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Summary

Inflammatory bowel diseases (IBD), characterised by a chronic inflammation of the gut
wall, develop as consequence of an overreacting immune response to commensal bacteria,
caused by a combination of genetic and environmental conditions. Large inter-individual
differences in the outcome of currently available therapies complicate the decision for the
best option for an individual patient. Predicting the prospects of therapeutic success
for an individual patient is currently only possible to a limited extent; for this, a better
understanding of possible differences between responders and non-responders is needed.

In this thesis, we have developed a mathematical model describing the most important
processes of the gut mucosal immune system on the cellular level. The model is based on
literature data, which were on the one hand used (qualitatively) to choose which cell types
and processes to incorporate and to derive the model structure, and on the other hand
(quantitatively) to derive the parameter values. Using ordinary differential equations,
it describes the concentration-time course of neutrophils, macrophages, dendritic cells,
T cells and bacteria, each subdivided into different cell types and activation states, in
the lamina propria and mesenteric lymph nodes. We evaluate the model by means of
simulations of the healthy immune response to salmonella infection and mucosal injury.

A virtual population includes IBD patients, which we define through their initially
asymptomatic, but after a trigger chronically inflamed gut wall. We demonstrate the
model’s usefulness in different analyses: (i) The comparison of virtual IBD patients with
virtual healthy individuals shows that the disease is elicited by many small or fewer large
changes, and allows to make hypotheses about dispositions relevant for development of the
disease. (ii) We simulate the effects of different therapeutic targets and make predictions
about the therapeutic outcome based on the pre-treatment state. (iii) From the analysis
of differences between virtual responders and non-responders, we derive hypotheses about
reasons for the inter-individual variability in treatment outcome. (iv) For the example of
anti-TNF-α therapy, we analyse, which alternative therapies are most promising in case
of therapeutic failure, and which therapies are most suited for combination therapies: For
drugs also directly targeting the cytokine levels or inhibiting the recruitment of innate
immune cells, we predict a low probability of success when used as alternative treatment,
but a large gain when used in a combination treatment. For drugs with direct effects on T
cells, via modulation of the sphingosine-1-phosphate receptor or inhibition of T cell pro-
liferation, we predict a considerably larger probability of success when used as alternative
treatment, but only a small additional gain when used in a combination therapy.
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Zusammenfassung

Chronisch-entzündliche Darmerkrankungen (CED), charakterisiert durch chronische Ent-
zündung der Darmwand, entstehen durch eine Überreaktion der Immunantwort auf kom-
mensale Bakterien, ausgelöst durch eine Kombination an genetischen und Umweltein-
flüssen. Große inter-individuelle Unterschiede im Behandlungserfolg mit den verfügbaren
Medikamenten erschweren die Wahl der für den jeweiligen Patienten besten Therapieop-
tion. Eine Vorhersage der Erfolgsaussichten einer Behandlung für einen Patienten ist zum
jetzigen Zeitpunkt nur sehr bedingt möglich; dafür wird ein besseres Verständnis möglicher
Unterschiede zwischen sogenannten Respondern und Non-Respondern (Patienten, die gut
bzw. schlecht auf ein Medikament ansprechen) benötigt.

In der Dissertation haben wir ein mathematisches Modell entwickelt, das die wichtig-
sten Prozesse des mukosalen Immunsystems des Darms auf zellulärer Ebene beschreibt.
Das Modell basiert auf Literaturdaten, die einerseits (qualitativ) zur Auswahl der zu
betrachtenden Zelltypen und Prozesse und zur Herleitung der Modellstruktur und an-
dererseits (quantitativ) zur Herleitung der Parameterwerte verwendet wurden. Mithilfe
gewöhnlicher Differentialgleichungen wird der Konzentrations-Zeit-Verlauf von Neutro-
philen, Makrophagen, dendritischen Zellen, T-Zellen und Bakterien, jeweils unterteilt
in unterschiedliche Zelltypen und Aktivierungszustände, in der Lamina propria und den
mesenterischen Lymphknoten, beschrieben. Wir evaluieren das Modells anhand von Simu-
lationen der gesunden Immunantwort auf Salmonelleninfektion und Verletzung der Darm-
barriere.

Eine virtuelle Population beinhaltet CED-Patienten, die wir durch ein zunächst asymp-
tomatisches, aber nach einem Auslöser chronisch entzündetes Darmgewebe definieren.
Wir zeigen den Nutzen des Modells anhand verschiedener Analysen: (i) Der Vergle-
ich von virtuellen CED-Patienten und virtuellen gesunden Individuen zeigt, dass die
Krankheit durch viele kleine oder wenige große Veränderungen ausgelöst werden kann,
und erlaubt, Hypothesen über krankheitsauslösende Veränderungen aufzustellen. (ii)
Wir simulieren verschiedene Therapiemechanismen und treffen, basierend auf dem Zu-
stand vor Behandlungsstart, Vorhersagen über den Therapieerfolg. (iii) Durch Analyse
der Unterschiede zwischen virtuellen Respondern und Non-Respondern leiten wir Hy-
pothesen über Ursachen für die inter-individuelle Variabilität im Therapieerfolg her. (iv)
Am Beispiel von TNF-α-Antikörpern untersuchen wir, welche alternativen Therapien
bei Therapieversagen am vielversprechendsten sind und welche Therapien sich beson-
ders für Kombinationstherapien eignen: Für Medikamente, die auch direkt die Zytokin-
level beeinflussen oder die Rekrutierung von Zellen der natürlichen Immunantwort inhi-
bieren, sagen wir eine geringe Erfolgswahrscheinlichkeit bei Nutzung als Alternativther-
apie, aber einen großen Gewinn durch Nutzung in einer Kombinationstherapie vorher.
Für Medikamente mit direkten Effekten auf T-Zellen, durch Modulation des Sphingosin-
1-Phosphat-Rezeptors oder Inhibierung der T-Zellproliferation, sagen wir eine deutlich
größere Erfolgswahrscheinlichkeit bei Nutzung als Alternativtherapie, aber nur einen
geringen zusätzlichen Effekt bei Nutzung in einer Kombinationstherapie vorher.
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1 Introduction

1.1 Inflammatory bowel diseases

Inflammatory bowel diseases (IBDs) are chronic diseases characterised by chronic inflam-
mation of various parts of the gastrointestinal tract. They severely decrease the quality
of life of affected patients, often resulting in life-threatening complications [1]. Approxi-
mately 0.3 % of western populations are affected, with increasing prevalence [2].

Pathogenesis. The pathogenesis of IBD is not fully understood. The disease is charac-
terised by an over-reaction of the mucosal immune system (especially T cell responses) to
commensal bacteria in the gut, resulting in increased cellular recruitment, overexpression
of pro-inflammatory cytokines and decreased levels of anti-inflammatory cytokines [3].
Many different genetic and environmental stimuli have been found as risk factors for the
disease, where a lot of different combinations of those accumulated risk factors appear to
be able to lead to the outbreak of disease. Genome-wide association studies have identified
many different genetic loci and susceptibility genes, and revealed that especially defective
intracellular bacterial killing and deregulated adaptive immune responses are linked to the
development of IBD [3–5]. The exact trigger leading to the outbreak of the disease is not
completely known. Many literature sources, however, discuss environmental factors that
perturb the mucosal barrier, alter the balance of gut microbiota, as well as abnormally
stimulate the immune system of the gut, as triggers for the onset of disease [4, 6, 7].

