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Abstract

Amongst the many complex processes taking place in living cells, transport of cargoes across
the cytosceleton is fundamental to cell viability and activity. To move cargoes between the
different cell parts, cells employ Molecular Motors. The motors are responsible fo a huge variety
of tasks, ranging from cell division to DNA replication and chemical transport. A subclass of
such motors, whose models is the subject-matter of this thesis, operate by transporting cargoes
along the so called cellular micro-tubules, namely rope-like structures that connect, for instance,
the cell-nucleus and outer membrane.
Empirical evidence indicates that the movement exhibited by these motors is stochastic and

occurs with constant “step size”. This makes Markov Chains with countable state space excellent
models for describing the movement of such molecular motors.
The first part of this thesis deals with the extension of reversibility by introducing the concept

of permuted balance. This new notion allows the reduction of the state space of a Markov Chain
by aggregation of states. The result is again a Markov Chain and moreover reversible, i.e. the
distribution of the process is invariant under time reversal.
Permuted balance is, besides geometric properties of the transition graph, sufficient for a

phenomenon called Time Duality, which we introduce in the second part. This property accounts
for the equality of certain passage times between states. This equality was observed for several
motors empirically and serves therefore as an important tool in understanding the models of
molecular motors, using different modeling strategies.
The approach used here is based on the well known phase type distributions, which can be

characterized as absorption times of Markov Chains, and an original application of the Doob-
h-transform. We use this transform here to characterize processes conditioned for absorption in
a designated state, selected out of a set of absorbing states.
In the third part we present a new class of Markov Chains to model molecular motors, which

we will refer to as Quasi-Random Walks. This new model is an extension of Quasi-Birth-and-
Death Processes by eliminating the boundary condition in zero. We account for the possibility
that the motor may detach from the tubule by introducing an additional absorbing state.
We adapt established matrix-geometric tools, normally associated with Quasi-Birth-Death

processes, to investigate properties of Quasi-Random Walks processes. Amongst these, we
include the total life-time, the total number of specific transitions as well as the maximal distance
from zero and the distribution of the last position before detachment.
A following part is devoted to the application of our theoretical results about Quasi-Random

Walk for an existing model of the molecular motor kinesin.





Zusammenfassung

Neben vielen sehr komplexen Prozessen, ist der Transport von Cargos durch das Zytoskelett
fundamental für Aktivität und Lebensfähigkeit einer Zelle. Um Cargos zwischen den verschiede-
nen Zellteilen zu bewegen, bedienen sich Zellen sogenanntermolekularer Motoren. Diese Motoren
sind verantwortlich für eine große Anzahl unterschiedlichster Aufgaben in der Zelle, angefan-
gen von Zellteilung, Kopieren von DNS bis hin zum gerichteten Transport. Eine Unterklasse
dieser Motoren, deren Modelle Gegenstand dieser Arbeit ist, laufen auf Mikrotubuli genannten
seilartigen Strukturen, die z. B. zwischen Zellkern und der äußeren Zellmembran gespannt sind.
Da diese Art der Fortbewegung stochastischer Natur ist und experimentell gezeigt wurde,

dass die Schrittweiten konstant sind, eignen sich Markovketten in stetiger Zeit mit abzählbarem
Zustandsraum hervorragend als Modellierungswerkzeug.
Der erste Teil der Arbeit beschäftigt sich eingehend mit der Einführung eines erweiterten

Reversibilitätsbegriffes: des permutierten Gleichgewichts. Diese Erweiterung erlaubt es unter
anderem den Zustandsraum einer Markovkette durch Zusammenfassen von Zuständen zu verklei-
nern. Der resultierende Prozess ist wieder eine Markovkette und zudem reversibel, d.h. die
Verteilung dieser Kette ist invariant unter Zeitumkehr.
Das permutierte Gleichgewicht ist, neben einigen geometrischen Eigenschaften des Übergangs-

graphen, hinreichende Bedingung für ein im zweiten Teil eingeführtes Phänomen namens Zeit-
dualität. Diese Eigenschaft bezeichnet die Verteilungsgleichheit bestimmter Reisezeiten zwi-
schen Zuständen. Diese Verteilungsgleichheit wurde für einige Motormodelle beobachtet. Damit
stellt die Zeitdualität ein wichtiges Hilfsmittel zum Verständnis der Funktionsweise von Mo-
dellen molekularer Motoren unter Verwendung verschiedener Modellierungsstrategien dar. Die
entscheidenden Hilfsmittel sind dabei zum einen die wohlbekannten Phasentypverteilungen, die
als Absorptionszeiten von Markovketten dargestellt werden können; zum anderen eine originelle
Anwendung der Doob-h-Transformation, um Prozesse zu beschreiben, die darauf bedingt werden
in einem vorgegebenen Zustand absorbiert zu werden.
Der dritte Teil befasst sich mit der Modellierung von molekularen Motoren durch eine neu

eingeführte Klasse von Markovketten, die hier Quasi-Irrfahrt genannt wird. Diese neue Klasse
ist als Erweiterung der aus der Warteschlangentheorie bekannten Quasi-Geburts-und-Todes
Prozesse zu verstehen; im Gegensatz zu den Quasi-Geburts-und-Todes Prozessen fehlt der
Quasi-Irrfahrt die Randbedingung in Null. Ein zusätzlicher absorbierender Zustand spiegelt
die Möglichkeit der Ablösung des Motors vom Mikrotubulus wider.
Die bekannten matrixgeometrischen Methoden der Quasi-Geburts-und-Todes Prozesse wer-

den hier adaptiert, um interessante Eigenschaften dieser Klasse von Prozessen zu analysieren.
Darunter fallen etwa die Gesamtlebenszeit, die Gesamtanzahl bestimmter Übergänge, sowie
die maximale Distanz vom Startpunkt und die Verteilung der zuletzt besuchten Position vor
Absorption.
Der anschliessende Teil befasst sich mit der Anwendung der theoretischen Ergebnisse an ein

physikalisches Modell des molekularen Motors Kinesin.
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Introduction

Amongst the many complex processes taking place in living cells, transport of cargos across the
cytosceleton is fundamental to cell viability and activity. To move cargos between the different
cell parts, cells employ Molecular Motors. The motors are responsible of a huge variety of
tasks, ranging from cell division to DNA replication and chemical transport. A subclass of such
motors operate by transporting cargos along the so called cellular microtubules, namely rope-like
structures that connect, for instance, the cell-nucleus and outer membrane.

The diversity of these motors is striking; for the human 14 families of kinesins are identified,
where the kinesins are themselves only one of three types of “linear processive motors” (motors
that walk on “ropes”), see for instance [Sch03]. The complexity is increased by the fact that in
every species different varieties of these motors appear.

Fortunately the concept of how these motors work is quite similar for every motor, see fig. 1.
In principle they all use chemical bound energy to perform directed motion.

Figure 1: A cartoon of how molecular motors work from a simplified perspective. Depicted are
different types of molecular motors, rotation motors, walking motors and a motor that opens
piece by piece DNA strands (from left to right).

The aim of this thesis is to find a proper mathematical modeling tool kit for such processes.
We find that an extension of the Quasi-Birth-and-Death process fulfills the constraints and
is numerically treatable. Alongside we develope interesting new notions, like an extension of

1
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reversibility and a property called Time Duality, which arise in some specific models of molecular
motors.
The thesis is organized as follows:
In Chapter 1 we first introduce basic facts about Markov Chains in continuous (MCc) and

discrete time (MCd) with at most countable state space.
Then we extend the important but very restrictive notion of reversibility. A reversible measure

π = (πi)i∈E , for a MCd with values in E, is e.g. characterized by the detailed balance equations

πipij = πjpji, i, j ∈ E

where pij is the transition probability between states i and j. We extend this by

πipij = πjpσ(j)σ(i), i, j ∈ E (1)

where σ is a permutation of the states. We call (1) permuted balance equations and say that π
is in permuted balance for the MCd with transitions (pij)i,j∈E if (1) holds. Like for the detailed
balance, the permuted balance allows to characterize the stationary distribution π uniquely; we
show this in Proposition 1.3.7 together with some other properties implied by permuted balance.
A MCd with a stationary measure in permuted balance has the interesting property that

it induces a decomposition of the state space into disjoint subsets on which a new reversible
MCd can be defined. The concept of aggregation is known as lumping and was introduced in
[KS76]. As permuted balance can hold for different σ at the same time, different aggregations
are possible, see Example 1.3.
Another characterization of reversibility is a Criterion introduced by Kolmogoroff in [Kol36]

for discrete time and extended later by other authors for continuous time, see e.g. [Kel79],
chapter 2. This Criterion is known in the literature as Kolmogoroff Criterion. In Theorem
1.3.12 we give the analogue “extended Kolmogoroff Criterion” for permuted balance.
The rest of chapter 1 is devoted to local time and a short introduction of pattern matching.

Local time is a notion that has strong connections to the so called “Schur complement”. Indeed
the Schur complement of a transition matrix or infinitesimal generator for a given partition into
blocks can be interpreted as the transition matrix/infinitesimal generator of the process observed
only in a subset of states. We adapt here a version for absorbing MCd’s. Then again the concept
of pattern matching is used in many applications ranging from biology, speech recognition and
applications in operation research, see e.g. [Nue08, Fu96] and references therein and [FL03]. We
combine both concepts in chapter 4 to gain information about the number of certain transitions
before absorption.

In Chapter 2 we introduce the well known phase type distributions, which are defined as
absorption times of Markov Chains. This type of “Matrix Exponential Distributions” was
introduced rigorously for the first time by Neuts in [Neu94] and applied in the framework of
Queueing Theory. Early works in this direction date back to Erlang and Jensen, see [Erl09,
Jen54]. The second half of chapter 2 is devoted to the extension to several absorbing states. We
show here that a MCc conditioned to absorption in one absorbing state out of several can be
described by a linear transform of the transition matrix/infinitesimal generator. This concept is
known in older and applied theory as Duality, see [KSK66], and also as Doob-h-transform. This
works in our framework as follows. If there is a vector h such that for a sub stochastic matrix P

hP ≤ h

holds, h is called excessive. It is then used to transform the matrix P by the linear transformation

P̃ = diag(h)−1Pdiag(h),

2
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where diag(h) is the diagonal matrix containing the entries of h as diagonal entries, the other
entries are zero. Then P̃ is called (in the context of Markov Chains) the h-dual or h-transform.
However, the concept of Duality goes a little further; taking h = π, the reversible measure (if
existent) of a stochastic matrix, the π-dual describes the time reversal of the original process.
We show here the existence of a special h, such that the associated h-dual describes the original
process conditioned to absorption in a designated absorbing state, see Lemma 2.2.2. The concept
is developed in this thesis for continuous time, but it was already introduced for discrete time as
an example in [KS76], see chapter 3, section 3. A reinterpretation of conditioning to absorption
in a designated state allows us to describe the process conditioned to leave the transients via
specific states or sets thereof. We use this type of condition in chapter 4 to gain insight about
the distribution of the last visited state(s) before absorption.

Chapter 3 introduces a new relation called Time Duality between states in a MCc with
irreducible infinitesimal generator. In a simpler setting and without rigorous proof this appeared
already in [LW07, VLL08]. The concept concerns the equality in distribution of the “passage time
without return” from i to j and from j to i; see Definition 3.1.1. Thereafter we characterize this
property in terms of Laplace transforms of phase type distributions and gain several sufficient
conditions for Time Duality, partially based on the structure of the transition graph. One of
these sufficient conditions is permuted balance, see section 3.1.2, under some constraints on the
neighbourhood of the chosen states.
We found in an early version, that

S = D−1S�D

is sufficient, where S denotes the matrix of transitions excluding i and j and D is some invertible
matrix. By an algebraic argument there is indeed not much choice for D. It turns out that
D must be the product of a diagonal matrix and a permutation matrix. This led directly to
the concept of permuted balance, as we note in chapter 1, (1.6). We also answer the interest-
ing question whether the Time Duality relation is an equivalence relation for Birth-and-Death
Processes with reflecting boundaries and for reversible Markov Chains on trees in section 4.3.2.

Chapter 4 is devoted to a newly introduced class of Markov Chains, the killed Quasi Random-
Walk (kQRW). We are aware of the fact that the name “Quasi Random Walks” appears for
other objects for example in Monte Carlo Simulations, see e.g. [dHOS00]. A kQRW is thereby
defined as an extension of the well known Quasi-Birth-and-Death process (QBD), introduced
by Neuts and described for instance in [Neu94]. The main difference is that we remove the
boundary at zero and add an absorbing state. Because of the possible absorption, we added the
qualitative “killed”. In analogy to a QBD, which is defined on N × M , the kQRW is defined
on Z×M ∪Δ where Δ is an absorbing state and M a finite set. This process is characterized
by three matrices A0, A1, A2 (of dimension |M |× |M |) and a |M |-dimensional vector Γ, see also
fig. 2 (the vector Γ is not denoted there).
Because of the lack of boundary the process can be lumped (aggregation of states) to a finite

Markov Chain, see Lemma 4.1.5; the procedure leaves the distribution of the absorption time
invariant, see Lemma 4.1.7. The possibility to switch between the different perspectives, i.e.
between lumped/unlumped, allows to give theoretical results in terms of the matrices Ai and Γ
for a number of questions.
Like in the case of QBD, we partition the state space Z × M ∪ {Δ} into disjoint subsets

l(z), where the set l(z) := {z} ×M is called a level. The crucial tool is then the introduction
of a process that describes only the transition probabilities between neighbouring levels. We
call this new process step-process. To define it properly we first calculate the probabilities of

3
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Figure 2: The killed kQRW and its interpretation for walking motors. Compare with fig. 1

moving between levels in Proposition 4.3.2 and define with these probabilities the step-process
as a discrete kQRW in Definition 4.3.4. With the help of the step-process we describe in the
first section a quantity named runlength, which is the total number of times the original process
switches to another level before absorption (times a constant that encodes the displacement, i.e.
the “step-length“); it is also the total number of transitions of the step-process before absorption
and thus the runlength can be described as a discrete phase type distribution, see Proposition
4.3.5. Combining the notion of step-process, local time and pattern matching we are able to
describe the total number of level changes to the left (or to the right) before absorption, see
Proposition 4.3.6. In the following section we describe the maximal distance from the start in
level zero and the last level visited before absorption, see Propositions 4.4.1 and 4.4.3. We also
comment on a possible approximation scheme.
Although the kQRW could also be seen as a Markov Modulated Process, see [PTP09] for

details, our approach has several advantages. In particular our results are numerically treatable,
as matrices can be treated with Mathematica or MatLab, easily. Moreover the kQRW fits
very well to the type of approach used for models of Molecular Motors in Biophysics, see e.g.
[LL08, VLL08] and references therein.

In Chapter 5 we apply the results of chapter 4 to an existing model of the molecular motor
kinesin. We do not interpret the resulting numbers and distributions, but rather want to show
that our theoretical results can be applied in a satisfactory manner.

In Chapter 6 we address questions arising by extending the kQRW to the Semi-Markov
regime and propose roughly possible extensions to interacting motors, i.e. coupled kQRW’s.
In the appendix we give some results concerning matrix theory and the calculations necessary

to characterize phase type distributions as in [Neu94]. For the case of a usual Random Walk
with killing we give explicit distributions for the last level distribution and maximal distances
from zero. We use here an approximation scheme which has not been used for the derivation
of such results before (up to our knowledge), see [Gut09] and references. The approximation
argument also yields an idea how to treat the general inverses appearing, in some cases for
kQRW.

4



Chapter 1

Markov Chains in discrete and

continuous time with countable

state space

In this chapter we first introduce the well known definitions and basic results concerning Markov
Chains with countable state space. In the second part we extend the concept of reversibility.
The usual notion of reversibility is characterized by the so called detailed balance equations. The
idea behind this is to compare the probability of a path with the probability of the reversed
path, this is expressed in the Kolmogoroff Criterion, see [Kel79]. We relax this comparison here
allowing the comparison of two paths which are not necessarily just reversed version of each
other; we call this permuted balance, see also [KlV11]. This extension is useful in Chapter 3 and
can be characterized by an extension of the Kolmogoroff Criterion we give and proof here. The
most interesting property of permuted balance is surely that it induces a partition of the state
space which can be used to reduce the state space via an aggregation. The resulting process is a
reversible Markov Chain. Then in the third part we repeat the notion of local time and note that
it has connections to the so called Schur complement known in many branches of mathematics
and physics, see notes in Appendix A. By a simple argument we extend the results given in
[LR99] to chains with absorbing states. Indeed local time depends only on the invertibility of
certain sub matrices but not on recurrence or transience. The final section is devoted to a short
introduction to pattern matching as we need it for chapter 4.

1.1 On notation

Capital letters are usually reserved for matrices or sets, Id is the identity matrix. An exception
to this rule are the letters X , Y and Z which will always be associated to random variables.
The letter P is reserved for transition matrices and Q will always denote infinitesimal generators
(definition below). S denotes both sub stochastic matrices and non conservative infinitesimal
generators which will be clear from context which setting is meant. Matrices are given like this
M = (mij)i,j∈I , where mij is the (i, j)-th entry of M according to an (totally ordered) index
set I. Most often the index set is finite. Matrix transposition is denoted with M� and inversion
with M−1.

The complement of a set A is denoted with Ac.

A unit vector is denoted with ei if its only non-zero component is 1 at the i-th component.
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Another useful vector is

1 := (1, 1, . . . , 1).

For convenience we do not indicate the dimension of 1 explicitly but it should always be thought
of to have the right dimension such that the proposed multiplication is well defined. We denote
vectors or matrices which contain only zeros with 0 with the same convention as for 1.

For two random variables X,Y equality in distribution is denoted either by L(X) = L(Y ) or

by X
d
= Y .

1.2 Basic facts

In the following we introduce the necessary facts about Markov Chains in discrete and continuous
time as needed in this thesis. We omit proofs as there is a huge literature covering this topic,
see e.g. the newer literature [Gra08, Nor97, Bré99, LPW09, Beh00] and [KSK66, KS76] for older
(but still very useful) references.

Let E be a countable or finite set. We call E the state space and the elements of E states. We
call probability distributions on E in the following just distributions and write them as vectors
or sequences. The letters μ, ν and π are reserved for such distributions.

Further let X := (Xi)i∈I be a E-valued stochastic process with I an (totally ordered) index
set with minimal element 0. The existence of a suitable probability space (Ω,A,P) for X is
proven for instance in [Bau02], chapter VIII.

The distribution of X0 is called initial distribution and the E-valued function X.(ω) for ω ∈ Ω
is called trajectory.

Definition 1.2.1 If we fix a filtration (Fi)i∈I such that each Fi denotes the
σ-algebra generated by (Xj)0≤j≤i (the canonical filtration), we call τ : Ω → I a
stopping time if and only if

{τ ≤ i} ∈ Fi

for every i ∈ I.

In the sense of the definition a stopping time is a I-valued random variable with the property
that at each i ∈ I it can be decided whether T is smaller than i or not, as the canonical filtration
“carries all the information about the whole history of the process before and including i”. All
stopping times defined in this thesis will be denoted with τ eventually plus an index.

The stopping time we use in this thesis has several names: first passage time, absorption time,
first exit time or first hitting time. Although they all appear in different contexts their definition
is of the same form:

τ := inf {i ≥ 0 : Xi ∈ A}
for A � E. This stopping time denotes the first time the process hits a state of the set A resp.
the first time the process exits the set Ac.

For this thesis I = N or I = R
+.

1.2.1 Markov Chains in discrete time

We give here the basic facts about Markov Chains in discrete time, i.e. I = N. We follow the
explanations in [Beh00].
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Definition 1.2.2 Let (Xn)n≥0 be a stochastic process on E with initial distri-
bution μ fixed. If for arbitrary i0, i1, . . . , in ∈ E the Markov Property:

P(Xn = jn|Xn−1 = jn−1, Xn−2 = jn−2, . . . , X1 = i1, X0 = i0)

= P(Xn = jn|Xn−1 = jn−1)

holds whenever P(Xn−1 = jn−1, Xn−2 = jn−2, . . . , X1 = i1, X0 = i0) > 0,
(Xn)n≥0 is called discrete Markov Chain (MCd). (Xn)n≥0 is called homoge-
neous if and only if additionally

P(Xn = in|Xn−1 = in−1) = P(X1 = in|X0 = in−1)

holds.

Throughout the thesis it is assumed that homogeneity is always fulfilled, we therefore omit
the word “homogeneous” whenever it is possible without confusion.
A homogeneous MCd has the useful property that the dependencies between the Xi’s do not

depend on time. Therefore a MCd can be characterized by a simple matrix.

Definition 1.2.3 Let (Xn)n≥0 be a MCd on E. Then the |E| × |E| matrix
P = (pij)i,j∈E given by

pij := P(X1 = j|X0 = i)

is called transition matrix.

Together with an initial distribution μ a MCd is readily described by the pair (μ, P ). The
matrix P is a stochastic matrix.

Definition 1.2.4 Let M = (mij)i,j be a square matrix. M is called stochastic
if it has non-negative entries and each row sums up to one, i.e. if∑

j

mij = 1

or in matrix form
M1� = 1�

holds. M is sub stochastic if at least one row sum is strictly less than 1.

Remark 1.2.5The matrix formulation of a stochastic matrixM shows already that 1 is always
an eigenvalue to the eigenvector 1�, thus Id − M is not invertible (because 0 is an eigenvalue
of Id −M). The inverse of Id −M is an important quantity and defined only when M is sub
stochastic, see e.g. [Gan86], chapter 5. In this case the inverse can be characterized by the von
Neumann series, i.e.

(Id−M)−1 =
∑
n≥0

Mn.

�

�

Knowing (μ, P ) the distribution of Xn for arbitrary n can be reconstructed, i.e.

P(Xn = .) = μPn.

We introduce the notion of communication:

7
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Definition 1.2.6 Let (Xn)n≥0 be a MCd with transition matrix P = (pij)i,j∈E .
Let i, j ∈ E and i �= j. Then i communicates with j if there exist i1, i2, . . . , in ∈
E for some n ∈ N such that

pii1pi1i2 . . . pin−1inpinj > 0

holds. We write i � j if i communicates with j and i � j if additionally j

communicates with i. We impose the convention that every state communicates
with itself.

Communication does not need to be symmetric, i.e. i � j �⇒ j � i.
We can now define:

Definition 1.2.7 Let (Xn)n≥0 be a Markov Chain with transition matrix P . If
for all choices of pairs of states i, j ∈ E i � j the transition matrix P is called
irreducible.

It is easy to show that � is an equivalence relation on E and thus decomposes the state
space into so called communication classes, i.e. into sets

[i] := {j ∈ E : i � j} .
Definition 1.2.8 Let (Xn)n≥0 be a MCd on E. A communication class [i] is
closed if pij = 0 whenever i ∈ [i], j �∈ [i].

We note that the closed communication classes do not necessarily exploit the state space. We
collect the states not in a closed communication class in the set T .
We now can define the important notions of recurrence and transience:

Definition 1.2.9 Let (Xn)n≥0 be a MCd on E with transition matrix P =
(pij)i,j∈E . Then a state i is called

• transient, if i ∈ T .

• absorbing, if |[i]| = 1 and pii = 1.

• recurrent, if [i] is a closed communication class.

Without a proof we shall give the interpretation of the previous definitions. Transient states
are states that are visited only finitely many times during the whole evolution of the process,
recurrent and absorbing states are visited infinitely many times with probability one. This
definition of recurrence in this form is only valid for finite state space, but in this thesis we
will treat only absorbing and transient states. In the general case one distinguishes further
null-recurrence and positive-recurrence, see e.g. [Bré99], chapter 3.
We shall give a final result on the limiting behavior of MCd with irreducible transition matrix.

Proposition 1.2.10 Let (Xn)n≥0 be a MCd on E with irreducible transition
matrix P . Then

lim
n→∞P(Xn = .) = π

where π is the unique solution of the linear system

πP = π, π1� = 1.

The limit distribution π is also called stationary distribution. This distribution has the nice
property that if P(X0 = .) = π then

P(Xn = .) = πPn = (πP )Pn−1 = πPn−1 = . . . = π.

8
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1.2.2 Continuous time

We now set I = R
+.

Definition 1.2.11 A stochastic process (Xt)t≥0 on E with initial distribution
μ, such that for arbitrary t0 < t1 < . . . < tn and i0, i1, . . . , in

P(Xtn = in|Xtn−1 = in−1, . . . , Xt1 = i1, Xt0 = i0) = P(Xtn = in|Xtn−1 = in−1)

holds is called Markov Chain in continuous time (MCc). If additionally

P(Xtn = in|Xtn−1 = in−1) = P(Xtn−tn−1 = in|X0 = in−1)

holds, the Markov Chain is called homogeneous.

As in the discrete case we avoid writing homogeneous wherever possible and make the as-
sumption that homogeneity holds for all processes appearing in this thesis.
In continuous time the definition of a Markov Chain is more tedious. We thus give only the

most important results. We follow [Bré99] Chapter 8.
Let (Xt)t≥0 be a MCc on E and define P (t) := (pij(t))i,j∈E with

pij(t) := P(Xt = j|X0 = i)

the so called transition semi group. Such a semi group has the following properties:

• for each t ≥ 0 P (t) is stochastic.

• P (0) = Id.

• P (t+ s) = P (t)P (s).

Proposition 1.2.12 If (Xt)t≥0 is a MCc on E with transition semi group P (t)
as defined above, then there exists a matrix Q = (qij)i,j∈E such that

−qii := lim
ε→0

1− pii(ε)

ε
∈ [0,∞], i ∈ E

and

qij := lim
ε→0

pij(ε)

ε
∈ [0,∞], i, j ∈ E, i �= j.

Furthermore Q1� = 0.

Definition 1.2.13 The square matrix Q = (qij)i,j of Proposition 1.2.12 is
called infinitesimal generator.

