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Abstract
Amoeboid cell motility takes place in a variety of biomedical processes such as cancer
metastasis, embryonic morphogenesis, and wound healing. In contrast to other
forms of cell motility, it is mainly driven by substantial cell shape changes. Based
on the interplay of explorative membrane protrusions at the front and a slower-
acting membrane retraction at the rear, the cell moves in a crawling kind of way.
Underlying these protrusions and retractions are multiple physiological processes
resulting in changes of the cytoskeleton, a meshwork of different multi-functional
proteins. The complexity and versatility of amoeboid cell motility raise the need for
novel computational models based on a profound theoretical framework to analyze
and simulate the dynamics of the cell shape.
The objective of this thesis is the development of (i) a mathematical framework to
describe contour dynamics in time and space, (ii) a computational model to infer
expansion and retraction characteristics of individual cell tracks and to produce
realistic contour dynamics, (iii) and a complementing Open Science approach to
make the above methods fully accessible and easy to use.
In this work, we mainly used single-cell recordings of the model organism Dic-
tyostelium discoideum. Based on stacks of segmented microscopy images, we apply a
Bayesian approach to obtain smooth representations of the cell membrane, so-called
cell contours. We introduce a one-parameter family of regularized contour flows to
track reference points on the contour (virtual markers) in time and space. This way,
we define a coordinate system to visualize local geometric and dynamic quantities
of individual contour dynamics in so-called kymograph plots. In particular, we in-
troduce the local marker dispersion as a measure to identify membrane protrusions
and retractions in a fully automated way.
This mathematical framework is the basis of a novel contour dynamics model, which
consists of three biophysiologically motivated components: one stochastic term,
accounting for membrane protrusions, and two deterministic terms to control the
shape and area of the contour, which account for membrane retractions. Our model
provides a fully automated approach to infer protrusion and retraction characteristics
from experimental cell tracks while being also capable of simulating realistic and
qualitatively different contour dynamics. Furthermore, the model is used to classify
two different locomotion types: the amoeboid and a so-called fan-shaped type.
With the complementing Open Science approach, we ensure a high standard re-
garding the usability of our methods and the reproducibility of our research. In
this context, we introduce our software publication named AmoePy, an open-source
Python package to segment, analyze, and simulate amoeboid cell motility. Fur-
thermore, we describe measures to improve its usability and extensibility, e.g., by
detailed run instructions and an automatically generated source code documentation,
and to ensure its functionality and stability, e.g., by automatic software tests, data
validation, and a hierarchical package structure.
The mathematical approaches of this work provide substantial improvements re-
garding the modeling and analysis of amoeboid cell motility. We deem the above
methods, due to their generalized nature, to be of greater value for other scientific
applications, e.g., varying organisms and experimental setups or the transition from
unicellular to multicellular movement. Furthermore, we enable other researchers
from different fields, i.e., mathematics, biophysics, and medicine, to apply our math-
ematical methods. By following Open Science standards, this work is of greater
value for the cell migration community and a potential role model for other Open
Science contributions.





Zusammenfassung
Amöboide Zellmotilität findet bei einer Vielzahl biomedizinischer Prozesse wie Krebs-
metastasierung, embryonaler Morphogenese und Wundheilung statt. Im Gegensatz
zu anderen Formen der Zellmotilität wird sie hauptsächlich durch erhebliche Form-
veränderungen der Zelle angetrieben. Sie beruht auf dem Zusammenspiel von explo-
rativen Membranausstülpungen an der Vorderseite und einem langsamer wirkenden
Membraneinzug an der Rückseite. Die Komplexität amöboider Zellmotilität machen
neue Berechnungsmodelle erforderlich, um die Dynamik der Zellform mathematisch
fundiert zu analysieren und zu simulieren.
Ziel dieser Arbeit ist die Entwicklung (i) eines mathematischen Frameworks zur Be-
schreibung der Konturendynamik in Zeit und Raum, (ii) eines Computermodells, um
Eigenschaften der Membranveränderungen von einzelnen Zellen zu inferieren und
gleichzeitig realistische Konturdynamiken zu simulieren, (iii) und eines ergänzenden
Open-Science-Ansatzes, um die oben genannten Methoden vollständig zugänglich
und leicht anwendbar zu machen.
Auf der Grundlage von aufeinander folgenden Mikroskopiebildern vom Modellorga-
nismus Dictyostelium discoideum, wenden wir einen Bayesschen Ansatz an, um glatte
Darstellungen der Zellmembran, sogenannte Zellkonturen, zu erhalten. Wir führen
eine einparametrige Familie von regularisierten Konturflüssen ein, um Referenz-
punkte auf der Kontur (virtuelle Marker) in Zeit und Raum zu verfolgen. Auf diese
Weise definieren wir ein Koordinatensystem zur Visualisierung lokaler geometri-
scher und dynamischer Größen der individuellen Konturdynamiken in sogenannten
Kymographen-Plots. Insbesondere führen wir die lokale Marker-Dispersion ein, mit
der signifikante Membranveränderungen identifiziert werden können.
Dieses mathematische Framework bildet die Grundlage für unser neues Modell
zur Beschreibung von Konturendynamiken. Es besteht aus drei biophysiologisch
motivierten Komponenten: einem stochastischen Term, der die Membranausstülpun-
gen steuert, und zwei deterministischen Termen, die das Membraneinziehen, unter
Berücksichtigung der Konturform und -fläche, steuern. Unser Modell bietet einen
vollautomatisierten Ansatz zur Inferrenz der Charakteristiken von Membranverände-
rungen für experimentelle Zelldaten. Außerdem ermöglicht es die Simulation von
realistischen und qualitativ unterschiedlichen Konturendynamiken.
Mit dem ergänzenden Open-Science-Ansatz setzen wir einen hohen Standard hin-
sichtlich der Nutzbarkeit unserer Methoden und der Reproduzierbarkeit unserer
Forschung. In diesem Kontext stellen wir die Softwarepublikation AmoePy vor, ein
Open-Source-Pythonpaket zur Segmentierung, Analyse und Simulation von amöboi-
der Zellmotilität. Darüber hinaus beschreiben wir Maßnahmen zur Verbesserung der
Benutzerfreundlichkeit und Erweiterbarkeit, z. B. durch detaillierte Ausführanwei-
sungen und eine automatisch generierte Quellcodedokumentation, und zur Gewähr-
leistung der Funktionalität und Stabilität, z. B. durch automatische Softwaretests,
Datenvalidierung und eine hierarchische Paketstruktur.
Die mathematischen Methoden dieser Arbeit stellen wesentliche Verbesserungen
in der Modellierung und Analyse der amöboiden Zellmotilität dar. Wir sind der
Ansicht, dass die oben genannten Methoden aufgrund ihrer Verallgemeinerbarkeit
von größerem Wert für andere wissenschaftliche Anwendungen sind und potentiell
einsetzbar in verschiedenen Wissenschaftsfeldern sind, u. a. Mathematik, Biophysik
und Medizin. Durch die Einhaltung von Open-Science-Standards ist diese Arbeit von
größerem Wert und ein potenzielles Vorbild für andere Open-Science-Beiträge.
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1Introduction

Being one of the most widespread forms of cell motility, amoeboid motion takes
place in a variety of biological processes. As part of the immune system response
of the human body, amoeboid migrating neutrophils play a key role in eliminating
pathogenic bacteria or fungi [1]. Other amoeboid migrating cells, being essential
to the humane immune response, include lymphocytes, natural killer cells, T cells
and monocytes [2]. For this reason, investigating amoeboid cell motility is crucial
to understand medical processes, e.g., the healing of wounded tissues [3], but also
the invasion and metastasis of cancer [4]. For example, leukemia, lymphoma, and
small cell lung carcinoma migrate in an amoeboid way [5], which underlines the
high scientific relevance of this field.

Amoeboid cell motility is characterized by dynamical changes of the the cell shape.
Through a coordinated pattern of explorative protrusions at the front and slower
acting retractions at the rear, the cell is moving in a crawling kind of way [6, 7].
The mechanical forces which drive amoeboid motion are resulting from changes of
the actin cytoskeleton, a meshwork of multifunctional proteins within the cell. By
polymerization and depolymerization of actin filaments, parts of the cell membrane
either expand or retract. In numerous cases, amoeboid motion and the underlying
physiological processes have been studied based on experimental recordings of the
model organism Dictyostelium discoideum, a slime mold with various advantageous
properties [8, 9].

Current modeling approaches differ in complexity and dimensionality, addressing
different aspects of amoeboid cell motility, e.g., random walk models to predict the
center of mass trajectory of the cell [10, 11, 12], or higher-dimensional models
to describe the underlying physiological processes and mechanics such as actin
protrusion dynamics [13, 14, 15]. However, many models remain qualitative, where,
oftentimes, predicted model outcomes are compared to experimental data by visual
inspection only. On the other hand, a model which aims to comprise all physiological
processes and mechanistic forces, is difficult to realize from a computational stand-
point, but is also difficult to interpret, due to a large number of model parameters
and entangled subprocesses [15]. This raises a need of quantitative, data-driven, and
fully automated approaches to identify and analyze the key characteristics of amoe-
boid cell migration, to classify different locomotion types, and to predict realistic
motility patterns. Ideally, these approaches are intuitively comprehensible and rely
on well-defined and, especially, well-understood mathematical concepts. Often, the
underlying data and source codes are not fully documented or not even published,
which makes it hard, if not impossible, for other researchers to use these models
and to apply them for different scientific applications. Hence, the development of
a computational amoeboid cell motility model should be complemented with an
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open science

Analyzing amoeboid cell motility
  ·  Estimating smooth contour representations
  ·  Mathematical framework providing contour
mappings and corresponding kymographs
  ·  Automated detection of cell shape deformations

Modeling amoeboid cell motility
  ·  Generating qualitatively different contour dynamics 
  ·  Analysis of experimental contour data by inferring
protrusion component and model parameters
  ·  Classification of different locomotion types

Open Science approach
  ·  Open access to publications, source codes, and data
  ·  Software publication: Python package AmoePy
with graphical user interface and code documentation
  ·  Ensuring reproducible and transparent research

2.5 5.0 7.5 10.0 12.5 15.0
x (μm)

30.0

32.5

35.0

37.5

40.0

42.5

45.0

y
(μ
m
)

Γ0

Γ1

(A)

2.5 5.0 7.5 10.0 12.5 15.0
x (μm)

Γ0

Γ1

(B)

2.5 5.0 7.5 10.0 12.5 15.0
x (μm)

Γ0

Γ1

(C)

0 100 200 300 400

t (s)

0

π
2

π

3π
2

2π

θ

(D)

− 0.30

− 0.15

0.00

0.15

0.30

Local mot ion (
μm
s )

0 100 200 300 400

t (s)

(E)

− 0.6

− 0.3

0.0

0.3

0.6

Curvature (
1
μm )

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x (μm)

35

40

45

50

55

y
(μ
m
)

(A)

15 20 25 30 35

x (μm)

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

y
(μ
m
)

(B)

fprot

wprot = 15

(A)

fAPCSF

wAPCSF = 1

(B)

fAAF

wAAF = 6

(C)

− 7.5 − 5.0 − 2.5 0.0 2.5 5.0 7.5
x (μm)

− 7.5

− 5.0

− 2.5

0.0

2.5

5.0

7.5

10.0

y
(μ
m
)

wprot = 15

(D)

− 7.5 − 5.0 − 2.5 0.0 2.5 5.0 7.5
x (μm)

wAPCSF = 40

(E)

− 7.5 − 5.0 − 2.5 0.0 2.5 5.0 7.5
x (μm)

wAAF = 15

(F)

0.00

0.25

0.50

0.75

1.00
Time (s)

0 10 20 30 40 50 60

x (μm)

20

30

40

50

60

70

y
(μ
m
)

(A)

0

100

200

300

400

Time (s)

28 30 32 34 36 38 40

x (μm)

44

46

48

50

52

54

56

58

60

62

y
(μ
m
)

(B)

0

π
2

π

3π
2

2π

θ

(C)

− 0.30

− 0.15

0.00

0.15

0.30

Local mot ion (
μm
s )

0

π
2

π

3π
2

2π

θ

(D)

0.00

0.15

0.30

0.45

0.60

Relat ive Fluorescence

0

π
2

π

3π
2

2π

θ

(E)

− 0.30

− 0.15

0.00

0.15

0.30

fprot (
μm
s )

0 100 200 300 400

t (s)

90

100

110

120

A
re
a
(μ
m
2
)

(F)

Figure 1.1. Summary of main scientific objectives to be addressed in this thesis.

Open Science strategy to ensure the reproducibility of all scientific results and the
reusability of all mathematical methods.

In this thesis, we address these issues with a systematic, quantitative, and data-driven
approach to analyze and simulate amoeboid cell motility. In Fig 1.1, we give a short
overview of this approach, which is separated into three main topics. It is structured
in the following way:

(i) a mathematical framework for the description of experimentally observed cell
contour dynamics,

(ii) a computational model to infer key motility characteristics of experimental
data and to predict realistic contour dynamics,

(iii) and a complementing Open Science approach to ensure the reproducibility of
our research and the reusability of our methods.

Analyzing amoeboid cell motility. Various approaches to analyze amoeboid cell
motility are based on 3D time-lapse images to incorporate the cell’s ability to move
likewise in all directions [16, 17]. However, these 3D approaches are more expensive
from a computational point of view and experimentally very challenging. For this
reason, the majority of methods to analyze cell migration is based on microscopy
imaging data of 2D cross-sections of the cell [18, 19, 20]. Stacks of segmented
microscopy images are then used to obtain spatio-temporal data of the cell boundary,
so-called cell contours. To parametrize the cell contour, the contour arc length is
used [18, 21, 19] as well as polar coordinates relative to the center of mass [22].
Most commonly, the cell contour is modeled as a “rigid chain” described by a fixed
number of equidistant segmentation points [21, 19]. Alternatively, cell contours
are modeled as “elastic chains”, where the number of segmentation points and
the distances between neighboring points vary over time [18]. As a next step, the

2 Chapter 1 Introduction



dynamics of these cell contours are studied with the aim to identify key characteristics
of amoeboid cell migration, i.e., substantial membrane protrusions or retractions [20,
23, 24, 25, 26]. Noteworthy, the mapping of consecutive cell contours in time and
space is intrinsically not well defined. Different methods have been established to
address this issue, where, in most cases, a fixed number of reference points on the
contour, so-called virtual markers, is tracked in time and space [27, 24], e.g., by
using electric field equations [28] or mechanistic spring equations [29]. Based on
these virtual marker trajectories, different geometric and dynamic quantities can be
visualized and studied in form of so-called kymograph plots [7, 21, 24].

In this thesis, we use a Gaussian process regression (GPR), a Bayesian regression
framework with a kernel-based covariance structure, to obtain smooth represen-
tations of the cell membrane. The corresponding curvature of the contour can be
analytically computed as a by-product of the GPR. As an alternative approach to
track virtual markers in time and space, we propose a mathematical framework and
computational method, which is based on a one-parameter family of regularized
flows. Based on these regularized flows, we define a spatio-temporal coordinate
system of experimental contour dynamics to obtain kymograph visualizations of
different quantities of interest, e.g., the local motion and the contour curvature. In
this context, we define a novel dynamic quantity, the local dispersion, a stretching
rate of neighboring virtual markers, which we use to identify substantial membrane
protrusions and retractions of different intensities in a fully automated away. The
above method was mainly applied to the social amoeba D. discoideum, but also
to early embryonic killifish cells (Fundulus heteroclitus), keratocytes cultured from
Central American cichlids (Hypsophrys nicaraguensis) and artificially generated aca-
demic test cases. In a follow-up article, we applied the above method successfully
to mutated D. discoideum cells, where we detected switches between two distinct
motility types: the amoeboid and a so-called fan-shaped type [DS4].

Modeling amoeboid cell motility. So far, a variety of different approaches to model
amoeboid cell motility have been developed. These models differ in complexity and
incorporate different aspects of amoeboid cell motility, e.g., the dynamics of the
cell’s centroid [10, 30, 11, 31, 32, 33], reaction-diffusion models to describe the
dynamics of different biochemical compounds [34, 35, 36, 37] and the influence of
external chemoattractants [38, 39, 40, 41], and mechanistic models focusing on the
interplay of different forces affecting the cell boundary [42, 43, 15]. Despite the large
number of varying computational models, different challenging problems remain
open, e.g., the inference of key motility characteristics or the a priori specification of
the parameter regime to generate specific motility patterns. Only few approaches
provide a full integration of experimental data into the model [44]. Furthermore,
the underlying parameter estimation is oftentimes based on a sensitivity analysis
and, thus, difficult to perform for a large number of model parameters [15, 45, 46,
47].

In this thesis, we propose a novel three-component contour dynamics model to
simulate and analyze amoeboid cell motility. It comprises three biophysiologically
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motivated components: a stochastic term, accounting for membrane protrusions,
and two deterministic terms, accounting for membrane retractions by controlling the
shape and area of the contour. The stochastic term is driven by a Hawkes process, a
self-exciting Poisson point process, whereas the two geometric terms are based on
the area-preserving curve-shortening flow and an area adjustment flow. Our model
is capable of generating a variety of qualitatively different and, especially, realistic
contour dynamics. Moreover, the model allows to analyze experimental contour
dynamics by inferring key motility characteristics, e.g., the protrusion component
driving the cell. Due to the low model complexity, the underlying model parameters
can be estimated in a fast and straightforward way. Finally, based on the estimates
of the different model weights, we classify two different locomotion types: the
amoeboid and the fan-shaped type, both experimentally recorded for D. discoideum.

Open Science approach and reproducibility of science. In recent years, the issue
of research reproducibility became more and more important. Some authors and
researchers even speak of a reproducibility or credibility crisis in science [48, 49, 50,
51], whereas others disagree with the narrative of a declining research quality [52].
Nevertheless, the sharing of scientific methods, data, and source codes was never
as easy as now, bearing the great potential to increase research reproducibility, to
accelerate the knowledge transfer in general, and to improve the scientific quality
altogether [53, 54, 55, 56]. For this reason, research reproducibility is intertwined
with the concept of Open Science, a loose collection of different ideas and principles
with the goal to make scientific work more transparent and to increase its public
outreach.

In the same spirit, we developed an Open Science approach complementing the
mathematical methods described in this thesis. As part of this Open Science approach,
we provide data and software publications to ensure a reproducibility of our findings
and to facilitate the usage of our methods for researchers of different Disciplines,
e.g., medicine, biophysics, and biostatistics. In this context, we developed AmoePy,
an open source software package based on Python to segment, analyze, and simulate
amoeboid contour dynamics. Furthermore, we took measures to (1) increase its
usability, e.g., by multiple documentation files, a simple installation process, and
a graphical user interface, and (2) ensure its functionality and stability, e.g., by
automatic software tests and a hierarchical package structure. We envision AmoePy
to be of greater value for the cell migration community and to be a role model for
other Open Science contributions.

Outline. First, we provide a short biophysical background in Chapter 2 about the
model organism terminology, the reasons why D. discoideum is considered to be such
a model organism, and amoeboid cell motility in general.

In Chapter 3, we provide the mathematical background to this thesis. We start
with general information about the GPR, its usage to obtain smooth cell contours,
to compute the corresponding contour curvature, and its application to obtain
spatio-temporal 3D contour representations called “amoeba tubes”. Furthermore,
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we introduce geometric contour flows, e.g., the curve-shortening flow (CSF) and the
area-preserving curve-shortening flow (APCSF), and two stochastic processes, the
Ornstein-Uhlenbeck process (OUP) and the Hawkes process (HP), which are later
used in our three-component contour dynamics model.

In Chapter 4, we introduce a mathematical framework based on a one-parameter
family of regularized contour flows to analyze amoeboid cell motility. First, we
explain how the experimental contour data was acquired. Then, we describe the
underlying mathematics of mapping consecutive cell contours in time and space. By
doing so, we give rise to different choices of spatio-temporal coordinate systems,
resulting from these mappings, to analyze contour dynamics. In a next step, this
framework is applied to experimental contour data, recorded for D. discoideum, to
identify and characterize main protrusion and retraction events based on a newly in-
troduced quantity called local dispersion. These identified protrusion and retraction
events are then analyzed with respect to different statistical quantities, e.g., area,
growth time, and direction. In a final step, the approach is applied to contour dy-
namics for other organisms, i.e., Fundulus heteroclitus Hypsophrys nicaraguensis, and
different experimental setups, i.e., bright-field microscopy, fluorescence microscopy,
and varying frame rates.

Different modeling approaches of amoeboid cell motility are summarized at the
beginning of Chapter 5. We, then, propose our three-component contour dynamics
to simulate and analyze amoeboid cell motility. In this context, we introduce the
general notations, geometric flows, and stochastic processes, on which our model
is based on. Furthermore, we describe the inference approach of our model and
how the underlying parameters are estimated. A variety of qualitatively different
cell tracks are then generated with our model. Finally, the model is used to ana-
lyze experimental contour dynamics, recorded for D. discoideum, by inferring the
protrusion component and estimating the parameters of the model. Based on this
parameter estimation, we show that our model classifies two different locomotion
types, the amoeboid and a so-called fan-shaped type.

The Open Science approach to complement and support the above framework and
model is explained in Chapter 6. At first, we clarify certain notions regarding Open
Science and research reproducibility. We, then, introduce our software package
AmoePy and we describe different key aspects regarding (1) accessibility and under-
standability, (2) installation and usability, (3) archiving and extensibility, and (4)
functionality and stability. Furthermore, we discuss the importance of our Open
Science approach for the cell migration community and compare it to existing Open
Science contributions.

Finally, in Chapter 7, we present an outlook of our research and conclude with the
key findings of this thesis.
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2Biophysical background

First, we provide a brief overview of the underlying model organism, Dictyostelium
discoideum, and the physiological processes underlying amoeboid cell motility.

2.1 The model organism Dictyostelium discoideum
In this section, we describe the organism Dictyostelium discoideum in general and its
life cycle in particular. Afterwards, we explain the purpose of model organisms and
why Dictyostelium discoideum fulfills the definition of such a model organism. This
section is mainly based on [9, 57, 58].

Dictyostelium discoideum and its life cycle. The eukaryote D. discoideum, commonly
referred to as slime mold, is a member of the taxonomic group Amoebozoa and is
commonly found in deciduous forest soils with a natural habitat ranging from the
Arctic to the tropics [57, 59]. Its diet consists of yeast cells and bacteria, which are
ingested via phagocytosis, i.e., by engulfment and absorption of the other cell [57,
60]. However, axenic strain (Ax-2) cells of D. discoideum are capable of pinocytosing
external nutrients through the cell membrane (so-called “cellular drinking”) [61].
By allowing cells to perform pinocytosis of a nutrient solution, instead of feeding on
bacteria, the cell cultivation becomes much easier.

In Fig 2.1 the life cycle of D. discoideum is shown. It begins with germinating spores
from which unicellular amoebas emerge. During the first phase, called proliferation
or growth phase, the amoebas (depicted in light-green) feed on other microscopic
organisms, e.g., bacteria such as E. coli (depicted in blue), and replicate themselves
by cell division (mitosis). This proliferation phase lasts approximately three to
eight hours [9]. Under starvation conditions, i.e. after a depletion of nutrients,
the second phase begins which is called the development phase [9]. Here, cyclic
adenosine monophosphate (cAMP) triggers the aggregation to a single migrating
slug, which contains tens of thousands amoebas [57]. This transition from unicellular
amoebas to a single multicellular organism is distinctive for this organism. In Fig 2.1,
it is highlighted by a color change from light-green to dark-green. During the
development phase, the slug migrates towards light sources and along temperature
gradients [9]. Furthermore, a differentiation of cells takes place with dead cells
building a thin stalk (depicted in brown) and remaining living cells forming the
fruiting body (depicted in dark-green) of the slime mold. In the final step, new
spores (depicted in light-green) are dispersed from the fruiting body starting a new
life cycle of D. discoideum cells after approximately 24 hours. For more details on
the the life cycle, see [9].

Rationale behind the terminology “model organism”. Model organisms are non-
human species to study a wide range of biological processes and phenomena, for
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Figure 2.1. Life cycle of Dictyostelium discoideum. Unicellular amoebas are depicted as
light-green contours with a black dot representing the cell nucleus. After a depletion of
nutrients (depicted in blue), the development phase begins, in which a collection of amoebas
aggregates to a multicellular slug (dark-green). The part of the slug which evolves into the
fruiting body is depicted in dark-green, while the part which creates the stalk is depicted in
brown. This figure is based on [62], [63, p. 5], and [64, p. 18].

which the inferred knowledge is then applied to other organisms [58]. While model
organisms account only for a small fraction of all living species, the majority of
biological insights is derived from the research and studies focusing on these organ-
isms [65]. The broad and interdisciplinary use of model organisms is a result of
(1) useful intrinsic characteristics, e.g., a simple and inexpensive culturation and
handling, a small genome, and a high mutability and (2) further characteristics
attributed to the organisms by the research community, e.g., a potential represen-
tation of a large number of other organisms and the ability to comprise multiple
physiological processes at once, see [58] for more details. Furthermore, methods and
experimental settings to study model organisms are, in general, well documented
and, oftentimes, openly accessible along the underlying research data. For this
reason, model organisms play an important role for the Open Science community.
Examples of model organisms include: the bacterium Escherichia coli, the fruit fly
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Drosophila melanogaster, the zebra fish Danio rerio, the budding yeast Saccharomyces
cerevisiae, the weed Arabidopsis thaliana, and the house mouse Mus musculus [58].

Regarding D. discoideum, the cultivation is done in relatively simple and inexpensive.
Due to its short life cycle of approximately 24h, every stage of the cultivation process
can be swiftly realized. Furthermore, spores and amoebas of different strains can be
stored easily, cheaply, and indefinitely via freezing and thawing [8, 9]. By focusing
on D. discoideum, different physiological processes can be studied, e.g., amoeboid
cell motility, chemotaxis, cell adhesion, mytosis, phagocytosis, micropinocytosis, cell
formation, and cell differentiation. Finally, the genetic malleability of D. discoideum
enables to “(1) disrupt, replace, or silence a gene; (2) recover a mutated unknown
gene; (3) and overexpress and/or tag a gene” ([8], as cited in [9]). Hence, D.
discoideum meets the criteria of a model organism.

2.2 Amoeboid cell motility
Amoeboid movement belongs to the most widespread kinds of eukaryotic cell motil-
ity [66, 67]. It plays a key role in many biophysical and physiological processes
such as wound healing, cancer metastasis, and immune system responses and is
characterized by dynamic changes of the cell shape [2, 3, 4]. In this context, the cell
is moving forward by creating protrusions, so-called pseudopodia. The location of
these protrusions and the frequency of their formations mainly define the overall
trajectory of the cell [68]. In addition to these explorative and fast-acting membrane
protrusions, the cell retracts its rear (so-called uropod) in a slower and steadier
way. By this coordinated interplay of protrusions and retractions, the cell can move
persistently and efficiently in a crawling-like fashion. Finally, the cell track is affected
by the creation and rupture of adhesion contacts to the substrate [69].

On an intracellular level, amoeboid migration is initialized by changes of the actin
cytoskeleton, a microfilament meshwork consisting of many multi-functional pro-
teins. More precisely, the cytoskeleton grows by polymerization and shrinks by
depolymerization of actin filaments. This rearrangement of the actin network is
controlled by additional cytoskeletal proteins initializing capping, severing, and nu-
cleation of actin filaments creating different meshwork formations such as bundling,
cross-linking, and branching [70]. The underlying mechanics are regulated by bio-
chemical signaling pathways initializing different actions such as proliferation by
cell growth and cell division, cell aggregation, and coordinated cell death [71, 72].
Furthermore, signaling pathways are linked to membrane receptors, enabling the
cell to move persistently and directly towards a chemical source (chemotaxis) by
sensing gradients and extracellular cues [73].

The formation of pseudopodia is the key step of amoeboid motility. The size and
shape of these pseudopodia vary significantly for different cell types [74]. Some
organisms such as Dictyostelium discoideum even possess different modes of loco-
motion and can switch back and forth between them [75]. Therefore, pseudopodia
are subdivided, based on their nature, into different types: lobopodia, lamellipodia,
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Figure 2.2. Amoeboid cell motility. First, polymerized actin initializes the forward
movement of the cell (A) which results in an expansion at the leading edge, a so-called
pseudopodium (B). After a new adhesion to the substratum is built (C), the translocation of
the cell nucleus takes place (D). In the final phase, the rear edge of the cell is contracted (E).
Additionally, in panel (B), the focal plain is shown as dashed gray line. This figure is based
on [81].

filopodia, reticulopodia, axopodia, invadopodia, and others [76, 77, 78]. Lobopodia
are characterized by cylindrical and finger-shaped protrusions, while lamellipodia
possess a flat and broader structure [74]. On the contrary, filopodia are thinner and
more elongated and consist mostly of ectoplasm [76]. Reticulopodia are character-
ized by an irregular and dense network of fine string-like extensions which interact
with each other [78]. Axopodia are defined by thin and straight lines emerging in a
radial way from the cell body [77]. In this work, we focus on lobopodia and lamel-
lipodia. Pseudopodia can be also classified depending on the exact location of their
appearance: Y-shaped (split) pseudopodia at the front, and de novo pseudopodia at
the left, right, and rear side of the cell changing the direction of its movement [6].
Moreover, one distinguishes lobopodia from so-called blebs, a type of smaller and
fast-paced protrusions, which are initialized by the internal pressure of the cell and
rupture of its membrane [79, 80].

In Fig 2.2, a schematic overview of the different stages during amoeoboid cell
motility is shown. By polymerization of monomeric actin, so-called globular actin (G-
actin), a meshwork of filamentous actin (F-actin) is formed at the cell’s front (panel
(A)). While F-actin can be found throughout the cell body, its density is increased
at the cell’s front, leading to a membrane expansion and a forward movement of
the cell (panel (B)). By retraction of the leading edge, which is controlled by actin
depolymerization, the cell can move back to the initial stage. If the expanding
membrane builds a new adhesion site (panel (C)), the nucleus of the cell is pulled
towards the leading edge (panel (D)). Finally, the cell’s rear detaches from the
substratum, which is followed by a retraction of the trailing edge towards the
cell’s center (panel (E)). In panel (B), an exemplary focal plane of the recorded
microscopy images is displayed, indicating the following experimental challenges:
(1) cell parts which are not in focus and therefore missed by the imaging process and
(2) membrane expansions dropping into the focal plane which are then displayed as
isolated areas visually separated from the main cell body in the 2D image frame.
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3Mathematical background

For a better understanding, we provide a mathematical overview of the underlying
mathematical concepts used in Chapter 4 and 5. In Section 3.1, we introduce
the Gaussian process regression (GPR), its usage to obtain estimated cell outlines
(so-called cell contours), and further information regarding the computation of the
contour curvature and the estimation of the underlying hyperparameters. Then,
in Section 3.2, we introduce geometric contour flows, e.g., the curve-shortening
flow (CSF) and the area-preserving curve-shortening flow (APCSF), used in our
amoeboid cell motility model described later on in Chapter 5. Finally, we provide
further information on the two stochastic processes used in our model: the Hawkes
process (HP) and the Ornstein-Uhlenbeck process (OUP).

3.1 Gaussian process regression
In this section, we characterize briefly the main aspects of the Gaussian process
regression (GPR) which we used to determine smooth two-dimensional represen-
tations of cell membranes. In this context, we introduce common notations and
formulas which are used in the following sections. In general, the GPR, also known
as “kriging”, offers a Bayesian framework for regression analysis. It does not only
provide a single regression function but also quantifies the associated uncertainty.
Detailed studies of Gaussian processes in machine learning and especially in regres-
sion analysis can be found in many textbooks such as [82, 83]. In [84, 85] short
summaries of the GPR are presented. Details about the implementation of the GPR
can be found in [86].

3.1.1 General definitions and theory
First, we assume a training data set D = {(xi, yi) | i = 1, . . . , n} consisting of n

observations. The input vectors are denoted as xi ∈ Rd, d ∈ N and the corresponding
scalar outputs are denoted as yi ∈ R. Now, we are interested in a distribution of
regression functions f : Rd → R which are described by a Gaussian process (GP).
Due to the fact that a GP is uniquely defined by its mean function x 7→ µ(x) and its
covariance function (x, x′) 7→ Σ(x, x′), we introduce the following notation:

f(x) ∼ GP
(
µ(x), Σ(x, x′)

)
,

where the mean function and the covariance function are given by

µ(x) = E [f(x)] ,

Σ(x, x′) = E
[
(f(x) − µ(x))(f(x′) − µ(x′))

]
.
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Since we assumed n observations obtained by d-dimensional input vectors, we define
the training input as X ∈ Rd×n, which is also called design matrix. The training
output for all n observations are denoted as Y ∈ Rn. Similarly, we denote the testing
input and output for n∗ ∈ N evaluations as X∗ ∈ Rd×n∗ and Y∗ ∈ Rn∗ , respectively.

Prediction model with noise. For the expected values of Y and Y∗ we introduce the
following notation:

µ := E[Y ] and µ∗ := E[Y∗].

We assume noisy observations with noise variance σ2
noise such that the covariance of

Y is given as

Cov(yi, yj) = k(xi, xj) + σ2
noiseδij and Cov(Y, Y ) = K(X, X) + σ2

noiseIn, (3.1)

where the kernel matrix K is defined as

K(X, X ′) :=
(
k(xi, x′

j)
)

i,j
,

for a given kernel function k : Rd × Rd → R, e.g., the Gaussian kernel function

kδ(x, x′) = exp
(

−∥x − x′∥2

2δ2

)
, δ > 0.

Likewise, we define the following covariance matrices:

Cov(Y, Y∗) = Cov(Y∗, Y )T = K(X, X∗), (3.2)

Cov(Y∗, Y∗) = K(X∗, X∗).

Finally, we assume that the training outputs Y and test outputs Y∗ are jointly
normally distributed: Y

Y∗

 ∼ Nn+n∗

 µ

µ∗

 ,

 K(X, X) + σ2
noiseIn K(X, X∗)

K(X∗, X) K(X∗, X∗)

 .

By using the abbreviated notation Σ, Σ∗ and Σ∗∗, we obtain: Y

Y∗

 ∼ Nn+n∗

 µ

µ∗

 ,

 Σ Σ∗

ΣT
∗ Σ∗∗

 .

Since we are interested in inferring the relationship between inputs and function
evaluations, the conditional distribution of the test output Y∗ given the training out-
put Y with underlying inputs X and X∗ is of relevance. This conditional distribution
is also normally distributed

Y∗ | Y ∼ Nn∗

(
µ̃, Σ̃

)
, (3.3)

12 Chapter 3 Mathematical background
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Figure 3.1. GPR with samples drawn from GP prior and GP posterior. (A) Functions
(colored lines) sampled from the GP prior distribution from Eq (3.5). (B) Based on training
data (black dots), functions are now sampled w.r.t to the GP posterior distribution from
Eq (3.3). (C) GPR fit (dark gray line) with corresponding credible intervals: 75% (gray) and
95% (light gray). As underlying kernel function a Poisson kernel from Eq (3.11) was used.

with mean and covariance defined as

µ̃ = E(Y∗ | Y ) = µ∗ + ΣT
∗ Σ−1 (Y − µ) (3.4)

Σ̃ = V(Y∗ | Y ) = Σ∗∗ − ΣT
∗ Σ−1Σ∗.

The distribution from Eq (3.3) is called the GP posterior distribution, whereas the
GP prior distribution is given by

Y∗ ∼ Nn∗ (µ∗, Σ∗∗) . (3.5)

However, in most cases, it is not necessary to sample from these distributions, since
a regression function is already provided by the (analytic) expectation E(Y∗ | Y ) =
µ∗ + ΣT

∗ Σ−1 (Y − µ). In general, this function is meant when we speak of “Gaussian
process regression”.

In Fig 3.1, five samples, drawn from the GP prior and the GP posterior, are displayed
in panels (A) and (B), respectively. The samples for the GP prior are periodic but very
chaotic. Even for a small number of training data points, the GP posterior produces
already reasonable fits (panel (B)). Finally, the GPR fit based on µ̃ from Eq (3.4)
is displayed in panel (C). From the credible intervals (75% and 95%), we observe
the impact of the training data points on the regression function and, especially, the
samples drawn from the GP posterior. The credible intervals are more narrow in the
upper half of panel (C), due to an increased number of data points located in close
proximity to each other.

