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“Without mountains, we might find ourselves relieved that we can avoid the
pain of the ascent, but we will forever miss the thrill of the summit. And in

such a terribly scandalous trade-off, it is the absence of pain that becomes the
thief of life.”

– Craig D. Lounsbrough





0Abstract
The Lyman-𝛼 (Ly𝛼) line commonly assists in the detection of high-redshift galaxies, the so-called

Lyman-alpha emitters (LAEs). LAEs are useful tools to study the baryonic matter distribution of the

high-redshift universe. Exploring their spatial distribution not only reveals the large-scale structure of

the universe at early epochs, but it also provides an insight into the early formation and evolution of

the galaxies we observe today. Because dark matter halos (DMHs) serve as sites of galaxy formation,

the LAE distribution also traces that of the underlying dark matter. However, the details of this

relation and their co-evolution over time remain unclear. Moreover, theoretical studies predict that

the spatial distribution of LAEs also impacts their own circumgalactic medium (CGM) by influencing

their extended Ly𝛼 gaseous halos (LAHs), whose origin is still under investigation. In this thesis, I

make several contributions to improve the knowledge on these fields using samples of LAEs observed

with the Multi Unit Spectroscopic Explorer (MUSE) at redshifts of 3 < 𝑧 < 6.

I first use the widest sample of LAEs to study their large-scale clustering properties at different

epochs. I optimize the clustering method to efficiently constrain the spatial distribution of MUSE

LAEs. I then follow the traditional approach and assume a power-law correlation function to infer

the clustering strength of the sample and the typical mass of the host DMHs. I explore whether these

quantities depend on galaxy properties by splitting our sample into disjoint subsets. I find no evidence

for a strong dependence on UV absolute magnitude, Ly𝛼 equivalent width, and redshift. I compare

our results with those from a semi-analytical model of LAE formation and adopt a galaxy-conserving

evolution model to predict in which present-day DMHs MUSE-Wide-like DMHs will typically evolve.

I next include the deeper MUSE surveys and connect the clustering properties of ≈ 𝐿★ LAEs with

those of much fainter ones (≈ 0.04𝐿★). I then apply halo occupation distribution (HOD) modelling

to investigate the co-evolution between LAEs and their host DMHs. I am able to constrain the

occupation of the DMHs, the DMH masses needed to host central and satellite LAEs, and the satellite

fractions of our datasets. Our results suggest that the most common scenario for LAEs is that in

which DMHs typically host only one LAE. I also report a strong (8𝜎) clustering dependence on

Ly𝛼 luminosity, where the most luminous LAEs cluster twice more strongly and reside in ten times

more massive DMHs than the lowest luminosity ones. This has important implications on evolving

Ly𝛼 luminosity functions, halo mass-dependent Ly𝛼 escape fractions, and incomplete reionization

signatures, which I discuss.

Third, I connect the clustering of LAEs to the surrounding CGM. Simulation studies predict that

the Ly𝛼 emission of faint, individually undetected LAEs significantly contribute to the observed

extended LAHs. For the first time, I address this problem from an observational angle. I combine

the HOD-modelled LAE clustering properties with assumptions on the Ly𝛼 luminosity function

to estimate the background surface brightness (SB) due to undetected LAEs. I consider various

clustering scenarios and luminosities for the faint sources. I infer Ly𝛼 SB profiles in the range of

(0.4− 2) × 10
20

erg s
−1

cm
−2

arcsec
−2
, which decline very slowly with distance from the center of the

LAE. This provides evidence that the outer regions of observed LAHs (𝑅 ≳ 50 pkpc) could indeed be

dominated by external LAEs. The inner regions, on the other hand, are too bright to be significantly

affected by clustering. Overall, our results are in agreement with the predicted radial profiles from a

plethora of simulations.

I finally explore whether environment also influences the LAHs. I adopt various approaches to

identify overdense regions of LAEs at different scales. I use their available LAH properties and find

that the distributions of the LAH scale length and halo fraction of the total Ly𝛼 flux of LAEs that

reside inside and outside overdense regions are mathematically indistinguishable.
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0Zusammenfassung

Die Lyman-𝛼 (Ly𝛼)-Linie erleichtert die Detektion von Galaxien bei hoher Rotverschiebung, soge-

nannten den Lyman-Alpha-Emittern (LAEs). Die Erforschung ihrer Verteilung enthüllt nicht nur

die großräumige Struktur des Universums in frühen Epochen, sondern bietet auch einen Einblick

in die Entstehung und Entwicklung der Galaxien, die wir heute beobachten. Da Halos aus Dunkler

Materie (DMHs) als Orte der Galaxienentstehung dienen, spiegelt die LAE-Verteilung auch die der

zugrunde liegenden Dunklen Materie wider. Darüber hinaus sagen theoretische Studien voraus, dass

die Verteilung von LAEs auch Auswirkungen auf ihr eigenes zirkumgalaktisches Medium (CGM) hat,

indem sie ihre ausgedehnten gasförmigen Ly𝛼-Halos (LAHs) beeinflusst. In dieser Dissertation leiste

ich mehrere Beiträge zur Verbesserung des Wissens über diese Felder anhand von Stichproben von

LAEs, die mit dem Multi Unit Spectroscopic Explorer (MUSE) bei Rotverschiebungen von 3 < 𝑧 < 6

beobachtet wurden.

Ich verwende zunächst die breiteste Stichprobe von LAEs, um ihre Clustering-Eigenschaften in

verschiedenen Epochen zu untersuchen. Ich optimiere die Clustering-Methode, um die Verteilung von

MUSE LAEs effizient einzuschränken. Anschließend folge ich dem traditionellen Ansatz und gehen

von einer Potenzgesetz-Korrelationsfunktion aus, um die Clustering-Stärke der Stichprobe und die

typische Masse der Wirts-DMHs abzuleiten. Ich finde keine Hinweise auf eine starke Abhängigkeit

von der absoluten UV-Helligkeit, der Ly𝛼-Äquivalentbreite und der Rotverschiebung. Ich vergleiche

unsere Ergebnisse mit denen eines semianalytischen Modells der LAE-Entstehung und verwende

ein galaxienerhaltendes Evolutionsmodell, um vorherzusagen, in welchen heutigen DMHs sich

MUSE-Wide-ähnliche DMHs typischerweise entwickeln werden.

Als nächstes beziehe ich die tieferen MUSE-Stichproben ein und verbinden die Clustering- Ei-

genschaften von ≈ 𝐿★ LAEs mit denen von viel schwächeren (≈ 0.04𝐿★). Anschließend wende ich

die Modellierung der Halo-Besetzungsverteilung (HOD) an, um die Koevolution zwischen LAEs

und ihren Wirts-DMHs zu untersuchen. Ich kann die Besetzung von DMHs, die DMH-Massen, die

DMH-Massen, die benötigt werden, um zentralen LAE und Satelliten-LAE enthalten zu können, und

die Satellitenanteile unserer Datensätze einschränken. Unsere Ergebnisse deuten darauf hin, dass

das häufigste Szenario für LAEs darin besteht, dass DMHs typischerweise nur einen LAE hosten.

Ich zeige auch über eine starke (8𝜎) Clustering-Abhängigkeit von der Ly𝛼-Leuchtkraft, wobei die

leuchtkräftigsten LAEs doppelt so stark clustern und sich in × 10 massereicheren DMHs befinden als

die mit der niedrigsten Leuchtkraft. Ich diskutiere wichtigen Auswirkungen auf die Entwicklung

von Ly𝛼-Leuchtkraftfunktionen, der Zusammenhang der Halomassen und der Ly𝛼 Fluchtanteile und

unvollständige Reionisierungssignaturen.

Drittens verbinde ich das Clustering von LAEs mit dem umgebenden CGM. Zum ersten Mal gehe

ich dieses Problem aus einer Beobachtungsperspektive an. Ich kombiniere die HOD-modellierten

LAE-Clustering-Eigenschaften mit Annahmen zur Ly𝛼-Leuchtkraftfunktion, um die Hintergrund-

oberflächenhelligkeit (SB) aufgrund unentdeckter LAEs abzuschätzen. Ich betrachte verschiedene

Clustering-Szenarien und Leuchtstärken für die schwachen Galaxien. Ich leite Ly𝛼 SB-Profile im

Bereich von (0.4 − 2) × 10
20

erg s
−1

cm
−2

arcsec
−2

ab, die mit der Entfernung vom Zentrum des LAE

sehr langsam abnehmen. Dies liefert Hinweise darauf, dass die äußeren Regionen der beobachteten

LAHs (𝑅 ≳ 50 pkpc) tatsächlich von externen LAEs dominiert werden könnten. Insgesamt stim-

men unsere Ergebnisse mit den vorhergesagten Radialprofilen aus einer Vielzahl von Simulationen

überein.

Ich untersuche schließlich, ob die Umgebung auch die LAHs beeinflusst. Ich wende verschiedene

Ansätze an, um überdichte Regionen von LAEs auf verschiedenen Skalen zu identifizieren. Ich nutze

ihre verfügbaren LAH-Eigenschaften und stellen fest, dass die Verteilungen der LAH-Skalenlänge

und des Halo-Anteils am gesamten Ly𝛼-Fluss von LAEs, die sich innerhalb und außerhalb überdichter

Regionen befinden, mathematisch nicht unterscheidbar sind.
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Chapter 1

1.1 Large-scale structure of
the universe

Matter in the universe is not randomly dis-

tributed. Although the universe appears to be

homogeneous on large scales, there is inhomo-

geneity or clumpyness on scales larger than the

galactic sizes. This is commonly referred as the

large-scale structure of the universe (or cosmic

web). In the following, I explain in simple terms

how this structure formed, starting from the first

density fluctuations in the universe.

1.1.1 Structure formation
Quantum processes that occurred in the first

fraction of a second during the inflationary era
1

produced fluctuations in the density field of the

universe. These can be expressed as:

𝛿 (𝑥) = 𝜌 (𝑥) − 𝜌
𝜌

, (1.1)

where 𝜌 (𝑥) is the local density at a given posi-

tion 𝑥 and 𝜌 is the mean density of the universe.

These density fluctuations grow under the in-

fluence of gravity by attracting matter. Their

growth rate depends on the scale factor 𝑎, which

parametrizes the relative expansion of the uni-

verse, and on the density of the dominant compo-

nent of the universe at a given epoch. Depending

on the nature of this constituent i.e., matter (dark

and baryonic), radiation or dark energy, fluctua-

tions grow at different rates.

During the first 47000 years of the universe

(or up to a redshift of 𝑧 = 3600), the dominant

constituent of the universe was radiation. As

radiation redshifted away, the mass energy ex-

ceeded radiation energy and matter dominated

the universe between 0.4 < 𝑧 < 3600 (from 47000

years to 9.8 billion years after the Big Bang). The

dark-energy-dominated era is believed to be the

last phase of the universe, which started when

the universe was about 9.8 billion years (𝑧 = 0.4)

and continues today. Hence, the universe was

matter dominated during the majority of its exis-

tence, which allowed mass density fluctuations

to grow and form new structure.

For small density fluctuations (𝛿 (𝑥) << 1),

we can assume spherical symmetry and apply

linear structure formation theory. Fluctuations

can then be decomposed as a superposition of

plane harmonic waves, 𝛿𝑘 , with different am-

plitudes, wavelengths and phases. Within this

framework, high density fluctuations (but still

𝛿 (𝑥) << 1) are the result of long wave super-

positions and tend to be found close together

i.e., tend to cluster, which is paramount for how

matter is distributed in the universe today. This

approach is often applied to the early universe

because of its homogeneity (and thus small den-

sity fluctuations).

The relation between density fluctuations and

harmonic waves is described by a Fourier trans-

form:

𝛿 (𝑥) =
∑︁
𝑘

𝛿𝑘 · exp (−𝑖k · 𝑥), (1.2)

where the wave number k is defined as k = 2𝜋
𝜆
,

with 𝜆 being the wavelength. The squared of

the amplitude of this equation averaged over all

waves is the matter power spectrum, 𝑃 (𝑘):

𝑃 (𝑘) = ⟨|𝛿k |2⟩𝑘 , (1.3)

which informs about the amount of structure on

any Fourier scale 𝑘 .

As fluctuations continue growing (𝛿 (𝑥) > 1),

spherical symmetry and linear theory do no

longer apply. In non-linear structure formation,

fluctuations collapse along one direction, form-

ing sheets of matter (Zel’dovich, 1970). These

then collapse along the second direction and

form filaments of matter, which will eventually

collapse to form dark matter halos (DMHs).

1
The inflationary era is the period of time in which the early universe expanded exponentially. This epoch is believed

to have lasted from 10
−36

seconds to 10
−32.5

seconds after the Big Bang. After this, the universe expanded at a slower rate.
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Figure 1.1: Dark matter and galaxy distribution. Left figure: Projected mass density illustrating the growth of

structure from 𝑧 = 8.55 to 𝑧 = 0 (rows). The densest regions are the brightest. The density snapshots were

projected over 15 comoving ℎ−1Mpc. The left and right columns show the dark matter and galaxy distributions,

respectively. Right figure: The 2pcf of the same galaxies (left) and dark matter (right) as those in the left figure.

Different colors represent the various redshifts considered in the left figure. For comparison, the 𝑧 = 0 2pcf of

dark matter is shown as a dashed line in the galaxies panel. Image adapted from Springel et al. (2006).

As halos virialize, collapse halts and DMHs

grow hierarchically by accretion and mergers

with other halos (Sheth et al., 2001). This non-

linear structure formation scenario is well de-

scribed with a perturbative analytical approach.

For instance, the well-known (extended) Press-

Schechter formalism (Press & Schechter, 1974)

provides expressions for the formation time of

DMHs, the relative density at which the halo

forms, its size, mass, etc.

Non-linear structure formation gives place to

the cosmic web of dark matter filaments, where

the most massive halos are found at the nodes

and less massive halos are located throughout.

These halos form the skeleton where stars and

galaxies will be born.

1.1.2 Galaxy formation
The interaction between gravity, pressure and

baryons produced acoustic density waves, which

caused oscillations in the density field of the

visible baryonic matter (rather than in the non-

visible dark matter, as for DMH formation; see

previous section). As understood by hierarchical

structure formation, the first stars and galaxies

formed from the collapse of these mass pertur-

bations, from small to larger mass scales. These

oscillations can be seen today as wiggles in the

matter power spectrum at around 100 ℎ−1Mpc

and are known as baryon acoustic oscillations

(BAO)
2
.

Baryonic fluctuations did not collapse simulta-

neously with dark matter perturbations. Dur-

ing the matter-dominated era and before the

recombination epoch
3
, photons were able to

damp baryonic fluctuations by dragging baryons

along, which impeded baryonic-matter fluctu-

ations to grow. For dark matter perturbations,

on the other hand, there was no obstacle that

prevented their growth and only after these col-

lapsed, baryonic-matter fluctuations did too.

After the collapse of baryonic perturbations,

gas and dark matter were initially well mixed

(plasma state). When gas was able to dissipate,

it flowed into the potential well of DMHs (lo-

cated in the highest density regions of the dark

matter distribution). Gas settled into hydrostatic

equilibrium and, once it became dense enough,

it fragmented into the first stars by cooling and

condensation (e.g., White & Rees, 1978; White &

Frenk, 1991), following the already existing dark

matter distribution. Galaxies then grew by gas

accretion and merging, because their DMHs also

2
BAO are considered a "standard ruler" for length scale. They represent the maximum distance the acoustic density

waves could travel in the early universe before the first neutral atoms formed and halted the growth of the waves.

3
The recombination epoch is the era in which electrons and protons combined to form neutral hydrogen atoms at

𝑧 = 1100.
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merged. The growth, properties and distribu-

tion of galaxies are therefore tightly connected

to those of their host DMHs.

Because galaxies form in high density peaks

of matter (see the two bottom panels of the left

figure in Fig. 1.1), these are the only regions we

observe when we look at the night sky. Galaxies

are thus biased tracers of the matter distribu-

tion of the universe. This bias can be further

strengthen or weaken due to baryonic processes

such as gas cooling or feedback. While the for-

mer process increases the baryonic density and

results in baryons forming more structure than

dark matter, through the latter process we en-

counter the opposite scenario. Gas cooling can

contract the DMH due to the galaxy formation in

its center, which varies the amount of structure

on small scales (Blumenthal et al., 2016). Feed-

back, on the other hand, can expand the DMH

due to the large amounts of gas that galaxies may

expel.

The left figure in Fig. 1.1 shows the darkmatter

(left panels) and galaxy (right panels) distribu-

tions at 𝑧 = 8.55, 5.72, 0. While the dark matter

distribution is extracted from the Millennium

simulation (Springel et al., 2005), the galaxy dis-

tribution was derived from semi-analytic tech-

niques that model galaxy formation. Although

at 𝑧 = 8.55 (top row) structure was somewhat

smooth, at 𝑧 = 5.72 (middle row) dark matter

already displays an intermediate stage of the

current cosmic web. Galaxies, visible as small

clumps of stars, also formed (in the most mas-

sive DMHs). By 𝑧 = 0 (today, 13.8 billion years

after the Big Bang; last row), the dark matter dis-

tribution is very pronounced and galaxies keep

growing in the high density peaks of dark matter

density. Today, about 27% of the mass of the uni-

verse is dark matter, whereas only 5% is baryonic

matter (PlanckCollaboration, 2016).

To constrain the large-scale properties of the

mass distribution of the universe and to interpret

the darkmatter-galaxy relation, it is crucial to un-

derstand the galaxy bias. Abundance matching

studies (e.g., Behroozi et al. 2010), using galaxy

clusters to aim at observationally finding individ-

ual DMHs (e.g., Yang et al. 2005a), weak gravita-

tional lensing, satellite kinematics, galaxy voids,

galaxy scaling relations, etc., offer information

about the galaxy-halo relation (see Wechsler &

Tinker 2018 for a review). One of the most com-

mon approaches to investigate this matter is by

measuring how galaxies cluster.

Figure 1.2: Large-scale structure of the universe

traced by galaxies detected in spectroscopic redshift

surveys (blue) and from mock catalogues built using

semi-analytic modelling to simulate the formation

and evolution of galaxies within the dark matter dis-

tribution of the Millennium cosmological simulation

(red). Figure from Springel et al. (2006).

1.2 Galaxy clustering
The beginning of galaxy surveys allowed the

first measurements of galaxy clustering (Baugh,

1996), although the "unevenness in the galaxy

distribution" was already noted in the thirties

(Shapley & Ames, 1932; Hubble, 1934). This field

was revolutionized with the first large spectro-

scopic redshift surveys, such as the Center for

Astrophysics redshift survey (CfA; Davis & Pee-

bles, 1983), the Two-degree Field Galaxy Redshift

Survey (2dFGRS; Colless et al., 2001), or the Sloan

Digital Sky Survey (SDSS; Strauss et al., 2002).

These surveys are displayed on the left half

of Fig. 1.2 (blue), where the underlying dark

matter filaments and nodes are clearly traced

by the surveyed galaxies. The right half of the

figure shows mock galaxy samples (red) built us-

ing semi-analytic modelling of galaxy formation,

coupled to the darkmatter distribution of theMil-

lennium simulations (Springel et al., 2005). This

figure illustrates the excellent match between

the predictions from the standard model of cos-

mology (i.e., Lambda Cold Dark Matter, 𝛬CDM)

and large-scale observations.

Although complex and scale dependent, mea-

suring the properties of this structure and infer-

ring information about the bias between galaxy
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and dark matter is regularly done with two-point

correlation statistics (Mo & White, 1996; Coil et

al., 2012).

1.2.1 The two-point correlation
function

The clustering of galaxies is frequently measured

with the two-point (auto) correlation function

(2pcf or 𝜉 (𝑟 )). The 2pcf is defined as the excess

probability d𝑃 over a random Poisson distribu-

tion of finding a galaxy 𝑖 from another galaxy

𝑗 at a given distance 𝑟 in a volume d𝑉 with a

number density 𝑛 (Peebles, 1980):

d𝑃 = 𝑛 · [1 + 𝜉 (𝑟 )] · d𝑉 . (1.4)

The 2pcf is the inverse fourier transform of the

power spectrum (see Sect. 1.1.1) and similarly in-

forms about the amount of structure on any scale

𝑟 . While a clustered sample of galaxies would de-

liver 𝜉 (𝑟 ) > 0 (i.e., there is structure being traced

by the galaxy sample), in a randomly distributed

dataset we would infer 𝜉 (𝑟 ) = 0 (i.e., there is no

structure imprinted in the dataset).

In practice, the 2pcf is estimated from the com-

parison between the observed number of galaxy

pairs and the expectation for an unclustered sam-

ple (i.e., a set of randomly distributed galaxies,

hereafter random sample). To perform that com-

parison, we create a random sample that covers

the same area of the sky and presents a similar

redsfhit distribution to the observed dataset. The

random sample should be significantly larger

(about hundred times) than the real dataset to

avoid the inclusion of Poisson uncertainties in

the measurements.

A widely used clustering estimator is the one

proposed by Peebles & Hauser (1974):

𝜉 (𝑟 ) = 𝑛𝑅

𝑛𝐷

𝐷𝐷 (𝑟 )
𝑅𝑅(𝑟 ) − 1, (1.5)

where 𝐷𝐷 and 𝑅𝑅 are the pair counts of the real

and random data, respectively. The correspond-

ing mean number densities are 𝑛𝐷 and 𝑛𝑅 and ac-

count for the difference in the number of galaxies

in the two samples. Another common estimator,

based on the same concept but carrying smaller

statistical uncertainties, is the one proposed by

Landy & Szalay (1993). I apply this estimator in

Chapter 2.

An example of 2pcf measurement is shown in

the right figure of Fig. 1.1, which illustrates the

2pcf measured with galaxies (left panel) and dark

matter (right panel) at various redshifts. These

correspond to the same epochs as the simula-

tions shown on the left figure. Both the galaxy

and dark matter 2pcf present clustering signals

(𝜉 (𝑟 ) > 0). The amplitude of the 2pcfs decreases

with increasing redshift, although the galaxy

2pcf has a similar strength at 𝑧 = 8.55 and at

𝑧 = 0. This clustering dependence on epoch

(and on galaxy properties) will be covered in

Sect. 1.2.4. Moreover, the shapes of the 2pcfs are

clearly distinct. While the galaxy 2pcf can be

approximated with a power law at large scales

(see Sect. 1.2.3), that of the dark matter presents

characteristic features.

1.2.2 Real and redshift space
clustering

Clustering estimators rely on galaxy pair counts

as a function of separation 𝑟 to measure the clus-

tering of a given dataset. Nevertheless, the dis-

tance between galaxy pairs cannot be measured

directly. We instead employ the redshift infor-

mation of the galaxies, assume a cosmological

model, and calculate cosmological distances. We

typically compute two distances: the transverse,

𝑟𝑝 , and the line-of-sight separation between the

galaxy pair, 𝜋 . The redshifts are, however, af-

fected by the peculiar velocity of the galaxies,

which translates into distortions in the inferred

cosmological distances. These are the so-called

redshift space distortions (RSDs).

At small scales (< 1 comoving ℎ−1Mpc), the

random velocities of galaxies create a Doppler

shift that makes the distribution of galaxies in a

redshift space look elongated along 𝜋 towards

the observer. This is known as the Finger-of-God

(FoG) effect (see the stretching in the redshift-

space galaxy distribution of the bottom panel

of the left figure in Fig. 1.3). This distortion on

the derived positions suppresses the correlation

function along the line of sight and, when dis-

played on a two-dimensional representation of 𝜋

versus 𝑟𝑝 , the 2pcf contours also look elongated

along the line of sight at small scales (see the

bottom left panel of the right figure in Fig. 1.3).

For comparison, note the circular symmetry of

the real-space 2pcf in the top left panel of the

same figure.
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Figure 1.3: Redshift-space distortions. Left: real- and redshift-space distribution of four galaxies. At small

scales, the redshift-space galaxy distribution is elongated along the line of sight towards the observer (FoG

effect; bottom row). At large scales, the same distribution is squashed (Kaiser effect; top row). Note the circular

symmetry of the real-space galaxy distribution. Right: Two-dimensional 2pcf contours (black) in line-of-sight,

𝜋 , and transverse separation, 𝑟𝑝 . The different spaces (panels) show the effect of the RSDs: Real space (top

left), Kaiser space (top right), FoG space (bottom left) and redshift space (bottom right). The contour levels are

𝜉 = 5, 1, 0.3, 0.1. The red dashed contours show 1𝜎 uncertainty. Contours from Shi et al. (2016).

At large scales (> 1 comoving ℎ−1Mpc), on

the other hand, the coherent infall of galaxies

onto larger structures i.e., galaxy groups or clus-

ters, leads to the contraction of these structures,

when presented in a redshift space. This is com-

monly referred as Kaiser infall (Kaiser 1987; see

flattening in the top panel of the left figure in

Fig. 1.3). The imprints of this effect are shown

on the top right panel of the right figure, where

the redshift-space 2pcf is suppressed at large

scales (see real-space 2pcf in the top left panel of

the same figure, for comparison). The last panel

shows the combination of the FoG and Kaiser

effects on the redshift-space 2pcf.

A somewhat novel RSD effect, tight to

specific emission-line-selected galaxy popula-

tions, relates to radiative transfer processes (see

Sect. 1.3.2). Redshift measurements derived from

line shifts in the spectrum of a galaxy are of-

ten contaminated by the resonant scattering that

some lines undergo. The inferred radial posi-

tions in redshift space are then also affected by

this process. In fact, this offset in the galaxy po-

sitions also suppresses the clustering along the

line of sight, which can be interpreted as an ad-

ditional FoG effect (Zheng et al., 2011a; Wyithe

& Dijkstra, 2011; Byrohl et al., 2019).

To minimize these effects, we first compute

the 2pcf in a 2D grid of 𝑟𝑝 and 𝜋 using one of the

clustering estimators and then integrate 𝜉 (𝑟𝑝, 𝜋)
over 𝜋 . We thus obtain the projected 2pcf, 𝜔 (𝑟𝑝):

𝜔𝑝 (𝑟𝑝) ≈ 2

∫ 𝜋max

0

𝜉 (𝑟𝑝, 𝜋)𝑑𝜋, (1.6)

where 𝜋max is the maximum allowed 𝜋 distance

between two galaxies to be considered as a pair.

Typically, 𝜋max is of the order of few tens of co-

moving ℎ−1Mpc and is chosen in such way that

it accounts for most correlated pairs and the am-

plitude of 𝜔𝑝 (𝑟𝑝) is able to converge.

1.2.3 Clustering interpretation

Measuring the 2pcf in a galaxy sample only deliv-

ers a clustering signal (see right figure in Fig. 1.1),

an excess probability of finding a galaxy pair at

a given distance and an indication of structure

in the dataset. In order to obtain clustering prop-

erties, we need to model that signal.

The traditional fit to the 2pcf has the shape of

a power law (Peebles, 1980):

𝜉 (𝑟 ) =
(
𝑟

𝑟0

)−𝛾
, (1.7)

where 𝛾 and 𝑟0 are the correlation slope and cor-
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relation length, respectively. The latter repre-

sents the characteristic scale at which the proba-

bility of finding a galaxy pair is the highest (i.e.,

𝜉 (𝑟0) = 1).

This approach treats scales in the linear (<1

comoving Mpc) and non-linear (>1 comoving

Mpc) regime alike. The small scales of the 2pcf,

however, do not follow a power law and, even in

the linear regime, the correlation function may

deviate from shape of a power law (Coil et al.,

2008). A power law correlation function is thus

an approximation and does not carry informa-

tion about dark matter and galaxy formation. In

fact, it does not distinguish between the different

clustering contributions due to pairs of galax-

ies that belong to the same DMH (non-linear

scales; one-halo term) and pairs that reside in

distinct halos (linear scales; two-halo term). A

more appropriate treatment is achieved through

halo occupation distribution (HOD) modelling.

The HOD describes the probability that a halo

of mass 𝑀h contains 𝑁 galaxies It links, thus,

galaxies with individual DMHs (Berlind & Wein-

berg, 2002). Cosmological N-body simulations

typically provide the underlying dark matter dis-

tribution (Benson et al., 2000), which we then

populate withHODmodels by assuming that one

galaxy is at the center of the DMH (the central

galaxy), and the rest of the galaxies are satellites,

which follow the Navarro-Frenk-White (NFW)

profile (Navarro et al., 1997).

The mean occupation function for central

galaxies, ⟨𝑁c⟩, can be approximated by a step

function:

⟨𝑁c(𝑀h)⟩ =
1

2

[
1 + erf

(
log𝑀h − log𝑀min

𝜎log𝑀

)]
,

(1.8)

while that of satellites galaxies, ⟨𝑁s⟩, is approxi-
mated by a power law (Zheng et al., 2007):

⟨𝑁s(𝑀h)⟩ = ⟨𝑁c(𝑀h)⟩ ·
(
𝑀h −𝑀cut

𝑀1

)𝛼
. (1.9)

Erf(x) is the error function i.e., erf(𝑥) =
2√
𝜋

∫ 𝑥

0
exp (−𝑡2)d𝑡 , 𝑀min is the threshold DMH

mass to host a central galaxy, 𝜎log𝑀 is the

smoothing scale of the central halo occupation

lower mass cutoff, 𝑀1 is the minimum DMH

mass needed to host (on average) one satellite

galaxy (besides the central one), 𝛼 is the slope of

the number of satellites, and𝑀cut is the mass at

which the satellite occupation becomes zero.

Figure 1.4: Mean number of galaxies per halo as a

function of DMH mass for central (dashed red), satel-

lite (dotted red) and total (solid blue) galaxies. The

arrows show the HOD features that are sensitive to

the five HOD parameters. The horizontal gray dotted

line shows ⟨𝑁 (𝑀h)⟩ = 1. Image from Contreras &

Zehavi (2023).

The mean total occupation distribution,

⟨𝑁 (𝑀h)⟩, is then:

⟨𝑁 (𝑀h)⟩ = ⟨𝑁c(𝑀h)⟩ + ⟨𝑁s(𝑀h)⟩. (1.10)

This five-parameter HOD model is motivated

and extensively described in Zheng et al. (2007).

With theDMHs populated by central and satel-

lite galaxies, we then measure the 2pcf by com-

bining the separate contributions from the one-

(1h; i.e., galaxy pairs residing in the same DMH)

and two-halo (2h; i.e., galaxy pairs residing in

different DMHs) clustering terms:

𝜉 (𝑟 ) = 𝜉1ℎ (𝑟 ) + 𝜉2ℎ (𝑟 ). (1.11)

Figure 1.4 illustrates the effect of the HOD pa-

rameters on the shape of the occupation of the

DMHs (see Appendix 3.D of Chapter 3 for the de-

pendencies of the HOD parameters on the shape

of the clustering statistic, using a simplified HOD

model). 𝑀min and𝑀1, together with𝑀cut, shift to

lower and higher halo masses the HOD of central

and satellite galaxies, respectively. 𝛼 varies the

slope of the number of satellite galaxies per halo

and 𝜎log𝑀 smooths the otherwise step function

for central galaxies.

The power-law or HOD modelled correlation

function is then scaled to match the measured

clustering signal (see Sect. 1.2.1). The best-fit

parameters are consecutively used to derive the

6



clustering strength of the galaxy sample, which

relates the distribution of galaxies to that of the

underlying dark matter, 𝜉 (𝑟 ) DM (Kaiser, 1984).

This is characterized by the large-scale bias fac-

tor, 𝑏:

𝑏2 =
𝜉 (𝑟 )

𝜉 (𝑟 ) DM
. (1.12)

The bias factor illustrates the fact that the clus-

tering of galaxies does not mirror the clustering

of the bulk of matter (see Sect. 1.1.2 and right

figure in Fig. 1.1). This bias increases with red-

shift, as the first galaxies collapsed in the most

overdense regions of the universe (Fry, 1996).

With time, galaxies become unbiased tracers of

the mass distribution i.e., 𝑏 → 1 as 𝑡 → ∞.

The bias factor also depends on scale (but be-

comes constant towards large scales) and galaxy

properties (Wechsler & Tinker, 2018) and is typi-

cally used to derive the typical host DMH mass

of the galaxy population (see Chapter 2). Note

that while we measure 𝜉 (𝑟 ) from real data (see

Sect. 1.2.1), 𝜉 (𝑟 )DM is the Fourier transform of

the dark matter power spectrum.

1.2.4 Clustering dependence on
galaxy properties

How galaxies trace the underlying mass distribu-

tion depends on how these were formed. Galax-

ies detected with different selection techniques

are typically biased for and against certain galaxy

properties. The clustering strength is known

to depend on luminosity, mass, color, morphol-

ogy, star formation rate, type, and redshift. The

general trend is that more luminous, more (stel-

lar) massive, redder, bulge-dominated, more star

forming, early type, and higher redshift galax-

ies are clustered more strongly than fainter, less

(stellar) massive, bluer, disk-dominated, less star

forming, late type, and lower redshift ones.

At low redshift (𝑧 < 1), large redshift surveys

such as SDSS and 2dFGRS delivered most cluster-

ing trends known today. Zehavi et al. (2002), Ze-

havi et al. (2005), Zehavi et al. (2011) performed

the first clustering studies of SDSS galaxies at

𝑧 < 0.2 and found that redder and brighter galax-

ies exhibit stronger and steeper correlation func-

tions than bluer and fainter galaxies. At slightly

lower redsfhits (𝑧 < 0.03), Li et al. (2006) showed

that SDSS galaxies with higher stellar masses

cluster more strongly than less massive ones.

While some of these correlations were also found

by Norberg et al. (2001) using 2dFGRS data, Nor-

berg et al. (2002) and Madgwich et al. (2003) fur-

ther found a clustering dependence on spectral

type.

Clustering analyses in DEEP2 (Newman et

al., 2013) and the PRIsm MUlti-object Survey

(PRIMUS; Coil et al. 2011) found similar corre-

lations at intermediate redshifts (𝑧 ≈ 1). Coil

et al. (2006), Coil et al. (2008) found that DEEP2

brighter galaxies reside in denser environments

than fainter ones, with a stronger dependence

than that found for lower redshift SDSS galaxies.

The dependence on color was, however, of the

same strength as that found for local galaxies.

These findings were supported by Marulli et al.

(2013) and Meneux et al. (2009), who showed a

tight constraint for the dependence of clustering

on luminosity and stellar mass from a sample of

0.5 < 𝑧 < 1.1 galaxies from the VIMOS Public

Extragalactic Redshift Survey (VIPERS; Guzzo

et al. 2014) and from 0.5 < 𝑧 < 1 zCOSMOS (Lilly

et al., 2007) galaxies, respectively. Mosteck et al.

(2013) also found a strong positive correlation

between stellar mass and clustering amplitude,

as well as a negative trend with specific star for-

mation rate This was confirmed by Coil et al.

(2017) using PRIMUS and DEEP2 data.

At similar redshifts but using emission-line-

selected galaxies, Sobral et al. (2010) studied the

clustering properties of H𝛼-selected galaxies at

𝑧 ≈ 0.9 from the High-z Emission Line Survey

(HiZELS; Sobral et al. 2009). In line with previous

studies, they found that galaxies with higher H𝛼

luminosities reside in denser regions than less

luminous ones.

Clustering measurements at high redshifts

(𝑧 > 1) are more challenging. Gathering sta-

tistically relevant galaxy samples and simultane-

ously covering a representative volume of sky

is not straightforward. There are, however, few

studies that investigated clustering dependencies

on physical properties. For instance, Adelberger

et al. (2005) found a clustering strength increase

with increasing luminosity from a sample of

1.4 < 𝑧 < 3.5 galaxies selected photometrically.

Using a sample of [OII] and H𝛽+[OIII] emission-

line-selected galaxies at 0.8 < 𝑧 < 4.7 from

HiZELS, Khostovan et al. (2018) found a positive

correlation between clustering strength, line lu-

minosity, stellar mass, and redshift. Durkalec et

al. (2018) also observed a correlation with stellar

mass, together with a further dependence on UV

luminosity, from 2 < 𝑧 < 5 VIMOS Ultra Deep
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Survey (VUDS; Tasca et al. 2017) galaxies. Simi-

lar results were obtained by Malkan et al. (2017)

with SUBARU Deep Field (Furusawa et al., 2008)

galaxies selected through the drop in the contin-

uum bluewards of 912Å (Lyman-break galaxies,

LBGs).

Although these correlations are significant

at the redshifts mentioned above, they become

somewhat unclear near the epoch of reioniza-

tion (𝑧 ≈ 6). Accessing the very high-redshift

universe is commonly achieved by targeting

the Lyman-𝛼 (Ly𝛼) emission line of young,

star-forming galaxies, either with narrow-band

(NB) filters or spectroscopy. Galaxies exhibit-

ing strong Ly𝛼 emission in their spectrum or

selected through this emission are the so-called

Lyman-𝛼 emitters (LAEs).
4

1.3 Lyman-𝜶 emitters
Partridge & Peebles (1967) predicted that the

Ly𝛼 emission line could be used to detect high-

redshift galaxies because most of the hydrogen

ionising emission of a galaxy could be trans-

formed into Ly𝛼 , making it a prominent line

that shifts into the optical at high redshifts. In

fact, the Ly𝛼 emission is nowadays a paramount

cosmological feature for probing high-redshift

galaxies. LAEs are young (20 − 500 Myr; e.g.,

Karman et al. 2017; Gawiser et al. 2007), probe

the lower range of stellar masses (10
8 − 10

9 𝑀⊙;
e.g., Yuma et al. 2010), and copiously form stars

(star formation rates of 1−10 𝑀⊙yr−1; e.g., Yuma

et al. 2010). They are also compact and present

low metallicities (subsolar; e.g., Acquaviva et al.

2011). However, many properties of these high-

redshift galaxies are still under investigation, for

instance the photon escape fraction, outflow rate,

and dust content.

Partridge & Peebles (1967) estimated that 6 −
7% of the total radiation from a young galaxy

is transformed into Ly𝛼 emission (see next sec-

tion for the physical explanation). This, how-

ever, turned out to be an overestimation of the

observability of LAEs and it was not until the

late nineties that the first LAEs were detected

(Steidel et al., 1996; Cowie & M., 1998; Rhoads

et al., 2000). Traditionally, broad-band filters

were compared to NB filters to search for a flux

excess in Ly𝛼 and thus detect the LAE (Ouchi

et al., 2021). Later on, NB filters with widths

(tens of ) targeting the Ly𝛼 wavelength at the

redshift of interest were applied instead. Statisti-

cally substantial samples of LAEs, also covering

large areas of the sky (> deg
2
), were obtained

with this selection technique (Ouchi et al., 2003;

Gawiser et al., 2007; Ouchi et al., 2017; Sobral

et al., 2017).

NB detections, however, often require spec-

troscopic follow-up observations to confirm the

redshift of the Ly𝛼 emission. Besides, to avoid

sample contamination by low-redshift interlop-

ers and obtain precise redshift measurements,

spectroscopic observations are preferred. Ideally,

it would be optimal to perform spectroscopy of

all existing galaxies over a large area of the sky,

with a wide redshift coverage (not possible with

NB filters). Although this is still beyond our cur-

rentmeans, integral field units (IFUs) constitute a

prominent leap forward to achieve this approach.

IFUs combine imaging and spectroscopy to ob-

tain spectra in each spatial pixel. In particular,

the Multi Unit Spectroscopic Explorer (MUSE,

Bacon et al., 2010) on the ESO-VLT has produced

significant samples of LAEs over a wide range of

redshifts with source densities of several tens or

even hundreds of objects per arcmin
2
, depending

on the survey depth, (Inami et al., 2017; Urrutia

et al., 2019), over modest sky coverages (tens of

arcmin
2
).

MUSE observations aimed at building statis-

tical samples of LAEs, targeting regions of the

sky where additional radio, millimeter, far-, mid-

and near-infrared, optical, ultraviolet, and X-

ray data are available (e.g., GOODS fields). I

refer to Appendix A for a self-developed Graph-

ical User Interface (GUI) that assigns Hubble

Space Telescope (HST) counterparts to MUSE

detections (not only LAEs) by simultaneously

inspecting MUSE pseudo-NB images and the

corresponding HST cut-outs. The GUI, named

QtCounterpart, also connects the spectro-

scopic data from MUSE to photometric proper-

ties from various photometric catalogues. Al-

though QtCounterpart was optimized for

MUSE and HST, it can also be applied to any

other spectroscopic and photometric data.

The same fields that MUSE observed are cur-

rently being targeted by James Webb Space Tele-

scope (JWST) Advanced Deep Extragalactic Sur-

vey (JADES; Eisenstein et al. 2023), which has

4
Note that Quasi Stellar Objects (QSOs) also produce Ly𝛼 emission from the interaction of black holes and their

accretion disks. This thesis focuses on star-forming galaxies.
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Figure 1.5: Ly𝛼 emission. Left panel: Energy levels of a hydrogen atom with increasing energy (quantum

number 𝑛) along the y-axis and angular momentum along the x-axis (quantum number 𝑙 : 𝑠 , 𝑝 , 𝑑 and 𝑓 ). Thin

blue lines show the cascades that end up emitting in Ly𝛼 . Cascades that do not produce a Ly𝛼 photon are

shown in red. The transition that emits a Ly𝛼 photon (2𝑝 → 1𝑠) is represented with a thick blue line. Figure

adapted from Dijkstra (2014). Right panel: Artistic representation of the generation of Ly𝛼 photons. Young

OB-type stars emit UV photons (violet), which ionize the surrounding neutral hydrogen (grey) and create an

ionized bubble (white). When recombination takes place, Ly𝛼 photons are emitted (blue arrows). Image from

Gurung-López (2019).

already confirmed some of the LAEs detected

with MUSE. Much larger areas of the sky (≈
540 deg

2
) were sampled with the Hobby-Eberly

Telescope Dark Energy Experiment (HETDEX;

Gebhardt et al. 2021) spectroscopic survey, which

targeted the north galactic cap.

1.3.1 The Lyman-𝜶 emission

The Ly𝛼 emission used to detect high-redshift

galaxies is (intrinsically) the most luminous and

most probable emission from a recombining hy-

drogen atom (68% probability assuming case B

recombination; see below; Dijkstra 2014).

In quantummechanics, the only stable state in

the hydrogen atom is the fundamental level. Ev-

ery electron in a higher energy state (with prin-

cipal quantum number, 𝑛, and angular momen-

tum quantum number, 𝑙 ) will eventually migrate

to lower energy levels, radiating photons and

causing cascades. The photon emitted when an

electron falls from the first excited state (𝑛 = 2)

to the fundamental one (𝑛 = 1) is the Ly𝛼 photon

(see left panel of Fig. 1.5). The energy difference

between these levels is 10.2 eV, which dictates the

energy of the photon. This transition has a wave-

length of 1215.67Å, which falls in the ultraviolet

(UV) part of the electromagnetic spectrum but

is shifted into the optical at 𝑧 ≈ 3. This makes

the Ly𝛼 line ideal to be detected with ground

observations. Any other emission line produced

from the migration of an electron from a higher

energy level (𝑛 > 2) to the ground state also

belongs to the Lyman series, named after their

discoverer, Theodore Lyman in 1906.

Electrons that populate exited states of the

hydrogen atom (responsible for the production

of Ly𝛼 photons) are the result of an interaction

with ionizing photons emitted by young andmas-

sive stars (O- and B-type stars) in star-forming

regions of galaxies. A significant fraction of pho-

tons from these star-forming regions falls in the

UV range of the electromagnetic spectrum and

those with high energies
5
(𝜆 < 912 Å) ionize neu-

tral hydrogen atoms in the interstellar medium

of galaxies, forming HII regions (or star-forming

regions). See the right panel of Fig. 1.5 for an

artistic representation of this process.

Within the framework of quantum mechanics,

there are two possibilities for an electron to pop-

ulate an excited state in the hydrogen atom. The

first possibility is the interaction between a free

electron and the hydrogen atom (e.g., collision),

where the free electron transfers part of its ki-

netic energy to a bounded electron and this shifts

to a more energetic state, producing a cascade

of photons (i.e., radiative cooling). The second

possibility occurs when a proton captures a free

electron and one photon is emitted (i.e., recom-

bination). The latter is the main mechanism by

which galaxies produce Ly𝛼 photons. There are

two assumed scenarios for recombination (Baker

& Menzel, 1938):

• Case A: The surrounding of the star for-

5
The energy of the ionizing photons depends on the temperature of the star, which is determined by its mass. Because

massive stars emit high-energy ionizing protons but have short lifetimes, they are mainly found in star-forming regions.
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mation region is optically thin. The ion-

izing photons can thus escape the region.

Free electrons can be captured in any level

of a hydrogen atom, which emits another

ionizing photon. The direct bind to the

fundamental level is known as direct re-

combination to the ground state.

• Case B: The surrounding of the star forma-

tion region is optically thick. Ionizing pho-

tons are immediately absorbed (i.e., pho-

toionization) by a nearby neutral hydrogen

atom, which then emits an electron. This

new free electron will eventually recom-

bine with a proton, which can result in a

cascade. Through this cascade, even the

higher Lyman series photons will end up

being transformed into Ly𝛼 .

Some of these Ly𝛼 photons escape the galaxy,

others interact with dust grains and get absorbed

and others interact with neutral hydrogen (HI).

Each of these interactions can trigger a cascade

and contribute to the diffuse Ly𝛼 emission ob-

served around LAEs.

1.3.2 Lyman-𝜶 gaseous halos
The Ly𝛼 photons that are produced by the physi-

cal processes described above continue their jour-

ney through the interstellar, circumgalactic and

intergalactic media (ISM, CGM, IGM). The long

path that Ly𝛼 photons may travel increases the

possibility that this emission gets either powered

by physical processes (and eventually escapes

the LAE; see below) or absorbed by dust grains

(and therefore destroyed).

Due to the large scattering cross section of

Ly𝛼 photons and neutral hydrogen, these un-

dergo radiative transfer processes in which they

constantly scatter. This cross section depends on

the frequency but, close to the Ly𝛼 wavelength,

can be as high as ≈ 10
−12

cm
−2
. The Ly𝛼 pho-

ton path is thus regulated by the distribution

of hydrogen, which makes the observed Ly𝛼 lu-

minosity a function of HI distribution, optical

depth, dust content, etc.

During resonant scatterings, a hydrogen atom

captures the Ly𝛼 photon, which excites the

bounded electron to a higher energy level and

subsequently migrates to the fundamental state,

emitting another Ly𝛼 photon in a different di-

rection. Besides modifying the photon direction,

scattering can also propagate Ly𝛼 photons over

potentially large distances. This, among other

factors, causes the Ly𝛼 emission to become dif-

fuse (also the additional FoG effect described in

Sect. 1.2.2), giving rise to the so-called extended

Ly𝛼 halos (LAHs).

Local star formation regions are not only re-

sponsible for the emission of Ly𝛼 photons inside

the LAE itself, but also for "in situ" recombina-

tions. While Ly𝛼 photons produced within LAEs

can scatter into the CGM (see a. in Fig. 5.2.3), "in

situ" recombination refers to the ionizing pho-

tons that escape the galaxy and get converted

into Ly𝛼 photons in the CGM. External processes

such as fluorescence by the metagalactic UV

background (see d. in Fig. 5.2.3) and gravita-

tional cooling (see b. in Fig. 5.2.3) produce de-

excitations to lower energy levels and collisional

excitation from cooling gas accreted onto galax-

ies, respectively. All these physical processes can

also power the Ly𝛼 emission, contributing thus

to the extended LAHs.

Despite the complexity of these processes,

there is a plethora of Ly𝛼 radiative transfer codes

coupled to state-of-the-art simulations. Within

this field, Ly𝛼 photons can be traced back to their

origin, which is then used to assess the contribu-

tion from the various physical processes to the

extended LAHs. Simulation studies (Shimizu &

Umemura, 2010; Lake et al., 2015; Mas-Ribas &

Dijkstra, 2016; Mas-Ribas et al., 2017; Mitchell et

al., 2021; Byrohl et al., 2021) showed that there is

another significant contribution to the LAHs: the

Ly𝛼 emission originating in faint satellite galax-

ies (see c. in Fig. 5.2.3). This emission would be

significant only by its collective effect, as most of

these satellite LAEs are too faint to be detected

individually at the sensitivity of current obser-

vations.

Although their origin is still under investiga-

tion and may also depend on environment, de-

tections of LAHs are numerous. LAHs are com-

monly measured from a (pseudo-)NB image of

the galaxy of interest. It is customary to place

annuli of different radii around the center of the

galaxy and quantify the surface brightness (SB)

within them. We then obtain a SB profile (SB as

a function of radius), which we compare to the

expectations from a point source.

Narrowband imaging observations

(Hayashino et al., 2004; Nilsson et al., 2009;

Finkelstein et al., 2011) detected LAHs with SB

levels of ∼ 10
−18

erg s
−1

cm
−2

arcsec
−2
. Stacks

of the same type of observations
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Figure 1.6: Illustration of four possible origins of the LAHs: a) resonant scattering into the CGM, b) gravitational

cooling, c) faint satellite LAEs, and d) fluorescence represented by a more spatially extended H𝛼 emission

(violet) than continuum emission (green). Blue stars represent star-forming regions. Red shaded regions denote

ISM and CGM gas. Dotted circles show the central regions of the LAE. The process of "in situ" recombination

is not shown here. Image adapted from Momose et al. (2014b) and Mas-Ribas et al. (2017).

(Steidel et al., 2011; Matsuda et al., 2012; Mo-

mose et al., 2014a; Xue et al., 2017) extended

that SB threshold by an order of magnitude, SB

∼ 10
−19

erg s
−1

cm
−2

arcsec
−2
. A major step

forward in terms of sensitivity was achieved by

employing spectroscopic instruments. MUSE

evened the limiting SB of individual object-

by-object measurements to the limits obtained

by the stacking of NB data (Wisotzki et al.,

2016; Leclercq et al., 2017; Kusakabe et al.,

2018; Claeyssens et al., 2022). Another break-

through was the combination of stacking experi-

ments and spectroscopic data, both with MUSE

(Wisotzki et al., 2018) and HETDEX (Niemeyer

et al., 2022).

LAHs detected with MUSE at 3 < 𝑧 < 6 are

ubiquitous and a factor 4 − 20 more extended

than their corresponding UV galaxy sizes, pre-

senting median scale lengths of few physical

kpc (pkpc; Wisotzki et al. 2016; Leclercq et al.

2017; Claeyssens et al. 2022; Kusakabe et al. 2022).

While Wisotzki et al., 2018 measured extended

LAHs with MUSE up to ≈60 pkpc at 𝑧 = 3, re-

cent works with HETDEX LAEs at 1.9 < 𝑧 < 3.5

and Subaru LAEs at 𝑧 = 2.2 − 2.3 extended those

scales to 160 pkpc and 200 pkpc, respectively

(Niemeyer et al., 2022; Zhang et al., 2023).

1.3.3 Large-scale structure traced
by Lyman-𝜶 emitters

Despite the complexity of the radiative trans-

fer processes that the Ly𝛼 emission undergoes,

LAEs have been used to trace the large-scale

structure of the high-redshift universe. Because

of the sparseness of large spectroscopic samples

of LAEs, most studies investigated the cluster-

ing properties of LAEs with angular correlation

functions (based on NB detections). Gawiser et

al. (2007), Kovac et al. (2007), Shioya et al. (2009),

and Ouchi et al. (2010) detected clustering sig-

nals from relatively small samples of LAEs at

𝑧 ≈ 3.1, 4.86, 6.6. They then fitted those signals

with power law correlation functions to derive

correlation lengths of 𝑟0 ≈ 2 − 5 ℎ−1Mpc and

large-scale bias factors of𝑏 = 3−6. Only one pilot
study (Diener et al., 2017) investigated the clus-

tering of spectroscopically detected MUSE LAEs

at 3 < 𝑧 < 6 and confirmed previous clustering

signals and correlation lengths. Considerably

larger samples of NB-selected LAEs found con-

sistent results and derived typical DMH masses

of𝑀h ≈ 10
11 ℎ−1M⊙ (Bielby et al., 2016).

Relying on angular correlations and power law

fits, Ouchi et al. (2003) and Kusakabe et al. (2018)

found a weak trend with Ly𝛼 luminosity, where

more luminous LAEs seemed to cluster more

strongly than less luminous ones. Significant

correlations were only reported by Khostovan et

al. (2019), who observed a redshift-independent

positive correlation between clustering strength

and Ly𝛼 luminosity, UV luminosity, and UV star

formation rate in a sample of ∼ 5000 LAEs de-

tected with various NB filters with discrete red-

shift slices within 𝑧 ≈ 2.5 − 6. They also found a

clear clustering strength increase with increas-

ing redshift.

