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Kurzfassung

Die Abschätzung des Selbstähnlichkeitsexponenten hat in den letzten Jahr-

zehnten an Aufmerksamkeit gewonnen und ist in vielen wissenschaftlichen

Gebieten und Disziplinen zu einem intensiven Forschungsthema geworden.

Reelle Daten, die selbsähnliches Verhalten zeigen und/oder durch den Selbstähn-

lichkeitsexponenten (insbesondere durch den Hurst-Exponenten) parametrisiert

werden, wurden in verschiedenen Gebieten gesammelt, die von Finanzwis-

senschaften über Humanwissenschaften bis zu Netzwerken in der Hydrolo-

gie und dem Verkehr reichen. Diese reiche Anzahl an möglichen Anwendun-

gen verlangt von Forschern, neue Methoden zu entwickeln, um den Selbstähn-

lichkeitsexponenten abzuschätzen, sowie großskalige Abhängigkeiten zu erken-

nen.

In dieser Arbeit stelle ich die Bayessche Schätzung des Hurst-Exponenten

vor. Im Unterschied zu früheren Methoden, erlaubt die Bayessche Herange-

hensweise die Berechnung von Punktschätzungen zusammen mit Konfiden-

zintervallen, was von bedeutendem Vorteil in der Datenanalyse ist, wie in

der Arbeit diskutiert wird. Zudem ist diese Methode anwendbar auf kurze

und unregelmäßig verteilte Datensätze, wodurch die Auswahl der möglichen

Anwendung, wo der Hurst-Exponent geschätzt werden soll, stark erweitert

wird. Unter Berücksichtigung der Tatsache, dass der Gauß’sche selbstähnliche

Prozess von bedeutender Interesse in der Modellierung ist, werden in dieser

Arbeit Realisierungen der Prozesse der fraktionalen Brown’schen Bewegung

und des fraktionalen Gauß’schen Rauschens untersucht. Zusätzlich werden

Anwendungen auf reelle Daten, wie Wasserstände des Nil und fixierte Au-

genbewegungen, diskutiert.
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Abstract

Estimation of the self-similarity exponent has attracted growing interest in

recent decades and became a research subject in various fields and disciplines.

Real-world data exhibiting self-similar behavior and/or parametrized by self-

similarity exponent (in particular Hurst exponent) have been collected in dif-

ferent fields ranging from finance and human sciencies to hydrologic and traf-

fic networks. Such rich classes of possible applications obligates researchers to

investigate qualitatively new methods for estimation of the self-similarity ex-

ponent as well as identification of long-range dependencies (or long memory).

In this thesis I present the Bayesian estimation of the Hurst exponent. In

contrast to previous methods, the Bayesian approach allows the possibility to

calculate the point estimator and confidence intervals at the same time, bring-

ing significant advantages in data-analysis as discussed in this thesis. More-

over, it is also applicable to short data and unevenly sampled data, thus broad-

ening the range of systems where the estimation of the Hurst exponent is pos-

sible. Taking into account that one of the substantial classes of great interest in

modeling is the class of Gaussian self-similar processes, this thesis considers

the realizations of the processes of fractional Brownian motion and fractional

Gaussian noise. Additionally, applications to real-world data, such as the data

of water level of the Nile River and fixational eye movements are also dis-

cussed.
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Chapter 1

Introduction

In 1951, in the work ”Long-term storage capacity of reservoirs” [62], Hurst re-

ported for the first time his studies of the hydrologic data. There, he observed

the property of the data to be dependent on the scalings in time and space. To

estimate the parameter which measures the intensity of this type of scaling, he

proposed the method called rescaled range statistical analysis (R/S analysis).

Nowadays, this parameter is known as the Hurst exponent (H).

In the last two decades, a significant amount of techniques and methods

have been proposed in the literature for robust and accurate estimation of the

Hurst exponent. Depending on the domain they work in, these methods can

be divided into:

− time domain: the R/S analysis [88], the modified R/S analysis [79], the de-

trended fluctuation analysis [105, 106] and its variants [13, 25, 68, 69, 129], the

detrended moving average analysis [9, 57], the aggregated variance method

[117], etc.;

− frequency (spectral) domain: the periodogram method [50], the Whittle

method [128], etc.;

− wavelet domain (time-scale methods): the wavelet-based estimator algo-

rithm [12, 48, 116], the Abry-Veitch Daubechies wavelet-based estimator [4, 6],

the wavelet maximum likelihood method [93], etc.

Some of the available methods also allow the estimation of the confidence

intervals for the Hurst exponent [23, 24, 33, 70], whereas others propose a new

and radically different approach to the estimation problem (e.g. [72]). In order

to identify the proper estimator for particular data sets, large number of com-

parison studies can be found in the literature: i.e. Bardet et al. [14] presented

the results of the comparison between the wavelet and the Whittle estimators,

and between the log-periodogram and quadratic variations estimators. The

comparison between eight different techniques for the evaluation of the Hurst

exponent based on the fractional Brownian motion, Gaussian white noise and

fractional autoregressive integrated moving-average model can be found in

work of Esposti et al. [45].
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This significantly high research interest in the estimation of the Hurst ex-

ponent can be explained by the fact that many data sets gathered from real-

world models have self-similar properties. Examples include geologic [55],

hydrologic [121] and finance [15, 17, 92, 107] data; data from human sciences

[53, 60, 64], traffic networks [32, 75], turbulence [51, 63], DNA sequences [10]

and other data types.

However, most of the existing methods elaborate either a point estimator of

the Hurst exponent, or a confidence interval indicating the Hurst estimates. In

order to overcome this problem, I propose in this thesis to approach the estima-

tion task from another perspective: I use Bayesian inference, whose flexibility

and generality in dealing with very complex problems is well established. The

direct quantification of uncertainty, the possibility for coping with multiple pa-

rameters and the natural way to provide a degree of belief about the assumed

model, while it yields to associated confidence intervals, makes the Bayesian

approach effective and practical, and allows to develop an estimation method

that provides as outcome a robust and accurate estimator, characterized by an

increased efficiency in comparison to other modern methods. The idea was ini-

tially considered in the work of Conti et al. [34] for the estimation of the Hurst

exponent in telecom networks. However, in contrast to this, I propose a more

general model for the estimation of the Hurst exponent in terms of a linear

mixed model, where the random part is represented by a fractional Brownian

motion [82].

The choice of the model type used in this study lies in the possibility to

model real-world data using a fractional Brownian motion (fBm). These prop-

erties can be asserted for many processes in biology [28, 30], biomechanics [31],

eye-movement data [42], aggregated traffic [101] and number of other appli-

cations. Besides this, taking into account that ”the existence of trends in time

series generated by physical and biological systems is so common that it is al-

most unavoidable” [61], I consider a linear trend in model. Even though the

current analysis is limited to a linear trend, it is possible to extend the intro-

duced technique to more general trends, such as the seasonal variations or

higher order polynomials. Therefore, I propose to keep the global trend in a

joint inversion for all parameters in the model instead of removing it on the

first step. Although I am mainly interested in the estimation of the Hurst ex-

ponent, the technique presented in this thesis is suitable for estimation of the

remaining parameters of the model as well.

The theoretical basis of self-similar processes and Bayesian theory essential

to the current study I overview in Chapter 2. A mathematical representation of

the model is given in Chapter 3. Here, I synthesize data sets of fractional Brow-

nian motion that can be sampled evenly as well as unevenly, present numerical

results and a comparison of the Bayesian method with the detrended fluctu-

ation analysis. The applicability of the estimation method for non-Gaussian

data from Rosenblatt processes and α-stable Lévy motion is also shown [84].
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The real-world data is in most of the cases stochastic: they contain almost

always a noise component which is inherent for the measurement process. The

influence of this measurement noise on the estimation process of the Hurst ex-

ponent is the central topic of Chapter 4. I evaluate the robustness of the Hurst

exponent estimator based on the Bayesian approach, considering the noise

contained in the data. I provide a possibility to determine the amount of the

noise according to the amplitude of the data which allows correct estimation

of the Hurst exponent. I show that even in the case of an explicit considera-

tion of noise in the model which allows for a better estimation of the internal

parameters, the percentage ratio between noise and amplitude should not be

more than 5%.

From another viewpoint, fractional Gaussian noise is often found to ex-

plain quite well the heterogeneity and the multiscale properties of geophysical

time series, and in particular those from hydrology. Thus instead of using the

integrated time series and then applying an estimator for the Hurst exponent,

I propose to use the noise signal directly [18]. I extend the Bayesian approach

in Chapter 5 to the stationary process of fractional Gaussian noise. This kind of

model allows to discriminate between the short and long term dependencies.

This difference has observable consequences since, for instance, a long mem-

ory process explain the patterns observed in sedimentary deposits in river run-

off areas (see for e.g. [97]). For this reason it is important to devise the proposed

technique to estimate the underlying self-similarity exponent and to provide a

method to quantify the uncertainty of the measurements. A direct application

of this method is done to the data of the annual minimum water level of the

Nile River in Section 5.4.

Engbert and Kliegl [42] showed recently that realizations of a fractional

Brownian motion have properties similar to those observed in fixational eye

movements. On the other hand, the Hurst exponent which parameterizes the

fractional Brownian motion, indicates the correlation behavior and allows the

detection of the long-range dependencies inside fixational eye movements.

This type of data has been investigated so far using the approaches such as

detrended fluctuation and standard deviation analysis [31] in the work of Mer-

genthaler and Engbert [95], where a change of the scaling behavior from a per-

sistent behavior on short time scales to an anti-persistent behavior on long time

scales was observed. I investigate the estimation problem of the Hurst expo-

nent for fixational eye movements data based on a sequence of increments of a

discrete process over some scale in Chapter 6. This allows to examine the value

of the Hurst exponent on different levels according to the scale factor. With

this approach, the Hurst exponent remains constant for a sampled sequence of

a fractional Brownian motion at all scale levels. In order to test this property,

I examine both experimental and simulated data of fixational eye movements

[83]. In the first case, I show the existence of the scale level starting from which

the data acquires an anti-persistent behavior and the signal turns into a short-

memory process. The invariance of the Hurst exponent for different trials for

3



the same participant will be shown. I also validate the proposed method on

simulated time series, mimicking the fixational eye movements based on a

time-delayed model proposed in [95] and an integrated model introduced in

[44]. I speculate that the integrated model describes data more closely, since

the obtained results show qualitatively the same behavior.
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Chapter 2

Theoretical background

It is the theory that decides what
can be observed.

Albert Einstein

The estimation of the self-similarity exponent from observations which is

the subject of the study in the next chapters is based on the Bayesian the-

ory. In this chapter I discuss the basic characteristics of self-similar processes

and their relation to long-range dependency. I further focus on the fractional

Brownian motion and its basic properties, since it is one of the most impor-

tant self-similar process. The fundamental concepts of the Bayesian theory are

overviewed as well.

2.1 Self-similar processes

I consider the probability space (Ω,F ,P), where Ω is the sample space of all

possible outcomes, F is a σ-algebra of the measurable subsets of Ω, whose

elements are the events for which it is possible to obtain information, and a

probability measure P : F → [0, 1], where 0 ≤ P(A) ≤ 1 is the probability

that the event A ∈ F occurs. In this definition, F is a σ-algebra on Ω if it is a

collection of subsets of Ω such that ∅ and Ω belong to F , the complement of a

set in F belongs to F , and a countable union intersection of sets in F belongs

to F . For the probability measure P on F the following statements hold true:

P(∅) = 0,P(Ω) = 1, and for any sequence An of the pairwise disjoint sets

(meaning that Ai ∩ Aj = ∅ for i 6= j)

P (∪∞
n=1An) = lim

∞
∑

n=1

P(An). (2.1)

A function X : Ω → R with the property that {ω ∈ Ω : X(ω) ≤ x} ∈ F for

each x ∈ R is said to be F-measurable and known as a random variable. Its

distribution function F : R → [0, 1] is given by F (x) = P(X ≤ x).
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2.1. Self-similar processes

A stochastic process is a family of random variables {X(t, ω), t ∈ T, ω ∈ Ω}

defined on a common probability space (Ω,F ,P), indexed by the time variable

t, where t varies over an index set T [74]. Since I consider the stochastic process

as a collection of random numbers, meaning that t ∈ [0,∞) is fixed, in the

following I simplify this notation to {X(t), t ∈ T}. The index t represents the

time, whereas we refer to X(t) as the ”state” of the process at time t. Therefore,

the random variables X(t) take values in a set which is called the state space.

In this thesis I use the so-called real-valued processes with the state space R.

There are two different ways in which stochastic process {X(t), t ∈ T} can

be formulated:

• Analytical definition: Let X(t) = φ(t, A1, A2, . . . , Ak), where φ is a func-

tion of t and a set of random variables A1, A2, . . . , Ak (k ≥ 1) defined on a

probability space independent on t, and φ is a random variable on this space.

• Definition in terms of finite-dimensional distributions: Define {X(t), t ∈ T}

by specifying the joint distribution functions:

F (x1, x2, . . . , xn; t1, t2, . . . , tn) = P{X(t1) ≤ x1,X(t2) ≤ x2, . . . X(tn) ≤ xn}

(2.2)

for t1, t2, . . . , tn ∈ T , and n ≥ 1. These joint distribution functions satisfy the

following consistency conditions:

a) symmetry: for every permutation (j1, j2, . . . , jn) of (1, 2, . . . , n)

F (xj1 , xj2 , . . . , xjn ; tj1 , tj2 , . . . , tjn) = F (x1, x2, . . . , xn; t1, t2, . . . , tn). (2.3)

b) compatibility: for m < n

F (x1, x2, . . . , xm,∞,∞, . . . ,∞; t1, t2, . . . , tn)

= F (x1, x2, . . . , xm; t1, t2, . . . , tm).
(2.4)

A real-valued stochastic process {X(t), t ∈ T} is self-similar with pa-

rameter H ∈]0, 1[ if, for any a > 0, the finite-dimensional distributions of

process {X(at), t ∈ T} are identical to the finite-dimensional distributions of

{aHX(t), t ∈ T}, i.e. for any a > 0:

{X(at), t ∈ T} =d {aHX(t), t ∈ T}, (2.5)

where the sign =d denotes the equivalence of the finite-dimensional distribu-

tions [115]:

P(X(at0) ≤ x0, . . . ,X(atn) ≤ xn) = P(aHX(t0) ≤ x0, . . . , a
HX(tn) ≤ xn)

(2.6)

for every t0, . . . , tn and every x0, . . . , xn in T . Here, T could be discrete or a

continuum like T = R, [0,∞).
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2.1. Self-similar processes

Thus, from the mathematical aspect, a more correct term for these processes

would be ”statistical self-similar” processes. However, the term ”self-similar”

became well-spread and I restrict in the thesis to this terminology.