Choice of hyperparameters via maximized likelihood. Consider the normally dis-
tributed observations Y ∼ Nn(µ(ϑ), Σ(ϑ)) depending on parameters ϑ ∈ Θ ⊂
Rnθ , nθ ∈ N. To estimate the parameters, we maximize the likelihood function

3.1 Gaussian process regression 13



Ly : Θ → R+
0 , Ly(ϑ) := pϑ(y). The density function of the normally distributed

random variable Y is given by:

pϑ(y) := 1√
(2π)n|Σ|

exp
(

−1
2 (y − µ)T Σ−1 (y − µ)

)
,

where µ := µ(ϑ) and Σ := Σ(ϑ). The log-likelihood is then given by

ℓy(ϑ) := log Ly(ϑ) = −1
2 log |Σ| − 1

2(y − µ)TΣ−1(y − µ) − n

2 log(2π). (3.6)

Partial derivatives of ℓy(ϑ). Assuming separate parameters ϑµ and ϑΣ impacting
the expectation µ := µ(ϑµ) and the covariance Σ := Σ(ϑΣ), the following partial
derivatives of the log-likelihood function from Eq (3.6) can be derived:

∂ℓy
∂ϑµ

= (y − µ)TΣ−1 ∂µ

∂ϑµ
and (3.7)

∂ℓy
∂ϑΣ

= −1
2tr

(
Σ−1 ∂Σ

∂ϑΣ

)
+ 1

2(y − µ)TΣ−1 ∂Σ
∂ϑΣ

Σ−1(y − µ).

This can be seen as follows. At first, by using basic mathematical operations, we can
show that:

∂ℓy
∂ϑµ

= 0 + ∂

∂ϑµ

(
−1

2(y − µ)TΣ−1(y − µ)
)

+ 0

= 1
2

∂µ

∂ϑµ

T
Σ−1(y − µ) + 1

2(y − µ)TΣ−1 ∂µ

∂ϑµ

= 1
2

(
∂µ

∂ϑµ

T
Σ−1(y − µ)

)T

+ 1
2(y − µ)TΣ−1 ∂µ

∂ϑµ

= 1
2(y − µ)T

(
Σ−1

)T ∂µ

∂ϑµ
+ 1

2(y − µ)TΣ−1 ∂µ

∂ϑµ

1
= (y − µ)TΣ−1 ∂µ

∂ϑµ
.

Now, we consider the following identities of matrix derivatives:

dA−1

dϑ
= −A−1 dA

dϑ
A−1 and

d |A|
dϑ

= |A| tr
(

A−1 dA

dϑ

)
, (3.8)

where A = A(ϑ) is an arbitrary matrix depending on a parameter ϑ. By using these
identities, it is easy to show that:

∂ℓy
∂ϑΣ

= −1
2

∂

∂ϑΣ
(log |Σ|) − 1

2
∂

∂ϑΣ

(
(y − µ)TΣ−1(y − µ)

)
= − 1

2 |Σ|
|Σ| tr

(
Σ−1 ∂Σ

∂ϑΣ

)
− 1

2

(
−(y − µ)TΣ−1 ∂Σ

∂ϑΣ
Σ−1(y − µ)

)
= −1

2tr
(

Σ−1 ∂Σ
∂ϑΣ

)
+ 1

2(y − µ)TΣ−1 ∂Σ
∂ϑΣ

Σ−1(y − µ).

1
(
Σ−1)T =

(
ΣT)−1 = Σ−1 due to the symmetry of Σ.
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3.1.2 Interpolation model of cell outlines
In this section, we describe how to use the GPR to interpolate cell outlines based on
a discrete set of segmentation points. We consider only a single contour Γk; for ease
of notation, we omit the subscript k in the sequel. Let (x0, y0), . . . , (xM−1, yM−1)
denote M ∈ N segmentation points with periodic boundaries xM := x0 and yM := y0

since we describe cell contours by closed curves. In the following, when we speak of
curves, we always refer to closed simple curves, i.e., curves without self-intersections.

The idea is to use the arc length of these curves as parametrization to obtain
corresponding coordinates in R2. This parametrization of the contour Γ will be
denoted as

Φ : [0, 2π) ∋ θ 7→ (x(θ), y(θ)) ∈ R2 (3.9)

First, we define support points θi, i ∈ {0, 1, . . . , M − 1}

θm = 2π
∑m

i=0 di∑M−1
i=0 di

and d0 = 0 (3.10)

according to the normalized secant length along the contour

di =
(
(xi − xi−1)2 + (yi − yi−1)2

)1/2

It is easy to see that the sequence of support points obtained by Eq (3.10) is strictly
increasing, i.e. θ0 < θ1 < · · · < θM−1.

Now, we apply the GPR to this sequence of support points in order to obtain a
smoothing spline representing the cell contour. The underlying kernel function,
necessary to model the correlation between the data points, is defined by

kr(θ, θ′) := 1 − r2

1 − 2r cos(θ − θ′) + r2 , θ, θ′ ∈ [0, 2π), (3.11)

with radius parameter r ∈ (0, 1). This kernel function, which is closely related to
the wrapped Cauchy distribution, is often called Poisson kernel function. We have
chosen the Poisson kernel due to its periodicity property, i.e., kr(θ, θ′) = kr(θ+2zπ, θ′)
for all z ∈ Z. Alternatively, one could periodize a non-periodic kernel function k(·, ·),
e.g., the Gaussian kernel function, by applying the following formula:

kper(θ, θ′) :=
∑
z∈Z

k(θ + 2zπ, θ′).

We simplify the regression model by assuming that x and y coordinates are indepen-
dent from each other. For this reason, we perform the GPR two times in order to
obtain two regression functions fx and fy satisfying fx(θi) ≈ xi and fy(θi) ≈ yi for
all i ∈ {0, . . . , M − 1}. By deducing these regression functions, we can compute the
two-dimensional coordinates for any test input θ̃j ∈ [0, 2π) with j ∈ {0, . . . , M∗ − 1}
and M∗ ∈ N representing the number of function evaluations.
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In the following, we describe how to obtain the x coordinates x̃ := (x̃0, . . . , x̃M∗−1)
given the training input {θj | j = 0, . . . , M − 1}, the training output x :=
(x0, . . . , xM−1) and the testing input {θ̃j | j = 0, . . . , M∗ − 1}. The GPR is then
similarly used to obtain y coordinates of the curve. First, we consider a prediction
model with noisy observations and no drift, i.e. E[x] = E[x̃] = 0. The covari-
ances are given by the Eq (3.1) and (3.2), where the underlying kernel matrix
K(θ, θ′) :=

(
k(θi, θ′

j)
)

i,j
is given by the Poisson kernel from Eq (3.11).

By assuming centered Gaussian processes, the predictive equations of the GPR are
simply given by:

E(x̃ | x) = ΣT
∗ Σ−1x and (3.12)

V(x̃ | x) = Σ∗∗ − ΣT
∗ Σ−1Σ∗.

Since the covariance matrices depend on the input data consisting of the normalized
arc length parametrization, we introduce the following notation:

fx(θ̃) := E(x̃ | x; θ̃, θ) = ΣT
∗ (θ, θ̃) · Σ−1(θ) · x, (3.13)

fy(θ̃) := E(ỹ | y; θ̃, θ) = ΣT
∗ (θ, θ̃) · Σ−1(θ) · y.

As in Fig 3.1, the predictive equations from Eq (3.12) provide a function space of
infinitely many smoothing splines; each drawn with the GP posterior distribution
based on E(x̃ | x) and V(x̃ | x). However, the regression functions fx : [0, 2π)M∗ →
RM∗ and fy : [0, 2π)M∗ → RM∗ are simply defined by the expectations E(x̃ | x; θ̃, θ)
and E(ỹ | y; θ̃, θ), which can be computed analytically.

3.1.3 Estimation of curvature using GPR
In this section, we highlight the benefits of using the GPR to obtain smooth cell
outlines given a discrete set of segmentation points. For any simply closed curve in a
two-dimensional space

γ : [0, 2π) → R2,

θ 7→ γ(θ) :=

 fx(θ)

fy(θ)


with corresponding coordinate functions fx : [0, 2π) → R and fy : [0, 2π) → R, the
curvature at γ(θ) is denoted as κ(θ) and defined by

κ(θ) :=
f ′

xf ′′
y − f ′

yf ′′
x(

f ′
x

2 + f ′
y

2
) 3

2
, θ ∈ [0, 2π). (3.14)
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By applying the GPR, described as in Eq (3.13), we obtain coordinates of the
estimated curve. Additionally, we can easily compute the first and second derivative
of fx:

f ′
x(θ̃) = ∂

∂θ̃
ΣT

∗ (θ, θ̃) · Σ−1(θ) · x and f ′′
x (θ̃) = ∂2

∂θ̃
2 ΣT

∗ (θ, θ̃) · Σ−1(θ) · x, (3.15)

and similarly for fy:

f ′
y(θ̃) = ∂

∂θ̃
ΣT

∗ (θ, θ̃) · Σ−1(θ) · y and f ′′
y (θ̃) = ∂2

∂θ̃
2 ΣT

∗ (θ, θ̃) · Σ−1(θ) · y. (3.16)

The partial derivative ∂
∂θ̃

ΣT
∗ (θ, θ̃) is given by the partial derivative of the Poisson

kernel function kr. More precisely, we obtain the following equations:

∂

∂θ̃
ΣT

∗ (θ, θ̃) = ∂

∂θ̃
K(θ̃, θ) =

(
∂

∂θ̃i

kr(θ̃i, θj)
)

i,j

and

∂2

∂θ̃
2 ΣT

∗ (θ, θ̃) = ∂2

∂θ̃
2 K(θ̃, θ) =

(
∂2

∂θ̃2
i

kr(θ̃i, θj)
)

i,j

.

For the Poisson kernel function in Eq (3.11), the first and second partial derivatives
are given by

∂

∂θ̃
kr(θ̃, θ) = 2r

(
r2 − 1

)
sin(θ̃ − θ)(

r2 − 2r cos(θ̃ − θ) + 1
)2

and

∂2

∂θ̃
2 kr(θ̃, θ) =

2r(r2 − 1)
(
(r2 + 1) cos(θ̃ − θ) − 2r cos2(θ̃ − θ) − 4r sin2(θ̃ − θ)

)
(
r2 − 2r cos(θ̃ − θ) + 1

)3 .

In order to compute f ′
x and f ′′

x , we have to substitute the first covariance matrix in
Eq (3.13) with the covariance matrix generated by the first and second derivative of
the kernel function, respectively. Likewise to fx, we can evaluate the derivatives f ′

x

and f ′′
x at every position θ̃. The same holds true for fy, f ′

y, and f ′′
y . Thereby we found

an analytic way to compute the curvature κ via the GPR predictions from Eq (3.14).

3.1.4 Parameter estimation
In this section, we present a short overview of how to estimate the hyperparam-
eters r and σnoise underlying the GPR to obtain smooth cell contours. A common
approach is the maximum likelihood estimation (MLE) method, where the set of
hyperparameters is chosen such that the corresponding log-likelihood function from
Eq (3.6) is maximized. While this approach is very popular, potential issues have
been reported including the inefficiency for problems of higher complexity, higher
computational costs, and the possibility of ill-posed estimation problems [87, 88,
89]. For this reason, different strategies have been proposed to improve the MLE
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method for GPR [87] and alternative methods have been tested successfully, e.g.,
cross-validation [90, 91]. Nevertheless, we decided to follow the standard MLE
approach due to the minor complexity of the resulting regression functions, i.e.,
one-dimensional closed curves in a two-dimensional domain, and only two hyperpa-
rameters to be estimated.

We remind that the GPR model is based on centered Gaussian processes (i.e. µ = 0)
and that both hyperparameters influence the covariance matrix Σ only. Hence, for
the partial derivative of the log-likelihood function from Eq (3.6), we obtain the
following formula

∂ℓy
∂ϑΣ

= −1
2tr

(
Σ−1 ∂Σ

∂ϑΣ

)
+ 1

2yTΣ−1 ∂Σ
∂ϑΣ

Σ−1y (3.17)

with ϑΣ ∈ {r, σnoise}. Furthermore, ∂Σ/∂ϑΣ is given by the following formulas

∂Σ
∂r

= ∂

∂r

(
K(θ, θ) + σ2

noiseIn

)
=
(

∂

∂r
kr(θi, θj)

)
i,j

and

∂Σ
∂σnoise

= ∂

∂σnoise

(
K(θ, θ) + σ2

noiseIn

)
= 2σnoiseIn

with the corresponding derivative of the Poisson kernel function

∂kr(θ, θ′)
∂r

= 2(r2 + 1) cos(θ − θ′) − 4r

(1 − 2r cos(θ − θ′) + r2)2 .

Now, we can determine the maximum log-likelihood estimate using gradient descent
with the above derivatives in order to estimate the hyperparameters. In Fig 3.2, we
present estimated parameters based on a persistently motile cell example. In panel
(A), pairs of estimated hyperparameters (r, σnoise) are shown for different contours
(K = 500). The gradient descent method was applied to each contour separately in
order to obtain one pair of hyperparameters.

Two clusters can be observed, which corresponds to the bimodal distributions of r

and σnoise shown in panel (B) and (C). Furthermore, the total log-likelihood, i.e., the
sum of the log-likelihood functions of all contours, is presented in panel (D). The
maximum at r = 0.80 and σnoise = 0.017 is depicted as a black dot. These parameters
are used in the following for all computations in Chapter 4.

3.1.5 The “amoeba tube” representation and corresponding
surface curvatures

In Section 3.1.3, we demonstrated how to compute the curvature of single cell
contours by using the GPR. In this section, we present an approach to display
the contour dynamics for the entire time span. By stacking consecutive contours
onto each other, we obtain a 3D representation, which we call “amoeba tube”.
Furthermore, we show that the GPR can be used to obtain smooth predictions for
these 3D objects. The initial idea was to compute the differential geometric properties
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Figure 3.2. Estimation of hyperparameters for example cell track. (A) K = 500
Pairs of parameters (r, σnoise) estimated by maximum likelihood for each contour. (B, C)
Corresponding histograms for σnoise and r, respectively. (D) Total log-likelihood of all
K = 500 contours as a function of the hyperparameters. The maximum is displayed as a
black dot.

of these smooth amoeba tubes to identify protrusions/retractions of the underlying
contour dynamics. By assuming a geometric scaling of 1s=̂1µm, we use the GPR to
compute different surface curvatures: the Gaussian curvature, the mean curvature,
and the principal curvatures. In general, this approach faces some challenges
regarding (1) the efficiency to detect/classify membrane protrusions/retractions
and (2) the numerical feasibility for large data sets. Nevertheless, we want to show
our findings since the underlying method might be useful for other applications.
In Fig 3.3, we illustrate an amoeba tube of an experimental cell track. The x- and
y-coordinates, which reflect the spatial position of each segmentation point, are
displayed horizontally, while the vertical axis reflects the temporal coordinate of
each contour/segmentation point.

In order to apply the GPR to predict a smooth amoeba tube, we introduce the
following parametrization:

f : [0, 2π) × R+ → R3, (3.18)
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Fig S1.  Three-dimensional presentation of cell contours (amoeba tube), where consecutive contours are
stacked onto each other. The color of each contour coincides with the time scale.Figure 3.3. Amoeba tube representation Three-dimensional representation of experimental

contour dynamics, where consecutive contours are stacked onto each other. The color of
each contour coincides with the time scale.

(θ, t) 7→ f(θ, t) :=


fx(θ, t)

fy(θ, t)

t


for time t ∈ R+ and normalized arc length coordinate θ ∈ [0, 2π). As an alternative
for more simple data sets, θ can be defined as polar coordinate, see [22, 92].

We will use a GPR model with correlation matrices based on two kernels: the Poisson
kernel from Eq (3.11) and the following Gaussian Kernel:

kσ,δ(t, t′) := σ2exp

(
−(t − t′)2

2δ2

)
, σ, δ > 0. (3.19)

While the Poisson kernel defines the spatial correlation of our data set, the temporal
correlation between contours is modeled with the Gaussian kernel. We assume a
total number of n contours and that each contour is described by a sequence of m

segmentation points. Hence, the covariance matrix Σ, containing the correlation
information of the entire data set, i.e., every segmentation point of every contour,
is of dimension mn × mn. Each sequence of segmentation points is assumed to be
equidistant, i.e., θ0, . . . , θm−1 ∈ [0, 2π) with θi = i · 2π/m, and, for now, somehow
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“sorted” with respect to the preceding contour/sequence of segmentation points. The
exact details of the latter assumption are presented later on in Chapter 4.

Based on the two kernel functions mentioned above, we introduce the following
spatial and temporal covariance matrices:

Σspace = (kr(θi, θj))i,j<m , θ0 < · · · < θm−1 ∈ [0, 2π)

Σtime = (kσ,δ(ti, tj))i,j<n , t0 < · · · < tn−1 ∈ [0, T ].

By taking the tensor product (or so-called Kronecker product) of these kernel func-
tions, we now define the combined covariance matrix Σ by

Σ = Σspace ⊗ Σtime + σ2
noiseImn

=


kr(θ0, θ0)Σtime . . . kr(θ0, θm−1)Σtime

...
. . .

...

kr(θm−1, θ0)Σtime . . . kr(θm−1, θm−1)Σtime

+ σ2
noiseImn,

Analogous to (3.13), we apply the GPR to obtain the following regression functions:

fx(θ̃, t̃) := E(x̃ | x; θ̃, θ, t̃, t) = ΣT
∗ (θ, θ̃, t̃, t) · Σ−1(θ, t) · x, (3.20)

fy(θ̃, t̃) := E(ỹ | y; θ̃, θ, t̃, t) = ΣT
∗ (θ, θ̃, t̃, t) · Σ−1(θ, t) · y.

with segmentation point coordinates x, y, t ∈ Rnm and grid point coordinates
θ̃ ∈ [0, 2π)k∗ , t̃ ∈ Rk∗ for k∗ evaluations. Based on these regression functions, we
can use f from Eq (3.18) to obtain the predicted position of the amoeba tube surface
for any arc length coordinate θ ∈ [0, 2π) and time point t > 0.

Similar to Eqs (3.15) and (3.16), we use the kernel derivatives to compute the
different surface curvatures of the amoeba tube. For a smooth contour in a 2D space,
the tangent direction at each position on the contour is well defined and, therefore,
also the contour curvature. In the case of surfaces in a 3D space, this becomes more
complicated, since the curvature varies with respect to the sectional curvature along
a tangent vector. For this reason, there are multiple surface curvatures defined in
the 3D case, e.g., the Gaussian curvature or the mean curvature. First, we introduce
the following coefficients E, F, G and L, M, N for a given position on the amoeba
tube surface with θ ∈ [0, 2π) and t > 0:

E(θ, t) = ∂

∂θ
f(θ, t) · ∂

∂θ
f(θ, t),

F (θ, t) = ∂

∂θ
f(θ, t) · ∂

∂t
f(θ, t),

G(θ, t) = ∂

∂t
f(θ, t) · ∂

∂t
f(θ, t),

L(θ, t) = ν(θ, t) · ∂2

∂θ2 f(θ, t),

M(θ, t) = ν(θ, t) · ∂2

∂θ∂t
f(θ, t),

N(θ, t) = ν(θ, t) · ∂2

∂t2 f(θ, t).
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where ν describes a unit normal vector defined by

ν(θ, t) =
∂
∂θ f(θ, t) × ∂

∂tfθ, t)
∥ ∂

∂θ f(θ, t) × ∂
∂tf(θ, t)∥2

.

In differential geometry, E, F, G and L, M, N are known as coefficients of the first
and second fundamental forms, respectively. Then, we compute the Gaussian
curvature K and the mean curvature H by the following formulas:

K = LN − M2

EG − F 2 ,

H = LG − 2MF + NE

2(EG − F 2) .

For every point on the amoeba tube surface, we obtain the maximum curvature k1

and minimum curvature k2 (so-called principal curvatures) by

κ1,2 = H ±
√

H2 − K.

While the Gaussian curvature is given by the product of the principle curvatures,
i.e., K = κ1κ2, the mean curvature is given by H = (κ1 + κ2)/2. In case of a right
cylinder with radius r > 0, the principal curvatures are given by κ1 = 1/r and
κ2 = 0. For this reason, the Gaussian curvature is equal to zero at every position on
the cylinder, whereas the mean curvature at each position is equal to 1/(2r).

In Fig 3.4, we used the above approach to compute the different surface curvatures
for the artificial case of a pulsating circle: the Gaussian curvature (panel (A)), the
mean curvature (panel (B)), and the principal curvatures (panels (C) and (D)). Since
the contour dynamics consists of circles at every time, the curvature in horizontal
direction is always positive. For this reason, the first principal curvature (maximum
curvature) takes only positive values (panel C). At the thin part of the amoeba tube
(t = 0s and t = 50s), the maximum curvature is defined in horizontal direction,
while it is defined in vertical direction for the thick part of the amoeba tube (t = 25s

and t = 75s). Vice versa, the minimum curvature (panel (D)) is defined vertically
at t = 0s and t = 50s, taking negative values due to the concavity, whereas for
t = 25s and t = 75s the minimum curvature is defined horizontally. Finally, for these
kind of contour dynamics, we observe a qualitative similarity between the Gaussian
curvature (panel (A)) and the mean curvature (panel (B)). However, both curvatures
are quantitatively different, since the Gaussian curvature is defined by the product
of the principal curvatures.

In summary, we applied the GPR to the entire contour dynamics instead of a single
contour. This way, we obtained a smooth 3D (amoeba tube) representation. Analo-
gous to the 2D case, we used derivatives of the kernel functions to obtain estimates
of the different surface curvatures. However, from the example in Fig 3.4, we see
that a membrane expansion, succeeded by a fast retraction at the same position,
creates a higher surface curvature. Hence, we would mainly identify expansion
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Figure 3.4. Surface curvatures of artificial contour dynamics of a pulsating circle:
(A) the Gaussian curvature, (B) the mean curvature, (C) the 1st principal curvature (maxi-
mum curvature), (D) and the 2nd principal curvatures (minimum curvature).

events with no lasting effects on the overall contour dynamics. In the artificial case
of a circle moving with constant velocity in one direction, the Gaussian curvature
is equal to zero at every position of the skewed cylindrical amoeba tube surface.
By changing the underlying velocity of the circle, the Gaussian curvature is not
affected. This example shows that the above approach cannot be adequately used to
identify or classify membrane expansions. Another disadvantage of this approach
are high computational costs due to high-dimensional covariance matrices. For an
exemplary data set of 500 contours, recorded with a frame rate of δt = 1s, and 400
segmentation points per contour, we would obtain a covariance matrix Σ with a
dimension of 200.000 × 200.000. Hence, the above method becomes only feasible
on a standard computer if a smaller number of contours is chosen, e.g., n ≈ 30. For
this reason, one might consider using a (temporal) kernel function with compact
support, e.g., the Wendland kernel function, to obtain sparse matrices.

Later on in Chapter 4, we present a more effective and fully automated approach to
identify protrusion and retraction events. This approach applies the 2D case of the
GPR presented in Section 3.1.2 to obtain smooth cell contours. Then, consecutive
contours are mapped onto each other with respect to so-called regularized contour
flows instead of using the spatio-temporal GPR framework described before.
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3.2 Geometric contour flows
In this section, we provide the mathematical background for different geometric
contour flows which are used in our amoeboid cell motility model in Chapter 5:
the curve-shortening flow (CSF), the gradient flow of the area functional, and the
area-preserving curve-shortening flow (APCSF). The sections 3.2.1 and 3.2.2 are
based on [93, 94]. For more details regarding the APCSF, see [95, 96, 97].

3.2.1 Curve-shortening flow.
Similar to the parametrization of the amoeba tube representation in Eq (3.18), the
flow of a contour is written as

Φ : [0, T ] × [0, 2π) → R2, (3.21)

(t, τ) 7→ Φ(t, τ).

Then, the arc length of the contour at time t is given by the following functional

L(t) = L (Φ(t, ·)) =
∫ 2π

0

∥∥∥∥∂Φ(t, τ)
∂τ

∥∥∥∥
2

dτ. (3.22)

In the following, we will write τ in the context of general curve parametrizations
(see Eq (3.21)). In contrast, we will write s and θ when the curve is parametrized
with respect to the arc length and the normalized arc length, respectively.

We are now interested in that flow which decreases the arc length of a contour in the
direction of steepest descent, the so-called gradient flow of the arc length functional.
First, we deduce the following equality

∂

∂t
L(t) =

∫ 2π

0

∂Φ(t,τ)
∂τ∥∥∥∂Φ(t,τ)

∂τ

∥∥∥
2

· ∂2Φ(t, τ)
∂τ∂t

dτ

=

 ∂Φ
∂τ∥∥∥∂Φ

∂τ

∥∥∥
2

· ∂Φ
∂t

2π

0

−
∫ 2π

0

∂Φ
∂t

· ∂

∂τ

 ∂Φ
∂τ∥∥∥∂Φ

∂τ

∥∥∥
2

 dτ

= 0 −
∫ 2π

0

∂Φ(t, τ

∂t
· ∂t⃗(t, τ)

∂τ
dτ

where t⃗(t, τ) ∈ R2 denotes the unit tangent vector with respect to the curve parame-
ter τ ∈ [0, 2π) and time t. Similarly, we denote the unit normal vector by n⃗(t, τ) ∈ R2

and the curvature by κ(t, τ) ∈ R. By reparametrizing the above integral with respect
to the arc length ds = ∥∂Φ/∂τ∥2 dτ , we obtain

∂

∂t
L(t) = −

∫ L(t)

0

∂Φ(t, s)
∂t

·
∂t⃗(t,s)

∂τ∥∥∥∂Φ(t,s)
∂τ

∥∥∥
2

ds

= −
∫ L(t)

0
κ(t, s) ∂Φ(t, s)

∂t
· n⃗(t, s) ds
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Hence, the gradient flow of L(t) is given by〈
∂Φ(t, s)

∂t
, n⃗(t, s)

〉
= κ(t, s)

which is known as the curve-shortening flow (CSF). Oftentimes, the CSF is introduced
by the following equation:

∂Φ(t, τ)
∂t

= κ(t, τ) n⃗inw(t, τ),

where n⃗inw(t, τ) ∈ R2 denotes the inward-pointing unit normal vector [93, 94, 95].
However, this formula is only well-defined for a curve without self-intersections, and
if the time derivative ∂Φ/∂t points toward the normal direction, which is usually not
the case for general curve parametrizations.

From above, we see that the rate, with which the total arc length decreases under
the CSF, is given by

∂

∂t
L(t) = −

∫ L(t)

0
κ2 ∥n⃗inw∥2

2 ds

= −
∫ L(t)

0
κ2 ds ≤ 0,

where
∫ L(t)

0 κ2 ds is called the total squared curvature. Based on this rate, we see
that the arc length of a contour decreases monotonically under the CSF until the
contour evolves to a single point. In the case of a shrinking circle, the curvature
grows indefinitely since the curvature is inversely proportional to the radius. For this
reason, the CSF becomes faster over time. Furthermore, a simple closed curve, i.e.,
a closed curve without self-intersections, remains simple under the CSF. The same
holds true for a smooth curve [94].

3.2.2 Gradient flow of the area functional.
Similarly to the above computations, we now compute the gradient flow of the area
functional defined by

A(t) = A(Φ(t, ·)) :=
∫ 2π

0
Φ(x) ∂Φ(y)

∂τ
dτ (3.23)

=
∫ 2π

0
Φ(y) ∂Φ(x)

∂τ
dτ, (3.24)

where Φ(x)(t, τ) ∈ R and Φ(y)(t, τ) ∈ R denote the x- and y-component of Φ(t, τ) ∈
R2, respectively. Then, by following the steps described in [94], the first variation of
A(Φ(t, ·)) is given by

δA(Φ(t, ·), h) = d

dε
A(Φ(t, ·) + εh)

∣∣∣∣∣
ε=0
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= d

dε

∫ 2π

0

(
Φ(x) + εh(x)

) ∂
(
Φ(y) + εh(y)

)
∂τ

dτ

 ∣∣∣∣∣
ε=0

= d

dε

(∫ 2π

0

(
Φ(x) + εh(x)

)(∂Φ(y)

∂τ
+ ε

∂h(y)

∂τ

)
dτ

) ∣∣∣∣∣
ε=0

= d

dε

(∫ 2π

0
Φ(x) ∂Φ(y)

∂τ
+ εΦ(x) ∂h(y)

∂τ
+ εh(x) ∂Φ(y)

∂τ

+ ε2h(x) ∂h(y)

∂τ
dτ

)∣∣∣∣∣
ε=0

=
∫ 2π

0
Φ(x) ∂h(y)

∂τ
+ h(x) ∂Φ(y)

∂τ
dτ

=
[
Φ(x)h(y)

]2π

0
−
∫ 2π

0
h(y) ∂Φ(x)

∂τ
dτ +

∫ 2π

0
h(x) ∂Φ(y)

∂τ
dτ

=
∫ 2π

0
h(x) ∂Φ(y)

∂τ
− h(y) ∂Φ(x)

∂τ
dτ

=
∫ 2π

0

〈
h,

 ∂Φ(y)

∂τ

−∂Φ(x)

∂τ

〉 dτ =
∫ 2π

0

〈
h,

 ∂Φ(x)

∂τ

∂Φ(y)

∂τ

⊥〉
dτ

=
∫ L(t)

0

〈
h,

(
∂Φ
∂τ

)⊥

∥∂Φ
∂τ ∥

〉
ds =

∫ L(t)

0

〈
h, t⃗⊥

〉
ds

=
∫ L(t)

0
⟨h, n⃗⟩ ds

and, therefore,

δA(Φ, h) = −
∫ L(t)

0
⟨h, n⃗inw⟩ ds. (3.25)

Thus, by inserting the h = ∂Φ/∂t, we see that

∂Φ
∂t

= n⃗inw (3.26)

is a gradient flow of the area functional A(Φ) [94], where the corresponding rate is
given by

∂A(Φ)
∂t

= −
∫ L(t)

0
∥n⃗inw∥2

2 ds = −L(t).

Of note, Eq (3.26) is only valid if the time derivative ∂Φ/∂t points toward the normal
direction.

Similarly, we can compute the gradient flow of the following “area adjustment
functional”:

F (Φ) := (A(Φ) − Aref)2 → min,
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where Aref ∈ R+ denotes the desired reference area. By using Eq (3.25), we compute
the first variation

δF (Φ, h) = −2 (A(Φ) − Aref)
∫ L(t)

0
⟨h, n⃗inw⟩ ds.

The gradient flow of the above area adjustment functional is then given by

h = ∂Φ
∂t

= −2 (A(Φ) − Aref) n⃗inw, (3.27)

where the corresponding rate is

∂F

∂t
= −2(A(Φ) − Aref) L(t).

Noteworthy, this gradient flow affects the contour in normal direction only. While
the CSF preserves (and even enforces) the regularity of a closed curve, the gradient
flows from Eqs (3.26) and (3.27) can produce self-intersections [94]. Later on, in
Section 5.2.2, we will introduce a further geometric flow called area adjustment flow
(AAF). In contrast to the gradient flow from Eq (3.27), the AAF is shape-preserving
to prevent the occurrence of self-intersections.

3.2.3 Area-preserving curve-shortening flow.
Now, we introduce the gradient flow of the arc length functional from Eq (3.22)
under an additional area-preserving constraint A(t) := A(Φ(t, ·)) = A(0) for all
t > 0, with contour area A(t) defined as in Eq (3.23). This gradient flow is called
the area-preserving curve-shortening flow (APCSF) and is given by〈

∂Φ(t, τ)
∂t

, n⃗inw(t, τ)
〉

= κ(t, τ) − 2π

L(t) . (3.28)

Oftentimes, the following equation is used to define the APCSF [95, 96, 97]:

∂Φ(t, τ)
∂t

=
(

κ(t, τ) − 2π

L(t)

)
n⃗inw(t, τ).

Again, n⃗inw is only well-defined when the underlying closed curve is simple, i.e.,
without self-intersections.

The APCSF evolves every contour to a circle of the same area, minimizing the
contour arc length to L(t) t→∞−−−→ 2

√
πA(0) while maintaining its area. By inserting

the definition of the APCSF into Eq (3.25), if follows that the APCSF is indeed
area-preserving:

A′(t) = −
∫ L(t)

0
⟨h(t, s), n⃗inw(t, s)⟩ ds

= −
∫ L(t)

0
κ(t, s) − 2π

L(t) ds
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= −
∫ L(t)

0
κ(t, s) ds +

∫ L(t)

0

2π

L(t) ds

= −2π + L(t) 2π

L(t) = 0.

Now, we show that the total arc length is monotonically decreasing under the APCSF.
First, we compute the decay of L(t) under the APCSF via:

L′(t) = −
∫ L(t)

0
κ(t, s)

〈
∂Φ(t, s)

∂t
, n⃗inw(t, s)

〉
ds

= −
∫ L(t)

0
κ2(t, s) − κ(t, s) 2π

L(t) ds

= −
∫ L(t)

0
κ2(t, s) ds + 2π

L(t)

∫ L(t)

0
κ(t, s) ds

= −
∫ L(t)

0
κ2(t, s) ds + 4π2

L(t) =: ⋆.

By using the following equality

−
∫ L(t)

0

(
κ(t, s) − 2π

L(t)

)2
ds = −

∫ L(t)

0
κ2(t, s) − 4π

L(t)κ(t, s) + 4π2

L(t)2 ds

= −
∫ L(t)

0
κ2(t, s) ds + 8π2

L(t) − 4π2

L(t)

= −
∫ L(t)

0
κ2(t, s) ds + 4π2

L(t) = ⋆,

we have show that the arc length is monotonically decreasing under the APCSF:

L′(t) = −
∫ L(t)

0

(
κ(t, s) − 2π

L(t)

)2
ds ≤ 0,

with L′(t) = 0 if and only if the current contour is a circle with radius r = 1
κ = L

2π .

3.3 Stochastic processes
In this section, we introduce two stochastic processes, the Hawkes process (HP) and
the Ornstein-Uhlenbeck process (OUP), which are both used as underlying driving
force in our amoeboid motility model presented later on in Chapter 5. See [98,
99, 100], for more details about the HP. Regarding the OUP and related diffusion
processes, we recommend [101].

3.3.1 Hawkes process
The Hawkes process is named after Alan G. Hawkes and describes a self-exciting
Poisson point process [102, 103, 104]. In contrast to a standard (i.e. not self-
exciting) Poisson point process, the underlying intensity of a HP is temporarily
increased after incoming events. Just like the Poisson point process, the HP can be

28 Chapter 3 Mathematical background



interpreted as counting process (Nt, t ≥ 0), i.e., a non-decreasing stochastic process
taking non-negative integer values.

Definition 3.3.1 (Hawkes Process). A Hawkes process is defined as a counting process
(Nt, t ≥ 0) with conditional intensity

λ(t) = µ(t) +
∫ t

0
g(t − s) dN(s) (3.29)

= µ(t) +
∑

i:ti<t

g(t − ti),

with event times {t1, t2, . . . }, background intensity function µ : R+ → R+, and kernel
function g : R+ → R+, characterizing the positive influence of past events (ancestors)
on the emergence of future events (descendants).

The expected number of offspring for the same parent event is given by

m =
∫ ∞

0
g(t)dt.

Crucially, the kernel function g must be chosen such that the expected number of
offspring is 0 < m < 1. Otherwise, if every event is expected to have more than one
offspring (m > 1), the total number of HP events becomes infinite. By choosing, for
example, the commonly-used exponential kernel

g(t) := αe(βt), α, β > 0,

we obtain m = α/β. Thus, for this kernel, one should choose α and β such that
α < β. For g(t) = 0, we obtain a standard Poisson point process with background
intensity λ(t) = µ(t) and no offspring (m = 0).

The HP intensity from Eq (3.29) is a function of time only. For our amoeboid motility
model in Chapter 5, we will use a spatio-temporal version of the HP, see [100] for
more details.

3.3.2 Ornstein-Uhlenbeck process
The Ornstein-Uhlenbeck process (OUP) is a stochastic process, which was introduced
in 1930 by Leonard Ornstein and George E. Uhlenbeck [105]. It consists of two
terms: a deterministic mean reversion term and a stochastic diffusion term driven
by a Brownian motion Wt. While the OUP was initially used to describe the diffu-
sion of particles, it became increasingly important in other fields such as financial
mathematics and biophysics. The OUP is defined as follows.

Definition 3.3.2 (One-dimensional Ornstein-Uhlenbeck process). The stochastic
process (Xt, t ≥ 0) defined by the following stochastic differential equation (SDE) is
called Ornstein-Uhlenbeck process (OUP):

dXt = −aXt dt + b dWt, X(0) = x0,
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with initial state x0 ∈ R, mean reversion rate a > 0, diffusion rate b > 0, and Wt

denoting the one-dimensional Brownian motion.

The name of “mean reversion rate” of a arises from a more general definition of the
OUP based on the SDE:

dXt = a(µ − Xt) dt + b dWt, X(0) = x0.

For this case, the OUP has the following expectation and covariance:

E[Xt] = x0e−at + µ
(
1 − e−at

)
,

Cov[Xt, Xs] = b2

2a

(
e−a|t−s| − e−a(t+s)

)
.

To obtain a variance term depending on the diffusion rate b only, i.e., V[Xt] = b2,
the OUP is sometimes reparametrized by the following SDE:

dXt = −aXt dt + b
√

2a dWt, X(0) = 0. (3.30)

Later on in Chapter 5, we will use a multivariate version of Eq (3.30) to define the
protrusion-generating term in our amoeboid motility model. In contrast to Eq (3.30),
this version will affect the entire contour instead of a single particle. Furthermore, it
will be based on a correlated and periodic noise on the contour instead of a Brownian
motion.

