
Institute of Geosciences

Modeling Stress and Dike Pathways in Calderas:
Towards a Physics-based Forecast

of Eruptive Vent Locations

Lorenzo Mantiloni, BSc, MSc
October, 2023

Cumulative dissertation
to obtain the academic degree

"Doctor Rerum Naturalium" (Dr. rer. nat.)
in the scientific discipline Geophysics

Submitted to the
Faculty of Mathematics and Natural Sciences

at the University of Potsdam, Germany



Unless otherwise indicated, this work is licensed under a Creative Commons License 
Attribution 4.0 International. 
This does not apply to quoted content and works based on other permissions. 
To view a copy of this licence visit: 
https://creativecommons.org/licenses/by/4.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Primary advisor: Prof. Dr. Torsten Dahm 
Co-advisor: Prof. Dr. Eleonora Rivalta 
 
Reviewers: Prof. Dr. Eleonora Rivalta 
Dr. Elisa Trasatti 
Prof. Dr. Andy Hooper 
 
Examining committee: Prof. Dr. Eva Eibl 
Prof. Dr. Torsten Dahm 
Prof. Dr. Frank Krüger 
 
Published online on the 
Publication Server of the University of Potsdam: 
https://doi.org/10.25932/publishup-61262 
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-612621 



Statement of originality
I hereby declare that this thesis is, to the best of my knowledge, original, and the product of
my own work. All the assistance received in preparing this thesis and the sources used have
been acknowledged.

Lorenzo Mantiloni

Potsdam, October 2023



Abstract
Volcanic hazard assessment relies on physics-based models of hazards, such as lava flows and
pyroclastic density currents, whose outcomes are very sensitive to the location where future
eruptions will occur. On the contrary, forecast of vent opening locations in volcanic areas
typically relies on purely data-driven approaches, where the spatial density of past eruptive
vents informs the probability maps of future vent opening. Such techniques may be sub-
optimal in volcanic systems with missing or scarce data, and where the controls on magma
pathways may change over time. An alternative approach was recently proposed, relying on a
model of stress-driven pathways of magmatic dikes. In that approach, the crustal stress was
optimized so that dike trajectories linked consistently the location of the magma chamber to
that of past vents. The retrieved information on the stress state was then used to forecast future
dike trajectories. The validation of such an approach requires extensive application to nature.
Before doing so, however, several important limitations need to be removed, most importantly
the two-dimensional (2D) character of the models and theoretical concepts.

In this thesis, I develop methods and tools so that a physics-based strategy of stress inversion
and eruptive vent forecast in volcanoes can be applied to three dimensional (3D) problems.
In the first part, I test the stress inversion and vent forecast strategy on analog models, still
within a 2D framework, but improving on the efficiency of the stress optimization.
In the second part, I discuss how to correctly account for gravitational loading/unloading due
to complex 3D topography with a Boundary-Element numerical model. Then, I develop a
new, simplified but fast model of dike pathways in 3D, designed for running large numbers of
simulations at minimal computational cost, and able to backtrack dike trajectories from vents
on the surface. Finally, I combine the stress and dike models to simulate dike pathways in
synthetic calderas.
In the third part, I describe a framework of stress inversion and vent forecast strategy in 3D for
calderas. The stress inversion relies on, first, describing the magma storage below a caldera in
terms of a probability density function. Next, dike trajectories are backtracked from the known
locations of past vents down through the crust, and the optimization algorithm seeks for the
stress models which lead trajectories through the regions of highest probability. I apply the
new strategy to the synthetic scenarios presented in the second part, and I exploit the results
from the stress inversions to produce probability maps of future vent locations for some of those
scenarios.
In the fourth part, I present the inversion of different deformation source models applied to the
ongoing ground deformation observed across the Rhenish Massif in Central Europe. The region
includes the Eifel Volcanic Fields in Germany, a potential application case for the vent forecast
strategy. The results show how the observed deformation may be due to melt accumulation in
sub-horizontal structures in the lower crust or upper mantle.

The thesis concludes with a discussion of the stress inversion and vent forecast strategy,
its limitations and applicability to real volcanoes. Potential developments of the modeling
tools and concepts presented here are also discussed, as well as possible applications to other
geophysical problems.



Zusammenfassung
Die Analyse vulkanischer Gefahren basiert auf physikalischen Gefahrenmodellen wie Lavaströ-
men und pyroklastischen Dichteströmen, deren Ergebnisse von den Lokationen der Eruptionen
abhängt. Die Vorhersage der Lokationen von Spaltenöffungen (eruptive vent opening) in Vul-
kangebieten basiert typischerweise auf rein datengesteuerten Ansätzen, bei denen die räumliche
Verteilung vergangener Eruptionsspalten die Wahrscheinlichkeitskarten zukünftiger Spaltöff-
nungen beeinflusst. Solche Techniken sind in Vulkansystemen mit fehlenden oder knappen Da-
ten suboptimal, ebenso wie dort, wo sich physikalische Bedingungen der Magmapfade im Laufe
der Zeit verändern können. Kürzlich wurde ein alternativer Ansatz vorgeschlagen, der auf einem
Modell spannungsbedingter Magmagänge basiert. Bei diesem Ansatz wurde die Krustenspan-
nung so optimiert, dass die Verläufe der Magmagänge- sowohl mit der Lage der Magmakammer
als auch mit der Lage früherer Spaltenöffnungen konsistent sind Die erlangten Informationen
über den Spannungszustand werden dann zur Vorhersage zukünftiger Magmagänge verwendet.
Die Validierung eines solchen Ansatzes erfordert eine umfassende Anwendung auf natürliche
Vulkansysteme. Zuvor müssen jedoch einige wichtige Einschränkungen beseitigt werden, insbe-
sondere der zweidimensionale (2D) Charakter der Modelle und theoretischen Konzepte.

In dieser Arbeit entwickle ich Methoden und Software, um physikbasierte Strategien der
Spannungsinversion und der Vorhersage von Lokationen von Magmagängen in Vulkanen auf
dreidimensionale (3D) Probleme anwenden zu können.
Im ersten Teil teste ich die Spannungsinversion und die Vorhersage von eruptiven Magmagän-
gen an analogen Modellen, immer noch innerhalb eines 2D-Rahmens, aber mit verbesserter
Effizienz der Spannungsoptimierung.
Im zweiten Teil diskutiere ich, wie die gravitative Belastung/Entlastung aufgrund einer komple-
xen 3D-Topographie mit einem numerischen Grenzelementmodell berücksichtigt werden kann.
Anschließend entwickle ich ein neues, vereinfachtes, aber effizientes Modell der Magmagang-
Ausbreitung in 3D Dieses ist für die Durchführung einer großen Anzahl von Simulationen
mit minimalem Rechenaufwand konzipiert und dabei in der Lage, Magmagang-Ausbreitungen
an der Oberfläche zurückzuverfolgen. Schließlich kombiniere ich die Spannungs- und Magma-
Ausbreitungsmodelle, um Magmagänge in synthetischen Calderas zu simulieren.
Im dritten Teil erarbeite ich ein Rahmenmodell für Spannungsinversion und dreidimensionale
Magmagang-Vorhersagen für Calderas. Die Spannungsinversion beruht auf der Annahme einer
Magmaspeicherung unterhalb einer Caldera, deren Geometrie durch eine Wahrscheinlichkeits-
dichtefunktion beschrieben wird. Vergangene Eruptionsstandorte werden durch die Erdkruste
zurück propagiert, dabei werden die Spannungsmodelle so optimiert, dass die Endpunkte der
Optimierung (Starpunkte der Magmagänge) mit der angenommenen Magmakammer überein-
stimmen. Ich verwende die synthetischen Szenarien aus dem zweiten Teil, um die Spannungs-
inversion in kontrollieren Szenarien zu testen.
Im vierten Teil analysieren wir die Bodenverformung im Rheinischen Massiv, Mitteleuropa. Die
Region umfasst die Eifel-Vulkanfelder in Deutschland, die einen potenziellen Anwendungsfall für
die Strategie zur Vorhersage von Spalteneruptionen darsetellen. Dabei nutze ich in den Inver-
sionen unterschiedliche Deformations-Quellmodelle, um jährliche Magmavolumenänderungen
aufzulösen, unter der Annahme, das Magma in die Lithosphäre injiziert wird. Die Ergebnisse
zeigen, dass die beobachtete Verformung auf die Ansammlung von Schmelze in subhorizontalen
Strukturen in der unteren Kruste oder im oberen Mantel zurückzuführen sein könnte.



vi

Abschließend diskutiere ich die Limitationen der erarbeiteten Konzepte und die Möglichkeiten
für Anwendungen sowohl in verschiedenen Hochrisko-Vulkanen, als auch in anderen Kontexten,
wie besispielsweise in tektonischen und geothermischen Modellierungen.
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Chapter 1
Introduction

1.1 Motivation
Volcanic eruptions have been the cause of major natural disasters throughout history. They may
involve a wide range of both primary hazards, such as tephra falls, pyroclastic and lava flows,
and secondary hazards, such as lahars, debris avalanches, tsunamis, and have the potential
to induce global climate change. Primary hazards alone have been responsible of massive life
and property loss during historical volcanic eruptions (Auker et al., 2013). They currently
pose a threat to many densely-populated areas all over the world, with more than 800 million
people living within 100 km of active volcanoes (Brown et al., 2015). Developing and improving
plans for disaster and risk management is, thus, extremely important to mitigate the impact of
future events. Volcanic hazard assessment is essential for this purpose, and it relies on effective
forecasting of volcanic eruptions and their associated phenomena.

Forecast of volcanic activity is a primary goal in volcanology (Sparks, 2003; Poland and An-
derson, 2020), yet a dauntingly complex one to achieve. Short-term forecast aims at predicting
the behavior and outcomes of a specific episode of volcanic activity, such as whether unrest in
a volcano will lead to an eruption, or if, where and when a magmatic intrusion propagating at
depth will eventually reach the surface. In contrast, long-term forecast deals with estimating
the spatial and temporal susceptibility of a region to different hazards: for instance, the ex-
pected time interval between major eruptions, or what areas are more likely to be invaded by
lava flows, if a future eruption occurs at a given location. Both short and long-term forecast
involve probabilistic approaches to the knowledge and uncertainty on a given volcanic system,
and, most importantly, the understanding of the physical processes underlying volcanic hazards.
Scientific research has often tackled these processes individually, but a comprehensive approach
to describe the state of volcanic systems and forecast their future behavior is currently lacking,
and riddled with challenges.

Modeling of specific volcanic hazards have attained a remarkable degree of sophistication
in recent decades, resulting, for instance, in reliable probability maps of pyroclastic density
current (Neri et al., 2015; Reyes et al., 2018) or lava flow invasion (Connor et al., 2015; Richter
et al., 2016; Gallant et al., 2018; Musacchio et al., 2021). In the context of long-term forecast,
however, all such models rely on one critical input: the knowledge of where next eruptions
are more likely to occur, as even small variations in the starting location and orientation of
an eruptive vent may drastically change the outcomes of subsequent hazards (Connor et al.,
2015). In this regard, several eruptions in recent years (Kilauea, Hawaii, 2018 Patrick et al. 2020;
Sierra Negra, Galápagos, 2018 Davis et al. 2021; Fagradasfjall, Iceland, 2021 Pedersen et al.
2022; Nyiragongo, Democratic Republic of the Congo, 2021 Smittarello et al. 2022; Cumbre
Vieja volcano, La Palma, 2021 De Luca et al. 2022) have shown that magma can propagate
along counterintuitive paths and breach the surface in areas that had experienced no eruptive
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events in decades or centuries. This is a major scientific problem which remains, to this day,
surprisingly poorly addressed.

The end product of a forecast of locations of future eruptions is a probability map of opening
of eruptive vents. Many methods in this regard are available in literature. Most of them,
however, are entirely based on statistical, data-driven approaches, and rely mainly on the spatial
distribution of past eruptive vents. This is in contrast with the assessment of other volcanic
hazards, which, as mentioned earlier, typically relies on advanced physics-based models. The
ability of data-driven approaches to forecast future eruptive vents is strictly correlated to the
amount and quality of the data on the eruptive history of a given region. Probability maps
produced with separate data sets may differ considerably from one another, depending on which
past vents have been included. This implies that missing or unreliable data may undermine
the accuracy of such methods. Some of these approaches also neglect any knowledge of the age
of past vents, thus discarding any information on the volcano behavior coming from changes
in their pattern over time. This is a critical issue, since vent migration, changes in eruptive
style or vent orientation over time are observed in many volcanic regions, and are evidence that
the factors controlling magma propagation in the subsurface may also have changed. Including
such factors is the key to predicting future magma pathways and vents. Physics-based models
of magma propagation (e.g Dahm, 2000a; Kühn and Dahm, 2008; Maccaferri et al., 2010; Davis
et al., 2020) provide the theoretical framework to address the challenge.

In principle, a predictive model of magma pathways links unambiguously a magma storage
volume to a vent on the surface, once a set of parameters describing the physics and geometry
of magma propagation is known. If we are to apply such a model to a volcano, we need
to constrain those parameters, e.g. by means of statistical techniques, so that the model
predictions are compatible with the available data. We may then employ the same model to
forecast the locations of future eruptions. Such a model may not be as sensitive to outliers
or missing data as fully data-driven approaches are, since data uncertainty is included in the
statistically-constrained information on the model parameters.

Applying magma propagation models to forecast future vents in real volcanic regions entails
a number of challenges. Models need to be validated against observations and, at the same
time, to be simple: that is, they should rely on few, physically meaningful parameters that
may be constrained with scarce data. As such, they always involve some assumptions. Rivalta
et al. (2019) made the first step in this direction, combining physics-based models of magma
propagation with a statistical method to forecast the locations of future vents. They applied
that strategy to one case study only: the Campi Flegrei caldera in Italy. They focused on
dike propagation modeling, and aimed at constraining the state of stress of the volcano so that
magma was brought from the known location of a magma chamber to the known locations of
past vents. They relied, however, on a two-dimensional (2D) approach both in the dike and
the stress modeling, and assumed an axisymmetric topography for the Campi Flegrei area.
Consequently, their strategy is still in its infancy, and needs to be equipped with concepts and
tools for an upgrade to three dimensions (3D) and further applications to nature.

The problem of dike propagation involves modeling both the trajectory and the velocity
of a dike (Rivalta et al., 2015). Calculating the dike velocity requires the knowledge of the
dike trajectory, as some of the driving forces of a dike (e.g. magma buoyancy force, external
stresses) depend on the dike location, size and shape. For decades, dike trajectories have
been addressed mainly with 2D models (e.g. Dahm, 2000a; Maccaferri et al., 2011). In the
most elementary approach, dike pathways are traced as streamlines perpendicular to the least-
compressive principal stress direction (Anderson, 1937; Muller and Pollard, 1977; Roman and
Jaupart, 2014). Such a model, despite its simplicity, has proven effective for statistical purposes
(Rivalta et al., 2019). In recent years, modeling of dike trajectories has advanced significantly.
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Davis et al. (2020, 2021) introduced a fully 3D numerical model which can reproduce both dike
pathways and the changes in the dike shape along them. That model however, requires relatively
long computational times, and is not suited for statistical applications with large numbers of
simulations. Other works have focused on the velocity (Pinel et al., 2017; Davis et al., 2023) or
growth of 3D planar dikes Heimisson et al. (2015); Zia and Lecampion (2020); Pansino et al.
(2022). However, 3D equivalents of the simplified, yet computationally efficient streamline
approach are still missing. Moreover, the crustal stress state in volcanic regions, which is a
required input for dike models, is still poorly understood, despite the numerous analytical and
numerical models which can be used to represent specific stress-generating mechanisms.

The present dissertation is motivated by the need for new, effective methods that may improve
our capability of forecasting the location of volcanic activity in high-risk areas around the
world. It develops and tests new tools for 3D modeling of the stress state in volcanoes and
dike pathways, then integrates them with established statistical procedures and newly-defined
concepts to produce probability maps of future vent opening in volcanic areas with easily-
available computational resources.

The following sections of this chapter provide an overview on the state of the art of dike
propagation and crustal stress models, as well as on the relevant branches of solid mechanics
and statistics this dissertation relies on. The chapter concludes with the outline of the objectives
and achievements of the present work.

1.2 Forecasting the locations of future eruptions
Volcanic hazard assessment requires to answer three key questions: where, when, and how
the next eruption will occur (Selva et al., 2012). Addressing each of such questions comes
with different challenges. The style and impact of eruptions at specific volcanoes have been
represented through eruptive scenarios, which are an essential tool to educate the population
and inform the decision makers on the threats posed by volcanic activity, leading to better risk
prevention and management. They rely on the application of models to simulate the inception,
evolution and impacts of one or multiple volcanic hazards, identifying what areas are more prone
to experiencing them. The last decades have seen a wide range of numerical techniques being
developed to model individual volcanic hazards, producing, for instance, susceptibility maps of
lava flow (Connor et al., 2012; Cappello et al., 2015; Gallant et al., 2018) and pyroclastic density
current invasion (Todesco et al., 2006; Neri et al., 2015; Esposti Ongaro et al., 2020). In order
to produce meaningful results, eruptive scenarios need to be informed by accurate data on the
eruptive history, including the style, mass eruption rate, magma composition and fluid content,
precursors, duration and impacts of past eruptions. The reliability of any eruptive scenario
depends on answering the first question: where is the next eruption more likely to occur? The
answer might seem relatively straightforward in the case of single volcanic edifices, where most
eruptions may be expected to occur through the main crater. Flank eruptions, however, are
commonly observed at significant distances from the main crater at most volcanoes (e.g. Etna,
Italy, Acocella and Neri 2003, see Figure 1.1b; Piton de la Fournaise, Réunion Islands, Michon
et al. 2015; Kilauea, Hawaii, Patrick et al. 2019a), and in some cases are not associated to
any eruption from the summit conduit (e.g. Fernandina, Galápagos, 1995, Jónsson et al. 1999;
Bárðarbunga, Iceland, 2014 Sigmundsson et al. 2015; Nyiragongo, Democratic Republic of the
Congo, 2022, Smittarello et al. 2022). Identifying areas that are most susceptible to future
eruptions in volcanic systems with no main edifice, such as calderas and monogenetic volcanic
fields, is much more complex, since past vents are usually sparse and relatively scarce, as the
examples in Figure 1.1 show.
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a) b)

c) d)

Figure 1.1: Examples of vent distributions in volcanic regions. a): locations of past vents in Campi Flegrei
caldera, Italy. Different colors mark different epochs of eruptive activity. Reproduced from Rivalta et al.
(2019), Figure 2a. b): distribution of cones and eruptive fissures over Etna, Italy. Reproduced from Scudero
et al. (2019), Figure 1. c): distribution of cryptodomes and lava domes over Usu volcano, part of the Toya
caldera volcanic system, Hokkaido, Japan. Reproduced from Goto and Tomiya (2019), Figure 1. d): most
recently-erupted lavas in Newberry Volcano, Oregon. Reproduced from Jensen and Donnelly-Nolan (2017),
Figure 5.

While models of volcanic hazards address the physics of the processes that cause them, the
spatial probability of future eruptions is usually determined by techniques which rely entirely
on statistics, where some a priori information on the current state of the system, based on a
set of data, is translated through Bayesian inference into a posterior probability distribution
for the spatial recurrence of volcanic activity. The underlying assumption is that future vents
are expected to open close to previous ones, or, to quote Martin et al. (2004), ‘... the apple
does not fall far from the tree’. A common procedure consists in retrieving the distribution of
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Figure 1.2: Two examples of probability maps, conditional on the occurrence of an eruption and computed
through different methods, of vent opening in Campi Flegrei caldera, Italy. a): average value of posterior
probability over a grid of 500 m × 500 m cells. Reproduced from Selva et al. (2012), Figure 3a. b): average of
posterior probability per square km. Reproduced from Bevilacqua et al. (2015), Figure 8b.

past eruptive vents and then transforming it into a probability density function (PDF). Thus,
the probability of vent opening, given that an eruption will occur, can be calculated over any
finite area in the region. Such PDFs are usually computed through kernel density estimation
(Silverman, 1986), where the probability of a new eruption is a function of the distance from
the nearest vent and a smoothing constant (Lutz and Gutmann, 1995; Connor and Hill, 1995).
Similar methods have been applied to produce probability or ’susceptibility’ maps for many
volcanic regions at different scales: from single volcanoes (Etna, Wadge et al., 1994; Cappello
et al., 2012; Tenerife, Canary Islands, Marti and Felpeto, 2010) and calderas (Campi Flegrei,
Bartolini et al., 2013) to monogenetic volcanic fields (Yucca Mountain region, Nevada, Connor
and Hill, 1995; Chichinautzin volcanic field, Mexico, Nieto-Torres and Del Pozzo, 2019) and
whole volcanic arcs (Tohoku, Japan, Martin et al., 2004). Another method is to divide a volcanic
region into a regular grid of cells and assign each a weight based on a set of features associated
with high or low eruption susceptibility. Such features may include geological, geophysical
and geochemical data: the presence of past vents, faults and surface fracture density (Selva
et al., 2012; Bevilacqua et al., 2015), ground deformation, seismicity, gravity anomalies, active
fumaroles and rock alteration (Alberico et al., 2002). The assumption is that all such features
contribute, to different degrees, to the weakness of the local crust, which is implied to favor
eruptions.

A common assumption is that the opening of a vent is an intrinsically stochastic process,
while the deterministic nature of magma trajectories is not acknowledged, in spite of decade-
long understanding on the patterns of magmatic intrusions, e.g. dike orientations, in the field
(e.g. Muller and Pollard, 1977; Nakamura, 1977; Gudmundsson, 2002). Consequently, records
of past vents that are scarce and with large uncertainties inevitably lead to coarse probability
maps in the forecast of future eruptions. As an example, the last eruption in Campi Flegrei
(Monte Nuovo, 1538 CE, Di Vito et al., 1987) hit an area distant from previous vents, and would
have been difficult to anticipate. The same area was, in fact, assigned different probabilities
of vent opening in Selva et al. (2012) and Bevilacqua et al. (2015) (compare Figure 1.2a and
Figure 1.2b). The assumption that new vents tend to occur close to the old ones is especially
inadequate in monogenetic volcanic fields, where vents are usually scattered over a vast area,
form at irregular time intervals and rarely experience more than one eruption (Le Corvec et al.,
2013b).
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A further drawback of data-driven approaches to eruptive vent forecasting is that they are
difficult to validate. A retrospective validation may be carried out by partitioning the data into
calibration and validation sets (e.g. earlier and recent eruptions, respectively), computing the
maps on the basis of the first set and assessing the performance on the second. This would,
however, lower the number of data used to inform the map, leading to more uncertainty.

Another consideration by Selva et al. (2012) is that volcanic systems may evolve over time
through distinct ‘reference states’, each characterized by a consistent behavior (e.g. recurrent
vent patterns Smith et al., 2011 or fissure orientations Chadwick and Dieterich, 1995). It is,
then, important to establish a current reference state for a volcano in order to forecast its
future behavior. That consideration implies that the observed vent distribution is the result of
a hitherto unknown physical mechanism, and hints at a possible alternative approach. Bartolini
et al. (2013) and Marti and Felpeto (2010) also acknowledge that vent locations are determined
by the conditions in the crust, namely the stress state, which, however, cannot be observed
directly and are thus not constrained. In particular, Marti and Felpeto (2010) mention physical
models of the stress state in the subsurface as a potential complement to directly-observable
data when informing a probability map. The first attempt in this regard, however, was marked
by Rivalta et al. (2019), who integrated Bayesian inference with a physics-based model of magma
propagation to produce probability maps of future vent opening. The strategy of Rivalta et al.
(2019) relies on a parsimonious model with a small set of parameters, which are constrained
so that the model simulations are consistent with the observed vent locations. Contrary to
previous approaches, the PDF of future vents is not computed directly from observed data, but
rather inferred by large numbers of simulations where the parameters are randomly drawn from
the constrained PDFs of the model parameters. Such PDFs can also be updated to account for
changes in the state of the volcano, with no need for new calibrations. Rivalta et al. (2019)
applied their method to the Campi Flegrei caldera, providing a mechanical explanation to the
inward vent migration and the concentration of vents over an onshore ring. They also showed
that the strategy is effective in assigning a high probability to the location of the Monte Nuovo
eruption, while explaining both the inward vent migration and the onshore vent concentration
as the consequence of changes in the mechanical state of the caldera. The small amount of
parameters to constrain also makes the approach much less sensitive to scarce data. The
strategy, however, was formulated in a 2D framework, and relied on some drastic assumptions
on magma origin and propagation, as well as on the caldera morphology. Nonetheless, it paves
the way to a new class of eruptive vent forecast techniques that may significantly improve
volcanic hazard assessment.

In order to explain the details of the model in Rivalta et al. (2019) and how the strategy
can be further developed, we first need to outline the state of the art of magma propagation
modeling, to which the following sections are devoted.

1.3 Theoretical framework
1.3.1 General linear elasticity
The models discussed in this dissertation rely on the theory of linear elasticity: a branch of
continuum mechanics describing the response of solid objects to an applied force per unit area,
or traction. The theory requires the assumption of infinitesimal strain. In a homogeneous,
isotropic solid, we can define infinitesimal elements whose volume is much smaller than the one
of the solid, but large enough such that the medium properties within it can still be assumed
homogeneous. The infinitesimal strain assumption prescribes that the displacement of such
elements is much smaller than the dimensions of the solid. Here and in the following of this



Chapter 1 Introduction 8

dissertation, we employ a Cartesian coordinate system to describe physical quantities, unless
specified otherwise. In such a system, described by the coordinates x1 = x, x2 = y, x3 = z, the
infinitesimal strain tensor ϵij in 3D can be written as

ϵij = 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
(1.1)

(e.g. Pollard et al., 2005, chap. 8), where ui, i = 1, 2, 3 are the components of displacement,
and the partial derivatives ∂ui

∂xj
are the extension of an element along the direction of the i-th

coordinate over its original length along the j-th coordinate.
In a homogeneous, isotropic, linearly-elastic medium, the stress tensor σij is then related to

ϵij by the constitutive equation
σij = λδijϵij + 2µϵij (1.2)

(e.g Jaeger et al., 2007, chap. 5), where δij is the Kronecker delta and λ and µ are the Lamé
parameters, related to the Poisson’s ratio ν and the Young’s modulus E as

λ = Eν

(1 + ν)(1 − 2ν) ; µ = E

2(1 + ν) (1.3)

E is the ratio between the change in stress and the longitudinal shortening/extension, that is,
the change in length of the element along the direction the traction is applied, while ν is the
ratio between the transverse and longitudinal shortening/extension (Jaeger et al., 2007, chap.
5). In Equation 1.2, the ij-th component of σij denotes the i-th component of the traction
acting on the plane perpendicular to the j-th coordinate.

The stress tensor σij has three eigenvectors, known as principal stress axes. They define a
coordinate system where the shear stress components (σij, i ̸= j) are zero. In this dissertation,
we refer to the eigenvectors of σij as v⃗1, v⃗2, v⃗3, and to their magnitudes as σ1, σ2, σ3, where σ1
and σ3 correspond to the most and least-compressive principal stress, respectively. Note that
we adopt the positive sign convention, where a traction component is positive if it points in the
positive coordinate direction. Consequently, tensional and compressive stress are respectively
associated to positive and negative values.

1.3.2 Fracture mechanics
The formation and propagation of fractures in rocks is the key mechanism of a wide range of
processes in the solid Earth. A fracture, or crack, is a displacement discontinuity in a solid,
resulting from the action of stress. The dynamics and characteristics of fractures within linearly-
elastic solids are described by the principles of Linear Elastic Fracture Mechanics (LEFM).

Fractures are distinguished into shear and tensile, according to whether the displacement is
tangent or perpendicular to their surface, respectively. Tensile cracks, in particular, can be
created by fluids and allow them to flow through solid media. As such, they are especially
relevant in the context of magma transport through the Earth’s crust.

Cracks are created when the applied stresses exceed the tensile or shear strength of the rock.
In a similar fashion, the growth and propagation of a crack is controlled by the stress intensity
along its tip-line, which in turn is determined by the loading applied on the faces of the crack
(e.g. an internal pressure or a far-field stress). This problem was first addressed by the works
of Inglis (1913); Griffith (1921) and Griffith (1924), who found that stress intensity at the tip
of a fracture scales with the square root of the fracture length. In particular, Griffith (1921,
1924) approached the growth of a crack in terms of energy equilibrium: the energy required to
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Figure 1.3: Three modes of fracture. a): Mode-I, opening fracture. b): Mode-II, shear fracture with displace-
ment perpendicular to the crack’s tip-line. c): Mode-III, shear fracture with displacement parallel to the crack’s
tip-line. Reproduced from Pollard et al. (2005), p. 372, Figure 9.30.

increase the crack surface by a unit area equals the release of an amount G of elastic potential
energy, or strain energy, in the solid. G is known as the strain energy release rate. Later, Irwin
(1957) formalized the relation between the stresses around the tip of a line crack, under plane
strain or plane stress condition, as:

σij(r, θ) = K√
2πr

fij(θ) + O(r 1
2 ), K ∝

√
EG (1.4)

(Tada et al., 2000; Paris, 2014), where r and θ are polar coordinates with the origin at the crack’s
tip (see Figure 1.3a), fij(θ) is a dimensionless function depending on the crack’s geometry and
load, and K is the stress intensity factor, with units of Pa

√
m. Irwin (1958) introduced three

modes of K (KI , KII and KIII), each associated to three modes of deformation around cracks.
Mode-I cracks are tensile, or opening, fractures, while Mode-II and Mode-III are shear fractures,
where the faces slide over one another perpendicular or parallel to the leading edge of the crack,
respectively. Irwin (1957) and Irwin (1958) derived expressions for σij and K in Equation 1.4
for the three modes in plane strain or plane stress configuration (see e.g. Tada et al. (2000)).
Plane strain/stress approximation is adequate for 3D geometries as long as the distance from
the crack’s tip, measured along the x-axis in Figure 1.3a, is small compared to the crack length
on the plane of its leading edge, coinciding with the z-axis in Figure 1.3a (Pollard et al., 2005,
p. 372). Moreover, thanks to linear elasticity, the superposition of the three modes can describe
any problem of local deformation and stress field around crack tips.

Mode-I tensile cracks are central to this dissertation, due to their relevance in magma trans-
port modeling. It is worth noticing how, in Equation 1.4, the stress components are singular for
vanishing r, that is, at the crack’s tip, and the term fij depends exclusively on θ. Consequently,
K accounts for all information on the geometry of the crack and the stress load. Expressions
of KI for different crack shape, size and loading conditions are available (e.g. Murakami et al.,
1987; Tada et al., 2000). For instance, KI for a line crack of length a under a constant remote
stress σ is:

KI = σ
√

πa (1.5)
(Tada et al., 2000, p. 125), while KI for the same crack under a linear stress gradient which
vanishes at the crack’s center and has magnitude ±p at the crack’s left and right tip, respectively,
is:

K±
I = ±1

2p
√

πa (1.6)
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(Tada et al., 2000, p. 154).
An opening crack can grow when KI at its tip exceeds the fracture toughness KC of the

host medium (Secor Jr and Pollard, 1975). Determining KI for specific crack geometries and
loading conditions is therefore critical to study the propagation of fluid-filled fractures.

1.3.3 Boundary Element methods
Boundary Element (BE) methods are a numerical technique for solving boundary value prob-
lems widely used in science and engineering (Crouch et al., 1983). In boundary value problems,
partial differential equations express the physics governing a region of space, R, enclosed by
a boundary, C, where a set of constraints (boundary conditions) is prescribed. The partial
differential equations must then be solved in R so that they satisfy the boundary conditions
on C. A boundary value problem is well posed (e.g Sizikov et al., 2011) when its solution is
unique and its behavior depends continuously on the boundary conditions.

Analytical solutions to boundary value problems are usually available only under specific
assumptions, when R is homogeneous and the geometry of C is simple. More complex problems
can be solved by numerical techniques. BE methods rely on the fact that it is easier to find
an analytical solution to a problem in an infinite homogeneous region including R, rather than
within R itself. The general idea is to find an analytical solution for a point disturbance (e.g. a
point force) applied at a point P in the infinite region. Such a solution is singular in P , and is
thus referred to as a ‘singular solution’. In principle, if the singular solution produced exactly
the boundary conditions prescribed on C, it would have solved the boundary value problem
within R. This is unlikely to happen with one singular solution, but, if the partial differential
equations (PDE) governing the problem are linear, multiple singular solutions in the infinite
space can be added together so that the boundary conditions on C are, at least approximately,
satisfied.

Each singular solution is applied at a point in space and associated with an intensity. In
a BE method, the contour C is divided into a set of N Boundary Elements, and N singular
solutions are chosen and scaled so that their superposition satisfies the boundary conditions
at the midpoint of each element. This is done by, first, applying each singular solution at the
midpoint of each BE and, then, solving a system of N linear equations for the singular solution
intensities. Once this system has been solved, we can find the solution to the original problem
at any point in R.

Another widely-used numerical technique, alternative to BE methods, is represented by Finite
Element methods (e.g. Dieterich and Decker, 1975; Clough, 1980; Reddy, 2019). They rely on
discretizing the whole region R into a network of finite elements, and evaluating the solution
to the partial differential equations at the nodes of such a network. This also leads to a system
of linear equations, where the solutions on the nodes within R are related to the boundary
conditions on the nodes lying on C. Depending on the problem, BE methods have clear
advantages over FE methods. The equation systems in FE methods are much larger, and
thus more computationally expensive, than those in BE methods. Moreover, BE methods are
especially efficient if the region of interest where we want to calculate our solutions lies outside
the boundary C. Such is the case, for instance, of a pressurized crack in an infinite medium.
Then, a BE method requires only the discretization of C. On the contrary, a FE method need
a discretization of an infinite space with a finite network of elements, whose outer boundary
should be placed as far as possible from C, so that the conditions imposed there do not have a
significant effect on the solutions close to C (Crouch et al., 1983).

The Displacement Discontinuity method (DDM), introduced by Crouch (1976); Crouch et al.
(1983), is a special class of BE methods, where the singular solutions consist of the analytical
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solution to the problem of a finite dislocation in space. Such dislocations have usually a uniform
slip across their surface (‘Volterra dislocations’ Volterra, 1907). According to this method, the
boundary C can be discretized into a mesh of dislocations, each being allowed a constant
discontinuity in displacement. Then, the computational nodes are the dislocation centroids,
where both displacement and traction boundary conditions Bi, i = 1,...,N can be assigned.
The resulting system of linear equations can be expressed through a matrix A of boundary
influence coefficients (Crouch et al., 1983), such that the effect (induced displacement or stress)
of a unit displacement of the i-th BE on a point j in space is described by the coefficient Aij.
Once A is computed, we can solve for the displacements Xj of each dislocation that satisfy the
boundary conditions Bi (Crouch, 1976; Martel and Muller, 2000):

AijXj = Bi. (1.7)

Consequently, the displacement and stress field at arbitrary points in space can be calculated
as the cumulative effect of all the Xj at such points.

The DDM has been applied to a variety of geomechanical problems, such as the deformation
induced by pressurized cracks or cavities in an elastic full or half-space (e.g. Cayol and Cornet,
1997; Dahm, 2000a; Maerten, 2010; Salzer et al., 2014; Bathke et al., 2015). Triangular disloca-
tions (Comninou and Dundurs, 1975; Jeyakumaran et al., 1992) are often employed, as they can
be used to represent complex geometries without any discontinuity in the final mesh (Maerten,
2010). In the last decade, the analytical solutions for triangular dislocations by Nikkhoo and
Walter (2015) removed the numerical instabilities and artifact singularities present in previous
solutions. Their solutions were then employed in the BE toolbox ‘Cut&Displace’ (Davis et al.,
2017, 2019), which I employ in this dissertation to model the effect of topographic loads on the
Earth’s crust according to the method by Martel and Muller (2000). The numerical model of
fluid-filled crack propagation in 3D by Davis et al. (2020, 2021), described later and used in
some instances, is also based on Cut&Displace.

1.4 Modeling magma propagation
Magma often intrudes the host rock in the form of dikes: tabular intrusions whose thickness
is much smaller than their length and breadth. Field observations have shown that dikes are
the most common form of magma transport in the Earth’s crust, especially in the case of
basaltic eruptions, or in mid-oceanic ridges and continental rift zones (Lister and Kerr, 1991;
Rubin, 1995). Although the opposite can sometimes be observed (Gudmundsson, 1983; Delaney
et al., 1986; Valentine and Krogh, 2006), field observations suggest that, in most cases, dikes
open their own pathway through the crust, rather than following pre-existing fractures (Gud-
mundsson, 1995; Clifton and Kattenhorn, 2006; Seymour et al., 2020). Exposed dike outcrops
have also revealed how dikes tend to align perpendicularly to the least-compressive principal
stress direction, v⃗3, according to the regional tectonic stress regime (Muller and Pollard, 1977;
Nakamura, 1977; Pollard et al., 2005, chap. 6; Ziv et al., 2000; Gudmundsson, 2002). As a con-
sequence, pre-existing faults do not favor dike emplacement, since they are optimally oriented
to accommodate shear stress.