Remark 1.2.14 In later sections we are interested in inverses of sub infinitesimal generators,
that is a matrix with non-positive entries at the diagonal and non-negative off-diagonal entries,
but where at least one row does not sum up to zero.
A infinitesimal generator is not invertible, as Q1� = 0 and thus 0 is an eigenvalue. For

sub infinitesimal generators 0 is no eigenvalue as these matrices have the nice property that all
eigenvalues have strict negative real part.

�
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The name infinitesimal generator is due to the fact that Q describes the probabilities to jump
from one state into another within an interval of infinitesimal size, see the preceding proposi-
tion. Furthermore the unique minimal solution of the following set of differential equations (the
Kolmogoroff forward and backward equations)

d

dt
P (t) = QP (t),

d

dt
P (t) = P (t)Q

is
P (t) = exp(Qt),

where exp(Qt) :=
∑

n≥0
tn

n!Q
n. Therefore Q “generates” all necessary information about the

distribution of the process. In particular for a fixed initial distribution μ the distribution of Xt

is surely given by P(Xt = .) = μP (t) and we can describe this distribution also in terms of the
infinitesimal generator Q by

P(Xt = .) = μ exp(Qt).

The very important notion of embedded Markov Chain helps to translate some notions from
discrete time to continuous time.

Definition 1.2.15 Let (Xt)t≥0 be a MCc on E with fixed initial distribution μ.
Then the matrix P = (pij)i,j∈E defined by

pij :=

{
0 i = j
qij
−qii

i �= j

is stochastic and the pair (μ, P ) defines a MCd on E. This MCd is called
embedded Markov Chain (associated to (Xt)t≥0).

Then we gain

Proposition 1.2.16 Let (Xt)t≥0 be a MCc on E with infinitesimal generator
Q and initial distribution μ. Then the infinitesimal generator is irreducible if
the transition matrix of the embedded Markov Chain is. Moreover a state i is
recurrent (transient, absorbing) if the associated state of the embedded Markov
Chain is recurrent (transient, absorbing).

We can also characterize the long time behavior of a MCc.

Proposition 1.2.17 Let (Xt)t≥0 be a MCc on E with irreducible infinitesimal
generator and initial distribution μ. Then

lim
t→∞P(Xt = .) = π,

where π is the unique solution of the set of linear equations

πQ = 0�, π1� = 1.

Again π is called stationary distribution. It shows the same “stationary behavior” as in the
discrete time case, namely if P(X0 = .) = π then

P(Xt = .) = π exp(Qt) = π(Id+
∑
n≥1

tn

n!
Qn) = π +

∑
n≥1

tn

n!
(πQ)︸ ︷︷ ︸
=0

Qn−1 = π.
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Remark 1.2.18 We have here implicitly imposed regularity conditions, that is −qii > ∞ and
summable rows. This is will be the case throughout the thesis.

�

�

How the stationary distribution π for irreducible infinitesimal generator and transition ma-
trices can be calculated by other means is topic of the next section.

1.3 Reversibility, permuted balance and extended Kolmo-

goroff Criterion

For an arbitrary MCd (Xn)n≥0 on the finite state space E = {1, 2, . . . ,m} with transition matrix
P = (pij)i,j∈E , a probability measure π on E is stationary if and only if

πP = π

and reversible if and only if for all i, j ∈ E

πipij = πjpji. (1.1)

The condition (1.1) is called throughout the literature balance condition, detailed balance or π is
in detailed balance with P , see e.g. [Rob10] Theorem 4.3. Let for any vector ν = (ν1, ν2, . . . , νn):

diag(ν) :=

⎛
⎜⎜⎜⎜⎜⎝
ν1 0 . . . 0 0
0 ν2 . . . 0 0
...

...
. . .

...
...

0 0 . . . νn−1 0
0 0 . . . 0 νn

⎞
⎟⎟⎟⎟⎟⎠

the diagonal matrix with the components of ν as diagonal entries; all other entries vanish. For
π fixed, define

PR = (pRij)i,j∈E := diag(π)Pdiag(π)−1,

i.e.

pRij =
πi

πj

pij .

It is a rescaling of rows and columns of the stochastic matrix P with π, in other words a linear
transform.
Then (1.1) is equivalent to the matrix identity:

P� = PR (1.2)

This shows that the transposed transition matrix is a similarity transform of the original transi-
tion matrix in case of reversibility. Then the matrix PR is also a stochastic matrix with invariant
distribution π, but with all transitions i → j reversed to j → i. The proof is simple:

eiP
R1� =

∑
j∈E

pRij =
∑
j∈E

πj

πi

pji
(1.1)
=
∑
j∈E

pij = 1

11
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for every i ∈ E and

πPRe�j =
∑
i∈E

πip
R
ij

(1.1)
=
∑
i∈E

πi

πj

πi

pji = πj .

The MCd (XR
n )n≥0 associated to the transition matrix PR is called the time reversal of

(Xn)n≥0, see e.g. [Nor97], section 1.9. The following relation between the processes (Xn)n≥0

and (XR
n )n≥0 holds:

(Xn)n≥0
d
= (XR

n )n≥0

if L(X0) = π.

With Kolmogoroff’s extension theorem the process can be extended to negative indices. Then
the name time reversal becomes clear as the following property holds:

(Xn)n≥0
d
= (X−n)n≥0.

Thus reversibility also states informally that future and past can be exchanged without changing
the distribution.
By the preceding argumentation reversibility turns out to be a path-wise property. Indeed it

means that in equilibrium (that is L(X0) = π) there is no “P-measurable” difference whether
the dynamics defined by the chain takes the path (j1, j2, . . . , jk) from j1 to jk or the reversed
one from jk to j1 for any j1, . . . , jk ∈ E.
In [Kol36] this property of exchangability is characterized via a condition on loops. A non-

trivial loop is here a sequence of at least three distinct states. A modernized form of this
statement is proved in [Kel79], section 1.5, Theorem 1.7. (here in the notation of this thesis):

Theorem 1.3.1 Let (Xn)n≥0 be a MCd with irreducible transition matrix P =
(pij)i,j∈E on E. Then the unique stationary measure π is reversible with respect
to P if and only if

pj1j2pj2j3 . . . pjk−1jkpjkj1 = pj1jkpjkjk−1
. . . pj3j2pj2j1 (1.3)

for any finite sequence of states j1, j2, . . . , jk ∈ E.

Proof See [Kel79], section 1.5, Theorem 1.7.
�

The Kolmogoroff criterion (1.3) allows to check for reversibility without knowing π explicitly.
But calculating all loops for a given transition graph can be a very tedious, because there
might be many loops. Thus the criterion is better for determining that a given dynamics is not
reversible.
For two states j1, j2 (1.3) is always fulfilled. That is why we call loops of length two trivial

loops.

Remark 1.3.2 An obvious consequence of Theorem 1.3.1 is that any MCd without non-
trivial loops is automatically reversible. Two such important classes of reversible MCd’s are
Birth-and-Death-Processes and MCd’s on trees.

�

Reversibility is a very strong condition on a MCd and thus seldom fulfilled. Therefore we
introduce a new weaker form of reversibility. First we fix some notations. Let SE be the
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symmetric group defined on E = {1, 2, . . . , n}. An element of SE is denoted with σ and called
permutation. We interpret σ as a bijective function σ : E → E and write σ(i) for the image of
i ∈ E under σ. If σ is the identity, we write σ = id. Furthermore let Pσ := (pσij)i,j∈E a |E|× |E|
matrix such that

pσij =

{
1 if j = σ(i)

0 else
.

As permutations are bijective Pσ is a bi-stochastic matrix for arbitrary σ ∈ SE and Pid = Id the
identity matrix. We say i ∈ E is a fixed point of σ if σ(i) = i. The matrix Pσ is then irreducible
if and only if σ contains no fixed points. By definition of σ, the associated matrix Pσ is also
invertible (because σ is invertible).
The idea of a weaker form of reversibility is the following. Theorem 1.3.1 states that the path

weight of any loop ν = (j1, j2, . . . , jn) is equal to the path weight of the reversed loop

νR := (jn, jn−1, . . . , j1).

If we define
νσ := (σ(j1), σ(j2), . . . , σ(jk))

we can demand that the path weight of ν is equal to the path weight of (νσ)R.

Definition 1.3.3 Let (Xn)n≥0 be an MCd on E with irreducible transition ma-
trix P = (pij)i,j∈E and π be a probability distribution. If there exists a permu-
tation σ ∈ SE such that for all i, j ∈ E

πipij = πσ(j)pσ(j)σ(i) (1.4)

holds, π is in permuted balance with P .

For the neutral element σ = id (1.1) and (1.4) coincide.
The following example shows that definition 1.3.3 is non-empty. We will give more sophisti-

cated examples in chapter 3:

Example 1.3.4 Let (Xn)n≥0 be a MCd on E := {1, 2, 3, 4} with transition matrix:

P :=

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠

and initial distribution μ. The transition graph is given in figure 1.1.
By Theorem 1.3.1 it is immediate that this MCd can not have a reversible stationary distri-

bution, as the only existing non-trivial loop has no reversed counterpart with positive weight.
Let now σ = (24), thus σ leaves 1 and 3 invariant, while it maps 2 to 4 and vice versa. Then

(1.4) together with π1� = 1 has the unique solution:

π =
1

4
(1, 1, 1, 1),

and is also the invariant measure of P (this is not implied by the definition of permuted balance).
Note that the choice of σ is not unique, σ = (13) also fulfills (1.4), but σ = (12) does not. �

�

We proceed with a list of properties of permuted balance, but before:
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1

2

3

4

1 1

11

Figure 1.1: Transition graph of example 1.3.

Definition 1.3.5 For a given permutation σ ∈ SE , the set

〈i〉σ :=
⋃
k≥0

{
σk(i)

}
is the cycle generated by i ∈ E under σ.

The cycles under σ generate a canonical decomposition of E.

Lemma 1.3.6 Let σ be a permutation over E. Then there exists a minimal list
of states

i0, i1, . . . , ik, . . . ∈ E

with respect to σ such that

E =
⋃
k≥0

〈ik〉σ

is a union of disjoint sets.

Proof The fact that σ is a bijection ensures the existence of such a (minimal) decomposition.

�

The following proposition is a collection of algebraic properties implied by permuted balance.
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Proposition 1.3.7 Let P be an irreducible transition matrix and π be a dis-
tribution in permuted balance with P for some permutation σ. Assume that
πi = πσ(i) for all i ∈ E. Then the following properties hold

(i) π is the (unique) stationary distribution of P .

(ii) π is constant on cycles of σ, i.e. for all i ∈ E and k ∈ N

πi = πσk(i).

(iii) for i, j ∈ E

pij =

{
pσk(i)σk(j) if k even
πj

πi
pσk(j)σk(i) if k odd

in particular if i, j ∈ 〈i〉σ

pij =

{
pσk(i)σk(j) if k even

pσk(j)σk(i) if k odd

(iv) if 〈i〉σ = {i} and 〈j〉σ is such that #〈j〉σ = k > 0 and k odd, then

pij = piσm(j) =
1−∑k �∈〈j〉σ pik

#〈j〉σ
for all m ≥ 0.

(v) For k ∈ E such that 〈i〉σ ∩ 〈k〉σ = ∅ and i, j ∈ 〈i〉σ:∑
m∈〈k〉σ

pim =
∑

m∈〈k〉σ
pjm

(vi) Let Eσ = {〈k〉σ , k ∈ E} and

p〈i〉σ〈j〉σ :=
∑

m∈〈j〉σ
pim

Then the matrix P̃ = (p〈i〉σ〈j〉σ )〈i〉σ〈j〉σ∈Eσ
is stochastic with stationary

measure π̃ given by
π̃〈i〉σ = #〈i〉σπi.

Moreover π̃ is reversible with respect to P̃ .

Proof

(i) Direct computation shows:

πPe�j =
∑
i∈E

πipij
(1.4)
=
∑
i∈E

πσ(j)pσ(j)σ(i) = πj

∑
i∈E

pσ(j)σ(i) = πj

(ii) Since σk(j) ∈ E for any k ≥ 0:

πi = πσ(i) = πσ2(i) = . . .
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by assumption.

(iii) By iteration of (1.4) the first formula for arbitrary i, j ∈ E follows. Since i, j ∈ 〈i〉σ (and
thus i ∈ 〈j〉σ) there exists a k0 such that σk0(i) = j and therefore by (i) πi = πj .

(iv) Since k is odd, the set 〈j〉σ is equal to 〈σ2(j)〉σ . Then (iii) proves the statement.

(v) Since i and j are in the same cycle, i.e. j ∈ 〈i〉σ there exists a minimal k0 such that
σk0(j) = i. Since 2k0 is even it follows by (iii)

pjm = piσ2k0 (m).

Summing on both side over the elements of 〈k〉σ gives∑
m∈〈k〉σ

pim =
∑

m∈〈k〉σ
pjσ2k0 (m) =

∑
m∈〈k〉σ

pjm

since by definition of 〈k〉σ the images σ2k0(m) ∈ 〈k〉σ for all m ∈ 〈k〉σ.
(vi) By direct computation we obtain for the probability to move from set 〈i〉σ to 〈k〉σ (with

rescaling):

1

#〈i〉σ
∑

n∈〈i〉σ

∑
m∈〈j〉σ

pnm
(iv)
=

1

#〈i〉σ#〈i〉σ
∑

m∈〈j〉σ
pim = p〈i〉σ〈j〉σ

The stochasticity is directly inherited from P and the definition of the p〈i〉σ〈j〉σ . We check
the balance conditions by direct computation:

π̃〈i〉σp〈i〉σ〈j〉σ = #〈i〉σπi

∑
m∈〈j〉σ

pim = πi

∑
n∈〈i〉σ

∑
m∈〈j〉σ

pnm

(i)
=
∑

n∈〈i〉σ

∑
m∈〈j〉σ

πnpnm =
∑

n∈〈i〉σ

∑
m∈〈j〉σ

πσ(m)pσ(m)σ(n)

(i)
= πj

∑
n∈〈i〉σ

∑
m∈〈j〉σ

pσ(m)σ(n)
(�)
= πj

∑
n∈〈i〉σ

∑
m∈〈j〉σ

pmn

(v)
= #〈j〉σπj

∑
n∈〈i〉σ

pjn = π̃〈j〉σp〈j〉σ〈i〉σ

where (�) is just a change of summation order. Therefore π̃ is reversible (according to
(1.1)) for P̃ .

�

Proposition 1.3.7 shows that the permuted balance as defined in (1.4) allows to compute the
stationary distribution if and only if πi = πσ(i), (see (i) in the proposition). Conversely, for any
path ν = (i1, . . . , in) from i1 to in we have by permuted balance:

πi1

n−1∏
k=1

pikik+1
= πi1

n−1∏
k=1

πσ(ik+1)

πik

pσ(ik+1)σ(ik)

= πσ(in)

n−1∏
k=1

πσ(ik)

πik

·
n−1∏
k=1

pσ(ik+1)σ(ik)
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Conversely if we know the stationary distribution, then the model can be only in permuted
balance with respect to permutation σ if it exchanges states with equal stationary distribution.
Therefore if all components of the stationary distribution are pairwise distinct, permuted balance
is impossible.
Since the aim of the definition of permuted balance was that any path can be replaced by

the permuted reversed one, the “extra cost” of doing so
∏n−1

k=1

πσ(ik)

πik

has to be equal to one. As

paths of length two should also have this property πi = πσ(i) is implied.
In the following permuted balance has thus to be understood under the implicit assumption

πi = πσ(i) for each i ∈ E, to ensure that a measure in permuted balance is also stationary. Thus
a measure π is in permuted balance, if and only if

∀i, j ∈ E : πipij = πjpσ(j)σ(i) (1.5)

holds. In this case condition (1.4) can be rewritten in matrix form as:

P−1
σ diag(π)P = P�P−1

σ diag(π). (1.6)

Therefore the transpose of P is (like in the reversible case) a similarity transform of P :

P� = (P−1
σ diag(π))P (P−1

σ diag(π))−1. (1.7)

A reversible MCd can be associated to the matrix P̃ and the invariant vector π̃ given in (vi)
of Proposition 1.3.7 for some initial condition. But this does not explain under which conditions
the image of a MCd in permuted balance by aggregation of states is still a MCd; this does
depend on the choice of initial condition of the original chain. The following results are the
condensate of Definition 6.3.1 and Theorem 6.3.2, p. 124 and Theorem 6.4.1, p. 133 of [KS76].

Definition 1.3.8 Let (Xn)n≥0 be a MCd on E with initial distribution μ and
let E1 ∪ . . . ∪ Ek be a partition of E. Then the process (Yn)n≥0 with values in
{E1, . . . , Ek} defined by

Pμ′(Y1 = Ei|Y0 = Ej) = Pμ(X1 ∈ Ei|X0 ∈ Ej)

Pμ′(Yn = Ei|Y0 = Ej , Y1 = Ej1 , . . . , Yn−1 = Ejn−1)

= Pμ(Xn ∈ Ei|X0 ∈ Ej , X1 ∈ Ej1 , . . . , Xn−1 ∈ Ejn−1)

with initial distribution μ′ = (μ′
E1

, . . . , μ′
Ek

) with μ′
Ei

:= P(X0 ∈ Ei) is called
the lumped process.

The following proposition determines under which conditions the lumped process is again a
MCd, depending on the original chain.

Proposition 1.3.9 Let (Xn)n≥0 be MCd on E with initial distribution μ =
(μ1, μ2, . . .) and transition matrix P = (pij)i,j∈E . Let E = E1 ∪ . . . ∪ En ∪ . . .

be a partition of the E into pairwise disjoint sets. Then the lumped process as
defined in Definition 1.3.8 is a MCd, if and only if for every Ei and Ej and all
l,m ∈ Ei

(i)
∑

n∈Ej
pln =

∑
n∈Ej

pmn

(ii)
∑

n∈Ej
μlpln =

∑
n∈Ej

μmpmn

hold.
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We now want to connect lumpability and permuted balance. It turns out that under special
conditions on the initial distribution a MCd with a transition matrix in permuted balance with
some π and a permutation σ ∈ SE can be reduced to a reversible MCd on the aggregated
(smaller) state space given by the canonical decomposition of E under σ.

Theorem 1.3.10 Let (Xn)n≥0 be a MCd on E with transition matrix P =
(pij)i,j∈E in permuted balance with π for some σ ∈ SE and E = E1 ∪ . . . ∪ Ek

the canonical decomposition of E with respect to σ and μ the initial condition.
Then the lumped process (as defined in Definition 1.3.8) is a MCd with reversible
stationary distribution μ′ if and only if for every Ei and Ej and for all l,m ∈ Ei∑

n∈Ej

μlpln =
∑
n∈Ej

μmpmn. (1.8)

This holds in particular for μ = π.

Proof By Proposition 1.3.7, (v), (vi), the first condition of Proposition 1.3.9 is under the
assumptions of the theorem always fulfilled and the stationary measure of the lumped chain
is reversible. Thus (1.8) is necessary and sufficient for the lumped chain to be a MCd. If
μ = π then the conditions of Proposition 1.3.9 are both fulfilled, as the invariant distribution of
(Xn)n≥0 is uniform on cycles, by Proposition 1.3.7, (ii).

�

Example 1.3.11

Let (Xn)n≥0 be a MCd on E = {1, 2, 3, 4, 5} with transition matrix

P =
1

6

⎛
⎜⎜⎜⎜⎝
0 2 0 2 2
3 0 3 0 0
0 2 0 2 2
3 0 3 0 0
3 0 3 0 0

⎞
⎟⎟⎟⎟⎠

and transition graph as given in fig. 1.2.

By irreducibility of P the stationary distribution is unique and given as

π =
1

12
(3, 2, 3, 2, 2).

Note that this model is reversible and thus in permuted balance with respect to σ = id. In general
this does not imply that it is also in permuted balance with respect to other permutations. We
show here that there may be several different permutations σ leading to very different lumped
reversible chains. We omit the details of the calculations and give the results directly. The
resulting lumped transition graphs are given in fig. 1.3.

(i) σ = (245) We have

Eσ = {〈1〉σ, 〈3〉σ, 〈2〉σ} = {{1} , {3} , {2, 4, 5}}
π =

1

4
(1, 2, 1)
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Figure 1.2: Transition graph of Example 1.3.

(ii) σ = (13) We have

Eσ = {〈1〉σ, 〈2〉σ, 〈4〉σ, 〈5〉σ} = {{1, 3} , {2} , {4} , {5}}
π =

1

6
(3, 1, 1, 1)

(iii) σ = (13)(245) We have

Eσ = {〈1〉σ, 〈2〉σ} = {{1, 3} , {2, 4, 5}}
π =

1

2
(1, 1)

〈1〉σ

〈2〉σ

〈3〉σ

1

1
2

1

1
2

〈1〉σ

〈2〉σ

〈4〉σ 〈5〉σ

1
3

1
3

1
3

1

1

1

〈1〉σ 〈2〉σ
1

1

σ = (245) σ1 = (13) σ2 = (13)(245)

Figure 1.3: Lumped chains for Example 1.3.

�

�

To characterize the permuted balance using only the transition probabilities we extend the
Kolmogoroff criterion given in Theorem 1.3.1 and call it extended Kolmogoroff Criterion for
permuted balance.
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Theorem 1.3.12 Let (Xn)n≥0 be a MCd on E with irreducible transition ma-
trix P = (pij)i,j∈E . The unique stationary distribution π is in permuted balance
with respect to a given permutation σ over E if and only if

pi1i2pi2i3 . . . piki1 = pσ(i1)σ(ik) . . . pσ(i3)σ(i2)pσ(i2)σ(i1) (1.9)

for each finite sequence of states i1, i2, . . . , ik ∈ E.

Proof The proof is analogue to the one given in [Kel79], section 1.5, Theorem 1.7 for the usual
Kolmogoroff Criterion.
Let π be in permuted balance. It is also the stationary distribution by Proposition 1.3.7, (i).

Then (1.5) implies for a sequence i1, . . . , in:

πi1pi1i2 = πi2pσ(i2)σ(i1)

πi2pi1i3 = πi3pσ(i3)σ(i2)

...

πik−1
pik−1ik = πikpσ(ik)σ(ik−1)

πikpiki1 = πi1pσ(i1)σ(ik)

Multiplying all left hand sides and all right hand sides together and canceling the π′
is out gives

(1.9).
Conversely, suppose (1.9) holds and fix i0 ∈ E. Then for arbitrary i ∈ E there exists by

irreducibility a sequence of states i1, i2, . . . , ik with

pσ(i),σ(ik)pσ(ik)σ(ik−1) . . . pσ(i1)σ(i0) > 0

from σ(i) to σ(i0). If there is another path j1, . . . , jm such that

pσ(i),σ(jk)pσ(jk)σ(jk−1) . . . pσ(j1)σ(i0) > 0,

identity (1.9) implies

pi0i1 . . . pin−1inpini

pσ(i),σ(in)pσ(in)σ(in−1) . . . pσ(i1)σ(i0)
=

pi0j1 . . . pjm−1jnpjmi

pσ(i),σ(jm)pσ(jm)σ(jm−1) . . . pσ(j1)σ(i0)
.

Thus, for fixed B > 0,

πi := B
pi0i1 . . . pin−1inpini

pσ(i),σ(in)pσ(in)σ(in−1) . . . pσ(i1)σ(i0)

is defined for every i ∈ E and independent of the chosen path.
We now need to show the permuted balance equation (1.5). Therefore for a state k ∈ E with

pσ(k)σ(i) > 0 we can write

πk = B
pi0i1 . . . pin−1inpinipik

pσ(k)σ(i)pσ(i),σ(in)pσ(in)σ(in−1) . . . pσ(i1)σ(i0)
= πi

pik

pσ(k)σ(i)

and thus the permuted balance equations are fulfilled. π as defined must be also stationary by
Proposition 1.3.7 and B is uniquely determined by π1� = 1.

�
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Remark 1.3.13 The proof of Theorem 1.3.12 shows that the stationary resp. the permuted
balanced distribution can be directly reconstructed from (1.9).

�

Remark 1.3.14 The results of Lemma 1.3.6, Propositions 1.3.9 and 1.3.7, Theorems 1.3.10
and 1.3.12 still hold if E is countable infinite. We interpret the symmetric group on E as the
collection of all bijective functions on E (which is also a group with the usual composition).
Note also that positive recurrence is needed for the uniqueness and positivity of the invariant
distribution π in the countable case.

�

With a method called uniformization it is simple to transport the preceding results on MCd’s
to the time continuous case under the mild assumption that the infinitesimal generator has
summable rows in the case of countable state space, see e.g. [Ros96].

Definition 1.3.15 Let Q = (qij)i,j∈E be an infinitesimal generator. Then for

γ = max
i∈E

{−qii}

the stochastic matrix P = (pij)i,j∈E defined by

pij =

{
1
γ
qij i �= j

1−∑j,j �=i
1
γ
qij i = j

is called the uniformization of Q.

Proposition 1.3.16 Let (Xt)t≥0 be a MCc on E with irreducible infinitesimal
generator. Then P , the uniformization of Q, has the same stationary distribu-
tion as Q.

Proof Let π be the stationary distribution of Q, i.e.

πQ = 0, π1� = 1.

We need to show πP = π. To do so, we rephrase the definition of P in matrix notation:

P =
1

γ
Q+ Id.

Now the statement is obvious.
�

Remark 1.3.17 Thanks to the uniformization method Proposition 1.3.7 and Theorem 1.3.12
turn into their continuous time counterpart just by replacing pij by the corresponding qij and
taking care of the fact that

πQe�j = 0

rather than πj .
�

For further reference we define permuted balance in the continuous case:
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Definition 1.3.18 Let (Xt)t≥0 be a MCc on E with irreducible infinitesimal
generator Q = (qij)i,j∈E . If there exist a probability measure π and a permuta-
tion σ on E such that for all i, j ∈ E

πiqij = πjqσ(j)σ(i) (1.10)

then π is in permuted balance with Q.