30 Chapter 3 Mathematical background



4Analyzing amoeboid cell motility

To advance the mathematical description of amoeboid motility, we envision that
current efforts of mechanism-based modeling are complemented by a more system-
atic, data-driven approach. This requires a mathematical framework that allows
us to systematically develop a quantitative model based on experimental data.
Such a framework should rely on observables that encode the key characteristics
of amoeboid motility and, at the same time, are readily accessible experimentally.
Trajectories of the center-of-mass of the cell can be easily recorded in large amounts
from low-resolution bright-field microscopy data but reflect only very limited, inte-
gral information on the entire process. The intracellular signaling pathways and the
cytoskeletal mechanisms, on the other hand, are difficult to access and knowledge
on this part of the system remains highly incomplete. We therefore concentrate on
the cell shape as the central reference quantity. The cell shape is fully accessible by
standard microscopy techniques and can be easily recorded with sufficient spatial
and temporal resolution. Moreover, its dynamic evolution implicitly reflects the
intracellular processes and determines the center-of-mass trajectory of the cell.

In our long-term quest for a quantitative, data-driven model of amoeboid motility,
several steps are required: First, the development of a mathematical framework for
the description of experimentally observed shape dynamics; second, the design of a
model of the contour dynamics that predicts realistic shape evolutions; and finally,
the incorporation of mechanistic information on key intracellular processes as the
driving determinants of the contour dynamics. These become accessible by imaging
of fluorescently tagged fusion proteins and by more advanced methods, such as
knock-sideways and optogenetic approaches. Here, existing mechanistic models may
provide a useful basis and might merge into a joint modeling concept.

In this chapter, we concentrate on the first aspect of the above agenda. We provide
a mathematically well-defined approach that allows for a detailed analysis of the
complex, multifaceted contour dynamics of amoeboid cells. A key ingredient is
the concept of regularized flows between contours that define an evolution of
virtual markers in time. Using contour flows, we define a coordinate system on
the evolving contours (strongly regularized case) and approximate local quantities
of interest (weakly regularized case). While the strongly regularized flow is used
to define trajectories of virtual markers over the entire time span, the weakly
regularized flow is used to obtain information on local membrane changes, which is
mapped subsequently onto the global flow representing the coordinate system. This
separation between global and local flows is an essential feature of our approach.

Established approaches to describe virtual markers on an evolving contour most
commonly include level set methods (LSM), e.g., in [27], where the cell contour
dynamics was additionally decomposed into a translation of the entire cell and the
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deformation of its contours. In [29], the LSM was compared to a mechanistic spring
model penalizing a dense concentration of virtual markers. While the mechanistic
model provides better computation times than the LSM, it shows limitations regard-
ing topological mapping violations during strong shape deformations. Alternatively,
electrostatic field equations were successfully employed, tackling mapping viola-
tion issues while providing better computation times [28]. However, it does not
provide trajectories of virtual markers over the entire time interval in its current
form. In [19], a mapping was chosen which minimizes the sum of squared distances
between virtual markers (so-called mean squared displacement), while enforcing
an evenly-spaced distribution of virtual markers. Our work aims at (i) presenting a
theoretical framework for the analysis of marker dynamics and (ii) combining the
respective merits of the above approaches into a single method.

In the spirit of previous approaches, we rely on the widely used concept of ky-
mographs to graphically represent the space-time dynamics of different geometric
quantities, such as the speed of membrane displacement or the local curvature, along
the cell contour. In this context, we propose a novel criterion based on a single
dynamic quantity for defining membrane expansions/contractions. Prior approaches
to identify membrane protrusions relied on the simultaneous matching of multi-
ple criteria, such as critical values of curvature, protrusion speed, and pseudopod
lifetime [23] or identified protrusion events as points in time only [19], without
providing major protrusion properties, such as area growth rate, shape, and others.
In [25], pseudopods were detected by using a hierarchical clustering algorithm
in which individual membrane extensions are connected based on direction and
continuity in space and time. Furthermore, image skeletonization on contours was
used to identify and characterize pseudopods in an automated way [26]. Unfor-
tunately, all existing approaches have in common an undesirable blending of the
protrusion-defining criteria with their numerical implementation. This makes it
difficult to discern biological effects from numerical artifacts. We instead first define
our criterion in mathematical terms and only subsequently implement it numerically,
allowing us to control numerical errors and avoid artifacts.

The chapter is organized as follows. We first develop the mathematical framework
and introduce the concept of regularized contour flows. We then illustrate our ap-
proach in applications to experimental recordings of the social amoeba Dictyostelium
discoideum, a widely used model organism for the study of amoeboid motility. Finally,
based on the results of our analysis, we illustrate in the Discussion section how we
envision the next steps towards a quantitative, data-driven model of amoeboid
motility, based on a point process of the protrusive activity.

4.1 Data acquisition and image segmentation
Experiments were performed with AX2 cells of the social amoeba Dictyostelium
discoideum. As a marker for filamentous actin, cells expressed fluorescently tagged
Lifeact (C-terminally fused with mRFP, plasmid kindly provided by Igor Weber, Za-
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greb, HR). They were grown at 20°C in liquid culture flasks containing HL5 medium
including glucose (Formedium, Hunstanton, GB) and 10 µg/ml G-418 sulfate (Cay-
man Chemical Company, US) as a selection marker. Before each experiment, cells
were harvested from culture flasks and grown in 25 ml overnight shaking cultures at
180 rpm under otherwise identical conditions. Afterward, nutrients were removed
by centrifugation and washing of the cell pellet with Sørensen phosphate buffer
at pH 6 (14.7 mM KH2PO4, Merck, Darmstadt, DE; 2 mM Na2HPO4×H2O, Merck,
Darmstadt, DE). Then, cells were resuspended in fresh buffer and droplets were
formed in a Petri dish to initiate the streaming processes.

For image acquisition cells were transferred after 5 hours to a glass bottom dish
(Fluorodish, ibidi GmbH, Martinsried, DE). During imaging, they were kept in
Sørensen phosphate buffer at 20°C. Images were taken with a Zeiss LSM780 laser
scanning confocal microscope (Carl Zeiss AG, Oberkochen, DE) at a frame rate of
one image per second, using a 63× or 40× oil immersion objective. Fluorophores
were excited at 651 nm and emission was recorded between 562 nm and 704 nm.
For details see also [14], where the same data set was used in a different context.

Fluorescence image (8-bit gray scale) were segmented using a modified version of
the active contour (snake) algorithm described in [24, 19]. Based on this algorithm,
we parameterized the cell boundary in each frame by a closed string of M = 400
equidistant nodes. As frames were taken at discrete time points t0, . . . , tK−1 with
equal time difference δt = tk+1 − tk = 1 sec, we denoted the discrete representation
of the cell contour in a given frame at time tk as γk with supporting points

(xk,0, yk,0), . . . , (xk,M−1, yk,M−1) ∈ R2. (4.1)

In this chapter, the data sets consists of K = 500 to 1000 time frames. For later
reference, we set t0 = 0 and tK−1 = T .

4.2 Mathematical framework: Regularized contour
flows

4.2.1 Obtaining smooth contour estimates via GPR
We used a real-valued smoothing spline for the x and y coordinates based on the GPR
using a Poisson kernel, for details see Section 3.1. This yielded a parametrization of
the contour Γk at time frame tk = k · δt

Φk : [0, 2π) ∋ θ 7→ (x(θ), y(θ)) ∈ R2 (4.2)

in terms of a finite sum of smooth kernels (see e.g. [82, 83] for details)

x(θ) =
M−1∑
m=0

cmP (θm − θ), y(θ) =
M−1∑
m=0

dmP (θm − θ)
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where P is a suitably scaled Poisson kernel. Support points were chosen to corre-
spond to normalized secant length along the contour

θk,m = 2π
∑m

i=0 dk,i∑M−1
i=0 dk,i

, dk,0 = 0, dk,i =
(
(xk,i − xk,i−1)2 + (yk,i − yk,i−1)2

)1/2

for m = 0, . . . , M − 1 and k = 0, . . . , K − 1, see Section 3.1.2 for details. We
parametrized the contour in the mathematical positive sense, i.e., the interior of the
cell is on the left when going around the contour with increasing θ. In the numerical
implementation, we used the rescaled arc length coordinates, which we denoted
again by θ. This gives

∥∂θΦk(θ)∥ ≡ Lk

2π
, with Lk =

∫ 2π

0
∥∂θΦk(θ)∥dθ, (4.3)

denoting the length of contour Γk. Note that Φk is only uniquely determined up to a
phase shift, i.e., for every Φk and τ , also Φk,τ (·) = Φk(·+τ) is a valid parametrization
of Γk. The phase shift was chosen by an additional requirement in the next section.

The smooth parametrization Φk allowed us compute local quantities along the
contour, e.g., its curvature

κ =
Rπ/2∂θΦk(θ) · ∂2

θ Φk(θ)
∥∂θΦk(θ)∥3 , (4.4)

where Rπ/2 is an anti-clockwise rotation by π/2. As global quantity, we determined
the center of mass Ck of contour Φk as

Ck = 1
2π

∫ 2π

0
Φk(θ)dθ. (4.5)

Since the segmentation points were rather densely spaced over the contour, they well
constrained the smooth contours. Based on the kernel representation, all geometric
quantities, such as arc length and curvature were defined intrinsically for each
contour, and may be easily computed numerically and with high precision.

Connecting the contours along the time axis, however, is not intrinsically well defined,
and is bound to choices. In a first step, we constructed a global coordinate flow,
which served as a reference frame for further local flows to be defined subsequently.
In the limit of infinitely densely sampled contours, this global coordinate system
results in a mapping

Φ : [0, T ] × [0, 2π) → R2, (t, θ) 7→ Φ(t, θ).

Vice versa, any coordinate system defines a coordinate flow over the tube of contours,
i.e., the cell contours in 2d mapped into a 3d space-time coordinate system. If
p0 = (x0, y0) is a point on the first contour at t = 0 and if θ0 is its arc length
coordinate, then t 7→ Φ(t, θ0) corresponds the movement of p0 over the space–
time tube of contours, see Fig 3.3. Of note, this coordinate flow is a theoretical
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Figure 4.1. Virtual marker flows for two test cases w.r.t different degrees of regularization:
strongly regularized (A, D), weakly regularized (B, E), and non-regularized (C, E). In panel
(A)–(C), a stretching effect is illustrated as gray area. Furthermore, mapping violations are
highlighted as red lines (F).

construct that allows us to analyze amoeboid contour dynamics and should not be
misinterpreted as a flow of specific membrane lipids or proteins. Nevertheless, such
a global coordinate system is useful and allows for graphical visualization of the
contours and any locally defined quantity in form of a kymograph.

4.2.2 Biophysical motivation & description of our contour
dynamics approach

After obtaining smooth contours at discrete time steps the question of how to link
them in time remains open. Mapping a marker on one contour to its nearest
point on the consecutive contour is one desirable feature; achieving a regularly
spaced distribution of markers on the consecutive contour is another desirable
feature. Typically, a regularization parameter is used to balance the two features.
In Fig 4.1, mappings defined by differently regularized flows of virtual markers are
shown for two consecutive contours: a strong regularization (left column), a weak
regularization (middle column), and no regularization at all (right column). While
the strongly regularized flow preserves the distances of neighboring virtual markers,
the non-regularized flow is defined by the shortest paths from the first contour to
the second.

Additionally, in panel (B), the velocity v⃗(θ) that propagates a virtual marker θ over
a particular distance to the next contour, is illustrated as well as its decomposition
into an outward-pointing normal velocity v⃗n(θ) and a tangential velocity v⃗t(θ).

For the weakly and non-regularized cases, a stretching effect of virtual markers can
be observed for expanding parts (gray area), whereas clustering effects of virtual
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markers occur at contracting regions. Assuming infinitesimally small time steps, the
“stretching rate” at arc length parameter s that arises from transitioning from one
contour to the next one is given by

d(s) = ∂vt(s)
∂s

+ κ(s) · vn(s), (4.6)

where vt and vn denote the (scalar) speed in tangential and normal direction,
respectively, and κ the curvature. In the following sections, we show that this kind
of “stretching rate”, in the sequel termed instantaneous dilation rate, is a useful
quantity to identify active regions of the contour during cell motility.

While the normal component of the velocity can be approximated easily by taking the
normal distances from the first contour to the second divided by δt, the tangential
component remains unknown and therefore requires additional attention. Naive
flows, such as the shortest path flow from Fig 4.1 (right column) or the flow merely
based on the normal component, can produce topological mapping violations. An
example of such a mapping violation can be seen in panel (F) where the order of
virtual markers on the second contour is inconsistent with the previous one.

In general, additional constraints on the tangent component are necessary with
the aim of preserving an evenly-spaced distribution of virtual markers over time.
In [29], these additional constraints were formulated as a mechanistic spring model,
providing better computation times than the more commonly used LSM. However, it
is mentioned that for strong shape deformations this mechanistic model easily fails
because of mapping violations. This approach, as well as ours, is based on a cost
functional minimizing the trajectories of virtual markers to the next contour while
penalizing the distances of neighboring virtual markers. While in the mechanistic
spring model the penalizing distance is measured in R2, the space of contours, our
approach measures the penalizing distance in [0, 2π), the space to parametrize the
contour. This key difference resolves the issue of mapping violations during large
deformations in our approach.

In A.2, contour mappings for each of these two regularization schemes are dis-
played showing the advantageous stability of our developed S1 regularization during
membrane spikes and other large shape deformations.

In A.3, a selection of contour mappings between two frames with larger shape
deformations are displayed. The underlying microscopy data was recorded with an
imaging rate of δt ≈ 3.13s.

Our method combines and improves different aspects of previous approaches:

• Spatio-temporal tracking of a fixed number of virtual markers,

• Distances between virtual markers flexibly adjustable in terms of a single
regularization,

• Faster than computationally expensive approaches such as LSM,
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• Capability to capture large shape deformations/avoidance of mapping viola-
tions,

• Simplicity regarding the interpretation & number of parameters.

Another key feature of our approach is the usage of two different flows, separating
the underlying coordinate system, defined by one (strongly regularized) flow, and
the dynamic quantities of interest, which are defined separately, e.g., by a weakly
regularized flow.

4.2.3 The maximal correlation coordinate system (MCCS)
The starting point are the parameterized contours Φk in Eq (4.2) for k = 0, . . . , K −1.
To make the influence of the sampling rate more prominent, we also used the
notation

Φ(kδt, θ) = Φ(tk, θ) = Φk(θ).

As stated above, the parametrization of Φk is only determined up to a phase shift by
Eq (4.3). We finally chose the phase shift and therefore the parametrization of Γk+1

by minimizing the distance to the previous contour Γk in a mean squared sense, i.e.,

τk+1 = argmin
τ

∫ 2π

0
∥Φk+1(θ − τ) − Φk(θ)∥2dθ. (4.7)

We may alternatively interpret Eq (4.7) as optimizing the cross-covariance between
the two contours when interpreted as vector-valued functions

τk+1 = argmin
τ

∫ 2π

0
Φk+1(θ − τ) · Φk(θ) dθ.

In the sequel, we used Φ̃k+1(·) = Φk+1(· + τk+1) and omitted the tilde for ease of
notation. Effectively, choosing the phase shift amounts to fixing the ’zero point’
Φk+1(0) on Γk+1.

This is the coordinate system that from now on is used to represent the contour
geometry, i.e., each scalar quantity q defined on the contour Γk with q = q(tk, (x, y))
and (x, y) ∈ Γk as function (k, θ) 7→ q(kδt, θ) of discrete time and continuous space
can be represented w.r.t. the chosen coordinate system Φ.

4.2.4 The Eulerian and Lagrangian points of view
Any flow that maps the contour Γk into Γk+1 is determined by a mapping that
describes the translation along the contour ϕk. To ensure that θ 7→ ϕk(θ) is a
one-to-one map, we required in addition

∂θϕk(θ) > 0. (4.8)
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An example of a mapping violation, i.e. a position θ with ∂θϕk(θ) < 0, is illustrated in
Fig 4.1F, where the order of virtual markers on the following contour is inconsistent
with the previous one. The iteration

θk+1 = ϕk(θk)

describes the trajectory (θk)k=0,...,K−1 of the starting point at coordinate θ0 on the
first contour in our coordinate system. This approach to visualize the flow shall be
called the Eulerian point of view, since it describes the translation vector field from
Γk to Γk+1 in the coordinate system of Γk:

Φk+1(ϕk(θ)) = Φk(θ) + δtVk(θ). (4.9)

The Lagrangian point of view instead describes the flow in the coordinate system it
generates, which is different from our MCCS. Denote the coordinate of a point on
the first contour by its angle coordinate θ0, and let χk be the mapping of Γ0 to Γk

recursively defined by

χk+1(θ0) = ϕk(χk(θ0)), χ0(θ0) = θ0.

This gives χk(θ0) = θk for k = 0, . . . , K − 1. The Lagrangian description Ξ(tk, θ0) ∈
R2 is linked to the Eulerian description via

Ξ(tk, θ0) = Φ(tk, χk(θ0)).

Both points of view are useful to understand and describe a flow over the contour.
The translation vector Wk in Lagrangian coordinates is simply

Ξ(tk+1, θ0) = Ξ(tk, θ0) + δtWk(θ0)

and is linked to the Eulerian description via

Vk(χk(θ0)) = Wk(θ0).

We used the functions ϕk, Vk and Wk interchangeably to specify the flow from Γk to
Γk+1.

Transport along the flow. For any flow, we may define the instantaneous dilation
rate LD of the flow. Considering two infinitesimally nearby points on contour Γk, we
see that the local relative dilation/contraction factor is obtained from ϕk via

LDk(θ)δt = log(∂θϕk(θ)). (4.10)

Note that our global coordinate system MCCS induces a flow with uniform dilation
rate. To describe the transport of a density under the flow, consider points on the
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contour Γk that are distributed according to a density µk(θ)dθ. Under the flow
induced by ϕk this density changes according to

µk+1(ϕk(θ))dθ = µk(θ)dθ

∂θϕk(θ) (4.11)

Starting from µ0(·) ≡ 1/(2π), this defines the transported density on all contours. In
the Lagrangian picture this transport preserves the density µ0(·), which follows from
the fact that by definition the starting angle does not change under the flow. The
density µk can be written in Lagrangian coordinates as

µk(χk(θ0)) = 1
2π · ∂θ0χk(θ0) . (4.12)

A regularizing family of flows. We next defined a family of local mappings ϕk between
successive contours that yield a compromise between the shortest path flow and
the uniform dilation coordinate flow, presented in the two end-member cases in
Fig 4.1. Another suitable name for shortest path flow is reversed normal flow since
the incoming trajectories under this flow are always orthogonal to the successive
contour.

The mean squared velocity of the flow (with respect to a density µk) is given as

Fk[ϕk] =
∫ 2π

0

∥∥∥∥Φk+1(ϕk(θ)) − Φk(θ)
δt

∥∥∥∥2
µk(θ)dθ =

∫ 2π

0
∥Vk(θ)∥2µk(θ)dθ. (4.13)

The normal flow from contour Γk to Γk+1 is the flow that departs from the first
contour in the normal direction until it intersects with the second contour. The
normal flow from Γk+1 to Γk shall be called the reversed normal flow from Γk to
Γk+1. This is the unconstrained minimizer of Fk. If there are no intersections of
flow lines, it defines a one-to-one mapping between the two contours. In general,
however, direct minimization of the functional Fk does not yield a valid flow because
of self-intersections, and as a consequence, the induced map is multiple-valued.
We, therefore, need to regularize the flow. A natural requirement is that the flow
tends to enforce non-uniformly distributed points on contour Γk towards more
uniformly distributed points on contour Γk+1. We proposed to quantify the degree
of non-uniformity of a distribution µ(θ)dθ by means of

U [µ] =
∫ 2π

0

dθ

µ(θ) . (4.14)

Since any distribution satisfies
∫ 2π

0 µ(θ) = 1 and µ(θ) > 0, the minimizer actually
corresponds to the uniform distribution. Other measures of non-uniformity are
possible, for instance the entropy

S[µ] =
∫ 2π

0
µ(θ) log(µ(θ))dθ.
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This kind of regularization has been proposed in [106] by Otto, where the optimal
flow is understood as a gradient flow of the entropy potential with respect to the
Wasserstein transport distance of the marker density. Also very appealing, in this
paper, we used the characterization in Eq (4.14), since it leads to a more readily
tractable numeric quadratic minimization problem. In terms of the defining mapping
ϕk, the functional U reads

Uk[ϕk] =
∫ 2π

0

∂θϕk(θ)2

µk(θ) dθ, (4.15)

as follows from Eq (4.11). The regularized flow is defined as the flow that minimizes
a compromise between both cost functions

ϕk,λ = argmin
ϕk

Fk[ϕk] + λUk[ϕk], λ > 0. (4.16)

Note that Hk[ϕk] = Fk[ϕk]+λUk[ϕk] depends on both, ϕk and the measure µk. When
iterating over all contours, one needs to update the measure before optimizing the
flow for the next time step. There are two end-member cases for the regularized
flow:

• For large λ the optimal flow essentially immediately uniformizes the density
of the initial contour. Thereafter, it is the uniform stretching flow that mini-
mizes the mean square distances between the contours. This is precisely the
coordinate flow defined before.

• For small λ the optimal flow allows for arbitrary local stretching rates to
minimize the point-wise distance. Here the limit defines the regularized
shortest path flow, respectively, the regularized reverse normal flow.

Note that straightforward pointwise minimization of the flow distance from Γk to
Γk+1 may lead to overlapping connections and hence singular mappings between
the contours. If instead, we regularize with small λ, such overlaps are avoided.

The virtual marker picture.

For numerical implementation, we discretized the cost functionals using the concept
of virtual markers on the contours. The virtual markers are a discretized version
of the Lagrangian coordinates. Since µk is the transported density, the first cost
functional for ϕk in the Lagrangian point of view using Eq (4.12) is given by

Fk[ϕk] = 1
2π

∫ 2π

0
∥Vk(χk(θ0))∥2dθ0 (4.17)

= 1
2πδt2

∫ 2π

0
∥Φk+1(ϕk(χk(θ0))) − Φk(χk(θ0))∥2 dθ0,

while the second functional using Eq (4.12) is given by

Uk[ϕk] = 2π

∫ 2π

0
|∂θ0χk+1(θ0)|2dθ0. (4.18)
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See Section A.2 for details of the derivation. Both equations are well suited for a
discrete numerical approximation for a given function f and initially equidistant
θ0,i = 2πi/N with i = 0, . . . , N − 1 using

N−1∑
i=0

f(θ0,i)(θ0,i+1 − θ0,i) ≃
∫ 2π

0
f(θ0)dθ0.

If we now approximate the continuous mapping ϕk by its discrete values on the
virtual marker points θk = (θk,0, . . . , θk,N−1) with

θk+1,i = ϕk(θk,i), (4.19)

then the first cost function may be approximated as

Fk[ϕk] ≃ Fk

[
θk+1|θk

]
= 1

Nδt2

N−1∑
i=0

∥∥Φk+1(θk+1,i) − Φk(θk,i)
∥∥2 (4.20)

and the second cost function as

Uk[ϕk] ≃ Uk

[
θk+1|θk

]
= N

N−1∑
i=0

∣∣θk+1,i+1 − θk+1,i

∣∣2. (4.21)

For the entropy based measure of uniformity, consider a collection of points
θk,0, . . . , θk,N−1 ∼ µk on Γk that are distributed according to the density µk(·) (not
necessarily uniform). Then for any function f , it is

1
N

N−1∑
i=0

f(θk,i) ≃
∫ 2π

0
f(θ)µk(θ)dθ,

yielding

Sk[ϕk] ≃ Sk

[
θk+1|θk

]
= 1

N

N−1∑
i=0

log(θk+1,i+1 − θk+1,i).

In this discrete virtual marker approximation, the local dilation rate at θi,k, also
called the local dispersion, reads

LDk,i = 1
δt

log θk+1,i+1 − θk+1,i

θk,i+1 − θk,i
. (4.22)

Please note that for infinitesimally small time steps another formulation of this rate
is given by Eq (4.6). Especially for level set methods, this formula is more applicable.
Finally, the discrete optimization problem is given by

ϕk,λ = argmin
ϕk

Fk

[
ϕk(θk)|θk

]
+ λUk

[
ϕk(θk)|θk

]
, λ > 0. (4.23)

Note that in the discrete optimization problem we do not pose any requirements on
the space of transformations ϕk ensuring condition Eq (4.8). If ϕk(θk,i+1) − ϕk(θk,i)
= θk+1,i+1 − θk+1,i ≤ 0 for some k, we say that ϕk exhibits mapping violations.
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Marker re-initialization for weakly-regularized contour flows.

In general, the distribution of virtual markers θk ∼ µk on Γk depends on the initial
distribution of virtual markers θ0 ∼ µ0 on Γ0, since the density µk results from the
transport of µ0 by the flow. As a consequence, functions derived from the local
contour flow like, e.g., the local dilation rate along Γk, may depend on the initial
distribution on Γ0. By re-initializing the distribution of virtual markers on Γk for
any k = 1, . . . , K − 1, this dependence may be removed. A natural choice is to
re-initialize with the uniform distribution, i.e., using

θk+1,i = ϕk(ξi) (4.24)

with ξi = 2πi for i = 0, . . . , N −1 instead of Eq (4.19). To approximate the local flow
ϕ = (ϕk)k=0,...,K−1 between contours, we thus solved the re-initialized optimization
problem

ϕk,λ = argmin
ϕk

Fk

[
ϕk(ξ)|ξ

]
+ λUk

[
ϕk(ξ)|ξ

]
, λ > 0. (4.25)

with ξ = (ξi)i=0,...,N−1. For the local dispersion, e.g., this resulted in

LDk,i = 1
δt

log ϕk,λ(ξi+1) − ϕk,λ(ξi)
ξi+1 − ξi

(4.26)

with no dependence on the initial distribution of markers on Γ0.

4.2.5 Algorithmic workflow
We summarize the proposed numerical workflow:

1. Given the segmented contours γ0, . . . , γK−1 as in Eq (4.1), determine the
continuous representations Φk defined in Eq (4.2) satisfying the conditions
Eq (4.3).

2. Determine contour based quantities like the curvature in Eq (4.4) or the center
of mass in Eq (4.5).

3. To determine the (strongly-regularized) coordinate flow, consider N equally
spaced markers

θ0 = (θ0,i)i=0,...,N−1 θ0,i = ξi = 2πi

N

on the initial contour and choose a large λ value. Iteratively solve the reg-
ularization problem in Eq (4.25) to determine the coordinate markers θk+1

for Γk+1 from the coordinate markers θk for Γk. Since both θk+1 and θk are
approximately equally spaces, solving the minimization problem amount to
choosing θk+1,0.

4. To determine the (weakly regularized) local flow ϕ = (ϕk) between successive
contours, choose a small λ value and solve the regularization problems in
Eq (4.25) to determine the coordinates θk+1,i = ϕk,λ(ξi) on Γk+1 based on N

equally spaced markers ξ0, . . . , ξN−1 on Γk.
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5. Determine contour flow based quantities like the local dispersion in Eq (4.26)
or the local motion:

LMk,i = ∥Vk(ξi)∥ = ∥Φk+1(ϕk,λ(ξi)) − Φk(ξi)∥
δt

, (4.27)

see also Eq (4.9).

6. Map all quantities, based on contour flow as well as contour only, onto the
(strongly regularized) global flow.

Numerical implementation and reproducibility.

All methods presented in this article are fully accessible as an open source Python-
based toolbox AmoePy [DS3]. Implementations of the above methods and additional
routines necessary to reproduce the figures and results of this article are part of this
toolbox. Furthermore, AmoePy contains:

• An object-oriented analysis tool to handle cell contours, i.e., to shorten, extend,
or manipulate existing data sets and to extract additional geometric quantities
(e.g. area, perimeter, and normal vectors along the cell contour),

• A python class to perform Gaussian process regressions in 2d (space) and 3d
(space-time) with different selectable kernel functions,

• Multiple testing routines based on artificial test data and experimental data,
see Section A.1 and File A.1 for more details,

• Several routines generating videos of cell tracks with corresponding kymo-
graphs and occurring expansion/contraction patterns,

• A detailed documentation generated by the Python documentation tool Sphinx,

• A graphical user interface able to compute and present kymographs

AmoePy, as well as its graphical user interface, is updated regularly. Future outcomes
of our ongoing research regarding for example cell segmentation routines and a
forward model to simulate amoeboid cell motility will be also added to AmoePy.

The algorithm starts with initializing equally spaced markers, representing the
starting points of the flow (see also the algorithmic workflow). Subsequently, the
optimization problem in Eq (4.25) is solved contour-wise by gradient descent. Here,
it is beneficial that the GPR also provides these gradients as a by-product, which
decreases the computation time drastically; see Section A.1 and Fig A.4 for more
details. for more details. Fig 4.2 shows the pseudocode to compute a regularized flow
for a given regularization parameter λ. Being able to determine the regularized flow
for a given parameter λ is the prerequisite to finally compute the global (strongly
regularized) and local (weakly regularized) flows. These are based on the two
regularization parameters λglo ≫ λloc > 0. The local quantities are then represented
in the coordinate system of the global flow, yielding the kymograph representation.
A pseudocode describing the computation of these kymographs is shown in Fig 4.3.

In contrast to level set and electrostatic methods, the optimization approach pre-
sented here is not relying on the computation of intermediate field lines or contours
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Algorithm 1: RegFlow

Input: γ0, . . . , γK−1, r ∈ (0, 1) , σn > 0, N ∈ N, λ ≥ 0
Output: Γ0, . . . ,ΓK−1, θ

eval
0 , . . . , θeval

K−1

/* Initialize evenly distributed starting points */

θinit = NormalizedArcLengthCoordinates(γ0);

θeval
0 =

[
0, 2π

N , 2 · 2π
N , . . . , (N − 1) · 2π

N

]
;

Γ0 = GPR(γ0, θinit, θ
eval
0 , r, σn);

/* Compute virtual marker flow contour-wise */

for k = 1 to K − 1 do
θinit = NormalizedArcLengthCoordinates(γk);

θeval
k = MinimizeFunctional(Γk−1, γk, r, σn, λ);

Γk = GPR(γk, θinit, θ
eval
k , r, σn);

end

return Γ0, . . . ,ΓK−1, θ
eval
0 , . . . , θeval

K−1

Figure 4.2. Algorithm to compute regularized flows. The algorithm input consists of
three parameters r, σnoise, and N regarding the Gaussian process regression, a regularization
parameter λ and the initial (segmented) contours γ0, . . . , γK−1. The regularized flow is
described by the output variables Γ0, . . . , ΓK−1 denoting smooth contours evaluated at a
finite number of coordinate markers θeval

0 , . . . , θeval
K−1.

for sufficiently small grid sizes. Notably, level set methods are computationally
more expensive because of the time integration of virtual markers along these field
lines[29, 28]. On the other hand, our algorithm contains additional steps such
as the re-initialization of virtual markers via Gaussian process regression and the
computation of kymograph quantities which may lead to slower computation times
than other empirical mapping algorithms. A direct comparison of computation times
of these methods is rather difficult since some algorithms rely on a varying number of
virtual markers or a more image-based implementation (e.g. in ImageJ). Moreover,
the computation time depends on varying configurations of these methods, e.g., the
resolution of the underlying grid in LSM, or the number of iterations/tolerance pa-
rameters used in optimization approaches such as ours. Unfortunately, a “biological
true” mapping does not exist, with which the accuracy of each of those methods can
be measured.

Nevertheless, we provide the computation times of our algorithm “RegFlow” shown
in Fig 4.2 on a standard computer, see Fig A.5. For a cell track of 500 contours and
400 virtual markers, the computation time for generating the mapping between two
successive contours was measured for different regularization parameters λ. Not
surprisingly, the computation time decreases for the end-member cases λ → 0 and
λ ≫ 0, where the underlying functional is only defined by one leading term. For
each choice of λ, the median of the computation time is below 2s where most of the
cases required sub-second computation times. Furthermore, no mapping violations
occurred during the cell track despite larger shape deformations and membrane
spikes. Therefore, our method has the potential to be used specifically for cell
motility models that rely on a fast computation of stable virtual marker trajectories.
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Algorithm 2: ComputeKymographs

Input: γ0, . . . , γK−1, r ∈ (0, 1) , σn > 0, N ∈ N, λglo ≫ λloc ≥ 0
Output: Γ0, . . . ,ΓK−1, C0, . . . , CK−1, LM0, . . . ,LMK−2, LD0, . . . ,LDK−2

/* Initializing global flow */

Γglo
0 , . . . ,Γglo

K−1, θ
glo
0 , . . . , θglo

K−1 = RegFlow(γ0, . . . , γK−1, r, σn, N, λglo);

/* Computing curvature at global flow */

C0, . . . , CK−1 = Curvature(Γglo
0 , . . . ,Γglo

K−1, r, σn);

for k = 1 to K − 1 do
/* Computing dynamic quantities between two contours */

Γloc
start, Γ

loc
end, θ

loc
start, θ

loc
end = RegFlow(γk−1, γk, r, σn, N, λloc);

LMloc
k−1 = LocalMotion(Γloc

start, Γ
loc
end);

LDloc
k−1 = LocalDispersion(θloc

start, θ
loc
end);

/* Computing quantities along global flow */

θeval = θglo
k−1;

LMk−1 = GPR(LMloc
k−1, θ

loc
start, θeval, r, σn);

LDk−1 = GPR(LDloc
k−1, θ

loc
start, θeval, r, σn);

end

return Γ0, . . . ,ΓK−1, C0, . . . , CK−1, LM0, . . . ,LMK−2, LD0, . . . ,LDK−2

Figure 4.3. Algorithm to compute curvature, local motion and local dispersion. The
two regularization parameters λglo and λloc are used in the RegFlow routine (see Fig 4.2) to
determine the global (strongly regularized) and local (weakly regularized) flow. The output
comprises the smoothed contours Γ0, . . . , ΓK−1 as well as geometric quantities of interest
such as curvature, local motion, and local dispersion.

4.3 Analysis of amoeboid cell motility by means of
regularized contour flows

4.3.1 Degree of regularization controls distribution of virtual
markers

We applied our approach to time-lapse microscopy data of the social amoeba D.
discoideum. Fig 4.4 illustrates the data acquisition process. For each time point tk,
we obtained a sequence of segmentation points from a fluorescence image (see panel
(A) and Eq (4.1)) and their corresponding continuous representation Φk (see panel
(B) and Eq (4.2)). The entire sequence of continuous contours is shown in panel
(C), while the trace of the cell track and the center of mass trajectory are shown in
panel (D).

In Fig A.6, estimations of continuous representations for different hyperparameters
are shown. In contrast to Fig 4.4, the underlying snake of segmented points was
obtained from noisy fluorescence image data resulting in many abrupt changes of
the contour’s direction. In this context, the curvature for different contour estimates
is displayed, highlighting the effect of underfitting and overfitting. Notably, the GPR
provides an automated way of estimating the hyperparameters balancing the model’s
complexity and its error residuals, see Section 3.1.4 for more information. This way,
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Figure 4.4. Cell trajectory of a persistently moving amoeba. (A) Fluorescence image
with closed string of M = 400 equidistant nodes resulting from the segmentation process;
shown is only every fifth segmentation point (blue points). (B) Smooth representation Φk of
the cell contour (orange line) obtained by spatial Gaussian regression on the segmentation
points. Every fifth cell contour is displayed as dashed gray line. (C) Entire cell track of
K = 500 cell contours (only every fifth shown). (D) Global trace of the cell track (gray area)
and the trajectory of the center of mass of the contour (solid line, color coded as in panel
(C)). The initial contour is shown as dashed black line and the final contour as dashed gray
line.

an accurate approximation of the cell contour can be obtained even for noisy data
while preserving the main characteristics of its shape.

In Fig A.7, the effect of different imaging frequencies on the resulting kymographs
is shown. In this context, local motion kymographs are computed by using (i) the
entire microscopy data (one image/contour per second) and (ii) down-sampled
data sets based on every 2nd, 3rd, 5th, and 10th image/contour. While global
characteristics of the cell track are captured even for a lower temporal resolution
(δt > 3), the identification of local membrane changes becomes impossible. We
therefore recorded each cell track with an imaging rate of one frame per second
(δt = 1). See also Fig A.3, in which contour mappings for larger shape deformations
are displayed. Here, the underlying cell track was recorded with an imaging rate of
δt ≈ 3.13s.

