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Yulia Yu. Bagderina

Institute of Mathematics with Computer Center of Russian Academy of Sciences,

112 Chernyshevsky str., 450008 Ufa, Russia
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Abstract

We consider systems of Euler-Lagrange equations with two degrees of freedom and with La-
grangian being quadratic in velocities. For this class of equations the generic case of the equiva-
lence problem is solved with respect to point transformations. Using Lie’s infinitesimal method
we construct a basis of differential invariants and invariant differentiation operators for such sys-
tems. We describe certain types of Lagrangian systems in terms of their invariants. The results
are illustrated by several examples.
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1. Introduction

Applying the variational principle in mechanics one reduces mechanical problems to systems
of ordinary differential equations (ODEs) of the form

d
dt

Lẋi − Lxi = 0, i = 1, . . . , n, ẋi =
dxi

dt
. (1)

known as Euler-Lagrange equations. While any scalar second-order ODE has a Lagrangian
representation, for n ≥ 2 there are systems which fail to admit Lagrangians L(t, x, ẋ), x =

(x1, . . . , xn), ẋ = (ẋ1, . . . , ẋn). Corresponding criteria for a system of two second-order ODEs
are established in [1].

It is known [2] that the class of equations (1) is closed with respect to point transformations.
That is, any nondegenerate change of variables

t̃ = θ(t, x), x̃i = ϕi(t, x), i = 1, . . . , n (2)
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transforms system (1) to a system of the same form

d
dt̃

L̃ ˙̃xi
− L̃x̃i = 0, i = 1, . . . , n, (3)

with possibly different Lagrangian L̃(t̃, x̃, ˙̃x). A point change of variables (2) is called canonical if
the Lagrangian L̃(t̃, x̃, ˙̃x) of the transformed system (3) coincides with the Lagrangian L(t, x, ẋ) of
system (1) written in variables (2). Noncanonical changes of variables are accepted as more in-
teresting [3], since they can transform system (1) into a system (3) with more simple Lagrangian
(e.g., several of its variables become cyclic or the resulting system is decoupled).

If system (1) admits a variational symmetry (or a constant of motion in the case of Hamil-
tonian representation of system (1)), one can reduce the order 2n of the system (1) to 2n − 2.
Solution of the so-called integrable systems which possess sufficient number of constants of
motion can be reduced to quadratures. At the beginning of the 20 th century it became known
from the works of H. Poincaré that the global existence of constants of motion is rather excep-
tional case. Many examples of integrable systems are considered in [4]. In particular, there are
listed integrable natural systems with two degrees of freedom having the Lagrangian of the form

L =
1
2

(ẋ2
1 + ẋ2

2) − U(x1, x2).
It should be noticed that such properties of system (1) as the natural form of its Lagrangian,

representation in the form of Liouville system or in decoupled form are not invariant under
arbitrary change of variables (2). As usual, these properties become implicit for the transformed
system (3). A system of Euler-Lagrange equations one obtains in some applications may possess
such hidden properties. The problem of finding the simplest equivalent form for a given system
(1) can be solved with the use of invariants of equations (1).

Transformation (2) is an equivalence transformation of the class of equations (1), i.e. the
most general transformation preserving the form of equations. Two systems (1) and (3) are said
to be equivalent, if there is an invertible change of variables (2) which transforms the systems
to each other. The equivalence problem can be solved using the invariants of the equivalence
transformation group of a given class of equations. Indeed, if systems (1) and (3) are equivalent
with respect to a point transformation (2) then their invariants coincide, i.e.

I j(t, x, ẋ) = Ĩ j(t̃, x̃, ˙̃x), j = 1, 2, 3, . . . . (4)

By invariants of system (1) are meant the invariants of its group E of equivalence transformations.
The invariants of some subgroup of E are called relative invariants of system (1).

The group of transformations may possess infinitely many differential invariants depending
on arbitrary element of the given class of equations and its derivatives,

I j = I j(t, x, ẋ, L, Lt, Lx, Lẋ, Ltt, Ltx, . . . , Lẋ···ẋ). (5)

The order of an invariant I j is defined by the highest order of the derivatives of function L which
are involved in I j. The invariant (5) takes the form I j = I j(t, x, ẋ) (just as in equalities (4)) when
we substitute the given function L(t, x, ẋ) into (5). As follows from [5, 6], the infinite set of
differential invariants of the transformation group possesses a finite basis in the sense that an
arbitrary invariant of the group can be obtained from basis invariants by algebraic operations and
invariant differentiations. The operators D of invariant differentiation bear the property that if
I is an invariant of system (1) then DI is its invariant, too. The number of such independent
operators just amounts to the number of arguments in an arbitrary element (function L) of the
given class of equations.
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The equivalence problem in the case of one dependent variable has been solved for the first-
order Lagrangians [7] and Lagrangians of higher order in [8, 9, 10]. In the present paper we
solve the generic case of the equivalence problem for a system of Euler-Lagrange equations
when n = 2. Furthermore, since most of the systems arising in applications are natural, we
restrict our attention to constructing the invariants for equations with Lagrangians depending
quadratically on velocities ẋ:

d
dt

Lẋ1 − Lx1 = 0,
d
dt

Lẋ2 − Lx2 = 0, (6)

Lẋ1 ẋ1 ẋ1 = 0, Lẋ1 ẋ1 ẋ2 = 0, Lẋ1 ẋ2 ẋ2 = 0, Lẋ2 ẋ2 ẋ2 = 0. (7)

This problem has not been studied yet. Only for the case of two dependent and two indepen-
dent variables it has been solved with respect to linear changes of variables for the quadratic
Lagrangians with constant coefficients [11]. In [12] for a system of n second-order ODEs some
fundamental relative invariants are introduced and the criteria of its equivalence to the simplest
form ¨̃x = 0 are obtained. Note that for systems (1) with two degrees of freedom some symme-
try properties (which may be used for their integration) were previously studied in [13, 14, 15].
More precisely, in [13] one deals with Lie point symmetries of autonomous systems (6), (7). The
recent papers [14, 15] are devoted to constructing the Noether type symmetries and first integrals
for those particular systems (6) which are equivalent in a complex domain to a single equation
d2u/dt2 = f (t, u, du/dt) for a complex-valued function u = x1 + ix2, where i2 = −1.

It can be easily shown that the class of equations (6), (7) is closed with respect to the point
transformations of the form

t̃ = θ(t), x̃1 = ϕ1(t, x), x̃2 = ϕ2(t, x). (8)

In Section 2 we apply Lie’s infinitesimal method (see its description, e.g., in [6, 16, 17] and
examples of application in [18, 19, 20, 21]) to construct a basis of invariants of the correspond-
ing equivalence transformation group and to compute the operators of invariant differentiation.
Note also that there exist other methods for finding the invariants, namely, Cartan’s equivalence
method [22, 23] and an approach based on using pseudovector fields [24]. In Section 3 we apply
formulas of Section II to specify invariants for some classes of Lagrangian systems. Finally, in
Section 4 we consider several examples showing how the invariants work in solving the equiva-
lence problem.

2. Invariants of systems with quadratic Lagrangian

Suppose that the Hessian of the function L(t, x, ẋ) with respect to the velocities ẋ does not
vanish identically. Then the system (6), (7) is solved with respect to the second-order derivatives
in the form

ẍ1 = f1(t, x, ẋ), ẍ2 = f2(t, x, ẋ).

Here the solvability is rather formal, e.g., in the sense of formal power series. In constructing the
invariants of system (6), (7) we use the operator of differentiation by virtue of system (6), (7)

D0 = Dt + p1Dx1 + p2Dx2 + f1Dp1 + f2Dp2

and the operators

Di = Dxi +
1
2

( f1pi Dp1 + f2pi Dp2 ), i = 1, 2,
3



where f jpi = Dpi f j and Dt, Dx j , Dp j are the operators of total differentiation with respect to t,

x j, p j, respectively (e.g., Dt = ∂t + Lt∂L + Ltt∂Lt +

2∑
i=1

(Ltxi∂Lxi
+ Ltpi∂Lpi

) + . . . and so on). To

avoid confusion, in this section and in the Appendix we use the notation pi = ẋi for the first-order
derivatives. The following theorem provides a solution of the equivalence problem for systems
of Euler-Lagrange equations with two degrees of freedom.