Symptoms. Common symptoms of IBD include rectal bleeding, diarrhoea, abdominal
cramping pain, fatigue, weight loss and fever [8]. As the mucosal immune system is highly
connected to the rest of the body, however, a wide variety of extraintestinal symptoms
can occur, affecting e.g. the skin, muscles or joints [8, 9]. IBD is mainly diagnosed via
endoscopy and histology [8]. The disease is characterised by a relapsing behaviour, i.e.
phases of active disease (flares) alternating with phases of quiescent disease [10].

Crohn’s disease and Ulcerative colitis. The two main subtypes of IBD are Crohn’s disease
(CD) and Ulcerative colitis (UC), which, despite a large overlap, differ in the location of
the inflammation, in symptoms and in associated risk factors. In addition, ≈ 5-10 % of
IBD patients can not be classified into CD or UC; the disease is then called indeterminate
colitis [8]. Characteristic for CD is an inflammation that is (i) transmural, i.e. affecting the
full thickness of the gut wall and (ii) patchy and discontinuous, i.e. appearing anywhere
in the gastrointestinal tract (but most often in terminal ileum and ascending colon), with
inflamed areas alternating with normal areas [3, 8, 11]. In contrast, in UC patients the
inflammation is restricted to the mucosa and the colon [8, 11].

In summary, IBD patients are a very heterogeneous patient population regarding both
the course of the disease and the underlying genetic and environmental stimuli.
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1.2 Treatment of inflammatory bowel diseases

At present, IBD can not be cured. The aims of treatment are to control the inflammation,
reduce symptoms, achieve clinical remission or even mucosal healing [8]. Several different
treatment options are in use, and many more are in clinical development.

Small molecule drugs used in the treatment of IBD include glucocorticoids, which
are immunosuppressors that have inhibitory effects on many pro-inflammatory pathways.
They result in complete remission in > 50 % of patients, but their use is limited to acute
flares due to severe side effects [12]. In addition, different immunomodulators are in
use: (i) 6-mercaptopurine and its prodrug azathioprine, inhibiting T cell proliferation
and inducing T cell apoptosis [12], and (ii) methotrexate, whose mechanism of action
is not clear (it possibly suppresses inflammatory functions of neutrophils, macrophages,
dendritic cells and lymphocytes [13]). Especially in UC, 5-aminosalicylic acid is frequently
used as first-line treatment; its mechanism of action is also unclear (it probably inhibits
several pro-inflammatory processes in the mucosa) [10]. In addition, antibiotics are in use
as adjuvant therapy [8].

More recently, additional small molecule drugs targeting specific pathways emerged,
including (among others) JAK inhibitors inhibiting the JAK-STAT pathway important
in production of multiple cytokines and S1PR modulators inhibiting the sphingosine-1-
phosphate receptor type 1 (S1PR1) mediating T cells’ migration from the lymph nodes
into the tissue [14].

The first monoclonal antibody approved for the treatment of IBD targeted the pro-
inflammatory cytokine tumour necrosis factor (TNF)-α and was viewed as important
milestone [14]. TNF-α (both in soluble and receptor-bound form) is increased in IBD
patients and acts as an important pro-inflammatory cytokine [14]. Since then, several
other pathways and processes have successfully been targeted by monoclonal antibodies,
including e.g. interleukin (IL)-23 (involved in T helper cell differentiation), IL-6 (having
multiple pro-inflammatory effects) and integrins (important for adhesion of immune cells
to endothelial cells and therefore required for migration into tissue) [14].

Other treatment concepts include orally administered phosphatidylcholine (directly
targeting the destructed mucosal barrier) and faecal microbial transplant (FMT) (modi-
fying the microbiota) [14]. Despite the variety of drug treatment options, in many cases
only surgical intervention remains as a last option.

Problems in treatment of inflammatory bowel diseases. As described above, a wide va-
riety of treatment options for IBD are available. However, the clinical response rates are
highly variable, and typically do not exceed 70 % (e.g. anti-TNF-α monoclonal antibodies:
up to ≈ 70 % [15], integrin inhibitor vedolizumab: ≈ 50 % [16], S1PR1 modulator oza-
minod: 41 % [17], orally administered phosphatidylcholine: ≈ 50 % in Phase II, although
Phase III recently stopped [14, 18], FMT: ≈ 50 % [14], where the reported response rates
naturally also depend on the clinical trial and the score used to measure response). Con-
sequently, a large fraction of patients, the so-called non-responders, do not respond to
the treatment they receive, and have to change treatments frequently until a successful
treatment option is eventually found. This causes large personal suffering and high costs.

Reasons for non-response can be due to both the pharmacokinetics and the phar-
macodynamics of the drugs [19, 20]. Non-response caused by pharmacokinetics (i.e. the
distribution of the drug in the body) means that the drug exposure is insufficient, which
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can e.g. be due to an increased clearance of the drug due to high inflammation, or, in the
case of monoclonal antibodies, due to the emergence of anti-drug antibodies [19, 20]. Non-
response caused by pharmacodynamics (i.e. the effect of the drug on the body) means that
either the drug is not able to suppress the target sufficiently, or that not the target of the
drug is the driving factor for the disease, but another molecule or process that is not tar-
geted [19, 20]. This can e.g. be seen for monoclonal antibodies targeting TNF-α, where
the response is higher in patients with higher numbers of cells with membrane-bound
TNF-α [21].

1.3 Systems biology in disease modelling

Systems biology models. A systems biology model is a computational model that sum-
marises experimental knowledge about a biological system using a mathematical language.
Models can be quantitative or qualitative, and can be developed at different levels, e.g. a
cell, an organism, or virus-host interactions, where every model is developed for a specific
purpose and typically only represents specific aspects of the respective biological system.
Systems biology models can then be used to test hypotheses, make quantitative predic-
tions or analyse properties of the respective systems. The main types of systems biology
models are (i) network-based models, where model compounds (e.g. genes or molecules)
are described by state variables representing their amount or activity, and which comprise
ordinary differential equation (ODE)-based models (the most frequent type of systems bi-
ology models; also used in the work), stochastic reaction networks and boolean models;
(ii) agent-based models, where states are updated based on sets of rules; and (iii) sta-
tistical models, which describe relations between measured data, e.g. linear regression.
[22]

Disease modelling and quantitative systems pharmacology. For many diseases, systems
biology models have been applied to describe (parts of) the complex biological interac-
tions underlying the disease. Using such a computational disease model can give insights
into the disease that are not feasible based on in vivo or in vitro experiments alone. The
term “quantitative systems pharmacology” is often used when such a disease model in-
cludes treatment effects and is used in the development or optimisation of drug treatment.
Computational disease models have successfully been applied in many different fields [23].
For IBD, a few disease models describing different aspects of the disease have previously
been published (e.g. [24–28]), see Sections 2.1 and 7.2 for a detailed evaluation thereof.

1.4 Aim of this work

As described above, with regard to IBD and its treatment options, there is a strong need
to better understand

• the disease etiology, i.e. which factors contribute how to the development and out-
break of the disease;

• the mechanisms of the different treatment options in clinical use and development;

• reasons for non-response to different treatments.
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All these can be supported by in silico studies (not replacing, but in addition to in
vitro, in vivo and clinical studies). Therefore, the aim of this thesis was to develop a
mathematical model describing the mucosal immune response, including disruption of the
healthy immune response resulting in IBD and the effects of different treatment options,
and to use it to help analyse the unmet needs identified above.
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2 Systems biology model of the mucosal im-
mune system

The main part of this work, and the prerequisite for the following chapters, was the
development of a systems biology model describing the healthy mucosal immune response
on a cellular level. This chapter gives a description of the developed systems biology
model, including the biological background of the processes included in the model, the
mathematical equations constituting the model, and a detailed derivation and explanation
of these equations.