The continuous representations Φ0, . . . , ΦK−1 of all contours are the input to the
optimization problem Eq (4.16) to determine the regularized contour flow. Fig 4.5
shows the impact of the regularization parameter λ on the virtual marker trajectories
(shown for two illustrative contours). In the absence of any regularization (panel
(A), λ = 0), virtual markers are thinned out in some regions (linked to expanding
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Figure 4.5. Impact of regularization on the distribution of virtual markers for (A) no
regularization (λ = 0), (B) weak regularization with λ = 0.1, and (C) strong regularization
with λ = 1000, illustrated on two frames (roughly 20s apart for illustration purpose). Using
the strongly regularised so-called coordinate markers as a means to map local characteristics
into a kymograph, the lower panel shows the local motion (D) and curvature(E). The local
motion is defined by the magnitude of each mapping vector, which are determined based on
the weakly regularised marker flow. All panels correspond to the persistently motile cell of
Fig 4.4.

areas), while they are clustered in others (in particular at the back of the cell). The
case λ = 0 corresponds to minimizing the translation from the first contour to the
next, i.e., each virtual marker on the first contour is linked to its nearest neighbor on
the second contour. This may result in mapping violations θk+1,i+1 − θk+1,i ≤ 0 on
the second contour. An example of mapping violations can be seen on the left-hand
side in panel (A). As mentioned earlier, the flow obtained with λ = 0 is defined by
the shortest path flow or equally the reversed normal flow. Thus, instead of taking
the trajectories to the nearest neighbors on the next contour, one could also choose
the shortest normal vectors from the second contour to the first one.

In the weakly regularized case, virtual marker thinning and clustering is still promi-
nent (see panel (B) with λ = 0.1), but to a lesser extent. Moreover, in the presence
of regularization, virtual marker trajectories are interdependent, which results in
trajectories without mapping violations. In the limit of strong regularization, the
marker points remain uniformly distributed on every contour, while minimizing the
overall distance between contours (see panel (C) with λ = 1000). This makes the
strongly regularized virtual marker trajectories an ideal candidate for a time-evolving
reference frame and corresponds to the previously defined MCCS coordinate system.

By choosing a strong regularization for the coordinate system, however, information
on local contour changes is largely lost. Therefore, we used the strongly regularized
case only to determine the coordinate system (set of N = 400 virtual marker
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trajectories), while we determined local contour characteristics (e.g. local motion
or local dispersion) based on a re-initialized weakly regularized flow. The local
characteristics were subsequently represented in the coordinate system obtained
from a strongly regularized flow. In panel (D), the local motion obtained from the
re-initialized weakly regularized flow with λ = 0.1 is shown for the same cell track
as in Fig 4.4 and the entire time-lapse microscopy recording (500 frames, δt = 1s).
The local motion clearly shows regions of fast-moving membrane parts at the leading
edge (red areas) and at the back of the cell (blue areas). The curvature kymograph
in panel (E) shows characteristic lines of strongly convex (orange) and concave
(green) membrane parts. Inclined lines of curvature (and local motion) may result
from adherent parts of the cell moving along the cell contour as well as shifting
effects of virtual markers due to arc length changes. It is important to notice that a
kymograph depends on the underlying time-evolving coordinate system.

In contrast to the procedure mentioned above, one may also compute local charac-
teristics along the global flow without re-initializing from a uniform distribution of
markers after every time step. However, this is not recommended, because either
local information gets lost (strongly regularized flow) or clustering and thinning
effects of markers become too prominent (weakly regularized flow); see Fig A.8
for global flows based on different regularization parameters and the resulting
kymographs.

As shown in Fig A.9, we further challenged our algorithm by computing a strongly
regularized (global) flow of the cell track from Fig 4.4 based on a few frames only
(8 out of 500). Even under such extreme conditions, the algorithm produced stable
virtual marker trajectories, i.e., trajectories without mapping violations.

4.3.2 Kymographs of local properties show characteristic
patterns of amoeboid motility

The kymographs of local dispersion (LD), local motion, and curvature can be used
to visualize, analyze, and quantify the expanding activity of a cell track. Note that
the three quantities are closely related. Fig 4.6 shows cell tracks and corresponding
kymographs for three different motility patterns: (A) persistently motile cell; (B)
weakly motile cell; and (C) an almost stationary cell. All kymographs are smoothed
by a Gaussian filter with a standard deviation of three markers in space and a
standard deviation of one contour in time. See Fig A.10 for the same kymographs but
without smoothing. Moreover, videos of all three cell tracks and their corresponding
kymographs can be found in Video A.1–Video A.3.

For the persistently motile cell, the LD kymograph shows strong (positive) activity
in a band-like structure along roughly half of the cell contour (width π), while the
activity of local dispersion is less localized for the weakly motile cell and much less
pronounced for the stationary cell. A similar scenario is seen in the local motion
kymographs of the three cells. In broad terms, the local motion kymographs show
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Figure 4.6. Comparison of different cell tracks of Dictyostelium discoideum: persistently
motile (left), weakly motile (middle) and almost stationary (right). The corresponding
kymographs contain information on the local dispersion (left), local motion (middle) and
curvature (right). For details see text.

more activity, e.g., areas of red and dark red color, than the LD kymographs. This is
also apparent from a correlation plot of the two quantities (see Fig A.11).

In the following section, we chose the local dispersion as a basis to identify expan-
sions being a product of local velocity and curvature. Another reason to choose LD
as the quantity to define expansions is that many patches of high activity in the local
motion kymograph contain multiple LD areas. The LD allowed us to divide these
patches of high local motion into single separated expansions with high LD rate.

4.3.3 Virtual marker dispersion allows to identify and
characterize expansions

Using the persistently motile cell track in Fig 4.4, we describe next, how to use the
LD to define expansion areas and expanding events. Based on the local dispersion
kymograph in Fig 4.7A, we defined areas of medium (light red) and high (dark
red) expanding activity as well as medium and high contracting activity (light and
dark blue, respectively), see Panel (B). In this context, we determine thresholds
for expanding activity by dividing the 90th percentile of all positive LD values
of the kymograph into three intervals of equal length. For contracting activities
(LD < 0) the opposite thresholds were taken. By leaving out the largest and smallest
values of the LD kymograph, the classification becomes less dependent on outliers.
Additionally, we performed a prior smoothing of the kymograph as mentioned in the
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Figure 4.7. From the local dispersion kymograph to expanding areas and expansion
events. (A) Local dispersion of a persistently motile cell as in Figs 4.4 and 4.6 (left-hand
side). (B) Discretised local dispersion with different areas of activity: high (dark red),
medium (light red), low (white) expanding activity, and low (white), medium (light blue),
high (dark blue) contracting activity. Local maxima of positive local dispersion are depicted
as black dots. Areas of medium and high expanding (C) and contracting (D) activity mapped
back on the trace of the cell track.

first paragraph of the previous section to reduce noise and, therefore, to reduce the
number of small and separated patterns.

To highlight the events of the highest local expanding activity, we included positive
local maxima of the LD kymograph (black dots) in panel (B). Local maxima falling
inside regions with high or middle expanding activity were depicted as bold dots.
Using the time-evolving coordinate system obtained from strongly regularized flow,
the expansion/contraction areas shown in panel (B) are mapped back into the
2d plane of amoeboid motion, see panels (C) and (D), respectively. As a result,
we obtain an automated visualization of the expanding activity during amoeboid
locomotion.

The kymograph in panel (B) clearly shows the trace of expanding activity at the
leading edge, located initially at around 3π/2 and then shifting towards π. At the
same time, contracting activity occurs mainly at a distance of π from the leading
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Figure 4.8. Expanding and contracting areas with corresponding expansion events.
Illustrative sequence of the contour dynamics for 96s ≤ t ≤ 144s (left), and 316s ≤ t ≤ 350s
(right) based on the cell track shown in Fig 4.7. Features with high and medium expanding
activities are shown in dark and light red, respectively. Features with high and medium
contracting activities are shown in dark and light blue, respectively. All patterns shown
possess a minimal growth time of 3s. The black dots show local maxima of the local
dispersion in areas of medium and high expanding activity.

edge. In panels (C) and (D), one can nicely see the explorative dynamics of the
expansions at the cell front and the stably retracting back of the cell, the so-called
uropod, where dark blue areas indicate faster contractions. Analogous graphics for a
collection of motile and stationary cells can be found in File A.2 and File A.3, each
containing 12 cell tracks.

In Fig 4.8, we present a close-up of two sequences of cell contours. The core
expanding areas that shape the evolving cell contour can be seen clearly, e.g., in
panel (A). The events of the highest expanding activity (black dots) seem to drive
the expansion in many cases. Panel (B) illustrates strong contracting activity at the
uropod, and the contraction of the membrane between two nearby expansions (blue
area sandwiched between red areas). The opposite effect can be seen in panel (A)
at the back of the cell, where a concave region between two convex contractions
is identified as expansion. These patterns nicely illustrate the concept of local
dispersion, being a product of the local velocity of virtual markers and the curvature
along the contour segment.

In Fig A.12, every identified pattern with minimal growth time ∆t ≥ 3 is shown for
the underlying cell track.

4.3.4 Statistical analysis of motility patterns
In this section, we illustrate the ability to statistically analyze a cell track based on
our regularized contour flow approach. We used the persistently motile cell track for
illustration.
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Figure 4.9. Statistical analysis of example cell track. (A) Local dispersion kymograph
with thresholds as in Fig 4.7. (B) Area growth of cell segments which are part of identified
expansions (red) and contractions (blue) of high and middle intensity. (C) Number of
expanding and contracting areas with high intensity with respect to time. The time with > 2
features are colored gray to highlight the change in activity in the different phases.

Fig 4.9A shows the local dispersion kymograph of the persistently motile cell divided
into four different phases (note that here the y axis starts at π/4). Until t = 200s, the
cell moves upward with well observable expansions roughly between 1.1π to 0.2π,
while the uropod is slightly above π/2. Then, the cell begins a phase of reorientation
that lasts until t ≈ 280s, where larger expansions occur also at the former back of
the cell. Subsequently, the cell changes its direction downward toward 3/4π to π (in
the video it moves rightwards). In the last phase, the cell moves to the right-hand
side by creating expansions at the front left, front right, and again front left of the
cell. See Video A.1 for a better understanding of the cell track.

We analyzed the expanding and contracting areas shown in Fig 4.7C and 4.7D
with respect to the activity level (medium/high), duration, and position along the
cell contour. In addition, we investigated the differences between expansions and
contractions. Fig 4.9B displays the area growth of expansions and contractions
for high activity. The identified expanding and contracting areas are naturally
partitioning by the sequence of contours into smaller ’slices’ (see, e.g., Fig 4.8). We
defined the area growth of an expansion/contraction as the area of the slice divided
by the frame rate δt. We observed that the overall change of cell area attributed
to expansions of high activity is substantially larger than for contractions of high
activity. This illustrates that the cell motility of this cell track is driven by a higher
number of fast (and potentially explorative) expansions, and a small number of
fast contractions. Since in broad terms, the total area gain balances the total area
loss, it further illustrates that area loss is to a larger extent attributed to slower and
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steadier contractions than it is for expansions. After the second phase (t > 280),
when the cell has completed reorientation, the area change for both, expansions and
contractions increased and even more so at the beginning of the last phase (t > 370).

Finally, in panel (C), the number of simultaneous expansions and contractions is
shown (high activity only). In the first phase of the upward moving cell, the number
of expansions is much higher than the number of contractions (mean: 1.52 vs. 1.12).
In addition, we determined the fraction of time fTexp>2 and fTcontr>2 with more
than two simultaneous expansions and contractions, respectively. In the first phase,
it is fTexp>2 = 0.146 vs. fTcontr>2 = 0.035. In the following phases, these fractions
increase for contractions: fTcontr>2 = 0.198; 0.195; 0.341 (for phase 2; 3; 4), whereas
for expansions the fraction is slightly smaller in the second phase and larger in the
last two phases: fTexp>2 = 0.123; 0.207; 0.217 (for phase 2; 3; 4). This illustrates that
the increased activity, as seen in panel (B), goes along with an increased number of
expansions and contractions. Moreover, this indicates a more explorative character of
the cell motion in phases three and four, while the cell seemed to be more stabilized
during the first phase.

Fig 4.10 gives further insight into the expanding activity. Panel (A) shows the
distribution of LD values of all virtual markers within expanding and contracting
areas with high activity. In other words, the local dispersion distribution shows only
values that are larger than the thresholds for high expanding activity or smaller
than the threshold for high contracting activity (the thresholds are ±0.087). The
distribution of the LD of expansions further extends towards large values than the
corresponding distribution of contraction towards small values (median of 0.13/s vs.
−0.12/s).

In panels (B) and (C), the distributions of local motion and the curvature are shown
for all virtual markers within expanding and contracting areas of high activity
(same areas as above). For the local motion, we observed major peaks around
0.29 µm/s and −0.21 µm/s for expansions and contractions, respectively. Minor
peaks correspond to inward expansions and outward contractions discussed in the
previous section and shown in Fig 4.8 (see red expanding areas within a blue
contracting region in panel (A), and a blue contracting area within an expanding
region in panel (B)). In line with this observation, minor peaks of concave (negative)
curvature and major peaks for convex (positive) curvature are shown.

Fig 4.10D shows the distribution of high activity expansions in direction of the
moving cell. We identified two peaks in direction of the cell movement (front-left
and front-right). Another peak is located at the back of the cell. A similar behavior
was presented for pseudopods in [18, 6], where two different types of pseudopods
were distinguished: (left/right) splitting pseudopods and de-novo pseudopods. By
comparing the correlation between the growth time and the area of expansions and
contractions in panel (E), we observed that expansions possess an area often twice
as large as contractions with similar growth times. This indicates the difference
between the faster and more explorative character of expansions at the cell front
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Figure 4.10. Statistical analysis of example cell track. Distributions of local dispersion
(A), local motion (B) and curvature (C) inside expanding and contracting patterns with
high intensity. (D) Circular histogram displaying the angle, where high expanding activity
appears along the cell contour. (E) Correlation between area and growth time of identified
patterns. (F) Histograms of growth times of expansions and contractions with high intensity.

and the slower and stably retracting character of the uropod. This is also in line with
the corresponding activities shown in Fig 4.9B.

Finally, in panel (F) the distribution of growth times is shown for both, high activity
expansions and contractions. Note that we used the term ’growth time’ for both,
expansions as well as contractions, owing to the fact that also contracting areas can
be moving in an outward direction, as discussed earlier. The majority of growth
times fall inside a range of 0s to 10s. Nevertheless, there are patterns, especially
long persistent uropods, with growth times much larger than the range presented in
these histograms. The average growth time of pseudopods observed in [6] is much
higher (12.8 s) than the growth times of expansions presented in this work (4.9 s).
This is not surprising, since our definition of expansions also takes short-lived objects
into account. For example, the average number of expansions per minute for the
persistently motile cell track (≈ 17.0) is much higher than the average frequency of
pseudopods per minute (2.9 ± 0.2) as observed in [6]. Additionally, concave regions
between two contractions as in Fig 4.8A were detected as expanding areas as well,
which raises the total number of expansions. See File A.2 and File A.3 for similar
graphics of a collection of 24 cell tracks, also containing the other two tracks from
Fig 4.6.

4.3.5 Application to other kinds of cell motility
In this section, we demonstrate the flexibility of our method to study other kinds of
cell motility. To this end, we extracted sequences of cell contours from videos of early
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Figure 4.11. Application to other kinds of cell motility. Displayed are three tracks
for embryonic killifish cells (A-C) and keratocytes (D-E), and their corresponding local
dispersion kymographs. Protrusive migration can be seen in (A, C), circular waves around
the cell border in (B, C, F), and a steady persistent translation of the contour in (D, E).

embryonic killifish cells (Fundulus heteroclitus) [107, 108, 109] and keratocytes
cultured from Central American cichlids (Hypsophrys nicaraguensis) [21, S1-S3
Movies]. While the images of the embryonic killifish cells were obtained from
fluorescence microscopy, bright-field microscopy was used to record the keratocytes.
As before, the images were segmented by using a modified version of the active
contour (snake) algorithm described in [24, 19].

In Fig 4.11, three cell tracks for both applications, embryonic killifish cells and kerato-
cytes, and corresponding local dispersion kymographs are shown. In panels (A) and
(C), protrusion-driven cell motility can be observed for the embryonic killifish cells.
Moreover, rotating waves around the leading edge (so-called circular movements)
can be seen in panel (B) and in the last third of panel (C) as diagonal lines. In the
chosen parametrization, right upward diagonals indicate counterclockwise rotations
of protrusions while right downward diagonals indicate clockwise rotations. Notably,
the switching between these kinds of locomotion can be nicely seen in panel (C) at
t ≈ 630. In addition, we refer to the video accessible on [108] showing the cell track
from panel (B) with dominant circular movements.

On the contrary, keratocytes possess a steady and persistent type of cell migration
with only minor shape deformations. However, keratocytes can also show a more
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crawling kind of cell motility depending on the adhesion strength. In [21, S1-S3
Movies], cell track recordings for different adhesion strengths are provided: interme-
diate adhesion strength (panel (D)), low adhesion strength (panel (E)), and high
adhesion strength (panel (F)). For low and intermediate adhesion strength, persis-
tent cell track can be observed with a slightly higher local dispersion at the cell front
for the case of low adhesion strength. For high adhesion strength, the cell migrates
slower and exhibits larger cell shape deformations. Again, diagonal lines in panel
(F) indicate circular movements as described earlier. Due to segmentation/mapping
difficulties resulting from jumps in the video recording, pronounced artifacts can be
seen as vertical lines at t = 360s and t = 750s.

These test applications underline the flexibility of our algorithm, handling contours
obtained from fluorescence images as well as bright-field recordings. Moreover,
the underlying data was recorded with a lower temporal resolution, 5s per image
compared to only 1s in our data. For the case of embryonic killifish cells, which
possess local contour changes comparable to our data sets, a temporal resolution
of 5s is relatively low. This can be nicely seen in panel (B). Since the movement
of keratocytes is much slower with less prominent contour changes, kymographs
with relatively high resolution can be acquired for a sufficient temporal resolution
of 5s. This shows the feasibility of our algorithm for different imaging frequencies,
see also Fig A.7. Finally, the local dispersion kymographs of these test cases show
distinct differences from previous kymographs regarding amoeboid cell migration.
This indicates the potential of our algorithm for classifying different kinds of cell
motility.

4.4 Discussion
With the ever-increasing amount of live cell imaging data and the continuously
growing computational power, computer-automated techniques to analyze the mor-
phology of cells have steadily developed over the past two decades. In particular, in
cell motility research, morphological characteristics are commonly used to pinpoint
phenotypic differences between mutant cell lines thus highlighting the mechanistic
role of individual components of the underlying signaling pathways. While many
static measures of cell shape have already been introduced early on [110, 111],
dynamic measures that quantify the temporal evolution of the cell shape proved
to be more difficult to implement. First attempts focused on temporal changes of
the projected cell area to deduce overall protrusion rates, for an example see [112].
These approaches were later refined by local measures of cell boundary motion
along selected line segments perpendicular to the cell border [113]. Also, local
space-time plots have been defined in this way [114, 115]. However, in all these
cases, the direction of interest or the local placement of the kymograph had to be
chosen manually, which severely limits a reliable long-time tracking of more complex
cell shapes and introduces an arbitrariness related to the manual processing.
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The most promising approach to overcome this limitation relies on an active contour
(snake), a closed chain of connected nodes (virtual markers) that is placed along the
cell perimeter [116]. Different rules have been proposed to propagate the markers
from one contour to the next. In some cases, the distance between virtual markers
is kept constant and markers are added or removed as the contour evolves [117].
Other approaches that are inspired by mechanical spring models or concepts from
electrostatics keep the number of markers constant and allow for local variations
in the marker spacing [28]. Here, we can distinguish two limiting cases. On the
one hand, equidistance is enforced and markers on adjacent contours are connected
in a one-to-one mapping by minimizing the sum of square distances between pairs
of connected markers [24]. On the other hand, markers are propagated from one
contour to the next in a normal direction (normal flow) while the marker spacing
evolves without constraints. The latter approach has been implemented using a level
set method to cope with problems related to finite time sampling [29]. However, high
computational costs and the rapid buildup of highly uneven marker distributions
limit the use of the level set method in practical applications.

In this article, we have introduced a family of marker flows that incorporates these
different cases into a general framework. In particular, the regularization that we
introduced in Eq (4.16) includes the two extreme scenarios described above as
limiting cases. In the limit of large λ, we obtain an equidistant mapping, whereas,
in the limit of small λ, we approach the shortest path flow, respectively, the reverse
normal flow. Tuning λ allows us to systematically shift between these two limits.

Once a flow of virtual markers is computed on the evolving cell contour by any of
these methods, it defines a coordinate system, in which different local quantities
can be displayed, such as curvature, membrane displacement, or the intensity of a
fluorescently tagged membrane-associated protein. Essential to our approach is the
clear separation of local quantities derived by weakly regularized flows between two
consecutive contours and the coordinate system which is based on a single strongly
regularized (global) flow onto which each quantity of interest is mapped. This way,
trajectories of each quantity can be obtained for the entire time period. Note that
for all of these coordinate choices it is generally acknowledged that the dynamics of
the virtual membrane markers do not reflect the motion of specific membrane lipids
or proteins, as the membrane itself is a very complex and dynamic structure [29,
24]. In particular, lateral flows may occur due to membrane recycling, so that the
dynamics of individual molecules or domains in the membrane do not necessarily
correspond to morphological changes and will prevent a one-to-one mapping of
molecular markers on adjacent contours.

Amoeboid motion is primarily driven by localized membrane protrusions, so-called
pseudopodia. Identifying and tracking pseudopodia has thus been an important focus
of the morphodynamic analysis of amoeboid cells. The first substantial pseudopod
statistics were generated by computer-assisted manual image processing, relying on
the expert judgment of the investigator [20, 6]. From this, a first automated software
routine for pseudopod tracking was developed [23] and successfully applied also to
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analyze the chemotactic navigation of amoeboid cells [18]. It relies on a complex
decision tree that defines pseudopodia based on a sequence of threshold criteria
applied to the local curvature, the virtual marker movement, and the local area
change. In this way, the frequency and direction of pseudopod formation, their
sizes, lifetimes, and other quantitative measures were extracted. While successfully
providing a first quantitative database of pseudopod characteristics, this approach
has the drawback that it requires the choice of several parameters that are tuned to
the characteristic properties of pseudopods in starvation-developed D. discoideum
cells. If cells display protrusions with a more diverse range of shapes and time scales,
a reliable tracking is difficult to achieve with this approach.

Later, a more compact criterion for the detection of localized protrusions was pro-
posed [24, 19]. It relies on thresholding a distance measure between the current
position of virtual markers and the cell boundary at a later time point. The calcu-
lation of this distance measure, however, lacks a clear underlying definition and is
computed in an ad hoc fashion for the specific data set (see supplementary material
of Ref. [19]): First, each virtual marker is mapped from its current position onto
the closest point on the future cell contour. As this generates a highly non-uniform
distribution of target markers, with protrusive areas particularly poorly covered, the
target markers on the new contour are then redistributed by two successive smooth-
ing steps, using averaging windows of specific sizes. The time interval between the
successive contours for the distance projection, as well as the smoothing parameters
for redistribution of the target markers, were hand-picked by the investigator. Note,
however, that this could be envisioned as one step in an iterative procedure to
minimize our cost functional.

In the present work, we introduce a novel approach to define, identify and analyze
localized expansions on dynamically evolving contours of amoeboid cells. expanding
areas are defined via a single threshold value. In contrast to previous approaches,
we chose the virtual marker dispersion as the underlying quantity, since it com-
bines information on both, the marker displacement and the local curvature. The
marker dispersion is mathematically well defined by Eq (4.26) and does not require
additional empirical smoothing steps. Based on this criterion, we not only detect
individual expansion events but we capture the entire shape and the complete tem-
poral evolution of an expansion in a fully automated fashion, see Figs 4.8 and A.12
for example.

An implementation of the methodology, obtaining kymographs from regularized
flows in general and detecting expansion/contraction patterns from these kymo-
graphs in particular, are fully accessible and well documented in our software
Package AmoePy. We also provide the data of multiple cell tracks and simple artificial
test cases on which the algorithm was validated. Finally, all figures and results from
this article can be easily reproduced in AmoePy.

As outlined in the Introduction, the overall aim is a quantitative, data-driven model
of amoeboid motility. The presented theoretical framework is a first step in this
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Figure 4.12. Future outlook. Underlying distributions are based on averaging over several
cell tracks. (A) Circular histogram displaying the position, where expansions and contractions
events appear along the cell contour. (B) Distribution of local motion of expansion and
contractions events above a threshold ±1/3. (C) Simulated data obtained from self-excited
Poisson point processes (so-called Hawkes processes) on the unit circle. Afterward, we
obtained regions of high (red) and low (blue) intensity w.r.t. to a clustering algorithm. (D)
Continuous kymograph obtained from a regression model (e.g. Gaussian process regression)
based on sampled magnitudes at event locations shown in (C) from the distribution in (B).

direction. Because of its rigorous mathematical formulation, its efficient avoidance
of mapping violations during larger shape deformations, and its moderate computa-
tional costs, it is a suitable choice for such a model. We envision that point events
of high expanding activity may be used to define a point process in the space-time
coordinate system. To reflect the often observed persistence in motility, so-called
self-excited Poisson cluster processes or Hawkes processes may be favorable choices.
The point process can serve as a skeleton for expansion activity that is ’completed’
to a random realization of a kymograph, based on the statistics of a local quantity.
We illustrated this idea in Fig 4.12, where we used the local motion statistics (B) to
reconstruct a local motion kymograph (D). The idea is to use such realizations of
kymographs to reconstruct a cell track and eventually to assimilate the time-lapse
microscopy data into a mathematical model of amoeboid motility.
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5Modeling amoeboid cell motility

5.1 Currently used cell motility models
A wide variety of amoeboid motility models have been proposed tackling different
key aspects of amoeboid migration such as membrane protrusion and retractions, tra-
jectories of the cell’s centroid, its polarization, and the influence of chemoattractant
cues. Many proposed models are based on the concentration of interior biochem-
ical compounds of the cell [34, 35]. In these reaction-diffusion models, motility
patterns often result directly from the interplay of different processes controlling
local excitation and global inhibition of the intracellular signaling and cytoskeletal
dynamics[118, 119, 36, 37]. Reaction-diffusion models have been used to describe
the self-organized polarization of the cell in the presence of chemoattractants [38,
39, 40, 41, 120], and the occurrence of intracellular waves and oscillations [121,
122, 123]. A large number of these approaches are based on phase-field models
which are used to describe the transition between different phases such as liquid and
solid states or the interior and exterior of the cell. In the latter case, one modeling
approach is to define the interior and exterior of the cell as binary states with a
smooth transition function. The cell membrane is then defined where the transition
function reaches the exact midpoint of both states [14]. Phase-field models are
often used to describe D. discoideum [14, 75, 40, 13, 124], but also for other cell
types [125, 126, 127, 128, 129].

Other approaches are mechanical models in which different forces affect the cell
motility from within and from the outside. Mechanical models differ in complexity
and dimensionality to target different problems, e.g., the formation of fibroblasts
(1D) [42], the influence of contraction and adhesion sites to the substratum on
amoeboid cell motility (2D) [43], and the evolution of the cell surface obtained
from triangulation under chemotaxis (3D) [130]. Furthermore, different physical
methods and assumptions are used for the underlying model equations such as active
gel physics where the gel consists of polymer filaments permeated by a solvent [131],
hydrodynamics to model the internal cytoplasmic fluid [132], and the modeling of
the extra-cellular matrix [133, 15]. Most importantly, mechanical models can be
easily adjusted for unusual types of cell migration such as amoeboid swimmers [134,
135]. In [44], a mechanochemical model is proposed for which the underlying
parameters are calibrated by using Bayesian optimization.

Finally, level set methods are used to simulate cell tracks, e.g., as part of a me-
chanical model of the cell cortex combined with an excitable network acting as
activator/inhibitor system [35]. The excitable network is triggered by random fluc-
tuations and can be enhanced with additional gradient stimuli and polarization
modules [136, 137]. In [138], the stochastic extension of pseudopods during chemo-
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taxis is modeled. Furthermore, stochastic differential equations have been used to
model the trajectory of the cell’s centroid, e.g., by a (generalized) Langevin equa-
tion [10, 30, 11, 32, 31]. In [33], the centroid trajectory was modeled by a Markov
chain approach on a discrete domain obtained from hexagonal tiling. Geometric
equations of evolving curves are commonly used to describe cell migration [37, 130,
139, 140]. A novel contour evolution method based on the curve-shortening flow
(CSF) or, alternatively, with an optional additive function which is then called forced
CSF, is presented in [141] and then applied to cell migration in [142]. A comparison
of the different model approaches mentioned above can be found in [143, 144, 145].

In contrast to the above approaches, our model is designed to infer key characteristics
of individual cell tracks, i.e., the intensity of protrusions and retractions during
amoeboid cell motility. The model is therefore intended to be simple and intuitively
comprehensible to ensure a fast and straightforward estimation of underlying model
parameters and to be capable of producing a specific motility behavior for a given
input. Especially the second property is sometimes hard to achieve with mechanical
models which tend to have a higher complexity with a large number of model
parameters and entangled subprocesses, making it difficult to draw a direct link
between model parameters and a desired motility outcome [15]. By inferring the
above characteristics, our model can also be used to identify differences between
cells and to classify them. The second main goal of our model is to simulate a
variety of quantitatively different and realistic contour dynamics producing cell
tracks which can be hardly distinguished from experimental ones. Based on the
model’s capability to simulate such versatile contour dynamics, we deem it to be
applicable to experimental cell tracks for varying degrees of motility and persistence,
or even different types of locomotion.

Briefly, our model evolves two-dimensional contours representing the cell membrane
and is based on three components. The first component is driven by a stochastic
term generating membrane protrusions and is modeled by (1) the intensity of a
self-exciting Poisson point process (so-called Hawkes process [99, 146, 100]) or,
alternatively, (2) an Ornstein-Uhlenbeck like diffusion process. In this context, we
show that the Hawkes process, due to its self-exciting nature, is suitable to produce
a cascade of protrusion events to ensure a persistent cell migration. The second
two components are mathematically well-defined geometric flows initiating contour
retractions: the area-preserving curve-shortening flow (APCSF) to regularize the
shape/arc length of the contour; and a further flow introduced as area adjustment
flow (AAF) which expands/shrinks the cell contour with respect to a specified
reference area. For more information on the APCSF, see [96, 97]. Based on the
interplay of the above components, the model defines the formation of protrusions
as well as retractions. It is therefore linked to other mechanistic models evolving the
cell contour as an elastic object in time and space.

In the following, we demonstrate how our model can be used to simulate realistic
cell tracks. Then, we analyze experimental cell tracks (D. discoideum) by inferring
the model-based protrusion and retraction components. In this context, we compare
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the inferred protrusion component with commonly used biomarkers: the density of
filamentous actin close to the membrane and its local motion. An implementation of
the model as well as a graphical user interface to simulate cell tracks is provided in
our Python-based toolbox AmoePy [DS3].

5.2 Three-component contour morphing model
5.2.1 General notations and underlying coordinate system
The notation and theoretical framework used in this work have been established
in [DS1]. Primarily, this framework is used to (1) obtain smooth contour representa-
tions from stacks of segmented microscopy images and (2) track reference points
(so-called virtual markers) between successive contours. More precisely, smooth
contours and the corresponding contour curvature can be derived easily from a
discrete set of segmentation points (so-called active contour or snake) by using a
GPR based on a priori covariance structure given by some kernel. In our case, we
used a Poisson kernel as underlying covariance function

kr(θ, θ′) = 1 − r2

1 − 2r cos(θ − θ′) + r2 , θ, θ′ ∈ [0, 2π), r ∈ [0, 1). (5.1)

Briefly, the choice of rcont in krcont(·, ·) affects the rigidity and stiffness of the resulting
contour. Furthermore, an additional noise parameter σnoise specifies the deviation
between the initial segmentation points and the regression function obtained from
the GPR.

First, we consider K ∈ N cell contours denoted by Γk with k = 0, . . . , K − 1. The
corresponding time points are denoted by tk = k · δt with δt > 0. The coordinates of
these contours are given by the following mapping

Φk : [0, 2π) → R2, θ 7→ Φk(θ) =
(
Φ(x)

k (θ), Φ(y)
k (θ)

)
, (5.2)

where θ denotes the normalized arc length coordinate and Φ(x)
k (·) and Φ(y)

k (·) the x
and y coordinates of the contour, respectively.

Noteworthy, connecting consecutive contours in time and space is intrinsically not
well defined, i.e., there are multiple ways to do so [28, 27, 29]. In many approaches,
varying constraints are introduced to track reference points/virtual markers from
one contour to the next one, e.g., by using electrostatic field equations [28], level-set
methods [27, 28], or mechanistic spring equations [29]. Naive contour mapping
approaches include the propagation of virtual markers (VM) based on shortest
paths to the next contour or by choosing paths in normal direction only. However,
these approaches can change the order of neighboring virtual markers (so-called
topological mapping violations).

In [DS1], we address this issue by proposing a novel regularizing family of contour
flows, connecting consecutive contours while preserving desirable characteristics
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of the underlying mapping trajectories. Depending on a regularization parameter
λreg ≥ 0, this family of contour flows includes the two extreme cases: either enforcing
shortest VM trajectories between contours (λreg = 0) or preserving equal distances
between neighboring VM’s for every time step (λreg ≫ 0). For any flow between two
contours Γk and Γk+1, a mapping

ϕk : [0, 2π) → [0, 2π), θ 7→ ϕk(θ)

is induced, which describes the translation along the contour under the flow. By
assuming

∂θϕk(θ) > 0,

we ensure that ϕk is a one-to-one mapping, i.e., mapping violations between Γk

and Γk+1 do not occur. Now, we can define a virtual marker trajectory starting at
θ0 ∈ [0, 2π) by the iteration

θk+1 = ϕk(θk). (5.3)

In the following, we use a Lagrangian reference frame to describe geometric flows
and the resulting evolution of virtual markers on the contour. This Lagrangian
reference frame is denoted by χk and recursively defined by:

χk+1(θ0) = ϕk(χk(θ0)), χ0(θ0) = θ0.

For the limit of infinitely dense contours, we introduce the following notations

Φ : [0, T ] × [0, 2π) → R2

(t, θ) 7→ Φ(t, θ)
and

χ : [0, T ] × [0, 2π) → [0, 2π)
(t, θ) 7→ χ(t, θ).

Given a VM p0 = Φ0(θ̃) on the first contour Γ0 with arc length coordinate θ̃ ∈ [0, 2π),
we can now track this VM in time and space which corresponds to the function
t 7→ Φ(t, θ̃).

Finally, we introduce a virtual marker distance ratio defined as:

VMDRt,θ = ∂θχ(t, θ). (5.4)

For the discrete case of N ∈ N virtual markers θk,0, . . . , θk,N−1 on the contour Γk,
this ratio can be rewritten as:

VMDRk,i = |θk,i+1 − θk,i|
2π/N

, (5.5)

measuring the distance between neighboring virtual markers divided by the distance
of equidistantly spaced VM’s.

Contour propagation vs. contour mapping. We need to distinguish two different
dynamics, which are both compatible with a given sequence of contours: (1) the
contour propagation based on a model function f : R+ × S1 → R describing the
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normal velocity and (2) the “material” contour mapping under which each virtual
marker is transported. This results in the following two-step algorithm: the dynamic
of the contour itself is obtained by propagating for short time periods an initially
equidistant set of contour points with respect to the normal vector field〈

∂Φ(t, θ)
∂t

, n⃗(t, θ)
〉

= f(t, θ), (5.6)

at time t ∈ [0, T ] and normalized arc length coordinate θ ∈ [0, 2π). A propagation in
tangential direction affects the position of these contour points but does not affect
the shape of the contour. Hence, the only information we have from the contour
dynamics alone is the normal component of the actual material flow as expressed
in Eq (5.6). However, such normal flow leads to thinning and clustering effects of
the transported points over time. For this reason, we use a second kind of dynamics,
namely regularizing flows described as in [DS1] to ensure an evenly-spaced distribu-
tion of virtual markers. This regularized flow is used to transport any dynamically
relevant quantity over the dynamically evolving contours. Furthermore, the flow
lines give rise to a coordinate system necessary to draw graphical representations
(so-called kymographs) of each model component. In contrast to the contour prop-
agation, the virtual markers under the regularizing flow are propagated also in
tangential direction. In Section B.3, we present a detailed description regarding the
implementation of the model. In Fig B.3, we illustrate the two different kinds of
marker trajectories: (1) the contour propagation (green dashed lines) and (2) the
contour mapping (blue dashed lines) under which the stochastic protrusion process
Xprot(t, θ) is transported and the underlying coordinate system is based on.

5.2.2 Regularizing shape and size of contours via geometric
flows

Our model to evolve two-dimensional cell contours is based on three components: a
protrusion term based on a stochastic process accounting for membrane protrusions
and two geometric flows accounting for membrane retractions by regularizing the
shape and area of the contour. Due to the separation into one protrusion component
and two retraction components, the model provides an independent handling of
these two key features of amoeboid cell motility.