1.4 Local time

For some applications it turns out to be useful to observe a given MCd or MCc only when it
is in a finite subset D of its state space. The idea is to stop the global clock when the process
leaves D and to let it run again when the process re-enters D. Naturally for any state j that can
be left to Dc one would add the “expected excursion time” in Dc to the sojourn time in j. How
this is done unveils the following theorem given in [LR99], section 5.3. A detailed proof is given
in [KSK66], chapter 6, Proposition 6.4 and Lemmas 6.6 and 6.7 as pointed out in the proof in
[LR99]. The continuous time part is stated in [LR99], section 5.5, Theorem 5.5.3 together with
a proof.
For a finite subset D � E a transition matrix P over E resp. an infinitesimal generator Q can

be partitioned in the following way according to D:

P =

(
PD PDDc

PDcD PDc

)
(1.11)

resp.

Q =

(
QD QDDc

QDcD QDc

)
. (1.12)

Theorem 1.4.1 For a homogeneous, irreducible and positive recurrent MCd
with transition matrix P on E and D � E with partition (1.11), the process
(XD

n )n≥0 restricted to D is again homogeneous, irreducible and positive recur-
rent with transition matrix

P|D := PD + PDDc(Id− PDc)−1PDcD.

For a homogeneous, irreducible and positive recurrent MCc with infinitesimal
generator Q on E with partition (1.12) for the same set D, the process (XD

t )t≥0

restricted to D is again homogeneous, irreducible and positive recurrent with
infinitesimal generator

Q|D := QD −QDDcQ−1
DcQDcD.

The matrices (Id−P )−1 in discrete case and −Q−1 for the continuous time case are identified
as matrices of expected passage times, see e.g. [DS65] and [DS67]. The (i, j)-th entry of these
matrices is the expectation of the first passage time from i to j resp. the expectation of the first
return time to i if i = j. Due to this interpretation it is clear that the transition matrix/in-
finitesimal generator of the restricted process are indeed just “corrected” by the expectation of
the time of possible excursion to Dc departing from i ∈ D to Dc and returning via state j ∈ Dc.

Remark 1.4.2 The notion of local time is in fact the stochastic interpretation of the so
called Schur complement associated to the decomposition into a block matrix of an infinitesimal
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generator as in Theorem 1.4.1. As long as Dc is not the empty set the Schur complement always
exists, is invertible and an infinitesimal generator. For transition matrices resp. stochastic
matrices P|D from Theorem 1.4.1 is the Schur complement associated to the matrix Id−P with
partition as in (1.11).
In both cases (continuous and discrete time) the Schur complement exists and is non-singular

even in the case that absorbing states are contained in D, as the matrices associated to Dc are
still invertible as long as all states in Dc are transient. In fact a review of the proofs in [KSK66]
and [LR99] shows that the absence of absorbing states in Dc is the only constraint for using
local time, i.e. recurrence of the chain is not necessary.

�

1.5 Pattern matching

For a given trajectory of a Markov Chain it is interesting to know the distribution of the
occurrence of a certain transition or a given sequence of transitions. Such a sequence is often
called pattern. The method which we shortly introduce is standard in many fields of applications,
such as speech recognition or sequence analysis of DNA (base pair sequences), see e.g. [Nue08]
and references therein.
The basic idea to analyze patterns in trajectories would be to define a Markov Chain with a

“memory“ long enough to find patterns of a certain length. For a MCd (Xn)n≥0 with transition
matrix P = (pij)i,j∈E a (homogeneous) memory of length m > 1 would have the form:

P(Xn+m = in+m|Xn+m−1 = in+m−1, . . . , X0 = i0)

= P(Xn+m = in+m|Xn+m−1 = in+m−1, . . . , Xn = in)

= P(Xm = in+m|Xm−1 = in+m−1, . . . , X0 = in)

= pinin+1 · . . . · pin+m−1in+m
.

The memory complicates the analysis as such a process is not a Markov Chain anymore. This
problem can be circumvented by defining a new Markov Chain on the product state space

E′ = E × E × . . .× E =: E×m

with an appropriate transition matrix. This procedure turns every sequence of transitions of
length m of the original Chain into a state.
Naturally a pattern of length m can first appear after m steps of the original Markov Chain,

thus we fix:

Definition 1.5.1 Let (Xn)n≥0 be a MCd on E with transition matrix P =
(pij)i,j∈E and initial distribution μ. For a fixed pattern length m ≥ 1 define
P ′ = (p′ij)i,j∈E×m and μ′ = (μ′

i)i∈E×m component-wise by

p′(i1,i2,...,im)(j1,j2,...,jm) :=

{
pi2i3 · . . . · pimjm if j1 = i2, . . . , jm−1 = im

0 else

and
μ′
i1,i2,...,im

:= μi1pi1i2 . . . pim−1im .

We call the MCd associated to the pair (μ′, P ′) the m-pattern chain.
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By definition of the m-pattern chain the transition matrix P ′ is extremely sparse if m is big
(i.e. the transition matrix contains many zeros), but for the applications of this thesis we choose
m = 2.
Remark 1.5.2 In the case when the chain has an absorbing state, say Δ, we can restrict the
transformation to the set of transient states, as it is in general not very enlightening to count
the number of occurrences of transitions like (j,Δ), j ∈ E \ {Δ}, because they occur at most
only once.
Therefore in the case of a MCd with only one absorbing state the m-pattern chain can be

derived for the sub-matrix S associated to the transient states first; for the moment call the
associated matrix S′. After that a m-pattern chain with absorbing state can be constructed
through the definition

P ′ :=
(

1 0
(Id− S′)1� S′

)
.

In a sense this is an aggregation of all states in E×m containing a Δ. That this is possible is
also a consequence of the lumping notion defined in chapter 2.

�

In chapter 4 we combine the pattern matching method with local time and the results on
absorbing Markov Chains from chapter 2 to get insight in the distribution of the number of
certain transitions before absorption, see Proposition 4.3.6.
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Chapter 2

Absorption in Markov Chains

In this chapter we introduce the well known phase type distributions, which are defined as
absorption times of Markov Chains. This type of “Matrix Exponential Distributions” was
introduced rigorously for the first time by Neuts in [Neu94] and applied in the framework of
Queueing Theory. We give only the basic characteristics, the detailed computations are in
appendix B. The second half of chapter 2 is devoted to the situation of several absorbing states.
We show here that a MCc conditioned to absorption in one absorbing state out of several
can be described by a linear transform of the transition matrix/infinitesimal generator. This
concept is known in older and applied theory as Duality, see [KSK66], and also as Doob-h-
transform. We show here that a Markov Chain conditioned to absorption is characterized as a
linear transformation of the transition matrix/infinitesimal generator. The concept is developed
in this thesis for continuous time, but it was already introduced for discrete time as an example in
[KS76], see chapter 3, section 3. A reinterpretation of conditioning to absorption in a designated
state allows us to describe the process conditioned to leave the transients via specific states or
sets thereof. We use this type of condition in chapter 4 to gain insight about the distribution of
the last visited state(s) before absorption.

2.1 Phase type distributions

The notion phase type Distribution or shorter PH-type distribution was first introduced in [Neu94]
as the time to absorption in a finite state Markov Chain (both in discrete and continuous time).

2.1.1 PH-type distribution as absorption time distribution

Consider a Markov Chain (Xi)i∈I with finite state space

E := {Δ} ∪M

with M := {1, 2, . . . ,m} for some index set I, such that Δ is an absorbing state and can be
reached from every state in M . We extend the usual order “<“ on N by defining Δ < k for all
k ∈ N. This order is used for the order of entries in the transition matrices and infinitesimal
generators, except otherwise noted.
The stopping time (with respect to the canonical filtration)

τΔ := inf {i ∈ I : Xi = Δ}
is called first exit time of M or absorption time (in Δ).
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The distribution of τΔ admits, depending on (Xi)i∈I , a so called representation. We need
some notation to define a representation.

For the discrete time case (i.e. I = N0) consider a MCd on E with transition matrix P and
initial distribution μ. There is a natural decomposition of P into a block matrix:

P :=

(
1 0
R�

Δ S

)
, (2.1)

where S is a m×m matrix containing the transition probabilities between the states in M and
RΔ is a vector of length m with

RΔ = (p1Δ, p2Δ, . . . , pmΔ).

For the initial distribution we write

μ = (μΔ, μM ),

where μΔ = P(X0 = Δ) and

μM := (μ1, . . . , μm)

with μi = P(X0 = i). We note that, depending on I, the matrix S is a sub stochastic matrix
if I = N0, i.e. there is at least one row with sum less than one. If I = R

+, the matrix S is a
non conservative infinitesimal generator, i.e. there is at least one row with sum less then zero.
We note that both matrices are invertible in the sense that S−1 exists if I = R

+ and (Id−S)−1

exists if I = N0, see appendix A for a proof.

Definition 2.1.1 Let (Xn)n≥0 be a MCd on E with transition matrix P and
decomposition (2.1). Then

τΔ := inf {n ≥ 0 : Xn = Δ}

is of PH-type or has PH-type distribution with representation: PH(μM , S). We
also write

τΔ ∼ PH(μM , S).

For I = R
+ we decompose the infinitesimal generator Q analogue to the discrete case as:

Q :=

(
0 0
R�

Δ S

)
. (2.2)

Definition 2.1.2 Let (Xt)t≥0 be a MCc on E with infinitesimal generator Q

and decomposition (2.2). Then

τΔ := inf {t ≥ 0 : Xt = Δ}

is of PH-type or has (continuous) PH-type distribution with representation:
PH(μM , S). We also write

τΔ ∼ PH(μM , S).

For further computations we note the following trivial yet useful properties:
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Corollary 2.1.3 (i) Let (Xn)n≥0 be a MCd on E with transition matrix
P and decomposition (2.1), then

(Id− S)−1R�
Δ = 1�.

(ii) Let (Xt)t≥0 be a MCc on E with infinitesimal generator Q and decom-
position (2.2), then

−S−1R�
Δ = 1�.

Proof The properties P1� = 1� and Q1� = 0� together with Lemma A.1.1 imply the
statements.

�

2.1.2 Basic Properties

The basic properties of PH-type distributions are given in Tables 2.1 (discrete) and 2.2 (continu-
ous) for further reference. Very brief calculations of the characteristics of PH-type distributions
are given in [Neu94] and [LR99], in both references chapter 2. We included detailed calculations
in appendix B. We use the notation introduced before and consider

τΔ ∼ PH(μM , S)

according to Definitions 2.1.1 and 2.1.2.
To avoid confusion we note again the basic definitions we used for the computations of the

characteristics of PH-type distributions.

Definition 2.1.4 (basic characteristics) Let X be some random variable
with (cumulative) distribution function FX(t), with X ≥ 0 almost sure.

(i) If X takes its values in N0 the generating function of X is defined as
the power series

GX(z) :=
∑
n≥0

P(X = n)zn.

(ii) The moment generating function is defined as

MX(s) :=

∫ ∞

0

exp(st)dFX(t).

(iii) The characteristic function is defined as

φX(s) :=

∫ ∞

0

exp(ist)dFX(t)

where i is the imaginary unit.

We have to note that Neuts used another definition of moment generating functions, which
results into a sign difference, see chapter 2 of [Neu94].
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Quantity Symbol Expression
Support supp(τΔ) N0

Distribution P(τΔ = k)

{
μΔ k = 0

μMSk−1R� k ≥ 1

Distribution function FτΔ(t) FτΔ(t) = (1 − μMS�t
1�)1R+(t)

n-th Factorial Moment E

(
τΔ!

(τΔ−n)!

)
n!μMSn−1(Id− S)−n1�

Expectation E(τΔ) μM (Id− S)−11�

Variance Var(τΔ) μM (Id+ S)(Id− S)−21�

−(μM (Id− S)−11�)2

Generating function GτΔ(z) μΔ + zμM (Id− zS)
−1

R�

Table 2.1: Properties of τΔ ∼ PH(μM , S) in the discrete time setting.

Quantity Symbol Expression
Support supp(τΔ) R

+

Distribution P(τΔ = .) μM exp(St)R�dt+ μΔδ0
Distribution function FτΔ(t) 1− μM exp(St)1�

n-th Moments E(τnΔ) μM (−1)nn!S−n1�

Expectation E(τΔ) −μMS−11�

Variance V ar(τΔ) 2μMS−21� − (μMS−11�)2

moment generating function MτΔ(s) −μM (sId+ S)
−1

R� + μΔ

characteristic function ϕτΔ(s) −μM (isId+ S)
−1

R� + μΔ

Table 2.2: Properties of τΔ ∼ PH(μM , S) in the continuous time setting.

2.1.3 Typical examples of PH-type distributions

In this section we briefly discuss examples of common distribution seen as PH-type distributions.
The most prominent and simple ones are the geometric distribution and the exponential dis-
tribution. Starting from these distributions other distributions can be constructed by defining
suitable absorbing Markov Chains.

2.1.4 Examples for discrete distributions

2.1.4.1 The geometric distribution

A Bernoulli trial is a random experiment with two outcomes, “success” and “failure”. The
geometric distribution describes independently repeated Bernoulli trials until the first “success”.
Such a sequence of Bernoulli trials is often interpreted as repeated coin tossing, where the event
“success” is (for example) “the coin showed heads after throwing”.

This repeated experiment can be modeled by a MCd with a single absorbing state in the
following way.

Suppose E = {Δ} ∪ {1} and initial distribution μ = (0, 1) and the transition matrix

P =

(
1 0
p 1− p

)
.
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2.1. PHASE TYPE DISTRIBUTIONS

1 Δ

1− p

p

Figure 2.1: Transition graph for the geometric distribution as phase type distribution.

...1 2 m Δ

1− p1 1− p2 1− pm

p1 p2 pm−1 pm

Figure 2.2: The sum of m geometric distributions modeled by a MCd.

We interpret here the state 1 as “experiment failed” and Δ as “experiment succeeded”. The
transition graph is given in fig. 2.1.

The n-th power of the transition matrix is

Pn =

(
1 0

(1− p)n p
∑n−1

k=0 (1− p)k

)

and therefore by induction on n

P(τΔ = n) = p(1− p)n−1.

This shows that τΔ has geometric distribution to the parameter p, i.e.

L(τΔ) = Geo(p).

2.1.4.2 Generalized geometric distributions

The geometric distribution is interpreted as the (random) number of repetitions until an exper-
iment succeeds for the first time. A simple extension is to start another experiment and wait
for its first success. This can be repeated m times, each time with possibly different coins (see
the coin interpretation in the discussion of the geometric distribution). This distribution can be
interpreted as a PH-type distribution in the following sense.

Let E = {Δ} ∪ {1, 2, . . . ,m} and (Xn)n≥0 be a MCd with transition matrix P . According to
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2.1. PHASE TYPE DISTRIBUTIONS

the decomposition (2.1) we have

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1− p1 p1 0 . . . 0 0
0 1− p2 p2 . . . 0 0
0 0 1− p3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1− pm−1 pm−1

0 0 0 . . . 0 1− pm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and RΔ = pmem.
It is an immediate consequence of the form of the transition graph given in fig. 2.1.4.2, that

the absorption time τΔ is just the sum of m random variables, each geometric distributed with
parameter pi, if μM = δ1. It is also immediate that exchanging two parameters pj and pi does
not change the distribution of τΔ as convolution is commutative. That also shows that for a
given distribution there might be different Markov Chains with the very same absorption time
distribution.

2.1.5 Examples for continuous distributions

2.1.5.1 Exponential distribution

Consider a continuous time Markov chain on E = {Δ} ∪ {1} with initial distribution μ = (0, 1)
and infinitesimal generator

Q =

(
0 0
w −w

)
.

See also fig. 2.3 for the transition graph. This distribution is clearly the continuous time analogue
of the geometric distribution, there is no (structural) difference regarding the transition graph.

1 Δw

Figure 2.3: transition graph for the exponential distribution to the parameter w as phase type
distribution.

Here S = −w and RΔ = w. If μM = 1, i.e. μΔ = 0, the moment generating function (see
table 2.2) is

MτΔ(s) = −μM (sId+ S)−1R = (w − s)−1w =
(
1− s

w

)−1

and thus L(τΔ) = E(w), where E(w) is the exponential distribution to the parameter w.

2.1.5.2 Erlang distribution

The Erlang distribution is just the sum of exponential distributions with the same parameter
and models the time spend until the m-th exponentially distributed arrival in for instance a
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2.1. PHASE TYPE DISTRIBUTIONS

queue. Sometimes the Erlang distribution Erl(m,λ) is also denoted as gamma distribution
Γ(m,λ).
The Erlang distribution is modeled as a MCc on E = {Δ} ∪ {1, 2, . . . ,m} and by (2.2)

S :=

⎛
⎜⎜⎜⎜⎜⎝
−w w . . . 0 0
0 −w . . . 0 0
...

...
. . .

...
...

0 0 . . . −w w

0 0 . . . 0 −w

⎞
⎟⎟⎟⎟⎟⎠

with RΔ = wem and initial distribution μ = δ1. The graphical representation is given in fig.
2.4.

...1 2 m Δ
w w w w

Figure 2.4: Transition graph for the representation of an Erlang distribution via phase type
distributions.

The density of τΔ with respect to Lebesgue measure is (after some algebraic manipulations):

fτΔ(t) =
wmtm−1

(m− 1)!
exp(−wt).

The density fτΔ(t) is according to the picture the m-times convolution of an exponential
distribution with parameter w.

2.1.5.3 Hypo exponential or generalized Erlang distribution

The hypo exponential distribution is a generalization of the Erlang distribution, instead of sum-
ming exponential distributions with the same parameter, different parameters for each summand
can be allowed. For the model see fig. 2.5 and compare also with the generalized geometric
distribution and the Erlang distribution. The Hypo exponential distribution is in this sense the
direct continuous time analogue of the generalized geometric distribution.
According to the decomposition (2.2):

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−w1 w1 0 . . . 0 0
0 −w2 w2 . . . 0 0
0 0 −w3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −wm−1 wm−1

0 0 0 . . . 0 −wm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

and RΔ is given by wmem and μ = δ1.
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2.1. PHASE TYPE DISTRIBUTIONS

...1 2 m Δ
w1 w2 wm−1 wm

Figure 2.5: Transition graph for the representation of a generalized Erlang distribution via phase
type distributions.

As it is possible to exchange the rates between transitions without changing the absorption
time, the transition rates between states in M can be arbitrarily interchanged. This shows
(again) that a given representation of τΔ is only one out of several possible choices to model an
absorption time.

2.1.5.4 Cox distribution

Let E be E := {Δ} ∪ {1, . . . ,m} with Δ absorbing and initial distribution μ = δ1. Furthermore

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−w1 p1w12 0 . . . 0 0
0 −w2 p2w2 . . . 0 0
0 0 −w3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −wm−1 pm−1wm−1

0 0 0 . . . 0 −wm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with pi ∈ (0, 1]. Then

R�
Δ = ((1− p1)w1, (1− p2)w2, . . . , (1− pm−1)wm−1, wm)�

according to the decomposition (2.2). The corresponding transition graph is displayed in fig.
2.6.

. . .1 2 m Δ
p1w1 p2w2 pm−1wm−1

wm

(1− p1)w1

(1− p2)w2

Figure 2.6: The transition graph for the phase type representation of the Cox distribution.

The idea behind the definition of a Cox distribution comes from queueing theory. Imagine
that a certain type of service takes m steps to completion and each step takes an exponential
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2.2. EXTENSIONS TO SEVERAL ABSORBING STATES

time. This is the framework of generalized Erlang distribution. The Cox distribution extends
this idea in the sense that shortcuts are allowed, such that at each step i the service can be
immediately finished. This picture directly leads to an expression for the density fτΔ(t) of the
Cox distribution (remember that the density with respect to Lebesgue measure exists as there
is no initial weight on Δ, see table 2.2):

fτΔ(t) =

m∑
k=1

(1 − pk)fXk
(t)

k−1∏
l=1

plfXl
(t)

with the convention that pm = 0 and fXi
(t) is the density of an exponential distribution with

parameter wi.

2.2 Extensions to several absorbing states

In the preceding section we introduced PH-type distributions as the distribution of the time
until absorption in the single absorbing state Δ. A natural generalization is to allow several
absorbing states, say Δ1, . . . ,Δk. This does not change the time until absorption, i.e. the time
until absorption is the same if the set of absorbing states would be replaced by a single absorbing
state or vice versa. But another question makes this generalization more interesting. What is
the distribution of the time until absorption in a specific absorbing state or a subset of absorbing
states? Clearly at any fixed time t the condition to absorption in a specific state/set is a condition
on the whole future of the process after t and does, as we will see, change the whole dynamics
while the process remains to be markovian. This condition can be expressed by a so called
Doob-h-transform and turns out to be a simple “rescaling” of the transition probabilities/rates.
This rescaling can be interpreted as defining a new chain on the subset of all trajectories of the
original Markov Chain ending in the designated absorbing state/s. First we precise the heuristic
approach. Then we unveil the distribution of the time until absorption in the set of all absorbing
states as a mixture of PH-type distributions, each describing the absorption in a different Δi.
The mixing parameter for each distribution is exactly the probability to be absorbed in Δi

before reaching any other absorbing state.
En passant we give a method how to condition the process on leaving the set of transient states

via given states and thus to specific absorbing states. It is therefore a condition connected to
the last time a state is visited.
We cover here only the time continuous case as it is needed for the following chapters. Discrete

time analogs can be easily derived by following the lines of the proofs in continuous time and
the uniformization method introduced in Definition 1.3.15, chapter 1.

2.2.1 Absorption in a given subset of absorbing states

Let
E := Δ ∪M

for Δ := {Δ1, . . . ,Δk} and M := {1, 2, . . . ,m}. We extend the order relation “¡” such that
Δ1 < Δ2 < . . . < Δk < 1 < . . . and use this order as order for the sequence of states for the
infinitesimal generator, i.e. the first row relates to the smallest element of E, the second to the
second largest and so on.
Assume that M is a single communication class and all states in Δ are absorbing. If k = 1

we identify the set Δ with the state Δ; this is the case treated in the preceding section with a
single absorbing state. Let (Xt)t≥0 be a MCc on E with infinitesimal generator Q = (qij)i,j∈E

and initial distribution μ. In analogy to (2.2), we decompose Q into a block matrix:

33



2.2. EXTENSIONS TO SEVERAL ABSORBING STATES

Q :=

⎛
⎜⎜⎜⎝

0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

R�
Δ1

. . . R�
Δk

S

⎞
⎟⎟⎟⎠ (2.3)

where S is a m×m matrix with S = (qij)i,j∈M and

RΔi
= (q1Δi

, . . . , qmΔi
)

the vector encoding the transitions to Δi. Furthermore we decompose the initial distribution
μ = (μΔ, μM ), where

μΔ = (μΔ1 , . . . , μΔk
), μM = (μ1, . . . , μm).

Let

τΔi
:= inf {t ≥ 0 : Xt = Δi}

be the absorption time in Δi and for A � Δ let

τA := inf {t ≥ 0 : Xt ∈ A}

the time until absorption in A or the hitting time of A.

With τΔ := inf {t ≥ 0 : Xt ∈ Δ} it is immediate that

τΔ = inf {τΔi
,Δi ∈ Δ} .

Remark 2.2.1 It is a standard result that τΔ is almost surely finite in our setting. But it has
to be pointed out, that the τΔi

have a non vanishing probability to be infinite.

�

We continue with the determination of the infinitesimal generator Q|A of the process condi-
tioned to absorption in a fixed set A � Δ (the case A = Δ does not need to be considered as
absorption in Δ is already almost sure). For the derivation of the infinitesimal generator of the
conditioned process we need to calculate

Q|A := lim
t→0

d

dt
Pi(Xt = j|τA < ∞). (2.4)

We adopt the calculations from [KS76], chapter 3, section 3, for continuous time:

Lemma 2.2.2 Let (Xt)t≥0 be a MCc on E with infinitesimal generator Q and
initial distribution μM = ei, resp. μ = δi. Then for fixed Δl ∈ Δ:

Pi(Xt = j|τΔl
< ∞) =

hl
j

hl
i

Pi(Xt = j) (2.5)

with hl = (hl
j)j∈M := (Pj(τΔl

< ∞))j∈M = (−S)−1R�
Δl
.
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2.2. EXTENSIONS TO SEVERAL ABSORBING STATES

Proof We use the definition of the conditional probability and the Markov property:

P (Xt = j |X0 = i, τΔl
< ∞ )

= P (Xt = j |X0 = i, ∃s ≥ 0 : Xt+s = Δl )

=
P(∃s ≥ 0 : Xt+s = Δl|Xt = j)P(Xt = j|X0 = i)

P(∃s ≥ 0 : Xt+s = Δl|X0 = i)

=
P(∃s ≥ 0 : Xs = Δl|X0 = j)

P(∃s′ ≥ 0 : Xs′ = Δl|X0 = i)
P(Xt = j|X0 = i)

=
Pj(τΔl

< ∞)

Pi(τΔl
< ∞)

P(Xt = j|X0 = i)

=
hl
j

hl
i

P(Xt = j|X0 = i)

We further compute

hl
i = ei

∫ ∞

0

exp(St)dtR�
Δl

= eiS
−1[0− Id]R�

Δl
(2.6)

�

We note also that the hl vectors form a stochastic matrix in the following sense:

Corollary 2.2.3 In the setting of Lemma 2.2.2 the m× k matrix

H :=

⎛
⎜⎝h1

1 . . . hk
1

...
. . .

...
h1
m . . . hk

m

⎞
⎟⎠ = (−S)−1

(
R�

Δ1
. . . R�

Δk

)

is stochastic and strict positive.

Proof Simple computation and Lemma 2.2.2 yield:

H1� =
∑

Δi∈Δ

(−S)−1R�
Δi

= 1�

by generator property and invertibility of S, i.e.

S1� +
∑

Δi∈Δ

R�
Δi

= 0

holds. The strict positivity of H follows by the assumption that M is a single communication
class and all states in Δ can be reached.

�

The condition to absorption in a set A � Δ is a simple corollary of Lemma 2.2.2.