Aim of the model. The aim of this work was to develop a mathematical model of the mu-
cosal immune response as a tool for the analysis of IBD pathogenesis, for finding possible
reasons for non-responsiveness to treatment, and as help in the development of new treat-
ment targets and combination therapies. For this, the model must be able to describe the
chronic inflammation of the mucosal immune system in IBD. Although there are differ-
ences between the two major forms of IBD, CD and UC (concerning genetic dispositions,
cell and protein concentrations, spatial location of the inflammation, and symptoms), we
did not differentiate between them, as those differences are mostly on a level beyond the
complexity of the model we intended to develop. In addition, the model must be able
to describe the response of a heterogeneous population of virtual IBD patients to various
treatment options. In this virtual population of IBD patients, every virtual individual
is defined by a set of parameters. By comparing resulting time courses and underlying
parameter sets between healthy and diseased individuals and between responders and
non-responders to treatment, we will generate hypotheses about pathogenicity and causes
for the high inter-individual differences between IBD patients in response to treatment.

As basis for simulation of chronic inflammation and treatment, however, we need a
model that as accurately as possible describes the healthy mucosal immune response.
Only when the healthy mucosal immune response can convincingly be described by the
model, the simulation of the pathological state, chronic inflammation as in IBD, can be
credible.

For this, the model must fulfil several requirements: On the one hand, it must be
able to describe the overall characteristics of a healthy immune response, which we test
and show by simulating the immune response to intracellular and extracellular pathogens
and mucosal injury. These characteristics include a significant increase of inflammatory
cell types in response to the stimulus, the elimination of the inflowing pathogenic or
commensal bacteria, and a timely return to the healthy steady state. On the other
hand, for every of the included cell types and processes, qualitative and quantitative
expectations on their dynamics on the cellular level, which are derived from the literature,
must be fulfilled. This large set of cellular-level requirements includes e.g. steady state
concentrations, quantitative relations between concentrations and concentration changes,
the chronological order of effects, and qualitative characteristics of the dynamics.
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Approach. The mucosal immune system is highly complex, and therefore every model
will be a simplification. However, a model can still be useful, in that it can serve as a
systematic integration of available knowledge, which can be used to generate hypotheses
that can again be a starting point for further experimental studies. We focused on the
cellular level, i.e. modelling the concentrations of different cell types over time, without
explicitly simulating intracellular processes. Intracellular processes were only implicitly
implemented: the concentration change of a specific cell as result of the sum of interactions
with other cells. As it was, naturally, not possible to account for all processes of the
mucosal immune system, we focused on those processes that we found, and judged, based
on our literature research, to be most important for the simulations of infection and
IBD. This means that processes or cell types that may be very important for the mucosal
immune system, but which are either (more or less) constant during an infection or chronic
inflammation, or do not have a significant impact on the course of infection or chronic
inflammation, were not explicitly considered in the model, but were still implicitly part
of the model’s environment.

From the literature we obtained data from studies in human, mouse, rat or other or-
ganisms as well as from in vitro and in silico studies. These data can be of qualitative
or quantitative nature, giving knowledge about processes of the mucosal immune sys-
tem or providing directly or indirectly parameter values, respectively. We combined the
knowledge gained from the literature into a mathematical model consisting of ordinary
differential equations (ODEs). The structure of this model was based on the qualitative
literature data, where we translated the knowledge about processes into mathematical
equations that mechanistically mimic the physiological behaviour. The parameterisa-
tion of the model was then mainly based on quantitative literature data, but also taking
into account qualitative observations. The model describes different cell types, each of
which can switch between different states and/or spatial locations. During the mod-
elling process, we first implemented the different cell types or processes separately, as
submodels, making sure the submodels described the respective physiological processes
appropriately, and then combined them into the full model. We considered two general
types of interactions between different cell types: cell-cell contacts, e.g. T cell receptor
stimulation by antigen-presenting cells, and interactions via cytokines (pro-inflammatory,
anti-inflammatory, pro-resolving). As the data are from several different studies in differ-
ent organisms and settings, the results of the model simulations are naturally intended
more qualitative than quantitative. During the modelling process, we analysed, which
processes, cell types and interactions had to be included into the model, in order to
reproduce our expectations, which were also generated from literature.

To ensure and demonstrate the functional capability of our virtual mucosal immune
system, we simulated infection with extra- and intracellular bacteria and the response to
mucosal injury. We used the (qualitative) knowledge about the expected time course of
a healthy immune response to these triggers to implement and parameterise the model.
Therefore, these simulations (described in detail in Section 2.18) are no external validation.

Very short overview of the mucosal immune response in the gut. The main function
of the immune system is to protect the host from potentially harmful pathogens (e.g.
bacteria or viruses). In the case of bacterial infection of the gut tissue, the focus of our
systems biology model, the intact epithelial barrier and the mucus layer secreted by it
largely prevent bacterial invasion into the tissue. Only in the case of epithelial destruction
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or infection with pathogenic bacteria can a significant amount of bacterial cells overcome
this barrier. Then bacteria reach the uppermost layer of the gut wall, the lamina propria,
where a large variety of immune cells are ready to fight inflowing bacteria: Innate immune
cells, such as neutrophils, macrophages and dendritic cells engulf and kill bacterial cells.
In addition, dendritic cells migrate to the draining lymph nodes in the mesenterium and
present bacterial antigen to T cells, which are part of the adaptive immune response, and,
once activated by stimulation with their cognate antigen, proliferate and differentiate into
effector T cells, migrate back to the lamina propria and further recruit and activate innate
immune cells to help them fight the pathogens. [29]

The mucosal immune response in the gut differs from the immune response in other
tissues: In most tissues, every bacterial stimulus will elicit an immune response, with
the aim to eliminate the source. In the gut, the constant encounter of bacterial antigen
originating from the commensal bacteria must not result in a state of active inflammation,
as inflammation also destroys the tissue. However, the immune system must still be able
to eliminate pathogenic bacteria via an effective immune response. The solution is that
there is a constant low level of inflammation that keeps the commensal bacteria at bay
without destroying the host tissue. In the case of an infection with pathogenic bacteria
resulting in much higher levels of bacterial antigen in the tissue, a full immune response
is elicited. [29]

Cell-level modelling using ordinary differential equations and mass action kinetics. Our
mathematical model of the mucosal immune system consists of ordinary differential equa-
tions (ODEs), implying mass action kinetics. The law of mass action states that the rate
of a reaction is proportional to the product of the concentrations of the reactants [22].
This law was derived for chemical reactions, i.e. on a molecular level. It has, however,
already in many cases successfully been applied also on a higher level such as the cellular
level we chose for our systems biology model, for example in the fields of HIV mod-
elling [30, 31] or epidemiology [32]. Here, we treat cells as the basic entities of the model
(model species/ state variables), reactions (e.g. inflow, outflow or transition between state
variables) change the concentrations of the cells, with reaction rates proportional to the
reaction educt cell concentrations.

The model is given by a system of ODEs

d

dt
x(t) = f(x(t)),

where x(t) = (x1(t), ..., xN(t)) is the vector of N state variables of the model. The ODEs
are obtained by multiplication of the stoichiometric matrix with the vector of reaction
rates. The stoichiometric matrix ν ∈ RN×M contains the change in numbers of molecules
per reaction for each state variable n (n = 1, ..., N) and each reaction m (m = 1, ...,M).
The vector of reaction rates a(x(t)) = (a1(x(t)), ..., aM(x(t))) describes the reaction rate
of each of the M reactions depending on a given state x(t). Then the model state x(t) at
time point t is defined by the ODE system and the vector of initial state values x0(t). As
complex ODE systems such as our systems biology model cannot be solved analytically,
the solution needs to be approximated numerically.