The first geometric flow is defined by the area-preserving curve-shortening flow
(APCSF) and denoted by fAPCSF. Briefly, the APCSF evolves a two-dimensional
contour to a circle while preserving the area enclosed by the initial contour. It
therefore minimizes the arc length of the contour without affecting the contour
area. In the absence of other influences, the evolution of every contour to a circle is
energetically favorable to reduce the surface tension of the membrane. For example,
this behavior can be observed during cell death or by treating cells with Latrunculin
to dissolve the actin cytoskeleton [147]. The second geometric flow which we call
“area adjustment flow” (AAF) is denoted by fAAF. The AAF shrinks/expands the
contour towards a predefined reference area. Since the underlying contour data
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Figure 5.1. Rationale why all three model components are necessary. (A) Realizations
of stochastic process Xprot driving the protrusion component fprot. (B) Simulated contour
dynamics only based on protrusion component leading to significant contour growth. (C)
By combining the protrusion component with the APCSF, we obtain smoother and similarly
sized contours. (D) On the contrary, combining the protrusion component with the AAF only
results in highly curved contours with possible self-intersections. (E) A combination of all
three components is necessary to obtain stable contour dynamics over time.

relies on two-dimensional cross sections of three-dimensional cells, the resulting
contour area can change significantly. Therefore, a certain change of the contour
area is desirable and possible in our model. By using both flows, we achieve a
regularizing effect on the arc length (APCSF) and the area (AAF) necessary to
counteract the forward movement initialized by the protrusion component fprot.
This component is based on a stochastic process, e.g., a Hawkes intensity process or
an Ornstein-Uhlenbeck process, and should be strictly positive since it describes the
formation of protrusions only.

In Fig 5.1, simulated contour dynamics are shown based on: the protrusion com-
ponent fprot only, fprot combined with fAPCSF, fprot combined with fAAF, and a
combination of all three components. In the first row, four different samples drawn
from the same stochastic process Xprot are displayed. The first two cases (panels (B)
and C)) lead to significantly growing contours since the area adjustment is absent.
In comparison, the contour dynamics in panel (C) are much smoother due to the
regularizing effect of the APCSF. In panel (D), dynamics with highly curved but
similarly sized contours are produced. However, self-intersections can easily occur
without the APCSF. Therefore, a combination of all three components, as in our
model, is necessary (last row).
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Area-preserving curve-shortening flow. To regularize the contour arc length in our
model, we used the APCSF:〈

∂Φ(t, θ)
∂t

, n⃗(t, θ)
〉

= −
(

κ(t, θ) − 2π

L(Φ(t, ·))

)
, (5.7)

where κ(t, θ) denotes the curvature and n⃗(t, θ) the outward-pointing normal vector
at time t ∈ R+ for a virtual marker with arc length coordinate θ ∈ [0, 2π) on the first
contour. Here, L(Φ(t, ·)) denotes the total arc length and is defined by the following
functional:

L(t) = L (Φ(t, ·)) =
∫ 2π

0

∥∥∥∥∂Φ(t, θ)
∂θ

∥∥∥∥
2

dθ.

The APCSF is defined as the gradient flow of this functional under the area-preserving
constraint A(t) := A(Φ(t, ·)) = A(0) for all t > 0, where the contour area is defined
by:

A(t) = A(Φ(t, ·)) :=
∫ 2π

0
Φ(x) ∂Φ(y)

∂θ
dθ =

∫ 2π

0
Φ(y) ∂Φ(x)

∂θ
dθ.

As a consequence, the APCSF evolves every contour to a circle of the same area,
minimizing the contour arc length to L(t) t→∞−−−→ 2

√
πA(0) while maintaining its

area.

Area adjustment flow. While the APCSF has no effect on the contour area, the
protrusion component would expand the cell contour most of the time and therefore
also its area. The area adjustment flow counteracts this expansion. It is defined as〈

∂Φ(t, θ)
∂t

, n⃗(t, θ)
〉

= −A(t) − Aref

Aref · L(t) ⟨Φ(t, θ) − ΦCM(t), n⃗(t, θ)⟩ (5.8)

with reference area Aref ∈ R+ and center of mass trajectory ΦCM : R+ → R2 defined
by

ΦCM(t) = 1
2π

∫ 2π

0
Φ(t, θ)dθ.

For a choice of the reference area Aref, we take the 1st percentile of the entire area
time series of an experimental cell tracks. Other choices are possible.

It is easy to see that an area adjustment is achieved by this flow. Furthermore, the
AAF affects the contour in normal and tangential direction and is shape-preserving if
used without the other two components. In Section 3.2.2, we introduced another
area regularizing flow which is based on the gradient flow of the area functional.
This flow minimizes the contour area much more rapidly by affecting the contour in
normal direction only. However, this flow is not shape-preserving.

5.2.3 Hawkes intensity process as protrusion component
Statistical analyses of different sequences of cell contours have shown that a pro-
trusion event increases the probability of nearby follow-up protrusions [6]. We
therefore modeled the protrusion component fprot in our model by the intensity
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of a self-exciting Poisson point process, a so-called Hawkes process. Due to the
self-exciting nature of the Hawkes process, a cascade of protrusion events can be
generated which result in substantial and persistent contour changes. In this way,
we obtain contour dynamics with a significantly moving center of mass instead of a
fluctuating membrane only.

The intensity λ(t, θ) of a spatio-temporal Hawkes process is defined by

λ(t, θ) = µ(θ) +
∑

i:ti<t

g (t − ti, θ − θi) , (5.9)

with event times {t1, t2, . . . }, background intensity function µ : [0, 2π) → R+ and
kernel function g : [0, T ] × [0, 2π) → R+, characterizing the positive influence of past
events (ancestors) on the emergence of future events (descendants).

The background intensity is defined in terms of the normalized Poisson kernel k̃rpol:

k̃r(θ, θ′) = kr(θ, θ′)√
kr(θ, θ)kr(θ′, θ′)

= (1 − r)2

1 − 2r cos(θ − θ′) + r2 , (5.10)

with θ, θ′ ∈ [0, 2π) and r ∈ [0, 1). The normalized Poisson kernel holds the following

properties:
(

1−r
1+r

)2
≤ k̃r(θ, θ′) < 1 for all θ ̸= θ′ and k̃r(θ, θ′) = 1 if and only if θ = θ′.

In Fig B.4, the Poisson kernel function from Eq (5.1) and its normalized version from
Eq (5.10) are shown for different parameters r ∈ [0, 1). As background intensity
function, we now define

µ(θ) = λ0
k̃rpol(θ, π)∫ 2π

0 k̃rpol(θ, π) dθ
, (5.11)

with background rate λ0 > 0 and k̃rpol as in Eq (5.10) with 0 ≤ rpol < 1. For the
non-polarized case rpol = 0, the background intensity simplifies to µ = λ0

2π . For
rpol > 0, polarization takes place with a local maximum at θ = π, and local minima
at θ = 0 and θ → 2π.

We used a product kernel function g(t, θ) = g1(t) · g2(θ) with temporal component
g1(t) and spatial component g2(θ). The temporal kernel function is given by

g1(t) = αβ t e−βt,

with arrival intensity α > 0 and exponential decay rate β > 0. As spatial kernel, we
used the von Mises distribution,

g2(θ) = eκM cos(θ)

2πI0(κM ) ,

with κM > 0 as concentration parameter and I0(κM ) denoting the modified Bessel
function of order 0.
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For a realization of the Hawkes process, the protrusion process Xprot : R+ × S1 → R
is defined as:

Xprot(t, θ) = cs

VMDR(t, θ)
∑

i:ti<t

g̃ (t − ti, θ − θi) , (5.12)

with any spatio-temporal kernel function g̃ : [0, T ]× [0, 2π) → R+, time scaling factor
cs > 0, and VMDR as in Eq (5.4) accounting for local contour/arc length changes.
For the sake of simplicity, we choose cs = 1s and the same kernel function as above,
i.e., g̃(t, θ) ≡ g(t, θ). Hence, we can rewrite the protrusion process Xprot in terms of
the Hawkes intensity process λ(t, θ) from Eq (5.9):

Xprot(t, θ) = cs

VMDR(t, θ) (λ(t, θ) − µ(θ)) , (5.13)

to highlight that Xprot directly resembles the intensity of the Hawkes process and
not the underlying realization of point events or the Hawkes process itself.

Based on the underlying choice of parameters, different motility characteristics can
be adjusted with our model:

• the general movement speed by wprot,

• the number of protrusions by λ0 and α,

• the duration of protrusions by β,

• the size of protrusions (many small protrusions vs. a single large protrusion)
by κM ,

• membrane fluctuation vs. creation of pseudopods with a substantial movement
of the center of mass by α,

• non-polarized vs. polarized contour dynamics by rpol.

In Fig B.5, the kernel functions g1(t) and g2(θ) are illustrated for varying parameters
α, β, and κM as well as the Hawkes intensity λ(t, θ) for a fixed set of parameters.
In Section B.5, we illustrate an alternative approach by modeling the protrusion
component with an Ornstein-Uhlenbeck type of diffusion process.

5.2.4 Three-component contour dynamics model
In this section, we formulate our contour dynamics model based on the three
components: a protrusion component based on a stochastic process Xprot from
Eq (5.13), the APCSF from Eq (5.7), and the AAF from Eq (5.8). In our model, the
following parameters are required:

• weight parameters wprot, wAPCSF, wAAF > 0

• a reference area Aref > 0,

• additional parameters regarding the stochastic process Xprot.

Furthermore, the computation of the following geometric quantities is necessary:

• contour area A(t) ∈ R+ and arc length L(t) ∈ R+,

• contour curvature κ(t, θ) ∈ R,
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• center of mass trajectory ΦCM(t) ∈ R2,

• outward-pointing unit normal vectors n⃗(t, θ) ∈ R2.

For a virtual marker Φ(0, θ) with initial arc length coordinate θ ∈ [0, 2π), the normal
component of its trajectory t 7→ Φ(t, θ) with t ∈ [0, T ] is given by〈

∂Φ(t, θ)
∂t

, n⃗(t, θ)
〉

= f(t, θ), (5.14)

where f : R+ × S1 → R is defined as

f = fprot + fAPCSF + fAAF, (5.15)

with the following three components:

I : fprot(t, θ) = wprot
Xprot(t, θ)

L(t) , (5.16)

II : fAPCSF(t, θ) = −wAPCSF

(
κ(t, θ) − 2π

L(t)

)
,

III : fAAF(t, θ) = −wAAF
A(t) − Aref

Aref · L(t) ⟨Φ(t, θ) − ΦCM(t), n⃗(t, θ)⟩

In Fig 5.2, these three components are displayed. In panel (A), the protrusion
component is displayed with a generated sample of the underlying stochastic process
Xprot in the top right square. Xprot is defined on a unit circle and is mapped onto
the contour with respect to the contour arc length and a reference point θ = 0 (blue
dot). In panel (B), the APCSF is shown with its final state (dashed grey contour): a
circle with the same area as the initial contour. Since the APCSF is mainly defined
by the contour curvature, the contour shrinks faster for regions with large positive
(convex) curvature and expands faster for regions with large negative (concave)
curvature. In panel (C), it can be observed that the area adjustment is always acting
in the direction towards the center of mass. The final state is again displayed as a
dashed gray contour.

Finally, in panels (D-F), we display test scenarios of simulated contour dynamics
each based on a single component only. In panel (D), we observe a steadily growing
contour since the fprot is the only active component. Under the APCSF (panel (E))
the contour evolves to a circle by expanding concave parts and shrinking convex
parts of the contour. In the case of AAF being the only active component, we
observe a shape-preserving shrinkage of the contour. In this case, the reference area
(Aref = 60µm2) was set to be smaller than the initial contour area. Alternatively, by
choosing a larger reference area, a shape-preserving growth of the contour would
occur.

70 Chapter 5 Modeling amoeboid cell motility



fprot

wprot=15

(A)

fAPCSF

wAPCSF=1

(B)

fAAF

wAAF=6

(C)

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
x (μμ)

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

y 
(μ
μ
)

wprot=15

(D)

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
x (μμ)

wAPCSF=40

(E)

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
x (μμ)

wAAF=15

(F)

0.00

0.25

0.50

0.75

1.00
Time (s)

Figure 5.2. Comparison of the three model components: fprot, fAPCSF, and, fAAF. (A)
Protrusion component driven by a stochastic process (generated sample shown in top right
corner). The reference point θ = 0 is highlighted as blue dot. (B, C) APCSF and AAF with
final states displayed in corresponding top right corners. (D-F) Example contour propagated
individually by only one component for a time span of 1s. Regarding the AAF, the underlying
reference area is given by Aref = 60µm2.

5.2.5 Inference of model components and parameter
estimation

Besides simulating contour dynamics, our model is used to infer the different model
components fprot, fAPCSF, fAAF of experimental cell tracks to analyze and character-
ize cell tracks on the individual level. Importantly, we want to quantify the intensity
of protrusions and retractions separately from each other. Usually, this is done
by computing the local motion which, however, comprises the characteristics of
the entire contour dynamics: protrusions, retractions, as well as minor membrane
fluctuations. Finally, by inferring the underlying model components and estimating
the corresponding component weights, our aim is to classify cells based on different
motility types.

Since the APCSF and AAF from Eq (5.16) are based on the contour curvature, arc
length, and area; fAPCSF and fAAF can be computed separately for each time step
solely based on the current contour. For this reason, one can explicitly determine
the only remaining component fprot to propagate one contour to the next one. This
approach enables us to replicate the experimental cell track with our model for an
estimated set of model parameters. This set includes the reference area Aref and
three model component weights wprot, wAPCSF, and wAAF.
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While the APCSF does not affect the contour area, the (positive) protrusion com-
ponent increases the contour area. Therefore, the reference area Aref should be
chosen relatively small to achieve a counteracting shrinkage effect of the AAF. In
our case, we have chosen the 1st percentile of the entire area time series of the cell
track. Next, we estimate fAPCSF and fAAF and their corresponding weights, wAPCSF

and wAAF, by making use of the local motion kymograph of the underlying cell
track. More precisely, we determine wAPCSF and wAAF such that negative regions
(i.e. retractions) of the local motion are optimally captured by the above compo-
nents. Initially, the remaining component fprot is estimated by deducting fAPCSF

and fAAF from the local motion kymograph. Afterwards, we choose wprot such that
the sample variance of the underlying protrusion process Xprot is standardized with
Var(Xprot) = 1. In the next step, we further tune the inferred protrusion component
fprot by minimizing the distances of virtual markers propagated with respect to fprot

and the “receiving” contour at the next time step. In this optimization step, we use
the built-in least-squares method from the Python package SciPy.

Finally, we evaluate the goodness of fit of the inferred protrusion component. Since
fAPCSF and fAAF are computed in advance, the remaining protrusion component
corrects any missing contour dynamics to propagate one contour to the next one.
For this reason, the inferred protrusion component can be negative if a contour
retraction is stronger than the APCSF and the AAF have predicted. Therefore, a
good fit is given if the estimated protrusion component is (mostly) positive, i.e., the
contour retractions are successfully captured by the other two components.

5.2.6 Hawkes process based simulations of amoeboid cell
motility

In this section, we show that the Hawkes process is suitable to simulate ameboid
cell motility. With the proposed model a variety of qualitatively different contour
dynamics were generated.

The protrusion component in this section is based on a Hawkes process defined as
in Eq (5.13). The underlying model weights were set to wprot = 7µm2/s, wAPCSF =
0.1µm2/s, and wAAF = 1µm/s. As reference area we have chosen Aref = 80µm2.
First, we simulated contour dynamics based on a non-polarized test scenario realized
by choosing rpol = 0. Then, we have chosen a polarized test scenario by choosing
rpol = 0.5. A summary of all parameter values is displayed in Table 5.1. As initial
contour we have chosen a circle with an area equal to Aref.

Fig 5.3 shows exemplary non-polarized contour dynamics, which are driven by a
Hawkes process. We observed that the Hawkes process can enforce a substantial
change of the center of mass trajectory as displayed in panels (A) and (B). The
self-excitation can be also observed in the kymograph of the protrusion component
fprot (panel (D)). In this kymograph, point events realized from the Hawkes process
are depicted as circles and show clusters as expected from the self-excitation property.
The corresponding Hawkes intensity was then used to define the protrusion process
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Table 5.1. Choice of parameters and meaning.

Parameter Value Unit Meaning

Contour parametrization

rcont 0.6 − GPR smoothing

σnoise 0.05 − GPR noise

λreg 10 µm2

s2 Flow regularization

Aref 80 µm2 Reference area

Hawkes process

λ0 1 s−1 Background intensity

α 0.4 s−1 Arrival intensity

β 0.5 s−1 Exponential decay rate

κM 100 − Spatial concentration

rpol 0 and 0.5 − Polarization

Model weights

wprot 15 µm2

s
Protrusion weight

wAPCSF 0.1 µm2

s
APCSF weight

wAAF 1 µm
s

AAF weight

List of parameters for simulated contour dynamics based on a Hawkes process.

in our contour dynamics model as in Eq (5.13). The same red patterns of the fprot

kymograph can be also found in the final local motion kymograph (panel (C)). The
retractions of the contour dynamics are mainly defined by the area adjustment fAAF

(panel (E)). By comparing this kymograph with the area plot in panel (G), we see
that dark blue patterns, indicating strong retractions, occur when the contour area
A(t) is much larger than the reference area Aref.

Due to the definition of the APCSF component fAPCSF, the curvature at each part of
the contour can be inferred from the corresponding kymograph (panel (F)). Since
the contour dynamics start from a perfect circle, possessing a constant and relatively
small curvature, the kymograph starts with values close to zero. Later on, blue
horizontal stripes indicate the position of protrusions and the rear of the cell, which
possess a large positive curvature and are retracted therefore by the APCSF. In
contrast, concave regions of the cell contour correspond to red horizontal stripes
since they are enforced to expand under the APCSF. Finally, the influence of the
APCSF, minimizing the contour arc length, is shown in the plot in panel (H).

Fig 5.4 shows an artificial cell track based on a polarized Hawkes process. In
contrast to the cell track of Fig 5.3, the contour dynamics a characterized by a higher
motility and a stronger persistence. Interestingly, we observed the zigzag pattern
well known from experimental amoeboid cell tracks [6]. The self-exciting behavior
of the Hawkes process initialized with a spatially unimodal background intensity (see
Fig B.4) is sufficient to reproduce the zigzag movement. For this case, the clustering
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Figure 5.3. Artificial non-polarized cell track with T = 500s based on a Hawkes
process. (A, B) Contour dynamics (left, colored contours), the center of mass trajectory
(right, colored line), and the trace of the entire cell track(right, gray area). (C, D) In
the second row, kymographs of the local motion f and its protrusion component fprot are
displayed. Point events realized by the underlying Hawkes process are depicted as circles in
the protrusion kymograph. (E, F) In the third row, kymographs of the other two components
fAAF and fAPCSF are shown. Finally, in panels (G, H), the evolution of the contour area as
well as the contour arc length are presented.

of point events (panel (D)) is even more pronounced than for the non-polarized case.
From the local motion kymograph, we infer that the protrusions (red regions) occur
mainly at θ = π defining the front of the cell. On the other side, retractions (blue
regions) occur near θ = 0 and θ = 2π. In contrast to the non-polarized scenario, the
curvature lines in the kymograph representing fAPCSF are less horizontal. Instead,
the characteristic diagonal stripes stand for protrusions created at the front of the
cell which are then moved along both sides of the contour until they reach the rear
of the cell. This has also been observed experimentally in [19].

In addition to the Hawkes process, we also modeled the creation of protrusions
by a simple Poisson point process. We generated cell tracks for each of the two
scenarios described above where the protrusion component is only defined by the
first generation of point events without further offspring as for the Hawkes process.
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Figure 5.4. Artificial polarized cell track with T = 500s based on a Hawkes process.
The contour dynamics, the center of mass trajectory, the contour trace, the kymographs of
f , fprot, fAPCSF, and fAAF as well as the contour area and arc length are shown in the same
order as in Fig 5.3.

To achieve the same number of point events, we increased the background intensity
from λ0 = 1s−1 to λ0 = 5s−1.

In Figs B.6 and B.7, five cell tracks driven by such a standard (i.e. not self-exciting)
Poisson process are displayed, respectively. In comparison to the cell tracks generated
by the Hawkes process, we observe a more equal distribution of point events with
less significant event clusters. Therefore, for the non-polarized scenario, membrane
fluctuations without large displacements of the center of mass were observed. For
the polarized scenario, the cell moves persistently in one direction without having
major turns, zigzag movements, or additional de novo pseudopodia. Hence, the
Hawkes process was better suited to model amoeboid cell motility than a standard
Poisson point process.

Animations of the contour dynamics and the corresponding kymographs from Fig 5.3
and Fig 5.4 are shown in Video B.1 and Video B.2, respectively. In these videos,
each point event generated by the Hawkes process is illustrated as a circle in the
protrusion component kymograph (second row) and the animated contour dynamics
(bottom left). The effect of the self-excitation of the Hawkes process can be clearly
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seen in form of cascades of point events determining the direction and the movement
of the cell.

We furthermore examined a second alternative to the Hawkes process, an Ornstein-
Uhlenbeck type process, see Section B.5 for more details. However, the resulting
simulations are less satisfactory due to a higher number of protrusive features
that are not observed in experiments and additional artifacts such as a pulsating
membrane and a swimming type of locomotion. Since a self-exciting property is
missing in this approach, it is much more difficult to generate cascades of multiple
protrusions and subsequent reorientation phases of the contour dynamics. Contour
dynamics and the corresponding model components obtained from this approach
are displayed in Section B.5 with animations shown in Video B.3.

How to choose the regularization parameter λreg? To ensure stable contour dynamics
within our model, we used regularized flows defined as in [DS1]. Based on a
regularization parameter λreg ≥ 0, we can enforce a more even distribution of virtual
markers for every time step/contour. This way, thinning/clustering effects of virtual
markers over time can be avoided, see Section B.3 and FigB.3 for more details.

In this section, we investigated the influence of this regularization on the overall
contour dynamics and studied under which circumstances clustering/thinning effects
of virtual markers as well as other artifacts can occur. Moreover, we challenged
our model by varying the temporal resolution. In this case, the underlying contour
mapping is also affected since the number of contours is increased/reduced.

In Fig 5.5, we present simulations of non-polarized cell tracks (panel (B)) as well as
polarized cell tracks (panel (C)) generated with the parameter choices in Table 5.1
but for varying regularization parameter λreg ∈ {0.01, 0.1, 10, 1000}. The trace of
each cell track (gray area) and the corresponding centroid trajectories (colored lines)
are displayed. For the non-polarized case (panel (B)), the overall contour dynamics
were substantially altered in cases of weak (λreg = 0.01) or strong regularization
(λreg = 1000). For a medium regularization (λreg = 0.1, 10), the model produced
contour dynamics similar to each other with almost identical contours at the end
of each track. Analogous observations were made for the polarized test cases in
panel (C). By decreasing λreg, the overall motility is also reduced. This can be
understood from Eq (5.13): a low regularization results in thinning effects of VM’s
at the leading edge which increases the virtual marker distance ratio (VMDR) and
therefore decreases the protrusion process. In panel (C), we noticed differences
in the main direction of the cell track due to different contour mappings at the
beginning of each track. However, the overall contour dynamics was not affected by
increasing λreg.

In panels (D) and (E), histograms are displayed showing the effect of each regular-
ization scheme on the distribution of virtual markers for non-polarized (left) and
polarized (right) contour dynamics. Each histogram displays the relative frequencies
with respect to the virtual marker distance ratio from Eq (5.5) for all contours of a
simulated cell track. In case of a weak regularization, the thinning and clustering
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effect are reflected by a higher variance of the VMDR with distances up to 2 times
larger than in the equidistant case. Especially in panel (E) for λreg = 0.01 (light blue
histogram), a major peak at VMDR ≈ 0.5 indicates a strong clustering of virtual
markers at the rear of the cell. In case of a strong regularization, an almost even
distribution of virtual markers was achieved for every time step/contour which is
reflected by VM distance ratios close to 1.

In panels (F) and (G), kymographs of the APCSF component corresponding to the
non-polarized (left) and polarized (right) tracks are displayed. For a weak regular-
ization (λreg = 0.01), prominent thinning and clustering effects of virtual markers
were observed, see dashed box in panel (G). In case of a strong regularization
(λreg = 1000), an equidistant distribution of virtual markers is enforced at each time
step. As a consequence, an emerging protrusion has a direct effect on all virtual
markers along the cell contour leading to a cyclic shift of all markers. These shifts
were observed as rotating elements of the cell contour indicated by sharp diagonals
in the APCSF kymograph, see dashed boxes in panel (F). For medium regularization
choices (λreg = 0.1, 10), the above artifacts (clustering effects, rotating elements)
were not observed.

A summary of our findings is presented in Fig 5.5(A), where the influence of λreg

on the distribution of virtual markers is shown. In this context, we computed the
standard deviation σVMDR of the virtual marker distance ratio for varying λreg. For
a weak regularization λreg = 0.01, a loose connection of neighboring virtual markers
is observed which leads to thinning and clustering effects. If the regularization
is chosen too strong (λreg = 102, 103), other artifacts such as rotating elements of
the contour might occur. For this reason, we recommend a medium regularization:
0.1 ≤ λreg ≤ 10. In our simulations, we have chosen the upper limit λreg = 10
to obtain a more equidistant distribution of virtual markers which ensures stable
contour dynamics even for a longer time period T > 500s while avoiding rotating
artifacts of the contour.

For more details, see Fig B.9, where the above non-polarized cell tracks are shown for
a wider selection of varying regularization parameters λreg ∈ {10−2, 10−1, . . . , 103}
and with all corresponding model components. Again, for the intermediate cases
λreg ∈ [0.1, 10], we noticed only very few differences in all shown kymographs.
However, because of small changes of the contour mappings at each time step, the
overall direction of the cell track can vary over time.

The polarized cell tracks under varying regularization schemes are shown in Fig B.10.
As mentioned above, clustering and thinning effects of virtual markers were promi-
nent for λreg = 0.01. For the other choices of λreg, we observed that all kymographs
are barely affected at all, resulting in similar contour dynamics (top right). Major
differences in the cell’s direction are noticed only at the beginning of the cell track
when a stable distribution of virtual markers is not yet reached.

In Figs B.11 and B.12, we present simulated non-polarized and polarized cell tracks
for varying temporal resolution δt = 0.25, 0.5, 1, 2, 2.5, 3.3̄s and fixed regularization
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Figure 5.5. Influence of regularization parameter λreg on simulated cell tracks. (A) The
impact of λreg on the virtual marker distribution described by standard deviation of the virtual
marker distance ratio σVMDR and its reciprocal. (B, C) Non-polarized (left) and polarized
(right) cell tracks generated with varying regularization parameter λreg ∈ {0.01, 0.1, 10, 1000}.
The same protrusion component is underlying in (B) and (B), respectively. (D, E) Histograms
of the VMDR for varying λreg for the non-polarized (left) and polarized (right) cases. (F, G)
Kymographs of the APCSF component of all non-polarized (left) and polarized (right) cell
tracks with regions of interest shown as black and white dashed boxes.

parameter λreg = 10. We observed that the local motion kymograph and hence
the general contour dynamics are not substantially affected. In some cases, the
overall direction of the contour dynamics was altered due to small differences at the
beginning of the track.

In summary, we observed that by varying the regularization parameter within the
range λreg ∈ [0.1, 10], the overall contour dynamics are barely affected. The same
observation was made for a varying temporal resolution. Based on the above studies,
we have chosen a medium regularization λreg = 10 and a relatively dense temporal
resolution of δt = 0.5s for the following simulations.

Long-time simulations are stable and show a normal diffusive behavior To demon-
strate the capability of our model to produce stable contour dynamics even for a
longer time period, we simulated a variety of cell tracks under both scenarios, the
non-polarized and the polarized case as described above. Furthermore, by showing
that qualitatively and quantitatively different cell tracks can be generated with our
model, we provide a rationale for the inference approach in the following section
where we applied the model on experimental cell tracks and different types of
locomotion.
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Figure 5.6. Diffusion analysis of artificial cell tracks generated from a non-polarized test
scenario (top row) and a polarized test scenario (bottom row). (A, F) For each scenario,
ten exemplary cell tracks are shown. (B, C, G) Center of mass trajectories (colored lines)
with root mean squared displacement (grey circles) at different time points with ∆t = 100s.
While panel (B) and (G) are scaled equally, panel (C) is an enlarged excerpt of panel (B).
(D, H) Corresponding MSD of these trajectories (bold black line) for medium time spans of
T = 500s. (E, I) MSD for longer time spans of T = 10000s with linear fit (dashed red line).

In Fig 5.6, we present 50 cell tracks, with 10 especially highlighted (see panels
(A) and (F)), for both polarization scenarios. The center of mass trajectories of
these cell tracks for T = 500s are displayed in panels (B) and (G). Furthermore,
an enlarged excerpt of panel (B) is shown in panel (C). The root mean squared
displacements (RMSD) of the trajectories are depicted as gray circles at time steps
t = 0, 100, . . . , 500s. The corresponding mean squared displacement (MSD) is shown
in panels (D) and (H), indicating normal diffusion for the non-polarized case and
a ballistic regime (so-called superdiffusion) for the polarized case for the first 500
seconds. In panels (E) and (I), the MSD is displayed for a longer time period of
T = 10000s, clearly showing a linear relation between time and MSD indicating
normal diffusive behavior also for the polarized case, see also Fig B.8, where the
center of mass trajectories of the polarized case are presented for the entire time
period of T = 10000s. Again, the RMSD is indicated as gray circles (δt = 2000s).
Finally, based on linear fits (red dashed lines), we computed the diffusion coefficients:
D = 0.19µm2/s for the non-polarized case and D = 45.66µm2/s for the polarized
case.

In Video B.4 and Video B.5, the contour dynamics of the respective cell tracks from
Fig 5.6A and F are shown.
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5.2.7 Inferring the protrusion component from experimental
data

In the first part, we used our model to simulate a variety of different cell tracks
based on stable and, in particular, realistic contour dynamics. In the second part,
we will now apply our model to experimental data to analyze cell tracks on the
individual level and to classify cells based on different types of locomotion: the
amoeboid type and a so-called fan-shaped type. The underlying microscopy imaging
data was published in [148]. As mentioned earlier, the APCSF and AAF from
Eq (5.16) only depend on the current contour and deterministic quantities such
as contour curvature, arc length, and area. Hence, the remaining component fprot

that propagates one contour to the consecutive one, can be determined explicitly.
For a sequence of experimental cell contours, this approach enables us to infer the
different model components for a given set of model weights; see Section B.2 for
more details on how to estimate these parameters.

In Fig 5.7A, a D. discoideum cell track is displayed for a time period of T = 500s

and a frame rate of δt = 1s. This cell track is based on fluorescence microscopy
data (see panel (B)), from which the cell contours are segmented (colored lines).
As mentioned, we have chosen the 1st percentile of the entire area time series
as underlying reference area, i.e., Aref = 91.23µm2. By following the approach
from Section B.2, we estimated the following model weights: wprot = 6.634 µm2/s,
wAPCSF = 0.057 µm2/s, and wAAF = 3.532 µm/s. In comparison to parameter values
estimated for other cell tracks, see Figs B.13 and B.14, we observed that wprot

and wAAF are relatively large while wAPCSF took a medium value. This observation
coincides with the following cell track characteristics: a fast and persistent movement,
an area time series within a smaller range 90µm2 < A < 120µm2 (see panel
(F)), and contour dynamics showing an intermediately regularized curvature. The
accuracy of our computational approach is demonstrated in panel (B), with virtual
markers (black circles) being effectively propagated onto consecutive contours.
In the following, we compare the inferred protrusion component (panel (E)) to
commonly used biomarkers: the local motion of the membrane (panel (C)) and the
F-actin density/fluorescence intensity close to the membrane (panel (D)).

Inferred protrusion component in comparison to other biomarkers. In contrast to
the commonly used local motion which reflects the entire contour dynamics, i.e,
protrusions, retractions and minor membrane fluctuations, the proposed model
separates the creation of protrusions, which depend on fprot, and retractions, which
depend on fAPCSF and fAAF. We expect the protrusion component to be correlated to
the F-actin density near the membrane. However, here we have chosen images, where
the fluorescence signal saturates at high F-actin levels to facilitate segmentation
of the cell contours. Thus, by following this approach, the resulting fluorescence
intensity of the F-actin density provides less details.

In Fig 5.7, kymographs of all three quantities are displayed: the local motion (panel
(C)), the fluorescene intensity (panel (D)), and the inferred protrusion component
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Figure 5.7. Inferring protrusion component from D. discoideum cell track. (A) Per-
sistently motile cell track for T = 500s. (B) Microscopy image with fluorescence intensity
(white to green color scheme) and segmented cell contours (red lines, every tenth shown).
(C) Local motion kymograph showing expansions (red areas) and retractions (blue areas).
(D) Relative fluorescence intensity with regions of high and low F-actin density displayed
in red and blue, respectively. (E) The underlying protrusion component inferred from our
model for a given set of model parameters. The resulting propagation of virtual markers
from one contour to the next one are depicted as black circles in panel (B). (F) The contour
area with predefined reference area Aref = 91.23µm2 (dashed gray line). Finally, regions of
interest are displayed as black and white dashed boxes.

(panel (E)). We expect that a kymograph of a successfully inferred protrusion
component would be strictly positive and only indicate regions where protrusions
occurred. The remaining retractions are then covered by the other two components of
our model: the AAF and the APCSF. In the local motion kymograph, local protrusions
(red regions) and retractions (blue regions) are nicely shown, while the fluorescence
kymograph captures the main characteristics of the cell motility only. The protrusion
component kymograph mainly displays protrusive areas (red regions) with only
a very few negative regions (blue). We thus conclude that the missing retractive
regions are successfully captured by the AAF and the APCSF.

In Fig B.15, we present our approach to measure the fluorescence intensity near the
membrane by averaging over ellipses along the cell contour. To improve the quality
of the fluorescence intensity kymograph, we post-processed the recorded microscopy
images by using a (tenfold) image upsampling, i.e., we smoothed all microscopy
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images by increasing the number of pixels tenfold. However, the resulting kymograph
showed no differences to the kymograph based on the original image data.

In Fig B.16, the protrusion component from Fig 5.7 is displayed as well as the
remaining components fAPCSF and fAAF. As the underlying set of model weights, we
used the same estimates mentioned above. The contributions of all three model
components to the overall dynamics are shown for each time step/contour. In this
context, we observed that the APCSF accounts for approximately 10% of the overall
dynamics. In contrast, the AAF and the protrusion component are more prominent
accounting for approximately 40% and 50%, respectively. This may indicate that the
APCSF mainly resolves a smaller number of strongly curved contour segments, while
slower contour retractions at the rear of the cell are controlled by the AAF.

In addition, we present kymographs of the same quantities for an alternative set of
model parameters, where positive values of fprot are more favored; see Section B.2
for more details. For this case, fprot and fAAF accounted for the overall dynamics
equally, whereas fAPCSF was observed to be negligible most of the time.

Impact of a priori parameter choices on the analysis of experimental data. The F-
actin density near the membrane is often interpreted as a marker of protrusive
activity. Thus, we would expect some correlation between the F-actin density and the
protrusion component in our model. Since the latter is influenced by the choice of
the model weights of the two other model components AAF and APCSF, the question
arises to what extent the correlation depends on the a priori choices of wAAF and
wAPCSF.

We reformulated our model to be based on relative weights rprot, rAPCSF, and
rAAF = 1− rprot − rAPCSF and an overall velocity parameter wf instead of the absolute
weights wprot, wAPCSF, wAAF used in Eq (5.16); see Section B.4 for more details. In
Fig B.17, we display protrusion component kymographs for varying parameters
rprot ∈ {0.05, 0.5, 0.8}, rAPCSF ∈ {0.01, 0.05, 0.1}, and wf ∈ {1, 5, 10, 20} of the cell
track from Fig 5.7 and the corresponding correlation coefficient between these kymo-
graphs and the fluorescence intensity/F-actin density. For a relatively strong APCSF,
i.e. rAPCSF > 0.1, we observed distinct positive and negative horizontal patches
induced by the contour curvature. On the other hand, we obtained predominantly
positive values in the kymograph for a strong AAF, e.g., the top left kymograph
for wf = 20µm/s. Since the AAF affects/shrinks every part of the contour, the
counteracting protrusion component is increased to the same amount for the entire
contour in order to replicate the given contour dynamics. On the other hand, for
a too small AAF, we observed distinct negative (blue) regions in the protrusion
component kymograph, indicating that additional retractive forces are necessary to
replicate the cell track.