Corollary 2.2.4 Let (Xt)t≥0 be a MCc on E with infinitesimal generator Q

with decomposition as in (2.3) and initial distribution μM = ei. Then for fixed
A � Δ:

Pi(Xt = j|τA < ∞) =
hA
j

hA
i

Pi(Xt = j) (2.7)

with hA = (hA
j )j∈M := (Pj(τA < ∞))j∈M =

∑
Δl∈A hl. Furthermore hΔ = 1�.
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2.2. EXTENSIONS TO SEVERAL ABSORBING STATES

Proof We first note that the event {τA < ∞} can be decomposed into disjoint events:

{τA < ∞} =
⊔

Δi∈A

{τΔi
< ∞} ,

as {τΔi
< ∞} = {τΔi

< ∞} ∪ {τΔk
= ∞ : Δk ∈ Δ, k �= i}. Analogue to the proof of Lemma

2.2.2

Pi(Xt = j|τA < ∞) =
Pj(τA < ∞)

Pi(τA < ∞)
Pi(Xt = j)

=

∑
Δi∈A Pj(τΔi

< ∞)∑
Δi∈A Pi(τΔi

< ∞)
Pi(Xt = j).

The rest follows by (2.6). If A = Δ then obviously the condition has no influence and absorption
in Δ is almost sure, thus hA = hΔ = 1�. This can also be seen from the definition of hA, because

S1� +
∑

Δj∈Δ

R�
Δj

= 0

by generator property of Q.
�

Lemma 2.2.2 and Corollary 2.2.4 give the transition function of the conditioned processes.
In order to calculate Q|Δi

or Q|A the infinitesimal generators of the process conditioned to
absorption in Δi resp. in A � Δ we gain the following result.

Proposition 2.2.5 Let (Xt)t≥0 be a MCc on E with infinitesimal generator Q

and decomposition (2.3). Furthermore let A � Δ be a set of absorbing states.
Then the infinitesimal generator of (Xt)t≥0 conditioned to absorption in A is

Q|A =:

⎛
⎜⎜⎜⎝

0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

R�
Δ1|A . . . R�

Δk|A S|A

⎞
⎟⎟⎟⎠ , (2.8)

where
R�

Δi|A := 1Δi∈Adiag(h
A)−1R�

Δi

S|A := diag(hA)−1Sdiag(hA)

and hA is defined as in Corollary 2.2.4.

Proof Equation (2.4) shows by Lemma 2.2.4

lim
t→0

d

dt
Pi(Xt = j|τA < ∞) =

hA
j

hA
i

lim
t→0

d

dt
Pi(Xt = j) =

hA
j

hA
i

qij

by definition of the infinitesimal generator of the original unconditioned process. Equation (2.8)
is then the matrix version of this calculation.

�
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Remark 2.2.6 The assumption that M forms a single communication class is necessary for
the invertibility of diag(hi), see the section about the role of pseudo inverses.

�

Example 2.2.7We give an example how hA transformsQ and how this relates to the transition

graph. Consider a MCc(Xt)t≥0 on the state spaceE = {Δ1,Δ2}∪{1, 2} defined by the transition
graph given in fig. 2.7 and with infinitesimal generator

Q =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
1 0 −2 1
0 1 1 −2

⎞
⎟⎟⎠ .

This process is a simple version of a Birth-and-Death Process with absorbing boundaries.

Δ1 1 2 Δ21

1

1

1

Figure 2.7: An example of a MCc with several absorbing states. The bars indicate the (point-
wise) values of (hΔ

i )
−1 (not to scale).

According to the decomposition (2.2)

R�
Δ1

=

(
1
0

)
, R�

Δ2
=

(
0
1

)
, S =

(−2 1
1 −2

)
.

We fix A = {Δ1} as absorbing set. According to Lemma 2.2.2

hA = h1 = (−S)−1R�
Δ1

=
1

3

(
2 1
1 2

)(
1
0

)
=

(
2
3
1
3

)
and thus

Q|A =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
3
2 0 −2 1

2
0 0 2 −2

⎞
⎟⎟⎠ .

We used equal transition rates for all states to show that the condition to absorption in Δ1

introduces a “drift” which forces the dynamic away from Δ2. Indeed one could interpret

((hA
Δ1

)−1, (hA
1 )

−1, (hA
2 )

−1, (hA
Δ2

)−1) = (1,
3

2
, 3,∞)

as a potential on E forcing the dynamic to reach the minimum of the potential, which is attained
in Δ1.
We also observe that diag(hA) is a projection from E = {1, 2}∪ {Δ1,Δ2} onto {1, 2}∪ {Δ1},

thus the “connection“ to Δ2 is literally cut off; the transition graph of the conditioned process
in fig. 2.8, amplifies this interpretation.
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Δ1 1 2 Δ2
3
2

1
2

2

0

Figure 2.8: The model from fig. 2.7 after the conditioning. Note that Δ2 is now disconnected
from the system. The bars indicate the (point-wise) values of (hΔ1

i )−1 (not to scale).

�

�

The results of Lemma 2.2.2 and Corollary 2.2.4 fall into a class of transformations called
h-transform or depending on the author Doob-h-transform. Doob introduced an early version
in []. In case of countable state space this is treated in [KSK66] chapter 8 and [SS67] and has
relations to potential theory for Markov Chains.

2.2.2 Absorption law as mixture of PH-type distributions

In this chapter we show that indeed the time to absorption in a set of several absorbing states
is a mixture of absorption times in single absorbing states. Each of these absorption times
describes the time until absorption in one specific absorbing state.
The distribution of the time to absorption in the set Δ can be described as PH-type distribution

with representation PH(μM , S), when the set Δ is identified with the single state Δ. A direct
consequence of this observation is the following lemma.

Proposition 2.2.8 Let (Xt)t≥0 be a MCc on E with infinitesimal generator Q

and decomposition (2.3). Then

Pμ(τΔ ∈ dt) = μΔδ0 +
∑
Δl∈Δ

Pμ′(τΔl
∈ dt)

for hl = (−S)−1R�
Δl

and μ′ := μMdiag(hl).

Proof As M is a single communication class every absorbing state can be reached from every
state in M with positive probability. Thus by table 2.2, Proposition 2.2.5 and Corollary 2.2.3

Pμ(τΔ ∈ dt) = μΔδ0 + μM exp(St)R�
Δdt

= μΔδ0 +
∑
Δl∈Δ

μMdiag(hl)diag(hl)−1 exp(St)diag(hl)diag(hl)−1R�
Δl
dt

= μΔδ0 +
∑
Δl∈Δ

μMdiag(hl) exp(S|Δl
)R�

|Δl
dt.

As μMdiag(hl) is still a (sub) stochastic vector on M the result follows.
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�

Proposition 2.2.8 shows that the absorption in the set Δ of absorbing states can be indeed
described as a mixture of the times to absorption in each Δl. In particular if μM = δi then the
lemma states

Pi(τΔ ∈ dt) =
∑
Δl∈Δ

ei(−S)−1R�
Δl
Pi(τΔl

∈ dt) =
∑
Δl∈Δ

hl
iPi(τΔl

∈ dt),

see (2.6), and thus is a convex combination of the densities of the absorption times in the
absorbing states Δl. The property

∑
Δl∈Δ hl

i = 1 is ensured by Corollary 2.2.3, as (hl
i)Δl∈Δ is

itself a probability distribution on Δ for each i ∈ M .
The main idea of Proposition 2.2.8 was to use the property

RΔ =
∑
Δl∈Δ

RΔl

to show that the absorption in Δ is a mixture. This decomposition yields more information.
We need definitions to understand how the mixture property relates to conditions on leaving M

via fixed states.

Definition 2.2.9 Let (Xt)t≥0 be MCc on E with infinitesimal generator Q =
(qij)i,j∈E . Then the set of states

∂M := {i ∈ M |∃l : qiΔl
> 0}

is called boundary of M .

Definition 2.2.10 Let (Xt)t≥0 be MCc on E with infinitesimal generator Q =
(qij)i,j∈E . Then the set

�l := {i ∈ ∂M : qiΔl
> 0}

is called the gate to Δl or Δl-gate. Accordingly for any A ⊂ Δ:

�A :=
⋃

Δl∈A

�l

is the gate to A. If there is only one absorbing state we write just �.

It is clear that the Δl-gate is just the set of states from which absorption in Δl ∈ Δ takes
place. Thus the process is absorbed in Δl only via the Δl-gate. In other words, hl

i is the
probability to start in i and leave the system via �l.
If we assume that Δ is a singleton, we can replace Δ by |∂M | absorbing states, such that for

every i ∈ ∂M there is a unique Δi, see fig. 2.9. This procedure does not change the time to
absorption. The boundary ∂M is then a disjoint union gates with cardinality one. Therefore
the probability to leave M via a specific boundary state b ∈ ∂M is just

μM (−S)−1e�b (eiR
�
Δ),

the probability to be absorbed in Δb.
If the set of absorbing states is not a singleton, we can just replace this set by a single state

Δ and apply the same method as before.
In fact we have already shown:
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M

�
i j

Δ

M

�1 �2
i j

Δ1 Δ2

Figure 2.9: Introducing an absorbing state for each state of the gate.

Theorem 2.2.11 Let (Xt)t≥0 be a MCc on E = Δ ∪ M where Δ is the only
absorbing state and (2.2) decomposition of its infinitesimal generator Q. Let
the initial condition be μ = (μΔ, μM ) and B � δM an arbitrary set of boundary
states of M . Furthermore define RB by

∀i ∈ M : eiR
�
B :=

{
eiR

�
Δ i ∈ B

0 else
.

For hB = (−S)−1R�
B the MCc associated to

Q|B :=

(
0 0

diag(hB)−1R�
Δ diag(hB)−1Sdiag(hB)

)

and μ|B := (μΔ, μMdiag(hB)) is the original chain conditioned on leaving M

via B.

2.2.3 Role of Pseudo Inverses and conditional absorbing states

We have made throughout the last section the assumption that M is a single communication
class. This condition is convenient as shown in following example. We need the so called Pseudo
Inverse, as defined for example in [BIG03], chapter 1. By this notion it is possible to find matrices
for singular or even rectangular matrices that behave very much like the inverse for quadratic
non-singular matrices. Omitting the details of their definition and their properties, we want to
draw attention to problems (and their possible solution) that arise if the single communication
class assumptions fails. The following example illustrates that.

Example 2.2.12 Let (Xt)t≥0 be a MCc on E = {Δ1,Δ2} ∪ {1, 2, 3} with initial condition μ

and infinitesimal generator

Q =

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 −2 1 1
1 0 1 −2 0
0 1 0 0 −1

⎞
⎟⎟⎟⎟⎠ .
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The transition graph is given in figure 2.10.

1

2

3

Δ1

Δ21

1

1

1

1

Figure 2.10: Transition graph where M = {1, 2, 3} consists of the two communication classes
{1, 2} and {3}.

1

2

3

Δ1

Δ20

3
2

2

1
2

0

Figure 2.11: Transition after conditioning on absorption in Δ1

Furthermore

RΔ1 =

⎛
⎝0
1
0

⎞
⎠�

, RΔ2 =

⎛
⎝00
1

⎞
⎠�

, S =

⎛
⎝−2 1 1

1 −2 0
0 0 −1

⎞
⎠ .

Heuristically the condition on absorption in Δ1 or equivalently leaving M via state 2 turns
state 3 into an absorbing state, as 3 can only be left to Δ2. Computation of h1 yields

h1 = (−S)−1R�
Δ1

=
1

3

⎛
⎝2 1 2
1 2 1
0 0 3

⎞
⎠
⎛
⎝0
1
0

⎞
⎠ =

1

3
(1, 2, 0)�.

Obviously diag(h1) can not be inverted in the usual sense, but taking the pseudo inverse fixes
that. Indeed the dynamic conditioned to absorption in Δ1 has according to Proposition 2.2.5
the form

Q|Δ1
=

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 −2 2 0
3
2 0 1

2 −2 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

Figure 2.11 shows the new transition graph. �

�
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Chapter 3

Time Duality in Markov Chains

In the following we introduce a new relation called Time Duality between states of a MCc
with irreducible infinitesimal generator. In a simpler setting and without rigorous proof this
appeared already in [LW07, VLL08]. The concept concerns the equality in distribution of the
“passage time without return” from i to j and from j to i. We characterize this property in
terms of Laplace transforms of phase type distributions and gain several sufficient conditions for
Time Duality, partially based on the structure of the transition graph. One of these sufficient
conditions is permuted balance, see section 3.1.2, under some constraints on the neighbourhood
of the chosen states.
We also gaze the interesting question whether the Time Duality relation is an equivalence

relation for Birth-and-Death Processes with reflecting boundaries and for reversible Markov
Chains on trees.

3.1 Definitions and preliminaries

Let (Xt)t≥0 be a MCc on a finite state space E with irreducible infinitesimal generator and
initial distribution in i ∈ E.
For an arbitrary state j �= i the stopping time

τij := inf {t : Xt = j}
is known as first passage time from i to j. We define another random time

σij := sup {t < τij : Xt = i} .
It is the time when i has been left the last time before reaching j. Naturally σij can not be a
stopping time, as σij depends on the future development of Xt.
Now we can define the pure passage time in the following way:

Definition 3.1.1 We call the difference

τ∗ij := τij − σij

the pure passage time from i to j, see also fig. 3.1.

Due to a trick we can describe τ∗ij as a PH-type distribution. For fixed states j in E, turn j

into an absorbing state by cutting off all outgoing transitions and replace i by the two states
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σij τij

τ∗ij

t

E

j

i

Figure 3.1: Example trajectory of a passage from i to j.

iin and iout, where qkiin = qki but qiink = 0 for all k ∈ E \ {i}. Thus iin inherits only the
“ingoing” transitions and is therefore absorbing. The other state iout is such that qik = qioutk

but qkiout
= 0 for all k ∈ E \ {i}, i.e. iout inherits only the “outgoing” transitions. See also fig.

3.2.

i E \ {i, j} j

iin

iout

E \ {i, j} j

0

Figure 3.2: Splitting method to characterize the pure passage time τ∗ij .

If we now can compute an initial distribution on the direct neighbours of i, the time to
absorption in j under this new distribution has then the same distribution as τ∗ij .
As there might be some states in E which can be reached in a single step from i, but are not

connected with j by a path of strict positive probability avoiding i, we need to refine the notion
of neighbourhood.
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Definition 3.1.2 Let (Xt)t≥0 be a MCc on E with infinitesimal generator Q =
(qij)i,j∈E . Then for a state i ∈ E the set

Ni := {j ∈ E : qij > 0}

is called the neighbourhood of i.

Note that Definition 3.1.2 is very similar but not equivalent to the definition of gates given
in Definition 2.2.10.

Definition 3.1.3 Let (Xt)t≥0 be a MCc on E with infinitesimal generator Q =
(qkl)k,l∈E . For i, j ∈ E let the set Ni�j be the set of states in the neighbourhood
of i that are connected with j via at least one path of non-vanishing weight with
states in E \ {i}, i.e.

Ni�j := {k ∈ Ni : ∃n ≥ 1∃i1, i2, . . . in ∈ E \ {i, j} : qki1qi1i2 . . . qinj > 0} .

We say Ni�j is the connected component of the neighbourhood of i with
respect to j or, if the context is clear, the connected neighbourhood of i, see
fig. 3.3. We call Ni�j simple if it is a singleton and write nij instead of Ni�j.

i i1

i2

i3

i4

i5

j

Ni

Ni�j

Figure 3.3: Neighbourhood of i (dark gray) and connected neighbourhood of i (light gray) with
respect to j.

With these definitions the pure passage time between two states is characterized as PH-type
distribution by the following proposition.
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Proposition 3.1.4 Let (Xt)t≥0 be a recurrent MCc on E with infinitesimal
generator Q = (qij)i,j∈E . Fix k, l ∈ E, k �= l. Let the initial condition be μ = δk
and define the sub matrix S := (qij)i,j∈E\{k,l} of Q and RΔs

:= (qis)i∈E\{k,l}.
Then the first pure passage time τ∗kl from k to l is of PH-type with represen-

tation ∼ PH(νr, S|l) where

νk :=
1∑

i∈Nk�l
qki

{
qki if i ∈ Nk�l

0 else

and
S|l := diag(hl)−1Sdiag(hl),

with hl := (−S)−1R�
Δl
.

Proof The procedure given in the introduction of this chapter proofs the statement by chapter
2, Proposition 2.2.5 (the set Δ of absorbing states would contain iin and j).

�

We now compare the distributions of the pure passage times τ∗ij and τ∗ji. Intuitively only in

very symmetric models τ∗ij
d
= τ∗ji should hold. The following example shows that this intuition

is wrong.

Example 3.1.5

Consider (Xt)t≥0 the MCc on E = {1, 2, 3, 4} with infinitesimal generator Q given by

Q =

⎛
⎜⎜⎝
−1 1 0 0
1 −2 1 0
0 w −1− w 1
0 0 1 −1

⎞
⎟⎟⎠

with w > 1.
The associated transition graph, see fig. 3.4, shows that this example is a simple Birth-and-

Death Process with reflecting boundaries. Intuitively the passage from 1 to 4 should be slower
than the passage from 4 to 1 for w > 1. Surprisingly the pure passage times have the same
distribution for all w > 0, as we will now prove.

1 2 3 4
1 1 1

1w1

Figure 3.4: Transition graph for Example 3.5.

By Proposition 3.1.4 the pure passage time τ∗14 resp. τ∗41 has PH-type distribution with repre-
sentation PH(δ2, S|4) resp. PH(δ3, S|1), with

S|4 = diag(h4)−1Sdiag(h4)
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resp.

S|1 = diag(h1)−1Sdiag(h1),

where

S = (qij)i,j∈{2,3} =

(−2 1
w −1− w

)
and

h1 = (−S)−1

(
1
0

)
, h4 = (−S)−1

(
0
1

)
.

We have further

(−S)−1 =
1

2 + w

(
1 + w 1
w 2

)
and therefore

S|1 =

( −2 w
1+w

1 + w −1− w

)
, S|4 =

(−2 2
w
2 −1− w

)
.

Apparently S|1 �= S|4. To show

τ∗14
d
= τ∗41

we utilize the moment generating function given in table 2.2. We gain

Mτ∗
14
(s) = −(1, 0)(sId+ S|4)−1R�

|4

= −(1, 0)

(
sId+

(−2 2
w
2 −1− w

))−1(
0

1 + w
2

)
=

2 + w

2− 3s+ s2 + w − sw

= −(0, 1)

(
sId+

( −2 w
1+w

1 + w −1− w

))−1(
2− w

1+w

0

)
= −(0, 1)(sId+ S|1)−1R�

|1
= Mτ∗

41
(s)

We note further that

Mτ∗
14
(s) = Mτ∗

41
(s) =

2 + w

s2 − s(w + 3) + 2 + w

=
2 + w

(1− s)(2 + w − s)
= (1 − s)−1

(
1− s

2 + w

)−1

= MX+Y (s)

where X and Y are independent exponentially distributed random variables to the parameters
1 and 2 + w. Indeed, the parameters are the eigenvalues of −S and also of −S|4,−S|1. This is
a general property of Birth-and-Death Processes, see e.g. [DM09] for a probabilistic proof and
[Kei79] for an early proof based on Laplace transforms. �

�

The preceding example clearly shows that τ∗ij
d
= τ∗ji is difficult to understand intuitively. We

thus give explicit sufficient conditions for the equality (in distribution) of the pure passage
times. The permuted balance (and thus also reversibility), defined in chapter 1, (1.5) implies
Time Duality between two states under certain assumptions.
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Definition 3.1.6 Let (Xt)t≥0 be a recurrent MCc on the finite state space E.
Fix i, j ∈ E. If

τ∗ij
d
= τ∗ji

we say i and j are in Time Duality.

Some previous work of Kijima on such a problem has been worked out under certain sym-
metry properties on the infinitesimal generator, see Propositions 4.1 and 4.2. in [Kij88]. His
main assumptions for Time Duality are reversibility and (independently) a symmetry on the
infinitesimal generator Q which states:

Q = K−1QK,

where K is a special permutation matrix sometimes called anti identity:

K =

⎛
⎜⎜⎜⎝
0 . . . 0 1
0 . . . 1 0
... . .

. ...
...

1 . . . 0 0

⎞
⎟⎟⎟⎠ .

This last “invariance under permutation” is indeed covered by our definition of permuted bal-
ance.

We show in the following sections that the notion of permuted balance includes and extends
the symmetry conditions given by Kijima and give other conditions under which Time Duality
between two states hold.

Examples show that permuted balance does not exploit all cases in which Time Duality
appears. We therefore give several results on how to connect the geometry of the transition
graph with Time Duality in more general situations.

3.2 Sufficient conditions for Time Duality in case of simple

neighbourhood

In this first section we study the pure passage time between two states whose connected neigh-
bourhoods are singletons. This not only allows to characterize Time Duality straightforward via
Proposition 3.1.4 and the moment generating function of a PH-type distribution, but also deliv-
ers the basis for the generalization to connected neighbourhoods which are no more restricted
to singletons.

3.2.1 A Condition based on moment generating functions

Let i, j be two states of the state space E and assume that |Ni�j | = |Nj�i| = 1. In this case
we identify the singleton Ni�j resp. Nj�i with nij resp. nji, according to Definition 3.1.3. This
also means that a passage from i to j has to pass through nji and analogue for the passage from
j to i. Thus by Proposition 3.1.4 and table 2.2 the moment generating function Mij(s) resp.
Mji(s) of the first pure passage time τ∗ij resp. τ∗ij is given as

Mij(u) = −enij
(uId+ S|j)−1R�

|Δj
=

enij
(uId+ S)−1e�nji

enij
S−1e�nji
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resp.

Mji(s) = −enji
(uId+ S|i)−1R�

|Δi
=

enji
(uId+ S)−1e�nij

enji
S−1e�nij

.

Obviously Time Duality between i and j holds if the moment generating functions of τ∗ij
and τ∗ji are equal. This leads to the following criterion for Time Duality in the case of simple
neighbourhoods of i and j.

Theorem 3.2.1 Let (Xt)t≥0 be an irreducible MCc on a finite state space E,
with infinitesimal generator Q = (qij)i,j∈E . Suppose that for i, j ∈ E the con-
nected neighbourhoods are both singletons and denote the connected neighbour-
hood of i with nij and the one of j with nji according to Definition 3.1.3. Then
Time Duality between i and j holds if and only if

∀u ≤ 0 :
Rij(u)

Rji(u)
=

Rij(0)

Rji(0)
(3.1)

holds, where Rij(u) := enij
(uId+ S)−1e�nji

.

Proof The statement is just an equivalent formulation of the fact that two random variables
have the same distribution if their moment generating function are equal.

�

Remark 3.2.2 In condition 3.1 there is actually no restriction on u as long as it does not
equal an eigenvalue of −S.

�

3.2.2 Time Duality via permuted balance

If the infinitesimal generator of a MCc is in permuted balance for some permutation σ with i

and j fixed points Time Duality between i and j holds if their neighbourhoods are simple.

Theorem 3.2.3 Let (Xt)t≥0 be an irreducible MCc on E with infinitesimal
generator Q in permuted balance with respect to some permutation σ. For any
two distinct states i, j ∈ E such that i, j are fixed points of σ and their neigh-
bourhoods are simple, Time Duality holds.

Proof The invariant distribution π is unique due to irreducibility. Permuted balance is then
equivalent to the matrix equation

Q� = (diag(π)Pσ)
−1Qdiag(π)Pσ ,

see chapter 2. This also holds for the matrix S = (qkl)k,l∈E\{i,j} (with an obvious restriction of
π and Pσ to the states encoded in S).
We compute for every u ≤ 0:

Rij(u) = enij
(uId+ S)−1e�nji

= enji
(uId+ S�)−1e�nij

= enji
(diag(π)Pσ)

−1(uId+ S)−1diag(π)Pσe
�
nij

=
πnij

πnji

Rji(u),
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thus

∀u ≤ 0 :
Rij(u)

Rji(u)
=

πnij

πnji

.

The condition of Theorem 3.2.1 is therefore fulfilled and i and j are in Time Duality.

�

The following example shows that the condition that i and j are fixed points to have Time
Duality between them is necessary for the setting as in Theorem 3.2.3.

Example 3.2.4 Let (Xt)t≥0 be a MCc on E = {1, 2, 3, 4, 5, 6, 7}, defined by the transition

graph given in fig. 3.5 and with infinitesimal generator

Q :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 2 1 1 0 0 0
1 −3 0 0 1 1 0
1 0 −3 0 1 1 0
1 0 0 −3 1 1 0
0 1 1 1 −4 0 1
0 1 1 1 0 −4 1
0 0 0 0 1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We note that the model is not reversible by the Kolmogoroff criterion, see Theorem 1.3.1, as

2 = q12q25q54q41 �= q14q45q52q21 = 1.

But permuted balance holds, e.g. for σ = (34).

1

2

3

4

5

6

7

2

1

1

1

1

11

1

1

1

1

1

Figure 3.5: All transition rates are 1 except otherwise noted.

Without giving the exact calculations, we find that between 1 and 7 occurs Time Duality.

Time Duality between 3 and 7 does not hold, as

ν3diag(h
7)−1(S + uId)−1R�

Δ7

ν7diag(h3)−1(S + uId)−1R�
Δ3

=
11

27

27− 14u+ 2u2

11− 7u+ u2

which is not constant. �

�
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3.2.3 Further results based on the structure of the transition graph

In this section we give further results on Time Duality between two states i and j as consequence
of a particular geometry of the transition graph. To simplify the argumentation we shall assume
that with E \{i, j} is actually the communication class(es) of nij and nji. Note that the number
of communication classes in E \ {i, j} can be greater than one depending on i and j, while there
is by assumption only one communication class in E.

To shorten notation we also fix for any square matrix K the following convention:

Ku := K + uId.

The basic idea of all following proofs in this section is to use the generalized Frobenius formula
given in Appendix A. It allows to compute certain parts of the inverse of a matrix, if the original
matrix is in block form. The formula is especially useful if one of the blocks is 1× 1, because in
this case the appearing Schur complements are real numbers. If there is no 1× 1 block then the
complements are again matrices and non-commutativity matrices comes into play which makes
some calculations more difficult.