1.4.1 Dike propagation models
Dike propagation in the Earth’s crust has been addressed within the broader problem of hy-
draulic fractures propagating through an elastic medium (Hubbert and Willis, 1957; Secor Jr
and Pollard, 1975; Pollard and Holzhausen, 1979, e.g.). Hydraulic fractures are tensile cracks
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Figure 1.4: Illustration of the numerical dike propagation model in 3D (‘Three-dimensional Intrusion Model’,
or ‘TIM’) by Davis et al. (2020, 2021). From left to right, front view of a circular tensile crack with an assigned
fixed volume in a homogeneous elastic medium. The crack is modeled as a mesh of triangular dislocations.
It first expands and then ascends under the effect of the combined external stress and fluid buoyancy force
gradient, progressively changing shape. Colors represent the ratio between the stress intensity factor K and
the fracture toughness of the medium KC along the tip-line. Grey points are the dislocations removed in the
previous step of the simulations. The black profiles at the right of the crack are cross-section views. Reproduced
from Davis et al. (2020), Geophys. Res. Lett., Figure 2.

filled with a fluid and kept open by their internal pressure. The fluid density may be less,
larger or equal to that of the host rock. In the first case, if certain conditions are met, the crack
will ascend thanks to the buoyancy force of the fluid, and its trajectory will be determined by
the balance between it and the external stress field of the host rock (Weertman, 1971; Dahm,
2000a). The propagation velocity, in turn, is controlled by the viscous flow of the fluid within
the crack (Lister, 1990; Lister and Kerr, 1991; Nakashima, 1993; Nunn, 1996; Dahm, 2000b).
To this day, no model can comprehensively address all such factors and predict both pathways
and velocities of cracks in 3D, although some works have made significant progress in this re-
spect (e.g. Zia and Lecampion, 2020; Pinel et al., 2022; Furst et al., 2023). Notwithstanding the
complexity of the physical problem, many tailored approaches have been successfully applied to
a variety of phenomena. They include propagation of crevasses in glaciers, industrial processes,
fracking and, most importantly for our purposes, propagation of magmatic dikes.

Most models of dike trajectories have been limited for decades to 2D. The simplest 2D
approaches (Anderson, 1937; Muller and Pollard, 1977; Pollard, 1987; Roman and Jaupart,
2014) represent dikes as streamlines perpendicular to v⃗3. More sophisticated 2D models of dike
propagation take into account the maximum circumferential stress criterion (Muller et al., 2001;
Ito and Martel, 2002), or maximize the rate of strain energy release (Dahm, 2000a; Maccaferri
et al., 2010). These models may include some properties of the fluid within the dikes, such as
density and compressibility, and inhomogeneities in the host rock, such as density and rigidity
layering (Maccaferri et al., 2011). A recent model by (Pinel et al., 2017, 2022) also accounts
for the viscosity of the fluid filling the dike, integrating velocity-oriented and pathways-focused
approaches towards a comprehensive model of dike propagation. However, similar to other 2D
approaches, such a model works under plane strain assumption.

Realistic models of dike pathways require describing propagation in 3D. As a first step to
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addressing such challenge, Sigmundsson et al. (2015) and Heimisson et al. (2015) developed
models for the lateral propagation of dikes, applying them to the dike observed at Bárðarbunga,
Iceland, in 2014. Dikes were represented in terms of rectangular dislocations (Okada, 1992).
The pathways were not yet fully 3D, since the dikes were vertical and propagating at either a
fixed depth (Sigmundsson et al., 2015) or the level of neutral buoyancy (Heimisson et al., 2015).
More recently, a BE numerical model of dike propagation in 3D was developed by Davis et al.
(2020, 2021). It relies on computing the ratio between the mode-I stress intensity factor, KI ,
and the fracture toughness KC (see e.g. Pollard et al., 2005, chap. 9) of the host rock along
the tip-line of the dike to determine its advance. In order to compute KI , the model assumes
a fixed volume for the dike, and resolves for the uniform internal fluid pressure necessary to
open the dike against the external stress. Then, KI is calculated at the midpoint of the BEs
lying on the dike’s tip-line, depending on the components of displacement discontinuity on such
BEs. Such calculations were made possible by the work of Davis et al. (2019), who, building on
the 2D approach by Olson (1991), derived the following expressions for the three-modes stress
intensity factors when approximating a 3D crack with BEs:
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KII

KIII

 =


Dn

DII

DIII

 √
πµ

2
√

h(1−ν)c (1.8)

(Davis et al., 2019, Equation 25), where Dn, DII , DIII are, respectively, the normal displacement
of the BE, and the displacement perpendicular and parallel to the crack’s edge. h is the distance
between the tip-line and the midpoint of the BE, and c = 1

1.834 is a correction factor accounting
for the errors due to the numerical approximation. Davis et al. (2019) calibrated c comparing
the predictions from analytical solutions for K and displacement of a crack of radius a to those
of a BE model simulating the same crack.

Furthermore, the model relies on the maximum circumferential stress criterion (Erdogan and
Sih, 1963; Pollard et al., 2005, chap. 9) to determine the bending or twisting of the tip-line
outside of the plane of the dike.

Consequently, the dike can advance along complex pathways and change its shape in the
process. The model, which was only tested by Davis et al. (2021) on the 2018 dike at Sierra
Negra, Galápagos (Figure 1.5b), is described in detail in Chapter 2, and referred to as ‘Three-
dimensional Intrusion Model (TIM)’ in this dissertation.

No 3D equivalent of the simple v⃗3-perpendicular streamline approach in 2D was available at
the beginning of this work. Simply extending the 2D approach to 3D is of no avail, since v⃗3
identifies a surface, rather than a direction, perpendicular to itself, and the dike pathway will
remain undetermined.
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Figure 1.5: Propagation of a sill during the 2018 eruption of Sierra Negra volcano, Galápagos. a): Location of
Sierra Negra volcano. Volcanoes labeled as Wolf (W), Darwin (D), Fernandina (F), Alcedo (A), Sierra Negra
(S) and Cerro Azul (C). b): Interferogram of SAR data from the ALOS-2 satellite, spanning the sill propagation
phase. Each color cycle represents 11.45 cm displacement, positive towards the satellite and negative away from
it. Lava flows produced during the time period spanned by the interferogram are marked in dark gray, while
eruptive fissures are marked by yellow lines. Black triangles mark the location of Global Navigation Satellite
System stations, and black arrows show the satellite orbit direction (N–S), look direction (E–W), and the
incidence angle in degrees. The path followed by the sill as it propagated is marked with dark red arrows. Blue
arrows represent the subsidence within the summit caldera following the onset of eruptive activity. Modified
from Davis et al. (2021), Geophys. Res. Lett., Figure 1.

1.5 Stress state in volcanic regions
Models of dike pathways rely on the knowledge of the stress state in the host rock. Stresses in
the Earth’s crust, however, are not directly observable, and can only be inferred through in situ
measurements (see e.g. Jaeger et al., 2007, chap. 13.6, 13.7), such as hydraulic fracturing of
boreholes (Zoback and Healy, 1992; Amadei and Stephansson, 1997) or flat-jack methods, where
a slot is cut into the rock surface and the subsequent rock deformation is first recorded and
then compensated by a hydraulic jack inserted into the slot (Amadei et al., 1997). Earthquakes
are also an important source of information on the stress state at depth, as retrieved focal
mechanisms are related to the orientation of the principal stresses (Zoback et al., 1989).

Indirect stress measurements can only account for the local stress field, and are often spatially
sparse. Hence, inferring regional stresses from such measurements is inadequate when large
stress heterogeneities are expected over short spatial scales, as is the case for volcanic regions.
The problem can be addressed by mathematical models, where the effects of distinct stress
sources are superimposed to produce the total stress field σij. Nevertheless, stress modeling
poses numerous challenges.

The stress state in the Earth’s crust can be expressed as a competition between stress-
generating and stress-homogenizing processes (e.g. McGarr and Gay, 1978; Stephansson, 1988;
Savage et al., 1992). In the case of active volcanic areas, deposition of eruptive products, pres-
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a)

c)

b)

Figure 1.6: Examples of dike patterns in volcanoes. a): dikes and intrusions in Spanish Peaks, Colorado,
divided into four categories of magma composition. The most ancient dikes are shown in purple; the most
recent dikes are shown in green and orange. Reproduced from Roman and Jaupart (2014), Figure 1. b): map
of eruptive fissures (solid black lines) over Fernandina and Isabela Islands, Galápagos. Topographic elevation is
represented by a color scale. Reproduced from Maerten et al. (2022), Figure 7. c): historical eruptive fissures
over Etna, Italy. The rose diagram represents the distribution of fissure orientation. Reproduced from Cappello
et al. (2012), Figure 2e.

surization of magma reservoirs and topography-altering events, such as caldera formation and
flank collapses, lead to stress buildup and heterogeneity (e.g. Dieterich, 1988; McGuire and
Pullen, 1989; Ventura et al., 1999; Walter et al., 2005). On the other hand, repeating mag-
matic intrusions, seismicity and other anelastic processes, such as hydrothermal alteration and
viscoelasticity, tend to bring the stress state to isotropic (McGarr and Gay, 1978; Stephansson,
1988; Savage et al., 1992). For instance, dike emplacement is favored across surfaces perpen-
dicular to v⃗3, but leads to compression of the surrounding rocks along the same direction, thus
bringing σ3 closer to σ1 (Chadwick and Dieterich, 1995; Kühn and Dahm, 2008; Bagnardi et al.,
2013; Corbi et al., 2016). At the same time, faulting and earthquakes dissipate shear stress.

The first step in modeling the overall stress state of a volcanic region is to identify the mech-
anism of stress generation and relief, many of which are unknown or not directly observable.
I now provide a summary of the stress sources that are most commonly considered to explain
ground deformation and dike patterns in volcanic regions.

• Tectonic stress: a far-field stress resulting from tectonic processes on a continental to
regional scale. A common choice in literature is to assume uniform tectonic stress for
the whole crust or even lithosphere (McKenzie, 1978; Müller et al., 1992) and for hori-
zontal distances up to hundreds of km. This assumption is justified by field measures of
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subsurface stress over regional to continental scales (Zoback, 1992; Heidbach et al., 2007;
Pierdominici and Heidbach, 2012; Yang et al., 2014; Heidbach et al., 2016), and can hold
true as long as the scale of the region of interest is small enough.

• Gravitational loading/unloading due to topography: the effect of surface load distribu-
tion on the crust. Topographic highs, such as volcanic edifices, depress the underlying
rocks, while topographic excavations, such as calderas, are associated with decompression
and uplift of the crust. Topography in volcanic regions is often characterized by both
small and large wavelength features, leading to pronounced stress heterogeneity. The
stress contribution of topography has been modeled through a variety of analytical and
numerical techniques (Savage et al., 1985; McTigue and Mei, 1987; Martel and Muller,
2000).

• Magma chambers: they can either pressurize or decompress due to the influx or removal
of magma, respectively. Both processes stress the surrounding rocks. Many analytical
models of the stress generated by pressurized cavities of different shapes are available in
literature, considering both elastic (Kiyoo, 1958; Yang et al., 1988) and anelastic (Dragoni
and Magnanensi, 1989) rheology. Numerical models can account for complex host rock
rheologies and magma chamber shapes (e.g. Gudmundsson, 2006; Currenti and Williams,
2014), as well as mechanical layering in the host rock (Gudmundsson and Brenner, 2004).

• Pre-existing faults and magmatic intrusions: the stess generated by faults as they slip
has been modelled analytically (e.g. Steketee, 1958; Okada, 1992) and numerically (e.g.
Bonafede and Neri, 2000). Similarly, the stress induced by dikes or other intrusions as
they are emplaced in the crust has been computed by both analytical (Rubin and Gillard,
1998) and numerical models (Ito and Martel, 2002).

Eruptive fissures in active volcanoes and exposed dike swarms in eroded volcanic systems are
often oriented according to specific patterns. Figure 1.6 provides three examples. In particular,
the orientation of exposed dikes in Spanish Peaks, Colorado (Figure 1.6a), shows a noticeable
difference between older and more recent intrusions: early dikes tend to be parallel to each other,
aligning with the regional tectonic stress, while recent dikes are curved and arranged in a radial
pattern centered on a later volcanic edifice. Such a change in dike pattern has been explained in
terms of a pressurized magma chamber (Muller and Pollard, 1977). Magma reservoirs, in fact,
have been often regarded as the driving factor in determining local stress and dike pathways
(Grosfils and Head, 1994; Gudmundsson, 1998; Chestler and Grosfils, 2013; Pansino and Taisne,
2019). Roman and Jaupart (2014), however, proposed a different explanation. They compared
the stresses due to a volcanic edifice to those due to a pressurized magma reservoir, and showed
that the second contribution decays away from its source much faster than the first. The
implication is that stresses due to pressurized reservoirs are important in the proximity of the
source and thus in determining the location of dike nucleation (Gudmundsson, 2006; Grosfils
et al., 2015), but not as much in controlling dike trajectories. A similar argument applies to the
stress induced by pre-existing faults and intrusions, although the cumulative effect of repeating
dike emplacement, as discussed earlier, can have a strong influence on the stress state within
volcanic edifices (Cayol and Cornet, 1998; Dumont et al., 2022).

Different works have shown how patterns of exposed dikes and distribution of volcanism can
be explained by a combination of tectonic stress and gravitational loading/unloading: examples
in this regard are the vent pattern in Fernandina, Galápagos (Corbi et al., 2015), included
in Figure 1.6b, and the offset of Etnean volcanism from its mantle melt source (Neri et al.,
2018). The role of gravitational loading/unloading in controlling dike pathways has been also
highlighted by works on mechanical (McGuire and Pullen, 1989; Pinel and Jaupart, 2004) and
analog (Acocella et al., 2009; Corbi et al., 2016) models.
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Regardless of what the dominant stress sources are, models of stress state in volcanoes need
to be constrained by observations. Dike pathways and, consequently, the locations of eruptive
vents fed by dikes are controlled by stress. Hence, the key to constrain the stress state of a
volcanic area is matching the distribution of past vents with the results of a stress-driven model
of dike trajectories. Such was the strategy proposed for the Campi Flegrei caldera by Rivalta
et al. (2019), who considered tectonic stress and gravitational unloading due to the caldera
excavation as the dominant factors controlling magma pathways in the subsurface, and aimed
at constraining posterior PDFs of their magnitude.

1.6 Objectives
The goal of this dissertation is to develop a physics-based forecast strategy of future vent
locations that is ready to be applied to real volcanoes. Bringing the strategy by Rivalta et al.
(2019) to 3D so that it can be applied to real volcanoes is very challenging, as several gaps need
to be filled, both in the models and in the statistical approach. In particular:

• The 3D dike propagation model by Davis et al. (2020, 2021) requires too long computation
times to be used in an optimization procedure (for instance, simulating a 10-km-long
dike pathway takes around 3-5 minutes on commonly-available personal computers, while
a stress optimization requires at least tens of thousands of simulations for each dike
trajectory).

• The method by Martel and Muller (2000) to calculate topographic loading stresses with
BE models relies on assumptions on the unperturbed stress state in the crust. Therefore,
it cannot be applied to dynamic topographies such as volcanoes without first clarifying
those assumptions.

• Including numerical models of gravitational loading in a stress optimization procedure
requires an efficient method to treat topographic loads of unknown intensity in 3D.

• Simulating dike trajectories from depth to surface requires assumptions on the dike start-
ing points and the magma storage volumes the dikes depart from. Such assumptions need
to be justified.

The research objectives of the dissertation are, then, as follows:

1. Develop a fast and flexible model of dike pathways in 3D, suited for statistical applications.

2. Define a comprehensive 3D framework for constraining the stress state and forecast future
vent locations in volcanic regions. More specifically:

• Combine physics-based, deterministic models of magma transport with statistics to
optimize the parameters of a stress model so that simulations of magma pathways
match the observed vent distribution.

• Define a cost function informing the optimization process, weighing the results of
the simulations against prior knowledge on vent distribution and magma storage.

3. Test comprehensively the models, the stress inversion and the vent forecast strategy on
synthetic data in order to calibrate model parameters, explore uncertainties and assess
performance under different assumptions, so that the procedure is finally mature for
applications to real scenarios.
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1.7 Thesis outline
This dissertation is divided into six chapters, including the present one. Chapters from 2 to 5
address the research objectives in the following order:

• Chapter 2: Applies the stress inversion and vent forecast strategy of Rivalta et al. (2019)
to a set of analog models, where air-filled cracks propagate within stressed gelatin blocks,
and adopts a more computationally-efficient Markov Chain Monte Carlo algorithm to
optimize a 2D stress model for the gelatin blocks.

• Chapter 3: Introduces a new, simplified but fast model of dike pathways in 3D, named
‘SAM’, where dikes are represented by penny-shaped cracks of fixed radius and advance
along trajectories perpendicular to v⃗3, while the gradient of external stress and magma
buoyancy force controls the direction of propagation. The model can also backtrack
dike trajectories from known vents, and is compared to the numerical dike propagation
model of Davis et al. (2020, 2021), developed after the start of this work. The chapter
also illustrates a BE numerical model of gravitational loading/unloading associated with
complex 3D topographies, and combines the stress and dike models to simulate dike
trajectories in synthetic calderas.

• Chapter 4: Describes a stress inversion and vent forecast strategy in 3D for calderas,
building on the previously-developed models and statistical method, and re-defining the
inverse problem of stress optimization in terms of backtracking dike trajectories from the
known locations of past vents down to the estimated location of a magma storage volume.
The strategy is applied to the synthetic scenarios presented in Chapter 3, discussing the
results for different a priori knowledge and assumptions on fixed model parameters.

• Chapter 5: Models the ongoing ground deformation across the Rhenish Massif testing
deformation sources of varying shape, size and depth, and tests the hypothesis that the
observed deformation may be due to melt accumulation in sub-horizontal, sill-like struc-
tures in the lower crust or upper mantle. The Rhenish Massif includes the Eifel Volcanic
Fields in Germany, a region that has the potential to witness new eruptions and, as such,
is a potential candidate for the application of the vent forecast strategy. Constraining the
structure of the Eifel magmatic system would be the first step towards such an applica-
tion, and the chapter highlights the challenges and uncertainties involved in doing so, as
well as the data needed to validate or disprove the current results.

The dissertation concludes with Chapter 6, which provides a summary of the achievements
and results, as well as pointing out the scientific questions and modeling challenges still unre-
solved, and suggesting future applications and developments.

1.8 Publications and author’s contribution
1.8.1 Published articles

• Not included as a chapter in this thesis: Mantiloni, L., Nespoli, M, Belardinelli,
M. E., Bonafede, M. (2020). Deformation and stress in hydrothermal regions: The case of
a disk-shaped inclusion in a half-space. Journal of Volcanology and Geothermal Research,
403, 107011. doi:10.1016/j.jvolgeores.2020.107011.

L. Mantiloni developed the semi-analytical solutions for displacement and stress field
presented in the work, performed the inversion of ground deformation data and wrote the
first draft.

https://doi.org/10.1016/j.jvolgeores.2020.107011
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• Chapter 2: Mantiloni, L., Davis, T., Gaete Rojas, A. B., Rivalta, E. (2021). Stress In-
version in a Gelatin Box: Testing Eruptive Vent Location Forecasts With Analog Models.
Geophysical Research Letters, 48(6), e2020GL090407. doi:10.1029/2020GL090407.

L. Mantiloni designed and performed the analog models, set up the numerical model of
the gelatin box, developed and run the stress inversion algorithm, created the figures and
wrote the first draft.

• Chapter 3: Mantiloni, L., Rivalta, E., Davis, T. (2023). Mechanical modeling of pre-
eruptive magma propagation scenarios at calderas. Journal of Geophysical Research:
Solid Earth, 128 (3). doi:10.1029/2022JB025956.

L. Mantiloni developed the 3D dike propagation model, implemented the numerical stress
model, performed synthetic scenarios and figure creation, and wrote the first draft.

1.8.2 Submitted / under revision articles
• Chapter 4: Mantiloni, L., Rivalta, E., Davis, T., Passarelli, L., Anderson, K. (in prepa-

ration).

L. Mantiloni defined the stress inversion framework, developed the ‘compound-stress’
model, performed stress inversions and vent forecasts on synthetic scenarios, created the
figures, and wrote the first draft.

• Chapter 5: Silverii, F., Mantiloni, L., Rivalta, E., Dahm, T. (submitted to Geophys-
ical Research Letters: 27/01/2023). Lithospheric sill intrusions and present-day ground
deformation at Rhenish Massif, Central Europe.

L. Mantiloni helped defining concepts, analyzing data and performing inversions of ground
deformation, as well as writing the final draft.

1.8.3 Published code
• TPE-Source: MATLAB code implementing the displacement and stress field solutions

for the disk-shaped, thermo-poro-elastic deformation source described in Mantiloni et al.
(2020). Not relevant for the purpose of this thesis. Available at
https://github.com/LorenzoMantiloni/TPE-Source.

• SAM: Simplified Analytical Model of Dyke Pathways in Three Dimensions.
MATLAB software implementing the dike propagation model described in Chapter 3.
Available at https://doi.org/10.5880/GFZ.2.1.2023.001 and https://github.com/LorenzoMantiloni/
SAM-Simplified-Analytical-Model-of-Dyke-Propagation-in-Three-Dimensions. The soft-
ware includes a Manual.

https://doi.org/10.1029/2020GL090407
https://doi.org/10.1029/2022JB025956
https://github.com/LorenzoMantiloni/TPE-Source
https://doi.org/10.5880/GFZ.2.1.2023.001
https://github.com/LorenzoMantiloni/\SAM-Simplified-Analytical-Model-of-Dyke-Propagation-in-Three-Dimensions
https://github.com/LorenzoMantiloni/\SAM-Simplified-Analytical-Model-of-Dyke-Propagation-in-Three-Dimensions


Chapter 2
Stress inversion in a gelatin box: testing
eruptive vent location forecasts with
analog models

Abstract
Assessing volcanic hazard in regions of distributed volcanism is challenging because of the
uncertain location of future vents. A statistical-mechanical strategy to forecast such locations
was recently proposed: here we further develop and test it with analog models. We stress a
gelatin block laterally and with surface excavations, and observe air-filled crack trajectories. We
use the observed surface arrivals to sample the distributions of parameters describing the stress
state of the gelatin block, combining deterministic crack trajectory simulations with a Monte
Carlo approach. While the individual stress parameters remain unconstrained, we effectively
retrieve their ratio and successfully forecast the arrival points of subsequent cracks.1

Plain Language Summary
In regions of distributed volcanism, eruption locations (vents) are scattered over a large area.
Forecasting the new eruption locations over such regions is critically important, as many are
densely populated. One of the main difficulties is dealing with few known past eruptions, that
is, the data available to constrain forecast models are scarce. Thus, we develop a forecast
strategy by applying extension or compression to blocks of gelatin with surface excavations and
observing the propagation of air-filled cracks. Such models, if properly scaled, are an analog for
magma propagation in the Earth’s crust. We use the surface arrival points of some observed
cracks to retrieve the statistical distributions of a few parameters controlling the stress field.
Next, we use such distributions to forecast the arrival points of other observed cracks. Although
we could not retrieve all the stress parameters accurately, the forecasts we perform are reliable.
Our strategy may help retrieving the state of stress in volcanic regions and forecast the location
of future vents.

2.1 Introduction
In many volcanic regions, eruptive vents may be spatially scattered: they sometimes cluster
along rift zones or are distributed over areas that may exceed 10,000 km2. Some of these

1Originally published as: Mantiloni, L., Davis, T., Gaete Rojas, A. B., Rivalta, E. (2021). Stress inversion
in a gelatin box: testing eruptive vent location forecasts with analog models. Geophysical Research Letters,
48(6), e2020GL090407. doi:10.1029/2020GL090407

https://doi.org/10.1029/2020GL090407
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regions are densely populated. In order to better protect human life and infrastructure, it is
important to better understand the factors determining vent distributions and improve vent
location forecasts.

The most common approaches to probabilistic forecasts of future vent opening locations
rely on the spatial density of past eruptive events, sometimes complemented with the surface
distribution of structural features, such as faults and fractures (Connor and Hill, 1995; Martin
et al., 2004; Selva et al., 2012; Bevilacqua et al., 2015). Such models, however, often remain
poorly constrained due to scarce or spatially sparse data, and cannot be easily validated in
volcanic systems where eruptions are infrequent.

Recently, Rivalta et al. (2019) proposed a mechanical-statistical approach to inversely con-
strain the state of stress, and thus magma pathways, of a volcanic region on the basis of the
known location of magma reservoirs and past eruptive vents. Dike trajectories are assumed
to follow a ‘least resistance to opening’ path calculated from the elastic stress field, which is
optimized so that any magma batch released from the magma reservoir reaches one of the
past eruptive vents. Once the stress field is constrained, the trajectories of future dikes can
be forecast. Rivalta et al. (2019) applied the concept only to Campi Flegrei caldera in Italy,
performing inversions on two stress parameters: namely, the tectonic and the unloading stress.
As independent estimates of such parameters in nature are affected by large uncertainties, it
remains unclear how accurately the model can capture them, how much other factors, such as
medium layering, were biasing the results, and how this would affect the forecast.

Here, we delve deeper into the stress inversion concept, investigating these issues in a con-
trolled setting: air-filled cracks propagating in a gelatin box. Such analog experimental setups
have proven useful in validating dike propagation models (Watanabe et al., 2002; Maccaferri
et al., 2019), for example, assessing the influence of surface loads (Muller et al., 2001; Gaete
et al., 2019), rigidity layering (Maccaferri et al., 2010) and external stress fields (Acocella and
Tibaldi, 2005). We stress the gelatin with extension/compression and surface excavations,
shown in previous works to be the dominant stressing mechanisms in volcanic regions (Roman
and Jaupart, 2014; Maccaferri et al., 2014; Corbi et al., 2016). Here we do not intend to re-
produce a specific geologic setting, but rather to test the ability of our strategy to retrieve the
state of stress and the relative importance of surface excavations and regional stresses. We
chose a valley-shaped surface geometry so that the stresses within the gelatin block can be ap-
proximated by plane strain, but our setup may provide insights on the same stress-generating
mechanisms also in caldera-like settings. First, we run a series of experiments where we track
the propagation of air-filled cracks. Second, we use a boundary element (BE) model to cal-
culate expected crack trajectories with a realistic topography, combined with a Markov Chain
Monte Carlo (MCMC) algorithm to sample two parameters describing the state of stress within
the gelatin. This improves on Rivalta et al. (2019) both in terms of numerical modeling and
sampling algorithm used. Third, we validate our strategy by running forecasts for additional
cracks, which we compare to further injections.

2.2 Methods
2.2.1 Experimental Setup
We use a perspex container of size A×B ×C = 40×20×20 cm (Figure 2.1a). We let a 2.0 wt%
or 2.5 wt% aqueous solution of 220 Bloom pig gelatin powder solidify in the box at T = 8◦ C
for 20 h. These concentration values are well characterized in previous works (e.g. Di Giuseppe
et al., 2009; Kavanagh et al., 2013; Gaete et al., 2019; Smittarello, 2019). Along the y-direction,
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the gelatin block surface is molded to include a rectangular excavation of width w = 6 – 7 cm
and varying depth h (Figure 2.1a), causing surface unloading (Gaete et al., 2019). The height
of the gelatin block, H, varied throughout the experiments (see Figure 2.1a). Compression
or extension were imposed on the set gelatin by inserting or removing two plastic plates of
thickness d = 2.5 ± 0.1 mm at the box sides, separated from the medium by a transparent
plastic film (Figure 2.1a). We chose d = ±2.5 mm both to work with a small strain, e = 2d/A,
and to obtain ratios between stresses due to extension/compression and unloading comparable
with estimates in nature (see section 2.2.2).

Air is injected into the gelatin from the bottom of the box, resulting in ascending air-filled
cracks. Different injections are made through different holes at 1 cm intervals, both to avoid
the reopening of previous cracks and to observe trajectories over as wide a section of the gelatin
block as possible. Air has often been used as a magma analog in gelatin-based models (Menand
et al., 2010; Corbi et al., 2016). Air is nearly inviscid, so that trajectories are not influenced
by viscous effects, which are investigated in other works (e.g. Smittarello, 2019; Pinel et al.,
2019). All experiments were carried out at room temperature, with timescales short enough
(≤ 1 h) to maintain the experiments in an elastic regime (Kavanagh et al., 2013). The Young’s
modulus E of the gelatin was determined case by case by applying a small cylindrical load
on the surface and measuring the resultant subsidence under the assumption of a half space
(Kavanagh et al., 2013). E was mostly within the 2000 – 3500 Pa range (supporting information,
Table S2). We assumed the Poisson’s ratio is ν = 0.49 (van Otterloo and Cruden, 2016) and
take ρgel = 1020 kg · m−3 for the gelatin density (Smittarello, 2019). We attached polarized
sheets on the box front and back walls (Figure 2.1c) to observe stress inhomogeneities during
the experiments. The resulting sequences of colored fringes (Table 2.1) visualize the differential
stress (σ1 − σ3) perpendicular to the light direction (Gaete et al., 2019).

We present seven experiments (2DLA-i, i= 1,...,7), involving extension (2DLA-1,3,4,5,6,7),
compression (2DLA-2) and layering (2DLA-3,4). Three more experiments with compression
were discarded as most of the cracks hit the box walls (see Figure S2.3). We measure the surface
arrival points of the cracks (xobs

i ). In 2DLA-5,6,7, we changed the state of stress midway in the
experiments: we performed N I injections, then removed the side plates (2DLA-5) or partially
refilled the surface excavation with water (2DLA-6,7), and finally injected NF more cracks (see
Table 2.1 and Figure S2.2). The data from 2DLA-6 and 2DLA-7 were also pooled to test the
method with a larger data set. All the respective data sets are collected in the supporting
information and published as a separate data publication (Mantiloni et al., 2021a).

Inhomogeneities of various nature affect the outcome of the experiments. Some of them are
unplanned, such as temperature differences up to ∼ 3◦ C between the gelatin surface and the
bottom (see Table S2.2), leading to differences in the Young’s modulus (≤600 Pa) that are of
the same order of, or may exceed, the uncertainties on our measures (van Otterloo and Cruden,
2016), and localised strain concentrations induced when removing and, especially, inserting
the side plates. Conversely, rigidity layering is intentionally introduced in experiments 2DLA-
3 & 2DLA-4 (Table 2.1): elastic interfaces were welded by pouring a ∼ 25◦ C second layer
(Kavanagh et al., 2017). In 2DLA-3, the bottom layer had a higher gelatin concentration,
and thus rigidity, than the top one, and reverse in 2DLA-4. The Young’s modulus E of the
bottom and top layers was measured and estimated from other measurements for the same
concentration, respectively (Table S2.2). For these two experiments, we assume a homogeneous
medium in the numerical model and an ‘effective’ Young’s modulus obtained by carrying out
the measurement on the whole block. The aim here was to test the performance of the strategy
when ignoring an existing layered structure in the simulations.
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Figure 2.1: a): Schematic view of the gelatin box: the side plates are highlighted in blue, the median plane
of the block in red. The quantities are defined in section 2.2.3. b): Discretization of the box and its surface
over the median plane. Arrows: normals to BEs. The length of the illustrated BEs is larger than the one
we employed. c): Front view of the gelatin box at the conclusion of experiment 2DLA-2 (compression): crack
trajectories are marked post-intrusion with red ink. d): Numerical simulation of 2DLA-2 (c) from random
parameters: xs

i are marked with blue dots, xobs
i with magenta circles. Simulated trajectories are highlighted in

red and σ1 directions are drawn in black. zstart is marked by a black dashed line. BE, boundary element.
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2.2.2 Scaling
The length scaling factor between our experiments and nature is given by the buoyancy length
Secor Jr and Pollard (1975):

L =
(

KC

π
1
2 ∆ρg

) 2
3

(2.1)

where KC is the medium fracture toughness and ∆ρ is the density contrast between the host
medium and the injected fluid. Taking ∆ρr = 100 kg·m−3, ∆ρgel = 1000 kg·m−3 as the rock-
magma and gelatin-air density contrasts, respectively, Kr

C = 0.2 – 1 · 109 Pa·m 1
2 as the rock

fracture toughness and Kgel
C = 60 – 80 Pa·m 1

2 for a gelatin with Young’s modulus in the range
of E = 2000 – 3000 Pa (Kavanagh et al., 2013; Smittarello, 2019), we obtain L∗ = 3.3 · 10−6

– 1.2 · 10−5, where the asterisk refers to the ratio between analog and natural values. Thus,
the excavation width range w = 6 – 7 cm we measured (Table S2.2) corresponds to 6 – 20 km
in nature, compatible with the broad range of lateral scales (100 m – 100 km) displayed by
unloading mechanisms on Earth, such as the development of rifts or calderas or icecap melting.
Likewise, a typical starting depth of 100 – 150 mm (Table 2.1) corresponds to 10 – 50 km in
nature. Such a starting depth for dikes is deep, but not unreasonable. The stress scaling factor
is calculated by dividing the unload stress σU = ρgelgh for the excavation in the gelatin by the
one for the natural case. Taking h = 2 – 5 cm (Table 2.1) and excavations 0.1 – 1 km deep,
assuming ρr = 2500 kg·m−3, we obtain σ∗ = 8·10−6 – 1·10−4. We also require the ratio between
the stresses arising from lateral strain and the unloading to be comparable to natural cases.
In our experiments, such ratio Ee/ρgelgh, where e = 2d/A = 1.25 · 10−2, is in the range 0.04 –
0.31. The same ratio in nature, for rifts or calderas 100 – 1000 m deep, assuming ρr = 2500
kg·m−3 and a typical range for absolute values of tectonic stresses of 1 – 10 MPa (Heidbach
et al., 2016), is 0.04 – 4.00, which comprises our experimental range, even if the latter lies close
to its lower limit. An overview of our scaling factors is reported in the supporting information
(Table S2.1).

2.2.3 Numerical Modeling
We assume an elastic rheology in the numerical model. This is commonplace in previous works
(Anderson, 1937; Muller and Pollard, 1977; Roman and Jaupart, 2014) and supported by field
observations on dikes (Lister and Kerr, 1991; Gudmundsson, 2002). There is, however, evidence
of non-elastic dike propagation in nature (Spacapan et al., 2017; Poppe et al., 2020), which is
reproduced in different analog models (e.g. Poppe et al., 2019).

To calculate the elastic stresses within the gelatin, we use the two-dimensional (2D) BE
code ‘Cut&Displace’ (Crouch et al., 1983; Davis et al., 2017, 2019). We approximate the
experiment’s geometry as plane strain, as we observed no strain in the analog model’s y-
direction (Figure 2.1a). The box bottom, top and walls are discretized into BEs of length
lBE = 2 mm (Figure 2.1b). Displacement is set to zero on the bottom elements, while we
impose fixed displacement on the side walls, equal to d or −d for extension or compression,
respectively. The free surface is shaped to model the excavation; stress boundary conditions are
imposed on them to reproduce the gravitational stress due to the unload (Martel and Muller,
2000, Equation 1). We assume that w and the position of the excavation are known exactly,
and we employ the measured values of E for each experiment. In the data pooling of 2DLA-6&7
(see section 2.2.1), we assumed for E and h the arithmetic mean of the respective values from
the two experiments, as these were similar but not identical (Table 2.1).

We calculate the principal stress directions on a dense grid of observation points within the
box. We simulate the crack trajectories assuming that the cracks open against, and propagate
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perpendicular to, the least compressive stress axis, σ3 (Anderson, 1951). This assumption makes
a good approximation of real trajectories provided the size and volume of the cracks are not too
large (Watanabe et al., 2002; Maccaferri et al., 2019) and the effects of viscosity can be neglected,
as well as those of external stress gradients (Dahm, 2000a). The more these assumptions are
far from reality, the larger the mismatch between real and σ3-perpendicular trajectories. More
complex dike trajectory models exist for simulations in 2D (Dahm, 2000a; Maccaferri et al.,
2011) and recently also in three dimensions (3D) (Davis et al., 2020). However, the predictive
power of models increases if their complexity is reduced with regard to accurate explanatory
dike trajectory models (see e.g. Forster and Sober, 1994). Thus, we opt for the simpler option of
σ3-perpendicular trajectories, which also necessitate much shorter computation time and better
serve the stochastic part of our strategy.

If the cracks are misaligned with the stress field at injection, they will require some distance
to realign (Menand et al., 2010; Maccaferri et al., 2019). The starting depth in the simulations
is shallower than the injection depth so that this readjustment occurs at least partly.

2.2.4 MCMC Scheme
Our sampling procedure relies on the Delayed Rejection and Adaptive Metropolis MCMC al-
gorithm (Haario et al., 2006; Laine, 2013). The set of N observed arrivals (xobs

i , i = 1,...,N)
is first divided into two subsets N I and NF (‘I’ and ‘F’ stand respectively for ‘inversion’ and
‘forecast’). The N I set is used to sample the two parameters d and h. The size of our data sets
varies from a minimum N I = 2 in 2DLA-2 to a maximum of N I = 5 in 2DLA-6&7 (see the
supporting information, Tables S2.3 and S2.4).

At start, ranges and guesses for the parameters d and h are fixed together with a common
starting depth for the cracks, zstart. Starting locations, xstart

i , are assigned as the horizontal
coordinate of the upper tips of the observed cracks at zstart. At each iteration, we simulate N I

crack trajectories and sample d and h in order to minimize the objective function

S =
NI∑
i=1

(xs
i − xobs

i )2 (2.2)

where xs
i are the simulated arrivals.

The squares of the uncertainties on the two parameters (∆d = ±0.1 mm; ∆h = ±1 mm)
populate the diagonal of the covariance matrix. M = 104 iterations were made for every chain.
Our runs highlight a correlation between d and h, as expected from Rivalta et al. (2019), so
we consider a further parameter: R = d/h, which partly removes the trade-off, and use the
posterior probability distributions (PPDs) of d and R to perform the forecasts.