By comparing these protrusion component kymographs with the local motion and
the fluorescence intensity from Fig 5.7 panels (C) and (D), we observed the following
similarities and differences. In this context, we focus on the two examples highlighted
as black and white dashed boxes in each kymograph. The first example (300s <
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t < 400s) clearly indicates a retraction as shown in the local motion kymograph.
However, a significant remaining density of F-actin is seen in the fluorescence
intensity kymograph. This pattern is also displayed for most of the protrusion
component kymographs in Fig B.17, e.g., the top left kymograph on the second
page (wf = 5µm/s, rprot = 0.05, rAPCSF = 0.01). This means that our model
predicts a significant amount of fprot necessary to slow down the retraction such
that the modeled contour dynamics resemble the experimental data. Without this
contribution of the protrusion component, the APCSF and AAF would enforce an
even stronger retraction. A similar relation can be observed in the second example
(t > 400s), but to a lesser extent as in the first example. For all cases, the resulting
correlation coefficients between protrusion component and F-actin density fell within
a range of [0.32, 0.48]. The best fit with a correlation of ρ = 0.48 was obtained for
multiple parameter choices of {wf , rprot, rAPCSF} with distinctly different values, e.g.,
{5, 0.05, 0.05}, {10, 0.8, 0.01}, and {20, 0.8, 0.01}. In case of the estimated (relative)
model weights used in Fig 5.7 given by {10.2, 0.65, 0.01}, we achieved a comparable
correlation coefficient of ρ = 0.47. Since the correlation coefficient is invariant under
changes in location and scale, we conclude that most of the protrusion kymographs
displayed in Fig B.17 differ in magnitude primarily. However, the resulting protrusion
kymographs show substantial differences with a decreasing correlation coefficient if
the APCSF is chosen too strong (rAPCSF ≥ 0.1). For this reason, the APCSF weight
should be chosen relatively low rAPCSF ≤ 0.05.

In general, we observed that the protrusion component inferred by the model is
correlated to the underlying F-actin density. While the protrusion component is
affected significantly by the parameter choice, the impact on the above correlation
coefficient is minor.

Classification of contour dynamics based on cell motility types. In the first part of
this work, we have shown that our model can be used to simulate a variety of
different contour dynamics. Here, we demonstrate that our model can also be
applied to different experimental cell tracks. By inferring the protrusion component
and estimating the underlying model weights, we analyzed contour dynamics on
the individual level and classified them based on two different types of locomotion:
the amoeboid type and the so-called fan-shaped type. Again, the contour dynamics
were derived fluorescence images of D. discoideum, where frames are recorded with
a temporal resolution of δt = 1s (amoeboid type) and δt = 4s (fan-shaped type).

The contour parameters rcont = 0.6, σnoise = 0.05 were chosen as in the simulation
part, for more information see S1 Text of [DS1]. The reference area Aref was
chosen individually for each cell track based on the 1st percentile of the entire
time series of the contour area (gray dashed line): 67.14, 128.24, and 69.45 µm2

for the amoeboid cell tracks; 149.71, 207.28, and 197.92 µm2 for the fan-shaped
cells. Moreover, the model weights were estimated for each cell track individually,
described as in Section B.2.
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In Fig B.13, three tracks of an amoeboid motion as in Fig 5.7 are presented. In
contrast to the local motion (first kymograph row), the protrusion component (third
kymograph row) contains only a few negative (blue) regions, which means that the
APCSF and AAF capture most of the contour retractions successfully. Furthermore,
we see strong correlations between all three quantities. However, the protrusive
regions in the fluorescence intensity kymographs are larger than for the other two
kymographs, which is a direct consequence of detector saturation during fluorescence
imaging. From the estimated model weights, we can infer that the third cell track is
more motile (wprot = 6.505µm2/s vs. wprot = 4.513µm2/s) than the other two cell
tracks, which coincides with the contour dynamics displayed on top. Furthermore,
we see that the AAF weight wAAF directly influences the variability of the area time
series, i.e., less variability for the second cell track (wAAF = 1.429µm/s) vs. more
variability for the first and third cell track (wAAF = 0.902µm/s and 0.676µm/s).
Finally, we can observe that the elongated contour shape of the second and third cell
track coincide with higher APCSF weights (wAPCSF = 0.048µm2/s and 0.070µm2/s)
compared to the smaller weight of the first cell track (wAPCSF = 0.023µm2/s)

In the case of the fan-shaped cells in Fig B.14, we see clear blue stripes in the local
motion kymograph at the rear of the cell, which corresponds to a smaller F-actin
density in the fluorescence intensity kymograph. Because of the characteristic kidney-
shaped cell contour, our model predicts a negative protrusion component at the cell’s
rear also displayed as a light blue stripe in the kymographs. This indicates that the
APCSF and the AAF were not able to fully capture this retraction. Since the APCSF
evolves every contour to a circle, it counteracts the characteristic concave-shaped
contour of the cell. For this reason, we expect the estimates of wAPCSF to be lower
than for amoeboid locmotion. Indeed, the APCSF weight was estimated to be zero
for all three cells. Therefore, by inferring the impact of the APCSF, we have shown
that our model is capable of distinguishing fan-shaped cells from standard amoeboid
cells.

For the second and third cell track similar weights wprot ≈ 4.4µm2/s and wAAF ≈
1.8µm/s were estimated which is in accordance with the similar contour dynamics
reflected by comparable mean centroid velocities of 0.091µm/s and 0.099µm/s,
respectively. In contrast, we estimated a lower protrusion component weight wprot =
3.121µm2/s for the first cell track, which is in agreement with a smaller mean
centroid velocity of 0.069µm/s. Moreover, we estimated a smaller AAF weight
wprot = 0.902µm2/s, which might be a result of the ever-increasing contour area of
this track (130µm2 to 217µm2).

5.3 Discussion
We developed a novel model to simulate and analyze the contour dynamics of
amoeboid cell migration. The contour dynamics model is based on three components:
(1) a stochastic protrusion component based on a self-exciting Poisson point process
also know as Hawkes process, (2) an area-preserving curve-shortening flow (APCSF)

84 Chapter 5 Modeling amoeboid cell motility



to regularize the contour arc length, (3) and a further geometric flow introduced as
“Area Adjustment Flow” (AAF) to control the contour area. While the first component
controls the forward movement of the cell, the latter two components control contour
retractions, occurring most often at the rear of the cell.

First, we have shown that our model is capable of generating a variety of cell tracks
with different spatio-temporal patterns. We simulated non-polarized as well as
polarized contour dynamics that are hardly distinguishable from experimental data
and stable over a long time period. Secondly, we applied our model to experimental
cell tracks to analyze key motility characteristics based on the inference of the
three model components and the estimation of the underlying model component
weights. By examining the correlation between the inferred protrusion component
and the fluorescence intensity reflecting the F-actin density, we demonstrated that
the creation of pseudopods and thus the forward movement of the cell is correctly
accounted for by the protrusion component of our model. Furthermore, our model
was capable of decoupling the explorative protrusions from the slower contour
retractions, which in our model are solely based on the APCSF and the AAF. Finally,
by estimating the model weights of each component, we demonstrated a simple
approach to classify cells based on two locomotion types: the amoeboid and a
so-called fan-shaped type.

The simplest approaches to model amoeboid cell motility focus on the motion of
the center of mass of the cell [31, 32, 33]. Often, the center of mass trajectory is
modeled by a Fokker-Planck equation [41] or a Langevin equation [10, 30, 11, 32,
31]. Due to a lower model complexity, even a large number of cell tracks can be
generated relatively easy and fast. These models are then used to examine statistical
quantities such as the diffusion coefficient, the persistence time, and the drift velocity.
While our model focuses on the contour dynamics, the center of mass trajectory
and the corresponding statistics can be derived easily. For example, we determined
a diffusion rate of D = 0.19µm2/s in our test case of simulated non-polarized cell
tracks which is in accordance with experimental measurements [149, 41].

Other approaches include biochemical models focusing on intracellular signaling
molecules and cytoskeletal components [38, 39] or specific biophysical mecha-
nisms such as cell polarization during chemotaxis [34, 35]. Some models combine
intracellular processes with specific membrane patterns such as the formation of
pseudopods [36] or changes of the cell shape in general [150]. Furthermore,
phase-field models are often used in which the transition of different states such
as solid/liquid or interior/exterior of the cell are described [40, 13, 124]. In these
models, biochemical markers such as the actin concentration are often propagated
in time and space and drive displacements of the cell membrane [14, 75].

In contrast to most of the existing approaches which focus on the microscopic level
of chemical and biophysical process during cell migration, our model describes
amoeboid motility on a macroscopic level. By relying on the deformation of an
elastic object, namely the cell contour, it has a mechanistic basis. Usually, mechanistic
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approaches are based on the interplay of multiple forces affecting the cell from the
outside but also from within [42, 43, 15]. However, some mechanistic models rely
on multiple entangled subprocesses making it more difficult to achieve a direct
causality between a chosen parameter regime and a specific motility behavior [15].
Here, our model differs substantially due to its dependency on three components
only and a low number of parameters: 4 model parameters and 4–5 additional
parameters regarding the stochastic process. Desired motility characteristics such as
the number, duration, and size of protrusions, the general movement speed or the
cell polarization can be easily achieved based on an appropriate specification of the
underlying parameter regime.

Motivated by the biological insight that the location of protrusions depends on previ-
ous protrusions [6] and is triggered by a cascade of physiological events affecting the
growth of the actin filament network [71], we have chosen a Hawkes process as the
underlying stochastic process. Due to its self-exciting property, the Hawkes process
is capable of generating multiple explorative protrusions in temporal and spatial
proximity with subsequent reorientation phases characterized by a temporary decline
of the cell motility. Compared to other processes such as the Ornstein-Uhlenbeck
process or a standard Poisson process, the Hawkes process is therefore advantageous
to model membrane protrusions.

Phase-field models often contains additional constraints to preserve the area/volume
of the cell within a specific range [151, 13, 14]. Constraints regarding the surface
tension of the membrane are added to these models to regularize the shape or the
perimeter of the membrane. In a similar fashion, we use the AAF and APCSF to
regularize the contour area and curvature. In contrast to phase-field approaches, the
APCSF and AAF affect and propagate a one-dimensional object only, namely the cell
contour, in contrast to a two dimensional concentration of biomarkers or even the
entire cytoskeleton. Furthermore, phase-field models are successfully used to study
more complex processes such as cell division or the interaction and movement of
multiple cells [152, 153].

By focusing on the contour dynamics to model cell motility, further assumptions
regarding the mapping of virtual markers along time and space were necessary. We
assumed that the transport of the underlying protrusion process is based on the con-
cept of regularizing contour flows which was previously introduced in [DS1]. Other
approaches to determine contour/virtual marker mappings include electrostatic field
equations [28], level-set methods [27, 28], or mechanistic spring equations [29]. All
of the above approaches, including ours, share the same problem that the mapping
of consecutive contours is not defined a priori. We have shown that our contour
mapping assumption has a minor effect on the overall contour dynamics and we
provided a reasonable range of the underlying regularization parameter λreg for
which simulated contour dynamics are stable.

So far, only few approaches offer a full integration of the numerical model and
experimental measurements, e.g., for fibroblast migration [44]. Our model provides
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a full and automatized integration of experimental measurements due to its capability
of inferring protrusion and retraction components individually and by offering a
simple and straightforward estimation of the underlying model weights. The most
common approach to tune computational models with respect to experimental data is
to perform a sensitivity analysis [15, 45, 46, 47]. In this context, different parameter
regimes are chosen to simulate different motility behaviors and to determine the
importance of each parameter on the simulated outcome. With a similar approach,
we have shown that the inference of the protrusion component by our model is
stable for varying model weights wprot and wAAF. However, if the APCSF is too
prominent, the inferred protrusion component is negatively affected, indicated by a
weaker correlation with the underlying F-actin density. Regarding the classification of
different motility types, we examined contour dynamics based on a single locomotion
type (either amoeboid or fan-shaped). However, recent studies report spontaneous
switching between these two locomotion types [DS4].

In summary, the proposed model sets new standards in simulating stable and, in
particular, realistic contour dynamics. Due to a fast and straightforward parameter
estimation and a fully automatized approach to infer protrusion and retraction
characteristics, the model can be used to analyze experimental cell tracks on the
individual level and to classify them.
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6Method reproducibility and Open
Science approach

In recent years, the issue of a reproducibility crisis in science gained more and more
attention [49, 52]. An analysis of 360 research articles in the field of hydrology
showed that only a small fraction (1.6%) were fully reproducible [154]. Stagge
et al. consider a paper reproducible when (1) a publication states where the
associated artifacts can be found, (2) the artifacts are in fact available at the declared
location, and (3) the artifacts allow (in large parts) for a reproduction of the results.
Furthermore, reproducibility is only ensured when the following so-called primary
artifacts are provided: the input data, the corresponding software or source code,
and a sufficient documentation to run the source code successfully [154]. In another
survey, conducted among German researchers of different disciplines, a majority
of participants (55%) stated that the effort to publish research data is high [56].
Noteworthy, only a small fraction of respondents (3%) published at least one data
set in the past [56]. Regarding the fields in biophysics and computational biology, a
lack of reproducibility often results from erroneous descriptions of the underlying
methods, missing documentation to run simulations correctly, or unpublished data
and source codes in the first place [155]. These studies underline the necessity to
facilitate Open Science methods, to encourage researchers of applying these methods
on a regular basis, and to raise awareness to improve reproducibility in science. For
this reason, we developed a fully comprehensive Open Science approach as part
of the research project “B02 – Inferring the dynamics underlying protrusion-driven
cell motility” and the infrastructure project Z03 of the collaborative research center
(CRC) 1294 “Data Assimilation”.

In Section 6.1.1, we outline the main principles and benefits of Open Science. Then,
in Sections 6.1.2 and 6.1.3, we describe the general terminology of research repro-
ducibility and provide further information about common Open Science licenses. In
Section 6.2, we present the essential part of our Open Science approach: the devel-
opment of a Python-based open source software package called AmoePy to analyze
and simulate amoeboid cell motility [DS3]. General information regarding the acces-
sibility, licensing, and documentation of AmoePy are provided in Section 6.2.1. The
installation process and further instructions to facilitate the usability are described
in Section 6.2.2. Then, in Section 6.2.3, we provide details regarding the usage
of version control during the development process and we address good scientific
practice guidelines with an appropriate archiving of software and research data. Sev-
eral measures to improve functionality and stability are presented in Section 6.2.4.
Finally, in Section 6.3, we conclude with a discussion of our Open Science approach.
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6.1 Background and general terminology
First, we clarify certain notions regarding the concepts of Open Science and re-
producibility. Furthermore, we describe and compare various licenses, which are
commonly used in Open Science approaches.

6.1.1 Open Science principles
In the last years, many definitions have been established to describe the concept
of Open Science. In [156], a more general definition is presented: “Open Science
is a combination of objective and subjective goals and means to improve science
in the diverse subjects and disciplines and as a whole”. A more detailed definition
was introduced by Fecher and Friesike who distinguished five different schools of
thought: infrastructure, public, democratic, measurement, and pragmatic [157].
These schools target different questions including topics such as the underlying tech-
nological architecture, free and equal access, alternative metric systems to measure
the impact of research, and easier knowledge transfers in general. However, these
schools of thought are not strictly separated and overlap in some areas. Another
commonly used approach to define Open Science is based on the following six prin-
ciples: open access, open data, open source, open methods, open peer review, and
open (educational) resources [55]. For a better understanding, we first summarize
these principles, see [55] for more details.

Open access. The first principle is the open access to research articles. This includes
an access without financial restrictions (“pay walls”) or restrictions based on the
geographical location of the researcher (“geoblocking”). Open access accelerates the
knowledge transfer of the science community in general, but also brings personal
benefits, e.g., higher number of citations, wider scientific outreach in media, and
more opportunities regarding funding and potential collaborators [53].

Open data. The second principle is called open data and focuses mainly on the fol-
lowing criteria that research data should fulfill: Findable, Accessible, Interoperable,
and Reusable (so-called FAIR principles) [158]. By providing data transparently and
well-documented, the reproducibility of research results is strengthened. Further-
more, it can speed up the research process of other researchers, especially, if the
process of collecting data was expensive and time-consuming,

Open source. The third principle is called open source and includes open access of
source codes which were developed during the research. If external software was
used, this software should also be open accessible and without financial restrictions.
While open source often focuses on software only, it can also be applied to other
fields, e.g, hardware, product, and design blueprints. By following open source
standards, the transparency and reproducibility in science is strengthened. Moreover,
the researchers benefit through a faster knowledge transfer, but also through the
external review of source codes and the underlying methodology.
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Open methods. The fourth principle is called open methods and includes the stan-
dardization and documentation of scientific methods. By using specific standards
regarding, e.g., the experimental setup or the underlying statistical methodology,
scientific results can be easier reproduced. Moreover, one can standardize the format
of research data to facilitate the distribution and reusability of data. This way, the
knowledge transfer can be further enhanced.

Open peer review. The fifth principle is called open peer review and focuses on
the peer review process in academia. Proposals to reform the revision process
include: revealing reviewers’ identities to authors and to the public (open identities),
publishing the reviewers’ reports alongside the main publication (open reports), and
opening the group of reviewers to the research community (open participation). This
way, by providing more transparency and a greater scrutiny of the revision process,
the trust in science is strengthened.

Open (educational) resources. The last principle is called open resources. It focuses
on the teaching of Open Science methods to increase public outreach. Furthermore,
it targets the question how Open Science standards can be applied to facilitate the
usage of research, software, and data for educational purposes with the aim of
improving education in schools and universities globally.

The focus of this work is primarily on open access, open data, and open source, and
secondarily on open methods.

6.1.2 What does reproducibility mean?
Similar to the concept of Open Science, multiple definitions are proposed to define
reproducibility. In [51], different definitions of reproducibility are presented and,
then, classified into different groups. In the following, we apply a definition of
reproducibility currently proposed by the Association of Computing Machinery
(ACM) [159]; an older version was cited in [51].

Reproducibility. “The measurement can be obtained with stated precision by a
different team using the same measurement procedure, the same measuring system,
under the same operating conditions, in the same or a different location on multiple
trials. For computational experiments, this means that an independent group can
obtain the same result using the author’s own artifacts.” [159].

Additionally to reproducibility (different team, same experimental setup), the fol-
lowing two notions are introduced: repeatability (same team, same experimental
setup) and replicability (different team, different experimental setup) [159].

6.1.3 Licenses used in Open Science.
A variety of open/free licenses have been proposed, e.g., the commonly used Creative
Commons (CC) licenses, which have been released since 2002 by the non-profit
organization of the same name. Based on four basic conditions, six different CC
license types have been proposed: CC BY, CC BY-SA, CC BY-NC, CC BY-NC-SA, CC
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BY-ND, and CC BY-NC-ND, see [160] for more details. The meaning of each of
underlying condition is as follows:

• by attribution (BY), author must be credited in an appropriate way,

• share-alike (SA), work derivatives must be distributed under the same license,

• non-commercial (NC), usage for only non-commercial purposes,

• no derivative (ND), work derivatives are prohibited,

Even less restrictive is the public domain dedication CC0 (“no rights reserved”),
which allows adaptation and redistribution without any further conditions. To
allow work derivatives and commercial purposes, only CC0, CC BY, and CC BY-SA
are considered to be open licenses. Since these licenses do not handle software
publications specifically, alternative open source licenses are used often in software
development. For example, the GNU General Public License (GNU GPL), released
in 1989 by the GNU project, is commonly chosen for software. The current version
GPLv3 allows usage, replication, modification, extension, and redistribution under
the same license (so-called “copyleft” condition), see [161]. Hence, GNU GPL is
comparable to the share-alike license CC BY-SA, while also handling software and
patent specific issues.

In [56], a list of simple Open Science practices is presented. For different purposes,
they recommend the following licenses: CC-BY-SA for methodologies, GNU GPL for
source codes/software, and CERN Open Hardware License for hardware designs.
As an alternative to GNU GPL, we recommend so-called permissive licenses, i.e.,
software licenses without copyleft conditions. For these licenses, the usage and redis-
tribution of the software is permitted even if the derivative software is proprietary.
Examples for such permissive licenses include the MIT License, released in 1997
by the Massachusetts Institute of Technology [162], the Apache License (Version
2.0), published in 2004 by the nonprofit Apache Software Foundation [163], and
the 2-clause Berkeley Software Distribution (BSD) license [164]. Referring to the
latter one, permissive software licenses are also called BSD licenses.

6.2 AmoePy: A Python-based toolbox for
investigating amoeboid cell motility

In this section, we present AmoePy [DS3]: an open source Python-based toolbox to
segment cell imaging data, to analyze the resulting contour dynamics as in Chapter 4,
and to simulate amoeboid contour dynamics as in Chapter 5. The structure of this
section reflects the order of the following working steps to run AmoePy properly.
First, in Section 6.2.1, we describe how AmoePy, its code documentation, and further
helpful meta files are accessed. In Section 6.2.2, we explain in which ways AmoePy
can be installed and used. Next, in Section 6.2.3, we describe our usage of version
control during the development process and we address good scientific practice
guidelines with an appropriate archiving of the software and the underlying research
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data. Finally, in Section 6.2.4, we present measures to improve the functionality and
stability of AmoePy: automatic software tests and a hierarchical software structure to
ensure correct source code imports within AmoePy.

6.2.1 Accessibility, licensing, and understandability
Software packages, especially larger ones, are subject to frequent changes, which
may have an impact on the reproducibility of scientific findings. By providing a reset
of the source code to a specific date, e.g., right after a journal publication, version
control is crucially important to ensure research reproducibility. Due to its built-in
version control, the platform Zenodo is very suitable for software publications. For
the same reason, we published AmoePy at Zenodo. So far, nine versions (1.0–1.8)
of AmoePy have been published. Each version can be cited separately based on
different digital object identifiers (DOIs). An additional DOI always references
the current version of AmoePy [DS3]. We have chosen the MIT license [162] to
distribute AmoePy, because of its focus on software publications and its widespread
utilization. In contrast to the commonly used GNU GPL [161], the MIT license is
more concise and counts as a so-called permissive software license, i.e, the usage
and redistribution of AmoePy is permitted even as part of proprietary software.

As proposed in [154], research is only fully reproducible if three so-called primary
artifacts are provided: the underlying data, the source code, and instructions to
install and run the source code. For this reason, we uploaded the following files as
part of our software publication:

• -README-.md: README file containing general information and run instruc-
tions,

• -CHEATSHEET-.pdf: double-sided PDF file (so-called cheat sheet) containing
concise instructions regarding installation and usage (see Fig 6.1),

• B02-AmoePy.zip: ZIP file containing all source codes, the code documentation,
and a small selection of contour data,

• b02-data.zip: ZIP file containing the entire contour data used in our research.

In B02-AmoePy.zip and b02-data.zip, contour data of each cell track are saved
in separate TXT files. In [148], we published the primary data as Zeiss LSM files
(Laser Scanning Microscope), i.e., the microscopy images from which the secondary
contour data was segmented. The primary data for a smaller selection of cell tracks
was also published as TIF files at Zenodo and can be found within b02-data.zip.
The file types of our data, i.e, .txt, .tif, and .lsm, are in accordance with the
format standardization proposed by the Open Microscopy Environment (OME).

Code documentation. To ensure a high standard of understandability within AmoePy,
we provide multiple documentation files: a README file, a so-called cheat sheet,
and source code documentation automatically generated by the Python tool Sphinx.
The file -README-.md contains helpful information and instructions regarding the
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installation of AmoePy, the usage of the graphical user interface (GUI), and run
scripts to reproduce specific research results.

Further information about AmoePy is provided by a double-sided cheat sheet saved
as PDF file. In Fig 6.1, both pages of the cheat sheet are displayed. It consists of
four groups, highlighted by different background colors with supporting information
about:

• the installation process, documentation, dependencies, and settings (gray
boxes),

• analysis routines (blue boxes),

• segmentation routines (orange boxes),

• and simulation routines (green boxes).

In the first box (“1. Installation”), step-by-step instructions are presented for three
different ways to install AmoePy. The other boxes contain helpful instructions when
using the GUI of AmoePy. The exact format of the contour data files used within
and exported by AmoePy are described in the fourth box (“4. Import Contour Data”).
This way, we facilitate the usage of AmoePy with other software packages, e.g., when
contour data files were produced with an external image segmentation software but
a further analysis within AmoePy is intended.

In addition to the README file and the cheat sheet, we provide a detailed source
code documentation, which is automatically generated by Sphinx, a Python-based
open source documentation tool. Sphinx converts docstring comments within python
source codes into an HTML file, containing descriptions for modules, classes, and
methods. Due to additional features, e.g., the inclusion of graphics and mathematical
formulas, a visually appealing documentation is generated by Sphinx rapidly and
in a fully automated way. By providing a detailed documentation, we enable other
researchers to reproduce our results, but also to use AmoePy for their own research.
Especially, when using AmoePy without the GUI, a clear and informative source
code documentation is crucial. To enhance the readability and consistency of the
source code, we followed the PEP8 standard, a collection of guidelines how to write
consistent Python code.

In Fig 6.2, an exemplary AmoePy source code is displayed (left) with the correspond-
ing Sphinx code documentation (right). The red boxes in Fig 6.2 illustrate multiple
features provided by Sphinx: highlighted paragraphs for hints and warnings (A),
mathematical expressions based on LaTeX (B), graphics (C), and tabular descriptions
of parameters, input, and output variables (D).

6.2.2 Installation and usability
In this section, we provide further information about the installation process and
the underlying dependencies. Subsequently, we present the key aspects regarding
the usability of AmoePy: the GUI and additional routines to reproduce the results
from [DS1] and [DS2].
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• Contour data must be imported as *.txt file
• 1st line starts with # and is reserved for comments
• Each line stands for one contour, starting with a time

coordinate followed by alternating X and Y coordinates, 
representing neighboring segmentation points

Creating file from NumPy array:

Paths of example contour data:

Requirements: Anaconda/Miniconda (Link)
• Installation via conda command lines1,2,3

• Alternative 1: Shell script1,2

• Alternative 2: Amoepy.app1

- Click on “Install Amoepy.app”

- After installation click on “Amoepy.app”

1 MacOs 2 Linux 3 Windows

1. Installation

AmoePy
A Python-based toolbox for analyzing
and simulating amoeboid cell motility

• General 
• Graphics

• Video

3. Import Contour Data

2. Documentation

$ cd B02
$ sh install.sh # Also updates conda environmet
# After installation use following command:
$ sh amoepy.sh # Opens AmoePy

# Initiatilize conda environment/installing packages
$ cd B02/src
$ conda update conda # Updates conda packages
$ conda env create -n AmoePy -f environment.yml
# After installation use following command:
$ cd B02/src
$ conda activate AmoePy
$ python -m run.run_amoepy # Alternatively: python3

5. Global Settings

* Pre-sorting virtual markers based on Mean Square Displacement (recommended)

4. Data Processing/Analysis

• Methods which require contour file only
• Methods which require kymograph folder

6. Plotting Methods

np.savetxt('contour.txt', data, delimiter=' ', header='comments ...')

Kymograph Styles:

Kymograph Kinds:

7. Kymograph Options

Documentation for 
the entire AmoePy  
Code base (Link) is 
generated by Sphinx

B02/data/testing_data D. discoideum
b02-data/dictyostelium_data_2016/original_data D. discoideum
b02-data/keratocyte_data/original_data Hypsophrys nicaraguensis
b02-data/embryonic_killifish_data/original_data Fundulus heteroclitus

1.

2.

*

• Each frame will be saved as png
• For saving a video file, FFmpeg (Link) is required

8. Video Settings

# Comments in first line
0 0.0 0.0 1.0 0.0 1.0 1.0
1 0.0 0.1 1.0 0.1 1.0 1.1
2 0.0 0.2 1.0 0.2 1.0 1.2
3 0.1 0.2 1.1 0.2 1.1 1.2
4 0.2 0.2 1.2 0.2 1.2 1.2

Ti
m

e 
(s

)

Alternating X and Y (µm)

Delimiters:
' ' (spaces) and line breaks

File format:
*.txt

Prerequisites:
Equal number of points for 
all contours

3.

Cheat sheet created by Daniel Schindler (dschindler@uni-potsdam.de), Lena Lindenmeier, Ted Moldenhawer

• Simulate cell tracks based contour morphing model
• Choice between two stochastic processes:

1. Hawkes process
2. Ornstein-Uhlenbeck process

• Animation of contour dynamics during simulation 
• Final step: Cotour data of simulated cell track is saved 

as *.txt file and is loaded to the analysis tab

Path to simulation routines:

Paths to simulated cell tracks:

• Extract cell contours from microscopy images
• Required file format: .png, .tif, .tiff

Path to segmentation algorithm:

Paths to microscopy data:

9. Image Segmentation 11. Simulating Cell Tracks

• Initial request after starting image segmentation:
Choice of cell to be tracked in segmentation routine

10. Segmentation Choice

• Choose output path and name of saved contour file
• Select time span of cell track (in seconds), number of 

contours and number of virtual markers per contour

12. General Options

Model Parameters:
• Select parameters regarding the contour smoothing 

and the regularization of the virtual marker flow
• Define contour size by choosing a reference area
• Select individual weights for each model component

Customize stochastic process:
• Select stochastic process to be used for simulations
• Customize the stochastic process by changing 

parameters and modifications

• Random seeds: Change outcome of cell tracks by 
choosing different random seeds

13. Advanced Options

Cheat sheet created by Daniel Schindler (dschindler@uni-potsdam.de), Lena Lindenmeier, Ted Moldenhawer

1.

2.

3.

4.

B02/src/amoepy/segmentation/segmentation

B02/data/testing_data/img_test_data D. discoideum
B02/data/testing_data/img_test_data_mult_cell D. discoideum
b02-data/fluorescence_data/... diversus

B02/src/amoepy/simulation/...

b02-data/artificial_data/... Simulated data

Please, look carefully at the terminal output!

14. Progress Bar/Terminal Output

Figure 6.1. AmoePy cheat sheet containing general information about installing AmoePy,
the code documentation, and settings within the GUI (gray boxes). Furthermore, it provides
information about specific routines regarding the analysis (blue boxes), the segmentation
(orange boxes), and the simulation (green boxes) of contour dynamics.

Installation and dependencies. We have chosen Python as underlying programming
language for a number of reasons. First, Python offers a variety of advanced packages
for different scientific purposes, e.g., numerical analysis (NumPy and SciPy), geome-
try (shapely), image processing (scikit-image), visualization (matplotlib), data
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Figure 6.2. Code documentation generated by Sphinx. Based on the Python source
code (left), the corresponding code documentation is automatically generated by Sphinx
and saved as HTML file. The red boxes illustrate several features provided by Sphinx:
paragraphs for highlighted hints or warnings (A), LaTeX formulas (B), graphics (C), and
tabular parameter descriptions (D).

analysis (pandas), and GUI development (PyQt5). Thus, Python provides an all-in-
one solution for our multidisciplinary application. Secondly, Python and all packages
used within AmoePy rely on large developer communities and are distributed under
open source software licenses, e.g., GNU GPLv3, CC-BY, and BSD licenses. By
avoiding external commercial software or programming languages, e.g., Matlab,
our software package is in accordance with the open source principles previously
described in Section 6.1.1.

To facilitate the installation process regarding the download of required Python
packages, we used Conda, an open source package manager for Python. Based on
a YML file, which consists of a list of all required packages and their exact version
numbers, a Conda environment is created, see Fig 6.1 (“1. Installation”). Afterwards,
all package dependencies are managed and downloaded via Conda automatically,
making the installation process fast, easy, and platform-independent.
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Graphical user interface (GUI). Currently, we provide three different ways to start
the GUI of AmoePy, see Fig 6.1 (“1. Installation”). First, the GUI can be opened by
running a python script in the Python command line interface (CLI). Second, we
provide shell scripts to install AmoePy and to start the GUI. Third, we provide an
executable macOS application Amoepy.app, which enables a simple and user-friendly
way to run AmoePy. However, we recommend the first option due to the platform
independence of the python script.

In Fig 6.3, a screenshot of the AmoePy GUI is shown. The GUI consists of a menu
bar, which contains additional routines and options, and three main windows: a
processing window, a progress window, and a plotting window. The processing
window (top left) contains all routines regarding the segmentation, analysis, and
simulation of contour dynamics. The progress window (bottom left) contains a
progress bar and a text output, providing information during each processing routine.
On the right-hand side, the plotting window is positioned, which contains different
visualization types, e.g., cell tracks, animated contour dynamics, or kymographs.

The main purpose of the GUI is to further facilitate the usage of AmoePy, especially,
for researchers with no profound Python knowledge. By providing an easy-to-use
GUI, other target groups, e.g., biologists and biophysicists, are encouraged to apply
the advanced mathematical methods of [DS1] and [DS2], but without spending
much time in code development. This way, the outreach of our research is potentially
increased. One important goal of our work was to develop an all-in-one software
package. For this reason, AmoePy allows for image segmentation, in which a sequence
of microscopy images saved as PNG or TIF files is translated into a TXT file containing
the contour dynamics, see Fig 6.1 (orange boxes). Subsequently, this TXT file is
loaded to the analysis tab of the processing window. Corresponding quantities
for these contour dynamics, e.g., local motion, curvature, arc length, can then be
determined and further visualized as well as the underlying cell track, see Fig 6.1
(blue boxes). Alternatively, contour dynamics can be generated without experimental
recordings/microscopy data, by using our model from Chapter 5, see Fig 6.1 (green
boxes). Every processing routine included in the GUI can be also accessed via the
default Python CLI. When using AmoePy without the GUI, e.g., to further customize
specific functions or to reduce the computation time, we highly recommend to read
the source code documentation as displayed in Fig 6.2.

Reproducing research results. The first purpose of AmoePy is to ensure the accessibil-
ity and usability of the underlying mathematical methods for other researchers, e.g.,
by providing an easy-to-use GUI. The second purpose is to improve the reproducibil-
ity of our own research results. As described earlier, Stagge et al. consider research
work to be fully reproducible only if the following three prerequisites are provided:
the underlying data, the source codes, and instructions to run the source code [154].
In [148] and [DS3], the primary data, i.e., the microscopy imaging data, and the
secondary data, i.e., the cell contour files, are provided, respectively. In [DS3], we
published all necessary source codes and a detailed documentation of the source
code in form of an HTML file generated by Sphinx and the cheat sheet shown in
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Figure 6.3. graphical user interface (GUI) of AmoePy. The GUI contains a menu bar
and three main windows. The top left window provides all processing routines regarding
segmentation, analysis, and simulation of contour dynamics. In the left bottom corner, a
progress of each routine is shown as progress bar and text output. In the window on the
right-hand side, all plots and videos are shown.

Fig 6.2. Furthermore, our research articles [DS1] and [DS2] provide additional
pseudocodes to further facilitate the reimplementation of our mathematical methods.
However, these documents do not yet ensure a self-explanatory usage of AmoePy to
reproduce the research results from [DS1] and [DS2]. For this reason, we provide
two python scripts, one for each article, with which all figures, statistics and resulting
contour files are recreated. Full instructions, containing single command lines to run
each script, can be found within the README file. By providing all three primary
artifacts, described as in [154], we enable other researcher to fully reproduce the
results of our research articles.

6.2.3 Archiving and extensibility
The source code underlying our research work was collectively developed and
secured by using GitLab, an open source version control software based on Git. In
contrast to the nine versions of AmoePy, published on Zenodo over a period of three
years, we used GitLab on a daily to weekly basis to secure the current software
progress. Due to multiple improvements of the underlying methods and algorithms,
changes of resulting contour data and kymograph files were inevitable and, therefore,
difficult to handle via Git. Even for minor numerical deviations, Git proposed to
rewrite and backup these files completely, leading to a bloated repository size. For
this reason, we installed Git LFS (large file storage), an open source extension of
Git to manage large files and, in particular, binary files, e.g., videos and images
of cell tracks. By using Git LFS, selected (large) files are saved in an additional
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repository, while a copy of the current file version and a pointer file to that copy
remain on the local repository. However, Git LFS does not clean up the potentially
large history of an already existing repository. We, therefore, recommend to install
Git LFS when starting a new research project.

According to the good scientific practice guidelines of the Deutsche Forschungs-
gemeinschaft (DFG), research data should be archived in an “accessible and iden-
tifiable manner for a period of ten years at the institution where the data were
produced” [165]. For this reason, we used DSpace, an open source repository soft-
ware with a focus on data archiving. After each article publication, we uploaded
the underlying data, source codes, instructions, and other meta data on a university
server. By doing so, we further enable the reproducibility of our research and allow
for extensibility, i.e., the possibility for other researchers to extend our software in
future projects. Moreover, our approach is in accordance with another commonly
applied standard in the field of data archiving, the so-called 3-2-1 rule, i.e., three
data copies are secured on at least two different storage types with one copy being
saved remotely.

6.2.4 Functionality and stability
In the course of this project, we took several measures to ensure and improve the
functionality and stability of AmoePy. First, we implemented automatic software tests
by using the continuous integration/continuous delivery (CI/CD) interface of Gitlab
and the Python testing framework Pytest. Secondly, to improve the stability and
the clarity of the source code, we analyzed all import dependencies within AmoePy
by using a Python package called Pydeps. In this context, we created a top-down
hierarchy of all AmoePy sub-packages and resolved circular imports/dependencies,
e.g., two scripts which import each other.