Theorem 3.2.5 Let (Xt)t≥0 be a MCc on a E with irreducible infinitesimal
generator Q = (qij)i,j∈E . Let i, j ∈ E be fixed and with simple connected neigh-

bourhood. Let Ŝ = (qkl)k,l∈E\{nij ,i,j} and for arbitrary states r, s:

R̂rs(u) := erŜ
−1
u e�s .

If the neighbourhood of nij is of cardinality two, i.e. Nnij
= {i, x}, see also fig.

3.6, Criterion (3.1) for Time Duality between i and j reduces to:

∀u ≤ 0 :
R̂xj(u)

R̂jx(u)
=

R̂xj(0)

R̂jx(0)
.

i nij x nji j

Figure 3.6: In this situation i and j are in Time Duality when nij and j are.

Proof Let us assume that the neighbours of nij are i and x. Then we can decompose the
matrix S = (qkl)k,l∈E\i,j further:

S =

(
qnijnij

qnijxex
qxnij

e�x Ŝ

)
,

where Ŝ is a further restriction of the transient states without state nij . By the generalized
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Frobenius formula for block inverses (see appendix) we have:

S−1
u =

(
qnijnij

+ u qnijxex

qxnij
e�x Ŝu

)−1

= K−1

(
1 −qnijxexŜ

−1
u

−qxnij
Ŝ−1
u e�x KŜ−1

u + qnijxqxnij
Ŝ−1
u e�x exŜ−1

u

)
.

where K = qnijnij
+ u− qnijxqxnij

exŜ
−1
u e�x ∈ R

+.

Therefore for any u not an eigenvalue of −S:

Rij(u)

Rji(u)
=

K−1(1,−qnijxexŜ
−1
u )e�nji

K−1enji

(
1

−qxnij
Ŝ−1
u e�x

) =
qnijxexŜ

−1
u e�nji

qxnij
enji

Ŝ−1
u e�x

=
qnijxR̂xj(u)

qxnij
R̂jx(u)

.

�

Theorem 3.2.5 can obviously be used iteratively to reduce the detection of Time Duality to the
“essential” set of states, that is the set of states without the states belonging to Birth-and-Death
like parts attached to the connected (simple) boundaries, see fig. 3.7.

i nij . . . x′ x y y′ . . . nji j

Figure 3.7: Time Duality between i and j can be reduced to Time Duality between x′ and y′.

The preceding Theorem has a simple consequence, which will be interpreted later.

Corollary 3.2.6 In a Birth-and-Death Process each two states are in Time
Duality.

Proof The proof is simply done by iteration of Theorem 3.2.5.

�

In some sense Theorem 3.2.5 is also a transitivity result. In the situation of fig. 3.7 i is in
Time Duality with x and j with y by Corollary 3.2.6; if x and y are also in Time Duality then
i and j are, too.

A similar situation is depicted in fig. 3.8. As the next theorem shows the forced passage
through x, y, z suffices to check Time Duality between i and j just by checking Time Duality
between i and y and y and j.
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i nij x y z nji j

Figure 3.8: The structure of the graph forces any passage from i to j and vice versa through y.

Theorem 3.2.7 Let (Xt)t≥0 be a MCc on E with irreducible infinitesimal gen-
erator Q = (qkl)k,l∈E. Fix two states i, j ∈ E and assume that their connected
neighbourhood is simple. Let S = (qkl)k,l∈E\{i,j}. If there exist three states
x, y, z ∈ E \ {i, j} such that S can be decomposed into

S =

⎛
⎝ qyy qyxex qyzez
qxye

�
x Si 0

qzye
�
z 0 Sj

⎞
⎠ (3.2)

Time Duality between i and j holds if and only if

∀u ≤ 0 :
Rix(u)Rzj(u)

Rjz(u)Rxi(u)
=

Rix(0)Rzj(0)

Rjz(0)Rxi(0)

holds, where

Rix(u) := enij
S−1
i,ue

�
x , Rxi(u) := exS

−1
i,u e

�
nij

Rjz(u) := enji
S−1
j,ue

�
z , Rzj(u) := ezS

−1
j,ue

�
nji

.

Proof The proof uses the generalized Frobenius formula for inverses of block matrices. It
suffices to compute only one entry of the inverse of (3.2):

S−1
u =

⎛
⎝∗ ∗
∗ K

(
S−1
i,u 0

0 S−1
j,u

)
+

(
qxyqyxS

−1
i,u e

�
x exS

−1
j,u qxyqyzS

−1
i,u e

�
x ezS

−1
j,u

qzyqyxS
−1
j,ue

�
z exS

−1
i,u qzyqyzS

−1
j,ue

�
z ezS

−1
i,u

)⎞⎠ .

The exact expression for the real constantK is not relevant as it cancels out after the application
of Theorem 3.2.1.

�

The last results were in the flavor of serial network. The next theorem shows what to do in
a “parallel situation”, like in figure 3.9.
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i nij

x1

x2

y1

y2

nji j

Figure 3.9: Situation of Theorem 3.2.8

Theorem 3.2.8 Let (Xt)t≥0 be a MCc on E with irreducible infinitesimal gen-
erator Q = (qkl)k,l∈E. Let i, j, x1, x2, y1, y2 be fixed states such that the matrix
S = (qkl)k,l∈E\{i,j} has the following form

S =

⎛
⎜⎜⎝

qnijnij
qnijx1ex1 qnijx2ex2 qnijnji

qx1nij
e�x1

S1 0 qy1nji
e�y1

qx2nij
e�x2

0 S2 qy2nji
e�y2

qnjinij
qnjiy1ex1 qnjiy2ey2 qnjinji

⎞
⎟⎟⎠ ,

see also fig. 3.9 for reference. Let

T (u) :=
qnijx1qy1nji

R
(1)
x1y1(u) + qnijx2qy2nji

R
(2)
x2y2(u)− qnijnji

qnjiy1qx1nij
R

(1)
y1x1(u) + qnjiy2qx2nij

R
(2)
y2x2(u)− qnjinij

with

R(1)
x1y1

(u) := ex1S
−1
1,ue

�
y1
, R(2)

x2y2
(u) := ex2S

−1
2,ue

�
y2
,

R(1)
y1x1

(u) := ey1S
−1
1,ue

�
x1
, R(2)

y2x2
(u) := ey2S

−1
2,ue

�
x2
.

Then Time Duality holds if and only if

∀u ≤ 0 : T (u) = T (0)

holds.

Proof This time we need to use both variants of the generalized Frobenius formula. We first
calculate the quantities of interest in a more general way, i.e. for a, c, g, i real numbers (stars
denote quantities we do not need for the following computation and thus we shall not give them
explicitly):

M :=

⎛
⎝ a B c

D E F

g H i

⎞
⎠−1

= K−1
1

⎛
⎜⎜⎝ 1 −(B, c)

(
E F

H i

)−1

−
(
E F

H i

)−1(
D

g

)
∗

⎞
⎟⎟⎠ .

Further (
E F

H i

)−1

= K−1
2

( ∗ −E−1F

−HE−1 1

)
.
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NEIGHBOURHOOD

In both cases K1 and K2 are real numbers. Thus the upper right corner of the inverse of M
is given as

K−1
1 K−1

2 (BE−1F − c)

and the lower left corner:

K−1
1 K−1

2 (HE−1D − g).

If we make the following identification

a := qnijnij
, B := (qnijx1ex1 , qnijx2ex2), c := qnijnji

,

D :=

(
qx1nij

e�x1

qx2nij
e�x2

)
, E :=

(
S1 0
0 S2

)
, F :=

(
qy1nji

e�y1

qy2nji
e�y2

)
,

g := qnjinij
, H := (qnjiy1ey1 , qnjiy2ey2), c := qnjinji

we get

enij
S−1
u e�nji

enji
S−1
u e�nij

=
qnijx1qy1nji

ex1S
−1
1,ue

�
y1

+ qnijx2qy2nji
ex2S

−1
2,ue

�
y2

− qnijnji

qnjiy1qx1nij
ey1S

−1
1,ue

�
x1

+ qnjiy2qx2nij
ey2S

−1
2,ue

�
x2

− qnjinij

.

The statement then follows by Theorem 3.2.1.

�

The question may arise why such a complicated theorem is useful. Indeed if qnijnji
= qnjinij

=
0 and with some extra conditions on S1 and S2 the behavior of models which arise in the context
of Molecular Motors can be explained.

We derive the following corollaries of Theorem 3.2.8 and take over the definitions and assump-
tions from there.

If we assume that S2 is the zero matrix in Theorem 3.2.8 the situation is like checking Time
Duality between nij and nji in a system with simple connected neighbourhood similar to the
one above where x1 is the simple connected neighbourhood of nij and y1 the one of nji. The
next corollary shows that indeed the transition rates that determine how to reach x1 and y1
from nij and nji do not play any role for Time Duality.

Corollary 3.2.9 Suppose S2 = 0 and qnijnji
= qnjinij

= 0 then Time Duality
is equivalent to

∀u ≤ 0 :
R

(1)
x1y1(u)

R
(1)
y1x1(u)

=
R

(1)
x1y1(0)

R
(1)
y1x1(0)

.

In particular it is independent of the choice of the transition rates qnijx1 and
qnjiy1 .

If there is a similarity relation between S1 and S2 Time Duality between i and j can be
reduced drastically as the following corollary shows.
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Corollary 3.2.10 If
R(1)

x1y1
(u) = R(2)

x2y2
(u)

and
R(1)

y1x1
(u) = R(2)

y2x2
(u)

then Time Duality between i and j is equivalent to

R
(1)
x1y1(u)

R
(1)
y1x1(u)

=
R

(1)
x1y1(0)

R
(1)
y1x1(0)

and is independent of the choice of qnijx1 , qnijx2 , qnjiy1 and qnjiy2 .

Finally we note that the preceding corollaries are extendable trivially to the case when there
are more than two “simple connected” subsystems. The corollaries also show that “parallel
circuits” are way more demanding to allow Time Duality.

3.3 Extension to non-simple boundary

In the general case where the connected neighbourhoods are not simple anymore the criterion
3.1 becomes more complicated. Naturally one can define Time Duality between two states i, j
by comparing the associated moment generating functions. This yields:

Theorem 3.3.1 Let (Xt)t≥0 be MCc on E, with irreducible infinitesimal gen-
erator Q = (qij)i,j∈E . Then i is in Time Duality with j if and only if

∀u ≤ 0 :
νidiag(h

j)−1(uId+ S)−1R�
Δj

νjdiag(hi)−1(uId+ S)−1R�
Δi

= 1,

with the definitions of Proposition 3.1.4.

Obviously Theorem 3.3.1 coincides with Theorem 3.2.1 if the connected neighbourhoods of i
and j are simple.
Let i, j be fixed states of E. As in the preceding section we identify E \ {i, j} with the set

of states that are in the same communication class(es) as Ni�j and Nj�i. Then we define for
S = (qkl)k,l∈E\{i,j}

S̃ :=

⎛
⎝ q̄ii RiS 0
R�

Si S R�
Sj

0 RjS q̄jj

⎞
⎠ (3.3)

where RiS = νidiag(h
j)−1, RjS = νjdiag(h

i)−1, RSi := RΔi
, RSj := RΔj

, q̄ii > RiS1
� and

q̄jj > RjS1
�.

With this definition we derive the following description of Time Duality between i and j:

Theorem 3.3.2 Let (Xt)t≥0 be a MCc on E, with irreducible infinitesimal gen-
erator Q = (qkl)k,l∈E . Two fixed states i and j of E are in Time Duality if and
only if

∀u ≤ 0 :
R̃ij(u)

R̃ji(u)
=

R̃ij(0)

R̃ji(0)

holds, where
R̃ij(u) := eiS̃

−1
u e�j , R̃ji(u) := ejS̃

−1
u e�i .
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3.3. EXTENSION TO NON-SIMPLE BOUNDARY

Proof By Lemma 3.2.9 the condition of the theorem is just a reformulation of the condition
of Theorem 3.3.1.

�

The trick to treat the general case is thus a reformulation of the equality of the moment
generating functions in the flavor of simple connected neighbourhood, see also fig. 3.10. Thus
all results of the preceding section can also be applied to the general case.

E \ {i, j}i′ i j j′∗ ∗

RiS

RSi RjS

RSj

Figure 3.10: Non simple boundary reformulated in the flavour of simple boundary.

D

The following example shows that the reinterpretation done in Theorem 3.3.1 can simplify
the verification of Time Duality.

Example 3.3.3 Let (Xt)t≥0 be a MCc on E := {1, 2, 3, 4, 5} with infinitesimal generator

Q :=

⎛
⎜⎜⎜⎜⎝
−2 1 1 0 0
1 −2 0 0 1
1 0 −2 0 1
0 1 1 −3 1
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠ .

The transition graph is given in fig. 3.11.

N1�51

2

3

4 5

Figure 3.11: Transition graph to Example 3.3.
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Now S̃ is given by

S̃ =

⎛
⎜⎜⎜⎜⎝
−5 2 2 0 0
1 −2 0 1 0
1 0 −2 1 0
0 1 1 −3 1
0 0 0 1 −2

⎞
⎟⎟⎟⎟⎠ .

If we now interpret S̃ as derived from the system displayed in fig. 3.12 (the parameters q∗11
and q∗55 can obviously chosen greater then RΔ11

� and RΔ51
�), we already know that Time

Duality appears between 1′ and 5′, as the new system is reversible by Theorem 1.3.1 chapter 2
and Theorem 3.2.3.

1′ 1

2

3

4 5 5′
1

1

2

1

1

1

1

11

2

1

1 1

1

Figure 3.12: Reinterpretation of the original dynamics in terms of simple boundary.

In this sense Time Duality between 1 and 5 is the consequence of reversibility in the modified
and extended model and thus also implied by the Time Duality between 1′ and 5′ (compare fig.
3.11 with fig. 3.12).

�

�

3.4 Some examples

3.4.1 Time Duality without permuted balance

In this subsection we want to give an example that permuted balance does not exploit all cases
where Time Duality appears. Corollaries 3.2.9 and 3.2.10 indicate that indeed there are some
situations where this might be the case.

Example 3.4.1 Let (Xt)t≥0 be the MCc associated to the transition graph in fig. 3.13. We

keep the transitions as abstract as possible in the sense that every off-diagonal entry of the
infinitesimal generator is positive if there is a transition depicted in the transition graph.

Time Duality between any two direct neighbours is given, as the communication class of the
connected neighbourhood forms a Birth-and-Death process. If we want Time Duality between
1 and 3 we need to investigate under which conditions

ν1diag(h
3)−1(S + uId)−1R�

Δ3

ν3diag(h1)−1(S + uId)−1R�
Δ1

=
q12q22(u+ q44) + q14q44(u+ q22)

q32q22(u+ q44) + q34q44(u+ q22)

q33

q11
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1

2

3

4

Figure 3.13:

is a constant. As
q33

q11
=

q32 + q34

q12 + q14

the only constraint to fulfill the condition in Theorem 3.3.1 is q22 = q44.

In this situation it is easier to check the reinterpretation as model with simple boundary,
see fig. 3.14, as Theorem 3.2.8 can be applied. The necessary conditions of this Theorem also
reduce to just q22 = q44.

1′ 1

2

3 3′

4

Figure 3.14: The transition rates to the new states 1′ and 3′ can be chosen arbitrarily non-zero.

Though the dynamic defined is irreducible, a unique stationary distribution π exists. The
exact value is too complicated, but the freedom of choice of transition rates is big enough to
choose the rates such that π1 �= π2 �= π3 �= π4 and q12q23q34q41 �= q14q43q32q21 (this prevents
reversibility). For such a choice of rates permuted balance cannot occur, as for every permutation
not the identity at least two states must be exchanged. But by chapter 1, Proposition 1.3.7, (ii)
, this would imply that π is constant on such a transposition, which was already excluded by
the choice of rates.

One choice of these parameters could be:

Q = (qij)i,j∈{1,2,3,4} =

⎛
⎜⎜⎝
−3 2 0 1
2 −5 3 0
0 1 −3 2
4 0 1 −5

⎞
⎟⎟⎠
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with associated stationary distribution

π =
1

136
(50, 27, 35, 24).

This choice is also not reversible as

48 = q12q23q34q41 �= q14q43q32q21 = 2.

�

�

3.4.2 Birth-and-Death Processes with reflecting boundary and pro-

cesses on trees

Birth-and-Death Processes with reflecting boundaries enjoy a very curious property. Corollary
3.2.6 states that any two arbitrary states i and j are in Time Duality. This is also true for
biased random walks on Z, which are in some sense an extension of Birth-and-Death Processes.

If we interpret Time Duality as a relation and write i
TD↔ j for “i is in Time Duality with

j”, then
TD↔ defines an equivalence relation on the state space (in the case of Birth-and-Death

processes). Reflexivity is trivial and also symmetry by definition. A more difficult problem is

transitivity. Theorem 3.2.7 delivers the answer and shows that
TD↔ is transitive. The associated

Hasse diagram to the Time Duality relation would be thus the complete graph.

8 9 10 11 12

4 5 6 7

2 3

1

Figure 3.15: An example transition graph of a Markov Chain on a tree, transition rates not
shown here.

After all the property that any two states of a Birth-and-Death Process are in Time Duality
is a kind of “super-symmetry” that is not shared by all processes. A close relative to Birth-
and-Death Processes are processes on trees (under the assumption that the state space is a
single communication class). Processes on trees also have the property that any connected
neighbourhood with respect to some arbitrary distinct states is simple. For an example of a
Markov Chain on a tree see fig. 3.15. The assumption of a single communication class implies
that for any transition rate qij > 0 also qji > 0. The tree property ensures that any two states
are connected in a “loop free” way such that the whole process is reversible. Interestingly this
is already sufficient for Time Duality together with the simple connected neighbourhoods, see
section 3.1.2. Thus also Processes on trees are super-symmetric in the sense introduced above.
The question whether Time Duality is also an equivalence relation in the general case or is

only a so called tolerance relation, i.e. just reflexive and symmetric, remains open.
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Chapter 4

Killed Quasi-Random-Walk

In living cells transport mechanisms are crucial for the survival of the cell. For these transport
mechanisms proteins called molecular motors play a fundamental role. As we detail in chapter
5 their movement on a rope-like structure called “microtubule” is very similar to a Radom
Walk on Z. But at each position z ∈ Z the further movement is a consequence of the passage
through different “internal” states. Additionally the motor can detach itself from the tubule
and the process stops. Several perspectives can be taken to model such a process. We decide
here for the matrix analytic way by extending the well known Quasi-Birth-and-Death Process
(QBDP) introduced in [Neu94]. They are described process a few matrices of finite dimension.
Many interesting properties can also be expressed with these matrices which make them an
important tool in Queueing Theory, see [Neu94] and [LR99]. The main advantage is surely
the accessibility to numerical methods and the possibility to apply results from Matrix Theory.
We call our extension killed Quasi-Random-Walk (kQRW). “Killed” is a terminology from, for
instance, [DZ05b] and [DZ05a], where usual Birth and Death Processes are extended by a “killing
rate”, possibly unequal for each i ∈ N (we do not allow position dependent killing rates).
Lemma 4.1.5 given in section 1 provides a very powerful tool for the analysis of kQRW’s. The

lemma allows it to reduce the process to a finite state Markov Chain, where certain quantities
stay invariant under the aggregation. We will use this reduction tool extensively in the following
sections. However, similar methods can not be applied to QBDP’s as the absence of a boundary
in a kQRW is crucial for our methods.

4.1 Definitions and preliminaries

In the following we adapt the definition of Quasi-Birth-and-Death Process of [LR99], chapter 6,
to define a kQRW. Thus let

E := {(z, i) : z ∈ Z, i ∈ M} ∪ {Δ} ,
where Δ is an absorbing state and M := {1, 2, . . . ,m} a finite set. For (z, i) we refer to z as
level. In the literature, see e.g. [LR99] i is often called phase; we say in most cases states rather
than phases. The decomposition

Z×M =
⊔
z∈Z

l(z) :=
⊔
z∈Z

{(z, 1), (z, 2), . . . , (z,m)}

divides the state space into so called levels denoted by l(z). A transition (z, i) to Δ is called
killing and the rate γi associated to this transition is a killing rate.

61



4.1. DEFINITIONS AND PRELIMINARIES

. . . l(−1) l(0) l(1) . . .

Δ

A1 A1 A1

A0 A0 A0 A0

A2 A2 A2 A2

Γ

Γ
Γ

Γ

Γ

Figure 4.1: Schematic display of the concept of killed Quasi-Random-Walk.

Definition 4.1.1 Let (Xt)t≥0 be a MCc on E with initial condition μ concen-
trated on level 0. Define the infinite-dimensional sub generator

S :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . . A1 A0 0 0 . . .

. . . A2 A1 A0 0 . . .

. . . 0 A2 A1 A0 . . .

. . . 0 0 A2 A1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with A0, A1, A2 matrices of order m×m, A0 and A2 non negative and A1 a sub
generator. The vector RΔ := (. . . ,Γ,Γ,Γ, . . .) where

Γ := (γ1, γ2, . . . , γm)

is the vector of killing rates for each level. Further assume that

(Γ +A0 +A1 +A2) = 0.

If the infinitesimal generator Q of (Xt)t≥0 has the form

Q =

(
0 0
R�

Δ S

)
(4.1)

we say (Xt)t≥0 is a killed Quasi-Random-Walk (kQRW), see also fig. 4.1.

The matrices Ai characterize the behavior of the process; while A1 contains the transition
rates between states of a fixed level, the matrix A2 contains the transition to change from level
z to level z−1 for each z ∈ Z, accordingly A0 contains the transition rates for the change from z

to z+1. The notation is passed on by Neuts original definition, which is not ideal but standard.

62



4.1. DEFINITIONS AND PRELIMINARIES

Note that if RΔ is zero in every component than the kQRW is a generalization of the usual
Random Walk (without killing). Indeed, this is not a very interesting object: the process is
either transient or zero-recurrent. This can be characterized by a simple extension of the drift
conditions developed in [LT03].
We also describe the attained level at time t, that is the projection on the first coordinate.

Definition 4.1.2 Let (Xt)t≥0 be a kQRW. The process (Lt)t≥0 is defined by
projection on the first coordinate of (Xt)t≥0, i.e.

Lt :=

{
Δ, if Xt = Δ

π1(Xt), else
,

where π1 is the projection on the first coordinate, i.e. π1((z, i)) = z). We call
(Lt)t≥0 the level process associated to (Xt)t≥0.

It is clear that in general the level process is not Markovian, as the original process can jump
several times between states of the same level leading to non exponential holding times in each
level. In particular the probability to be in level z ∈ Z at time t under start in i ∈ l(0) is given
by the sum

Pi(Lt = z) =
∑

k∈l(z)

ei exp(Qt)e�k .

In analogy to chapter 2 about absorption times and their distribution we introduce the time
to absorption or the time until the random walker is killed in the usual way.

Definition 4.1.3 Let (Xt)t≥0 be a kQRW. The stopping time

τΔ := inf {t ≥ 0 : Xt = Δ}

is the time to absorption in Δ. We call this time also killing time.

Remark 4.1.4 In an obvious way we adapt the Definitions 4.1.1, 4.1.2 and 4.1.3 for discrete
time where the only difference to continuous time is that A0, A1, A2 and Γ are non negative
in each component and satisfy (A0 + A1 + A2 + Γ)1� = 1�. Also the level process defined in
Definition 4.1.2 can be adapted in analogue form to discrete time, which will then be denoted
with (Ln)n≥0..
In our context we always want to investigate the behavior of a continuous time kQRW. If we

compute properties of a discrete time version we have in mind to investigate properties of the
embedded MCd associated to the continuous time kQRW.

�

We defined the kQRW in a very homogeneous way in the sense that each level has the same
states and killing rates. This sort of “spatial homogeneity” allows to reduce the state space to a
finite Markov Chain with an absorbing state. This reduction is very useful in order to compute
properties that are not related with the position of the Random Walker.
The result of the following lemma is well known in the physics literature as “closing method”,

see e.g. the series of papers by T. Hill [Hil88b], [Hil88a] and [Hil88c]. We want to give a proof
here because (up to our knowledge) there is no mathematical justification of the method, even
not in the mentioned references, although the argumentation is (heuristically) convincing. The
closing method also regards the alteration of absorbing states, in the sense that transitions are
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4.1. DEFINITIONS AND PRELIMINARIES

added from the absorbing state back to the transients according to the initial distribution. The
idea behind this is a renewal process, where renewals happen according to the distribution of
the absorption time. We do not use this addition here.

Lemma 4.1.5 Let (Xt)t≥0 be a kQRW. Define

[i] :=
⋃
z∈Z

(z, i),

M ′ = {[i] : i ∈ M} and E′ := M ′ ∪ {Δ}. With respect to this decomposition
(Xt)t≥0 is lumpable.

Proof In Proposition 1.3.9 we characterized under which conditions a discrete time Markov
Chain is lumpable depending on the initial distribution. The extension to continuous time is
straight forward via either the uniformization method or by lifting the discrete time conditions
to continuous time explicitly, this is done for instance in [TK06]. We want to give here only the
conditions as they are analogue to the ones given in Proposition 1.3.9 as we need them for the
proof.

Given the decomposition of the original state space E into {Δ} ∪ ⋃i∈M [i] the infinitesimal
generator Q associated to (Xt)t≥0 is lumpable if and only if

∑
z∈Z

q(z1,i)(z,k) =
∑
z∈Z

q(z2,i)(z,k) (4.2)

and ∑
z∈Z

q(z1,i)(z,Δ) =
∑
z∈Z

q(z2,i)(z,Δ) (4.3)

for arbitrary (z1, i), (z2, i) ∈ [i] and [k]. As direct transitions are only allowed between the same
level or the nearest neighboring levels the condition is equivalent to

q(z1,i)(z1,k) + q(z1,i)(z1−1,k) + q(z1,i)(z1+1,k) = q(z2,i)(z2,k) + q(z2,i)(z2−1,k) + q(z2,i)(z2+1,k),

which is obviously fulfilled as the transition rates are defined level independent. Though Δ is a
state which is not lumped together with other states the condition of lumpability for the set {Δ}
is also automatically fulfilled. Theorem 2.11 in [TK06] shows that (4.2) and (4.3) are necessary
and sufficient for lumpability. As the initial distribution is concentrated on level l(0) there is no
incompatibility which finishes the proof.