Next, I list some basic properties of self-similar processes [58]:

• The value H is called Hurst exponent.

• Lamperti [73] has shown that the Hurst exponent is unique:

Theorem 2.1.1. Let {X(t), t ∈ [0,∞)} be a self-similar non trivial process (i.e. not

almost surely constant), whose paths are stochastic continuous at t = 0 (i.e. P(|Xh −

X0| ≥ ǫ) → 0 for all ǫ > 0 and h → 0), then there is exactly one H ≥ 0.

• Equality in distribution expresses the invariance of scales and not any

change of the corresponding paths.

• Self-similarity means that zooming in the dimension with a factor a im-

plies an enlarging of the space vector by a factor aH .

• Choosing t0 = 0 and H > 0 the relation X(a0) = aHX(0) reveals

that X(0) = 0 almost surely. Under the assumption of the Theorem 2.1.1 the

stronger property holds:

H = 0 ⇔ X(t) = X(0) almost surely. (2.7)

Therefore, the self-similar processes under consideration are the processes with

H > 0, whose paths are stochastic continuous at 0.

• The process {X(t), t ∈ T} has stationary increments if {X(t), t ∈ T}

and {X(t + h)−X(h), t ∈ T} have the same finite dimensional distributions

for every h > 0. Self-similar process with stationary increments and existing

first moment satisfies for all t ≥ 0

2HE(X(t)) = E(X(2t)) = E(X(2t) −X(t)) + E(X(t)) = 2E(X(t)). (2.8)

Thus E(X(t)) = 0 for all t ∈ T .

• If a self-similar process with stationary increments has s finite second

moment, then

E(X2(t)) = t2Hσ2. (2.9)

When σ2 = 1, the process {X(t), t ∈ T} is called a standard process.

2.1.1 Fractional Brownian motion

Gaussian processes are one of the richest and best understood classes of pro-

cesses in probability theory. A process is Gaussian if all of its finite-dimensional

distributions are multivariate Gaussian distributions. A fractional Brownian

motion (fBm) is the only one self-similar process with Hurst exponentH ∈]0, 1[

in the class of Gaussian processes. It was initially implicitly considered by Kol-

mogorov in his study of the ”spirals of Wiener” [71], whereas its definition and

properties were later reported by Mandelbrot and Van Ness in [87].
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2.1. Self-similar processes

A fractional Brownian motion {BH
t , t ∈ R} is a continuous and centered

Gaussian process for which the covariance at time points t and u is given by

the explicit expression:

E(BH
t BH

u ) =
σ2

2
(|t|2H + |u|2H − |t− u|2H), (2.10)

where σ2 = V arBH
1 . It is called a standard fBm if σ2 = 1. Moreover, since the

covariance function in Eq. 2.10 is homogeneous of order 2H , fBm {BH
t , t ∈ R}

is a self-similar process with the Hurst exponent H . All self-similar Gaussian

processes parameterized by the Hurst exponent have the covariance function

Eq. 2.10 and differ only by a multiplicative constant.

Thus fractional Brownian motion {BH
t , t ∈ R} is a zero mean Gaussian

process that starts at zero:

E(BH
t ) = 0, BH

0 = 0, (2.11)

and has homogeneous increments, i.e. its increments BH
t+s − BH

t constitute a

stationary process with s 6= 0. That means that its joint probability distribution

does not change when shifted in time or space:

BH
t+s −BH

s =d B
H
t −BH

0 . (2.12)

The paths of the fBm have the following properties [119]:

i) The fBm {BH
t , t ∈ R} admits a version whose sample paths are almost

surely Hölder continuous of order strictly less than H , i.e. there exist constants

α ≥ 1, β ≥ 0 and k ≥ 0 such that

E[|BH
t −BH

s |α] ≤ k|t− s|1+β (2.13)

for all s, t ∈ R.

ii) The fBm sample path is not differentiable. In fact, for every t0 ∈ [0,∞)

lim
t→t0

sup |
BH

t −BH
t0

t− t0
| → ∞ (2.14)

with probability one.

The Hurst exponent determines the properties of the observed process:

higher values of H indicate a smoother behavior, less volatility, and less rough-

ness so the paths of the fBm get less zigzagged as the Hurst exponent goes

from 0 to 1. It is commonly agreed to distinguish H-parameterized processes

into three classes:

• for H ∈]0, 12 [ the behavior of the process can be described as an anti-

persistent behavior;

8



2.1. Self-similar processes

• for H = 1
2 the process turns into usual Brownian motion since Eq. 2.10

reduces to:

E(B
1
2
t B

1
2
u ) =

{

min(t, u) if t and u have the same signs,

0 if t and u have opposite signs;
(2.15)

• for H ∈]12 , 1[ the behavior of the process can be described as a persistent

behavior.

The anti-persistence in time exists, in the sense that the increments of the

process are negatively correlated with correlations quickly decaying to zero,

and the process becomes a so-called short-memory process:

∞
∑

n=1

E[|(BH
1 −BH

0 )(BH
n+1 −BH

n )|] < ∞. (2.16)

In contrast to this, the persistent behavior is characterized by positive covari-

ance of two consecutive increments and occurrence of long-range dependen-

cies [114, 115]. The increment sequence BH
n+1 − BH

n exhibits a long-range de-

pendence if its covariance function satisfies

lim
n→∞

E[(BH
1 −BH

0 )(BH
n+1 −BH

n )]

cn−γ
= 1 (2.17)

for some constant c and γ ∈ (0, 1). In this case, the dependence between BH
1 −

BH
0 and BH

n+1 −BH
n decays slowly as n tends to infinity and

∞
∑

n=1

E[(BH
1 −BH

0 )(BH
n+1 −BH

n )] = ∞. (2.18)

The extreme case of H = 1 is usually eliminated due to the fact that for H = 1,

fBm corresponds merely to a line (B1
t = tB1

1) with random slope B1
1 .

The difference in the correlation structure is visible in Fig. 2.1, where the

different realizations of fBm of length N = 500 for H = 0.05, H = 0.5 and

H = 0.95 are shown.

In general, the Hurst exponent is directly related to the Hausdorff dimen-

sion. Next, I discuss and characterize this relationship in more details. The tra-

ditional definition of the Hausdorff dimension D by Falconer [46] is: for any

given set F ⊂ R
n and non-empty subset U ⊂ R

n

D = dimF = inf{s ≥ 0,Hs(F ) = 0} = sup{s : Hs(F ) = ∞}, (2.19)

9



2.2. Bayesian approach
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Figure 2.1: Simulation of fractional Brownian motion of length N = 500 with
Hurst exponent H = 0.05 (blue line), H = 0.5 (red line) and H = 0.95 (green
line).

where

Hs(F ) = lim
δ→0

inf

{

∞
∑

i=1

|Ui|
s : F ⊂ ∪∞

i=1Ui with 0 ≤ |Ui| ≤ δ for each i

}

.

The Hausdorff dimension for the graph (t, BH
t ) is equal to 2−H [86]. That

means if the Hurst exponent is close to 0, the paths of fBm zigzags in order

to cover the unit square. Thus for the case of a fractional Brownian motion

and a fractional Gaussian noise model, the fractal dimension D and the Hurst

exponent H linearly depend on each other. Gneiting and Schlather [52] have

presented a Cauchy class of stationary Gaussian processes {Z(t), t ∈ R} with

the correlation function

E[(Z(t)Z(t+ τ)] = (1 + |τ |α)−β/α, τ ∈ R, (2.20)

where any combination of the parameters α ∈ (0, 2] and β > 0 is permissible.

For such stochastic models, the fractal dimension D and the Hurst exponent

H may vary independently of each other.

2.2 Bayesian approach

In 1763, in his work ”An Essay towards solving a Problem in the Doctrine of Chance”

[16], Bayes gave the solution to the inverse probability problem: what is the

probability of success given the results of independent trials. He proposed to

answer this question in the following manner:

10



2.2. Bayesian approach

i) specify the prior distribution of the parameter P(θ) which represents the

state of knowledge (or ignorance) about θ before having analyzed the given

data.

ii) calculate the posterior density (commonly known as the Bayes’ theo-

rem):

P(θ|x) =
P(x|θ)P(θ)

∫

P(x|θ)P(θ)dθ
; (2.21)

iii) use the posterior distribution to quantify the information about the pa-

rameter of interest (θ).

The function P(x|θ) (when regarded as a function of θ for fixed x) is called a

likelihood function L(θ|x). This means that a θ for which P(x|θ) is large is more

”likely” to be the true θ than a θ for which P(x|θ) is small, in that x would be a

more plausible occurrence if P(x|θ) were large. Further in the thesis I will use

the notation L(θ) to indicate the likelihood function for parameter θ.

In this way the Bayesian inference obeys what is sometimes called the like-

lihood principle: in making inferences or decisions about θ after x is observed,

all relevant experimental information is contained in the likelihood function

for the observed x. Furthermore, two likelihood functions contain the same

information about θ if they are proportional to each other (as functions of θ).

In practice, the parameter θ is unknown. In order to infer θ from the data,

two main methods are commonly used: frequentist (classical) approach and

the Bayes’ approach. Next, I provide a discussion about both approaches in

order to underline the strength and advantages of the Bayesian approach used

further in this thesis.

In the frequentist approach the probability is represented by a long-run

frequency of a repeatable event in which the uncertainty is due to the ran-

domness. Here, there are no probability statements about the parameters, since

they are considered as unknown constants. All uncertainty is measured only

through the significance levels (the p-value approach 1 advocated by Fisher

[47] and the α-level approach 2 advocated by Newman and Pearson [99]) and

confidence intervals. For instance, if the frequentist approach gives a 95% con-

fidence interval, this means only that in a repeated sampling, 95% of realized

intervals cover the true parameter θ. This however, does not mean that there is

95% probability that θ will be in this interval. In contrast to this, in the Bayesian

1The traditional approach is to use the ideas of Fisher, Neyman and Pearson, wherein one
states a primary, or null, hypothesis H0, and an alternative hypothesis H1. After determining an
appropriate test statistic T (x), one then computes the observed significance, or p-value, of the
test as

p− value = P{T (x) more ”extreme” then T (xobs)|θ,H0},

where ”extremeness” is in direction of the alternative hypothesis. If the p-value is less than
some prespecified Type I error rate, H0 is rejected; otherwise, not [27].

2A test T (x) of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 is said to have size α if

sup
θ∈Θ0

Eθ[T (x)] = α− level.

11



2.2. Bayesian approach

interpretation, a 95% confidence interval means that the probability to find pa-

rameter θ in this interval is 0.95.

Now, based on the work of Wagenmakers [125] I articulate several general

problems associated with the frequentist approach:

• Frequentist inference does not prescribe which estimator is the best

Point estimation involves calculation of a single ”best guess” of some quan-

tity of interest from data and we assume there is some ”true” value θ for this

quantity, which is fixed but unknown. There is a large amount of possible es-

timators, thus the question arises how to determine which estimator to use?

The common procedure here is to use an unbiased estimator.

An estimator ε(·) based on data x is unbiased when for all θ

∫

Ω
ε(x)P(x|θ)dx = θ, (2.22)

where Ω indicates as before the sample space.

However, this choice of the estimator is based on all possible data sets that

could be observed, thus making the procedure biased on the previous knowl-

edge of the researcher. Additionally, estimator which is unbiased for some pa-

rameter may be biased for some nonlinear transformation of it. The examples

when unbiased estimators perform uniformly worse than biased one can be

found in [102].

• Frequentist inference generally does not condition on the observed data

Berger and Wolpert stated in [19] that ”a particular procedure is decided upon

for use, and the accuracy of the evidence from an experiment is identified with

the long run behavior of the procedure, were the experiment repeatedly per-

formed.”

• Frequentist inference does not apply to non-nested models3

Frequentist inference is not well suitable for the comparison of for example

two non-nested models due to the fact that the choice of the null hypothesis in

such case is unclear. This can lead to rejecting or accepting both models.

• Frequentist inference does not quantify statistical evidence

This point involves the tradition that the p-values reflect the strength of evi-

dence against the null hypothesis. However, there are exist some studies that

the p-postulate is false due to the following fact: given the same p-values for

different experiments, the studies with small sample size provide more ev-

idence against the null hypothesis than studies with large sample size (see

[3, 11, 113]).

• Frequentist inference depends on data that were never observed and the intention

3Two models are non-nested, either partially or strictly, if one model cannot be reduced to
the other model by imposing a set of linear restrictions on the parameter vector; otherwise they
called nested [29].
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with which the data were collected

Wagenmakers [124] asserts that ”p-value is a tail-area integral, and this integral

is effectively over data that are not observed but only hypothesized. The prob-

ability of these hypothesized data depends crucially on the possibly unknown

subjective intentions of the researcher who carried out the experiment. These

hypothetical data are data expected under null hypothesis, without which it is

impossible to construct the sampling distribution of the test statistic.”

In contrast to frequentist inference, in Bayes’ approach, the probability of in-

ferring parameter is concerned with the uncertainty of the knowledge, rather

than with the variability of the outcome. Thus all the parameters assume to

be random variables, bringing to the Bayesian approach many advantages

over the frequentist counterpart. I discuss next the main characteristics of the

Bayesian approach [125]:

• Bayesian inference is coherent

In contrast to the frequentist inference, Bayesian theory is based on limited

amount of axioms about rational decision making. Therefore, the number of

possible ways to obtain an appropriate response is limited and there is no

need for any ad-hoc solutions to remedy procedures that give internally in-

consistent results.

• Bayesian inference allows marginalization

Bayesian inference allows to deal only with the parameters of interest by inte-

grating out the other parameters, according to the law of total probability. The

resulting marginal posterior distributions may be identical to the one from the

frequentist counterparts, but this only holds true in a few special cases.

• Bayesian inference is extended to non-nested models

Due to the possibility to marginalize the parameters of interest, Bayesian infer-

ence does not make a fundamental distinction between nested and non-nested

models. This allows to expand the amount of possible applications.

• Bayesian inference allows to incorporate prior knowledge

Bayesian inference is open for any prior knowledge about parameters in the

model. By incorporating prior information into the optimization procedure, a

smooth transition between fixed and fitted parameters can be achieved.

• Bayesian inference allows to obtain evidence in favor of the null hypothesis

Quantifying the evidence by comparing the marginal probability of the data

given one hypothesis, to the marginal probability of the data given another

hypothesis, Bayesian inference is free from rejection the null hypothesis as it

has no special status here.

• Bayesian subjectivity is open to inspection

A main criticism addressed to Bayesian inference is that it is subjective. How-

ever, the frequentist inference is also not as objective as one may think: both

13



2.2. Bayesian approach

of them have subjective elements. However, Bayesian subjectivity is open to

inspection, whereas frequentist is not.