2.2.5 Forecasting Approach
After performing the inversions, we run MF = 103 iterations of NF simulations for the forecasts,
where we sample the parameters (d, R) from their PPDs. Starting points are drawn from
Gaussian distributions centered on xstart,F

i , zstart,F
i , with standard deviation σ = 1 mm. The

combined distribution of simulated arrivals is compared to the observed arrivals set aside for
the forecast xobs,F

i . We measure the success of a forecast from how far the median xmed,F
i

of the simulated arrivals lies from xobs,F
i . Thus, for each individual i-th forecast, we define

∆xF
i = |xobs,F

i − xmed,F
i | and compare it to the standard deviation δxF

i of the distribution (see
Table 2.1).

A different approach is adopted in experiments 2DLA-5 and 2DLA-6&7 to account for the
modified state of stress between the N I and NF cracks. In 2DLA-5, we fit the PPDs of d and
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Table 2.1: Experiments, Measured Parameters, and Results.
Experiments Measured Parameters Results Forecasts

# Exp. Picture h d R hmed dmed Rmed xmed,F
i δxF

i ∆xF
i

± 1 ± 0.1 (×10−3) (×10−3)
mm mm mm mm mm mm mm

2DLA-1
Extension

50 2.5 63 ± 4 51 4.9 100 67 7 2

2DLA-2
Compression

44 -2.5 -57 ± 4 73 -3.5 -55 115 39 11

2DLA-3
Extension
Layered

21 2.5 120 ± 10 63 3.9 69 75 9 1

2DLA-4
Extension
Layered

24 2.5 104 ± 8 59 5.8 102 -85 6 1

2DLA-5
Updated
Extension

24 0
2.5

0 ± 10−2

104 ± 8
64 0.4 8×10−3 -54

66
77

43
36
34

1
6
10

2DLA-6
Extension
Refilled

58 (65)
28 (35)

2.5 (2.5) (39 ± 2)
(71 ± 7)

64 2.5 39 63
76
84
102

10
7
6
4

3
1
2
1

2DLA-7
Extension
Refilled

72 (65)
32 (35)

2.5 (2.5) (39 ± 2)
(71 ± 7)

-84
-73

8
6

4
0

Note: blue markers in the pictures indicate the arrivals used for the forecast (see Figure 2.2b):
in 2DLA-5, 2DLA-6 and 2DLA-7 these coincide with the injections following the stress update
(differently colored trajectories in pictures of 2DLA-5 and 2DLA-7 stand for preupdate and
postupdate). Arithmetic means assumed for h and R in 2DLA-6&7 are indicated in parentheses
(section 2.2.3). Updated d and h (section 2.2.5) are in boldface. hmed, dmed, Rmed: medians of
the respective PPDs (section 2.3.2). xmed,F

i , δxF
i and ∆xF

i are defined in section 2.2.5 and refer
to forecasts for individual xobs,F

i . For further information, see the supporting information,
Tables S2.3 - S2.4 (measured quantities) and S2.5 (inversion results).
Abbreviation: PPD, posterior probability distribution.
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R with Beta functions and then update them by shifting the mean value and their upper and
lower limits to account for the added extension (from d = 0 mm to d = 2.5 mm). In 2DLA-6&7,
we use the same strategy, except that we update h (subtracting the height of the water filling
the surface excavation) and R.

2.3 Results
2.3.1 Experimental Results and Numerical Modeling
Experiments with extension and compression resulted in markedly different observations. Sur-
face unloading deflects vertical crack trajectories, as seen in both natural (Tibaldi, 2004; Corbi
et al., 2015) and experimental (Corbi et al., 2016; Gaete et al., 2019) settings. Regional exten-
sion competes against the former, leading to more vertical trajectories (Maccaferri et al., 2014).
Compression, instead, tends to rotate σ1 to horizontal Menand et al. (2010), thus amplifying
the effect of the unloading. The effect of extension is observed in 2DLA-5, where extension
was applied after N I cracks had propagated, by comparing green (early) to red (late) trajecto-
ries (Table 2.1). The partial refilling in experiments 2DLA-6 and 2DLA-7 (Table 2.1) reduced
the influence of the unloading and led to less deflected trajectories. Trajectory simulations for
the experiments with extension are not identical to, but closely match the observations, if the
measured d and h are employed.

Trajectories in compressional settings (2DLA-2 and discarded experiments, see Figure S2.3)
tend to diverge significantly from each other and spread the uncertainty of the initial location
into scattered arrival locations. Simulations with the imposed parameters fail to reproduce
these data sets. This is reflected in the outcome of the inversions and forecasts, as we explain
later on.

Dike trajectories are deflected towards the vertical direction when passing from a high-rigidity
layer to a low-rigidity one and viceversa, as theoretically predicted by Maccaferri et al. (2010)
(see experiments 2DLA-3 and 2DLA-4, Table 2.1).

2.3.2 Parameters sampling
We find that in most cases the retrieved PPDs fail to constrain d and h individually, though
they generally succeed in constraining their ratio R. This can be seen in the joint distributions
for R and h (Figure 2.2a). In the homogeneous extensional cases, the PPDs for d and especially
h are generally spread. In spite of this, the imposed value of d is well recovered in 2DLA-5 and
2DLA-6 & 7 (see Table S2.5). The distributions of h tend to be uniform. In contrast, the PPD
for R is always peaked around or close to the imposed value (Figure 2.2a). The PPDs, including
those of h, are more peaked when more data are available (2DLA-6&7). In the layered cases,
the medians of all the PPDs are rather far from the respective imposed values, except for R in
2DLA-4. This was expected, since we purposely neglected the medium layering in the modeling
(see section 2.2.1).

In the only compressional case (2DLA-2), the PPDs are extremely spread and fail to constrain
the parameters, though the median of R is close to the imposed value (Figure 2.2a).

2.3.3 Forecasts
In spite of the PPDs for d and h being often spread or even uniform, the forecast distribution
generally shows NF sharp peaks (Figure 2.2b, Table 2.1). Moreover, in spite of the PPDs for
d and h failing to accurately recover the imposed values, the peaks of the forecast distribution
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Figure 2.2: Summary of inversion and forecast results. a): PPDs for parameters d, h and R and joint PPD
for (R,h). Red lines show the measured values; green lines the medians (Table 2.1). The Beta functions used to
fit and update the distributions in 2DLA-5 and 2DLA-6&7 are plotted in magenta. Last column from left: the
starting guess, measured and median values are represented, respectively, by a blue, red and yellow star. The
color palette shows the value of S (Equation 2.2) for every sampled point in the parameters’ space, from dark
red (higher S) to blue (lower S). b): countings of forecast arrivals displayed on a scheme of the box (the surface
topography shown is before the refilling in 2DLA-6&7). Red lines: positions of xobs,F

i ; green lines: medians of
the forecasts for individual xobs,F

i (see also Tables 2.1 and S2.3). PPD, posterior probability distribution.
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generally coincide or are very close to the observed arrivals (Figure 2.2b, Table 2.1). This
includes the layered cases. Again, the compressional case 2DLA-2 marks an exception: the
forecast is rather spread (see δxF

i values in Table 2.1) and shows two maxima, one closer to
the box center and a sharp one at the box margin (Figure 2.2b); this is due to the fact that
many simulated cracks hit the right side of the box. Neither of the maxima coincides with the
observed arrival, and the median falls ∼ 1 cm away (Figure 2.2b, Table 2.1).

Two secondary peaks are also obtained in the combined forecast distribution for 2DLA-5
(NF = 3), as the sampling range for d allowed for both positive (extension) and negative
(compression) values. This is reflected also in the spread of the individual distributions (Ta-
ble 2.1). The two main maxima are here close to the box center and show good agreement with
xobs,F

i . Considering the three individual distributions separately, the distances ∆xF
i between

the three xobs,F
i and the medians xmed,F

i are well within δxF
i of the respective distributions. In

2DLA-6&7 (NF = 6), three clear maxima are observed in the combined forecast distribution,
showing again good agreement with the xobs,F

i , which are ≤ 4 mm away from the medians of
the respective individual distributions (Table 2.1).

In all extensional experiments with NF = 1, the observed arrivals xobs,F
i are always within 2

mm from the medians (Table 2.1).

2.4 Discussion
While the inversion algorithm generally failed to retrieve the imposed values of the parameters
d and h (Figure 2.2a), the forecast strategy proved very effective in identifying high-probability
regions for crack arrivals on the surface (Table 2.1 and Figure 2.2). This apparent contradiction
arises from the fact that the inversions effectively recover the imposed value of R = d/h.
Physically, this is because the curvature of the trajectories is controlled by R, rather than d or
h individually, as also found by Roman and Jaupart (2014).

Forecasts are successful in spite of scarce data sets and when layering of the medium is ne-
glected. If data sets are larger (5 data points for 2 parameters), the state of stress is recovered
more accurately. In principle, our procedure could be used also to constrain the elastic param-
eters, but information on the stress state would be necessary as they trade off. To test this
possibility, we ran an inversion for E on the NF data set of 2DLA-5, and we found the sampled
E distribution peaks very close to the measured value (results are shown in Figure S2.4b).

The forecast strategy applied in experiments 2DLA-5 and 2DLA-6&7 also proved effective
in accounting for the modification of the stress field over time, validating the evolving-stress
forecast method by Rivalta et al. (2019).

Several factors may contribute to the failure of the approach in compressional settings, even
though there is inherently no difference in the σ3-perpendicular propagation of cracks under
remote compression rather than extension. Both unloading and compression lead to more hori-
zontal σ1 directions within the medium. Thus, the mismatch between the crack orientation and
σ1 right after the injection is larger and they need more space to align. Moreover, a horizontal
σ1 may encourage cracks to propagate towards the back or the front walls of the box, whose
effect on the gelatin may undermine the plane strain assumption (in compressional cases, these
walls prevent the gelatin to expand along the y-axis, thus inducing compression also in this
direction). Furthermore, side plate insertion and the non-frictionless contact between gelatin
and box walls induced local stress concentrations at the box corners, affecting nearby trajec-
tories (Figure S2.3). Such effects may arise from the size of our box and could be reduced by
employing a larger tank. However, as σ3-perpendicular trajectories tend to diverge in compres-
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sional settings (including nature), simulations are more sensitive to any variability of initial
and boundary conditions or model parameters, and forecasts are therefore more challenging.

A further limitation arises from the limited number of experiments we carried out. In spite of
this, we did observe clear common patterns in experiments with similar settings (section 2.3.1).
Our experimental setup allowed for several factors, including variable starting crack length and
orientation, elastic heterogeneities and possible interactions between successive injections, to
play a role. This is reflected in the fact that observed and modeled trajectories do not coincide
in general (section 2.3.1), though the forecasts are fairly good. This is not contradictory, as our
forecast strategy includes a stochastic model to treat such variability.

Another remarkable issue is the nearly-uniform trend observed in the PPDs for h (Fig-
ure 2.2a), which appears to be systematic even when larger data sets are available (as opposed
to the PPDs of d, cfr 2DLA-1 and 2DLA-5). This arises from the fact that very shallow or
very deep surface unloads, for the same d and starting points, lead to similar arrivals. We sur-
mise that this effect, observed both in the numerical simulations and in a separate experiment
(Figure S2.4a), is due to the relaxation of the surface excavation’s walls under gravity.

2.5 Conclusive Remarks
We conclude that a mixed deterministic-stochastic strategy is effective in constraining the ratio
of different stress-generating mechanisms and forecasting the arrival points of air-filled cracks
in gelatin blocks. The strategy performs well on small data sets and may be, therefore, suitable
for applications to volcanic regions where few vent locations are available. Future developments
may focus on relaxing some of the limitations in our current numerical simulations, such as
upgrading to 3D, including the viscous flow in the cracks, or addressing rheologies different from
elastic. This will facilitate direct application to producing probabilistic maps of vent location
for volcanic systems in nature.
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Chapter 3
Mechanical modeling of pre-eruptive
magma propagation scenarios at calderas

Abstract
Simulating magma propagation pathways requires both a well-calibrated model for the stress
state of the volcano and models for dike advance within such a stress field. Here, we establish a
framework for calculating computationally efficient and flexible magma propagation scenarios in
the presence of caldera structures. We first develop a three-dimensional (3D) numerical model
for the stress state at volcanoes with mild topography, including the stress induced by surface
loads and unloading due to the formation of caldera depressions. Then, we introduce a new,
simplified 3D model of dike propagation. Such a model captures the complexity of 3D magma
trajectories with low running time, and can backtrack dikes from a vent to the magma storage
region. We compare the new dike propagation model to a previously published 3D model.
Finally, we employ the simplified model to produce shallow dike propagation scenarios for a set
of synthetic caldera settings with increasingly complex topographies. The resulting synthetic
magma pathways and eruptive vent locations broadly reproduce the variability observed in
natural calderas.1

Plain Language Summary
Understanding the pathways that bring magma from an underground chamber to the surface
helps to prepare for future eruptions in volcanic areas. Dikes are fractures filled with magma
and represent the most common mechanism of magma transport in the Earth’s crust. Their
trajectories may be curved if the Earth’s crust is deformed by the load of topography or by
tectonic forces. Here we first discuss a model of such deformation processes in volcanic regions
with complex but mild topography. Then, we develop a simplified dike propagation model that
we compare to a more sophisticated one. Next, we combine our models and simulate magma
pathways in artificially-generated scenarios.

3.1 Introduction
Geophysical observations of ground deformation and seismicity in volcanic areas have high-
lighted how some eruptions are preceded by a long phase of magma propagation in the form
of magma-filled dikes (Einarsson et al., 1980; Ebinger et al., 2010; Nakada et al., 2005; Uhira

1Originally published as: Mantiloni, L., Rivalta, E., Davis, T. (2023). Mechanical modeling of pre-
eruptive magma propagation scenarios at calderas. Journal of Geophysical Research: Solid Earth, 128(3),
e2022JB025956. doi:10.1029/2022JB025956

http://doi.org/10.1029/2022JB025956
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et al., 2005; Wright et al., 2012; Sigmundsson et al., 2015; Patrick et al., 2020; Cesca et al.,
2020; Davis et al., 2021; Smittarello et al., 2022). Some recent dikes have propagated for over
70 km, reaching locations that had not experienced any fissure opening in decades or centuries;
in some cases the ensuing lava flows have resulted in massive property damage (Patrick et al.,
2020; Martí et al., 2022) or loss of life (Smittarello et al., 2022). The associated dike trajectories
have also displayed a variety of geometries, from horizontal to oblique to vertical, and shapes,
from planar to segmented, curved or twisted (Branca et al., 2003; Bagnardi et al., 2013; Xu and
Jónsson, 2014; Sigmundsson et al., 2015; Patrick et al., 2020; Davis et al., 2021; Dumont et al.,
2022; Smittarello et al., 2022; Martí et al., 2022). In spite of the importance of this process,
there are still no models to forecast, in three dimensions, the trajectory taken by magma during
propagation in the shallow crust.

Our physical understanding of dike trajectories have progressed significantly in the last
decades. Both early (Anderson, 1937) and more recent works (Dahm, 2000a) have estab-
lished that dike pathways are largely determined by the balance between the elastic stresses in
the host rock and the buoyancy force resulting from the density contrast between magma and
rock. As a rule of thumb, dikes open against the direction of the least-compressive principal
stress axis (Ziv et al., 2000; Gudmundsson, 2002; Pollard et al., 2005), while the combined
effect of the external stress and the magma buoyancy force determines their direction of prop-
agation (Weertman, 1971; Pollard, 1987; Rubin, 1995; Taisne et al., 2011; Rivalta et al., 2015;
Townsend et al., 2017). The simplest two-dimensional (2D) trajectory models are streamlines
perpendicular to the least-compressive stress axis (Anderson, 1937; Pollard, 1987), while the
most sophisticated approaches model dikes as cracks steered in the direction of maximum strain
energy release rate (Dahm, 2000a; Maccaferri et al., 2010, 2011). Dike trajectory models have
recently evolved from two dimensional (Anderson, 1937; Muller and Pollard, 1977; Pollard,
1987; Dahm, 2000a) to partially (Sigmundsson et al., 2015; Heimisson et al., 2015; Pansino
et al., 2022) or fully three-dimensional (3D) by Davis et al. (2020, 2021). The latter model ex-
tends to 3D the maximum strain energy release rate trajectory calculation approach introduced
by Dahm (2000a); a 3D equivalent of the simple 2D streamline approaches is still missing.

The 3D model by Davis et al. (2020, 2021) has been applied to explain the counterintu-
itive trajectory of the 2018 dike at Sierra Negra, Galápagos. Importantly, Davis et al. (2021)
confirmed the pivotal importance of a well-calibrated stress field in modeling dike trajectories:
contributions from different stress-generating mechanisms, such as topographic gravitational
loading and regional stress field, needed to be carefully adjusted in order to steer the dike on
the observed trajectory. If we want to simulate 3D dike propagation at arbitrary volcanoes,
we also need to determine their state of stress. This problem was addressed by Rivalta et al.
(2019), who suggested a stress inversion strategy which involves, first, establishing the relevant
sources of stress for the specific volcano, and then, tuning their relative intensity so that sim-
ulated dikes starting from the known location of magma storage reach the known locations of
past eruptive vents. This strategy was tested on Campi Flegrei caldera in Italy, using only 2D
(plane strain) stress models and 2D streamlines for dike propagation.

Extending the stress calibration strategy by Rivalta et al. (2019) to 3D would pave the way to
forecast dike pathways in 3D at any arbitrary volcano. A preliminary step is to set up 3D stress
and dike trajectory models that are computationally efficient for the large number of simulations
needed by the stress calibration procedure. In this study, we first develop computationally
efficient 3D stress field calculations for scenarios with topographic reliefs. Then, we develop a
fast, semi-analytical 3D dike propagation model that approximates the sophisticated model by
Davis et al. (2020, 2021) but retains the simplicity of 2D streamlines and can also backtrack
a dike trajectory from eruptive vent to magma chamber. Finally, we show how to integrate
all these models to produce realistic pre-eruptive magma propagation scenarios. We focus on
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calderas, setting up synthetic topographies inspired by natural systems.

3.2 Method formulation
We assume a homogeneous, isotropic and linearly elastic medium as the host rock, described by
rock density ρr, Young’s modulus E and Poisson’s ratio ν. g is the acceleration due to gravity.
Symbols and parameters are defined in Table 3.1.

3.2.1 A modular approach to understanding stress states
We describe the state of stress within the host rock by a stress tensor σij. Tensional stresses
are positive. σij is diagonalized to retrieve magnitudes, σ1, σ2, σ3, from most compressive to
least compressive, respectively, and eigenvectors, v⃗1, v⃗2, v⃗3, which identify the orientations of
the principal stress axes.

We build our 3D stress model following the first-order linear approach by Rivalta et al.
(2019), who expressed the elastic stress field σij of a volcanic region as the superposition
of perturbations from a background stress state σ0

ij, each stemming from a different stress-
generating mechanism. The approach neglects coupling between the stress sources. We limit
our analysis to tectonic stresses and gravitational loading/unloading because dike patterns can
often be explained by a combination of the two mechanisms (Roman and Jaupart, 2014; Corbi
et al., 2015; Heimisson et al., 2015; Maccaferri et al., 2017; Neri et al., 2018). Not including
other mechanisms, such as pressurized magma reservoirs or faults, has the advantage of limiting
the number of parameters in the model, while retaining the stress mechanisms with the largest
influence. More contributions can be easily added, if needed in specific cases.

We write the stress tensor at any point in the crust as:

σij(x, y, z) − σ0
ij(z) = σT

ij + σG
ij(x, y, z) (3.1)

where the terms on the right side arise, respectively, from the regional tectonic stress (T) and
the gravitational loading/unloading (G).

The first step is to define the unperturbed state of stress, σ0
ij, before any of the sources on the

right hand side of Equation 3.1 became active. There are two main assumptions in literature:
a laterally-confined medium, that is, no lateral strain can be produced after gravity is turned
on (e.g. Martel and Muller, 2000; Savage et al., 1985), resulting in a vertical v⃗1:

σ0
xx = ν

(1 − ν)ρrgz, σ0
yy = ν

(1 − ν)ρrgz, σ0
zz = ρrgz. (3.2)

or a lithostatic stress state:
σ0

xx = σ0
yy = σ0

zz = ρrgz. (3.3)
Field measurements of subsurface stress (Jaeger et al., 2007) lie somewhat in between those
two assumptions. Therefore, σ0

ij can be written as:

σ0
xx = σ0

yy = kρrgz, σ0
zz = ρrgz, (3.4)

where k ∈ [ ν
(1−ν) , 1] (Jaeger et al., 2007; Muller et al., 2001; Slim et al., 2015). In this study,

we set k = 1 and assume a lithostatic unperturbed stress.
The second step is to superimpose the tectonic stress, expressed in terms of three independent

components σT
xx, σT

yy, σT
xy, here assumed uniform (e.g. McKenzie, 1978; Müller et al., 1992).
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The third step is to consider gravitational stresses associated to surface loading or unloading.
This has often been modeled by distributions of normal forces onto a half-space (Dahm, 2000b;
Maccaferri et al., 2014; Neri et al., 2018), which, however, neglect the shear stresses imposed by
the topography and provide no information on the stress within the topography itself (McTigue
and Mei, 1981). More sophisticated analytical solutions exist, but are either 2D (Savage et al.,
1985; McTigue and Mei, 1981) or only for simple topographies (McTigue and Mei, 1987). Stress
due to surface loading/unloading decays over a vertical distance that scales with the radius of
the topographic feature (e.g. Jaeger et al., 2007; Pollard et al., 2005; Roman and Jaupart,
2014). Consequently, principal stresses can change in both intensity and orientation over short
distances. This has several implications discussed later (Section 3.2.2.1).

Martel and Muller (2000) and Slim et al. (2015) described how to implement topographic
loads within Boundary Element (BE) models, where the topography is discretized into a mesh
of dislocations. They considered the effect of topographic loading as akin to cutting an in-
finite body subject to gravity in two halves along a surface defined by the topography. The
gravitational stress imposed by the upper half onto the lower one is then subtracted from the
background stress of the body (Martel and Muller, 2000, Figure 3). In practice, this is achieved
through imposing boundary conditions on the BEs, depending on the coordinate z of their
midpoints and the rock density, which control the overburden or excavation pressure imposed
by the topography.

One important point in models such as Martel and Muller (2000) is that the boundary
conditions at the BEs representing the topography are univocally fixed only once the datum
level, that is the unperturbed surface before any topography is created, is set. This was rarely
clarified in past applications (e.g. Chadwick and Dieterich, 1995; Urbani et al., 2017; Neri
et al., 2018). Identifying such surface is not always trivial but critical, as different choices lead
to different outcomes for the displacement and stress field. We show this in Figure 3.1a, where
we compare v⃗1 from the analytical solution by McTigue and Mei (1981) for a valley adjacent
to a ridge under plane strain assumption to 2D numerical models where the datum level is
set to, successively, the flat extremes of the profile, the ridge summit and the valley bottom.
The first model shares the same assumption on the datum level with the analytical solution,
hence the good agreement for that case. Such assumption is straightforward to adopt when
the topography becomes uniformly flat away from the loaded/unloaded region. However, this
is not always the case, and the optimal choice of datum level may depend on the situation.
Take e.g. a caldera lying on a coastline, which divides two regions, the mainland and the sea
floor, at different elevations. We consider a similar case in our synthetic scenarios, and we solve
the ambiguity in the datum level by setting it to the ground elevation before the caldera was
formed: this coincides with the sea level in that case. If, for instance, we were to study the
formation of an edifice and, later, of a caldera at its summit, we would first set the edifice datum
level at its base, and then set the caldera datum level at the edifice summit. Consequently, the
topography preceding the reference event (in our scenarios, the caldera formation) informs the
datum level.

A further issue regarding the calculation of surface loading/unloading stresses is that they
are not immutable. Volcanic regions host a variety of stress-generating and stress-relieving
mechanisms acting on different time scales. For example, the build-up of a volcanic edifice
consists of progressive accumulation of eruptive material that loads and stresses the underlying
crust (McGuire and Pullen, 1989), while, at the same time, magmatic intrusions, earthquakes
and inelastic processes tend to relax shear stresses and homogenize principal stresses (Chadwick
and Dieterich, 1995). Quantifying stresses within large topographic loads at a particular point
in time is thus non-trivial. Here we avoid this issue by focusing on calderas that we assume
have formed relatively recently in the history of the volcano, and consider otherwise only mild
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Figure 3.1: a): Datum level choice: v⃗1 orientation due to gravitational loading/unloading of a valley adjacent
to a ridge (profile is drawn in black) under plane strain condition. The analytical solution by McTigue and
Mei (1981) (black) is compared to our numerical solution with datum level fixed at the flat extremes of the
topography (blue), the ridge summit (green) and the valley bottom (red). b): Evolving topography: a 1-km-
deep axisymmetric caldera is refilled by 1/3 of its original depth. v⃗3 orientation and topographic profiles for two
mechanically-equivalent models of caldera unloading with different reference topographic relief and boundary
conditions. c): Importance of reservoir: v⃗3 orientation for three models involving a 1-km-deep axisymmetric
caldera and vanishing tectonic stress. Two models include a 6-km-deep spherical magma reservoir of 1.5 km
radius with overpressures ∆P=10 MPa (red) and 100 MPa (green) respectively; one has no reservoir (blue).
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topographies, so that modeling dike propagation within edifices is not necessary. We elaborate
further on this point in Section 3.4. We note that when we use the term ‘caldera’, we are
referring to the general surface depression that is associated with all calderas. Differences in
the origin, structure and setting of calderas (e.g. Cole et al., 2005; Acocella, 2007) are neglected.

We compute σG
ij(x, y, z) in Equation 3.1 following Martel and Muller (2000); Slim et al.

(2015). We employ the 3D BE tool Cut&Displace (Davis et al., 2017, 2019), based on the
displacement discontinuity method by Crouch et al. (1983). We use DistMesh by Persson and
Strang (2004) to discretize the topography into a mesh of triangular dislocations (Nikkhoo and
Walter, 2015), acting as BEs. The 3D mesh needs to be larger than the region of interest, so
that its edges are distant enough from the volume where we compute the stress. We find that
a mesh with a diameter three times the lateral extent of the studied region is enough for that
purpose, and we adopt this choice in all our models. If a coastline is present, the outer mesh
tapers to two horizontal surfaces at different height, representing the far-field mainland and the
far-field sea floor. Once the datum level is fixed, stress boundary conditions are imposed on
each BE as previously described. The load imposed by the water column on the bathymetry is
also included.

Calderas are usually filled with eruptive material or sediments over time (e.g. Orsi et al.,
1996; Hildreth et al., 2017). Our model can account for this in several ways: the original buried
caldera floor may be meshed as the reference topographic relief, and the corresponding BEs may
be loaded accounting for the pressure deficit due to the density contrast between the deeper
host rock and the layers above. Alternatively, the current caldera topography may be meshed
as the reference topographic relief, and the unloading pressure resulting from the missing mass
due to lower density infill is factored in the boundary conditions. Calculations for these options
for a synthetic caldera (Figure 3.1c) show good agreement except in the proximity of the caldera
rim. Here we follow the former approach in one scenario, as illustrated later.

We remark that some of the stress sources we neglect, such as magma reservoirs, are in
principle straightforward to include in our BE model. In order to show the minor relative
influence of such sources, we compare in Figure 3.1b the orientation of v⃗3 for three different
models: one without and two with a pressurized, spherical magma chamber, with overpressure
of 10 MPa and 100 MPa, all involving the same surface unloading and tectonic stress. Only
with extremely large overpressures the effects of the pressurization are felt at a distance of up
to one source diameter. This validates in 3D a similar argument by Rivalta et al. (2019) (see
their Figure 1).

3.2.2 Three-dimensional dike propagation model
3.2.2.1 Simplified Analytical Model (SAM)

Next, we develop a computationally-efficient 3D dike propagation model that provides a 3D
equivalent to 2D v⃗3-perpendicular streamlines. There is no straightforward method to compute
streamlines in 3D, as the direction of v⃗3 alone identifies a surface, while the direction of propa-
gation on that surface remains undetermined. Davis et al. (2020, 2021) developed a point-wise,
analytical dike trajectory calculator, similar to Sigmundsson et al. (2015) but fully 3D and more
comprehensive in terms of factors considered. Its purpose was to justify why an observed dike
took a specific direction depending on the magma buoyancy and the external state of stress,
and falls short of being a propagation model. Here we turn that approach into a simplified
3D propagation model that can also backtrack dike trajectories downward from a vent to the
magma storage region. We henceforth refer to our model as the ‘Simplified Analytical Model’
(SAM).
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Table 3.1: Parameters and abbreviations of the dike propagation model.
Parameters
Description Symbol Units
Host rock density ρr kg/m3

Magma density ρm kg/m3

Mode I stress intensity factor K Pa
√

m
Host rock fracture toughness KC Pa

√
m

Young’s modulus E Pa
Poisson’s ratio ν
Dike radius c m
Number of observation points n
along the dike tip-line
Backtracked dike radius cB m
Description Abbreviation
Forward dike trajectory FT
Dike starting point F0
Dike surface Σ
Observation points Oi, i = 1,...,n
Dike arrival point FA

Points defining dike trajectory Fi, i = 1,...,A-1
Projected dike arrival point F P

A

Backtracked dike trajectory BT
Points defining backtracked trajectory Bi

Backtracked dike starting point BSP

In the analytical model by Davis et al. (2020, 2021), propagation of the tip-line of a dike
occurs when the local mode I stress intensity factor, K, is larger than the fracture toughness,
KC , of the host rock (e.g. Secor Jr and Pollard, 1975). The dike is represented as a tensile
penny-shaped crack with a fixed volume, V , and radius, c. It is assumed that external stress
varies linearly in every direction over the crack surface, and that internal pressure varies linearly
with z proportional to ρmg sin β, where β is the crack dip. In such case, K can be written as:

K = 3µV

4(1 − ν)c2√πc
+ 4

3π
∆γmaxc

√
πc cos α, (3.5)

(Tada et al., 2000), where ∆γmax is the maximum value over all orientations across the crack
plane of the ‘pressure gradient’, ∆γ, calculated as the difference of the external stress and
internal magma pressure over the crack diameter, and α is the angle spanning the circumference
of the crack away from the direction of ∆γmax (see Figure 3.2b). The second contribution in
Equation 3.5, which is largest for α = 0, determines the maximum of K and, thus, the direction
of propagation of the crack. If RK = K/KC > 1, the crack propagates (see Figure 1 in Davis
et al., 2020).

In SAM, we simplify such approach by forcing the dike to open against the local v⃗3, and
calculating K simply as

K = 4
3π

∆γc
√

πc. (3.6)

This is equivalent to neglecting the role played by the dike volume and KC in determining
whether the dike will advance. On the other hand, the buoyancy force contributes to ∆γ, and
plays a role in determining the direction of propagation on the v⃗3-perpendicular surface.
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In a Cartesian reference frame, where the z-axis is positive upward (Figure 3.2a), we calculate
forward dike trajectories (FTs) as ‘paths of local steepest ascent’, corresponding to the steepest
increase of ∆γ, as follows:

1. We produce a stress model for the hosting medium (section 3.2.1).

2. We choose a starting point F0 for the dike (for instance, at the edge of a magma reservoir).

3. We compute σ3 and v⃗3 at F0 and identify the local surface Σ perpendicular to v⃗3. The
dike is then defined as a penny-shaped crack of radius c lying on Σ (Figure 3.2a).

4. We generate a ring of n regularly-spaced observation points Oi, i = 1...n along the dike
tip-line (Figure 3.2b).

5. We calculate σi
3 at each Oi and use it to calculate ∆γ for every point on the dike tip-line

as:
∆γi = (σi

3 − σj
3)

2c
− ρmg

(zi
O − zj

O)
2c

, (3.7)

where zi
O, zj

O are the vertical coordinates of points Oi, Oj, with Oj antipodal to Oi.

6. We calculate Ki at each Oi according to Equation 3.6 and determine the point F1 where
Ki = Kmax. This will identify the direction of propagation of the dike (Figure 3.2b).
Such direction coincides with that of the maximum pressure gradient across the plane of
the crack. Note that negative K are always predicted at some Oi and imply unrealistic
interpenetration of the crack faces. This poses no issue, however, since we are only
interested in finding Kmax.

We reiterate the previous steps taking F1 as the current F0 and produce a chain of points
identifying the trajectory of the dike. The dike stops once at least one of the observation points
generated in step 3 reaches a minimum distance threshold (MDT) between the observation
points and the mesh, in order to prevent artifacts singularities in the stress calculations. This
is a characteristic issue of BE models, and can be mitigated with finer meshing (Slim et al.,
2015). Here we fix the MDT to 800 m away from the nearest BE, as this is the average size of
the dislocations of the mesh we employ. Dikes may be propagated past their FA until they hit
the surface at a ’projected’ arrival point, F P

A , assuming that they maintain the dip and strike
calculated at FA (Figure 3.2b). This is akin to assuming that dikes do not have the space to
adjust to the local stress field in the last ∼1 km before reaching the free surface. Moreover, a
SAM dike is forced to stop if the trajectory becomes horizontal, or if the difference in the strike
and dip angles between the current direction of propagation and the one at the previous step
is larger than a given threshold. This prevents abrupt turning of the dike pathways.

SAM trajectories depend on two parameters, c and n. We found that values of n equal or
greater than 12 lead to nearly identical dike pathways; we set n to 12 in all scenarios calculated
later. In contrast, different c lead to different trajectories and arrival points for the same
starting points and stress field. Large c (e.g. > 2 km if the dike starting point is 10 km deep)
sample the stress field in too few points and approximate ∆γ too coarsely to produce accurate
trajectories, while very small c (e.g. < 50 m for the starting depth mentioned above) follow
principal stress directions nearly point-wise, but are more computationally expensive. We show
later how c may be calibrated to better match a more sophisticated dike propagation model.

SAM also allows for the propagation of anti-buoyant dikes, that is, dikes filled with ρm > ρr

propagating downward through the crust. Dike trajectories, however, cannot be backtracked by
simply inverting the density contrast between magma and rocks: an anti-buoyant dike starting
from the arrival point of a buoyant one and propagating downward with the same c and n
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Figure 3.2: Simplified Analytical Model (SAM) framework. a): reference systems employed throughout the
work. Blue surface: simplified topography with a circular caldera. Red dotted line: edge of a magma storage
region where the dike departs. Yellow surface: dike’s initial surface (Σ). b): Left: full SAM trajectory. Colored
dots: observation points Oi; the colors are associated to K according to the colorbar. Right: Boundary Element
mesh of the topography (vertically exaggerated) and actual forward trajectory (FT) from scenario ‘Circular-
Caldera’ (Section 3.2.3), extended until the free surface. Green dashed line on the right: minimum distance
threshold. Bottom-right corner: Oi, direction of ∆γmax (red arrow) and angle α away from ∆γmax as defined
in Equation 3.5. c): Backtracking of SAM trajectories. Left: comparison between buoyant (red) and anti-
buoyant (blue) trajectories. Right: representation of the backtracking algorithm outlined in Section 3.2.2.1. d):
Backtracked trajectories (BTs) of the FT shown in (b). Left: BT starts from the actual arrival point. Right:
BT starts from the projected arrival point. Colored dots on both sides represent the BTs; empty blue dots the
original FT.
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will not pass through the same points (see Figure 3.2c), even if the difference between forward
trajectories (FTs) and backtracked trajectories (BTs) decreases for smaller values of c.

We backtrack FTs, from known arrival points FA and with assumed parameters cB and nB,
as follows:

1. Starting from FA, we find a candidate point BC at a distance cB such that the scalar
product between v⃗3 at BC and the vector v⃗C pointing from BC to FA is minimal (Fig-
ure 3.2d).

2. We run one step of the forward model from BC and calculate the vector between the
predicted and actual FA; we then shift BC by that same vector and iterate this procedure
until the desired precision is attained. BC is taken as the first point B1 of the BT.

3. The algorithm stops as soon as a specific requirement is satisfied: for instance, the current
Bj falls within the known magma storage region. The lastly-recovered point of the BT
becomes then the "backtracked starting point" (BSP) (Figure 3.2d).

The first step of the algorithm is modified when starting from a point F P
A lying on the free

surface, as we no longer fix the distance between BC and F P
A to a specific cB, but let it vary

over a specific range (for a FT with given c, we find a 0-3c range enough for our purpose).
We tested the method against known FTs, and found that it is able to retrieve each F0 within

a range of a few tens of meters (∼0.2-0.5% of a 6-km caldera radius) if starting from FA, and a
few hundreds (∼2-5% of the same caldera radius) if starting from F P

A , provided the same radius
c of the forward model is employed (cB = c). If that is not the case, the distance between actual
and backtracked starting point (∆BSP = |F0 −BSP |) increases with the difference between the
backtrack radius cB and c.

3.2.2.2 Three-dimensional Intrusion Model (TIM)

We later validate SAM against the full-3D numerical dike propagation model by Davis et al.
(2020) and Davis et al. (2021). The model needs the dike volume (V ), assumed constant during
the propagation. Here, the dike starts as a penny-shaped crack centered at a specific starting
point and arranged according to a starting dip and strike; these can be either arbitrary or
coincide with the local v⃗3. The dike starting radius is taken as c0 =

√
V/1.6π. The dike is

meshed, and RK is computed at every tip-line BE (Davis et al., 2019); the tip-line is advanced
or retreated by an amount proportional to the local RK , depending on its sign, and the crack is
remeshed. The crack can also bend out of its plane according to the maximum circumferential
stress criterion (Pollard et al., 2005; Davis et al., 2021). The dike can thus advance along
complex trajectories and change its shape in the process. We refer to this model as ‘Three-
dimensional Intrusion Model’ (TIM).

TIM relies on finer discretization (at the scale of individual BEs) when calculating K. Com-
paring the two models is therefore critical to verify the validity of the approximations in SAM,
especially at shallow depths, where even minor topographic features have a non-negligible in-
fluence and lead to more heterogeneous stress gradients (see Section 3.2.1).

