Universität Potsdam


Olimdjan Makhmudov | Nikolai Tarkhanov
An Extremal Problem Related to Analytic Continuation

Preprints des Instituts für Mathematik der Universität Potsdam 2 (2OI3) 4

Preprints des Instituts für Mathematik der Universität Potsdam 2 (2013) 4

Olimdjan Makhmudov | Nikolai Tarkhanov

# An Extremal Problem Related to Analytic Continuation 

## Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.de abrufbar.

## Universitätsverlag Potsdam 2013

http://info.ub.uni-potsdam.de/verlag.htm
Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 9772533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de
Die Schriftenreihe Preprints des Instituts für Mathematik der Universität Potsdam wird herausgegeben vom Institut für Mathematik der Universität Potsdam.

ISSN (online) 2193-6943
Kontakt:
Institut für Mathematik
Am Neuen Palais 10
14469 Potsdam
Tel.: +49 (0)331 9771028
WWW: http://www.math.uni-potsdam.de
Titelabbildungen:

1. Karla Fritze | Institutsgebäude auf dem Campus Neues Palais
2. Nicolas Curien, Wendelin Werner | Random hyperbolic triangulation Published at: http://arxiv.org/abs/1105.5089
Das Manuskript ist urheberrechtlich geschützt.
Online veröffentlicht auf dem Publikationsserver der Universität Potsdam URL http://pub.ub.uni-potsdam.de/volltexte/2013/6363/
URN urn:nbn:de:kobv:517-opus-63634
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63634

# An Extremal Problem Related to Analytic Continuation 

O. Makhmudov and N. Tarkhanov


#### Abstract

We show that the usual variational formulation of the problem of analytic continuation from an arc on the boundary of a plane domain does not lead to a relaxation of this overdetermined problem. To attain such a relaxation, we bound the domain of the functional, thus changing the Euler equations.


## Contents

Introduction ..... 1

1. The Cauchy-Riemann system ..... 4
2. An extremal problem ..... 5
3. Complex $p$-Laplace operator ..... 7
4. Relaxation of the problem of analytic continuation ..... 8
5. Generalisation to Dirac operators ..... 11
References ..... 13

## Introduction

Let $\mathcal{X}$ be a bounded domain with smooth boundary in the complex plane $\mathbb{C}$ and $\mathcal{S}$ a nonempty open arc on the boundary of $\mathcal{X}$. The problem of analytic continuation of functions given on $\mathcal{S}$ to $\mathcal{X}$ is of great importance in analysis, see [Aiz93]. It reads as follows: Given any function $u_{0}$ on $\mathcal{S}$, find an analytic function $u$ in $\mathcal{X}$ whose limit values exist in a reasonable sense and coincide with $u_{0}$ at $\mathcal{S}$. This problem is not normally solvable unless $\mathcal{S}=\partial \mathcal{X}$, for no nonzero smooth function $u_{0}$ of compact support in $\mathcal{S}$ extends analytically to $\mathcal{X}$.

Analytic functions in $\mathcal{X}$ are solutions of the Cauchy-Riemann system $\bar{\partial} u=0$ in the domain. To get an approximate solution of the problem of analytic continuation, one can relax the system $\bar{\partial} u=0$ and require that $\bar{\partial} u$ be "small" in some sense in $\mathcal{X}$. In other words, the problem is replaced by a variational problem which has the advantage of being constructively solvable. When looking for a solution $u$ of Sobolev

[^0]space $W^{1, p}(\mathcal{X})$ with $p>1$, one considers the variational problem of minimizing the functional
\[

$$
\begin{equation*}
I(u):=\int_{\mathcal{X}} \frac{1}{p}|\bar{\partial} u|^{p} d x \mapsto \min \tag{0.1}
\end{equation*}
$$

\]

over the set $\mathcal{A}$ of all $u \in W^{1, p}(\mathcal{X})$ satisfying $u=u_{0}$ on $\mathcal{S}$. By the Sobolev trace theorem, the condition $p>1$ implies that $u$ has boundary values belonging to $W^{1-1 / p, p}(\partial \mathcal{X})$, hence the equality $u=u_{0}$ is well defined almost everywhere on $\mathcal{S}$ for all $u_{0} \in W^{1-1 / p, p}(\mathcal{S})$.

In the language of partial differential equations the problem of analytic continuation from $\mathcal{S}$ is called the Cauchy problem with data at $\mathcal{S}$ for solutions of the elliptic system $\bar{\partial} u=0$ in $\mathcal{X}$. The variational approach to such problems was first elaborated in [LT09].

If $u \in W^{1, p}(\mathcal{X})$ is an analytic continuation of $u_{0}$, then $u \in \mathcal{A}$ and $I(u)=0$. Hence, $u$ is a solution of the variational problem $I(u) \mapsto$ min over the set $u \in \mathcal{A}$. Conversely, if the functional $I$ attains a minimum at a function $u \in \mathcal{A}$ and this minimum just amounts to zero, then $u$ is actually an analytic continuation of $u_{0}$. However, the minimum need not vanish. The infima of $I$ over $\mathcal{A}$ belong to the set of all critical points of $I$ in $\mathcal{A}$. A function $u \in \mathcal{A}$ is proved to be a critical point of the functional $I$ in $\mathcal{A}$ if and only if it satisfies the so-called Euler equations for $I$. They look like

$$
\left\{\begin{align*}
\bar{\partial}^{*}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right) & =0 \quad \text { in } \quad \mathcal{X}  \tag{0.2}\\
u & =u_{0} \quad \text { at } \mathcal{S} \\
n\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right) & =0 \quad \text { at } \quad \partial \mathcal{X} \backslash \mathcal{S}
\end{align*}\right.
$$

where $\bar{\partial}^{*}$ is the formal adjoint of $\bar{\partial}$ and $n\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right)=\sigma\left(\bar{\partial}^{*}\right)(-\imath \nu)\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right)$ the Cauchy data of $|\bar{\partial} u|^{p-2} \bar{\partial} u$ on $\partial \mathcal{X}$ with respect to $\bar{\partial}^{*}$. Here, $\sigma\left(\bar{\partial}^{*}\right)(-\imath \nu)$ stands for the principal symbol of $\bar{\partial}^{*}$ evaluated at the cotangent vector $-\imath \nu, \nu=\left(\nu_{1}, \nu_{2}\right)$ being the unit outward normal vector of $\partial \mathcal{X}$.

The case $p=2$ is of particular interest, since the Euler equations for functional (0.1) are linear in this case. If moreover $\mathcal{S}$ is the whole boundary, the extremal problem goes back at least as far as the theory of harmonic integrals on complex manifolds, see [Koh63].

The nonlinear second order differential operator $L_{p}(u)=\bar{\partial}^{*}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right)$ is called the complex $p$-Laplace operator. This is an analogue of the $p$-Laplace operator $\Delta_{p}(u)=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ in $\mathbb{R}^{n}$ which plays an important role in nonlinear potential theory and appears often in physics and engineering. A mixed boundary value problem for $\Delta_{p}$ similar to (0.2) was recently studied in [She13]. For $p=2$, this is precisely the well known mixed problem for the Laplace equation first studied by Zaremba [Zar10].

The complex $p$-Laplace operator has been investigated also within complex analysis in the study of extremal problems in Bergman spaces of analytic function, see $[\mathbf{K S 9 7}]$. In [KS97], the regularity problem for solutions of the Dirichlet problem for the homogeneous equation $L_{p} u=0$ is discussed, i.e. problem (0.2) in case $\mathcal{S}$ is all of $\partial \mathcal{X}$.