There was only one study that modelled the

clustering signal of a sample of NB-selected LAEs

at 𝑧 = 5.7, 6.6 with HOD models. Ouchi et al.,

2017 partially exploited the power of HOD mod-

elling to infer the threshold DMH mass for cen-
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tral galaxies (log(𝑀min/[M⊙]) ≈ 9.5). Due to the

limiting statistics, the rest of the HOD parame-

ters were kept fixed based on assumptions.

1.4 This thesis
In this thesis I present results from four observa-

tional projects in the general framework of dark

– baryonic matter relation, large-scale structure

of the high-redshift universe traced by LAEs, its

properties and their extended LAHs. Here, I pro-

vide an overview of the contents addressed in

the individual chapters.

In Chapter 2, I optimize the method (the K-

estimator from Adelberger et al. 2005) to study

galaxy clustering in pencil-beam surveys (such

as those yielded by MUSE) and study the clus-

tering properties of a sample of LAEs from the

MUSE-Wide survey (the largest MUSE dataset).

I constrain correlation lengths and slopes, large-

scale bias factors, and typical DMHmasses. I sup-

port our results with the well-known 2pcf, mea-

suring, for the first time, the spatial clustering of

a spectroscopic sample of Ly𝛼-selected galaxies.

I then explore possible clustering dependencies

on LAE properties and predict the fate of MUSE-

Wide-like DMHs by 𝑧 = 0. I also measure the

clustering in a dark-matter-only cosmological

simulation coupled to a semi-analytical model of

LAEs and compare the outcome to our results.

In Chapter 3, I include the deeper MUSE

surveys (MUSE-Deep and the MUSE Extremely

Deep Field, MXDF) to connect the clustering

properties of 𝐿★ LAEs with those of much fainter

ones in the MXDF, now within the HOD mod-

elling framework. I thus constrain the threshold

DMH masses needed to host central and satellite

LAEs, satellite fractions, and the HODs for LAEs

of various Ly𝛼 luminosities (𝐿Ly𝛼 ). I exploit the

large dynamic range of 𝐿Ly𝛼 from the different

surveys and investigate how the HOD param-

eters, large-scale bias factors and typical DMH

masses vary with 𝐿Ly𝛼 . I discuss the implications

of the clustering dependence on 𝐿Ly𝛼 in terms of

evolving Ly𝛼 luminosity functions, detections of

incomplete reionization at 𝑧 ≈ 6, and the relation

between Ly𝛼 escape fraction and DMH mass.

In Chapter 4, I use the clustering dependence

on 𝐿Ly𝛼 found in Chapter 3 to investigate the

much debated relevance of undetected LAEs

(fainter than those in the to-date deepest ever

spectroscopic survey namely, the MXDF) for the

observed extended LAHs around LAEs. For the

first time, I address this matter from an observa-

tional angle. I consider various clustering sce-

narios for the faint LAEs and make assumptions

about the Ly𝛼 luminosity function. I then build

expected Ly𝛼 SB profiles from clustered and in-

dividually undetected LAEs. I compare these

profiles to those from stacked experiments of

pseudo-NB images of MUSE LAEs and constrain

the contribution of undetected LAEs to the total

stacked Ly𝛼 SB profiles. I also compare our faint

LAE radial profiles to those predicted from re-

cent simulation studies. I outline possible future

measurements to further constrain the impact of

discrete undetected LAEs on observed LAHs.

In Chapter 5, I investigate whether the proper-

ties of LAHs are affected by environment. I apply

different methods to consider distinct definitions

of overdense region and compute the local over-

density of the LAEs in MUSE deep fields. I use

their available LAH properties and study their

possible variation with LAE overdensity.

The last chapter contains a final summary and

discussion of the whole thesis and provides an

outlook on future perspectives.

Chapters 2, 3, 4 are versions of publications

that have recently appeared in Astronomy & As-

trophysics (Herrero Alonso et al., 2021; Herrero

Alonso et al., 2023a; Herrero Alonso et al., 2023b).

Chapter 5 is a draft version of an upcoming pub-

lication. Each of these chapters includes a dedi-

cated introduction that summarizes the state of

research in the field and a separate conclusion,

summing up the results of the individual chapter.

For clarity, I also chose to give bibliographies at

the end of each chapter.
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ABSTRACT

We present an analysis of the spatial clustering of 695 Ly𝛼-emitting galaxies (LAEs) in the MUSE-

Wide survey. All objects have spectroscopically confirmed redshifts in the range 3.3 < 𝑧 < 6. We

employed the K-estimator, an alternative clustering statistic, adapted and optimized for our sample.

We also explore the standard two-point correlation function (2pcf) approach, which is however less

suited for a pencil-beam survey such as ours. The results from both approaches are consistent. We

parametrize the clustering properties in two ways, (i) following the standard approach of modelling

the clustering signal with a power law (PL), and (ii) adopting a halo occupation distribution (HOD)

model of the two-halo term. Using the K-estimator and applying HOD modelling, we infer a large-

scale bias of 𝑏HOD = 2.80+0.38−0.38 at a median redshift of the number of galaxy pairs ⟨𝑧p𝑎𝑖𝑟 ⟩ ≃ 3.82,

while the best-fit power-law analysis gives 𝑏PL = 3.03+1.51−0.52 (𝑟0 = 3.60+3.10−0.90 comoving ℎ−1Mpc and

𝛾 = 1.30+0.36−0.45). The implied typical dark matter halo (DMH) mass is log(𝑀h/[ℎ−1M⊙]) = 11.34+0.23−0.27
(adopting 𝑏 = 𝑏HOD and assuming 𝜎8 = 0.8). We study possible dependencies of the clustering signal

on object properties by bisecting the sample into disjoint subsets, considering Ly𝛼 luminosity, UV

absolute magnitude, Ly𝛼 equivalent width, and redshift as variables. We find no evidence for a strong

dependence on the latter three variables but detect a suggestive trend of more luminous Ly𝛼 emitters

clustering more strongly (thus residing in more massive DMHs) than their lower Ly𝛼 luminosity

counterparts. We also compare our results to mock LAE catalogs based on a semi-analytic model

of galaxy formation and find a stronger clustering signal than in our observed sample, driven by

spikes in the simulated 𝑧-distributions. By adopting a galaxy-conserving model we estimate that the

Ly𝛼-bright galaxies in the MUSE-Wide survey will typically evolve into galaxies hosted by halos of

log(𝑀h/[ℎ−1M⊙]) ≈ 13.5 at redshift zero, suggesting that we observe the ancestors of present-day

galaxy groups.

∗
A version of this chapter is published in Astronomy & Astrophysics as Herrero Alonso et al. 2021, Volume 653,

A136.
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2.1 Introduction

The distribution of galaxies in the Universe forms

a well defined network known as the cosmic web.

This structure was formed when gravitational

instabilities produced by primordial density fluc-

tuations grew until they reached a critical den-

sity. Their collapse formed gravitationally bound

dark matter halos (DMHs). These halos grow

hierarchically through accretion and mergers

with other halos. Their gravitational interaction

with baryonic matter caused gas to fall into the

growing potential wells, making the gas cool by

radiation and collapse to form stars and galaxies.

The evolution of the baryonic matter distri-

bution follows the underlying dark matter (DM)

but, especially in the early stages of galaxy for-

mation, the details of this relation and how it

evolved over time are still unclear. Galaxy clus-

tering analyses aim to constrain the masses of

the typical DMHs by which these galaxies are

hosted and are therefore a crucial element to-

wards understanding the formation and evolu-

tion of galaxies (Coil et al., 2012).

A common way to quantify galaxy clustering

is through correlation functions (e.g. Gawiser

et al., 2007; Zehavi et al., 2011; Ouchi et al., 2017),

which express the probability of finding a tuple

(usually a pair) of galaxies at a certain separa-

tion (e.g. Peebles, 1980). The clustering strength

(large-scale bias) and the typical DMH masses

can be inferred from measured correlation func-

tions in various ways. A widespread traditional

approach is to approximate the two-point cor-

relation function (2pcf) as a power law (Davis

& Peebles, 1983), while more recent methods

such as halo occupation distribution (HOD) mod-

elling (e.g. Zheng & Weinberg, 2007) distinguish

between the different contribution of the correla-

tion function. In these models, pairs of galaxies

either belong to the same DMH or to different

DMHs.

These procedures have often been applied to

galaxy surveys. At low redshifts, the major sur-

veys cover large areas of the sky, in particular

SDSS (e.g. Strauss et al., 2002; Ahumada et al.,

2020) along with its successors, 2MASS (Skrut-

skie et al., 2006), or the 2dF Galaxy Redshift sur-

vey (Colless et al., 2001). These samples at similar

luminosities revealed a modest evolution of the

clustering strength between 𝑧 = 1 and 𝑧 = 0 to-

gether with significant clustering dependencies

on various galaxy properties, such as luminosity,

color, morphology, galaxy type, etc. (e.g. Nor-

berg et al., 2002; Zehavi et al., 2002; Li et al.,

2006; Zehavi et al., 2011).

At high redshifts (𝑧 > 2), galaxy samples

are more limited, however. Gathering a statis-

tically relevant number of objects and covering

representative volumes of the sky is a difficult

task. Photometric selection techniques are often

preferred because spectroscopic observations of

many faint objects are observationally too expen-

sive. The two most common techniques involve

exploiting the drop in the continuum bluewards

of 912Å (Steidel & Hamilton, 1992) to search

for Lyman-break galaxies (LBGs) and the use of

narrow-band (NB) filters to target, for instance,

the Ly𝛼 emission line of young, star-forming

galaxies (Ly𝛼 emitters, LAEs).

While each selection method provides us with

its own somewhat biased view of the distribu-

tion of galaxies, LAEs are particularly interesting

with regard to probing the lower range of stel-

lar masses (10
8 − 10

9 𝑀⊙), highlighting a subset

of galaxies of copiously forming stars (star for-

mation rates of 1 − 10 𝑀⊙yr−1). By combining

the clustering analysis of LAEs with cosmolog-

ical simulations, we can connect LAEs to their

descendants in the local Universe.

Statistically substantial LAE samples (> 10
2

objects) based on narrow-band surveys were pre-

sented by Cowie &M. (1998), Rhoads et al. (2000),

Ouchi et al. (2003), Gawiser et al. (2007), Ouchi

et al. (2017), and Sobral et al. (2017) and oth-

ers. Generally, the NB selection method only

provides LAE candidates implying that samples

are contaminated by interlopers, which can be a

problem for clustering studies. Obviously, since

all objects selected by a given NB filter are as-

sumed to be at the same redshift, their cluster-

ing can only be explored through the analysis

of transverse angular correlations (Ouchi et al.,

2003; Gawiser et al., 2007; Ouchi et al., 2010;

Ouchi et al., 2017; Khostovan et al., 2019). In

order to study the full three-dimensional (3D)

spatial clustering behaviour of galaxies and its

evolution over cosmic time, large-scale spectro-

scopic surveys of high-redshift galaxies with in-

dividually measured redshifts are required (Le

Fèvre et al., 2005; Lilly et al., 2007; Newman et

al., 2013; Guzzo et al., 2014; Le Fèvre et al., 2015).

It has been found that the clustering strength

of high-redshift galaxies is significantly higher

at similar luminosities than at intermediate and

low redshifts (Durkalec et al., 2014), possibly also
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depending on luminosity and stellar mass (e.g.

Ouchi et al., 2003; Ouchi et al., 2017; Durkalec

et al., 2018).

Ideally, it would be optimal to perform spec-

troscopy of all existing objects over a large area

of the sky, with a wide redshift coverage. While

such surveys are still beyond our current means,

panoramic integral field units (IFUs) are cur-

rently opening up an avenue for exploring this

approach, at least over modest areas. In particu-

lar, theMulti Unit Spectroscopic Explorer (MUSE,

Bacon et al., 2010) on the ESO-VLT has already

produced significant samples of high-redshift

galaxies with unprecedented source densities

of several tens or even hundreds of objects per

arcmin
2
(Inami et al., 2017; Urrutia et al., 2019).

In this paper we explore the potential of using ≈
700 LAEs selected from the MUSE-Wide survey

(Herenz et al., 2017; Urrutia et al., 2019) for clus-

tering studies. Our sample differs from previous

studies of LAE clustering based on narrow-band

imaging, but also from generic spectroscopic sur-

veys requiring the preselection of targets from

broad-band photometry.

In a pilot study, Diener et al. (2017) used 238

LAEs from the first 24 MUSE-Wide fields to

demonstrate that MUSE-selected LAEs do in-

deed reveal a significant clustering signal, even

though the uncertainties were still large. Here,

we extend this work with a larger (threefold)

sample and a refined set of analysis methods and

tools. The paper is structured as follows. First,

we briefly describe the data used for this work

and characterize the sample. In Sect. 5.3, we ex-

plain our methods for measuring and analysing

the clustering properties of our LAE sample. In

Sect. 5.4, we present the results of our measure-

ments, including a study of clustering dependen-

cies with different galaxy parameters. In Sect. 5.5,

we discuss our results and compare our findings

to predictions from a semi-analytic galaxy for-

mation model. In Sect. 5.6, we present our con-

clusions. The Appendix of the paper is mainly

dedicated to a discussion of the LAE clustering

results, using the traditional two-point correla-

tion function.

Throughout the paper, all distances are mea-

sured in comoving coordinates and given in

units of ℎ−1Mpc (unless otherwise stated), where

ℎ = 𝐻0/100. We use a 𝛬CDM cosmology and

adopt 𝛺𝑀 = 0.3, 𝛺𝛬 = 0.7, and 𝜎8 = 0.8 (Hin-

shaw et al., 2013). All uncertainties represent 1𝜎

(68.3%) confidence intervals.

2.2 Data

2.2.1 The MUSE-Wide survey

MUSE-Wide is an untargeted 3D spectroscopic

survey (Herenz et al., 2017; Urrutia et al.,

2019) executed by the MUSE consortium as one

of the Guaranteed Time Observations (GTO)

programs. The survey covers parts of the

CANDELS/GOODS-S and CANDELS/COSMOS

fields and also includes eight MUSE pointings

in the so-called HUDF09 parallel fields (see Ur-

rutia et al. 2019 for details). The spectroscopic

data provided by MUSE complement the rich

multiwavelength data available in these fields,

from which physical properties such as star for-

mation rates or stellar masses can be derived.

The full survey comprises 100 MUSE fields of

1 arcmin
2
each (although there is some overlap

between adjacent fields), with a depth of 1 hour

exposure time, each split into 4 × 900 s with

90 deg rotation between the exposures. Most

fields were observed in dark time, with a see-

ing better than 1.0 arcsec. The spectra cover the

range of 4750–9350 Å, implying a Ly𝛼 redshift

range of 2.9 < 𝑧 < 6.7.

The data reduction process we used is detailed

in Urrutia et al. (2019). Emission line sources

were detected and their line fluxes were mea-

sured with the Line Source Detection and Cata-

loguing (LSDCat, Herenz & Wisotzki, 2017) soft-

ware. LSDCat cross-correlates a reduced and

flux-calibrated data cube with a 3D source tem-

plate to find emission line sources above a given

significance threshold. The resulting emission

line flux limit of the survey is typically around

∼ 10
−17

erg s
−1

cm
−2

for LAEs, but with consid-

erable spread between fields and also depending

on the spatial extent of the Ly𝛼 emission (Herenz

et al., 2019).

After the automatic detection of emission

lines, a source catalog for each field was pro-

duced through visual inspection using the Qt-

Classify tool (Kerutt, 2017). After an initial red-

shift guess of each object from LSDCat, refined

redshifts of the LAEs were measured by fitting

an asymmetric Gaussian profile to the Ly𝛼 emis-

sion line. Ly𝛼 fluxes were measured using the

LSDCat measure functionality, adopting a 3D

aperture of three Kron-like radii (Kron, 1980);

together with the redshifts, this also provides

the Ly𝛼 luminosities.
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Figure 2.1: Spatial distribution of 695 LAEs cover-

ing part of the CANDELS/GOODS-S region and the

HUDF parallel fields on the left. The individual LAEs

span a total of 68 fields from the MUSE-Wide survey

and are color-coded by their Ly𝛼 spectroscopic red-

shift, 3.3 < 𝑧 < 6. The 5 ℎ−1Mpc bar for the mean

redshift of the sample 𝑧 ≈ 4.23 indicates the actual

transverse extent of the footprint.

Since our sample is based on emission lines

without prior broadband selection, it includes

galaxies with very faint continua but high equiv-

alent widths – which can sometimes go unde-

tected in deep Hubble Space Telescope (HST)

data (Maseda et al., 2018). We identified the UV

counterparts for our sample and measure their

continuum flux densities and absolute UVmagni-

tudes in various HST bands, as described in detail

by Kerutt et al. (in prep.). Our Ly𝛼 equivalent

widths are based on combining the Ly𝛼 fluxes

measured by LSDCat and continuum flux mea-

surements from the HST counterparts. In cases

where no continuum counterpart was detected,

an upper limit to the continuum flux density

was used to calculate lower limits to the absolute

magnitudes and equivalent widths.

2.2.2 LAE sample

In this paper, we focus on 68 fields of the MUSE-

Wide survey located in the CANDELS/GOODS-S

region, along with the HUDF09 parallel fields.

Some of these fields are not yet included in the

currently publicly available MUSE-Wide data;

these will be part of the planned final data re-

lease. We chose to not take into account the nine

central fields in the MUSE-Deep area because

of their different depth and selection function,

in line with our aim to approach (as much as

possible) a homogeneous sample and minimize

systematic effects. Furthermore, we also discard

Figure 2.2: KDE-filtered redshift distribution of the

695 LAEs of our sample, taken from 68 fields of the

MUSE-Wide survey. The sample spans a redshift

range of 3.3 < 𝑧 < 6. The kernel is chosen to be

a Gaussian with standard deviation 𝜎𝑧 = 0.005. The

expected 𝑧-distribution of an unclustered population

following the Ly𝛼 luminosity function of Herenz et al.

(2019) and the selection function of the MUSE-Wide

survey is overplotted in red.

the 23 MUSE-Wide fields in the COSMOS region

from this analysis because of their on average

somewhat lower data quality. We kept the eight

MUSE-Wide pointings in the HUDF09 fields (see

Fig. 2.1) since they give additional power to con-

strain the clustering signal at larger separations.

In Appendix 3.A, we demonstrate that including

the UDF09 parallels fields has no significant im-

pact on our clustering results despite a minor

decrease in the uncertainties.

While MUSE is formally capable of detecting

LAES with 2.91 < 𝑧 < 6.65, we limit the redshift

range for this investigation to 3.3 < 𝑧 < 6, as

the details of the selection function at redshifts

close to the limits are still a matter of investiga-

tion. Thus, we arrive at a final number of 695

LAEs, distributed over 62.53 arcmin
2
(account-

ing for small field-to-field overlaps), implying an

LAE density of slightly more than 11 objects per

arcmin
2
. The sample has a mean redshift of 𝑧 ≈

4.23, the median redshift is 4.12. The transverse

extent of the footprint at 𝑧 is ∼20 ℎ−1 Mpc.

The spatial distribution of our LAEs is shown

in Fig. 2.1, and the distribution over redshifts is

presented in Fig. 2.2. For the latter, we replaced

the usual histogram counts-per-bin by a quasi-

continuous kernel density estimator (KDE) to

better represent the underlying probability dis-

tribution and avoid binning artefacts. Superim-

posed on the KDE-filtered 𝑧 distribution, we also

show the distribution expected for an unclus-

tered population of objects following the Ly𝛼

luminosity function (LF) of Herenz et al. (2019)
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Table 2.1: Properties of the LAE samples.

LAE sample name Ngal ⟨𝑧⟩ log⟨𝐿Ly𝛼 /[erg s
−1]⟩ ⟨𝐸𝑊Ly𝛼⟩/[] ⟨𝑀UV⟩

Full sample 695 4.12 42.39 118.3 -18.4

Redshift < 4.12 348 3.63 42.31 109.9 -18.4

Redshift > 4.12 347 4.79 42.39 111.8 -18.4

log𝐿Ly𝛼 < 42.36 349 4.03 42.14 110.0 -17.9

log𝐿Ly𝛼 > 42.36 346 4.30 42.57 113.7 -19.0

𝐸𝑊Ly𝛼 < 87.9 254 4.03 42.37 53.6 -19.5

𝐸𝑊Ly𝛼 > 87.9 255 4.05 42.45 167.3 -18.3

𝑀UV < -18.8 256 4.07 42.57 61.8 -19.6

𝑀UV > -18.8 253 3.92 42.19 168.6 -17.6

Notes: Physical properties marked with ⟨⟩ represent median values for the

galaxies (not pairs) in the sample.

and also factoring in the selection function of

the MUSE-Wide survey. The curve has been nor-

malized to the footprint size of our 68 fields.

While the formal average accuracy of our red-

shifts is 𝛥𝑧 ≃ 0.0007 or ±41 km/s (limited by

the accuracy of fitting the line), it is well-known

that Ly𝛼 peak redshifts are typically offset by

up to several hundreds of km/s from systemic

ones (e.g. Hashimoto et al. 2015; Muzahid et al.

2020; Schmidt et al. 2021), which would intro-

duce a systematic error in the redshift-derived

3D positions of the LAEs along the line-of-sight

(LOS) of the order of ∼3 Mpc. We mitigate this

systematic uncertainty by applying a correction

to the Ly𝛼 redshifts following the two recipes

described in Verhamme et al. (2018): When the

Ly𝛼 line presents two peaks with the red peak

larger than the blue peak, we apply Eq. (1) from

Verhamme et al. (2018). When only a single peak

is visible, we employ the correction given by Eq.

(2) in Verhamme et al. (2018). We show in Ap-

pendix 2.B that our method of measuring the

clustering properties is not sensitive to the de-

tails of this correction.

The range of Ly𝛼 luminosities (𝐿Ly𝛼 ) of

our galaxies is 40.91 < log(LLy𝛼/[erg s−1])
< 43.33, with a median Ly𝛼 luminosity of

⟨log(𝐿Ly𝛼/[erg s−1])⟩ = 42.36, the range of UV

absolute magnitudes is -22.4 <𝑀UV < -16.8, with

a median of ⟨𝑀UV⟩ = −18.4, and the range of rest
frame equivalent widths is 10.2 < 𝐸𝑊Ly𝛼 < 794.9

Å, with a median of ⟨𝐸𝑊Ly𝛼⟩ = 118.3 Å.

2.2.3 LAE subsets
In order to explore the dependence of the cluster-

ing amplitude on physical properties of LAEs, we

divide the original sample into subsamples based

on different available properties. In each case we

split the full sample at the median value of the

LAE property under question to have (nearly) the

same number of objects in each of the two sub-

sets. The subsamples are summarized in Table 2.1

and defined in greater detail in the following.

A first split in redshift around ⟨𝑧⟩ = 4.12 leads

to a low-𝑧 subset of 348 LAEs with median red-

shift ⟨𝑧low⟩ = 3.56 and a high-𝑧 subset of 347

LAEs with ⟨𝑧high⟩ = 4.59, respectively. The me-

dian Ly𝛼 luminosities and equivalent widths of

the two redshift subsamples are nearly the same

(differences of 0.08 dex and 2 Å, respectively).

There is no difference between the median𝑀UV.

In order to explore possible clustering depen-

dencies on Ly𝛼 luminosity, we generate two sub-

samples divided by Ly𝛼 luminosities. We split

the full sample at ⟨log(𝐿Ly𝛼/[erg s−1])⟩ = 42.36.

The low- and high-𝐿Ly𝛼 subsamples hold 349 and

346 LAEs, respectively. Their median redshifts

are ⟨𝑧low L⟩ = 4.03 and ⟨𝑧high L⟩ = 4.30. The me-

dian log(𝐿Ly𝛼 ) of the subsamples differs by 0.43

dex.

While at 𝑧 ≃ 3 most of our LAEs have a pho-

tometric HST counterpart, at 𝑧 > 5 only around

50% of the objects are detectable in the available

HST images (Kerutt et al. in prep.). Hence, for

those objects we can only adopt𝑀UV and 𝐸𝑊Ly𝛼

lower limits, which would skew the 𝐸𝑊Ly𝛼 and

𝑀UV distributions for the higher redshift subset.

Therefore we decided to eliminate the LAEswith-

out HST counterparts when splitting by 𝐸𝑊Ly𝛼

or𝑀UV. This reduces our sample size from 695

to 509 LAEs.

We then split the HST-detected sample by

equivalent width at ⟨𝐸𝑊Ly𝛼⟩ = 87.9 . The low-
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and high-𝐸𝑊Ly𝛼 subsample consists of 254 and

255 LAEs, respectively. The median redshifts

and luminosities of these samples are very simi-

lar (see Table 2.1).

Finally, we divided the HST-detected LAE sam-

ple by absolute magnitude at ⟨𝑀UV⟩ = −18.8,
leading to low- and high-𝑀UV subsets (bright

and faint, respectively) of 256 and 253 LAEs. The

⟨𝑀UV⟩ values differ between these two subsam-

ples by 1.59 dex, while the ⟨log(𝐿Ly𝛼 )⟩ values
differ by only 0.32 dex.

2.3 Methods

2.3.1 K-estimator
2.3.1.1 Basic principles

The specifics of MUSE as a survey instrument

present a serious challenge for the commonly

used two-point correlation function (2pcf) to

measure galaxy clustering. By design, MUSE sur-

veys span a wide redshift range but cover only

small (spatial) regions in the sky. The MUSE-

Wide footprint has already the largest transverse

footprint of all MUSE surveys, but its nature is

still that of a pencil-beam survey. While trans-

verse scales in the MUSE-Wide survey span up

to ∼20 ℎ−1Mpc, radial scales exceed the 1000

ℎ−1Mpc. The limitations of the transverse ex-

tent impede the application of the ‘jackknife’

technique to compute realistic uncertainties (see

Sect. 3.3.2.1), while methods such as bootstrap-

ping fail in the 2pcf. Besides, given our spatial

ranges, exploiting the redshift coverage rather

than the spatial extent is strongly preferred. We

thus explore possible alternatives to the 2pcf. In

Diener et al. (2017) we applied the so-called K-

estimator, introduced by Adelberger et al. (2005)

to analyse the clustering of Lyman Break Galax-

ies, in a subset of our pencil-beam survey. Here,

we build on our previous work by extending it

to a larger dataset, but also paying attention to

optimization aspects and comparing the method

with the 2pcf.

The K-estimator focuses on radial clustering

along the line of sight (LOS) by counting pair

separations in redshift space at fixed transverse

distances. In contrast to the 2pcf, no random sam-

ple is needed because the K-estimator computes

the ratio between small and small+large scales.

This quantity is directly related to the underlying

correlation function. We adopt the following no-

tation: Considering two galaxies with indices 𝑖

and 𝑗 , their transverse distance is 𝑅𝑖 𝑗 (equivalent

to 𝑟𝑝 in the 2pcf), and their LOS redshift-space

separation is 𝑍𝑖 𝑗 (equivalent to 𝜋 in the 2pcf).

We then count the number 𝑁 of pairs within

a given 𝑅𝑖 𝑗 bin, for two different ranges of 𝑍𝑖 𝑗 ,

|𝑎1 | < 𝑍𝑖 𝑗 < |𝑎2 | and |𝑎2 | < 𝑍𝑖 𝑗 < |𝑎3 |. The K-
estimator is defined as the ratio of the numbers of

galaxy pairs 𝑁𝑎1,𝑎2 (𝑅𝑖 𝑗 ) and 𝑁𝑎2,𝑎3 (𝑅𝑖 𝑗 ) between
these two consecutive cylindrical shells, namely:

𝐾𝑎1,𝑎2𝑎2,𝑎3
(𝑅𝑖 𝑗 ) =

𝑁𝑎1,𝑎2 (𝑅𝑖 𝑗 )
𝑁𝑎1,𝑎2 (𝑅𝑖 𝑗 ) + 𝑁𝑎2,𝑎3 (𝑅𝑖 𝑗 )

, (2.1)

as a function of transverse separation 𝑅𝑖 𝑗 . We set

𝑎1 = 0ℎ−1 Mpc so that the K-estimator quantifies

the excess of galaxy pairs in the range 0 < 𝑍𝑖 𝑗 <

𝑎2 with respect to the larger LOS range of 0 <

𝑍𝑖 𝑗 < 𝑎3. In other words, the K-estimator can be

expressed as𝐾 (𝑅𝑖 𝑗 ) = 𝑁0,𝑎2 (𝑅𝑖 𝑗 )/𝑁0,𝑎3 (𝑅𝑖 𝑗 ). This
concept is schematically illustrated in Fig. 2.3.

Here, (𝑎2 − 0) and (𝑎3 − 𝑎2) are the lengths of the
two cylinders within which the numbers of pairs

are counted.

The transverse distance 𝑅𝑖 𝑗 between LAE pairs

is taken in bins of 𝑅𝑖 𝑗 , corresponding to differ-

ent cylindrical shells in Fig. 2.3. These shells

are defined by their radii 𝑅𝑖 𝑗 and their lengths

𝑎2, 𝑎3 in the 𝑍 direction. For illustration pur-

poses, we display 𝑅𝑖 𝑗 in Fig. 2.3 using a linear

scaling (𝑅𝑖 𝑗2 − 𝑅𝑖 𝑗1 = 𝑅𝑖 𝑗3 − 𝑅𝑖 𝑗2 etc.), although
in practice we adopt a logarithmic spacing of

subsequent transverse separations. We note that

in this figure each 𝑅𝑖 𝑗 and 𝑍𝑖 𝑗 combination cor-

responds to a galaxy pair and not just a single

galaxy.

𝐾
𝑎1,𝑎2
𝑎2,𝑎3 is related to the 2pcf through the mean

value of the correlation function 𝜉 (see Adel-

berger et al., 2005)

⟨𝐾𝑎1,𝑎2𝑎2,𝑎3
(𝑅𝑖 𝑗 )⟩ ≃ (𝑎2 − 𝑎1) ·

pairs∑︁
𝑖> 𝑗

[1 + 𝜉𝑎1,𝑎2] ×

{
(𝑎2 − 𝑎1) ·

pairs∑︁
𝑖> 𝑗

[1 + 𝜉𝑎1,𝑎2] + (𝑎3 − 𝑎2)·

pairs∑︁
𝑖> 𝑗

[1 + 𝜉𝑎2,𝑎3]
}−1

, (2.2)

where 𝜉𝑎1,𝑎2 is

𝜉𝑎1,𝑎2 =
1

𝑎2 − 𝑎1

∫ 𝑎2

𝑎1

d𝑍𝑖 𝑗 · 𝜉 (𝑅𝑖 𝑗 , 𝑍𝑖 𝑗 ), (2.3)
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and corresponds to the mean correlation func-

tion that would be theoretically measured in

the blue region in Fig. 2.3. The same is ap-

plied for 𝜉𝑎2,𝑎3 in the red region of Fig. 2.3.

The function 𝜉 (𝑅𝑖 𝑗 , 𝑍𝑖 𝑗 ) can be represented by

a power law through the Limber Equation (Lim-

ber, 1953) in spatial coordinates 𝜉 (𝑅𝑖 𝑗 , 𝑍𝑖 𝑗 ) =

(
√︃
𝑅2
𝑖 𝑗
+ 𝑍 2

𝑖 𝑗
/𝑟0)−𝛾 or modelled with a halo oc-

cupation distribution model.

The understanding of this estimator is quite in-

tuitive. If galaxies were randomly distributed in

space (𝜉 (𝑟 ) = 0), the expected number of galaxy

pairs at each LOS separation would be equal.

Thus, from Eq. (2.2) and with 𝑎1 = 0, 𝐾
0,𝑎2
𝑎2,𝑎3 is sim-

ply the ratio of volumes between the two cylin-

drical shell segments, (𝑎2−0)/(𝑎2−0+𝑎3−𝑎2) =
𝑎2/𝑎3. Hence if 𝑎3 = 2𝑎2, the expectation value

for an unclustered galaxy population would be

𝐾 = 0.5; if for a specific sample the value of

𝐾 is significantly above 0.5, we have detected a

clustering signal. We note, however, that while

this criterion (applied by both Adelberger et al.

2005 and Diener et al. 2017) seems natural, there

is no a priori reason to keep the restriction to

𝑎3 = 2𝑎2. In fact, allowing for 𝑎3/𝑎2 > 2 pro-

vides the analysis with a more solid statistical

baseline against which the clustering signal can

be evaluated (addressed in Sect. 2.3.1.2).

Adelberger et al. (2005) applied Eq. (2.2) and

the Limber equation to estimate the correlation

length, 𝑟0, while keeping the power law slope 𝛾

of the correlation function fixed. They first mea-

sured the K-estimator in a single 𝑅𝑖 𝑗 bin 𝑅cut < 5

ℎ−1Mpc which captures the 𝑅𝑖 𝑗 scale for which

the clustering signal is largest. They then ap-

plied Eqs. (2.2) and (2.3) to predict the expecta-

tion values ⟨𝐾⟩ for different assumed values of

𝑟0, selecting the correlation length for which the

predicted value of 𝐾 was closest to the measured

value as their best estimate. The same procedure

was adopted by Diener et al. (2017) in their anal-

ysis of a MUSE-Wide subset of LAEs. We refer

to this approach in the following as the ‘one-bin

fit’ method.

In addition to this simple approach to esti-

mate 𝑟0 at fixed 𝛾 , we also implemented a more

elaborate procedure to fit the K-estimator with a

power law correlation function with both 𝛾 and

𝑟0 as free parameters. For this purpose, we inte-

grate 𝜉 (𝑟 ) over both 𝑍𝑖 𝑗 ranges as in Eq. (2.3), for

each 𝑅𝑖 𝑗 bin and for each combination of a grid

in (𝑟0, 𝛾 ). Plugging the values of these integrals

Figure 2.3: Illustration of the K-estimator. We show

three nested cylinders representing three bins of

transverse separations. The number of galaxy pairs

inside each blue cylindrical shell from 𝑎1 = 0 to ±𝑎2
is 𝑁0,𝑎2 , the number of pairs in each red cylindrical

shell between 𝑎3 − 𝑎2 and −𝑎2 − (−𝑎3) is 𝑁𝑎2,𝑎3 . The

K-estimator for each shell is then the ratio of pair

counts between the inner (blue) segment to the total

(blue plus red) segment. For illustration purposes we

depict linear 𝑅𝑖 𝑗 bins, although in practice we use a

logarithmic binning scheme.

into Eq. (2.2) to calculate ⟨𝐾⟩ for each 𝑅𝑖 𝑗 bin, we
obtain a global 𝜒2 value for each grid point by

summing over the squared deviations between

predicted and observed values of 𝐾 relative to

the statistical error bars (obtained by bootstrap-

ping as explained in Sect. 3.3.2.1). Our best-fit

parameters are then finally taken as the (𝑟0, 𝛾 )

grid point with the smallest 𝜒2. For the estima-

tion of confidence intervals, we face the compli-

cation that the 𝐾 values in subsequent 𝑅𝑖 𝑗 bins

are correlated because each galaxy contributes

to multiple pairs at various separations. We ex-

plain in Sect. 3.3.2.1 how we obtained realistic

uncertainties for the fit parameters.

2.3.1.2 Optimizing the K-estimator

The parameters 𝑎2 and 𝑎3 in the definition of

the K-estimator can in principle be chosen freely.

We now explore for which values we obtain the

best sensitivity for the clustering signal and the

highest signal-to-noise ratio (S/N). We compute

the S/N from the error bars of the correlation

lengths. This procedure is similar to finding the

optimal 𝜋max saturation value in the case of the

2pcf, where 𝜋max is increased until most of the

correlated pairs are included, while even larger

values of 𝜋max only add noise to the measure-

ment.

We performed a grid search with the full sam-

ple over the different combinations of 𝐾
𝑎1,𝑎2
𝑎2,𝑎3 , but

setting 𝑎1 = 0 throughout. Here, we vary 𝑎2
within 5–25 ℎ−1Mpc in steps of 2 ℎ−1Mpc and 𝑎3
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Figure 2.4: Results of our grid study to optimize the K-estimator. Left: S/N obtained for each evaluated

combination of (𝑎2, 𝑎3), displayed as a color map. The green area indicates the ‘forbidden’ range where 𝑎3 < 𝑎2.

The contours trace S/N increments of 2, slightly smoothed for display purposes. Right: Same parameters but

for the correlation length 𝑟0, except that the contours again follow the values of the S/N. The blue-red colored

circles represent grid points with 𝑎3 = 2𝑎2 for which the blue-red cylinders in Fig. 2.3 are equally long. The

blue cross indicated our adopted parameter combination for the clustering analysis, as it provides the highest

S/N and reaches saturation at 𝑟0.

within 5–50 ℎ−1Mpc in steps of 5 ℎ−1Mpc, with

the additional restriction 𝑎3 ≥ 𝑎2. We adopt

15 logarithmic bins in the range 0.6 < 𝑅𝑖 𝑗 <

12.8 ℎ−1Mpc, discarding 𝑅𝑖 𝑗 bins with fewer than

16 galaxy pairs. We use the one-bin fit described

above with a fixed canonical 𝛾 value of 𝛾 = 1.8

(Adelberger et al. 2005; Durkalec et al. 2014;

Ouchi et al. 2017) to calculate the correlation

length, 𝑟0, and the S/N for each combination (𝑎2,

𝑎3).

The results are shown in Fig. 2.4. The left

panel reveals that the S/N is highest for small 𝑎2
and large 𝑎3 values, while it decreases towards

𝑎2 ≈ 𝑎3. Parameter combinations with 𝑎2 = 𝑎3/2
as adopted in the two previous studies that used

the K-estimator (Adelberger et al., 2005; Diener

et al., 2017) are represented by the colored cir-

cles; it is evident that these combinations are

far from optimal with regard to bringing out the

clustering signal with maximal significance.

The right panel of Fig. 2.4 shows that in the

upper left range of the diagram where the S/N

is highest, the best-fit value of 𝑟0 is also insensi-

tive to the specific parameter combination. On

the other hand, larger values of 𝑎2 and smaller

values of 𝑎3 degrade the S/N. Comparable 𝑎2 and

𝑎3 values (tiny red and large blue cylinders in

Fig. 2.3) result in 𝑁𝑎2,𝑎3 (𝑅𝑖 𝑗 ) << 𝑁𝑎1,𝑎2 (𝑅𝑖 𝑗 ), with
𝑁𝑎2,𝑎3 (𝑅𝑖 𝑗 ) strongly varying with the exact value

of 𝑎3. This translates into large uncertainties

when computing 𝑟0 from the K-estimator (see

Eq. 2.1). These errors are however not reflected

in the right panel of Fig. 2.4 but are clearly visible

in the low S/N on its left panel. The largest 𝑟0 val-

ues therefore correspond to the most uncertain

values but agree well within their uncertainties

with the 𝑟0 value accepted by us. We adopt the

combination 𝑎2 = 7 ℎ−1Mpc and 𝑎3 = 35 ℎ−1Mpc,

marked with a blue cross in both plots, for the

rest of this paper as the grid point giving the

highest S/N and a 𝑟0 within the saturation val-

ues. Thus, in the following, we always refer to

the specific estimator 𝐾
0,7
7,35

which quantifies the

ratio of the number of galaxy pairs with LOS

separations between −7 < 𝑍𝑖 𝑗/[ℎ−1Mpc] < 7

and between −35 < 𝑍𝑖 𝑗/[ℎ−1Mpc] < 35 at given

transverse distance 𝑅𝑖 𝑗 . The expectation value

of this estimator for an unclustered population

is (𝑎2 − 𝑎1)/(𝑎3 − 𝑎1) = 0.2.

2.3.1.3 Error estimation

The individual data points from clustering statis-

tics are correlated. One galaxy can contribute to

galaxy pairs in more than one 𝑅𝑖 𝑗 bin. In order

to account for this correlation one would use the

jackknife resampling technique and compute a

covariance matrix (see e.g. Krumpe et al., 2010).

However, that method requires a division of the

sky area into several independent regions, each

of which must be large enough to cover the full

range of scales under consideration. Due to the

small sky area of our survey, this approach is

not feasible here. Poisson uncertainties, even if

commonly used, might underestimate the real

uncertainties. We therefore consider several al-
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ternatives to derive meaningful uncertainties in

Appendix 2.C and choose the most conservative

approach.

Thus, we apply the bootstrapping technique

detailed in Ling et al. (1986) (and similar as in

Durkalec et al., 2014) to determine the statis-

tical uncertainties of our data points. We cre-

ate pseudo-data samples by randomly drawing

695 LAEs from our parent sample, allowing for

repetitions. We generate 500 different pseudo-

samples and compute the K-estimator in all of

them. The standard deviations of 𝐾 in each 𝑅𝑖 𝑗
bin are adopted as error bars. We verify the ro-

bustness of our error approach in Appendix 2.C.

With the bootstrapped uncertainties and the

uncorrelated 𝜒2 statistics, the uncertainties of

the clustering parameters can be derived. How-

ever, we suspect that naively applying an uncor-

related 𝜒2 analysis with the standard confidence

threshold can also lead to an underestimation

of the clustering uncertainties. Therefore, we

test this hypothesis by investigating the behav-

ior of the error bars when the bin size is modified.

While we would generally expect a decrease in

the individual uncertainties when the bin size

is increased, here we expect an increase in the

error bars if the bin size is decreased.

We compute new bootstrapping error bars

for five different 𝑅𝑖 𝑗 bin sizes (half size, double

size, three times larger, four times larger and five

times larger than the current binning). The error

bar sizes do not vary significantly when the 𝑅𝑖 𝑗
bin size is modified, contrary to the expectation

of the standard 𝜒2 method.

We therefore recalibrate the 𝜒2 analysis to

determine realistic 68.3% and 95.5% confidence

levels in the following way: with each of our

bootstrapped samples delivering a best-fit mini-

mal value of 𝜒2
min,𝑖

corresponding to (𝑟0,𝑖, 𝛾𝑖 ), we

assume that the posterior distribution of these

𝜒2
min,𝑖

approximately describes the true confi-

dence regions. We compute the 𝜒2𝑖 values using

the corresponding (𝑟0,𝑖, 𝛾𝑖 ) combinations and our

real data. We sort these 𝜒2𝑖 into ascending order

and adopt the 68.3% and 95.5% parameter ranges

with respect to the sorted bootstrapped 𝜒2𝑖 val-

ues as marginalized single-parameter error bars.

This posterior distribution is also used to provide

combined confidence regions on both 𝑟0 and 𝛾 .

Throughout the paper, we refer to this fitting

approach as a ‘PL-fit’.

2.3.2 Two-point correlation
function

The 2pcf is undoubtedly the most frequently

used statistic to investigate galaxy clustering. Al-

though we argued above that it is less suited than

the K-estimator for a pencil-beam survey such

as MUSE-Wide, we include a 2pcf analysis of

our sample for comparison in Appendix 2.D. We

note that this is in fact the first time that such an

analysis has been performed on a 100% spectro-

scopically confirmed sample of LAEs. However,

the challenge of estimating realistic uncertain-

ties in the case of the 2pcf is even more prob-

lematic (due to the survey design) than for the

K-estimator. We present in Appendix 2.D an in

depth presentation and discussion of the 2pcf

on our LAE sample. In summary, we show that

the results from the K-estimator and 2pcf agree

within their uncertainties.

2.3.3 Bias and typical Dark Matter
Halo masses from power-law
fits

The clustering strength is characterized by the

large-scale bias factor 𝑏, which relates the dis-

tribution of galaxies to that of the underlying

dark matter density. The bias factor has often

been derived from the characteristic correlation

length 𝑟0 and the PL slope 𝛾 by fitting a PL to

the clustering signal (e.g. Peebles, 1980). Given

𝑏, we can also derive typical host DMH masses.

Within the concept of linear bias, the evolution

of 𝑏 with redshift is given by the ratio of the

density variance of galaxies 𝜎8,gal(𝑧) over that of
dark matter 𝜎8,DM(𝑧):

𝑏 (𝑧) =
𝜎8,gal(𝑧)
𝜎8,DM(𝑧)

. (2.4)

For a power-law 2pcf the relation between

𝜉 (𝑟 ) and the density variance 𝜎8,gal(𝑧) (Peebles,
1980; Miyaji et al., 2007) is given by

𝜉 (𝑟, 𝑧) =
(
𝑟

𝑟0

)−𝛾
𝜎8,gal(𝑧)2 = 𝜉 (𝑟8, 𝑧) × 𝐽2, (2.5)

where 𝜉 (𝑟8, 𝑧) is the correlation function eval-

uated in spheres of comoving radius 𝑟8 = 8

ℎ−1Mpc and 𝐽2 = 72/[(3 − 𝛾) (4 − 𝛾) (6 − 𝛾)2𝛾 ].
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Simultaneously, for the DM case:

𝜎8,DM(𝑧) = 𝜎8
𝐷 (𝑧)
𝐷 (0) (2.6)

with 𝐷 (𝑧) as the linear growth factor.

Inserting Equations (2.5) and (2.6) into Eq. (2.4)

we obtain the bias factor as a function of the

growth factor

𝑏 (𝑧) =
[
𝑟8

𝑟0(𝑧)

]−𝛾/2 𝐽
1/2
2

𝜎8𝐷 (𝑧)/𝐷 (0) . (2.7)

Following the bias evolution model described

in Sheth et al. (2001), we can compute the large-

scale Eulerian bias factor 𝑏Eul and compare it to

the bias given by Eq. 3.7 in order to estimate

DMH masses. To calculate 𝑏Eul, we consider lin-

ear overdensities in a sphere which collapses

in an Einstein-de Sitter Universe at 𝛿cr = 1.69.

The linear root mean square fluctuations corre-

spond to the mass at the epoch of observation

𝜈 = 𝛿cr/𝜎8,DM(𝑀h, 𝑧). The theory behind the

𝜎8,DM(𝑀h, 𝑧) calculation is developed in van den

Bosch (2002).

2.3.4 Halo occupation distribution
modelling

It is known that bias factors and DMHmasses in-

ferred from PL fits suffer from systematic errors

(e.g. Jenkins et al. 1998 and references therein). A

PL correlation function treats scales in the linear

and non-linear regime alike and does not differ-

entiate between pairs of objects belonging to the

same DMH and pairs residing in different halos.

Even for fits performed only in the linear regime,

the correlation function still deviates from the PL

shape. A more appropriate treatment is achieved

throughHODmodelling that explicitly combines

the separate contributions from the one- and the

two-halo terms.

The HOD model we use here is an improved

version of the model set presented by (Miyaji

et al., 2011; Krumpe et al., 2012; Krumpe et al.,

2015; Krumpe et al., 2018). To maintain consis-

tency with these studies, we use the bias-halo

mass relation from Tinker et al. (2005), the halo

mass function of Sheth et al. (2001), the dark

matter halo profile of Navarro et al. (1997), and

the concentration parameter from Zheng et al.

(2007). We use the weakly redshift-dependent

collapse overdensity 𝛿cr (Navarro et al., 1997; van

den Bosch et al., 2013). We further include the ef-

fects of halo-halo collisions and scale-dependent

bias by Tinker et al. (2005) as well as redshift

space distortions using linear theory (Kaiser in-

fall, Kaiser, 1987; van den Bosch et al., 2013) to

the two-halo term only (see Appendix 2.E).

The mean occupation function is a simplified

version of the five parameter model by Zheng

et al. (2007), where we fix the halo mass at which

the satellite occupation becomes zero to𝑀0 = 0

and the smoothing scale of the central halo oc-

cupation lower mass cutoff to 𝜎log𝑀 = 0.

In this simplification, the mean occupation dis-

tribution of the central galaxies can be expressed

by

⟨𝑁c(𝑀h)⟩ =
{
1 (𝑀h ≥ 𝑀min)
0 (𝑀h < 𝑀min)

(2.8)

and that of the satellite galaxies ⟨𝑁s(𝑀)⟩ as

⟨𝑁s(𝑀h)⟩ = ⟨𝑁c(𝑀h)⟩ ·
(
𝑀h

𝑀1

)𝛼
, (2.9)

where𝑀min is themass scale of the central galaxy

mean occupation,𝑀1 is the mass scale of a DMH

that hosts (on average) one additional satellite

galaxy, and 𝛼 is the high-mass slope of the satel-

lite galaxy mean occupation function.

We apply the model to obtain the 𝜉 (𝑟 ) based
on HOD modelling and convert the calculated

𝜉 (𝑟 ) to the K-estimator using Eq. 2.2. The mini-

mum transverse separation of our observed 𝐾-

estimator is ∼0.6 ℎ−1Mpc, where the one-halo

term contribution to 𝜉 (𝑟 ) is typically a few to

several percent. This is too low for obtaining ro-

bust constraints on the one-halo term to perform

a full HOD modelling. We therefore restrict our

analysis to an estimate of the bias parameter by

fitting the expected K-estimator based on only

the two-halo term to the observations. We hold

𝛼 = 1 and log𝑀1/𝑀min = 1 fixed and vary only

𝑀min to find the best-fit model and calculate the

bias parameter. This probes the typical DMH

mass for the sum of central and satellite galaxy

halo occupations, 𝑁 (𝑀h) = 𝑁c(𝑀h) + 𝑁s(𝑀h),
without being able to distinguish between these

two. The details of the HOD models (e.g. 𝑀1 and

𝛼) do not affect the typical DMH mass estima-

tions since we only fit the two-halo term. Some

HODmodelling applications in the literature also

use number density constraints (e.g. Equation

18 of Miyaji et al., 2011). This is, however, only
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Figure 2.5:Measured values of the K-estimator as a function of transverse distance (points with error bars)

compared to the expected behaviour for a population strictly following a power-law correlation function. Left:

The five curves represent different power-law indices as given in the legend, for a fixed value of 𝑟0 = 3.6ℎ−1Mpc.

Right: Same details for five different correlation lengths at fixed 𝛾 = 1.3. The central (thick solid) curves always

indicate the minimum 𝜒2 best-fit values. The horizontal straight line shows the no-clustering expectation

value of 𝐾 . The error bars are calculated with the bootstrapping technique described in Sect. 3.3.2.1.

relevant if the one-halo term contributes signif-

icantly, which is not the case here. Thus, we

do not need to employ any number density con-

straints. The HOD model is evaluated at the

median redshift of 𝑁 (𝑧)2 where 𝑁 (𝑧) is the red-
shift distribution of the sampled galaxies. For

our dataset, 𝑧p𝑎𝑖𝑟 = 3.82.

As above for the PL-fit parameters

(Sect. 3.3.2.1), we estimate the uncertainties of

the inferred bias factor by fitting the 500 boot-

strapped samples with the two-halo term HOD

modelling and obtain the 500 best bias factors

from the bootstrapped samples. Those best 500

HOD models are then compared to the observed

K-estimator data points to compute the boot-

strapped 𝜒2 values. We sort the bootstrapped

𝜒2
min

values in ascending order and use these to

recalibrate the 68.3% (1𝜎) confidence interval.

2.4 Results

2.4.1 K-estimator

Adopting the optimized K-estimator 𝐾
0,7
7,35

(see

Sect. 2.3.1.2), we measure the clustering of our

LAE sample in 15 logarithmic bins of transverse

separations 𝑅𝑖 𝑗 between 0.6 and 12.8 ℎ−1Mpc,

with error bars calculated by bootstrapping the

sample as explained in Sect. 3.3.2.1.

Figure 2.5 shows the results for the full LAE

sample. It is evident that the values of 𝐾 are sig-

nificantly above the no-clustering expectation

value of 0.2.

We can verify that our clustering results are

not affected by the accuracy of our redshifts (see

Appendix 2.B), also taking into account our statis-

tical corrections for the expected offset between

Ly𝛼-based and systemic redshifts (see Sect. 2.2.2).

We emphasize that the K-estimator is insensi-

tive to these redshift errors because of the broad

(±7 ℎ−1Mpc) window over which the numerator

in Eq. (2.1) is evaluated.