Before comparing TIM and SAM trajectories, we illustrate how to combine the stress and
dike models introduced so far into synthetic scenarios of dike propagation.

3.2.3 Configuration of the dike propagation scenarios
We produce a total of nine synthetic scenarios (Tables 3.2 and 3.3). We first generate a
stress model, evaluating which stress mechanisms are most relevant. Here, as discussed in
Section 3.2.1, we limit our analysis to tectonic stresses and gravitational loading/unloading.
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We consider increasingly complex topographies with a caldera located at the origin of the
Cartesian reference frame (see Figure 3.2a). We employ four main topographic settings, each
used in one or more scenarios:

• Setting 1: a flat topography with a circular caldera of radius RC = 6 km and maximum
depth d = 500 m. The depth of the caldera, which has steep slopes and a flat floor, varies
with r according to:

z = −d exp
(
−r6

)
(3.8)

• Setting 2: we add a coastline, modeled as a steep elevation step along the y-axis. In this
way, we break the axial symmetry of the previous setting. The bathymetry lies 100 m
below the datum level. The caldera has RC = 6 km, d = 450 m, and depth varying with
r as in (1).

• Setting 3: we maintain the bathymetry of (2), but we include two hills (heights 791 m
and 355 m, base diameter ∼15 km). The caldera has RC = 6 km and d = 424 m. The
caldera shape is made irregular by adding Gaussian noise to Equation 3.8. In one scenario
we model a topography evolving from (3) to (3b), where the caldera is partially refilled,
its maximum depth changing to d = 221 m. This setting is inspired by the morphology
of Campi Flegrei caldera.

• Setting 4: an elliptic caldera with d = 150 m, semi-major and semi-minor axes aC = 8
km and bC = 4 km, respectively. A circular resurgent dome with h = 150 m and 4.8
km diameter is located 3 km offset from the caldera center. The external topography
has some gently-sloping hills (the maximum height is 157 m), but no bathymetry. This
setting is inspired by the morphology of Long Valley caldera.

We calculate the gravitational loading/unloading as described in Section 3.2.1, using E = 15
GPa, ν = 0.25 and setting ρr as in Table 3.3. Then, we superimpose to the resulting stress
field the tectonic stress components σT

ij, different for each scenario.
Next, we choose a model of dike propagation and define the needed input. TIM needs dike

volumes (V k), magma densities (ρk
m), KC of the host rock and a starting geometry for the

k-th dike. We use KC = 70 MPa·m1/2. Starting dike radii (ck
0) are determined by V k (see

Section 3.2.2.2 and Davis et al., 2021). SAM needs c and ρm.
We use the first three scenarios, ‘Vertical-TIM’, ‘Lateral-Dike’, and ‘Complex-Coastline’, to

compare the performance and features of TIM and SAM. In the additional six scenarios, we
produce only SAM dike pathways with fixed c = 1.2 km and ρm = 2300 kg/m3. We start
with the most simplified topography (‘Circular-Caldera’). Then, we progressively add new
elements, such as a coastline (‘Simplified-Coastline’, ‘Tectonic-Shear’), hills and caldera refilling
(‘Refilling-Caldera’, ‘Two-Reservoirs’) and a resurgent dome (‘Elliptic-Caldera’), studying their
impact on dike trajectories. In three scenarios, the arrival points of SAM dikes are projected
past the MDT to the free surface (see Section 3.2.2.1). All scenarios involve tensional stresses,
whose principal axes coincide with the coordinate axes except for Tectonic-Shear (Table 3.2).

We fix the location, depth (zres) and radius (rres) of the magma reservoirs, which constitute
the rock volumes where dikes depart from. We remark that here the reservoirs have no con-
tribution to the stress field. All magma reservoirs are circular, sill-like and centered at the
origin of the reference frame. In Elliptic-Caldera, however, we consider a vertically-elongated
reservoir centered below the summit of the resurgent dome.

The number of simulated dikes (N) varies among the scenarios (Table 3.2). Dike starting
points are described by depth zk

0 , radius rk
0 = rres and angle ϕk

0, k = 1,...,N , according to the
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Table 3.2: Modeled scenarios. Columns are: chosen setting, number of SAM dikes (in parentheses, number
of those reaching the MDT), caldera depth, resurgent dome height, tectonic stress components, host rock and
reservoir parameters for each scenario. SAM, Simplified Analytical Model; MDT, minimum distance threshold.
Scenario Setting N d h σT

xx σT
yy σT

xy ρr rres zres

m m MPa MPa MPa kg/m3 km km
Vertical-TIM 1 2 (2) 500 - 1 0 0 2500 6 -6
Lateral-Dike 3 1 (0) 424 - 1 0.4 0 2800 10.2 -6
Complex-Coastline 3 9 (9) 424 - 1 0.4 0 2800 3 -6
Circular-Caldera 1 12 (12) 500 - 1 0.5 0 2500 2 -6
Simplified-Coastline 2 24 (20) 450 - 1 1 0 2500 2 -6
Tectonic-Shear 2 20 (10) 450 - 0.8 0.8 -1 2500 2 -6
Refilling-Caldera 3-3b 20 (15) 424 - 1 0.4 0 2800 3 -4

20 (19) 221
Two-Reservoirs 3 50 (39) 424 - 1 0.4 0 2800 3 -4

6 -8
Elliptic-Caldera 4 30 (26) 150 150 1 0.6 0 2500 1 -6

cylindrical reference frame in Figure 3.2a. In the most simplified scenarios, we assume equally-
spaced starting points for dikes. In the most complex scenarios, we randomize the starting
points by drawing ϕk

0 from an uniform distribution. Starting depths coincide with the depth
of the magma reservoir (zk

0 = zres), with two exceptions. In Two-Reservoirs, we consider two
different starting depths, with the aim of representing two separate magma storage volumes. In
Elliptic-Caldera, we draw zk

0 from a Beta distribution (e.g. Johnson et al., 1994) skewed towards
the top of the reservoir (see Figure 3.5f). This is to simulate a case where dike nucleation
probability may change with depth.

3.2.4 SAM and TIM comparison
We now proceed to validate SAM against TIM to assess under which conditions the two models
produce matching dike pathways. We use Vertical-TIM, which offers the simplest topography,
and Lateral-Dike, which offers the most complex one, to compare TIM and SAM pathways
under different starting conditions and settings. Then, we use Complex-Coastline to calibrate
c in SAM.

If TIM dikes start misoriented with respect to the external stress field, they can progressively
adjust to it as they advance, while SAM dikes start and remain perpendicular to v⃗3. This
can lead to discrepancies between SAM and TIM dike pathways. We show this in Vertical-
TIM (Figure 3.3a), where three vertically-oriented TIM dikes with different volumes (V k) and
starting radii (ck

0) and two SAM dikes with different c propagate from the same starting point
and with the same ρm (Table 3.3). In Figure 3.3a, TIM and SAM dikes first diverge, and later
become roughly parallel, as TIM dikes adjust to the stress directions. Dikes with larger volumes
require larger distances to do so, as already captured by 2D models (Dahm, 2000a; Maccaferri
et al., 2010, 2019). We also notice how the SAM dike with the smallest c follow the stress field
more closely.

In Lateral-Dike we show a situation where SAM captures 3D propagation as well as TIM.
We run a TIM dike starting beneath a topographic high, and compare it to a SAM dike with
radius c = 1.2 km starting from the same point. In this model, we set both dikes to be
weakly buoyant (ρr − ρm = 100 kg/m3) and start aligned to the local stress directions. In these
conditions (Tables 3.2, 3.3), they both propagate laterally along similar trajectories, as dictated
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Figure 3.3: TIM and SAM comparison. a): Vertical-TIM scenario: two SAM dikes with different c are
compared to three TIM dikes with the same magma density and increasingly larger volumes. All dikes start
from x = 6 km, y = 0 km, z = −6 km; TIM dikes are vertically-oriented at the starting point. TIM pathways
are shown as meshes representing steps in dike propagation, including starting and final configuration of dike.
Black segments show v⃗1 projected over the x-z plane; black circles represent out-of-plane v⃗1. Topography is
represented as a magenta line. Blue dots mark the actual trajectory of SAM dike with largest c. b): Lateral-
Dike scenario: top view of topography of Setting 3, with TIM and SAM dikes propagating laterally beneath a
topographic high. Both dikes start from x = 2 km, y = 10 km, z = −6 km, aligned to local v⃗3. Color scale of
topography is common throughout the Figure. c): NW-SE view of (b) looking from the direction shown in (b)
as an orange arrow. TIM dike represented as superposition of red meshes from five steps in the dike simulation,
from start to end. Each step of SAM pathway is a green circle. d): Outlines of the five steps of TIM pathway
shown in (c). SAM cracks are superposed in gray. e): Values of K computed along tip-line of TIM meshes,
as well as K gradient directions for each step (black) and K gradient direction averaged over whole pathway
(orange). Step 1. in (d) not shown here. f): Values of K computed at observation points along tip-line of SAM
cracks, as well as K gradient directions for each step (black) and K gradient direction averaged over whole
pathway except for last step where dike stops (orange). For host rock and magma properties see Table 3.3.
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Figure 3.4: Complex-Coastline scenario. a): synthetic topography with a vertical exaggeration factor of 5, dike
pathways (green for Simplified Analytical Model (SAM), red outlines for Three-dimensional Intrusion Model
(TIM)) and and arrival points of TIM (triangles) and SAM (dots) dikes. b): elevation map and arrival points.
c): W-E view of TIM and SAM pathways, dike starting (gray dots) and arrival points. d): detail of TIM and
SAM pathways for the fifth dike. e): SAM backtracking method applied to TIM pathways; distance between
the actual and backtracked starting point ∆BSP versus cB (see Table 3.1). Black dotted line marks the average
of ck

0 of TIM dikes. Colors are the same of TIM and SAM arrival points in (b) and (c), and numbers in the
inset follow the order of Table 3.3. f): ck

best: cB yielding the smallest ∆BSP versus starting dike radius for each
dike. The red line fitting the data is compared to the bisector (blue line).
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Table 3.3: Parameters of Three-dimensional Intrusion Model dikes.
Dike Vk ck

0 ρk
m

·106 m3 km kg/m3

Vertical-TIM
1 4 0.89 2300
2 8 1.26 2300
3 40 2.82 2300
Lateral-Dike
1 4 0.89 2700
Complex-Coastline
1 2 0.63 2300
2 10 1.41 2250
3 9 1.34 2100
4 5 0.99 2280
5 4 0.89 2350
6 3.5 0.83 2300
7 3 0.77 2270
8 3.8 0.87 2390
9 2.4 0.69 2300

by the external stress and the low magma buoyancy: such behavior may not be captured by 2D
dike models. In Figure 3.3e,f we observe that K values in SAM can be very different from the
ones in TIM, and the SAM dike follows a longer, zigzagging pathway. This is due to the large
c employed, which makes the dike advance too far to capture at each step the heterogeneity of
the pressure gradient. Notwithstanding these differences, the overall directions of the pressure
gradient (orange arrows in Figure 3.3e,f) are consistent, and the dikes follow each other closely
even at shallow depths. In a test not reported here, we run the same scenario with a larger
magma buoyancy (ρm = 2300 kg/m3), and both TIM and SAM dikes ascended towards the free
surface instead of propagating laterally. This shows how accounting for the magma buoyancy
force in SAM makes it different from a simple ‘3D streamline’ approach, as SAM dikes do not
necessarily follow v⃗1.

In Complex-Coastline (Figure 3.4a,b,c,d), we study a case where TIM dikes start optimally-
oriented (i.e. perpendicular to v⃗3). We run nine TIM dikes with different V k, ck

0 and ρm

(Table 3.3), and compare them to forward SAM trajectories. Despite the V k, ck
0 and ρk

m being
different from one dike to another, the arrival points and final orientations of the SAM dikes
are consistent with the outcomes of the TIM dikes, and SAM trajectories follow closely TIM
ones. Such match is closest when we take c = c̄k

0, that is, the average of the ck
0 (Figure 3.4c).

In order to refine our calibration of c, we perform a comparison between TIM dikes and
backtracked SAM dikes, evaluating how accurately their starting points are recovered with
different values of backtrack radius cB (Figure 3.4e,f). We find that the performance of our
backtracking method in recovering the SP of the TIM dikes depends on the cB we employ
(see Table 3.1 for abbreviations). Both large (> 1.2 km) and small (< 0.6 km) cB perform
poorly. On the other hand, the distance between SP and BSP of each dike, ∆BSP , is smallest
for cB equal or close to c̄k

0 = 880 m (black vertical line in Figure 3.4e). The minimum of
∆BSP for all dikes except for the one with the smallest V k (Table 3.3) is found in the range
600 m ≤ cB ≤ 1 km. A plot of ck

0 versus ck
best, that is, the cB leading to the most accurate

BSP for the k-th dike, shows that the best-fit line comes close to the bisector of the quadrant
and, thus, cB = ck

0 =
√

V k/1.6π provides a good estimate for the optimal radius c in SAM
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(Figure 3.4f).
In summary, SAM provides trajectories close to TIM dike trajectories only when the latter

are well-oriented within the external stress field. In that case, the two models compare well
even if the predicted values of K are very different. The optimal c for SAM may be chosen on
the basis of the volumes of TIM dikes. The implication is that, in a real scenario, knowledge on
the volume of actual dikes could inform the choice of c for both forward and backward SAM.
We add that, in Lateral-Dike, the running time of one step of SAM is ∼100 times faster than
that of one step of TIM.
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Figure 3.5: Topography and selected Simplified Analytical Model dike trajectories for Circular-Caldera to
Elliptic-Caldera scenarios. Left panels: synthetic topography and dike trajectories; central panels: elevation map
and dike arrival points; right panels: W-E view of topography and dike trajectories. One out of two trajectories
is shown for all scenarios, but all arrival points are displayed. a): Circular-Caldera. b): Simplified-Coastline.
c): Tectonic-Shear. d): Refilling-Caldera: in left panel, both original and updated synthetic topographies are
shown, with two cross-sections along x (dots and dashes) and y (fine dots) axes. Red dike trajectories are
run with original topography, green ones with updated topography. In right panel, topographic profiles along
respective cross-sections show original (red) and updated (green) topography. Magenta dots mark arrival points
of dikes run with updated topography. e): Two-Reservoirs. f): Elliptic-Caldera: insets in right panel show the
Beta distribution zk

0 are drawn from. General conventions as follows. Topography in left panels has a vertical
exaggeration factor of 5. Dike starting and arrival points are represented as green circles and blue dots (red
in elevation maps), respectively. In right panels of (b), (e) and (f), dike arrival points are magenta dots and
blue circles are steps of projected dike trajectories to the free surface. Magma reservoirs: light-red volumes.
Large-size versions of each panel may be found in Mantiloni et al. (2023b).



Chapter 3 Mechanical modeling of pre-eruptive magma propagation scenarios at calderas 48

3.3 Results
In the simplest model (Circular-Caldera, Figure 3.5a), dike trajectories are deflected by the
gravitational unloading associated to the caldera, and their arrival points punctuate its rim. The
tectonic extension is higher along the x-axis, and this leads to the spacing between neighboring
arrival points becoming smaller when closer to that axis, even if the starting points are equally
spaced.

In Simplified-Coastline, the presence of a coastline between two flat regions at different heights
has an evident impact on dike trajectories, which are still deflected away from the caldera, but
end up mostly on the mainland (Figure 3.5b). Only the dike starting farthest away from the
mainland manages to reach the sea floor. In particular, there is a concentration of arrival points
close to the coastline. The effect of deviatoric tectonic stress is most apparent in Tectonic-Shear
(Figure 3.5c). Here, the least-compressive principal tectonic stress axis roughly strikes along
the bisector of the second and fourth quadrants (NW-SE). Arrival points cluster about such
axis, both on the mainland and on the sea floor.

Caldera refilling and the presence of a resurgent dome cause an inward shift of dike trajecto-
ries. In Figure 3.5d (Refilling-Caldera), green dikes are still deflected by the caldera unloading,
but all reach the surface along or within the caldera rim, some ending up on the resurgent
dome. Topographic loads outside the caldera tend to attract dikes from both red and green
sets.

Dikes departing from deeper storage regions, as in Two-Reservoirs (Figure 3.5e) show the
same pattern as in the previous scenarios, reaching the surface farther away from the caldera.

Dikes in Elliptic-Caldera (Figure 3.5f) feel the competing influence of the elliptic caldera and
the loading due to the resurgent dome and the hill west of the caldera. The synthetic vents
cluster in two areas, the larger adjacent to the dome and the minor close to the caldera rim
and the hill. No vents are present at the top of the dome.

In most scenarios, many dikes stop before reaching the MDT (Table 3.2) when the interplay
between the buoyancy force and the external stress gradients is no longer sufficient to drive the
dike upward. Dike arrest is often associated to gravitational loading (topographic highs): in
Refilling-Caldera and Two-Reservoirs, most dikes ascending below the highest hills stop before
reaching the MDT. This is consistent with the outcome of Lateral-Dike (Figure 3.3c,d), where
both TIM and SAM dikes stop ascending and propagate laterally beneath a topographic load
before stopping.

In summary, topography plays a dominant role in controlling dike pathways in our scenarios.
Even relatively small topographic features, such as the ∼5-km-wide resurgent dome in Elliptic-
Caldera (Figure 3.5f), influence close trajectories over a distance comparable to their width.
In all scenarios, dikes are consistently deflected away from surface unloading and attracted by
surface loading. Tectonic stress also influences dike orientation and clustering of arrival points,
with a more evident impact in the simplest scenarios (Circular-Caldera, Simplified-Coastline,
Tectonic-Shear).

3.4 Discussion and Conclusions
We have shown how our newly-developed ‘elementary’ dike propagation model (SAM) well
reproduces trajectories calculated with a sophisticated numerical model (TIM) by Davis et al.
(2020, 2021) (Figures 3.3b,c,d, 3.4), and can effectively model 3D dike pathways in synthetic
calderas with tectonic stress and mild surface loading/unloading (Figure 3.5). In particular,
SAM and TIM trajectories are similar if TIM dikes start optimally-oriented to the external
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principal stress directions (Figure 3.3a), since SAM dikes are always oriented perpendicularly
to the local v⃗3. Moreover, if stresses change over a distance smaller than c, the calculation
of the pressure gradient (Section 3.2.2.1) and, consequently, SAM trajectories, will be more
approximated. Large c values, however, are still reliable in our scenarios, since loads/unloads
with large horizontal extent (> 5 km) cause smoothly-changing stresses at the scale of most
SAM dikes shown here (see Section 3.2.1). Loads/unloads of small extent (< 1 km) would
cause rapidly-changing stresses at that same scale, but their effect is significant only at shallow
depths and can be neglected here, as we stop dikes at the MDT (Section 3.2.2.1). In this regard,
fixing the MDT determines what topographic details are worth considering in our models. Dike
propagation in both models is controlled not only by the gradients of external stress, but also
by magma buoyancy. SAM is also able to backtrack dike trajectories from a vent to the magma
storage region.

Due to our simplifying assumptions, our models have many potential limitations. The as-
sumptions include homogeneous elastic parameters for the host rock. Rigidity and density
layering may substantially affect dike propagation. For instance, dike trajectories can be de-
flected when crossing interfaces between layers with strong rigidity contrasts, as shown in 2D
by Maccaferri et al. (2010). Further studies are needed to grasp the effects of layer interfaces in
3D. Nevertheless, as shown by Mantiloni et al. (2021b) through analog experiments, homoge-
neous models well reproduce the observed pathways provided that ‘effective’ stress parameters
are employed, rather than those actually imposed on the gelatin.

We also assume an elastic medium. Volcanic regions are known to host inelastic processes
such as seismicity, damage, thermoplasticity, infiltration of and alteration by hydrothermal and
magmatic fluids, that can affect both stresses and dike propagation. In particular, these inelastic
processes compete with stress-generating mechanisms by homogenizing stresses (e.g. McGarr
and Gay, 1978; Stephansson, 1988; Savage et al., 1992). Repeating magmatic intrusions may
also bring the state of stress to isotropic in the long run: since they tend to open perpendicularly
to v⃗3, the strain they cause tends to bring σ3 closer to σ1 (Chadwick and Dieterich, 1995;
Bagnardi et al., 2013; Corbi et al., 2015, 2016). Additionally, faulting and earthquakes may
dissipate shear stresses over time. In other words, the stress contributions in Equation 3.1 can
change or be altered. An accurate calibration of the stress state needs to take into account the
relaxation of each stress contribution over time and space, discriminating between stress sources
(in particular topography-altering events) that became active at different times. These processes
are difficult to constrain and are currently accounted for through rough approximations. For
instance, some works set the deviatoric stresses arising from gravitational loading of the edifice
to zero (Heimisson et al., 2015; Davis et al., 2021). Corbi et al. (2015) found that superposing
the effect of caldera unloading to a volcanic edifice where the state of stress is set to isotropic,
rather than fully loaded, better explained the orientation of eruptive fissures at Fernandina,
Galápagos. Here we neglected such processes by creating scenarios where dikes propagate below
and around a caldera but not within an edifice, as the height of all topographic highs in our
scenarios (Section 3.2.3) is lower than or comparable to the MDT (Section 3.2.2.1).

As shown in Figure 3.1c, stress contributions of magma reservoirs are dominant only in
the proximity of the stress source. Such effect, nonetheless, can be important in determining
nucleation points for dikes (Gudmundsson, 2006; Grosfils et al., 2015), that we do not model
precisely here, as well as attracting or repelling incoming dikes if the reservoir pressure is
increasing or decreasing, respectively (Pansino and Taisne, 2019).

Stress contributions due to previous large earthquakes may also deviate dikes or arrest their
propagation. This has been considered both through theoretical (Maccaferri et al., 2014, 2016)
and analog (Le Corvec et al., 2013a) modeling. The fault-generated stresses do not influence
dike trajectories significantly unless they come to close proximity (e.g. Maccaferri et al., 2014).
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However, Maccaferri et al. (2016) showed how an incoming dike can trigger the slipping of
a pre-stressed fault, and be stopped by the resulting compressive stress. Faults and dikes
may also interact with each other, for instance alternately accommodating tectonic extension
(Gómez-Vasconcelos et al., 2020).

Lastly, the emplacement of dikes affects the local stress field as well, as both analytical (Rubin
and Gillard, 1998) and numerical models (Ito and Martel, 2002) have shown. The interaction
of dike intrusions can result in the deflection of subsequent dike trajectories (e.g. Takada, 1997;
Kühn and Dahm, 2008), and may also dictate the architecture of reservoirs (Kühn and Dahm,
2008; Ferrante et al., 2022). Moreover, the cumulative effect of such interaction can modify the
overall stress state (e.g. Cayol and Cornet, 1998).

All these stress sources can be integrated in our models as they stand now. Including stress
mechanisms that are not well-constrained, however, ultimately adds more uncertainty to a
model rather than improve it.

One major simplification in SAM is that of linear pressure gradients across the plane of
SAM cracks (Section 3.2.2.1). SAM, as a simplified model, cannot deal with stresses that
are too heterogeneous, although in the example shown in Lateral-Dike (Figure 3.3b,c,d) it
well compared to TIM, which can deal with stress heterogeneity at the scale of the individual
triangular dislocations composing the dike meshes. An additional issue, not discussed here, is
the potential heterogeneity in the dike internal pressure arising from the viscous flow of magma
(Lister and Kerr, 1991) or pockets of bubble-rich magma within the dike (Costa et al., 2009).
Non-linear gradients in the internal pressure may affect the direction of propagation of SAM
dikes. In this regard, the analytical model by Pollard and Townsend (2018) computes the
stress intensity factor at the tip of a 2D vertical crack under arbitrary distributions of normal
tractions, and may be used in future works to estimate the error in K when using the linear
pressure gradient assumption in SAM.

The outcomes of our synthetic scenarios show that dikes are deflected away from topographic
lows (calderas), and attracted by topographic highs (hills, resurgent domes), even small-sized
ones (e.g. the resurgent dome in Elliptic-Caldera). This is consistent with previous dike prop-
agation and stress models considering topographic loading/unloading (Dahm, 2000a; Roman
and Jaupart, 2014; Corbi et al., 2016; Rivalta et al., 2019) and with results from gelatin-based
analog models (Gaete et al., 2019; Mantiloni et al., 2021b). The few synthetic scenarios we
present here, however, are not designed to reproduce the wide variety of vent patterns observed
at real calderas. They do, nonetheless, reproduce some common features of vent distribution
in calderas. When a coastline is involved in our scenarios (Figure 3.5b,c,d,e), most or all dikes
end up on the mainland. This is compatible with vent patterns in similar natural settings, such
as Campi Flegrei (Smith et al., 2011) or Aira caldera, Japan (Geshi et al., 2020). In our tests,
no dike trajectories end up within the caldera, except in Refilling-Caldera and Elliptic-Caldera.
Cases where past eruptive vents lie predominantly at or outside the caldera rim include most
Galápagos volcanoes (Chadwick and Howard, 1991) and Aira caldera, Japan, (Geshi et al.,
2020). Vents opening within a caldera can be observed in several other settings, like Newberry
caldera, Oregon (MacLeod et al., 1982), Santorini caldera, Greece (Sigurdsson et al., 2006),
or Campi Flegrei caldera, Italy (Smith et al., 2011). Intracaldera vent openings are predicted
when the caldera is very shallow, unloading is reduced by refilling (Refilling-Caldera), or a
resurgent dome is present (Elliptic-Caldera). Nonetheless, these factors are not always associ-
ated with intracaldera vents in nature (e.g. no eruptions have occurred at Long Valley caldera’s
resurgent dome after doming inception, Hildreth, 2004). Applying a model to a real caldera
entails a deeper understanding of its evolution, stratigraphy and eruptive history, and requires
dedicated work. For this reason, we chose not to apply our models to real calderas in this work,
as running our model for a real scenario without a proper calibration of the stress state is no
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different than setting up a synthetic scenario with arbitrary stress. The fast dike propagation
model we presented here is particularly suited for stress calibration procedures, such as the one
by Rivalta et al. (2019). This will be the subject of future work.

Our model does not consider the viscous flow of magma within dikes and, as such, does not
model dike velocity. The two approaches may be integrated by combining the pathways pre-
dicted by our model with existing models of dike velocity (Pinel et al., 2017; Davis et al., 2023)
or growth, such as Zia and Lecampion (2020), introducing a numerical model of propagation of
planar 3D hydraulic fractures, or Möri and Lecampion (2022); Pansino et al. (2022). We also
remark that different magma compositions may involve large differences in magma viscosity
and density, and neglecting the viscous flow may undermine the predictive power of our dike
models in case of high-viscosity magmas.

In both SAM and TIM, dikes are assumed to break away from the magma reservoir after
nucleation, as dike propagation is entirely driven by external stress and magma buoyancy force.
In a more general case, the dike may be coupled to a reservoir, as past dike intrusion episodes
have suggested (e.g. Maccaferri et al., 2016; Gudmundsson et al., 2016). The direction of dike
propagation, however, may still be controlled by the gradient of internal pressure and external
stress rather than the pressure imparted by the chamber, even though accounting for the viscous
flow may change that. Analytical models of propagating dikes coupled with a magma chamber
(Segall et al., 2001; Rivalta, 2010; Townsend and Huber, 2020) are only available for fixed dike
orientations and, as such, cannot be applied to 3D dike trajectories. In our context, increasing
the volume of a TIM dike as it advances could be a rough approximation of a dike-magma
chamber coupling. Our results from comparing TIM and SAM (Section 3.2.4) suggest that
the trajectories would not differ much even for large volumes of TIM dikes, as long as they
start aligned to the external stress field (see Figures 3.3a and 3.4a,c). Including dike-reservoir
coupling in SAM or TIM, however, requires dedicated work.

In conclusion, we have developed a fast and flexible dike propagation model, complementing
the numerical model by Davis et al. (2020, 2021) Stress models, however, are still critical and
not yet fully understood. In a real-case application, our scenarios would be the end point
of a stress calibration, whereby the stress state of a volcanic region is constrained through a
statistical procedure aiming at matching dike simulations with observations, such as past vent
locations (Rivalta et al., 2019), orientation of exposed dikes (Maerten et al., 2022) or focal
mechanisms (Zhan et al., 2022). Our model is well-suited for such purpose. Once the stress is
calibrated, it may be used to perform a long-term forecast on future vent locations, while the
more sophisticated model may be employed to produce short-term propagation scenarios for
incipient dike intrusions.
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Chapter 4
A framework for physics-based forecast of
eruptive vent locations in calderas

Abstract
Constraining the crustal stress state of volcanoes is critical to understand many mechanical
processes associated with volcanic activity. Dike pathways, in particular, are modulated by
the orientation of principal stress axes. Accurate models of dike trajectories rely, therefore, on
accurate estimates of stresses in the subsurface. Those same models are also a key element in
volcanic hazard assessment, as they may be used to forecast the locations of future eruptive
vents. This work develops a framework to constrain the stress state of calderas combining
physics-based models of crustal stress and stress-driven dike pathways in three dimensions with
a Monte Carlo approach, and using past vent locations as observables. Then, it shows how to
employ the retrieved stress state to produce probability maps of future vent opening across a
caldera. We test our stress inversion and vent forecast approach on synthetic scenarios, and find
it successful to varying degrees. We discuss how the performance of the approach is sensitive
to the assumptions in the models and prior information on the model parameters, explore its
potential and limitations, and discuss how it may be applied to real calderas.

4.1 Introduction
Volcanoes host a wide range of mechanical processes modulated by stress, from seismicity to
the emplacement of magmatic intrusions. The stress in the subsurface of volcanic systems
results from the interplay of several mechanisms, such as the gravitational loading due to
the progressive accumulation of erupted material (McGuire and Pullen, 1989; Walter et al.,
2005; Roman and Jaupart, 2014), the inflation or deflation of a magma reservoir (Muller and
Pollard, 1977; Pansino and Taisne, 2019) or the viscoelastic relaxation of overheated rocks
(Del Negro et al., 2009; Head et al., 2019). The stress changes induced by such mechanisms
trigger seismicity and faulting (e.g. Rubin and Gillard, 1998; Roman and Cashman, 2006).
Fluid circulation in hydrothermal systems is also influenced by stresses, as they promote or
hinder rock failure and, thus, may change rock permeability (Beeler and Hickman, 2004; Taira
and Brenguier, 2016). Hydrothermal activity, in turn, is a significant source of deformation and
stress change at many volcanoes (Rinaldi et al., 2010; Fournier and Chardot, 2012; Currenti
et al., 2017).

Among the numerous stress-driven and stress-modifying processes, magmatic dikes are es-
pecially important in the context of volcanic eruptions. Dike-fed eruptive vents are commonly
observed at volcanoes worldwide (Acocella and Neri, 2003; Michon et al., 2015; Patrick et al.,
2019b), regardless of whether an open conduit is available (Jónsson et al., 1999; Smittarello
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et al., 2022). As widely discussed in previous works (see e.g. Anderson, 1937; Dahm, 2000a;
Roman and Jaupart, 2014; Rivalta et al., 2015) and suggested by empirical evidence (e.g. Muller
and Pollard, 1977; Gudmundsson, 1995), dike pathways in the subsurface, as well as the orien-
tation of dike-fed fissures, are roughly controlled by the local orientation of the elastic principal
stress axes in the host rock. Thus, models of dike pathways rely on accurate models of the stress
field (Davis et al., 2020), and modeling the stress state of a volcano with a sufficient spatial
resolution might hold the key to forecast where a dike will breach the surface. This would mark
an important advance in volcanic hazard assessment, since many models of volcanic hazards,
such as lava flows (e.g. Connor et al., 2015; Gallant et al., 2018; Musacchio et al., 2021) and
pyroclastic density currents (e.g. Neri et al., 2015; Reyes et al., 2018), rely on the estimate of
where future eruptions are more likely to occur (Connor et al., 2015).

Quantifying the stress field in volcanic areas with the sufficient spatial resolution to determine
the local curvature of dike pathways is not trivial, as in-situ measurements (see e.g. Jaeger et al.,
2007, chap. 13.6, 13.7) are typically sparse, and so are stress indicators such as earthquake
focal mechanisms (e.g. Roman et al., 2004; D’Auria et al., 2015; Aoki, 2022). Recently, new
strategies have been proposed. Rivalta et al. (2019) calibrated the crustal stress of the Campi
Flegrei caldera, Italy, so that the location of the magma chambers and the trajectories leading
dikes from such chambers to the surface were consistent with the locations of past vents. To do
so, they combined a Monte Carlo optimization approach with a physics-based model of stress-
driven dike pathways in two dimensions (2D). The optimized parameters were the magnitudes
of tectonic extension and the gravitational unloading generated by the presence of the caldera
depression. Mantiloni et al. (2021b) tested the strategy further with analog models. They
recorded the arrival points of air-filled cracks propagating through gelatin blocks, splitting them
into a training and a validation set. They used the former to constrain the stress state within
the gelatin through an efficient Markov Chain Monte Carlo (MCMC) approach, minimizing the
misfit between arrival points of modeled and observed crack trajectories. Starting points for
cracks in the models were fixed a priori to the actual ones of the experiments. The forecast
approach was then tested on the observed arrivals of the validation set. Dike propagation and
stress models, however, were still 2D.

More recently, Maerten et al. (2022) presented a stress inversion strategy for exposed dike
distributions in inactive volcanic fields. The strategy constrains tectonic stress and magma
chamber overpressure by matching dike trajectories predicted by modeled orientations of prin-
cipal stresses with those observed from exposed dikes or past eruptive fissures. Their strategy,
however, is difficult to apply to active volcanoes, where the pathways of past dikes are not
known. Moreover, gravitational loading stresses, which are often found to be dominant in
volcanic settings (Roman and Jaupart, 2014; Corbi et al., 2015; Heimisson et al., 2015), were
neglected. Zhan et al. (2022) considered focal mechanisms of recorded earthquakes to con-
strain stress. They modeled the evolving stress field (i.e., the observed rotation of fault plane
solutions) during an unrest episode at Augustine volcano, Alaska, using a trial-and-error opti-
mization with a range of three-dimensional (3D) stress models. Such models considered tectonic
stress, gravitational loading due to the volcanic edifice and a static dike with fixed size, shape
and orientation. As such, they rely on assumptions on one stress source, namely the inflating
dike, to constrain the others.

All the stress optimization strategies mentioned so far have the potential to improve our
understanding of the stress state in volcanoes. Future advances should combine 3D models
with realistic topographies (Zhan et al., 2022) and automated stress optimization frameworks
(Rivalta et al., 2019; Maerten et al., 2022), rather than relying on trial-and-error approaches.
Rivalta et al. (2019) and Mantiloni et al. (2021b) went a step further and used the results
of the stress inversion to make quantitative predictions on the locations of future eruptions.
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Moreover, they used only a subset of the available observations to constrain the stress field,
and set aside the rest for testing the forecast. However, the strategy of Rivalta et al. (2019)
comes with several limitations: most importantly, the stress model was 2D plane strain, and
dike pathways were modeled as 2D streamlines perpendicular to the least-compressive principal
stress axis (Anderson, 1937). Moreover, dikes were assumed to start at the edge of a sill-like
magma reservoir, and the stress optimization algorithm required an extremely large number of
stress models and simulations of dike trajectories. Such limitations have hindered the potential
of the strategy.

While 3D stress models have been available for decades (e.g. McTigue and Mei, 1987; McGuire
and Pullen, 1989), fully 3D models of dike trajectories have been developed only recently by
Davis et al. (2020, 2021). A stress optimization strategy, however, requires large numbers of
simulations and, therefore, a 3D dike model with minimal computational cost. Such a model
was recently developed by Mantiloni et al. (2023a). Other issues, such as how to optimize the
parameters of a 3D stress field with realistic topographies, are still unresolved. Another critical
point, only hinted by Rivalta et al. (2019), is that gravitational loading/unloading is due to
both topography and rock density layering, and a 3D stress optimization needs to constrain
both.

In this study, we develop a stress inversion method in 3D that accounts for gravitational
loading due to realistic topographies, and allows us to forecast the future locations of vents.
First, we describe the information on magma storage and dike nucleation zones in the crust with
probability density functions. Then, we backtrack dikes from known vents down through the
crust, and optimize the stress model so that the backtracked trajectories intersect the regions
of highest melt availability or dike nucleation probability. We eventually calculate forward dike
trajectories on the basis of the outcomes of the stress inversion, and produce probability maps
of future eruptive vents.

We test our strategy on the synthetic scenarios from Mantiloni et al. (2023a), so that we can
explore the performance and drawbacks of the strategy on known settings.

4.2 Methods
4.2.1 Forward and Inverse Problem Formulation
Consider the setting of Figure 4.1a, described in a Cartesian reference frame where the z-axis
is positive upward. We observe N vents, Vk, k = 1, ..., N , across a volcanic area. Vk are the
results of a physical process that leads dikes from a dike nucleation zone, D, to the surface. In
nature, eruptions are often initiated with a dike breaching the surface and opening one or more
fissures (Reches and Fink, 1988; Muirhead et al., 2016), which may progressively evolve into
spatter cones (Ida, 1992; Fukushima et al., 2010; Pedersen et al., 2022). Consequently, defining
the location of an eruptive vent as a point in space is a drastic simplification and involves
some uncertainty. Here, we take a simplifying assumption and define the vent locations, Vk, as
points, with each Vk produced by a different dike. We later discuss how to include both the
fissure orientation and the spatial uncertainty on Vk in our method.