The differential equation (0.2) in the domain $\mathcal{X}$ is the so-called degenerate elliptic equation. It can also be viewed as an elliptic system of two real such equations. Ellipticity fails exactly at the points where $\bar{\partial} u=0$. In the case $\mathcal{S}=\partial \mathcal{X}$ the problems similar to (0.2) or its variational source $I(u) \mapsto$ min have been studied by Morrey in [Mor38], [Mor59], [Mor66] and many others, cf., e.g., [LU68],
[Lieb88] and the references given there. The corollary from those investigations is that, if $u_{0}$ is a polynomial, the Dirichlet problem for $L_{p}$ possesses a unique solution of Hölder class $C^{1, \lambda}(\overline{\mathcal{X}})$ with exponent $\lambda>0$ depending on $p$ (see [KS97], Theorem D).

In this paper we are interested in the variational problem $I(u) \mapsto$ min over $\mathcal{A}$ in the case where $\mathcal{S}$ is nonempty and different from the whole boundary $\partial \mathcal{X}$. For the study of mixed boundary value problem (0.2) we invoke the theory of weak boundary values of solutions to elliptic systems developed in [Tar95]. We prove that a function $u \in W^{1, p}(\mathcal{X})$ satisfies (0.2) if and only if it is an analytic extension of $u_{0}$ in $\mathcal{X}$. Hence it follows that problem (0.1) has actually no solutions $u$ different from the analytic continuation of $u_{0}$ in $\mathcal{X}$, if there is any. Thus, (0.1) is not suited to be a good relaxation of the Cauchy problem for the Cauchy-Riemann system in $\mathcal{X}$ with data on $\mathcal{S}$. This result differs considerably from that of the paper [She13] which asserts that the analogous mixed problem for the $p$-Laplace operator in $\mathbb{R}^{n}$ is uniquely solvable for all data $u_{0} \in W^{1, p}(\mathcal{S})$. (In fact [She13] allows also nonzero Neumann data $|\nabla u|^{p-2} n(\nabla u)=u_{1}$ at $\partial \mathcal{X} \backslash \mathcal{S}$, where $u_{1}$ is a continuous linear functional on $W^{1-1 / p, p}(\partial \mathcal{X} \backslash \mathcal{S})$.)

In order to achieve a true relaxation of the problem of analytic continuation one has to look for local infima of the functional $I(u)$ on bounded closed subsets of $\mathcal{A}$. To this end, given any $R>0$, we denote by $\mathcal{A}_{R}$ the set of all functions $u \in W^{1, p}(\mathcal{X})$, such that $u=u_{0}$ at $\mathcal{S}$ and $\|u\|_{W^{1, p}(\mathcal{X})} \leq R$. Obviously, $\mathcal{A}_{R}$ is a convex bounded closed subset of $\mathcal{A}$ and the family $\mathcal{A}_{R}$ increases and exhausts $\mathcal{A}$, when $R \rightarrow \infty$. The main result of this paper is the following theorem which goes back at least as far as [Ros65].

Theorem 0.1. Suppose $\mathcal{S} \subset \partial \mathcal{X}$ is a nonempty arc different from the whole boundary and $u_{0} \in W^{1-1 / p, p}(\mathcal{S})$, where $1<p<\infty$. For each $R>0$, there is a unique function $u_{R} \in W^{1, p}(\mathcal{X})$ in $\mathcal{A}_{R}$ minimising functional (0.1) over $\mathcal{A}_{R}$.

It is clear that the Euler equations for the critical points of $I$ on the set $\mathcal{A}_{R}$ are different from mixed problem (0.2). However, if the family $\left\{u_{R}\right\}_{R>0}$ is bounded, then it stabilises for $R$ large enough. The limit function $u$ is the minimum of $I$ over all of $\mathcal{A}$, and so $u$ is an analytic extension of $u_{0}$. As but one consequence we deduce that for a function $u_{0} \in W^{1-1 / p, p}(\mathcal{S})$ to admit an analytic continuation in $\mathcal{X}$ it is necessary and sufficient that the family $\left\{u_{R}\right\}_{R>0}$ of Theorem 0.1 be bounded in $W^{1, p}(\mathcal{X})$.

Note that the "approximate" solutions $u_{R}$ can be constructed, e.g., by the classical Ritz method, see [Rit09].

The above results extend to the Cauchy problem for solutions of first order elliptic systems $A u=0$ in a smoothly bounded domain $\mathcal{X} \subset \mathbb{R}^{n}$ with data on an open part $\mathcal{S}$ of the boundary. More precisely, $A$ is assumed to be a square matrix of first order scalar partial differential operators in a neighbourhood $U$ of the closure of $\mathcal{X}$ and the principal symbol $\sigma(A)(x, \xi)$ of $A$ to be invertible for all nonzero $\xi \in \mathbb{R}^{n}$. Then the formal adjoint $A^{*}$ of $A$ is also elliptic and we require $A^{*}$ to satisfy the so-called uniqueness condition for the local Cauchy problem in $U$, see [Tar95, p. 185]. In particular, one can choose a square Dirac operator as $A$, e.g., the Cauchy-Riemann operator in Clifford analysis, etc. The corresponding $p$-Laplace operator is $u \mapsto A^{*}\left(|A u|^{p-2} A u\right.$. The $p$-Laplace operator $\Delta_{p}$ in $\mathbb{R}^{n}$ does not belong to this class of operators, for the gradient operator fails to be elliptic unless $n=1$.

Let us dwell on the contents of the paper. Section 1 presents some preliminaries on the Cauchy-Riemann system from the viewpoint of partial differential equations. In Section 2 we give a variational formulation of the problem of analytic continuation from a part of boundary and derive the corresponding Euler equations which form a mixed boundary value problem in $\mathcal{X}$. In Section 3 we show that the mixed problem actually reduces to the original problem of analytic continuation. Section 4 is devoted to further development of the variational approach to the problem of analytic continuation. Finally, in Section 5 we touch a few aspects of the theory of $p$-Laplace operators.

## 1. The Cauchy-Riemann system

The Cauchy-Riemann operator in the complex plane of variable $z=x_{1}+\imath x_{2}$ is defined by

$$
\bar{\partial} u:=\frac{1}{2}\left(\partial_{1}+\imath \partial_{2}\right) u
$$

where $\partial_{j}=\frac{\partial}{\partial x_{j}}$ for $j=1,2$.
When identifying a complex-valued function $u=u_{1}+\imath u_{2}$ with the two-column of real-valued functions $u_{1}=: \Re u$ and $u_{2}=: \Im u$, one specifies the operator $\bar{\partial}$ within $(2 \times 2)$-matrices of first order partial differential operators with real coefficients. More precisely,

$$
\bar{\partial} u=\frac{1}{2}\left(\begin{array}{rr}
\partial_{1} & -\partial_{2}  \tag{1.1}\\
\partial_{2} & \partial_{1}
\end{array}\right)\binom{u_{1}}{u_{2}} .
$$