A somewhat puzzling feature, at least at first

sight, is the broad hump in the 𝐾 (𝑅𝑖 𝑗 ) pro-

file around 4 ≲ 𝑅𝑖 𝑗/[ℎ−1Mpc] ≲ 7, suggest-

ing a slight excess in the clustering strength

for such separations (or alternatively, a dent at

2 ≲ 𝑅𝑖 𝑗/[ℎ−1Mpc] ≲ 4). We test the possibility

that this feature might be introduced as an arte-

fact of the sample footprint shape by dividing

the sample into an ‘eastern’ and a ‘western’ half.

Since we find the hump (or dent) in both subsets,

as is also the case when splitting the sample by

LAE properties (see Sect. 5.5), we rule out a sys-

tematic effect due to the footprint. Recalling the

fact that the data points in Fig. 2.5 are strongly

correlated, we underline that the significance of

the feature is actually below 2𝜎 , and we consider

it to most likely be due to a statistical fluctuation

in the spatial distribution of the sample. The

only robust test of this explanation would re-

quire an independent but statistically equivalent

comparison sample, which we do not have at our

disposal. However, we removed the data points

of the hump or dent and tested the possible effect

of this feature on our fits to the K-estimator. We

find the same clustering parameters (within 1𝜎)
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Table 2.2: Clustering parameters from the different fit approaches to the K-estimator in our full sample.

Fit method 𝛾 𝑟0 [ℎ−1Mpc] 𝑏PL 𝑏HOD log(𝑀h / [ℎ−1M⊙])

HOD fit – – – 2.80+0.38−0.38 11.34+0.23−0.27
Two-parameter PL-fit 1.30+0.36−0.45 3.60+3.10−0.90 3.03+1.51−0.52 – –

One-parameter PL-fit fixed 1.8 2.60+0.72−0.67 2.02+0.22−0.24 – –

Single-bin fit fixed 1.8 2.10+0.20−0.20 1.66+0.14−0.14 – –

Notes: The typical DMH masses for the full sample are derived only from our HOD results.

The uncertainties in the bias factors reflect the statistical error on 𝑟0 only.

as in the next section. For the purpose of this

paper we treat the hump or dent as an insignifi-

cant statistical fluctuation that is not related to a

true clustering excess of the MUSE-Wide LAEs.

We also checked that our clustering signal is

insensitive to including or excluding the objects

from the 8 HUDF09 parallel fields (𝛥𝑏 = 0.03; see

Appendix 3.A), again confirming the robustness

of the K-estimator on the survey footprint.

2.4.2 Power law fits

First, we applied the single-bin fit method to our

clustering signal to compare our results to earlier

studies, which also computed the K-estimator

and evaluated its strength by using the single-

bin fit approach. We derived the best-matching

correlation length 𝑟0 at fixed 𝛾 = 1.8, as de-

scribed in Sect. 2.3.1.1. The calculated value

of 𝐾
0,7
7,35

for 𝑅𝑖 𝑗,max < 5 ℎ−1Mpc corresponds to

𝑟0 = 2.10 ± 0.20 ℎ−1Mpc. The outcome of this

single-bin fit depends somewhat on the adopted

𝑅𝑖 𝑗,max: lowering the limit to 3 ℎ−1Mpc results in

𝑟0 = 1.90+0.30−0.20 ℎ
−1
Mpc, whereas increasing 𝑅𝑖 𝑗,max

to 7 ℎ−1Mpc delivers 𝑟0 = 2.60+0.20−0.10 ℎ
−1
Mpc. In

principle, this dependence should be included in

the error bar on 𝑟0. We also vary the fixed value

of 𝛾 between 1.0 and 2.0 and find that 𝑟0 does

not change by more than 1𝜎 . Our single-bin fit

results agree with those in Diener et al. (2017)

but give much tighter constraints on 𝑟0.

Motivated by these results we proceed to es-

timate both parameters simultaneously. Since

in the single-bin approach the choice of 𝑅𝑖 𝑗,max

does affect the fit result, we now switch to

fitting the K-estimator over the full measured

range of transverse separations using all bins in

0.6 < 𝑅𝑖 𝑗/[ℎ−1Mpc] < 12.8 (see Sect. 3.3.1).

To obtain a visual impression of how𝐾
0,7
7,35

(𝑅𝑖 𝑗 )
depends on 𝛾 and 𝑟0 separately, we overplot the

expected curves for five different values of each

Figure 2.6: Simultaneous fit to 𝑟0 and slope 𝛾 . The

black (dark grey) contour represents the 68.3% (95.5%)

confidence. The red cross stands for the lowest 𝜒2

value at (𝑟0 = 3.65, 𝛾 = 1.25). The points show the

500 best-fit values from the 500 bootstrapped sam-

ples. The blue rectangle indicates the 16% and 84%

percentiles from the marginalized single-parameter

posterior distributions of the bootstrapped samples.

The green (red) error bar represents the correlation

length from the one-parameter PL (single-bin) fit with

fixed 𝛾 = 1.8. For a better visualization, we show a

zoom onto the region containing these fits.

quantity into Fig. 2.5, always keeping the other

parameter fixed. It can be seen that 𝐾 reacts in

different ways to changes in the two parameters.

Increasing 𝑟0 leads to an elevated 𝐾 at all 𝑅𝑖 𝑗
scales, whereas increasing 𝛾 results in changes

of 𝐾 mainly at small transverse separations. Be-

cause the shape of 𝐾
0,7
7,35

(𝑅𝑖 𝑗 ) changes differently
for 𝑟0 and 𝛾 , it is in principle possible to fit both

parameters simultaneously. We perform an un-

correlated 𝜒2 analysis over a grid of 𝑟0 and 𝛾

to find the best-fit parameters as described in

Sect. 2.3.1.1.

Following the procedure laid out in

Sect. 3.3.2.1 we compute confidence contours

for 𝑟0 and 𝛾 by fitting the 500 bootstrapped sam-

ples in the same way. The marginalized single-

parameter (1D) 16%–84% confidence regions are

𝛾 = 1.30+0.36−0.45 and 𝑟0 = 3.70+3.10−0.92. These and the

corresponding 2-dimensional 68.3% and 95.5%
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confidence contours are displayed in Fig. 2.6,

along with the 500 best-fit parameter sets from

the bootstrapped pseudo-data samples. For a

visual comparison we also plot the estimations

from the single-bin fit. We further include the

results from a one-parameter PL-fit with fixed

𝛾 = 1.8 for an easier comparison with the litera-

ture in Sect. 5.5.1.

The best-fit correlation length of 2.1 ℎ−1Mpc

obtained by the single-bin fit (at fixed 𝛾 = 1.8)

is lower than suggested by the one- and two-

parameter fits and it is not compatible with its

68.3% probability contour. This was expected be-

cause the single-bin fit was not optimized for 𝑟0,

S/N and 𝑅𝑖 𝑗 range. We also observe a large simi-

larity between the medians of the marginalized

single-parameter posterior distributions (𝑟0 =

3.60+3.10−0.90 ℎ
−1
Mpc, 𝛾 = 1.300.36

0.45
) and the combi-

nation of parameters that provide the lowest 𝜒2

value (𝑟0 = 3.65, 𝛾 = 1.25). It is also evident from

Fig. 2.6 that the fit is quite degenerate between

𝑟0 and 𝛾 in the sense that parameter combina-

tions with higher 𝛾 and lower 𝑟0 are only slightly

less likely than the best-fit combination. Differ-

ent 𝑅𝑖 𝑗 scales are affected when modifying 𝛾 or

𝑟0 (see Fig. 2.5). This results in similarly good

PL-fits when combinations of low 𝛾 and high 𝑟0
or high 𝛾 and low 𝑟0 are applied. Taking into

account the sensitivity of the single-bin fit to

the value of 𝑅𝑖 𝑗,max, the three results are in fact

very similar. We therefore adopt the PL fitting

approach also for our subsequent investigation

of the dependence of clustering on LAE physi-

cal properties. This eases the comparison to the

literature, where mainly PL fits are performed.

The values and errors of the best-fit parameters

from the different fit approaches are summarized

in Table 2.2.

The confidence contours of our fit are essen-

tially open towards large 𝑟0 and low 𝛾 . In fact,

our bootstrap sample contains a sizeable propor-

tion of instances with best-fit combinations in

the lower right corner of Fig. 2.6 (11.8% with

𝑟0 > 10 ℎ−1Mpc). Upon investigation of these

‘solutions’, we find that they correspond to al-

most constant K-estimator values with respect

to 𝑅𝑖 𝑗 , driven by the tentative hump around

5 ℎ−1Mpc. Whatever the actual origin of these

extreme points, it seems clear that from the K-

estimator alone without further priors we can

only constrain plausible combinations of 𝑟0 and

𝛾 at one end of the distribution.

Figure 2.7: Dependence of the HOD fits to the K-

estimator on the large-scale bias factor. The dotted,

solid, and dashed red curves show three different bias

factors 𝑏 = 2.3, 2.8, 3.3, respectively. The thicker solid

red curve shows the 𝑏 that provides the lowest 𝜒2

value. The 𝐾 values and their respective error bars

are the same as in Fig. 2.5.

While it appears that the best-fit power-law

index for our LAEs tends to be substantially shal-

lower than the results from other studies based

on NB imaging that use the fiducial 𝛾 value of

𝛾 = 1.8 (e.g. Ouchi et al., 2010; Ouchi et al., 2017),

we note that they are generally compatible at

the 1–2𝜎 level. The same is true for the values

obtained from our own sample using the 2pcf

method (see Appendix 2.D).

2.4.3 Halo occupation distribution
fit

We can then match the HOD model (Sect. 3.3.3)

to our measured K-estimator. Similarly to Fig. 2.5

we first visualize the basic behaviour of the

HOD model for different large-scale bias fac-

tors (shown in Fig. 2.7). Higher values of 𝑏 in-

crease the expectation values of 𝐾 at most sep-

aration scales, but most strongly for small 𝑅𝑖 𝑗 .

Following the procedure described in Sect. 3.3.3

we recalibrate the confidence contours and

obtain a best-fit large-scale bias of 𝑏H𝑂𝐷 =

2.80+0.38−0.38. The corresponding typical DMH mass

is log(𝑀h/[ℎ−1M⊙]) = 11.34+0.23−0.27.
The best-fit HOD model behaves in several

aspects similarly to the best-fit PL correlation

function. Even if PL fits do not have a physical

basis, the PL model seems to perform slightly

better in terms of matching the observed 𝐾 val-

ues and reaching a slightly lower 𝜒2 value, but

these differences are not significant. The bias

values derived from the two fits are also fully

consistent as discussed in Sect. 2.5.3.
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Figure 2.8: Measured values of the K-estimator of

our sample of 68 MUSE-Wide fields (blue filled cir-

cles) compared to the subset of 24 fields considered

in Diener et al. (2017, D17, open red circles). The er-

ror bars are again calculated with the bootstrapping

technique described in Sect. 3.3.2.1. The blue dotted

curve represents our two-parameter best PL-fit. The

red dotted curve uses the best single-bin fit results of

D17 (𝑟0 = 2.9+1.0−1.1 cMpc for a fixed 𝛾 = 1.8) applied to

our PL-method (two-parameter PL-fit).

We investigate the effects of the redshift space

distortions (RSD) in Appendix 2.E, where we

show that the RSD do not have a significant ef-

fect on the HOD fit for K-estimator.

2.5 Discussion

2.5.1 Comparison to Diener et al.
(2017)

We first compare our results with those of our

pilot study (Diener et al., 2017, p. D17) which

employed the non-optimized K-estimator 𝐾
0,25
25,50

for a subset of 24 fields of our current sample. In

order to visualize the statistical gain of our new

investigation, we applied our improved 𝐾
0,7
7,35

es-

timator to the 196 LAEs at 3.3 < 𝑧 < 6 in the

same 24 fields. The outcome of this comparison

is shown in Fig. 2.8.

While the two datasets show excellent agree-

ment given the uncertainties, as expected the

error bars are much smaller in our new sample.

The clustering signal of the 24 fields appears a bit

higher, but the differences are at most 1𝜎 . The

smaller footprint of the 24 fields dataset limits the

range of transverse separations < 0.6 ℎ−1Mpc.

The clustering curves from the two samples are

fitted with a PL correlation function, based on

the results from D17 for the 24 fields and on our

best PL-fit for the 68 fields. Figure 2.8 also shows

Figure 2.9: Comparison of the derived correlation

lengths to the literature. The 𝑟0 values calculated in

this study are represented with purple stars. Green

symbols correspond to studies of samples based on

Ly𝛼 selected galaxies. The samples from Durkalec et

al., 2014 at 𝑧 ∼ 2.5 and 𝑧 ∼ 3.5 (dark and light yellow)

are based on continuum-selected high-𝑧 galaxies. The

horizontal colored bars indicate the redshift ranges

of the corresponding studies (spectroscopic surveys).

The redshift range of the 𝑧-subsamples of this paper

are not plotted for a better visibility. Values for 𝑟0 are

plotted at the median redshift of the samples. The 𝑟0
from Ouchi et al. (2003) and Bielby et al. (2016) have

been shifted by +0.1 along the x-axis for visual pur-

poses. Our one-parameter PL-fit with fixed 𝛾 = 1.8

by +0.2. The upper limit of the 𝑟0 from Shioya et al.

(2009) corresponds to 𝑟0 = 10.1 Mpc.

that the power-law fits to the 68 fields follow

the data points much better than in the 24 fields

since we performed a simultaneous fit of 𝑟0 and𝛾 .

Following the same procedure as in Sect. 3.3.2.1

for the 24 fields, we find 𝑟0 = 2.85+0.73−0.76 ℎ
−1
Mpc

and 𝛾 = 1.62+1.18−0.82. These results are very close to

the numbers obtained in D17 (𝑟0 = 2.9+1.0−1.1 cMpc

for a fixed 𝛾 = 1.8), but our improved proce-

dure substantially decreased the error bars for

the same data.

2.5.2 Comparison with the
literature

Most previously published works on the cluster-

ing of high-redshift galaxies are restricted to the

estimation of 𝑟0 at fixed power-law index 𝛾 , with

the latter typically assumed to be 1.8 or there-

abouts. While our best-fit value for 𝛾 based on

the K-estimator is considerably lower, Fig. 2.6

shows that 𝛾 values around 1.8 are still consis-

tent with our data. To make a fair comparison, in

Sect. 2.4.2 we recompute the best-fitting power

law with 𝛾 fixed to 1.8; thus only allowing 𝑟0 to

vary. Furthermore, the clustering strength and

28



Figure 2.10: Best PL and HOD fits to the K-estimator.

The dashed green curve shows the PL-fit (same as the

solid curves in Fig. 2.5) while the dotted red curve

represents the HOD fit (same as the thick curve in

Fig. 2.7). The measurements of 𝐾
0,7
7,35

are the same as

in Figures 2.5 and 2.7.

thus the correlation length are predicted to

evolve with cosmic time and, thus, the (average)

redshifts of the samples must also be taken into

account in any comparison.

We first considered clustering measurements

of LAEs selected by NB surveys. Here, all objects

are assumed to have the same redshift defined

by the NB filter. Early studies (Ouchi et al., 2003;

Gawiser et al., 2007; Shioya et al., 2009) focused

on small samples of LAEs (up to 160 objects) at

𝑧 = 3.1 − 4.86 to compute angular correlations.

The correlation lengths at fixed 𝛾 = 1.8 (except

Shioya et al., 2009, who calculated𝛾 = 1.90±0.22)
are consistent with our recomputed PL-fits, in

particular when considering the involved uncer-

tainties. The correlation lengths are in the range

of 𝑟0 ≈ 2.5 − 4.5 ℎ−1Mpc, higher values corre-

sponding to higher redshift samples. More recent

studies based on NB surveys (Ouchi et al., 2010;

Bielby et al., 2016; Ouchi et al., 2017) at higher

redshifts (𝑧 ≈ 3 − 6.6) hold much larger samples

(up to 2000 objects), where they find slightly

higher correlation lengths, 𝑟0 = 3 − 5 ℎ−1Mpc.

Given the similarity between these and lower

redshift samples, our derived correlation lengths

are also in fair agreement with most recent LAE

clustering studies.

We then considered clustering measurements

of high-redshift galaxies selected based on pho-

tometric redshifts or magnitude and colour-

colour criteria (mainly Lyman-break galaxies).

Durkalec et al. (2014, 2018) computed the real-

space 2pcf on samples of more than 3000 objects

at 2 < 𝑧 < 5 distributed over more than 0.8 deg
2
.

The sample is more suited for clustering studies

Figure 2.11: Comparison between the bias parame-

ters derived from the PL and HOD fits listed in Tables

2.2 and 2.3. We highlight the bias factor from the full

sample of LAEs with a red square. The dotted blue

line shows a 1:1 correspondence.

than our MUSE-Wide survey because their large

spatial coverage diminishes the effect of cosmic

variance and allows the computation of the tradi-

tional 2pcf method. Thanks to the characteristics

of the survey they perform a two-parameter PL-

fit and derive a correlation slope of 𝛾 = 1.80+0.02−0.06
and a correlation length of 𝑟0 = 3.95+0.48−0.54 ℎ

−1
Mpc

at 𝑧 ∼ 2.5. At 𝑧 ∼ 3.5 they obtain lower slopes

𝛾 = 1.60+0.12−0.13 and higher lengths 𝑟0 = 4.35 ± 0.60.

Our results not only agree with their cluster-

ing parameters but also point toward a lower

slope for higher redshift galaxies. Moustakas

& Somerville (2002) also reported a redshift de-

pendence of 𝛾 ; in addition, the authors param-

eterized analytically the correlation slope as a

function of redshift.

Figure 2.9 compiles the comparison of correla-

tion lengths from the literature and those derived

in this work with different fit approaches. We

also plot the correlation lengths for our redshift

subsamples (see Sect. 2.5.4).

Most literature values are in agreement with

our findings, both with the 𝑟0 from the two-

parameter PL-fit and from the one-parameter

PL-fit with fixed 𝛾 = 1.8 (𝑟0 = 2.60+0.72−0.67 ℎ
−1
Mpc).

Not surprisingly, given the 𝑟0 dependence on

𝑅𝑖 𝑗,max, the value from the single-bin fit is lower

than in most studies (including our robust PL-fit

approach results).

A more appropriate but not so traditional com-

parison of the clustering strength is the bias

factor, derived from 𝛾 and 𝑟0 (for PL-based cor-

relation functions) or from HOD models. At

𝑧 ∼ 3 Bielby et al. (2016) reported a bias fac-

tor of 𝑏PL = 2.13 ± 0.22 and DMH masses of

𝑀h = 10
11±0.3 ℎ−1M⊙, whilst at the same red-
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shift, Durkalec et al. (2014) reported a somewhat

larger bias value of𝑏HOD = 2.82±0.27 and typical
DMHmasses of log(𝑀h/[ℎ−1M⊙]) = 11.75±0.23.
As for Ouchi et al. (2017), they obtained a bias

value of 𝑏HOD = 3.9+0.7−1.0 and typical DMH masses

of log(𝑀h/[ℎ−1M⊙]) = 11.1+0.2−0.4 at 𝑧 = 5.7, whilst

Ouchi et al. (2010) derived bias values in the

range 𝑏 = 3 − 6 and typical DMH masses of

𝑀h = 10
11±1 ℎ−1M⊙ at 𝑧 = 6.6. Our results fall

between the values derived from studies at 𝑧 = 3

and 𝑧 = 5.7.

Each study, however, probes different lumi-

nosity and EW ranges, an effect that may have

an impact on the interpretation of the cluster-

ing results from the literature. Despite these

differences, it is interesting to note the general

agreement in the clustering parameters from the

different studies at similar 𝑧. Consequently, the

hosting DMH mass of galaxies are also very sim-

ilar. We present our testing of the sample, aimed

at characterizing such dependencies, in the next

section.

2.5.3 PL vs HOD fits
The various fit methods performed on the K-

estimator allow us to compare the derived PL-

fit results to those from HOD modelling. We

tested the performance of the different PL-fit

approaches and we developed an improved fit

method.

The clustering signal provided by the K-

estimator was never robustly fitted in previous

studies (Adelberger et al., 2005; Diener et al.,

2017). The correlation length 𝑟0 was obtained

by measuring the K-estimator in a single 𝑅𝑖 𝑗 bin

(𝑅cut < 5 cMpc) and comparing the result to the

expectation values ⟨𝐾⟩ provided by Eq. 2.2 for

different correlation lengths. In the process, a

PL correlation function of fixed slope was as-

sumed but never directly fit to the K-estimator.

Instead, the correlation length that yields the

closest match between ⟨𝐾⟩ and 𝐾measured was

chosen as the best correlation length. However,

in Sect. 2.4.2, the result varies significantly de-

pending on the chosen𝑅cut. Due to the simplicity

of this approach and its dependence on 𝑅cut, we

fit the measured K-estimator as a function of 𝑅𝑖 𝑗
with the model predictions (Eq. 2.2), providing a

more reliable and accurate fit to the full 𝑅𝑖 𝑗 range

covered by the K-estimator.

Taking the K-estimator one step further, we

also make use of HOD models. As explained in

Sect. 3.3.3, PL-based correlation functions do not

distinguish between the one- and two-halo term

regimes. PLs are just an approximation, whereas

HOD models treat galaxies residing in one DMH

and in different DMHs differently, being a more

advanced and physically meaningful approach.

We measure the clustering only at 𝑅𝑖 𝑗 >

0.6 ℎ−1Mpc so we do not cover the one-halo

term of the correlation function. Hence, we fit

the two-halo term of 𝜉 (𝑟 ) from the HOD model

to our 𝐾 values in order to obtain the large-scale

bias of our sample.

In Fig. 2.10we show both PL andHODbest-fits

to the K-estimator from the 𝜒2 analysis described

in Sect. 3.3.1. The performance of the curves is

comparable and there are only tiny variations

in the shape of the curves. Nonetheless, the PL-

fit achieves the lowest 𝜒2, indicating a modest

better performance.

Even though the curves are nearly identical at

intermediate separations (1 < 𝑅𝑖 𝑗/[ℎ−1Mpc] <

2.5), at smaller and larger separations, the curves

deviate from each other. The largest difference

occurs at small separations (𝑅𝑖 𝑗 < 1 ℎ−1Mpc),

where the PL flattens but the HOD fit continues

to increase. Less remarkable is the difference

at large separations (𝑅𝑖 𝑗 > 2.5 ℎ−1Mpc), where

the PL-fit is somewhat higher than the HOD fit.

In both cases, the differences are well within

the uncertainties, and in the main range used to

calibrate the bias factor (𝑅𝑖 𝑗 > 1 ℎ−1Mpc), the

variations between the fits are minute.

We show the comparison between the large-

scale bias parameters calculated from the PL and

HOD fits listed in Tables 2.2 and 2.3 in Fig. 2.11.

The derived bias factors from the PL fits are

slightly higher than the HOD values, while the

HOD uncertainties are, on average, smaller (≈
25%) than those from the PL fits. Using sam-

ples of AGN and a cross-correlation function

approach, Krumpe et al. (2012) also compared

PL and HOD clustering fits. They found higher

bias factors and smaller uncertainties from the

HOD fits because they included part of the one-

halo term in the PL fit. As we have explained,

strong variations between samples in the one-

halo term cause a decrease in the bias factors

derived from the PL fits. However, we do not

include the one-halo term in any of our fits so

we are not subjected to these variations.
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Table 2.3: Derived clustering parameters from the subsamples.

LAE subsample 𝑟0 [ℎ−1Mpc] 𝑏PL 𝑏HOD l𝑜𝑔(𝑀h / [ℎ−1M⊙])

Redshift < 4.12 4.02+1.17−1.06 3.18+0.55−0.55 2.80+0.36−0.37 11.39+0.23−0.29
Redshift > 4.12 3.53+1.16−1.04 3.66+0.71−0.72 3.27+0.56−0.59 11.07+0.31−0.41
log𝐿Ly𝛼 < 42.36 2.78+1.09−1.02 2.74+0.63−0.68 2.58+0.54−0.59 10.88+0.39−0.62
log𝐿Ly𝛼 > 42.36 4.08+1.60−1.40 3.66+0.84−0.85 3.71+0.93−0.91 11.57+0.38−0.54
𝐸𝑊Ly𝛼 < 87.9 2.89+1.98−1.74 2.81+1.08−1.23 2.54+0.65−0.73 10.84+0.47−0.83
𝐸𝑊Ly𝛼 > 87.9 4.14+1.84−1.57 3.53+0.91−0.91 3.43+0.90−0.90 11.44+0.41−0.62
𝑀UV < -18.8 6.30+2.97−2.26 4.47+1.22−1.08 3.66+0.85−0.82 11.63+0.36−0.48
𝑀UV > -18.8 3.35+1.84−1.59 3.11+0.98−1.03 2.85+0.67−0.71 11.06+0.41−0.64
Notes: Power-law derived bias values (𝑏P𝐿 use a fixed slope of 𝛾 = 1.3; see discussion

in Sect. 2.5.4). The typical DMH masses are derived from our HOD results. The

uncertainties in the bias factors and DMH masses reflect the statistical error on 𝑟0
only.

2.5.4 Clustering dependence on
physical properties

We searched for clustering dependencies on

LAE physical properties. We computed the

K-estimator in the subsamples described in

Sect. 3.2.4, but the lower number of objects in

the subsets does not allow for a two-parameter

PL-fit. We therefore take the prior from our full

sample and assume that our subsamples present

the same correlation slope as the parent sample

(𝛾 = 1.3). We then performed the one-parameter

PL-fit with fixed 𝛾 = 1.3. We also conducted

HOD fits in the same way as we did for the full

sample.

2.5.4.1 Redshift

Taking advantage of the large redshift range pro-

vided by MUSE, we investigate whether LAEs

occupy denser regions of the Universe at earlier

epochs by measuring their clustering strength

with the K-estimator.

At the cost of enlarging the error bars (and

as explained in Sect. 5.2), we split our sample in

two bins around the median redshift, ⟨𝑧⟩ = 4.12.

We computed the K-estimator in both subsam-

ples, with the results given in the top left panel

of Fig. 2.12.

The two curves are essentially indistinguish-

able within the error bars. Both follow the same

trend and have similar shapes. Analogously to

Sect. 2.4.2, we fit a PL correlation function 𝜉 (𝑟 ) =
(𝑟/𝑟0)−𝛾 with fixed slope 𝛾 = 1.3. For the low

redshift subsample, we obtain 𝑏low = 3.18+0.55−0.55.
The resulting value for the high-redshift bin is

𝑏high = 3.66+0.71−0.72. The best-fit parameters are

listed in Table 2.3 along with the bias factors ob-

tained from the HOD fit and their corresponding

DMH masses.

The difference between the best-fit parameters

(lower than 1𝜎) of the subsamples do not allow

us to corroborate or contradict the general state-

ment "LAEs reside in more massive DMHs at

higher redshifts". However, other studies found

higher bias factors of LAEs at higher redshifts

(e.g. Ouchi et al., 2010). Even if the study of

samples at fixed luminosities is needed, this has

been interpreted as evidence for downsizing,

with galaxies residing in the largest DMHs going

through their ‘LAE phase’ early in the Universe,

while Milky Way progenitors appear as LAEs at

later times, around 𝑧 ∼ 3.

We confirm that our findings are not strongly

affected by the selected redshift cut of the sam-

ple. Varying the cut by 10% in 𝑧, from 𝑧 = 4.12

to 𝑧 = 4.53, changes the number of LAEs in each

subsample by ∼15% (118 objects) and results in

an increase in 𝑏 within 1𝜎 , which is equivalent

when considering the uncertainties; whereas, the

𝑧 and 𝐿Ly𝛼 values are not independent. There-

fore, the different luminosity distributions in the

different redshift subsamples may bias the de-

tection of a clustering dependence on redshift.

To assure that the investigation of the clustering

dependence on 𝑧 is not driven by the different

𝐿Ly𝛼 distributions, we apply a ‘matching’ tech-

nique similar to Coil et al. (2009) and Krumpe

et al. (2015). To do so, we compare individual

bins between the two luminosity distributions of

the 𝑧-subsamples. In each bin, we check which

subsample contains more objects. We then select
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the onewith the higher number and randomly re-

move objects until we match the number counts

of the other subsample in that bin. Once the

two luminosity distributions are equivalent, we

run the K-estimator in both subsamples with

now matched 𝐿Ly𝛼 distributions but still differ-

ent redshift distributions. We find fully consis-

tent results when making a comparison with our

original subsample definition. The clustering dif-

ference between the ‘matched’ and ‘unmatched’

subsamples varies within 1𝜎 . Therefore, we dis-

card the possibility of a possible clustering de-

pendence on 𝑧 driven by 𝐿Ly𝛼 as well as a strong

clustering dependence on 𝑧.

2.5.4.2 Ly𝜶 luminosity

To learn about the DMHs where LAEs of differ-

ent Ly𝛼 luminosities reside, we studied the clus-

tering dependence on Ly𝛼 luminosity. We used

two subsamples divided by the median Ly𝛼 lumi-

nosity of the full sample as explained in Sect. 5.2.

The K-estimator was then computed for both.

Details of the individual subsamples are given

in Table 2.1 and the clustering correlations are

illustrated in the top right panel of Fig. 2.12.

Although the statistical uncertainties are sub-

stantial, the top right panel of Fig. 2.12 suggests a

trend in the sense that LAEs with higher Ly𝛼 lu-

minosities appear to be more strongly clustered.

This trend is also seen in the correlation lengths

and bias factors, see Table 2.3. We verify that our

results are not significantly altered by the cho-

sen Ly𝛼 luminosity cut of the sample. Shifting

the Ly𝛼 luminosity from log(𝐿Ly𝛼/[erg s−1]) =
42.36 to log(𝐿Ly𝛼/[erg s−1]) = 43.21 (120 objects

shifted) does not change the results; we still find

a tentative 2𝜎 clustering dependence on Ly𝛼

luminosity. Furthermore, we have also investi-

gated that the possible clustering evolution trend

with 𝐿Ly𝛼 is not caused by the different redshift

distributions of the subsamples.

As already mentioned 𝐿Ly𝛼 and 𝑧 are not inde-

pendent. Thus, we also create matched distribu-

tions to exclude that dependence is driven by 𝑧

and not 𝐿Ly𝛼 . In order to discard this possibility,

we match the 𝑧-distributions of both subsamples

such that the low- and high- 𝐿Ly𝛼 subsamples

have exactly the same 𝑧-distribution. We com-

pute the K-estimator for the subsamples with

the matched 𝑧-distributions and find a more pro-

nounced trend than that of the top right panel

of Fig. 2.12. For both matched subsamples, the

𝐾 values vary within ∼7% of the original sub-

samples. This translates into a difference lower

than 1𝜎 between the ‘matched’ bias factors and

those listed in Table 2.3. However, the ‘matched’

bias factors between the low and high 𝐿Ly𝛼 sub-

samples differ by almost 2𝜎 , suggesting a tenta-

tive weak clustering dependence in the way that

more luminous LAEs cluster more strongly than

less luminous LAEs.

The calculated bias factor for fainter LAEs

is 𝑏low = 2.58+0.54−0.59, while for luminous LAEs is

𝑏high = 3.71+0.93−0.91. This trend is consistent with

the statement that more luminous (in Ly𝛼) galax-

ies reside in more massive DMHs (Ouchi et al.,

2003). While a more statistically significant re-

sult will require larger LAE samples, the trend

we see is in agreement with Ouchi et al. (2003)

and Khostovan et al. (2019), who found stronger

clustering strengths for Ly𝛼 brighter LAEs in

samples of 41.85 ≤ log(𝐿Ly𝛼/[erg s−1]) ≤ 42.65

at 𝑧 ≈ 4.86 and 42 ≤ log(𝐿Ly𝛼/[erg s−1]) ≤ 43.6

at 2.5 < 𝑧 < 6, respectively.

2.5.4.3 Ly𝜶 equivalent width

We investigate the clustering dependence on the

rest-frame Ly𝛼 𝐸𝑊 to explore the possibility of

LAEs residing in different DMHs depending on

the 𝐸𝑊 of the Ly𝛼 emission line. We use the two

subsamples described in Table 2.1. The 𝐸𝑊 cut

is made at the median 𝐸𝑊Ly𝛼 of the sample of

galaxies with HST counterparts as explained in

Sect. 5.2. The K-estimator results are presented

in the bottom left panel of Fig. 2.12 and the best-

fit parameters from the PL- and HOD-based cor-

relation functions are given in Table 2.3.

There are hardly any differences between the

curves shown in the bottom left panel of Fig. 2.12.

The low 𝐸𝑊Ly𝛼 subsample presents a linear bias

factor of 𝑏low = 2.54+0.65−0.73, while the resulting

value for the high 𝐸𝑊Ly𝛼 bin is 𝑏high = 3.43+0.90−0.90.
Even though LAEs with higher 𝐸𝑊Ly𝛼 seem to

reach higher 𝐾 values on average, the difference

is smaller than 1𝜎 . Similar results were found by

Ouchi et al. (2003).

We certify that the derived correlation lengths

are not affected by the selected 𝐸𝑊Ly𝛼 cut of the

sample. Shifting the cut by 25% in 𝐸𝑊Ly𝛼 , from

𝐸𝑊Ly𝛼 = 87.9 to 𝐸𝑊Ly𝛼 = 110 , changes the sub-

sample number counts in 50 objects and results

in a variation in 𝑟0 within 1𝜎 , equal within the

error bars.
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Figure 2.12: Clustering dependencies on object properties. Top left: Clustering variation in two different

redshift subsamples. The blue dots show the clustering in the lower redshift bin while the red points show the

higher redshift subsample. The dotted curves represent the best HOD fits. Top right: Same details but for two

different Ly𝛼 luminosity subsamples. Bottom left: Same details but for 𝐸𝑊Ly𝛼 . Bottom right: Same details but

for UV absolute magnitude. The black line represents the K expectation value for an unclustered sample of

galaxies and the 1𝜎 error bars are determined from the bootstrapping approach explained in Sect. 3.3.2.1.
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2.5.4.4 UV absolute magnitude

The UV absolute magnitude is related to the star

formation rate which in turn is expected to scale

with stellar and also the DMH mass. It is there-

fore interesting to explore the clustering depen-

dence on UV absolute magnitude by dividing our

full sample at the median𝑀UV into two subsam-

ples. The characteristics of both bins are listed in

Table 2.1. We compute the K-estimator in both

subsamples and we illustrate the clustering cor-

relations in the bottom right panel of Fig. 2.12.

The clustering parameters are listed in Table 2.3.

We find large-scale bias factors in the bright-

and faint-𝑀UV subsamples (low and high 𝑀UV,

respectively) of 𝑏low = 4.47+1.22−1.08 and 𝑏high =

3.11+0.98−1.03. Given the large uncertainties, we can-

not claim the detection of a clustering depen-

dence on 𝑀UV, even if the bottom right panel

of Fig. 2.12 seems to indicate a stronger clus-

tering signal for more luminous LAEs than for

fainter LAEs. While Durkalec et al. (2018) found

that high-𝑧 galaxies with 𝑀UV < −20.2 cluster
more strongly than those with 𝑀UV < −19.0
(𝛥𝑏 = 0.43), Ouchi et al. (2003) found no notable

difference between their𝑀UV subsamples. Since

Ouchi et al. (2003) recognize different clustering

strengths as a function of Ly𝛼 luminosity, they

claim that such dependencemight dominate over

a𝑀UV clustering dependence.

We checked that the derived correlation pa-

rameters are not significantly affected by the

chosen𝑀UV cut of the sample. Shifting the𝑀UV

cut, from𝑀UV = −18.8 to𝑀UV = −19.18 changes
the number of counts in the subsamples by 62

objects while the correlation lengths vary within

1𝜎 , consistent within the uncertainties.

2.5.5 Cosmological simulations

We go on to compare our results with cosmo-

logical simulations to test whether our detected

clustering signal is predicted by state of the art

LAE models at high redshift and to gain some

insight into the expected cosmic variance.

While a plethora of cosmological simulations

are now available to describe the formation and

evolution of galaxies at high redshift, the com-

plex nature of the Ly𝛼 line emission and prop-

agation in the gas requires careful numerical

modelling in order to make predictions for the

LAE population. Various approaches based on

different numerical techniques and model as-

sumptions (i.e. cosmology, baryonic physics, etc)

have incorporated Ly𝛼 radiation transfer effects

over simple geometries in semi-analytic models

(e.g. Garel et al., 2012; Orsi et al., 2012; Garel

et al., 2015; Gurung-López et al., 2018) or in post-

processing of hydrodynamical simulations (e.g.

Forero-Romero et al., 2011; Dayal & Libeskind,

2012; Yajima et al., 2012). Even though there is

no radiative transfer (RT) model that perfectly

reproduces the Ly𝛼 emission lines and, therefore,

no cosmological simulation that succeeds in fully

replicating LAE observations, here we compare

our results with the GALICS semi-analytic model

which includes Ly𝛼 radiation transfer in expand-

ing shells (Garel et al., 2015).

The underlying dark matter simulation used

in this model is run with GADGET (Springel,

2005) and features a box of 3 ×106 Mpc
3
with a

DMH mass resolution of 10
9
M⊙. As shown in

Garel et al. (2015), this model can reproduce the

UV and Ly𝛼 luminosity functions at 3 < 𝑧 < 7

down to Ly𝛼 fluxes of 4×10−17 erg s−1 cm−2
. Fol-

lowing the procedure described in Garel et al.

(2016), we generate 100 mock light cones of 17

× 17 arcmin
2
size to obtain physical parameters

such as Ly𝛼 fluxes or 3D positions.

In order to resemble the real data, the selection

function, spatial geometry, and redshift range

of the 68 MUSE-Wide fields have been applied

before computing the K-estimator for the 100

simulated samples. The selection function was

shifted +0.28 dex in flux to recover the same to-

tal number of detections. The results given by

the K-estimator in the 100 simulated samples are

shown in Fig. 2.13, along with its average and

uncertainties.

We find that the clustering in the simulated

samples is much stronger than the clustering

in the MUSE-Wide survey. Simulated samples

present much larger K-values than in the ob-

served data. The two-parameter PL-fit results

in very large uncertainties in 𝑟0 (consistent with

our observed 𝑟0) but also points to lower𝛾 values.

From the one-parameter PL-fit (fixed 𝛾 = 1.8),

we obtain 𝑟0 = 5.80+1.23−1.10 ℎ−1Mpc and derive

a bias factor of 𝑏 = 4.13+0.78−0.71. These are only

≈ 1.9𝜎 away from our one-parameter best-fit

results. However, from the HOD fit we compute

𝑏 = 4.80+0.32−0.32 and log(𝑀h/[ℎ−1M⊙]) = 12.16+0.11−0.11.
Considering the 𝑀h values, this differs by 3.2𝜎

from our observations. We note that since the

scope of this paper is not to give an extended

comparison to simulations, we have restricted
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Figure 2.13: Comparison between the clustering sig-

nal in our real survey in blue (same as in Fig. 2.5) and

in the 100 simulated samples. Each sample is drawn

from a different light-cone realization. The values of

the K-estimator for each of the 100 simulated cata-

logues is represented in gray. The standard deviation

of the 100 K-estimator values and their average val-

ues are shown in red.

our comparison to one LAE model only, and we

obviously cannot draw any general conclusion

regarding a potential tension between the pre-

dicted and observed clustering of LAEs. Thus,

we leave more detailed comparisons to future

work. We briefly discuss aspects that may plau-

sibly explain the mismatch below.

We first note that the mock light cones show

prominent redshift spikes that are not present in

the real data (see Fig. 2.14), a noticeable problem

that was also discussed in Diener et al. (2017).

The super structures seem to dominate the clus-

tering signal and be responsible for most of the

disagreement between our measurements and

the simulation. The origin of this discrepancy is

unclear and could be due to several reasons that

need to be addressed in future simulation work,

such as inaccuracies in the Ly𝛼 RTmodelling, the

assumed cosmology, the baryonic physics mod-

elling affecting the halo-galaxy relation, cosmic

variance, intrinsic Ly𝛼 luminosities, or poorly

controlled LAE selection in the mocks.

In particular, a potential cause could arise from

the fact that Ly𝛼 luminosities in GALICS are

angle-averaged, whereas the Ly𝛼 escape fraction

is supposedly highly anisotropic in real galax-

ies, such that observed Ly𝛼 luminosities strongly

vary from one sight line to another (Smith et al.,

2019). Since the luminosity function of our LAEs

is steep, this has the same effect as photometric

scattering. Uncertainties in the selection func-

tion of GALICS and of observations due to field

to field variation are poorly controlled and have

a similar effect. This results in the selection

Figure 2.14: Redshift distribution from four simu-

lated catalogues chosen randomly from the full set of

light cones in red. The redshift distribution of the real

LAEs from the 68 fields of the MUSE-Wide survey is

shown in blue.

of more luminous galaxies at higher redshifts,

which can boost the clustering signal.

Moreover, potential deviations on the Ly𝛼

luminosity-halo mass relation in GALICS (e.g.

star formation not sufficiently quenched in mas-

sive halos, such that 𝐿Ly𝛼 = 10
42

erg s
−1

LAEs

might reside in too massive halos) would also

enhance the clustering. Besides, a duty cycle (e.g.

Ouchi et al., 2010) further powers this mismatch

because in GALICS most star forming galaxies

emit Ly𝛼 . Alternative modelling could lead to

Ly𝛼-bright phases that only last a limited pe-

riod of time, which could plausibly attenuate the

strong spikes seen in the redshift distribution.

Since these simulations do not closely repro-

duce the clustering present in the real data, it

is not possible to use them for improving the

error estimates on the measurements over the

approaches we considered in Appendix 2.C. Nev-

ertheless, simulations can provide information

on the individual contribution of the statisti-

cal uncertainty and the uncertainty due to cos-

mic variance. For the statistical uncertainty, we

performed 500 K-estimator measurements on

the same bootstrap-resampled light-cone (see

Sect. 3.3.2.1 where we apply the same method

to our real data). The uncertainty of the cos-

mic variance can be estimated by computing the

standard deviation of the 100 different light-cone

realizations. In comparing the individual data

points, we find that the uncertainty due to the

cosmic variance (red error bars in Fig. 2.13) is

on average ∼35% larger than the error from the

statistical approach only (similar to the blue er-

ror bars in Fig. 2.13 but for one light-cone). We

have verified that similar results can be found if
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we resample different light cones. Therefore, our

quadratically combined uncertainties (statistical

and cosmic variance) in the observed clustering

may ultimately be ∼70% higher.

Finally, we used the light cones to check the

effects of our special survey geometry. Even

if we do not expect a strong effect on the K-

estimator since we are measuring a contrast of

galaxy pairs in two consecutive shells along LOS

separations (see also Appendix 3.A), we com-

pared the clustering of the 100 simulated cata-

logues in a 68 fields special geometry with the

clustering present in the full area of the simula-

tion without any forced geometry (just a simple

square of 17 × 17 arcmin
2
). We find that the

signals agree very well.

2.5.6 The fate of LAEs over cosmic
time

Applying an HOD modelling to the K-estimator

determines a typical dark matter halo mass of

log(𝑀h/[ℎ−1M⊙]) = 11.34+0.23−0.27 for our LAEs. It
is expected that these high redshift DMHs sig-

nificantly grow all the way down to 𝑧 = 0. We

here explore the evolution of those DMHs from

⟨𝑧p𝑎𝑖𝑟 ⟩ ≃ 3.82 to 𝑧 = 0 to find the typical descen-

dants of our LAE sample.

Considering the galaxy-conserving evolution

model of Fry (1996), which assumes the absence

of mergers and that the motion of galaxies are

driven by gravity only, the large-scale bias factor

evolves as:

𝑏 (𝑧) = 1 + (𝑏0 − 1)/𝐷 (𝑧), (2.10)

where 𝑏0 is the bias at 𝑧 = 0 and 𝐷 (𝑧) is the
linear growth factor (e.g. Hamilton, 2001).

Using this model, we infer that the halos of

LAEs with a median redshift of the number

of pairs ⟨𝑧p𝑎𝑖𝑟 ⟩ ≃ 3.82 evolve into halos with

𝑏0 ≈ 1.4 by 𝑧 = 0, which translates into typ-

ical DMH masses of log(𝑀h/[ℎ−1M⊙]) ∼ 13.5.

This is ≈15 times more massive than the Milky

Way. Based on Ouchi et al. (2010) calculations, in

a more realistic Press-Schechter formalism (e.g.

Lacey & Cole, 1993), the bias evolution curve is

slightly lower, meaning a bias closer to 𝑏0 ≈ 1.2

rather than 𝑏0 = 1.4.

Similar results are also derived from simula-

tions. The information stored in the DM halo

merger trees used in GALICS (Garel et al., 2016)

allowed a similar study. They found median de-

scendant halo masses of𝑀h/[ℎ−1M⊙] ≈ 2 · 1012
for 𝑧 = 3 LAEs, corresponding to the upper

limit estimate of the Milky-Way halo mass. For

𝑧 = 6 LAEs they found median descendant halo

masses of𝑀h/[ℎ−1M⊙] ≈ 5 · 1013, corresponding
to group or cluster galaxy halos. These assess-

ments are thoroughly in agreement with our es-

timations and reinforce the notion that our LAEs

actually contain a diverse population of objects

(as expected, since MUSE-Wide is a Ly𝛼-flux lim-

ited survey over a wide 𝑧 range).

Our work and the various studies presented in

the literature cover wide 𝑧 and Ly𝛼 luminosity

ranges. If there are indeed clustering dependen-

cies with one or both parameters, this would lead

to different typical DMH masses, depending on

the details of the sample selection. It is thus nec-

essary to discuss the descendants with respect

to different redshift and luminosity progenitors.

The combination of clustering measurements

of NB-selected LAEs and the galaxy-conserving

model considered in this work, leads us to the

conclusion that 𝑧 = 5.7 − 6.6 LAEs will evolve

into DMHwith bias values of𝑏0 = 1.5−2 at 𝑧 = 0

(Ouchi et al., 2010). This is in agreement with

our findings. These higher values, in compari-

son to those of Gawiser et al. (2007) at 𝑧 = 3.1,

indicate that descendants of LAEs at different

redshifts differ. While most LAEs at 4 < 𝑧 < 7

are probably the large galaxies of today, LAEs

at 𝑧 = 3 are more likely to be the ancestors of

Milky Way type galaxies.

Khostovan et al. (2019) considered

narrowband-selected LAEs with typical 𝐿Ly𝛼 ∼
10

42−43
erg s

−1
and intermediate-band-selected

LAEs with typical 𝐿Ly𝛼 ∼ 10
43−43.6

erg s
−1

at

2.5 < 𝑧 < 6. Assuming halo mass accretion

models, they found that the former evolved

into galaxies residing in halos of typically

log(𝑀h/[ℎ−1M⊙]) = 12 − 13 (Milky Way-like)

while the later evolved into galaxies residing in

halos of log(𝑀h/[ℎ−1M⊙]) > 13 (cluster-like) in

the local Universe.

Since our LAEs are in the redshift range

of 3.3 < 𝑧 < 6 and present typi-

cal Ly𝛼 luminosities in the range 40.9 <

log(𝐿Ly𝛼/[erg s−1]) < 43.3, the derived descen-

dant masses (log(𝑀h/[ℎ−1M⊙]) ∼ 13.5) are thor-

oughly in agreement with the cluster-like descen-

dants found by Ouchi et al. (2010) and Khostovan

et al. (2019). These results, along with those from

literature, reveal that LAEs cover a wide range

of present-day descendants, depending on their
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luminosity and redshift, from Milky Way-type

galaxies all the way to clusters of galaxies.

2.6 Conclusions

In this work, we examine the galaxy cluster-

ing properties of a sample of 695 LAEs from

the MUSE-Wide survey in the redshift range of

3.3 < 𝑧 < 6. We applied an optimized version of

the K-estimator and supported our results with

the traditional two-point correlation function,

measuring, for the first time, the spatial cluster-

ing as a function of distance in a spectroscopic

sample of Ly𝛼-selected galaxies.

Due to the characteristics of the survey (spe-

cial geometry, large redshift range and lim-

ited angular coverage), we focus on the more

appropriate clustering method, namely, the K-

estimator. We then relied on the radial clus-

tering and quantified the clustering signal fol-

lowing different approaches. We first obtained

𝑟0 = 3.60+3.10−0.90 ℎ
−1
Mpc and𝛾 = 1.30+0.36−0.45 by fitting

the clustering signal with a power-law-based cor-

relation function. We derived a bias parameter

of 𝑏 = 3.03+1.51−0.52 and compared it to that derived

from the second fit approach, 𝑏 = 2.80+0.38−0.38, by
scaling a halo occupation distribution model to

the measured signal. The large-scale bias cor-

responds to typical dark matter halo masses of

log(𝑀h/[ℎ−1M⊙]) = 11.34+0.23−0.27. In order to sup-

port the less known K-estimator method, we

also computed the traditional 2pcf, whose re-

sults are consistent with those obtained with the

K-estimator.

The results are also in general agreement with

the last available measurements at similar red-

shifts, with bias factors slightly higher than those

in the literature. Nevertheless, most of the pre-

vious studies have been carried out in surveys

with somewhat different flux limits than that of

the MUSE-Wide survey. This could play an im-

portant role since we may probe disparate stellar

masses. The chosen cosmology and the redshift

evolution of these parameters through different

epochs also contribute to those slight differences.

We also explore possible clustering dependen-

cies on physical properties. We exclude the pos-

sibility of a strong clustering dependence on Ly𝛼

equivalent width, UV absolute magnitude, and

redshift. However, we see a tentative weak trend

when we split the sample at the median Ly𝛼 lu-

minosity that is, more luminous LAEs cluster

more strongly than less luminous LAEs.

We compare the clustering in the MUSE-Wide

survey with the clustering in 100 light cones

from a GADGET dark matter only cosmolog-

ical simulation coupled to the GALICS semi-

analytical modelling of LAEs. We find that even

though the simulation mimics the flux and lu-

minosity of the LAEs, it is far from successfully

reproducing the observed clustering. Simulated

data show a stronger clustering than measured

in our sample. In order to better imitate the

clustering of LAEs, determine the reliable 2pcf

scales, compute more realistic uncertainties for

our methods, and constrain a physically robust

model for LAEs, future simulation studies need

to address this challenge.

Assuming galaxy-conserving evolution mod-

els, we inferred that our DMHs should evolve

into halos of log(𝑀h/[ℎ−1M⊙]) ∼ 13.5 in the lo-

cal Universe. Since these models assume that the

motion of galaxies is driven entirely by gravity,

and that mergers do not occur, our evolved DMH

masses would be slightly higher in a (more real-

istic) Press-Schechter formalism. We deduce that

the DMHs of LAEs observed at 3.3 < 𝑧 < 6 with

40.9 < log(𝐿Ly𝛼/[erg s−1]) < 43.3 have mainly

evolved into halos hosting present-day galaxies

or groups. These halos are ≈15 times more mas-

sive than that of the Milky Way.

A radial extension of the MUSE-Wide survey

would benefit the development of LAE clustering

studies. Larger areas of the sky would be cov-

ered (i.e. larger clustering scales), a larger sample

of LAEs would be detected, and the higher S/N

would further decrease the uncertainties in the

measurements. This will be the case for HETDEX

(Hill et al., 2008), which will provide a higher S/N

and a much broader coverage of the sky, con-

tributing to improving the understanding of the

cosmology behind LAEs.

Appendix

2.A Effect of the HUDF
parallel fields on the
K-estimator

In this work, we focus on 68 fields of the

MUSE-Wide survey, including part of the

CANDELS/GOODS-S region and the eight
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Figure 2.A.1: 𝐾0,7
7,35

estimator for the LAEs in 60 and

68 fields of the MUSE-Wide survey in red and blue,

respectively. The black straight line shows the ex-

pected 𝐾 value of an unclustered sample. All error

bars are Poissonian. The red dots have been shifted

along the x-axis for visual purposes.

parallel HUDF fields. In order to assess a homo-

geneous sample, cover a larger area of the sky,

and maximize the number of detected galaxies,

we include the eight HUDF parallel fields. In this

section we explore the possible effects on the

clustering measurements of including the paral-

lel fields. We study the clustering in the 68 fields

(same as throughout the paper) and that present

in the 60 fields (without including the eight par-

allel HUDF fields). The characteristics of the first

sample are described in Sect. 5.2, while the sec-

ond sample covers a total of 54.74 arcmin
2
and

has 581 LAEs.