The quasi-steady state (QSS) approximation is a useful approach of model order re-
duction, i.e. to reduce the number of required state variables. It can be applied if the
response times of the state variables are on different time scales; then the “fast state
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variables” can be assumed to be in QSS, i.e. to follow the “slow state variables”, and
can directly be calculated from their concentrations [22]. An important example for the
application of the QSS approximation is the Michaelis-Menten equation, which describes
the approximation of the rate V of an enzyme-catalysed reaction as

V =
Vmax · S
Km + S

,

where S is the substrate concentration, Vmax is the maximal reaction rate and the Michaelis-
Menten constant Km is the substrate concentration for which the reaction rate is half-
maximal [22]. Through that, state variables for enzyme and enzyme-substrate complexes
are not needed. The reaction rate is limited by the (constant) total concentration of en-
zyme. When cooperativity between different binding sites of the enzyme plays a role, the
Hill equation can be used instead:

V =
Vmax · Sh

Kmh + Sh
,

where h is the Hill coefficient, describing positive (h > 1) or negative (0 < h < 1)
cooperativity [22, 33]. We used these concepts from enzyme kinetics for cytokine-mediated
reactions, where the reaction rate is limited by the cell’s maximal velocity to change its
state or location.

2.1 Previous modelling efforts

There have been several publications of mathematical models of IBD over the last few
years, with different aims.

In 2010, Wendelsdorf et al. [24] presented a “model of colonic inflammation”, a sys-
tem of 29 ODEs, describing different cell types of the mucosal immune system in three
different compartments (intestinal lumen, lamina propria and mesenteric lymph nodes):
(naive, central memory, effector memory, helper and induced and natural regulatory)
T cells, (immature, stimulatory and tolerogenic) dendritic cells, macrophages (type M0,
M1 and M2), epithelial cells, bacteria and (activating and deactivating) cytokines. Us-
ing their model they simulated bacterial infection and IBD. For the infection scenario
they considered commensal and foreign bacteria, where commensal bacteria activated the
(anti-inflammatory) tolerogenic dendritic cells and M2 macrophages, and foreign bacteria
activated the (pro-inflammatory) stimulatory dendritic cells and M1 macrophages. For
the IBD scenario they assumed a constant fraction of commensal bacteria to activate the
(pro-inflammatory) stimulatory dendritic cells and M1 macrophages, leading to a new
steady state. In the analysis of this model we observed several physiological inconsisten-
cies, of which the most obvious one was the missing volume correction coefficients for
cellular migration between the different tissues, leading to a predicted drop of the luminal
bacterial concentration by about one third in infection and by more than 90 % in IBD,
and the most serious one was the assumption that there were no pro-inflammatory cells
such as M1 macrophages or T helper cells in the healthy tissue (in strong contrast to the
continuous low-level inflammation in the gut tissue described in literature [29]).

The partial differential equation model by Lo et al. (2013) [25] focused on T helper
cells type 1 and 2 and regulatory T cells, and their development and interactions via
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transcription factors and cytokines. Other cells were not explicitly included in the model,
antigen-presenting cells such as dendritic cells and macrophages were only accounted for
by their secretion of cytokines.

Dwivedi et al. (2014) [26] developed a mathematical model with the aim to study
therapeutics targeting IL-6 or its receptor. Therefore, their model focused on IL-6, IL-
6 receptor and the corresponding intracellular signalling pathway. Two different organs
(gut and liver) were included in the model, but both consisted only of one cell type. For
drug treatment, a PK model for monoclonal antibodies targeting IL-6 or its receptor was
included.

Balbas-Martinez et al. (2018) [27] provided a Boolean network model consisting of 43
nodes (accounting for cells, signalling molecules and receptors) and almost 300 qualitative
interactions between them, implemented as boolean functions. Those boolean functions
define for each of the states whether it is active or inactive, dependent on other states. The
authors validated their model by comparison of upregulated nodes in simulation of IBD
with upregulated cells or signalling molecules in clinical studies of IBD, and by comparing
the results of simulated clinical trials with reported clinical trials.

In conclusion, the models by Wendelsdorf et al. [24] and Balbas-Martinez et al. [27]
are the most detailed regarding different cell types and processes, whereas we assess the
models by Lo et al. [25] and Dwivedi et al. [26] to be too specialised for our purpose.
Due to the physiological inconsistencies in the ODE model by Wendelsdorf et al. [24] and
the non-quantitative behaviour of the boolean network model by Balbas-Martinez et al.
[27], however, we decided that the development of a novel, ODE-based systems biology
model of the mucosal immune system was required with regard to our research aims.
We considered the model by Wendelsdorf et al. [24] a good starting point regarding the
physiological compartments to consider and the relevant cell types and processes. For our
research aims, however, we at the same time aimed for a more physiological representation
of the mucosal immune response in health and disease.

After research for this thesis was completed (February 2020), Rogers et al. (2020)
[28, 34] published a systems pharmacology model of IBD that also aimed at analysing
treatment effects using a virtual IBD population, but with differences both in the un-
derlying model structure describing the mucosal immune response and the generation of
the virtual population of healthy and diseased individuals. A more detailed comparison
of the two models, including the resulting conclusions drawn with respect to different
treatments, will be given in the Discussion (Section 7.2).

2.2 Overview

The gastrointestinal tract is composed of mouth, pharynx, oesophagus, stomach, small
intestine (duodenum, jejunum, ileum) and large intestine (caecum, colon, rectum, anal
canal) [35]. All of those parts can be inflamed in Crohn’s disease, whereas ulcerative
colitis is restricted to the colon [11]. Therefore, we focused on the colon (more specifically
sigmoidal colon, if data were available and different for different parts of the colon) and the
developed systems biology model is intended to describe the time course of cell concentra-
tions in the colon. The general principles and processes are similar, but the concentrations
of the immune cells vary between the different parts of the intestine. The gut-associated
lymphoid tissue (GALT) (comprising Peyer’s patches and isolated lymphoid follicles) was
not explicitly included in our model (see Section 2.16).
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As proposed by Wendelsdorf et al. [24], we considered three different spatial compart-
ments where the relevant processes of the mucosal immune system take place:

i) the intestinal lumen, where commensal (and pathogenic) bacteria reside in healthy
individuals;

ii) the lamina propria (LP), which is the uppermost layer of the gut wall, separated
from the intestinal lumen by a single layer of epithelial cells. Here bacteria breaching
the epithelial barrier encounter cells of the innate and adaptive immune system; and

iii) the mesenteric lymph node (LN), where the adaptive immune system is activated.

The model describes the time course of 55 state variables (healthy, no infection with
pathogenic bacteria) using ODEs that describe the rate of change of each state variable
over time. The majority of state variables represent concentrations of different cell types
in LN and LP. State variables describing the barrier function and bacteria in the in-
testinal lumen were implemented as unitless values describing their fractional functional
capabilities.

In this chapter, we describe the healthy mucosal immune system of one individual,
which we call the reference individual. Variability in the parameter values then defined a
virtual population of different individuals, as described in Chapter 4.

Figure 1 gives an overview of the processes we considered in the model. It shows
a simplified model scheme, showing the different cell types, their spatial location and
their interactions. It also shows the sections that describe the different submodels (cell
types or processes), where more detailed model schemes and the detailed derivation and
explanation of the ODEs describing the submodels, together with a short introduction
into the physiological background to the respective cell types and processes, are given.