Endowing the complex plane $\mathbb{C}$ with the usual Hermitean structure we introduce the Hilbert space $L^{2}(\mathbb{C})$. The formal adjoint $\bar{\partial}^{*}$ of $\bar{\partial}$ is defined by requiring $(\bar{\partial} u, g)_{L^{2}(\mathbb{C})}=\left(u, \bar{\partial}^{*} g\right)_{L^{2}(\mathbb{C})}$ for all smooth functions $u$ and $g$ of compact support. When identifying complex-valued functions with two-columns of real-valued ones and using the Hermitean structure in $\mathbb{R}^{2}$, we get precisely the same formal adjoint operator. That is

$$
\begin{aligned}
\bar{\partial}^{*} g & =-\partial g \\
& =\frac{1}{2}\left(\begin{array}{rr}
-\partial_{1} & -\partial_{2} \\
\partial_{2} & -\partial_{1}
\end{array}\right)\binom{g_{1}}{g_{2}}
\end{aligned}
$$

for $g=g_{1}+\imath g_{2}$.
The classical principal symbol of the Cauchy-Riemann operator is the family of $(2 \times 2)$-matrices

$$
\sigma(\bar{\partial})(\xi)=\frac{1}{2}\left(\begin{array}{rr}
\imath \xi_{1} & -\imath \xi_{2}  \tag{1.2}\\
\imath \xi_{2} & \imath \xi_{1}
\end{array}\right)
$$

parametrised by $\xi \in \mathbb{R}^{2}$. The operator $\bar{\partial}$ is elliptic in the sense that the family (1.2) is invertible for all $\xi \in \mathbb{R}^{2} \backslash\{0\}$.

By operation with symbols, we get $\sigma\left(\bar{\partial}^{*}\right)=\sigma(\bar{\partial})^{*}$, the asterisk on the righthand side indicating the adjoint matrix. Hence it follows that the formal adjoint is also elliptic.

Moreover, it is easy to verify that

$$
\bar{\partial}^{*} \bar{\partial}=-\frac{1}{4} E_{2} \Delta,
$$

where $E_{2}$ is the unit matrix of size $2 \times 2$ and $\Delta$ the Laplace operator in $\mathbb{R}^{2}$. This can be equivalently reformulated by saying that (2 times) $\bar{\partial}$ is a Dirac operator in the plane.

Solutions of the system $\bar{\partial} u=0$ in a domain $\mathcal{X} \subset \mathbb{R}^{2}$ are known to be analytic (or holomorphic) functions in $\mathcal{X}$. In this paper we restrict ourselves to functions $u$ of Sobolev space $W^{1, p}(\mathcal{X})$ with $1<p<\infty$. If $\mathcal{X}$ is bounded by a smooth curve, then each function $u \in W^{1, p}(\mathcal{X})$ possesses a trace on $\partial \mathcal{X}$ in the sense of Sobolev spaces which is an element of $W^{1 / p^{\prime}, p}(\partial \mathcal{X})$, where $1 / p+1 / p^{\prime}=1$, see for instance [AH96].

The following formula is known as the Green formula in complex analysis. It is a very particular case of Green formulas for general partial differential operators, see [Tar95, p. 300].

Lemma 1.1. Suppose $\mathcal{X}$ is a bounded domain with piecewise smooth boundary in $\mathbb{R}^{2}$. Then

$$
\int_{\mathcal{X}}\left((\bar{\partial} u, g)_{x}-\left(u, \bar{\partial}^{*} g\right)_{x}\right) d x=-\int_{\partial \mathcal{X}}\left(u, \sigma\left(\bar{\partial}^{*}\right)(-\imath \nu) g\right)_{x} d s
$$

for all $u \in W^{1, p}(\mathcal{X})$ and $g \in W^{1, p^{\prime}}(\mathcal{X})$, where $\nu=\left(\nu_{1}, \nu_{2}\right)$ is the unit outward normal vector of the boundary.

The restriction of $\sigma\left(\bar{\partial}^{*}\right)(-\imath \nu) g$ to the boundary is called the Cauchy data of $g$ at $\partial \mathcal{X}$ with respect to the operator $\bar{\partial}^{*}$, see $[\operatorname{Tar} 95$, p. 301]. It is usually denoted by $n(g)$.

## 2. An extremal problem

Let $\mathcal{X} \subset \mathbb{R}^{2}$ be a bounded domain with smooth boundary and $\mathcal{S}$ a nonempty open arc on $\partial \mathcal{X}$. If $u \in W^{1, p}(\mathcal{X})$ is an analytic function in $\mathcal{X}$ vanishing at $\mathcal{S}$, then $u$ is identically zero in all of $\mathcal{X}$, see, e.g., Theorem 10.3.5 of [Tar95]. This raises the following problem of analytic continuation going beyond function theory: Given a function $u_{0} \in W^{1 / p^{\prime}, p}(\mathcal{S})$, find $u \in W^{1, p}(\mathcal{X})$ which is analytic in $\mathcal{X}$ and satisfies $u=u_{0}$ at $\mathcal{S}$. Throughout the paper we tacitly assume that $u_{0} \neq 0$, since otherwise the problem is trivial.

If $S^{\prime}$ is a nonempty open arc on $\partial \mathcal{X}$ whose closure belongs to $\mathcal{S}$, then the analytic continuation $u$ is uniquely defined by the values of $u_{0}$ at $S^{\prime}$. Hence, the problem of analytic continuation from $\mathcal{S}$ is overdetermined. In particular, if $u_{0}$ is a smooth function with compact support in $\mathcal{S}$, then $u_{0}$ extends to an analytic function $u \in W^{1, p}(\mathcal{X})$ if and only if $u_{0} \equiv 0$.

To construct a variational relaxation of the problem of analytic continuation, we introduce the functional

$$
\begin{equation*}
I(u):=\int_{\mathcal{X}} \frac{1}{p}|\overline{\partial u}|^{p} d x \tag{2.1}
\end{equation*}
$$

and give $I$ the domain $\mathcal{A}$ consisting of all $u \in W^{1, p}(\mathcal{X})$, such that $u=u_{0}$ at $\mathcal{S}$. For the calculus of variations it is important that $\mathcal{A}$ is a convex closed subset of $W^{1, p}(\mathcal{X})$.

Lemma 2.1. The functional $I$ is strongly convex on $\mathcal{A}$.
Proof. We have to show that if $u, v \in \mathcal{A}$ then

$$
I(t u+(1-t) v)<t I(u)+(1-t) I(v)
$$

for all $t \in(0,1)$. Note that if $u$ and $v$ are two different elements of $\mathcal{A}$, then $\bar{\partial} u$ and $\bar{\partial} v$ are different functions on $\mathcal{X}$. Indeed, if $\bar{\partial} u=\bar{\partial} v$ almost everywhere in $\mathcal{X}$, then the difference $u-v \in W^{1, p}(\mathcal{X})$ is holomorphic in $\mathcal{X}$ and vanishes at $\mathcal{S}$. By uniqueness, we get $u-v \equiv 0$ in $\mathcal{X}$, a contradiction. Now the strong convexity of the function $|y|^{p}, p>1$, implies

$$
\begin{aligned}
I(t u+(1-t) v) & =\int_{\mathcal{X}} \frac{1}{p}|\bar{\partial}(t u+(1-t) v)|^{p} d x \\
& <t \int_{\mathcal{X}} \frac{1}{p}|\bar{\partial} u|^{p} d x+(1-t) \int_{\mathcal{X}} \frac{1}{p}|\bar{\partial} v|^{p} d x \\
& =t I(u)+(1-t) I(v)
\end{aligned}
$$

for all $u, v \in \mathcal{A}$ with $u \neq v$ and all $t \in(0,1)$, as desired.
It follows from the lemma that there is at most one function $u \in \mathcal{A}$ at which $I$ attains its infimum over $\mathcal{A}$.