The K-estimator is then run in both sam-

ples and shown in Fig. 2.A.1. We demonstrate

the insignificant effect on our main results due

to the inclusion or exclusion of the parallel

fields. The two curves are indistinguishable

within the approximated Poissonian uncertain-

ties

√︁
𝑁𝑎1,𝑎2/(𝑁𝑎1,𝑎2 + 𝑁𝑎2,𝑎3) (see Sect. 4.2 in

Adelberger et al. 2005) but due to the lower num-

ber of LAEs in the 60 fields the uncertainties are

somewhat larger (8%) than those of the 68 fields.

The minimal effect on the clustering signal,

the larger area of the sky covered, whichmakes it

more representative in terms of cosmic variance,

and the larger number of LAEs in the sample,

which reduce the uncertainties, lead us to include

the eight parallel HUDF fields in our analysis of

the main sample.

Figure 2.B.1: 𝐾0,7
7,35

estimator for the LAEs in the

MUSE-Wide survey. The green triangles represent

the K-estimator values of the sample of LAEs with

redshift estimations from QtClassify, the red squares

show the 𝐾 values when the redshifts are obtained

from the Ly𝛼 line fit with asymmetric Gaussians and

the blue circles show the same previous redshifts but

including the correction for the offset between the

Ly𝛼 and the systemic redshift (same as in all plots

in the main paper where the K-estimator results are

shown). The black straight line shows the expected𝐾

value of an unclustered sample. All sets of data points

are plotted along with Poisson errors. The blue circle

and red square values have been shifted along the

x-axis for visual purposes.

2.B Effect of Ly𝜶 derived
redshifts on the
K-estimator

Inferring the redshift of galaxies from their Ly𝛼

lines introduces an offset (i.e. a few hundreds

of km/s) with respect to their systemic redshift

(Hashimoto et al., 2015). This offset translates

into small uncertainties in the derived positions

of the galaxies (i.e. ∼3 Mpc) that would af-

fect the clustering measurements when scru-

tinized through traditional methods (see e.g.

Gurung-López et al., 2021). The K-estimator

compares galaxy pair counts in two consecu-

tive shells along LOS separations. Thus, the off-

set introduced in the separations affects both

shells equally, being simultaneously compen-

sated. However, since we are workingwithmuch

larger scales than ∼3 Mpc, even from a theoreti-

cal point of view, the K-estimator is not expected

to be sensitive to these redshift offsets.

We prove this in Fig. 2.B.1, considering the

same sample of LAEs, but obtaining the redshift

of the galaxies in different manners. We first

use the redshift estimates from QtClassify (see
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Sect. 5.2) and then we use more precise redshifts

obtained by fitting asymmetric Gaussian profiles

to the Ly𝛼 emission lines. Finally, from those pre-

cise redshifts we correct the redshift following

Verhamme et al. (2018) as described in Sect. 2.2.2.

We run the K-estimator for these three samples,

which only differ by their source redshift esti-

mates. In Fig. 2.B.1, we show the minimal im-

pact of the redshift uncertainties in our results,

showing that the three different redshift samples

provide negligible variations in the K-estimator

values. The K-estimator on the sample with red-

shift estimations provides large-scale bias fac-

tors of 𝑏 = 3.00+1.73−0.56 from PL fits, while using the

sample with the corrected redshifts (main paper)

𝑏 = 3.03+1.51−0.52.

2.C Error estimates in the
K-estimator

When computing the clustering signal with the

K-estimator, we have to recognize that the indi-

vidual data points are correlated. Various galaxy

pairs can be part of more than one 𝑅𝑖 𝑗 bin and the

same galaxy may be counted in more than one

galaxy pair. The extent of how bin 𝑖 correlates

with bin 𝑗 is usually expressed with the covari-

ance matrix. However, the small area covered by

our survey does not allow us to calculate a covari-

ance matrix. Therefore, we investigated several

error approaches for our K-estimator measure-

ments.

We applied the bootstrapping technique de-

scribed in Ling et al. (1986), which creates

pseudo-data sets by sampling 𝑁 sources with

replacement from the real sample of 𝑁 galax-

ies. In other words, we randomly draw objects

from the real sample, allowing multiple selec-

tions of the same object, to generate a pseudo-

sample with the same number of objects 𝑁 as

the real sample. We repeat the process 500 times,

obtaining a large set of pseudo-samples, which

vary moderately from the original data. We com-

pute the K-estimator in the 500 pseudo-samples,

𝑁boots = 500. The scatter from all the measure-

ments is adapted for our uncertainty estimations.

We also considered a second technique, in

which we generate random samples. Ideally,

500 different realizations from cosmological sim-

ulations should be applied but we showed in

Sect. 4.4.5 that the simulated data cannot directly

be compared to our clustering measurements.

Figure 2.C.1: 𝐾0,7
7,35

estimator of the LAEs in the 68

fields of the MUSE-Wide survey with the different

error approaches. Approximated Poisson errors (i.e.√︁
𝑁𝑎1,𝑎2/(𝑁𝑎1,𝑎2 + 𝑁𝑎2,𝑎3)) are shown in red, while

the blue and green uncertainties are obtained from

the bootstrapping and the random sample genera-

tion methods, respectively. Both sort of error bars

have been shifted in the 𝑅𝑖 𝑗 direction for illustration

purposes. As usual, the black line represents an un-

clustered sample of galaxies.

Therefore, we use the selection and luminosity

functions of the survey (Herenz et al., 2019) to

obtain the real 𝑧-distribution of our LAEs (see

Sect. 5.2 and red curve in Fig. 2.2). Randomly clus-

tered samples with the same number of objects

as the real sample are created from the real red-

shift distribution. Each new galaxy is located at a

random position within the MUSE-Wide survey

footprint, with a specific redshift provided by the

combination of LF and SF. Following this proce-

dure, we generate 500 different random samples

and compute 𝐾
0,𝑎2
𝑎2,𝑎3 in each of the samples. For

each bin, the uncertainty has been obtained as

the standard deviation from the resulting 𝐾
𝑎1,𝑎2
𝑎2,𝑎3

of the different 500 random samples.

We show the two main uncertainty ap-

proaches for the K-estimator in Fig. 3.C.1. We

also include the approximated Poisson errors√︁
𝑁𝑎1,𝑎2/(𝑁𝑎1,𝑎2 + 𝑁𝑎2,𝑎3) calculated by the error

propagation of Eq. 2.1.

While the random errors are 20% smaller than

Poisson errors, we find that the uncertainties

from bootstrapping are moderately larger (∼35%)
than the Poissonian ones. In order to remain

conservative (and even if all uncertainties are

comparable), we decided to compute the error

bars in our K-estimator analyses following the

classical bootstrapping approach. Hence, uncer-

tainties due to cosmic variance are not repre-

sented yet in our error estimates of the real data.

In other words, repeating the same LAE cluster-

ing studies in different regions of the sky can
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lead to clustering signals outside our expected

uncertainty range. The cosmic variance contri-

bution to the total error budget was explored in

Sect. 4.4.5. Including this contribution results in

∼ 70% larger uncertainties. However, this addi-

tional uncertainty does not impact our results

when comparing the subsamples because they

are obtained in the same sky field.

2.D Two-point correlation
function analysis

2.D.1 2pcf method

Overall, 2pcf is the most commonly used statisti-

cal approach to explore the clustering in a sample

of objects. Traditionally, those samples cover a

broad spatial coverage that accounts for cosmic

variance and allows the computation of a covari-

ance matrix to estimate clustering uncertainties.

With the MUSE-Wide survey, we are facing the

opposite scenario: small spatial coverage and a

wide redshift range.

In reconstructing the 2pcf, we follow standard

recipes (Landy & Szalay, 1993). To recall, 𝜉 (𝑟 )
quantifies the excess probability 𝑃 over a random

Poisson distribution of finding a pair of galaxies

separated by a distance 𝑟 (Peebles, 1980)

𝑑𝑃 = 𝑛[1 + 𝜉 (𝑟 )]d𝑉 , (2.D.1)

where d𝑉 is the infinitesimal volume occupied

by the pair and 𝑛 is the average number density

of galaxies.

Galaxy distances along the light of sight (LOS)

cannot be measured directly. Instead the redshift

information of the galaxies is used, which is af-

fected by their peculiar velocities. In order to

eliminate this effect, the so-called redshift space

distortions (RSD), we compute the correlation

function in a 2D grid. Wemeasure the separation

of pairs in the perpendicular distance to the LOS

direction, 𝑟𝑝 , and parallel to the LOS direction, 𝜋 .

We then count pairs of LAEs within given sepa-

rations and compare them to those in a random

sample of galaxies by means of the Landy-Szalay

estimator (Landy & Szalay, 1993)

𝜉 (𝑟𝑝, 𝜋) =
𝐷𝐷 (𝑟𝑝, 𝜋) − 2𝐷𝑅(𝑟𝑝, 𝜋) + 𝑅𝑅(𝑟𝑝, 𝜋)

𝑅𝑅(𝑟𝑝, 𝜋)
,

(2.D.2)

where 𝐷𝐷 , 𝑅𝑅 and 𝐷𝑅 are the normalized data-

data, random-random and data-random pairs.

In other words, expressing the actual num-

ber of pairs as 𝑛pair,𝐷𝐷 (𝑟𝑝, 𝜋), 𝑛pair,𝐷𝑅 (𝑟𝑝, 𝜋) and
𝑛pair,𝑅𝑅 (𝑟𝑝, 𝜋):

𝐷𝐷 = 𝑛pair,𝐷𝐷 (𝑟𝑝, 𝜋)/[𝑁𝐷 (𝑁𝐷 − 1)]

𝐷𝑅 =
1

2

𝑛pair,𝐷𝑅 (𝑟𝑝, 𝜋)/(𝑁𝐷𝑁𝐷)

𝑅𝑅 = 𝑛pair,𝑅𝑅 (𝑟𝑝, 𝜋)/[𝑁𝑅 (𝑁𝑅 − 1)] . (2.D.3)

𝑁𝐷 and 𝑁𝑅 are the total number of galaxies in

the real and random sample, respectively.

We then calculate the projected correlation

function 𝜔 (𝑟𝑝) by integrating 𝜉 (𝑟𝑝, 𝜋) along the

𝜋-direction (Davis & Peebles, 1983)

𝜔𝑝 (𝑟𝑝) ≈ 2

∫ 𝜋max

0

𝜉 (𝑟𝑝, 𝜋)𝑑𝜋, (2.D.4)

where 𝜔𝑝 is the projected 2pcf and 𝜋max is the

maximum allowed LOS distance between pairs

of galaxies to be considered as a pair. Also, 𝜋max

is chosen such that it accounts for most corre-

lated pairs and the amplitude of 𝜔𝑝 (𝑟𝑝) is able
to converge. Very large values would mainly

increase the noise since there are not many cor-

related pairs at large LOS distances. In contrast,

very low values would not include most corre-

lated pairs and would effectively underestimate

𝜔𝑝 (𝑟𝑝).

We compute 𝜋 within 10 − 300 ℎ−1Mpc in

steps of 10 ℎ−1Mpc and 𝑟𝑝 in the range of 0.375

< 𝑟𝑝/[ℎ−1Mpc] < 13.155 in 9 logarithmic bins.

We then calculate the projected correlation func-

tion𝜔𝑝 (𝑟𝑝) for each 𝜋 value and fit the analytical

solution:

𝜔𝑝 (𝑟𝑝) = 𝑟𝑝
(
𝑟0

𝑟𝑝

)𝛾
𝛤 (1/2) 𝛤 ((𝛾 − 1)/2)

𝛤 (𝛾/2) ,

(2.D.5)

where 𝛤 (𝑥) is the Gamma function. The fittings

are performed in the range 0.584 < 𝑟𝑝/[ℎ−1Mpc]
< 13.155 (two-halo term only) for each of the

𝜔𝑝 (𝑟𝑝) curves.

We measure the correlation length of the

curves using Eq. 2.D.5 with a fixed slope of 𝛾 =

1.8. In order to be conservative, we use 𝜋max = 60

ℎ−1Mpc. Similar 𝜋max values are obtained with

the simulation described in Sect. 4.4.5. Litera-

ture 𝜋max values in similar LAE clustering stud-

ies used less conservative values (15–20 ℎ−1Mpc;

Durkalec et al., 2014, 2018).
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Table 2.D.1: Best-fit clustering parameters from 2pcf measurements.

𝑟0 [ℎ−1Mpc] 𝛾 𝑏PL 𝑏HOD log(𝑀h/[ℎ−1M⊙])

2.24+0.25−0.35 1.85+0.25−0.25 1.66+0.36−0.42 2.05+0.14−0.14 10.51+0.16−0.17

Notes: The correlation length and slope, the linear bias factor assuming a PL

correlation function, the linear bias factor and typical dark matter halo masses

from the HOD model are indicated. The uncertainties in the bias factors and

DMH masses reflect the statistical error on 𝑟0 only.

Figure 2.D.1: Best PL and HOD fits to the projected

2pcf 𝜔𝑝 (𝑟𝑝) for 𝜋max = 60 ℎ−1Mpc. The dashed green

curve shows the PL-fit while the dotted red curve

represents the HOD fit. The error bars are deter-

mined from the random approach explained in Ap-

pendix 2.D.2.

Besides the 𝜋max determination, the measure-

ment of the 2pcf also demands the modelling of a

random sample of galaxies with the same geom-

etry, selection effects and observational condi-

tions as the real sample. Hence, we constructed

a random sample from the real 𝑧-distribution

of the sample (red curve in Fig. 2.2) obtained

from the SF and the LF of the MUSE-Wide sur-

vey (Herenz et al., 2019). The number of random

objects is chosen to be 100 times the number of

galaxies in the real sample. This makes the vari-

ance of 𝐷𝑅 and 𝑅𝑅 in Eq. 2.D.2 negligible. We

verified that increasing the number of random

galaxies or using different random samples have

an insignificant effect on our estimates. Each

random galaxy is then located at a random po-

sition of the sky within the MUSE-Wide survey

footprint, with a redshift taken from the real 𝑧-

distribution. Given that our 𝜋max is much smaller

than the radial comoving distance correspond-

ing to our sample redshift range, over which the

random sample is constructed, the effects for the

integral constraint are negligible for our 𝜔𝑝 (𝑟𝑝).

Figure 2.D.2: Analogous to Fig. 2.6, here showing

the contours from the 2pcf method in black-gray. For

a direct comparison to the K-estimator, its contours

have been represented in blue, as well as the 𝑟0 com-

puted from both methods when fixing the slope of

the PL to the standard value, shown with dots. Please

note that we consider the contours of the 2pcf to be

likely underestimated (see text for further details).

2.D.2 Error estimates
The bootstrapping approach applied in the K-

estimator method allows for replacement and

galaxy repetitions. This produces an overlap of

galaxies, which introduces an unrealistic clus-

tering excess in the 2pcf. While this does not

affect the K-estimator because it measures a con-

trast of galaxy pairs between two LOS regions

and overlaps of galaxies cancel out in both ar-

eas, the 2pcf is severely affected. We therefore

do not consider the bootstrapping approach as a

possible error determination technique for the

2pcf.

We consider an alternative approach by gen-

erating random samples. Analogous to the error

estimates in the K-estimator, 100 different light

cones from cosmological simulations should be

used instead; however, it was shown in Sect. 4.4.5

that the simulated data should not be directly

compared to our measurements. Thus, we cre-

ated random samples from the real redshift dis-

tribution of our LAEs. The random samples have
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the same number of objects as the MUSE-Wide

survey. The real redshift distribution is calcu-

lated from the luminosity and the selection func-

tion of the sample (Herenz et al., 2019) as de-

scribed in Sect. 5.2. We denote the newly created

random sample by 𝑅′ to distinguish from the

random sample 𝑅 in Eq. 2.D.2. The 2pcf in the

random samples is calculated by replacing 𝐷 by

𝑅′ in Eq. 2.D.2 for 100 different newly generated

random samples 𝑅′ (i.e. 𝑁ran = 100). The scat-

ter of the 100 runs is used as our uncertainty

estimation.

This approach is compared to Poissonian er-

rors calculated by error propagation in Eq. 2.D.2,

[(𝛿𝐷𝐷/𝑅𝑅)2 + 4 · (𝛿𝐷𝑅/𝑅𝑅)2 + ((2𝐷𝑅 − 𝐷𝐷)·
𝛿𝑅𝑅/𝑅𝑅2)2]1/2. We find that the Poissonian un-

certainties underestimate the true clustering er-

rors compared to the random-sample approach

(uncertainties from the random error approach

are ∼65% larger than Poisson errors). However,

even the uncertainties from the random error

approach should be understood only as a first

guess. The combination of the 2pcf and the spe-

cial design of our MUSE-Wide survey leave this

as the only option to estimate the extent of the

uncertainties on the 2pcf.

2.D.3 Results
We present the projected correlation function

𝜔𝑝 (𝑟𝑝) for 𝜋max = 60 ℎ−1Mpc over the range of

0.375 < 𝑟𝑝/[ℎ−1Mpc] < 13.155 in Fig. 2.D.1. The

error bars in 𝜔𝑝 (𝑟𝑝) have been computed follow-

ing the random-sample approach described in

Appendix 2.D.2.

Despite the small area covered by the MUSE-

Wide survey, the𝜔𝑝 (𝑟𝑝) curve shows a clear clus-
tering signal. The large number of galaxies in

the MUSE-Wide survey allow us to fit the cluster-

ing signal with a PL-based correlation function,

where both correlation length and slope are con-

strained simultaneously. Thus, we set 𝑟0 and 𝛾

as the free parameters to be determined from the

fit.

We then use Eq. 2.D.5 to fit 𝜔𝑝 (𝑟𝑝) in the two-

halo term, 0.584 < 𝑟𝑝/[ℎ−1Mpc] < 13.155. We

also use this 𝑟𝑝 range to fit the curve with the

HOD model described in Sect. 3.3.3, same as for

the K-estimator. The measured best-fit param-

eters are listed in Table 2.D.1 and shown in Fig.

2.D.1. The probability contours from the 𝑟0-𝛾

grid of the PL-fit are shown in Fig. 2.D.2, along

with those from the K-estimator to allow a direct

comparison (see Appendix 2.D.4 for a discussion

of the different clustering methods and results).

With the PL-fit, we find 𝑟0 = 2.24+0.25−0.35 ℎ
−1
Mpc

with a correlation slope 𝛾 = 1.85 ± 0.25. These

parameters correspond to 𝑏 = 1.66+0.36−0.42. These
results are in agreement with the derived corre-

lation lengths from the one-bin fit (fixed 𝛾 = 1.8)

and from the PL-fit (free 𝑟0 and 𝛾 ) to the K-

estimator (contours in Fig. 2.D.2). However, for

the 2pcf case, 𝛾 is much closer to the canonical

value than the K-estimator. When considering

HOD fits, we obtain 𝑏 = 2.05 ± 0.14, somewhat

lower (1.3𝜎) than the 𝑏 = 2.80 ± 0.38 obtained

with the K-estimator. The differences in the de-

rived linear bias factors from PL and HOD fits

are discussed in detail in Sect. 2.5.3.

In order to better constrain the correlation

parameters, we fix the correlation slope and de-

termine only the correlation length. Following

this procedure (and in an effort to remain con-

sistent with the literature), we fix the slope to

𝛾 = 1.8 and derive from the one-parameter fit

𝑟0 = 1.85 ± 0.15 ℎ−1Mpc. This value agrees at a

one sigma level with the one derived from the K-

estimator (𝑟0 = 2.60+0.72−0.67 ℎ
−1
Mpc; fixed 𝛾 = 1.8).

2.D.4 K-estimator vs 2pcf
The various clustering methods studied in this

paper allow us to compare not only their respec-

tive results but also their success as methods

themselves in these sort of surveys. While the

2pcf is well known, the K-estimator is still rela-

tively unexplored. However, for galaxy surveys

that cover small areas of the sky, but span wide

redshift ranges the K-estimator seems to be a

more suitable clustering method than the com-

monly used 2pcf. Both methods have important

similarities but also present critical differences.

First of all, the concept of measuring cluster-

ing itself differs. While the 2pcf measures the

spatial clustering by comparing pairs of galax-

ies to those in random samples, the K-estimator

compares the contrast of galaxy pairs in two

consecutive shells along LOS distances, without

introducing any random sample and focusing on

redshift clustering rather than on spatial clus-

tering. Secondly, choosing the most suitable K-

estimator or the upper integration limit 𝜋max in

the 2pcf share some concepts. The 𝜋max value

where the 2pcf saturates collects the maximum

number of galaxy pairs and tries to discard noise

from distant uncorrelated pairs. The 𝑎2 and 𝑎3
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values of the K-estimator boost the clustering

signal by finding the two shells along LOS sep-

arations where the highest contrast of galaxy

pairs is encountered. Therefore, 𝜋max just repre-

sents an upper integration limit in LOS distances

and 𝑎2 and 𝑎3 are the length of the shells with the

highest difference in pair counts. Typically, 𝑎3
should be below the upper integration limit 𝜋max.

Finally, both methods quantify the clustering of

a sample of galaxies by counting galaxy pairs in

3D space.

Although the two methods present a cluster-

ing signal over equal transverse distances, 𝑅𝑖 𝑗
and 𝑟𝑝 , and the 𝑎𝑖 values are within the 𝜋max

limit, the fitting parameters are somewhat dis-

tinct. This was expected because, first, the 2pcf

in this type of surveys has issues. Its perfor-

mance is affected by the small spatial coverage

of the data and the survey geometry. We do not

see a clear saturation point of the 𝜔 (𝑟𝑝) curves
for the different 𝜋max values and, in addition, er-

ror estimations, such as the jackknife method,

fail. Hence, we believe that we are exploring

the limit of the method. Secondly, the fits for

both methods are carried out in different ways

(see Sect. 3.3.1 and Appendix 2.D.3). While we

fit 𝜔𝑝 (𝑟𝑝) with its analytical solution (Eq. 2.D.5),

the K-estimator is either compared to the ex-

pectation value of 𝐾
𝑎1,𝑎2
𝑎2,𝑎3 (Eq. 2.2) through the

one-fit approach or fitted with a PL with the

PL-fit approach. If we allow 𝑟0 and 𝛾 to freely

vary in the fit for both methods, the correla-

tion lengths, bias factors and DMH masses ob-

tained from the K-estimator and the 2pcf are 𝑟0 =

3.60+3.10−0.90 ℎ
−1
Mpc, 𝛾 = 1.30+0.36−0.45 𝑏HOD = 2.80+0.38−0.38,

log(𝑀h/[ℎ−1M⊙]) = 11.34+0.23−0.27 and 𝑟0 = 2.24+0.25−0.35
ℎ−1Mpc, 𝛾 = 1.85 ± 0.25, 𝑏HOD = 2.05+0.14−0.14
and log(𝑀h/[ℎ−1M⊙]) = 10.51+0.16−0.17, respectively.
Even if the HOD fits from the K-estimator are

higher (1.3𝜎) than those computed with the 2pcf,

the 68.3% confidence intervals of the PL-fits

agree.

A noteworthy addition to our discussion is the

uncertainty dissimilarities between the methods,

where the difference in the probability contour

sizes of Fig. 2.D.2 come from. It is important to

notice that the uncertainties in the K-estimator

were obtained through the bootstrapping ap-

proach. However, bootstrapping causes overlaps

of galaxies to which the K-estimator is insensi-

tive, but in the 2pcf case, this causes a significant

boost in the clustering signal. Thus, we have

to consider the random sample approach as the

only way to give some educated guess on the

2pcf uncertainties, even if it most likely still un-

derestimates the real uncertainties. Therefore,

the 2pcf contour shown in Fig. 2.D.2 is also most

likely underestimated.

For the 2pcf we had to apply the standard

(uncorrelated) 𝜒2 analysis with likely underesti-

mated uncertainties, while for the K-estimator

we were able to renormalize the 𝜒2 analysis and

used conservative uncertainty estimates as de-

scribed in Sect. 3.3.2.1. Despite these fundamen-

tal differences the clustering results derived from

both methods still agree within their combined

2𝜎 uncertainties.

The K-estimator is a more suitable clustering

statistic than the 2pcf in these kind of surveys

for the following reasons: (i) The K-estimator

exploits the large redshift coverage rather than

the spatial extent (more than 1000 ℎ−1Mpc along

the LOS direction vs only 20 ℎ−1Mpc over trans-

verse separations); (ii) it does not require a ran-

dom sample so integral constraint issues do not

take place; (iii) we can use bootstrapping uncer-

tainties when the jackknife technique is not an

option; and (iv) with the K-estimator we provide

a straightforward recipe to obtain rough 𝑎2 and

𝑎3 values (unlike 𝜋max in the 2pcf).

2.E Effect of redshift space
distortions on our
measurements

Both PL and HOD fit approaches show a high

performance on the K-estimator. Nevertheless,

none of them account for the redshift space

distortions present in the observations of the

high-redshift Universe. Galaxy structures are

observed to be ‘falling into’ large-scale overden-

sities, which varies the projected velocity along

the LOS direction from that linked to its cosmo-

logical redshift. As explained in Sect. 3.3.3, we

include the effects of the redshift distortion in

the HOD model using the linear theory to the

two-halo term only. Therefore, the large-scale

streaming motion towards overdense regions (i.e.

Kaiser infall, Kaiser, 1987) is corrected in the lin-

ear regime.

In order to account for these effects, we imple-

ment the HOD correlation function in redshift

space, 𝜉 (𝑠), accounting thus for RSD. We repre-

sent the HOD fit to the K-estimator both from
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the spatial space, 𝜉 (𝑟 ), (same as in Sect. 5.4) and

the redshift space, 𝜉 (𝑠), in Fig. 2.E.1.

The HOD fit from the redshift space correla-

tion function (i.e. with RSD) is slightly higher

than that from the real space correlation func-

tion (i.e. without RSD) at small separations

(𝑅𝑖 𝑗 < 1 ℎ−1Mpc), showing the minimal RSD

effect on the K-estimator. This small rise trans-

lates into an increase in the derived bias factor,

from 𝑏 = 2.80+0.38−0.38 to 𝑏 = 2.84+0.33−0.34, indistinguish-
able within the 1𝜎 error bars.

Figure 2.E.1: Best HOD fits to the K-estimator from

𝜉 (𝑟 ) (same as the thick curve in Fig. 2.7) and 𝜉 (𝑠). The
dotted red curve represents the HOD that takes into

account the effect of the RSD, while the dashed red

curve shows the HOD fit without RSD. The black line

represents an unclustered sample of galaxies.
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ABSTRACT

We investigate the dependence of Ly𝛼 emitter (LAE) clustering on Ly𝛼 luminosity and connect

the clustering properties of ≈ 𝐿★ LAEs with those of much fainter ones, namely, ≈ 0.04𝐿★. We

use 1030 LAEs from the MUSE-Wide survey, 679 LAEs from MUSE-Deep, and 367 LAEs from

the to-date deepest ever spectroscopic survey, the MUSE Extremely Deep Field. All objects have

spectroscopic redshifts of 3 < 𝑧 < 6 and cover a large dynamic range of Ly𝛼 luminosities: 40.15 <

log(𝐿Ly𝛼/erg s
−1) < 43.35. We apply the Adelberger et al. K-estimator as the clustering statistic

and fit the measurements with state-of-the-art halo occupation distribution (HOD) models. We find

that the large-scale bias factor increases weakly with an increasing line luminosity. For the low-

luminosity (log⟨𝐿Ly𝛼/[erg s
−1]⟩ = 41.22) and intermediate-luminosity (log⟨𝐿Ly𝛼/[erg s

−1]⟩ = 41.64)

LAEs, we compute consistent bias factors 𝑏low = 2.43+0.15−0.15 and 𝑏interm. = 2.42+0.10−0.09, whereas for the
high-luminosity (log⟨𝐿Ly𝛼/[erg s

−1]⟩ = 42.34) LAEs we calculated 𝑏high = 2.65+0.13−0.11. Consequently,
high-luminosity LAEs occupy dark matter halos (DMHs) with typical masses of log(𝑀ℎ/[ℎ−1𝑀⊙]) =
11.09+0.10−0.09, while low-luminosity LAEs reside in halos of log(𝑀ℎ/[ℎ−1𝑀⊙]) = 10.77+0.13−0.15. Theminimum

masses to host one central LAE, 𝑀min, and (on average) one satellite LAE, 𝑀1, also vary with

Ly𝛼 luminosity, growing from log(𝑀min/[ℎ−1𝑀⊙]) = 10.3+0.2−0.3 and log(𝑀1/[ℎ−1𝑀⊙]) = 11.7+0.3−0.2
to log(𝑀min/[ℎ−1𝑀⊙]) = 10.7+0.2−0.3 and log(𝑀1/[ℎ−1𝑀⊙]) = 12.4+0.4−0.6 from low- to high-luminosity

samples, respectively. The satellite fractions are ≲ 10% (≲ 20%) at 1𝜎 (3𝜎) confidence level, supporting

a scenario in which DMHs typically host one single LAE.We next bisected the three main samples into

disjoint subsets to thoroughly explore the dependence of the clustering properties on 𝐿Ly𝛼 . We report

a strong (8𝜎) clustering dependence on Ly𝛼 luminosity, not accounting for cosmic variance effects,

where the highest luminosity LAE subsample (log(𝐿Ly𝛼/erg s
−1) ≈ 42.53) clusters more strongly

(𝑏highest = 3.13+0.08−0.15) and resides in more massive DMHs (log(𝑀h/[ℎ−1M⊙]) = 11.43+0.04−0.10) than the

lowest luminosity one (log(𝐿Ly𝛼/erg s
−1) ≈ 40.97), which presents a bias of 𝑏lowest = 1.79+0.08−0.06

and occupies log(𝑀h/[ℎ−1M⊙]) = 10.00+0.12−0.09 halos. We discuss the implications of these results

for evolving Ly𝛼 luminosity functions, halo mass dependent Ly𝛼 escape fractions, and incomplete

reionization signatures.

∗
A version of this chapter is published in Astronomy & Astrophysics as Herrero Alonso et al. 2023, Volume 671, A5.

47



3.1 Introduction

Dark matter halos (DMHs) serve as sites of

galaxy formation but their co-evolution is still

a matter of investigation. Observations deliver

snapshots of the luminosities of galaxies at given

redshifts, while numerical analyses succeed at

simulating the evolution and copiousness of

DMHs. Linking these two constituents is not

straightforward but, because the spatial distribu-

tion of baryonic matter is biased against that of

dark matter (DM), the former indirectly traces

the latter. The evolutionary stage of the two dis-

tributions depends on both the epoch of galaxy

formation and the physical properties of galax-

ies (see Wechsler & Tinker 2018 for a review).

Thus, studying the dependence of the baryonic-

DM relation on galaxy properties is essential for

better understanding the evolution of the two

components.

Exploring the spatial distribution of high-

redshift (𝑧 > 2) galaxies and its dependence on

physical properties provides an insight into the

early formation and evolution of the galaxies

we observe today. Clustering statistics yield ob-

servational constraints on the relationship be-

tween galaxies and DMHs, as well as on their

evolution. Traditional studies of high-𝑧 galaxies

(Steidel et al., 1996; Hu et al., 1998; Ouchi et al.,

2003; Gawiser et al., 2007; Ouchi et al., 2010;

Khostovan et al., 2019) model the large-scale

(𝑅 ≳ 1 − 2 ℎ−1cMpc) clustering statistics with a

two parameter power-law correlation function

that takes the form 𝜉 = (𝑟/𝑟0)−𝛾 (Davis & Pee-

bles, 1983) to derive the large-scale linear galaxy

bias and the associated typical DMH mass. To

make full use of the clustering measurements,

the smaller separations of the nonlinear regime

(𝑅 ≲ 1 − 2 ℎ−1cMpc) are modelled by relating

galaxies to DMHs within the nonlinear frame-

work of halo occupation distribution (HOD)mod-

elling. In this context, the mean number of galax-

ies in the DMH is modelled as a function of DMH

mass, further assessing whether these galaxies

occupy the centers of the DMHs or whether they

are satellite galaxies.

Although clustering studies of high-redshift

galaxies are plentiful, HOD modelling has been

rarely used to interpret the results. While sev-

eral works have focused on Lyman-break galaxy

(LBG) surveys, only one study fit a sample of

Lyman-𝛼 emitters (LAEs) with HOD models

(Ouchi et al., 2017). Durkalec et al. (2014), Malkan

et al. (2017), Hatfield et al. (2018), and Harikane

et al. (2018) applied the full HOD framework to

sets of LBGs to put constraints on the central

and satellite galaxy populations, while Ouchi et

al. (2017) partially exploited the power of HOD

models in a sample of LAEs to infer the threshold

DMH mass for central galaxies.

The number of studies that have investigated

the correlations between clustering strength and

physical properties of high-redshift galaxies is

slightly higher. In [Oii] and [Oiii] emission-line-

selected galaxy samples, Khostovan et al. (2018)

found a strong halo mass dependence on the

line luminosity and stellar mass. Durkalec et al.

(2018) also observed a correlation with stellar

mass, together with a further dependence on UV

luminosity, in a sample of LBGs. However, these

correlations become somewhat unclear near the

epoch of reionization (𝑧 ≈ 6). Based on LAEs sur-

veys, Ouchi et al. (2003), Bielby et al. (2016), and

Kusakabe et al. (2018) revealed tentative trends

(≈ 1𝜎) between luminosity (both UV and Ly𝛼)

and clustering strength, while only Khostovan

et al. (2019) reported a clear (5𝜎) correlation be-

tween inferred DMH mass and Ly𝛼 luminosity.

In a previous study (Herrero Alonso et al.,

2021), we used 68 MUSE-Wide fields to mea-

sure the LAE clustering with the K-estimator

method presented in Adelberger et al. (2005).

We computed the clustering at large scales (𝑅 >

0.6 ℎ−1Mpc) to derive the linear bias factor and

the typical DMH mass of LAEs. By splitting our

main sample into subsets based on physical prop-

erties of LAEs, we also found a tentative 2𝜎 de-

pendence on Ly𝛼 luminosity. Here, we extend

this work with larger and more deeply spectro-

scopically confirmed samples and a refined set of

analysis methods. We measured the clustering at

smaller scales, applied full HOD modelling, and

studied the dependence of the clustering proper-

ties on Ly𝛼 luminosity.

The paper is structured as follows. In Sect. 5.2,

we describe the data used for this work and we

characterize the LAE samples. In Sect. 5.3, we

explain our method for measuring and analyz-

ing the clustering properties of our galaxy sets.

We present the results of our measurements in

Sect. 5.4. In Sect. 5.5, we discuss our results and

their implications, and we investigate the clus-

tering dependence on Ly𝛼 luminosity. We give

our conclusions in Sect. 5.6.

Throughout this paper, all distances are mea-

sured in comoving coordinates and given in
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units of ℎ−1Mpc (unless otherwise stated), where

ℎ = 𝐻0/100 = 0.70 km s
−1

Mpc
−1
. We assume

the same ℎ to convert line fluxes to luminosities.

Thus, there are implicit ℎ−2
70

factors in the line

luminosities. We use a 𝛬CDM cosmology and

adopt 𝛺𝑀 = 0.3, 𝛺𝛬 = 0.7, and 𝜎8 = 0.8 (Hin-

shaw et al., 2013). All uncertainties represent 1𝜎

(68.3%) confidence intervals.

3.2 Data
The MUSE spectroscopic surveys are based on

a wedding cake design, namely: a first spatially

wide region (bottom of the cake) is observedwith

a short exposure time (1 hour), while deeper ob-

servations (10 hours exposure) are carried out

within the first surveyed area (middle tier of the

cake). Contained in the last observed region, an

even deeper survey (140 h) is then built up (at

the top of the cake). These three surveys are

known as: MUSE-Wide (Herenz et al., 2017; Ur-

rutia et al., 2019), MUSE-Deep (Bacon et al., 2017;

Inami et al., 2017; Bacon et al., 2021), and MUSE

Extremely Deep Field (MXDF; Bacon et al. 2021).

Each of them can be seen as a different layer

of a wedding cake, where higher layers become

spatially smaller and correspond to deeper obser-

vations. In what follows, we give further details

on survey and galaxy sample construction.

3.2.1 MUSE-Wide

The spectroscopic MUSE-Wide survey (Herenz

et al., 2017; Urrutia et al., 2019) com-

prises 100 MUSE fields distributed in the

CANDELS/GOODS-S, CANDELS/COSMOS and

the Hubble Ultra Deep Field (HUDF) parallel

field regions. Each MUSE field covers 1 arcmin
2
.

While 91 fields were observed with an expo-

sure time of one hour, nine correspond to shal-

low (1.6 hours) reduced subsets of the MUSE-

Deep data (see next section; as well as Bacon

et al., 2017), located within the HUDF in the

CANDELS/GOODS-S region. However, we do

not include the objects from this region since

they overlap with the MUSE-Deep sample (see

next section and gap in the left panel of Fig. 3.2.1).

The slight overlap between adjacent fields leads

to a total spatial coverage of 83.52 arcmin
2
. The

red circles in Fig. 3.2.1 display the spatial distri-

bution of the LAEs from the MUSE-Wide survey.

We refer to Urrutia et al. (2019) for further de-

tails on the survey build up, reduction and flux

calibration of the MUSE data cubes.

In this paper, we extend (x2 spatially, 50%more

LAEs) the sample used in Herrero Alonso et al.

(2021) and include all the 1 h exposure fields

from the MUSE-Wide survey. Despite the some-

what worse seeing (generally) in the COSMOS

region (right panel of Fig.3.2.1), we demonstrate

in Appendix 3.A that adding these fields does

not significantly impact our clustering results

but helps in minimizing the effects of cosmic

sample variance.

We also expanded the redshift range of the

sample. While MUSE spectra cover 4750–9350 Å,

implying a Ly𝛼 redshift interval of 2.9 < 𝑧 < 6.7,

we limited the redshift range to 3 < 𝑧 < 6 (differ-

ing from the more conservative range of Herrero

Alonso et al. 2021; 3.3 < 𝑧 < 6) as the details of

the selection function near the extremes are still

being investigated. Section 2 of Herrero Alonso

et al. (2021) describes the aspects relevant to our

analysis on the construction of a sample of LAEs,

as well as the strategy to measure line fluxes and

redshifts. The redshift distribution of the sample

is shown in red in the top panel of Fig. 3.2.2. Sys-

tematic uncertainties introduced in the redshift-

derived 3D positions of the LAEs have negligible

consequences for our clustering approach (see

Sect. 2.2 in Herrero Alonso et al. 2021).

Within 83.52 arcmin
2
and in the selected red-

shift interval, we detected a total of 1030 LAEs.

This implies a LAE density of more than 13 ob-

jects per arcmin
2
or 𝑛 ≈ 1 · 10−3 ℎ3Mpc

−3
(for

3 < 𝑧 < 6). At the median redshift of the sample

⟨𝑧⟩ = 4.0, the transverse extent of the footprint

is ≈ 43 ℎ−1Mpc. The range of Ly𝛼 luminosi-

ties is 40.92 < log(LLy𝛼/[erg s−1]) < 43.35 (see

red circles in Fig. 3.2.2), with a median value of

log⟨𝐿Ly𝛼/[erg s−1]⟩ = 42.34 (or ≈ 𝐿★ in terms of

characteristic luminosity 𝐿★; Herenz et al. 2019),

which makes this sample the highest luminosity

data set of our three considered surveys. The

Ly𝛼 luminosity distribution is shown in red in

the right panel of Fig. 3.2.2. The main proper-

ties of the MUSE-Wide LAEs are summarized in

Table 5.2.1.

3.2.2 MUSE-Deep
MUSE-Deep (10 hour MOSAIC; Bacon et

al., 2017; Inami et al., 2017; Bacon et al.,

2021) encompasses nine fields located in the

CANDELS/GOODS-S region of the HUDF, each
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Figure 3.2.1: Spatial distribution of the LAEs from the MUSE-Wide survey (red circles), MUSE-Deep (green

squares) and MXDF (blue stars). The overlapping objects between the MXDF and MUSE-Deep samples have

been removed from the MUSE-Deep LAE set, while those LAEs overlapping in MUSE-Deep and MUSE-

Wide have been removed from the MUSE-Wide LAE sample. The MUSE-Wide survey covers part of the

CANDELS/GOODS-S region and the HUDF parallel fields (left panel) as well as part of the CANDELS/COSMOS

region (right panel). See Figure 1 in Urrutia et al. (2019) for the layout of the MUSE-Wide survey without

individual objects, Figure 1 in Bacon et al. (2017) for that of MUSE-Deep, and Figure 2 in Bacon et al. (2021) for

that of MUSE-Deep (MOSAIC) and MXDF together.

spanning 1 arcmin
2
and observed with a 10 h

exposure time. The total spatial coverage is 9.92

arcmin
2
. We represent the spatial distribution of

the survey in green in Fig. 3.2.1. We did, however,

remove the MUSE-Deep objects that are selected

in the deepest survey, described in the next sec-

tion. We refer to Bacon et al. (2017), Bacon et

al. (2021) for a detailed description on survey

construction and data reduction.

The sources in MUSE-Deep were blindly de-

tected and extracted using ORIGIN (Mary et al.,

2020), based on a matched filtering approach and

developed to detect faint emission lines in MUSE

datacubes. While the redshift measurements and

line classificationswere carried out with pyMarZ,

a python version of the redshift fitting software

MarZ (Hinton et al., 2016), the line flux determi-

nation was conducted with pyPlatefit, which is a

python module optimized to fit emission lines of

high-redshift spectra. The redshift distribution

of the sample is shown in green in the top panel

of Fig. 3.2.2, also within 3 < 𝑧 < 6.

The LAE density of the MUSE-Deep sample

is 8 · 10−3 ℎ3Mpc
−3

(68 LAE per arcmin
2
in the

whole redshift range). The survey spans ≈ 8.7

ℎ−1Mpc transversely. The range of Ly𝛼 luminosi-

ties is 40.84 < log(𝐿Ly𝛼/[erg s−1]) < 43.12, repre-

sented with green squares in Fig. 3.2.2, together

with its distribution (right panel). MUSE-Deep

is our intermediate luminous dataset, with a me-

dian luminosity of log⟨𝐿Ly𝛼/[erg s−1]⟩ = 41.64.

The sample properties are recorded in Table 5.2.1.

Figure 3.2.2: Ly𝛼 luminosity-redshift for the LAEs in

MUSE-Wide (red circles), MUSE-Deep (green squares)

and MXDF (blue stars). The dashed colored lines cor-

respond to the median log𝐿Ly𝛼 values of the corre-

sponding samples. The redshift and𝐿Ly𝛼 distributions

are shown in the top and right panel, respectively.

3.2.3 MUSE Extremely Deep

The MUSE Extremely Deep Field (Bacon et al.,

2021) is situated in the CANDELS/GOODS-S re-

gion and overlaps with MUSE-Deep and MUSE-

Wide. It is composed of a single quasi circular

field with inner and outer radii of 31” and 41”,

respectively. While a 140 hour exposure was em-

ployed to observe the totality of the field, the in-

ner field is 135 hours deep, decreasing to 10 hours

depth at the outer radius. This makes MXDF the

deepest spectroscopic survey to date. For fur-

ther details see Bacon et al. (2021) and the blue
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Table 3.2.1: Properties of the LAE samples.

Area Number LAEs ⟨𝑧⟩ 𝑛 log𝐿Ly𝛼 log⟨𝐿Ly𝛼⟩

MUSE-Wide 83.52 1030 4.0 1 · 10−3 40.92 – 43.35 42.34 (≈ 𝐿★)
MUSE-Deep 9.92 679 4.1 8 · 10−3 40.84 – 43.12 41.64 (≈ 0.2𝐿★)

MXDF 1.47 367 4.2 3 · 10−2 40.15 – 43.09 41.22 (≈ 0.08𝐿★)

Notes: Properties marked with ⟨⟩ represent median values for the galaxies in the samples. The

area is given in arcmin
2
, the number density in ℎ3Mpc

−3
, and the Ly𝛼 luminosities in erg s

−1
.

Table 3.2.2: Properties of the LAE subsamples.

Number LAEs ⟨𝑧⟩ log⟨𝐿Ly𝛼/[erg s
−1]⟩

MUSE-Wide low L (log𝐿Ly𝛼 < 42.34) 515 3.7 42.06 (≈ 0.5𝐿★)

MUSE-Wide high L (log𝐿Ly𝛼 > 42.34) 515 4.1 42.53 (≈ 1.5𝐿★)

MUSE-Deep low L (log𝐿Ly𝛼 < 41.64) 340 3.7 41.46 (≈ 0.1𝐿★)

MUSE-Deep high L (log𝐿Ly𝛼 > 41.64) 339 4.5 41.89 (≈ 0.3𝐿★)

MXDF low L (log𝐿Ly𝛼 < 41.22) 183 4.0 40.97 (≈ 0.04𝐿★)

MXDF high L (log𝐿Ly𝛼 > 41.22) 184 4.5 41.54 (≈ 0.2𝐿★)

Notes: Properties marked with ⟨⟩ represent median values for the galaxies in the subsamples.

data points in Fig.3.2.1, where the MXDF field is

overplotted on the previous surveys.

The survey assembly and data reduction is de-

scribed in Bacon et al. (2021) and is similar to the

one applied to MUSE-Deep (Bacon et al., 2017).

The source extraction in MXDF and the redshift

and flux measurements are conducted following

the same procedure as was done for MUSE-Deep.

The redshift distribution of the sample is shown

in blue in the top panel of Fig. 3.2.2.

Contained within ≈1.47 arcmin
2
and over the

same redshift range as for the previous cata-

logues, we detected 367 LAEs, corresponding

to a LAE density of 𝑛 ≈ 3 · 10−2 ℎ3Mpc
−3

(432

LAEs per arcmin
2
at 3 < 𝑧 < 6). With a me-

dian redshift of ⟨𝑧⟩ = 4.2, the footprint covers

≈ 2.8 ℎ−1Mpc (transversely). The Ly𝛼 luminosi-

ties span 40.15 < log(LLy𝛼/[erg s−1]) < 43.09 (see

blue stars in Fig. 3.2.2 and its distribution in

the right panel). The median Ly𝛼 luminosity is

log⟨𝐿Ly𝛼/[erg s−1]⟩ = 41.22 (or ≈ 0.08𝐿★), more

than one order of magnitude fainter than for

MUSE-Wide. This makes MXDF the faintest ever

observed sample of non-lensed LAEs. The main

properties are listed in Table 5.2.1.

3.2.4 LAE subsamples
We bisected the main samples into disjoint sub-

sets based on their median Ly𝛼 luminosity to in-

vestigate the clustering dependence on this quan-

tity. We did not merge the main LAE datasets

because their distinct Ly𝛼 luminosities, together

with their slightly different location on the sky,

might introduce systematics in the clustering

measurements. The subsample properties are

summarized in Table 3.2.2 and described in the

following.

We split the MUSE-Wide sample at the median

Ly𝛼 luminosity log⟨𝐿Ly𝛼/[erg s
−1]⟩ = 42.34.

The two subsamples consist of 515 LAEs each.

The low-luminosity subset has a median red-

shift and Ly𝛼 luminosity of ⟨𝑧low⟩ = 3.7 and

log⟨𝐿Ly𝛼 low/[erg s
−1]⟩ = 42.06, while the high-

luminosity subsample has ⟨𝑧high⟩ = 4.1 and

log⟨𝐿Ly𝛼high/[erg s
−1]⟩ = 42.53. The median

redshift of the number of galaxy pairs for the

low-luminosity subset is 𝑧p𝑎𝑖𝑟 ≈ 3.4, and that for

the high-luminosity one is 𝑧p𝑎𝑖𝑟 ≈ 4.1.

We next bisected the MUSE-Deep set at the

median Ly𝛼 luminosity log⟨𝐿Ly𝛼/[erg s
−1]⟩ =

41.64. The low-luminosity subsample has

340 LAEs and presents a median redshift

and Ly𝛼 luminosity of ⟨𝑧low⟩ = 3.7 and

log⟨𝐿Ly𝛼 low/[erg s
−1]⟩ = 41.46. The high-

luminosity subset is formed by 339 LAEs with

⟨𝑧high⟩ = 4.5 and log⟨𝐿Ly𝛼high/[erg s
−1]⟩ =

41.89. While for the low-luminosity subsam-

ple 𝑧p𝑎𝑖𝑟 ≈ 3.5, for the high-luminosity one

𝑧p𝑎𝑖𝑟 ≈ 4.4.

We also divide the sample with the largest dy-

namic range of Ly𝛼 luminosities (MXDF) at the
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Figure 3.2.3: Redshift distribution of the subsamples bisected at the median Ly𝛼 luminosity of MUSE-Wide,

MUSE-Deep and MXDF (panels from left to right). Blue (red) colors show the low- (high-) luminosity subsets.

The vertical dashed lines represent the median redshift of the corresponding subsample.

median Ly𝛼 luminosity log⟨𝐿Ly𝛼/[erg s
−1]⟩ =

41.22. While the lower luminosity subset

contains 183 LAEs with ⟨𝑧low⟩ = 4.0 and

log⟨𝐿Ly𝛼 low/[erg s
−1]⟩ = 40.97, the higher lu-

minosity subsample consists of 184 LAEs with

⟨𝑧high⟩ = 4.5 and log⟨𝐿Ly𝛼high/[erg s
−1]⟩ =

41.54. For the low-luminosity subset, we have

𝑧p𝑎𝑖𝑟 ≈ 3.9, and for the high-luminosity one, we

have 𝑧p𝑎𝑖𝑟 ≈ 4.8.

The redshift distribution of each subsample

is shown in Fig. 3.2.3. The corresponding me-

dian redshifts are represented with a vertical

dashed line. Despite the similar median redshifts

between the subsample pairs, the redshift distri-

butions are significantly different, with a higher

amount of spike-trough contrasts in the high-

luminosity subsets.

3.3 Methods

3.3.1 K-estimator

Galaxy clustering is commonlymeasured by two-

point correlation function (2pcf) statistics. Sam-

ples investigated by this method typically span

several square degrees on the sky. With MUSE,

we encounter the opposite scenario. By design,

MUSE surveys cover small spatial extensions on

the sky and provide a broad redshift range. Al-

though theMUSE-Wide survey is the largest foot-

print of all MUSE samples, its nature is still that

of a pencil-beam survey. Its transverse scales are

of the order of 40 ℎ−1Mpc, while in redshift space

it reaches almost 1500 ℎ−1Mpc. If we consider

the deeper samples, the difference is even more

prominent: 8.7 vs 1500 ℎ−1Mpc for MUSE-Deep

and 2.8 versus 1500 ℎ−1Mpc for MXDF. It is thus

paramount to exploit the radial scales and utilize

alternative methods to the traditional 2pcf.

Figure 3.3.1: Sketch of the K-estimator, represent-

ing the relative geometry that probe the one- and

two-halo term scales. The empty blue and filled

red cylinders, delimited by |𝑎2 | = 7 ℎ−1Mpc and

|𝑎3 | = 45 ℎ−1Mpc respectively, illustrate the line-

of-sight distance 𝑍𝑖 𝑗 intervals within which we count

galaxy pairs at fixed transverse separations 𝑅𝑖 𝑗 , repre-

sented by nested cylinders. Pairs of LAEs connected

with green lines within the same DMH (filled gray cir-

cle) contribute to the one-halo term (small 𝑅𝑖 𝑗 scales),

while pairs belonging to two different DMHs (yel-

low lines) probe the two-halo term (larger 𝑅𝑖 𝑗 separa-

tions).

In Herrero Alonso et al. (2021) we applied the

so-called K-estimator, introduced by Adelberger

et al. (2005), to a subset of our current sample.

Here, we build on our previous work by extend-

ing the dataset and measuring the small-scale

clustering required to perform full HOD mod-

elling. The details of the K-estimator are given

in Sect. 3.1 of Herrero Alonso et al. (2021). In the

following, we provide a brief description of the

method.