�

As we use the lumped chain from Lemma 4.1.5 in the following we need to define it:

Definition 4.1.6 We will refer to the lumped Markov Chain of Lemma 4.1.5 as
reduction of (Xt)t≥0 the reduced chain. If not otherwise denoted we associate
(Yt)t≥0 to the reduced chain on state space E‘ = M ′ ∪ {Δ}.

The preceding Lemma 4.1.5 induces a very useful property: the killing time of the kQRW has
the same distribution as the time to absorption in the reduced model. This can be easily proven
by reformulating the lumping procedure as a matrix operation.
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4.1. DEFINITIONS AND PRELIMINARIES

Lemma 4.1.7 Let (Xt)t≥0 be a kQRW and (Yt)t≥0 its reduced version, given
in Lemma 4.1.5. Let furthermore be

τ̃Δ := inf {t ≥ 0 : Yt = Δ}

then
τΔ

d
= τ̃Δ

if μ|l(0) = μ′ holds.

Proof By Lemma 4.1.5 we already know that the infinitesimal generator Q associated to
(Xt)t≥0 is lumpable. By Theorem 2.10 in [TK06] there exist two matrices U, V such that Q is
lumpable if and only if

V UQV = QV. (4.4)

The extension of (4.4) to countable state space is problem free here, because each row of the
original process contains only finitely many non-zero entries. The lumpability criterion can by
the spatial homogeneity property of a kQRW be characterized on the transient states via the
∞×m-matrix U := (. . . , 0, Id, Id, Id, 0, . . .) non-zero only at levels −1, 0 and 1 where it coincides
with the m × m identity matrix and V the m × ∞ matrix zero everywhere except of level 0
where it is also the m × m identity. This also works for any other “reference levels” different
from 0.
The matrices have the useful property that UV = Id. The lumped infinitesimal generator

(restricted to the transients) is then given by

S̃ = USV.

With 4.4 we get that
S̃n = (USV )n = USnV,

where S̃ is the infinitesimal sub generator associated with the transients of (Yt)t≥0. We also
have by induction

V USnV = SnV.

The complete infinitesimal generator of (Yt)t≥0 is given as

Q̃

(
0 0

UR�
Δ USV

)
and the initial condition transforms to μV which is just the projection onto level l(0). Then

FτΔ(t) = 1− μV exp(USV t)1� = 1− μV
∑
n≥0

tn

n!
(USV )n1�

= 1− μ
∑
n≥0

tn

n!
V USnV︸ ︷︷ ︸
=S̃nV

1� = 1− μ exp(S̃t)V 1�︸︷︷︸
=1�

= Fτ̃Δ(t)

The last step of the computation turns the m-dimensional vector 1� into the infinite dimensional
vector 1� by multiplying with V .

�

Corollary 4.1.8 The statements of Lemma 4.1.5 and Lemma 4.1.7 are ana-
logue for the discrete kQRW.
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4.2 Lifetime

By Lemma 4.1.7 the lifetime of a kQRW with killing is simply the time to absorption in the
reduced model introduced in Lemma 4.1.5. The time to absorption is thus of PH-type distribu-
tion.

Proposition 4.2.1 Let (Xt)t≥0 be a kQRW. Then τΔ is PH-type distributed
with representation

τΔ ∼ PH(μ|l(0), A0 +A1 +A2)

where μ|l(0) is the initial distribution μ of (Xt)t≥0 restricted to level zero.

Proof Lemma 4.1.5 states that the absorption time of (Xt)t≥0 coincides with the absorption
time of the reduction (Yt)t≥0. Thus by chapter 2 the distribution of τΔ, the time until absorption
in Δ, is a PH-type distribution with representation as given in the statement of this proposition.

�

4.3 The notion of forward and backward steps and their

distribution

The kQRW contains a lot of information regarding both the time and the spatial development
of the process. Furthermore the associated infinitesimal generator resp. transition matrix is of
countable dimension and thus explicit calculations are difficult. The level process on the other
hand does not contain enough information in some sense. It totally ignores the fact that inside
levels several transitions can be done before changing level, thus it can not be Markovian.

We thus want to introduce an intermediate process (in discrete time), which we introduce
as step-process, that contains only information about the transitions between levels. We use it
extensively to characterize certain properties of the generalized Random Walker in the following,
which are difficult or impossible to achieve otherwise.

The idea behind the step-process is the observation that each trajectory can be split between
excursions to new levels. That means beginning at some state of l(0) the Random Walker
reaches after some time another level, say l(1) for the first time. After some transitions in l(1)
the Walker approaches a new level and so on and so forth. We derive a process that describes
exactly the probabilities of jumping from one level to another in such a way that the transition
probabilities describe the passage probabilities to another level from the state the process has
entered the level.

In analogy to the boundary notion defined in Definition 2.2.9 in chapter 2 we introduce a sort
of boundary set for the levels. We define them according to the states which can be reached
from either the left or the right level.
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Definition 4.3.1 Let (Xn)n≥0 be a (discrete time) kQRW on E = Z×M . For
level l(k) define the following sets:

1. Arrival from the left:

[]�[](k) :=
{
i ∈ M : ∃j ∈ M : p(k−1,j),(k,i) > 0

}
2. Arrival from the right:

[]�[](k) :=
{
i ∈ M : ∃j ∈ M : p(k+1,j),(k,i) > 0

}
We call the elements of these sets accordingly arrival states. The definition is
independent of the level by the spatial homogeneity of (Xn)n≥0, thus we just
write []�[] ([]�[]) if the context is clear.

We note that []�[] and []�[] do not need to be disjoint.

We are interested in the probabilities of starting in level 0 and hitting an arrival set of level
l(1) or l(−1) before killing and the probabilities of being killed before reaching another arrival
set. This is done by a modification of the process. To calculate these “passage probabilities”
between arrival states of neighboring levels, we set []�[](−1) and []�[](1) absorbing and use the
results of chapter 2, section 2.1 to condition to absorption in one of the states of the neighboring
arrival sets or Δ; this delivers the requested probabilities.

Δ

[]�[](-1)

[]�[](0)

[]�[](0)

[]�[](+1)

A1

A0

A2

Γ

Figure 4.2: Setting the arrival sets of l(−1) and l(+1) absorbing allows to compute the passage
probabilities between arrival states of neighboring levels.

67



4.3. THE NOTION OF FORWARD AND BACKWARD STEPS AND THEIR
DISTRIBUTION

Proposition 4.3.2 Let (Xt)t≥0 be a kQRW and infinitesimal generator as in-
troduced in Definition 4.1.1. Let i be an arrival state, i.e. i ∈ []�[](0) ∪ []�[](0),
then the probability to reach an arrival state (or Δ) j ∈ []�[](−1) ∪ []�[](1) ∪ {Δ}
of a neighboring level is given by

p(0,i),(±1,j) := ei(−A1)
−1R�

j ,

where Rj is the vector containing the transition rates of leaving the level l(0)
and arriving at the state j.

Proof If we define the set Δ′ := []�[](−1) ∪ []�[](1) ∪{Δ} as a set of absorbing states, see also fig.
4.2, we can interpret the problem of calculating the passage probabilities as the computation
of the absorption probability into a specific state of the set Δ′. The statement is then a direct
consequence of Lemma 2.2.2, chapter 2.

�

Remark 4.3.3 If we consider the continuous time kQRW we can also calculate the time
distribution of a passage from an arrival state to another in a neighboring level. These times are
given by recognizing that the absorption time of the conditioned process given in Lemma 2.2.2
have phase type distribution. Thus the passage time starting form (0, i) to (k, j), k ∈ {−1, 1},
i ∈ []�[](0) ∪ []�[](0), j ∈ []�[](−1) ∪ []�[](1) ∪ {Δ} is given by the distribution function

FT(0,i),(k,j)
(t) = 1− 1

p(0,i),(k,j)
ei exp(A1t)1

�

in the notation of Proposition 4.3.2.
�

With the passage probabilities computed in Proposition 4.3.2 we can build a new Quasi-
Random-Walk. Though we are only interested in the steps between levels, we restrict the new
state space to the arrival states.

Definition 4.3.4 Let MA := ([]�[](0)∪ []�[](0)) and E := Z×MA. Let m := |MA|
and define A1 := 0 (zero matrix of dimension m×m) and the m×m-matrices

A0 := (a
(0)
ij )i,j∈MA

, A2 := (a
(2)
ij )i,j∈MA

with

a
(0)
ij := p(0,i),(1,j),

a
(2)
ij := p(0,i),(−1,j)

and
Γ := (p(0,i),Δ)i∈MA

as given in 4.3.2. If the initial condition is concentrated on the arrival states
of level zero, we call the kQRW defined by the matrices A0, A1, A2 and Γ the
step-process.

The step-process has now the nice property that every transition encodes a step from one level
to another, or killing. Thus it is natural that the number of total transitions of the step-process
is just the number of levels the original process visits before being killed, thus Ln−1 �= Ln before
absorption for every n ≤ τΔ. Then the number of transitions until absorption can be described
by a discrete PH-distribution.
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Proposition 4.3.5 Let (Xn)n≥0 be a (discrete time) kQRW and let (Yn)n≥0 be
its associated step-process with initial distribution μ. Then the number of levels
visited, i.e. the length of the random vector

(L0, L1, . . . , LτΔ−1),

before absorption is equal in law to the absorption time of the step-process, i.e.

P(dim((L0, L1, . . . , LτΔ−1)) = k) = μ(A0 +A2)
k−1Γ�

for k ≥ 1.

Proof The result follows immediately by Lemma 4.1.5, as the absorption time of (Yn)n≥0

is identical with the one of its reduced version and is therefore a PH-type distribution with
representation PH(μ,A0 +A2).

�

With the total number of changes of levels a notion called run-length can be calculated, it is
the number of level changes multiplied by a displacement constant. We calculate this quantity
and others in chapter 5 for a model from biophysics.

We have introduced the step-process to answer more precise questions, for instance: “How
many transitions (steps) (k, i) → (k + 1, j) have occured before killing?”. We answer this
question by using the pattern matching introduced in chapter 1, section 3, together with the
notion of local time introduced in chapter 1, section 2. The idea is to first define a new Markov
chain on MA ×MA which allows to identify transitions of the original process as states of the
new chain, called 2-pattern chain in chapter 1, section 3. Then the local time allows to further
reduce the resulting Chain to a subset of states T � MA ×MA, i.e. transitions of the original
process. The number of visits of states in T is then the number of transitions before killing.

For the following result we refer also to Remark 1.4 in chapter 1, section 3, where we explain
how to use the notion of local time in the presence of absorbing states.
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Proposition 4.3.6 Let (Xn)n≥0 be a (discrete time) kQRW on Z×M . Assume
that the 2-pattern chain associated to the step-process of (Xn)n≥0 has transition
matrix P with, decomposed as follows

P =

⎛
⎝ 1 0 0

Γ�
T ST STT c

Γ�
T c ST cT ST c

⎞
⎠

for a subset T � MA × MA, where MA is the set of arrival states. Let μ =
(μT , μT c) be the initial condition of the step process. Let further be

S̃ := ST + STT c(Id − ST c)−1ST cT ,

Γ̃� := Γ�
T + STT c(Id− ST c)−1Γ�

T c

and
μ̃ = μT + μT c(Id− ST c)−1ST cT .

Then the total number of steps in T before killing has the following distribution:

P(#(steps in T) = k) =

{
μΔ k = 0

μ̃S̃k−1Γ̃� k ≥ 1
,

where Δ is the absorbing state of the 2-pattern chain.

Proof The step-process is a (discrete time) kQRW defined on Z × MA ∪ Δ. Then by the
discrete time version of Lemma 4.1.5, the step-process can be reduced to a chain with m + 1
states, where m := |MA|. The 2-pattern chain associated to the reduced version of the step
process is a Markov Chain with m2 + 1 states, as the transitions from i to Δ and from Δ
to Δ where aggregated into a new absorbing state, also denoted with Δ, see 1.4. Then the
total number of steps in T is the time to absorption in Δ and thus a PH-type distribution with
representation PH(μ̃, S̃).

�

Note that the same approach can be used to compute the number of certain transitions of the
original chain. It is then not necessary to switch to the step-process.

Remark 4.3.7 Throughout the whole chapter we assumed for simplicity that the initial dis-
tribution μ is concentrated on the arrival states of level l(0), thus the initial condition of the
step-process is just the restriction of μ to the arrival states. If the initial condition of the original
chain is concentrated in i �∈ []�[](0) ∪ []�[](0), a new “initial distribution” on the arrival states
can be constructed, by computing the passage probabilities from i to the arrival states before
leaving l(0). This is done by turning the states in []�[](0) ∪ []�[](0) absorbing and following the
approach in Proposition 4.3.2.

�

We now give an example to illustrate how to derive the step-process and some of the properties
mentioned above, as the preceding results are complicated to write down.
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Example 4.3.8 Let (Xn)n≥0 be a (discrete time) kQRW with M := {1, 2, 3} and

A2 :=

⎛
⎝0 0 1

2
0 0 0
0 0 0

⎞
⎠ , A1 :=

⎛
⎝0 1

2 0
1
3 0 1

3
0 1

2 0

⎞
⎠ , A0 :=

⎛
⎝0 0 0
0 0 0
1
2 0 0

⎞
⎠ ,

and let Γ := (0, 1
3 , 0). Let the initial condition be concentrated on 1 in level l(0). The

transition graph of this process is given in fig. 4.3.
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. . .
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. . .
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1
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1
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1
2

1
2

1
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1
3

1
3

Figure 4.3: Transition graph for a kQRW with three states per level.

Surely []�[] = {1} and []�[] = {3}, thus MA = {1, 3} � {1, 2, 3} = M and furthermore

(Id−A1)
−1 =

1

4

⎛
⎝5 3 1
2 6 2
1 3 5

⎞
⎠ .

Accordingly R1 = 1
2 (0, 0, 1) and R3 = 1

2 (1, 0, 0), therefore the hitting probabilities between
arrival states of neighboring levels are:

p(k,1),(k+1,1) = (1, 0, 0)(Id−A1)
−1R�

1 =
1

8
,

p(k,3),(k+1,1) = (0, 0, 1)(Id−A1)
−1R�

1 =
5

8
,

p(k,1),(k−1,3) = (1, 0, 0)(Id−A1)
−1R�

3 =
5

8
,

p(k,3),(k−1,3) = (0, 0, 1)(Id−A1)
−1R�

3 =
1

8
,

p(k,1),Δ = (1, 0, 0)(Id−A1)
−1Γ� =

1

4
,

p(k,3),Δ = (0, 0, 1)(Id−A1)
−1Γ� =

1

4
.

Thus the step-process (Yn)n≥0 of (Xn)n≥0 is defined on Z × {1, 3} ∪ {Δ} and characterized
by

A′
0 =

1

8

(
1 0
5 0

)
, A′

2 =
1

8

(
0 5
0 1

)
, Γ′ =

1

4
(1, 1).
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Figure 4.4: For graphical reasons the single state Δ has been split in two.

The transition graph of the step-process is depicted in fig. 4.4.
The reduced Chain associated to the step-process has transition matrix

P =

(
1 0
Γ′ A′

0 +A′
2

)
with

A′
0 + A′

2 =
1

8

(
1 5
5 1

)
and RΔ = 1

4 (1, 1) according to Lemma 4.1.5. It is a very simple three state model with transition
graph given in fig. 4.5

1

3

Δ

5
8

5
8

1
8

1
8

1
4

1
4

Figure 4.5: Reduced step-process

Now with Proposition 4.3.5 we gain

P(dim(L0, . . . , LτΔ−1) = k) = (1, 0)

(
1
8

5
8

5
8

1
8

)k−1( 1
4
1
4

)
=

1

4

(
1− 1

4

)k−1

,
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Figure 4.6: The 2-pattern chain. Δ appears twice only for graphical reasons.

which is a geometric distribution to the parameter 1
4 .

The number of changing level to the right in the original process can be calculated as follows.
Note that this is the same as the number of transitions to the right in the step process and also
the number of transitions from 1 to 1 and from 1 to 3 in the reduced step-process. First we
calculate the transition matrix of the 2-pattern chain associated to the reduced step-process, see
chapter 1 section 3. The result is

P ′ =
1

8

⎛
⎜⎜⎜⎜⎝
8 0 0 0 0
2 1 0 5 0
2 1 0 5 0
2 0 5 0 1
2 0 5 0 1

⎞
⎟⎟⎟⎟⎠ .

We order here like Δ, 11, 31, 13, 33. As the initial condition was concentrate on state (0, 1) we
have to compute a new initial distribution for the 2-pattern chain. The probability to start in
11 is just the probability of the going from 1 to 1 in a single step, which occurs with probability
1
8 . The other probabilities can be computed in the same way. Note that as the initial condition
is concentrated on 1 there is no weight on 33 and 31 initially in the initial distribution for the
2-pattern chain. The initial distribution is therefore μ′ = 1

8 (2, 1, 5, 0, 0). Note that there is a
positive probability to start in the absorbing state, as a transition from the starting state 1 of
the step-process to the absorbing state Δ is possible. That reflects quantitatively the possibility
that there are no forward steps at all before killing.
If we now want to count the number of right transitions, i.e. the number of steps from l(k) to

l(k + 1), we have to set M ′ = {(11), (21),Δ} and gain according to Proposition 4.3.6:

S̃ =

(
1
8 0
1
8 0

)
+

(
5
8 0
5
8 0

)(
1 − 1

8
0 7

8

)−1(
0 5

8
0 5

8

)
=

(
1
8

25
56

1
8

25
56

)
,

Γ̃ =

(
1
3
1
3

)
+

(
5
8 0
5
8 0

)(
1 − 1

8
0 7

8

)−1(1
4
1
4

)
=

(
3
7
3
7

)
,

μ̃ =
1

8
(1, 5).

Thus

P(number of right steps = k) = P(# {11, 31} = k) =

{
1
4 k = 0
9
28

(
4
7

)k−1
k ≥ 1

,

which is again very similar to a geometric distribution. It is however a very simple observation,
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that the total number of right transitions is dominated by the total number of steps (transitions
between levels resp. run-length) before absorption.

�

�

4.4 The last visited level and the minimal and maximal

level attained before killing

By the definition of a kQRW the event that absorption takes place has probability one. Theorem
2.2.11 showed how to condition a Markov Chain on leaving the set of transients via a specific
set of states. Thus we can easily condition the process to leave via a specific level by identifying
the states of a level that have a direct connection to the absorbing state Δ. In chapter 2 we
called the collection of those states the boundary, see Definition 2.2.9. Clearly the event that a
level l(z) was the last level before absorption regards only the position of the Random Walker.
We can thus restrict the investigation to discrete time.

Proposition 4.4.1 Let (Xn)n≥0 be a (discrete time) kQRW. Define Rk as vec-
tor of countable size containing only zeros except for the entries associated with
l(k) where it coincides with Γ, the m-dimensional vector of killing rates. Let the
initial distribution μ be concentrated on l(0). Then the last visited level LτΔ−1

has distribution:
Pμ(LτΔ−1 = k) = μ(Id− S)−1R�

k

holds.

Proof That the last level is l(k) is the condition that the process leaves via the states in
l(k). The statement is thus a consequence of Theorem 2.2.11, chapter 2, where we introduced
conditioning on leaving via some designated states.

�

Remark 4.4.2 Although the distribution of the last level before killing has an abstract form,
i.e. an infinite matrix needs to be inverted, we compute this distribution in Appendix C for the
simple case if |M | = 1. This is the case of a usual killed Random Walk we there identify Z×M

with Z, in other words l(k) = k.

�

The distribution of the maximum and the minimum before killing is easily calculated, if M
contains only one phase, i.e. E = Z×{Δ}. It is a killed Random Walk on Z. The probability of
starting from l(0) and reaching l(1) for the first time before killing is the probability p+ that l(1)
is the new maximum. After that a further first passage to the right would make l(2) be the new
maximum. But by the spatial homogeneity of the (here: discrete time) kQRW both probabilities
are equal. Therefore it is clear that in this case the maximum has geometric distribution with
parameter 1 − p+. However computing the exact value of p+ even in this simple case is not
simple, for this reason we have deferred this computation to Appendix C.

The situation changes if |M | ≥ 2. Then the initial distribution on l(0) comes into play and
the argument, that the passage probability from l(0) to l(1) is the same as from l(1) to l(2) does
not hold anymore. Fortunately we still can describe this case with similar arguments.
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Proposition 4.4.3 Let (Xn)n≥0 be a (discrete time) kQRW with initial dis-
tribution μ concentrated on l(0). Then the distribution of the maximal level
attained before absorption is given as

P(max {L0, L1, . . . , LτΔ−1} = k) =

{
(1− pk+1)pk k ≥ 1

1− p1 k = 0
(4.5)

with pi = μ((Id− S|k≤0)
−1A)i and S|k≤0 the matrix gained from S by replacing

in S as defined in Definition 4.1.1 all entries associated to positive levels with
zeros and accordingly A is gained from S by deleting all entries except the A0

at level l(1).

Proof Suppose we change the states of l(1) to absorbing states. Then we can calculate the
probability distribution of being absorbed in a state of l(1) before killing by

ν := μ(Id − S|k≤0)
−1A,

where ν is then distribution on l(1). This is a consequence of Corollary 2.2.3, chapter 2, where
we characterized absorption in a specific subset of absorbing states. That means also p1, the
probability to reach any of the states in l(1) is given as ν1�.
Starting now in l(1) and taking l(2) absorbing under start with the new distribution ν is by

spatial homogeneity the same as starting with ν (shifted to l(0)) and taking l(1) absorbing as
before. Now the new distribution on l(1) (or l(2)) has the form

ν(Id − S|k≤0)
−1A = μ((Id− S|k≤0)

−1A)2

and thus
p2 = μ((Id − S|k≤0)

−1A)21�.

In this interpretation it is clear that by iteration pi = μ((Id − S|k≤0)
−1A)i is a probability

distribution on level i. Then the probability that l(k), k ≥ 0 was the maximum level attained
before killing, is the probability to reach at some point level k and then being killed before a
first visit in k + 1, which is exactly 1− pk+1 by spatial homogeneity.

�

The minimum level ever attained has naturally the same form as (4.5), but with A0 and A2

exchanged.

The time to start in l(0) and attain l(1) resp. l(−1) for the first time is known in the literature
as first ascending resp. . descending ladder epoch. Especially for Random Walks this is very
well known and relates to many interesting properties. For a good and exploiting overview see
e.g. the book “Stopped Random Walks” by Gut ([Gut09]). We make some additional notes on
the relations with ladder epochs in Appendix C, where we give exact expressions for minimum
and maximum level distribution before killing.
The methods applied there also give an approximation scheme for the general case. This

approximation is done by restricting the process to a finite number of levels symmetrically
around l(0), say l(−n), l(−n + 1), . . . , l(n − 1), l(n), and alternating the transitions at l(n)
and l(−n) in such a way that absorption is ensured whenever the Walker tries to leave that
restriction. That means instead of reaching l(n+1) or l(−n− 1) the Walker is redirected to Δ.
The restriction can then be described by a finite state version of the original Chain by removing
all non reachable states from the state space. This makes it possible to evaluate the quantities
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given in Propositions 4.4.1 and 4.4.3 numerically, but it is not immediately clear how to choose a
proper n. Note also that the derived expressions are meant for infinite matrices, thus a rescaling
is necessary after the restriction to a finite number of levels.
However, for the killed Random Walk we can take the limit n → ∞ to get the distributions

of maximum level visited and last level before killing as weak limit of the restricted, finite state
versions.

The following remark indicates that there is “reduction” trick to circumvent the inversion
of an infinite matrix for the distribution of the maximal distances from zero and the last level
before absorption.

Remark 4.4.4 One could ask whether there is a finite modification (i.e. a finite state model)
which describes the first passage probability from l(0) to l(1). That this is not possible is a
consequence of automaton theory and regular languages. As it is not in the scope of this thesis
to relate automaton theory with absorbing Markov Chains, we just want to give a sketch of a
possible proof. For every absorbing Markov Chain with a finite set of states we can interpret
the sequence of transition probabilities between transient states as a word over the alphabet
Σ := {pij , i, j ∈ E \ {Δ}}. That each word is finite is assured if we assume that absorption is
certain, this holds for instance if the transient set is a single communication class. Then the
computer scientists call the set of all words L generated by the Markov Chain the associated
language L. Markov Chains are in this interpretation finite automatons. The theory now states
that L generated by a absorbing Markov Chain is a so called regular language; these languages
are in a sense languages with words that have no memory about how many letters appear before
a specific one (analog to the Markov Property). If we now want to compute the probability
of the passage from l(0) to l(1) before killing, say in the very simple case |M | = 1, then each
trajectory starting at 0 and arriving at 1 after a number of transitions would make left and
right transitions, denoted here with + and −, in a very specific way. The total number of +
is one more than −, but while − − + + + is a correct sequence (going 2 left, 2 right and then
going to level 1) the sequence + + − + − is not (the first transition leads already to level 1),
although the number of left and right transitions fits. Such expressions (up to the last +) are
known as correct bracket expression, for instance “−−++−+” can be assigned to “(())()”. It
is known that such expressions can not be generated by finite automatons, as these expressions
do not form a regular language. That is (after some reasonable effort to proof the “equivalence”
of absorbing Markov Chains and regular automatons) the reason that there is no finite state
Markov Chain allowing to compute the first passage to l(1) starting in l(0), easily in particular
not in the general case of |M | > 1. Thus there is no (easy) way to circumvent the inversion of
an infinite matrix in this setting.
The theory that belongs to this argumentation can be found in [EP02] and references therein

and has also some applications in the optimization of pattern matching chains, see e.g. [Nue08].
�
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Chapter 5

Modelling of Molecular Motors

and applications to Kinesin V

Every living being consists at least of one cell. As Hirokawa and Takemura write in [Sch03], p.
79 (shortened), a cell is quite complex:

A cell is not simply a bag filled with cytoplasmic fluid surrounded by the plasma
membrane in which membranous organelles ... float and through which newly syn-
thesized proteins diffuse to reach their destination. Instead, cells transport and sort
proteins and lipids after their synthesis to their proper destinations at appropriate
velocities in membranous organelles and protein complexes using various kinds of
motor proteins.