Theorem 1. For a class of systems (6), (7) with non-vanishing relative invariants j0, J0, I0
the following nine fifth-order invariants

I1 =
J0J1

j1/20 I0
, I2 =

J1/2
0 J2

I0
, I3 =

j1/20 J3/2
0 J3

I0
, I4 =

J4

j1/20 J5/4
0

, I5 =
J1/2

0 J5

j1/20 I0
,

I6 =
J5/4

0 J6

I0
, I7 =

j1/20 J3/4
0 J7

I0
, I8 =

J1/4
0 J8

j1/20 I0
, I9 =

J1/4
0 J9

j1/20 I0
(9)

form a basis of differential invariants with respect to point transformations (8). The invariant
differentiations are defined by the operators

D0 = J−1/4
0 D0,

D1 = j1/20 J3/4
0 I−1

0

(
(b1a2 − b2a1)D1 + (b1a1 − b0a2)D2

+(b2A1 − b1A2)Dp1 + (b0A2 − b1A1)Dp2

)
,

D2 = J5/4
0 I−1

0

(
(Lp1 p2 a2 − Lp2 p2 a1)D1 + (Lp1 p2 a1 − Lp1 p1 a2)D2

+(Lp2 p2 A1 − Lp1 p2 A2)Dp1 + (Lp1 p1 A2 − Lp1 p2 A1)Dp2

)
,

D3 = j1/20 J0I−1
0

(
(b1a2 − b2a1)Dp1 + (b1a1 − b0a2)Dp2

)
,

D4 = J3/2
0 I−1

0

(
(Lp1 p2 a2 − Lp2 p2 a1)Dp1 + (Lp1 p2 a1 − Lp1 p1 a2)Dp2

)
. (10)

Any other differential invariant of system (6), (7) is a function of invariants (9) and their invariant
derivatives.

The proof of Theorem 1 is given in Appendix. Invariants (9) are functions of variables

j0 = Lp1 p1 Lp2 p2 − L2
p1 p2

, I0 = b0(Γ2
2 − Γ1Γ3) + b1(Γ0Γ3 − Γ1Γ2) + b2(Γ2

1 − Γ0Γ2),

J0 = b2
1 − b0b2, J1 = Lp2 p2 a2

1 − 2Lp1 p2 a1a2 + Lp1 p1 a2
2, J2 = b2a2

1 − 2b1a1a2 + b0a2
2,

J3 = (Dp1 D2
2 − Dp2 D2D1)Lp1 + (Dp2 D2

1 − Dp1 D1D2)Lp2 ,

J4 = Lp1 p1 (b2B1 − b1B2) + Lp1 p2 (b0B2 − b2B0) + Lp2 p2 (b1B0 − b0B1),
J5 = Lp1 p1 (Γ2

2 − Γ1Γ3) + Lp1 p2 (Γ0Γ3 − Γ1Γ2) + Lp2 p2 (Γ2
1 − Γ0Γ2),

J6 = Lp2 p2 E0 − 2Lp1 p2 E1 + Lp1 p1 E2, J7 = b2E0 − 2b1E1 + b0E2,

J8 = (Lp2 p2 a1 − Lp1 p2 a2)(b2Γ0 − 2b1Γ1 + b0Γ2) + (Lp1 p1 a2 − Lp1 p2 a1)(b2Γ1 − 2b1Γ2 + b0Γ3),
J9 = (b2a1 − b1a2)(Lp2 p2Γ0 − 2Lp1 p2Γ1 + Lp1 p1Γ2)

+(b0a2 − b1a1)(Lp2 p2Γ1 − 2Lp1 p2Γ2 + Lp1 p1Γ3) (11)
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depending on relative invariants of the fourth order

ai = 2(D2D1 − D1D2)Lpi , b1 =
1
4

D0( f1p1 − f2p2 ) +
1
8

( f 2
2p2
− f 2

1p1
) +

1
2

( f2x2 − f1x1 ),

b0 = −β1, b2 = β2, βi =
1
2

D0 fkpi −
1
4

fkpi ( f1p1 + f2p2 ) − fkxi , (12)

where i = 1, 2, k = 3 − i, and relative invariants of the fifth order

Ai =
1
3

(
D0ai + ai( fipi +

1
2

fkpk ) +
1
2

ak fkpi

)
, B0 = D0b0 +

1
2

b0( f1p1 − f2p2 ) + b1 f2p1 ,

B1 = D0b1 +
1
2

(b0 f1p2 + b2 f2p1 ), B2 = D0b2 + b1 f1p2 +
1
2

b2( f2p2 − f1p1 ),

Γ0 = γ0, Γ1 = γ1 + 2A1, Γ2 = γ2 − 2A2, Γ3 = γ3,

γ2i+ j−3 = (4D0DiD j − 4DiD0D j − 2D jD0Di)Lpi + 2D jLxi xi + 4DiLxi x j

−(−1) jai flpi − 4Lxi xi x j +
1
2

(Lx j p1 p1 f 2
1pi

+ 2Lx j p1 p2 f1pi f2pi + Lx j p2 p2 f 2
2pi

)

+Lxi p1 p1 f1pi f1p j + Lxi p1 p2 ( f1pi f2p j + f1p j f2pi ) + Lxi p2 p2 f2pi f2p j ,

E0 = ε11, E1 =
1
2

(ε12 + ε21), E2 = ε22,

εi j = D jai + aiDp j ( fipi +
1
2

fkpk ) +
1
2

ak fkpi p j , i, j = 1, 2, k = 3 − i, l = 3 − j. (13)

Theorem 1 solves the equivalence problem for non-degenerate systems (6), (7). The first
assumption j0 , 0 means that the Hessian of function L is nonzero. The restrictions J0 , 0 and
I0 , 0 are not so clear. Note only that the invariants b0, b1, b2 coincide with the invariants P̃i

j
introduced in [12] for systems of second-order ODEs. As it follows from [12], any system with
quadratic dependence of the right-hand side on the first-order derivatives and vanishing invariants
P̃i

j is reducible by a local transformation (2) to the form ¨̃x = 0. The condition b2
1 − b0b2 = 0

seems to characterize systems (6), (7) of sufficiently degenerate form. For example, in the case

of natural Lagrangian L =
1
2

(p2
1 + p2

2) − F with real potential function F = F(t, x1, x2) the
condition J0 = 0 implies that the corresponding system of Euler-Lagrange equations is linear
and decoupled (see Section 3.3).

3. Invariants of some classes of Lagrangian systems

Here we describe the invariants for some classes of easily integrable systems of Euler-
Lagrange equations or systems having standard form.

3.1. Decoupled systems
A system of Euler-Lagrange equations breaks up into two decoupled equations

ẍi = −g−1
i

(
1
2

ẋ2
i gixi + ẋigi t

)
+ ei(t, xi), i = 1, 2,

if the Lagrangian is equal to

L =
1
2

(
ẋ2

1g1(t, x1) + ẋ2
2g2(t, x2)

)
+ ẋ1c1(t, x1, x2) + ẋ2c2(t, x1, x2) + c0(t, x1, x2), (14)

5



the functions c0, c1, c2 satisfying

c2x1 − c1x2 = 0, c0xi = ci t + giei, i = 1, 2.

For a system with Lagrangian (14) the only nonzero relative invariants (11) are

j0 = g1g2, J0 = b2
1, I0 = −16g1g2b1b1x1 b1x2 ,

where

b1 =
1
4

2∑
i=1

(−1)ig−1/2
i

(
2(ei
√

gi)xi + (gi t/
√

gi)t

)
.

Thus, for this system all invariants (9) vanish:

I1 = 0, . . . , I9 = 0. (15)

3.2. Systems with two cyclic coordinates
If the Lagrangian does not depend explicitly on xi, for some i, then this coordinate is called

cyclic. A system with Lagrangian L = L(t, ẋ1, ẋ2) has all invariants (11) equal to zero, except for
the invariants j0, J0, J4 which depend on the variable t only.

3.3. Standard form of a natural system
Most of the systems arising in mechanics have the form of a system with Lagrangian

L =
1
2

(ẋ2
1 + ẋ2

2) − F(t, x1, x2) (16)

in some coordinates. Such a system has the invariants

I1 = 0, I2 = 0, I3 = 0, I4 = J−5/4
0

(
Fx1 x2 D0(Fx1 x1 − Fx2 x2 ) + (Fx2 x2 − Fx1 x1 )D0Fx1 x2

)
,

I5 = 4J1/2
0 I−1

0

(
F2

x1 x1 x2
− Fx1 x1 x1 Fx1 x2 x2 + F2

x1 x2 x2
− Fx1 x1 x2 Fx2 x2 x2

)
,

I6 = 0, I7 = 0, I8 = 0, I9 = 0,

where

J0 = F2
x1 x2

+ (Fx1 x1 − Fx2 x2 )2/4, D0 = ∂t + ẋ1∂x1 + ẋ2∂x2 ,

I0 = 4Fx1 x2 (F2
x1 x1 x2

− Fx1 x1 x1 Fx1 x2 x2 − F2
x1 x2 x2

+ Fx1 x1 x2 Fx2 x2 x2 )
+2(Fx1 x1 − Fx2 x2 )(Fx1 x1 x1 Fx2 x2 x2 − Fx1 x1 x2 Fx1 x2 x2 ).