Consider the extremal problem of finding the minimum of the functional $I$ on the set $\mathcal{A}$, if there is any. Clearly, if $u \in W^{1, p}(\mathcal{X})$ is an analytic extension of $u_{0}$ into $\mathcal{X}$, then $u$ is a solution of the extremal problem, the minimal value of $I$ on $\mathcal{A}$ being $I(u)=0$.

The following lemma describes all critical points of the functional $I$ on $\mathcal{A}$. The corresponding equations are known as Euler equations for the extremal problem $I(u) \mapsto$ min over $u \in \mathcal{A}$, see [Mor66].

Lemma 2.2. Assume that the functional $I: \mathcal{A} \rightarrow \mathbb{R}$ attains a local minimum at a function $u \in \mathcal{A}$. Then $u$ satisfies

$$
\left\{\begin{aligned}
\bar{\partial}^{*}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right) & =0 \quad \text { in } \quad \mathcal{X} \\
u & =u_{0} \quad \text { at } \mathcal{S} \\
n\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right) & =0 \quad \text { at } \quad \partial \mathcal{X} \backslash \mathcal{S}
\end{aligned}\right.
$$

Proof. Let $v \in C^{\infty}(\overline{\mathcal{X}})$ be an arbitrary complex-valued function vanishing on $\mathcal{S}$. Write $u=u_{1}+\imath u_{2}$ and $v=v_{1}+\imath v_{2}$. For each $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)$ in $\mathbb{R}^{2}$, the variation $\left(u_{1}+\varepsilon_{1} v_{1}, u_{2}+\varepsilon_{2} v_{2}\right)$ is left in $\mathcal{A}$. Therefore, if $I$ attains a local minimum at $u$, then the function $F(\varepsilon)=I\left(u_{1}+\varepsilon_{1} v_{1}, u_{2}+\varepsilon_{2} v_{2}\right)$ takes on a local minimum at $\varepsilon=0$. It follows that $\varepsilon=0$ is a critical point of $F$, i.e. both derivatives $F_{\varepsilon_{1}}^{\prime}$ and $F_{\varepsilon_{2}}^{\prime}$ vanish at the origin.

An easy computation shows that

$$
\begin{aligned}
F_{\varepsilon_{1}}^{\prime}(0) & =\int_{\mathcal{X}}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u, \frac{1}{2}\binom{\partial_{1} v_{1}}{\partial_{2} v_{1}}\right)_{x} d x \\
F_{\varepsilon_{2}}^{\prime}(0) & =\int_{\mathcal{X}}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u, \frac{1}{2}\binom{-\partial_{2} v_{2}}{\partial_{1} v_{2}}\right)_{x} d x
\end{aligned}
$$

whence

$$
\begin{align*}
F_{\varepsilon_{1}}^{\prime}(0)+F_{\varepsilon_{2}}^{\prime}(0) & =\int_{\mathcal{X}}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u, \bar{\partial} v\right)_{x} d x \\
& =0 \tag{2.2}
\end{align*}
$$

for all smooth functions $v$ on the closure of $\mathcal{X}$ which vanish at $\mathcal{S}$. In particular, equality (2.2) holds for all smooth functions with compact support in $\mathcal{X}$, thus implying

$$
\begin{equation*}
\bar{\partial}^{*}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right)=0 \tag{2.3}
\end{equation*}
$$

in the sense of distributions in $\mathcal{X}$.
The function $|\bar{\partial} u|^{p-2} \bar{\partial} u$ is easily verified to belong to $L^{p^{\prime}}(\mathcal{X})$, where $p^{\prime}$ is the real number with $1 / p+1 / p^{\prime}=1$. Since $\bar{\partial}$ is a Dirac operator, $|\bar{\partial} u|^{p-2} \bar{\partial} u$ is harmonic in the sense of distributions in $\mathcal{X}$. By Weyl's lemma, this function is harmonic in $\mathcal{X}$. We can now invoke the theory of [Str84], [Tar95, 9.4] to conclude that $|\bar{\partial} u|^{p-2} \bar{\partial} u$ admits a distribution boundary value in $W^{-1 / p^{\prime}, p^{\prime}}(\partial \mathcal{X})$.

The distribution boundary value of $|\bar{\partial} u|^{p-2} \bar{\partial} u$ is referred to as weak limit value in [Tar95]. In Section 9.4.3 ibid. the weak limit values are proved to be equivalent to the so-called strong limit values. These latter are precisely those values on the boundary which take part in the Green formula, see Section 9.4.1 in [Tar95]. By Lemma 1.1, we get

$$
\int_{\mathcal{X}}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u, \bar{\partial} v\right)_{x} d x=-\int_{\partial \mathcal{X}}\left(n\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right), v\right)_{x} d s
$$

and so by (2.3) the right-hand side is equal to zero for all $v \in C^{\infty}(\overline{\mathcal{X}})$ vanishing at $\mathcal{S}$. Hence it follows that the distribution $n\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right) \in W^{-1 / p^{\prime}, p^{\prime}}(\partial \mathcal{X})$ has support in $\partial \mathcal{X} \backslash \mathcal{S}$.

It is worth emphasizing that both $\bar{\partial}^{*}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right)$ in $\mathcal{X}$ and $n\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right)$ at $\partial \mathcal{X}$ are understood in the sense of distributions.

## 3. Complex $p$-Laplace operator

The Euler equations for the variational problem $I(u) \mapsto \min$ over $u \in \mathcal{A}$ form a mixed problem for solutions of the nonlinear differential equation $L_{p} u=0$ in $\mathcal{X}$, where

$$
L_{p} u:=\bar{\partial}^{*}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right)
$$

for $u \in W^{1, p}(\mathcal{X})$. This operator is called the complex $p$-Laplace operator by analogy with the $p$-Laplace operator $\Delta_{p}(u)=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ in $\mathbb{R}^{n}$.

An easy computation shows that $L_{p}$ is a degenerate elliptic operator. Ellipticity is violated exactly at the points where $\bar{\partial} u=0$. We endow this operator with the domain $W^{1, p}(\mathcal{X})$ and interpret it in the weak sense, see (2.2). Moreover, given any $u \in W^{1, p}(\mathcal{X})$, the distribution $L_{p}(u)$ in $\mathcal{X}$ extends (non-uniquely) to a continuous linear functional on $W^{1, p}(\mathcal{X})$ by

$$
\begin{equation*}
\left(L_{p}(u), v\right):=\left(|\bar{\partial} u|^{p-2} \bar{\partial} u, \bar{\partial} v\right)_{L^{2}(\mathcal{X})} \tag{3.1}
\end{equation*}
$$

for all $v \in W^{1, p}(\mathcal{X})$.
If $u \in W^{1, p}(\mathcal{X})$ satisfies $L_{p} u=0$ in $\mathcal{X}$, then $f=|\bar{\partial} u|^{p-2} \bar{\partial} u$ is a weak solution of the equation $\bar{\partial}^{*} f=0$ in $\mathcal{X}$. Since $\bar{\partial} \bar{\partial} \bar{\partial}^{*}=-1 / 4 \Delta$, it follows by Weyl's lemma that $f$ is a harmonic function in the domain $\mathcal{X}$. Moreover, from $f \in L^{p^{\prime}}(\mathcal{X})$ we deduce that $f$ is of finite order of growth near the boundary. Therefore, the function $f$ admits boundary values at $\partial \mathcal{X}$ in the sense of distributions, see $[\mathbf{S t r} 84]$ and Section 9.4 of [Tar95]. In the sequel by $n(f)=\sigma\left(\bar{\partial}^{*}\right)(-\imath \nu) f$ we mean the Cauchy data of $f$ on $\partial \mathcal{X}$ with respect to $\bar{\partial}^{*}$.