Those motor proteins are also called molecular motors. They fulfill several transport tasks,
among others carrying cargoes from one end of the cell to another. We consider one of them,
kinesin, in the following and apply the tools developed in the preceding sections to a physicists
model of this protein.

Kinesin is a relatively large protein, ∼ 100nm in size and consists of several parts, see also
fig. 5.1.

Figure 5.1: The two heads (dark blue) on the left attach to the microtubule and function like
foots walking on the tubule. The right clamp-like structure attaches to cargoes. The picture is
part of fig. 1 in [Val03].
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This molecular motor has two heads, that actually work like foots. They are called “heads”
because the chemical reactions that drive the process happens there; it is a usual chemists notion
for chemical active parts.

Kinesin walks (in a stochastic fashion) along little roads, calledmicro-tubules, that are spanned
between cell core and cell rim. These roads themselves are polymers, made out of several identical
parts. These building blocks have a size of 8nm. Each of kinesin’s heads can attach to exactly
one of this building blocks and walks step by step on the filament in a “hand-over-hand” fashion,
see [YTVS04, CC05]. Thus the steps kinesin makes have an equal constant size of 8nm. The
clamp like structure on the other end of the motor can bind to a cargo. By stepping along
the filament the cargo is pulled in one direction, as stepping forwards is very probable, i.e.
backwards step are very rare events under normal biological conditions, unless an additional
force pulls them into another direction.

The mechanism how kinesin actually walks along the tubules is known to work as follows. Each
of the heads has a so called “binding pocket”. This is the place where adenosine triphosphate
(ATP) can be hydrolyzed. The ATP is used in many processes and can be thought of as “fuel”. If
a binding pocket is occupied by an ATP molecule the head can bind very strongly to the tubules;
this state is called “T”. Now the ATP can be broken into adenosine diphosphate (ADP) and an
(anorganic) phosphate ion (that is the hydrolyzing process). After the release of the phosphate
the head is in a state called “D”, where a head is only weakly bound to the filament. The
further release of ADP brings the head into a state called “E”, where now the binding pocket is
empty and the head is again strongly bound to the filament. If a new ATP arrives the head can
return into state T and the cycle can begin anew. As every chemical reaction is reversible, the
process can run also in the other direction, depending on the concentrations of ATP, ADP and
phosphate. However, under normal conditions reversing the process is not very probable. As
each kinesin has two heads this makes a total number of 9 possible combinations of states. The
actual stepping can take place if one head is in state D and one in state T (that would be state
TD or DT). Then the head in state D has just broken up an ATP into ADP and an phosphate
ion, which is then released. The energy that gets freed by the consumption of ATP can be used
to rip off the weakly bound head from the filament and push it over the other strongly bound
one, where it can bind again to the filament. The motor has then made a single step. This
process works in both directions along the filament, but most of the motors have a preferred
direction of movement.

In [LL07] the authors identify for kinesin’s stepping six essential states (DT, TD, ET, TE,
DE, ED) for the walking mechanism, under the condition that the motor never unbinds from
the filament completely. They state that the states EE, DD and TT are never reached. We
might remark that, as computed in [VLL08], this model shows Time Duality. This can also be
proven by Corollary 3.2.10 from chapter 3; we omit the details here.

The six state model of [LL07] can be extended by the possibility of unbinding from the filament
when the motor attains state EE, see [LL08]. Including unbinding is a more natural situation
and fits nicely into the introduced framework of killed Quasi-Random Walk (kQRW).

We introduce the model of kinesin here as a kQRW (Xt)t≥0 on

E := Z× {1, 2, 3, . . . , 7} ∪ {Δ}
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by its transition graph, see fig. 5.2, the details about what states code which motor head
configuration are given in [LL08]. The resulting matrices Ai and Γ are given as follows:

A2 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 w52 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 w25 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

A1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 w12 0 0 0 w16 w17

w21 0 w23 0 0 0 w27

0 w32 0 w34 0 0 0
0 0 w43 0 w45 0 w47

0 0 0 w54 0 w56 w57

w61 0 0 0 w65 0 0
w71 w72 0 w74 w75 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and
Γ = (0, 0, 0, 0, 0, 0, w7Δ),

see fig. 5.2 for the definition of the transition rates wij .
We assume that the initial condition is concentrated on state 7 in level 0 and denote that by

μ0 = e7. This is assumed to be the state when the motor arrives at the tubule for the first time.
The introduced transition rates wij depend on concentrations of ATP, ADP, (anorganic)

phosphate P and a force F ∗. We choose here for these quantities the following values:

[ATP ] = 10μM, [ADP ] = 0.5μM, [P ] = 0.5μM, F ∗ ∈ {0, 10} ,
(where the brackets denote concentrations). In experiments F ∗ is a force that pulls the motor
against its preferred walking direction, to force the motor to make back steps which are else wise
very seldom and thus difficult to observe, see e.g. [SSSB93]. For the following computations we
shall consider the undisturbed case of F ∗ = 0 and the case F ∗ = 10.

5.1 Lifetime

According to Proposition 4.2.1, the distribution of the life time τΔ is given as a PH-type distri-
bution with representation

τΔ ∼ PH(e7, A0 +A1 +A2)

and thus

FτΔ(t) = 1− e7 exp((A0 +A1 +A2)t)1
�

and
fτΔ(t) = e7 exp((A0 +A1 +A2)t)Γ

�

according to Table 2.2. A numerical evaluation shows that FτΔ is not exponential as fig. 5.3
(left side) would suggest. A closer look at the density (same figure right side) unveils a “kink”
which is atypical for exponential distributions. The expectation of the killing resp. absorption
time is

F ∗ = 0 F ∗ = 10
E(τΔ) 6.0657s 4.127s
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l(−1) l(0) l(+1)

. . . 2

3 4

5

61

7 2

3 4

5

61

7 2

3 4

5

61

7 . . .

Δ

w56 = 200
1+exp(0.15F∗) , w12 = 4[ATP ]

1+exp(0.25F∗) , w25 = 2.95 exp(−0.65F ∗)

w65 = 0.06 [ADP ]
1+exp(0.15F∗) , w16 = 0.02 [P ]

1+exp(0.15F∗) , w21 = 200
1+exp(0.25F∗) ,

w52 = 0.36 exp(0.35F ∗), w54 = 3.08×10−10

1+exp(0.25F∗) , w17 = 2.8 [ADP ]
1+exp(0.15F∗)

w71 = 100
1+exp(0.15F∗) , w75 = 1.2×10−4[P ]

1+exp(0.15F∗) , w7Δ = 3 exp(0.1F ∗)
w57 = w71, w61 = w56, w23 = w56

w34 = w61, w45 = w12, w32 = w65

w43 = w16, w27 = w57, w72 = w75

w74 = w71, w47 = w17

Figure 5.2: A transition from i to j exists if an arrow connects them in the graph. The transition
rate is denoted by wij and given below the graph. The exact values of the various parameters
are given in [VLL08, LL08].

5.2 The step-process and derived quantities

The notion of steps is quite important in the analysis of motor models. Surely the state at which
the motors has completed a step (there are two possibilities, namely TD or DT) has an influence
of the further development. Once the motor has completed a step forwards it is in state TD,
but to make another forwards step, it has to return to the state DT of the same level before it
can make a step to the right. Otherwise it is not possible to toss the trailing head forwards.

The step-process introduced in chapter 4, see Definition 4.3.4, is designed to take care of
this form of “correlation”. Omitting the details of computation we give the resulting quantities
A′

0, A
′
1, A

′
2,Γ

′ for F ∗ = 0 and A′′
0 , A

′′
1 , A

′′
2 ,Γ

′′ for F ∗ = 10 that describe the step-process on
E = Z× {2, 5} (2 and 5 are the states that are reached first by switching level, we called these
states in chapter 4 arrival states, see also fig. 5.2, thereby 2 ≡ TD and 5 ≡ DT ):
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Figure 5.3: Distribution function (left) and density (right) of τΔ, for F
∗ = 0 (blue) and F ∗ = 10

(red). Note that the distribution functions are both zero at t = 0, but grow very fast near zero.
The reason is a kink in the density (see left).

F ∗ = 0 F ∗ = 10

A′
0 =

(
0 2.8938× 10−3

0 1.2381× 10−6

)
A′′

0 =

(
0 0.2190
0 0.0193

)
A′

1 =

(
0 0
0 0

)
A′′

1 =

(
0 0
0 0

)
A′

2 =

(
0.9842 0
0.9999 0

)
A′

2 =

(
0.6986 0
0.9644 0

)
Γ′� =

(
0.0129

1.1423× 10−5

)
Γ′′� =

(
0.0825
0.0163

)

Thus the transition matrices P ′ and P ′′ of the reduced model are given as:

P ′ :=
(
1 0
Γ′ A′

0 +A′
2

)
=

⎛
⎝ 1 0 0
1.2928× 10−2 0.9842 2.8938× 10−3

1.1423× 10−5 0.9999 1.2381× 10−6

⎞
⎠ (5.1)

and

P ′′ :=
(
1 0
Γ′ A′′

0 + A′′
2

)
=

⎛
⎝ 1 0 0
0.0825 0.6986 0.2190
0.0163 0.9644 0.0193

⎞
⎠ (5.2)

by the discrete time version of Lemma 4.1.5.
We give all computed quantities in Table 5.1.

As we shortly discussed in Remark 4.3, the initial distribution on state 7 of the original model
makes it necessary to compute a new initial distribution μ on the arrival states 2, 5 which reflect
the probabilities to start in state 7 and to reach 2, 5 and Δ before a new level is reached. We do
this by setting 2 and 5 absorbing and calculating the passage probabilities starting from state
7. Note that this implies an initial weight on the absorbing state Δ. This reflects the event that
a molecular motor detaches itself from the tubule without making any step.

The transition matrix P ′ is readily seen to privilege steps to the right with a very high
probability (the matrix A′

2 contains non-zero probabilities very close to 1). Thus the run-
length distribution is identical with the maximal level distribution, the number of forward steps
(transitions (k, 2) → (k + 1, 2) and (k, 5) → (k + 1, 2)) and also with the distribution of the
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F ∗ = 0 F ∗ = 10
expected lifetime E(τΔ) 6.0657s 4.1247s
initial distribution μ (0.0302, 0.4849, 0.4849) (0.1951, 0.4025, 0.4025)
expected number of steps 75.7248 11.7535
expected run-length 605.7984nm 94.0279nm
velocity ν 100nm

s
23nm

s

Table 5.1: All values are rounded.

last level visited before absorption. Therefore we compute only the run-length for F ∗ = 0. The
preceding problem does not exist for F ∗ = 10, thus we discuss this case separately.
The number of steps the motor does before it detaches from the tubule is distributed as

the absorption time of (Yn)n≥0 generated by (μ, P ′) resp. (μ, P ′′), where μ is the new initial
distribution, see Table 5.1 for F ∗ = 0 resp. F ∗ = 10. Thus the absorption time τΔ has a
discrete PH-type distribution with representation PH(μ,A′

0 + A′
2) resp. PH(μ,A′′

0 + A′′
2). The

distribution of the run-length is depicted in fig. 5.4.
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Figure 5.4: Distribution of the (total) number of steps before absorption for F ∗ = 0 (blue) and
F ∗ = 10 (red). Note that the value in 0 for the distribution drawn in red is about 0.2 and not
displayed.

As the distance a single step bridges is exactly 8nm for kinesin the expected value of the
run-length is the expected number of steps times this distance, see Table 5.1.
The ratio between expected run-length and expected life time is called “velocity” and denoted

here with ν.
Without further note we fix now F ∗ = 10 and continue applying the theoretical results from

chapter 4. As mentioned before Remark 4.4 in chapter 4, we have to approximate some expres-
sions as we cannot numerically invert an infinite matrix. The approximation is carried out by
taking only a finite number of levels into account, symmetrical around zero, applying the results
of chapter 4 and then rescaling to gain a probability distribution. This is an approximation (ac-
tually a truncation) which works quite good and fits to the results of simulations of the original
process (not shown here).
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The distributions of the maximal and the minimal distance from zero to the right and left are
depicted in fig. 5.5 and 5.6, see also Proposition 4.4.3 in chapter 4. The transition matrix of the
step-process P ′′ given in (5.2) shows that transitions (k, 2) → (k − 1, 5) have a probability of
about 0.2 (contrastingly, in the case of F ∗ = 0 this was almost zero). Such a transition would
be a backwards step after a forwards step (a left step after a right step). Still, the probability
to make another step to the left is very small (about 0.01). Thus the minimal level ever visited
should be very close to zero; this is confirmed by fig. 5.6. For the same reason the distribution
of the maximal level ever visited is broader, see fig. 5.5.
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Figure 5.5: Approximated distribution of the maximum level before absorption.

The distribution of the position at which the motor unbinds can be calculated by Proposition
4.4.1 with the same approximation scheme as before. As already mentioned, the probability to
make two steps to the left in sequence is very low, hence the level from which detachment takes
place should be positive with high probability. Fig. 5.7 confirms that heuristic assumption.
Fig. 5.8 shows the convergence behavior of the approximation.
We have seen, therefore, that some of the tools developed in chapter 4 allow to derive exact

distributions. Most of these distributions, especially the run time, run length and the maximum
distance have never been computed before, to the best of our knowledge. As these distributions
should be experimentally accessible, they may provide a further level of verification of the model
assumptions. From the scope of this work, we thus provide useful mathematically rigorous tools
to extend the range of predictability of present and future models for molecular motors.
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Figure 5.6: Distribution of the minimum level before absorption. Note that here the absolute
of the maximal distance from zero to the left is depicted, i.e. the maximum distribution when
A0 and A2 are exchanged.
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Figure 5.7: Approximated distribution of the last visited level before absorption.
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Figure 5.8: Plot of the approximation of the last level visited for 2n + 1 levels and n ∈
{1, 2, . . . , 9, 10, 20, 50} (from red to blue). Note that here convergence is quite good and er-
rors appear only at the artificial boundaries introduced for approximation (not shown). For
n > 50 the resulting curve does not differ significantly form the blue one.
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Chapter 6

Perspectives and Outlook

In this section we want to give a short overview what kind of questions did remain open and
could be starting point for further investigations.

6.1 Time Duality in Semi-Markov Chains

In chapter 3 we have introduced a relation between two states i and j named Time Duality.
This relation describes (roughly spoken) that the passage from i to j without return to i has
the same distribution as the passage from j to i without return to j.
The investigation of Time Duality relation was inspired by the papers [LW07, VLL08]; in

the first paper Time Duality was discussed for several possible motor models and in the second
Time Duality was found in an explicit computation for kinesin. We gave in this thesis a rigorous
mathematically treatment of this phenomenon based on the Laplace transforms of the pure
passage times, see sections 1 and 2 of chapter 3. The main advantage of this treatment is that
Time Duality can be reduced to a simple condition involving only elements of inverses of finite
matrices. This contrasts with the proof in [LW07], which involves (implicitly) a deep graph
theoretic argument about gradient functions which can be found e.g. in [BL92].
None of these methods gives an intuitive explanation about the reason why Time Duality

appears. Although we identified several geometrical settings for Time Duality, see chapter 3,
section 3.1.3, and also made connections to reversibility and the newly introduced permuted
balance, the examples in section 3.3.2 are not very intuitive in the following sense.
We continue the explanations with Example 3.1, see fig. 6.1.

1 2 3 4
1 1 1

1w1

Figure 6.1: Transition graph of Example 3.1, in chapter 3, for arbitrary w > 0.

We identified that the pure passage times τ∗14 and τ∗41 have PH-type distribution with repre-
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sentations as follows:

τ∗14 ∼ PH(δ2, S|4)
τ∗41 ∼ PH(δ3, S|1)

where

S|1 =

( −2 w
1+w

1 + w −1− w

)
, S|4 =

(−2 2
w
2 −1− w

)
,

and that

τ∗14
d
= τ∗41

d
= X + Y

where X,Y two independent exponentially distributed random variables. The parameters are
1 and 2 + w, which are the eigenvalues of −S|1 and −S|4. Surprisingly the embedded Markov
Chains of these two MCc’s conditioned to be absorbed in a designated state are identical (up
to the order of columns and rows), while S|1 and S|4 are not. The equivalence of the embedded
Markov Chains of the conditioned processes thus seems to be a necessary condition for Time
Duality.
Time Duality is indeed the comparison of absorption times. Unfortunately two absorption

times equal in distribution can be generated by very different Markov Chains, especially the
number of states can be different. In [O’C99] some problems and open questions are discussed,
amongst others the question of the minimal number of states necessary to represent a given
PH-type distribution. One way to solve such questions is purely algebraic and proposed in
[Ryd96, IAK92]. The conditions given in the papers involve twelve matrix conditions which are
difficult to understand in a probabilistic setting.
In chapter 4 we have introduced a special (discrete time) kQRW, the so called step-process,

see Definition 4.3.4. A continuous version, where transitions between states are not exponential
but given by the step times mentioned in Remark 4.3 is very interesting to the experimentalists,
as they can observe only this process, for an example see [LW07] and [VLL08]. Such a process
is a so called Semi Markov Chain, which is defined as follows. We give here only a rough
introduction adapted from the introduction to Semi Markov Chains in discrete time as given in
[BL08]. Details and applications (also for continuous time) can be found e.g. in [JM06, LO01].

Definition 6.1.1 Let (Zt)t≥0 be a stochastic process on the countable state
space E. Let (Jn)n≥0 be the sequence of visited states, (Sn)n≥0 the sequence
of jump times and (Xn)n≥1 the sequence of sojourn times in each state Jn; note
that Xn = Sn+1 − Sn. Then (Zt)t≥0 is a homogeneous Semi-Markov Chain if
and only if

P(Jn+1 = j, Sn+1 − Sn ≤ t|(J0, . . . , Jn) = (j0, . . . , jn−1, i); (S0, . . . , Sn) = (s0, . . . , sn))

= P(Jn+1 = j, Sn+1 − Sn ≤ t|Jn = i)

= P(J1 = j, S1 − S0 ≤ t|J0 = i) = P(J1 = j,X0 ≤ t|J0 = i)

holds whenever the condition has probability greater zero for states
j0, . . . , jn−1, i, j ∈ E and s0 < s1 < . . . < sn. The matrix-valued function
Q(t) = (qij(t))i,j∈E defined via

qij(t) := P(J1 = j,X0 ≤ t|J0 = i)

is called Semi-Markov Kernel.
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MODELING OF MOLECULAR MOTORS

Very much like in the Markov Chain regime we have a kind of independence from the past, but
the strong Markov Property does not hold anymore. Instead the Markov Property holds only
at jump times of the chain; at all other points the process “feels” a dependency on the time how
long it already stayed in a state; this is usually called “aging”. Thus the name Semi-Markov
Chain.
Without proof we just remark (see references above) that

qij(t) = pijFij(t)

where pij are the transition probabilities of the (embedded) homogeneous MCd (Jn)n≥0 and
Fij(t) are distribution functions.
Like in the Markov case it would be interesting to know how Time Duality would be defined

in the Semi-Markov regime. The question seems to be quite difficult. The main tool in the
Markov case was to determine how a MCc conditioned to absorption in a specific state can be
characterized. We used Lemma 2.2.2, which characterizes the conditioned process by a linear
transform of the original infinitesimal generator. The computation in the said lemma clearly
shows that the Markov Property plays a fundamental role.
In [LO01] Chapter 5, section 4 there is an interesting result regarding the notion of reliability.

Adopting the notation they use, we define

Ri(t) := Pi({∀u ∈ [0, t] : Zu ∈ E0})

the probability to be in a chosen subset E0 � E, |E0| = r, up to time t starting in i ∈ E0.
According to Proposition 5.3 in [LO01] this quantity can be calculated as follows:

Ri(t) = ei(Id−Q00(t))
(−1) ∗ (Id−H0(t))1

�
r (6.1)

where Q00(t) is the sub matrix of the Semi-Markov Kernel associated to the states in E0, H0 is
the diagonal matrix containing the survival probability in each state of E0 up to time t on the
diagonal and zero elsewhere and 1�

r the r-dimensional vector containing only ones. In contrast
to Markov Chains there appears a convolution inverse, which is characterized by

(Id−Q00(t))
(−1) =

∑
n≥0

(Q00(t))
(n)

where Q
(n)
00 (t) is the n-fold matrix convolution product of Q00(t) with itself. This latter equation

is the convolution analogue to the van Neumann series for non-negative matrices with spectral
radius strictly smaller than 1.
There is a remarkable similarity to the absorption probabilities given in Proposition 4.3.2

in the form of the expressions. Indeed the proof of this expression characterizes Ri(t) as the
probability that the first hitting time of Ec

0 is greater than t.
How exactly this can be used for conditioning a Semi Markov Chains is not clear, but it seems

feasible that reliability is a good starting point.

6.2 Extension to coupling of killed Quasi Random-Walks

in the modeling of Molecular Motors

In living cells cargoes are not transported by just a single molecular motor but rather by a
whole collection of possibly even different motor types. This makes both the mathematical and
experimental investigation more difficult, see e.g. [KL05, KML06] and references therein.
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MODELING OF MOLECULAR MOTORS

Investigations of possible models of cooperative motor transport begin usually with the case
of two motors bound to one cargo. As the motors are assumed to be irreversibly attached to
their cargo this regime implies some additional forces acting on the motors. For instance there
is a symmetric force between the leading motor and the one behind, pulling the second motor
forwards and the leading one backwards, where the strength of the force depends on the distance
of both motors. This force is usually modeled via a spring between the two motors or between
each motor and the cargo, see e.g. [BKM+11, BKKL12]. As in chapter 5 for the kinesin the
transition rates between the chemical states depend on this force. Furthermore the structure of
the microtubule the motors walk on implies that the steps are of equal constant size and thus
the forces that the pair of motors can only take a finite number of values. There also exists a
maximal force a motor can stand before it is ripped off the tubule.
One could define an extended version of a motor model by replacing the set of phases M (aka

the set of chemical states) by M ′ := M × F , where F is a set of possible values for the force.
This only extends the number of phases while the results of chapter 4 are still applicable, i.e.
the extension is still a Quasi-Random Walk with killing on Z×M ′.
Coupling is a useful method to model pairs of molecular motors mathematically, see e.g.

[Lin92] and for a series of nice examples and algorithmic applications [LPW09, Hae08]. Such a
coupling (between two motors) would be defined as follows:
Let (Xt)t≥0 and (Yt)t≥0 be two Quasi Random Walks with killing. Then the vector (Zt)t≥0 =

(Z
(1)
t , Z

(2)
t )t≥0 is called coupling of (Xt)t≥0 and (Yt)t≥0 if and only if

Z
(1)
t

d
= (Xt)t≥0,

Z
(2)
t

d
= (Yt)t≥0.

The definition of coupling allows a lot of freedom for the dependence between (Z
(1)
t )t≥0 and

(Z
(2)
t )t≥0. It is therefore possible to change the value of the force (in the extended motor model

on Z × (M × F )) whenever one of the two motors moves and thus inducing an increase or
decrease of the force between the motors.
Such a coupling can be defined for an arbitrary finite number of killed Quasi Random-Walks.

As the general treatment of such coupled processes surely is of interest to physicists it is not clear
if such coupled Quasi-Random Walks are mathematically treatable and what kind of (exact)
results can be obtained. The hope is of course that the defined coupling can be interpreted as a
new kQRW (seemingly with a very complicated state space), to be able to apply the results of
chapter 4.
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Appendix A

Matrix Theory

In this minimal review chapter we collect some properties and useful identities for matrix ma-
nipulations.

A.1 On the invertibility of subgenerators and substochas-

tic matrices

We rephrase here a lemma with its proof from [Neu94], chapter 2. The lemma concerns the
invertibility of any sub generator. It is a property of most importance, as the expressions for
the PH-type distributions, see Appendix B, rely heavily on this property, as well as the Schur
complement method to inverse block matrices in the next section.

Lemma A.1.1 Let Q be the infinitesimal generator of a MCc and S be the
submatrix of Q which contains all transitions between the transient states (if
existent). Then S is invertible.

Proof Suppose that S is not invertible, then there exists a vector y �= 0 such that yS = 0 (i.e.
0 is an eigenvalue of S). Then

y exp(Sξ)1� = y1�

for each ξ ∈ R and thus

lim
ξ→∞

y exp(Sξ)1� = y1� �= 0,

which is a contradiction to the assumption, as for each ξ ∈ R
+ the quantity exp(Sξ)1� is the

probability that the process is still in the set of transients for each ξ ≥ 0.

�

A similar proof for a substochastic matrix S shows that Id − S is invertible, see e.g. [KS76],
Theorem 3.2.1 and 1.11.1. It is also important to note that these matrices have a probabilistic
interpretation in terms of expectations, see [DS65] and [DS67].

With the Perron-Frobenius calculus it is possible to show that already the property of sub
stochasticity resp. being a sub generator is enough to make a (finite) matrix invertible, see
[Zha05].
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A.2. THE FROBENIUS FORMULA FOR BLOCK MATRICES

A.2 The Frobenius Formula for block matrices

The Frobenius Formula, as it is called in [Gan86], chapter 2, is well known in the literature
under the name Banachiewicz inversion formula. It has numerous applications ranging from
numerics, algebra to applications in statistics and probability theory.
The inverse of a block Matrix

M =

(
M11 M12

M21 M22

)
can be derived according to [Gan86], (86)-(89) via the identities

M−1 =

(
M−1

11 +M−1
11 M12H

−1M21M
−1
11 −M−1

11 M12H
−1

−H−1M21M
−1
11 H−1

)
(A.1)

if M11 is invertible, resp.