Infection. The intent of the developed model is to describe the healthy mucosal immune
system in response to mucosal injury and infection with pathogenic bacteria, as basis for
subsequent simulations of chronic inflammation by variations in the parameter values (as
described in Chapter 4). Therefore, we show the characteristics of the different submodels
(cell types and processes) that are described in the next sections (Section 2.4 - 2.15) via
the time course of the cell types in the two scenarios of infection with S. Typhimurium and
mucosal injury. A more detailed description of these two, and another scenario of infection
with an extracellular pathogen, are given in Section 2.18. In short, S. Typhimurium is an
extracellular bacterium that is able to invade the gut tissue. Its pathogenicity lies mainly
in its ability to cross the epithelial barrier and to evade destruction by macrophages
and instead being able to proliferate intracellularly [29]. Macrophages need help from T
helper cells to efficiently eliminate the intracellular salmonellae [36]. By mucosal injury
we denote a scenario where external stimuli such as physical injury, chemicals or drugs
lead to a partial destruction of the epithelial barrier and tissue, allowing for an inflow of
commensal bacteria into the tissue that elicits an immune response. The figures show the
steady state concentrations before and the time course after a stimulus (S. Typhimurium
in the gut lumen or partial destruction of epithelium and tissue for salmonella infection
or mucosal injury, respectively) at time point t = 0, until the system goes back to steady
state.

The model can be adjusted to include different bacterial species. In case of more
than one bacterial species (e.g. commensal and pathogenic bacteria), several cell types
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Figure 1: Simplified model scheme. Overview of the cell types that we included
into the model, and their interactions. White circles/shapes represent cell types (model
species). Arrows between model species represent transition or migration. Arrows
targeting on arrows indicate a stimulating ( ) or inhibiting ( ) influence on
this reaction. Pro- and anti-inflammatory cytokines are produced by the respective
colour-coded cell types. Dashed arrows show production of cytokines by a model species.
For detailed description of the implementation of the different processes/cell types in
grey boxes see text in the sections indicated by grey numbers.

Legend:
pro pro-inflammatory cytokines
anti anti-inflammatory cytokines
SPM specialised pro-resolving mediators
Bact bacteria
qDC, rDC, tDC, sDC quiescent, responsive, tolerogenic, stimulatory dendritic cells
Mpro, Manti pro-/anti-inflammatory macrophages
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are modelled specific to the different bacteria. These cell types (in the following called
“bacteria-specific species”) include the bacteria themselves, antigen-presenting innate im-
mune cells, which are modelled to present antigen of either type of bacteria, and adaptive
immune cells with receptors specific for either type of bacteria. For a given number NBact

of different bacterial species, those cell types are modelled as NBact different state vari-
ables in the model, each specific for one type of bacteria. In the following, we summarise
all commensal bacteria as one bacterial species.

A complete mathematical description of the model can be found in the Appendix: Sec-
tion 9.1 for the full system of ODEs, Section 9.3/Figure 49 for the complete model scheme
and Section 9.2/Table 10 for the parameter values.

The model was implemented in Matlab 2018b. ODEs were solved using the ode15s solver.
Figures of simulations were made using Matlab and the matlab2tikz toolbox [37] (with
small modifications). All other figures were made using TikZ.

Matlab code of the model implementation and all simulations shown in this thesis can
be found online: https://zenodo.org/record/7614716#.Y-IZfOLMKwo.

2.3 Volume correction factors for transfer between compartments

The developed systems biology model describes the time course of cellular concentrations
in different tissues, including migration of cells between different spatial compartments
(mesenteric LN and LP). In a migration reaction from one compartment to another,
the number of cells leaving the first compartment equals the number of cells arriving
in the target tissue, however, the concentration decrease in the leaving compartment
does not equal the concentration increase in the target compartment, because of the
different volumes of the compartments. To get the change of concentration in the target
compartment corresponding to this reaction, the reaction rate needs to be multiplied by a
volume correction coefficient (volume of the leaving tissue divided by volume of the target
tissue).

The total volume of mesenteric LNs in an adult was reported to be approximately
11 mL [38]. Naive and memory T cells circulate through LNs, where they may encounter
dendritic cells presenting their cognate antigen. This takes place in a specific area of the
LN, the T cell zone (paracortex) [29], which we assume to be approximately one half of the
total LN volume. Thus, the total volume of mesenteric LN T cell zones is VLN = 5.5 mL.
This volume corresponds to the total amount of mesenteric LNs draining the small and
large intestine; we did not have information on the fraction of mesenteric LNs draining
the different parts of the intestine. Therefore we assumed the ratio of LP volume and
draining LN volume to be constant throughout the intestine, i.e. volume correction coef-
ficients independent of the part of the intestine. Thus, to calculate the volume correction
coefficients, we needed the total volume of LP of small and large intestine. Helander et
al. (2014) [39] calculated the surface area of the small and large intestine using the length
and diameter of the intestine and the relative surface amplification due to plicae, villi
and microvilli. In contrast to Helander et al., we were not interested in the surface area
of the epithelium, but in the tissue area as basis for the volume calculation (compare
the black line of the epithelium representing the surface and the grey bar of lower LP
boundary representing the width of the shown tissue in Figure 1). Therefore we repeated

https://zenodo.org/record/7614716#.Y-IZfOLMKwo
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the calculation without accounting for surface amplification due to villi or microvilli, i.e.
area = length · diameter · π · amplification by plicae, resulting in a total area of 6453 cm2

for small and large intestine. Dhesi et al. (1984) [40] reported the height of the LP to be
1.35 · 10−2 cm, resulting in the LP volume VLP = 87 mL. The resulting volume correction
coefficients were VLP

VLN
for migration from LP to LN and VLN

VLP
for migration from LN to LP.

We did not model the model species in the intestinal lumen (commensal and pathogenic
bacteria) in concentrations, as the luminal contents (faeces) are not fluid and the concen-
tration of bacteria is not uniform. Instead, we modelled those species as unitless values
describing their fractional functional capabilities (see Section 2.4). Therefore we did not
have to take the volume of the intestinal lumen into account.

For cell types that are present in more than one spatial compartment, we include the
location as subscript in the state variables’ names. For cell types that are only present
in one spatial compartment, we did not include the location in the names, to keep the
names short.

2.4 Bacterial dynamics in intestinal lumen

The intestinal lumen hosts a large variety of bacteria, which live in symbiosis with the
human body, called commensal bacteria. These commensal bacteria provide nutrients,
prevent pathogens from colonisation by competition for nutrients, and stimulate the mu-
cosal immune system and epithelial barrier, preparing it for pathogenic infection [29].
Commensal bacteria reside in the intestinal lumen and the upper layer of the mucus layer
[41], but can not breach the intact epithelial barrier to get into the tissue in a significant
amount in healthy conditions. Bacteria that can breach the epithelial barrier, damage
host tissue und thereby cause disease, are called pathogenic bacteria.

We considered the following differences between commensal and pathogenic bacteria:

(i) Survival in lumen is impaired in pathogenic compared to commensal bacteria, be-
cause commensal bacteria are better adapted to this niche and outcompete the
pathogenic bacteria in the competition for space and nutrients [29].

(ii) In contrast to commensal bacteria, pathogenic bacteria are able to penetrate the
epithelium and thereby invade the gut LP, through the use of specific toxins, e.g.
enterotoxins [42].

(iii) Extracellular pathogenic bacteria are better able to evade phagocytosis by innate
immune cells in the LP than commensal bacteria [42] (see Section 2.6).

(iv) Intracellular pathogenic bacteria are able to survive inside specific innate immune
cells after phagocytosis by evading intracellular elimination [29] (see Section 2.18.2).