Identifying D is also challenging, since it requires both knowledge of where magma is stored in
the subsurface, and assumptions on where dike nucleation is more likely to occur. We describe
D in terms of a probability density function (PDF) p(x, y, z) such that the probability of dike
nucleation in a volume Ω in the crust is∫

Ω
p(x, y, z)dV (4.1)



Chapter 4 A framework for physics-based forecast of eruptive vent locations in calderas 56

𝑫
-5

-10

-15

z (km)

0

5

010
-10

y (km)
-10 0 10

x (km)

a)

𝑩𝒌

b)

-5

-10

-15

z (km)

0

5

010
-10

y (km)
-10 0 10

x (km)

𝒓

𝝋

z

y x

𝑺𝒌

𝑽𝒌

Figure 4.1: Synthetic caldera setting and inverse problem. a): N=5 eruptive vents (triangles) with locations
Vk, and respective backtracked dike trajectories, Bk (colored curves), crossing the dike nucleation zone, D. D is
described by the probability density function p. Red gradients represent the value of p from higher (intense red)
to lower (white). b): Cartesian reference frame, with the origin at the center of the caldera, and coordinates r,
ϕ of the cylindrical reference frame with the same origin.
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where dV = dxdydz. We discuss the specific choices of p used in this study in Section 4.2.4.1.
Dike pathways from D to Vk are controlled by the stress field in the host rock. We assume the

host rock is homogeneous, isotropic and linearly elastic, with density ρr, Young’s modulus E and
Poisson’s ratio ν. We describe the state of stress in the host rock by a stress tensor σij(x, y, z).
Tensional stresses are positive. We refer to the magnitudes of principal stresses, from most
compressive to least compressive, as σ1, σ2, σ3, and to the principal stress eigenvectors as v⃗1,
v⃗2, v⃗3, respectively.

We consider a model of dike trajectories, controlled by q stress parameters (θ1, ..., θq ≡ θ⃗) and
m dike parameters (ζ1, ..., ζm ≡ ζ⃗). The model takes a starting point, Sk ∈ D, and calculates a
dike trajectory, Fk: a curve that links Sk to the vent location Vk unambiguously:

Fk = f(θ⃗, ζ⃗ , Sk) : Sk ∈ D → Vk, k = 1, ..., N (4.2)

We describe Sk ≡ (rk, ϕk, zk) with a cylindrical reference frame where r =
√

x2 + y2 and ϕ is
the angle measured on the x − y plane counterclockwise from the positive x-axis, as shown in
Figure 4.1b. This describes the direct problem of dike pathways calculation.

The known quantities are generally the vent locations Vk, while the stresses and the starting
points Sk are typically unknown. Dike trajectories Fk may be partially known in eroded volcanic
systems (e.g. Poland et al., 2008; Roman and Jaupart, 2014) or in few well-monitored dike
emplacement episodes (e.g. Sigmundsson et al., 2015; Xu et al., 2016; Davis et al., 2020), but
are here treated as unknown. We then formulate the backward problem as:

Bk = fB(θ⃗, ζ⃗B, Vk) : Vk → D, k = 1, ..., N (4.3)

that is, we employ a model fB which backtracks the k-th dike trajectory, Bk, from the vent down
through the crust. Bk intersects regions of different dike nucleation probabilities, depending
on the model parameters. We aim to optimize the parameters of the model fB so that Bk

intersects the volumes where that probability is highest.
In order to do so, we define pk = max[p(Bk)], that is, the maximum value of p along Bk. The

point of Bk meeting this condition is taken as the ‘backtracked’ Sk. Then, for N backtracked
trajectories from N vents, we calculate the joint probability density ∏N

k=1 pk. The inverse
problem consists in finding the combination of model parameters θ⃗, ζ⃗ maximizing the joint
probability density. This is equivalent to minimizing a cost function, s, defined as:

s = −2
∑

N
k=1 log (pk) (4.4)

(see e.g. Laine et al., 2008), where each pk corresponds to a ‘probable’ dike starting point, Sk,
given a set of stress parameters. Thus, by minimizing s, we constrain both the model parameters
(θ⃗, ζ⃗) and the coordinates of the dike starting points (Sk, k = 1, ..., N). The solution to the
inverse problem we seek, however, is not limited to finding a model that best fits the data.
Rather, we adopt a Bayesian approach and aim to sample the parameter space of θ⃗ and ζ⃗ to
recover probabilistic estimates of each model parameter. Such estimates will take the form of
PDFs accounting for uncertainties in observations and the model itself.

In the following sections, we describe the stress and dike models, outline the statistical method
we use to minimize s, and introduce the synthetic scenarios used to test such a method. We
anticipate that, in the implementation presented in this work, we fix the dike parameters (ζ⃗)
and sample only the distributions of the stress parameters (θ⃗). We collect all abbreviations and
parameters introduced throughout this work in Table 4.1.



Chapter 4 A framework for physics-based forecast of eruptive vent locations in calderas 58

Table 4.1: Abbreviations, symbols and parameters.
Description Symbol Units
Abbreviations
PDF Probability Density Function
BE Boundary Element
MCMC Markov Chain Monte Carlo
General framework
Coordinates (cartesian) x, y, z m
Coordinates (cylindrical) r, ϕ, z m,rad,m
Vent locations Vk(x, y, z)
Number of vents N
Dike starting points Sk(r, ϕ, z)
Dike nucleation zone D
PDF describing D p(x, y, z)
Stress parameters vector θ⃗

Dike parameters vector (forward/backward) ζ⃗/ζ⃗B

Dike parameters
Magma density ρm kg/m3

Forward/backtracked dike trajectories Fk/Bk

Dike radius c m
Backtracked dike radius cB m
Number of observation points n
along the dike tip-line
Host rock properties and stress field
Host rock density ρr kg/m3

Mode I stress intensity factor K Pa
√

m
Fracture toughness KC Pa

√
m

Young’s modulus E Pa
Poisson’s ratio ν
Stress tensor σij(x, y, z) Pa
Principal stress axes v⃗1, v⃗2, v⃗3
Principal stress intensities σ1, σ2, σ3 Pa
Stress parameters
Caldera depth d m
Resurgent dome height h m
Tectonic stress tensor σT

ij Pa
MCMC, p parameters and vent forecast
Data vector d⃗
Model vector m⃗
Number of MCMC iterations M
Proposal distribution N
N covariance matrix Σprop

Cost function s
p mean vector µ⃗ m
p covariance matrix Σ m2

p shape vector λ⃗
Standard deviation δ
Number of forecast simulations MF

Vent density VD
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4.2.2 Dike Propagation Model
We adopt the ‘Simplified Analytical Model’, or ‘SAM’, developed by Mantiloni et al. (2023a),
as our forward and backward model of dike trajectories in Equations 4.2 and 4.3. SAM is a
simplified but computationally efficient model of dike pathways in 3D, and provides an equiva-
lent to the v⃗3-perpendicular streamline approach in 2D (see e.g. Anderson, 1937; Pollard, 1987;
Rivalta et al., 2019). SAM is also capable of backtracking dike trajectories from a point, either
on or below the surface, down through the crust.

The dike is modeled as a penny-shaped crack with fixed radius c (called ‘backtrack radius’, cB,
when backtracking trajectories). The crack starts perpendicular to the local v⃗3, and remains so
along the whole trajectory. The crack advances in the direction of the maximum mode-I stress
intensity factor K, computed at n points along its tip-line. K is determined by the gradient of
the density contrast between magma and host rock and that of the external stresses, calculated
across the plane of the crack (Mantiloni et al., 2023a). Thus, SAM requires a model for the
stress field within the host rock, as well as the magma density, ρm. The sets c, n, ρm and
cB, n, ρm constitute the dike parameters ζ⃗ and ζ⃗B in Equations 4.2 and 4.3, respectively. SAM
is not equipped to model dike propagation at very shallow depths (≤1 km), where inelastic
processes (e.g. plastic and poroelastic deformation) might play a significant role. Besides,
in the simulations presented here, SAM trajectories are stopped before drawing near the free
surface, as clarified later.

We also consider a dike pathway model where the 3D shape of the dike is free to change
in response to external conditions and magma pressure. We refer to the model, developed by
Davis et al. (2020, 2021), as ‘Three-dimensional Intrusion Model’, or ‘TIM’. TIM dikes have a
fixed volume, V , and are represented by a mesh of triangular dislocations (Nikkhoo and Walter,
2015). The meshed crack can start with arbitrary shape and orientation. During propagation,
it advances and retreats according to the ratio between K computed at all the dislocations lying
on the dike tip-line (Davis et al., 2019) and the fracture toughness of the host rock, KC . When
TIM is used, the set V, KC , ρm constitute the dike parameters ζi in Equation 4.2. Although we
do not apply TIM in this study, the model was employed in some of the synthetic scenarios by
Mantiloni et al. (2023a) which we later use to test our stress inversion.

4.2.3 Stress Model: a Modular Description of Gravitational Loading
The stress model in our inverse problem needs to meet the following requirements: 1) parsimo-
nious, that is, dependent on few parameters that can be effectively constrained with scarce and
sparse data; 2) fast and flexible, so that large numbers of stress calculations can be carried out
for arbitrary variations of one or multiple parameters; 3) accurate at depth, but not necessarily
so near the surface, since we do not model shallow dike propagation.

As a consequence of 1), the stress model needs to capture the dominant stress sources
in volcanic systems in the simplest way possible. Tectonic stresses and gravitational load-
ing/unloading are the dominant stress sources in many volcanic regions (see e.g. Roman and
Jaupart, 2014; Corbi et al., 2015; Heimisson et al., 2015; Rivalta et al., 2019; Mantiloni et al.,
2023a). Following that reasoning, we limit our stress model to these two stress mechanisms. We
focus our modeling effort on gravitational loading/unloading, while we assume uniform tectonic
stresses throughout the crust.

Gravitational loading/unloading can be broken down to two contributions: one due to the
topography, and one originating from layers or inclusions of varying density in the subsurface.
In fact, a flat topography having important local shallow density heterogeneities, such as the
infill of a caldera, leads to stress heterogeneities in the crust similar to the ones caused by
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surface loads. Most models of gravitational loading/unloading can be summarized into two
approaches. In the first, positive or negative pressures, standing for the loads or decompression
due to a relief or a depression, respectively, are locally imposed on a flat free surface (e.g.
Dahm, 2000a; Muller et al., 2001; Pinel and Jaupart, 2004). Surface pressures can be adjusted
to account for shallow density heterogeneities (e.g. Maccaferri et al., 2014; Corbi et al., 2015).
In the second approach, more sophisticated numerical models consider the real topography and
the effect of gravity (e.g. McGuire and Pullen, 1989; Chadwick and Dieterich, 1995; Corbi et al.,
2016). Stresses are then calculated both within the topography and in the underlying crust. In
both cases, the crust is often assigned a uniform density, although a layered crust can also be
considered, at the price of a more complex model.

The two approaches give similar results (e.g. Ferrante et al., 2022). However, the first ap-
proach has the limitation that dikes cannot propagate within the topography itself, which is
required if we are to backtrack dike trajectories from vents that do not lie on a flat surface.
Thus, we adopt the second approach, and modify it in order to account for the often important
density heterogeneities in the shallow crust of volcanic areas. This is done by adjusting the
height of specific topographic elements in a volcanic area to constrain an ‘effective stress model’
that includes the effect of local crustal density layering, while assuming a homogeneous density
(Figure 4.2a,b). We neglect the effect of large inclusions having different densities, although in
volcanic areas they may be present (e.g. Chiarabba et al., 2000; Peacock et al., 2015) and have
a significant effect on the stress state.

Consider the example drawn in Figure 4.2a, with a caldera of depth d and density layers
within the caldera infill. We can model the combined gravitational loading of the caldera
depression and infill through an ‘effective topography’, by adjusting the current caldera floor
according to an ‘effective depth’ d′, while assuming a homogeneous density ρr for the whole
crust, as shown in Figure 4.2b.

In general, d′ is unknown and we aim at recovering it from the stress inversion procedure. The
‘effective unloading pressure’ of the caldera is then given by P U = ρrgd′. The d′ we constrain
depends on the ρr we fix, but different combinations of d′ and ρr yield the same P U . At the
level of approximation of the stress field that we seek here, we may assume that the shape of
the effective caldera topography may be similar to the current caldera floor topography, except
that it is scaled so that its maximum depth matches d′.

The same argument can be applied to other topographic features, and we can retrieve for
each of them an effective depth or height that accounts for the unknown density layering within
them. Such effective depths and heights can then be employed to adjust the elevation of the
respective topographic elements and calculate a comprehensive stress model. We note that,
in principle, we could fix the topographic elevation and constrain, instead, an ‘effective rock
density’ for each topographic element.

We write our stress model following Rivalta et al. (2019) and Mantiloni et al. (2023a) as:

σij(x, y, z) − σ0
ij(z) = σT

ij + σST
ij (x, y, z) + P UGU

ij(x, y, z) + P LGL
ij(x, y, z) (4.5)

where σT
ij represents the horizontal tectonic stresses, and the gravitational loading/unloading

contribution is separated into three parts as follows. σST
ij (x, y, z) is the stress associated to

the ‘set topography’ (ST): that is, topography which predates the volcanic activity and has
not been significantly altered by it. σST

ij (x, y, z) is treated here as a known stress contribution.
The remaining two contributions arise from topography that has been generated by volcanic
activity. P UGU

ij(x, y, z) is the contribution of the unloading due to the formation of topographic
depressions, such as calderas, while P LGL

ij(x, y, z) is the contribution of the loading due to
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Figure 4.2: Illustration of the single-mesh and compound-stress methods. a): Cross section of a realistic
caldera of depth d1, where the collapse floor is buried at depth d0. The deep melt accumulation volume and the
rock layers of various densities outside and within the caldera collapse floor are represented with different colors.
b): Modeling of the setting in (a) according to the compound-stress method. We assume the same density for
the whole crust. The topography outside the caldera is taken as ST, whilst we account for the density layering of
the caldera refill by adjusting the depth d′ of the mesh representing the caldera. c): Original topographic mesh
employed in the ‘Elliptic-Caldera’ scenario by Mantiloni et al. (2023a). The depth and height of the caldera
and the resurgent dome are, respectively, d and h. d): Mesh representing the Set Topography (ST). e): Mesh
representing the ‘reference caldera’ with depth dref ; here, dref >d. f): Mesh representing the ‘reference dome’
with height href ; here, href >h. (c), (d), (e) and (f) share the same color scale, shown on the right side of the
figure.
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topographic highs, such as cones or resurgent domes. Gk
ij(x, y, z) are adimensional, space-

dependent functions expressing how each stress mechanism acts at any point in space, while
P U,L represent the unloading/loading pressures associated with the topographic features. We
write them as:

PU = ρrgd; PL = ρrgh (4.6)
where g is the acceleration due to gravity, and d and h represent, respectively, the maximum
effective depth and maximum effective height of a depression and a relief. If multiple topo-
graphic features are present, the terms P UGU

ij(x, y, z) and P LGL
ij(x, y, z) in Equation 4.5 may

be repeated accordingly. Here, we treat ρr as a fixed parameter, and d and h as free parameters,
together with the components of σT

ij. The inverse problem, thus, translates in an inversion for
d, h and σT

ij.
A notable result by both Rivalta et al. (2019) and Mantiloni et al. (2021b) was that dike

trajectories are controlled not so much by the individual stress parameters as by their ratios.
Hence, we write the ratios between the tectonic stress components and the loading/unloading
pressures:

Rxx = σT
xx

P U
; Ryy =

σT
yy

P U
; Rxy =

σT
xy

P U
; Rh = P L

P U
= h

d
(4.7)

In summary, our stress inversion aims at constraining the stress parameters d, h and the three
independent components of σT

ij, or the ratios Rij and Rh (i,j = x,y). We note that constraining
σT

ij is equivalent to constraining the principal tectonic stresses and their orientation.
We calculate gravitational loading/unloading with two methods, which we call ‘single-mesh’

and ‘compound-stress’, tailored for single-purpose stress calculations and for stress param-
eter optimization, respectively. In both methods, we use the Boundary-Element (BE) tool
Cut&Displace (Davis et al., 2017, 2019). The single-mesh method works by representing the
entire topography with a mesh of triangular dislocations (Nikkhoo and Walter, 2015), acting
as BEs. First, we fix a datum level z = 0 (Mantiloni et al., 2023a) and, later, assign to each
BE stress boundary conditions so as to achieve a free surface condition (Martel and Muller,
2000; Slim et al., 2015). As discussed by Mantiloni et al. (2023a), different topographic features
may require different datum levels: hence, it is important to separate the P U and P L terms in
Equation 4.5, even though they arise from the same stress-generating mechanism. We create
meshes using the open-source tool DistMesh by Persson and Strang (2004).

The single-mesh method, however, is ill-suited for running the large number of stress models
needed to sample the effective d and h. Hence, we introduce the compound-stress method, which
involves calculating separate meshes for the stress contributions due to different topographic
features. For example, consider the synthetic scenario ‘Elliptic-Caldera’ from Mantiloni et al.
(2023a), reported in Figure 4.2c. The scenario includes a caldera hosting a resurgent dome
and surrounded by gently-sloping topography. In the single-mesh method, all such topographic
features are included in the same mesh and share the same datum level. In the compound-
stress method, instead, the stress calculation is broken down into three parts: ST (Figure 4.2d),
unloading due to the caldera (Figure 4.2e) and loading due to the resurgent dome (Figure 4.2f).
In order to do so, we employ three different meshes for each part. Such meshes are flat and set to
the respective datum level everywhere, except for the topographic element they are associated
with.

We rewrite Equation 4.5 as

σij(x, y, z) − σ0
ij(z) = σT

ij + σST
ij (x, y, z) + PUIdref

ij (x, y, z) + PLIhref

ij (x, y, z) (4.8)

where σST
ij (x, y, z), Idref

ij (x, y, z) and Ihref

ij (x, y, z) are the stress contributions of ST, caldera and
resurgent dome, respectively. σST

ij (x, y, z) is the stress field due exclusively to the gravitational
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loading of the topography outside the caldera, and is calculated through the ST mesh (Fig-
ure 4.2d). Such a mesh reproduces the topography of Figure 4.2c everywhere except within
the caldera rim, where it is flat and set to the datum level of the topography outside the rim.
The caldera mesh (Figure 4.2e) includes a ‘reference caldera’ whose depth is set to a ‘reference’
value, dref , while having the same shape and lateral extent as the one in Figure 4.2c. Then,
Idref

ij (x, y, z) is the stress field induced solely by the reference caldera, normalized by ρrgdref .
The stress contribution of a deeper or shallower caldera with depth d is calculated by rescaling
Idref

ij by PU = ρrgd. The resurgent dome mesh (Figure 4.2f) includes a ‘reference resurgent
dome’ with ‘reference height’ href . Away from it, the mesh is flattened to the datum level of
the dome, that is, the floor of the reference caldera in Figure 4.2e. Then, Ihref

ij (x, y, z) is the
stress field induced solely by the reference resurgent dome, and is calculated similarly to Idref

ij .
Likewise, we obtain the stress contribution of a resurgent dome with h ̸= href by scaling Ihref

ij

by PU = ρrgh. If multiple topographic lows and highs are present, more terms PUIdref

ij and
PLIhref

ij can be added, each associated with its own mesh. We note that all the meshes we use
stem from the same ‘flat’ mesh: that is, the horizontal coordinates of the mesh nodes never
change, we only adjust their height from one mesh to another, as shown in Figure 4.2c,d,e,f.

In a stress inversion, we set dref and href (Equation 4.8) to the midpoint of the sampling
ranges of d and h, respectively. Next, we run three separate single-mesh models for the three
topographic contributions (Figure 4.2d,e,f). We interpolate the resulting
Idref

ij (x, y, z), Ihref

ij (x, y, z) and σST
ij (x, y, z) over a grid of observation points in the subsurface by

linear interpolation on a 3D Delaunay triangulation (e.g. Aurenhammer et al., 2013) of the grid.
Such calculations need to be performed only once at the start of the stress inversion.Finally, we
linearly superpose the interpolated stresses to retrieve the stress for any d and h. For example,
if we have currently sampled d = dm and h = hm, the total stress tensor σij is given by:

σij(x, y, z) = σ0(z) + σT,m
ij + σST

ij (x, y, z) + P m
U Idref

ij (x, y, z) + P m
L Ihref

ij (x, y, z) (4.9)

where P m
U = ρrgdm, P m

L = ρrghm, and σT,m
ij is the current tectonic stress tensor. This approach

effectively cuts the running time of a stress inversion roughly by a factor of about 100.
In order to illustrate the limitations of the compound-stress method, we test it against

the single-mesh method. We consider two end-member cases for the Elliptic-Caldera scenario
(Figure 4.2c), fixing d and h so that they are shallow/short (d=−50 m, h=50 m, Figure 4.3a,b),
or deep/tall (d=−500 m, h=500 m, Figure 4.3c,d). We compare the single-mesh results with the
corresponding compound-stress calculations, having intermediate dref=−225 m and href=225
m.

We calculate Id,href

ij on a grid of points spaced by 400 m along x and y, and by 300 m along z.
We do not include points shallower than 800 m below the mesh, so as to avoid artifacts in the
calculations. In Figure 4.3, we compare the orientations of v⃗3 and the gradients of σ3 in the x, y
and z direction because they control the orientation and driving pressure of the penny-shaped
cracks representing dikes in SAM (Section 4.2.2). Gradients are calculated by computing σ3 on
the same grid, shifted by 1 km in the three directions. Such distance is comparable to the SAM
radii (c) employed in this work. We notice how v⃗3 orientations and gradients for the single-
mesh and compound-stress are similar when the caldera and resurgent dome are shallow/short
(Figure 4.3a,b). In contrast, when d and h are large (Figure 4.3c,d), we see some discrepancies,
especially in the region below the resurgent dome (dark-red boxes in Figure 4.3a,c, having
width and depth equal to the width of the resurgent dome). Discrepancies are largest below
the resurgent dome in the case of v⃗3 orientations, while we see some discrepancies in the σ3
gradients also outside of the boxes, limited to a few hundreds Pa/m, which is small compared
to the loading pressure of either resurgent domes (e.g., ρrgd=∼1.2 MPa for the short dome,
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Figure 4.3: v⃗3 directions and σ3 gradients calculated for the Elliptic-Caldera scenario with the single-mesh and
compound-stress methods. Results from the single-mesh method are shown in red, those from the compound-
stress method in blue. All rows include, from top to bottom: view of the setting and the observation points
where stresses are evaluated; comparison between v⃗3 directions; comparison between σ3 gradient along the x,
y and z direction. In all tests, the reference depth and height employed in the compound-stress methods are
dref =−225 m and href =225 m, respectively. a): The setting considered here has d=−50 m, h=50 m; the
observation point grid lies along the x-axis. b): Same setting as (a), grid along the y-axis. c): The setting
considered here has d=−500 m, h=500 m; the observation point grid lies along the x-axis. d): Same setting
as (c), grid along the y-axis. The green profiles in the stress plots are the topographic profiles shown in the
first row as red, dotted lines on the meshes. The dark-red boxes in columns (a) and (c) mark the width of the
resurgent dome (∼5 km) and the depth interval where we expect the stress contribution of the resurgent dome
to be significant, and the largest differences in v⃗3 orientations and gradients to occur.
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with ρr=2500 kg/m3). In conclusion, the compound-stress results are, at least in the presented
case, an acceptable approximation of single-mesh stresses at depth, but much less so as we
approach to the surface, and may differ considerably if complex and prominent topographies
are considered. In particular, a tall resurgent dome (Figure 4.3c) seems to affect the results
much more than a deep caldera (Figure 4.3d). Given the way the compound-stress calculation is
constructed, the free surface condition will not be met exactly across the topography. Therefore,
we advise caution with its use, and suggest testing it thoroughly against the single-mesh method
for the end-members of any sampling range of stress parameters, and adjusting them if large
discrepancies are found.

4.2.4 Stress Inversion Approach
The last element needed to solve the inverse problem defined in Section 4.2.1 is an efficient
method to sample the parameter space and retrieve posterior PDFs for the stress parameters.
Following Bayes’ Theorem (e.g. Gelman et al., 2013) and the inverse problem formulation of
Section 4.2.1, we calculate the posterior PDF as:

P (m⃗|d⃗) ∝ P (d⃗|m⃗)P (m⃗) (4.10)

where m⃗ and d⃗ are the model and data vectors, respectively. The likelihood function P (d⃗|m⃗)
is the cost function s defined in Equation 4.4, and P (m⃗) is the prior information on the model
parameters.

In general, m⃗ includes both the stress (θ⃗) and dike (ζ⃗B) parameters in Equation 4.3), as well
as the dike nucleation PDF, p, introduced in Section 4.2.1. Here, we fix SAM parameters (ζ⃗B)
and the host rock properties (Table 4.1), so that the model vector is:

m⃗ = θ⃗ = [d, h, σT
xx, σT

yy, σT
xy, p] (4.11)

We note that p is both an input and an output of our stress inversion. Thus, the p we assume
before starting the procedure is part of the prior information, P (m⃗). We do not invert for p
directly, but rather recover a posterior p through the distribution of backtracked dike starting
points from the stress inversion (see Section 4.2.1).

The data vector, d⃗, consists of the locations Vk of N vents:

d⃗ = [Vk], k = 1, ..., N (4.12)

Similar formulations of Bayesian inverse procedures including physics-based models have been
adopted by Anderson and Segall (2013); Anderson and Poland (2016).

Here, we sample P (m⃗|d⃗) by adopting the Delayed Rejection and Adaptive Metropolis Markov
Chain Monte Carlo algorithm (MCMC for brevity) by Haario et al. (2006). We employ the
open-source MCMC Toolbox by Laine (2013).

We fix M as the number of iterations of the MCMC. The MCMC chain starts with a set
of stress parameters drawn randomly from their respective prior distributions. Then, for each
iteration, the MCMC samples a set of stress parameters as:

θ⃗m = θ⃗m−1 + ξ⃗ (4.13)

where m is the current iteration and ξ⃗ is drawn from the proposal distribution N (⃗0, Σprop), that
is, a multivariate normal distribution with null mean vector and covariance matrix Σprop.
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Figure 4.4: Illustration of the three types of PDF for the dike nucleation zone considered in this work. The
trivariate normal distribution (TND) is shown in red, the torus-shaped distribution (TSD) in blue, and the
skewed, trivariate normal distribution (STND) in green. Color gradients represent the value of p from higher
(intense color) to lower (white).

Next, we compute the stress model associated to θ⃗m and backtrack N dike trajectories from N
vents. Backtracked dike trajectories (Bk, k = 1, .., N) are stopped once they become horizontal
and start ascending or, alternatively, reach a given threshold in r or z (see Figure 4.1). We
fix such threshold to r = 10 km, z = −10 km throughout the work. We then interpolate each
Bk by Piecewise Cubic Hermite Interpolation (e.g. Rabbath and Corriveau, 2019), and find the
point where p(x, y, z) is highest. Finally, we evaluate the cost function s (Equation 4.4).

4.2.4.1 Dike Nucleation Zone PDFs

The cost function s is informed by the choice of p (Equation 4.4). Such a choice is, in turn,
informed by the knowledge we have about the magma storage system and the processes that
promote or hinder dike nucleation. For instance, we may have some information on the location,
size and shape of a magma reservoir from seismic tomography or inversion of ground deformation
data. If the reservoir is sill-like, we may deem dike nucleation to be favored along the edge
of the sill, due to the high stress concentration predicted there by elastic deformation source
models (e.g. Fialko et al., 2001). D could then be described by a torus-shaped p, peaking along
the boundary of the magma reservoir.

We consider three types of p: a trivariate normal distribution (TND), a torus-shaped dis-
tribution (TSD) and a skewed, trivariate normal distribution (STND). They are examples of
possible choices for p, each applying to different assumptions on the reservoir size and shape,
as well as where dikes nucleate from. Examples of the three PDFs are illustrated in Figure 4.4.

The TND PDF (e.g. Prince, 2012) is written as:

pT ND(x, y, z) = 1
(2π) 3

2 |Σ| 1
2

exp
[
−1

2(x⃗ − µ⃗)T Σ−1(x⃗ − µ⃗)
]

(4.14)
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where Σ is the covariance matrix, |Σ| its determinant, x⃗ = (x, y, z) and µ⃗ is a vector identifying
the mean of the distribution, that is, the center of the reservoir, with components (µx, µy, µz).
Σ, which we always assume diagonal, accounts for the uncertainty on the size of the reservoir.
When we employ the TND, we assume that dikes may have nucleated from anywhere in the
magma storage region, with higher probability closer to its center.

The TSD PDF is obtained from a bivariate normal distribution defined over the r, z cylin-
drical coordinates, normalized by 2π:

pT SD(r, z) = 1
(2π)2|Σ| 1

2
exp

[
−1

2(q⃗ − µ⃗)T Σ−1(q⃗ − µ⃗)
]

(4.15)

where Σ is the correlation matrix, q⃗ = (r, z) and µ⃗ is the mean of the distribution, with
components (µr, µz). We assume a diagonal Σ here as well. When we employ the TSD, we
assign the highest probability of dike nucleation on a torus surrounding the boundary of the
reservoir.

We use the STND to assign higher probability of dike nucleation to the shallower region of
a reservoir. The STND PDF (O’Hagan and Leonard, 1976) is written as:

pST ND(x, y, z) = 2pT ND(x, y, z)Φ(λ⃗, x⃗) (4.16)

where pT ND(x, y, z) is the TND described in Equation 4.14, and Φ(λ⃗, x⃗) is the cumulative
distribution of a standard normal PDF, where the components of x⃗ are scaled by the shape
parameters λ⃗ = (λx, λy, λz):

Φ(λ⃗, x⃗) = 1
2

1 + erf

 λ⃗ · x⃗√
2

 (4.17)

We remark that such PDFs are non-truncated, as p is non-zero everywhere. While this
formally means that we assign a non-zero probability of dike nucleation above the free surface,
it poses no issue, since SAM may backtrack dikes only in the subsurface.

4.2.5 Forecast Approach
The output of the stress inversion described in Section 4.2.4 is a set of posterior PDFs for the
stress parameters (d, h, σT

xx, σT
yy, σT

xy), as well as the dike starting points (Sk ≡ [rk, ϕk, zk],
k = 1, ..., N). The posterior PDFs of the stress parameters ratios (Rxx, Ryy, Rxy, Rh, see
Equation 4.7) are retrieved through post-processing.

We now describe how we use the stress inversion results to produce a probability map of
eruptive vent opening:

1. We fix the number MF of simulations of dike trajectories we want to perform. These are
calculated by SAM in forward mode (Section 4.2.2).

2. We draw MF random d, h, σT
ij from their respective PDFs.

3. We draw MF random starting points for the current dike trajectory from the PDFs of Sk.
If the PDFs of ϕk are peaked about specific starting angles of dikes, we may smooth the
ϕk PDFs before doing so. We explain this point in detail later.
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4. We set the forward SAM radius c to the cB assumed in the respective stress inversion,
and treat the magma density (ρm) and the host rock parameters (Table 4.1) as known
quantities.

5. We calculate the MF stress models with the compound-stress method, where we fix dref

and href to the median values of the d and h PDFs.

6. We run MF simulations of forward dike trajectories with SAM, each corresponding to a
set of stress parameters.

7. We set aside the MF
stop dike trajectories which stopped before reaching the MDT.

8. We stack the arrival points of the remaining MF − MF
stop dike trajectories and produce a

map of vent locations and fissure strikes across the caldera.

9. We calculate the vent density, VD, that is, the number of vents falling within each trian-
gular dislocation of the topography mesh, normalized by MF − MF

stop and the area of the
dislocations.

10. We compare the vent distributions and VD maps to the location of validation vents that
were not considered in the stress inversion.

As we show later, the PDFs of the dike starting angles, ϕk, may be peaked around specific
values. Consequently, if we sample starting angles from those PDFs in point (3) of our forecast
strategy, the arrival points of forward SAM trajectories may cluster in very localized areas.
Furthermore, doing so implies the assumption that dike nucleation is favored only at specific
angles, without potential physical justifications. Thus, in such cases, we adopt a more conser-
vative approach and smooth the ϕk PDFs through kernel density estimation (see e.g. Silverman,
1986).

We also present a 3D upgrade of the stress-update technique in vent forecasting introduced
by Rivalta et al. (2019) and later tested by Mantiloni et al. (2021b). Consider a scenario where
the topography of a caldera is changed between two epochs of eruptive activity (e.g. by refill
or resurgence). We perform the stress inversion on the vents that opened before such a change
occurred, and constrain the effective depth d relative to that epoch. Then, we want to test our
forecast on the most recent vents, but in order to do so, we need to account for the topography
and, thus, stress change in the system which cannot have been captured by the inversion. Since
the minimum depth of the refilled caldera, dR, is known, we shift the PDF of d, recovered from
the inversion, so that its median value matches dR. We also shift the upper boundary of the
distribution to d = 0, that is, a completely refilled caldera. Then, in point (2) of the forecast,
we use the shifted PDF to draw MF values of d. Next, in the compound-stress method (point
5), we use the topography of the refilled caldera, which is also known, to build the reference
caldera, and set dref = dR. The forecast can then be tested by comparing its results to the
locations of the most recent vents.

4.3 Testing the Stress Inversion and Vent Forecast
4.3.1 Stress Inversion and Forecast Setup
We test our stress inversion on seven out of the nine synthetic scenarios presented by Mantiloni
et al. (2023a). The scenarios consider progressively more complex topographies, all featuring a
caldera, possibly hosting a resurgent dome and surrounded by different topographic elements,
such as hill ranges and a coastline.
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Besides the topographic setting, the scenarios comprise a set of dike trajectories departing
from a magma storage volume below the caldera. Starting points are either equally-spaced or
randomly drawn along the edge of a horizontal sill, two sills at different depths, or within a
vertically-elongated reservoir. Dike trajectories are calculated through SAM or, in one case,
TIM, producing a set of N arrival points. Both SAM and TIM trajectories stop before exceeding
a Minimum Distance Threshold (MDT, fixed to 800 m) from the closest triangular dislocation
of the topography mesh, in order to avoid artifacts in the stress field. The SAM option of
connecting the arrival point at depth with the surface is sometimes used (Mantiloni et al.,
2023a). Thus, the dike arrival points lie below the surface in some scenarios, and on the surface
in others. All such arrival points are referred to as ‘vents’ in the following.

For each scenario, we divide the vents into a training and a validation set, and employ the first
to constrain the stress parameters through the inversion algorithm described in Section 4.2.4.
In the following, we refer to vents belonging to the training and validation sets as training and
validation vents, respectively.

As anticipated, we fix the Young’s modulus (E = 15 GPa), Poisson’s ratio (ν = 0.25) and
density (ρr) of the host rock, as well as the magma density (ρm = 2300 kg/m3), as known
parameters. Regarding SAM parameters (Section 4.2.2), we fix n = 12. The choice of cB

is critical, since SAM backtracks a dike trajectory accurately only if cB = c, that is, if the
original radius of the forward dike is known. We test both cB = c and cB ̸= c in the inversions
(Table 4.2).

We run eight stress inversions, named after the scenarios by Mantiloni et al. (2023a). We
fix the number of iterations for the MCMC as M = 20, 000 in all our tests. We assume a p to
describe the dike nucleation zone, choosing among the types described in Section 4.2.4.1. We
assign sampling ranges to the stress parameters, and assume the prior PDFs in Equation 4.10
uniform within the respective ranges. Such prior PDFs, together with the assumed p, constitute
the prior information P (m⃗) in Equation 4.10. We initially take Σprop of the proposal distribution
(Equation 4.13) as an identity matrix, and let it be adapted during the MCMC (see Haario
et al., 2006). The fixed parameters are listed in Table 4.2.

We run forecasts on the four stress inversion tests that we deem most instructive. We fix
MF = 20, 000 in all our tests. We set the magma density to ρm=2300 kg/m3, unless we specify
otherwise.

4.3.2 Synthetic Scenarios, Stress Inversion and Forecast Results
Our synthetic tests show that, if the prior knowledge of the original models by Mantiloni
et al. (2023a) is used to set dike parameters and dike nucleation zone PDF, then the stress
parameters and/or ratios are constrained with accuracy and small bias. If we add uncertainty
in our assumptions, the performance of the stress inversion is poorer, leading to more or less
unconstrained or biased posterior PDFs. Individual stress parameters are especially sensitive to
the quality of the prior knowledge, while ratios are generally well-constrained. As a consequence,
vent forecasts are generally quite successful in constraining areas of high vent density that match
the locations of training vents from the original scenarios.