• Bayesian inference is being simplified by computerizing statistical thought

Until recent times application of the Bayesian inference was limited by techni-

cal requirements necessary to solve the complex tasks which Bayesian statis-

tics deal with. Nowadays a large amount of Bayesian software programs have

been developed to operate with these problems. To incorporate multiple data

and efficiently implement Bayesian inference such programs as BUGS, BOA,

SAS, S-Plus and others could be used.

Moreover, the Bayesian inference allows to receive results that are closely con-

nected to the ones the researchers are interested in. Testing both the Bayesian

and the frequentist inference, Berger [20] concluded that ”based on the philo-

sophical foundations of the approaches, Bayesian models are best suited to

addressing hypotheses, conjectures, or public-policy goals, while the frequen-

tist approach is best suited to those epidemiological studies which can be

considered ”experiments”, i.e. testing constructed sets of data”. However, the

Bayesian inference is more flexible for considering hierarchical nonlinear mod-

els, where one experiment can be affected by several parameters which, for

individual people are assumed to be drawn from group-level distribution. For

non-Bayesian approaches such multi-level structures can not be considered in

most cases.

Based on the given discussion I assumed the Bayesian approach to be more

suitable for the estimation of the Hurst exponent. Thus, in the following I dis-

cuss the Bayes’ theorem Eq. 2.21 in detail.

2.2.1 Prior distributions

From Bayesian perspective, all the parameters in the model are random vari-

ables, and have both prior and posterior distributions. Therefore, the Bayesian

method requires prior probabilities to be given as explicit values. The choice of

the prior distribution is usually based on the information about the unknown

parameter. However, in most of the cases there is no prior information given.

Thus, it is necessary to consider general theories in order to construct prior

distributions for the given task in hand. Next, I describe the three possibilities

for the choice of the prior [27, 49, 102].

2.2.1.1 Elicited (informative) priors

The case of informative priors allows definition of priors when we can use

prior information from previous studies, our personal opinions about the in-

vestigating system or models themself suggest theoretical parameters values.

Here, we have a specific, definite numerical information about a variable that

is crucial to estimation of the model. If parameter θ is deterministic, we limit

consideration to manageable collection of θi values deemed ”possible”, and
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subsequently to assign probability masses to these values in such a way that

their sum equals to one. If θ is continuous instead consider the single points,

rather assign the masses to intervals on real line, resulting in a histogram prior

for θ (even in a case of continuously, the computation of the posterior distribu-

tion required to be done numerically). Alternatively, we might simply assume

that the prior belongs to a distribution family.

2.2.1.2 Conjugate priors

In general, the posterior density P(θ|x) is not easy to calculate. In order to

reduce the computational costs, very often the choice of the prior is restricted

by some familiar distributional family. Using this line of thinking, Raiffa and

Schlaifer [108] developed the so-called conjugate priors:

Let F denote the class of density functions P(x|θ). A class P of prior dis-

tributions is said to be a conjugate family for F if P(θ|x) is an element of the

class P for all P(x|θ) ∈ F and P(θ) ∈ P . This leads to a posterior distribution

belonging to the same distribution family as the prior.

A conjugate family can frequently be determined by examining the like-

lihood function P(x|θ) and choosing, as a conjugate family, the class of dis-

tributions with the same functional form as the likelihood function. This is a

convenient way to obtain a posterior distribution a known parametric form.

However, it is still necessary to check whether the prior information is appro-

priately represented by the distribution family.

2.2.1.3 Noninformative priors

The necessity to use noninformative priors arises when the prior distributions

have no population basis and we want to have the prior distributions that will

play a minimal role in the posterior distribution. In that way we make the

analysis as object as possible and ”let data speak for itself”.

Thus, the inference has to be driven only by the likelihood function. There-

fore, the best candidate for the prior will be an uniform prior. Uniform distri-

bution is used to represent a variable that is known to lie in an interval and

equally likely to be found anywhere in the interval. However, since it is not in-

variant under reparametrization, it is necessary to ask on which scale should

the uniform distribution be specified? The general solution to this problem is

to use Jeffreys’ noninformative priors which are based on considering one-to-

one transformations of the parameter [65].

In particular, the Jeffreys’ rule offers that the prior distribution for parame-

ter θ is approximately noninformative, if it is taken proportional to the square

root of the information-matrix determinant:

P(θ) =
√

detI(θ), (2.23)
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where I(θ) is the Fisher information matrix, having ij-th element:

Ii,j(θ) = −E

[

∂2

∂θi∂θj
log P(x|θ)

]

. (2.24)

It is motivated by considering one-to-one transformations of the parame-

ter: γ = κ(θ). By transformation of variables, the prior density P(θ) is equiva-

lent, in terms of expressing the same beliefs, to the prior density on γ:

P(γ) = P(θ)

∣

∣

∣

∣

dθ

dγ

∣

∣

∣

∣

= P(θ)|κ′(θ)|−1. (2.25)

Determining the prior density P(θ) should yield an equivalent result if ap-

plied to the transformed parameter. In general, the flat prior is defined as the

Jeffreys’ prior for location parameters where as the inverse prior denotes the

Jeffreys’ prior for scale parameters.

It will frequently happen that the natural noninformative prior is an im-

proper prior, meaning that the prior can not be normalized (does not inte-

grate to 1). In some examples (see [49]) the improper priors can be used in the

Bayesian analysis and the posterior density in fact will be proper. However,

the posterior distributions obtained from improper prior distributions must

be interpreted with great care and one must always check if the posterior dis-

tribution has a finite integral.

2.2.2 Bayes’ theorem

Having specified the prior distribution by one of the proposed methods (Sec-

tion 2.2.1), now we can calculate the posterior distribution of the parameter. We

start the analysis without having any knowledge neither about the parameter

θ nor the data x. Our uncertainty is thus determined via P(θ, x) [36]. Assuming

that x is the observed quantity, we can find conditional probability using:

P(θ|x) =
P(θ, x)

P(x)
. (2.26)

Next, using the marginalization integral P(x) =
∫

P(θ, x)dθ we can rewrite

Eq. 2.26 in the following form:

P(θ|x) =
P(θ, x)

∫

P(θ, x)dθ
. (2.27)

Here, value P(θ, x) can be calculated using P(θ, x) = P(x|θ)P(θ). Summarizing

all together, one obtains the Bayes’ theorem:

P(θ|x) =
P(x|θ)P(θ)

∫

P(x|θ)P(θ)dθ
. (2.28)

Thus, the complete information about the parameter θ given the data is

obtained. Considering the fact that the denominator in Eq. 2.28 is strictly posi-
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tive, normalization constant which does not depend on θ, the equation may be

rewritten as:

Posterior ∝ Likelihood × Prior

P(θ|x) ∝ P(x|θ)× P(θ), (2.29)

where ∝ denotes that two quantities are proportional to each other. Hence, the

posterior distribution can be found by combining the likelihood and the prior

distribution of the parameter.

I would like to stress the fact that the Bayesian statistics provides intuitive

and significant inferences: taking into account all available information (due to

the inclusion of the prior information), Bayesian methods can answer complex

questions.
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Chapter 3

Estimation of the self-similarity

exponent

The only relevant thing is
uncertainty - the extent of our
knowledge and ignorance. The
actual fact of whether or not the
events considered are in some
sense determined, or known by
other people, and so on, is of no
consequence.

Bruno de Finetti

As shown in Chapter 2, the Bayesian method could be used as a powerful

tool to obtain all information about parameters in the model. I developed a

novel method for estimation of the Hurst exponent based on Bayesian theory

[82]. In this chapter I discuss in details the Bayesian method for the estima-

tion of the Hurst exponent in terms of a linear mixed model [38]. I start with

considering the following model:

Xt = λBH
t + a t+ b. (3.1)

Here, I use the assumption that the underlying process BH
t is a fractional

Brownian motion parameterized by the Hurst exponent H , λ is the amplitude

(λ > 0, λ ∈ R), a ∈ R is the slope and b ∈ R is the offset. The model contains

a linear trend in order to describe real data more accurately. As shown further

in this chapter, the estimation method based on Bayesian analysis allows to

estimate the Hurst exponent besides the remaining parameters in the model.

I also consider the data with gaps and show that random gaps influence the

estimation of the parameters only weakly. The method is compared by means

of Monte-Carlo simulations to the most popular technique, the detrended fluc-

tuation analysis. The performance of the proposed method for non-Gaussian

data is further tested on Rosenblatt process. Moreover, the limitation of the
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method to Lévy flights with stable distribution are also discussed. In addition,

I apply the proposed estimation method to the Dow-Jones Industrial Average

closing values for the years 1900-1993 and produce a time-dependent posterior

distribution of the Hurst exponent.

3.1 Bayesian inversion

Let D be the set of N observations,

D = {(tk,Yk = Xtk)}, k = 1, . . . , N,

where Xtk denotes the data value at the time point tk. Since very often real

time series are not evenly sampled, here it is not assumed that the time points

are on a regular grid. Thus, one of the advantage of the method I propose here

is the robustness with respect to the data sampling.

Next, let F denote the N × 2 system matrix with entries

Fk,1 = 1, Fk,2 = tk. (3.2)

Defining β as a 2×1 vector of the slope and the offset, the model (Eq. 3) can be

rewritten in a more compact form as the following linear mixed effects model

(see [38]):

Y = λu+ Fβ, (3.3)

where u ∼ N (0,ΣH) represents the random part, Fβ represents the fixed ef-

fects and the Hurst exponent indicates a hyperparameter. Here u is a Gaussian

random variable with zero mean and covariance matrix Σ = Σ(H) = ΣH with

entries

Σi,j = E(BH
ti B

H
tj ) =

1

2
(|ti|

2H + |tj |
2H − |ti − tj|

2H). (3.4)

For a fixed parameter β and observation points {tk}, the vector of outcomes

Yk is a N -dimensional Gaussian random vector with the mean value Fβ and

the variance λ2
ΣH : N (Fβ, λ2

ΣH). Hence, the likelihood of observing D =

{(tk,Yk = Xtk)} with Y = {Yk} for a fixed set of parameters and observation

points is

L(H,λ, β, {tk}) =
1

(2π)N/2λN |ΣH |1/2
e−

(Y−Fβ)TΣ
−1
H

(Y−Fβ)

2λ2 . (3.5)

Here, |ΣH | denotes the determinant of the matrix ΣH . Since in this case no

knowledge about the parameters exists, I estimate λ using Jeffreys-like priors

(see Section 2.2.1): P(λ) ∼ λ−1, and use the flat prior to model β and H , i.e.

P(β) ∼ 1, P(H) = χ[0,1] [122]. Now, applying the Bayes’ theorem Eq. 2.28, [16],
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the posterior distribution for the unknown parameters can be expressed as:

P(H,λ, β|D) = C
1

λN+1|ΣH |1/2
e

−(Y−Fβ)TΣ
−1
H

(Y−Fβ)

2λ2 . (3.6)

Here, C is a normalization constant which allows to obtain a probability den-

sity of the form
1
∫

0

dH

∞
∫

0

dλ

+∞
∫

−∞

dβ P(H,λ, β|D) = 1. (3.7)

Hence, Eq. 3.6 can be rewritten in the following form:

P(H,λ, β|D) = C λ−N−1|ΣH |−1/2e−
R2(H)

2λ2 e−
(β−β∗(H))T FT

Σ
−1
H

F (β−β∗(H))

2λ2 (3.8)

with

β∗(H) = (F T
Σ

−1
H F )−1F T

Σ
−1
H Y, (3.9)

R2(H) = (Y − Fβ∗(H))T Σ
−1
H (Y − Fβ∗(H)) , (3.10)

where β∗(H) and R2(H) are parameters of the model that most likely occur

and R(H) is the residuum around the linear trend. Here, R(H) is measured in

terms of the Mahalanobis distance, induced by the covariance matrix ΣH . This

is a statistical distance which differs from Euclidean distance in that it takes

into account the correlations of the data set and it is scale-invariant [81]. In

this form, the term

(

e−
(Y−Fβ)TΣ

−1
H

(Y−Fβ)

2λ2

)

, the Gaussian part of the posterior

distribution, is clearly visible. Therefore the marginal distribution of (H,λ) and

H , obtained by the integration over β and λ can be computed using Gaussian

integrals with

P(H,λ|D) = C|ΣH |−1/2|F T
Σ

−1
H F |−1/2λ1−Ne−

R2(H)

2λ2 . (3.11)

Thus, integration over λ results in

P(H|D) = C|ΣH |−1/2|F T
Σ

−1
H F |−1/2R2−N (H), (3.12)

or, using the decimal logarithmic scale,

− 2 log P(H,λ|D) = log |ΣH |+ log |F T
Σ

−1
H F |+

+ 2(N − 1) log λ+
R2(H)

λ2
, (3.13)

−2 log P(H|D) = log |ΣH |+ log |F T
Σ

−1
H F |+

+ 2(N − 2) logR(H). (3.14)
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The observations enter the equation only through the residuum R(H) and the

time points of the measurements through F and ΣH .

Next, the point-estimator for H is taken at the location of the maximal value

of the posterior density:

Ĥ = argmax P(H|D). (3.15)

The marginalized posterior density (at Ĥ) of the amplitude λ is obtained by

integration over β in its explicit expression and reads

P(λ|Ĥ,D) = Cλ1−Ne−
R2(Ĥ)

2λ2 . (3.16)

This equation allows to derive the following marginal maximal posterior esti-

mator for the amplitude λ

λ̂2 =
R2(H)

N − 1
. (3.17)

In the same way, the profiled posterior distribution of the offset and the slope

parameters β = [b, a]T can be estimated as a Gaussian distribution with mode

at β∗(H) and a covariance matrix

Γ = F T
Σ

−1

Ĥ
F. (3.18)

However, the full marginal posterior distributions of β and λ involve a numer-

ical integration over H .

An estimation of the amplitude and the Hurst exponent for the test model

is shown in Fig. 3.1, whereas Fig. 3.2 depicts the estimations of the slope and

the offset for the same model. Here, I generated data sets of length N = 100 at

every time point tk for k = 1, . . . , 100.

In general, several methods exist to generate numerically fBm data as re-

quired in the system I study here [39, 67]. I note that here, as well as in the

following chapters of this thesis, the synthetic data I use for model testing is

based on the Cholesky decomposition of ΣH = LtL [56]. I furthermore apply

Lte, with e = [e1, . . . , eN ]t being a random vector of N independent standard

Gaussian random variables.