Therefore, any system (6), (7) reducible by a transformation (8) to the standard form with La-
grangian (16) should have zero invariants I1, I2, I3, I6, I7, I8, I9, invariant I5 depending on t, x1,
x2 only, and invariant I4 depending linearly on ẋ1, ẋ2.

Remark. Suppose I4 = 0 for the system with Lagrangian (16). If we split this equality by
powers of ẋ1, ẋ2, we obtain three relations which imply that either Fx1 x2 = 0, and then this system
is decoupled, or Fx1 x1 − Fx2 x2 = 2cFx1 x2 (if Fx1 x2 , 0), where c is a constant. From this equality
it follows that I5 = 0, too. Therefore, the function F(t, x1, x2) has the form

F = F1(t, x2 + (c +
√

c2 + 1)x1) + F2(t, x2 + (c −
√

c2 + 1)x1)

and the corresponding system of Euler-Lagrange equations becomes decoupled in the variables
x̃i = x2 + x1(c + (−1)i

√
c2 + 1).
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4. Examples of equivalent systems

We now consider a few examples, which illustrate application of the invariants of Euler-
Lagrange equations to solving the equivalence problem.

Example 1. The Hénon-Heiles system [26]

q̈1 + ω1q1 = bq2
1 − aq2

2, q̈2 + ω2q2 = −2aq1q2, a, b, ω1, ω2 = const, (17)

has the Langrangian

L =
1
2

(
q̇2

1 + q̇2
2 − ω1q2

1 − ω2q2
2

)
− aq1q2

2 +
1
3

bq3
1

and, when b , a, the invariants

I1 = 0, I2 = 0, I3 = 0, I4 = a
(
4(a + b)(q1q̇2 − q2q̇1) + 2(ω2 − ω1)q̇2

)
J−5/4

0 ,

I5 =
(a + b)

√
J0

2a(b − a)q2
, I6 = 0, I7 = 0, I8 = 0, I9 = 0,

where J0 = (a + b)2q2
1 + 4a2q2

2 + (a + b)(ω2 −ω1)q1 + (ω2 −ω1)2/4. System (17) may be reduced
to a decoupled form if it has invariants of the form (15). It is readily seen that system (17) has
vanishing invariants I4, I5 when b/a = −1, ω2 = ω1, in which case system (17) breaks up in the
variables q1 ± q2, as it is noticed in [26].

The latter relation on the parameters of the system specifies one of the three integrable cases
where q1 satisfies a fourth-order ODE corresponding to the stationary solution of the Sawada-
Kotera equation [27, 28]. Here we have established that this is the only case when the system
reduces to a decoupled form after a transformation of the form (8).

Example 2. The paper [29] studies a three-dimensional system whose maximal superinte-
grability depends on the existence of an extra constant of motion for the two-dimensional system
with Hamiltonian

H =
1
2

(
p2

r +
1
r2 p2

ψ

)
+

F(ψ)
r2 .

For the potential

F(ψ) =
k

sin2 λψ
, k = const, k , 0, λ ∈ N, (18)

[29] gives an explicit expression of this extra first integral.
Here we consider the corresponding system of Euler-Lagrange equations

r̈ = rψ̇2 + 2
F(ψ)

r3 , ψ̈ = −
2
r

ṙψ̇ −
F′(ψ)

r4 (19)

with the Lagrangian L =
1
2

(ṙ + r2ψ̇2) − r−2F(ψ). It has the invariants

I1 = 0, I2 = 0, I3 = 0, I4 =
8r2ψ̇Φ1
√

2FΦ
5/4
0

, I5 = −

√
Φ0Φ1

2Φ2
,

I6 = 0, I7 = 0, I8 = 0, I9 = 0,
(20)
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where

Φ0 = (x4/3y + x2 − 8)2 + 36x2, Φ1 = 3x11/3y
dy
dx

+ x4/3(x2 + 40)y − (x4 + 20x2 + 64),

Φ2 =
1
x

(x4/3y − 2x2 − 8)Φ1 +
2
x

(2x4/3y − x2 − 4)Φ0,

x =
F′

F
, y = F′′

( F
F′4

)1/3

−

(
F′

F

)2/3

.

Let us find the conditions under which the invariants I4, I5 of system (19) vanish and, therefore,
necessary condition of its reducibility to a decoupled system holds. These conditions become
sufficient if we find a suitable change of variables (8) which transforms the system to a decoupled
form.

The condition Φ1 = 0 represents an Abel equation of the second kind with general solution
given by

C1x4(2x4/3y − x2 − 4) + C2(2x4/3y − x2 − 16)2Φ0 = 0, C1,C2 = const.

In the variables ψ, F this equality takes the form

C1F′4(2FF′′ − 3F′2 − 4F2) + C2(2FF′′ − 3F′2 − 16F2)2((F′′ − 8F)2 + 36F′2) = 0. (21)

Equation (21) can be easily integrated for certain values of parameters C1, C2.
If C2 = 0 then the resulting equation 2FF′′ − 3F′2 − 4F2 = 0 has the solution

F(ψ) =
1

(c1 sinψ + c2 cosψ)2 , c1, c2 = const. (22)

It is not difficult to see that in the variables

x1 = r(c1 sinψ + c2 cosψ), x2 = r(c1 cosψ − c2 sinψ)

system (19), (22) breaks up into two decoupled equations

x′′1 =
2(c2

1 + c2
2)

x3
1

, x′′2 = 0.

If C1 = 0, C2 = 1 then (21) reduces to the equation 2FF′′ − 3F′2 − 16F2 = 0, which has the
solution

F(ψ) =
1

(c1 sin 2ψ + c2 cos 2ψ)2 , c1, c2 = const. (23)

In the variables

y j = r(K j cosψ − c2 sinψ), K j = c1 + (−1) j
√

c2
1 + c2

2, j = 1, 2, c2 , 0

system (19), (23) takes the form

y′′1 =
2K2

1

y3
1

, y′′2 =
2K2

2

y3
2

.
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When c2 = 0, system (19), (23) breaks up into

z′′1 =
1

2c2
1z3

1

, z′′2 =
1

2c2
1z3

2

in the polar coordinates z1 = r cosψ, z2 = r sinψ.
In the general case a change of variables which reduces system (19) to a decoupled form

can be found in two steps. The system (19) is first reduced to the system with the Lagrangian

L =
1
2

(ż2
1 + ż2

2) − (z2
1 + z2

2)−1F(arctan z2/z1) in the polar coordinates. And then one can use the
remark of Section 3.3.

Note that potential (18) satisfies equality (21) only for the parameter values λ = 1 and λ = 2.
This example and the previous one demonstrate that the integrability of a Hamiltonian system is
not related directly to the separability of the corresponding system of Euler-Lagrange equations.

Example 3. The paper [30] deals with the generalized nonlinear Schrödinger equation

ut − ia0uxx + a3uxxx − iN |u|2u + a1|u|2ux + a2u(|u|2)x = 0, N, a j = const, a3 , 0. (24)

As usual, its particular solution is sought in the form

u = r(τ)exp(ϕ(τ) − kt), τ = x − vt, k, v = const. (25)

Substituting (25) into (24) leads to the system of two third-order ODEs for r(τ), ϕ(τ). Once
integrated, for the functions r(τ), φ(τ) = ϕ′(τ) − a0/3a3 it takes the form of two second-order
ODEs

rr′′ −
1
2

(r′2 + 3r2φ2) + (β0 + β1)r4 + β2r2 + c = 0, c = const,

rφ′′ + 3r′φ′ + 3r′′φ − rφ3 + (4β1r3 + 2β2r)φ − β3r3 − β4r = 0, (26)

where

β0 =
a2

2a3
, β1 =

a1

4a3
, β2 =

a2
0

6a2
3

−
v

2a3
, β3 =

N
a3
−

a0a1

3a2
3

, β4 =
k
a3

+
va0

3a2
3

−
2a3

0

27a3
3

.