The first stress inversion, ‘Circular-Caldera-Inv’, is performed on the most simplified scenario,
where a circular, axisymmetric caldera lies on a flat surface. Circular-Caldera-Inv represents a
‘dummy test’ where all assumptions closely reflect the original scenario. The results confirm the
conclusions by Rivalta et al. (2019) and Mantiloni et al. (2021b) on 2D settings (Figure 4.5a):
while the PDFs of individual stress parameters are either unconstrained or peaked around
the wrong value, the ratios between tectonic stresses and unloading pressure (Rxx, Ryy) are



Chapter 4 A framework for physics-based forecast of eruptive vent locations in calderas 70

Table 4.2: Stress inversion: fixed parameters and p distributions. FS: free surface. ‘Yes’: dike trajectories are
backtracked from vents on the free surface; ‘No’: they are backtracked from points at or near the minimum
distance threshold.
Inversion From cB ρr p µ⃗

√
Σ λ⃗

FS (km) (kg/m3) (km) (km)
Circular-Caldera-Inv No 1.2 2500 TSD [2, −6] [0.6, 0.2] -
Simplified-Coastline-1-Inv No 0.9 2500 TSD [2, −6] [1, 0.3] -
Simplified-Coastline-2-Inv Yes 1.2 2500 TND [0, 0, −6] [1.5, 1.5, 0.25] -
Tectonic-Shear-Inv No 1.2 2500 TSD [2, −6] [1.2, 0.5] -
Refilling-Caldera-Inv No 1.2 2800 TSD [3, −4] [1.5, 0.3] -
Two-Reservoirs-Inv Yes 1.2 2800 TND [0, 0, −4] [1.5, 1.5, 0.2] -
Elliptic-Caldera-Inv Yes 0.9 2500 STND [−3, 0, −4.5] [0.5, 0.5, 1.2] [0, 0, −5]
Complex-Coastline-Inv No 0.9 2800 TSD [3, −6] [0.6, 0.2] -

Table 4.3: Stress inversion results.
Original stress parameters and ratios

Scenario d h σT
xx σT

yy σT
xy Rh Rxx Ryy Rxy

(m) (m) (MPa) (MPa) (MPa) ·10−1 ·10−1 ·10−1

Circular-Caldera -500 1.0 0.5 0 -0.82 -0.41
Simplified-Coastline -450 1.0 1.0 0 -0.91 -0.91
Tectonic-Shear -450 0.8 0.8 -1.0 -0.73 -0.73 0.91
Refilling-Caldera -424 1.0 0.4 0 -0.86 -0.34
Two-Reservoirs -424 1.0 0.4 0 -0.86 -0.34
Elliptic-Caldera -150 150 1.0 0.6 0 -1.0 -2.72 -1.63
Complex-Coastline -424 1.0 0.4 0 -0.86 -0.34

Median values from stress inversions
Inversion dmed hmed σT,med

xx σT,med
yy σT,med

xy Rmed
h Rmed

xx Rmed
yy Rmed

xy

(m) (m) (MPa) (MPa) (MPa) ·10−1 ·10−1 ·10−1

Circular-Caldera-Inv -780 1.6 0.8 -0.82 -0.44
Simplified-Coastline-1-Inv -1720 2.8 3.0 -0.70 -0.71
Simplified-Coastline-2-Inv -490 1.1 0.9 -0.99 -0.74
Tectonic-Shear-Inv -590 0.9 0.9 -1.1 -0.57 -0.57 0.68
Refilling-Caldera-Inv -340 1.0 0.9 -1.03 -0.89
Two-Reservoirs-Inv -940 1.0 1.0 -0.41 -0.40
Elliptic-Caldera-Inv -250 220 1.5 1.3 -0.9 -2.40 -2.06
Complex-Coastline-Inv -500 1.1 1.1 -0.73 -0.72

Standard deviation
Inversion δd δh δσT

xx δσT
yy δσT

xy δRh δRxx δRyy δRxy

(m) (m) (MPa) (MPa) (MPa) ·10−1 ·10−1 ·10−1

Circular-Caldera-Inv 220 0.4 0.3 0.09 0.09
Simplified-Coastline-1-Inv 320 0.6 0.7 0.14 0.10
Simplified-Coastline-2-Inv 150 0.4 0.5 0.26 0.37
Tectonic-Shear-Inv 270 0.4 0.4 1.0 0.38 0.41 0.72
Refilling-Caldera-Inv 110 0.4 0.4 0.42 0.47
Two-Reservoirs-Inv 360 0.6 0.6 0.50 0.46
Elliptic-Caldera-Inv 70 100 0.4 0.6 0.18 0.91 1.01
Complex-Coastline-Inv 320 0.6 0.6 0.82 0.78
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accurately constrained, their PDFs having the smallest δ among our results and their medians
falling within one δ from the original values (Table 4.3). The coordinates of the dike starting
points are remarkably well-retrieved (Figure 4.7a).

The axisymmetry of the topography is broken in the ‘Simplified-Coastline’ scenario. Here,
a step-like coastline divides the topography into two flat regions of different elevation. We
use this scenario with two inversions. In ‘Simplified-Coastline-1-Inv’ we take cB ̸= c, while in
‘Simplified-Coastline-2-Inv’ we backtrack dikes from the free surface and assume a TND for p,
which does not match well the original dike starting points. In these tests, not only the ratios,
but also the individual stress parameters are either well-constrained, or show a clear peak in
their PDFs (Figure 4.5c and Figure 4.5b, respectively).

In Simplified-Coastline-1-Inv, using cB ̸= c biases the results, as all PDFs are peaked away
from the original values (Table 4.3). In contrast, the PDFs of dike starting coordinates are
well-constrained, especially zk (Figure 4.7b). We use the results of Simplified-Coastline-1-Inv
to run the first forecast, ‘Simplified-Coastline-1-For’. We sample stress parameters from the
‘biased’ stress state recovered in the inversion, and dike starting points from the respective
Sk PDFs (Figure 4.7b). The VD map in Figure 4.8a shows that, even though the recovered
stresses do not match the original stress model, the forecast is still successful in reproducing
the locations of the training vents and predicting those of the validation vents. The area of
highest VD is narrow and focused around the rim where the original vents lie. Vents tend to
cluster in small areas, as shown by the VD contrasts between many neighboring BEs. This is a
consequence of the fact that we do not smooth the PDF of ϕk. On the contrary, the highest-VD

area on the sea side is close to, but does not include, the only offshore vent.
In all our forecasts, a fraction of the MF simulated dikes stops before reaching the MDT. That

fraction generally amounts to roughly MF /5. In Simplified-Coastline-1-For, however, roughly
three fourths of dikes stopped in the subsurface if the original magma density of Simplified-
Coastline (ρm = 2300 kg/m3) is employed. This is due to the fact that ρm controls the driving
pressure in SAM cracks, together with the gradient of σ3 across the crack surface. If σ3 is more
compressive at the top of the crack rather than at its bottom, the dike stops if ρm is not large
enough. The stress parameters retrieved in Simplified-Coastline-1-Inv do not match those of
the original scenario. Consequently, a dike that reaches the MDT along a specific pathway in
the original scenario may stop before the MDT while following a similar pathway in Simplified-
Coastline-1-For, because σ3 is different in the two cases. If we lower ρm, the fraction of stopped
dikes aligns with that of the other tests. Therefore, in the results in Figure 4.8a, we fix the
magma density to the unrealistic value of ρm = 2000 kg/m3.

Simplified-Coastline-2-Inv is successful in constraining both the stress parameters and the
ratios, although the PDF of σyy and Ryy are more spread-out than those of the other parameters
(Table 4.3). zk is also well-constrained (Figure 4.7c), while the PDF of rk peaks close to the
origin. The PDF of ϕk also shows peaks corresponding to the original starting angles, but is
more spread-out than in the previous inversions.

The ‘Tectonic-Shear’ scenario maintains the topography of Simplified-Coastline, but considers
a non-zero shear component of the tectonic stress tensor (σT

xy): that is, the principal tectonic
stresses are rotated with respect to the coordinate axes. Thus, in ‘Tectonic-Shear-Inv’, we
consider four stress parameters. Also in this case, the prior knowledge reflects the original
scenario. We fail to constrain any individual parameter, with the exception of d, but we
constrain the ratios Rxx, Ryy, Rxy with sufficient accuracy (Figure 4.6a, Table 4.3). From the
PDFs of the σT

ij components, we also compute the PDFs of the most and least-compressive
principal tectonic stresses (v⃗T

1 and v⃗T
3 , respectively), and we find that their magnitudes (σT

1
and σT

3 ) and, especially, directions are accurately constrained (Figure 4.6a). The ratios RT
1 , RT

3
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Figure 4.5: Stress inversion results. Each row corresponds to one stress inversion. Results of Tectonic-Shear-
Inv and Elliptic-Caldera-Inv are displayed in Figure 4.6. The first column from left includes a view of the
topographic setting of the scenario which the inversion is run on, together with a diagram of p. Such diagrams
do not represent the actual p used in the inversion, and are meant to identify the type of p, according to
Section 4.2.4.1. The remaining columns collect the posterior probability density functions (PDFs) of the stress
parameters and their ratios, defined in Equations 4.6 and 4.7, respectively. Red lines mark the value of the
parameter or ratio imposed in the original scenarios from Mantiloni et al. (2023a); green lines mark the median
of the PDFs. a): Circular-Caldera-Inv. b): Simplified-Coastline-1-Inv. c): Simplified-Coastline-2-Inv. d):
Refilling-Caldera-Inv. e): Two-Reservoirs-Inv. f): Complex-Coastline-Inv.



Chapter 4 A framework for physics-based forecast of eruptive vent locations in calderas 73

co
u

n
ts

/M
 *
𝟏
𝟎
−
𝟐

σ𝑻𝒙𝒙 (MPa) σ𝑻𝒚𝒚 (MPa)d (m) σ𝑻𝒙𝒚 (MPa)

σ𝑻𝟑 (MPa)σ𝑻𝟏 (MPa)

co
u

n
ts

/M
 *
𝟏
𝟎
−
𝟐

𝒗𝟏
𝑻, 𝒗𝟑

𝑻directions

𝑹𝒙𝒙 𝑹𝒚𝒚

co
u

n
ts

/M
 *
𝟏
𝟎
−
𝟏

𝑹𝟏 𝑹𝟑

𝑹𝒙𝒚

co
u

n
ts

/M
 *
𝟏
𝟎
−
𝟏

co
u

n
ts

/M
 *
𝟏
𝟎
−
𝟐

σ𝑻𝒙𝒙 (MPa) σ𝑻𝒚𝒚 (MPa)d (m) h (m)

𝑹𝒙𝒙 𝑹𝒚𝒚

co
u

n
ts

/M
 *
𝟏
𝟎
−
𝟏

𝑹𝒉

a)

b)

Setting & p
N

S

EW

Setting & p

W

N

S

E

W

N

S

E

Figure 4.6: Stress inversion results for tests considering four stess parameters. a): Tectonic-Shear-Inv. The
first row from the top collects the posterior probability density functions (PDFs) of four stress parameters.
The second row includes PDFs of the intensity (σT

1 , σT
3 ) and direction (v⃗T

1 , v⃗T
3 ) of tectonic principal stresses,

as well as a view of the topographic setting, with a diagram of p. The third row collects the PDFs of the
ratios defined in Equation 4.7, while the fourth row includes PDFs of the ratios between σT

1 , σT
3 and ρrgd. b):

Elliptic-Caldera-Inv. The first row from the top collects the PDFs of four stress parameters. The second row
includes PDFs of the ratios defined in Equation 4.7, as well as a view of the topographic setting, with a diagram
of p. Red lines mark the value of the parameter or ratio imposed in the original scenarios from Mantiloni et al.
(2023a); green lines mark the median of the PDFs.
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Figure 4.7: Stress inversion results: posterior probability density function (PDFs) of the dike starting points,
Sk=[rk, zk, ϕk], described in the cylindrical reference frame of Figure 4.1b. Red lines mark the coordinates of the
dike starting points assigned in the original scenarios from Mantiloni et al. (2023a); green lines, if present, mark
the median of the PDFs. a): Circular-Caldera-Inv. b): Simplified-Coastline-1-Inv. c): Simplified-Coastline-
2-Inv. d): Tectonic-Shear-Inv. e): Refilling-Caldera-Inv. f): Two-Reservoirs-Inv. Dotted red lines mark the
radius and depth of the deep reservoir neglected in the inversion. The plot of the zk PDF includes an inset with
the PDF of the vertical coordinate of the points where backward SAM trajectories stop, to be compared with
the depth of the neglected reservoir (dotted red line). g): Elliptic-Caldera-Inv. h): Complex-Coastline-Inv.
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between σT
1 , σT

3 and the caldera unloading pressure (ρrgd) are also well-constrained. rk and zk

are well constrained, but their PDFs are considerably spread, while ϕk are poorly constrained
(Figure 4.7d).

The ‘Refilling-Caldera’ scenario still considers a caldera lying on a coastline, but with a
complex caldera floor and a hill range on the mainland. The validation vents are produced
with a modified setting, where the caldera is partially filled and its floor has a higher elevation.
In ‘Refilling-Caldera-Inv’, we run the stress inversion with the vents produced before the caldera
refilling, but in the forecast, ‘Refilling-Caldera-For’, we update the PDF of d according to the
method described in Section 4.2.5 and test it on the training vents. The assumptions in the
stress inversion reflect the original scenario, but the TSD assumed for the dike nucleation zone
is wider, that is, has a larger uncertainty, than the ones considered in the previous inversions
(Table 4.2). From Figure 4.5d and Table 4.3 we can see how d is well-constrained, while
the PDFs of σxx and σyy are spread-out. σyy and Ryy are particularly poorly-constrained.
Figure 4.7e shows similar results to Tectonic-Shear-Inv, as the PDFs of rk and zk are spread-
out, but peaked around the original values. The PDF of ϕk fails to constrain most of the starting
angles, but captures the fact that most dikes reaching the surface in the original scenario started
from the mainland side of a sill-like reservoir.

Simulated vents in the forecast tend to cluster along the north-eastern rim of the caldera
and around the caldera center, where a mild topographic relief is present. The high VD areas
generally match the locations of validation vents, but not those of the training vents (blue/green
dots in Figure 4.8b, respectively). In particular, they miss the offshore vent completely. These
results are obtained by smoothing the ϕk PDF from Refilling-Caldera-Inv to a roughly uniform
distribution. If the ϕk PDF is not smoothed, the VD map fails to reproduce the distribution of
validation vents (not shown in Figure 4.8b).

In ‘Two-Reservoirs’, the topography is the same as in ‘Refilled-Caldera’, but dikes start from
two sill-like reservoirs at different depths and with different radii. Then, in ‘Two-Reservoirs-
Inv’, we show the consequences of a p that does not match the original dike nucleation zone, as
we neglect the presence of the deeper reservoir while including in the training set some of the
dikes that originated from it. Consequently, the inversion fails in constraining any parameter
(Figure 4.5e, Table 4.3). However, the PDF of rk displays secondary peaks, one of which is close
to the radius of the neglected reservoir (Figure 4.7f). Moreover, while zk of the shallow reservoir
is constrained extremely well, the PDF of the depth where SAM trajectories stop is very spread,
with a peak about the 10-km depth threshold, not far from the depth of the neglected reservoir
(inset in Figure 4.7f). The implication is that the PDFs of Sk provide posterior information that
could be used, in potential applications to real scenarios, to improve our assumption on D, and
lead to a more successful stress inversion. In a test not reported here, we run a second inversion
using the posterior PDFs of Sk to define p, but did not obtain significantly better results. The
method, however, is worth further testing: for instance, running subsequent MCMC chains,
where p is updated until the algorithm converges to stable distributions.

Considering an additional topographic feature, such as a resurgent dome, adds a further
source of uncertainty to our tests. The ‘Elliptic-Caldera’ scenario, already mentioned in Sec-
tion 4.2.3 and shown in Figure 4.1c, includes a resurgent dome within an elliptic caldera sur-
rounded by mild topographic highs. Dike starting points are sampled within a vertically-
elongated reservoir, with higher chances at shallower depths Mantiloni et al. (2023a). In
‘Elliptic-Caldera-Inv’, then, we consider the height h of the resurgent dome as an additional
stress parameter, and we assume a p that is skewed towards the surface (TSND, Section 4.2.4.1).
The assumptions in the stress inversion are all unfavorable, as we backtrack dikes from the free
surface and take cB ̸= c (Table 4.2). Although the PDFs of d and h show a peak, we fail to
constrain the stress parameters. In particular, d and h are biased in a similar way to Simplified-
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Coastline-1-Inv, while the tectonic stress components are unconstrained. In contrast, the ratios
are well constrained, with Rh being recovered remarkably well (Figure 4.6b and Table 4.3). In
this case, contrary to Simplified-Coastline-1-Inv, we deem that the bias in d and h is not so
much due to cB ̸= c, as to the choice of p and the application of the compound-stress method to
a complex topography including a resurgent dome. The most significant discrepancies between
the single-mesh and compound-stress results are found below the resurgent dome (Figure 4.3).
Besides, the vertically-elongated p may be equally well-intercepted by dike trajectories calcu-
lated with different stress parameters. We note that there is no bias in the ratios, unlike in
Simplified-Coastline-1-Inv. Both rk and zk are well constrained, even though the PDF of rk

shows multiple peaks. On the other hand, the inversion generally fails to constrain ϕk (Fig-
ure 4.7g). We run the third forecast, ‘Elliptic-Caldera-For’, on the results of this inversion,
smoothing the PDF of rk but not the one of ϕk (Figure 4.9c). Simulated vents cluster in the
western side of the resurgent dome and, to a much lesser extent, along the western rim of the
elliptic caldera, but most of the training and validation vents fall short of the highest VD area.
The main reason for such a discrepancy, besides the compound-stress approximation, is that,
in the original scenario by Mantiloni et al. (2023a), all dikes started at a fixed radial distance
from the axis of the reservoir, contrarily to the present forecast.

We run the last stress inversion on the ‘Complex-Coastline’ scenario, where the dike trajec-
tories and vents are produced by TIM (Mantiloni et al., 2023a, Figure 4a). Although TIM and
SAM are grounded on the same principles of fracture mechanics (Davis et al., 2020; Mantiloni
et al., 2023a), the representation of dikes in the two models (mesh of triangular dislocations
advancing by fractions of the dislocation size in TIM, penny-shaped crack advancing by its
radius in SAM) are radically different. In ‘Complex-Coastline-Inv’, we assume a TSD for p and
backtrack TIM dike trajectories with SAM, assuming an arbitrary value for cB (Table 4.2). The
inversion is successful in constraining d, but fails to constrain the tectonic stress components,
while the ratios PDFs are peaked not far from the original values of Rxx, Ryy (Figure 4.5f,
Table 4.3). Both rk and zk are well constrained, but the PDF of rk is very spread-out. Two
of the original dike starting angles are well constrained in the PDF of ϕk, but the same is not
true for the remaining angles (Figure 4.7h). We use the results of this inversion to run the last
forecast, ‘Complex-Coastline-For’. The distribution of simulated vents is scattered, with many
vents falling within the caldera. The high VD areas, nonetheless, match the locations of the
original vents, especially the ones of the validation set (Figure 4.9d).

We can point out some common trends in the stress inversion results. First, with the
exception of Two-Reservoirs-Inv (Figure 4.6), the depth of the caldera, d, is usually well
constrained (Table 4.3), and even otherwise (Circular-Caldera-Inv, Simplified-Coastline-Inv-
1, Elliptic-Caldera-Inv), its PDF always shows a clear peak (Figures 4.5, 4.6). Secondly, the
ratios between stress parameters (Equation 4.7) are always well constrained, or have PDFs
showing a single maximum. Hence, the inversions recognize that surface unloading has the
largest influence on the behavior of dike trajectories in our scenarios. Constraining the compo-
nents of the tectonic stress tensor is generally more difficult, with worse results when the vents
of the training set are all clustered on one side of the caldera (e.g. Complex-Caldera-Inv, where
all vents lie on the mainland, see Figure 4.9d).

The choice of p, that is, the assumption on the dike nucleation zone, has generally the largest
control on the outcomes of the inversions, as can be seen in Two-Reservoirs-Inv. The PDFs of the
dike starting points (Figure 4.7) are also sensitive to p. When a TSD is considered, the PDF of
rk is centred on the radius of the original reservoir (e.g. Circular-Caldera-Inv, Refilling-Caldera-
Inv), while, when a TND is chosen, it peaks closer to the origin (Simplified-Coastline-Inv-2).
PDFs of zk are generally well-constrained in all inversions, though with different standard
deviations, and reflect the assumption on the depth and shape of the dike nucleation zone. The
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Figure 4.8: Vent forecast results, part 1. Each panel includes, from the top-left corner clockwise: map view
of the distribution of simulated vents and their strike (red segments), superimposed to an elevation map of
the synthetic caldera; dimetric view of the vent density (VD) map and topography mesh; map view of VD

with color scale; distributions of the cylindrical coordinates (Figure 4.1b) of the dike starting points employed
in the SAM simulations, to be compared to the PDFs retrieved from the stress inversions in Figure 4.7. a):
Simplified-Coastline-1-For. b): Refilling-Caldera-For. Training and validation vents are represented in all maps
as green/purple and blue/yellow dots, respectively.
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Figure 4.9: Vent forecast results, part 2. Each panel includes, from the top-left corner clockwise: map view
of the distribution of simulated vents and their strike (red segments), superimposed to an elevation map of
the synthetic caldera; dimetric view of the vent density (VD) map and topography mesh; map view of VD

with color scale; distributions of the cylindrical coordinates (Figure 4.1b) of the dike starting points employed
in the SAM simulations, to be compared to the PDFs retrieved from the stress inversions in Figure 4.7. a):
Elliptic-Caldera-For. b): Complex-Coastline-For. Training and validation vents are represented in all maps as
green/purple and blue/yellow dots, respectively.
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PDFs of ϕk are more complex, and mostly fail to accurately constrain the individual starting
angles, except in the most simplified settings.

Fixing cB ̸= c biases the results of Simplified-Coastline-Inv-1, when the topography is simpli-
fied and the assumption on p reflects the original dike nucleation zone (Figure 4.5, Table 4.3),
but is not as significant in more complex scenarios, such as Elliptic-Caldera-Inv, where other
sources of uncertainty (multiple topographic elements, backtracking dikes from the free surface)
play a larger role.

4.4 Discussion
In this work, we outline a new framework to 1) determine the stress state of volcanoes at high
spatial resolution, constrained by the locations of past eruptive vents and magma reservoir, 2)
determine the spatial probability of future vent opening. Moreover, we complete a set of 3D
tools for computationally efficient dike trajectory simulations and stress calculation to make
the framework applicable to real volcanic systems. In particular, we propose the compound-
stress method as a computationally efficient approach to stress inversions including gravitational
loading/unloading. We test the method with a few end-member scenarios (Figure 4.3), and
find that, while the results are unreliable near the surface, the stress field at depth is recovered
with sufficient accuracy to result in well-modeled dike trajectories. Additionally, we discuss
how the compound-stress method can be used to constrain the gravitational loading/unloading
of not only individual topographic features, but also density layering in the crust.

We test our framework on synthetic data produced by Mantiloni et al. (2023a) to determine
whether the compound-stress method is able to recover the original stress state with sufficient
accuracy. Testing our strategy and tools synthetic scenarios, where the parameters we aim to
constrain are known, enables us to explore the uncertainty arising from the approximations we
make in the stress inversion and vent forecast. Our tools allow to perform all calculations on
personal computers in reasonable computation times (up to roughly two days for the inversions
and forecasts performed here). They can be easily implemented/adapted with other modeling
approaches.

Our stress inversions generally succeed in constraining the stress parameters or, at least, their
ratios (Table 4.3; Figures 4.5, 4.6, 4.7). The forecasts are generally successful in matching areas
of high vent density with the locations of validation vents (Figures 4.8 and 4.9), although their
performance is worse for more complex scenarios. Here, we first summarize the technical issues
of our methods. Then, we explore the opportunities and challenges of applying our strategy to
real scenarios.

Stress inversions are affected by various sources of uncertainty. The assumption on the
dike nucleation zone has the largest influence. The choice of cB biases the PDFs of stress
parameters and ratios, but this is more evident in simplified settings and when the uncertainty
on the vertical size of D is small (compare Simplified-Coastline-1-Inv to Elliptic-Caldera-Inv
in Figure 4.5). Backtracking dikes with SAM from the free surface adds more uncertainty, but
does not prevent successful inversions. Finally, the compound-stress method contributes to the
uncertainty, especially when considering multiple topographic features (e.g. the caldera and
resurgent dome in Elliptic-Caldera) of large vertical size (Figure 4.3). This may be the reason
why in Elliptic-Caldera-Inv, where a resurgent dome is included, the PDFs of individual stress
parameters are spread-out and biased (Figure 4.6b), although the ratios are well-recovered, and
Elliptic-Caldera-For is less successful than others in constraining the locations of validation
vents (Figure 4.9c).
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The stress inversion yields mixed results when applied to a set of vents produced with TIM,
as shown in Complex-Coastline-Inv, where the effective caldera depth is constrained, while
the tectonic stress is not. Mantiloni et al. (2023a) discussed how the accuracy of SAM in
backtracking TIM pathways improves if cB is calibrated according to the volumes of TIM
dikes. Thus, in principle, knowing the volumes of the dikes that fed the Vk vents may inform
the choice of cB and improve the accuracy of the stress inversion. Assigning a different cB to
each Vk is also possible. Estimating the volume of a dike that fed an eruption in the past,
however, is difficult, even with a reliable estimate of the erupted volume.

An additional source of uncertainty in the forecast arises from fixing the magma density (ρm),
as it controls the crack driving pressure in SAM. Different assumptions on ρm lead to a different
number of dike trajectories stopping before reaching the MDT, as Simplified-Coastline-1-For
demonstrates. One solution in future applications may be to assign a PDF to ρm according to
our knowledge of magma composition in past eruptions, and sample ρm from it for each forecast
simulation. Alternatively, we may fix ρm to the lowest possible value, and run the forecast under
the assumption that any future dike will be buoyant enough to reach the free surface. Finally,
Refilling-Caldera-For shows the effectiveness of our stress update method (Section 4.2.5). The
forecast relies on the results of Refilling-Caldera-Inv, run on a data set produced before the
caldera is partially refilled. However, once the stress update is applied to the caldera depth
PDF, the vent density map (Figure 4.8b) correctly predicts the locations of vents produced
after the caldera refilling. This is 3D upgrade of the stress-update method by Rivalta et al.
(2019) and Mantiloni et al. (2021b), and it may be applied to systems where major topographic
changes have occurred since the last volcanic activity, such as caldera refilling and resurgence.
Here too, further tests on more complex settings are needed.

Applying our strategy to real scenarios will come with many further challenges. First, the
stress and dike propagation models which we adopt, described in Mantiloni et al. (2023a),
require further testing to prove that they are adequate for representing stresses and dike path-
ways in real calderas. Here, we remark that a major limitation in their approach is that they
do not account for stress modifications over time, due to processes such as viscoelasticity (e.g.
Stephansson, 1988; Savage et al., 1992) and repeated dike intrusions (e.g. Bagnardi et al., 2013;
Corbi et al., 2015; Dumont et al., 2022). Such processes may be neglected in recently-formed
calderas, as the time scales are too short for viscoelastic processes to play a significant role,
and dike intrusions and eruptions are generally less frequent than in other active volcanoes.
Our framework, however, may be less effective in different settings, especially at large volcanic
edifices where the above-mentioned processes have a much larger influence.

If a model serves a statistical purpose, its predictive power increases if its complexity is re-
duced (see e.g. Forster and Sober, 1994). Hence, our models aim to depend on as few parameters
as possible. In fact, inversions with more parameters (Tectonic-Shear-Inv, Elliptic-Caldera-Inv)
show greater uncertainty on the results. This principle also applies to our assumptions of a
homogeneous host rock, which may be a very rough approximation for natural settings, but
results in an ‘effective stress model’ that may still produce accurate forecasts, as tested and
discussed by Mantiloni et al. (2021b). In this work, we have fixed the host rock elastic pa-
rameters (E, ν, Table 4.1), even though they are generally poorly known in real settings, and
incorrect assumptions may bias the stress inversion results. We could, in principle, include such
quantities in the model vector m⃗ (Equation 4.11) and invert for them as well.

The compound-stress method is helpful when running stress inversions with easily-available
computational resources, but, as discussed in Sections 4.2.3 and 4.3.2, adds a further degree of
uncertainty, especially when multiple topographic features are considered. Applying the single-
mesh method to the inversions would remove such uncertainty: this can still be done with more
computational resources. Despite being an approximation, we foresee that the compound-stress
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method will be useful in the thorough testing on natural cases required to validate our strategy.
The development of more efficient and accurate implementation of the compound-stress method
is also an objective for future works.

The results of the inversions show how critical the choice of p is. Choosing p accurately will
be challenging in real volcanoes, as it implies accurate knowledge about the magma storage
system and the mechanisms of dike nucleation. If multiple reservoirs or melt accumulation
volumes are present, it may be difficult to assign individual vents to a specific dike nucleation
zone, although petrological studies on the magma composition of the associated eruptions may
help. The size of a reservoir can also change between one diking episode and the next. This is a
further source of uncertainty that we have not included in our tests. Simplified-Coastline-2-Inv
and Elliptic-Caldera-Inv, however, show that stress inversions can be accurate even if p is not
peaked about the radius where dikes started in the original scenarios.

Our vent forecast strategy is not as sensitive to missing vent locations as data-driven strategies
(Selva et al., 2012; Bevilacqua et al., 2015) are. Well-established approaches to probability
maps of future vent opening in calderas and monogenetic volcanic fields rely on the assumption
that areas with the largest number of past vents are the ones more likely to host new vents.
The implication is that, if some past vents are missing, those areas will be assigned a lower
probability in the resulting maps. Conversely, in our approach, different training vents do
not generally lead to significantly different PDFs of the stress parameters and, thus, forecast.
However, this is not true if the training vents are clustered in a limited area, and vents from
a different area are missing entirely. In such cases, stress inversion and forecast results are
considerably worse. In tests not included here, Simplified-Coastline-2-Inv and Refilling-Caldera-
Inv performed much worse when the offshore vents were not included in the training sets.

We do not include uncertainty in the vent locations. In future applications, we may model it
by assigning a PDF to each vent. The orientation of a past eruptive fissure, if known, could also
be used to constrain the stress state in the subsurface. SAM does not model shallow processes
in dike propagation, and our dike trajectories stop at a minimum distance threshold from the
topography mesh (Mantiloni et al., 2023a). Accounting for the influence of factors such as
faulting and inelasticity in the last ∼1 km of crust, as well as the process of vent opening itself,
is an interesting point for future developments in dike propagation modeling.

The models and approaches we discuss here are ready to be applied to real calderas. However,
many applications are needed to further develop the stress inversion and vent forecast strategy,
highlight new limitations, and mitigate them by future modeling advances. The few synthetic
scenarios we considered here span over a wide range of caldera settings, which in nature may
be associated with remarkably different systems. For instance, Refilling-Caldera resembles
the topography and regional setting of Campi Flegrei caldera (e.g. Orsi et al., 1996; Di Vito
et al., 2016), while the morphology of Elliptic-Caldera is similar to that of Long Valley caldera
(e.g. Hildreth, 2004), two volcanoes with very different ages, eruptive histories and magmatic
systems. Thus, the synthetic scenarios included here cannot represent the wide variability that
we expect in real calderas. Applications to specific calderas will require specific assumptions,
and may benefit from dedicated synthetic tests before running any stress inversion. For example,
a test may consider the present-day topography in the stress model, then backtrack dikes from
known vents and check if and where the backtracked trajectories overlap to refine the assumption
on p, which has to be validated with prior information on the magmatic system.

An optimal case study for the applications of our models would be a caldera with a good
record of eruptive activity, well-known locations of past vents and a well-constrained magma
plumbing system. Knowledge of topographic evolution over time and stratigraphy would also
help improving the forecast, especially if the caldera has been refilled or uplifted, or if other
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events have modified the topography since the last eruptive activity. One of such examples is
Campi Flegrei in Italy, a restless and well-monitored caldera which was the case study of Rivalta
et al. (2019). Applying our strategy to other volcanic systems, such as large volcanic edifices,
is more challenging, since, as discussed by Mantiloni et al. (2023a), our current stress models
are not yet adequate to represent such settings accurately, given the influence of stress-altering
processes (e.g. repeated dike emplacement, visco-elasticity, faulting) that we currently neglect.

Nonetheless, the stress optimization framework we have outlined here may be implemented
with any stress model and, as such, has a wide range of potential applications that reaches
beyond volcanic hazard assessment. In fact, constraining the stress state of the Earth’s crust
is critical to many fields of applied geophysics (McGarr and Gay, 1978), such as hydraulic
fracturing in oil and gas fields (e.g. Busetti and Reches, 2014), geothermal exploration (e.g.
Cloetingh et al., 2010) and the design of underground facilities for the disposal of hazardous
waste (e.g. Jo et al., 2019).

4.5 Conclusions
In this work, we outline a new framework for stress optimization (Section 4.2.4) and eruptive
vent forecast (Section 4.2.5) that can be implemented with different modeling approaches. We
also apply a set of modeling tools, namely the model of dike trajectories SAM, developed by
Mantiloni et al. (2023a), and the compound-stress method, introduced here, designed to make
the problem of stress optimization tractable with minimal computing resources. We present
synthetic tests that are useful to explore some of the uncertainties associated with our method,
but extensive testing on natural scenarios is required to validate them. Although further
advances in stress modeling are needed for some volcanic settings, our models and tools are
ready for such a challenge, and lend themselves to a variety of applications in other critical
geophysical problems.
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Chapter 5
Lithospheric sill intrusions and present-day
ground deformation at Rhenish Massif,
Central Europe

Abstract
The Rhenish Massif in Central Europe, which includes the Eifel Volcanic Fields, has shown
ongoing ground deformation and signs of possible magmatic activity. A buoyant plume exerting
uplift forces at the bottom of the lithosphere has been proposed to explain such deformation; the
hypothesis that melt is accumulating in the crust or lithospheric mantle has not been explored
yet. Here, we test deformation models in an elastic half space considering sources of varying
aspect ratio, size and depth. We explore the effects of data coverage, noise and uncertainty on
the inferred source parameters. We find that melt accumulation within the lithosphere cannot
be ruled out if it occurs in sub-horizontal sill-like structures expanding at the rate of ∼0.045
km3/yr. We discuss our results in the context of plume and underplating models worldwide and
elaborate on further observations which may help constrain the structure of the Eifel magmatic
system.

Plain Language Summary
Geodetic observations over the last 20 years have recorded small but steady ground deformation
over a wide area centered on the Eifel Volcanic Fields, Germany, where volcanism has occurred
as recently as 11000 years ago. Together with additional geophysical and geochemical evidence
of possible ongoing magmatic activity, the observed deformation has renewed interest over the
origin of volcanism in the region. The deformation has previously been tentatively explained as
due to a buoyant plume in the asthenosphere. Here, we use available deformation data to test
whether, alternatively, deformation may be, at least partially, originating in the lithosphere.
We find that deformation data are also consistent with melt intrusions in one or more hori-
zontal lenses located in the lithosphere. We discuss how the inferred form and rate of magma
accumulation compare to other volcanic regions, and what additional data may improve our
knowledge on how magma is stored under the Eifel.

5.1 Introduction
The Rhenish Massif (RHM) is a large lithospheric block located in Central Europe (green
contour in Figure 5.1) embedding several volcanic fields, as Westerwald, Eifel, and Siebengebirge
(e.g Prodehl et al., 2006). These are part of the Central European Volcanic Fields (CEVF)
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which developed during the Tertiary, and partly in the Quaternary, over a belt region spanning
France, central Germany, Czech Republic, and south-west Poland (Schmincke, 2007). Activity
at Eifel Volcanic Fields (EVF) started in the Tertiary with the formation of the Hocheifel
volcanic field (Fekiacova et al., 2007). In the Quaternary two volcanic fields formed west and
east of Hocheifel (West EVF and East EVF; green dots in Figure 5.1). The late Quaternary
volcanism continued until ∼11 ka and culminated in the Laacher See Volcano eruption in East
EVF at 13 ka (volcanic explosivity index VEI = 6) (Nowell et al., 2006; Schmincke, 2007;
Förster et al., 2020; Reinig et al., 2021). The RHM experienced several periods of uplift with
variable rates in space and time (Demoulin and Hallot, 2009), up to 0.3 mm/yr starting from
the Quaternary (Meyer and Stets, 2007).

The predominant physical mechanism behind CEVF intraplate magmatism, and in particular
of RHM, is still debated. Based on geochemical and geophysical evidence (deep-mantle fea-
tures of volcanic rocks and gases, low seismic velocity anomaly from ∼50 to ∼410 km depth),
magmatism is often related to a mantle plume located underneath RHM (e.g Ritter et al.,
2001; Ritter, 2007; Walker et al., 2007). This hypothesis is, however, inconsistent with the
lack of a clear space-time progression in the RHM volcanism pattern, which would suggest a
hotspot track, and the volume of erupted magma is small compared to established intraplate
hotspot volcanic regions as Iceland or Hawaii. Several geochemical, petrological, and geody-
namic studies support alternative models linking the magmatism at RHM to plate tectonic
processes associated with the Alpine collision. In this case, volcanism may be the product of
fluid pathways created by induced dilatancy along shear bands in the upper mantle/lower crust
and/or decompression-induced partial melting of the asthenospheric mantle due to lithospheric
extension (e.g. Wilson and Downes, 1992; Regenauer-Lieb, 1998; Jung et al., 2005; Lustrino
and Carminati, 2007).

Debate over the source of volcanism, availability of new/reprocessed data and signs of possible
ongoing magmatic activity at EVF have renewed the interest about this area. Recent reap-
praisal of past seismic datasets (Dahm et al., 2020) and existing petrological and geophysical
studies (Bräuer et al., 2013; Hensch et al., 2019) provided evidences of melt in lower crust/upper
mantle. In particular, a long-range seismic refraction experiment in 1978-79 (Mechie et al.,
1983) showed a decrease in seismic compressional wave velocities (from 8.1 to 6.3 km/s) in
the upper mantle, at the crust-mantle boundary (Moho), below the currently uplifting RHM.
Dahm et al. (2020) interpreted this as a sub-horizontal, thin (∼ 6 km), wide (∼ 300 km),
magma reservoir with a peak melt fraction of ∼10%. Signs of ongoing magmatic activity in-
volve degassing at mofettes and mineral springs (Bräuer et al., 2013; Caracausi et al., 2016),
occurrence, since 2013, of deep low-frequency earthquakes in the lower crust and upper mantle
beneath Laacher See Volcano (Hensch et al., 2019), and ongoing surface deformation (Henrion
et al., 2020; Kreemer et al., 2020). Global Navigation Satellite System (GNSS) data over the
last ∼20 years show uplift in RHM area with peak rates >1 mm/yr, and lower horizontal ve-
locities with heterogeneous directions, but revealing areal dilatation approximately coincident
with the uplifting area. This deformation was interpreted by Kreemer et al. (2020) as the effect
of a buoyant plume impinging the lithosphere, modeled through a distribution of half-space
vertical forces exerted on a plane at ∼50 km depth.