Next, in order to identify the robustness of the proposed method with re-

spect to unevenly sampled data set, I use the same model and draw randomly

N = 36 time points from tk, k = 1, . . . , 100 as depicted in Fig. 3.5. I note here

that the data is not interpolated (Fig. 3.5). The estimations of the interior pa-

rameters using the Bayesian method (Eq. 3.13) for unevenly sampled data are

shown in Fig. 3.3, 3.4.

In both cases, the intersection of the white dotted lines show the exact true

value of the parameters in the figures: H = 0.1, λ = 0.8, β = [10, 0.2]T . The

one dimensional projections of the posterior densities p(α|data), p(H|data)

and p(β|data) show the confidence bounds for the estimates. Thus, this al-

lows for estimation of the Hurst exponent with confidence intervals. More-
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Figure 3.1: The Bayesian estimation of amplitude and Hurst exponent, for the
model Xtk = 0.8B0.1

tk
+0.2 tk+10 with N = 100 at time points tk, k = 1, . . . , 100.

The contour plots present the one dimensional projections of the posterior den-
sities. The intersection of white lines denotes the true values of the parameters.

Figure 3.2: The Bayesian estimation of slope and offset for the model given in
Fig. 3.1.
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Figure 3.3: The Bayesian estimation of amplitude and Hurst exponent for un-
evenly sampled data with the model Xtk = 0.8B0.1

tk
+0.2 tk +10 of total length

N = 36 at randomly chosen time points tk, k = 1, . . . , 100.

Figure 3.4: The Bayesian estimation of slope and offset for the model given in
Fig. 3.3.
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Figure 3.5: Simulation of fractional Brownian motion for the model Xtk =
0.8B0.1

tk
+ 0.2 tk + 10 of total length N = 36 at randomly chosen time points

tk, k = 1, . . . , 100 (red dots).

over, the method I propose estimates other parameters of the model. The true

and estimated values for both evenly and unevenly sampled data are given in

Table 3.1. As shown, the gaps do not significantly change the quality of the

estimation. Clearly, this can only hold within some limit. This means that for

irregular, but evenly distributed data points, the estimation will essentially be

of the same quality as for regular sampled data. However, if lacunary distribu-

tions of data are considered, an influence of the data distribution to the quality

of the Bayesian inversion is to be expected.

In order to check the sensitivity of the estimates to data loss, I consider the

same model Xtk = 0.8B0.1
tk

+ 0.2 tk + 10 in time points tk, k = 1, . . . , 100, ran-

domly producing gaps with irregular sampling steps. Thus, I loose from 0% up

to 100% information about the parameters in the model. Next I obtained 100

data realizations in the described way and calculated for each of them the pos-

terior density P(H|D). The obtained averaged posterior densities are depicted

in Fig. 3.6. As shown, starting from 27% of the original data set, the maximum

of the averaged posterior densities falls in the interval, [0.0294, 0.11215], con-

Table 3.1: The estimation of Hurst exponent, amplitude, slope and offset for
the model Xtk = 0.8B0.1

tk
+ 0.2 tk + 10.

Hurst exponent Amplitude Fixed effects

Ĥ λ̂ β̂ = [b, a]T

Evenly 0.115 0.89 [9.75, 0.1975]T

sampled data
Unevenly 0.135 0.87 [10, 0.1925]T

sampled data

True value 0.1 0.8 [10, 0.2]T
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analysis

Figure 3.6: The averaged posterior densities for the model Xtk = 0.8B0.1
tk

+
0.2 tk + 10 with 100 realizations.

taining more than 75% of the distribution. Thus it can be concluded that the

proposed method is an efficient tool for the Hurst exponent estimation while

remaining relatively robust to data loss.

3.2 Comparison of the Bayesian estimation and the de-

trended fluctuation analysis

In this section, I compare the performance of the proposed method with the

well-known detrended fluctuation analysis (DFA) by Peng et. al. [105]. The

authors in [105] investigated the local scaling properties in DNA nucleotides

which contain coding and non-coding regions in order to show that the patch-

iness (mixed coding and non-coding regions) of the DNA by itself cannot ac-

count for long-range power law correlations found in DNA dominated by non-

coding regions. Later, they applied the DFA method to heartbeat data as well

[106], where they aimed at a detailed description of the DFA algorithm. I un-

derline here the fact that the DFA method (as well as its modificated versions

[13, 25, 68, 69, 129]) is a widely used method for the Hurst exponent estima-

tion. The DFA has been also used for the estimation of the Hurst exponent

from fixational eye movements data [77, 95], a research question which will be

discussed in details in Chapter 6.

The DFA algorithm can be summarized as follows:

1. For a given time series {X(t), t = 1, . . . , N} we divide {1, . . . , N} into
[

N
n

]

boxes of equal size n.

2. In each box the least-square regression Xn(t) for t = 1, . . . , N , which

represents the linear trend of the process in the box, is subtracted from

the time series:

Yn(t) = X(t)−Xn(t). (3.19)
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Figure 3.7: The scaling relation between the size of fluctuations F (n) and
the number of points n in artificial fractional Brownian motion of length
N = 1, 000 with H = 0.3.

3. For a given box size n, the detrended fluctuation function is the standard

deviation of Yn(t) calculated by

F (n) =

√

√

√

√

√

1

n
[

N
n

]

n[Nn ]
∑

t=1

(Yn(t))2. (3.20)

In order to establish the relationship between F (n) and the box size n, the

algorithm is repeated for several box sizes which represent all time scales of

the given system. Typically, F (n) scales with the box size as F (n) ∼ n−H . A

linear relationship in log10F (n) − log10(n) indicates the presence of a power

law fractal scaling. In Fig. 3.7, the existence of a linear relationship in artificial

fractional Brownian motion of length N = 1, 000 with H = 0.3 is shown. Thus

next, I implemented the DFA method as proposed in [54].
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Figure 3.8: Gaussian kernel density of the estimator of the Hurst exponent for
H = 0.3, N = 1, 000 with 25,000 realizations by Bayesian method (red line)
and DFA (blue line).

26



3.2. Comparison of the Bayesian estimation and the detrended fluctuation
analysis

Table 3.2: The interval for Ĥ with p ≥ 95% for artificial fBm with H=0.3.

Method Interval for Ĥ with p ≥ 95%

DFA [0.159, 0.3247]
Bayesian approach [0.2748, 0.3342]

True value 0.3

Figure 3.9: The validation test for Bayesian estimation with 500 realizations for
the Hurst exponent H = 0.3.

Next, I use the DFA method as commonly used point estimator to estimate

the Hurst exponent and compare the obtained results with the Bayesian esti-

mation method I propose in this thesis (Eq. 3.15). In order to access the bias

and the variance of this estimator, I performed Monte-Carlo simulations for

the fixed true Hurst exponent (H = 0.3). In particular, I generated 25, 000 re-

alizations of fBm and apply for each of them the DFA algorithm to estimate

H . Then I repeat the analysis with the maximal posterior estimator Ĥ of the

Bayesian method. The Fig. 3.8 shows the comparison between the methods. It

clearly indicates that the Bayesian estimation method proposed here performs

significantly better than the DFA algorithm. Moreover, not only its expectation

value is closer to the true value, but also its variance is considerably smaller.

The intervals containing more than 95% of the distribution for both methods

are given in Table 3.2.

Furthermore, in Fig. 3.9 I quantify the bias of the maximal posterior esti-

mator Ĥ , E(Ĥ) − H, as a function of the number of data points in the case of

evenly sampled data. Here, the expectation value is estimated using 500 ran-

dom realizations at each data point for a Hurst exponent H = 0.3. Also the

bias quickly decays for large N .

3.2.1 Bayesian comparison

As I have already shown, the Bayesian approach allows to obtain a full dis-

tribution of the posterior probabilities for the estimated value of the Hurst
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3.2. Comparison of the Bayesian estimation and the detrended fluctuation
analysis

Figure 3.10: Projection of the space of the likelihood functions.

exponent H that parameterizes the data. Thus, using the Bayesian approach I

analyze next the posterior information about the Hurst exponent that is con-

tained in the DFA values. To that matter, I use the DFA approach to transform

the data into a new quantity, the DFA value, and show how this may imply a

loss of information on H . In order to perform this task, it is necessary to calcu-

late the conditional probability P(H|DFA) which, using the Bayes’ theorem,

can be written as

P(H|DFA) = C P(DFA|H)P(H). (3.21)

Again, I assume a flat prior for H and use Monte-Carlo simulations to

produce the distribution of DFA that occurs by random fluctuations for each

given value of H . Fig. 3.10 shows the likelihood function obtained from 25, 000

realizations for separate H values varying in [0, 01, 0.99] with a step size of

0.01. Here, the number of data points was fixed to 1, 000. Now, having the in-

formation about the true value of H , I can process of the posterior density of
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Figure 3.11: The posterior distribution for the Hurst exponent given the DFA
value H = 0.310496 performed by the DFA-estimator (blue line) and direct
Bayesian inversion (red line).
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3.3. Application to Dow-Jones Industrial Average closing values

the Hurst exponent given by the DFA value. In Fig. 3.11, the posterior dis-

tribution for the Hurst exponent H = 0.310496 obtained via the detrended

fluctuation algorithm is plotted. The method based on Bayesian theory outper-

forms the detrended fluctuation estimation in the calculation of the posterior

information about H : the posterior information contained in the detrended

fluctuation analysis is less sharp than the posterior information contained in

the full Bayesian inversion.

3.3 Application to Dow-Jones Industrial Average clos-

ing values

Next, I apply the proposed Bayesian method for the estimation of the Hurst

exponent for real-world data, in particular to analyze of the Dow-Jones In-

dustrial Average closing values (DJIA), as obtained in the period from 1900 to

1993. Data for this purpose is depicted in Fig. 3.12. (The time series is available

at http://lib.stat.cmu.edu/datasets/djdc0093.) I choose the Dow-Jones values

as a good example of a time series with fractal structure and because the par-

ticular data set has been analyzed with various methods and techniques [107].

This allows me to compare the Bayesian method for the estimation of the Hurst

exponent with previous results.

As necessary in many cases when dealing with real-world data, certain

data preprocessing steps need to be haven. In particular, it is necessary to re-

move first the existent spikes from the data set. The time series consists of

25753 data points. The Bayesian approach estimation was applied to the given

data set by years, with shift equal to one data point, and each year consisting

of approximately 274 data points.

The same data set in the period from 1900 to 1951 was studied in the

work of Pilgram and Kaplan in [107]. To estimate the Hurst exponent, they

applied five different methods: fast Fourier transform based regression, band-

integrated regression, R/S analysis as proposed by Hurst, detrended fluctu-

ation analysis and maximum likelihood estimation. The results which they

Figure 3.12: Dow-Jones Industrial Average closing values, the years 1900-1993.
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3.3. Application to Dow-Jones Industrial Average closing values

Table 3.3: The estimation of the Hurst exponent for the Dow-Jones Industrial
Average daily closing prices data from 1900 to 1951 years from the work of
Pilgram and Kaplan [107].

Method Hurst exponent, Ĥ

Fast Fourier transform based regression 0.47375
Band-integrated regression 0.49625

Hurst R/S analysis 0.49375
Detrended fluctuation analysis 0.49

Maximum likelihood estimation 0.48625

This study 0.51

obtained for H are shown in Table 5.1, where the estimation computed by

proposed Bayesian approach is also presented. Moreover, the distribution of

the Hurst exponent obtained by the Bayesian approach for this time period is

depicted in Fig. 3.13 with blue line.

Next, applying the same approach to the whole data set I received an point

estimation of the Hurst exponent for the years between 1900-1993 to be equal

to H = 0.515. The full distribution is shown in Fig. 3.13 with red line. More-

over, to see how the Hurst exponent is changing with time, I show the pro-

jection of its Bayesian estimation in Fig. 3.14. Comparing the results obtained

for 1900-1951 and 1900-1993 years, we can see the shift of the distribution of

the Hurst exponent to persistent area, i.e. the data possesses the property to

have a long-memory for the last period. Thus, as shown here, the Bayesian

method can also be applied to real data and estimate a value in the same range

as previous estimates.

Figure 3.13: The sum of local posterior densities computed for sub time series
of 274 data points with change of 1 data point of DJIA closing values for 1900-
1951 (blue line) and 1900-1993 (red line) years.
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3.4. Estimation of the Hurst exponent for non-Gaussian data of Rosenblatt
and α-stable Lévy processes

Figure 3.14: Projection of Bayesian estimation of the Hurst exponent of DJIA
closing values from 1900 to 1993 years.

3.4 Estimation of the Hurst exponent for non-Gaussian

data of Rosenblatt and α-stable Lévy processes

In order to investigate the efficiency of the Bayesian method, I consider in this

section the Rosenblatt process as an example of a H-self-similar process, whose

finite-dimensional distributions are non-Gaussian. This kind of process was

initially introduced by Rosenblatt [112], where the current name is given by

Taqqu in 1975 [118]. By definition (see [112, 118]), the Rosenblatt process is

H-self-similar process with Hurst exponent H ∈ (1/2, 1) and stationary incre-

ments. It can be written in explicit form as a stochastic integral

Z(t) = a(H)

∞
∫

−∞

∞
∫

−∞





t
∫

0

(s− y1)
− 2−H

2
+ (s− y2)

− 2−H
2

+ ds



 dBy1dBy2 , (3.22)

where {By, y ∈ R} is a usual Brownian motion, s ∈ [0,∞), a(H) is a posi-

tive normalization constant chosen as E(Z(1)2) = 1 and x+ = max{x, 0}. The

Rosenblatt process is also known as Hermite process of the second order (note

that the fractional Brownian motion is of the first order) [80, 120].

Thus, in order to produce synthetic data for estimation purpose, I use here

the wavelet-based synthesis of the Rosenblatt process as proposed and kindly

provided by Abry and Pipiras [5]. An example of realization of the Rosenblatt

process with Hurst exponent H = 0.8 and length N = 513 is shown in Fig. 5.4.

As before, I generated 25,000 realizations of the Rosenblatt process of length

N = 1, 025 (due to the generation procedure) and applied the DFA and the
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3.4. Estimation of the Hurst exponent for non-Gaussian data of Rosenblatt
and α-stable Lévy processes

Figure 3.15: Simulation of the Rosenblatt process for N = 513 and H = 0.8.

Table 3.4: The interval for Ĥ with p ≥ 95% for artificial Rosenblatt process with
H=0.8.