In the model we differentiated between commensal bacteria (a combination of many
different bacterial strains) and pathogenic bacteria (one exemplary pathogenic strain).
Bacteria in the lumen (BactLu,b, subscript b indicates the bacterial species) were mod-
elled as fraction of the steady-state concentration of commensal bacteria. In addition, to
account for the competition between commensal and pathogenic bacteria, nutrients were
modelled as fraction of their steady-state concentration, with a constant inflow λnutrients

and a consumption by proliferating bacteria with rate constant pBact,Lu.

d

dt
nutrients = λnutrients −

∑
b

pBact,Lu,b · BactLu,b · nutrients
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Bacteria proliferate dependent on the available nutrients with rate constant pBact,Lu and
die with rate constant µBact,Lu.

d

dt
BactLu,b = pBact,Lu,b · BactLu,b · nutrients− µBact,Lu · BactLu,b

for each bacterial species b. Throughout this thesis, we considered three different types of
bacterial species: commensal bacteria, a generic extracellular pathogen, and salmonellae,
i.e. b = {commensal, extracellular, salmonellae}. The structure of the ODEs for BactLu,b

is the same for each bacterial species b in lumen, but the (bacteria-specific) proliferation
rate constant pBact,Lu,b is higher for commensal than pathogenic bacteria. From our defi-
nition of BactLu,commensal and nutrients, modelling the relative change from their unknown
baseline, follows that both are 1 in steady state (without pathogen). From this follows
that λnutrients = pBact,Lu,commensal = µBact,Lu, which was set to 1

24
1
h
, assuming a mean life

time of 1 d for the bacteria (including death and removal from the intestine by excretion).
For pathogenic bacteria, the proliferation rate constant was decreased by 0.8 to account
for the slightly decreased adaptation to the environment compared to commensal bacte-
ria, pBact,Lu,extracellular = pBact,Lu,salmonellae = 0.8 · pBact,Lu,commensal. This led to extinction of
pathogenic bacteria from the gut lumen after approximately one week, if no further inflow
of pathogenic bacteria was considered.

2.5 Epithelial barrier, mucus layer and tissue

The intestinal epithelium, a single layer of epithelial cells, separates the lumen from the
uppermost layer of the gut wall, the lamina propria (LP) [43]. Its function is to allow
for the transport of nutrients from the intestinal content to the blood circulation while
preventing inflow of potentially harmful luminal contents such as bacteria. Absorption
of nutrients is carried out by enterocytes, the main cell type of the intestinal epithelium
[44]. Other cells are mainly secretory, such as goblet cells and Paneth cells, which produce
mucins and a variety of antimicrobial peptides (AMPs) released into the lumen [44]. In
addition, secretory immunoglobulin A (SIgA) is transported from the LP into the lumen
by intestinal epithelial cells via transcytosis [45]. The mucins, mainly MUC2, form the
gel-like mucus containing AMPs and SIgA. SIgA binding to antigens on bacterial cells
prevents them from reaching the epithelium by trapping them in the mucus via their
secretory component binding to mucins, by steric prevention from binding to receptors
and by direct neutralisation of toxins [46]. AMPs directly attack conserved bacterial
features such as membranes and cell walls [44]. In the colon, the mucus consists of a
sterile dense inner layer and a loose outer layer, where bacteria reside [47], and provides
defence against commensal and pathogenic bacteria to prevent them from contact with
the epithelial barrier. Intestinal epithelial cells are connected by tight junctions and
thereby also form a physical barrier [43]. The underlying tissue, the LP, is composed
of intestinal stromal cells (mainly myofibroblasts and fibroblasts), stromal stem cells,
cells of the innate and adaptive immune system, and small blood and lymph vessels
[48]. The non-cellular content of the tissue is called the extracellular matrix (ECM). It
ensures mechanic stability of the tissue and acts as a reservoir of signalling molecules
[49]. Both epithelium and tissue can be damaged by pro-inflammatory cytokines. When
pathogenic bacteria cross the epithelium, they do so using specific toxins that make the



2.5 Epithelial barrier, mucus layer and tissue 15

epithelium penetrable, allowing the pathogens access into the tissue [50]. Consequently,
the epithelium gets impaired during this process. Tissue remodelling is the complex
physiological response ensuring tissue repair and wound healing, which depends on the
interplay of proteases (e.g. matrix metalloproteinases (MMPs)) and their inhibitors [51].
Gut-resident anti-inflammatory macrophages and T helper cells type 2 play an important
role in tissue remodelling [52, 53]. Insufficient tissue repair results in the formation of
ulcers, whereas excessive tissue repair results in fibrosis; both are frequent problems in
IBD [54].

We modelled tissue, mucus and epithelial layer as unitless state variables representing
their relative functional capability. For the mucus and epithelial barriers, the values (be-
tween 0 and 1) represent their capability to prevent bacteria from getting through, where
0 means the barrier is completely permeable and 1 means the barrier is impermeable.
For tissue, the value represents the intactness of the tissue, and its ability to enable the
build-up of epithelium. The tissue value can be larger than 1, representing fibrosis.

Tissue. The state variable tissue represents the ECM and stromal cells, and models their
relative intactness. We implemented a zero-order synthesis and first-order degradation
rate with rate constants λtis and µtis, respectively. As, by definition, tissue = 1 in steady
state, λtis = µtis. A rough estimate of the half-life of tissue components is 6 d [38], resulting

in µtis = ln(2)
6 d

= 0.0048 1
h
. We accounted for destructing influence by pro-inflammatory

cytokines cytodestr,tis and tissue remodelling effects by cytokines from anti-inflammatory
macrophages and T helper cells type 2 cytoremod,tis (details on the derivation of cytokine
concentrations in Section 2.14). Tissue destruction by cytokines was implemented by

multiplying the degradation rate with (1+
Fmax,tis·cytodestr,tis

1+cytodestr,tis
), where cytodestr,tis is a unitless

description of the cytokine concentration, resulting in half-maximal effect for cytodestr,tis =
1 (see Section 2.14), describing a saturable increase of the degradation rate of maximally
(Fmax,tis + 1)-fold. This factor was set to Fmax,tis = 1, to limit the degradation rate to
two times the steady state degradation rate. Tissue remodelling effects of cytokines were

implemented accordingly, by multiplying the synthesis rate with (1 +
Fmax,tis·cytoremod,tis

1+cytoremod,tis
).

The resulting ODE for tissue is

d

dt
tissue = λtis ·

(
1 +

Fmax,tis · cytoremod,tis

1 + cytoremod,tis

)
− µtis · tissue ·

(
1 +

Fmax,tis · cytodestr,tis

1 + cytodestr,tis

)
.

Epithelial barrier. The state variable epi represents the gut epithelium, and models its
functional capability. Synthesis of epi depends on the intactness of the tissue: for fully
intact tissue (tissue = 1) synthesis is zero order with rate constant λepi; for (partially)
destroyed tissue, the synthesis rate is accordingly lower. In case of fibrosis (tissue > 1) we
assumed the same synthesis rate as for fully intact tissue. The first-order degradation rate
is µepi = 0.0096 1

h
, corresponding to a half-life of epithelium of 3 d [38]. As, by definition,

epi = 1 and tissue = 1 in steady state, λepi = µepi. Destruction of epithelium by pro-
inflammatory cytokines cytodestr,epi was implemented similarly to destruction of tissue, i.e.

by multiplication of the degradation rate with (1 +
Fmax,epi·cytodestr,epi

1+cytodestr,epi
), with Fmax,epi = 1.