The K-estimator measures the radial cluster-

ing along line-of-sight distances,𝑍𝑖 𝑗 , by counting

galaxy pairs (formed by galaxy 𝑖 and galaxy 𝑗 )

in redshift space at fixed transverse separations,

𝑅𝑖 𝑗 . Although the K-estimator does not need a

random sample to carry out the clustering mea-

surements, its nature is very similar to that of

the projected two-point correlation function. We

bin by 𝑅𝑖 𝑗 , shown with distinct radii in the cylin-
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ders of Fig. 3.3.1, and count the number of pairs

within individual transverse bins, for two differ-

ent ranges of 𝑍𝑖 𝑗 , represented in red and blue in

Fig. 3.3.1. The K-estimator as a function of 𝑅𝑖 𝑗 is

then defined as the ratio of galaxy pairs within

the first 𝑍𝑖 𝑗 interval (blue cylinder) and the total

𝑍𝑖 𝑗 range (red and blue cylinder), quantifying

the excess of galaxy pairs in the first 𝑍𝑖 𝑗 bin with

respect to the total one. We optimize the choice

of the 𝑍𝑖 𝑗 ranges, and thus the K-estimator, by

seeking out the estimator that delivers the best

sensitivity for the clustering signal (i.e., the high-

est signal-to-noise ratio, S/N; see Sect. 3.1.2 in

Herrero Alonso et al. 2021). Although slightly

different than in Herrero Alonso et al. (2021), we

find nearly identical K-estimators for each of the

current samples (𝐾
0,7
7,45

for MUSE-Wide, 𝐾
0,7
7,45

for

MUSE-Deep, and𝐾
0,7
7,40

for MXDF), whose cluster-

ing signals only differ in their S/N. We chose the

same K-estimator for the three data sets, 𝐾
0,7
7,45

.

The K-estimator is directly related to the aver-

age underlying correlation function (see Eq. 2 in

Herrero Alonso et al. 2021). In fact, its definition

is proportional to a combination of projected

two-point correlation functions corresponding

to the blue and red cylinders of Fig. 3.3.1. While

the traditional 2pcf method integrates the corre-

lation function 𝜉 (𝑅𝑖 𝑗 , 𝑍𝑖 𝑗 ) over line-of-sight sep-
arations up to a maximum line-of-sight distance

𝜋max, the K-estimator integrates up to 𝑎2 and 𝑎3.

The correlation function 𝜉 (𝑅𝑖 𝑗 , 𝑍𝑖 𝑗 ) can be ap-

proximated with a power-law following Limber

(1953) equations as we did in Herrero Alonso

et al. (2021), or modelled with a halo occupation

distribution (HOD) model (see Sect. 3.3.3). For

reference, randomly distributed galaxies in space

(𝜉 (𝑅𝑖 𝑗 , 𝑍𝑖 𝑗 ) = 0) provide 𝐾
0,7
7,45

(𝑅𝑖 𝑗 ) values equal
to 7/45 (see Eq. 2 in Herrero Alonso et al. 2021).

Samples with data points significantly above 7/45

dispense clustering signals.

3.3.2 Error estimation

3.3.2.1 Error estimation for the
MUSE-Wide survey

Applying clustering statistics delivers correlated

data points. One single galaxy might be part

of more than one galaxy pair and can therefore

contribute to several 𝑅𝑖 𝑗 bins, especially if they

are adjacent. In order to quantify the actual

correlation between data points, we applied the

jackknife resampling technique, followed by the

computation of the covariance matrix (see e.g.,

Krumpe et al., 2010; Miyaji et al., 2011). For the

MUSE-Wide sample, we employed ten logarith-

mic bins in the range 0.16 < 𝑅𝑖 𝑗 < 27.5 ℎ−1Mpc,

discarding lower 𝑅𝑖 𝑗 scales since they host very

few galaxy pairs.

We then found a compromise between the

number of independent regions (jackknife zones)

and the size of the jackknife zones and divide

the sky coverage into 𝑁jack = 10 regions, each

of which extends ≈ 4 ℎ−1Mpc in both RA and

Dec directions (see Appendix 3.B for a visual

representation of the sky division). The limited

spatial extent of the survey does not allow for

a higher number of jackknife zones. We then

constructed 𝑁jack jackknife subsamples, exclud-

ing one jackknife zone at a time, and computed

the K-estimator for each of the subsets. The K-

estimator measurements are then used to derive

the covariance matrix𝑀𝑖 𝑗 , which quantifies the

correlation between bins 𝑖 and 𝑗 . The matrix is

expressed as

𝑀𝑖 𝑗 =
𝑁jack − 1

𝑁jack


𝑁jack∑︁
𝑘=1

(
𝐾𝑘 (𝑅𝑖) − ⟨𝐾 (𝑅𝑖)⟩

)
×

(
𝐾𝑘 (𝑅 𝑗 ) − ⟨𝐾 (𝑅 𝑗 )⟩

)]
,

(3.1)

where 𝐾𝑘 (𝑅𝑖), 𝐾𝑘 (𝑅 𝑗 ) are the K-estimators from

the k-th jackknife samples and ⟨𝐾 (𝑅𝑖)⟩, ⟨𝐾 (𝑅 𝑗 )⟩
are the averages over all jackknife samples in

the 𝑖 , 𝑗 bins, respectively. The error bar for

the K-estimator at the ith bin comes from the

square root of the diagonal element (

√
𝑀𝑖𝑖 ) of the

covariance matrix, our so-called "jackknife un-

certainty." This approach could not be followed

in Herrero Alonso et al. (2021) because of the

smaller sky coverage. Instead, we used a galaxy

bootstrapping approach. In Appendix 3.C, we

compare the two techniques and show that boot-

strapping uncertainties are ≈ 50% larger than

the jackknife error bars, in agreement with Nor-

berg et al. (2009), who found that boostrapping

overestimates the uncertainties.

We next search for the best-fit parameters by

minimizing the correlated 𝜒2 values according
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to

𝜒2 =

𝑁bins∑︁
𝑖=1

𝑁bins∑︁
𝑗=1

(
𝐾 (𝑅𝑖) − 𝐾 (𝑅𝑖)HOD

)
× 𝑀−1

𝑖 𝑗

(
𝐾 (𝑅 𝑗 ) − 𝐾 (𝑅 𝑗 )HOD

)
,

(3.2)

where 𝑁bins = 10 is the number of 𝑅𝑖 𝑗 bins,

𝐾 (𝑅𝑖), 𝐾 (𝑅 𝑗 ) are the measured K-estimators and

𝐾 (𝑅𝑖)HOD, 𝐾 (𝑅 𝑗 )HOD are the K-estimators pre-

dicted by the HOD model for each 𝑖 , 𝑗 bin, re-

spectively.

Regardless of the larger sample considered in

this work, we are still limited by the spatial size

of the survey, which only permits a small num-

ber of jackknife zones. The insufficient statistics

naturally lead to a higher noise contribution in

the covariance matrix, which cause the 𝜒2 min-

imization to mathematically fail (i.e., cases of

𝜒2 < 0) when the full covariance matrix is in-

cluded. Hence, we only incorporated the main

diagonal of the matrix and its two contiguous

diagonals. In Appendix 3.B, we discuss the high

level of noise in the matrix elements correspond-

ing to bins that are significantly apart from each

other. We also verify the robustness of our ap-

proach and show that our clustering results are

not altered (within 1𝜎) by this choice.

3.3.2.2 Error estimation for the deeper
surveys

The small sky coverage of the deeper surveys

does not allow us to follow the same error esti-

mation approach as for the MUSE-Wide survey.

In Appendix 3.C, we not only compare the boot-

strapping technique applied in Herrero Alonso

et al. (2021) to the jackknife approach performed

in MUSE-Wide, but we also consider the Poisson

uncertainties. We demonstrate that Poisson and

jackknife errors are comparable in our sample.

In fact, we show that while bootstrapping uncer-

tainties are ≈ 50% larger than jackknife errors,

Poisson uncertainties are only≈ 7% higher. Thus,

and similarly to Adelberger et al. (2005), Diener

et al. (2017), and Khostovan et al. (2018), we stick

to Poisson uncertainties for the MUSE-Deep and

MXDF samples. For these datasets, we measure

the K-estimator in eight and six logarithmic bins

in the ranges 0.09 < 𝑅𝑖 𝑗/[ℎ−1Mpc] < 4.75 and

0.09 < 𝑅𝑖 𝑗/[ℎ−1Mpc] < 1.45, respectively, con-

strained by the spatial extent of the surveys.

We then perform a standard 𝜒2 minimiza-

tion to find the best fitting parameters to the

K-estimator measurements. Namely,

𝜒2 =

𝑁bins∑︁
𝑖=1

(
𝐾 (𝑅𝑖) − 𝐾 (𝑅𝑖)HOD

𝜎𝑖

)
2

, (3.3)

where 𝐾 (𝑅𝑖), 𝐾 (𝑅𝑖)HOD, and 𝜎𝑖 denote the

measured K-estimator, the HOD modelled K-

estimator and the Poisson uncertainty in the 𝑖th

bin, respectively.

We note that the standard 𝜒2 minimization

does not account for the correlation between

bins. Although in Appendix 3.B we show that

only contiguous bins are moderately correlated,

we should take the resulting fit uncertainties

with caution.

3.3.3 Halo occupation distribution
modelling

The clustering statistics can be approximated

with a power-law or modelled with state-of-the-

art HOD modelling. Traditional clustering stud-

ies make use of power laws to derive the corre-

lation length and slope, from which they infer

large-scale bias factors and typical DMH masses.

This simple approach deviates from the actual

shape of the clustering statistic curve, even in

the linear regime, and its inferred DMH masses

suffer from systematic errors (e.g., Jenkins et al.

1998 and references therein). To overcome these

concerns, physically motivated HOD models do

not treat the linear and non-linear regime alike

but differentiate between the clustering contri-

bution from galaxy pairs that reside in the same

DMH and pairs that occupy different DMHs.

In Herrero Alonso et al. (2021) we only mod-

elled the two-halo term of the K-estimator with

HOD modelling, which only delivered the large-

scale bias factor and the typical DMH mass of

the sample. We now extend into the non-linear

regime (i.e., 𝑅𝑖 𝑗 < 0.6 ℎ−1Mpc) of the one-halo

term. We can then model the clustering mea-

sured by the K-estimator with a full HOD model,

combining the separate contributions from the

one- (1h, i.e., galaxy pairs residing in the same

DMH) and the two-halo (2h, i.e., galaxy pairs
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residing in different DMHs) terms:

𝜉 = 𝜉1ℎ + 𝜉2ℎ, (3.4)

where 𝜉 is the correlation function.

The HOD model we used is the same as in

Herrero Alonso et al. (2021), an improved ver-

sion of that described by Miyaji et al. (2011)

and Krumpe et al. (2012), Krumpe et al. (2015),

Krumpe et al. (2018). We assumed that LAEs are

associated with DMHs, linked by the bias-halo

mass relation from Tinker et al. (2005). From

Tinker et al. (2005), we also included the effects

of halo-halo collisions and scale-dependent bias.

The mass function of DMHs, which is denoted

by 𝜙 (𝑀h)d𝑀h, is based on Sheth et al. (2001),

and the DMH profile is taken from Navarro et

al. (1997). We use the concentration parameter

from Zheng et al. (2007), and the weakly redshift-

dependent collapse overdensity from Navarro et

al. (1997) and van den Bosch et al. (2013). We

further incorporated redshift space distortions

(RSDs) in the two-halo term using linear theory

(Kaiser infall; Kaiser 1987 and van den Bosch et

al. 2013). We did not model RSDs in the one-halo

term because the peculiar velocity has negligi-

ble effects to our K-estimator as demonstrated

in the following. The velocity dispersion (𝜎v)

of satellites in a 𝑀h halo can be estimated by

𝜎2
v
≈ 𝐺𝑀h/(2𝑅v𝑖𝑟 ), where 𝑅v𝑖𝑟 is the virial ra-

dius (Tinker, 2007). Its effect on the line-of-sight

physical distance estimate is then 𝜎v/𝐻 (𝑧). For
10

11−12 ℎ−1𝑀⊙ DMH masses, which are typical

for our sample, with virial radii of ≈ 0.02 − 0.05

(physical) ℎ−1Mpc, the line-of-sight distance es-

timation is deviated by ≈ 0.15 − 0.30 ℎ−1Mpc,

corresponding to a peculiar velocity dispersion

of 𝜎v ≈ 80 − 170 km s
−1
. This is significantly

small compared to our 𝑎2 = 7 ℎ−1Mpc. We

thus assume that the one-halo term contributes

only to the 𝑍𝑖 𝑗 = 0 − 7 ℎ−1Mpc bin. We evalu-

ated the HOD model at the median redshift of

𝑁 (𝑧)2, where 𝑁 (𝑧) is the redshift distribution

of the sampled galaxy pairs. For our three main

datasets, 𝑧p𝑎𝑖𝑟 ≈ 3.8.

The mean halo occupation function is a sim-

plified version of the five parameter model by

Zheng et al. (2007). We fixed the halo mass at

which the satellite occupation becomes zero to

𝑀0 = 0 and the smoothing scale of the central

halo occupation lower mass cutoff to 𝜎log𝑀 =

0, due to sample size limitations. We define

the mean occupation distribution of the central

galaxy ⟨𝑁c(𝑀h)⟩ as

⟨𝑁c(𝑀h)⟩ =
{
1 (𝑀h ≥ 𝑀min)
0 (𝑀h < 𝑀min)

(3.5)

and that of satellite galaxies ⟨𝑁s(𝑀h)⟩ as

⟨𝑁s(𝑀h)⟩ = ⟨𝑁c(𝑀h)⟩ ·
(
𝑀h

𝑀1

)𝛼
, (3.6)

where𝑀min is the minimum halo mass required

to host a central galaxy, 𝑀1 is the halo mass

threshold to host (on average) one satellite

galaxy, and 𝛼 is the high-mass power-law slope

of the satellite galaxy mean occupation function.

The total halo occupation is given by the sum

of central and satellite galaxy halo occupations,

𝑁 (𝑀h) = 𝑁c(𝑀h) + 𝑁s(𝑀h).
The dependencies of the HOD parameters

on the shape of the K-estimator are detailed in

Appendix 3.D. In short, for the HOD parame-

ters there selected, the clustering amplitude of

the two-halo term is ascertained by the hosting

DMHs and is thus very sensitive to their mass,

𝑀min, and to the fraction of galaxies in massive

halos with respect to lower-mass halos, linked

to 𝛼 . The clustering in the one-halo term regime,

however, is affected by the three parameters in

a complex manner; roughly 𝑀min and 𝛼 vary

the amplitude, and 𝛼 as well as (moderately)𝑀1

modify the slope.

To find the best-fit HOD model, we construct

a 3D parameter grid for 𝑀min, 𝑀1, and 𝛼 . We

vary log(𝑀min/[ℎ−1𝑀⊙]) in the range 9.5 − 11.2,

log(𝑀1/𝑀min) from 0.5 to 2.5, and 𝛼 within

0.2 − 4.3, all in steps of 0.1. For each parame-

ter combination, we computed 𝜉 (Eq. 3.4), con-

verted it to the K-estimator using Eq. 2 in Herrero

Alonso et al. (2021), and computed a 𝜒2 value

(Eqs. 3.2 or 3.3). We then used the resulting 3D

𝜒2 grid to estimate the confidence intervals for

the HOD parameters. For each point on a 2D

plane, we search for the minimum 𝜒2 for the

contouring along the remaining parameter. The

contours we plot are at 𝛥𝜒2 = 3.53 and 8.02,

which correspond to Gaussian 68% (1𝜎) and 95%

(2𝜎) confidence levels, respectively, applying the

𝜒2 distribution for three degrees of freedom. The

projections of the 68% probability contours on

the three interesting parameters are then used

to compute the uncertainty of each HOD param-

eter.

For each point in the three parameter grid, we
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also computed the large-scale galaxy bias factor,

𝑏, and the fraction of satellite galaxies per halo,

𝑓sat, as follows:

𝑏 =

∫
⟨𝑁 (𝑀h)⟩ 𝑏h(𝑀h) 𝜙 (𝑀h) d𝑀h∫

⟨𝑁 (𝑀h)⟩ 𝜙 (𝑀h) d𝑀h

, (3.7)

𝑓sat =

∫
⟨𝑁s (𝑀h)⟩ 𝜙 (𝑀h) d𝑀h∫
⟨𝑁 (𝑀h)⟩ 𝜙 (𝑀h) d𝑀h

, (3.8)

where 𝑏h(𝑀h) denotes the large-scale halo bias.

The typical DMH mass is determined by the

large-scale galaxy bias factor. We ultimately com-

pute the bias and 𝑓sat distributions from the HOD

models that fall within the 68% confidence (for

the three-parameter space) contours. These dis-

tributions are then used to assess the uncertain-

ties in the bias and 𝑓sat.

3.4 Results from HOD
modelling

3.4.1 Fit results from the
MUSE-Wide survey

Using the K-estimator𝐾
0,7
7,45

, we compute the clus-

tering of our LAE sample in ten logarithmic bins

in the range 0.16 < 𝑅𝑖 𝑗/[ℎ−1Mpc] < 27.5, with

error bars calculated following the jackknife re-

sampling technique described in Sect. 3.3.2.1. In

the left top panel of Figure 3.4.1, we show the

measured clustering signal, with all MUSE-Wide

data points significantly above the 7/45 baseline,

which represents the expected clustering of an

unclustered population.

Following the procedure laid out in Sect. 3.3.3,

we obtain constraints on the HOD parameters.

From the grid search and the 𝜒2 minimization,

we find the best HOD fit to the K-estimator, col-

ored in black in the same figure and dissected

into the one- and two-halo term contributions.

It can be seen from the residuals (bottom) that

the model is in remarkable agreement with the

measurements.

A somewhat intriguing feature, at least at first

sight, is the kink in the two-halo term profile

at 0.2 < 𝑅𝑖 𝑗/[ℎ−1Mpc] < 0.4. This reflects the

effect of the halo-halo collision introduced in the

HOD model formalism by Tinker et al. (2005),

where the galaxy pairs within the same DMH

cannot contribute to the two-halo term.

Our fitting allows us to find the best-fit HOD

from Eqs. 3.5 and 3.6. In the right top panel of

Fig. 3.4.1, we represent the best HODs for the

central, satellite, and total LAEs from the MUSE-

Wide survey. While the halo mass needed to host

one (central) LAE is log(𝑀h/[ℎ−1M⊙]) > 10.6,

satellite galaxies are only present if the DMHs

are at least one order of magnitude more massive

(log(𝑀h/[ℎ−1M⊙]) > 11.6).

As described in Sect. 3.3.3, we also compute

the confidence regions for the HOD parame-

ters. We show the probability contours (red) in

Fig. 3.4.2. The wobbliness of the curves, espe-

cially those involving 𝛼 , is caused by making use

of a discrete grid. For our sample, the contours

are constrained to have 𝛼 > 1, log(𝑀1/𝑀min) >
1, and log(𝑀min/[ℎ−1𝑀⊙]) > 10.4.

We list the best-fit HOD parameters in

Table 3.4.1. While the minimum DMH

mass required to host a central galaxy is

log(𝑀min/[ℎ−1𝑀⊙]) = 10.7+0.2−0.3, that needed

to host one central and (on average) one

satellite is log(𝑀1/[ℎ−1𝑀⊙]) = 12.4+0.4−0.6 (i.e.,

log(𝑀1/𝑀min) = 1.7+0.4−0.6). The power-law slope

of the number of satellites is found to be 𝛼 =

2.8+0.9−0.7. The inferred typical DMH mass is

log(𝑀h/[ℎ−1𝑀⊙]) = 11.09+0.10−0.09, corresponding
to a large-scale bias factor of 𝑏 = 2.65+0.13−0.11. The
high values of log𝑀1 and 𝛼 , considering the typ-

ical DMH mass of LAEs, suggest a low number

of satellite galaxies detected in our sample.

Seeking robust information about the num-

ber of satellite galaxies, we compute the satellite

fraction 𝑓sat (Eq. 3.8) for each parameter combi-

nation. We find 𝑓sat ≲ 0.10 at the 3𝜎 confidence

level, being 𝑓sat = 0.012+0.018−0.009. That is, ≈ 3% (1𝜎

upper limit) of the LAEs in the MUSE-Wide sur-

vey are satellites. In other words, at most ≈ 2 out

of ≈ 65 DMHs in our sample host one satellite

LAE.

3.4.2 Fit results from MUSE-Deep
We measure the clustering of the MUSE-Deep

LAE sample with the same K-estimator in eight

logarithmic bins within 0.09 < 𝑅𝑖 𝑗/[ℎ−1Mpc] <
4.75. We compute Poisson uncertainties as laid

out in Sect. 3.3.2.2 and display the result in the

middle left panel of Fig. 3.4.1. Overplotted on the

clustering signal, we show the best HOD fit, split

into the one- and two-halo term contributions.

The good quality of the fit is quantified with the

residuals in the bottom panel of the figure.
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Figure 3.4.1: Best-fit HOD models to the LAE clustering measurements (blue data points) from MUSE samples.

Top left: Blue dashed, red dotted, and black continuous curves show the one-halo, two-halo, and total clustering

terms from the MUSE-Wide sample, respectively. The black straight line shows the expected 𝐾 value of an

unclustered sample. The residuals are shown below. The uncertainties are computed with the jackknife

technique described in Sect. 3.3.2.1. Top right: Best-fit HODs for central (red dotted), satellite (blue dashed),

and total LAEs (black continuous) from the MUSE-Wide survey. Shaded regions correspond to 1𝜎 confidence

space. Middle: Same but for MUSE-Deep and using Poisson error bars. Bottom: Same but for MXDF and

Poisson uncertainties.

Table 3.4.1: Best-fit HOD parameters for the main samples of LAEs.

⟨𝑧⟩ log𝑀min log(𝑀1/𝑀min) 𝛼 𝑓sat 𝑏 log𝑀h

MUSE-Wide 4.0 10.7+0.2−0.3 1.7+0.4−0.6 2.8+0.9−0.7 0.012+0.018−0.009 2.65+0.13−0.11 11.09+0.10−0.09
MUSE-Deep 4.1 10.5+0.2−0.1 1.9+0.3−0.2 3.0+0.4−0.5 0.004+0.009−0.002 2.42+0.10−0.09 10.89+0.09−0.09
MXDF 4.2 10.3+0.2−0.3 1.4+0.3−0.2 1.5+0.5−0.5 0.08+0.02−0.05 2.43+0.15−0.15 10.77+0.13−0.15

Notes: ⟨𝑧⟩ is the median redshift of the sample. 𝑀min,𝑀1 are the threshold DMH masses in ℎ−1M⊙ to

host a central and a satellite LAE, respectively. 𝛼 is the high-mass power-law slope of the number of

satellite galaxies, 𝑓sat is the satellite fraction, 𝑏 is the large-scale bias factor and𝑀ℎ is the typical DMH

mass of the galaxy sample.
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Figure 3.4.2: Confidence contours in the three HOD parameter space. Red corresponds to MUSE-Wide, green

to MUSE-Deep, and blue to MXDF. The thick (dashed) contours represent the 68.3% (95.5%) confidence, at

𝛥𝜒2 = 3.53 (8.02) level. The crosses stand for best-fit (𝜒2
min

), searched along the remaining parameter for each

2D parameter plane.
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Following the procedure described in

Sect. 3.3.2.2, we compute the confidence inter-

vals for the HOD parameters and list them in

Table 3.4.1. We plot the probability contours

(green) in Fig. 3.4.2, which overlap significantly

with those from the MUSE-Wide sample. Cen-

tral LAEs can occupy DMHs if these are at least

as massive as log(𝑀min/[ℎ−1Mpc]) = 10.5+0.2−0.1,
whereas, in order to host satellite LAEs, the halos

must have masses log(𝑀1/[ℎ−1Mpc]) = 12.4+0.3−0.2
(log(𝑀1/𝑀min) = 1.9+0.3−0.2). These values corre-

spond to a large-scale bias and typical DMHmass

𝑏 = 2.42+0.10−0.09 and log(𝑀h/[ℎ−1M⊙]) = 10.89+0.09−0.09,
which are similar to those found in the MUSE-

Wide survey. The derived satellite fraction is

𝑓sat = 0.004+0.009−0.002, consistent with that from the

MUSE-Wide LAE sample.

We then compute the best-fit HOD for cen-

tral, satellite and total LAEs (middle right panel

of Fig. 3.4.1). In line with the best-fit HOD pa-

rameters and somewhat lower than the values

found for the MUSE-Wide survey, the smallest

DMH that can host a central LAE has a mass of

log(𝑀h/[ℎ−1M⊙]) > 10.4, more than one order

of magnitude lower than that required to host

one additional LAE (satellite).

3.4.3 Fit results from the MUSE
Extremely Deep Field

We make use of six logarithmic bins in the range

0.09 < 𝑅𝑖 𝑗/[ℎ−1Mpc] < 1.45 and Poisson errors

(see Sect. 3.3.2.2) to quantify the clustering of

the sample of LAEs from MXDF. We show the K-

estimator measurements in the bottom left panel

of Fig. 3.4.1, along with the corresponding best

HOD fit.

The probability contours are plotted in blue

in Fig. 3.4.2, significantly apart from those

of MUSE-Wide and MUSE-Deep. While the

minimum DMH mass to host a central LAE

is log(𝑀min/[ℎ−1Mpc]) = 10.3+0.2−0.3, that to

host one central and one satellite LAE is

log(𝑀1/[ℎ−1Mpc]) = 11.7+0.3−0.2 (log(𝑀1/𝑀min) =
1.4+0.3−0.2). These values are somewhat lower than

those found for the MUSE-Wide survey and cor-

respond to a bias factor and typical halo mass of

𝑏 = 2.43+0.15−0.15 and log(𝑀h/[ℎ−1M⊙]) = 10.77+0.13−0.15,
respectively. The inferred satellite fraction is

𝑓sat = 0.08+0.02−0.05 (𝑓sat ≲ 0.2 at the 3𝜎 confidence

level), tentatively higher than that found in the

MUSE-Wide survey.

From the best-fit HOD parameters, we cal-

culate the HODs for central, satellite and to-

tal LAEs and show them in the bottom right

panel of Fig. 3.4.1. Significantly lower than

in the MUSE-Wide survey, central LAEs re-

side in DMHs if these are more massive than

log(𝑀h/[ℎ−1M⊙]) > 10.2. For the satellite case,

and similarly to the previous LAE samples, they

only exist if the halos are around one order of

magnitude more massive.

It is worth pointing out that the three HOD

parameters have some degree of degeneracy,

printed out in the diagonally elongated prob-

ability contours in log𝑀1/𝑀m𝑖𝑛 – 𝛼 space in the

bottom right panel of Fig. 3.4.2. This can be un-

derstood as follows: a higher 𝛼 in the models

causes an increase of satellites at highmass halos,

but this can be compensated by producing less

satellites by increasing log𝑀1/𝑀m𝑖𝑛 . While this

correlation is clearly visible for the MUSE-Wide

andMUSE-Deep samples, theMXDF dataset only

seems to be affected in the 95% confidence con-

tour. We did not observe clear correlations be-

tween other parameters with any of our sam-

ples. Appendix 3.A shows how our K-estimator

varies with the parameters. The causes of param-

eter degeneracies are also noticeable in Fig. 3.D.1.

We note however that while the correlation be-

tween the HOD parameters leads to the per-

turbed shape of the probability contours, the

lowest (MXDF) and highest luminosity (MUSE-

Wide) sample contours are detached from each

other. Thus, for the purposes of this study, simul-

taneously fitting the three HOD parameters and

showing their correlations is preferable over, for

instance, fixing 𝛼 to a dubious value.

3.5 Discussion

3.5.1 Clustering dependence on
Ly𝜶 luminosity

The complex radiative transfer processes that the

Ly𝛼 photons are subject to make the search for

correlations between Ly𝛼 luminosity and other

physical properties a difficult task. Despite this

complication, Yajima et al. (2018) predicted a cor-

relation between simulated 𝐿Ly𝛼 and halo mass

based on halo merger trees and Ly𝛼 radiative

transfer calculations. Khostovan et al. (2019) is,

however, the only study so far that has reported

a clear (5𝜎) relation between these quantities

using observational data. Motivated by these
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Figure 3.5.1: Clustering dependence on Ly𝛼 luminosity. Left: K-estimator measurements in the MUSE-Wide

survey (red; ⟨𝐿Ly𝛼 ⟩ ≈ 10
42.34

erg s
−1
) and MXDF (blue; ⟨log𝐿Ly𝛼 ⟩ ≈ 10

41.22
erg s

−1
). The dotted curves represent

the best HOD fits. The black straight line shows the expected K-estimator of an unclustered sample. Right:

Same for the high 𝐿Ly𝛼 subset (red) from the MUSE-Wide survey and the low 𝐿Ly𝛼 subsample (blue) from

MXDF.

results, we exploited the large dynamic range

of Ly𝛼 luminosities that we cover to investigate

the relation between Ly𝛼 luminosity and DMH

mass. As a first step, we compare the K-estimator

measurements in the MUSE-Wide survey (high-

est luminosity LAE sample: ⟨𝐿Ly𝛼⟩ ≈ 10
42.34

erg

s
−1
, but still fainter than those in Khostovan et

al. (2019)) and in MXDF (faintest LAE sample;

⟨𝐿Ly𝛼⟩ ≈ 10
41.22

erg s
−1
) and show the outcome

of this comparison in the left panel of Fig. 3.5.1.

The relatively luminous LAEs from the MUSE-

Wide survey cluster slightly more strongly

(𝑏Wide = 2.65+0.13−0.11) than the low-luminosity LAEs

from MXDF (𝑏MXDF = 2.43+0.15−0.15). The clustering
measurements and bias factor (𝑏 = 2.42+0.10−0.09) in
MUSE-Deep (log(𝐿Ly𝛼/[erg s

−1]) = 41.64) fall

between those from MUSE-Wide and MXDF. We

convert the bias factors from the three main sam-

ples of this study into typical DMH masses and

plot them as a function of their median Ly𝛼 lu-

minosity with colored symbols in Fig. 3.5.2.

Although the three main datasets sample the

same region of the sky, their transverse coverage

is limited and somewhat differs. Therefore, our

results are affected by cosmic sample variance.

Ideally, this uncertainty is estimated from the

variance of clustering measurements from simu-

lated mocks in different lines of sight. Inferring

cosmic variance from a large set of mocks that

are able to reproduce the observed clustering of

our LAEs is however beyond the scope of this

paper.

We further investigate the possible depen-

dence on 𝐿Ly𝛼 by splitting the main LAE sam-

ples into disjoint subsets (see Table 3.2.2). We

compute the K-estimator in each 𝐿Ly𝛼 subsam-

ple, find the best HOD fit and list the large-scale

bias factors and the typical DMH masses in Ta-

ble 3.5.1. We also plot the typical DMH masses

in Fig. 3.5.2 (empty symbols) as a function of the

median 𝐿Ly𝛼 of the subsamples. We find that typ-

ical halo mass increases from 10
10.00

to 10
11.43𝑀⊙

between 10
40.97

and 10
42.53

erg s
−1

in line lumi-

nosity.

For each subsample pair, the high-luminosity

subset always clusters more strongly than the

low-luminosity one and, in this case, cosmic

sample variance effects can be completely ne-

glected because subset pairs span the exact same

area on the sky. The most pronounced differ-

ence is found when splitting the MXDF sam-

ple, the dataset with the largest dynamic range

of Ly𝛼 luminosity. The best HOD fits deliver

𝑏low = 1.79+0.08−0.06 and 𝑏high = 3.10+0.24−0.22 (3.9𝜎 signif-

icant).

Despite its higher luminosity, we infer a

less massive DMH for the MUSE-Deep high-

luminosity subsample than for the main dataset.

This is due to the higher 𝑧pair of the subset

(see Sect. 3.2.4 and 3.3.3). Because we evalu-

ate the HOD model at 𝑧pair, a higher redshift

corresponds to HOD models in which the halo

mass function presents a lower number den-

sity of massive halos and, thus, deliver less

massive typical DMHs. The same reasoning

applies when comparing the high-luminosity

MXDF and low-luminosity MUSE-Deep subsam-

ples and the high-luminosity MUSE-Deep and

low-luminosity MUSE-Wide subsets. While each

subsample pair presents similar median lumi-

nosities, the former also has similar 𝑧pair, unlike

the latter one (see Sect. 3.2.4). This translates
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Table 3.5.1: Best HOD fit large-scale bias factor and typical DMH mass for the LAE subsamples.

Subsample ⟨𝑧⟩ 𝑏 log(𝑀h/[ℎ−1M⊙])

MUSE-Wide high L 4.1 3.13+0.08−0.15 11.43+0.04−0.10 11.43+0.04−0.10
MUSE-Wide low L 3.7 2.45+0.10−0.12 10.92+0.09−0.11 10.92+0.09−0.11
MUSE-Deep high L 4.5 2.41+0.12−0.10 10.40+0.12−0.10 10.40+0.12−0.10
MUSE-Deep low L 3.7 2.20+0.09−0.11 10.68+0.09−0.13 10.68+0.09−0.13
MXDF high L 4.5 3.10+0.24−0.22 10.96+0.15−0.15 10.96+0.15−0.15
MXDF low L 4.0 1.79+0.08−0.06 10.00+0.12−0.09 10.00+0.12−0.09

Notes: ⟨𝑧⟩ is the median redshift of the subsample. The uncertainties do not include

cosmic sample variance.

into similar DMH masses for the first pair but

significantly distinct masses for the second.

We last consider the most extreme cases, the

low-luminosity subset from MXDF and the high-

luminosity one from the MUSE-Wide survey. We

show the measured clustering in the two sub-

samples in the right panel of Fig. 3.5.1. The high-

luminosity LAEs cluster 8𝜎 more strongly than

the low-luminosity LAEs, without accounting

for cosmic variance. We find that LAEs with

log(𝐿Ly𝛼/[erg s
−1]) ≈ 42.53 reside in DMHs

of log(𝑀h/[ℎ−1M⊙]) = 11.43+0.04−0.10 and that

lower luminosity LAEs (log(𝐿Ly𝛼/[erg s
−1]) ≈

40.97) are hosted by DMHs of masses ranging

log(𝑀h/[ℎ−1M⊙]) = 10.00+0.12−0.09. These results fit
well within the assumed framework in which

star-forming galaxies that reside in more mas-

sive halos present higher star formation rates

and thus show more luminous nebular emission

lines (Kusakabe et al., 2018). This dependence

can then be weakened by low Ly𝛼 escape frac-

tions in high mass halos.

Following Sect. 5.4.1 of Herrero Alonso et al.

(2021), we matched the redshift distributions of

the three main samples and of each subsample

pair to verify that the difference in clustering am-

plitude is not driven by the different redshift dis-

tribution of the datasets. For each main sample,

we compare individual bins between their corre-

sponding 𝑧-distributions and select the one that

contains a higher number of objects. We then

randomly remove LAEs until we match the num-

ber counts of the non-selected samples in that

bin. Once all bins have been inspected, we obtain

"matched" 𝑧-distributions (i.e., equivalent), but

with still different Ly𝛼 luminosity distributions.

We ran the K-estimator in the three "matched"

datasets and find consistent results with the orig-

inal ones.

Figure 3.5.2: Typical dark matter halo mass against

observed median Ly𝛼 luminosity. Filled and unfilled

symbols correspond to the values derived from the

samples and subsamples described in Sect. 5.2, respec-

tively. Red circles, green triangles and blue squares

belong to MUSE-Wide, MUSE-Deep and MXDF, re-

spectively. Gray crosses represent the results from

Khostovan et al. (2019) in the Ly𝛼 luminosity interval

relevant for this study.

We follow the same approach for the subsam-

ples such that the low- and high-luminosity sub-

sets have exactly the same 𝑧-distribution. We

find that the clustering difference between the

"matched" and original subsamples varies within

1𝜎 . Besides, as we did for 𝐿Ly𝛼 , we also searched

for a possible clustering dependence on redshift

and found no trend. Thus, we discarded the pos-

sibility of a possible clustering dependence on

Ly𝛼 luminosity driven by 𝑧.

Our results are not driven by AGN or low-

redshift emission line contamination either. The

Ly𝛼-emitting AGN fraction for 𝐿Ly𝛼 < 10
43
erg

s
−1

is close to zero (Spinoso et al. 2020 and ref-

erences therein) and the four known X-ray de-

tected AGNs (Luo et al., 2017), which only affect

MUSE-Wide and MUSE-Deep, were not included

in our datasets. Besides, Urrutia et al. (2019) per-

formed a stacking experiment of X-ray images
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centered on MUSE-Wide LAEs, yielding no sig-

nal. The presence of low-redshift interlopers in

our spectroscopic samples is also unlikely. [Oii]

emitters are the typical contaminants of high-

redshift LAE samples but the high resolution of

the MUSE instrument allows to distinguish the

[Oii] emission line doublet with high confidence.

These results are in line with the tentative

trends seen in Ouchi et al. (2003), Kusakabe

et al. (2018), and Herrero Alonso et al. (2021)

and the clear dependence found in Khostovan

et al. (2019). While Ouchi et al. (2003) noted a

slight difference in the correlation amplitude of

two 𝐿Ly𝛼 subsamples (30 and 57 LAEs in each

subset at 𝑧 = 4.86 with log(𝐿Ly𝛼/[erg s
−1]) >

42.2 and log(𝐿Ly𝛼/[erg s
−1]) < 42.2, respec-

tively), Kusakabe et al. (2018) observed a ten-

dency (< 2𝜎) of larger bias factors correspond-

ing to higher luminosity LAEs. They used

four deep survey fields at 𝑧 = 2 with limiting

Ly𝛼 luminosities within the range of 41.3 <

log(𝐿Ly𝛼/[erg s
−1]) < 42 computed fromNB387

magnitudes.

More significant is the dependence found in

Khostovan et al. (2019) and Herrero Alonso

et al. (2021). While the latter measured a 2𝜎

difference in bias factors or DMH masses be-

tween two subsets of 349 and 346 LAEs at

𝑧 ≈ 4 with log(𝐿Ly𝛼/[erg s
−1]) ≈ 42.14

and log(𝐿Ly𝛼/[erg s
−1]) ≈ 42.57, the former

used various surveys with discrete redshift

slices between 2.5 < 𝑧 < 6 and 42.0 <

log(𝐿Ly𝛼/[erg s
−1]) < 43.6 to find that halo

mass clearly (5𝜎) increases with increasing line

luminosity. For a direct comparison, we plot in

Fig. 3.5.2 (gray crosses) the DMH masses com-

puted by Khostovan et al. (2019) from samples

with similar redshifts (𝑧 ≈ 3) and Ly𝛼 luminosi-

ties (log(𝐿Ly𝛼/[erg s
−1]) ≈ 42) to our current

LAE samples. Our results are in good agreement

and extend to much fainter Ly𝛼 luminosities.

Our results, along with those from the litera-

ture, demonstrate that having a broad dynamic

range of 𝐿Ly𝛼 (nearly extending two orders of

magnitude) and a large number of LAEs in the

samples is crucial to detect the clustering depen-

dence on 𝐿Ly𝛼 .

3.5.2 Comparison to
Herrero Alonso et al. (2021)

In this section we compare our results with the

findings of our previous study (Herrero Alonso

et al., 2021, hereafter HA21), where we measured

the clustering of a subset (68 fields of the MUSE-

Wide survey) of our current sample (91 fields

of the MUSE-Wide survey) and fitted the corre-

sponding signal with a two-halo term only HOD

modelling. In order to envisage the methodolog-

ical and statistical improvement of our new in-

vestigation, we applied our 𝐾
0,7
7,45

estimator to

the sample considered in HA21 (695 LAEs at

3.3 < 𝑧 < 6). We compare the outcome to our

current clustering measurement in Fig. 3.5.3.

The two datasets show good agreement within

the uncertainties, with smaller errors for the cur-

rent sample. Besides the higher number of LAEs

and larger spatial coverage, the error estimation

was carried out following different procedures.

While the spatial coverage of the fullMUSE-Wide

survey allows us to compute the covariance ma-

trix from the jackknife resampling technique, the

smaller transverse extent covered by the 68 fields

did not allow the split of the surveyed area into

a significant number of jackknife zones. Thus, in

HA21, we chose bootstrapping error bars as our

next most conservative and realistic approach.

The slightly puzzling hump seen in Sect. 4 of

HA21 at 4 ≲ 𝑅𝑖 𝑗/[ℎ−1Mpc] ≲ 7 is no longer

visible in our new dataset. This confirms the

judgement in HA21 that the feature was consis-

tent with a statistical fluctuation resulting from

the correlation between datapoints.

In HA21, we limited the range of transverse

separations to 𝑅𝑖 𝑗 > 0.6 ℎ−1Mpc, excluding the

smallest scales of the one-halo term. Thus, we

fitted the signal with a two-halo term only HOD

model (red dotted curve in Fig. 3.5.3) in con-

trast to the full HOD modelling performed in

this work (blue dotted curve). While the former

only constrained the large-scale bias factor and

the typical DMH mass of LAEs, the latter fur-

ther determines the number of central and satel-

lite galaxies, as well as the required DMH mass

to host each type of galaxy. Despite these dis-

similarities, the two fits are in good agreement:

the bias factor (𝑏 = 2.80+0.38−0.38) and the typical

DMH mass of LAEs (log(𝑀DMH / [ℎ−1M⊙]) =

11.34+0.23−0.27) from HA21 are consistent with those

derived in this work (𝑏 = 2.65+0.13−0.11 and log(𝑀DMH

/ [ℎ−1M⊙]) = 11.09+0.10−0.09). The higher accuracy of
our current measurements originates from the

larger sample, the availability of more realistic

error bars, and constraints from the one-halo

term.

62



3.5.3 Comparison with the
literature

A common way to infer the host DMHmasses of

LAEs is to quantify the galaxy clustering of the

detected population through clustering statis-

tics, which is then traditionally approximated

with power-laws or fit with physically motivated

HOD models.

Following the traditional approach, Gawiser

et al. (2007), Ouchi et al. (2010) and Bielby et al.

(2016) focused on the clustering of a few hun-

dred LAEs at 𝑧 = 3.1− 6.6 to obtain typical DMH

masses in the range 10
10 − 10

11 𝑀⊙. Similar

masses were found by Khostovan et al. (2018)

in a much larger sample (≈ 5000 LAEs) in dis-

crete redshift slices within 2.5 < 𝑧 < 6, adopting

the same procedure. A major improvement in

terms of methodology was presented in Lee et al.

(2006), Durkalec et al. (2014), Ouchi et al. (2017),

and Durkalec et al. (2018), who considered sam-

ples of high-𝑧 galaxies (2000-3000 mainly LAEs

and Lyman-break galaxies, LBGs) and quanti-

fied the clustering with HOD modelling. While

Ouchi et al. (2017) found that their LAEs at

𝑧 = 5.7 (6.6) are hosted by DMHs with typi-

cal masses of log(𝑀ℎ/𝑀⊙) = 11.1+0.2−0.4 (10.8
+0.3
−0.5),

Lee et al. (2006) and Durkalec et al. (2014, 2018)

computed log(𝑀ℎ/ℎ−1𝑀⊙) ≈ 11.7 for their sam-

ple of galaxies at 𝑧 = 4 − 5 and 𝑧 = 3, respec-

tively. Considering that we have performed a

full HOD modelling at the median redshift of

our number of galaxy pairs (𝑧p𝑎𝑖𝑟 = 3.8) and that

the DMH masses are predicted to evolve with

cosmic time, our derived typical DMH masses

log(𝑀ℎ/ℎ−1𝑀⊙) ≈ 10.77 − 11.09 are in good

agreement with the literature.

Besides the computation of typical DMH

masses, modelling the one-halo term of the clus-

tering statistics with HOD models delivers the

minimum DMH mass required to host a cen-

tral galaxy, 𝑀min, that is needed for a satellite

galaxy, 𝑀1, and the power-law slope of num-

ber of satellites, 𝛼 . These three parameters con-

strain the satellite fraction, 𝑓sat. Ouchi et al.

(2017) partially exploited the power of HOD

models in a sample of ≈ 2000 LAEs to obtain

log(𝑀min/𝑀⊙) = 9.5+0.5−1.2 (9.1
+0.7
−1.9) at 𝑧 = 5.7 (6.6).

Our derived minimum masses to host a central

galaxy at 𝑧p𝑎𝑖𝑟 = 3.8 are considerably larger

(log(𝑀min/𝑀⊙) ≈ 10.3 − 10.7), which can be ex-

plained by the different Ly𝛼 luminosities covered

in the two studies, and by the fact that several

Figure 3.5.3: Clustering of the full MUSE-Wide sam-

ple (blue; this work) compared to the subset consid-

ered in HA21 (red). The former measurements show

jackknife uncertainties (see Sect. 3.3.2.1) and the latter

bootstrapping errors (see Sect. 3.1.3 in HA21). The

blue dotted curve represents our best-fit from full

HOD modelling. The red dotted curve displays the

two-halo term only best HOD fit found in Sect. 4.3 of

HA21. The black straight line shows the expected 𝐾

value of an unclustered sample.

HODparameters were fixed in Ouchi et al. (2017),

namely, 𝜎log𝑀 = 0.2, log𝑀0 = 0.76𝑀1 + 2.3,

log𝑀1 = 1.18 log𝑀min − 1.28, and 𝛼 = 1, which

are not compatible with ours. This was the only

previous study that performed HOD modelling

in a sample of LAEs.

Lee et al. (2006) and Durkalec et al. (2014)

made use of the full potential of HOD models to

reproduce the clustering of their LBG population

at 𝑧 = 4 − 5 and 2.9 < 𝑧 < 5, respectively. Al-

though it is still under debate whether LBGs and

LAEs are the same galaxy population (Garel et

al. 2015 and references therein), Lee et al. (2006)

computed a minimum DMH mass to host a cen-

tral LBG of log(𝑀min/𝑀⊙) ≈ 10.8, to host a satel-

lite LBG of log(𝑀1/𝑀⊙) ≈ 12.0, and a power-

law slope 𝛼 for the number of satellites of 𝛼 ≈
0.7, with considerable uncertainties. Similarly,

Durkalec et al. (2014) found log(𝑀min/𝑀⊙) =

11.18+0.56−0.70, log(𝑀1/𝑀⊙) = 12.55+0.85−0.88, and 𝛼 =

0.73+0.23−0.30. While their halo masses are in agree-

ment with our findings, their slope is somewhat

shallower. This is partially expected given the

dissimilarities in the galaxy populations (i.e., dis-

parate observational selection techniques detect

distinct galaxy populations).

3.5.4 Satellite fraction
In the above discussions on HOD modelling, we

limit ourselves to theHODmodel form expressed

by Eqs. 3.5 and 3.6, which is rather restrictive.
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The underlying assumption of the model is that

the center of the halo with mass𝑀h > 𝑀m𝑖𝑛 is al-

ways occupied by one galaxy in the sample (or at

least at a𝑀h-independent constant probability).

This form may be appropriate for instance, for

luminosity or stellar mass thresholding samples,

but there is no reason that this has to be the case

for samples selected by other criteria.

We note that the inferred value of 𝑓s𝑎𝑡 is sen-

sitive to the form of the parameterized model of

the central and satellite HODs. In this work and

in the literature, a power-law form of the satel-

lite HOD is customarily assumed. In this case,

a lower 𝛼 would increase the model ⟨𝑁s(𝑀h)⟩
at the lower𝑀h end, near𝑀m𝑖𝑛 , and yield fewer

satellites in higher mass halos. Since the halo

mass function drops with increasing mass, 𝑓s𝑎𝑡 is

mainly determined by the HOD behavior around

𝑀h ∼ 𝑀m𝑖𝑛 ∼ 10
10.5 ℎ−1M⊙, where the halo

mass function is large and the virial radius is

𝑟v𝑖𝑟 ≈ 0.08 ℎ−1M𝑝𝑐 at 𝑧 ∼ 3.8 (Zheng et al.,

2007). These scales are too small to be well con-

strained by our observations. Our observed one-

halo term mainly constrains the satellite fraction

at larger mass halos (𝑀h ∼ 𝑀m𝑖𝑛 ∼ 10
13 ℎ−1M⊙,

where 𝑟v𝑖𝑟 ≈ 0.5 ℎ−1M𝑝𝑐 at the same redshift).

Thus, the 𝑓s𝑎𝑡 values from the HOD modelling

should be viewed with caution and may well re-

flect the artefacts of the assumed form of the

model. On the other hand, the sheer presence

of a significant one-halo term indicates the ex-

istence of some satellites at higher halo masses.

The extent of the one-halo term up to 𝑅𝑖 𝑗 ≈
0.5 ℎ−1M𝑝𝑐 shows that there are indeed satel-

lites up to𝑀h ∼ 10
13 ℎ−1M⊙.

In spite of the above caveats, the small satellite

fraction of the LAEs is likely to be robust. The

small 𝑓s𝑎𝑡 values for the assumed HOD model

indicate that not only central-satellite pairs are

rare, but also satellite-satellite pairs are as well,

suggesting that only a small fraction of halos

contain multiple LAEs. The small 𝑀m𝑖𝑛 values

themselves are also an indication that a large ma-

jority of the halos (at the low mass end) that con-

tain a LAE are indeed dominated by one galaxy

and in this case, the LAE is probably the central

galaxy.

3.5.5 Implications
The clustering results of this study do not only

have implications on the baryonic-DM relation,

but also on evolving Ly𝛼 luminosity functions,

signatures of incomplete reionization, and halo

mass-dependent Ly𝛼 escape fractions. We ad-

dress these aspects in the following.

The relation between halo mass (or cluster-

ing strength) and Ly𝛼 luminosity (Table 3.5.1

and Fig. 3.5.2) demonstrates that high-luminosity

LAEs tend to reside in higher density environ-

ments than lower luminosity ones. As a result,

overdense regions contain a larger fraction of

high-luminosity sources (and a lower fraction of

less luminous ones) than environments of lower

density. These inferences affect the Ly𝛼 LF mea-

surements at 3 < 𝑧 < 6. While we expect a

shallower faint-end slope of the Ly𝛼 LF in over-

dense regions, the slope should steepen in aver-

age or low density environments. As a conse-

quence, surveys for relatively high-luminosity

(𝐿Ly𝛼 ≈ 10
42
erg s

−1
) LAEs are implicitly biased

against the lowest density regions and thus gives

a biased shape for the LF, which should not be

extrapolated towards lower Ly𝛼 luminosities.

Assuming that our𝐿Ly𝛼−𝑀ℎ relation still holds

at higher redshifts, the Ly𝛼 LF at 𝑧 ≥ 6 would

be even more affected, not only because of the

above discussion but also because higher redshift

bins are mainly populated by high-luminosity

sources, contrary to lower redshift bins (typi-

cal case for telescopes with higher sensitivity

at bluer wavelengths). Thus, it is important to

be careful when interpreting Ly𝛼 LFs, especially

near the epoch of reionization (EoR), where a

shallow to steep variation in the slope of the LF

from higher (𝑧 ≈ 7) to lower redshifts (𝑧 ≈ 5.7)

is commonly interpreted as a sign of incomplete

reionization (Konno et al., 2014; Matthee et al.,

2015; Santos et al., 2016).

Simulations at those higher redshifts also tend

to find that high-luminosity LAEs are more likely

to be observed than low-luminosity ones because

they are able to ionize their surroundings and

form Hii regions around them (i.e., ionized bub-

bles; Matthee et al., 2015; Hutter et al., 2015;

Yoshioka et al., 2022). These allow Ly𝛼 photons

to redshift out of the resonance wavelength and

escape the region. Lower luminosity LAEs are

then observed if they reside within the ionized

bubbles of higher luminosity LAEs or if they

are able to transmit enough flux through the

IGM (Matthee et al., 2015). If our 𝐿Ly𝛼 −𝑀ℎ re-

lation is still valid at these redshifts, our results

would support this simulation paradigm since

high-luminosity LAEs (situated in overdense re-

gions) could form large ionized bubbles more
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efficiently than low-luminosity sources which

tend to be located in lower density environments

(Tilvi et al., 2005).

Theoretical studies e.g., Furlanetto et al., 2006;

McQuinn et al., 2007 have modelled the size dis-

tribution of these Hii regions and predicted an in-

crease in the apparent clustering signal of LAEs

towards the epoch of reionization (i.e., towards

a more neutral IGM). Large ionized bubbles be-

come rarer as the ionizing fraction declines. This

patchy distribution of Hii regions, which mostly

surrounds large galaxy overdensities, boosts the

apparent clustering of LAEs. This is commonly

interpreted as another sign of incomplete reion-

ization (e.g., Matthee et al., 2015; Hutter et al.,

2015). Comparisons between observed intrin-

sic LAE clustering and model predictions have

therefore been used to infer the fraction of neu-

tral hydrogen at the EoR e.g., Ouchi et al., 2017.