M−1 =

(
K−1 −K−1M12M

−1
22

−M−1
22 M21K

−1 M−1
22 +M−1

22 M21K
−1M12M

−1
22

)
(A.2)

if M22 is invertible. The matrices

H := M22 −M21M
−1
11 M12, K := M11 −M12M

−1
22 M21.

are called Schur complements throughout the literature. The book [Zha05] gives a good overview
over the vast applications of these matrices.
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Appendix B

On PH-type distributions

In the following we give the explicit computations of characteristica of PH-type distributions.
The computations follow the lines of [Neu94] and [LR99], but in more detail. Note also that we
used another definition of Laplace transform, thus our results differ by sign from the results of
Neuts.

We used the following definitions for the computations:

Definition B.0.1 Let X be some random variable with (cumulative) distribu-
tion function FX(t), with X ≥ 0 almost sure.

(i) If X takes its values in N0 the generating function of X is defined as
the power series

GX(z) :=
∑
n≥0

P(X = n)zn.

(ii) The moment generating function is defined as

MX(s) :=

∫ ∞

0

exp(st)dFX(t).

(iii) The characteristic function is defined as

φX(s) :=

∫ ∞

0

exp(ist)dFX(t)

where i is the imaginary unit.

B.1 Discrete time

B.1.1 Distribution and distribution function

Lemma B.1.1 The distribution of Xn is given by

P(Xn = .) =
(
μMSn, 1− μMSn1�) ∈ [0, 1]k+1
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B.1. DISCRETE TIME

Proof The n-th power of the transition matrix P is given by an induction argument by

Pn =

(
Sn

(∑n−1
k=0 S

k
)
R

0 1

)
.

Though P is a stochastic matrix S1�+R = 1� (the row sum of P must be one) and therefore

R = (Id− S)1�.

Then direct calculation unveals

P(Xn = .) = μPn =

(
μMSn, μM

(
n−1∑
k=0

Sk

)
R+ μΔ

)

=
(
μMSn, μM (Id− Sn)(Id − S)−1R+ μΔ

)
=
(
μMSn, μM (Id− Sn)1� + μΔ

)
=
(
μMSn, 1− μMSn1�) .

�

Lemma B.1.2 Let T ∼ PH(μM , S). Then T has distribution

P(T = n) =

{
μΔ n = 0

μMSn−1R n ≥ 1
.

Proof The probability to be already absorbed at time 0 is given by μΔ. To be absorbed
exactly at time n > 0 requires that the Markov Chain was in E \ {k} until time n − 1 before
transition at time n to the absorbing. state k. Lemma B.1.1 gives therefore

P(T = n) = P(X0 ∈ E \ {k} , . . . , Xn−1 ∈ E \ {k} , Xn = k) = μMSn−1R.

�

Lemma B.1.3 Let T ∼ PH(μM , S). Then the distribution function FT (t) :=
P(T ≤ t) of T is given by

FT (t) = (1 − μMS�t
1�)1R+(t)

for t ∈ R.

Proof Direct calculation shows

FT (n) = P(T ≤ n) =
n∑

l=0

P(T = l) = μM

(
n−1∑
l=0

Sl

)
R + μΔ

= μM

(
n−1∑
l=0

Sl −
n∑

l=1

Sl

)
1� + μΔ = μM (Id− Sn)1� + μΔ

= 1− μMSn1�
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B.1. DISCRETE TIME

Alternative
P(T ≤ n) = P(Xn = k)

delivers the same result.
�

Remark B.1.4 Though S contains transition probabilities between transient states only, the
spectral radius of S is strictly less than one and therefore

lim
n→∞Sn = 0

which is sufficient to show
lim
t→∞FT (t) = 1.

For t = 0 the distribution function takes the value

FT (0) = 1− μM1� = 1− 1 + μΔ = μΔ.

�

B.1.2 Generating function and factorial moments

Lemma B.1.5 The generating function of T with representation (μM , S) is
given by

GT (z) = μΔ + zμM (1− zS)
−1

R

for z ∈ R with |z| < 1.

Proof Using von Neumann series in the version for matrices shows

GT (z) =
∞∑
k=0

zkP(T = k) = μΔ + zμM

( ∞∑
k=0

(zS)k

)
R

= μΔ + zμM (Id− zS)
−1

R

�

Lemma B.1.6 The kth factorial moment of T with representation (μM , S) is
given by

E

(
T !

(T − k)!

)
= k!μMSk−1(Id− S)−k1�

for k ≥ 1.

Proof Lemma B.1.5 delivers an expression for the factorial moments of T by derivation with
respect to z of the generating function MT of T :

E

(
T !

(T − k)!

)
:= E(T (T − 1)(T − 2) . . . (T − k + 1))

=
dk

dzk
G

(k)
T (z)

∣∣∣∣
z=1−

= μMk!Sk−1(Id− S)−k−1R

= k!μMSk−1(Id − S)−k1�

�
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B.2. CONTINUOUS TIME

Corollary B.1.7 The expectation and variance of T with representation
(μM , S) are given by

E(T ) = μM (Id− S)−11�

and
Var(T ) = μM (Id+ S)(Id− S)−21� − (μM (Id− S)−11�)2

Proof Setting k = 1 in lemma B.1.6 delivers the expression for the expectation of T .
For the variance observe

Var(T ) = E

(
T !

(T − 2)!

)
+ E(T )− E(T )2

= 2μMS(Id− S)−21� + μM (Id− S)(Id− S)−21� − E(T )2

= μM (S + Id)(Id − S)−21� − E(T )2

Replacing E(T ) by the expression given in lemma B.1.6 for k = 1 finishes the calculations.
�

B.2 Continuous time

B.2.1 Distribution and distribution function

Lemma B.2.1 The distribution of the process (Xt)t≥0 at a given time t ≥ 0 is
given by

P(Xt = .) = (μM exp(St), 1− μM exp(St)1�).

Proof Recall
P(Xt = .) = μ exp(Qt).

Using the definition of the matrix exponential delivers

exp(Qt) =
∑
k≥0

Qk t
k

k!
=

(
Id 0
0 1

)
+
∑
k≥1

(
Sk S−1SkR

0 0

)
tk

k!

=

(∑
k≥0 S

k tk

k! S−1
(
−Id+

∑
k≥0 S

k tk

k!

)
R

0 1

)
using − S−1R = 1�

=

(
exp(St) 1� − exp(St)1�

0 1

)
Multiplying from the left with the initial distribution yields

μ exp(Qt) = (μM exp(St), 1− μM exp(St)1�)

as claimed.
�

Lemma B.2.2 The distribution function of T ∼ PH(μM , S) is given by

FT (t) = 1− μM exp(St)1�.
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B.2. CONTINUOUS TIME

Proof Write

FT (t) = P(T ≤ t) = 1− P(T > t) = 1− P(Xt ∈ {0, 1, . . . , k − 1})
= 1− μM exp(St)1�

�

Lemma B.2.3 The distribution of T ∼ PH(μM , S) is

PT (dt) = μM exp(St)Rdt+ μΔδ0(dt).

Proof Direct calculation shows

dFT (t) = −μM exp(St)S1�dt+ μΔδ0(t)

= μM exp(St)Rdt+ μΔδ0(t)

�

Note that the distribution function is not absolutely continuous with respect to Lebesgue-
measure as long there is an initial weight on the absorbing state.

B.2.2 Characteristic and moment generating function, moments

The calculations are continued with the characteristic function of T to derive a formula for the
moments of T .

Lemma B.2.4 The characteristic function of a phase type random variable T

with representation PH(μM , S) is

ϕT (s) = −μM (isId+ S)
−1

R+ μΔ

for |s| < 1.

Proof Direct calculation leads to

ϕT (s) =

∫ ∞

0

exp(ist)dFT (t) =

∫ ∞

0

exp(ist)(μM exp(St)R)dt+ μΔ

= μM

∑
n≥0

Sn

n!
(−is)−1

∫ ∞

0

(−is) exp(−(−is)t)tndtR+ μΔ

= −(is)−1μM

∑
n≥0

Sn

(−is)n
R + μΔ = −μM (isId+ S)

−1
R+ μΔ

�

Corollary B.2.5 The moment generating function of a phase type random
variable T with representation PH(μM , S) is

MT (s) = −μM (sId+ S)−1
R+ μΔ

and exists always.

97



B.2. CONTINUOUS TIME

Proof The proof is analogue to the proof of the characteristic function, as

MT (s) =

∫ ∞

0

exp(st)dFT (t).

�

Corollary B.2.6 All moments of a phase type random variable T with repre-
sentation PH(μM , S) exist and are given by

E(T n) = μM (−1)nn!S−n1�.

Proof Existence is ensured by the existence of the moment generating function. For n ≥ 1

E(T n) =
dn

dsn
MT (s)

∣∣∣∣
s=0

=
dn

dsn

(
−μM (sId+ S)−1

R+ μΔ

)∣∣∣∣
s=0

= μM (−1)n+1n!S−n S−1R︸ ︷︷ ︸
=−1�

= μM (−1)nn!S−n1�

as claimed.
�

Lemma B.2.7 The expectation of a phase type random variable T with repre-
sentation PH(μM , S) is given by

E(T ) = −μMS−11�

and the variance is

Var(T ) = 2μMS−21� − (μMS−11�)2.

Proof Both quantities are given by the moment generating function and

Var(T ) = E(T 2)− E(T )2.

�
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Appendix C

The simple killed Random Walk

In this short section we want to present applications of the results of chapter 4 to the simple
killed Random Walk, that is a killed Quasi-Random-Walk were the number of phases is one,
i.e. |M | = 1. In this case we identify Z × {1} with Z. The main tool of this section is
an approximation scheme in the sense that we introduce additional killing if the Random Walk
leaves the symmetric interval [−n, n]. The limit n → ∞ gives then the exact result as limit of the
approximation. We are aware of the fact that some of the results already exist in the literature,
some of them in [Gut09], but we do not find any references that use such an approximation
scheme. This scheme is also applied to the computations in chapter 5.

We restrict the attention to the distribution of the last state before killing and the distribution
of the maximum and minimum level ever attained before absorption and thus discrete time. All
other notions introduced in chapter 4 are solvable without treating infinite matrices, as for these
properties the chain can be reduced to a finite state version, see Lemmas 4.1.5 and 4.1.7. We
also just give the results without much commentary and too detailed proofs, some of them have
to be understood as sketches.

Δ

. . . −1 0 1 . . .
p p p p

qqqq

γ
γ

γ
γ

γ

Figure C.1: The simple killed Random Walk.
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We consider (Xn)n≥0 the killed Random Walk as defined on Z ∪ {Δ} with

S :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

. . . 0 p 0 . . . 0 0 . . .

. . . q 0 p . . . 0 0 . . .

. . . 0 q 0 . . . 0 0 . . .
...

...
...

. . .
...

...
. . . 0 0 0 . . . 0 p . . .

. . . 0 0 0 . . . q 0 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and (countable infinite) vector

R�
Δ = −S1� = γ1�

where γ + p+ q = 1.

Lemma C.0.8 Define the n× n matrix

Mn :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −p 0 . . . 0 0
−q 1 −p . . . 0 0
0 −q 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −p

0 0 0 . . . −q 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and fix
J(n) := det(Mn).

Then

J(n) =
1

2n+1

n+1∑
k=1

(
n+ 1

k

)
(1− (−1)k+1)(1− 4pq)

k−1
2

=
1

2n+1
√
1− 4pq

((
1 +
√
1− 4pq

)n+1

−
(
1−
√
1− 4pq

)n+1
)
.

Proof By Laplace’s formula for determinants:

J(n) = J(n− 1)− pqJ(n− 2) (C.1)

and J(0) = 1, J(1) = 1. This recursion is solved by the formula in the statement and is a
standard result.

�

We now can give by conditioning on the last state, see Theorem 2.2.11, the exact result for the
distribution of the last visited level before absorption resp. the position at which the Random
Walk is killed.
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Proposition C.0.9 Let (Xn)n≥0 be (discrete time) kQRW with |M | = 1, A0 =
p, A1 = 0, A2 = q and Γ = 1− p− q. Then

P(last visited level = k) =
(1 − p̃)(1 − q̃)

1− p̃q̃

{
p̃k k ≥ 0

q̃|k| k ≤ 0

with

p̃ :=
1− d

2q
, q̃ :=

1− d

2p

and d :=
√
1− 4pq.

Proof We fix first a finite version. Let therefore S|n be the (2n+ 1)× (2n+ 1) submatrix of
S associated to the states in {−n,−n+ 1, . . . ,−1, 0, 1, . . . , n}. To this matrix we can assign a
Markov Chain on {Δ} ∪ {−n,−n+ 1, . . . , n− 1, n} in discrete time with transition matrix

P|n :=

(
1 0
Γ|n S|n

)

and Γ|n the restriction of the original infinite vector Γ to [−n, n] with the addition that Γ|n(n) =
p+ γ and Γ|n(−n) = q+ γ ensuring that the Random Walker is absorbed if it tries to leave the
interval [−n, n].

As the Random Walk starts almost surely in 0 only one row of the inverse is needed. By the
inversion formula relating the inverse of a matrix with its determinant and adjoint matrix we
immediately get

e0M
−1
2n+1e

�
k =

{
pk

J(2n+1−k)
J(2n+1) 0 ≤ k ≤ n

q|k| J(2n+1−k)
J(2n+1) −n ≤ k ≤ 0

(C.2)

and thus by 2.2.11 a discrete distribution on [−n, n]; the distribution κn of the last visited
level in [−n, n]:

κn(k) =
γe0M

−1
2n+1e

�
k

γe0M
−1
2n+11

� =

{
1
Z
q|k|J(2n+ 1− k) −n ≤ k ≤ 0

1
Z
pkJ(2n+ 1− k) n ≥ k ≥ 0

where

Z := J(n) +

n∑
k=1

(pk + qk)J(n− k)

acts as renormalization constant, to ensure that κ is a probility measure.

It remains to calculate for every fixed k

lim
n→∞

J(2n+ 1− k)

Z

= lim
n→∞

J(2n+ 1− k)

J(2n+ 1) +
∑n

m=1(p
m + qm)J(2n+ 1−m)

.

Define L(n, k) := J(2n+1−k)
Z

, then (2pq)k

p+q−1L(n, k) reduces to
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L(n) =
(1 + d)k(1− d)n+1 + (1 − d)k(1 + d)n+1

2n+1d(pn+1 + qn+1)− (1− d)n+1d− (1 + d)n+1d

=
(1 + d)k

(
1−d
1+d

)n+1

+ (1− d)k

2n+1d(pn+1+qn+1)
(1+d)n+1 − d

(
1−d
1+d

)n+1

− d

.

Certainly 1−d
1+d

< 1 and thus

lim
n→∞

(
1− d

1 + d

)n

= 0

and

lim
n→∞

2n+1(pn+1 + qn+1)

(1 + d)n+1
= 0

because

2p

1 +
√
1− 4pq

=
2p(1−√

1− 4pq)

4pq
=

1−√(1− 2pq)2 − 4p2q2

2q

<
1−√(1 − 2pq)2

2q
= p < 1

and analogue for 2q
1+

√
1−4pq

.

Thus

lim
n→∞L(n) =

1− p− q

(2pq)k
(1− d)k

d

and the limit distribution is given as

κ∞(k) =
1− p− q

d

(
1− d

2pq

)k
{
pk k ≥ 0

q|k| k ≤ 0

=
γ

d

⎧⎪⎨
⎪⎩
(

1−d
2q

)k
k ≥ 0(

1−d
2p

)|k|
k ≤ 0

.

A simple calculation ensures that

γ

d
=

(1− p̃)(1 − q̃)

1− p̃q̃
.

What we (implicitly) calculated here is the weak limit for n → ∞ of the distributions of the
last visited levels for the finite approximations. The limit is a distribution on Z which resembles
the last visited level distribution of the original killed Random Walk.

�

The distribution of the last level is in its discrete version not very well known, see e.g. [KI06] for
basic properties. Conversely its continuous analogue is the famous First Error Law of Laplace.
This distribution is also known as double sided exponential distribution, as described for example
in [Fel68].
We want to compute the exact distribution of the minimal and maximal state attained before

killing:
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Proposition C.0.10 Let (Xn)n≥0 be (discrete time) generalized Random Walk
with |M | = 1, A0 = p, A1 = 0, A2 = q and Γ = 1 − p − q, see also fig. C.1.
Then

P(max {X0, X1, . . . , XτΔ−1} = k) = (1 − p+)p
k
+

and
P(min {X0, X1, . . . , XτΔ−1} = k) = (1 − p−)pk−

where p+ := 2p
1+d

and p− := 2q
1+d

with d :=
√
1− pq.

Proof For the calculation of the exact form of the distribution of the maximal and minimal
level attained before killing we can refer back to chapter 4. There we argued that because of
the spatial homogeneity the maximum distribution must be geometric with some parameter p+,
where p+ refers to the probability to start in 0 and reaching 1 before killing.

We set state 1 absorbing and calculate the probability to be absorbed in 1 before absorption
in Δ can take place. This is by chapter 2, section 3 given as

p+ = pe0(Id − S|k≤0)
−1e�0

where S|k≤0 is the restriction of S to the non positive integers. We approximate this infinite
matrix like in the proof of Proposition C.0.9 (and omit the details of the exact definition as it
is one to one to the preceding one, except that we take [−n, 0] as state space of the sequence of
approximating Markov Chains). With the notation of Lemma C.0.8 we have

e0(Id− S|k≤0)
−1e�0 =

det(Mn−1)

det(Mn)
=

J(n− 1)

J(n)
= 2

1
1+d

− (1−d)n

(1+d)n+1

1− (1−d)n+1

(1+d)n+1

n�∞−→ 2

1 + d
.

The proof for the minimum distribution is the same except that we need to compute

p− = pe0(Id− S|k≥0)
−1e�0

and thus need to approximate via considering intervals of the form [0, n].

�

As a final remark we want to draw attention to what happens if we compute the distribution
of XT where (Xn)n≥0 is a usual Random Walk (without killing) on Z moving forward with
probability p and backwards with q, p+q = 1, and T is a geometric distributed random variable
to the parameter 1− γ independent of (Xn)n≥0. Then we gain

P(XT = k) =
1− γ√
1− 4γ2pq

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1−

√
1−4γ2pq

2pγ

)k

k ≤ 0(
1−

√
1−4γ2pq

2qγ

)|k|
k ≥ 0

which is very similar to the distribution we gained in the previous case for the killed Random
Walk. The proof is made by combinatorial means:
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P(XT = 0) =
∑
n≥0

P(T = 2n)

(
2n

n

)
pnqn =

∑
n≥0

γn(1− γ)

(
2n

n

)
pnqn

= (1− γ)
∑
n≥0

(
2n

n

)
(γ2pq)n =

1− γ√
1− 4γ2pq

. (C.3)

More generally ending up in k ≥ 0 means that there is an excess of k steps. Thus

P(XT = k) =
∑
n≥0

P(T = 2n+ k)

(
2n+ k

n

)
pn+kqn

= (pγ)k(1− γ)
∑
n≥0

(
2n+ k

n

)
(γ2pq)n

(∗)
=

1− γ√
1− 4γ2pq

(
1−
√
1− 4γ2pq

2qγ

)k

The equal sign (∗) can be justified in the following way. In [GKP94], page 203, (5.72) states

∑
n≥0

(
2n+ k

n

)
zk =

B2(z)
k

√
1− 4z

with

B2(z) =
1−√

1− 4z

2z

as given in (5.68) in the reference for |z| < 1
4 . Setting z = γ2pq gives the desired result.

It is noteworthy that indeed

Gτ+(γ) :=
1−√1− 4γ2pq

2pγ

is the generating function of the so called “first ascending ladder epoch”, see e.g. [Gut09] section
2.9, evaluated at γ, the failure probability of the geometric distribution τ defined earlier.
The first ascending ladder epoch τ+ is the time needed to attain a new maximum of the

random walk (not stopped). This stopping time is defined as

τ+ := inf {n ≥ 0|Xn > 0} .

This is clearly also the first time that there is an excess of exactly one step to the right to the
total number of steps left and right and thus an extremum. By this combinatorial interpretation
we can calculate the generating function of τ+ in the same manner as the distribution of the
position after stopping according to a geometric time, but under the additional constraint that
the state at τ+ − 1 equals 0:

Gτ+(s) =
∑
n≥0

(
2n+ 1

n

)
1

2n+ 1
qnpn+1s2n+1 = sp

∑
n≥0

(
2n+ 1

n

)
(s2pq)n

2n+ 1

(∗∗)
= spB2(s

2pq) = sp
1−
√
1− 4s2pq

2s2pq
=

1−
√
1− 4s2pq

2qs
.
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Equation (∗∗) is justified as before by (5.68) in [GKP94]. In the same manner it is easy to see
that the generating function of the first descending ladder height

τ− := inf {n ≥ 0|Xn < 0}

has analogue form:

Gτ−(s) =
1−
√
1− 4s2pq

2ps
.

It is now obvious that the n-th ascending ladder epoch τ
(n)
+ has by spatial homogeneity and

the strong Markov Property (the process before τ
(n)
+ is independent from the process after that

time) the generating function:
G

τ
(n)
+

(s) =
(
Gτ+(s)

)n
.

Indeed (τ
(n)
+ )n≥0 is a renewal process. The exact behaviour of this renewal process depends

on whether the random walk oscillates or has drift to ±∞, i.e. the renewal process could be
terminating.
The above formulas are valid for |s2pq| < 1

4 . As pq ≤ 1
4 the parameter s can take any value

in [0, 1].
Going back to the interpretation of the skewed discrete Laplace distribution we gained for

Xτ , τ ∼ Geo(1 − γ), we can now write

P(Xτ = k) = P(Xτ = 0)

⎧⎨
⎩G

τ
(|k|)
−

(γ) k ≤ 0

G
τ
(k)
+

(γ) k ≥ 0
(C.4)

= P(Xτ = 0)

{(
Gτ−(γ)

)|k|
k ≤ 0(

Gτ+(γ)
)k

k ≥ 0
(C.5)

As we know that the resulting distribution is a discrete skewed Laplace distribution, we have
also:

P(Xτ = 0) =
(1−Gτ−(γ))(1 −Gτ+(γ))

1−Gτ−(γ)Gτ+(γ)

We must note that Gτ−(s) and Gτ+(s) can be defective if the random walk has a drift.
Because then the probability to never hit any negative or positive state is non zero, except in
the symmetric case p = q = 1

2 . This behaviour is (of course) directly reflected by the behaviour
of Gτ±(1) depending on p.
It is this kind of flexibility of perspectives on Random Walks that allows explicit calculations

in many cases and thus a huge literature evolved over the past decades. Unfortunately none
of the above approaches can be easily adapted to the killed Quasi-Random-Walk as defined in
chapter 4.
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Nomenclature

diag(μ) diagonal matrix with with the entries of μ as diagonal

0 (0, 0, 0, . . . , 0)

c complement of a set

d
= equality in distribution

−1 inversion of a matrix

∼ same distribution as, relation

� transposition of a matrix or vector

1 (1, 1, 1, . . . , 1)

1A indicatorfunction of the event A

∗ convolution

[]�[] states in a level that can be arrived from the left

[]�[] states in a level that can be arrived from the right

A0 matrix of transitions to the right in a kQRW or QBD

A1 matrix of transitions within a level in a kQRW or QBD

A2 matrix of transitions to the left in a kQRW or QBD

ADP adenosine diphosphate

ATP adenosine triphosphate

BD Birth-and-Death Process

〈i〉σ cylce generated by i with respect to σ

Ni�j connected neighborhood of i and j

E(X) expection of the r.v. X

E(λ) density of the exponential distribution to the parameter λ > 0

E countable set of states
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ei unit vector, i-th component 1

e.g. for instance

et al. et alii

etc. et cetera

ϕX(t) characteristic function of the r.v. X

FX(t) distribution function of the r.v. X

fX(t) density of the r.v. X , if existing

GX(t) generating function of the discrete r.v. X

Γ killing rates for one level

� gate

i.e. in explanation

J(n) determinant of Id-Q for a simple killed Random Walk

kQRW killed Quasi-Birth-and-Death Process

(Ln)n≥0 level process in discrete time

(Lt)t≥0 level process in continuous time

L(X) law of r.v. X

Λ the absorbing state of kQRW

MCc Markov Chain in continuous time

MCd Markov Chains in discrete time

MX(t) momentgenerating function of the r.v. X

μM micromolar, molar concentration, unit

M finite set of phases for a kQRW

N natural numbers

N
∗ natural numbers without zero

N0 natural numbers with zero

Ni neighborhood of i

P(X = .) distribution of the r.v. X

PX(dt) distribution of the r.v. X

PH(μM , S) representation of a phase type distribution

π the stationary distribution
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πi i-th component of the stationary distribution

P transition matrix

pij transition probability from i to j, entry of P

P phosphate ion

Q infinitesimal generator

Q(t) Semi-Markov kernel

qij transition rate from i to j, entry of Q

QBD Quasi-Birth-and-Death Process

R real numbers

R
+ positive real numbers

RΔ vector with transition rates/probabilities from the transients to Δ

resp. respectively

r.v. random variable

Sn symmetric group of order n

S sub stochastic matrix of sub generator

supp support

σ permutation

σij last exit time from i before reaching j

τ a stopping time

τij first passage time from i to j

τ∗ij pure passage time from i to j

Var(X) variance of the r.v. X

(Xn)n≥0 Markov Chain in discrete time

(Xt)t≥0 Markov Chain in continuous time

(Yn)n≥0 step-process in discrete time

(Yt)t≥0 step-process in continuous time

Z integers
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