Method Interval for Ĥ with p ≥ 95%

DFA [0.5047, 0.745]
Bayesian approach [0.7629, 0.8919]

True value 0.8

Bayesian approach as point estimators in order to estimate the Hurst exponent

from non-Gaussian data and test the efficiency of both methods. In Fig. 3.16 I

present the resulting Gaussian kernel density for both methods, whereas the

numerical results are reported in Table 3.4. Also this analysis shows that the

variance of the Bayesian point estimator is clearly smaller than the one exam-

ined by the DFA. Moreover, the detrended fluctuation analysis strongly un-

derestimates the Hurst exponent whereas the Bayesian method performs this

task more reliably.
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Figure 3.16: Gaussian kernel density for a point-estimator of the Hurst expo-
nent H = 0.8 of length N = 1, 025 with 25,000 realizations by DFA (blue line)
and direct Bayesian method (red line).
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3.4. Estimation of the Hurst exponent for non-Gaussian data of Rosenblatt
and α-stable Lévy processes

Figure 3.17: Simulation of a α-stable Lévy motion for N = 1, 000 and α = 1.2.

Now, I discuss the limitation of the proposed Bayesian method to a pro-

cess which is self-similar, but has no properties resembling a Gaussian process,

such the α-stable Lévy motion. I therefore perform the analysis with Lévy pro-

cess following a stable distribution as discussed next [26, 96, 115, 127].

A random variable X is stable, or has a stable distribution, if and only if

X = aZ + b where a > 0, b ∈ R and Z is a random variable with characteristic

function [100]:

E
(

eiuZ
)

=

{

e(−|u|α[1−iβ tan πα
2
(sign(u))]) α 6= 1

e(−|u|[1+iβ 2
π
(sign(u)) log |u|]) α = 1

with α being the index of stability, 0 < α ≤ 2, and β - skewness parameter,

−1 ≤ β ≤ 1.

These distributions are symmetric around zero whenever β = 0 and b =

0. Symmetric α-stable motion is called α-stable Lévy motion. Moreover, the

dependency between the stability index α of α-stable Lévy motion and the

Hurst exponent H of fBm has been identified as H = 1
α [126]. I show the

example of simulated α-stable Lévy motion for the stability index α = 1.2 and

sample length N = 1, 000 in Fig. 3.17.

In order to see how both methods (Bayesian method and DFA) estimate

the self-similarity parameter in this case, I simulated 25,000 realizations of α-

stable Lévy motion with length N = 1, 000 with a stability index α = 1.2

or self-similarity exponent H = 5
6 . The results are presented in Fig. 3.18, I

observed that both, the Bayesian method and the DFA estimate the value for

the self-similarity exponent H close to 0.5 (α ≈ 2).

Performing the same estimation approach for different values of α, I ob-

tained the same results for both methods (Hurst exponent H close to 0.5).

Thus, it can be stated that both methods are not suitable for the analysis of

the self-similarity exponent from α-stable Lévy motion.

Bayesian inversion is carried out based on the assumption that the under-

lying process is fractional Brownian motion. Therefore, it is expected that the
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Figure 3.18: Gaussian kernel density of the Hurst exponent for α = 1.2 (H =
5
6), N = 1, 000 with 25,000 realizations by Bayesian method (red line) and DFA
(blue line).

proposed method for the estimation of the Hurst exponent fails to α-stable

Lévy motion due to their different nature. Moreover, the Bayesian method has

been developed for analysis of time series which do not have large jumps as

those in Lévy process. The only case where the proposed estimator can infer

the value of the Hurst exponent reliably, even in case of a Lévy process is for

value α → 2 (α = 2 is a special case of the Gaussian distribution). Therefore,

in order to check whether the estimation can be applied to different data sets

with unknown nature, I propose the following methods:

a) Taking into account that Bayesian estimator shows the same result (Hurst

exponent close to H = 0.5) for whole set of α ∈ (0, 2), one should check

the view of the original data set before applying the method. Due to the fact

that techniques for detection stable data usually have very little theory be-

Figure 3.19: α-stable Lévy motion for α = 0.3, 0.8 and 1.8.
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3.4. Estimation of the Hurst exponent for non-Gaussian data of Rosenblatt
and α-stable Lévy processes

Figure 3.20: Covariance function for α-stable Lévy motion with a) α = 0.3, b)
α = 0.8, c) α = 1.2 and d) α = 1.8.

Figure 3.21: Covariance function for fBm with a) H = 0.2, b) H = 0.5, c) H =
0.9 and d) Rosenblatt process with H = 0.8.
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3.5. Discussion

hind them, the most simplest and most obvious way is, therefore, the visual

inspection of the data [7]. The jump Lévy process shows significant different

behavior for different α values, as shown in Fig. 3.19. Here, the several obser-

vations dominate the rest. The only case where the time series of jump Lévy

process are similar to fBm is for α → 2, for which the Hurst exponent H ∼ 0.5.

Therefore, one possible method how to detect time series for which the estima-

tor can be applied is to check visually their similarity to time series obtained

from fBm.

b) However, based only on the graphical inspection it would be difficult to

distinguish between the pure stable case and the case of Gaussian data with

the occasional outlier. Therefore, the other qualitative measure is to calculate

the covariance function. Such, if the data comes from the population with finite

variance, the resulting variance should converge to a finite value. In other case,

the variance diverges and its graph has large jumps [7]. Fig. 3.20 and 3.21 show

the covariance functions for α-stable Lévy motion for α = 0.3, 0.8, 1.2 and 1.8

as well as for fractional Brownian motion for H = 0.2, 0.5, 0.9 and Rosenblatt

process for H = 0.8 consequently. It can be seen that the covariance functions

of Lévy process is similar to ones of fBm and Rosenblatt processes only in a

case α = 1.8 or H ≈ 0.55 (only in case the H-value close to 0.5).

3.5 Discussion

I proposed here a Bayesian approach for the estimation of the Hurst exponent

for self-similar processes. Moreover, a formulation in terms of linear mixed

models was used to incorporate a linear trend instead of removing it in a first

step. This is a necessary step since the real-world data most often contains it

[61]. Using synthetic data sets, I performed a comparison study with the de-

trended fluctuation analysis, method which is most-commonly used for the es-

timation of the Hurst exponent. I showed that the proposed Bayesian method

applied as a point estimator outperforms the DFA. Moreover, the Bayesian

method is not dependent on the data sampling, which is especially valuable

when working with real-world data.

The Bayesian approach I proposed here is capable of estimating the Hurst

exponent from the non-Gaussian data. That was tested on the Rosenblatt pro-

cess. The results show that the Bayesian method outperforms the standard

DFA analysis in this case as well. Additionally, I also discussed possible limi-

tations of proposed method on the α-stable Lévy motion. In the case of Lévy

process, the data cannot be well-approximated by a true fBm, and my method,

in its present formulation, fails. Therefore, it does not recover the true self-

similarity exponent. This limitation has been encountered for the DFA method

as well. The case of Bayesian inference for infinite variance stable distributions

can be found in work of Ravishanker and Qiou [109].

In addition, I illustrated the performance of my method using the stock

market data of the Dow-Jones Industrial Average closing values. The obtained

36



3.5. Discussion

results indicate that the proposed Bayesian approach outperforms all standard

techniques used so far for this data set. Also, the shift of the Hurst exponent to

persistent area (thus indicates long-range dependency) is visible. Although it

was assumed previously that DJIA values can be well-represented by a Gaus-

sian process, recent studies have shown that such kind of price movements has

power low tails. However, it has been also shown that the tails of the power

low observed for financial data are more narrow that the ones of Lévy process

[15], thus allows me to classify the received estimation values for DJIA as a

reliable one.
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Chapter 4

Estimation of the Hurst

exponent from noisy data

White Gaussian noise remains the
same dull hum.

Benoit Mandelbrot

When dealing with real-world data, it is of significant importance to con-

sider the influence of noise. To that extent, I generalize the proposed Bayesian

method (Section 3.1) in order to evaluate its robustness with respect to the

noise intensity contained in the data. Previously, Lennratz et al. [76] studied

the Gaussian distributed records where the data consists of long-term corre-

lated component characterized by a correlation exponent and a white noise

component. However, they considered the data in the absence of short-range

correlation and trends. In contrast to this, in [61] the scaling behavior of noisy

signals was quantified under effect of different kinds of trends. In this chap-

ter I consider artificial data of fractional Brownian motion under the influence

of noise. I evaluate the robustness of the Bayesian estimation with respect to

the noise-amplitude ratio. Here, a definite numerical information regarding a

model variable - crucial to the estimation task is obtained. Moreover, I iden-

tify the corresponding noise-amplitude level that allows to receive the correct

estimation of the Hurst exponents in various cases.

4.1 Definition of model

I consider the following model

Y = λu+ Fβ + ξ, (4.1)

where as before λ > 0 is the amplitude, λ ∈ R, β represents the fixed effects

with system matrix F . The random part of the model u = BH
t , u ∼ N(0,ΣH)
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is characterized by the covariance matrix:

ΣH = Σi,j = E(BH
ti B

H
tj ) =

1

2
(|ti|

2H + |tj |
2H − |tj − ti|

2H).

and ξ represents a white Gaussian noise: the random term is assumed to be

Gaussian distributed with zero mean E(ξ) = 0 and correlation E(σσ′) = σ2, (σ

denotes the noise intensity). In the current case, I consider the following noise

distribution: ξ ∼ N(0, λ2σ2I).

The probability density for the observation takes the following form:

Y ∼ N (Fβ, λ2(ΣH + σ2I)) = N (Fβ, λ2(ΩH,σ)), (4.2)

with ΣH + σ2I = ΩH,σ. Thus, the likelihood function is given via:

L(H,β, λ, σ) =
1

(2π)N/2λN |ΩH,σ|1/2
e−

(Y−Fβ)TΩ
−1
H,σ

(Y−Fβ)

2λ2 , (4.3)

where the |ΩH,σ| denotes the determinant of the matrix ΩH,σ. Since no knowl-

edge about the parameters of the model exists, I specify the prior information

in the following way:

− I set flat priors for the parameters H and β:

P(H) = χ[0,1], P(β) ∼ 1 (4.4)

− and Jeffreys-like priors [65] for amplitude λ and noise intensity σ:

P(λ) ∼
1

λ
, P(σ) ∼

1

σ
. (4.5)

In the light of the Bayes’ theorem Eq. 2.28, the posterior distribution over

the parameter set H,β, λ, σ can be written as:

P(H,β, λ, σ|Y) = C · L(H,β, λ, σ) ·
1

λ
·
1

σ
, (4.6)

where C is a normalization constant.

In order to receive the posterior distribution of the Hurst exponent it is nec-

essary to marginalize out the remaining parameters and calculate the integral:

∫

(

(Y − Fβ∗(H,σ))TΩ−1
H,σ(Y − Fβ∗(H,σ))

)
2−N

2

σ|ΩH,σ|1/2|F TΩ
−1
H,σF |1/2

dσ. (4.7)

Here, β∗(H,σ) plays the role of the best linear unbiased predictor (BLUP) for

the fixed effects:

β∗(H,σ) = (F T
Ω

−1
H,σF )−1F T

Ω
−1
H,σY. (4.8)
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4.2. Estimation of the Hurst exponent from noisy data

Figure 4.1: The Bayesian estimation of amplitude and Hurst exponent for the
model Yt = 1.7B0.3

t + ξ with ξ ∼ N(0, λ2σ2I), σ = 0.017 and λ = 1.7.

Table 4.1: Estimation of the parameters for model (4.9).

Parameter True value Estimated value 90% confidence interval

H , Hurst exponent 0.3 0.325 [0.225; 0.455]
λ, Amplitude 1.7 1.825 [1.625; 2.075]

4.2 Estimation of the Hurst exponent from noisy data

In order to evaluate the proposed model, I generate next fBm data using the

following model:

Yt = 1.7B0.3
t + ξ, (4.9)

where ξ ∼ N(0, λ2σ2I), with noise-amplitude ratio equal to 1%, σ = 0.017, λ =

1.7 and number of observation points fixed to 100.

Next, I estimate the value of the Hurst exponent from this data using the

Bayesian method as discussed in Section 4.1. I present in Fig. 4.1 the obtained

results in (H,λ)-plane, where the contour plots show the one dimensional pro-

jections of p(H|data) and p(λ|data). The intersection of the white dotted lines

represents the true values of the parameters and the white solid curve 90%

confidence interval. In Table 4.1, the estimated value of the Hurst exponent

and amplitude with their confidence intervals of 90% are given. The analysis

has shown that with 1% noise-amplitude ratio the received estimation values

are in a good agreement with the true values of the parameters.
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4.3. Noise-amplitude ratio
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Figure 4.2: Estimation of the Hurst exponent for the model Eq. 4.1 with the
Hurst exponent varying from 0.1 to 0.9, amplitude λ ∈ [0.5, 10] and 10% noise-
amplitude ratio. The number of the observation points is fixed to 100 and the
number of different realizations is fixed to 50. The black dotted lines show the
true values of the Hurst exponent and the white solid lines show 90% confi-
dence intervals.

4.3 Noise-amplitude ratio

Next, I evaluate the robustness of the proposed Hurst exponent estimator with

respect to the noise-amplitude level present in the data. The case studies for

several different Hurst values are shown. The aim here is to determine the

maximum percentage of the noise intensity according to the amplitude for

which a correct estimation of the Hurst exponent from noisy data can be ob-

tained using the proposed Bayesian method.

Thus, I use Monte Carlo simulations to generate 50 realizations with 100

point observations of the model Eq. 4.1, where H is varied in the interval

0.1, . . . , 0.9 with step 0.1 and ξ ∼ N(0, λ2σ2I). The noise-amplitude ratio here

is fixed to 1%, 5% and 10%. The amplitude λ assumes values form the in-

terval [0.5, 10] with 20 equidistant entries. Under this conditions, the estima-

tion of the Hurst exponent depending on the 10% noise-amplitude ratio for

the data is given in Fig. 4.2. Here, the black dotted lines represent the true

value of the Hurst exponent and white solid lines - the corresponding 90%

confidence intervals. The projection of the estimator is depicted on the (H,λ)-

plane. Such representation of the results allow to emphasize visually the de-

pendency between the noise-amplitude ratio and the value of the estimated

Hurst exponent. As shown in the figure, with increasing amplitude value (i.e.
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Figure 4.3: Bias of the maximal posterior estimator for the Hurst exponent,
E(Ĥ)−H . The solid lines correspond to the 1% noise-amplitude ratio, dotted
lines to 5% and dots represent the bias for 10% noise-amplitude ratio.

noise-amplitude ratio), the difference between the true value of the Hurst ex-

ponent and the estimated one increases, and the estimator of the Hurst expo-

nent shifts to the short-range dependence area. Moreover, for highly correlated

data (H ∼ 1), even for small values of the amplitude, the correct estimation of

the Hurst exponent is hard to achieve.