Nevertheless, if the clustering dependence on

Ly𝛼 luminosity continues to 𝑧 ≈ 6, this compari-

son should be performed with caution. Because

the observed high redshift bins (𝑧 ≥ 6) mainly

contain high-luminosity LAEs, a strong cluster-

ing signal at 𝑧 ≈ 6 may be wrongly interpreted

as incomplete reionization when, in fact, it may

only reflect the natural relation between Ly𝛼

luminosity and clustering strength.

We speculate that our results also play a role

in the amount of escaping Ly𝛼 photons (Ly𝛼 𝑓esc).

Durkalec et al. (2018) observed a dependence be-

tween halo mass and absolute UV magnitude

(𝑀UV). The interpretation of their relation goes

as follows: 𝑀UV traces star formation rate (SFR;

e.g., Walter et al. 2012), which, in turn, tracks

stellar mass (𝑀∗; e.g., Salmon et al. 2015), which

correlates with halomass (e.g., Moster et al. 2010).

Because we observe a similar relation of𝑀ℎ with

𝐿Ly𝛼 , 𝐿Ly𝛼 is presumably also a tracer of star for-

mation. If this is correct, the object-to-object

variations in Ly𝛼 escape fraction cannot be so

large that they obscure the trend of SFR – 𝑀∗ –
𝑀ℎ . Given the typical Ly𝛼 luminosities of our

sample, this is in agreement with the model sug-

gestions of Schaerer et al. (2011a) and Garel et al.

(2015), where the Ly𝛼 𝑓esc is of the order of unity

for sources with SFR ≈ 1 𝑀⊙ yr
−1
. The Ly𝛼

luminosity would then be a good tracer of the

SFR for less luminous LAEs.

3.6 Conclusions

We report a strong clustering dependence on Ly𝛼

luminosity from the clustering measurements of

three MUSE Ly𝛼 emitting galaxy (LAE) samples

at 3 < 𝑧 < 6. Following the pencil-beam design

of MUSE surveys from spatially large and shal-

low observation to spatially small and deep ob-

servation, we use 1030 LAEs from the full MUSE-

Wide survey (1 h exposure time), 679 LAEs from

MUSE-Deep (10 h), and 367 LAEs from MXDF

(140 h). We thus connect the clustering prop-

erties of 𝐿★ LAEs with those of much fainter

ones in the MXDF. We applied an optimized ver-

sion of the K-estimator as the clustering statistic,

coupled to state-of-the-art halo occupation dis-

tribution (HOD) modelling.

From our full HOD analysis, we derive

constraints on the HOD of high-luminosity

(log(𝐿Ly𝛼/[erg s
−1]) ≈ 42.34), intermedi-

ate (log(𝐿Ly𝛼/[erg s
−1]) ≈ 41.64) and low-

luminosity (log(𝐿Ly𝛼/[erg s
−1]) ≈ 41.22) LAEs.

We modelled the LAE HOD with three parame-

ters: the threshold dark matter halo (DMH) mass

for hosting a central LAE (𝑀min), for hosting (on

average) one satellite LAE (𝑀1), and the power-

law slope of the number of satellites per halo

(𝛼) as a function of halo mass. For the high-

luminosity sample we derived a typical DMH

mass of log(𝑀ℎ/[ℎ−1𝑀⊙]) = 11.09+0.10−0.09, corre-
sponding to a bias factor of 𝑏 = 2.65+0.13−0.11. These
findings, although more accurate, are in agree-

ment with the results based on the two-halo

term only HOD modelling performed in Herrero

Alonso et al. (2021) for a subset of our MUSE-

Wide sample. For the lower luminosity samples

we found lower DMH masses. While for the

log(𝐿Ly𝛼/[erg s
−1]) ≈ 41.64 dataset we inferred

log(𝑀ℎ/[ℎ−1𝑀⊙]) = 10.89+0.09−0.09 (𝑏 = 2.42+0.10−0.09),
for the low-luminosity LAE sample we computed

log(𝑀ℎ/[ℎ−1𝑀⊙]) = 10.77+0.13−0.15 (𝑏 = 2.43+0.15−0.15).

We also derived threshold DMH masses

for centrals and satellites for each sample.

We found that the minimum DMH mass to

host a central LAE is log(𝑀min/[ℎ−1𝑀⊙]) =

10.3+0.2−0.3, 10.5
+0.2
−0.1, 10.7

+0.2
−0.3 for low-, intermediate-

, and high-luminosity LAEs, respectively. The

threshold halo mass for satellites and the

power-law slope of the number of satellite

LAEs also increase with Ly𝛼 luminosity, from

log(𝑀1/[ℎ−1𝑀⊙]) = 11.7+0.3−0.2 and 𝛼 = 1.5 ± 0.5

to log(𝑀1/[ℎ−1𝑀⊙]) = 12.4+0.3−0.2 and 𝛼 = 3.0+0.4−0.5
and to log(𝑀1/[ℎ−1𝑀⊙]) = 12.4+0.4−0.6 and 𝛼 =
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2.8+0.9−0.7. These HOD constraints imply a decreas-

ing number of detected satellite LAEs with lu-

minosity. Indeed we infer satellite fractions of

𝑓sat ≲ 10, 20% (at 3𝜎 confidence level) for high-

and low-luminosity LAEs, respectively. This sug-

gests that the most common scenario for current

MUSE surveys is that in which DMHs mainly

host a single detected LAE.

Motivated by these results, we aimed to

further explore the clustering dependence on

Ly𝛼 luminosity. Exploiting the large dynamic

range of 𝐿Ly𝛼 from MXDF, we split the main

LAE sample at its median 𝐿Ly𝛼 . We found a

3.9𝜎 difference between the clustering of the

low-luminosity (log(𝐿Ly𝛼/[erg s
−1]) ≈ 40.97,

𝑏low = 1.79+0.08−0.06) and the high-luminosity

subset (log(𝐿Ly𝛼/[erg s
−1]) ≈ 41.54, 𝑏high =

3.10+0.24−0.22). We then selected the highest lu-

minosity LAE subset from the MUSE-Wide

survey (log(𝐿Ly𝛼/[erg s
−1]) ≈ 42.53) and

the lowest luminosity LAE subsample from

MXDF (log(𝐿Ly𝛼/[erg s
−1]) ≈ 40.97), result-

ing in a clear clustering dependence where

the high-luminosity LAEs from MUSE-Wide

cluster more strongly (𝑏high = 3.13+0.08−0.15 or

log(𝑀h/[ℎ−1M⊙]) = 11.43+0.04−0.10) than the low-

luminosity ones from MXDF (𝑏low = 1.79+0.08−0.06
or log(𝑀h/[ℎ−1M⊙]) = 10.00+0.12−0.09) at 8𝜎 signif-

icance, excluding cosmic variance effects. The

ongoing Hobby-Eberly Telescope Dark Energy

Experiment (HETDEX; Gebhardt et al. 2021) sur-

vey will complement these results at the high-

luminosity end and at somewhat lower redshifts

(1.9 < 𝑧 < 3.5).

The implications of this framework are how-

ever not only relevant for LAE clustering studies,

but also for reported measurements of evolving

Ly𝛼 luminosity functions, detections of incom-

plete reionization at 𝑧 ≈ 6, and the relation be-

tween Ly𝛼 escape fraction and halo mass. Our

results are also crucial for the much debated rel-

evance of unresolved satellite LAEs (fainter than

those in MXDF) for the measured Ly𝛼 surface

brightness profiles.

Figure 3.A.1: Clustering of the LAEs in the full

MUSE-Wide sample (blue, see Fig. 3.2.1) and without

the CANDELS/COSMOS fields (red, see right panel of

Fig. 3.2.1). The black baseline represents the expected

clustering of an unclustered sample. The error bars

are Poissonian. The red measurements have been

shifted along the x-axis for visual purposes.

Appendix

3.A Effect of different fields
on the clustering
measurements

In this work, we have analyzed the clustering of

LAEs in the full MUSE-Wide sample, including

the CANDELS/COSMOS fields and the HUDF

parallel fields. Here, we explore the possible ef-

fects on the MUSE-Wide clustering results when

including or excluding various sets of fields. In

appendix A of Herrero Alonso et al. (2021), we

showed that theHUDF parallel fields did not alter

the clustering results, their exclusion or inclu-

sion mainly affected the clustering uncertainties.

We therefore explore the effect of including the

CANDELS/COSMOS region by comparing the

clustering of the full MUSE-Wide survey with

that present in a subsample without the CAN-

DELS/COSMOS fields. The number of LAEs in

the CANDELS/COSMOS region is 250.

It is clear from Fig. 3.A.1 that the clustering in

both samples is in good agreement. The large-

scales bias factors derived from the two curves

are indistinguishable (within 1𝜎). The uncer-

tainties corresponding to the smaller sample are

(on average) 20% larger than in the full MUSE-

Wide sample. We conclude that the inclusion of

these fields has no notable effect on our cluster-

ing results but helps in reducing cosmic sample

variance uncertainties.
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Figure 3.B.1: Ten Jackknife zones in the spatial coverage of the full MUSE-Wide survey (83.52 arcmin
2
). Each

Jackknife zone has a spatial extent of ≈ 4 ℎ−1Mpc in both RA and Dec directions.

Figure 3.B.2: Covariance matrix computed from ten independent K-estimator measurements from the jack-

knife resampling technique. Left: Normalized covariance matrix for bins 𝑖 and 𝑗 . The red region defines the

main diagonal and the two adjacent diagonals used for our reduced covariance matrix. Right: Normalized

covariance matrix elements as a function of bin 𝑖 for each bin 𝑗 (colored).
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3.B Covariance matrix

A common approach to quantify the correlation

of the clustering data points is to resample the

set of galaxies with the jackknife technique, fol-

lowed by the calculation of the covariance ma-

trix. To apply the jackknife method, we find a

compromise between the number and the size

of the jackknife zones. Thus, we split the sky

area into ten independent regions (see Fig. 3.B.1)

with a spatial extent of ≈ 4 ℎ−1Mpc in both RA

and Dec directions. We then construct ten dif-

ferent subsamples, each of them excluding one

jackknife zone, and compute the K-estimator in

each subset. These measurements are then used

to build up the covariance matrix using Eq. 3.1

(see Sect. 3.3.2.1).

Considering that the probability of one galaxy

pair to contribute to various adjacent bins is

higher than that to contribute to several distant

bins, one would naively expect a higher corre-

lation in the former case. This is indeed what

the (normalized) covariance matrix reflects in

the left panel of Fig. 3.B.2. In fact, the noise in

the matrix elements corresponding to notably

separate bins is substantial. In the right panel

of Fig. 3.B.2, we plot the normalized matrix el-

ements as a function of bin 𝑖 for each bin 𝑗 to

better illustrate the high level of noise in the ma-

trix, especially for bins 𝑖 > 6, where most curves

become negative. This is likely due to the limited

spatial size of the survey, which does not allow

neither for a higher number of jackknife zones

nor for spatially larger zones.

As a result of the considerable noise in the

matrix on account of barely correlated bins sig-

nificantly apart from each other, the minimiza-

tion of the 𝜒2 values (Eq. 3.2) including the full

covariance fails (i.e., various 𝜒2 values become

negative). We therefore limit the use of the co-

variance matrix to its main diagonal and two

adjacent diagonals (see red section in the left

panel of Fig. 3.B.2; our so-called reduced covari-

ance matrix). This means we set the negative

part of the curves in the right panel of Fig. 3.B.2

to zero (i.e., no correlation between those bins),

in an attempt to smooth out the noise.

While incorporating more diagonals results

mathematically problematic for the 𝜒2 mini-

mization, we have verified that the number

of adjacent diagonals (one or two) slightly

Figure 3.C.1: Error estimation method comparison

for the sample of LAEs in the MUSE-Wide survey. Un-

certainties from the covariance matrix and the jack-

knife resampling technique described in Sect. 3.3.2.1

are colored in blue, those from the bootstrapping ap-

proach used in Herrero Alonso et al. (2021) in red,

and Poisson uncertainties in green.

modifies the 𝜒2 values but the probability con-

tours represented in Fig. 3.4.2 remain unaltered.

Thus, so do the best-fit HOD parameters.

Despite current limitations, jackknife is still

the most robust method to compute the K-

estimator uncertainties. While galaxy bootstrap-

ping or Poisson error bars do not account for bin

to bin correlations, our reduced covariance ma-

trix only neglects the correlation between bins

remarkably separated (expected to be minimal),

but accounts for the correlation between nearby

bins.

3.C Error estimation
comparison

In order to quantify the correlation between the

K-estimator bins, the covariance matrix must be

computed. By splitting the sky area into indepen-

dent regions, following the jackknife resampling

technique, we create as many subsamples from

the MUSE-Wide sample as jackknife zones (see

Sect. 3.3.2.1). The K-estimator is then computed

in each subset and the measurements are used

to quantify the covariance matrix, whose diago-

nal provides the variance of each clustering data

point. The square root of the diagonal represents

the 1𝜎 uncertainties and are represented in blue

in Fig. 3.C.1 (same along the main paper).

The jackknife resampling method requires a

division of the sky area into several indepen-
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Figure 3.D.1: Effect of HOD parameters on the shape of the K-estimator. Left: Dependence on log(𝑀min) for
fixed log(𝑀1/𝑀min) = 1.2 and 𝛼 = 2.4. Middle: Dependence on log(𝑀1/𝑀min) for fixed log(𝑀min/[ℎ−1𝑀⊙]) =
10.9 and 𝛼 = 2.4. Right: Dependence on 𝛼 for fixed log(𝑀min/[ℎ−1𝑀⊙]) = 10.9 and log(𝑀1/𝑀min) = 1.2.

dent regions, each of which should ideally be

large enough to cover the full range of scales

under consideration. Out of the three samples

examined in this study, this can only be partially

achieved in the MUSE-Wide dataset. MUSE-

Deep and MXDF do not allow for a spatial split

into independent zones. We are thus left with

two options for the deeper samples: the boot-

strapping technique applied in Herrero Alonso

et al. (2021), shown in red in Fig. 3.C.1, and Pois-

son uncertainties, shown in green.

We find that Poisson (bootstrapping) errors

are, on average, 7% (46%) larger than those com-

puted with the jackknife technique. These find-

ings corroborate the results from Norberg et al.

(2009), who found that the bootstrapping ap-

proach overestimates the uncertainties.

Similarly as for the MUSE-Wide survey, we

find that bootstrapping uncertainties are ≈ 40%

(on average) larger than Poisson in both MUSE-

Deep and MXDF. We thus decide to use Poisson

errors for the deeper samples in an attempt to

least overvalue the uncertainties.

We verified that the error estimation method

does not significantly affect our clustering re-

sults. The best-fit parameters from MUSE-Deep

and MXDF using bootstrapping error bars and

the 𝜒2 minimization described in Sect. 3.1.3 of

Herrero Alonso et al. (2021) are consistent with

those delivered from Poisson statistics. Although

in agreement, bootstrapping delivers ≈ 45%

larger uncertainties than Poisson for the best-

fit HOD parameters.

We last perform the same experiment in

MUSE-Deep and MXDF but using scaled Pois-

son error bars. We decreased the Poisson in 7%

(excess found in MUSE-Wide) and find that the

best-fit parameters are ≈ 10% less uncertain than

if Poisson errors are directly applied.

3.D Dependence of HOD
parameters on the shape
of the K-estimator

Here we visualize and qualitatively describe the

effect of the HOD parameters on the K-estimator.

Figure 3.D.1 shows the K-estimator for numerous

HOD models. Each panel represents the result

of varying one HOD parameter with the other

two parameters fixed. Before detailing the major

effects, it should be pointed out that the exact

change in the shape of the K-estimator does not

only depend on the varied parameter but also

on the specific choice of the other two. Hence,

these panels should merely be seen as illustrative

examples.

The left panel of Fig. 3.D.1 shows the depen-

dence of the K-estimator on𝑀min. Higher values

of log𝑀min (i.e., more massive halos) raise the

expected K-estimator at all 𝑅𝑖 𝑗 scales (one- and

two- halo terms). At large scales, this occurs

because more massive halos present larger bias

factors, whereas at small scales, this is due to

the decline in the contribution from less massive

DMHs.

The middle panel of Fig. 3.D.1 shows the de-

pendence of the K-estimator on𝑀1/𝑀min. Larger

log(𝑀1/𝑀min) values (i.e., more massive halos)

reduce the one-halo term clustering amplitude

because of the decrease in the contribution from

less massive DMHs. The clustering in the two-

halo term does not depend on𝑀1.

The right panel of Fig. 3.D.1 shows the depen-

dence of the K-estimator on 𝛼 . Higher values

of 𝛼 increase the fraction of galaxies in mas-

sive DMHs with respect to smaller mass DMHs.

Given that more massive halos are more strongly

biased, the amplitude of the two-halo term in-

creases. The change observed in the one-halo

term is explained because galaxies hosted by
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massive DMHs can contribute to the one-halo

term on its largest scales, while galaxies residing

in less massive halos can only contribute to the

one-halo term at smaller 𝑅𝑖 𝑗 scales. Since 𝛼 mod-

ifies the fraction of galaxies in massive DMHs

to less mass DMHs, the corresponding fraction

of the clustering contribution also varies. This

alters the slope of the one-halo term.
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ABSTRACT

Recent detections of extended Lyman-𝛼 halos around Ly𝛼 emitters (LAEs) have been reported

on a regular basis, but their origin is still under investigation. Simulation studies predict that the

outer regions of the extended halos contain a major contribution from the Ly𝛼 emission of faint,

individually undetected LAEs. To address this matter from an observational angle, we used halo

occupation distribution (HOD) modelling to reproduce the clustering of a spectroscopic sample of

1265 LAEs at 3 < 𝑧 < 5 from the MUSE-Wide survey. We integrated the Ly𝛼 luminosity function

to estimate the background surface brightness due to discrete faint LAEs. We then extended the

HOD statistics inwards towards small separations and computed the factor by which the measured

Ly𝛼 surface brightness is enhanced by undetected close physical neighbors. We considered various

clustering scenarios for the undetected sources and compared the corresponding radial profiles. This

enhancement factor from LAE clustering depends strongly on the spectral bandwidth 𝛥𝑣 over which

the Ly𝛼 emission is integrated and this value can amount to ≈ 20 − 40 for small values of 𝛥𝑣 (around

200−400 km/s) as achieved by recent studies utilizing integral-field spectrographic data. The resulting

inferred Ly𝛼 surface brightness of faint LAEs ranges between (0.4 − 2) × 10
20

erg s
−1

cm
−2

arcsec
−2
,

with a very slow radial decline outwards. Our results suggest that the outer regions of observed

Ly𝛼 halos (𝑅 ≳ 50 pkpc) could indeed contain a strong component from external (but physically

associated) LAEs, and may even be dominated by them. It is only for a relatively shallow faint-end

slope of the Ly𝛼 luminosity function that this contribution from clustered LAEs would be rendered

insignificant. We also confirm that the observed emission from the inner regions (𝑅 ≤ 20 − 30 pkpc)

is too bright to be substantially affected by clustering. We compare our findings with predicted

profiles from simulations and find good overall agreement. We outline possible future measurements

to further constrain the impact of discrete undetected LAEs on observed extended Ly𝛼 halos.

4.1 Introduction

The Ly𝛼 line is a paramount cosmological feature

for probing early star-forming galaxies and com-

monly assists in the detection of high-redshift

galaxies, namely, Ly𝛼 emitters (LAEs). The ioniz-

ing photons produced by their young stars ionize

neutral hydrogen (HI) atoms in the neighbouring

interstellar medium (ISM) and, after recombina-

tion, they have a probability of about 65% of

being re-emitted as Ly𝛼 photons (Partridge &

Peebles, 1967). As a result of the complex radia-

tive transfer that the Ly𝛼 emission undergoes, a

fraction of photons escape the ISM by resonantly

∗
A version of this chapter is accepted for publication in Astronomy & Astrophysics.
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scatteringwith HI throughout the circumgalactic

and intergalactic media (CGM, IGM). In combina-

tion with several other factors, this effect causes

the emission to become diffuse, giving rise to

so-called extended Ly𝛼 halos.

Statistically relevant detections of extended

Ly𝛼 halos (LAHs) have employed narrowband

imaging observations (Hayashino et al., 2004;

Nilsson et al., 2009; Finkelstein et al., 2011),

which restrained the detectable surface bright-

ness (SB) level to ∼ 10
−18

erg s
−1

cm
−2

arcsec
−2
.

A significant step forward in terms of limiting

SB is demonstrated in the studies of Steidel et al.

(2011), Matsuda et al. (2012), Momose et al. (2014),

and Xue et al. (2017), who adopted the image-

stacking approach and extended the SB thresh-

old by an order of magnitude, SB ∼ 10
−19

erg s
−1

cm
−2

arcsec
−2
. Recently, another major sensitiv-

ity improvement was made possible by the Multi-

Unit Spectroscopic Explorer (MUSE) instrument

at the ESO-VLT (Bacon et al., 2010), which

evened out the limiting SB of individual object-

by-object measurements to the limits obtained

by the stacking of narrowband data. Wisotzki

et al. (2016), Leclercq et al. (2017), Claeyssens

et al. (2022), and Kusakabe et al. (2022) reported

the detection of ubiquitous extended LAHs at

3 < 𝑧 < 6 and found that, on average, the LAHs

detected by MUSE are a factor 4 − 20 more ex-

tended than their corresponding UV galaxy sizes,

presenting median scale lengths of few physical

kpc (pkpc). Combining the added depth of MUSE

and the signal gain through stacking, Wisotzki

et al. (2018) ascertained extended LAHs at much

larger scales (≈ 60 pkpc at 𝑧 = 3) than previ-

ous studies at similar redshifts (≈ 30 pkpc). Re-

cent works with Hobby-Eberly Telescope Dark

Energy Experiment (HETDEX; Gebhardt et al.

2021) LAEs at 1.9 < 𝑧 < 3.5 and Subaru LAEs

at 𝑧 = 2.2 − 2.3 again roughly doubled the radii

over which LAHs can be detected (160 pkpc and

200 pkpc, respectively; Niemeyer et al., 2022;

Zhang et al., 2023).

Understanding the characteristics and, in par-

ticular, the nature of these extended LAHs pro-

vides information as to the spatial distribution

and kinematic properties of the CGM (Zheng et

al., 2011a) as well as, more fundamentally, to the

processes of formation and evolution of galaxies

(Bahcall & Spitzer, 1969). The main mechanisms

that are believed to contribute to the existence

of LAHs are (i) resonant scattering of Ly𝛼 pho-

tons produced in ionized HII regions of the ISM,

(ii) "in situ" recombination, (iii) fluorescence by

photons from the metagalactic UV background,

and (iv) collisional excitation from cooling gas

accreted onto galaxies, also denoted as "gravita-

tional cooling." Processes (i) and (ii) are conse-

quences of local star formation through Lyman

continuum radiation emitted from young and

massive stars in star-forming galaxies: processes

(iii) and (iv) are driven by external influences.

Comparisons between observational con-

straints and simulation studies have not yet de-

livered unique conclusions about the dominant

origin of LAHs. Furthermore, while some sim-

ulation studies (e.g., Dijkstra & Kramer, 2012;

Gronke & Bird, 2017) were able to fully explain

the observed extended Ly𝛼 emission with the

processes mentioned above, others (Shimizu &

Umemura, 2010; Lake et al., 2015; Mas-Ribas &

Dijkstra, 2016; Mas-Ribas et al., 2017; Mitchell

et al., 2021; Byrohl et al., 2021) argued that in

addition to these factors there is a significant

contribution from Ly𝛼 emission originating in

faint satellite galaxies. This emission would be

significant only by its collective effects, as most

of these "satellite LAEs" are too faint to be de-

tected individually at the sensitivity of current

observations. Lake et al. (2015) assessed that

in their simulations the cooling of gas accreted

onto galaxies as well as nebular radiation from

satellites are the major contributors in the outer

halo (𝑅 > 2 pkpc). Mitchell et al. (2021) found

that scattering is the dominant mechanism in

the inner regions of the SB profile (𝑅 < 7 pkpc,

SB of few SB ∼ 10
−19

erg s
−1

cm
−2
), scattering

and satellites contribute equally at intermedi-

ate scales (𝑅 ≈ 10 pkpc, SB ∼ 10
−19

erg s
−1

cm
−2
), and satellites dominate the large scales

(𝑅 > 20 pkpc, SB ∼ 10
−20

erg s
−1

cm
−2

arcsec
−2
).

Similar conclusions were drawn in Byrohl et al.

(2021), whereby the authors identified scatter-

ing as the major source of SB and held pho-

tons originating in dark matter halos (DMHs)

in the vicinity of the central galaxy responsible

for the flattening of the observed SB profiles at

𝑅 > 100 pkpc.

The existence of faint sources around more

massive and brighter galaxies is certainly pre-

dicted by the hierarchical cold dark matter

(CDM) model of structure formation. Because

this is closely related to non-linear clustering,

Mas-Ribas et al. (2017) considered several cluster-

ing scenarios, coupled to the analytic formalism

described in Mas-Ribas & Dijkstra (2016), to in-
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vestigate the plausibility of faint sources generat-

ing LAHs. In line with the previously mentioned

simulations, they found that faint LAEs are the

major contributors to the Ly𝛼 SB profiles already

at 𝑅 > 4 pkpc. In contrast, Kakiichi & Dijkstra

(2018) applied a model based on galaxy-Ly𝛼 for-

est clustering data to build Ly𝛼 SB profiles that

could match a multitude of observed Ly𝛼 SB pro-

files even without considering the contribution

from faint LAEs.

Despite the theoretical efforts to distinguish

between the numerous contributions to the ex-

tended LAHs, observational tests and evidence

for the "faint LAE" scenario are scant, mainly

because of the extremely low SB of the Ly𝛼 emis-

sion at large distances from galaxies. Bacon

et al. (2021) detected very extended Ly𝛼 emis-

sion around LAE overdensities in the MUSE ex-

tremely deep field (MXDF), reaching far beyond

individual LAHs, but from comparing their data

with the semi-analytic model GALICS (Garel et

al., 2015) they concluded that much (and possi-

bly all) of the apparently diffuse emission can be

accounted for by the collective contribution of

discrete faint LAEs surrounding more luminous

(detected) ones.

A key step that is still missing is an assessment

of the magnitude of this contribution based on

observations, rather than on theoretical predic-

tions. In this paper, we address this issue by em-

ploying LAE clustering statistics in combination

with halo occupation distribution (HOD) mod-

els to obtain observational constraints on the

contribution of the faint LAEs to the extended

LAHs. We built on our previous study (Herrero

Alonso et al. 2023a, hereafter HA23), where we

used the HOD framework to interpret the clus-

tering of three MUSE LAE samples at 3 < 𝑧 < 6.

Each dataset had a different exposure time and

thus covered a distinct range of Ly𝛼 luminosities

within 40.15 < log(𝐿Ly𝛼/[erg s
−1]) < 43.35. We

found a strong (8𝜎 significance) clustering de-

pendence on 𝐿Ly𝛼 , where more luminous LAEs

cluster more strongly and reside in more massive

DMHs than faint LAEs.

The paper is structured as follows. In Sect. 5.2,

we briefly describe the data used for this work.

In Sect. 4.3, we summarize the clustering prop-

erties of our galaxy sample. We extrapolate the

clustering features to estimate the contribution

of undetected LAEs to the extended Ly𝛼 halos in

Sect. 4.4, where we also compare our estimations

to recent observational and simulated results.

We give our conclusions in Sect. 5.6.

Throughout the paper, comoving and physi-

cal distances are given in units of ℎ−1Mpc and

pkpc, respectively, where ℎ = 𝐻0/100 = 0.70.

We use a 𝛬CDM cosmology and adopt 𝛺𝑀 =

0.3, 𝛺𝛬 = 0.7, and 𝜎8 = 0.8 (Hinshaw et al., 2013).

All uncertainties represent 1𝜎 (68.3%) confidence

intervals.

4.2 Data
This paper is based on the results from two dif-

ferent spectroscopic MUSE samples. We used a

sample of LAEs from the MUSE-Wide survey for

the clustering constraints and we employed the

data from two MUSE deep fields for the compar-

ison to observed Ly𝛼 halos (see Sect. 4.4.4).

4.2.1 The MUSE-Wide survey

The main input to the HOD model of Sect. 4.3

is based on the clustering constraints of a sub-

set of the LAE MUSE-Wide survey (Herenz et

al., 2017; Urrutia et al., 2019), which is similar

to the LAE dataset used in Herrero Alonso et

al. (2023a). The sample is constructed from 100

fields, each spanning 1 arcmin
2
, observedwith an

exposure time of one hour, and covering regions

of CANDELS/GOODS-S, CANDELS/COSMOS

and the Hubble Ultra Deep Field (HUDF) paral-

lel fields. The survey also incorporates shallow

(1.6 hours) subsets of MUSE-Deep data (Bacon

et al., 2017; Bacon et al., 2022) within the HUDF

in the CANDELS/GOODS-S region. We refer to

Urrutia et al. (2019) for further details on survey

build-up, reduction, and flux calibration of the

MUSE data cubes.

In contrast to the study in HA23, here we fo-

cus on LAEs with redshifts within 3 < 𝑧 < 5 (and

use the same redshift interval for the comparison

to Ly𝛼 SB profile measurements in Sect. 4.4.4).

Because Ly𝛼 peak redshifts are typically offset

by up to several hundreds of km s
−1

from sys-

temic ones (e.g., Hashimoto et al. 2015; Muzahid

et al. 2020; Schmidt et al. 2021), we corrected the

Ly𝛼 redshifts following the relations given in

Verhamme et al. (2018), which assure an accu-

racy of ≤ 100 km s
−1

(Schmidt et al., 2021). We

refer to Herrero Alonso et al. (2021), hereafter

HA21, and references therein for further details

on the LAE sample construction.
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Our sample comprises a total of 1265 LAEs

with Ly𝛼 luminosities in the range 40.84 <

log(LLy𝛼/[erg s−1]) < 43.30 and a median value

of ⟨log(𝐿Ly𝛼/[erg s
−1])⟩ = 42.27. While the Ly𝛼

luminosity and redshift distributions of the sam-

ple are presented in Fig. 4.2.1, Figs. 1, and B.1

of HA23 show the spatial coverage of the LAE

dataset. Taking into account the field-to-field

overlaps, the actual surveyed area corresponds

to 90.2 arcmin
2
and extends ≈ 43 ℎ−1Mpc at the

median redshift of the sample ⟨𝑧⟩ = 3.8. This

implies a LAE density of ≃ 2 · 10−3 ℎ3Mpc
−3
.

4.2.2 MUSE Deep fields

In Sect. 4.4.4, we compare our results to Ly𝛼

radial SB profiles, using the same data and mea-

sured in a similar way as byWisotzki et al. (2018).

The parent sample is a combination of LAEs de-

tected by MUSE in the Hubble Deep Field South

(Bacon et al., 2015) and in the Hubble Ultra-Deep

Field (Bacon et al., 2017), as well as the definition

of the final sample proceeds as in Wisotzki et al.

(2018), with the exception that here we are only

considering a single set of objects with redshifts

of 3 < 𝑧 < 5.

To further facilitate a comparison to the clus-

tering predictions, we alsomodified the construc-

tion of the resulting Ly𝛼 SB profile as follows:

instead of the individually optimized spectral ex-

traction windows for each LAE used byWisotzki

et al. (2018), we adopted a fixed velocity band-

width of 600 km s
−1

centered on the peak of the

Ly𝛼 emission of each galaxy. This bandwidth not

only provides a good compromise between noise

suppression and flux loss avoidance in the stack-

ing approach, it also facilitates the redshift-space

distortion modelling (described in Sect. 4.3). We

denote the individually extracted Ly𝛼 images

as "pseudo-narrowband" in order to distinguish

then from genuine filter-based narrowband (NB)

imaging data, which encompass much wider

bandwidths of typically ≈ 12000 − 25000 km s
−1
.

Unlike Wisotzki et al. (2018), we also skipped

the artificial truncation of the used pseudo-NB

data at a radius of 6” (≈ 40 kpc), and we now

used the mean instead of the median to stack the

images, to make the resulting profiles as similar

as possible to the clustering calculations in their

construction logic.

Figure 4.2.1: Distribution in Ly𝛼 luminosity-redshift

space of the 3 < 𝑧 < 5 LAEs selected from the spec-

troscopic MUSE-Wide survey. The dashed line corre-

sponds to the median log𝐿Ly𝛼 of the sample. The nor-

malized redshift and log𝐿Ly𝛼 distributions are shown

in the top and right panels, respectively.

4.3 Clustering framework

In HA23 we measured the clustering of three

LAE samples, including a subset of the MUSE-

Wide survey, with the K-estimator of Adelberger

et al. (2005). The K-estimator measures the ra-

dial clustering along line of sight distance, 𝑍 , by

counting galaxy pairs in redshift space at fixed

transverse separations, 𝑅. The K-estimator is

directly related to the average underlying corre-

lation function (see Eq. 2 in HA21). We refer to

Sect. 3.1 in HA21 for further details.

We then fitted the K-estimator measurements

with HOD modelling performed at the median

redshift of the galaxy pairs of the sample. The

HODmodel we used is a simplified version of the

five parameter model by Zheng et al. (2007). Be-

cause of sample size limitations, the halo mass at

which the satellite occupation becomes zero and

the scatter in the central halo occupation lower

mass cutoff were fixed to𝑀0 = 0 and 𝜎log𝑀 = 0,

respectively. The three free parameters are then

the minimum halo mass required to host a cen-

tral galaxy, 𝑀min, the halo mass threshold to

host (on average) one satellite galaxy, 𝑀1, and

the high-mass power-law slope of the satellite

galaxy mean occupation function, 𝛼 (see Sect. 3.3

in HA23). Although we included redshift space

distortions (RSDs) in the two-halo term using

linear theory (Kaiser infall, Kaiser, 1987; van den

Bosch et al., 2013), we ignored the effect of RSDs

in the one-halo term given its negligible effect

at the scales there considered.

The most relevant finding of HA23 for
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this work is the strong clustering de-

pendence on Ly𝛼 luminosity. Luminous

(log(𝐿Ly𝛼/[erg s
−1]) ≈ 42.53) LAEs cluster sig-

nificantly (8𝜎) more strongly and reside in ≈ 25

times more massive DMHs than less luminous

(log(𝐿Ly𝛼/[erg s
−1]) ≈ 40.97) LAEs. Hence, any

fainter dataset is assumed to be less strongly

clustered than those considered here or in HA23.

In Appendix 4.A, we demonstrate that the clus-

tering strengths of the MUSE-Wide LAE sub-

set considered in HA23 and our current sam-

ple are nearly identical. We convert the best-fit

HOD model of the K-estimator found in HA23

to the traditional real-space two-point correla-

tion function (2pcf) using Eq. 2 in HA21. In

the left panel of Fig. 4.3.1 we represent the real-

space 2pcf, 𝜉 (𝑟 ), where 𝑟 =
√
𝑅2 + 𝑍 2

, and

where the contours show the expected circular

symmetry. The model parameters correspond

to a minimum DMH mass for central LAEs of

log(𝑀min/[ℎ−1M⊙]) = 10.7, a threshold DMH

mass for satellite LAEs of log(𝑀1/[ℎ−1M⊙]) =

12.4 and a power-law slope of the number of

satellites 𝛼 = 2.8. The corresponding satellite

fraction, typical DMHmass, and virial radius are

𝑓sat ≈ 0.012, log(𝑀ℎ/[ℎ−1M⊙]) = 11.09+0.10−0.09, and
𝑅v𝑖𝑟 ≈ 36

+3
−2 kpc, respectively (HA23).

Given the small bandwidths of the extracted

pseudo-NB Ly𝛼 images from MUSE data (a few

hundred km s
−1

or few comoving Mpc), we then

included RSDs in the one-halo term (the so-called

Fingers of God effect, FoG), following Tinker

(2007). We convolved the line of sight compo-

nent of the real-space 2pcf with the probabil-

ity distribution function of galaxy pairwise ve-

locities, 𝑃 (𝑣). For each DMH mass, 𝑀ℎ , we as-

sume a Gaussian distribution 𝑃 (𝑣, 𝑀ℎ) with ve-

locity dispersion of central-satellite pairs deter-

mined by the streaming model namely, 𝜎2
v
≈

𝐺𝑀h/(2𝑅v𝑖𝑟 ), where 𝑅v𝑖𝑟 is the virial radius. A
Gaussian 𝑃 (𝑣, 𝑀ℎ) is supported by hydrody-

namic simulations and observational analysis

of rich SDSS clusters (see Tinker 2007 and refer-

ences therein). We also included the extra contri-

bution corresponding to the uncertainty in the

Ly𝛼-to-systemic redshift relation, 𝜎v,𝑠𝑦𝑠 ∼ 100

km s
−1
. However, we ignore the contribution

from satellite-satellite pairs given the negligible

satellite fraction of the sample. The convolution

kernel is then a superposition of weighted Gaus-

sians with dispersion 𝜎2
v
≈ 𝐺𝑀h/(2𝑅v𝑖𝑟 ) + 𝜎2v,𝑠𝑦𝑠 .

We weight the Gaussians with the relative num-

ber of satellite galaxies, 𝑁𝑠 , hosted by each DMH,

which involves an integral over the halo mass

function 𝜙 (𝑀h) d𝑀h (see Eq. 5 in Tinker 2007)

as follows

𝑃 (𝑣) =
∫
𝑃 (𝑣, 𝑀ℎ) ⟨𝑁𝑠 (𝑀h)⟩ 𝜙 (𝑀h) d𝑀h∫

⟨𝑁𝑠 (𝑀h)⟩ 𝜙 (𝑀h) d𝑀h

.

(4.1)

In the right panel of Fig. 4.3.1, we present

the redshift-space 2pcf i.e., 𝜉 (𝑠) =
√︁
𝑅2 + 𝑍 2

𝑠 ,

where𝑍𝑠 is the line of sight comoving distance in

redshift-space. The deviations from circular sym-

metry are clear. At large scales (𝑠 > 5 ℎ−1Mpc),

the coherent gravitational infall of galaxies onto

forming structures (Kaiser infall, Kaiser, 1987;

van den Bosch et al., 2013) flattens the 𝜉 (𝑠) con-
tours. At small scales (𝑍𝑠 < 5 ℎ−1Mpc), the

stretching of the 𝜉 (𝑠) contours for line of sight
separations is caused by the peculiar velocities

of galaxies when galaxy redshifts are used as

proxies for distances. Because the distribution

of LAEs at 3 < 𝑧 < 5 is affected by the FoG ef-

fect only at 𝑍𝑠 ≲ 5 ℎ−1Mpc (peculiar motions

of < 500 km s
−1
) and is negligible at larger sep-

arations, we only include the FoG effect when

considering velocity widths < 500 km s
−1

(see

Sect. 4.4.2).

4.4 Contribution of faint
LAEs to extended Ly𝜶
halos

Taking advantage of the clustering constraints,

we now seek to assess the contribution of unde-

tected LAEs to the extended Ly𝛼 halos. Those ob-

jects are much fainter than those considered here

or in HA23, and given the overall tendency of

galaxies to cluster, they are expected to be found

around our more luminous LAEs. Hence, some

fraction of the measured extended Ly𝛼 flux must

come from those undetected galaxies. While pho-

tons included in the central part of the Ly𝛼 halo

are well distinguished from sky noise, the out-

skirts of the halo typically have such low SB

values that they are close to the noise level. It is

on these regions that we focus our attention.

The spatial distribution of these sources en-

hances the Ly𝛼 SB values measured within a

given (pseudo-)NB width at any projected dis-

tance, 𝑅, from the observed LAE. This boost is

quantified with the clustering enhancement fac-

tor, 𝜁 (𝑅). The contribution of these faint LAEs to
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Figure 4.3.1: Best-fit HOD modelled real- and redshift-space 2pcf. Left: Real-space 2pcf, 𝜉 (𝑟 ), for the sample of

MUSE-Wide LAEs at 3 < 𝑧 < 5. Note: the circular symmetry of the color-coded contours. Right: Redshift-space

2pcf, 𝜉 (𝑠). The dotted blue contours show the real-space 2pcf from the left panel. Note: the elongation of

the 2pcf contours along the line-of-sight direction, 𝑍𝑠 , at small scales (FoG effect) and the flattening at larger

transverse separations, 𝑅, (Kaiser infall). The contour levels are indicated in the legend.

the apparent Ly𝛼 SB profiles also depends on the

number of undetected LAEs, which is obtained

from the Ly𝛼 luminosity function (LF; 𝜙 (𝐿)d𝐿).
The projected Ly𝛼 SB profile of undetected LAEs

from a given pseudo-narrow band (NB) is:

S𝐵(𝑅) = 𝜁 (𝑅) ·
∫ 𝐿det (𝑧)

𝐿min

𝐿 × 𝜙 (𝐿) d𝐿. (4.2)

where 𝐿det(𝑧) is the detection limit for individ-

ual LAEs and 𝐿min is the adopted lower limit for

integrating the LF.

We go on to discuss the two ingredients of

Eq. 4.2 in turn, first the luminosity function and

then the enhancement factor.

4.4.1 Ly𝜶 luminosity function

We quantify the number density of LAEs as a

Schechter function (Schechter, 1976):

𝜙 (𝐿)d𝐿 =
𝜙★

𝐿★

(
𝐿

𝐿★

)𝛼L𝐹
𝑒−(𝐿/𝐿

★)
d𝐿, (4.3)

where 𝐿★ denotes the characteristic luminosity,

𝜙★ the normalization density, and 𝛼LF the faint-

end slope of the LF.

The matter of greatest importance with re-

spect to our current study is the value of 𝛼LF be-

cause it largely governs the luminosity density

ratio of undetected to detected LAEs. While ear-

lier determinations of the Ly𝛼 LF were not able

to constrain this parameter very well, this is now

improving because of deeper LAE samples, par-

ticularly those of different MUSE surveys (Drake

et al., 2017; Herenz et al., 2019; de la Vieuville

et al., 2019). The emerging trend is that the faint

end of the LF is quite steep, with 𝛼LF approaching

uncomfortably close to −2, which is the limiting

value for which the luminosity density would di-

verge when integrating the LF to 𝐿 = 0. Yet even

with slightly less extreme slopes, the adopted

lower integration limit has a significant impact

on the resulting numbers. This probably indi-

cates that the Schechter function approximation

breaks down at very low luminosities. Here, we

simply bypass this uncertainty by considering

different lower integration limits, as discussed

below.

We also assumed that 𝛼LF is constant within

our current redshift range. While Drake et al.

(2017) found a tentative indication for a steepen-

ing of the faint-end slope towards high 𝑧, most

other studies concluded that the Ly𝛼 LF shows

little or no significant evolution with redshift

for 3 ≲ 𝑧 ≲ 6 (Ouchi et al., 2008; Sobral et al.,

2018; Konno et al., 2018; Herenz et al., 2019; de

la Vieuville et al., 2019). As our baseline LF pre-

scription, we adopted the best-fit parameters of

Herenz et al. (2019), with log(𝜙★/[M𝑝𝑐−3]) =

−2.71, log(𝐿★/[e𝑟𝑔 s
−1]) = 42.6, and 𝛼LF =

−1.84.

The upper integration limit in Eq. 4.2 depends

on the details of the specific LAE survey under

consideration. Since below we compare our cal-

culations with the observed Ly𝛼 SB profile con-

structed from MUSE deep field data, we adopted

a flux- and redshift-dependent selection function

constructed to characterise this sample.
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Figure 4.4.1: Clustering enhancement factor as a

function of comoving transverse separation between

LAE pairs. Each color corresponds to a different

(FWHM) pseudo-NB width. For reference, we in-

clude typical NB widths of 12000 and 25000 km s
−1

(or 50 and 100 ) and a broad-band filter width of

250000 km s
−1

(or 1000 ). We assume that both re-

solved and undetected sources tend to cluster sim-

ilarly to the MUSE-Wide LAE sample and include

RSDs.

For the lower limit we use log(𝐿min/[erg s
−1]) =

38.5 as our baseline value, but we also consider

higher and lower values. As an extreme lower

limit, we adopted log(𝐿min/[erg s
−1]) ≈ 37,

which could be generated by the HII region

around a single O-type star with an absolute UV

magnitude of𝑀UV ≈ −6. More likely candidates

for the smallest units that have to be considered

are star clusters or dwarf galaxies with several

tens or hundreds of such stars. We bracket the

expected range by also adopting a "high" value

of log(𝐿Ly𝛼/[erg s
−1]) = 40.

Since our comparison Ly𝛼 profile is a mean

of LAEs in the redshift range 3 < 𝑧 < 5, we

have to average the luminosity density also over

this redshift range. In addition to a straight un-

weighted average, we also calculated a weighted

mean that takes the actual redshift distribution

of the sample into account. However, these two

numbers differ by only a few percent.

4.4.2 Clustering enhancement
factor

The enhancement factor represents the boost in

Ly𝛼 SB due to the spatial distribution of unde-

tected LAEs around our more luminous LAEs.

This is computed from the cross-correlation func-

tion (CCF) between detected and undetected

LAEs, 𝜉 (𝑅, 𝑍 )CCF. We derived 𝜁 (𝑅) from the 2pcf

definition (Peebles, 1980) in Appendix 4.B and

Figure 4.4.2: As in Fig. 4.4.1 but for a fixed (FWHM)

pseudo-NB width of 600 km s
−1

and for different as-

sumed clustering strengths for undetected sources,

depending on their Ly𝛼 luminosity. The red and blue

enhancement factors assume that undetected LAEs

cluster similarly to MUSE-Wide and MXDF LAEs,

respectively. The orange, gray, and green factors

assume an extrapolated HOD 2pcf for LAEs with

log(𝐿Ly𝛼/[e𝑟𝑔 𝑠−1]) ≈ 40.0, log(𝐿Ly𝛼/[e𝑟𝑔 𝑠−1]) ≈
38.5, and log(𝐿Ly𝛼/[e𝑟𝑔 𝑠−1]) ≈ 37.0, respectively. In

all cases, detected LAEs cluster similarly to what is

seen for the MUSE-Wide sample.

give the outcome here:

𝜁 (𝑅) =
∫ +𝑍N𝐵

−𝑍N𝐵
[𝜉 (𝑅, 𝑍 )CCF + 1] · d𝑍/𝛥𝑍, (4.4)

where 𝛥𝑍 = +𝑍N𝐵 − (−𝑍N𝐵). The radial comov-

ing separations in redshift space, 𝑍N𝐵 , that is,

by including the RSD effect, over which the in-

tegral is performed correspond to typical half-

widths at half maximum of the (pseudo-)NBs

applied in the measurement of Ly𝛼 SB profiles

(∼ 100 − 400 km s
−1
; see, for instance, Wisotzki

et al. 2018). In particular, because of the narrow-

ness of 𝑍N𝐵 , it is imperative to model the RSD

effects properly to estimate 𝜉 (𝑅, 𝑍 )CCF from the

HOD models.

Figure 4.4.1 shows the variation of the en-

hancement factor for various velocity widths

(full width at half maximum, FWHM) applied

in stacking experiments of (pseudo-)NB images

of LAEs. As discussed below, we initially as-

sume that detected and undetected LAEs share

the same clustering properties. We thus employ

the best-fit HODmodelled 2pcf of the right panel

of Fig. 4.3.1, which corresponds to our sample of

3 < 𝑧 < 5 MUSE-Wide LAEs.

While typical pseudo-NB widths of 200 −
800 km s

−1
(or 0.5 − 4 ) result in substantial en-

hancement factors of≈ 10−40 at𝑅 = 0.1 ℎ−1Mpc,

the effective SB values measured with common
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Figure 4.4.3: Contribution to the Ly𝛼 SB profiles from clustered and undetected LAEs with

log(𝐿min/[erg s
−1]) = 38.5. Differently colored lines correspond to a different assumption for the clus-

tering of undetected LAEs. Detected galaxies are assumed to cluster like those in the MUSE-Wide sample. The

data points correspond to the modified stacking experiment of individual LAEs of Wisotzki et al. (2018) (see

Sects. 5.2 and 4.4.4). The triangle denotes an upper limit. We employ a pseudo-NB width of 600 km s
−1

and the

Ly𝛼 LF of Herenz et al. (2019). The shaded gray region shows the typical virial radius of MUSE-Wide LAEs.

NB filters FWHM ≈ 50 − 100 Å or 12000 −
25000 km s

−1
are enhanced by only 𝜁 (𝑅) ≈ 1.5–2

and thus barely boosted by clustering. Unsurpris-

ingly, measurements through broad-band filters

with FWHM ≈ 1000 Å (250000 km s
−1
) remain

entirely unaffected (𝜁 (𝑅) ≈ 1). Thus, only for

the narrow bandwidths achieved by IFU-based

Ly𝛼 images is there a significant contribution of

clustered LAEs to any underlying truly diffuse

Ly𝛼 emission.

Unless explicitly specified, in the following we

fix the bandwidth to 𝑍NB = 3 ℎ−1Mpc (intermedi-

ate FWHM of 𝑍 = 6 ℎ−1Mpc or 600 km s
−1
: see

Sect. 5.2), corresponding to a window spanning

2.5 in the rest frame around 𝜆Ly𝛼 ≈ 1216 .

We also have to make assumptions about the

clustering behaviour of the undetected sources

to calculate the corresponding enhancement fac-

tor. Because the FoG effect is negligible at 𝑍 >

5ℎ−1Mpc (see Fig. 4.3.1), we did not include RSDs

in the HOD modelling. The modelling process is

described below.

As a first step, we assumed that detected and

undetected LAEs present the same clustering

properties. We show the corresponding boost

factor in red in Fig. 4.4.2 (same as the red curve

in Fig. 4.4.1 but without including RSDs; see the

negligible difference between the two curves).

However, this is likely to be an overestimate: as

demonstrated in HA23, the clustering strength

depends significantly on Ly𝛼 luminosity (8𝜎

in HA23) and, therefore, the even fainter un-

detected sources probably cluster less strongly

than the MUSE-Wide LAEs. Since the enhance-

ment factor depends directly on the clustering

strength, this option only produces an upper

limit on 𝜁 (𝑅).
Next, we modified the assumptions and al-

lowed the undetected sources to have a cluster-

ing strength similar to the fainter LAEs detected

at 3 < 𝑧 < 5 in the MXDF (HA23), which are

approximately one order of magnitude less lumi-

nous than the MUSE-Wide sample. As shown in

Appendix 4.A for MUSE-Wide, the HOD model

derived in HA23 for 3 < 𝑧 < 6 is also able

to describe the clustering of the current MXDF

dataset. The resulting boost factor is shown in

blue in Fig. 4.4.2. Although it is fainter than

MUSE-Wide LAEs, the MXDF LAEs are still con-

siderably more luminous than the hidden unde-

tected ones. Hence, this boost factor is also an

upper limit.

Finally, to obtain our best estimate of the ac-

tual enhancement factor of the undetected LAEs,

we utilize the MUSE-Wide and MXDF HOD clus-

tering probability contours of Sect. 4 of HA23
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Figure 4.4.4: Ly𝛼 SB variation for plausible lumi-

nosities of the undetected LAEs. We assume that

undetected sources cluster like the extrapolated HOD

model for log(𝐿min/[erg s
−1]) = 38.5. Resolved

sources cluster like those in the MUSE-Wide sam-

ple and the pseudo-NB width is 600 km s
−1
. We use

the Ly𝛼 LF from Herenz et al. (2019).

and extrapolate them to fainter luminosities. We

first assumed that undetected LAEs have lu-

minosities of log𝐿Ly𝛼 ≈ 10
40

erg s
−1

and ob-

tained a HODmodel with log(𝑀min/[ℎ−1M⊙]) =
9.9, log(𝑀1/𝑀min) = 1.1 and 𝛼 = 0.1. We

plot the resulting boost factor in orange in

Fig. 4.4.2. We followed the same procedure for

the other two lower integration limits (the re-

sulting HODmodels have log(𝑀min/[ℎ−1M⊙]) =
9.4, log(𝑀1/𝑀min) = 0.7, 𝛼 = −1.6, and

log(𝑀min/[ℎ−1M⊙]) = 8.8, log(𝑀1/𝑀min) = 0.3,

𝛼 = −3.3, respectively), plotting their enhance-

ment factors in gray and green. While the three

last enhancement factors are based on extrapola-

tions thereby unstestable at present, we presume

that these are probably closer to the truth than

the one resulting from the assumption that faint

LAEs cluster in the same way as much more lu-

minous objects.

