects where the object motion between consecutive frames is large (Fig. 7.11). The

above can be reduced by reducing the value of ⌈𝑤𝑝⌉, however such a reduction

also reduces consistency in the final output. We argue that since we provide inter-

active control of parameters the above trade off between artifacts vs. consistency

will not significantly hinder its usability.

(a) ⌈𝑤𝑝⌉ = 0.5 (b) ⌈𝑤𝑝⌉ = 0.1

Figure 7.11: The ghosting artifacts on the rear wheel of the scooter is significant in the

final output for ⌈𝑤𝑝⌉ = 0.5, however it reduces significantly for ⌈𝑤𝑝⌉ = 0.1.
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7.7. Conclusions
In this chapter we present an approach that makes per-frame stylized videos

temporally coherent irrespective of the underlying stylization applied on indi-

vidual frames. At this, we introduce a novel temporal consistency prior, that

combines both local- and global- consistency aspects. We maintain similarity

with the per-frame processed result by minimizing the difference in the gradient-

domain. Unlike previous approaches we provide interactive consistency control

by computing optical-flow on the incoming video stream with sufficient accuracy.

High optical-flow inference speeds are achieved by developing a lightweight

flow network architecture based on PWC-Net. The entire optimization solving

is GPU-based and runs at real-time frame-rates for HD resolution. We show

that our temporally consistent output is preferred over the output of competing

methods by conducting a user study. As part of future work we would like to use

learning-based temporal denoising to further improve quality of results. More-

over, we would like to explore the usage of depth-based and saliency-based masks

to spatially vary consistency parameters according to perceptual principles. We

hope that our design paradigm of interactive consistency control will potentially

make per-frame video stylization more user friendly.
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8. Conclusions and Future Outlook

Visual scene understanding, given an image or a video, requires estimation of

underlying attributes responsible for its formation, which remains challenging

to date. However, estimating only a few of these attributes can enable novel

image and video processing techniques or facilitate existing ones. To this end, we

evolve the concept of intrinsic images towards intrinsic attributes that refers to
underlying properties associated with images and videos. Subsequently, novel

image and video processing techniques have been proposed based on some of

these attributes.

In particular, an approach is presented in Chapter 3 to decompose an image

into intrinsic layers of albedo, shading, and specularity on smartphones using

the depth data provided by the built-in depth sensors. A system is proposed

in Chapter 5 to use on-device depth data for interactive 3D photo generation

and stylization on mobile devices. Adaptive Chromaticity (AC) is introduced for

efficient visual enhancement under low-lighting conditions in Chapter 4. Further,

it is shown how effective temporal denoising and fast optical flow computation can

be employed for temporally consistent video filtering in Chapter 6 and Chapter 7

respectively.

The above techniques and approaches enable various applications such as on-

device appearance editing, material manipulation, and 3D photo stylization. The

concept of AC can be used to improve the accuracy of computer vision tasks (i.e.,

face detection) in low-light conditions. Further, the proposed consistent video

filtering techniques can enable extension of various image-based processing, on a

per-frame basis, for videos in a temporally consistent fashion.

8.1. Observations

Apart from the discussed contributions, few key observations were noted resulting

from the techniques described in the previous chapters.
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Image-based Appearance Editing. In Chapter 2, we observe that the forma-

tion of an image requires scene information in the form of material, geometry, and

illumination. Ideally, for photorealistic editing of an image we should disentangle

all these three properties by performing a full inverse rendering. However, it has

been shown that Human Visual System (HVS) makes use of heuristics based per-

ceptual cues to understand scene properties, e.g., materials [111, 33]. We employ

such heuristics to achieve visually plausible results for our smartphone-based

photo editing application. By avoiding the costly step of full inverse rendering,

we are able to make our application interactive on a resource-constrained device.

In this thesis we mainly use the HVS-based perceptual heuristics for material

editing. However, it would be interesting to also consider such heuristics in the

context of scene geometry and illumination, further broadening the range of

appearance edits [220, 154].