Destruction of epithelium by inflowing pathogenic bacteria using toxins was implemented
dependent on the rate of bacterial inflow with toxin (as described in paragraph Bacterial
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inflow), multiplied by a factor set to µepi,Bact = 1 · 10−10mL. The resulting ODE for epi is

d

dt
epi = λepi ·min(tissue, 1)− µepi · epi ·

(
1 +

Fmax,epi · cytodestr,epi

1 + cytodestr,epi

)
− µepi,Bact ·

∑
b

εBact,2,b · (1−mucus) · epi · BactLu,

where
∑

b εBact,2,b · (1 − mucus) · epi · BactLu is the inflow rate of bacteria using toxins,
described in paragraph Bacterial inflow.

Mucus layer. The state variable mucus represents the mucus layer, including antimi-
crobial peptides (AMPs) and secretory immunoglobulin A (SIgA). As described in Sec-
tion 2.16, because of the high cross-reactivity between antibodies specific to commensal
and pathogenic antigens, we assume antibodies of the gut to bind to commensal and
pathogenic bacteria with similar affinities, and to be present at constant levels. Therefore
we did not explicitly account for SIgA specificities, but included them into the mucus layer
value. As mucins, AMPs and SIgA are secreted by epithelial cells [44], we implemented
the synthesis of mucus dependent on the relative capability of the epithelium (epi) with
rate constant λmucus. We assumed mucus = 0.9 in steady state (i.e. for epi = 1 and
tissue = 1), as the mucus layer is not as effective as the epithelial barrier in preventing
bacterial inflow, resulting in λmucus = 0.9 · µmucus. The first-order degradation rate of
mucus is µmucus = 0.46 1

h
, corresponding to a half-life of 1.5 h [41]. The resulting ODE for

mucus is
d

dt
mucus = λmucus · epi− µmucus ·mucus.

The resulting time course of the tissue, epi and mucus state variables for the two
scenarios of infection with salmonellae and mucosal injury is shown in Figure 2. Due to
the influence of cytokines on synthesis and degradation of tissue and epi, the resulting
healthy steady state is not exactly 1.

Bacterial inflow. The inflow rate of bacteria into LP is dependent on the epithelial and
mucus barrier. It consists of two parts: (i) the inflow through permeable barriers and (ii)
the forced invasion via toxins by pathogens. (i) The inflow through permeable barriers
depends on the permeability of the two barriers, i.e. (1−mucus) and (1− epi), with rate
constant εBact,1, i.e. inflow without toxin = εBact,1 ·(1−mucus)·(1−epi)·BactLu,b. The rate
constant was set to εBact,1 = 3 · 108 1

mL·h based on the resulting time course, representing
the maximal inflow rate of bacteria without toxins in the case of total destruction of
the barrier. (ii) The inflow via toxins depends on the permeability of the mucus layer
(1−mucus), and the relative intactness of the epithelial barrier (epi), as it describes the
inflow rate through the epithelial cells, with the bacteria-specific rate constant εBact,2,b, i.e.
inflow with toxin = εBact,2,b · (1−mucus) · epi ·BactLu,b for the different bacterial species b.
The rate constant was set to εBact,2,commensal = 0 1

mL·h , as commensal bacteria are defined
as not having those toxins; and to εBact,2,salmonellae = 1 · 1010 1

mL·h and εBact,2,extracellular =
1 · 1011 1

mL·h based on the resulting time course, representing the maximal inflow rate of
bacteria with toxins in the case of a fully impermeable epithelial barrier. The resulting
bacterial inflow rate is

bacterial inflowb = εBact,1 · (1−mucus) · (1− epi) · BactLu,b
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Figure 2: Barrier dynamics. Tissue, epithelium and mucus state variables over time.
The state variables represent the relative intactness/capability of the tissue layer, epithe-
lial barrier and mucus barrier, where tissue = 1, epi = 1 and mucus = 0.9 is the theoretical
steady state representing a healthy barrier. For salmonella infection, the trigger is a stim-
ulus of salmonellae in the lumen (BactLu,salmonellae) at t = 0, whereas the trigger for the
mucosal injury scenario is a complete destruction of the barrier and tissue, implemented
by setting tissue = epi = mucus = 0 at t = 0.

+ εBact,2,b · (1−mucus) · epi · BactLu,b

for each bacterial species b.

2.6 Elimination of bacteria from the tissue

In infections with pathogenic bacteria or chronic inflammation of the mucosal tissue,
as in IBD, large amounts of bacterial cells enter the tissue, and also in healthy steady
state there is a significant, although comparably low, inflow of bacteria [55]. In the
tissue, bacterial cells are fought by phagocytic cells, such as neutrophils, macrophages
and dendritic cells via phagocytosis, antimicrobial peptides or neutrophil extracellular
traps [56], among which phagocytosis is the most important route of elimination for most
pathogens [57]. Once phagocytosed, bacteria are destroyed using degradative enzymes and
other antimicrobial substances [29]. Phagocytosis is also important to eliminate apoptotic
cells from the tissue, mainly by macrophages. This process is called efferocytosis, and
further described in Sections 2.8 and 2.15.

We focused on elimination of bacteria via phagocytosis. Li et al. (2004) [58] measured
bacterial growth of Staphylococcus epidermidis (S. epidermidis) over time in fibrin gels
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(representing tissue) in the presence of neutrophils, for different combinations of bacte-
rial and neutrophil combinations. Using these in vitro experiments they determined the
critical neutrophil concentrations for different concentrations of bacteria, i.e. the required
concentration of neutrophils to prevent growth of the bacteria. For this, they assumed
bacterial dynamics to be a result of bacterial growth and bacterial killing by neutrophils,

b = b0 · e−(kp−g)t,

where b was the bacterial concentration at time point t, b0 was the initial bacterial con-
centration at t = 0, p was the neutrophil concentration (constant over time), and k
and g were the rate constants for killing (second-order) and growth (first-order), respec-
tively. For each initial bacterial concentration b0 they estimated k and g from their data,
and observed that the growth rate constant g was constant over the range of bacterial
concentrations, whereas the killing rate constant k decreased with higher bacterial con-
centrations. The critical neutrophil concentration (for each b0) was then calculated as
CNC = g

k
, so that b = b0 for p = CNC, b increasing over time for p < CNC and b decreas-

ing for p > CNC. The authors indicated that the decreasing killing rate constant over
initial bacterial concentrations could be due to saturation of phagocytosis by neutrophils.

To get a continuous function of killing over all concentrations of bacteria and neu-
trophils, we transformed the second-order killing reaction proposed by Li et al. [58]
(killing = k · p · b, with k dependent on b0) into a saturable reaction with maximal
killing rate per neutrophil Vmax,Phago and bacterial concentration for half-maximal killing
rate KmPhago, so that

killing rate =
Vmax,Phago · b
KmPhago + b

· p.

For this, we calculated the killing rate per neutrophil for each initial bacterial con-
centration b0, and used these data of killing rate over b0 to estimate the parameters
Vmax,Phago = 22.2 1

h
and KmPhago = 3.7 · 107 1

mL
using least squares approximation.

For inclusion into our model of the mucosal immune system, where we also accounted
for the phagocytic activity of macrophages and dendritic cells, we calculated a weighted
sum of those phagocytic cells that represented their phagocytic activity normalised to
neutrophils, which we called the neutrophil equivalent concentration (NEC). Due to lack
of other information, we assumed all dendritic cells and anti-inflammatory macrophages
(macrophage population P4, see Section 2.8) to have the same phagocytic capacity as
neutrophils. Pro-inflammatory macrophages have been reported to have lower phagocytic
capacities than anti-inflammatory macrophages by factors wphago,P1 = 0.034, wphago,P2 =
0.12 and wphago,P3 = 0.31, for macrophage populations P1, P2 and P3, respectively [59].