Lemma 3.1. Assume that $\mathcal{S} \neq \partial \mathcal{X}$. If $u \in W^{1, p}(\mathcal{X})$ is a solution of the mixed boundary value problem

$$
\left\{\begin{aligned}
\bar{\partial}^{*}\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right) & =0 \quad \text { in } \quad \mathcal{X} \\
u & =u_{0} \quad \text { at } \mathcal{S} \\
n\left(|\bar{\partial} u|^{p-2} \bar{\partial} u\right) & =0 \quad \text { at } \quad \partial \mathcal{X} \backslash \mathcal{S}
\end{aligned}\right.
$$

then $\bar{\partial} u=0$ in $\mathcal{X}$.
Proof. This lemma is actually a very particular case of Theorem 10.3.5 of [Tar95] applied to the elliptic differential operator $\bar{\partial}^{*}=-\partial$. More precisely, set $f=|\bar{\partial} u|^{p-2} \bar{\partial} u$. By the above, $f$ is an antiholomorphic function in the domain $\mathcal{X}$ of finite order of growth at the boundary. Moreover, the Cauchy data of $f$ with respect to $\bar{\partial}^{*}$ vanish in the complement of $\overline{\mathcal{S}}$. Since $\mathcal{S}$ is different from the whole boundary, it follows that the complement of $\overline{\mathcal{S}}$ contains at least one interior point at the boundary. Applying Theorem 10.3.5 of [Tar95] yields $f \equiv 0$ in $\mathcal{X}$. Since $\bar{\partial} u \in L^{p}(\mathcal{X})$, we get $|f|=|\bar{\partial} u|^{p-1}$ whence $\bar{\partial} u=0$ almost everywhere in $\mathcal{X}$, as desired.

If $u \in W^{1, p}(\mathcal{X})$ is an analytic extension of $u_{0}$ into $\mathcal{X}$, then $u$ is obviously a solution of the mixed problem. Hence, the mixed problem of Lemma 3.1 is actually an equivalent reformulation of the problem of analytic extension from $\mathcal{S}$ into $\mathcal{X}$, provided $\mathcal{S} \neq \partial \mathcal{X}$. The problem of analytic continuation from the whole boundary is stable. In the case $\mathcal{S}=\partial \mathcal{X}$ the mixed problem becomes the Dirichlet problem for the complex $p$-Laplace operator. Its solutions need not be analytic functions in $\mathcal{X}$. We conclude that the Euler equations of the extremal problem $I \mapsto \min$ over $\mathcal{A}$ can be thought of as relaxation of the problem of analytic continuation only in the case $\mathcal{S}=\partial \mathcal{X}$.

## 4. Relaxation of the problem of analytic continuation

We now restrict ourselves to the case where $\mathcal{S}$ is different from the whole boundary.

Write $m$ for the infimum of $I(u)$ over $u \in \mathcal{A}$. We are aimed at finding those function $u \in \mathcal{A}$ at which the functional $I(u)$ takes on the value $m$. The integrand in (2.1) is

$$
\begin{equation*}
L(v)=\frac{2^{-p}}{p}\left(\left(v_{1}^{1}-v_{2}^{2}\right)^{2}+\left(v_{2}^{1}+v_{1}^{2}\right)^{2}\right)^{p / 2} \tag{4.1}
\end{equation*}
$$

where $v=\left(v_{1}, v_{2}\right)$ is a $(2 \times 2)$-matrix whose columns are substitutions for $\partial_{1} u$ and $\partial_{1} u$, respectively.

Lemma 4.1. For each fixed $p \geq 1$, the function $L(v)$ is convex in the entries of $v \in \mathbb{R}^{2 \times 2}$.

Proof. We neglect the factor $\left(p 2^{p}\right)^{-1}$ in (4.1), which is inessential for the proof. Write

$$
v_{j}=\binom{v_{j}^{1}}{v_{j}^{2}}
$$

for $j=1,2$. A cumbersome but quite elementary computation shows that

$$
\begin{align*}
& \sum_{\substack{i, k=1,2 \\
j, l=1,2}} L_{v_{j}^{i}, v_{l}^{k}}^{\prime \prime}(v) w_{j}^{i} w_{l}^{k} \\
& \quad=p L(v)^{\frac{p-4}{p}}\left(L(v)^{\frac{2}{p}} L(w)^{\frac{2}{p}}+(p-2)\left(\left(v_{1}^{1}-v_{2}^{2}\right)\left(w_{1}^{1}-w_{2}^{2}\right)+\left(v_{2}^{1}+v_{1}^{2}\right)\left(w_{2}^{1}+w_{1}^{2}\right)\right)^{2}\right) \tag{4.2}
\end{align*}
$$

for all $w_{j}=\binom{w_{j}^{1}}{w_{j}^{2}}, j=1,2$, in $\mathbb{R}^{2}$. Since $p \geq 1$, the right-hand side of (4.2) is greater than or equal to

$$
p L(v)^{\frac{p-4}{p}}\left(L(v)^{\frac{2}{p}} L(w)^{\frac{2}{p}}-\left(\left(v_{1}^{1}-v_{2}^{2}\right)\left(w_{1}^{1}-w_{2}^{2}\right)+\left(v_{2}^{1}+v_{1}^{2}\right)\left(w_{2}^{1}+w_{1}^{2}\right)\right)^{2}\right) \geq 0
$$

the last inequality being due to the Cauchy-Schwarz inequality for the scalar product in $\mathbb{R}^{2}$. The nonnegative definiteness of the quadratic form in (4.2) is equivalent to the convexity of $L$ as a function of the entries of $v$, see Lemma 1.8.1 of [Mor66] and elsewhere.

Thus, the general hypothesis of [Mor66, p. 91] concerning the integrand function $L(v)$ are satisfied. It should be noted that $L(v)$ fails obviously to be strongly convex.

If $u \in \mathcal{A}$ furnishes a local minimum to (2.1), then necessarily

$$
\binom{y^{1}}{y^{2}}^{*}\left(\begin{array}{cc}
\sum_{j, l=1}^{2} L_{v_{j}^{1}, v_{l}^{1}}^{\prime \prime} \xi_{j} \xi_{l} & \sum_{k, l=1}^{2} L_{v_{j}^{1}, v_{l}^{2}}^{\prime \prime} \xi_{j} \xi_{l}  \tag{4.3}\\
\sum_{j, l=1}^{2} L_{v_{j}^{2}, v_{l}^{1}}^{\prime \prime} \xi_{j} \xi_{l} & \sum_{j, l=1}^{2} L_{v_{j}^{2}, v_{l}^{2}}^{\prime \prime} \xi_{j} \xi_{l}
\end{array}\right)\binom{y^{1}}{y^{2}} \geq 0
$$

is fulfilled for all $\xi \in \mathbb{R}^{2}$ and $y \in \mathbb{R}^{2}$, the derivatives of $L$ being evaluated at $u^{\prime}$. This classical necessary condition is known as the Legendre-Hadamard condition, see [Mor66, 1.5]. In this case, one says that the integrand function $L$ is regular if the inequality holds in (4.3) for all $\xi \in \mathbb{R}^{2}$ and $y \in \mathbb{R}^{2}$ which are different from zero.