Given the geophysical indication of layers with melt concentration and large lateral extent
beneath the Moho and the lack of consensus about a deep mantle plume below EVF, it ap-
pears important to explore the hypothesis that the observed deformation originates in full or
partly within the lithosphere. Understanding whether melt is accumulating in the lithosphere
is important to constrain the underlying mechanisms and the episodic nature of volcanism at
EVF, with implications for hazard assessment here and at other anorogenic distributed conti-
nental volcanic fields. This is nonetheless challenging due to the regional scale of the observed
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deformation, its overall small rates and the uncertainty on its actual timescale. Here we used
the GNSS long-term linear trends (velocities) estimated by Kreemer et al. (2020) to examine
whether the current deformation may be associated with a melt accumulation within the litho-
sphere. We explored different source solutions, shapes and depths and we analyzed the effect
of different data coverage, noise and uncertainty.

5.2 Data
Kreemer et al. (2020) computed velocities both at available GNSS sites and as gridded values
(at 0.1◦ steps, i.e. ∼10 km) obtained after data post-processing. This involves steps of de-
speckling velocities computed at GNSS sites (i.e., levelling out velocity values against outliers)
and subsequent gridding. The vertical gridded component was further corrected for the effect
of glacial isostatic adjustment (GIA), as modelled by Husson et al. (2018). The GNSS hori-
zontal velocities were used to compute strain-rate distribution, from which gridded horizontal
velocities have been modeled. We used both dataset (at GNSS sites and as gridded values)
since they represent two end-members: from originally observed velocities at GNSS sites to
fully post-processed gridded values.

We focused on an area of about 400 km x 400 km (3.5◦ to 9.5◦ E, 48.5◦ to 51.9◦ N) that
embeds the uplift region around the RHM (Figure 5.1) comprising 250 GNSS sites and 2135
grid nodes. We projected the GNSS sites/gridded longitude, latitude coordinates into a local
metric Cartesian reference frame (X along west-east, Y along south-north) referred to the center
of the study area (6.5◦E, 50.2◦N).
Unlike the gridded data, the provided vertical velocities at GNSS sites were not corrected for
GIA. We therefore derived the GIA correction from the difference between the provided cor-
rected and not-corrected gridded velocities and removed it from the vertical GNSS velocities
(Figure S1). The vertical data show a spatially coherent uplift area over the Rhenish Massif
region with highest values (∼1–3 mm/yr) at EVF (Figure 5.1b, 5.1d), while subsidence is prob-
ably related to noise and/or residual trends at continental scale (Kreemer et al., 2020).
In general, the horizontal velocities are lower than vertical ones (∼0.33 mm/yr of maximum
horizontal separation rate across the uplift anomaly) and show a less clear pattern (Figure 5.1a).
However, they reveal an extension region slightly offset north-west from the highest uplift area
Kreemer et al. (2020) (grey line in Figures 5.1, S2).
GNSS velocity uncertainties as estimated by Kreemer et al. (2020) have median values of ∼0.1
mm/yr and ∼0.3 mm/yr respectively for the horizontal and vertical components (Figure S3a,
S3b). For the vertical gridded velocities, Kreemer et al. (2020) provided two different uncer-
tainty estimation based on the comparison between gridded velocity values and, respectively,
raw (hereafter "std1", Figure S3d) or despeckled (hereafter "std2", Figure S3f) GNSS vertical
velocities. std1 results larger (up to 3 times) than std2.
We therefore consider three different three-dimensional (3D: horizontal and vertical) velocity
datasets: (i) raw velocities at GNSS sites and related uncertainties (hereafter "GNSS-sites"; Fig-
ures 5.1a, 5.1b, S3a, and S3b); (ii) gridded velocities with std1 vertical uncertainties (hereafter
"gridded-std1"; Figures 5.1c, 5.1d, S3d); (iii) gridded velocities with std2 vertical uncertainties
(hereafter "gridded-std2"; Figures 5.1c, 5.1d, S3f). In the last two cases we assumed a uniform
value of 0.1 mm/yr for the uncertainties associated to the gridded horizontal velocities (Figure
S3c, S3e).
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a) Horizontal velocity – GPS sites                     b) Vertical velocity – GPS sites

c) Horizontal velocity – gridded                        d) Vertical velocity – gridded

London

Berlin

Figure 5.1: Velocity spatial distribution at GNSS sites (a, b) and gridded values (c, d) from Kreemer et al.
(2020). Inset: Geographic location of the study region (red rectangle). Green dots are centres of Quaternary
EVF activity, dark green line contours the Rhenish Massif and dashed grey contour outlines area of significant
(>2σ) dilatation rate estimated from Kreemer et al. (2020).
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5.3 Methods
Nearly-horizontal planar volcanic sources, such as sill-like magma intrusions, typically generate
a single region of uplift at the surface and are inefficient at generating horizontal deformation
(e.g Troise et al., 2007; Segall, 2010). Thus, a nearly horizontal sill could be a good candidate
to explain the observed deformation. Pressurized sills-related deformation can be modeled
using Tensile Rectangular Dislocations (TRDs) (Okada, 1985) with prescribed uniform opening
embedded in a homogeneous elastic half-space (e.g. Jonsson, 2009; Delgado and Grandin, 2021).
Here we employed the TRDs solutions of Nikkhoo et al. (2017). Each TRD is defined by its
position, dimensions, orientation and opening. Since we are dealing with velocities, hereafter
we refer to opening rates. In order to estimate a variable distribution of opening rates, we
defined a grid of TRDs ("patches") with 30 km sides and 0◦ dip (i.e. horizontal), strike and
plunge (i.e. oriented North-South) angles. The patches dimension was chosen as compromise
between the horizontal spacing of GNSS and gridded data points to reduce artefacts in the
retrieved opening rate distribution (Amoruso et al., 2013). We fixed the overall source extent
to the study region size (400 km x 400 km). We first set the source depth at 30 km based on
the seismic waves velocity anomaly observed by Mechie et al. (1983) and Dahm et al. (2020)
(Section 5.1). We additionally tested source depths between 10 and 80 km.
For a given TRDs geometry, the velocities and opening rates are linearly related as

d = Gm + ϵ (5.1)
where d is a 3Nx1 data-vector (N number of GNSS sites/grid nodes) collecting the 3D ob-

served velocity values, m is a Mx1 model-vector (M number of TRD patches) collecting the
distribution of opening rates, and ϵ is a 3Nx1 vector containing observation uncertainties. G
is a 3NxM matrix expressing the effect of unitary opening rates and estimated assuming a ho-
mogeneous half-space with Poisson’s ratio of 0.25. To avoid data over-fitting and nonphysical
sharp spatial irregularities in the opening rates distribution, we applied a smoothing regular-
ization via finite-difference approximation of the Laplacian operator (L) (Matthews, 1993).
The smoothing amount to balance data-fit and opening rates-roughness is controlled through
a regularization parameter k. The forward model therefore is[

Wd
0

]
=
[
WG
kL

]
m (5.2)

where W is a diagonal weighting matrix formed by the inverse of data uncertainties (WT W =
Σ−1, with Σ as data variance-covariance matrix). Furthermore, we imposed a positivity con-
straint on m to reproduce an inflation process (uplift). We solved the resulting weighted
damped least-squares problem with inequality constraints using the non-negative least-squares
(NNLS) iterative method by Lawson and Hanson (1995) (lsqnonneg Matlab function).
To select the optimal k, we tested both the L-curve (Harris and Segall, 1987; Hansen and
O’Leary, 1993) and cross-validation (CV) (Matthews and Segall, 1993; Hreinsdóttir et al., 2003)
methods and we finally used CV for the GNSS-data case and L-curve for the gridded-data cases
(Table 5.1; further details in Text S1 and Figure S4). Conversely, the positivity constraint
precludes the use of the Akaike’s Bayesian information criterion-based method (Yabuki and
Matsu’ura, 1992; Fukuda and Johnson, 2008).
Iterative NNLS methods do not construct an explicit expression for m, hindering an explicit
computation of the model parameters uncertainty (e.g. Menke, 2012). We therefore employed
the bootstrap method (1500 runs; Text S1) (Efron and Tibshirani, 1986).

As a further test on source parameters, we employed the horizontal penny-shaped crack
model by Fialko et al. (2001) (routines by Battaglia et al., 2013). We inverted for the depth,
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Table 5.1: Inversion results for TRDs and penny-shaped crack models.
4 TRDs

GNSS-sites
Deptha

(km)
Smoothing factor

(m*yr)
Volume growth rate

(m3/yr) WRSS RMSE
(mm/yr)

10 8e12 4.899e7 ± 1.000e7 8705.909 0.5319
20 7e12 5.024e7 ± 1.165e7 8480.445 0.5316
30 6e12 4.976e7 ± 1.269e7 8396.177 0.5316
40 5e12 4.938e7 ± 1.395e7 8367.555 0.5322
50 5e12 4.883e7 ± 1.407e7 8398.961 0.5334
60 4e12 4.923e7 ± 1.582e7 8401.579 0.5343
80 3e12 5.053e7 ± 1.858e7 8452.646 0.5365

Gridded-std1
Deptha

(km)
Smoothing factor

(m*yr)
Volume growth rate

(m3/yr) WRSS RMSE
(mm/yr)

10 1.5e13 4.513e7 ± 1.643e6 2668.756 0.1044
30 8e12 4.301e7 ± 1.946e6 2673.179 0.1094
60 4e12 4.079e7 ± 3.574e6 3200.680 0.1260
80 4e12 4.118e7 ± 3.934e6 3494.734 0.1351

Gridded-std2
Deptha

(km)
Smoothing factor

(m*yr)
Volume growth rate

(m3/yr) WRSS RMSE
(mm/yr)

10 2e13 4.385e7 ± 2.010e6 11838.209 0.0959
30 1.5e13 4.388e7 ± 2.096e6 13396.295 0.0995
60 5e12 4.503e7 ± 4.961e6 17216.117 0.1125
80 4e12 4.584e7 ± 6.924e6 20829.661 0.1208

4 Penny-shaped crack

Data Depth
(km)

Radius
(km)

Excess pressure-rateb

(1/yr)
Volume growth rate

(m3/yr)
RMSE

(mm/yr)
GNSS-sites 48 173 8e-10 4.457e7 0.5351

Gridded-std1 26 176 4e-11 3.164e7 0.1210
Gridded-std2 23 224 1e-10 4.998e7 0.1233
aFixed a priori.
bExcess pressure is defined as pressure/shear modulus

radius and dimensionless excess-pressure (pressure/shear modulus) rate of a source centered at
(X = 0, Y = 0) through a non-linear Nelder-Mead optimization (Lagarias et al., 1998) testing
different starting values for the inverted parameters.

We finally tested whether more isotropic sources could better explain the data using: (i)
the quasi-analytical solutions for surface deformation due to pressurization of a single finite
(triaxial) ellipsoidal cavity in a half-space by Nikkhoo and Rivalta (2022b); (ii) point compound
dislocation model (point CDM) by Nikkhoo et al. (2017). The latter is composed by three
mutually-orthogonal rectangular dislocations representing planar and volumetric sources of
various aspect ratios. We considered a horizontal grid of point CDMs located at the center of
each TRD and at 30 km depth. We inverted for the source potency in three directions (∆Vx,
∆Vy, ∆Vz) for each point CDM, using a weighted damped NNLS method analogous to the
TRDs. A horizontal TRD-like model would correspond to a point CDM with only ∆Vz ̸= 0,
whereas non-null values of ∆Vx and/or ∆Vy would indicate more equidimensional-like sources.
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a.1) Modeled opening                            b.1) Modeled opening                            c.1) Modeled opening

a.3) Modelled vertical vel.                     b.3) Modelled vertical vel.                      c.3) Modelled vertical vel. 

a) GPS sites                                  b) Gridded std1                              c) Gridded std2 

a.2) Modelled horizontal vel.                 b.2) Modelled horizontal vel.                 c.2) Modelled horizontal vel.

a.4) Velocity cross-section                    b.4) Velocity cross-section.                   c.4) Velocity cross-section

North 

East
Up

Data

Model

c) Gridded std2 b) Gridded std1
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Figure 5.2: Model results for a sill at 30 km depth obtained using the different kinds of surface velocity data.
The last row show modeled vs. observed data cross-sections at Y=0 (dotted purple lines in maps). All other
elements are the same as Figure 5.1.
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5.4 Results
TRDs inversion results suggest that the inflation of a sill of ∼300x300 km2 seated at 30 km
depth with volume growth rate of about 0.047 km3/yr is compatible with the observed surface
deformation (Table 5.1, Figure 5.2 and S5). The retrieved opening rate spatial distribution is
mostly consistent across the three datasets reaching highest values (∼ 0.8 ÷ 1.3 mm/yr) at the
center of RHM. In particular, for GNSS-sites and gridded-std1 cases the highest opening rate is
mostly concentrated slightly to the north-west of the Quaternary EVF activity location (Figure
5.2a.1, 5.2b.1) and produces a horizontal velocity pattern mostly compatible with the area of
significant dilatation rate (Kreemer et al., 2020) (Figure 5.2a.2, 5.2b.2). In the gridded-std2
case, instead, the highest opening rate coincides with the Quaternary EVF activity location,
where the highest uplift is observed (Figure 5.2c.1). This difference is mainly due to the overall
higher uncertainty (lower weight) of vertical velocities for the GNSS and gridded-std1 cases
(Figures S3, S5). The effect of the low signal-to-noise ratio of vertical data is also clear from
solutions obtained imposing equal weights (W = I); the main features are still consistent with
the "weighted" solutions (Figure S6). The estimated volume growth rates are consistent for the
three datasets (∼ 0.043 ÷ 0.050 km3/yr), with a slightly higher (∼ 13%) value in the GNSS-
data case. As expected, due to the lower site coverage and higher data noise, opening rates
uncertainty is higher for the GNSS-data case (Figure S7), resulting in a higher volume growth
rate uncertainty (0.01 km3/yr, Table 5.1). The modelled deformation matches reasonably well
the observed one, with root-mean-square error RMSE ∼0.5 mm/yr and 0.1 mm/yr respectively
for GNSS and gridded datasets. Further tests we conducted (adding rigid translation rates
common to the whole dataset, similar to Kreemer et al. (2020); assuming a slight – up to 10◦

– dip angle; cleaning the GNSS dataset by spatial filtering, and removing horizontal outliers,
and/or vertical negative values) resulted in minor differences and in associated volume growth
rates consistent across all models.

The results for TRDs tests with different source depths (Table 5.1) show a tendency to lower
smoothing factors with higher depths, since fewer patches with higher opening rates have a
similar effect to smoother, spatially spread, opening rates distributions at shallower depths.
Deeper sources result in slightly worse data fit, particularly for the gridded datasets (RMSE
difference up to 20%). However, the misfit differences are not significant compared to data
uncertainties and the results could be affected by some intrinsic level of subjectivity in the
smoothing factor selection. Whereas the source depth is hard to constrain, the volume growth
rates at different depths remain consistent with each other and the estimated volume growth
rate uncertainty associated with the 30 km depth solution.
Results for the horizontal penny-shaped crack are consistent with the TRDs model, with optimal
source depth between 25 and 50 km and corresponding volume growth rates between 0.031 and
0.050 km3/yr (Table 5.1).

The point CDM sources test shows that, besides some inversion instabilities at the grid edges,
horizontal-to-vertical potency ratios (Figure S8) have low values (<0.3) below the RHM when
gridded data are used. Results for GNSS-sites data, even still indicating higher ∆Vz values
below the RHM, show a more complex pattern. The inversion is however quite sensitive to the
low signal-to-noise ratio of the data. The total volume growth rate associated with the point
CDM model (0.044÷0.052 km3/yr) is consistent with other tested models. We conclude that
the TRDs model is suitable to explain the observed deformation and the threefold number of
parameters involved in point CDMs is not needed.
Finally the tests for different source shapes using the solution from Nikkhoo and Rivalta (2022a),
provide satisfying data-fit with sill-like source and consistent volume growth rate values, while
excluding prolate spheroidal to explain the observed deformation.
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5.5 Discussion and Conclusions
As a further hypothesis to that of a buoyant volume impinging the lithosphere by Kreemer
et al. (2020), we show that the current deformation at RHS is also consistent with magma
accumulation in subhorizontal structures in the lower crust/upper mantle. In order to match the
deformation pattern, the source needs to be shaped as a sub-horizontal sill-like body inflating
at the rate of about 0.04±0.01 km3/yr (Table 5.1). The source depth is poorly constrained
due to the low signal-to-noise ratio of the observed deformation, especially for the horizontal
component. Our preferred models indicate depths between 20 and 60 km. Additional challenges
in our inversions are posed by (i) the source large spatial extent and the relatively shallow
inferred depth, which put the source in the very-near field requiring finite-dimension source
models at the limit of applicability of half-space analytical solutions (e.g. Fialko et al., 2001);
(ii) the slight offset between the areas of maximum uplift and of maximum dilatation, which may
be, however, at least partly related to data resolution, post-processing and gridding procedures
and remaining effects of other ongoing processes (e.g., antropic activity). Further complexities
such as earth curvature, topographic loading, and material heterogeneities might also play a
non-negligible role.

The inferred sill dimension and volume expansion rate are large, but not implausible. Volume
expansion rates similar to this value (∼10−2 km3/yr) have been observed below active volcanoes
in the past, e.g. at Sierra Negra, Galapagos, in the years preceding the 2018 eruption (Bell et al.,
2021). Several evidences of large sills exist (102 ÷ 103 km radius; e.g. Thybo and Artemieva,
2013; Cruden et al., 2018; Acocella, 2021). An extensive sill which hosted ∼500 km3 of magma,
has been recently imaged in the lower crust (∼20 km) below the North Sea rift (Wrona et al.,
2019).
Possible implications for such estimated volume growth rate can be inferred based on the
study from Galetto et al. (2022). The authors analysed episodes of magma supply in crustal
reservoirs and found that volume increase at rates >0.1 km3/yr have led in 100% of cases to
magma propagation and eruption within 1 year, whereas rates <0.01 km3/yr have not led to
magma propagation in 90% of cases. They explained such rate thresholds in terms of stress
relaxation timescale due to rock viscoelasticity controlling whether a critical overpressure is
reached or not during magma supply. The magma supply episodes analysed by Galetto et al.
(2022) were all located in the middle-to-upper crust, so in the RHM case the eruption likelihood
would be lower. Still this deserves attention, as magma may ascend relatively swiftly from large
depths (e.g. Mayotte and Cumbre Vieja, La Palma, eruptions; Cesca et al., 2020).
Prior estimates of magma extraction rate for EVF are smaller than our value of volume growth
rate, but are mostly based on erupted material at local scales (e.g., lower-crust intrusion rates
of 10−3 ÷ 10−4 km3/yr beneath the East EVF; Dahm et al., 2020).

Our model would represent a magma stagnation in the lithosphere over a large region beneath
RHS, and not concentrated below localized volcanic areas. In line with the alternative models
proposed for RHM volcanism, magma in the sill might originate from the rise of a mantle plume
underneath, decompression-induced melting from passive rifting, or a combination of the two
(Acocella, 2021). Sills in lower crust might indeed form because of a rheological transition
between crust and mantle, or stress field conditions in continental rift zones (Maccaferri et al.,
2014). Melt ponding in subhorizontal fractures in the elastic lithosphere (underplating) has
been documented in other regions to explain long-term uplift rates and surface deformation
(Thybo and Artemieva, 2013; Pedraza De Marchi et al., 2021). Active magmatic underplating
(Thybo and Artemieva, 2013) has been hypothesized for the region beneath the Eger rift and
Cheb basin (Hrubcová et al., 2017), and for the Limagne graben (Michon and Merle, 2001),
which are thought to have a common rift formation mechanism to the EVF. Further analysis
is required to check whether this is the case for the Rhine Graben tectonic stress environment.
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Estimates of carbon dioxide fluxes from the whole Eifel region are in the order of 0.5-1 Mt/yr
(Puchelt, 1983). Assuming a magma density of 2600 kg/m3, our volume growth rate corresponds
to a mass accumulation rate of 1.2·1011 kg/yr. This means that the CO2 fluxes would correspond
to about 1% of the magma mass rate. Similar ratios of CO2 in parental magmas are found in
continental rift regions, such as Nyamuragira volcano, Congo (Aiuppa et al., 2021).

Our estimated volume growth rate should be considered as an upper value, since inelastic
rheologies such as viscoleastic relaxation and/or thermal expansion of the surrounding rock
may account for part of the estimated value (e.g Newman et al., 2006; Lisowski et al., 2021).
At the examined depths (few tens of km) and time scales (20 years, possibly up to hundreds of
years), temperatures are already elevated, so that additional magma accumulation may have
further weakened the host rock making elastic rheology an unrealistic idealization. Modeling
a rheologically-complex lithosphere is however challenging due to a lack of constraints on the
history of the deformation. Indeed, uplift rates in the RHM have varied considerably in time.
The available GNSS time-series span a maximum of ∼20 years, but the present-day uplift rate
of ∼1 mm/yr might be traceable back to several decades (e.g Mälzer et al., 1983; Ziegler, 1992).

Our inferred deformation source could correspond to the wide layer of low seismic wave
velocity inferred by (Dahm et al., 2020) (Section 5.1). Furthermore, the presence of tabular
zones of magma accumulation and differentiation located at several depths, possibly forming a
transcrustal magma system, has been suggested by recent seismicity, tomography, and petro-
logical studies, multi-isotope gas analysis and magnetotelluric methods (e.g Jödicke et al., 1983;
Schmincke, 2007; Bräuer et al., 2013; Hensch et al., 2019; Dahm et al., 2020; Rizzo et al., 2021).
We assumed the presence of a single large sill at different depths, but a series of stacked hori-
zontal intrusions of equal cumulative volume expansion rate and sitting within the same depth
range would generate a similar deformation field (e.g Amoruso and Crescentini, 2009).
Our pressurized sill model is not necessarily alternative to the presence of a mantle plume
underneath, since a combination of one or more sills and a buoyant body could also reproduce
the observed deformation. An additional model combining the two approaches could consider
both the sill over-pressurization and any buoyancy due to the density contrast between the
magma within the sill and the host rock (Sigmundsson et al., 2020). The buoyant-body model
used by Kreemer et al. (2020) has weaknesses, since it implies a buoyancy force distribution
over an area of about 150-180 km radius. A classical plume head leading to a mushroom-like
seismic velocity anomaly has however not been imaged by seismic data, only showing a ∼60
km diameter plume stem (Ritter et al., 2001; Ritter, 2007), even if, according to some plume
models, this might be due to data resolution (Wüllner et al., 2006).

Understanding the process causing the current RHM uplift and the recent unrest at EVF
still requires further studies and, importantly, new and complementary observations at multiple
spatial and temporal scales (e.g., deformation, seismicity, tomography, geochemistry). The
spatial extent of the area under examination and the low deformation magnitude represent a
challenge. GNSS data have proven to be fundamental in revealing the ongoing deformation
and its spatial features, helping to better understand the deformation source. Better constraint
of the deformation source would however require longer, more accurate, and possibly spatially
denser measurements, together with further understanding of other ongoing processes at large
(e.g. GIA), regional (e.g., faulting and seismicity within the Lower Rhine Graben) and local
scales (e.g. human activity). In particular, a better-constrained ratio between horizontal and
vertical surface displacements might be helpful to distinguish among different deformation-
source scenarios (e.g., high-accuracy measurement of horizontal baselines across the uplifting
area).
Even if previous studies showed no significant gravity anomaly unequivocally related to the
EVF plume or to the regional uplift (Ritter et al., 2007; Van Camp et al., 2011), accurate
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gravity measurements could in principle constrain the total mass and the nature (density)
of the potentially intruding material (e.g. Nikkhoo and Rivalta, 2022a). The expected gravity
changes at the free surface associated with our TRDs model is < 0.5 µGal/yr (Text S2), showing
that significant gravity changes (above measure uncertainties) would require long observation
periods. However, absolute gravimeters campaigns of sub-µGal accuracy may help, if carried
out over protracted time periods, to measure the uplift with higher accuracy, provided a careful
identification and removal of effects from other deformation sources such as hydrological and
anthropic activity (Van Camp et al., 2011; Nikkhoo and Rivalta, 2022a).

Located in an intraplate, stable continental environment, the RHM represents an interesting
starting case for research about other volcanic areas with low deformation rates on regional
scales (e.g., New Zealand). Currently ongoing measuring campaigns (e.g. dense seismic net-
works) at EVF will potentially contribute to shed new light on the underlying magmatic system
and its implications.
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Chapter 6
Conclusions

6.1 Summary
In this dissertation, I developed a comprehensive 3D framework for constraining the stress state
in volcanic regions, illustrated the advantages of combining physics-based models of magma
transport with statistics to improve the forecasting of future vent locations, and showed how
such a method is now mature for applications to real settings. This work expands the stress
inversion and vent forecast strategy of Rivalta et al. (2019) with 3D models of crustal stress and
dike pathways, together with a new statistical approach where sampling of model parameters
is more efficient. The inverse problem of stress state in calderas is re-defined in terms of
backtracking past vents to the magma storage volume that fed them.

In the following, I summarize the achievements and results of each chapter.

• In Chapter 2, I and the co-authors demonstrate the potential of the strategy by Rivalta
et al. (2019) by applying it to air-filled cracks propagating in stressed gelatin blocks. I
constrain the stress state of gelatin so that the observed arrival points of cracks at the free
surface match the ones of simulated crack trajectories, and forecast the arrival points of
additional observed cracks. This work relies on 2D models and plane strain assumption,
but improves on Rivalta et al. (2019) in terms of both stress modeling and a more efficient
MCMC scheme for the stress inversion. The gelatin stress model relies on two parameters,
related to the lateral strain applied to the blocks (analog for tectonic processes) and the
unloading pressure of the surface excavations. Stress inversions provide posterior PDFs
for the two parameters, as well as their ratio. The main result is that crack trajectories
are controlled not so much by the individual parameters as their ratio, and forecast is
successful as long as latter is well constrained. A notable result is also the successful
forecast performed while neglecting layering in the gelatin.

• In Chapter 3, we describe the new ‘Simplified Analytical Model’ of dike pathways in 3D
(SAM), a 3D equivalent of the ‘elementary’, v⃗3-perpendicular streamline approach widely
employed in 2D. SAM can also backtrack dike trajectories from a vent down through the
crust. I compare SAM dike pathways to the ones predicted by the numerical model of
3D dike propagation developed independently by Davis et al. (2020, 2021) (here referred
to as ‘Three-dimensional Intrusion Model’, TIM). I also discuss the application in 3D of
the BE approach to gravitational loading/unloading by Martel and Muller (2000), and
combine it with SAM and TIM to produce a set of synthetic scenarios of magma transport
in calderas, where dikes nucleate from magma storage regions of different shapes and
size and propagate under increasingly complex topographies. SAM and TIM pathways
prove to be consistent, as long as dikes in both models start already aligned to v⃗3. The
importance of including the effect of the magma buoyancy force is also highlighted, as
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SAM dike pathways can be different for the same external stress field, if the magma
density changes.

• In Chapter 4, we combine SAM and the crustal stress model described in Chapter 3 with
the MCMC algorithm adopted in Chapter 2 to build a strategy of stress inversion and
forecast of eruptive vent locations in 3D. The strategy relies on backtracking dike trajec-
tories from vents on the surface to a probable magma storage volume at depth, described
in terms of a PDF, and optimizing the stress model so that the trajectories intersect the
volumes where such PDF is maximum. I test that strategy on the synthetic scenarios of
Chapter 3, with different assumptions on the magma storage PDFs, the starting points of
backtracked trajectories, and the known parameters in the stress inversion. The posterior
PDFs of stress parameters and their ratios are discussed as in Chapter 2, highlighting
advantages and drawbacks of the new approach. In particular, when topographies are
strongly non-axisymmetric, individual stress parameters can be constrained as well as
their ratios. The stress inversion also returns PDFs for the dike starting points at depth.
Probability maps for the locations of future eruptive vents are produced and tested on
synthetic vents not employed in the inversion. The drawbacks and critical points are
analyzed, but the overall performance indicates that the strategy is ready to be tested on
real scenarios.

• In Chapter 5, I help performing inversions of varying deformation source models on ground
deformation rates across the Rhenish Massif in Central Europe. I and the authors test
the hypothesis that the ongoing ground deformation may be due to magmatic under-
plating, in alternative or in conjunction with an impinging, buoyant mantle plume. The
Rhenish Massif includes the Eifel Volcanic Fields in Germany, which have witnessed vol-
canism as recently as ∼11 ka BP and are currently experiencing unrest. We find that
the observed deformation rates are compatible with melt accumulation in sub-horizontal,
sill-like structures within the lithosphere, occurring at the rate of ∼0.045 km3/yr. We
also discuss what additional observations are needed to constrain the structure of the
Eifel magmatic system.

6.2 Discussion
6.2.1 Why physics-based models matter in vent forecast
The assumption that future eruptions are likely to occur close to where they have in the past,
or where the crust is weakened by fractures and hydrothermal activity, is often intertwined
with the concept that magma tends to reach the surface through pre-existing pathways.

The rationale that pre-existing faults and fractures channel and control magma propagation
through the Earth’s crust is an intuitive one. Many volcanoes, indeed, exhibit open conduits
where magma is either pooling for long time scales (lava lakes, e.g. Kilauea, Patrick et al.,
2019b; Nyiragongo, Burgi et al., 2014) or frequently erupting (e.g. Stromboli, Carapezza et al.,
2004). Yet, these volcanoes may also experience flank eruptions unrelated to the main conduit
(e.g. Patrick et al., 2019a; Smittarello et al., 2022). Additionally, several volcanic systems
display no open or stable magma pathway, but rather ever-changing distribution of vents.
This is especially true for calderas and monogenetic volcanic fields. Even in such cases, many
previous works have associated volcanism with the presence of faults, implying that they provide
a readily-available pathway to ascending magma and ultimately control where it reaches the
surface. Such association has been frequently made for vents near the rim of calderas and
the relative rim faults (De Vita et al., 1999; Selva et al., 2012), or vents near tectonic faults
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(Girard and Stix, 2010). Field observations, however, indicate that eruptive vents often align
to, but do not coincide with, regional tectonic structures such as faults (Reches and Fink,
1988), rifts (Mazzarini et al., 2016) and grabens (Gómez-Vasconcelos et al., 2017). Fault-
driven magma propagation has a major drawback, implicit in its formulation. The concept
that magma propagation is favored where the host rock is already fractured offers no insight
on which fracture magma should follow, even if we possessed detailed knowledge of the fracture
network within the medium. As crustal rocks are often densely fractured and the fracture
networks cannot be mapped accurately, it is then impossible to make any prediction of how
magma will ascend. It may be argued that, since fractures are ubiquitous in rocks, there is no
way to falsify the hypothesis that pre-existing pathways control magma propagation. On the
contrary, physics-based models of magma transport, such as the ones considered here, reduce
the problem to a few, tractable components, which can be understood, constrained and used to
forecast future magma pathways. If they fail to match observations, they may be then falsified,
but our understanding of magma propagation would still advance.

6.2.2 Achievements and features
The main achievement of this thesis is the definition of a 3D framework to constrain the stress
state of a volcano and predict the locations of future vents across its area. The concept of
such a framework was laid out by Rivalta et al. (2019), but developing the modeling tools and
procedures needed for a 3D upgrade entailed several challenges, each requiring a long process of
testing and optimization. Such challenges can be distinguished in two categories: 1) 3D models
were available, but needed to be adapted for our purposes; 2) no 3D model with the desired
characteristics was available. Category 1) refers to the BE numerical model of gravitational
loading/unloading used in Chapter 2, and then upgraded to 3D in Chapter 3. The model is an
implementation of the approach by Martel and Muller (2000) with the BE toolbox Cut&Displace
(Davis et al., 2019) and, as such, offers no innovation per se. However, what Chapter 3 provides
is a better understanding of the model itself, as it establishes the importance of defining a datum
level and the ambiguity in doing so. Chapter 4 goes further, explaining how the approach by
Martel and Muller (2000) can be used to constrain the gravitational loading/unloading of not
only the topography, but also of local density layering in the shallow crust. The idea of adjusting
the elevation of individual topographic features, such as the depth of a caldera, to account for
the mass deficit or surplus due to unknown layers of varying density in the subsurface was
already realized in 2D, but not clearly explained, by Rivalta et al. (2019). The concept of
‘effective depth/height’ established in Chapter 4 sets the stage for the application of that
idea to realistic settings. Chapter 4 also introduces the ‘compound-stress’ model, which is an
approximation of the original Martel and Muller (2000)’s model designed to perform fast stress
calculations during stress inversions. The discrepancies between the two models are generally
minor at large depths (< 2 km), but the compound-stress method is unreliable close to the
topography, and is to be regarded as a first step towards future developments. Notwithstanding
its limitations, it allows users to perform stress inversions within reasonable times (∼30 hours
for 20k iterations and 10 vents, i.e. 10 dike trajectories per iteration) with easily-available
computational resources. This aspect will prove critical in the extensive testing that is needed
to validate the stress inversion strategy with real-case scenarios.

Category 2 refers to SAM, developed in Chapter 3. Since the publication of Rivalta et al.
(2019)’s approach, new modeling tools of dike propagation in 3D were developed by Davis et al.
(2020, 2021). However, the computational cost of TIM simulations, while relatively low (typi-
cally a few minutes for a 10-km-long dike pathway), was impractical for statistical applications.
What was needed was a simplified, but fast and flexible model that could upgrade the 2D, v⃗3-
perpendicular streamline approach to 3D. SAM delivers that upgrade, but is more than that,
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since it includes the effect of the magma buoyancy force. Thus, it combines the flexibility and
computational efficiency of the streamline approach with the possibility of reproducing realistic
dike trajectories. As showed in Chapter 3, SAM and TIM simulations are consistent as long as
dikes in both models start aligned to v⃗3. On top of that, owing to its simplicity, SAM, quite
uniquely, is able to backtrack dike trajectories. This leads us back to the main achievement of
this thesis. The 3D stress inversion framework introduced in Chapter 4 relies on backtracking
dike pathways from the vents on the surface down through the crust, and finding the stress
models that bring most trajectories through the assumed dike nucleation zone. Taking vents
as the starting points exempts us from assigning dike starting points at depth, which, without
accurate knowledge or physical justifications, amounts to simplistic and possibly arbitrary as-
sumptions: for instance, fixing the dike starting points at the edge of a reservoir, as done in
some scenarios in Chapter 3. Re-defining the inverse problem of stress inversion in volcanoes as
in Chapter 4 drastically reduces the variables and assumptions needed, and paves the way to a
general framework of stress inversion and vent forecast that may be implemented with models
and tools different than the ones employed in this thesis.

6.2.3 Limitations of stress and dike pathways models
The stress and dike models employed throughout this dissertation are approximations of com-
plex natural processes and, as such, come with several limitations.

The first main assumption, common to both past and current models of dike pathways, is
that of a homogeneous, isotropic host rock for dikes. This is a necessary approximation if
the number of parameters to be constrained in a stress inversion is to be kept minimal, but
the effects of crust heterogeneity, such as the impact of rigidity layering on dike trajectories
(Maccaferri et al., 2010; Geshi et al., 2012), are neglected. This issue is tackled in Chapter 2,
where rigidity layering was introduced in some gelatin blocks and, then, purposefully discarded
in the models. The results show how, although neglecting the layering does have a bias on the
outcomes of stress inversion, subsequent crack trajectories are still forecast successfully. The
implication is that, as long as an ‘effective’ stress state is constrained, the missing information
on rock heterogeneities may be included in the uncertainty on the stress parameters, without
undermining vent forecast. We also note that large-enough dikes in nature will not respond to
small-scale heterogeneities during their propagation, due to the large stress induced in the host
rock at their tip.

A further limitation, common to both SAM and TIM, is that the complexity of shallow dike
propagation (<∼1 km depth) is completely neglected. Contrary to Chapters 3 and 4, SAM
trajectories may reach the free surface if an analytical or Finite-Element model of gravitational
loading/unloading was employed. Regardless, dike propagation at shallow depths can be af-
fected by numerous processes, including e.g. faulting, inelasticity, the presence of water and
loose sediments, and models grounded on Linear Elastic Fracture Mechanics, such as SAM
and TIM, are unlikely to be of any avail. Addressing this limitation will involve dedicated
modeling of the above-mentioned processes. The resulting models will likely be too complex to
be effectively integrated into a statistical framework, but would prove useful in vent opening
simulations for individual dikes.

Modeling the stress state in volcanoes is still riddled with challenges. The approach by Martel
and Muller (2000), which we adopt in 2D and 3D throughout the dissertation, describes the state
of stress of a solid which is emplaced at once and subject to the force of gravity. Such is the case
of the homogeneous gelatin blocks presented in Chapter 2. Volcanic edifices, on the contrary,
are built through a radically different process, which entails the progressive accumulation of
layers of eruptive material one over another, and further processes that change the stress state in
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such layers over time, as detailed in Chapter 3 and 4. Neglecting such processes may be a good
approximation in calderas, where intrusions and eruptions are generally rare, if compared to
stratovolcanoes and shield volcanoes. Moreover, caldera formation is a relatively abrupt event,
where a large mass removal occurs over short time scales. The resulting surface unloading can,
thus, be effectively modeled as illustrated in Chapter 2 and 3, provided the caldera-forming
event is recent enough, so that the impact of viscoelastic processes is negligible. As such, the
stress inversion strategy may be applied, as it is, to existing calderas.