When β0 = 0, this is a system of Euler-Lagrange equations with Lagrangian

L =
3
2
φr′2 + rr′φ′ +

1
2

r2φ3 − (β1r4 + β2r2 + c)φ +
1
4
β3r4 +

1
2
β4r2

having the invariants

I1 = 0, I2 = 0, I3 = 0, I4 =

3
(
rφ′F0 + φr′(F2 − F0)

)
2
√
−r2J5/4

0

,

I5 = −
4φ
√
−r2F2

√
J0

r
(
15φ3(5F1 − 2F2) − F0F1 − F2

1

) , I6 = 0, I7 = 0, I8 = 0, I9 = 0,

where

J0 =
3
4
φ(F1 − F0), F1 = 30φ3 − 20β1r2φ + 7β3r2 + 3β4 − 12cφr−2,

F0 = 15φ3 − 7β3r2 − 3β4, F2 = 30φ3 − 40β1r2φ + 21β3r2 + 3β4.
9



The invariants of system (26) with β0 = 0 satisfy the conditions listed in Section 3.3. It is readily
verified that in the variables

x1 =
√

r(1 − rφ), x2 = i
√

r(1 + rφ),

i2 = −1, equations (25) assemble into a system with Lagrangian of the form (16). But note that
in the variables y1 =

√
r, y2 = r3/2φ the system has more simple (real) Lagrangian

L = y′1y′2 +
1
4

y3
2y−5

1 −
1
2

y2(β1y5
1 + β2y1 + cy−3

1 ) +
1
8
β3y8

1 +
1
4
β4y4

1.

The invariants I4, I5 of system (26) cannot be equal to zero. Hence, the system does not reduce
to a decoupled system.

Example 4. The paper [31] studies the following two families of Hamiltonians H1, H2
and K1, K2 which define two-dimensional generalisations of the second Painléve transcendent
(κ = const):

H1 = P2
1(Q2 − Q1 − t1) + 2Q2P1P2 + P2

2 + 2P1(Q2
1 − t2

1 + t2Q2) + 2P2(Q1Q2 + t1Q2 + t2)
+2κQ1,

H2 = Q2P2
1 + 2P1P2 + 2P1(Q1Q2 + t1Q2 + t2) + 2P2(Q2

2 − Q1 + t1) + 2κQ2,

K1 =
1
2

(q1 − q2)−1
(
p2

1 − p2
2 − p1(2q3

1 + 2τ2q1 + τ1) + p2(2q3
2 + 2τ2q2 + τ1)

)
− κ(q1 + q2),

K2 =
1
2

(q1 − q2)−1
(
q1 p2

2 − q2 p2
1 − p1 + p2 + q2 p1(2q3

1 + 2τ2q1 + τ1)

−q1 p2(2q3
2 + 2τ2q2 + τ1)

)
+ κq1q2.

Here, for H1, t1 is an independent variable and t2 is a parameter. For H2, t1 is a parameter and t2
is an independent variable. In a similar manner τ1, τ2 are thought of with respect to Hamiltonians
K1, K2.

The Lagrangian

L2 =
1
2

Q̇1Q̇2 −
1
4

Q2Q̇2
2 + (Q̇1 + Q3

2 − 3Q1Q2 − t1Q2 − 2t)(Q1 − Q2
2 − t1)

+Q̇2(Q3
2 − 2Q1Q2 − t) − 2κQ2, t = t2,

corresponds to the Hamiltonian H2. In this case the system of Euler-Lagrange equations

Q̈1 =
1
2

Q̇2
2 + 2(1 − 3Q2

1 − Q4
2 + t2

1) + 4(3Q1Q2
2 + t1(Q1 + Q2

2) + tQ2 − κ),

Q̈2 = 4(2Q3
2 − 3Q1Q2 + t1Q2 − t) (27)

has the invariants

I1 = 0, I2 = 0, I3 = 0, I4 =
2(5Q2

2Q̇1 − (5Q3
2 + t)Q̇2 + Q2)

√
−6(Q2Φ)5/4

,

I5 = −
5Q2
√
−Q2Φ1/2

10Q3
2 + 20Q1Q2 + 4t1Q2 + 2t

, I6 = 0, I7 = 0, I8 = 0, I9 = 0, (28)

where Φ = 5Q3
2 − 2(5Q1 + t1)Q2 − 2t.
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It is readily seen that the necessary condition of reducibility to the standard form (16) is
fulfilled. Indeed, in the variables y1 = Q1 − Q2

2/4, y2 = Q2 system (27) reduces to a system with
Lagrangian

L̃2 = ẏ1ẏ2 + t(3y2
2 − 4y1) −

3
8

y5
2 + (5y1 + t1)y3

2 + 2(2t1y1 − 3y2
1 + 1 + t2

1 − 2κ)y2,

and in the variables x1 = Q1 − Q2
2/4 + Q2, x2 = i(Q1 − Q2

2/4 − Q2), where i2 = −1, it becomes a
system with Lagrangian (16).

On using the invariants one can easily show that system (27) is equivalent to the system of
Euler-Lagrange equations, which corresponds to the Hamiltonian K1. This is the system with
Lagrangian

Λ1 =
1
2

(q1 − q2)(q̇2
1 − q̇2

2) +
1
2

(2q̇1 + q2
1 + q1q2 + q2

2 + τ2)(q3
1 + τ2q1 + τ/2)

+
1
2

(2q̇2 + q2
1 + q1q2 + q2

2 + τ2)(q3
2 + τ2q2 + τ/2) + κ(q1 + q2), τ = τ1,

having the invariants

I1 = 0, I2 = 0, I3 = 0, I4 =
2(10(q1 + q2)2(q1q̇1 + q2q̇2) − τ(q̇1 + q̇2) + q1 + q2)

√
−6(q1 + q2)5/4φ5/4

,

I5 = −
5(q1 + q2)

√
−(q1 + q2)φ1/2

10(q3
1 + 5q2

1q2 + 5q1q2
2 + q3

2) − 8τ2(q1 + q2) − τ
,

I6 = 0, I7 = 0, I8 = 0, I9 = 0, φ = 5(q3
1 + q2

1q2 + q1q2
2 + q3

2) + 4τ2(q1 + q2) + τ.

It is not difficult to see that they coincide with invariants (28) of system (27) if

t = −τ/2, Q1 = q1q2 + c, Q2 = q1 + q2, c = const,
Q̇1 = −2(q2q̇1 + q1q̇2), Q̇2 = −2(q̇1 + q̇2), t1 = −2τ2 − 5c. (29)

Substituting (29) into (27) shows that this transformation relates the corresponding systems of
Euler-Lagrange equations with each other if and only if c = −τ2/2.

Similarly one can consider the Lagrangian

L1 =
Q̇2

2

4
−

(Q2Q̇2 − Q̇1)2

4(Q1 + t)
+ (Q̇1 − Q2

1 − t2Q2 + t2)(Q1 − Q2
2 − t)

+(Q̇2 − Q1Q2 − tQ2 − t2)(Q3
2 − 2Q1Q2 − t2) − 2κQ1, t = t1,

corresponding to the Hamiltonian H1, and the Lagrangian

Λ2 =
1
2

(q1 − q2)
 q̇2

2

q1
−

q̇2
1

q2

 − κq1q2

+

(
q̇1 −

1
2

q1q2(q1 + q2) −
1
4

q2(q2
2 + τ) +

1
8

(T2 + q−1
1 )

) (
q3

1 + τq1 +
1
2

(τ1 − q−1
2 )

)
+

(
q̇2 −

1
2

q1q2(q1 + q2) −
1
4

q1(q2
1 + τ) +

1
8

(τ1 + q−1
2 )

) (
q3

2 + τq2 +
1
2

(τ1 − q−1
1 )

)
,
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where τ = τ2, corresponding to the Hamiltonian K2. Their invariants are too cumbersome and
so are not given here. But similarly to the case of Lagrangians L2 and Λ1, the systems of Euler-
Lagrange equations with Lagrangians L1 and Λ2 are related to each other by transformation

t = τ/2, Q1 = q1q2 − τ/2, Q2 = q1 + q2, t2 = −2τ1. (30)

Comparing (29), (30) one readily sees that the relations

t1 =
τ2

2
, t2 = −

τ1

2
, Q1 = q1q2 −

τ2

2
, Q2 = q1 + q2

define transformation which relate with each other the Euler-Lagrange equations corresponding
to the Hamiltonians H1, H2 and K2, K1.

5. Conclusion

Integration of nonlinear equations proves to be a complicated problem. Applying invariants
of a given class of equations allows one to reduce it to finding an equivalent equation with known
solution or an equation being more simple for integration. The invariants may be effective also
when we need to prove nonequivalence of two given equations or their irreducibility to a special
form.