Effective Computer Vision. An image is formed as a result of complex in-

teraction among various physical attributes responsible for its formation. The

above interaction results in the phenomena of shadows, specularities, indirect-

illumination, sub-surface scattering etc. in the scene thereby determining the

accuracy of computer vision tasks [8, 102]. Through successful estimation and/or

removal of such complex light-transport attributes we can potentially improve

the accuracy of subsequent computer vision tasks. We show one such example

in Chapter 4, wherein AC is used to improve the accuracy of face detection for

low-light images. AC is used as an effective tool to remove the darkening effects

of shading while still preserving the naturalness of the resultant output. Similarly,

we can explore the implications of other intrinsic attributes for increasing the

effectiveness of computer vision tasks .

Immersiveness on a Flat-screen. In the last few decades Virtual Reality (VR)

has emerged as a powerful tool for creating immersive experiences. However, it

requires an expensive hardware setup that the user has to wear for visualizing

such an experience. In comparison, 3D photos provide an easy way to experience

that immersiveness even on a flat screen [81, 117]. Moreover, rendering 3D

photos on a mobile device provides new means of interaction with the resultant

immersiveness [117]. In Chapter 5, we propose a system that allows on-device

rendering and editing of 3D photos. The above will foster new modes of 3D photo

editing, e.g., enhancement, relighting etc.

Perception of Temporal Consistency. In this thesis, we propose two different

techniques for making a per-frame processed video temporally consistent. The

approach discussed in Chapter 7 requires optical flow, while the one in Chapter 6



Future Outlook | 125

does not. In both the cases, we aim to maintain a trade-off between temporal

consistency and motion-blur/ghosting to achieve a consistent output while pre-

serving details. Moreover, while conducting user studies we observed that the

perception of consistency varied for different scenes. The variation in the per-

ception could be attributed to the speed of scene objects, video frame-rate, and

also the spatio-temporal textures in the video. The above highlights the fact that

the perceived temporal consistency is based on multiple aspects and requires a

thorough perceptual study.

8.2. Future Outlook

In this thesis, we build upon the synergies between the (𝑖) advancements in com-

puter vision techniques and (𝑖𝑖) rapid hardware development for visual processing.

Future progress in either of these categories will further enable methodologies

similar to the one proposed in this thesis. We discuss such future implications

below:

Neural Rendering. Quite recently, neural rendering has emerged as a powerful

technique to address various challenges in the field of computer graphics [211,

210]. The core idea of neural rendering is to learn a scene representation in the

form of a radiance field given multiple views of the scene as an input. However,

decomposition of such a radiance field into constituent elements of reflectance,

geometry, and illumination is still in its nascent phase [29, 45, 28, 243]. As part

of future work it would be interesting to estimate and edit intrinsic attributes

within the neural radiance field itself.

Advances in Mobile Hardware. We make use of on-device depth-sensors for

estimating the intrinsic layers and also for 3D photo stylization. However, we

faced challenges due to inaccurate depth maps obtained by the sensors. Prob-

ably, in future we will have improved sensors allowing for more accurate and

robust depth estimation. Moreover, in future we might have on-device sensors

capable of measuring aspects of scene reflectance and/or illumination. Due to

future hardware advancements in terms of Graphics Processing Unit (GPU) and
Neural Processing Unit (NPU), it will be possible to port complex visual computing

algorithms on the device [1]. The above disruptions with regards to hardware

would further enable novel on-device image and video processing pipelines.

AI-Based Rendering. In recent past, we have seen various techniques being

proposed for AI-based rendering of images. For most of these approaches, the user

provides a text-prompt as an input to generate a photorealistic image [180, 187,
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163]. The basis for such text-guided generative models are the “correlations” in a

joint latent space of text-embeddings and image-embeddings. However, subsequent
editing of such generated images, especially in a physically coherent manner, still

remains challenging. The above can be potentially mitigated by effectively using

intrinsic attributes to create the image-embeddings for this purpose.
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