Automatic software testing. In software development, CI/CD is a widely-used frame-
work to automatize (1) the integration of source code changes into the main branch
of an existing repository and (2) the delivery/deployment of the repository to each
user. By using CI/CD, software tests can be started automatically, e.g, after every
commit to the repository or with respect to predefined schedules. If these tests are
not successful, notifications are sent automatically to the repository maintainers.
In such cases, we either made further changes to the source code to fix all tests or
we have chosen to reset the repository to a previous version where no test failures
occurred. With regards to our research, the main benefits of using CI/CD are poten-
tial time savings due to the automation of test routines and the early detection of
erroneous parts of the source code.

We implemented different kinds of automatic tests in AmoePy: unit tests, regression
tests, and deployment tests. With unit tests, small individual functions (so-called
units) are checked for correctness. In this context, we implemented tests to verify
specific functions regarding the computation of several geometric quantities of
contours (area, arc length, and curvature). For circles and ellipses of different sizes,
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we compared the numerical results with the analytical solutions of these quantities.
Then, based on predefined error thresholds, each unit test either passed or failed.

The second group are called regression tests, where we defined a small number
of end-to-end scenarios (from data to results), e.g., the computation of contour
mappings and the resulting kymograph quantities (local motion, local dispersion).
In contrast to the unit tests, where the output was compared to a true reference
value, there is no true or false answer for most of these regression tests. However,
regression tests play an equally important role to ensure proper stability of the
software. By implementing different regression tests, we checked if the source
code is executed successfully from start to end. This way, the interplay of different
parts of the source code and the correct passing of input/output variables between
them is monitored. With Pytest, a Python testing framework, we selected which
routines in AmoePy are run as automatic tests. Furthermore, by using Pytest and
Gitlab, we defined two testing scenarios/pipelines based on the computation time
of each routine. We excluded regression tests with long computation times to a
pipeline called “slow tests”, which was scheduled to start at 4 a.m. on every day.
The remaining functions are tested after every commit in a pipeline called “core”,
for which we defined a collective time-out failure after two hours.

As a final step, we implemented deployment tests to check if all required python
packages are downloaded correctly during the installation process. Additionally,
we used deployment tests to check if the automatic source code documentation is
generated without errors or warnings. By adding these deployment tests to the
CI/CD pipeline, we ensure that every software version is provided with an accurate
source code documentation and that the underlying conda environment, necessary
to run AmoePy, is correctly installed.

In Fig 6.4, a screenshot of the browser interface of Gitlab is presented. Based on
a Python command line, a collection of 158 tests from 10 different files was tested
(panel (A)). For each of these files, the file path and the number of individual tests,
represented by a sequence of dots, are displayed. In panel (B), we see that that the
“core” pipeline, instead of the “slow test” pipeline, is selected. The green check marks
indicate that both pipelines finished successfully.

Data validation tests. In addition to the above tests, which are executed automatically
on a remote server, we implemented several data validation tests. When a contour
data file is loaded to AmoePy, these tests are started internally and perform various
format checks, e.g, that the file contains at least one contour with three segmentation
points and that each contour possess the same number of segmentation points. In
the newest version of AmoePy, a varying number of segmentation points per contour
is accepted. Based on the highest number of segmentation points of a single contour,
the number of segmentation points for the other contour is adjusted. Then, by using
a GPR for each contour separately, segmentation points are added, if necessary,
to the contour and redistributed along the cell contour in an equidistant manner.
The last point arose from feedback by an external researcher in the field of cell
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Figure 6.4. Gitlab interface with CI/CD pipeline, (A) Text output showing that a
collection of 158 automatic tests was successfully executed from start to end. (B) Two
different scenarios/pipelines are defined: “core” (currently selected) and “slow tests”.

migration, who intended to use AmoePy to analyze cell contour data. However, the
contour data was produced with an external image segmentation software, which
allowed for a varying number of segmentation points per contour. After committing
the above changes, the researcher was able to further process the contour data
within AmoePy. This example shows, how software publications can accelerate the
knowledge transfer and increase the own scientific outreach.

Internal software structure. In [DS1], the source code is found in two directories:
‘B02/src/amoepy’ and ‘B02/src/run’. The first directory contains the AmoePy
software package, while the second directory provides additional run scripts, e.g., to
start the GUI and to reproduce results and figures of the articles [DS1] and [DS2].
To better organize all Python scripts within AmoePy, we used the built-in Python
package structure. Based on specific files named ‘__init__.py’, which are saved
into the root directory and all sub-directories of the software package, an under-
lying hierarchy is established. This structure is then used to easily manage source
code imports from other files and directories. To analyze and illustrate the import
dependency structure of AmoePy, we used an open source Python package called
Pydeps.

In Fig 6.5A, Pydeps was used to analyze import dependencies between the first level
sub-packages of AmoePy. All sub-packages are positioned based on their purposes:
either general (top) or more specialized (bottom). The arrows between these
sub-packages represent import dependencies, e.g., ‘assistant_tools’ (purple),
which is used in every other sub-package. In contrast, the sub-packages ‘gui’
and ‘article_plots’ (dark red, bottom) depend on almost all other sub-packages
and are not inherited further. The color of each sub-package corresponds to its
hierarchical position in AmoePy. Due to the clear organization of source code files
and a strict top-bottom hierarchy, routines for specific purposes, e.g., segmentation,
simulation, or analysis, can now be found easier, which further increases the usability
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Figure 6.5. Module/package structure within AmoePy and import dependencies. (A) Sub-
packages of AmoePy with top-down hierarchy, i.e., the position/color of each package repre-
sents its purpose ranging from general (top) to specialized (bottom). Dependencies of the
sup-package ‘assistant_tools’ (purple) are shown as dashed arrows, due to its usage in
every other sub-package. (B) Import dependency graph of all files within AmoePy. The color
of each file corresponds to the hierarchy level of the affiliated sub-package. (C) Reduced
dependency graph showing circular dependencies only. For testing reasons, two cycles were
produced: two files, which import each other (left), and one file, which imports itself (right).

and extensibility of AmoePy. This graph is also provided in the beginning of the
source code documentation.

We analyzed the package structure of AmoePy to rule out possible cross or circular
dependencies. Such dependencies pose a potential threat to the software stability
by producing failures due to an infinite recursion of package imports. In panel (A),
we see that cross and circular import dependencies do not occur in the first level
of sub-packages. However, they may still occur within these sub-packages, e.g.,
two files in the same sub-directory which import each other. For this reason, the
detection of possible cross/circular dependencies was also performed on the level of
individual source code files. In panel (B), the dependency graph is illustrated, which
contains all 177 source code files within AmoePy. Based on a Pydeps analysis, this
graph does not contain any cross or circular dependencies except for two test cases:
two files importing each other and one file importing itself, see panel (C).

6.3 Discussion
In this chapter, we complemented the results from [DS1] and [DS2] with a fully
comprehensive Open Science approach. The main aspects of this approach are a
primary data publication [148] and a secondary data plus software publication [DS3].
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The software publication accomplishes two main goals: (1) to support research
reproducibility of the above articles and (2) to provide all mathematical models in
our easy-to-use and well-documented software package AmoePy. More precisely, to
further improve its usability, AmoePy is supplied with different documentation and
instruction files, i.e, a README file, a double-sided cheat sheet, and an extensive
source code documentation. By developing a GUI, we facilitated the usage of AmoePy
and potentially increased the scientific outreach of our research with respect to
different target groups, i.e., biologists, biophysicists, and applied mathematicians. We
described the benefits of using version control during the development process and
we addressed good scientific practice guidelines by archiving the data, source codes,
and instruction files appropriately. Finally, by implementing automatic tests and
establishing a clear and hierarchical package structure, we improved the functionality
and stability of AmoePy.

With the Open Traits Network (OTN), a general Open Science network across
all organisms was introduced [55]. The aim of OTN is to raise awareness of
Open Science principles in life sciences, to increase scientific transparency, and
to accelerate the knowledge transfer by supporting the open distribution of data sets
and software tools. A similar approach, but with a focus on cell migration, was taken
by the Cell Migration Standardisation Organisation (CMSO). The CMSO originated
from [166], in which an open data ecosystem for cell migration was introduced.
This platform was then further developed and finally published in [167]. As part
of CMSO, a list of standards called Minimum Information About a Cell Migration
Experiment (MIACME) was published, which contains (1) general information
regarding researchers, affiliations, corresponding publications, and funding, as
well as (2) specific information regarding the experiment [167]. The second part
is further divided with respect to metadata about: the experimental setup, the
imaging conditions, and the initial/extracted data sets. Regarding the experimental
setup and the imaging conditions, MIACME is based on preexisting standardization
formats proposed by the two frameworks: Investigation/Study/Assay (ISA) and Open
Microscopy Environment (OME), respectively. With respect to the standardization
of data sets, CMSO developed a library which converts cell tracking data from
different cell tracking software into a single format called Biotracks. Furthermore,
Biotracks contains multiple visualization and analysis tools for cell tracking data.
Currently, CMSO focuses on the standardization of one-dimensional data sets, e.g.,
cell tracks described by the center of mass trajectories. Hence, a standardizing format
of higher dimensional data sets to describe cell migration, e.g., data containing the
dynamics of two-dimensional cell contours in time and space, is yet missing. With
our work, we propose a potential candidate for a format standard.

So far, many open access repositories have been established to distribute and archive
research data and source codes of all disciplines. Commonly used examples for such
repositories include Zenodo, Dryad, and the Open Science Framework (OSF). All of
these platforms provide unique and permanent DOIs for each publication to make
sharing and citation easier. Moreover, they support the usage of ORCID-numbers
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(Open Researcher and Contributor ID) to clarify authorship and to enhance the
visibility of each publication. Due to a built-in version control, Zenodo and OSF are
advantageous when publishing software. In contrast, Dryad is intended for data
publications only. However, based on a partnership with Zenodo, source codes can
be uploaded via Dryad which are then published at Zenodo. Furthermore, Dryad
provides a data curation, where each data set is checked for its usability. Another
useful repository for our research is the Cell Image Library (CIL), a data base for cell
imaging data, often published as videos or so-called Z-stack microscopy images, i.e.,
a time sequence of cell images. Each CIL publication is uniquely identified by a DOI
and, hence, citable. Less important for our specific research work, but nonetheless
noteworthy in our discipline, is dictyBase, an open access genome data base for D.
discoideum.

Furthermore, many open source source packages to analyze (amoeboid) cell motility
have been published. In compliance with the CMSO, an end-to-end software called
CellMissy was introduced, containing cell segmentation and tracking routines.
However, by relying on the centroid trajectory only, the analysis of contour dynamics
is not yet possible in CellMissy. Alternatively, the image editing software ImageJ
provides an open source plugin called Fiji to process imaging data [168]. In cell
biology, Fiji is used especially for microscopy imaging data to segment and track
different cells. With a Fiji plugin called TrackMate-Cellpose, one can extract two-
dimensional cell contours from imaging data and track the corresponding centroid
trajectory [169]. However, a method to determine the spatio-temporal mapping of
cell contours is not yet provided by TrackMate-Cellpose. A further Fiji plugin
to analyze pseudopods during amoeboid cell motility is called Quimp3 and was
published in [23]. In [170], Quimp3 was extended to allow the tracking of cell
contours in time and space and the analysis of the resulting contour dynamics,
described as in [28]. As introduced in Chapter 4, we developed an alternative way
to track and analyze contour dynamics. With AmoePy, this approach is now also
openly accessible and, especially, easy to use.

By providing methods regarding the segmentation, analysis, and simulation of
contour dynamics, AmoePy is developed as versatile all-in-one package. For this
reason, it can be potentially used for many different applications in biology and
biophysics. Thus, we envision AmoePy to be of greater value for the cell migration
community. More generally, AmoePy has the potential to be a role model for future
Open Science contributions. With our approach, we have demonstrated measures to
make scientific work more transparent and reproducible and we have outlined the
great benefits, personally and collectively, of following Open Science principles. For
the future, we aim to publish AmoePy on GitHub, to make suggestions and source
code contributions by the community possible. Moreover, we would like to provide
AmoePy directly via the Conda package manager to further increase its usability and
public outreach.
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7Outlook

In this thesis, we proposed a systematic and data-driven approach to analyze and
simulate amoeboid cell motility. This approach consists of (1) a mathematical
framework based on a one-parameter family of regularized flows to describe the
dynamics of 2D cell contours and (2) a three-component contour dynamics model
to analyze experimental contour data by inferring key motility properties and to
simulate realistic and qualitatively different contour dynamics. As part of an Open
Science approach, both methods were implemented and supplied in an easy-to-use
way within our software package AmoePy. All three topics were presented and
discussed in separate parts of this thesis, see Chapters 4–6.

In this chapter, we want to broaden the discussion beyond the results of this thesis
and provide general perspectives for further research. Additional to contour data
based on D. discoideum, we applied the mathematical framework from Chapter 4
to other organisms, i.e., early embryonic killifish cells (Fundulus heteroclitus) and
keratocytes cultured from Central American cichlids (Hypsophrys nicaraguensis),
and for different experimental setups, i.e., bright-field microscopy, fluorescence
microscopy, and varying frame rates. Other potential fields to apply our method
include different locomotion types, e.g., fan-shaped locomotion [75, DS4], amoeboid
swimmers [134, 135, 171, 172], mesenchymal cell migration [5, 172, 173], and
collective/multicellular cell migration [5, 153]. In [DS4], we applied the above
method to analyze mutated D. discoideum cells, where we identified reversible
motility switches between the amoeboid and the fan-shaped type. Our analysis
tools could be also used to study amoeboid migrating cells, e.g., lymphocytes
and neutrophils as well as lymphoma, leukemia, and other cancer cells, for a
better understanding of physiological/medical processes such as wound healing,
the immune system response, and the invasion and metastasis of cancer [5]. In
Chapter 4, we pointed out that previous approaches, as well as ours, to connect
consecutive cell contours in time and space are not intrinsically defined and that they
are bound to different assumptions [24, 28, 29]. For this reason, the development of
a contour mapping method, which is physiologically and data-driven based, would
be an interesting, but experimentally challenging, objective.

As part of the three-component contour dynamics model from Chapter 5, the per-
sistence of a simulated cell track is based on a polarization parameter and is fixed
for the entire time interval. Hence, a more detailed incorporation of chemotaxis
into the model is possible, e.g., by adding a fourth component to the model, which
is based on a time-dependent vector field representing chemotactic stimuli. We
applied the model to experimental contour data to infer the underlying protrusion
component, which was then compared to commonly used biomarkers: the F-actin
density close to the membrane and the local motion. While this was only a first
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step, we envision our model to be used for the investigation of other intracellular
mechanisms, e.g., the signaling pathways of amoeboid migrating cells during chemo-
taxis [174]. Due to the low model complexity, our model can be simply applied to
other organisms and varying experimental setups. Other applications include, for
example, the transition from single-cell migration to collective cell migration [5]
and the detection of motility mode switches, e.g., amoeboid to fan-shaped [DS4]
or mesenchymal to amoeboid [5, 172]. Another interesting research question is
the parameter estimation/tuning of the underlying Hawkes process in our model
such that the predicted motility patterns correspond to experimental observations as
much as possible.

Regarding our software package AmoePy, introduced in Chapter 6, we aim to further
increase its usability and outreach. In this context, we consider its publication on
GitHub to enable other researchers to make suggestions and source code contribu-
tions. In a next step, we would like to facilitate the installation process of AmoePy,
by deploying it directly via the Conda package manager. Alternatively, to the current
graphical user interface, a browser-based interface could improve the usability of
AmoePy even more.

Conclusion. In this thesis, we developed a mathematical framework and a compu-
tational model, which allow a systematic, quantitative, and data-driven analysis
of contour dynamics underlying amoeboid cell motility. By means of regularized
flows, we defined a spatio-temporal coordinate system of evolving cell contours.
Applied to experimental contour data, primarily recorded for D. discoideum, this
framework allows a rigorous analysis of different cell tracks, where the main protru-
sion and retraction events are identified and classified in a fully automated way. This
framework was then used as part of a novel contour dynamics model, which enables
us to (1) simulate qualitatively different and realistic contour dynamics and (2)
analyze experimental contour data by inferring key motility characteristics regarding
protrusions and retractions. Due to its intuitively comprehensible approach and
the low model complexity, we deem the model to be suitable for a wide range of
different organisms, experimental setups, and physiological/biomedical applications.
By providing the above methods as part of an easy-to-use open source software
package, this work is of greater value, in particular, for the cell migration community
and, in general, for researchers of different fields, e.g., biostatistics, biophysics, and
medicine. Finally, by following Open Science principles, this work enables other re-
searchers to reproduce our scientific findings and represents a valuable contribution
to the Open Science movement.
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AAppendix related to Chapter 4

A.1 Supporting information: regularized contour
flow method

In this section, we present further details of the regularized contour flow method pre-
sented as in Chapter 4. First, we provide information regarding the implementation
of the regularized contour flow method (RCFM) within AmoePy, our Python-based
toolbox for analyzing and simulating amoeboid cell motility [DS3]. Subsequently,
we describe the gradient descent method which is used to solve the minimization
problem from Eq (4.23). More precisely, we show that predictions of the functional
gradients are provided by the GPR as analytical by-products. This will reduce the
number of iterations of the gradient descent method and, therefore, reduce the
computational cost of the algorithm substantially. Furthermore, we present test
cases which are used to validate the RCFM. These test cases as well as multiple
experimental cell tracks are fully accessible in our AmoePy software package.

Objective function. Note that the optimal flow is defined as the flow that solves the
following minimization problem:

ϕk,λ = argmin
ϕk

Fk[ϕk] + λUk[ϕk], λ > 0, (A.1)

where the two functionals are given by:

Fk[ϕk] ≃ Fk

[
θk+1|θk

]
= 1

Nδt2

N−1∑
i=0

∥∥Φk+1(θk+1,i) − Φk(θk,i)
∥∥2

, (A.2)

Uk[ϕk] ≃ Uk

[
θk+1|θk

]
= N

N−1∑
i=0

∣∣θk+1,i+1 − θk+1,i

∣∣2, (A.3)

with θk, θk+1 ∈ [0, 2π)N denoting the normalized arc length coordinates for N

segmentation points at time tk and tk+1. For two consecutive parametrizations
θk+1 and θk and regularization parameter λ ∈ R+, the objective function Hk[ϕk] :=
Fk[ϕk] + λUk[ϕk] is given by

Hk[ϕk] ≃ Hk

[
θk+1|θk

]
= 1

Nδt2

N−1∑
i=0

∥∥Φk+1(θk+1,i) − Φk(θk,i)
∥∥2

+ λN
N−1∑
i=0

∣∣θk+1,i+1 − θk+1,i

∣∣2. (A.4)
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From the following optimization problem

θk+1 := argmin
θ̃k+1∈[0,2π)M

Hk

[
θ̃k+1|θk

]
, (A.5)

we obtain the arc length parametrization of the next contour.

Derivatives of objective function. In order to solve the optimization problem, we
used built-in gradient descent methods from the Python package SciPy. In this
context, we have chosen ‘L-BFGS-B’ as minimizer due to its short computation
time and the usage of bound constraints. Alternatively, ‘trust-constr’ offers a
constrained minimization with a slightly slower computation times. For more details
about both minimizers, see [175, 176] and [177, 178]. The Jacobian and Hessian
of Hk, which is required for some custom minimizers, are given by the following
formulas:

∂Hk

∂θk+1,i
= 2a ·

〈
Φk+1 (θk+1,i) − Φk (θk,i) ,

∂Φk+1
∂θk+1,i

〉
− 2b · (θk+1,i−1 + θk+1,i+1) + 4b · θk+1,i

∂2Hk

∂θ2
k+1,i

= 2a ·
〈

Φk+1 (θk+1,i) − Φk (θk,i) ,
∂2Φk+1
∂θ2

k+1,i

〉

2a ·
∥∥∥∥∥ ∂Φk+1

∂θk+1,i

∥∥∥∥∥
2

+ 4b,

∂2Hk

∂θk+1,i ∂θk+1,j
=


−2b |i − j| = 1,

0 1 < |i − j| < N − 1,

−2b |i − j| = N − 1,

where a := 1/(Nδt2) and b := λN and i, j ∈ {0, . . . , N − 1}. Conveniently, the
derivatives ∂Φk+1/∂θk+1,i and ∂2Φk+1/∂θ2

k+1,i are a by-product from the Gaussian
process regression obtained by Eq (3.15) and (3.16).

Linear constraints. In order to avoid mapping violations, one can choose a gradient
descent method with following constraints

I : 0 ≤ θk,j+1 − θk,j ≤ 2π and

II : 0 ≤ θk,N−1 − θk,0 ≤ 2π.

Both inequalities can be summarized by the following linear constraint:
0
...

0

−2π


≤


−1 1

. . . . . .
. . . 1

1 −1


·


θk,0

θk,1
...

θk,N−1


≤


2π
...

2π

0


.
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

Figure A.1. Selection of test cases accessible in AmoePy: Pulsating circle (A), translation
of circle (B), rotating ellipse (C), circle to ellipse transformation (D), inward membrane
changes (E), outward membrane changes (F), single protrusion (G), neighboring protrusions
(H), distant protrusions (I), different sized protrusions and different protrusions during
translation (K, L). The time period of each excerpt is color-coded from purple to red.

Since the second functional in Eq (A.1) already penalizes mapping violations, i.e.,
θk,i+1−θk,i ≤ 0 for i ∈ {0, . . . , N −1}, we have chosen a gradient descent minimizer,
which skips the check of linear constraint violations is skipped for the sake of a faster
computation time.

Method validation on test cases. Our software package AmoePy provides several
simple contour dynamics as displayed in Fig A.1. These test cases consist of basic
geometric transformations (A-F) and different protrusion patterns (G-L). Many tracks
are periodic to further challenge the algorithm. For periodic contour dynamics, only
the first period is displayed in Fig A.1, while the kymographs in File A.1 provide
information for all periods. The starting contour is highlighted in purple, whereas
the last contour is highlighted in red. The exact time intervals of each track can be
extracted from File A.1.

Special features of the local dispersion are nicely illustrates in these kymographs.
In the example case of the pulsating circle (A), the local dispersion is equal to zero
for the entire contour and time interval, since the local dispersion was defined as

A.1 Supporting information: regularized contour flow method 109



a concentration/stretching rate of virtual markers on the unit circle S1. Moreover,
cases (G-L) illustrate a non-local feature of the marker dispersion: Strong protrusions
at one part of the contour may also affect the dispersion of markers at the rest of
the contour. In AmoePy, a detailed documentation is included which can be used
to recreate the corresponding kymographs as well as animated videos of these test
cases.

A.2 Supporting computations: Cost functionals
In this section, we provide the step-by-step derivations for some of the statements
presented in the Section 4.2.

(I) Cost functional Uk[ϕk]. Recall that virtual markers along a contour Γk are dis-
tributed according to a density µk(θ). The density of virtual markers on the consecu-
tive contour induced by ϕk can be described with

µk+1(ϕk(θ))dθ = µk(θ)dθ

∂θϕk(θ) , (A.6)

where the underlying flow is defined by

θk+1 = ϕk(θk).

The second functional, which quantifies the degree of non-uniformity, is defined by

U [µ] :=
∫ 2π

0

dθ

µ(θ) . (A.7)

By applying the substitution rule for integrals to µk+1(ϕk(θ)), we obtain the following
expression

Uk[ϕk] =
∫ 2π

0

∂θϕk(θ)
µk+1(ϕk(θ))dθ

(A.6)=
∫ 2π

0

∂θϕk(θ)2

µk(θ) dθ. (A.8)

(II) Cost functional Uk[ϕk]. Note that the mapping from Γ0 to Γk is denoted as χk(θ)
and defined by

χk+1(θ) = ϕk(χk(θ)), χ0(θ0) = θ0.

Furthermore, the density of virtual markers along the cell contour Γk is defined by

µk(χk(θ0)) = 1
2π · ∂θ0χk(θ0) . (A.9)

Then, we obtain the following expression

Uk[µ] :=
∫ 2π

0

dθ

µ(θ)

=
∫ 2π

0

1
µk (χk(θ0)) · ∂θ0χk(θ0)dθ0
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(A.9)= 2π

∫ 2π

0
|∂θ0χk(θ0)|2 dθ0.

From there on, we can deduce the formula from Eq (4.17):

Uk[ϕk] = 2π

∫ 2π

0
|∂θ0ϕk (χk(θ0))|2 dθ0

= 2π

∫ 2π

0
|∂θ0χk+1(θ0)|2 dθ0.

(III) Cost functional Fk[ϕk]. Of note, the square mean velocity of the flow is defined
by

Fk[ϕk] =
∫ 2π

0
∥Vk(θ)∥2 µk(θ)dθ,

and the translation vectors Φ, V , and W are linked by the following formula

Φk+1(ϕk(χk(θ0))) − Φk(χk(θ0))
δt

= Vk(χk(θ0)) = Wk(θ0). (A.10)

Again, by using the substitution formula for integrals, we obtain the following
expression of the cost functional

Fk[ϕk] :=
∫ 2π

0
∥Vk(θ)∥2 µk(θ)dθ

=
∫ 2π

0
∥Vk(χk(θ0))∥2 µk(χk(θ0)) · ∂θ0χk(θ0)dθ0

(A.9)= 1
2π

∫ 2π

0
∥Vk(χk(θ0))∥2 dθ0

(A.10)= 1
2π

∫ 2π

0

∥∥∥∥Φk+1(ϕk(χk(θ0))) − Φk(χk(θ0))
δt

∥∥∥∥2
dθ0.
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A.3 Supporting figures

0

1

Mapping via 1-Regularization

0

1

Mapping via 2-Regularization

01 01

Fig S2.  Comparison of virtual marker mappings obtained with different regularization schemes. On the left hand side,
1-regularization was used in which neighboring virtual markers are regularized w.r.t their normalized arc length coordinates.

On the right hand side, the  2-distances of neighboring virtual markers is used for regularization. While the 2-regularization 
fails during large shape deformations, producing wide gaps between virtual markers and topological mapping violations (red lines),
satisfying contour mappings are provided by the 1-regularization as used by our method.

Figure A.2. Comparison of virtual marker mappings obtained with different regular-
ization schemes. On the left hand side, S1-regularization was used in which neighboring
virtual markers are regularized w.r.t their normalized arc length coordinates. On the right
hand side, the R2-distances of neighboring virtual markers is used for regularization. While
the R2-regularization fails during large shape deformations, producing wide gaps between
virtual markers and topological mapping violations (red lines), satisfying contour mappings
are provided by the S1-regularization as used by our method.
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Fig S3.  Cell track with large shape deformations.  As in previous kymographs, a strongly regularized (global) flow is
used to define the underlying coordinate system. Then, based on a weakly regularized (local) flow ( = 0.01), the local motion
is computed (first row). Compared to previous cell tracks, the imaging frequency of this cell track is roughly three times lower
( t 3.13s), which results in larger shape deformations. Examples showing the local flow between two consecutive frames
are displayed for expansions (second row) and contractions (third row). Expansion and contraction events, indicated by red
and blue arrows, respectively, are also displayed in the local motion kymograph (gray circles/squares, respectively).

Figure A.3. Cell track with large shape deformations. As in previous kymographs, a
strongly regularized (global) flow is used to define the underlying coordinate system. Then,
based on a weakly regularized (local) flow (λ = 0.01), the local motion is computed (first
row). Compared to previous cell tracks, the imaging frequency of this cell track is roughly
three times lower (δt ≈ 3.13s), which results in larger shape deformations. Examples
showing the local flow between two consecutive frames are displayed for expansions (second
row) and contractions (third row). Expansion and contraction events, indicated by red
and blue arrows, respectively, are also displayed in the local motion kymograph (gray
circles/squares, respectively).
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Algorithm 3: MinimizeFunctional

Input: γstart, γend, r ∈ (0, 1) , σn > 0, λ ≥ 0
Output: θeval

/* Compute normalized arc length coordinates */

θstart = NormalizedArcLengthCoordinates(γstart);
θend = NormalizedArcLengthCoordinates(γend);

/* Setting initial value */

θeval = θstart;

/* Perform gradient descent to minimize Functional */

/* The gradient is a by-product of GPR */

/* See Supporting Information (S1 File) for more details */

find θeval which minimizes fobj

Γflow = GPR(γend, θend, θeval, r, σn);
fobj = Functional(γstart, Γflow, θstart, θeval);

end

return θeval

Figure A.4. Schematic overview of an algorithm to obtain coordinate markers from
solving the optimization problem as in Eq (4.25).
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Fig S6. Computation times of the algorithm Regflow  from Fig 2 for different values of the
regularization parameter  for the mapping between two consecutive contours. The statistic is
taken over 500 pairs of consecutive contours of the cell track displayed in Fig 4, each based on
400 virtual markers. For each , the median (orange lines), the upper and lower quartile (blue
boxes), and the 5th and 95th percentile (black lines) are shown.

Figure A.5. Computation times of the algorithm ‘Regflow’ from Fig 4.2 for different
values of the regularization parameter λ for the mapping between two consecutive contours.
The statistic is taken over 500 pairs of consecutive contours of the cell track displayed in Fig
4, each based on 400 virtual markers. For each λ, the median (orange lines), the upper and
lower quartile (blue boxes), and the 5th and 95th percentile (black lines) are shown.
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Fig S7.  Discrete set of points (yellow) segmented from a noisy fluorescence image (A). By using Gaussian process regression with
varying parameters of the underlying Poisson kernel, different estimations of the membrane can be obtained. The curvature of these
estimated contours are shown in (B). The parameters were chosen as follows: r = 0.4 (blue), r = 0.65 (green), and r = 0.9 (red).
In (C, r = 0.4), the resulting contour is highly underfitted which leads to a strongly regularized curvature. In (E, r = 0.9), an overfitting
effect can be observed, resulting in high fluctuations of the curvature. In (D, r = 0.65) a more plausible parameter was chosen leading
to an accurate approximation while preserving the main characteristics of the curvature. The corresponding local motion kymographs are
shown in panel (F H). For (F, r = 0.4), some details are not resolved. In contrast, only few differences can be observed between
(G, r = 0.65) and (H, r = 0.9), which shows that the estimate for r = 0.65 is already an accurate approximation of the contour.

Figure A.6. Cell contour based on noisy fluorescence images estimated via GPR for
different hyperparameters and corresponding curvature. Discrete set of points (yellow)
segmented from a noisy fluorescence image (A). By using Gaussian process regression with
varying parameters of the underlying Poisson kernel, different estimations of the membrane
can be obtained. The curvature of these estimated contours are shown in (B). The parameters
were chosen as follows: r = 0.4 (blue), r = 0.65 (green), and r = 0.9 (red). In (C, r = 0.4),
the resulting contour is highly underfitted which leads to a strongly regularized curvature.
In (E, r = 0.9), an overfitting effect can be observed, resulting in high fluctuations of the
curvature. In (D, r = 0.65), a more plausible parameter was chosen leading to an accurate
approximation while preserving the main characteristics of the curvature. The corresponding
local motion kymographs are shown in panel (F-H). For (F, r = 0.4), some details are not
resolved. In contrast, only few differences can be observed between (G, r = 0.65) and (H,
r = 0.9), which shows that the estimate for r = 0.65 is already an accurate approximation of
the contour.
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Fig S8.  Comparison of local motion kymographs computed for different imaging frequencies. At the top, the kymograph is based
on one image/contour per second. In the kymographs below, the underlying contour flows were computed for every 2nd, 3rd, 5th,
and 10th image. For decreasing imaging frequencies, the identification of local membrane changes becomes more difficult.
However, the algorithm is stable even for a lower temporal resolution ( t > 3s) producing contour flows without mapping violations
while capturing global features of the contour dynamics.Figure A.7. Comparison of local motion kymographs obtained with different imaging

frequencies: δt ∈ {1, 2, 3, 5, 10}. At the top, the kymograph is based on one image/contour
per second. In the kymographs below, the underlying contour flows were computed for every
2nd, 3rd, 5th, and 10th image. For decreasing imaging frequencies, the identification of
local membrane changes becomes more difficult. However, the algorithm is stable even for a
lower temporal resolution (δt > 3s) producing contour flows without mapping violations
while capturing global features of the contour dynamics.
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Fig S9.  Weakly regularized global flow (A, = 1) with corresponding kymographs: Local motion (top) and local
dispersion (bottom). Clustering and thinning effects appear at the back side and front side of the cell, respectively,
which results in an overproportional display of a short retractive contour segment. For the case of the strongly
regularized flow (C, = 1000) we observe a more uniform distribution of virtual markers along the cell. Therefore,
the corresponding local dispersion kymograph becomes less informative (D, bottom).Figure A.8. Comparison of global flows in cases of no, weak and strong regularization.

Weakly regularized global flow (A, λ = 1) with corresponding kymographs: Local motion
(top) and local dispersion (bottom). Clustering and thinning effects appear at the back side
and front side of the cell, respectively, which results in an overproportional display of a short
retractive contour segment. For the case of the strongly regularized flow (C, λ = 1000)
we observe a more uniform distribution of virtual markers along the cell. Therefore, the
corresponding local dispersion kymograph becomes less informative (D, bottom).
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Fig S10.  Extreme test scenario to further challenge our algorithm. In this test case, only 8 out of 500 contours are
taken into account. The underlying coordinate system is defined by a strongly regularized flow ( = 1000) and is
depicted as gray lines.For illustration, we have marked four points on the contour with normalized arc length
0, 2 , , 3

2  and highlighted the mapping of one of them. Additionally, the initial cell track is highlighted as gray area.
Noticeable, no mapping violations were produced. Moreover, the strongly regularized flow prevents clustering and
thinning effects of virtual markers.Figure A.9. Extreme test scenario to further challenge our algorithm. In this test case,

only 8 out of 500 contours are taken into account. The underlying coordinate system is
defined by a strongly regularized flow (λ = 1000) and is depicted as gray lines. For illustra-
tion, we have marked four points on the contour with normalized arc length 0, π

2 , π, 3π
2 and

highlighted the mapping of one of them. Additionally, the initial cell track is highlighted
as gray area. Noticeable, no mapping violations were produced. Moreover, the strongly
regularized flow prevents clustering and thinning effects of virtual markers.
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Figure A.10. Kymographs as in Fig 4.6 without prior smoothing.
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Figure A.11. Correlation between local dispersion and local motion. The correlation
is shown for different example cell tracks: Persistently motile (A), medium motile (B) and
rather stationary cell (C).
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Expansion collection, threshold: 0.087

Figure A.12. Collection of identified expanding areas and events of high intensity for the
persistently motile cell. Only features with minimal persistence length ∆t ≥ 3 are shown.
For a complete collection of all identified contour expansions, see File A.4.
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A.4 Supporting files
File A.1. Collection of 13 artificial cell tracks with corresponding kymographs
showing local dispersion, local motion, and curvature. In the figure at the top of
each page, the period of time of several cell tracks was shortened for illustrative
purposes due to overlapping contours. URL: https://doi.org/10.1371/journal.
pcbi.1009268.s005 (PDF)

File A.2. Collection of 12 cells with high and medium motility and different
grades of persistence. For each track the kymographs of local dispersion, local
motion and curvature are shown, followed by plots as in Fig 4.9 and 4.10. The cells
are sorted in descending order regarding the area of the entire contour track. URL:
https://doi.org/10.1371/journal.pcbi.1009268.s014 (PDF)

File A.3. Collection of 12 stationary cells. The file is structured as in File A.2.
URL: https://doi.org/10.1371/journal.pcbi.1009268.s015 (PDF)

File A.4. Collection of identified expanding areas and events of high intensity
for the persistently motile cell. Only features with minimal persistence length ∆t ≥ 3
are shown. URL: https://doi.org/10.1371/journal.pcbi.1009268.s016 (PDF)

A.5 Supporting videos
Video A.1. Persistently motile cell at tenfold speed, see S1 Video of [DS1].
URL: https://doi.org/10.1371/journal.pcbi.1009268.s017 (MP4)

Video A.2. Weakly motile cell at tenfold speed, see S2 Video of [DS1].
URL: https://doi.org/10.1371/journal.pcbi.1009268.s018 (MP4)

Video A.3. Stationary cell at tenfold speed, see S3 Video of [DS1]. URL: https:
//doi.org/10.1371/journal.pcbi.1009268.s019 (MP4)
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BAppendix related to Chapter 5

B.1 Hawkes process: Expected number of
offspring

As described in Chapter 5, the underlying kernel of the Hawkes process is given
by g(t, θ) = g1(t) · g2(θ), separated into a temporal component g1(t) and a spatial
component g2(θ). In this context, the temporal kernel is given by

g1(t) = αβ t e−βt,

with arrival intensity α > 0 and exponential decay rate β > 0. Furthermore, the
spatial kernel is defined as the von Mises distribution

g2(θ) = eκM cos(θ)

2πI0(κM ) ,

with κM > 0 as concentration parameter and I0(κM ) denoting the modified Bessel
function of order 0.