In the present paper a basis of invariants of Euler-Lagrange equations (1) is constructed when
n = 2 and the Lagrangian has quadratic dependence on velocities. With a number of examples
it is shown how the invariants can either facilitate the integration of a given system or prove the
inefficiency of some known method for constructing an analytical solution of the system. Note
that the equivalence problem for the more general class of Euler-Lagrange equations with n > 2
degrees of freedom remains open.
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Appendix A. Proof of Theorem 1

To prove the statement of Theorem 1 we use Lie’s infinitesimal method [6, Chapter 7]. In the
calculations presented here, we used the symbolic package Maple for some tedious computations
and checking the results obtained. The invariants of system (6), (7) are found from the condition
of their invariance under the infinitesimal operator

X = ξ0(t, x)∂t + ξ1(t, x)∂x1 + ξ2(t, x)∂x2 + η(t, x, p, L, Lt, Lx, Lp, Ltt, . . . , Lpp)∂L (A.1)

corresponding to the group E of equivalence transformations of system (6), (7). When extended
to the derivatives p j = ẋ j, ẍ j and to the derivatives of L with respect to t, x = (x1, x2), p =

(p1, p2), operator (A.1) should leave invariant the system (6), (7). If we set (z0, z1, z2, z3, z4) =

(t, x1, x2, p1, p2), then the coordinates ξ3, ξ4, ξ5, ξ6 of extended operator (A.1)

X = η∂L +

4∑
j=0

(
ξ j∂z j + η j∂Lz j

+

j∑
k=0

(
η jk∂Lz jzk

+

k∑
l=0

η jkl∂Lz jzkzl

))
+ ξ5∂ẍ1 + ξ6∂ẍ2
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are calculated by the standard prolongation formulas [6]

ξ3 =
d
dt
ξ1 − p1

d
dt
ξ0, ξ4 =

d
dt
ξ2 − p2

d
dt
ξ0, ξ5 =

d
dt
ξ3 − ẍ1

d
dt
ξ0, ξ6 =

d
dt
ξ4 − ẍ2

d
dt
ξ0.

In order to calculate the coordinates η j, η jk, η jkl we regard L as dependent variable and z0, . . . , z4
as independent ones, thus obtaining

η j = Dz jη −

4∑
i=0

Lzi Dz jξi, η jk = Dzkη j −

4∑
i=0

Lz jzi Dzkξi,

η jkl = Dzlη jk −

4∑
i=0

Lz jzkzi Dzlξi, j, k, l = 0, . . . , 4. (A.2)

Action of X on system (6), (7) and substitution of ẍ1, ẍ2, Lp1 p1 p1 , . . . , Lp2 p2 p2 by virtue of this
system provide six determining equations. On equating the coefficients of the same powers of
the third and fourth-order derivatives of L in these equations one obtains the conditions

ηLzi
= 0, ηLziz j

= 0, i, j = 0, . . . , 4,

i.e. η = η(t, x, p, L). Then equating the coefficients of the same powers of the first- and second-
order derivatives of L yields the conditions

ξ0xi = 0, ηLL = 0, ηpiL = 0, ηpi p j = 0, i, j = 1, 2.

Substituting ξ0 = τ(t), η = F0(t, x) + p1F1(t, x) + p2F2(t, x) + LF3(t, x) into the determining
equations and equating the coefficients of p j, L, Lp j , j = 1, 2, one immediately obtains

F0x j − F jt = 0, F1x2 − F2x1 = 0, F3x j = 0, F3t + τtt = 0, j = 1, 2.

Therefore, with a function ζ = ζ(t, x1, x2) and a constant c, the operator of the equivalence
transformation group of system (6), (7) is given by

X = τ(t)∂t +

2∑
j=1

(
ξ j(t, x1, x2)∂x j + (ξ j t + p j(ξ jx j − τt) + p3− jξ jx3− j )∂p j

)
+(ζt + p1ζx1 + p2ζx2 − L(τt + c))∂L. (A.3)

An arbitrary element L of system (6), (7) and its invariant (5) do not depend on variables ẍ1, ẍ2.
So, here one needs merely an extension of operator X to the velocities p j = ẋ j. The function ζ and
constant c in operator (A.3) result from the known fact that the multiplication of the Lagrangian
by a non-zero constant and the addition of the total derivative of a function of t, x to L do not
alter the corresponding system of Euler-Lagrange equations.

The fifth-order invariants of system (6), (7), which depend on 191 variables

t, x, p, L, Lt, Lx, Lp, Ltt, Ltx, Lxx, Ltp, Lxp, Lpp,

Lttt, . . . , Lxpp, Ltttt, . . . , Lxxpp, Lttttt, . . . , Lxxxpp, (A.4)

are found from the invariance condition X̃I = 0. We assume that all derivatives Lppp are
equal to zero, so the collection (A.4) does not include the derivatives Lppp, Ltppp, Lxppp, Lpppp,
Lttppp, . . . ,Lppppp. (Hereinafter we use the notation Lppp for all third-order derivatives of L with
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respect to p1, p2, Lpppp for those of the fourth-order, and so on). Write X̃ for a fifth-order exten-
sion of operator (A.3)

X̃ = X +

4∑
j=0

(
η j∂Lz j

+

j∑
k=0

(
η jk∂Lz jzk

+

k∑
l=0

(
η jkl∂Lz jzkzl

+

l∑
m=0

(
η jklm∂Lz jzkzlzm

+

m∑
n=0

η jklmn∂Lz jzkzlzmzn

))))
,

with coordinates calculated by formulas (A.2) and

η jklm = Dzmη jkl −

4∑
i=0

Lz jzkzlzi Dzmξi, η jklmn = Dznη jklm −

4∑
i=0

Lz jzkzlzmzi Dznξi, (A.5)

j, k, l,m, n = 0, . . . , 4. From (A.2), (A.3), (A.5) it is not difficult to see that the operator X̃
depends linearly on arbitrary functions ζ, ξ1, ξ2, τ and their derivatives up to the sixth order. On
the other hand, an invariant I depends neither on these functions nor on their derivatives. Hence,
according to the theory of invariants of infinite transformation groups [6], the relation X̃I = 0
should be split by these functions and their derivatives. This gives rise to a homogeneous system
of linear first-order partial differential equations

X0(c)I = 0, X1(ξ1)I = 0, . . . , X258(∂6τ/∂t6)I = 0, (A.6)

where every operator Xi is the coefficient of some derivative in X̃ (which is displayed in the
parentheses). The functionally independent solutions of system (A.6) provide all independent
differential invariants of system (6), (7) up to the fifth order.

The solution of system (A.6) is found in several steps. First we consider the subsystem of
equations (A.6) with three operators X1(ξ1) = ∂x1 , X2(ξ2) = ∂x2 , X3(τ) = ∂t and 85 operators

X174(∂6ζ/∂t6) = ∂Lttttt , X174+ j(∂6ζ/∂t5∂x j) = ∂Lttttx j
+ p j∂Lttttt , . . . ,

X195(∂6ζ/∂x6
1) = p1∂Lx1 x1 x1 x1 x1

, . . . , X201(∂6ζ/∂x6
2) = p2∂Lx2 x2 x2 x2 x2

, . . . ,

X201+ j(∂6ξ j/∂t6) = −Lp j∂Lttttt , . . . , X258(∂6τ/∂t6) = (p1Lp1 + p2Lp2 − L)∂Lttttt , (A.7)

j = 1, 2, being the coefficients of the sixth-order derivatives of ζ, ξ1, ξ2, τ in X̃ and acting
on 21 variables Lttttt, Lttttx, . . . , Lxxxxx. Only 21 of these operators are independent and the
remaining 64 operators are represented as their linear combinations. In the space of variables
(A.4) the subsystem of equations (A.6) with operators X1, X2, X3 and (A.7) has 167 functionally
independent solutions

p, L, Lt, Lx, Lp, Ltt, . . . , Lpp, Lttt, . . . , Lxpp,

Ltttt, . . . , Lxxpp, Lttttp, . . . , Lxxxxp, Ltttpp, . . . , Lxxxpp.