Lemma 4.2. For $p=2$, the integrand function $L(v)$ is regular.
Proof. Using equality (4.2) we deduce that, for $p=2$, the left-hand side in (4.3) is equal to

$$
\sum_{\substack{i, k=1, \ldots, \ell \\ j, l=1, \ldots, n}} L_{v_{j}^{i}, v_{l}^{k}}^{\prime \prime}(v)\left(y^{i} \xi_{j}\right)\left(y^{k} \xi_{l}\right)=L(w)
$$

where $w$ is the $(2 \times 2)$-matrix with entries $w_{j}^{i}=y^{i} \xi_{j}$. Moreover,

$$
L(w)=\sum_{\substack{i=1,2 \\ j=1,2}}\left(y^{i} \xi_{j}\right)^{2},
$$

showing that $L(w)$ is positive for all $\xi \in \mathbb{R}^{2}$ and $y \in \mathbb{R}^{2}$ different from zero, as desired.

If $p \neq 2$, the lemma seems to fail, for the complex $p$-Laplace operator degenerates at those $x \in \mathcal{X}$ where $\bar{\partial} u(x)$ vanishes.

Having disposed of this preliminary step, we proceed with searching for local minima of (2.1). By definition, there is a sequence $\left\{u_{\nu}\right\}$ in $\mathcal{A}$, such that $I\left(u_{\nu}\right) \searrow$ $m$. It is called minimising. Any subsequence of a minimising sequence is also minimising. Were it possible to extract a subsequence $\left\{u_{\nu_{\iota}}\right\}$ converging to an element $u \in \mathcal{A}$ in the $W^{1, p}(\mathcal{X})$ norm, then $I\left(u_{\nu_{\iota}}\right)$ would converge to $I(u)=m$, and so $u$ would be a desired solution of our extremal problem. It is possible to require the convergence of a minimising sequence in a weaker topology than that of $W^{1, p}(\mathcal{X})$. However, the functional $I$ should be lower semicontinuous with respect
to correspondingly more general types of convergence. In order to find a convergent subsequence of a minimising sequence, one uses a compactness argument. The space $W^{1, p}(\mathcal{X})$ is reflexive, for we assume $1<p<\infty$. Hence, each bounded sequence in $W^{1, p}(\mathcal{X})$ has a weakly convergent subsequence. Thus, any bounded minimising sequence $\left\{u_{\nu}\right\}$ has a subsequence $\left\{u_{\nu_{\iota}}\right\}$ which converges weakly in $W^{1, p}(\mathcal{X})$ to some function $u$. By a theorem of Mazur, see [Yos65] and elsewhere, any convex closed subset of a reflexive Banach space is weakly closed. It follows that the limit function $u$ satisfies $u=u_{0}$ on $\mathcal{S}$, i.e., it belongs to $\mathcal{A}$. Moreover, Theorem 3.4.4 of [Mor66] says that the subsequence $\left\{u_{\nu_{\iota}}\right\}$ converges also strongly in $L^{1}(\mathcal{X})$ to $u$. Although $L(v)$ is neither normal nor strictly convex in $v$, Theorem 4.1.1 of [Mor66] applies to the functional $I$.

Lemma 4.3. If $u_{\nu}$ and $u$ lie in $W^{1, p}(\mathcal{X})$ and $u_{\nu} \rightarrow u$ in $L^{1}(K)$ for each compact set $K$ interior to $\mathcal{X}$, then

$$
I(u) \leq \liminf I\left(u_{\nu}\right)
$$

## Proof. See Theorem 4.1.1 of [Mor66].

We have thus proved that if there is a bounded minimising sequence $\left\{u_{\nu}\right\}$ and $u$ is a weak limit point of this sequence in $W^{1, p}(\mathcal{X})$, then $u \in \mathcal{A}$ and $I(u)=m$, i.e., $u$ is a minimiser. It is clear that any minimising sequence is bounded in $W^{1, p}(\mathcal{X})$ if the functional $I$ majorises the norm of $u$ in $\mathcal{A}$ in the sense that

$$
\begin{equation*}
\int_{\mathcal{X}}|\bar{\partial} u|^{p} d x \geq c\|u\|_{W^{1, p}(\mathcal{X})}^{p}-Q \tag{4.4}
\end{equation*}
$$

for all $u \in \mathcal{A}$, with $c$ and $Q$ constants independent of $u$. This is obviously a far reaching generalisation of A. Korn's (1908) inequality for the case of nonlinear problems.

Since the boundary value problem for $\bar{\partial}$ with boundary data $\Re u=u_{0}$ is elliptic, estimate (4.4) holds provided that $\mathcal{S}=\partial \mathcal{X}$. If however $\mathcal{S} \neq \partial \mathcal{X}$, no a priori estimate (4.4) is possible, see [ST10].

Hence, we are not able to prove the boundedness of any minimising sequence $\left\{u_{\nu}\right\}$, so the above arguments do not apply. To get over this difficulty a general idea is to confine the set $\mathcal{A}$ of competing functions so that $\mathcal{A}$ be itself bounded. In linear analysis this idea goes back at least as far as [Ros65]. While additional assumptions on $\mathcal{A}$ may depend on the concrete problem there is also an abstract prescription.

Given any $R>0$, we denote by $\mathcal{A}_{R}$ the subset of $W^{1, p}(\mathcal{X})$ consisting of all $u \in W^{1, p}(\mathcal{X})$, such that $u=u_{0}$ at $\mathcal{S}$ and, moreover,

$$
\begin{equation*}
\|\Re u\|_{W^{1 / p^{\prime}, p}(\partial \mathcal{X} \backslash \mathcal{S})} \leq R . \tag{4.5}
\end{equation*}
$$

Note that $\mathcal{A}_{R} \subset \mathcal{A}$ and each $u \in \mathcal{A}$ lies in some $\mathcal{A}_{R}$, i.e. the family $\mathcal{A}_{R}$ actually exhausts $\mathcal{A}$. It is clear that the local minima of the functional $I$ over $\mathcal{A}_{R}$ need not satisfy Euler equations (0.2).

Theorem 4.4. Let $R>0$. Then, for each data $u_{0} \in W^{1 / p^{\prime}, p}(\mathcal{S})$, there is a unique function $u \in \mathcal{A}_{R}$ minimising the functional I over $\mathcal{A}_{R}$.