The expected number of offspring under this Hawkes process is then given by the
following integral

m =
∫ 2π

0

∫ ∞

0
g(t, θ) dt dθ.

Since g1 and g2 are continuous and, therefore, g as well, we can apply Fubini’s
theorem. Furthermore, due to g2 being a probability density function, we obtain

m =
∫ 2π

0
g2(θ) dθ ·

∫ ∞

0
g1(t) dt

= 1 ·
∫ ∞

0
αβ t e−βt dt

=
[
−αe−βt (βt + 1))

β

]∞

0

= α

β

For the parameters α = 0.5s−1 and β = 0.4s−1 used in our paper, we obtain the
expected number of offspring m = 0.8. Given a background intensity λ0 = 1s−1 and
a time span T = 500s, we can compute the expected number of events

λ0 · T ·
∞∑

k=0
mk = 2500.
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Therefore, to obtain the same amount of events with a Poisson process, i.e., with
one generation of events only, the background intensity must be set to λ0 = 5s−1.

B.2 Estimation of model weights
In this section, we describe our approach how to estimate the model weights wprot,
wAPCSF, and wAAF when replicating experimental cell tracks with our model.

In this context, we will make use of the local motion kymograph derived from the
experimental contour dynamics; see [DS1] for more details. More precisely, we
tune fAPCSF and fAAF such that negative regions (i.e. retractions) of the local motion
are mainly captured by the above components. For this reason, we introduce the
residuals rk,i defined by

rk,i = LMk,i − fAPCSF (tk, θi) − fAAF (tk, θi)
≈ fprot(tk, θi)

with local motion LMk,i at time tk and virtual marker θi.

First, we propose the following two sums of squared residuals

S :=
∑

k,i: LMk,i<0
r2

k,i,

S+ :=
∑

k,i: LMk,i<0
(min (rk,i, 0))2 .

We are now interested in the pair of retraction weights wretr = (wAPCSF, wAAF) ∈ R2

which minimizes one of the above sums

min
wretr∈R2

S or min
wretr∈R2

S+.

While the first case enforces ideally small corrections rk,i, the second case favors a
positive protrusion component fprot.

Subsequently, after estimating wAPCSF and wAAF, we can determine wprot such that
the underlying protrusion process

Xprot(tk, θi) = L(tk) fprot(tk, θi)
wprot

fulfills Var(Xprot) = 1 with Var(·) denoting the sample variance. This can be achieved
by choosing

wprot =
√

Var(X̃prot),

with
X̃prot(tk, θi) := L(tk) fprot(tk, θi).
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B.3 Numerical implementation of contour dynamics
models

Here, we describe how a contour at time tk can be evolved for a short time period of
[tk, tk+1]. For an initial contour Γk, we start with a (preferably) equidistant set of
M ∈ N contour grid points.

Further, we introduce the following vectorized notation for the spatial coordinates
of these markers:

Φ(x)
k : [tk, tk+1] → RM , t 7→ Φ(x)

k (t),

Φ(y)
k : [tk, tk+1] → RM , t 7→ Φ(y)

k (t),

zk : [tk, tk+1] → R2M , t 7→ zk(t) :=

 Φ(x)
k (t)

Φ(y)
k (t)

 ,

with corresponding center of mass trajectories Φ(x)
CM(t), Φ(y)

CM(t) ∈ R. Moreover, we
introduce the following vectorized notations for

• the protrusion process Xprot
k ∈ RM being constant for the entire time period

[tk, tk+1],

• the contour curvature κ(t) ∈ RM ,

• and the unit normal vector components n⃗(x)(t), n⃗(y)(t) ∈ RM .

Then, the vectorized model components f , fprot, fAPCSF, fAAF : R+ × R2M → RM are
given by

fprot(t, zk) =wprot

L(t) Xprot
k ,

fAPCSF(t, zk) = − wAPCSF

(
κ(t) − 2π

L(t)1M

)
,

fAAF(t, zk) = − wAAF
A(t) − Aref

Aref · L(t)
( (

Φ(x)(t) − Φ(x)
CM(t)1M

)
◦ n⃗(x)(t)

+
(
Φ(y)(t) − Φ(y)

CM(t)1M

)
◦ n⃗(y)(t)

)
.

In this context, ◦ denotes the element-wise (so-called Hadamard) product and 1M

the all-ones vector of dimension M . Now, we can rewrite Eqs. (5.14) and (5.15) for
a set of M contour grid points

∂zk(t)
∂t

=

 f(t, zk(t)) ◦ n⃗(x)(t)

f(t, zk(t)) ◦ n⃗(y)(t)

 (B.1)

f(t, zk(t)) = fprot(t, zk(t)) + fAPCSF(t, zk(t)) + fAAF(t, zk(t)).

Given an initial contour Γk with equidistant contour grid points with corresponding
coordinates zk(tk) =

[
Φ(x)

k (tk), Φ(y)
k (tk)

]
∈ R2M , we compute the contour dynamics
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for the time interval [tk, tk+1] by solving the initial value problem in Eq (B.1). For
this purpose, we use the built-in LSODA solver in the Python package SciPy. This
solver is based on backward differentiation formulas (BDF) – an implicit method
developed to solve especially stiff ordinary differential equations, see [179, 180] for
more details.

The BDF method of order 1 is better known as implicit Euler method – in our notation
given by the formula:

zk(τi+1) = zk(τi) + h · fk(τi+1, zk(τi+1)),

with initial time τ0 = tk, evaluation times τi = τ0 + ih and τN = tk+1, step size
h = δt

N , and number of steps N ∈ N. Whereas, Xprot
k is set to be constant for

the above time integration, the geometric quantities L(τ), A(τ), κ(τ), n⃗(τ), and
ΦCM(τ) can be updated for each iteration step tk ≤ τ ≤ tk+1 until the coordinates
zk(τN ) = zk(tk+1) of the consecutive contour Γk+1 are derived.

Finally, we conclude the contour evolution with a contour mapping step, i.e., we
compute trajectories of all virtual markers between Γk and Γk+1 based on a regu-
larized flow, see Figs B.1 and B.3 for more details. Afterwards, we proceed with
the contour evolution for the next time period [tk+1, tk+2], starting again with a
preferably equidistant set of contour grid points.

Regularized flows to counteract VM thinning and clustering. Since the model com-
ponents from Eq (B.1) are mostly acting in normal direction, thinning and clustering
effects of virtual markers are inevitable for longer time periods at the front and rear,
respectively. For this reason, we propose to propagate an equidistant set of contour
grid points with respect to Eq (B.1) for a short time interval [tk, tk+1] only. After-
wards, we map the initial contour at time tk to the next one at time tk+1 = tk + δt

based on a regularized flow as described in [DS1]. The extent of the regularization
of ϕk is controlled by a single parameter λreg ≥ 0.

In Fig B.3, we illustrate the two different kinds of marker trajectories: (1) the
contour propagation based (green dashed lines) and (2) the contour mapping (blue
dashed lines) under which Xprot is transported. By comparing both trajectories,
we nicely see that a regularization, under which Xprot is transported, is required
to avoid thinning/clustering effects. Moreover, we use this contour mapping for
the underlying spatio-temporal coordinate system of the kymograph descriptions
displayed later on. More precisely, horizontal lines of any later shown kymograph
describe the corresponding quantity along regularized VM trajectories.

In B.1, we summarized the above algorithm in form of a pseudocode.
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Algorithm 1: ContourDynamicsModel

Input: Γ0, δt > 0, λreg ≫ 0, ϑmodel ∈ R4, ϑprot ∈ Rnprot

Output: Γ0, . . . ,ΓK−1

/* Generate protrusion process for the entire time span */

Xprot
0 , . . . , Xprot

K−2 = StochasticProcess(ϑprot);

for k = 0 to K − 2 do
/* Compute virtual marker distance rate */

VMDR = VMDistanceRate(Γk);

/* Adjust protrusion process w.r.t VMDR */

Xprot
k = Xprot

k /VMDR;

/* Compute coordinates of equidistant contour grid points */

pinit = GaussianProcessRegression(Γk);

/* Propagate contour grid points based on model functions */

pend = SolveIVP(pinit, δt,X
prot
k , ϑmodel);

/* Compute contour mapping based on regularized flow */

Γk+1 = RegularizedFlow(Γk, pend, λreg);

end

return Γ0, . . . ,ΓK−1

Figure B.1. Algorithm to perform contour dynamics model. The algorithm input consists
of an initial contour Γ0, a step width δt > 0, a regularization parameter λreg, the model
parameters ϑmodel = {wprot, wAPCSF, wAAF, Aref}, and a set of nprot parameters regarding the
stochastic protrusion process denoted with ϑprot ∈ Rnprot . The output contains the artificial
cell track based on consecutive contours Γ0, . . . , ΓK − 1.

B.4 Model equations with relative weights
In Eq (5.16), our model is notated with absolute weights wprot, wAPCSF, wAAF > 0.
Alternatively, with an overall velocity parameter

wf = wprot + wAPCSF + wAAF · 1µm

our model can be notated with resoect to relative weights:

rprot = wprot

wf
,

rAPCSF = wAPCSF

wf
,

rAAF = wAAF · 1µm

wf
= (1 − rprot − rAPCSF).

Then, we can rewrite Eqs (5.15) and (5.16) as

f = wf · (fprot + fAPCSF + fAAF) ,
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with the following three components:

I : fprot(t, θ) = rprot
Xprot(t, θ)

L(t) ,

II : fAPCSF(t, θ) = rAPCSF

( 2π

L(t) − κ(t, θ)
)

,

III : fAAF(t, θ) = (1 − rprot − rAPCSF) A(t) − Aref

Aref · L(t) ⟨Φ(t, θ) − ΦCM(t), n⃗(t, θ)⟩ .

B.5 Ornstein-Uhlenbeck process as protrusion
process

In this section, we define the protrusion process in our model as diffusion process,
more precisely as an Ornstein-Uhlenbeck process which is denoted by

X : [0, T ] × [0, 2π) → R, (t, θ) 7→ X(t, θ).

Further, we introduce the notation for discrete time steps

X(kδt, θ) = X(tk, θ) = Xk(θ),

with X(0, θ) = X0(θ) = 0 for all θ ∈ [0, 2π).

In the following, we introduce several functions underlying our Ornstein-Uhlenbeck
process. Afterwards, we present the exact definition of X.

Scaling functions. An Ornstein-Uhlenbeck process consists of a mean reversion
term, preventing the process from getting too small or too large, and a diffusion
term, resulting in process changes due to stochastic innovations. For both terms, we
introduce the scaling functions respectively:

• mean reversion rate function:

a : [0, T ] × [0, 2π) → R+ with ak(θ) := a(tk, θ), (B.2)

• diffusion rate function:

b : [0, T ] × [0, 2π) → R+ with bk(θ) := b(tk, θ). (B.3)

Innovation function. As underlying correlation function, from which we draw inno-
vations, we use the normalized Poisson kernel:

k̃r(θ, θ′) = kr(θ, θ′)√
kr(θ, θ)kr(θ′, θ′)

= (1 − r)2

1 − 2r cos(θ − θ′) + r2 (B.4)

with θ, θ′ ∈ [0, 2π), r ∈ [0, 1). It holds the following properties:
(

1−r
1+r

)2
≤ k̃r(θ, θ′) <

1 for all θ ̸= θ′ and k̃r(θ, θ′) = 1 if and only if θ = θ′. In Fig B.4, the Poisson kernel
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function from Eq (5.1) and its normalized version from Eq (B.4) are shown for
different parameters r ∈ [0, 1).

Then, the innovations of the Ornstein-Uhlenbeck process are denoted by η and are
realized by the following Gaussian process:

η : [0, T ] × [0, 2π) → R,

(t, θ) 7→ ηt(θ),
(η)t ∼ GP(0, k̃rinn(·, ·)),

with zero mean and covariance function k̃rinn(·, ·) from Eq (B.4) and innovation
bandwidth parameter rinn ∈ (0, 1). For the discrete-time case, we define similarly

ηk(θ) := η(tk, θ). (B.5)

By choosing a normalized Poisson kernel as covariance function, we obtain spatially
correlated noise, while not affecting the overall variance of Xk. In this context, we
use the property that k̃inn(θ, θ) = 1 for all θ ∈ [0, 2π).

Discrete formulation. Now, we present a time-discrete formula in order to generate
an Ornstein-Uhlenbeck process containing the functions from Eqs (B.2), (B.3), and
(B.5). Again, we choose a Lagrangian reference frame to describe the process Xk. For
a virtual marker labeled by an initial (normalized) arc length coordinate θ ∈ [0, 2π),
the evolution of the protrusion process along this virtual marker is given by Xk(θ)
and starts at X0(θ) = 0. More precisely, Xk is defined iteratively by the following
Ornstein-Uhlenbeck process:

Xk+1 (θ) = Xk(θ) + δt · ∆Xk(θ), (B.6)

∆Xk(θ) = −ak(θ) · Xk(θ) +
√

2ak(θ) · bk(θ) · ηk(θ).

In the following, we will use a simplified version with constant rates ak(θ) = a ∈ R+

and bk(θ) = b ∈ R+:

∆Xk(θ) = −a · Xk(θ) +
√

2a · b · ηk(θ). (B.7)

Since the magnitude of Xk can be also adjusted by the protrusion weight wprot later
on, we recommend to set b = 1. This way, and by choosing the normalized Poisson
kernel as covariance function of ηk, we obtain Xk ∼ N (0, 1).

Polarization function. A cell polarization can be easily added to the model. This
polarization can be induced, e.g., by an extracellular nutrient gradient or by a
“leading process” defining the general tendency of the cell to move persistently in
one direction. We assume that the polarization of the cell is time-dependent and
defined by a singular location on the cell contour representing the mid of the cell’s
front. From these assumptions, we introduce the following function

θpol : [0, T ] → [0, 2π), t 7→ θpol(t).
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A simple test case for a constant polarization would be to choose θpol(·) = π as we
did for Hawkes processes in Chapter 5.

Further, we define the polarization function p(t, θ) as the following mapping:

p : [0, T ] × [0, 2π) → R+ with

(t, θ) 7→ k̃rpol(θ, θpol(t)),

with normalized Poisson kernel k̃rpol defined as in Eq (B.4) with corresponding
polarization parameter rpol ∈ [0, 1). The polarization function fulfills the property(1−rpol

1+rpol

)2
≤ pk(θ) ≤ 1 and reaches its maximum pk(θ) = 1 if and only if θ = θpol(tk),

for more details see Fig B.4.

For the case rpol = 0 and any function θpol : [0, T ] → [0, 2π), the polarization function
simplifies to

p(·, ·) = k̃0(·, θpol(·)) = 1,

i.e., no polarization effect takes place. For the case rpol → 1, the polarization
functions simplifies to

p(t, θ) =

 1, θ = θpol(t)

0, θ ̸= θpol(t)

which is equal to the indicator function 1{θpol(t)}(θ). Finally, we introduce a discrete
notation:

pk(θ) := p(tk, θ) = k̃rpol(θ, θpol(tk)). (B.8)

Protrusion component. Motivated from the biological insight that protrusions and
retractrions are triggered by the underlying actin and myosin concentration, re-
spectively, we designed our model to separate the formation of protrusions from
the formation of retractions. However, in order to obtain a separation of protru-
sions, resulting from the protrusion component, and retractions, resulting from the
APCSF and AAF, the process X(t, θ) should only take positive values. For this reason,
we propose the following modifications of the Ornstein-Uhlenbeck process from
Eq (B.6):

X+
prot(tk, θ) := pk(θ)

VMDR(tk, θ) · Xk(θ)+, (B.9)

X2
prot(tk, θ) := pk(θ)

VMDR(tk, θ) · Xk(θ)2,

Xexp
prot(tk, θ) := pk(θ)

VMDR(tk, θ) · exp (Xk(θ)) ,

X lin
prot(tk, θ) := pk(θ)

VMDR(tk, θ) · Xk(θ) + clin

X log
prot(tk, θ) := pk(θ)

VMDR(tk, θ) · 1
1 + exp

(
−βlog Xk(θ))

) ,
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with clin > 0, βlog > 0, a polarization function pk defined as in Eq (B.8), and virtual
marker distance ratio defined as in Eq (5.4). For the linear shift modification, clin > 0
needs to be sufficiently large in order to obtain mostly positive values for X lin

prot.

Simulating amoeboid motility by an Ornstein-Uhlenbeck
process
In Chapter 5, we have shown that amoeboid cell motility can be well simulated with
a self-exciting Poisson point process, as so-called Hawkes process. In this section, we
simulate contour dynamics driven by an Ornstein-Uhlenbeck process (OUP) defined
as in Eq (B.7). The OUP is commonly applied in other cell motility models where it is
often used to model changes of two-dimensional bio marker concentrations. For this
reason, we investigated if the OUP is also suitable within our model. In the above
section, we introduced multiple modifications of the OUP, necessary to separate the
formation of protrusions from the formation of retractions. We therefore studied the
influence of each modification on the overall contour dynamics.

First, we generated cell tracks based on the OUP in Eq (B.7) for all modifications
mentioned above. The mean reversion rate and diffusion rate were set to be
constant: a = 0.05 and b = 1. Furthermore, we assumed no polarization, i.e.,
rpol = 0. Since the modifications from Eq (B.9) affect the magnitude of the protrusion
process in different ways, the protrusion weight wprot needed to be adjusted for
each modification. For this reason, we have chosen wprot = 15; 5; 5; 7.5; 20µm/s for
X+

prot, X2
prot, Xexp

prot, X lin
prot, and X log

prot, respectively. In general, the reference area of
Aref acts as lower bound of the area in our model. From experimental recordings,
we can say that Aref = 80µm2 is plausible for an exemplary cell track. The exact
choice of all parameters can be found in Table B.1. The first group of parameters
regarding the contour parametrization and the flow between contours is described
in a more detailed way in [DS1].

In the top row of Fig B.2, cell tracks based on the different modifications from
Eq (B.9) are shown. For each modification, the same realization of the Ornstein-
Uhlenbeck process Xprot is underlying. The non-polarized behavior of the cell tracks
can be clearly seen. From the covered trace (grey area) of each cell track and its
corresponding center of mass trajectory (colored line), we observe different degrees
of motility for Xexp

prot, X+
prot, X2

prot, X lin
prot, and X log

prot (descending order).

Furthermore, the kymographs of the overall local motion f and its three components
fprot, fAPCSF, fAAF are displayed for each of these cell tracks. For X+

prot, the expanding
regions (red, first two columns) are more distinct and with sharp edges directly
resulting from the non-smooth behavior of X+

prot. In contrast, the expanding regions
of X2

prot are smoother. Furthermore, by taking also the negative parts of Xprot into
account, the number of expanding regions approximately doubles. For the third case
Xexp

prot, we observe kymographs similar to X+
prot but with smoother transitions between

expansions and retractions. In the fourth case, we have chosen clin = 1.96 such
that P(X lin

prot > 0) = 0.975. As a consequence of this mean shift, the corresponding
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Table B.1. Choice of parameters and meaning.

Parameter Value Unit Meaning

Contour parametrization

rcont 0.6 − GPR smoothing

σnoise 0.05 − GPR noise

λreg 10 µm2

s2 Flow regularization

Aref 80 µm2 Reference area

Ornstein-Uhlenbeck process

a 0.05 s−1 Mean reversion rate

b 1 s− 1
2 Diffusion rate

rinn 0.5 − Corr. length of innovations

rpol 0 − Corr. length of polarization

Model weights

wprot 5–20 µm
s

Protrusion weight

wAPCSF 0.1 µm
s

APCSF weight

wAAF 1 µm
s

AAF weight

List of parameters for simulated contour dynamics based on an Ornstein-Uhlenbeck process.

protrusion kymograph shows larger expanding regions. Due to a larger protrusion
component, the size of the cell contour is significantly increased. Since fAPCSF is
proportional to the contour curvature, which decreases due to a larger contour
size, the corresponding kymograph (3rd column) shows less pronounced curvature
patterns. An increased contour area can be also inferred from the fAAF kymograph
(4th column), indicated by a dark blue color, leading to a stronger area adjustment.
For the logistic modification X log

prot with βlog = 2, a similar effect of an increased
contour size can be observed.

In Vid B.3, all five cell tracks are displayed at tenfold speed. In accordance to the
kymographs from Fig B.2, we observed the non-smooth behavior for X+

prot with
abrupt changes of the cell contour. For X2

prot, we observed more protrusions evolving
more smoothly compared to X+

prot. However, by creating too many protrusions,
canceling each other out, the overall cell motility can be reduced. This effect
was also shown in [15]. Since X2

prot depends also on the negative regions of the
initial Ornstein-Uhlenbeck process, the resulting cell track differs significantly from
the other four cell tracks, which are synchronous most of the time. From the
exponential modification Xexp

prot, a cell track with rapidly generating protrusions
was observed. Finally, the cell tracks obtained from X lin

prot and X log
prot were almost

stationary with an increased cell shape and lesser curvature which coincides with
the above observations.

In general, we recommend using the exponential modification Xexp
prot resulting in

smooth contour changes driven by fast and more explorative protrusions. However,
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Figure B.2. Comparison of cell tracks obtained from different modifications of the
underlying Ornstein-Uhlenbeck process. In the first row, the entire area (trace) covered
by each cell track is displayed (left, gray area) as well as their center of mass trajectories
(left, colored lines) and the evolution of the contour dynamics over a time span of T = 500s
(right, colored contours). Below, for each modification, the corresponding kymographs of
the following quantities are displayed for the first half of each cell track: the local motion f
and its three components fprot, fAPCSF, and fAAF (from left to right).

some protrusions look artificial as well as additional artifacts such as a pulsating
membrane and a partially swimming type of locomotion. While this method pro-
vides a simple way of generating cell tracks, they can be easily distinguished from
experimental cell tracks. Based on the findings of Chapter 5, where we have chosen
a Hawkes process as underlying protrusion component, much more realistic contour
dynamics were generated. Due to its self-exciting property, the Hawkes process is
capable of producing cascades of multiple protrusions with accompanying reorienta-
tion phases of the cell. Compared to the OUP, the Hawkes process is therefore the
better choice for modeling amoeboid cell motility.
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B.6 Supporting figures
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contour mapping. First, the contour is propagated by the model function f evaluated for an equidistant set of grid
points on the contour (green dashed trajectories). Secondly, the protrusion component Xprot is propagated by a
strongly regularized flow to avoid thinning and clustering effects of virtual markers (blue dashed trajectories).
This contour mapping can then be used as underlying coordinate system in kymograph representations.

Figure B.3. Artificial contour dynamics based on our model with comparison of
underlying contour propagation and contour mapping. First, the contour is propagated
by the model function f evaluated for an equidistant set of grid points on the contour (green
dashed trajectories). Secondly, the protrusion component Xprot is propagated by a strongly
regulrized flow to avoid thinning and clustering effects of virtual markers (blue dashed
tracetories). This contour mapping can then be used as underlying coordinate system in
kymograph representations.
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Figure B.5. Kernel functions used to generate artificial cell tracks driven by a Hawkes
process. Temporal kernel g1(t) with varying arrival intensity α > 0 and exponential decay
rate β > 0 (left). Spatial Kernel g2(θ) with varying concentration parameter κM ≥ 0
(middle). Hawkes Intensity λ(t, θ) with background intensity λ0 = 1 for varying θ along the
cell contour and the following choice of parameters: α = 0.4, β = 0.5, and κM = 100 as
used in our model (right).

10 5 0 5 10
x ( m)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y 
(

m
)

(A)

10 5 0 5 10
x ( m)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
y 

(
m

)
(B)

0

100

200

300

400

500
Time (s)

0

2

3
2

2
f(C)

0.2

0.1

0.0

0.1

0.2

( m
s ) fprot(D)

0.0

0.1

0.2

0.3

0.4

( m
s )

0

2

3
2

2
fAAF(E)

0.25

0.20

0.15

0.10

0.05

0.00
( m

s ) fAPCSF(F)

0.075

0.050

0.025

0.000

0.025

0.050

0.075
( m

s )

0 100 200 300 400 500
Time (s)

80

100

120

140

Ar
ea

 (
m

2 )

A(t)(G)

0 100 200 300 400 500
Time (s)

35

40

45

Ar
c 

le
ng

th
 (

m
)

L(t)(H)

Figure B.6. Non-polarized cell track based on a Poisson point process as protrusion
process and the corresponding kymographs displayed as in Fig 5.3, see File B.1 for additional
contour dynamics based on a Poisson point process.
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Figure B.7. Polarized cell track based on a Poisson point process as protrusion process
and the corresponding kymographs displayed as in Fig 5.4, see File B.2 for additional contour
dynamics based on a Poisson point process.
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Figure B.8. Long-term diffusion analysis of polarized artificial cell tracks based on a
Hawkes process. Long-term diffusion analysis of polarized artificial cell tracks based on a
Hawkes process. (A) Center of mass trajectories of 50 polarized cell tracks over a longer time
period T = 10000s (colored and gray lines). The root mean squared displacement (RMSD) is
shown for every 2000s (gray circles). (B) Corresponding mean squared displacement (MSD,
bold black line) with linear fit (dashed red line).
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Fig S6.  Parameter study with varying regularization parameter reg during non-polarized cell motility. For each cell track the same protrusion component
is underlying (top left). The center of mass trajectory (colored lines) as well as the covered area of each cell track (gray area) are displayed (top right).
Based on different regularization schemes, different kymographs are computed: Local motion (left column), the APCSF component (middle column),
and the AAF component (right column). Regions of interest are displayed as black and white dashed boxes indicating rotating elements of the cell
contour (last two rows).

Figure B.9. Parameter study with varying regularization parameter λreg during non-
polarized cell motility. For each cell track the same protrusion component is underlying
(top left). The center of mass trajectory (colored lines) as well as the covered area of each
cell track (gray area) are displayed (top right). Based on different regularization schemes,
different kymographs are computed: Local motion (left column), the APCSF component
(middle column), and the AAF component (right column).
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Fig S7.  Parameter study with varying regularization parameter reg during polarized cell motility. For each cell track the same protrusion component
is underlying (top left). The center of mass trajectory (colored lines) as well as the covered area of each cell track (gray area) are displayed (top right).
Based on different regularization schemes, different kymographs are computed: Local motion (left column), the APCSF component (middle column),
and the AAF component (right column). Regions of interest are displayed as black and white dashed boxes indicating thinning and clustering effects
(top row).

Figure B.10. Parameter study with varying regularization parameter λreg during
polarized cell motility. For each cell track the same protrusion component is underlying
(top left). The center of mass trajectory (colored lines) as well as the covered area of each
cell track (gray area) are displayed (top right). Based on different regularization schemes,
different kymographs are computed: Local motion (left column), the APCSF component
(middle column), and the AAF component (right column).
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Fig S8.  Comparison of local motion kymographs of simulated non-polarized cell tracks for different temporal resolutions:
t {0.25, 0.5, 1, 2, 2.5, 3.3}. In the top left corner, the center of mass trajectory (colored lines) and the trace of each cell track (gray area)

are displayed. In the top right corner, the contour dynamics (colored lines) and the trace of the cell track (gray area) are shown.
Below, kymographs of the local motion based on our model are listed for each cell track.

Figure B.11. Comparison of local motion kymographs of simulated non-polarized cell
tracks for different temporal resolutions: δt ∈ {0.25, 0.5, 1, 2, 2.5, 3.3}. In the top left
corner, the center of mass trajectory (colored lines) and the trace of each cell track (gray
area) are displayed. In the top right corner, the contour dynamics (colored lines) and the
trace of the cell track (gray area) are shown. Below, kymographs of the local motion based
on our model are listed for each cell track.
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Fig S9.  Comparison of local motion kymographs of simulated polarized cell tracks for different temporal resolutions:
t {0.25, 0.5, 1, 2, 2.5, 3.3}. In the top left corner, the center of mass trajectory (colored lines) and the trace of each cell track (gray area)

are displayed. In the top right corner, the contour dynamics (colored lines) and the trace of the cell track (gray area) are shown.
Below, kymographs of the local motion based on our model are listed for each cell track.

Figure B.12. Comparison of local motion kymographs of simulated polarized cell
tracks for different temporal resolutions: δt ∈ {0.25, 0.5, 1, 2, 2.5, 3.3}. In the top left
corner, the center of mass trajectory (colored lines) and the trace of each cell track (gray
area) are displayed. In the top right corner, the contour dynamics (colored lines) and the
trace of the cell track (gray area) are shown. Below, kymographs of the local motion based
on our model are listed for each cell track.
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Fig S11.  Collection of three D. discoideum tracks driven by the standard amoeboid type of cell motion with corresponding kymographs:
Local motion, relative fluorescence intensity, the underlying protrusion component inferred from our model, and the contour area. For each
cell track, the 1st percentile of the individual area time series (last row) was chosen as the reference area (gray dashed line) in our model:
62.43, 122.99, and 64.61 m2, respectively. The model weights (wprot, wAPCSF, wAAF) were estimated individually for each cell track:
(4.513, 0.023, 0.902), (4.513, 0.048, 1.429), and (6.505, 0.070, 0.676), respectively from (A) to (C).

Figure B.13. Inference of protrusion component and model weights of (experimental)
amoeboid cell tracks. Collection of three D. discoideum tracks driven by the standard amoe-
boid type of cell motion with corresponding kymographs: Local motion, relative fluorescence
intensity, the underlying protrusion component inferred from our model, and the contour
area. For each cell track, the 1st percentile of the individual area time series (last row) was
chosen as the reference area (gray dashed line) in our model: 62.43, 122.99, and 64.61µm2,
respectively. The model weights (wprot, wAPCSF, wAAF) were estimated individually for each
cell track: (4.513, 0.023, 0.902), (4.513, 0.048, 1.429), and (6.505, 0.070, 0.676), respectively
from (A) to (C).
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Fig S12.  Collection of three D. discoideum tracks driven by a fan-shaped type of cell motion with corresponding kymographs:
Local motion, relative fluorescence intensity, the underlying protrusion component inferred from our model, and the contour area. For each
cell track, the 1st percentile of the individual area time series (last row) was chosen as the reference area (gray dashed line) in our model:
142.15, 203.45, and 189.24 m2, respectively. The model weights (wprot, wAPCSF, wAAF) were estimated individually for each cell track:
(3.121, 0.000, 0.911), (4.485, 0.000, 1.844), and (4.428, 0.000, 1.760), respectively from (A) to (C).

Figure B.14. Inference of protrusion component and model weights of (experimental)
fan-shaped cell tracks. Collection of three D. discoideum tracks driven by a fan-shaped
type of cell motion with corresponding kymographs: Local motion, relative fluorescence
intensity, the underlying protrusion component inferred from our model, and the contour
area. For each cell track, the 1st percentile of the individual area time series (last row) was
chosen as the reference area (gray dashed line) in our model: 142.15, 203.45, and 189.24µm2,
respectively. The model weights (wprot, wAPCSF, wAAF) were estimated individually for each
cell track: (3.121, 0.000, 0.911), (4.485, 0.000, 1.844), and (4.428, 0.000, 1.760), respectively
from (A) to (C).
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Fig S13.  Computation of relative fluorescence intensity for experimental microscopy data and tenfold upsampled data via ellipses along the
cell contour. (Top row) Two exemplary frames of the original microscopy data from which the segmented contour (blue) is derived.
The relative fluorescence intensity averaged over ellipses along the cell contour (green) are then translated into a kymograph (right column).
The position of six exemplary virtual markers on the cell contour and in the kymograph are displayed as colored dots.
(Bottom row) Tenfold upsampled image data with corresponding kymograph which shows almost no deviations from the original kymograph.Figure B.15. Computation of relative fluorescence intensity for experimental mi-

croscopy data and tenfold upsampled data via ellipses along the cell contour. (Top row)
Two exemplary frames of the original microscopy data from which the segmented contour
(blue) is derived. The relative fluorescence intensity averaged over ellipses along the cell
contour (green) are then translated into a kymograph (right column). The position of six
exemplary virtual markers on the cell contour and in the kymograph are displayed as colored
dots. (Bottom row) Tenfold upsampled image data with corresponding kymograph which
shows almost no deviations from the original kymograph.
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Fig S14.  Model components extracted from experimental cell track of Fig 7 for two pairs of model weights (wprot, wAPCSF, wAAF): (6.634, 0.057, 3.532)
and (17.190, 0.047, 31.076). The model weights were estimated by minimizing sums of squared residuals: S (left column) and S +  (right column),
see S1 Text for more details. While the first approach enforces small corrections of fprot, positive values of fprot are favored in the second approach.
The following kymographs are displayed: Protrusion component (A, B), APCSF component (C, D), and AAF component (E, F), as well as their proportion
on the overall velocity of the contour dynamics (G, H).Figure B.16. Model components extracted from experimental cell track of Fig 5.7 for

two pairs of model weights (wprot, wAPCSF, wAAF):
(6.634, 0.057, 3.532) and (17.190, 0.047, 31.076). The model weights were estimated by min-
imizing sums of squared residuals: S (left column) and S+ (right column), see Section B.2
for more details. While the first approach enforces small corrections of fprot, positive values
of fprot are favored in the second approach. The following kymographs are displayed:
Protrusion component (A, B), APCSF component (C, D), and AAF component (E, F), as well
as their proportion on the overall velocity of the contour dynamics (G, H).
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Fig S15.  Protrusion component fprot extracted from the experimental cell track of Fig 7 for varying relative weights rprot {0.05, 0.5, 0.8} (vertical axis) and rAPCSF {0.01, 0.05, 0.1} (horizontal axis)
as well as varying overall velocity parameter wf {1, 5, 10, 20} (page axis). The correlation coefficient  between the protrusion component and the fluorescence intensity kymograph from Fig 7D is
displayed above each kymograph. Regions of interest are displayed as black and white dashed boxes.
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Fig S15.  Protrusion component fprot extracted from the experimental cell track of Fig 7 for varying relative weights rprot {0.05, 0.5, 0.8} (vertical axis) and rAPCSF {0.01, 0.05, 0.1} (horizontal axis)
as well as varying overall velocity parameter wf {1, 5, 10, 20} (page axis). The correlation coefficient  between the protrusion component and the fluorescence intensity kymograph from Fig 7D is
displayed above each kymograph. Regions of interest are displayed as black and white dashed boxes.Caption on next page, see B.17
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Fig S15.  Protrusion component fprot extracted from the experimental cell track of Fig 7 for varying relative weights rprot {0.05, 0.5, 0.8} (vertical axis) and rAPCSF {0.01, 0.05, 0.1} (horizontal axis)
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Figure B.17. Protrusion component fprot extracted for varying relative weights rprot ∈
{0.05, 0.5, 0.8} (vertical axis) and rAPCSF ∈ {0.01, 0.05, 0.1} (horizontal axis) as well as
varying overall velocity parameter wf ∈ {1, 5, 10, 20} (page axis) The correlation coefficient
ρ between the protrusion component and the fluorescence intensity kymograph from Fig 5.7D
is displayed above each kymograph. Regions of interest are displayed as black and white
dashed boxes. The underlying cell track is the same cell track as in Fig 5.7.
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B.7 Supporting files
File B.1. Collection of five non-polarized cell tracks based on Poisson point
processes as protrusion process and the corresponding kymographs displayed as
in Fig 5.3. URL: https://zenodo.org/record/7243417/files/S4_Fig.pdf (PDF)

File B.2. Collection of five polarized cell tracks based on Poisson point pro-
cesses as protrusion process and the corresponding kymographs displayed as in
Fig 5.4. URL: https://zenodo.org/record/7243417/files/S5_Fig.pdf (PDF)

B.8 Supporting videos
Video B.1. Contour dynamics with corresponding kymographs of a non-
polarized cell track based on a Hawkes process as shown in Fig 5.3. The
point events generated by the Hawkes process are depicted as white circles. The cell
track is displayed at fivefold speed. URL: https://zenodo.org/record/7243417/
files/S1_Vid.mp4 (MP4)

Video B.2. Contour dynamics with corresponding kymographs of a polarized
cell track based on a Hawkes process as shown in Fig 5.4. The point events
generated by the Hawkes process are depicted as white circles. The cell track is
displayed at fivefold speed. URL: https://zenodo.org/record/7243417/files/
S2_Vid.mp4 (MP4)

Video B.3. Contour dynamics for different modifications of the underlying
Ornstein-Uhlenbeck process as protrusion process. The cell tracks are displayed
at tenfold speed. URL: https://zenodo.org/record/7243417/files/S3_Vid.mp4
(MP4)

Video B.4. Contour dynamics of non-polarized cell tracks based on a Hawkes
process as shown in Fig 5.6. The cell tracks are displayed at tenfold speed.
URL: https://zenodo.org/record/7243417/files/S4_Vid.mp4 (MP4)

Video B.5. Contour dynamics of polarized cell tracks based on a Hawkes
process as shown in Fig 5.6. The cell tracks are displayed at tenfold speed.
URL: https://zenodo.org/record/7243417/files/S5_Vid.mp4 (MP4)
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