The bias of the estimator of the Hurst exponent,E(Ĥ)−H , for all three cases

is shown in Fig. 4.3. As depicted, the 1% noise-amplitude ratio allows better

Figure 4.4: Bias of the maximal posterior estimator received with model Eq. 3.3
for the Hurst exponent, E(Ĥ) − H , for the 1% noise-amplitude ratio with the
Hurst exponent H ∈ [0.1, 0.9] with step 0.2, amplitude λ ∈ [0.5, 10]. Number of
the observation points is fixed to 100 and the number of different realizations
is fixed to 50.
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4.4. Discussion

Table 4.2: 6%-interval of goodness for the Hurst exponent according to the
amplitude λ.

1% ratio 5% ratio 10% ratio

H = 0.1 [0.5, 10] [0.5, 10] [0.5, 9.5]
H = 0.2 [0.5, 10] [0.5, 9] [0.5, 4.5]
H = 0.3 [0.5, 10] [0.5, 9.5] [0.5, 4.5]
H = 0.4 [0.5, 10] [0.5, 7] [0.5, 3.5]
H = 0.5 [0.5, 10] [0.5, 8] [0.5, 4]
H = 0.6 [0.5, 10] [0.5, 6] [0.5, 3]
H = 0.7 [0.5, 10] [0.5, 6.5] [0.5, 3]
H = 0.8 [0.5, 10] [0.5, 5] [0.5, 2.5]
H = 0.9 [0.5, 10] [0.5, 10] [0.5, 10]

estimation of the Hurst exponent. Moreover, Fig. 4.3 shows that for all Hurst

exponent values, the model Eq. 4.1 can estimate correctly its value (within 6%

which depicted with gray color in the figure) for 1% noise-amplitude ratio.

Based on these results, I take a 6%-interval as an empirical goodness test for

the bias of the Hurst exponent. Thus, I state that the estimator of the Hurst

exponent performs well if the bias fulfills the condition: |E(Ĥ)−H| ≤ 0.06.

For different Hurst exponent values, the range of noise-amplitude ratio

that satisfy this condition varies. In Table 4.2, the 6%-intervals for all three

cases of the noise-amplitude ratio are given.

Next, I show that better estimation of the Hurst exponent can be achieved

by proposing a method which allows to consider the noise intensity present

in the data. For this reason, I compare the estimation of the Hurst exponent

when noise in the data is not taken into account (previous deterministic model

Eq. 3.3) in contrast to the stochastic model Eq. 4.1 and show that explicit con-

sideration of the noise intensity has significant advantages. For this purpose,

I quantify the bias of the maximal posterior estimator for the Hurst exponent,

E(Ĥ) − H , for the model Eq. 3.3 with 1% noise-amplitude ratio. The results

are shown in Fig. 4.4. With stochastic data, the bias of the estimation of the

Hurst exponent lies within 6% of the goodness test. In contrast to this, if the

stochasticity of the data is not considered explicitly, i.e. in model Eq. 3.3, the

bias of the estimation of the H is beyond the boundaries. This clearly favors

the model Eq. 4.1 as more robust with respect to the noise-amplitude ratio.

4.4 Discussion

I have considered for a first time the estimation of the Hurst exponent from

noisy data using the Bayesian approach. I show that this method has sig-

nificant advantages in comparison to the case where noise intensity is not

taken into consideration explicitly in the model. Moreover, I have identified
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4.4. Discussion

the noise-amplitude ratio for which correct estimation of the Hurst exponent

using the Bayesian approach can be performed. Additionally, I also define a

goodness test to identify the bias for the estimator. This allowed to show that

the Bayesian method is quite sensitive to the noise influence and can detect

noise-amplitude ratio even up to 5%.

The results obtained within this study are of significant advantage when

working with real-world data, e.g. in the geophysical systems [98]. Taking into

account that in the case of the deterministic model, the proposed Bayesian es-

timator outperforms the results obtained with the classical version of DFA, I

expect that the same will also hold true in the case when stochasticity of the

data is considered explicitly in the model. However, a more detailed compari-

son of the Bayesian method with advanced versions of DFA [25, 68] remain an

open question to be solved.
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Chapter 5

Bayesian estimation of the

self-similarity exponent from

fractional Gaussian noise

Maybe there is an alternative
viewpoint that no one has found
because we have become so
culturally attached to the house
that Gauss built.

Marcus du Sautoy

Many geophysical systems exhibit non-trivial multi-scale correlation struc-

tures. In particular, hydrological processes such as rainfall, water levels, runoff,

etc. are often well-modeled as stationary stochastic processes in discrete time

[130]. Therefore, in contrast to the model with fractional Brownian motion

from Chapter 3, I consider in this chapter the stationary stochastic process of

fractional Gaussian noise, which is actually the increment process of fBm. Here

I implement the Bayesian approach which provides both estimation of the

quantity of interest and a way to account for the uncertainty of its value with

respect to the noisy signal, instead of considering its integrated version. The

method is tested on synthetic realizations of fractional Gaussian noise pro-

cesses.

5.1 Fractional Gaussian noise

Fractional Gaussian noise (fGn) is a Gaussian stochastic process {GH
t , t ∈ R},

that can formally be viewed as a derivative of a fractional Brownian motion

{BH
t , t ∈ R}. It is the discrete process of increments for any fixed s > 0 [88,

115]:

GH
t (s) = BH

t+s −BH
t , t ∈ R. (5.1)

45



5.1. Fractional Gaussian noise
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Figure 5.1: Simulation of fractional Gaussian noise of length N = 500 with
Hurst exponent H = 0.05 (blue line), H = 0.5 (red line) and H = 0.95 (green
line).

Any representation of {BH
t , t ∈ R} induces a representation for {GH

t , t ∈ R}.

The fGn is called a standard fractional Gaussian noise if σ2 = V arGH
1 = 1.

Moreover, the fractional Gaussian noise has some remarkable properties [115,

119]:

i) {GH
t , t ∈ R} is a stationary Gaussian process;

ii) {GH
t , t ∈ R} is a zero mean process: EGH

t = 0;

iii) E(GH
t )2 = σ2 = E(BH

1 )2.

The fractional Gaussian noise is characterized by its autocovariance func-

tion. Using the correlation of the fBm we see that:

ρ(k) = E(GH
t+kG

H
t ) =

σ2

2
(|k − 1|2H − 2|k|2H + |k + 1|2H), k ∈ R. (5.2)

Similarly to the fBm, the fractional Gaussian noise can be classified into

three subclasses according to the value of H : if H = 1/2 then ρ(k) = 0; if

0 < H < 1/2 then ρ(k) < 0 and if 1/2 < H < 1 then ρ(k) > 0.

The following consequences are important: for H = 1/2, GH
t has indepen-

dent identically distributed Gaussian variables and uncorrelated time series

after one single time step; for H 6= 1/2 however, as the time lag k gets large the

correlation function decays asymptotically like

ρ(k) ∼ σ2H(2H − 1)|k|2H−2, k → ∞. (5.3)

For 1/2 < H < 1 the correlation function tends to zero slowly so that
∞
∑

k=−∞

ρ(k)

diverges. This is the long-range dependencies case. On the other hand, if 0 <
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5.2. Definition of the model

H < 1/2,
∞
∑

k=−∞

|ρ(k)| < ∞ and
∞
∑

k=−∞

ρ(k) = 0. The first relation follows from

fact that
∞
∑

k=1

k2H−2 < ∞, and the second is due to the telescoping nature of

ρ(k). Fig. 5.1 depicts an example of fGn in the case of H < 1
2 , H = 1

2 and

H > 1
2 .

5.2 Definition of the model

The model I define here is similar to the model (Eq. 3.3) from Chapter 3 but

based on the fractional Gaussian noise:

Y = λGH + β, (5.4)

where GH is the fractional Gaussian noise, λ > 0 is the amplitude, and β ∈

R is just an offset. For fixed parameters, the observations Y are multivariate

Gaussian random variables with the mean value and covariance given by

E(Y) = F β, E(YYt) = ΣH , (5.5)

with ΣH given by Eq. 5.2 and F t = [1, ..., 1] is the vector with N components,

where [.]t denotes a transpose vector.

I apply the Bayes’ theorem (Eq. 2.28) in order to obtain the following pos-

terior density of the parameters:

P(λ, β,H|Y) = C
1

λN+1|ΣH |1/2
e−

(Y−Fβ)tΣ−1
H

(Y−Fβ)

2λ2 . (5.6)

I use in this case uninformative priors, P(β, λ,H) ≃ λ−1 (a Jeffreys-like

prior for the scale parameter λ) since no apriori information about the param-

eters defining the process are known (Section 2.2.1).

The normalization constant C is chosen in order to normalize the posterior

probability density (integral equals to 1). Thus, the expression under the expo-

nent function
(

(Y−Fβ)tΣ−1
H

(Y−Fβ)

2λ2

)

can be written as the following quadratic

polynomial in β

F t
Σ

−1
H F β2 − 2βF t

Σ
−1
H Y + Yt

Σ
−1
H Y. (5.7)

From this we see that the posterior can be written in the following “Gaussian”

form:

P(λ, β,H|Y) = C
1

λN+1|ΣH |1/2
e−

R2(H)

2λ2 e−
γ2(H)(β−β∗(H))2

2λ2 (5.8)

= C ′ e−
R2(H)

2λ2

γ(H)λN |ΣH |1/2
f
β∗(H), λ2

γ2(H)

(β). (5.9)
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5.2. Definition of the model

Here fµ,σ2 is the one dimensional Gaussian probability density function with

mean µ and variance σ2. Therefore, the residuum R2(H) and the mode β∗(H)

depend on H via

γ2(H) = F t
Σ

−1
H F (5.10)

β∗(H) =
F t

Σ
−1
H Y

γ2(H)
, (5.11)

R2(H) = Yt
Σ

−1
H Y − γ2(H)β∗(H)2. (5.12)

Eq. 5.8 describes the full posterior information about all the parameters jointly.

In order to obtain the marginal distribution of the parameter we are interested

in, it is necessary to treat the other parameters as completely unknown and

to integrate over them. For example, integrating over λ, β and H gives corre-

spondingly

P(β,H|Y) =
C1

|ΣH |1/2(R2(H) + γ2(H)(β − β∗(H))2)N/2
, (5.13)

P(λ,H|Y) =
C2

γ(H)λN |ΣH |1/2
e−

R(H)2

2λ2 (5.14)

and

P(β, λ|Y ) = C3λ
−N−1

∫ 1

0

e−
R2(H)+γ2(H)(β−β∗(H))2

2λ2

|ΣH |1/2
dH.

In the same way, I have obtained the posterior distribution of λ, β and H

as

P(H|Y) =
C ′
1

γ(H)|ΣH |1/2 RN−1(H)
, (5.15)

P(λ|Y) = C ′
2 λ

−N

∫ 1

0

e−
R2(H)

2λ2

γ(H)|ΣH |1/2
dH (5.16)

and

P(β|Y) = C ′
3

∫ 1

0

e−γ2(H)(β−β∗(H))2

RN (H)|ΣH |1/2
dH. (5.17)

Thus, the point estimator can be obtained as the location of the maximum

of the posterior densities. For instance, I set

Ĥ = argmax P(H|Y), (5.18)

this in turn yields an estimator for the offset

β̂ = β∗(Ĥ). (5.19)
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Figure 5.2: Gaussian kernel density of the estimator of the Hurst exponent for
H = 0.7, N = 128 with 20, 000 realizations by periodogram method (green
line), wavelet-based estimator (blue line) and Bayesian method (red line).

5.3 Application to synthetic data

To show how the proposed method works in comparison with other com-

monly used techniques, I performed 20, 000 realizations by Monte-Carlo sim-

ulations for the fixed Hurst exponent H = 0.7 and obtained series of length

N = 128. Moreover, I used the wavelet-based joint estimator [6] and the pe-

riodogram estimator [110] to compare with the point estimator driven with

Bayesian method (Eq. 5.18). In particular, Abry and Veitch in [6] for the first

time proposed the explicit formula for the estimator of H based on the wavelet

decomposition with wavelet coefficients dx(j, k) performing the weighted least

squares fit between the scales j1 and j2 of the wavelet decomposition:

Ĥ(j1, j2) =
1

2















j2
∑

j=j1

Sjjηj −
j2
∑

j=j1

Sjj
j2
∑

j=j1

Sjηj

j2
∑

j=j1

Sj

j2
∑

j=j1

Sjj2 −

(

j2
∑

j=j1

Sjj

)2 + 1















,

Table 5.1: The interval for Ĥ with p ≥ 90% for synthetic data with H = 0.7 and
N = 128.

Method Ĥ Interval for Ĥ with p ≥ 90%

Periodogram estimator 0.83 [0.21, 1.31]
Wavelet-based estimator 0.81 [0.57, 1.05]
Bayesian approach 0.71 [0.59, 0.81]

True value 0.7
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5.3. Application to synthetic data

Figure 5.3: The validation test for Bayesian estimation with 500 realizations for
the Hurst exponent H = 0.7.

where ηj = log2(
1
ηj

∑

k

|dx(j, k)|
2) and Sj = (n ln2 2)/2j+1. This analysis has

a low computational complexity, both with respect to time and memory, and

allows to test large data sets. In contrast to this, Robinson [110] considered the

estimator which regresses the logarithm of periodogram function, ln I(λi), on

ln(2 sin(λi/2))
2, where i = l, l + 1, . . . , nH with l being the lower truncation

point which tends to infinity more slowly than nH .

In the considered example, for each of the realization I calculate the maxi-

mum posterior estimator Ĥ of Bayesian method, wavelet-based joint estimator

and periodogram method estimator. The wavelet-based joint estimator is im-

plemented as proposed in [123]. Fig. 5.2 shows the comparison between all

three methods. Moreover, in Table 5.1 the intervals containing ≥ 90% of the

distribution are presented. It is clearly visible that the Bayesian method out-

performs the wavelet and periodogram methods, since the posterior informa-

tion is more sharp.
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Figure 5.4: (top) Simulation of Rosenblatt process for N = 129 and H = 0.7.
(bottom) The obtained averaged posterior densities for point estimator drives
with Bayesian method for 1,000 realization for the Hurst exponent H = 0.7 of
length N = 129.
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5.4. Application to the Nile River data

Next, in order to make the validation test of the proposed method I quan-

tify the bias of the maximal posterior estimator Ĥ , E(Ĥ) − H, as a function

of the number of data points. For that I generate 500 realizations of fractional

Gaussian noise starting from one single observation point. Furthermore, Fig. 5.3

showed that even when starting from 20 data points, the bias quickly decays.

In addition, I also implement the Matlab code from [5] for the wavelet-

based synthesis of the Rosenblatt process and drive its increments to test how

the proposed estimator works on non-Gaussian data (definition of the Rosen-

blatt process is given in Section 3.4). Fig. 5.4 shows an example of the increment

process for the Rosenblatt process with Hurst exponentH = 0.7 for data sets of

the length N = 129 (top) and the obtained averaged posterior densities for the

point estimator received with the Bayesian method for 1,000 realizations (bot-

tom). The interval containing ≥ 90% of the distribution here is [0.596, 0.838].