In these variables the next 64 operators in system (A.6) (the coefficients of the fifth-order
derivatives of ζ, ξ1, ξ2, τ in X̃) become

X110(∂5ζ/∂t5) = ∂Ltttt , X110+ j(∂5ζ/∂t4∂x j) = ∂Ltttx j
+ p j∂Ltttt + ∂Lttttp j

, . . . ,

X130+ j(∂5ξ j/∂t5) = −Lp j∂Ltttt − Lp1 p j∂Lttttp1
− Lp j p2∂Lttttp2

, . . . ,

X173(∂5τ/∂t5) = −L∂Ltttt +

2∑
i=1

pi(Lpi∂Ltttt + Lp1 pi∂Lttttp1
+ Lpi p2∂Lttttp2

), j = 1, 2,
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acting on 45 variables Ltttt, Ltttx, . . . , Lxxxx, Lttttp, . . . , Lxxxxp. Note that 19 of these operators
are linear functions of the remaining 45 operators and the subsystem of the corresponding 64
equations (A.6) has 122 independent solutions

p, L, Lt, Lx, Lp, Ltt, . . . , Lpp, Lttt, . . . , Lxpp,

Ltttp, . . . , Lxxxp, Lttpp, Ltxpp, Lxxpp, Ltttpp, . . . , Lxxxpp.

Further we consider the subsystem of 46 equations (A.6) with operators

X64(∂4ζ/∂t4) = ∂Lttt , X64+ j(∂4ζ/∂t3∂x j) = ∂Lttx j
+ p j∂Lttt + ∂Ltttp j

, . . . ,

X79+ j(∂4ξ j/∂t4) = −Lp j∂Lttt − Lp1 p j∂Ltttp1
− Lp j p2∂Ltttp2

, . . . , j = 1, 2,

X109(∂4τ/∂t4) = −L∂Lttt −

2∑
i=1

piX79+i + Lp1 p1∂Ltttp1 p1
+ Lp1 p2∂Ltttp1 p2

+ Lp2 p2∂Ltttp2 p2
,

acting on 60 variables Lttt, . . . , Lxxx, Ltttp, . . . , Lxxxp, Ltttpp, . . . , Lxxxpp. As 76 independent
solutions of this subsystem we can take

p, L, Lt, Lx, Lp, Ltt, . . . , Lpp, Lttp, Ltxp, Lxxp, Ltpp, Lxpp, Lttpp, Ltxpp, Lxxpp,

Bi, Ai, Γ0, Γ1, Γ2, Γ3, εi j, εi = DiJ3 − J3 j−1
0 Di j0, i, j = 1, 2,

where the variables Bi, Ai, Γ0, Γ1, Γ2, Γ3, εi j are defined by formulas (13). For the sake of
symmetry one can add here a variable B0 which is related to B1, B2 by the equality Lp2 p2 B0 −

2Lp1 p2 B1 + Lp1 p1 B2 = 0.
In these variables the subsystem of 31 equations (A.6) with operators

X33(∂3ζ/∂t3) = ∂Ltt , X33+ j(∂3ζ/∂t2∂x j) = ∂Ltx j
+ p j∂Ltt + ∂Lttp j

, . . . ,

X42+ j(∂3ξ j/∂t3) = −Lp j∂Ltt − Lp1 p j∂Lttp1
− Lp j p2∂Lttp2

, . . . , j = 1, 2,

X63(∂3τ/∂t3) = −L∂Ltt −

2∑
i=1

piX42+i + Lp1 p1∂Lttp1 p1
+ Lp1 p2∂Lttp1 p2

+ Lp2 p2∂Lttp2 p2
,

has 45 functionally independent solutions

p, L, Lt, Lx, Lp, Ltp, Lxp, Lpp, Ltpp, Lxpp,

bi, ai, J3, Bi, Ai, Γ0, Γ1, Γ2, Γ3, εi j, εi, i, j = 1, 2, (A.8)

where bi, ai, J3 are defined by (11), (12). It is also convenient to add a variable b0 satisfying
Lp2 p2 b0 − 2Lp1 p2 b1 + Lp1 p1 b2 = 0.

The next 18 operators of system (A.6) act on first 26 variables (A.8) only. These are

X14(ζtt) = ∂Lt , X14+ j(ζtx j ) = ∂Lx j
+ p j∂Lt + ∂Ltp j

, X17(ζx1 x1 ) = p1∂Lx1
+ ∂Lx1 p1

,

X18(ζx1 x2 ) = p1∂Lx2
+ p2∂Lx1

+ ∂Lx2 p1
+ ∂Lx1 p2

, X19(ζx2 x2 ) = p2∂Lx2
+ ∂Lx2 p2

,

X19+ j(ξ j tt) = −Lp j∂Lt − Lp1 p j∂Ltp1
− Lp j p2∂Ltp2

,

X21+ j(ξ j tx1 ) = p1X20 + Lp j (p1X14 − X15) − Lp1 p j (∂Lx1 p1
+ 2∂Ltp1 p1

) − Lp j p2 (∂Lx1 p2
+ ∂Ltp1 p2

),
X23+ j(ξ j tx2 ) = p2X21 + Lp j (p2X14 − X16) − Lp1 p j (∂Lx2 p1

+ ∂Ltp1 p2
) − Lp j p2 (∂Lx2 p2

+ 2∂Ltp2 p2
),

X25+ j(ξ j x1 x1 ) = −Lp j X17 − Lp1 p j (p1∂Lx1 p1
+ 2∂Lx1 p1 p1

) − Lp j p2 (p1∂Lx1 p2
+ ∂Lx1 p1 p2

),

X27+ j(ξ j x1 x2 ) = −Lp j X18 −

2∑
i=1

Lpi p j (p2∂Lx1 pi
+ p1∂Lx2 pi

+ ∂Lxi p1 p2
+ 2∂Lx3−i pi pi

),

X29+ j(ξ j x2 x2 ) = −Lp j X19 − Lp1 p j (p2∂Lx2 p1
+ ∂Lx2 p1 p2

) − Lp j p2 (p2∂Lx2 p2
+ 2∂Lx2 p2 p2

), (A.9)
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j = 1, 2, having 27 independent invariants

p, L, Lp, Lpp, bi, ai, J3, Bi, Ai, Γ0, Γ1, Γ2, Γ3, εi j, εi, i, j = 1, 2. (A.10)

In these variables (where we add B0 and b0 for symmetry), the remaining 12 operators of
system (A.6) look like

X32(τtt) = −2(b0∂B0 + b1∂B1 + b2∂B2 ) −
1
2

(a1∂A1 + a2∂A2 ) +
1
2

J3(∂ε12 − ∂ε21 ),

X4(ζt) = ∂L, X5(ζx1 ) = ∂Lp1
+ p1∂L, X6(ζx2 ) = ∂Lp2

+ p2∂L,

X7(ξ1t) = ∂p1 , X8(ξ2t) = ∂p2 ,

X9(ξ1x1 ) = p1∂p1 − Lp1∂Lp1
− 2Lp1 p1∂Lp1 p1

− Lp1 p2∂Lp1 p2
− b0∂b0 + b2∂b2 − 2a1∂a1

−a2∂a2 − 2J3∂J3 − B0∂B0 + B2∂B2 − 2A1∂A1 − A2∂A2 − 3Γ0∂Γ0 − 2Γ1∂Γ1

−Γ2∂Γ2 − 3ε11∂ε11 − 2ε12∂ε12 − 2ε21∂ε21 − ε22∂ε22 − 3ε1∂ε1 − 2ε2∂ε2 ,

X10(ξ2x1 ) = p1∂p2 − Lp2∂Lp1
− 2Lp1 p2∂Lp1 p1

− Lp2 p2∂Lp1 p2
− 2b1∂b0 − b2∂b1

−a2∂a1 − 2B1∂B0 − B2∂B1 − A2∂A1 − 3Γ1∂Γ0 − 2Γ2∂Γ1 − Γ3∂Γ2

−(ε12 + ε21)∂ε11 − ε22(∂ε12 + ∂ε21 ) − ε2∂ε1 ,

X11(ξ1x2 ) = p2∂p1 − Lp1∂Lp2
− Lp1 p1∂Lp1 p2

− 2Lp1 p2∂Lp2 p2
− b0∂b1 − 2b1∂b2

−a1∂a2 − B0∂B1 − 2B1∂B2 − A1∂A2 − Γ0∂Γ1 − 2Γ1∂Γ2 − 3Γ2∂Γ3

−ε11(∂ε12 + ∂ε21 ) − (ε12 + ε21)∂ε22 − ε1∂ε2 ,

X12(ξ2x2 ) = p2∂p2 − Lp2∂Lp2
− Lp1 p2∂Lp1 p2

− 2Lp2 p2∂Lp2 p2
+ b0∂b0 − b2∂b2 − a1∂a1

−2a2∂a2 − 2J3∂J3 + B0∂B0 − B2∂B2 − A1∂A1 − 2A2∂A2 − Γ1∂Γ1 − 2Γ2∂Γ2

−3Γ3∂Γ3 − ε11∂ε11 − 2ε12∂ε12 − 2ε21∂ε21 − 3ε22∂ε22 − 2ε1∂ε1 − 3ε2∂ε2 ,

X13(τt) = −L∂L + Lp1 p1∂Lp1 p1
+ Lp1 p2∂Lp1 p2

+ Lp2 p2∂Lp2 p2
+ J3∂J3

+

2∑
i=1

(
− pi∂pi − 2bi∂bi − 3Bi∂Bi − Ai∂Ai + εi∂εi +

2∑
j=1

Γ2i+ j−3∂Γ2i+ j−3

)
,

X0(c) = −L∂L − Lp1 p1∂Lp1 p1
− Lp1 p2∂Lp1 p2

− Lp2 p2∂Lp2 p2
− J3∂J3

−

2∑
i=1

(
Lpi∂Lpi

+ ai∂ai + Ai∂Ai + εi∂εi +

2∑
j=1

(Γ2i+ j−3∂Γ2i+ j−3 + εi j∂εi j )
)
. (A.11)