Proof. One can assume without loss of generality that $R$ is large enough, since otherwise the family $\mathcal{A}_{R}$ is empty and the assertion makes no sense. Since
the boundary value problem

$$
\begin{cases}\bar{\partial} u=f & \text { in } \mathcal{X}, \\ \Re u=u_{0} & \text { at } \partial \mathcal{X}\end{cases}
$$

is elliptic, there is a constant $C$ depending only on $\mathcal{X}$ and $p$, such that

$$
\begin{equation*}
\|u\|_{W^{1, p}(\mathcal{X})} \leq C\left(\|\bar{\partial} u\|_{L^{p}(\mathcal{X})}+\|\Re u\|_{W^{1 / p^{\prime}, p}(\partial \mathcal{X})}\right) \tag{4.6}
\end{equation*}
$$

for all $u \in W^{1, p}(\mathcal{X})$. Pick a minimising sequence $\left\{u_{\nu}\right\}$ in $\mathcal{A}_{R}$. Then the sequence $\left\{\bar{\partial} u_{\nu}\right\}$ is bounded in $L^{p}(\mathcal{X})$. Combining (4.6) and (4.5) we readily deduce that the sequence $\left\{u_{\nu}\right\}$ is actually bounded in the $W^{1, p}\left(\mathcal{X}, \mathbb{R}^{\ell}\right)$-norm. We now argue as above. The bounded sets in $W^{1, p}(\mathcal{X})$ are relatively compact with respect to weak convergence in $W^{1, p}(\mathcal{X})$. Hence, there is a subsequence $\left\{u_{\nu_{\iota}}\right\}$ of $\left\{u_{\nu}\right\}$ which tends weakly in $W^{1, p}(\mathcal{X})$ to some function $u \in W^{1, p}(\mathcal{X})$. Since $\mathcal{A}_{R}$ is a convex closed set in the reflexive Banach space $W^{1, p}(\mathcal{X})$, it is, by a theorem of Mazur cited above, weakly closed. Hence we conclude that the limit function $u$ belongs to the set $\mathcal{A}_{R}$. Moreover, Theorem 3.4.4 of [Mor66] says that $\left\{u_{\nu_{\iota}}\right\}$ converges also strongly in $L^{1}(\mathcal{X})$ to $u$. On applying the lower semicontinuity of $I$ stated by Lemma 4.3 we obtain

$$
I(u) \leq \liminf I\left(u_{\nu_{\iota}}\right)=m_{R}
$$

where $m_{R}$ is the infimum of $I$ over $\mathcal{A}_{R}$. Since $u \in \mathcal{A}$, it follows that $I(u)=m_{R}$, as desired. What is left is to show that the minimiser is unique. To this end, we assume that $u$ and $v$ are two different minimisers in $\mathcal{A}_{R}$. Then $(1 / 2)(u+v) \in \mathcal{A}$ and by Lemma 2.1

$$
\begin{aligned}
I\left(\frac{u+v}{2}\right) & <\frac{1}{2} I(u)+\frac{1}{2} I(v) \\
& =m_{R}
\end{aligned}
$$

a contradiction.
The same proof still goes when we replace condition (4.5) in the definition of $\mathcal{A}_{R}$ by $\|u\|_{W^{1, p}(\mathcal{X})} \leq R$. This implies Theorem 0.1.

## 5. Generalisation to Dirac operators

Let $A$ be an $(l \times k)$-matrix of first order scalar partial differential operators with constant coefficients in $\mathbb{R}^{n}$. It acts locally on $k$-columns of smooth functions or distributions in $\mathbb{R}^{n}$ by multiplying these with $A$ from the left. As usual, the formal adjoint $A^{*}$ is defined for $A$ by requiring $(A u, v)_{L^{2}\left(\mathbb{R}^{n}, \mathbb{C}^{l}\right)}=\left(u, A^{*} v\right)_{L^{2}\left(\mathbb{R}^{n}, \mathbb{C}^{k}\right)}$ for all smooth functions $u, v$ of compact support with values in $\mathbb{C}^{k}$ and $\mathbb{C}^{l}$, respectively. The operator $A^{*}$ is specified within $(l \times k)$-matrices of first order scalar partial differential operators with constant coefficients in $\mathbb{R}^{n}$. We say $A$ is a Dirac operator if $A^{*} A=-E_{k} \Delta$, where $E_{k}$ is the unit $(k \times k)$-matrix. If $A$ is a Dirac operator, then $A^{*}$ is a Dirac operator, too, if $l=k$, and is not, if $l \neq k$. Each Dirac operator $A$ is overdetermined elliptic, i.e. its principal symbol $\sigma(A)(\xi)$ has a left inverse for all $\xi \in \mathbb{R}^{n} \backslash\{0\}$.

As developed above for the Cauchy-Riemann operator in one complex variable, the theory generalises to those Dirac operators $A$ which are elliptic in the classical sense, i.e. with $k=l$.

Assume that $\mathcal{X}$ is a bounded domain with smooth boundary in $\mathbb{R}^{n}$ and $\mathcal{S}$ a nonempty open set in $\partial \mathcal{X}$. If $u \in W^{1, p}\left(\mathcal{X}, \mathbb{C}^{k}\right)$ satisfies the system $A u=0$ in $\mathcal{X}$
and the trace of $u$ on $\mathcal{S}$ is zero, then $u$ vanishes identically in $\mathcal{X}$, see Theorem 10.3.5 of [Tar95]. Hence, the following Cauchy problem has at most one solution: Given $u_{0} \in W^{1 / p^{\prime}, p}\left(\mathcal{S}, \mathbb{C}^{k}\right)$, find a function $u \in W^{1, p}\left(\mathcal{X}, \mathbb{C}^{k}\right)$ satisfying $A u=0$ in $\mathcal{X}$ and $u=u_{0}$ at $\mathcal{S}$.

For the study of the Cauchy problem for solutions of elliptic equations along more classical lines we refer the reader to [Tar95] and more recent papers [ST05], [MNT08], [MMT11].

In order to construct a relaxation of the Cauchy problem we introduce the set $\mathcal{A}$ which consists of all functions $u \in W^{1, p}\left(\mathcal{X}, \mathbb{C}^{k}\right)$, such that $u=u_{0}$ at $\mathcal{S}$. One sees readily that $\mathcal{A}$ is a convex closed subset of $W^{1, p}\left(\mathcal{X}, \mathbb{C}^{k}\right)$. Consider a functional $I$ on $\mathcal{A}$ given by

$$
I(u)=\int_{\mathcal{X}}|A u|^{p} d x
$$

for $u \in \mathcal{A}$. Arguing as in the proof of Lemma 2.1 we deduce that the functional $I$ is strongly convex on $\mathcal{A}$.

The Euler equations for the extremal problem $I(u) \mapsto$ min over $u \in \mathcal{A}$ constitute the mixed boundary value problem

$$
\left\{\begin{align*}
A^{*}\left(|A u|^{p-2} A u\right) & =0 \quad \text { in } \quad \mathcal{X},  \tag{5.1}\\
u & =u_{0} \quad \text { at } \quad \mathcal{S}, \\
n\left(|A u|^{p-2} A u\right) & =0 \quad \text { at } \quad \partial \mathcal{X} \backslash \mathcal{S},
\end{align*}\right.
$$

where $n\left(|A u|^{p-2} A u\right)=\sigma(A)^{*}(-\imath \nu)\left(|A u|^{p-2} A u\right)$ stands for the Cauchy data of $|A u|^{p-2} A u$ on $\partial \mathcal{X}$ with respect to $A^{*}$. The second order partial differential operator $u \mapsto A^{*}\left(|A u|^{p-2} A u\right)$ is called the $p$-Laplace operator associated with $A$. Since $A^{*}$ is elliptic, analysis similar to that in the proof of Lemma 3.1 shows that the function $f:=|A u|^{p-2} A u$ has weak limit values on the boundary belonging to $W^{-1 / p^{\prime}, p^{\prime}}\left(\partial \mathcal{X}, \mathbb{C}^{l}\right)$. If $\mathcal{S}$ is different from the entire boundary, then $f \equiv 0$ in $\mathcal{X}$, implying $A u=0$ in $\mathcal{X}$. Therefore, the extremal problem $I(u) \mapsto$ min over $u \in \mathcal{A}$ is equivalent to the Cauchy problem.