5.4 Application to the Nile River data

Next, I apply the described estimator for the Hurst exponent from Section 5.2

to time series of the annual minimum water level of the Nile River for the years

622−1284 A.D (663 observations), measured at the Roda Gauge near Cairo. The

data is publicly available at StatLib archive: http://lib.stat.cmu.edu/S/beran

and depicted in Fig. 5.5 a) (top). Moreover, Fig. 5.5 a) (bottom) shows the first

discrete integral of the data, defined as

L(k) =
i=k
∑

i=1

(Yi − Ȳ ), k = 1, . . . , N. (5.20)

The analysis of this data, as discussed in Section 5.2, revealed the following

results of the implementation of the Bayesian method as shown in Fig. 5.5b)-

d). Here the marginalized posterior densities of H , λ and β are depicted. The

posterior estimates (maximum of posterior) of the parameters together with

their 90% confidence intervals are given in Table 5.2.

The Nile River data used in this work was also studied by several authors

in order to estimate the Hurst exponent. Thus, I have used this study in order

to compare the Bayesian method I propose here with other available meth-

ods for estimation of the Hurst exponent. For example, in [78], the modified

Table 5.2: Confidence intervals on the estimated parameters.

Parameter Estimate Confidence ≥ 90%

Ĥ , Hurst exponent 0.83 [0.78, 0.87]

β̂, Offset 11.51 [10.9, 12.1]

λ̂, Amplitude 0.89 [0.81, 1.04]
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5.4. Application to the Nile River data

a)

c)

b)

d)

Figure 5.5: a) (top) The time series of minimal water levels of the Nile River
near Cairo; (bottom) the integrated time series. In figures b)-d) are shown the
normalized two dimensional marginal posterior densities where the maxi-
mum indicate the most likely estimates in: b) H − β plain for the Nile River; c)
λ − β plain for the Nile River; d) H − λ plain for the Nile River. On the axis,
the one dimensional projections of the posterior densities are depicted. The
white contour-line encloses 90% of posterior probability. It therefore quanti-
fies the posterior uncertainty of the parameters together with their posterior
dependency.

periodogram estimator is used and a comparison with the periodogram esti-

mator, the Whittle estimator, the wavelet maximum likelihood estimator and

estimator based on the associated fBm is presented. In Table 5.3, the summary

of the known results from [78], additionally as the result obtained by Bayesian

method are given. As shown, the values obtained by other methods are in the

confidence interval of the result obtained here, except for the result obtained

by the periodogram estimator. In addition, the Bayesian method provides esti-

Table 5.3: Estimation of the Hurst exponent for different methods.

Estimator Ĥ

Modified periodogram estimator 0.85
Periodogram estimator 0.90
Whittle estimator 0.84
Wavelet maximum likelihood estimator 0.82
Estimator based on the associated fBm 0.80

Bayesian Method 0.83
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mations of all parameters involved in the model and allows also to obtain the

error bars for each of them.

5.5 Discussion

In this chapter I proposed a Bayesian estimation technique of the Hurst pa-

rameter for the fractional Gaussian noise process. I considered a general model

where in addition I took the offset and the amplitude as parameters. This tech-

nique, besides the point estimation of the most probable parameter’s value,

yields as well confidence intervals that enclose a given percentage of the pos-

terior uncertainty. The idea of considering the increment process of fractional

Brownian motion is based on the implementation of fractional Gaussian noise

to hydrologic data. Moreover, instead of using the integrated process, the method

I proposed here allows to estimate the Hurst exponent from the data directly.

In order to test the proposed method to real-world applications, I used it

to estimate the Hurst exponent from the time series of the Nile River. The data

was already studied with several different techniques to which I additional

compared by findings. The Bayesian method I propose here provides simi-

lar values for the Hurst exponent as estimated with the contemporary mod-

els. However, in contrast to previous findings, the definition of the Bayesian

method as given in Section 5.2 allows also the estimation for the amplitude

and the offset on one hand, and the error bars for all estimates, on the other

hand. As Bayesian estimation naturally provides the confidence intervals of

the estimated value, now it is possible to see how the previous results fulfill

the confidence intervals of my estimating results. Except for the periodogram

method, all other techniques show results within the confidence bounds. How-

ever, periodogram method usually underestimates the value of the Hurst ex-

ponent if its expected value is assumed to be less than 0.5 and overestimates

it in the opposite case. Moreover, I showed here, that the Bayesian method

outperforms the periodogram method and the wavelet-based estimator. Addi-

tionally, I checked the increments of the Rosenblatt process, and found that the

method proposed in Section 5.2 has a good performance even for non-Gaussian

process and short data sets.
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Chapter 6

Estimation of the Hurst

exponent from fixational eye

movements data

Our visual system has a built-in
paradox. We must fixate our gaze
to inspect the minute details of
our world; yet, if we were to
fixate perfectly, the entire world
would fade from view.

Susana Martinez-Conde

Since the 17th century, researchers showed a particular interest to study dif-

ferent aspects of eye movements. Jurin [66] was the first who discovered that

the eyes continue to perform miniature movements while human observers a

static target. An example of such movements is depicted in Fig. 6.1.

Nowadays, video-based recordings of eye movements renewed the scien-

tific interest in these fixational eye movements [41, 89, 90]. It is well-established

that different components of fixational eye movements (FEM) are classified as

tremor, drift, and microsaccades [35, 40, 91, 111] (see Fig. 6.2). The two most

important components of fixational eye movements are (i) physiological drift,

a slow random component that could be characterized as a diffusion process,

and (ii) microsaccades, rapid small-amplitude movements for which it is un-

clear if they are generated by the same mechanism as physiological drift or by

a separate generating process. Tremor is a small-amplitude, oscillatory compo-

nent superimposed to drift that cannot be resolved with video-based recording

devices used in the current study.

The detection [21, 41, 43], the characterization [1, 2, 21] or modeling of the

underlying generating dynamic [22, 59, 103, 104] of FEM has been a topic of

many studies.
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Recently, Engbert and Kliegl [42] suggested that fixational eye movements

might be interpreted as realizations of a fractional Brownian motion (see also

[77]). The Hurst exponent, which parameterizes fBm, indicates its correlation

behavior and allows the detection of the long-range dependencies inside the

signal. Thus, FEM has been investigated so far using the approaches such as

DFA and standard deviation analysis (SDA) [8] in work of Mergenthaler and

Engbert [95], and a change of the scaling behavior from a persistent behavior

on short time scales to anti-persistent behavior on long time scales was ob-

served.

However, due to the advantages of the Bayesian method over DFA for the

estimation of the Hurst exponent as discussed in previous sections, here, I aim

to apply the Bayesian method for the study of FEM. In particular, I investigate

the estimation problem for the Hurst exponent from a sequence of increments

of a discrete process of FEM. This allows to examine the Hurst exponent value

according to the scale factor. With this approach, the Hurst exponent keeps its

value constant for a sampled sequence of fBm at all scale levels. In order to

test these properties on the realizations of FEM I examine both, experimen-

tal and simulated FEM data. In the first case, the existence of the scale level

starting from which the data acquires the anti-persistent behavior, turning the

signal into short-memory process, is shown. Additionally, I demonstrate that

the method I propose here allows for a reliable estimation of the Hurst ex-

ponent based on different trials from the same participant. I also validate the

proposed method on simulated time series, mimicking the FEM based on a

time-delayed random-walk model [95] and a model based on a self-avoiding

walk [44] that generates both slow movements and microsaccades.
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Figure 6.1: Example of fixational eye movements.
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Figure 6.2: Example of fixational eye movements. The most important com-
ponents drift and microsaccades are quite visible. Tremor is a very small-
amplitude oscillatory component.

6.1 Model and method

The studies of the scaling behavior of fixational eye movements by DFA and

SDA [42, 95] detected two different types of it on short and long time scales:

persistent behavior on the short time scale and anti-persistent on the long one.

I approach this estimation task in the following way: as self-similarity of frac-

tional Brownian motion BH
t implies for fractional Gaussian noise GH

t that

GH
αt(αs) = BH

αt+αs −BH
αt = αHGH

t (s). (6.1)

Next, considering the discrete process

gHs,n = GH
ns(s) = BH

[n+1]s −BH
ns, (6.2)

it follows that gHαs,n = αHgHs,n, and thus, all the increment processes are the

same up to a multiplicative factor. I therefore take

gHn = BH
n+1 −BH

n (6.3)

as a reference discrete Gaussian increment process, and now apply the Bayes’

theorem (as discussed in Section 5.2) to the model:

Y = λgH + β, (6.4)

where H ∈]0, 1[ is the Hurst exponent, λ > 0, λ ∈ R is the amplitude, and

β ∈ R is the offset.

In order to analyze the scale dependency of the Hurst exponent of a sam-

pled signal I propose the following: given a discrete signal dn, for any discrete

scale a ∈ {1, 2, . . . } I consider the sequence of increments over the scale a:

Da,n = d[n+1]a − dna. (6.5)
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Figure 6.3: Gaussian kernel density of the maximal point estimator of the Hurst
exponent obtained by the Bayesian approach for discrete fGn. The original
value of the Hurst exponent is fixed to H = 0.7.

This can be regarded as a discrete wavelet transform with respect to the

rather singular wavelet δ1 − δ0, which justifies the identification of a as a scale

[37, 85]. I now propose to analyze the dependency of the Hurst exponent on

the level j corresponding to the scale a = 2j by applying a discrete fGn based

Bayesian analysis to each of these signals, as outlined in Section 5.2. Note that

for a sampled sequence of Brownian motion, the current analysis would yield a

constant Hurst exponent across all scales (Fig. 6.3). Here, I simulate data of fGn

of length N = 1, 000, and perform 10, 000 realizations using the Monte Carlo

simulation method. For each realization I estimate the Hurst exponent value of

the subsampled time series according to the Eq. 5.15, using a sliding window

of length N = 150 when the length of the data is above 300, and N equals the

data length elsewhere. Next, the data is decomposed up to scale level j = 5.

Since increasing the level by one reduces the length of the time series to one

half, the time series at scale level j = 5 corresponds to a length of N = 32 data

samples. Additionally, the 95% confidence intervals for the estimated Hurst

exponent values according to the scale levels are given in Table 6.1. Therefore,

the analysis provides a mean of discriminate homogeneous, scale-invariant

processes for which the correlation structure depends on the scale.

Table 6.1: The 95% confidence interval for Ĥ for artificial fGn with H=0.7.

Level 95% confidence interval

Original data [0.658, 0.741]
level 1 [0.639, 0.759]
level 2 [0.611, 0.784]
level 3 [0.568, 0.824]
level 4 [0.502, 0.88]
level 5 [0.386, 0.99]

True value 0.7
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Figure 6.4: Bayesian estimation of the Hurst exponent for time series of fixa-
tional eye movements. The analysis applied on different scales corresponding
to the subsampling decomposition. White dotted lines denote the value of the
Hurst exponent equals 0.5.

6.2 Fixational eye movements data

The method proposed here is next applied to experimental FEM data (detailed

information on experimental setup can be found in [21, 43, 95]) for which it has

been shown that it can be described significantly well using fBm [42, 77]. The

data used for my investigations was collected in one session for each of the 24

participants (average age of 22 years). Participants were asked to fixate a dot of

black 3x3 pixels on white background on a computer display. Eye movements

have been video-based recorded with an EyeLink II system. Each participant

was required to perform 30 trials of 20 seconds each. Further, a check for blinks,

which EyeLink II represents as missing data samples, was implemented to re-

duce the loss of data. As soon as participants performed a blink the trials were

restarted. I used 622 trials after visual inspection for data loss based on eye

blinking. Next, I removed the microsaccades by an amplitude scale-invariant

detection method [21] and investigate only the drift movements.

Although Bayesian estimation can be used without data-preprocessing, in

this case, a certain preprocessing step is necessary in order to use the increment

series of FEM, since the underlying process in proposed model is fGn. Next,

I perform the estimation of the Hurst exponent as described in the previous

section, using a sliding window of N = 150 samples length (up to scale level

6). This analysis allows me to obtain time series on 8 scale levels in addition to

the original time series.

The obtained results are presented in Fig. 6.4. Using the method proposed

in Section 6.1, I have estimated the value of the Hurst exponent as H ≈ 0.5

for the original, complete time series of FEM. Moreover, for the scale levels
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6.2. Fixational eye movements data

Figure 6.5: Hurst exponent estimation for one of the participants of Group I.
The gray area denotes the 10% error bar.

Figure 6.6: Hurst exponent estimation for one of the participants of Group II.
The gray area denotes the 20% error bar.

Figure 6.7: Hurst exponent estimation for one of the participants of Group III.
The independence of the Hurst exponent from the trial is clearly visible.
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Figure 6.8: Bayesian estimation of the Hurst exponent for time series of fixa-
tional eye movements with microssacades. The analysis applied on different
scales corresponding to the subsampling decomposition. White dotted lines
denote the value of the Hurst exponent equals 0.5.

j = 1 to 3, I observe persistent behavior for more than half of the participants,

since the Hurst exponent is H > 0.5. However, starting from scale level 4,

the estimated values of the Hurst exponent makes a significant transition into

anti-persistent area (H < 0.5). This is especially visible for the data at level 5.

For larger scales, the estimator oscillates near the value of H = 0.5. However,

the location of the maximum of the posterior values of the Hurst exponent is

still in the anti-persistent region for the majority of the participants.

As shown previously, the Hurst exponent for fBm does not change its value

for different scale levels. However, for FEM data, the observed results can be

divided into 3 different groups: Group I: the estimation of the Hurst exponent

keep its value constant for 3 participants within 10% error over the mean value

(this shown in Fig. 6.5); Group II: the results are qualitatively comparable to the

one in Fig. 6.5, except instead of 10%, a 20% error interval is necessary to de-

scribe changes of the Hurst exponent (this holds for 11 participants, shown

in Fig. 6.6). In contrast to this the remaining 10 participants (Group III) show

significantly different behavior, because values of the Hurst exponent for dif-

ferent scale levels are different (see Fig. 6.7). However, for participants from

each of the 3 different groups, the estimation of the Hurst exponent indicates

persistence over different trials. We therefore speculate that the FEM data does

not fully resemble the properties of fBm.