The subsystem of nine equations XiI = 0, (X9 − X12)I = 0, i = 4, . . . , 8, 10, 11, 32, has 18
functionally independent solutions (11) and

J10 = a2A1 − a1A2, J11 = a2
2E0 − 2a1a2E1 + a2

1E2,

J12 = a2ε1 − a1ε2, J13 = (Lp2 p2 a1 − Lp1 p2 a2)ε1 + (Lp1 p1 a2 − Lp1 p2 a1)ε2,

J14 = (Lp2 p2 a1 − Lp1 p2 a2)A1 + (Lp1 p1 a2 − Lp1 p2 a1)A2 +
J1

8J0
(b2B0 − 2b1B1 + b0B2),

J15 = ε21 − ε12 +
J3

4J0
(b2B0 − 2b1B1 + b0B2). (A.12)

In these variables, the remaining three operators (A.11) take the form

X9 + X12 = −4 j0∂ j0 − 6I0∂I0 − 8J1∂J1 − 6J2∂J2 − 4J3∂J3 − 2J4∂J4 − 8J5∂J5
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−6J6∂J6 − 4J7∂J7 − 8J8∂J8 − 8J9∂J9 − 6J10∂J10 − 10J11∂J11 − 8J12∂J12

−10J13∂J13 − 8J14∂J14 − 4J15∂J15 ,

X13 = 2 j0∂ j0 − 4J0∂J0 − 4I0∂I0 + J1∂J1 − 2J2∂J2 + J3∂J3 − 4J4∂J4 − J5∂J5 + J6∂J6

−2J7∂J7 − 2J8∂J8 − 2J9∂J9 − J10∂J10 + J12∂J12 + 2J13∂J13 ,

X0 = −2 j0∂ j0 − 2I0∂I0 − 3J1∂J1 − 2J2∂J2 − J3∂J3 − J4∂J4 − 3J5∂J5 − 2J6∂J6 − J7∂J7

−3J8∂J8 − 3J9∂J9 − 2J10∂J10 − 3J11∂J11 − 2J12∂J12 − 3J13∂J13 − 3J14∂J14 − J15∂J15 .

Operators X9 + X12 and X13 have 16 independent invariants

i0 =
I0

j3/20 J7/4
0

, i1 =
J1

j20J3/4
0

, i2 =
J2

j3/20 J5/4
0

, i3 =
J3

j0J1/4
0

, i4 =
J4

j1/20 J5/4
0

,

i5 =
J5

j20J5/4
0

, i6 =
J6

j3/20 J1/2
0

, i7 =
J7

j0J0
, i8 =

J8

j20J3/2
0

, i9 =
J9

j20J3/2
0

, i10 =
J10

j3/20 J0
,

i11 =
J11

j5/20 J5/4
0

, i12 =
J12

j20J3/4
0

, i13 =
J13

j5/20 J3/4
0

, i14 =
J14

j20J0
, i15 =

J15

j0J1/2
0

. (A.13)

The remaining operator X0 has 15 invariants

Ik =
ik
i0
, k = 1, 2, 3, 5, . . . , 10, 14, 15, I4 = i4, Il =

il
i20
, l = 11, 12, 13. (A.14)

In order to obtain an arbitrary invariant of system (6), (7), we need to find the operators of
invariant differentiation. According to the theory of [6, Chapter 7], the coefficients ψ j of an

invariant differentiation operatorD =

4∑
j=0

ψ jDz j satisfy

X̃ψ j =

4∑
i=0

ψiDziξ j, j = 0, . . . , 4, (A.15)

where we continue to designate (z0, . . . , z4) = (t, x1, x2, p1, p2) and ξ0, . . . , ξ4 are the coefficients
of operator (A.3) at the partial derivatives ∂t, . . . , ∂p2 , respectively. We assume that the functions
ψ j depend on variables (A.4) and, similarly to the invariance criterion X̃I = 0, the equalities
(A.15) should be split by functions ζ, ξ1, ξ2, τ and their derivatives. This yields a system of
linear first-order partial differential equations which contains the nonhomogeneous equations

X7ψ1 = ψ0, X9ψ1 = ψ1, X11ψ1 = ψ2, X8ψ2 = ψ0, X10ψ2 = ψ1, X12ψ2 = ψ2,

X8+ jψk = ψ3, X10+ jψk = ψ4, X13ψk = −ψk, X19+ jψk = ψ0,

X21+ jψk = ψ1 + p1ψ0, X23+ jψk = ψ2 + p2ψ0, X25+ jψk = p1ψ1,

X27+ jψk = p2ψ1 + p1ψ2, X29+ jψk = p2ψ2, X32ψk = −p jψ0,

X13ψ0 = ψ0, j = 1, 2, k = 2 + j, (A.16)

the remaining equations of the system being homogeneous. Hence it follows that ψ0 is a function
of variables (11), (A.12), the functions ψ1, ψ2 depend on variables (A.10) and ψ3, ψ4 depend on
variables (A.8). Note that operators (A.9), (A.11) act on the right-hand sides f1, f2 of system (6),
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(7), solved with respect to ẍ1, ẍ2, and their derivatives f jpi as follows:

X19+ j = ∂ f j , X21+ j = 2∂ f jp1
+ 2p1∂ f j , X23+ j = 2∂ f jp2

+ 2p2∂ f j ,

X25+ j = 2p1∂ f jp1
+ p2

1∂ f j , X27+ j = 2p2∂ f jp1
+ 2p1∂ f jp2

+ 2p1 p2∂ f j ,

X29+ j = 2p2∂ f jp2
+ p2

2∂ f j , j = 1, 2, X32 = −p1∂ f1 − p2∂ f2 − ∂ f1p1
− ∂ f2p2

,

X9 = f1∂ f1 + f1p2∂ f1p2
− f2p1∂ f2p1

, X12 = f2∂ f2 − f1p2∂ f1p2
+ f2p1∂ f2p1

,

X10 = f1∂ f2 + f1p2 (∂ f2p2
− ∂ f1p1

) + ( f1p1 − f2p2 )∂ f2p1
,

X11 = f2∂ f1 + f2p1 (∂ f1p1
− ∂ f2p2

) + ( f2p2 − f1p1 )∂ f1p2
,

X13 = −2 f1∂ f1 − 2 f2∂ f2 − f1p1∂ f1p1
− f1p2∂ f1p2

− f2p1∂ f2p1
− f2p2∂ f2p2

. (A.17)

Taking into account (A.17), we see readily that the system for ψ0, . . . , ψ4 has five independent
solutions corresponding to operators (10). These are

1) one solution of the form ψ0 , 0, ψ j = p jψ0, ψ2+ j = f jψ0, j = 1, 2, where ψ0 = J−1/4
0 ;

2) two solutions of the form ψ0 = 0, ψ1 = 0, ψ2 = 0, ψ3 , 0, ψ4 , 0, where for (ψ3, ψ4) one
can take the functions j1/20 J0I−1

0 (b1a2−b2a1, b1a1−b0a2) and J3/2
0 I−1

0 (Lp1 p2 a2−Lp2 p2 a1, Lp1 p2 a1−

Lp1 p1 a2);

3) two solutions of the form ψ0 = 0, ψ1 , 0, ψ2 , 0, ψ2+ j = χ j +
1
2

( f jp1ψ1 + f jp2ψ2), where
X9χ1 = χ1, X11χ1 = χ2, X10χ2 = χ1, X12χ2 = χ2, X13χ j = −χ j, X32χ j = ψ j/2, j = 1, 2, and other
operators (A.9), (A.11) act on χ1, χ2 homogeneously. The functions (ψ1, ψ2, χ1, χ2) satisfy these
conditions, if they are equal to j1/20 J3/4

0 I−1
0 (b1a2 − b2a1, b1a1 − b0a2, b2A1 − b1A2, b0A2 − b1A1)

or J5/4
0 I−1

0 (Lp1 p2 a2 − Lp2 p2 a1, Lp1 p2 a1 − Lp1 p1 a2, Lp2 p2 A1 − Lp1 p2 A2, Lp1 p1 A2 − Lp1 p2 A1).
It is not difficult to see that the relative invariants i1, i2, i3 in (A.13) are of the fourth order.