Let $R>0$. Denote by $\mathcal{A}_{R}$ the subset of $W^{1, p}\left(\mathcal{X}, \mathbb{C}^{k}\right)$ consisting of all $u \in$ $W^{1, p}\left(\mathcal{X}, \mathbb{C}^{k}\right)$, satisfying $u=u_{0}$ at $\mathcal{S}$ and, moreover,

$$
\|u\|_{W^{1 / p^{\prime}, p}\left(\partial \mathcal{X} \backslash \mathcal{S}, \mathbb{C}^{k}\right)} \leq R,
$$

cf. (4.5). By the Sobolev trace theorem, $\mathcal{A}_{R}$ is a convex bounded closed subset of $\mathcal{A}$ and the family $\mathcal{A}_{R}$ exhausts $\mathcal{A}$.

Theorem 5.1. Suppose $R>0$. Then, for each data $u_{0} \in W^{1 / p^{\prime}, p, \mathbb{C}^{k}}\left(\mathcal{S}, \mathbb{C}^{k}\right)$ with $1<p<\infty$, the functional I takes on its minimum over $\mathcal{A}_{R}$ precisely at one function $u_{R} \in \mathcal{A}_{R}$.

Proof. This follows by the same method as in Theorem 4.4. The details are left to the reader.

The behaviour of $u_{R}$ for large $R$ proves thus to be crucial for the solvability of the Cauchy problem. If the family $\left\{u_{R}\right\}_{R>0}$ is bounded in $W^{1, p}\left(\mathcal{X}, \mathbb{C}^{k}\right)$, then it stabilises for sufficiently large $R$. The limit function $u$ is the minimum of $I$ over all of $\mathcal{A}$, and so $u$ is a solution of mixed problem (5.1), provided that $\mathcal{S}$ is different from $\partial \mathcal{X}$.

Corollary 5.2. Let $u_{0} \in W^{1 / p^{\prime}, p}\left(\mathcal{S}, \mathbb{C}^{k}\right)$, where $\mathcal{S} \neq \partial \mathcal{X}$. For the existence of a function $u \in W^{1, p}\left(\mathcal{X}, \mathbb{C}^{k}\right)$ satisfying $A u=0$ in $\mathcal{X}$ and $u=u_{0}$ at $\mathcal{S}$ it is necessary and sufficient that the family $\left\{u_{R}\right\}_{R>0}$ of Theorem 5.2 be bounded in $W^{1, p}\left(\mathcal{X}, \mathbb{C}^{k}\right)$.

Acknowledgements The first author gratefully acknowledges the financial support of the Deutscher Akademischer Austauschdienst.

## References

[AH96] Adams, D. R., and Hedberg, L. I., Functional Spaces and Potential Theory, SpringerVerlag, Berlin et al., 1996.
[Aiz93] Aizenberg, L. A., Carleman's Formulas in Complex Analysis. Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1993.
[Esk73] Eskin, G. I., Boundary Value Problems for Elliptic Pseudodifferential Operators, Nauka, Moscow, 1973.
[KS97] Khavinson, D, and Stessin, M., Certain linear extremal problems in Bergman spaces of analytic functions, Indiana Univ. Math. J. 46 (1997), no. 3, 933-974.
[Koh63] Kohn, J. J., Harmonic integrals on strongly pseudoconvex manifolds. I, II, Ann. Math. 78 (1963), no. 1, 112-148; 79 (1964), no. 3, 450-472.
[KMF91] Kozlov, V. A., Maz'ya, V. G., and Fomin, A. V., An iterative method for solving the Cauchy problem for elliptic equations, Comput. Math. and Math. Phys. 31 (1991), no. 1, 45-52.
[LU68] Ladyzhenskaya, O. A., and Ural'tseva, N. M., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
[Lieb88] Lieberman, G. M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
[LM61] Lions, J. L., and Magenes, E., Problèmes aux limites non homogènes, IV, Ann. Scu. Norm. Sup. Pisa 15 (1961), 311-326.
[LT09] Ly, I., and Tarkhanov, N., A variational approach to the Cauchy problem for nonlinear elliptic differential equations, J. of Inverse and Ill-Posed Problems 17 (2009), Issue 6, 595-610.
[LT11] Ly, I., and Tarkhanov, N., The Dirichlet to Neumann operator for nonlinear elliptic equations, In: Complex Analysis and Dynamical Systems IV, Contemporary Mathematics, vol. 553, Amer. Math. Soc., Providence, RI, 2011, pp. 115-126.
[MMT11] Makhmudov, K., Makhmudov, O., and Tarkhanov, N., Equations of Maxwell type, J. Math. Anal. Appl. 378 (2011), Issue 1, 64-75.
[MNT08] Makhmudov, O., Niyozov, I., and Tarkhanov, N., The Cauchy problem of couplestress elasticity, In: Complex Analysis and Dynamical Systems III, Contemporary Mathematics, vol. 455, Amer. Math. Soc., Providence, RI, 2008, pp. 297-310.
[Mor38] Morrey, Charles B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
[Mor59] Morrey, Charles B., Second-order elliptic equations in several variables and Hölder continuity, Math. Z. 72 (1959), 146-164.
[Mor66] Morrey, Charles B., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin et al., 1966.
[Rit09] Ritz, W., Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik, J. reine und angew. Math. 135 (1909), 1-61.
[Ros65] Rosenblum, M., Some Hilbert space extremal problems, Proc. Amer. Math. Soc. 16 (1965), 687-691.
[Sch60] Schechter, M., Mixed boundary problems for general elliptic equations, Commun. on Pure and Appl. Math. 13 (1960), 183-201.
[She13] Shestakov, I., On Zaremba problem for the p-Laplace operator, In: Complex Analysis and Dynamical Systems V, Contemporary Mathematics, vol. 5??, Amer. Math. Soc., Providence, RI, 2013.
[ST05] Shlapunov, A., and Tarkhanov, N., Mixed problems with a parameter, Russian J. Math. Phys. 12 (2005), no. 1, 97-119.
[ST10] Stepanenko, V., and Tarkhanov, N., The Cauchy problem for Chaplygin's system, Complex Variables and Elliptic Equations 55 (2010), Issue 7, 647-656.
[Str84] Straube, E. J., Harmonic and analytic functions admitting a distribution boundary value, Ann. Scuola Norm. Super. Pisa 11 (1984), no. 4, 559-591.
[Tar95] Tarkhanov, N., The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag, Berlin, 1995.
[Yos65] Yosida, K., Functional Analysis, Springer-Verlag, Berlin et al., 1965.
[Zar10] Zaremba, S., Sur un problème mixte relatif a l'équation de Laplace, Bulletin de l'Académie des sciences de Cracovie, Classe des sciences mathématiques et naturelles, série A (1910), 313-344.

Department of Mechanics and Mathematics, University of Samarkand, University Boulevard 15, 703004 Samarkand, Uzbekistan

E-mail address: olimjan@yahoo.com
Institute of Mathematics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany

E-mail address: tarkhanov@math.uni-potsdam.de


[^0]:    2010 Mathematics Subject Classification. Primary 35J50; Secondary 30C70, 35J92.
    Key words and phrases. Extremal problems, Euler equations, p-Laplace operator, mixed problems.