To build the Ly𝛼 SB profiles, we have to ex-

trapolate the CCF models down to 𝑅 = 0 kpc,

since our clustering measurements do not reach

the smallest scales of the Ly𝛼 SB profiles (𝑅 <

30 pkpc). We also convert the comoving radii to

physical kpc.

4.4.3 Ly𝜶 surface brightness profile
from undetected LAEs

In Fig. 4.4.3, we build the expected Ly𝛼

SB profile from undetected LAEs with

log(𝐿min/[erg s
−1]) = 38.5 for a velocity width

of the pseudo-NB of 600 km s
−1
. The colors show

the clustering scenarios considered in Sect. 4.4.2.

Figure 4.4.5: SB ratio of the Ly𝛼 SB profile from un-

detected LAEs and the redone stacked profile from

Wisotzki et al. (2018) at 3 < 𝑧 < 5. The ratios at

𝑅 = 90 pkpc are lower limits. Undetected LAEs are

assumed to cluster like the extrapolated HOD model

for 𝐿min = 10
38.5

erg s
−1

and resolved sources like

those in the MUSE-Wide sample. The colors repre-

sent different minimum Ly𝛼 luminosities for the un-

detected sources. The symbols display various faint-

end slopes of the Ly𝛼 LF. The dashed line shows a

scenario in which the undetected LAEs alone fully

explain the apparent Ly𝛼 SB profile. A pseudo-NB

width of 600 km s
−1

is assumed.

For comparison, we overplot the mean Ly𝛼 SB

profile based on the stacking of LAEs in the

MUSE Deep Fields (Sec. 5.2). We also indicate

the typical virial radius of MUSE-Wide LAEs for

guidance.

Before comparing the observed profile with

the expected contribution from clustered faint

LAEs (see Sect. 4.4.4 below), we have to evalu-

ate the uncertainties and dependencies of our

calculations with respect to the assumed input

parameters.

We start by considering the different adopted

clustering scenarios. By design, the maximum

contribution is reached for the MUSE-Wide clus-

tering assumption (≈ 2.5 · 10−20 cgs), whereas
the lowest extrapolated HOD model delivers

SB levels lower by one order of magnitude (≈
4 · 10−21 cgs). Nevertheless, all versions of our es-
timates exceed the measurements at 𝑅 > 60 kpc.

The impact of using different lower integra-

tion limits for the LF is evaluated in Fig. 4.4.4.

Here we assume that the clustering of faint

LAEs follows the extrapolated HOD model for

log(𝐿min/[erg s
−1]) = 38.5 LAEs. The three

curves show the variation in the SB contribu-

tion for various 𝐿min choices. As expected, the

inclusion of fainter sources produces higher Ly𝛼

SB levels, although the difference is only a factor

of ∼2 for the adopted range of 𝐿min.
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In Fig. 4.4.5, we vary the value of the faint-end

LF slope 𝛼L𝐹 in steps of 𝛥𝛼 = ±0.1, recomputing

the SB profiles each time. The changes are sub-

stantial and demonstrate that the biggest single

uncertainty in this estimate is still the faint-end

shape of the Ly𝛼 LF. We also explored modify-

ing the other LF parameters 𝜙∗
and 𝐿∗, but these

have a negligible effect on the predicted Ly𝛼 SB

profiles.

4.4.4 Comparison with observed
surface brightness profile

It is clear from Fig. 4.4.3 that at 𝑅 ≲ 20 pkpc

the stacked Ly𝛼 SB is much higher than the

level expected from undetected LAEs, irrespec-

tive of the clustering scenario, whereas for radii

of ≳ 50 pkpc, the observed SB level is always

comparable to or lower than the contribution

estimated from clustering. We note that even

where the data points are formally below our

calculations, for instance, 𝑅 = 90 kpc, the combi-

nation of error bars in the data with systematic

uncertainties in the clustering and luminosity

function evaluation imply that these two are not

in contradiction.

When interpreting Fig. 4.4.3, we have to keep

in mind that the two upper (red and blue) curves

are upper limits in the sense that for these curves,

the clustering of the undetected LAEs is assumed

to be as strong as for (different sets of) detected

LAEs. Allowing for a weaker clustering of the

undetected objects shifts the radius of approxi-

mate equality outwards to at least ≈ 40 pkpc.

Figure 4.4.5 shows the inferred SB ratios (clus-

tering/observed) instead of measured or calcu-

lated SB levels. For the fiducial baseline faint-end

LF slope of 𝛼LF = −1.84, the Ly𝛼 emission from

undetected LAEs can account for all of the mea-

sured Ly𝛼 SB profile at 𝑅 ≳ 50 pkpc, but only a

fraction of 20% at 𝑅 ∼ 30 pkpc. At these smaller

distances to the central galaxy we presumably

see genuine diffuse emission, powered by the

above mentioned mechanisms.

These fractions (and the associated radii) are

contingent on the uncertainties in the Ly𝛼 LF,

especially its faint-end, which we here encap-

sulate by two parameters, the slope 𝛼LF, and

the low-luminosity cutof of 𝐿min. The effects

of modifying any of these two are displayed in

Fig. 4.4.5 by varying the symbols (𝛼LF) and colors

(𝐿min). It is evident that varying 𝐿min has a much

weaker effect than adopting a different LF slope.

An only slightly shallower LF would reduce the

expected SB contribution of faint LAEs drasti-

cally to ≈ 20 − 40% at 𝑅 ∼ 50 pkpc, whereas a

steeper slope would imply that extended Ly𝛼

emission could be dominated by discrete ob-

jects already from distances of 20 − 30 pkpc

outwards. It is worth mentioning that if unde-

tected LAEs cluster similarly to the extrapolated

HOD models, the minimum luminosity choices

of log(𝐿min/[erg s
−1]) = 37, 40 deliver indistin-

guishable SB ratios as those of Fig. 4.4.5. If unde-

tected LAEs cluster like the LAEs in MUSE-Wide

or MXDF, these ratios increase by (on average)

≈ 70% and ≈ 30%, respectively. In Appendix 4.C,

we show how the SB ratio varies for different

pseudo-NB widths.

These are very rough estimates. A sharp cut

of the Ly𝛼 LF below a certain Ly𝛼 luminosity is,

of course, implausible. A more realistic shape

would probably involve some smooth turnover

towards fainter luminosities. Such subtleties are

however beyond the scope of this paper. Clearly

more work is needed to study the faint parts

of the Ly𝛼 luminosity function and its possible

(non-)evolution with redshift. Nevertheless, our

findings strongly support a scenario in which

discrete but individually undetected LAEs are an

important component of observed Ly𝛼 halos at

𝑅 ≳ 30 − 50 pkpc.

4.4.5 Comparison with the
simulations

Our results are in good agreement with the fun-

damental prediction from a number of simula-

tion ormodelling studies positing that faint LAEs

in the vicinity of Ly𝛼 halos contribute to the

observed extended emission and beyond some

radii, they may even dominate (e.g., Lake et al.,

2015; Mas-Ribas & Dijkstra, 2016; Mas-Ribas et

al., 2017; Mitchell et al., 2021; Byrohl et al., 2021).

Nevertheless, the models and also the predicted

Ly𝛼 SB profiles due to "satellite" LAEs vary sig-

nificantly between different studies. It is also

worth mentioning that some of our undetected

LAEs are, in principle, at the DMH center.

In the following we compare our Ly𝛼 SB pro-

files calculated from clustering with simulation

studies that separate the satellite SB contribution

from other powering mechanisms. We give the

main differences below.

First, we consider the study of Lake et al.

(2015), hereafter L15, where an adaptive mesh
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Figure 4.4.6: Comparison of our Ly𝛼 SB profiles from undetected LAEs of log(𝐿min/[erg s
−1]) = 38.5 (solid

lines) and the satellite radial profiles predicted from simulations (dashed lines). The different colors of the solid

curves correspond to the different clustering assumptions for the undetected LAEs displayed in the legend.

Resolved LAEs are assumed to cluster in the same way as those in the MUSE-Wide sample. We adjusted

our pseudo-NB width of Eq. 4.4 to the projection depth of the simulations. Left panel: Comparison to L15,

whose applied projection depth is equivalent to a pseudo-NB width of 66 km s
−1

at 𝑧s𝑖𝑚𝑢𝑙 = 3.1. Middle panel:

Comparison to M21 with a pseudo-NB width of 94 km s
−1

at 𝑧s𝑖𝑚𝑢𝑙 = 3.5. Right panel: Comparison to B21

with a pseudo-NB width of 56 km s
−1

at 𝑧s𝑖𝑚𝑢𝑙 = 3.

refinement hydrodynamical simulation of galaxy

formation was used (Bryan & Norman, 2000;

Joung et al., 2009). These authors modelled most

potential sources of Ly𝛼 photons and powering

mechanisms namely, star formation from central

and satellite galaxies, photon scattering, fluo-

rescence from the UV background, supernova

feedback (outflows), and gravitational cooling

at 𝑧s𝑖𝑚𝑢𝑙 = 3.1. The Ly𝛼 emission was modelled

using the Monte Carlo radiative transfer code of

Zheng & Miralda-Escude (2002). The dark mat-

ter particle mass is 1.3x10
7
M⊙, the simulation

box size is 120 ℎ−1Mpc, and the spatial resolu-

tion ≈ 111 pc. Although the derived total Ly𝛼 SB

profiles match those measured in Matsuda et al.

(2012), Xue et al. (2017) found that the simulated

profile that included star formation from satel-

lites considerably overpredicted the measured

SB curves. To extract the SB profile, they em-

ployed a projection depth of 224 pkpc to include

all scattered photons around the LAEs.

Next, Mitchell et al. (2021), hereafter M21, em-

ployed an adaptivemesh refinement zoom-in cos-

mological radiation hydrodynamics simulation

of a single galaxy using the RAMSES-RT code

(Rosdahl et al., 2013; Rosdahl & Teyssier, 2015).

The stellar and DMH masses are𝑀★ = 10
9.5

M⊙

and 𝑀ℎ = 10
11.1

M⊙, respectively. These au-

thors modelled the same Ly𝛼 powering mecha-

nisms at 3 < 𝑧 < 4 as L15. They also performed

Monte Carlo radiative transfer to assess the Ly𝛼

emission, tracing the emergent radiation along

several different lines of sight and at different

cosmic times. The simulation box is a sphere of

150 kpc radius and achieved a spatial resolution

of 14 pc, with a characteristic dark matter parti-

cle mass of 10
4
M⊙. The simulated total Ly𝛼 SB

profile matched the one measured in Wisotzki

et al. (2018), for which they used a projection

depth of ±150 pkpc at 𝑧s𝑖𝑚𝑢𝑙 = 3.5 around the

LAE.

Finally, Byrohl et al. (2021), hereafter B21,

utilized the outcome of the TNG50 (Nelson et

al., 2019b; Pillepich et al., 2019) from the Illus-

trisTNG simulations (Pillepich et al., 2018b), cou-

pled to their Ly𝛼 full radiative transfer code

VOROILTIS. They modelled the same Ly𝛼 emis-

sion sources and powering mechanisms at 2 <

𝑧 < 5 as L15 and M21 and further included a

treatment for active galactic nuclei. TNG50 has

a box size of 50 Mpc, attains a spatial resolution

of ∼ 100 pc and a dark matter particle mass of

4.5x10
5
M⊙. These authors were able to repro-

duce the Ly𝛼 SB profiles measured in Leclercq
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et al. (2017), for which they included all scattered

photons from within ±100 pkpc along the line

of sight at 𝑧s𝑖𝑚𝑢𝑙 = 3 around the LAE.

Although most simulations deliver similar

conclusions and their total Ly𝛼 SB profiles match

a range of observations, the predicted contribu-

tion from satellites to the observed radial pro-

files at various scales varies significantly. We

compare in Fig. 4.4.6 our clustering-based Ly𝛼

SB profiles (with log(𝐿min/[erg s
−1]) = 38.5,

but considering all clustering scenarios) to sim-

ulated satellite radial profiles. For this purpose,

we recalculate our enhancement factors and SB

profiles in order to approximately match our

selected pseudo-NB width (i.e., 𝑍N𝐵 in Eq. 4.4)

to the projection depth applied in the simula-

tions. We note that while the pseudo-NB width

in observed spectral stacks cannot be narrower

than the common linewidth, the typical band-

widths formally converted to real space depths

are much greater than simulation boxes. To en-

able at least a rough comparison we used the

simulated depths, which correspond to velocity

intervals of≈ 60−100 km s
−1
. We also multiplied

the simulated profiles by (1 + 𝑧s𝑖𝑚𝑢𝑙 )4/(1 + ⟨𝑧⟩)4
to account for surface brightness dimming. The

simulated contribution is due to the Ly𝛼 emis-

sion from satellites in L15 (dashed magenta) and

M21 (dashed light blue), and to this plus a gen-

uinely diffuse emission powered by these "other

halos" in B21 (dashed light gray).

The profile from L15 is clearly flatter than

those fromM21 and B21 and is in this respect sim-

ilar to our clustering-based SB profiles. This also

agrees with the generally observed trend that the

radial profiles tend to flatten at larger radii (Mat-

suda et al., 2012; Momose et al., 2014; Wisotzki

et al., 2018; Niemeyer et al., 2022). On the other

hand, the SB level predicted by L15 is much

higher than ours, already by an order of mag-

nitude than our two upper limit scenarios. The

SB levels predicted by M21 and B21 are in bet-

ter agreement with our upper limit SB estimates,

although still higher than our extrapolated "low

clustering" scenarios. This may reflect the fact

that simulated galaxies in L15 present higher

stellar and DMH masses (𝑀★ = 2.9 · 1010 M⊙
and𝑀ℎ = 10

11.5
M⊙) than those of MUSE LAEs

or those considered in M21 and B21. At small

scales, the M21 and B21 simulated radial pro-

files are slightly steeper than the high clustering

scenario curves of MUSE-Wide and MXDF.

The differences between our clustering-based

and the simulated SB profiles could be attributed

to several factors. An overprediction of the simu-

lated number of satellites would naturally lead to

an overestimated contribution of discrete LAEs

to the Ly𝛼 halos. This issue seems to be com-

mon to simulations and semi-analytical models,

including the IllustrisTNG project and EAGLE

simulations (e.g., Okamoto et al., 2010; Simha

et al., 2012; Geha et al., 2017; Shuntov et al.,

2022). In this context it is interesting to note that

our upper limit clustering scenarios give results

closer to the simulations than the extrapolations

deemed to be more realistic.

Alternatively, there could also be a problem

related to low number statistics, since the mod-

els by M21 and L15 are based on only one and

nine galaxies, respectively. This is probably not

an issue for B21, as they did not account for Ly𝛼

destruction by dust, which would otherwise lead

to overestimated luminosities, and possibly in-

fluence the resulting LAH shapes as well. Finally,

it is certainly possible that the differences may

be partially driven by our assumptions. Our es-

timated fraction of undetected LAEs might be

lower than the actual one, either because of a

steeper luminosity function or because of a lower

faint-end cutoff.

4.4.6 How to measure the faint LAE
SB contribution

While it seems safe to state that a significant

contribution of faint LAEs to the apparent Ly𝛼

SB profiles must be expected, at least in quali-

tative agreement between our empirical frame-

work and the predictions by cosmological sim-

ulations, it would be very desirable to further

constrain their contribution directly from ob-

servations. Here, we embark on a few (partly

speculative) considerations of how that might be

achieved in the future.

One avenue of investigation could be a com-

parison between the behaviour of individual and

stacked Ly𝛼 SB maps at large scales. In prin-

ciple, this should contain essential information

about the faint LAE SB contribution: Stacking at

random angles invariably contains some degree

of azimuthal averaging which smears out the

contributions of individual neighboring LAEs,

while individual LAEs have neighbors only in

certain directions. Using the deepest existing

data, it might be possible to estimate the inci-

dence of clear asymmetries or other external dis-
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turbances in individual Ly𝛼 halos and use this to

constrain the frequency of marginally detectable

close neighbours.

Another approach could be to compare the

outcomes of different stacking methods, since

these differ in terms of the sensitivity to asym-

metries in the outskirts: a profile derived from

a median-stack of Ly𝛼 images should show a

different contribution from faint external LAEs

than a profile obtained as the mean of several

azimuthally averaged individual profiles.

What is also relevant is the bandwidth chosen

to extract the LAE pseudo-NB images from the

original IFU data, as this influences the contrast

between the "background" contribution of un-

related and (with respect to the central galaxy)

unclustered LAEs as well as the enhancement

due to physical neighbor LAEs at similar red-

shifts. Varying this bandwidth will provide in-

sights about the relative balance between these

two.

Observations seem to show that on average,

LAH profiles are remarkably self-similar over a

wide range of Ly𝛼 luminosities. However, if at

some radius the contribution from external LAEs

prevails, then the self-similarity should break

down around that radius, and profiles obtained

at different luminosity levels should converge

towards the same behaviour.

At fixed limiting sensitivity, the contribution

of faint LAEs to the combined LAH profiles

should also decrease rapidly with redshift, sim-

ply because of (1 + 𝑧)4 dimming together with a

(roughly) unevolving luminosity function. While

Leclercq et al. (2017) did not find any signifi-

cant Ly𝛼 halo size evolution with redshift, their

sizes clearly refer to the "inner" LAHs and leave

the outer regions still unconstrained. A slightly

stronger boundary condition is the similarity of

stacked Ly𝛼 profiles at 𝑧 ≈ 3.5, 4.5, and 5.5 in

Wisotzki et al. (2018), which could suggest that

at least at high redshifts there is indeed a gen-

uinely diffuse component also in outer regions of

LAHs. On the other hand, the same phenomenon

could arise from a steepening Ly𝛼 LF, and/or an

increasing clustering strength of LAEs towards

higher redshifts, which would then counteract

the cosmological dimming.

We can evaluate whether this scenario is actu-

ally realistic. We note that while in Ouchi et al.

(2017), HA21, and HA23 no significant cluster-

ing dependence on redshift was found, Durkalec

et al. (2014) and Khostovan et al. (2019) found

a clear increase of clustering strength with cos-

mic time. To calculate the increase of clustering

strength needed to counteract the SB dimming

(i.e., (1 + 𝑧)−4) in redshift bins of 𝛥𝑧 = 1, we

would need a factor ≈ 1.25 increase in the large-

scale bias factor, from 𝑏 ≈ 2.65 for 3 < 𝑧 < 4 to

𝑏 ≈ 3.30 for 4 < 𝑧 < 5 and 𝑏 ≈ 4.15 for 5 < 𝑧 < 6.

These values are in broad agreement with the

clustering growth found in Durkalec et al. (2014)

and Khostovan et al. (2019).

Ultimately, building on these suggested analy-

ses and experiments will require more and better

data than currently available. Large LAE samples

such as that from the Hobby-Eberly Telescope

Dark Energy Experiment (HETDEX; Gebhardt

et al. 2021) or future LAE integral field spectro-

graphs such as BlueMUSE (Richard et al., 2019)

may deliver the data quantity and quality to dis-

cern between genuinely diffuse Ly𝛼 emission in

the circum- and intergalactic medium, on the

one hand, and "fake diffuse" contributions from

faint undetected LAEs, on the other hand.

4.5 Conclusions
In this paper, we turn the observed clustering

properties of a sample of 1265 Ly𝛼 emitting

galaxies (LAEs) at 3 < 𝑧 < 5 from the MUSE-

Wide survey into implications for the spatially

extended Ly𝛼 emission in the circumgalactic

medium (CGM) of LAEs. All sources have spec-

troscopic redshifts and their median Ly𝛼 lumi-

nosity is log(𝐿L𝑦𝛼/[erg s
−1]) ≈ 42.27.

We used halo occupation distribution (HOD)

modelling to represent the clustering of our LAE

set. Because the extended Ly𝛼 emission around

LAEs is commonly measured using (pseudo-

)narrow-band (NB) filters centered on the Ly𝛼

wavelength, we included redshift-space distor-

tions both at large (Kaiser infall) and small (Fin-

ger of God effect) scales.

We then extrapolated the HOD statistics in-

wards towards smaller radii and combined them

with assumptions about the Ly𝛼 emitter lumi-

nosity function (LF). We only considered the

emission from undetected LAEs, which are less

luminous than the ones in our current dataset.

Together, these two ingredients are transformed

into a (upper-limit) Ly𝛼 surface brightness (SB)

profile, which belongs to individually undetected

close neighbors that cluster like those in the

MUSE-Wide sample. We derived a maximum SB
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values of SB ≈ 2.5 · 10−20 erg s−1 cm−2
arcsec

−2
,

assuming a luminosity of the undetected LAEs

of log(𝐿L𝑦𝛼/[erg s
−1]) = 38.5.

We considered various alternative clustering

scenarios for the undetected sources. We first

assumed that these follow the same clustering

properties as the LAEs in the MUSE-Extremely

Deep Field (MXDF; one order of magnitude

fainter than those in MUSE-Wide but still more

luminous than undetected LAEs) and compute

the corresponding (upper limit) radial profile

(SB ≈ 2 · 10−20 cgs). We then extrapolated

the clustering properties of MUSE-Wide and

MXDF LAEs down to log(𝐿Ly𝛼/[erg s
−1]) ≈

37.0, 38.5, 40.0 and used the resulting HOD

models to estimate the actual Ly𝛼 SB profiles

from undetected LAEs. We obtained a maximum

SB of SB ≈ 4 · 10−21 cgs.
We compared our log(𝐿L𝑦𝛼/[erg s

−1]) = 38.5

undetected Ly𝛼 SB profile to the LAE stacking

experiment performed in Wisotzki et al. (2018)

to address the question of whether undetected

LAEs play a pivotal role in the formation of

the extended Ly𝛼 halos. Assuming a simple

Schechter LF with a reasonable intermediate

faint-end slope (−1.94 ≤ 𝛼LF ≤ −1.84) and a

lower limit for Ly𝛼 luminosities of the unde-

tected LAEs (log(𝐿Ly𝛼/[erg s
−1]) ≈ 38.5), we

find that the stellar irradiation from those un-

detected LAEs can dominate the excess surface

brightness at large scales (𝑅 ≳ 50 pkpc). On the

other hand, the Ly𝛼 SB profile at small scales

(𝑅 ≲ 20 pkpc) cannot be explained by unde-

tected sources and may be better explained by a

genuinely diffuse origin. More luminous LAEs

(log(𝐿Ly𝛼/[erg s
−1]) ≈ 40) reproduce at best

4%, 40%, and 100% of the extended emission at

𝑅 = 15, 40, 65 pkpc, respectively.

We also compared our estimated Ly𝛼 SB pro-

files with simulation studies. Although we agree

that faint LAEs dominate the SB of the Ly𝛼 halos

at large scales, the shape of the radial profiles

and the contribution to the total Ly𝛼 SB profiles

differ. While the simulated faint LAE SB profiles

generally decrease rapidly with distance, our de-

rived radial profiles have shallow slopes, likely

leading to the flattening at 𝑅 ≳ 30 pkpc seen

in observed Ly𝛼 SB profiles Overall, most sim-

ulated profiles, together with our estimations,

infer a faint LAE contribution of the same order

of magnitude.

Although these faint LAEs are likely the most

significant source of luminosity for the outer

parts of observed Ly𝛼 halos, beyond the scales

probed by most observations of single objects

(𝑅 > 50 pkpc), the actual point at which this con-

tribution starts to become important depends

crucially on the shape of the Ly𝛼 luminosity

function, in particular, its faint end. We also

suggest a few experiments to directly constrain

the faint LAE SB contribution from observations.

Appendix

4.A Clustering comparison
from LAE subsets of the
MUSE-Wide survey

In this work, we utilized the clustering con-

straints derived in HA23 for a subset of 1030

MUSE-Wide LAEs at 3 < 𝑧 < 6 to estimate

the contribution of undetected LAEs to the ap-

parent Ly𝛼 halos observed at 3 < 𝑧 < 5. To

be consistent with the Ly𝛼 halo measurements,

we focused on a subsample of 1265 LAEs at

3 < 𝑧 < 5 from the MUSE-Wide survey. In

the following, we demonstrate that the LAEs in

these two datasets have nearly identical cluster-

ing strengths.

In Fig. 4.A.1, we represent in blue the K-

estimator measurements obtained in HA23 for

the 3 < 𝑧 < 6 LAE subsample and in red the cor-

responding measurement for the 3 < 𝑧 < 5 LAE

subset of this work. The clustering strengths are

in excellent agreement. The clustering uncer-

tainties for the former sample are (on average)

2% larger than for the latter dataset. The best-fit

HOD model and, thus, the large-scale bias factor

and typical DMH masses are indistinguishable.

4.B Clustering enhancement
factor derivation

The surface brightness (SB) at cosmological dis-

tances is defined as

S𝐵 =

∫
𝑍

𝜖 (𝑍 ) [𝐷A(𝑧) (1 + 𝑧)]2
4𝜋𝐷L(𝑧)2

d𝑍 ≈ 𝜖𝛥𝑍

4𝜋 (1 + 𝑧)2 ,
(4.B.1)

where 𝜖 (𝑍 ) is the comoving volume emissivity

as a function of radial comoving separation, 𝑍 ,

and 𝐷L, 𝐷A = 𝐷L/(1+𝑧)2 are the luminosity and

angular size distances at redshift, 𝑧, respectively.

86



The radial comoving separation 𝑍 corresponds

to the (pseudo-)NB width employed to stack LAE

images in the measurement of Ly𝛼 SB profiles.

This definition considers the shape and expan-

sion history of the universe and assumes that

objects are randomly distributed.

To account for the clustering of galaxies, we

include the excess probability d𝑃 of finding a

galaxy, 𝑖 , in a volume element d𝑉 at a separation

𝑅 =

√︃
𝑅2
𝑖 𝑗
+ 𝑍 2

𝑖 𝑗
from another galaxy, 𝑗 , that is,

the two-point correlation function (𝜉 (𝑅); Pee-

bles, 1980)

d𝑃 = 𝑛 · [1 + 𝜉 (𝑅)] · d𝑉 ∝ [1 + 𝜉 (𝑅)] · d𝑍
d𝑧

d𝑧,

(4.B.2)

where𝑛 is themean number density of the galaxy

sample and 𝑅𝑖 𝑗 is the transverse separation be-

tween the galaxy pair. The two-point corre-

lation function of interest is, in fact, a cross-

correlation function between detected and un-

detected LAEs. This is because Ly𝛼 SB profiles

represent SB as function of distance from the cen-

tral LAE outwards, not as function of observed

LAE−observed LAE separation. Hence, the SB

that accounts for galaxy clustering is:

S𝐵 =

∫
𝑍

𝜖 (𝑍 )
4𝜋 (1 + 𝑧)2 · [1 + 𝜉 (𝑅)] ·

d𝑍

d𝑧
d𝑧 ≈

𝜖

4𝜋 (1 + 𝑧)2
∫
𝑍

[1 + 𝜉 (𝑅)] · d𝑍 . (4.B.3)

We derive the clustering enhancement factor

𝜁 (𝑅) from the comparison between Eqs. 4.B.1

and 4.B.3 as:

𝜁 (𝑅) = 1 +
∫
𝑍

𝜉 (𝑅) · d𝑍
𝛥𝑍

. (4.B.4)

4.C Effect of the velocity
bandwidth on the faint
LAE contribution to the
extended LAHs

To compute the faint LAE SB profiles (colored

lines in Fig. 4.4.3) and to modify the stacking

analysis of Wisotzki et al. (2018) (data points

in Fig. 4.4.3), we adopted a fixed velocity band-

width

Figure 4.A.1: Clustering strength as measured by

the K-estimator (Adelberger et al., 2005) for the LAE

dataset considered in HA23 at 3 < 𝑧 < 6 (blue) and

that of the LAE sample at 3 < 𝑧 < 5 used in this work

(red). The black baseline represents the expected

value for an unclustered sample. The error bars are

Poissonian. The red measurements have been shifted

along the x-axis for visual purposes.

of 600 km s
−1
. The selected pseudo-NB width in-

fluences the Ly𝛼 SB values of the stacked radial

profile, the background Ly𝛼 SB level due to dis-

crete faint LAEs, and the clustering enhancement

factor (Eq. 4.4). The general trend is that, for

broader velocity widths, the stacked SB profile

notably rises in the outer regions (𝑅 > 20 pkpc),

the background SB slightly increases, and the

clustering enhancement factor significantly de-

clines (see Fig. 4.4.1). The interplay between

these three factors is thus reflected in the SB

ratio of Fig. 4.4.5.

In Fig. 4.C.1, we recompute the ratio between

the faint LAE SB profile and the stacked one for

a pseudo-NB width of 400 km s
−1

(left panel) and

800 km s
−1

(right panel). For broader bandwidths,

the SB ratios decrease because the corresponding

decline of the clustering enhancement factor ex-

ceeds the smaller rises in the stacked radial pro-

file and the background SB level. While a broad-

ening of the pseudo-NB width from 400 km s
−1

to 600 km s
−1

causes a maximum 40% drop of

the SB ratios, an increase from 600 km s
−1

to

800 km s
−1

further decreases the SB ratios in at

most 20%. We note that for a velocity offset of

600 km s
−1

or 800 km s
−1
, the stacked Ly𝛼 SB

value at 𝑅 = 90 pkpc is an upper limit (see e.g.,

Fig. 4.4.3). For 400 km s
−1
, on the other hand,

there is no detection.
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Figure 4.C.1: SB ratio of the Ly𝛼 SB profile from undetected LAEs and the modified stacked profile from

Wisotzki et al. (2018). Left: Same as Fig. 4.4.5 but for a pseudo-NB width of 400 km s
−1
. Right: Same for a

pseudo-NB width of 800 km s
−1
.
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Chapter 5

Properties of MUSE Lyman-𝜶 halos at
2.9 < 𝒛 < 6.7 in different environments∗

Y. Herrero Alonso
1
and L. Wisotzki
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1 Leibniz-Institut fur Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

ABSTRACT

We investigate how the properties of extended Lyman-𝛼 (Ly𝛼) halos (LAHs), ubiquitously observed

around high-redshift Ly𝛼 emitters (LAEs), correlate with environment. We use two samples of 726

and 181 LAEs at 2.9 < 𝑧 < 6.7 from the Multi-Unit Spectroscopic Explorer (MUSE) deep fields (MUSE-

Deep) and ultra-deep field (UDF-10), respectively. We connect the LAEs to their corresponding

LAH properties, which were individually measured in Leclercq et al. (2017), and obtain 142 and 42

LAEs with identified LAHs from the two datasets, respectively. We separately bin our LAE samples

in redshift slices of 𝛥𝑧 = 0.1 and apply the Voronoi-Delaunay tesselation (VDT) to characterize

small-scale (≈ 0.4 pMpc) overdense regions. To consider larger-scale (≈ 2 pMpc) LAE overdensities,

𝛿LAE, we detect peaks in the kernel density estimator (KDE)-filtered redshift distribution of the

datasets. We obtain local overdensities for the LAEs with LAH information within −1 < 𝛿LAE < 11.

We next explore how the halo scale length, 𝑟s, and the halo fraction of the total Ly𝛼 flux, 𝑋Ly𝛼−h,
vary with 𝛿LAE and find no correlation. The two overdensity finders deliver consistent results. We

also investigate whether the 𝑟s and 𝑋Ly𝛼−h distributions of LAEs that reside inside and outside

overdense regions differ and find mathematically indistinguishable distributions, means and medians

(demonstrated with Kolvogorov-Smirnov and Mood’s median tests). We compare our results with

previous investigations based on stacking analyses of narrowband data and find an overall agreement.

We discuss the implications of our findings for the origin of LAHs.

5.1 Introduction

The circumgalactic medium (CGM) mediates the

interaction between galaxies and the intergalac-

tic medium (IGM), influencing, thus, galaxy evo-

lution. While gas inflows from the large-scale

structure (LSS) of the universe fuel star forma-

tion in galaxies, galactic outflows eject part of

this gas and regulate their star formation rates.

This fraction of gas can then flow into the IGM or

be re-accreted onto the galaxy. Besides, interac-

tions with neighbouring galaxies also impact the

CGM and, consequently, galaxy evolution (see

Tumlinson et al. 2017 and references therein).

From an observational perspective, the CGM

has been studied following numerous ap-

proaches. Investigations of absorption lines of

background quasars or galaxies, stacking anal-

yses of spectra, and emission-line maps are

some of the most common techniques (Tumlin-

son et al., 2017). The diffuse Ly𝛼 emission ob-

served ubiquitously around high-redshift Lyman-

𝛼 (Ly𝛼) emitters (LAEs) has opened a new av-

enue to study the CGM. Outflows facilitate the

escape of Ly𝛼 photons (produced in ionized HII

regions of the interstellar medium, ISM) from the

ISM (Behrens & Braun, 2014; Yang et al., 20016),

which can resonantly scatter with neutral hydro-

gen and form diffuse Ly𝛼 gaseous halos (LAHs)

around LAEs. Processes such as "in situ" recom-

bination (e.g., Maiolino et al., 2017), collisional

excitation from the cooling radiation of infalling

∗
A version of this Chapter will be submitted for publication in Astronomy & Astrophysics.
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gas (e.g., Rosdahl & Blaizot, 2011), Ly𝛼 fluores-

cence (e.g., Mas-Ribas & Dijkstra, 2016), emis-

sion from faint LAEs (e.g., Herrero Alonso et

al., 2023b) may also originate and/or power the

extended LAHs.

Because the origin of LAHs is still under inves-

tigation, extracting information about the CGM

remains a challenging task. LAHs around LAEs

are, however, repeatedly detected, both by stack-

ing of narrowband data (Steidel et al., 2011; Mat-

suda et al., 2012; Momose et al., 2014a; Xue et al.,

2017; Niemeyer et al., 2022; Kikuta et al., 2023;

Zhang et al., 2023) and on an individual object-

by-object basis (Wisotzki et al., 2016; Leclercq

et al., 2017; Claeyssens et al., 2022; Kusakabe et

al., 2022) with Multi-Unit Spectroscopic Explorer

(MUSE; Bacon et al. 2010) data.

Numerous are also the studies that sought for

correlations between LAH and galaxy proper-

ties. While the characteristic exponential scale

length of the LAHs (𝑟s; typically of few pkpc)

does not seem to vary with redshift (Wisotzki

et al., 2016; Leclercq et al., 2017; Wisotzki et al.,

2018), it appears to correlate with UV absolute

magnitude (Momose et al., 2014b; Leclercq et al.,

2017; Xue et al., 2017; Claeyssens et al., 2022;

Zhang et al., 2023). Other studies also found

a correlation with Ly𝛼 luminosity and/or Ly𝛼

equivalent width (Xue et al., 2017; Momose et

al., 2014b; Zhang et al., 2023). In terms of envi-

ronment, the results are still inconclusive. While

Matsuda et al. (2012) found that 𝑟s is proportional

to the square of the LAE overdensity where the

LAEs reside, Momose et al. (2014b), Xue et al.

(2017), and Kikuta et al. (2023) found that 𝑟s is

independent of environment.

Some of the trends found in stacking exper-

iments of narrowband data yielded different

conclusions than those drawn from the LAH

characterization of individual LAEs (see, for in-

stance, the 𝑟s trends with Ly𝛼 luminosity from

Momose et al. 2014b; Xue et al. 2017 and that

from Leclercq et al. 2017). Because investigations

about the possible environment effect on LAHs

have only been explored in stacks, in this paper

we address this matter with the LAH properties

measured (on an individual object-by-object ba-

sis) by Leclercq et al. (2017) in MUSE deep and

ultra deep data.

The paper is structured as follows. In Sect. 5.2,

we briefly describe the data used for this work.

In Sect. 5.3, we outline the various techniques

we apply to identify overdense regions of differ-

ent scales. We investigate how the LAH proper-

ties correlate with environment in Sect. 5.4. In

Sect. 5.5, we compare our findings to recent ob-

servational studies and discuss the implication

of our results in the context of LAH origin. We

give our conclusions in Sect. 5.6.

Throughout the paper, physical and comoving

distances are given in units of pkpc and ckpc,

respectively. We use a 𝛬CDM cosmology and

adopt 𝛺𝑀 = 0.3, 𝛺𝛬 = 0.7, and 𝜎8 = 0.8 (Hin-

shaw et al., 2013). All uncertainties represent 1𝜎

(68.3%) confidence intervals, unless otherwise

stated.

5.2 Data
This paper uses two different spectroscopic sam-

ples of LAEs, from the deep fields of MUSE

(hereafterMUSE-Deep) and theMUSE ultra-deep

field (UDF-10), as well as their measured LAH

properties from Leclercq et al. (2017). We also

considered using the LAH measurements from

Wisotzki et al. (2016) in the Hubble Deep Field

South (HDFS) but the small sample size, together

with the different sky location, did not allow for

a robust environment characterization.

5.2.1 MUSE Deep fields
MUSE-Deep (also known as MOSAIC; Bacon

et al., 2017; Inami et al., 2017; Bacon et al.,

2022) encompasses nine fields located in the

CANDELS/GOODS-S region of the Hubble ul-

tra deep field (HUDF), each spanning 1 arcmin
2

and observed with a 10 h exposure time. Due to

field-to-field overlaps, the total spatial coverage

is 9.92 arcmin
2
. We represent the spatial distribu-

tion of the survey in green in Fig. 5.2.1. We refer

to Bacon et al. (2022) for a detailed description

on survey construction and data reduction.

The sources in MUSE-Deep were blindly de-

tected and extracted using ORIGIN (Mary et al.,

2020). The redshift measurements and line classi-

fications were carried out with pyMarZ, a python

version of the redshift fitting software MarZ

(Hinton et al., 2016).

We detect a total of 726 LAEs in the redshift

interval of 2.9 < 𝑧 < 6.7. The redshift distribu-

tion of the LAE sample is shown in green in the

left panel of Fig. 5.2.2. The physical transverse

span of the survey is ≈ 2 pMpc (at the median

redshift of ⟨𝑧⟩ = 4.0). The range of Ly𝛼 lumi-
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nosities is 40.77 < log(𝐿Ly𝛼/[erg s−1]) < 43.38,

with a median of log⟨𝐿Ly𝛼/[erg s−1]⟩ = 41.74

(see Table 5.2.1).

5.2.2 MUSE ultra deep field
The UDF-10 (Bacon et al., 2017) is situated in the

CANDELS/GOODS-S region and overlaps with

MUSE-Deep. UDF-10 is composed of a single

field of 1 arcmin
2
and was observed with a 30 h

exposure time. In Fig.5.2.1, we overplot the spa-

tial distribution of the UDF-10 (orange) on the

previous dataset.

The survey assembly and data reduction is de-

scribed in Bacon et al. (2017) and is equivalent

to the one applied in MUSE-Deep. The source

extraction in UDF-10 and the redshift measure-

ments are conducted following the same proce-

dure as was done for MUSE-Deep.

Contained within 1 arcmin
2
and over the same

redshift range as the previous catalogue, we de-

tect 181 LAEs. The redshift distribution of the

LAE sample is shown in orange in the right

panel of Fig. 5.2.2. At the median redshift of

⟨𝑧⟩ = 3.9, the footprint covers ≈ 0.5 pMpc (trans-

versely). The Ly𝛼 luminosities span 40.16 <

log(LLy𝛼/[erg s−1]) < 43.16. The median Ly𝛼 lu-

minosity is log⟨𝐿Ly𝛼/[erg s−1]⟩ = 41.66. These

properties are listed in Table 5.2.1.

5.2.3 Ly𝜶 halo sample
From the complete MUSE-Deep and UDF-10 sam-

ples of LAEs (see previous sections), Leclercq et

al. (2017) excluded LAEs in pairs that were closer

than 50 (transverse) pkpc. The authors also re-

moved LAEs that were close to the survey edges

and those contaminated by emission lines from

background sources, skylines, etc. When LAEs

were detected in both UDF-10 and MUSE-Deep

fields, only those in the UDF-10 were considered.

They created 10”×10” Ly𝛼 pseudo-NB images

of the remaining LAEs and further imposed a

signal-to-noise (S/N) threshold of 6. A total of

184 LAEs fulfilled these criteria: 142 from MUSE-

Deep (≈ 20% of theMUSE-Deep LAE sample) and

42 from the UDF-10 (≈ 30% of the UDF-10 LAE

sample). The Ly𝛼 luminosities of these LAEs

range within 40.77 < log(LLy𝛼/[erg s−1]) < 43.38,

with a median of log⟨𝐿Ly𝛼/[erg s−1]⟩ = 42.23

(see Table 5.2.1). We refer to Leclercq et al. (2017)

for further details on the LAH sample construc-

tion.

Figure 5.2.1: Spatial distribution of the LAEs from

the MUSE-Deep (green squares) and UDF-10 (orange

crosses) samples. The two surveys cover part of

the CANDELS/GOODS-S region and span a redshift

range of 2.9 < 𝑧 < 6.7.

Tomaximize the S/N of the pseudo-NB images,

they chose spectral bandwidths within 2.5–20

(mean of 6.25 ). For each image, they computed a

radial Ly𝛼 SB profile by averaging the Ly𝛼 flux in

concentric annuli centered on the Ly𝛼 emission.

They then decomposed the profiles into a central

(core emission) and an extended (emission from

an extended halo) exponential component. They

characterized the profiles as the sum of two cir-

cular, two-dimensional exponential distributions.

The scale length of the former component was

fixed to that obtained from a circular, 2D expo-

nential fit to the UV continuum data from the

Hubble Space Telescope (HST). The LAHs were

thus characterized by three parameters: the LAH

scale length (𝑟s; halo component) and the fluxes

of the Ly𝛼 core, 𝐹c, and halo, 𝐹h. The fits included

the point spread function (PSF) of MUSE.

Besides the LAH scale length delivered from

the fits, we now compute the halo fraction of

the total Ly𝛼 flux 𝑋Ly𝛼−h i.e., 𝑋Ly𝛼−h =
𝐹h

𝐹h+𝐹c .
The distributions of the LAH scale length and

halo fraction are shown in the left and right

panel of Fig. 5.2.3, respectively. The median val-

ues of the MUSE-Deep and UDF-10 LAH sam-

ples are displayed with dashed vertical lines

and correspond to ⟨𝑟s⟩ = 4.15, 3.21 pkpc and

⟨𝑋Ly𝛼−h⟩ = 0.66, 0.66, respectively (see Ta-

ble 5.2.1). For the combined sample of LAHs,

we obtain ⟨𝑟s⟩ = 3.75 pkpc and ⟨𝑋Ly𝛼−h⟩ = 0.66

(gray dashed lines).
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Table 5.2.1: Properties of the LAE samples.

Area/[arcmin
2
] LAEs ⟨𝑧⟩ log⟨𝐿Ly𝛼/[erg s

−1]⟩ LAHs ⟨𝑟s/[pkpc]⟩ ⟨𝑋Ly𝛼−h⟩

MUSE-Deep 9.92 726 4.0 41.74 142 4.15 0.66

UDF-10 1.00 181 3.9 41.66 42 3.21 0.66

Notes: Properties marked with ⟨⟩ represent median values for the galaxies in the samples. LAEs and LAHs refer to

the number of LAEs and to the number of LAEs with available LAH information, respectively.

Figure 5.2.2: KDE-filtered redshift distributions of 726 and 181 LAEs from the MUSE-Deep (left) and UDF-10

(right) samples, respectively. The datasets span a redshift range of 2.9 < 𝑧 < 6.7. The chosen kernel is a

Gaussian with a standard deviation of 𝜎𝑧 = 0.005, which corresponds to a full width at half maximum of

𝛥𝑧 = 0.012.

Figure 5.2.3: LAH property distributions of the MUSE-Deep (green) and UDF-10 (orange) samples of LAEs.

Left: LAH scale length. Right: Halo fraction of the total Ly𝛼 flux. The colored dashed lines correspond to the

median values of the distributions. The gray dashed line is the median of the total sample of LAHs.

5.3 Environment
characterization

One common approach to identify overdense re-

gions in galaxy samples is to smooth their sky

distribution with a fixed or adaptive Gaussian

kernel (e.g., Matsuda et al., 2012; Xue et al., 2017;

Harikane et al., 2019). Other studies employ the

Voronoi-Delaunay tesselation (e.g., Knobel et al.,

2009; Shi et al., 2021; Jiménez-Andrade et al.,

2023), a scale independent method that does not

employ any binning scheme. Studies with small

sky coverages, on the other hand, bin the red-

shift distribution in comoving coordinates and

identify overdensities by detecting peaks in the

distribution (Bacon et al., 2021). Each of these

methods targets different-scale overdensities. In

this study, we use the Voronoi-Delaunay tessela-

tion (VDT) to characterize small-scale (few virial

radii; ≈ 0.4 pMpc) overdense regions and a ker-

nel density estimator (KDE) for larger-scale (sur-

vey footprint size; ≈ 2 pMpc) overdensities.
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5.3.1 Voronoi-Delaunay tesselation
A Voronoi tesselation is a partition of a two-

dimensional set of points (RA, Dec) into con-

vex regions or polygons (Voronoi cells). Each

Voronoi cell contains one single point and a set

of vertices, which are closer to that point than to

any other in the plane. The tesselation is based

on theDelaunay triangulation and has themathe-

matical property that the local surface density, 𝛴 ,

is the inverse of the polygon area, 𝐴, i.e., 𝛴 = 1

𝐴
.

The galaxy overdensity, 𝛿 , is defined as follows:

𝛿 =
𝛴 − ⟨𝛴⟩
⟨𝛴⟩ , (5.1)

where ⟨𝛴⟩ is the average surface density of the

plane i.e., ⟨𝛴⟩ = ⟨ 1
𝐴
⟩. Because we have a large

redshift coverage, we bin the redshift range of

our LAE samples in steps of 𝛥𝑧 = 0.1 and apply

VDT to each resulting RA-Dec plane. ⟨𝛴⟩ is, in
this case, the average surface density of all cells

in all RA-Dec planes.

We define an overdense region as follows. We

choose the galaxy with the highest local over-

density and place a circle of a given radius on

it. The region delimited by the circle encloses

the highest overdensity galaxy and those nearby.

We consider this region as overdense if 𝛿 > 3

(similar to the 𝛿 > 2.5 considered in Matsuda

et al. 2012; Kikuta et al. 2023). The radius that

allows the enclosure of most high-overdensity

galaxies is 15𝑅vir, where 𝑅vir is the virial radius.

For our LAE samples, 𝑅vir ≈ 28 pkpc (Herrero

Alonso et al., 2021; Herrero Alonso et al., 2023a).

Scales of ≈ 0.4 pMpc are consistent with typ-

ical protocluster sizes at 𝑧 ≈ 3 (Chiang et al.,

2013). We verify that selecting other overdensity

thresholds (𝛿 > 3.5, 4.0, 4.5) or smaller circle

radii deliver results in agreement (althoughmore

uncertain) with those given in Sect. 5.4.

The RA-Dec plane of some redshift bins, how-

ever, present several overdense regions. We then

place another circle of the same radius on the

second overdense region (centered on its highest-

overdensity galaxy). We visually inspect all RA-

Dec planes and proceed alike for all visible over-

densities in the field.

5.3.2 Kernel-density estimator
To consider larger-scale overdensities than those

detected with the VDT, we replace the usual

redshift histogram counts-per-bin by a quasi-

continuous kernel density estimator. We thus

avoid binning artefacts and better represent the

underlying redshift probability distribution. We

compute the KDE-filtered redshift distribution

of the two LAE samples and define overdense re-

gions by selecting peaks in their distributions. To

be consistent with the VDT method, we choose

full widths of 𝛥𝑧 = 0.1 around the peak cen-

ter. We consider as overdense region the entire

RA-Dec plane of the redshift peak. This corre-

sponds to scales of ≈ 2 pMpc (same as the survey

footprint).

As kernel, we choose a Gaussian with a stan-

dard deviation of 𝜎z = 0.005. Redshift peaks

higher than NLAE = 3 are considered to be over-

dense. As for the VDT, we also define overden-

sity with Eq. 5.1 but, in this case, 𝛴 = 𝑁
𝐴
, where

N is the number of LAEs within the selected

redshift peak and 𝐴 is the area of the survey

footprint. We verified that different plausible

values for 𝜎z or peak thresholds, deliver consis-

tent results (within the uncertainties) with those

presented in Sect. 5.4.

5.4 Ly𝜶 halo properties in
different environments

5.4.1 Voronoi-Delaunay
overdensities

We separately apply the VDT to the LAE samples

from MUSE-Deep and UDF-10, as described in

Sect. 5.3.1. To illustrate the method, we show

the three highest local overdensities in Fig. 5.3.1,

which were detected in the MUSE-Deep dataset.

The LAEs are color-coded by their local overden-

sity, which is computed with Eq. 5.1.

We combine the local overdensity values from

MUSE-Deep and UDF-10 and bin the overden-

sities within -1–11 in steps of 0.75. For each

bin, we only select the LAEs with available LAH

measurements (the orange and green stars in

Fig. 5.3.1 correspond to MUSE-Deep and UDF-10

LAEs whose LAH properties were measured in

Leclercq et al. 2017, respectively). We obtain 53,

75, 33, 11, 6, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1 LAEs for

these criteria. We represent their average LAH

scale lengths and halo fractions in Fig. 5.3.2 (red).

There is no apparent correlation between

LAH properties and the small-scale environment

where the LAEs reside. While most scale lengths

range between 2–8 pkpc, the halo fractions vary
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Figure 5.3.1: Voronoi-Delaunay tesselation of three redshift slices from the LAE sample from MUSE-Deep.

The edges (outer black lines) correspond to the survey footprint. The LAEs (circles) are color-coded by their

local overdensity. The green and orange stars denote LAEs with available LAH measurements in MUSE-Deep

and UDF-10, respectively. The red circles indicate overdense regions.

Figure 5.3.2: LAH scale length (left panel) and halo fraction of the total Ly𝛼 flux (right panel) as a function of

LAE overdensity. Overdensity values were measured with the VDT (red) and the KDE (blue). The error bars

correspond to the standard deviation of the LAH properties within the overdensity bins (see text).

Figure 5.3.3: LAH property distributions of LAEs inside (red) and outside (blue) VDT-detected overdensities.

Vertical dashed lines display the median of the distributions. Left: LAH scale length. Right: Halo fraction of

the total Ly𝛼 flux.

Table 5.3.1: Properties of LAHs in different environments.

⟨𝑟s/[pkpc]⟩VDT ⟨𝑟s/[pkpc]⟩KDE ⟨𝑋Ly𝛼−h⟩VDT ⟨𝑋Ly𝛼−h⟩KDE

In overdensity 3.8 3.8 0.66 0.66

Outside overdensity 3.3 4.2 0.64 0.64

𝜒2 (MM test) 0.53 1.89 0.20 0.02

𝐷 (K-S test) 0.24 0.40 0.10 0.16

Notes: Properties marked with ⟨⟩ represent median values. The subscripts VDT and KDE refer to

the methods applied to measure the local overdensity of the LAEs with available LAH information.
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Figure 5.3.4: Same as Fig. 5.3.3, but for KDE-detected overdensities.

within 0.4–1.0. The data points without uncer-

tainties correspond to the overdensity bins that

host only one single LAE with LAH information

and should, therefore, be seen with caution.

In Fig. 5.3.1, we also delimit the overdense

regions with red circles (see Sect. 5.3). The

largest overdensity (left panel of Fig. 5.3.1, at

3.4 < 𝑧 < 3.5 and located in the northern end

of the field) reaches local overdensity values of

≈ 25. Although it contains 13 LAEs, only one has

available LAH information. This LAE is located

in a local overdensity of ≈ 10.7. To confirm the

robustness of the detected overdensities, we also

applied other methods such as density maps (e.g.,

Chiang et al., 2014) and the kth nearest neigh-

bors algorithm (Fix & Hodges, 1989) and, overall,

found the same overdensities as with the VDT.

We now select the LAEs with LAH measure-

ments that are located within the red circles (see

Fig. 5.3.1) and compare their LAH property dis-

tributions to those from LAEs that reside outside

overdensities. While 96 LAEs are inside over-

dense regions, 88 are outside overdensities. The

left (right) panel of Fig. 5.3.3 shows the distribu-

tion of the LAH scale length (halo fraction) inside

(red) and outside (blue) overdense regions. The

vertical dashed lines display themedian values of

the histograms. LAEs that reside in overdensities

present ⟨𝑟s⟩ = 3.8 pkpc (or mean of 4.7 pkpc) and

⟨𝑋Ly𝛼−h⟩ = 0.66 (same mean). For those located

outside overdensities, we obtain ⟨𝑟s⟩ = 3.3 pkpc

(mean of 4.3) and ⟨𝑋Ly𝛼−h⟩ = 0.64 (same mean;

see Table 5.3.1).