The same does not apply to volcanic edifices, where stress changes are far more frequent, and
both the analog and the numerical models employed in this work fail to reproduce common
vent patterns when applied to such settings. This is the reason why the stress inversion and
forecast are tested exclusively on caldera-like settings in this work. As discussed in Chapter 3, a
simple solution to account for stress-changing processes in volcanic edifices is to scale the stress
components resulting from full gravitational loading by a factor that brings shear stresses close
to zero, and the diagonal components of the stress tensor close to one another (Corbi et al.,
2015; Davis et al., 2021). Regardless, further advances in the understanding of stress in volcanic
edifices are necessary.

The models employed here also neglect the stress contribution of pressurized reservoirs. Chap-
ter 3 explains how such contribution is significant only in the proximity of a reservoir, and thus
is not relevant in the modeling of dike pathways at larger scales, although it can play a leading
role in controlling dike nucleation.

All the previously-mentioned limitations may be removed or mitigated in future works. It is
worth noting, however, that simple models have a distinct advantage over more sophisticated
ones: constraining a smaller set of parameters require less data and less assumptions on quan-
tities that are generally poorly-known (e.g. TIM dikes require a volume, SAM dikes do not).
Moreover, complex, ad-hoc models may reproduce a specific set of data with great accuracy,
but may fail if new data are introduced. Confining our modeling effort to the dominant mech-
anisms modulating a physical process (in our case, dike propagation) ensures that our model
may reproduce all sets of data with sufficient accuracy. The implication is that, in statistical
applications, the predictive power of a model increases, if it can capture the first-order state of
a system with the smallest number of parameters (Forster and Sober, 1994).

The final and main limitation of the models and concepts presented in this thesis is that they
have been tested with analog models and synthetic scenarios, but lack applications to nature.
As a result, it is still unclear in what circumstances they may be adequate or too simplistic to
represent natural processes. Thus, extensive testing on calderas, monogenetic volcanic fields
and, in the long run, stratovolcanoes and shield volcanoes is required to assess the validity of
the tools developed so far.

6.2.4 Uncertainties from models and observables
The stress inversion described in Chapter 4 provides posterior information on the parameters
controlling the stress model. The uncertainty on the information is determined by several
factors, some arising from the characteristics of the models, some from observations, and some
intrinsic to the problem itself.

Model uncertainties are due to the approximations made when implementing the models of
stress and dike trajectories in the stress inversion and vent forecast. As discussed in Chapters 3
and 4, backtracking dike trajectories with SAM is less accurate when starting from surface vents.
Assumptions on SAM parameters, such as the dike radius and the magma density, are also a
source of uncertainty. The most significant model uncertainty, however, is due to the compound-
stress method developed in Chapter 4. Such a method is a rather coarse approximation of the
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method by Martel and Muller (2000) which I apply in Chapter 3. The discrepancies between
the two approaches become significant at distances from the topography mesh equal to roughly
twice the average size of the mesh dislocations, and the method is utterly unreliable at distances
of ∼1 km from the free surface, as it involves the superposition of stress models calculated
with meshes of different elevation. Thus, stress calculations at shallow depths and within the
topography itself are impossible with the compound-stress method. This is not an issue in
the tests discussed in this thesis, where the elevation of topographic highs is smaller than the
MDT defined in Chapter 3, so that dikes are not propagated within them. Nevertheless, the
compound-stress method, as it currently stands, is not applicable to model dike propagation
within large volcanic edifices, and needs to be further developed. We remind that the issue
can be avoided by applying the original approach by Martel and Muller (2000) (single-mesh
method in Chapter 4) to stress inversions, at the cost of much longer running times. If the
aim is to reduce the computational cost, then an approximation of the single-mesh method is
needed. Any approximation, no matter how much more accurate than the compound-stress
method, will inevitably involve some discrepancies.

Uncertainties arise from the observables a well. Uncertainty on vent locations, which may
be very large for poorly-known past eruptive events, translates into uncertainty on the starting
points of backtracked dike trajectories. Although in Chapter 4 we take the drastic assumption
that vents are fixed points, we can model such uncertainty by assigning a PDF to the vent
location, possibly also informed by the fissure orientation. In contrast to fully data-driven
approaches to vent forecast (e.g. Selva et al., 2012; Bevilacqua et al., 2015), missing a vent in
a specific area does not necessarily mean that such an area will be assigned a low probability
of vent opening. However, an incomplete record of past vent locations may still bias the stress
inversion results, as discussed in Chapter 4, especially when the known vents are all clustered in
a localized area. In a real case, no matter how accurate the knowledge on past vent locations is,
some vents may have been buried by volcanic products in subsequent eruptions, thus removing
potential data. Furthermore, many dikes, both in nature and in the models, stop before reaching
the surface (Rubin, 1995; Maccaferri et al., 2016; Smittarello et al., 2022), and are difficult to
identify in the crust (through e.g. seismic tomography). There is no obvious solution to such
missing data. Dividing the available vents into various training sets and testing the stress
inversion with each of them may be useful, as significantly different results may suggest that
data are too scarce to accurately constrain the stress state.

On the contrary, uncertainty on the location, size and shape of the dike nucleation zone, as
defined in Chapter 4, is directly related to the performance of the stress inversion. Identifying
a dike nucleation zone implies, on one hand, reliable knowledge of the magma plumbing system
of a given volcano, which can be gained by a variety of geodetic and geophysical techniques (e.g.
seismic tomography, petrographic analysis, inversion of ground deformation data). On the other
hand, it entails a deeper understanding of the process of dike nucleation and the mechanisms
that favor and control it. Chapter 5 demonstrates the challenges inherent to constraining
the magmatic system of a volcano, especially when dealing with large regions of distributed
volcanism such as the Eifel Volcanic Fields (EVF). The interpretation of the ground deformation
rates across the Rhenish Massif given in Chapter 5 envisions magma accumulation in sill-like
structures over an extremely large area in the lithosphere, but the presence of magma lenses
stacked at varying depths cannot be ruled out, as well as that of a mantle plume impinging
on the lithosphere. Results from past seismic tomography (Mechie et al., 1983; Dahm et al.,
2020) do highlight a region of decreased seismic compressional wave velocities beneath the
Rhenish Massif, but offer so far no unambiguous interpretation. Focusing on the EVF alone, the
structure of the local magmatic system may be more complex, with possible shallow reservoirs
and melt accumulation at shallower depths in the crust (Hensch et al., 2019). An application of
the vent forecast strategy outlined in this thesis to the EVF would rely on all such information
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on the magmatic system to define the dike nucleation zone in the most accurate way possible.
For instance, the deformation source models constrained in Chapter 5 would be the preliminary
step in defining a PDF for the deep dike nucleation zone of the EVF region.

6.2.5 Alternative stress inversion strategies
Alternative strategies to constrain the stress state in volcanoes have been proposed in recent
years by Zhan et al. (2022) and Maerten et al. (2022). As discussed in Chapter 4, they consider
observables different than past vents, namely, focal mechanisms of recorded earthquakes (Zhan
et al., 2022) and exposed dike trajectories or the orientation of eruptive fissures (Maerten et al.,
2022). Neither of the two approaches, however, offers a comprehensive solution to realistic
stress inversion. Zhan et al. (2022) adopt a trial-and-error approach to stress optimization,
while Maerten et al. (2022), despite using a 3D stress model, project the exposed dikes or the
strikes of eruptive fissures on a 2D plane, where stress calculations are made. They show,
nonetheless, the advantage of considering observables other than the location of past vents
in stress inversion. Numerous works in the past have monitored stress changes in volcanoes
through observed seismicity (e.g. Dieterich et al., 2000; Aoki, 2022). Stress inversion methods
based on focal mechanisms of observed earthquakes have been applied to oil, gas and geothermal
reservoirs as well. On the contrary, exposed dike pathways are rarely available, and are usually
found in heavily-eroded and no longer active volcanic systems, which hold little interest for
volcanic hazard assessment. Maerten et al. (2022), however, use the orientation of eruptive
fissures as an indicator of the local stress state in a volcano, since it is related to the orientation
of the underlying dike. Modeling shallow dike propagation and vent formation is beyond the
scope of this work, as it involves complex processes such as the interaction between a dike and
the free surface and non-elastic rheology of shallow rock layers. Nonetheless, the orientation
of past eruptive fissures is an additional observable that may be integrated into our strategy,
together with observed seismicity.

6.3 Outlook
6.3.1 Application to real cases
The vent forecast strategy presented here is equipped with the 3D stress and dike pathway
modeling tools to be tested on existing calderas and distributed volcanic fields. Plenty of
potential case studies are available worldwide, where large populations are exposed to major
risks of life and economic losses (e.g. Campi Flegrei caldera, Italy, > 4 million people, De Vivo
et al. 2019; Auckland Volcanic Field, New Zealand, > 1.3 million people, Lindsay 2010).

The reliability of stress inversion and forecast results will likely be affected by the quantity
and quality of observables. More specifically, an optimal case study requires a detailed and
long-spanning eruptive history, with a large record of eruptions and well-constrained locations
of the respective vents. The size, shape and location of magma storage volumes should also be
well-constrained, while petrological and geochemical analysis may associate specific eruptions
with different storage depths of a magma reservoir. More generally, it should be possible
to divide the eruptive history into distinct epochs of activity, on the basis of changes in the
eruption style, magma composition and vent distribution. These epochs of activity, in turn,
would mark different ‘reference states’ of the system over time, which would be constrained by
stress inversions relying only on the vents belonging to each epoch. The knowledge of how the
topography has changed as a consequence of eruptive events, such as the progressive refilling
of the caldera, resurgent domes, craters and scoria cones, would help distinguishing between
such reference states, and possibly updating the retrieved stress state for the most recent epoch
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to the current conditions of the region, as illustrated in Chapter 4. Finally, a well-constrained
stratigraphy of the caldera or volcanic field would inform the assumptions on rock density and
elastic parameters in the models. Collecting and managing such diverse information for any
given volcanic region involves cooperation between experts in different fields of geology and
geophysics. In particular, the contribution of geochemists and structural geologists will be
critical. The result may be a more comprehensive overview of the system and its evolution, a
deeper insight into the processes that have shaped it, and a better understanding of the hazards
it poses.

The model limitations discussed earlier, however, mean that some case studies are more
suited than others for an application of the strategy. Calderas that formed in the relatively
recent past, such as Campi Flegrei (∼40, 000 − 39, 000 years BP for the Campanian Ignimbrite
eruption, see e.g. Giaccio et al., 2017), are better candidates than calderas with a longer history,
such as Long Valley, California (Hildreth, 2004). The reason is that the stresses induced by
the caldera formation are less likely to have been changed or relaxed by inelastic processes if
the caldera is younger, and, therefore, our stress model may be more accurate. Campi Flegrei
caldera, in particular, is a prime candidate for application, as it is a well-monitored system with
a long record of eruptive activity (Orsi, 2022), many well-constrained vent locations (Smith
et al., 2011) and a magmatic system which, though not entirely resolved, has been modeled
by numerous works (Trasatti et al., 2011, 2015; Di Vito et al., 2016; Montagna et al., 2022).
Nonetheless, Campi Flegrei presents several modeling challenges, such as complex stratigraphy
and fault networks (Orsi et al., 1996) and a large hydrothermal system that may significantly
contribute to ground deformation in periods of unrest (Lima et al., 2009; Calò and Tramelli,
2018; Mantiloni et al., 2020).

Monogenetic volcanic fields are also candidates for application, but present an additional
challenge, since they often have no obvious relation to a well-resolved magma storage system,
as it is often the case for calderas. This is the case, for instance, of the Auckland Volcanic
Field in New Zealand (Hopkins et al., 2021). As shown in Chapter 4, assumptions on the dike
nucleation zone have the largest influence on the outcomes of stress inversions, and depend on
the prior knowledge on the magmatic system of a volcano. Monogenetic volcanic fields also
encompass a wide range of volcanic systems, spanning over varying spatial and temporal scales
(e.g. Connor et al., 2000). Individual cases might then be more or less suited for applications.

In this regard, Chapter 5 offers some insight on a potential application of vent forecast
to a rather challenging case study: the Eifel monogenetic Volcanic Field (EVF) in Germany.
Although the volcanic hazard in the area is not deemed as high as in other volcanic systems,
the risk posed by an event comparable to the Laacher See eruption (∼12, 900 years BP) is
considerable, in terms of life and economic losses (Leder et al., 2017; Hensch et al., 2019).
In contrast to other case studies, such as the Campi Flegrei caldera, the location and age of
past vents are generally poorly constrained, and the magmatic system, both locally at shallow
depths and regionally across the lithosphere, has not been resolved yet (Dahm et al., 2020).
As mentioned earlier, the debate over the source of volcanism in the EVF is still ongoing, as
well as that over the cause of the ground deformation across the larger Rhenish Massif region.
Chapter 5 explores the hypothesis of melt accumulation over very large tabular structures in the
lithosphere, constraining the varying deformation source models with GNSS data by Kreemer
et al. (2020). Such results, however, only help resolving the deep, large-scale magmatic system
below the Rhenish Massif, which may have fed volcanism in the EVF over time. Local magma
storage at shallower depths must also be accounted for: in the EVF, the presence of local
crustal reservoirs that may have fed eruptions in the past has been suggested by petrological,
geochemical and seismic evidence (Schmincke, 2007; Hensch et al., 2019; Dahm et al., 2020).
The distinction between large-scale, deep and local, shallow melt accumulation volumes hints at
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two possible applications of the vent forecast strategy. In the first case, a stress inversion may
be performed by matching the EVF vents with a large magma reservoir at the crust/mantle
boundary, such as the one discussed in Chapter 5. Given the extent of the considered region,
vent locations may be assumed point-like. The resulting probability map of future vent opening
would provide a general picture of the areas across the Rhenish Massif most likely to host
volcanism. The second application, instead, may focus on individual volcanic centers and
clusters of vents, and would require the accurate constraint of both vent locations and local
magma storage. Uncertainty on vent locations would also have to be included. The end product
would be more detailed probability maps focused on specific portions of the EVF, and suited
for assessing volcanic hazard locally. The prerequisites for both applications are 1) a better
understanding of magma storage at different depths and lateral scales; 2) a more comprehensive
and detailed record of past eruptive activity, with well-resolved vent locations and ages. As
long as those prerequisites are not met, any application of the vent forecast strategy would be
speculative.

Applications to large volcanic edifices, such as stratovolcanoes and shield volcanoes, are not
viable with the stress model as it currently stands, for the reasons explained in Chapter 3.
Testing on such settings will be possible only after meaningful advances in the modeling of
stress-changing processes within volcanic edifices. All the challenges and uncertainties listed so
far (e.g. unconstrained vent locations and/or magma storage) will still apply.

In summary, applications to nature require, first, establishing what settings are more suited
to the models that are currently available. Next, it is necessary to gather as much prior
information as possible on past eruptive activity and past/current magma storage. If such
information is not readily-available in literature, new data may be acquired through different
geodetic/geophysical techniques. Once this preliminary process is complete, testing of stress
inversion and vent forecast may lead to new uncertainties and limitations that need to be
explored and, possibly, overcome. It is a challenging endeavor, but the potential improvement
in volcanic hazard assessment makes it worthwhile.

6.3.2 Volcanic edifices
As mentioned earlier, modeling the stress state within large volcanic edifices requires additional
effort. Taking into account all the known processes that may alter stresses over time, such as
viscoelasticity, faulting and magmatic intrusions, with a comprehensive model is challenging,
since each of them is currently modeled with different degrees of sophistication, and all mod-
els rely on parameters which are often poorly constrained. A more feasible ask in the short
term could be integrating the approach to gravitational loading and tectonic stress employed
here with the stress changes induced by repeated dike intrusions within the edifice. Recently,
Dumont et al. (2022) showed the leading role played by previous dike intrusions in control-
ling the emplacement of subsequent dikes in Piton de la Fournaise, Réunion Islands. Current
dike propagation models, including SAM and especially TIM, are able to reproduce the strain
induced by such intrusions on the surrounding rock. Applying such models to large and well-
constrained data sets, as the one by Dumont et al. (2022), would improve our understanding
of stress evolution within volcanic edifices. With a more accurate stress model, the present
stress inversion strategy may be applied to such settings as well, possibly integrating past vent
locations and orientations with other stress indicators, like seismicity (Zhan et al., 2022).

6.3.3 Dike velocity
The dike propagation models discussed in this dissertation are not able to predict the velocity
of dike propagation, as discussed in Chapter 3. Knowledge of dike velocity, however, is critical
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in the context of short-term forecast, as it provides an estimate of the timing between the onset
of magma propagation deep in the volcanic system and the eventual eruption. Such physics-
based, short-term scenarios for individual volcanic crisis would be fundamental in minimizing
life and property losses, yet are currently unavailable, and cannot be addressed by the forecast
strategy presented here. The solution, however, might not be too far. Modeling of dike velocity,
in both 2D and 3D, has advanced remarkably in the last decade. Pinel et al. (2017) developed a
2D model which, first, resolves for the dike trajectory (Maccaferri et al., 2011) and, next, runs
a one-dimensional dynamical model of dike propagation along the trajectory, thus resolving
for the dike velocity as well. More recently, Zia and Lecampion (2020) developed PyFrac, a
numerical simulator of 3D planar hydraulic fracture growth, based on the algorithm by Peirce
and Detournay (2008). The tool includes, among other features, the lubrication flow of fluid
within the fracture and the possibility to account for elastic anisotropy in the host rock. PyFrac
was later applied by Möri and Lecampion (2022) to study the transition of a vertical hydraulic
fracture, subject to a constant rate of volume injection, from an initially radial fracture to an
elongated, buoyant growth. Davis et al. (2023) developed an analytical solution for the size and
ascent speed of 3D fractures with a fixed volume of fluid, and used PyFrac to benchmark their
analytical results. The growth of hydraulic fractures has also been studied by Pansino et al.
(2022), who applied a numerical model of a fixed-shape dike growing vertically and laterally,
under both constant and variable influx of fluid, to analog experiments and the growth of dikes
observed in Piton de la Fournaise (Peltier et al., 2005). Finally, Furst et al. (2023) developed a
BE numerical model which calculates the growth and dynamic shape of a fluid-filled crack as
a function of fluid viscosity and crack velocity in a heterogeneous external stress field, under
plane strain assumption.

The models of dike propagation presented in this thesis can provide some of these approaches
with pre-calculated 3D pathways, where dike velocity may be computed. Furthermore, external
stress, which the stress inversion strategy of Chapter 4 aims to constrain, is a critical input in
the previously-mentioned models. Future developments in this field may soon deliver a model
capable of resolving for the 3D pathway, shape and velocity of dikes under varying conditions
and assumptions (e.g. constant or variable volume or host rock heterogeneities).

6.3.4 Integration with different approaches
The vent forecast strategy developed here may be an important component of larger, more
comprehensive frameworks of volcanic activity forecasting. As suggested by Bartolini et al.
(2013) and Marti and Felpeto (2010), physics-based and data-driven approaches to future vent
forecast are not necessarily competing, and may rather complement each other. More generally,
both approaches may be included into event trees (Marzocchi et al., 2008; Connor et al., 2015),
where the possible evolution of an eruption is represented by nodes and branches describing
the particular outcome of specific events and hazards, each with an assigned probability, and
long- and short-term forecast are combined into a unified framework (Poland and Anderson,
2020). Physics-based vent forecast provides a spatial probability of eruption occurrence, and
would help informing the event tree. Yet, physics-based models are rarely used in this context,
as acknowledged by Poland and Anderson (2020), meaning that a wide range of potential
applications lies ahead.

6.3.5 Beyond volcanic hazard: Why stress matters
As discussed in Chapter 4, the potential of accurate models of crustal stress reaches beyond
the domain of volcanic hazard assessment, and has significant implications for several fields of
applied geophysics (McGarr and Gay, 1978).
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Determining the intensities of local principal stresses and the orientation of their axes is
critical in predicting hydraulic fracturing in oil and gas fields (e.g. Busetti and Reches, 2014),
together with reliable models of fluid-filled crack propagation such as the ones discussed in this
thesis (see e.g. Davis et al., 2020). Furthermore, the local stress state dictates wellbore failure
and sand production in oil drilling (Wiprut and Zoback, 2000), as well as reservoir stability
under fluid injection or extraction (Martínez-Garzón et al., 2013). Geothermal exploration and
production is particularly dependent on accurate assessment of subsurface stresses (Cloetingh
et al., 2010), and many of the areas that host such activities coincide with active volcanic
systems: for example, the Krafla geothermal field, Iceland (Nielsen et al., 2000), the Mammoth
Geothermal Complex in California (Bertani, 2016), and the geothermal fields in the Taupo
Volcanic Zone, New Zealand (White and Chambefort, 2016). The development of reliable
methods of stress inversion applied to such regions can lead to a more efficient exploitation
of natural resources, waste reduction and reduced environmental impact of human activity.
Finally, the design and construction of underground storage facilities for oil, gas (e.g. Jeanne
et al., 2020) or hazardous waste (e.g. Jo et al., 2019) also relies on assessing the stress state of
the rock mass that will host them.

Hence, the models and strategies developed in this dissertation can benefit multiple fields of
research, and improve the understanding of different geophysical processes.
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The present Supplement includes information on scaling factors and measured parameters of
the experiments we considered in the main text (Tables S2.1 and S2.2) and the data sets we
employed for inversions and forecasts (Tables S2.3 and S2.4), as well as further results from the
inversions (Table S2.5).

We also show larger versions of the pictures of the experiments displayed in the main text
(Figures S2.1 and S2.2), together with pictures of three discarded compressional experiments
(Figure S2.3). Additional results of two tests we performed are shown in Figure S2.4.

The data displayed in Tables S2.1, S2.2, S2.3, S2.4 and S2.5 were either collected or evaluated
between September 17, 2019 and May 25, 2020. Surface arrival points in Table S2.3 were
measured with a ruler directly on the surface of the gelatin blocks as soon as the experiments
were over. w in Table S2.2 was measured likewise. Imposed values of parameters d and h were
measured with a digital caliper (in the case of h the measure was repeated 3 times on different
points of the excavation floor), and Tsurf was measured with a digital thermometer.

Information on possible discarded crack trajectories in the experiments are reported in the
captions of Figures S2.1 and S2.2.
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Table S2.1: Scaling factors between reference cases in nature (rift-like or caldera-like settings) and our exper-
imental setup. The parameters L∗ and σ∗ are defined in the main text (Section 2.2.1).

Parameter (units)
or equation

Nature
(k=r)

Experiments
(k=gel)

Scaling ratio

Medium and fluid
properties

Host medium density ρk ( kg
m3 ) 2500 1020

Fluid density ρf ( kg
m3 ) 2400 1

Density contrast ∆ρk = ρk − ρf ( kg
m3 ) 100 1019

Poisson’s ratio ν 0.25 0.49
Fracture toughness Kk

c (Pa · m
1
2 ) 0.2-1·109 60-80

Gravitational acceleration g ( m
s2 ) 9.81 9.81

Geometry
Rift/Caldera diameter w (m) 5-25·103 60-70·10−3 2.4 · 10−6-1.4·10−5

Rift/Caldera depth h (m) 0.1-1·103 21-72·10−3 2.1·10−5-7.2·10−4

Depth of intrusion zstart (m) 1-5·104 1-1.5·10−1 2·10−6-7.5·10−6

Scaling expressions
Lengths

Buoyancy length L =
(

Kc

π
1
2 ∆ρg

) 2
3

2.37-6.92·103 2.3-2.8·10−2 L∗ = 3.3 · 10−5-1.2 · 10−6

Stress
Young’s modulus E (Pa) 10·109-10·1010 2.3-3.15·103 2.3·10−8-3.15·10−7

Tectonic stress σx = 4
3Ee (Pa) 1·106-1·107 3.83·101-5.25·101 3.83·10−6-5.25·10−5

Unloading σU = ρkgh (Pa) 2.45·106-2.45·107 2.1·102-7.2·102 σ∗ = 8.6 · 10−6-2.9·10−4

Table S2.2: Additional measured parameters for the experiments. The last row refers to the mean values
assumed in the pooling of data from experiments 2DLA-6 and 2DLA-7. Column 2,3 & 5: "t" = top; "b"
= bottom layers. Column 5: values of Young’s modulus E in parentheses are estimates for the top layers
assuming average values from the measured E of the homogeneous experiments at 2.0 wt% (2DLA-3) and on
an independent set of gelatin samples at 2.5 wt% (2DLA-4). Column 6: temperature measured at the surface
of the gelatin blocks immediately after their removal from the fridge. The fridge temperature is T = 8◦ C.

# Exp. wt % H w E Tsurf

± 1 ± 1 ± 0.1
mm mm Pa ◦ C

2DLA-1 2.0 190 70 2930 ± 120 10.5
2DLA-2 2.0 210 60 2740 ± 130 9.6
2DLA-3 t: 2.0

b: 2.5

t: 120

b: 110

70 t: 3150 ± 110
(2730 ± 240)

b: 5250 ± 460

9.6

2DLA-4 t: 2.5

b: 2.0

t: 88

b: 107

70 t: 2300 ± 70
(3800 ± 560)

b: 1390 ± 50

9.8

2DLA-5 2.0 196 70 2800 ± 70 8
2DLA-6 2.0 219 60 2480 ± 50 11
2DLA-7 2.0 219 60 2800 ± 60 9.8
2DLA-6&7 2.0 219 60 2640 ± 50 10.4
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Table S2.3: Measured x-coordinate of arrival points of observed cracks for the experiments considered in the
main text (see Section 2.2.1 and Table 2.1): xobs

i and xobs,F
i were used for inversions and forecasts, respectively

(see Sections 2.2.4 and 2.2.5). All quantities are measured according to the reference system shown in Figure
2.1a.

N I (Inversion) NF (Forecast)
±1 mm

# Exp. xobs
1 xobs

2 xobs
3 xobs

4 xobs,F
1 xobs,F

2 xobs,F
3 xobs,F

4
2DLA-1 -86 -67 72 81 69
2DLA-2 -118 139 126
2DLA-3 -90 63 88 76
2DLA-4 -70 -63 51 57 -84
2DLA-5 -114 -95 105 -55 72 87
2DLA-6 -90 -79 60 75 82 103
2DLA-7 82 94 102 -80 -73

Table S2.4: Assumed depth (zstart) and measured x-coordinate (xstart
i ) of the tips of observed cracks at

z = zstart for the experiments considered in the main text (see Section 2.2.3 and Table 2.1): xstart
i and xstart,F

i

were used for inversions and forecasts, respectively (see Sections 2.2.4 and 2.2.5). All quantities are measured
according to the reference system shown in Figure 2.1a.

N I (Inversion) NF (Forecast)
±1 mm

# Exp. zstart xstart
1 xstart

2 xstart
3 xstart

4 xstart,F
1 xstart,F

2 xstart,F
3 xstart,F

4
2DLA-1 -100 -75 -40 51 74 5
2DLA-2 -100 -40 85 40
2DLA-3 -150 -70 20 70 40
2DLA-4 -150 -40 -35 10 25 -70
2DLA-5 -150 -90 -30 80 -1 30 50
2DLA-6 -150 -60 -30 20 45 60 85
2DLA-7 -150 20 60 80 -40 -60

Table S2.5: Comparison between imposed and retrieved parameters. Column 2, 5 and 8: imposed parameters.
Column 3, 6 and 9: medians of the respective retrieved posterior distributions. Column 4, 7 and 10: standard
deviation of the respective posterior distributions.

# Exp. d dmed δxd h hmed δxh R Rmed δxR

± 0.1 ± 1 (×10−3) (×10−3)
mm mm mm mm mm mm

2DLA-1 2.5 4.9 2.7 50 51 24 63 ± 4 100 124
2DLA-2 -2.5 -3.5 2.7 44 73 20 -57 ± 4 -55 33
2DLA-3 2.5 3.9 2.4 21 63 25 120 ± 10 69 90
2DLA-4 2.5 5.8 2.4 24 59 26 104 ± 8 102 72
2DLA-5 0 0.4 3.6 24 64 23 0 ± 10−2 81 × 10−3 78
2DLA-6&7 2.5 2.5 2.0 65 64 22 43 ± 2 39 37
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a b

c d

Figure S2.1: Detailed pictures of experiments with fixed imposed parameters d, h. The blue arrows point to
the surface arrivals we considered for the forecasts (xobs,F

i ). a): 2DLA-1 (extension). b): 2DLA-2 (compression).
The crack in the middle of the box became stuck beneath the unload as a sill-like intrusion; it eventually hit
the back wall and reached the surface by further air injection. The leftmost crack was likely affected by a stress
concentration due to a slight misplacement of the left side plate. Both were discarded (Table S3). c): 2DLA-3
and d): 2DLA-4 (extension + layering).
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a

b c

Figure S2.2: Detailed pictures of experiments with imposed parameters updated midway through their exe-
cution (either d or h). a): 2DLA-5 (extension induced in the second half of the experiment). b) 2DLA-6 and c)
2DLA-7: the surface excavations were refilled with water up to ∼55 % of their original depth after the injection
of the crack sets on the left and on the right, respectively, while extension was imposed in both cases. The blue
arrows point to the surface arrivals we considered for the forecasts (xobs,F

i ). The difference in the color of the
post-injection ink in (a) and (c) corresponds to the sets injected before and after the stress update (from green
to red in (a) and reverse in (c)). The first red crack from left to right in (c) merged with the next one before
reaching the surface.
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a

b c

Figure S2.3: Detailed pictures of discarded experiments with imposed compression. a): 2DLA-8. b): 2DLA-9.
c): 2DLA-10.



Supporting Information for Chapter 2 111

E

0.5 1 1.5 2
E (Pa) 104

0

100

200

300

400

500

# 
co

u
n

ts
/#

 s
im

u
la

ti
o

n
s

0-0.1-0.2 0.20.1

0

-0.1

-0.2

co
un

ts
/M

x  (m)

z 
 (

m
)

a

b

Figure S2.4: Additional tests for our strategy mentioned in Sections 2.4.1 and 2.4.2. a): Experiment 2DLA-11
(not reported in Tables 2.1 and S2.2) with h = 10 cm and w = 7 cm. The purpose of the experiment was
to verify the re-focusing of crack trajectories towards the center of the surface unload once, after having been
deflected by the unloading, they approach the surface. This effect was observed in numerical simulations for
surface excavations with h

w >> 1 (see Section 2.4.2). b): Posterior probability density of the Young’s modulus
E performed on the NF data set of experiment 2DLA-5 (Tables 2.1 and S2.2). Here we fixed d and h as known
parameters. The measured value of E is represented by a red line; the median Emed by a green line. E falls at
the 37th percentile of the sampled PPD (see Section 2.4).
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1. Text S1 to S2
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Introduction
This supporting information includes further details about the inversion methods and gravity

change estimation introduced in the main text, and complementary figures for the data and
results description.
Text S1. Methods of regularization parameter selection and model parameters
uncertainty estimation

Once the forward problem is defined as in equation (2) of the main text, different methods
exist to select the optimal value for the regularization parameter k. The L-curve method consists
in picking k from the knee of a trade-off curve between model-roughness (

√
(Lm)T Lm/M) and

data-misfit (in terms of – unitless – weighted residual sum of squares WRSS
= (d-Gm)T WT W(d-Gm)) produced by solving the slip inversion with different values of k.
This method is intuitive and fast to implement, but the selection retains a level of subjectivity if
the knee curve point is not well defined. The cross-validation (CV) method is based on the idea
that the model parameters recovered by the inversion of a subsample of the dataset (the training
set) should be able to predict the data that were not used in the inversion (the validation set).
The original data set is randomly partitioned into n subsamples, a single subsample is considered
as the validation set, and the remaining n−1 subsamples are used as the training set. This test
is performed for different values of the smoothing parameter, that are then compared in terms
of the CVSS (cross-validation sum of squares of the predicted residuals), representing a measure
of the model ability to predict observation. The most appropriate smoothing parameter is the
one resulting in the lowest CVSS.
Testing both methods, we found that L-curve and CV give compatible results for the GNSS-sites
case, with CV providing a clearer minimum (Figure S5.4a). For the gridded-data cases, instead,
the L-curve produces a better-defined knee, whereas the CV solutions tend to be slightly under-
smoothed, particularly for the gridded-std2 case (Figure S5.4b, S5.4c). We therefore selected
smoothing factors through CV for the GNSS-data case and through L-curve for the gridded-
data cases.

We have applied the bootstrap statistical method (Efron and Tibshirani, 1986) in order to
estimate opening rates uncertainties. This technique consists in creating synthetic datasets
by randomly selecting, with replacement, N points from the original dataset, where N is the
number of GPS sites/grid points. For the new sample of N points (some of which are redundant
selections from the original sample, while some points in the original sample are missing), the
opening-rate distribution is recomputed using the same inversion method explained in Section
3 of the main text. By implementing this process many times, a distribution of opening rates
values is constructed for each patch and, from this, a meaningful statistical uncertainty value
can be estimated.
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Text S2. Gravity change estimation
We estimated the total expected gravity changes at the free surface of an elastic half-space

associated to our TRDs model (assuming 30 km depth) using the solutions from Okubo (1992)
as implemented by Beauducel (2022). The expected gravity signal is dominated by the free-
air effect so that its spatial pattern is similar to the modeled uplift. Assuming a half-space
density of 2600 kg/m3 and a lower density for the intruding material, we obtain a total gravity
change up to about -0.3 µGal/yr. This corresponds to 0.1 µGal/yr after removal of the free-air
contribution estimated using the predicted uplift and the theoretical free-air gradient -308.6
µGal/m.
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a) Vertical vel. before GIA correction – gridded

b) Vertical vel. GIA contribution – gridded

c) Vertical vel. corrected for GIA – gridded 

d) Vertical vel. before GIA correction – GPS sites

e) Vertical vel. GIA contribution – GPS sites

f) Vertical vel. corrected for GIA – GPS sites

Figure S5.1: Vertical velocities correction for the GIA contribution. Data in (a), (c) and (d) are provided by
Kreemer et al. (2020); (b) represents the GIA contribution as estimated from the difference between (a) and
(c). This contribution has been then interpolated at the GPS sites locations (e) and used to correct the vertical
velocities at GNSS sites in (d). The final result is showed in (f). All other elements are the same as Figure 5.1
in the main text.
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a) Horizontal velocity – GPS sites                     b) Vertical velocity – GPS sites

Figure S5.2: Same as Figure 5.1a, 5.1b in the main text, but filtered horizontal velocities (black arrows) are
shown together with the original ones (grey arrows) in order to highlight and show more clearly the underlying
horizontal deformation. The filtering consists in first applying a block average by L1 norm and then continuous
curvature splines over 30 km spacing grid (using respectively blockmedian and surface algorithms by Generic
Mapping Tool; Wessel et al., 2013).
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a) Horizontal vel. uncertainties – GPS sites       b) Vertical vel. uncertainties – GPS sites

e) Horizontal vel. uncertainties – gridded         f) Vertical vel. uncertainties – gridded (std2)

c) Horizontal vel. uncertainties – gridded          d) Vertical velocity unc. – gridded (std1)

Figure S5.3: Spatial distribution of velocity uncertainties at GNSS sites (a, b) and gridded values. The latter
are shown in two different modes for vertical uncertainty: respectively difference from raw GNSS values (c,
d) and from despeckled GNSS values (e, f) (See Kreemer et al. (2020) for further details about uncertainty
computation). Green dots are centers of Quaternary EVF activity, and dark green outline is Rhenish Massif.
All other elements are the same as Figure 5.1 in the main text.
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a) GPS sites

b) Gridded std1

c) Gridded std2

Figure S5.4: Plots of L-curves (black line) and CV curves (red lines) associated with the solutions for a sill at
30 km depth. The blue symbols indicate the selected smoothing factor values from L-curve (corresponding to
the solutions in Figure 5.2 of the main text). The green symbols indicate the smoothing factor as selected from
CV. Note that the blue and green symbols coincide for the GNSS data case.
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b) Gridded std1

North 

East

Up

Data

Model

North 

East
Up

North 

East
Up

Data

Model

Data

Model

a) GPS sites 

c) Gridded std2 

Figure S5.5: Comparison between data (and related uncertainty) and model results along two profiles respec-
tively along east-west (coordinate Y=0; left) and north-south (coordinate X=0; right).
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a) GPS sites                                b) Gridded 

a.1) Modeled opening                         b.1) Modeled opening                            

a.2) Modelled horizontal vel.              b.2) Modelled horizontal vel.

a.3) Modelled vertical vel.                   b.3) Modelled vertical vel.

Figure S5.6: Model results for a sill at 30 km depth obtained using the different kinds of surface velocity data
and equal weights (W = I). a) Results for GNSS data (k=1e9 m*yr, RMSE = 0.53 mm/yr, volume rate =
4.65e7 m/yr). b) Results for gridded data (k=2e9 m*yr, RMSE = 0.1 mm/yr, volume rate = 4.38e7 m/yr). All
other elements are the same as in Figure 5.1 in the main text.
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a) Opening-rate uncertainty - GPS sites

b) Opening-rate uncertainty - gridded std1

c) Opening-rate  uncertainty - gridded std2

Figure S5.7: Opening-rate uncertainty distribution (1-σ standard deviation for each patch) for a source at 30
km depth, obtained through bootstrap analysis and associated to the solution shown in Figure 5.2 of the main
text. All other elements are the same as in Figure 5.1 in the main text.
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a) DVx/DVz b) DVy/DVz

1) GPS 

2) Gridded – std1

3) Gridded – std2

Figure S5.8: Spatial distribution of ratio between the horizontal (∆Vx and ∆Vy) and vertical (∆Vz) potency
components of a grid of pCDMs at 30 km depth. Each raw correspond to results obtained using different kinds
of data. All other elements are the same as in Figure 5.1 in the main text.
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