The operators of invariant differentiation (10) act on them as follows:

D0i1 = 6i14, D0i2 = 6i−1
1 (i2i14 − Ī1i10) +

1
2

Ī1i4, D0i3 = i15,

i0D1i1 = Ī1i15 − i1i7 − i2i6 +
3
8

(Ī1i8 + 3i1 Ī5 + i2 Ī0) − 2i3i−1
1 (Ī−1

1 i2i14 + i2i10),

i0D1i2 = −2i11 −
1
4

i1 Ī0 + i2(Ī5 − 2i7) + (Ī1 − 4i3)i10 + i22i−1
1 (i6 − i14)

+
5
8

i2i−1
1 (Ī1i8 + i1 Ī5 + i2 Ī0) + 2i3i−1

1 (2Ī1i10 − i2i14) + 2i2i3i−2
1 (Ī1i14 + i2i10),

i0D1i3 = i−1
1 (Ī1i12 − i2i13) +

1
8

i3i−1
1 (Ī1i8 + 3i1 Ī5 + i2 Ī0),

i0D2i1 = 2(i11 + i3i10 − i1i6) +
3
8

i1i−1
2 (Ī1i9 + 3i1 Ī5 + i2 Ī0),

i0D2i2 = −Ī1i15 − i1i7 − i2i14 +
1
8

(Ī1(2i8 + 3i9) + 13i1 Ī5 + 3i2 Ī0) + 2i3i−1
1 (Ī1i14 + i2i10),

i0D2i3 = −i13 +
1
8

i3i−1
2 (Ī1i9 + 3i1 Ī5 + i2 Ī0), i0D3i1 = 2Ī1i3 −

3
4

i21, i0D3i2 = −
3
4

i1i2,

i0D3i3 = −
1
4

i1i3, i0D4i1 = −
3
4

i1i2, i0D4i2 =
1
2

i21 −
5
4

i22 − 2Ī1i3, i0D4i3 = −
1
4

i2i3,

where Ī0, Ī1, Ī5 are related to the invariants i0, i1, i2, i5 by the equalities

Ī2
1 + i22 = i21, 2i1i2i5 = i2(Ī2

0 + i28− i8i9)+ Ī0(Ī1i9 + i1 Ī5), 2i1i2i0 = i1(Ī2
5 + i8i9− i29)+ Ī5(Ī1i8 + i2 Ī0).
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From the above relations we deduce that the action of operatorsD3,D4 on i1, i2, i3 is expressible
in terms of i1, i2, i3. In much the same way one obtains similar relations for the fifth-order
invariants (A.13). Therefore, the action of operators D3, D4 on invariants (A.14) does not yield
any other invariants. The relations withD0,D1,D2 mean that from the nine relations

DlIk = i−1
0 Dlik − iki−2

0 Dli0, k = 1, 2, 3, l = 0, 1, 2,

one can find the values of D0i0, D1i0, D2i0 and six invariants I10, . . . , I15 in terms of other
invariants I1, . . . , I9. Hence, the invariants I10, . . . , I15 are not basis ones, for they can be obtained
by algebraic operations and invariant differentiations from invariants (9). It remains to show
that all invariants of the sixth and higher order can also be obtained by these operations from
invariants (9), which, therefore, form a basis of invariants of system (6), (7).

Note that 15 invariants (A.14) depend on the fifth-order derivatives of L via 14 variables Bi,
Ai, γ0, γ1, γ2, γ3, εi j, εi, i, j = 1, 2. These 14 variables involve the derivatives in the following
way

B1 ∼
1
4

j−1
0 (Lp1 p1 Ltttp2 p2 − Lp2 p2 Ltttp1 p1 ), B2 ∼

1
2

j−1
0 (Lp1 p2 Ltttp2 p2 − Lp2 p2 Ltttp1 p2 ),

Ai ∼
1
3

(Lttx1 pi p2 − Lttx2 p1 pi ), γ2i+ j−3 ∼ Lttx j pi pi , εi j ∼ Ltx1 x j pi p2 − Ltx j x2 p1 pi ,

εi ∼ Lx1 x1 xi p2 p2 − 2Lx1 xi x2 p1 p2 + Lxi x2 x2 p1 p1 , i, j = 1, 2, (A.18)

and, together with 13 variables

p, L, Lp, Lpp, bi, ai, J3, i = 1, 2, (A.19)

they form a set of independent invariants of the operators X0, X1, X2, X3, X14, . . . , X258. In the
27 -dimensional space of variables (A.18), (A.19) 12 operators (A.11) have 15 invariants (A.14).
Their invariant differentiations yield invariants, which depend on the sixth-order derivatives of L
via 26 variables

D0Bi, D0Ai, D0γ2i+ j−3, DiAi, D2(γ1 + 3A1) ∼ D1(γ2 − 3A2), D jγ2i+ j−3,

D2γ2i−2 ∼ D1γ2i−1, D jεi j, D2εi1 ∼ D1εi2, Diεi, D1ε2 ∼ D2ε1, (A.20)

i, j = 1, 2. It is not difficult to determine the number of these invariants, namely in the 53 -
dimensional space of variables (A.18)–(A.20) 12 operators (A.11) have 41 independent invariants
and 26 of them are of the sixth order.

On the other hand, one can obtain the sixth-order invariants from the invariance condition
X̃I = 0. On extending operator (A.3) to the sixth-order derivatives of L and splitting the equality
X̃I = 0 by functions ζ, ξ1, ξ2, τ and their derivatives up to the seventh order we arrive at a system

X0(c)I = 0, X1(ξ1)I = 0, . . . , X367(∂7τ/∂t7)I = 0,

where 103 operators (81+22) are represented as linear functions of the remaining 265 operators.
Hence, in the 306 -dimensional space of variables

t, x, p, L, Lt, Lx, Lp, Ltt, . . . , Lxxxpp, Ltttttt, . . . , Lxxxxpp

this system has 41 functionally independent solutions. Fifteen of them are invariants of the fifth
order and 26 are of the sixth order. This coincides with the number of independent invariants
of the sixth order obtained by invariant differentiations of the fifth-order invariants. Similar
reasoning extended to higher orders shows that all independent invariants of the n -th order can
be obtained by invariant differentiations from invariants of the (n− 1)-th order, n ≥ 6. Therefore,
invariants (9) form a basis. This completes the proof.
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[5] A. Tresse, Sur les invariants différentiels des groupes continus de transformations, Acta Math. 18 (1894) 1-88.
[6] L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.
[7] N. Kamran, P.J. Olver, Equivalence problems for first order Lagrangians on the line, J. Diff. Equations 80 (1989)

32-78.
[8] W.F. Shadwick, The Hamiltonian formulation of regular rth order Lagrangian field theories, Lett. Math. Phys. 6

(1982) 409-416.
[9] L. Hsu, N. Kamran, P.J. Olver, Equivalence of higher order Lagrangians II. The Cartan form for particle La-

grangians, J. Math. Phys. 30 (1989) 902-906.
[10] N. Kamran, P.J. Olver, Equivalence of higher order Lagrangians: III. New invariant differential equations, Nonlin-

earity 5 (1992) 601-621.
[11] P.J. Olver, The equivalence problem and canonical forms for quadratic Lagrangians, Adv. Appl. Math. 9 (1988)

226-257.
[12] M.E. Fels, The equivalence problem for systems of second-order ordinary differential equations, Proc. London

Math. Soc. 71 (1995) 221-240.
[13] T. Sen, Lie symmetries and integrability, Phys. Lett. A 122 (1987) 327-330.
[14] M.U. Farooq, S. Ali, F.M. Mahomed, Two-dimensional systems that arise from the Noether classification of La-

grangians on the line, Appl. Math. Comput. 217 (2011) 6959-6973.
[15] M.U. Farooq, S. Ali, Asghar Qadir, Invariants of two-dimensional systems via complex Lagrangians with applica-

tions, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1804-1810.
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