The medians and LAH property distributions

inside and outside overdensities are visually

alike. To mathematically confirm the similarity

of the medians and the histograms of Fig. 5.3.3,

we perform the Mood’s median test (MM test)

and the two-sample Kolmogorov-Smirnov test

(K-S test), respectively. While the MM test statis-

tic 𝜒2 quantifies the likelihood that the two medi-

ans are statistically identical (null hypothesis of

MM test), the K-S test statistic 𝐷 (maximum ver-

tical distance between the two cumulative nor-

malized distributions) informs about the proba-

bility that the two samples are drawn from the

same (unknown) probability distribution (null

hypothesis of K-S test). 𝜒2 and 𝐷 values larger

than their corresponding confidence thresholds

lead to the rejection of the null hypotheses. For

a confidence level of 95%, 𝜒2
threshold

= 3.84 and

𝐷threshold = 0.22∗.

For the scale length and halo fraction distribu-

tions of Fig. 5.3.3, we obtain 𝜒2 = 0.53, 0.20 and

𝐷 = 0.24, 0.10, respectively (see Table 5.3.1).

Although the 𝑟s distributions inside and out-

side overdense regions are statistically differ-

ent (𝐷𝑟s > 𝐷threshold), those from 𝑋Ly𝛼−h, as
well as their medians (or means), are equiva-

lent (𝐷𝑋Ly𝛼−h < 𝐷threshold and 𝜒
2 < 𝜒2

threshold
). We

thus conclude that, when considering small-scale

overdensities, there is no significant relation be-

tween the scale length and the halo fraction and

the environment where the LAEs are embedded.

5.4.2 Kernel-density estimator
overdensities

To consider larger-scale overdense regions than

those detected with the VDT (see previous sec-

tion), we apply the KDE method described in

Sect. 5.3.2. We detect peaks in the redshift distri-

butions of the MUSE-Deep and UDF-10 samples

of LAEs (see Fig. 5.2.2) and compute their local

overdensities with Eq. 5.1.

∗𝐷threshold varies with the number of LAEs within the two distributions. See Eq. 15 in Sect. 3.3.1 of Knuth (1998).
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We combine the overdensity values separately

computed in MUSE-Deep and UDF-10 and bin

the local overdensity within -1–5 in steps of 0.75.

Because we only consider LAEs with available

LAH measurements, we detect 39, 41, 60, 37, 0,

3, 4, 0 LAEs within the bins. We note that the

highest LAE overdensity detected by the VDT,

it is now relaxed due to the larger area used to

compute the surface density (Eq. 5.1) with the

KDE. We represent the mean scale lengths and

halo fractions of these overdensity subsamples in

Fig. 5.3.2 (blue). The KDE trends are consistent

with those derived from the VDT (red). The scale

lengths and halo fractions mainly range between

2–8 pkpc and 0.4–1.0, respectively. Hence, when

considering Mpc-scale overdensities, we also do

not find any correlation between LAH properties

and environment.

The largest overdense region detected with

the KDE is found at 3.65 < 𝑧 < 3.75 (highest

peak in the redshift distribution of the MUSE-

Deep LAEs; see left panel of Fig. 5.2.2), coinciding

with one of the most pronounced overdensities

found with the VDT. It has an overdensity value

of 1.6 and contains 64 LAEs, 17 of which have

LAH information.

We also separate the LAEs that fall within the

overdense redshift peaks (131 LAEs) from those

located in lower density peaks (53 LAEs). We rep-

resent the distributions of the scale length (left

panel) and halo fractions (right panel) of LAHs

inside and outside overdense regions in Fig. 5.3.4.

Their median values (dashed vertical lines) are

⟨𝑟s⟩ = 3.8, 4.2 pkpc (or mean values of 4.4 and

5.2 pkpc) and ⟨𝑋Ly𝛼−h⟩ = 0.66, 0.64 (same for

the means), respectively (see Table 5.3.1). These

values are very similar, if not identical, to those

obtained with the VDT (previous section).

Although we now have better statistics than

with the VDT because of the higher detection

rate of LAEs within overdense regions, the shape

of the 𝑟s and 𝑋Ly𝛼−h distributions inside and out-

side overdensities is still very similar to those

obtained with the VDT. We also perform the MM

and K-S tests on the histograms of Fig. 5.3.4 and

list the results in Table 5.3.1. For a confidence

level of 95%, 𝜒2
threshold

= 3.84 and 𝐷threshold =

0.25. We obtain 𝜒2 = 1.89, 0.02 and 𝐷 =

0.40, 0.16 for the scale length and halo frac-

tion distributions, respectively. We thus con-

clude that, even when considering Mpc-scale

overdensities, the 𝑟s distributions inside and

outside overdense regions are statistically dif-

ferent (𝐷𝑟s > 𝐷threshold) but those for 𝑋Ly𝛼−h
and the two medians (or means) are equivalent

(𝐷𝑋Ly𝛼−h < 𝐷threshold and 𝜒
2 < 𝜒2

threshold
). Hence,

we find no evidence for a dependence of LAH

properties on environment, also when consider-

ing Mpc-scale overdensities.

5.5 Discussion

5.5.1 Comparison with the
literature

Although there is no previous investigation of

the possible dependence of the halo fraction of

the total Ly𝛼 flux on environment, there are

several the studies that addressed this matter

for the LAH scale length. While Matsuda et al.

(2012) found a clear increase of 𝑟s with increas-

ing LAE overdensity, Momose et al. (2014b), Xue

et al. (2017), and Kikuta et al. (2023) found simi-

lar scale lengths for the LAEs that reside inside

and outside overdense regions. Due to low sen-

sitivity, these studies were based on stacking of

narrowband data. This approach averages the

LAH properties and cancels out any particular

characteristic that individual LAHs may have.

Hence, a statistical study of the LAH properties

derived from individual LAEs located in different

environments is preferred.

Previous studies that investigated the possible

LAH scale length dependence on environment

fitted the stacked Ly𝛼 SB profiles following dif-

ferent approaches. To characterize LAHs, Mat-

suda et al. (2012) and Momose et al. (2014b) fitted

the profiles with a single-component exponen-

tial function, excluding their small scales (𝑅 < 3,

2”, respectively) to avoid PSF effects. It is worth

mentioning that the exclusion of the central part

of the radial profile may inflate the actual value

of 𝑟s. Xue et al. (2017) and Kikuta et al. (2023), on

the other hand, opted for a two-component fit of

the entire profile and included the PSF in their

measurements. Moreover, Kikuta et al. (2023) did

not assume that the scale lengths for the core

and continuum-like components are equal. In

opposition to previous studies, we remind that

Leclercq et al. (2017) fitted individual LAHs with

a two-component fit and accounted for the PSF

of MUSE (see Sect.5.2.3).

Although all studies utilize the same defini-

tion of overdensity (Eq. 5.1), the way the surface

density is computed differs. While Matsuda et
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al. (2012) and Xue et al. (2017) smoothed the

LAE sky distribution with a Gaussian kernel of

𝜎 = 1.5, 2’ (or FWHM = 1.7, 10 pMpc), respec-

tively, Momose et al. (2014b) and Kikuta et al.

(2023) counted LAEs within circles of radius of

10’ and 1.8’ (or 5.0 and 0.8 pMpc), respectively,

to calculate 𝛴 . In contrast, we applied the VDT

to consider small-scale overdensities (0.4 pMpc)

and the KDE for Mpc-scale ones (2.0 pMpc; see

Sect. 5.3).

To consider similar overdensity scales, in

Fig. 5.5.1 we compare our KDE trend of scale

length and LAE overdensity (same as in the left

panel of Fig. 5.3.2) with the results from the lit-

erature. While our findings are in disagreement

with those found in Matsuda et al. (2012) (and

partially in Kikuta et al. 2023), they are consistent

with the investigations of Momose et al. (2014b)

and Xue et al. (2017).

The differences between our data points and

those from the literature could be attributed to

several factors (other than the distinct fits to the

radial profiles and overdensity finders). Some of

the LAEs in Matsuda et al. (2012) are located in

fields which are known to host Ly𝛼 blobs (Ya-

mada et al., 2012) and be extremely overdense.

These characteristics likely affect scale length

derivations (Xue et al., 2017). The LAH scale

length derived for the highest overdensity bin in

Kikuta et al. (2023) also disagrees with our 𝑟s at

similar overdensities. This data point, however,

may be affected by the fact that the overdense

region is, in reality, the protocluster HS1549 at

𝑧 = 2.84 (Trainor & Steidel, 2012). HS1549 is

known to contain tens of active galactic nuclei,

Ly𝛼 blobs and, furthermore, is located in a Mpc-

scale diffuse Ly𝛼 emitting structure (Kikuta et al.,

2019).

The agreement between our results and Mo-

mose et al. (2014b), Xue et al. (2017), and Kikuta

et al. (2023) is, on the other hand, interesting

given the distinct properties of the LAEs. Not

only the LAH and overdenstity characterizations

differed, our LAEs are, in some cases, up to one

order of magnitude less luminous than those

from previous studies (see Sect. 5.2.3).

Despite the apparent lack of correlation be-

tween the LAH properties and LAE overdensity,

we cannot definitively rule out the possibility

of a LAH dependence on environment. Some of

our Ly𝛼 SB profiles were not well constrained

at large scales and our LAH sample is relatively

small.

Figure 5.5.1: LAH scale length as a function of LAE

overdensity. The blue circles represent our KDE mea-

surements from the LAE samples of MUSE-Deep and

UDF-10 (same as those of the left panel of Fig. 5.3.2).

The dashed gray line shows the highest 𝑟s value of

our LAH sample. The pink, black, orange, and green

symbols show the trends derived in Matsuda et al.

(2012), Momose et al. (2014b), Xue et al. (2017), and

Kikuta et al. (2023), respectively. Triangles and circles

represent 𝑟s values based on one- and two-component

fits to the stacked Ly𝛼 SB profile, respectively.

Analyses on larger and deeper samples would

not only allow a robust characterization of indi-

vidual LAHs, but would also permit the exami-

nation of more diverse environments.

5.5.2 Implications
Galaxies are not isolated, but are surrounded by

satellite galaxies. These can influence the central

galaxy with their own emission, by losing their

ISM through tidal stripping, ram pressure strip-

ping, or galactic winds of their own. Processes

such as cold accretion or inflows also interact

with the central galaxy and can, thus, influence

its evolutionary path. Therefore, an environ-

ment effect on LAHs would not be unreasonable.

While the lack of correlation between the LAH

scale length and halo fraction with the environ-

ment where LAEs reside (see Sect.5.4) does not

yield information about satellites and inflows

(distinct scales of interest), it supports a scenario

in which the CGM scales probed by 𝑟s and𝑋Ly𝛼−h
are originated by internal processes.

Provided that our findings are not driven by

a possible insufficient spatial coverage (unable

to capture diverse environments), the inner re-

gions of the CGM could be generated by out-

flows. Outflows facilitate the escape of scattered

Ly𝛼 photons (Behrens & Braun, 2014; Yang et

al., 20016), which is crucial for the emergence of

LAHs. Moreover, theoretical and observational
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studies (Yamada et al., 2012b; Song et al., 2020; Li

et al., 2022; Blaizot et al., 2023) analysed the spec-

tral shape of Ly𝛼 lines and found that most of

them presented a redshifted and red-asymmetric

profile. This fact suggests that the LAE star for-

mation is dominated by burst-like events and gas

outflows. The simulation results from Blaizot et

al. (2023) further concluded that red-dominated

lines preferentially arise during post-starburst

outflows, which increase their luminosity and

thus allows them to be detected with current

instrumentation. Within this context, most our

LAEs are in outflowing phases and environment

does not necessarily play a role in forming LAHs.

5.6 Conclusions
In this paper, we investigate how the proper-

ties of Ly𝛼 halos (LAHs) correlate with environ-

ment. We use two samples of 726 and 181 LAEs at

2.9 < 𝑧 < 6.7 from the MUSE deep fields (MUSE-

Deep) and ultra-deep field (UDF-10), respectively.

All sources have spectroscopic redshifts and

the median Ly𝛼 luminosities of the datasets are

log(𝐿L𝑦𝛼/[erg s
−1]) ≈ 41.74, 41.66. We match

the LAEs to their individually-measured LAHs

from Leclercq et al. (2017) and obtain 142 (from

MUSE-Deep) and 42 (from UDF-10) LAEs with

available LAH properties.

We use two methods to characterize distinct-

scale environments. While we bin our LAE

samples in 𝛥𝑧 = 0.1 redshift slices and apply

the Voronoi-Delaunay tesselation (VDT) to con-

sider small-scale (≈ 0.4 pMpc) overdense regions,

we detect peaks in the kernel density estima-

tor (KDE)-filtered redshift distribution of the

datasets to examine Mpc-scale (≈ 2 pMpc) LAE

overdensities. We compute the local surface den-

sity of our LAEs and explore how the halo scale

length, 𝑟s, and halo fraction of the total Ly𝛼 flux,

𝑋Ly𝛼−h, vary with LAE overdensity.

We obtain overdensity values in the range -1–

11 and find no clear LAH property dependence

on environment. Neither the LAH scale length

nor the halo fraction show any significant varia-

tion with the overdensity of the region where the

LAEs reside. Both the VDT and the KDE yield

consistent results.

We compare the 𝑟s trend to those found in the

literature. In contrast to the scale lengths of this

study, those from previous studies were based

on stacks of narrowband data. Despite this dif-

ference and the distinct LAE properties of this

and other studies, our results are in agreement

with the most recent literature.

We also investigate the possibility that the

LAH property distributions of LAEs that are lo-

cated inside and outside overdense regions differ.

The 𝑟s and 𝑋Ly𝛼−h histograms of overdense and

non-overdense regions are visually alike. We

perform the Kolmogorov-Smirnov and Mood’s

median tests to quantify the visual similarity of

the distributions and medians, respectively, and

find that they are mathematically indistinguish-

able. We discuss the implications of these results

for the origin of LAHs.
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Conclusions and outlook

6.1 Summary

In this thesis, I studied various topics in the gen-

eral framework of dark – baryonic matter rela-

tion, large-scale structure of the high-redshift

universe traced by Lyman-𝛼 (Ly𝛼) emitters

(LAEs), its properties and their extended Ly𝛼

gaseous halos (LAHs). These range from de-

tailed clustering studies of LAEs detected with

the Multi Unit Spectroscopic Explorer (MUSE) at

redshifts of 3 < 𝑧 < 6, over investigations on the

faint LAE clustering contribution to the LAHs,

to a statistical study of the environment effect

on the LAH properties.

In Chapter 2, I utilized a sample of 695 LAEs

from the MUSE-Wide survey (1 h exposure time)

to study the clustering properties of the dataset.

As the clustering statistic, I applied an optimized

version of the K-estimator from Adelberger et al.

(2005) and supported our results with the tradi-

tional two-point correlation function, measuring,

for the first time, the spatial clustering in a spec-

troscopic sample of Ly𝛼-selected galaxies.

I then fitted the clustering signal with a power-

law-based correlation function and obtained a

correlation length of 𝑟0 = 3.60+3.10−0.90 ℎ
−1

Mpc and

a correlation slope of𝛾 = 1.30+0.36−0.45. That is, statis-
tically, any MUSE-Wide-like galaxy has a neigh-

bour at a distance within 𝑟0. These correlation

parameters translate into a large-scale bias fac-

tor of 𝑏 = 3.03+1.51−0.52. Hence, LAEs cluster 𝑏 times

more strongly than the underlying dark matter.

I also employed a more advanced fit approach

i.e., scaling a halo occupation distribution model

(HOD) to the large scales of the clustering signal.

In line with the simple power-law fit, I obtained

𝑏 = 2.80+0.38−0.38 and a typical dark matter halo

(DMH) mass of log(𝑀h/[ℎ−1M⊙]) = 11.34+0.23−0.27,
which is in general agreement with the most

recent literature.

I also compared our results with the cluster-

ing in 100 light cones from the GADGET dark-

matter-only cosmological simulation coupled to

the GALICS semi-analytical modelling of LAEs.

Likely driven by the unrealistically spiky mod-

elled redshift distribution, I found that the sim-

ulated clustering is far from successfully repro-

ducing observations.

Assuming galaxy-conserving evolution mod-

els, I predicted that the DMHs of MUSE-Wide

LAEs will typically evolve into halos of log(𝑀h/
[ℎ−1M⊙]) ≈ 13.5 by 𝑧 = 0. This suggests that

the host DMHs of these LAEs are the DMH an-

cestors of present-day galaxy groups, which are

≈ 15 times more massive than the DMH of the

Milky Way.

Although in Chapter 2 I excluded the possi-

bility of a strong clustering dependence on Ly𝛼

equivalent width, UV absolute magnitude, and

redshift, I found a tentative (2𝜎) trend of a de-

pendence on Ly𝛼 luminosity (𝐿Ly𝛼 ). Later on,

in Chapter 3, I found a strong clustering depen-

dence on the latter. In Chapter 3, however, I in-

cluded the deepest MUSE surveys namely, 1030

LAEs from the complete MUSE-Wide survey, 679

LAEs fromMUSE-Deep (10 h exposure time), and

367 LAEs from the to-date deepest ever spectro-

scopic survey, the MUSE Extremely Deep Field

(MXDF; 140 h). I thus connected the clustering

properties of 𝐿★ LAEs with those of much fainter

ones in the MXDF.

To fit the clustering signals from the new sam-

ples, I applied HOD modelling, including both

the small and large scales. I modelled the LAE

HOD as a function of DMH mass with three pa-

rameters: the threshold DMHmass to host a cen-

tral LAE (𝑀min), to host (on average) one satellite

LAE (𝑀1), and the power-law slope of the num-

ber of satellites per DMH (𝛼). Although with

higher precision, I derived a similar typical DMH

mass and bias factor for the high-luminosity sam-

ple (MUSE-Wide) to those inferred in Chapter 2

(based on large-scale only HOD modelling and

on a subset of the current MUSE-Wide dataset).

For the lower luminosity samples, I found lower

DMH masses: while for the log(𝐿Ly𝛼/erg s
−1) ≈

41.64 dataset (intermediate luminosity; MUSE-

Deep) I inferred log(𝑀ℎ/ [ℎ−1𝑀⊙]) = 10.89+0.09−0.09
(𝑏 = 2.42+0.10−0.09), for the low-luminosity sample

(MXDF; log(𝐿Ly𝛼/[erg s
−1]) ≈ 41.22) I com-

puted log (𝑀ℎ/[ℎ−1𝑀⊙]) = 10.77+0.13−0.15 (𝑏 =

2.43+0.15−0.15).
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I then derived different threshold DMHmasses

for central and satellite LAEs for each sample.

The minimumDMHmasses needed to host a cen-

tral LAE were log(𝑀min/[ℎ−1𝑀⊙]) = 10.3+0.2−0.3,
10.5+0.2−0.1, 10.7+0.2−0.3 for low-, intermediate-, and

high- luminosity LAEs, respectively. The cor-

responding threshold DMH mass and power-

law slope for satellites varied from log(𝑀1/[ℎ−1
𝑀⊙]) = 11.7+0.3−0.2 and 𝛼 = 1.5±0.5 to log(𝑀1/[ℎ−1
𝑀⊙]) = 12.4+0.3−0.2 and 𝛼 = 3.0+0.4−0.5 and to log(𝑀1/
[ℎ−1𝑀⊙]) = 12.4+0.4−0.6 and 𝛼 = 2.8+0.9−0.7, respec-
tively. These values translated into a decreas-

ing number of detected satellite LAEs with in-

creasing luminosity i.e., satellite fractions of

𝑓sat ≲ 3, 10% for high- and low-luminosity LAEs,

respectively. Therefore, the most common sce-

nario for LAEs is that in which DMHs mainly

host a single detected LAE.

I then exploited the large dynamic range of

𝐿Ly𝛼 of the three surveys and split them at their

median luminosities. Selecting the highest lu-

minosity subset from the MUSE-Wide survey

(median log(𝐿Ly𝛼/erg s
−1) ≈ 42.53) and the low-

est luminosity subsample from the MXDF (me-

dian log(𝐿Ly𝛼/erg s
−1) ≈ 40.97) resulted in a

clear clustering difference, where the highest

luminosity subset clusters more strongly and re-

sides in more massive halos (𝑏high = 3.13+0.08−0.15
or log(𝑀h/[ℎ−1M⊙]) = 11.43+0.04−0.10) than the low-

est luminosity one (𝑏low = 1.79+0.08−0.06 or log(𝑀h/
[ℎ−1M⊙]) = 10.00+0.12−0.09), at 8𝜎 significance.

I discussed the implications of these results in

terms of reported measurements of evolving Ly𝛼

luminosity functions, detections of incomplete

reionization at 𝑧 ≈ 6, and the relation between

Ly𝛼 escape fraction and DMH mass. These re-

sults were also crucial for the much debated rel-

evance of undetected LAEs (fainter than those

in the MXDF) for the observed extended LAHs,

which lead us to Chapter 4.

In Chapter 4, I turned the HOD-modelled clus-

tering properties of a sample of 1265 LAEs at

3 < 𝑧 < 5 from the MUSE-Wide survey into

implications for the spatially extended Ly𝛼 emis-

sion in the circumgalactic medium (CGM) of

LAEs. I also considered various alternative clus-

tering scenarios for undetected LAEs and com-

bined them with assumptions on the Ly𝛼 emit-

ter luminosity function (LF), considering only

the emission from undetected LAEs. I then in-

tegrated the Ly𝛼 LF to estimate the background

surface brightness (SB) due to discrete faint LAEs

and transformed these ingredients into Ly𝛼 SB

profiles (SB as a function of distance 𝑅 from the

center of the LAE) from clustered and individ-

ually undetected close neighbors. The result-

ing inferred faint radial profiles ranged between

(0.4 − 2) × 10
20

erg s
−1

cm
−2

arcsec
−2
, with a

very slow radial decline outwards, which likely

leads to the flattening at 𝑅 ≳ 30 pkpc seen in

observed total Ly𝛼 SB profiles.

I compared our faint LAE Ly𝛼 SB profiles to

the total stacked radial profile computed in

Wisotzki et al. (2018). I found that while the stel-

lar irradiation from undetected LAEs can domi-

nate the excess surface brightness at large scales

(𝑅 ≳ 50 pkpc), the Ly𝛼 SB profile at 𝑅 ≲ 20 pkpc

cannot be described by undetected sources and

may be better explained by a genuinely diffuse

origin. I also compared our estimated Ly𝛼 SB

profiles with simulation studies and found an

overall agreement. I finally outlined possible fu-

ture experiments to directly constrain the faint

LAE SB contribution from observed data.

In Chapter 5, I investigated whether the prop-

erties of 184 observed LAHs from 726 MUSE-

Deep and 181 ultra-deep field (UDF-10) LAEs

at 2.9 < 𝑧 < 6.7 were affected by environ-

ment. I used different definitions of overden-

sity to consider distinct-scale overdense regions.

While I employed the Voronoi-Delaunay tessela-

tion to characterize small-scale LAE overdensi-

ties (≈ 0.4 pMpc), I detected peaks in the kernel

density estimator (KDE)-filtered redshift distri-

bution of the samples to examine larger-scale

(≈ 2 pMpc) overdensities. I found no correla-

tion between the scale length of the LAHs, 𝑟s,

as well as the halo fraction of the total Ly𝛼 flux,

𝑋Ly𝛼−h, with LAE overdensity. The two methods

delivered consistent results.

I also selected LAEs located inside overdense

regions and compared their 𝑟s and 𝑋Ly𝛼−h distri-
butions with those from LAEs that reside outside

overdensities. I found that the distributions and

their medians are mathematically indistinguish-

able, which agrees with the last claims from the

literature. I discussed the implications of these

results for the origin of LAHs.

104



6.2 Future perspectives

6.2.1 The dark-baryonic matter
relation

The main limitation of clustering studies with

MUSE data is their small spatial coverage (at

most tens of arcmin
2
on sky). Thus, our clus-

tering measurements suffer from cosmic sample

variance, specially those performed in MUSE-

Deep and the MXDF (see Chapter 3). A large-

scale spectroscopic 3D survey that covers large

portions of the sky would significantly reduce

cosmic sample variance and improve the statis-

tics. This can already be pursued with HETDEX

and Euclid, whose first data were released early

this year (Cooper et al. 2023; Chavez Ortiz et al.

2023; see Sect. 6.2.3 for more details).

A spatial extension of MUSE surveys would

also be beneficial. This would not only increase

the S/N of clustering measurements (by detect-

ing a higher amount of LAEs) and reduce cosmic

variance (by covering larger areas of the sky), but

it would also allow the simultaneous constraint

of the five HOD parameters (see Chapter 3). In

fact, if the sample were large enough, it would

also be possible to include a sixth parameter in

themodelling: the duty cycle of LAEs (fraction of

DMHs hosting LAEs to those hosting any galaxy).

This is due to (i) the on and off star formation

of LAEs (e.g., driven by feedback), and (ii) the

visibility of Ly𝛼 being somewhat line-of-sight

dependent (at fixed star formation rate). Most

studies point towards a duty cycle of few percent

but the measurements are still uncertain (Kovac

et al., 2007; Nagamine et al., 2010; Ouchi et al.,

2017). The final LAE sample of HETDEX (and

even the already available data) is also ideal to

improve such experiments.

Somewhat related is the the underlying as-

sumption of our HOD models: the center of the

DMHwith mass𝑀h > 𝑀 min is always populated

by one galaxy in the sample (or at least at a𝑀h-

independent constant probability). This is very

restrictive and should be relaxed in the future.

Clustering studies of LAEs would also benefit

from the refinement of simulations coupled to

radiative transfer models of Ly𝛼 emission. While

most such simulations succeed at reproducing

the Ly𝛼 and UV LFs of LAEs at 3 < 𝑧 < 6, they

fail at replicating the LAE clustering properties.

To achieve this goal, simulators have now access

to the recipes provided in Chaper 3 (i.e., HODs,

large-scale bias factors, etc). The existence of

simulations able to mimic LAE clustering would

provide robust clustering uncertainties and real-

istic cosmic variance estimates (e.g., from hun-

dreds of simulated light-cones).

6.2.2 The origin of Lyman-𝜶 halos
While clustering measurements primarily profit

from wide sky coverages, the assessment of the

faint LAE contribution to the extended LAHs

benefits from long exposure times and deep spec-

troscopic data. Although from a purely astro-

physical perspective deeper surveys than the

MXDFwith large sky coverages are desirable, the

enormous observing time required makes this ex-

periment unlikely to be carried out. Deeper LAE

samples, however, would detect fainter LAEs,

which would allow us to compute the cluster-

ing of those sources, instead of making assump-

tions on their clustering behaviour (as in Chap-

ter 4). Furthermore, we could also observe these

faint objects in MUSE pseudo-NB images, which

would permit the constraint of their contribu-

tion to the LAHs directly from their incidence

rate. Deeper data is also needed to constrain the

faint-end slope of the Ly𝛼 LF, which plays an

important role when estimating the faint LAE

SB contribution (see Chapter 4). Because deeper

observations would be extremely expensive, the

lensed fields observed with MUSE are the cur-

rent alternative. These fields reach luminosities

as faint as 𝐿Ly𝛼 ≈ 10
39
erg s

−1
(more than one or-

der of magnitude fainter than the MXDF). In the

long term, lensed fields may also detect a frac-

tion of the currently undetected faint LAEs. This

is at present challenging given the significant

lensing uncertainties e.g., magnification errors,

in combination with several other factors.

Meanwhile, available non-lensed data should

be further exploited. We should aim at measur-

ing the incidence rate of faint neighbours around

individual LAEs in theMXDF to disentangle their

contribution from genuinely diffuse emission.

There are several avenues to achieve this:

– Simultaneous inspection of spectra and

pseudo-NB images of all LAEs in the

MXDF. We should strive for detecting

peaks and flux excesses in the spectrum

and pseudo-NB image, respectively. This

would be indicative of faint LAEs.

– Comparison of individual and stacked Ly𝛼
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SB profiles. While stacked profiles seem

to be significantly affected by faint LAEs

at large scales (see Chapter 4), this contri-

bution should vary in individual profiles.

Diverse SB tails, asymmetries or other ex-

ternal disturbances would reveal the pres-

ence of close neighbours, because central

LAEs alone should deliver self-consistent

individual profiles. We could then use this

to constrain the frequency of detectable

faint LAEs.

– Comparison of distinct stacking ap-

proaches (see also Sect. 4.4.6 in Chapter 4).

We can compare mean stacked profiles

to median ones, center the stacking ex-

periment on the Ly𝛼 peak and/or on the

wavelength corresponding to the systemic

redshift, select different bandwidths to

extract the LAE pseudo-NB images from

the IFU data, perform stacking analyses

for various luminosity and redshift bins,

etc. These experiments differ in the sen-

sitivity to asymmetries in the outskirts of

the LAH, which can be used to estimate

the frequency of close neighbours.

While the first two avenues can be addressed

with the available MXDF data (and with the deep

data from the future integral field spectrograph

BlueMUSE; see next section), the investigations

that involve the split of the dataset into subsam-

ples may require larger samples. Once again,

HETDEX (and possibly BlueMUSE) fulfils the

requirement (see Sect. 6.2.3).

To address this problem from a different angle,

we can rely on intensity mapping. Intensity map-

ping studies compute the cross-correlation func-

tion between LAEs and the corresponding Ly𝛼

emission maps to constrain the integrated Ly𝛼

emission over large cosmological volumes (e.g.,

Kakuma et al., 2021; Kikuchihara et al., 2022).

In that sense, stacked Ly𝛼 SB profiles and inten-

sity mapping experiments are complementary.

Despite the limited sky coverage of the MXDF

(or MUSE-Deep), applying intensity mapping on

these surveys could still map the extended emis-

sion out to few ℎ−1cMpc. These have the unique

advantage, over common LAE samples, of iden-

tifying fainter LAEs and foreground contamina-

tors. Besides, the comparison to intensity map-

ping results from non-resonant-line-selected star

forming galaxies such as O[II] emitters would

bring further light onto the physical processes

that power LAHs. While similar intensity map-

ping outcomes from LAEs and O[II] emitters at

large scales would point towards satellite driven

LAHs, distinct results would suggest that the

large scales of the LAHs are powered by reso-

nant mechanisms.

I also explored the possibility that LAHs are

affected by environment (see Chapter 5), using

the LAH properties measured in the MUSE-Deep

and UDF-10 samples of LAEs. This study is, how-

ever, preliminary and further investigations are

needed. I see the following directions:

– We should fit the LAH of all detected LAEs

(independently of the S/N) in MUSE-Deep

data and perform a similar analysis to that

described in Chapter 5. Although this will

deliver hundreds of new LAH properties

and will improve the statistics of the in-

vestigation, the new LAH sample will still

be relatively small. BlueMUSE will yield

larger and fainter LAE samples thanMUSE

(see next section). As an alternative, we

could also rely on the stacking of HETDEX

LAEs in different environments.

– Different overdensity finders should be ex-

plored. While the finders we applied are

robust at detecting overdense regions, al-

gorithms such as the Friends-of-Friends

are better suited to trace structure. Dis-

tinct definitions of overdensity may have

an affect on the trends seen in Chapter 5.

The overdense regions of Chapter 5, together

with the resulting ones from the proposals above,

should also be used to confirm some of the pre-

dictions of Chapter 3. For instance, the relation

I found between DMH mass and Ly𝛼 luminosity

implied that the faint-end slope of the Ly𝛼 LF at

3 < 𝑧 < 6 is shallower in overdense regions than

in average or low density environments. This is

also relevant for the faint LAE contribution to

the extended LAHs of Chapter 4.

Ultimately, all the analyses and experiments I

performed in this thesis and proposed in this

section should also be applied to other (non-

resonant) nebular lines at lower redshifts i.e.,

H𝛼 , O[II], O[III], etc. It may be that the observed

diffuse emission in these emission-line-selected

galaxies (see e.g., Zhang et al., 2016; Rajeshwari

et al., 2023) is, in fact, produced by individually

undetected sources or powered by the environ-

ment in which those galaxies are embedded.
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6.2.3 Future instrumentation

Many of the experiments I proposed as possi-

ble future projects will greatly benefit from up-

coming instrumentation or ongoing surveys. In

the following, I outline the most relevant experi-

ments.

HETDEX (Gebhardt et al., 2021) is an integral

field spectroscopic experiment whose final sur-

vey is designed to cover a large area of the sky

(> 540 deg
2
, contrary to the tens of arcmin

2
of

MUSE) and detect more than one million LAEs

in the redshift range of 1.8 < 𝑧 < 3.5 (opposed

to the MUSE range of 2.9 < 𝑧 < 6.7). The

first HETDEX data were already released, which

included more than 50000 LAEs over 25 deg
2

on the sky (Cooper et al., 2023). Such charac-

teristics are supreme to investigate the large-

scale clustering of these sources. HETDEX will

complement the results of this thesis at lower

redshifts and at the high Ly𝛼 luminosity end

(42.7 < 𝐿Ly𝛼/[erg s
−1] < 44.2), delivering LAE

clustering properties with minor cosmic sample

variance uncertainties.

Investigations of the origin of LAHs will also

be possible with HETDEX. Its complete sample

of LAEs will be useful to investigate the faint

LAE contribution to the LAHs (by performing

stacks of LAE pseudo-NB images at various red-

shifts and Ly𝛼 luminosities; see previous section)

and the possible environment effect on LAHs

(by characterizing stacks of LAEs in different

environments). For these purposes, the future

integral field spectrograph BlueMUSE (Richard

et al., 2019), planned for the next decade, will

be groundbreaking. BlueMUSE will complement

the science cases of MUSE in the blue part of

the spectrum (1.8 < 𝑧 < 4) and, because of the

smaller dimming effects at lower redshifts, it will

detect a significantly larger amount of faint LAEs.

Therefore, BlueMUSE will be more sensitive to

diffuse emission than MUSE, which may allow

the differentiation between the truly diffuse com-

ponent of LAHs and large-scale-structure arte-

facts.

The ongoing Texas Euclid Survey for Lyman

Alpha (TESLA; first data publicly available in

Chavez Ortiz et al. 2023) will assist in matters

similar to HETDEX. The survey uses the IFU

from HETDEX to observe 10 deg
2
in the Euclid

north ecliptic pole field. Once complete, TESLA

will provide more than 50000 LAEs, allowing

large-scale clustering, and stacked LAH environ-

ment studies in a different region of the sky.

In the near future, a large amount of LAEs

at 2 < 𝑧 < 7 is also expected from the follow-

up of the hyper suprime cam (HSC) fields with

the prime focus spectrograph (PFS; Takada et al.

2014), to start on the Subaru telescope. The PFS

will sample ∼ 1400 deg
2
on the sky, which will

permit similar investigations as those proposed

for HETDEX.

The Ly𝛼 detection is also among the science

goals for spectroscopic instruments on the James

Webb space telescope (JWST; Gardner et al. 2006).

By probing Balmer lines, JWST will help dis-

entangle the various mechanisms that produce

LAHs. While Ly𝛼 is powered by scattering, cool-

ing radiation, fluorescence, star formation in the

LAH, etc (see Sect. 1.3.2), H𝛼 (accessible with

JWST) is only affected by the latter two. The

UV continuum, on the other hand, only becomes

extended due to the star formation in the LAH

e.g., undetected LAEs. The comparison between

LAHs, H𝛼 halos, and UV halos may clarify the

relevant scales of the dominant powering mech-

anisms.

Spectroscopic instruments or survey tele-

scopes planned for the next decade such as the

multiplexed survey telescope (MUST), the Mau-

nakea spectroscopic explorer (MSE) or the wide-

field spectroscopic telescope (WST) may also de-

liver the data quantity and quality to further

promote our knowledge on these matters.

References

Adelberger, K. L., Steidel, C. C., Pettini, M., et al.,

(2005), ApJ, 558, A33

Chavez Ortiz, O. A., Finkelstein, S. L., Davis, D.,

et al., (2023), arXiv:2304.03258

Cooper, E. M., Gebhardt, K., Davis, D., et al.,

(2023), arXiv:2301.01826

Gardner, J. P., Mather, J. C., Clampin, M., et al.,

(2006), SCR, 123, 485

Gebhardt, K., Cooper, E. M., Ciardullo, R., et al.,

(2021), ApJ, 923, 217

Kakuma, R., Ouchi, M., Harikane, Y., et al., (2021),

ApJ, 916, 22

Kikuchihara, S., Harikane, Y., Ouchi, M., et al.,

(2022), ApJ, 931, 97

Kovac, K., Somerville, R. S., Rhoads, J. E., et al.,

(2007), ApJ, 668, 15

107



Nagamine, K., Ouchi, M., Springel, H., et al.,

(2010), PASJ, 62, 1455

Ouchi, M., Harikane, Y., Shibuya, T., et al., (2017),

PASJ, 70, S13

Rajeshwari, D., Fossati, M., Fumagalli, M., et al.,

(2023), MNRAS, 522, 535

Richard, J., Bacon, R., Blaizot, J., et al., (2019),

arxiv:1906.01657

Takada, M., Ellis, R. S., Chiba, M., et al., (2014),

PASJ, 66, R1

Wisotzki, L., Bacon, R., Brinchmann, J., et al.,

(2018), Nature, 562, 229

Zhang, H., Zaritsky, D., Zhu, G., et al., (2016),

ApJ, 833, 11

108



Appendix A

Finding HST counterparts for MUSE data:
QtCounterpart

ABSTRACT
QtCounterpart is a graphical user interface (GUI) designed to find HST counterparts for sources

detected in integral field data cubes. QtCounterpart was build in python for the HST counter-

part assignation to emission line objects of MUSE data. Exploiting the full potential of the GUI,

QtCounterpart displays a pseudo-narrowband image extracted from the MUSE data cube and four

HST bands for each spectroscopically detected object. In addition, spectroscopic and photometric

information for each source is also displayed. As an user-friendly tool, QtCounterpart does not

depend on external software, can be executed on a normal PC or laptop, is intuitive to use, and is

publicly available under https://github.com/YohanaHerrero/QtCounterpart/tree/main.

A.1 General concept
Integral field spectroscopy (IFS) delivers three dimensional data cubes with one wavelength and two

spatial coordinates. After the cubes have been carefully reduced (Urrutia et al., 2019), the Line Source

Detection and Cataloguing (LSDCat, Herenz & Wisotzki 2017) software is used to create a catalogue

of emission lines detected in the cube. A source catalogue is then produced through visual inspection

using the QtClassify tool (Kerutt, 2017), which classifies the emission lines found by LSDCat
and computes the redshift of the source. These algorithms, however, do not allow for any physical

interpretation of the detected sources. In order to link their spectroscopic to their photometric data

and to gather information about their morphology and orientation, which is indispensable to derive

stellar masses, sizes, etc, we require HST counterparts.

A.1.1 Input data
As input, QtCounterpart requires one MUSE datacube, its corresponding spectroscopic catalogue

of emission lines or sources, HST band images (maximum four) targeting the same area of the sky,

and a photometric catalogue. Only the catalogues and one HST image are "must" arguments for the

GUI, the rest is optional. If not passed, the corresponding information is omitted.

The MUSE datacube must have two spatial dimensions (RA and Dec), wavelength information and

a proper WCS. The header must contain pixel information (keyword ’CD2_2’ or ’CDELT2’), ’CD3_3’
(bin size of wavelength), and ’CRVAL3’ (starting point of wavelength).

The HST images must also contain a proper WCS with pixel information, i.e. ’CRPIX’ keyword.

Besides, if later on you want to perform forced photometry for a photometrically unclassified HST

detection, the HST header also needs to contain the keyword ’PHOTFLAM’.

The spectroscopic and photometric catalogues must, at least, contain RA and DEC in degrees. They

can also contain additional info such as ID, confidence, lead line, signal-to-noise, flux, magnitude,

photo_z, redshift, wavelength. If this info is not provided, it will not be displayed in the interface

and no narrowband image from the data cube will be extracted (in case no redshift or wavelength

info is available).

Before running the GUI, I show an example of an useful setting of file and directory names:

Inside my work directory I have a directory named HST_images (it contains HST images: a

maximum of four are displayed in the GUI):
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acs_435w_candels-cdfs-01_cut_v2.0.fits
acs_606w_candels-cdfs-01_cut_v2.0.fits
acs_814w_candels-cdfs-01_cut.fits
wfc3_160w_candels-cdfs-01_cut_v2.0.fits

Inside my work directory I have another directory named Fields (it contains the MUSE data

cube and the spectroscopic catalogue e.g., the LSDCat output file):

DATACUBE_candels-cdfs-01_v2.0_dcsub_effnoised.fits
lsdcat_candels-cdfs-01.fits

In my work directory, I have the photometric catalogue:

catalog_photometry_candels-cdfs-01.fits

Because ident_counterparts.py is the main script of QtCounterpart, you can remind your-

self of the files and parameters you need to pass to theGUI by doing ident_counterparts.py --help.
The default names of the files (and parameters), their default location, and a brief explanation of

what they are is also displayed. That is:

usage: ident_counterparts.py [-h] [-cube INPUTDATA] [-c CATALOG] [-p PCATALOG]
[-hstMAIN HSTIMAGEMAIN] [-hst1 HSTIMAGE1]
[-hst2 HSTIMAGE2] [-hst4 HSTIMAGE4] [-o OUTPUT]
[-c_RA COLUMN_RA] [-c_DEC COLUMN_DEC]
[-c_lambda COLUMN_LAM] [-c_z COLUMN_Z]
[-c_ID COLUMN_ID] [-c_sn COLUMN_SN]
[-c_line COLUMN_LINE]
[-c_confidence COLUMN_CONFIDENCE]
[-c_pRA COLUMN_PRA] [-c_pDEC COLUMN_PDEC]
[-c_pID COLUMN_PID] [-c_photoz COLUMN_PHOTOZ]
[-c_pmag_flux COLUMN_PMAG_FLUX]

Optional arguments:

-h, --help show this help message and exit
-cube INPUTDATA, --inputdata INPUTDATA

Input flux cube FITS file (e.g. DC subtracted
effnoised cube). (default: None)

-c CATALOG, --catalog CATALOG
Input spectroscopic catalogue FITS file (e.g. from
LSDCat, consolidated MUSE catalogue, etc).
(default: /work/Fields/lsdcat_candels-
cdfs-47.fits)

-p PCATALOG, --pcatalog PCATALOG
Input photometric catalogue FITS file.
(default: /work/catalog_photometry_candels-

cdfs-47.fits)
-hstMAIN HSTIMAGEMAIN, --hstimageMAIN HSTIMAGEMAIN

HST main image for comparison. (default:
HST_images/acs_814w_candels-cdfs-47_cut_v1.0.fits)

-hst1 HSTIMAGE1, --hstimage1 HSTIMAGE1
HST1 image for comparison. (default:
HST_images/acs_435w_candels-cdfs-47_cut_v1.0.fits)

-hst2 HSTIMAGE2, --hstimage2 HSTIMAGE2
HST2 image for comparison. (default:
HST_images/acs_606w_candels-cdfs-47_cut_v1.0.fits)
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-hst4 HSTIMAGE4, --hstimage4 HSTIMAGE4
HST4 image for comparison. (default:
HST_images/wfc3_160w_candels-cdfs-47_cut_v1.0.fits)

-o OUTPUT, --output OUTPUT
Output catalogue FITS table.
(default: /work/output_test.fits)

-c_RA COLUMN_RA, --column_RA COLUMN_RA
Column name in input FITS spectroscopic catalogue for
RA in degrees (default: RA)

-c_DEC COLUMN_DEC, --column_DEC COLUMN_DEC
Column name in input FITS spectroscopic catalogue for
DEC in degrees (default: DEC)

-c_lambda COLUMN_LAM, --column_LAM COLUMN_LAM
Column name in input FITS spectroscopic catalogue for
wavelength in Angstrom (default: LAMBDA)

-c_z COLUMN_Z, --column_z COLUMN_Z
Column name in input FITS spectroscopic catalogue for
redshift (default: Z)

-c_ID COLUMN_ID, --column_ID COLUMN_ID
Column name in input FITS spectroscopic catalogue for
ID (default: ID)

-c_sn COLUMN_SN, --column_sn COLUMN_SN
Column name in input FITS spectroscopic catalogue for
SN (default: S2N)

-c_line COLUMN_LINE, --column_LINE COLUMN_LINE
Column name in input FITS spectroscopic catalogue for
lead line (default: LINE_ID)

-c_confidence COLUMN_CONFIDENCE, --column_confidence COLUMN_CONFIDENCE
Column name in input FITS spectroscopic catalogue for
confidence (default: CONFIDENCE)

-c_pRA COLUMN_PRA, --column_pRA COLUMN_PRA
Column name in input FITS photometric catalogue for RA
in degrees (default: ra)

-c_pDEC COLUMN_PDEC, --column_pDEC COLUMN_PDEC
Column name in input FITS photometric catalogue for DEC
in degrees (default: dec)

-c_pID COLUMN_PID, --column_pID COLUMN_PID
Column name in input FITS photometric catalogue for ID
(default: id)

-c_photoz COLUMN_PHOTOZ, --column_photoz COLUMN_PHOTOZ
Column name in input FITS photometric catalogue for
photo_z (default: z_p)

-c_pmag_flux COLUMN_PMAG_FLUX, --column_pmag_flux COLUMN_PMAG_FLUX
Column name in input FITS photometric catalogue for
pflux or magnitude (default: F160W_LIMITING_MAGNITUDE)

An example on how to run the GUI would be:

-cube /work_directory/Fields/DATACUBE_candels-cdfs-01_v2.0_dcsub_effnoised.fits
-c lsdcat_candels-cdfs-01.fits -p catalog_photometry_candels-cdfs-01.fits -c_pRA RA -c_pDEC DEC -c_pID ID

If I do not pass more files/parameters I am either using the default ones (e.g., default HST images)

or I am not using them at all.
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A.1.2 Requirements
QtCounterpart uses a range of default packages included in standard installations of python.

In order to run QtCounterpart you will need python version 3.7.x and the following standard

packages:

numpy
matplotlib
math
scipy
pylab

You will also need somewhat special packages:

acstools
photutils
astropy
pyqtgraph
PyQt5

A.2 Description of QtCounterpart
In this section I describe the functionality of QtCounterpart in detail. This can be seen as a guide

on how to use the tool. I refer the reader to Fig. A.2.1 to look at the individual features of the GUI.

Note that by keeping the mouse on top of each button/box of QtCounterpart a tip box is displayed

to remind the user of its corresponding functionality.

The bottom left panel of the GUI shows the extracted pseudo-narrowband image of the MUSE

detection ("MUSE narroband"), which was recorded in the spectroscopic MUSE catalogue. The top

left panel shows a HST band cutout ("Main HST image") corresponding to the same region of the

sky where the detected MUSE object is located. Similarly, the four top small panels (small HST band

images) show different HST bands of the same sky. The user decides which cut-outs are displayed.

The numerical boxes below the small HST panels determine the resolution cuts of the HST bands.

The contrast of the HST images can be modified by changing the cut number in the text boxes and

clicking afterwards on the "Cuts" button. By using the "Reset images" button, the resolution of all

HST images is set back to default (0.99). By double clicking on one of the small HST images, the

user converts this into the main HST image of the GUI. It is also possible to zoom in or out on all

displayed images by using the mouse.

The spectroscopic data from the MUSE catalogue is listed at the bottom of the GUI. Information

such as MUSE ID, right ascension (RA), declination (Dec), wavelength (lambda) or redshift (z),

confidence of the source detection, the line that lead to the detection or the signal-to-noise (S/N) of

the detection is given. Right on top, the photometric data from the phototometric catalogue will be

shown once a counterpart is selected. The photometric UV ID, the difference in RA and Dec between

the spectroscopic and the photometric positions, the photometric redshift, and the magnitude will

appear.

Inside the main HST image, the empty white circles show the position of the possible HST

counterparts to the MUSE source, based on spatial assumptions (max 6" apart from the MUSE source).

The user can click on any of the white circles to choose the most likely counterpart. This circle will

then turn into red and the photometric information of the selected object will be displayed in the

photometric information section. In order to guide the eye during the counterpart selection, the main

HST image (and the MUSE narrowband) also contains the position of the MUSE object according

to the spectroscopic data (crossed black circle). When the counterpart is selected, the user should

tell the GUI how sure he/she is about his/her selection. For that purpose, the user should click on

the "Confidence" bullet points. While "0" means the counterpart selection is uncertain, "3" means
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the assignation is certain. The user can then click on "next" to save all information and find the

counterpart for the next object in the MUSE catalogue. All information is saved in a fits output Table

(see Sect. A.2.1).

There might be cases in which the MUSE object has no counterpart in the HST data, the object is

not listed in the photometric catalogue or there is more than one counterpart. These cases can be

specified by clicking on the empty boxes below the "Confidence" section. The user can also write a

comment to record special characteristics or click on the "Clear counterparts" button to eliminate all

displayed information and start classifying that MUSE source from scratch.

If the possible counterpart is not in the photometric catalogue, no white circle appears around

the galaxy in the main HST image. However, the user may yet see a counterpart in the HST data. It

is then possible to perform a forced photometry by clicking on the center of that possible galaxy.

Once the user has clicked on the position of the main HST image where that counterpart is, the GUI

measures the flux and coordinates of the object. In this case, the user needs to specify the case that

he/she encountered (e.g. "Counterpart not in catalog"), leave a comment if he/she wishes and click

"next" to save the information.

It is of course possible to revisit the already classified objects by clicking on "previous" until the

user reaches the desired object. A more practical way to do this is to write the MUSE ID of the desired

object in the empty box on the right of the "Jump to MUSE ID" button, click on the button and that

object will be displayed. Note that to save or rewrite the information of an object, the user must click

on "next" once a button/counterpart on the interface has been clicked. If nothing was clicked on the

GUI, nothing will be saved/rewritten.

To exit the GUI, the user can press the red cross on the top right corner of the interface. To continue

the classification where it was left, the user can click on the "Jump to next unclassified ID" button.

A.2.1 Output data
The output file generated by QtCounterpart is a fits Table containing all the counterpart identifi-

cation information that was displayed in the GUI before "next" was clicked. The table contains the

following columns:

’ID’: ID of the MUSE object
’UV_ID’: photometric ID of the counterpart
’MUSE_RA’: spectroscopic RA of the MUSE object (in deg)
’UV_RA’: photometric RA of the counterpart (in deg)
’delta_RA’: difference between MUSE_RA and UV_RA
’MUSE_DEC’: spectroscopic DEC of the MUSE object (in deg)
’UV_DEC’: photometric DEC of the counterpart (in deg)
’delta_DEC’: difference between MUSE_DEC and UV_DEC
’Separation’: angular separation in rad between the spectroscopic object
and the photometric location of the counterpart
’MUSE_lambda’: spectroscopic wavelength of the MUSE object
’MUSE_z’: spectroscopic redshift of the MUSE object
’UV_z’: photometric redshift of the counterpart
’Photometry’: flux or magnitude from photometric catalog
’Confidence’: how sure are you of your counterpart (non-)selection?
’Comment’: comment written during the selection, if any
’ra_noMatch’: RA of the undetected counterpart in photometric catalogue,
in case ’Not in catalog’ = ’Yes’ and you have clicked somewhere on
the main HST image
’dec_noMatch’: DEC of the undetected counterpart in photometric catalogue,
in case ’Not in catalog’ = ’Yes’ and you have clicked somewhere on
the main HST image
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’Forced photometry’: Forced photometry in case ’Not in catalog’ = ’Yes’ and
you have clicked somewhere on the main HST image (units: erg/s/cm^2/Angstrom)
’More than one counterpart’: ’Yes’ if there was more than one counterpart
and ’-’ if only one or none
’No match’: ’Yes’ if there was no HST detection that matches the MUSE object
and ’-’ if there is one/no counterpart
’Not in catalog’: ’Yes’ if the counterpart is not in the photometric catalogue
but you see a likely counterpart without a white circle around, and ’-’
for other cases e.g., there is one/no counterpart
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