Considering the data with microsaccades Mergenthaler in his work [94]

found that on short time scales (up to 200 ms), the eye movements are persis-

tent and that for timescales up to 60 ms, the microsaccades generate persistent

behavior, where in the time lag between 60 ms and 200 ms, the persistent be-

havior is caused by drift. On long time scales, he also observed anti-persistent
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6.3. Hurst exponent estimation from simulated eye movements data

behavior between 300 ms and 900 ms mainly derived from the drift. In [94]

it was shown that there is a strong influence of microsaccades at time scales

larger than 900 ms, due to the fact that the anti-persistence in this region weak-

ens when the microsaccades are removed.

The analysis of FEM data with microsaccades by Bayesian approach is pre-

sented in Fig. 6.8. As it shown, the existence of the microsaccades only slightly

influence on the estimated value of the Hurst exponent. From the other hand,

that differences do not change the memory of the signal, and the transition

into anti-persistent area is still observed at scale level 4. However, for some

scale levels (e.g. scales 6 and 7) the estimated Hurst exponent values are more

dispersed comparing to the case where the microsaccades were removed.

6.3 Hurst exponent estimation from simulated eye move-

ments data

Next, I apply the proposed method Eq. 6.5 to analyze simulated time series,

generated from the random-walk model of FEM with neurophysiological de-

lays [95] and from the integrated model of slow FEM and microsaccades [44],

which is based on a self-avoiding random walk.

6.3.1 Neurophysiological delay model

The neurophysiological delay model is implemented as a discrete map. It is

based on the idea to summarize three terms: an autoregressive term, a noise

term and a term with negative feedback in order to stabilize fixational eye

movements:

wi+1 = (1− γ)wi + ξi − λ tan(ǫwi−τ ). (6.6)

The autoregressive term (1 − γ)wi here generates the persistent correlations

at the short time scales; the noise term ξi is Gaussian noise with 〈ξi〉 = 0 and

〈ξiξj〉 = σ2δij ; and the term λ tan(ǫwi−τ ) generates the anti-persistent behavior

on the long time scale. The parameters in the model are: the feedback strength

λ, the parameter for variation of the stepness of the control function ǫ, and the

physiological delay τ . The positions of the eye are represented in the following

form:

xi+1 = xi + wi+1 + ηi, (6.7)

where ηi is an additive noise term with < ηi >= 0 and < ηiηj >= ρ2δij and

standard deviation ρ. Note that all parameters of the model have direct phys-

iological interpretations. Thus, tonic units activity can be approximated by an

additional noise source < ηi > added to eye position. The noise term ξi repre-

sents excitatory burst neurons baseline activity.

For simulation purposes, I use parameters as proposed in [95] (γ = 0.25,

λ = 0.15, σ = 0.075, ρ = 0.35, ǫ = 1.1, and τ = 70) to produce 1, 000 realiza-

tions of length N = 200, 000 (one iteration step corresponds to 1 ms). Only the
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Figure 6.9: (top) Scaling behavior estimated via detrended fluctuation analysis.
(bottom) Slope analysis.

last 10, 000 values were taken into consideration to remove possible transient

effects. In Fig. 6.9 I present the results for the detrended fluctuation analysis of

the simulated data with fix parameters to show the good agreement with one

from work of Mergenthaler and Engbert [95].

6.3.2 Integrated model of FEM

The integrated model of FEM as described in [44], is based on the results ob-

tained from neurophysiological delay model. In particular, it is based on the

observed persistent behavior on short time scales [95]. Here, the model of FEM

is described by a self-avoiding random walk in a quadratic potential due to the

fact that FEM are confined to a small area:

u(i, j) = λL

(

(

i− i0
i0

)2

+

(

j − j0
j0

)2
)

, (6.8)

where the site (i0, j0) is the center of the LxL lattice and can be interpreted as

the rostral pole of the superior colliculus related to movements with vanish-

ing amplitudes and λ is a slope parameter. In the proposed model the walker

always moves to the minimum of the sum of the activation and the potential

across the four neighboring sites with position:

(i′j′) = argmin(k,l)∈N(i,j){hkl + u(k, l)}, (6.9)

where the value hkl is interpreted as the activation of a neuron (k, l) in the

motor map of the superior colliculus and N(i, j) = {(k, l)| k = i ± 1 and l =

j ± 1}.
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Figure 6.10: A sample trajectory of simulation of the self-avoiding walk in a
quadratic potential.

In Fig. 6.10 I show an example of the trajectory of simulation of the self-

avoiding walk in a quadratic potential on the lattice for the first 50 simulated

data points, which do not intersect themself.

I use here as well the parameters as proposed in [44]: the data are simulated

on a lattice of 51 cells, the center is at (25, 25) with slope parameter equal to 1.

I produce 1, 000 realizations of length N = 10, 000 each.

In order to apply the Bayesian method for the Hurst exponent estimation

in both cases, I calculate the Hurst exponent from subsampled time series of

the increment processes as described in Section 6.1. The estimation was im-

plemented by a sliding window of width N = 150 along the time series. In

Fig. 6.11, the estimated values for the Hurst exponent at the different decom-

position levels are shown. Here, the Hurst exponent values of the original sim-

ulated data are the same as for real data of FEM (H ≈ 0.5). Moreover, for the

neurophysiological model, the Hurst exponent keeps this value for all scale

levels and do not show any changes in memory. However, this is not fully ob-

served with the integrated model. Here, the transition to the anti-persistent

area at level 2 is detected. Such kind of behavior is observed with real data

of FEM. Thus, my analysis suggests that the integrated model is compatible

with experimental data, since the obtained results show qualitatively similar

behavior.

6.4 Discussion

In this chapter I analyzed the scaling exponent from realization of the fixa-

tional eye movements data using a Bayesian approach as proposed in Chapter 5

of this thesis. I applied the Bayesian method to subsampled data of fixational

eye movements. This approach allowed me to conclude that the FEM data

do not fully resemble the properties of fBm. In particular, the Hurst exponent

value of the fBm within the proposed approach keeps its value unchangeable

63



6.4. Discussion

Figure 6.11: Estimation of the Hurst exponent for two simulating models of
fixational eye movements: (left) model of fixational eye movements data with
neurophysiological delays, (right) an integrated model of fixational eye move-
ments.

for all the scale levels. However, I observed the same feature only for the half

(from 24) participants within the 20% error bar over the mean value.

Additionally, given the results, I found that starting from specific scale

level, the Hurst exponent changes its value and the signal turns from persis-

tent to anti-persistent area. These results are observable for both data contain-

ing microsaccades and data where microsaccades were removed. My findings

are in good agreement with the results discussed in [94], even though the au-

thor used there the detrended fluctuation analysis. Moreover, I showed that

the values of the Hurst exponent are unique for all participants.

I provide also the validation of the method on simulated models of fix-

ational eye movements data. Here, I analyzed the neurophysiological delay

model which is based on the combination of tree components responsible for

short-memory on long scales, long-memory on short time scales and noise;

and the integrated model based on the self-avoiding walk in potential. The ob-

served results showed that the integrated model demonstrates the behavior of

the scaling coefficient in a good agreement with the scalings observed in the

real data of fixational eye movements.
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Chapter 7

Summary and outlook

Whenever a new finding is
reported to the world people say:
It is probably not true. Later on,
when the reliability of a new
finding has been fully confirmed,
people say: OK, it may be true but
it has no real significance. At last,
when even the significance of the
finding is obvious to everybody,
people say: Well, it might have
some significance, but the idea is
not new.

Michel de Montaigne

This work has been focused on the investigation of a novel technique for

the estimation of the self-similarity exponent from Gaussian processes, in par-

ticular, on the Bayesian approach for estimation of the Hurst exponent. The

intention here is to define and analyze an estimation method that provides

as outcome a robust and accurate estimator, characterized by an increased ef-

ficiency in comparison to other modern methods. In addition, the proposed

technique is also compared to several well-established methods, such as the

detrended fluctuation analysis, the periodogram method and the wavelet-based

estimator. The obtained results showed that the Bayesian method proposed in

this thesis yields more precise solutions than the classical estimation methods.

The novelties reported in thesis can be therefore summarized as follows:

First, I propose a Bayesian-based method for estimation of the Hurst ex-

ponent from fractional Brownian motion in a form of a linear mixed effects

model. This allows not only to estimate the Hurst exponent value, but in con-

trast to previous methods, it allows for simultaneous estimation of the confi-

dence intervals, as well as inference of the remaining parameter values. To that

extent, I have shown that:
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• the proposed method can be applied successfully to short data sets as

well as unevenly sampled data;

• the method outperforms the standard measure of detrended fluctuation

analysis even in the case when the full distribution of the posterior probabili-

ties for the possible parameters values received from the detrended fluctuation

analysis were used;

• the Bayesian method was additionally evaluated for non-Gaussian data,

i.e the Rosenblatt process. I have shown that the proposed method provides a

good estimation of the Hurst exponent in this case as well. However, similarly

to DFA, the Bayesian approach fails to estimate correctly the Hurst exponent

from α-stable Lévy motion. This is mainly due to the fact that Lévy motion is a

jump process, whereas the Bayesian method is defined for the processes with

a Gaussian nature. Moreover, the type of data to which the proposed estimator

could be generally applied was discussed in details.

• Bayesian method was also applied to the real-world data of the Dow-

Jones Industrial Average values. The results were compared with previous

findings. In contrast to former studies, I have shown that a shift of the Hurst

exponent to persistent area occurs in the DJIA data.

Second, I have extended the Bayesian estimator of the Hurst exponent in

order to take noisy data in consideration as well. To that extent, I have defined

a linear mixed effects model with noise term as a basic model to investigate

stochastic data. I have shown that when the noise is explicitly considered in

the model, the Bayesian estimator provides better inference of the parameters

of interest.

Third, I proposed a Bayesian estimation of the Hurst exponent for Gaussian

data when using the noise signal directly, instead of taking its integrated pro-

cess as standard in previous studies. For this purpose, I defined a model for

the Hurst exponent estimation based on a fractional Gaussian noise. I further

applied this method to study historical data of the Nile River, identifying the

Hurst exponent, the amplitude and the offset of the signal within confidence

bounds.

Fourth, using the described Bayesian analysis as a basis, I developed an es-

timation approach which can be regarded as a discrete transform with respect

to the singular wavelet decomposition and applied it to analyze data of fixa-

tional eye movements. The findings showed several significant properties of

the data not identified in the previous studies:

• for each participant of the experiment there exists own value of the Hurst

exponent, which remains constant independently on the trial;

• the scale level which changes the memory of the signal was shown con-

stant within reasonable error bounds for all participants;

• previous studies have suggested that the data of fixational eye move-

ments has the same scaling characteristics as the fractional Brownian motion.

However, here it was shown that this property is not true in all cases.
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• the simulated data of the fixational eye movements based on two dif-

ferent techniques, generated from the random-walk model of FEM with neu-

rophysiological delays and from an integrated model of slow FEM and mi-

crosaccades which is based on a self-avoiding random walk, were tested to

distinguish the models’ properties reliably. The results showed that the inte-

grated model is compatible with the experimental data, displaying qualita-

tively a similar behavior.

To summarize, this work was focused on the estimation and analysis of

the scaling structure of self-similar processes. For this purpose, I proposed an

estimation method based on the Bayesian analysis. However, although this

work allowed to define the basic properties of a Bayesian-based approach for

the estimation of the Hurst exponent in several different cases, i.e. considering

deterministic case or taking explicitly the stochastic nature of the data in the

model, sufficient amount of work still lies ahead. For e.g. it is necessary to pro-

vide mathematical restrictions to the data-types to which proposed methods

could be applied or, more general, to provide a framework to identify which of

the proposed methods could be applied when dealing with particular data set.

Also, a more comprehensive understanding of the stochastic case requires a

detailed comparison between the robustness of the proposed method with the

classical or modified versions of detrended fluctuation analysis. Additionally,

in the case of fractal processes, it is necessary to have a scale-invariant model

based on the wavelet decomposition as a basis for the estimation, rather than

the translation-invariant models as standard in the contemporary research.
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5.1 The interval for Ĥ with p ≥ 90% for synthetic data with H = 0.7

and N = 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Confidence intervals on the estimated parameters. . . . . . . . . 51

5.3 Estimation of the Hurst exponent for different methods. . . . . . 52

6.1 The 95% confidence interval for Ĥ for artificial fGn with H=0.7. 57
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Appendix

Publications and conference

presentations

Publications

N. Makarava, S. Benmehdi and M. Holschneider (2011) Phys. Rev. E, 84,

021109

In this study we propose a Bayesian approach to the estimation of the Hurst

exponent in terms of linear mixed models. Even for unevenly sampled signals

and signals with gaps, our method is applicable. We test our method by using

artificial fractional Brownian motion of different length and compare it with

the detrended fluctuation analysis technique. The estimation of the Hurst ex-

ponent of a Rosenblatt process is shown as an example of a H-self-similar pro-

cess with non-Gaussian dimensional distribution. Additionally, we perform

an analysis with real data, the Dow-Jones Industrial Average closing values,

and analyze its temporal variation of the Hurst exponent.

S. Benmehdi, N. Makarava, N. Benhamidouche and M. Holschneider (2011)

Nonlinear Processes in Geophysics, 18, 441

The aim of this paper is to estimate the Hurst parameter of Fractional Gaussian

Noise (FGN) using Bayesian inference. We propose an estimation technique

that takes into account the full correlation structure of this process. Instead of

using the integrated time series and then applying an estimator for its Hurst

exponent, we propose to use the noise signal directly. As an application we

analyze the time series of the Nile River, where we find a posterior distribu-

tion which is compatible with previous findings. In addition, our technique

provides natural error bars for the Hurst exponent.

N. Makarava and M. Holschneider (2012) European Physical Journal B, 85(8),

272,

We consider a model based on the fractional Brownian motion under the in-
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fluence of noise. We implement the Bayesian approach to estimate the Hurst

exponent of the model. The robustness of the method to the noise intensity is

tested using artificial data from fractional Brownian motion. We show that es-

timation of the parameters achieved when noise is considered explicitly in the

model. Moreover, we identify the corresponding noise-amplitude level that

allow to receive the correct estimation of the Hurst exponents in various cases.

N. Makarava, M. Bettenbühl, R. Engbert and M. Holschneider (2012) Euro-

physics Letters, submitted

In this study we reevaluate the estimation of the self-similarity exponent of fix-

ational eye movements using Bayesian theory. Our analysis is based on a sub-

sampling decomposition, which permits an analysis of the signal up to some

scale factor. We demonstrate that our approach can be applied to simulated

data from mathematical models of fixational eye movements to distinguish

the models’ properties reliably.

Conference presentations

N. Makarava and M. Holschneider

Oral presentation at 7th Conference on Statistical Computation and Complex Sys-

tems, September 2011, Padua (Italy).

N. Makarava, N. Schütz and M. Holschneider

Poster presentation at 45th American Geophysical Union annual Fall Meeting, De-

cember 2011, San Francisco USA.
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