In addition to elimination, bacterial growth in LP was included with rate constant
pBact,LP,b = 0.72 1

h
(for commensal and extracellular bacteria), which equaled the growth

rate constant g estimated by Li et al. [58]. As intracellular bacteria mainly proliferate
inside cells, the extracellular growth rate constant was set to pBact,LP,salmonellae = 0. To
avoid infinite growth of bacteria in our model simulations, we limited the concentration
of bacteria to Cmax,Bact = 1010 1

mL
. (The exact value of this parameter does only have an

influence in the case of chronic infection, which was not the intention of our work.)
Commensal bacteria, such as S. epidermidis as used by Li et al. [58], can readily

be recognised by phagocytic cells. Some pathogenic bacteria, however, can evade this
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recognition, e.g. by having a polysaccharide capsule [29]. To account for this we included
the bacteria-specific parameter Rphago,b that describes the relative ability of phagocytic
cells to recognise this bacterial species. For commensal bacteria and intracellular bacteria
this parameter is set to Rphago,commensal = Rphago,salmonellae = 1; for extracellular bacteria
we set Rphago,extracellular = 0.1.

The resulting ODE for the concentration of bacteria in LP is

d

dt
BactLP,b = bacterial inflowb + pBact,LP,b ·

(
1−

∑
b BactLP,b

Cmax,Bact

)
· BactLP,b

− Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

· NECLP

for b. The (bacteria-specific) bacterial inflow rate into the tissue has been defined in the
previous section (Section 2.5). Note that the killing rate of a bacterial species depends
on the bacteria-specific concentration (in the numerator), but is saturated by the total
concentration of bacteria (in the denominator).

We calculated the critical NEC, i.e. the concentration of phagocytic cells (normalised
by their phagocytic capacity to neutrophils) that is required to prevent bacterial growth
for a given concentration of bacteria (in the absence of further bacterial inflow), according
to the calculation of the critical neutrophil concentration by Li et al. [58]. For the different
bacterial species b, the critical NEC (cNEC) is given by

cNECb = pBact,LP,b ·
(

1−
∑

b BactLP,b

Cmax,Bact

)
·

KmPhago

Rphago,b
+
∑

b BactLP,b

Vmax,Phago

. (∗1)

For commensal bacteria, the critical NEC dependent on the bacterial concentration
is given in Figure 3. If NECLP > cNEC, bacteria are eliminated from the tissue, if
NECLP > cNEC, bacterial growth can not be controlled by phagocytic cells. In healthy
steady state, the model predicts NECLP = 2.1·107 1

mL
and BactLP = 2.7·104 1

mL
(indicated

by the violet cross in Figure 3), which results in elimination of bacteria, as can be seen
in Figure 3, indicating that the innate immune system is perfectly able to control the
bacteria in the tissue. Only for very high bacterial concentrations (BactLP > 7 · 108), the
steady state NEC would not suffice. Such high bacterial concentrations will, however,
trigger an extensive recruitment of innate immune cells (see Sections 2.7 and 2.8). This
also implies a substantial margin, so that a slight decrease in phagocytic cells can be well
tolerated.

2.7 Neutrophils

Neutrophils are the most abundant leukocyte population in blood [56]. In healthy tissue
they are, however, not detectable [29]. During an infection, neutrophils are the first im-
mune cells to enter the tissue after bacterial inflow [29]. They are recruited by cytokines
and chemokines (mainly produced or induced by T helper cells type 17 and macrophages,
but also by neutrophils themselves) and bacterial products (directly and via endothelial
and epithelial cells) [52, 56, 60, 61]. Neutrophils are highly phagocytic and efficiently re-
cruit macrophages to the tissue [62]. The very fast recruitment after infection is followed
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Figure 3: Critical neutrophil equivalent concentration cNEC, for different bacterial
concentrations, calculated using Equation (∗1). Growth (red) or elimination (green) of
commensal bacteria dependent on the concentrations of bacteria and neutrophil equiva-
lents. If NECLP > cNEC, bacterial elimination is larger than bacterial growth, resulting
in net elimination (green), if NECLP > cNEC, bacterial growth is larger than bacterial
elimination, resulting in net growth (red). The violet cross indicates the steady-state
values.

by a fast decrease in tissue neutrophil concentrations [56]. This second phase is induced by
a lipid-mediator class switch: First, pro-inflammatory lipid mediators (cytokines) are pro-
duced; at apoptosis, the lipid mediator class switch induces the production of so-called
specialised pro-resolving mediators (SPM) instead [63]. Those SPM further stimulate
neutrophil apoptosis and inhibit innate immune cell recruitment into the tissue [63]. In
addition, phagocytosis of bacteria induces neutrophil apoptosis [60]. Pro-inflammatory
cytokines delay neutrophil apoptosis [60], however, pro-apoptotic stimuli mostly override
apoptosis-delaying stimuli [64]. Neutrophil apoptosis is the first—and crucial—step to
resolution of the inflammation [60]: Apoptotic neutrophils are eliminated from the tissue
via phagocytosis by macrophages; this process is called efferocytosis [65]. This process
induces SPM production in the efferocytosing macrophages, in even much larger amounts
than by the apoptotic neutrophils [66]. The resolution of inflammation via SPM is de-
scribed in more detail in Section 2.15.

An overview of the neutrophil submodel, including involved state variables and all
reactions, is shown in Figure 4.

Recruitment. Neutrophils are recruited to the tissue in response to pro-inflammatory cy-
tokines, chemokines and bacterial stimuli [56, 61]. In healthy steady state, neutrophils are
not detectable in the LP [29], i.e. the recruitment must be very low in spite of the present
(low) levels of pro-inflammatory cytokines. To react fast in the case of an inflammation,
neutrophils must be very sensitive to bacterial stimuli. Therefore, we need an implemen-
tation of neutrophil recruitment that ensures that the recruitment rate is very low for
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Figure 4: Neutrophil submodel. Two state variables, neutrophils Neut and apoptotic
neutrophils Neutapo represent neutrophils in the model. Arrows indicate inflow, outflow
and transitions between states, with rate constants on the arrows or rates given in the text
for the reactions labeled in grey. Arrows targeting on arrows mean stimulating ( ) or
inhibiting ( ) influence on this reaction. pro: pro-inflammatory cytokines cytorec,Neut,
SPM: specialised pro-resolving mediators, M: macrophages.

low pro-inflammatory cytokine concentrations, high for high pro-inflammatory cytokine
concentrations, and high even for low bacterial concentrations. This can be achieved by
including a Hill coefficient on the recruitment by pro-inflammatory cytokines, but not on
the recruitment by bacteria. Neutrophil recruitment is inhibited by SPM [63]. To ensure
that SPM effects are able to override pro-inflammatory cytokine effects, we included the
same Hill coefficient also on SPM inhibition of recruitment. We described the recruitment
process of neutrophils from blood into LP by competitive binding of pro-inflammatory
cytokines and bacterial products versus SPM: Binding of pro-inflammatory cytokines or
bacterial products results in a switch of the neutrophil towards an activated state in which
it is likely to enter the tissue, and binding of SPM results in a switch towards a state
in which it is not able to react to pro-inflammatory cytokines or bacterial stimuli. Both
states last only for a specific time, then the neutrophil reverts to its initial state:

Neutblo

Neutblo :SPMblo

Neutblo,activated Neut

kI,on kI,off

koff

kon,1

kon,2

kcat

h · SPM

h · pro

Bact

blood LP

Assuming Neutblo, Neutblo,activated and Neutblo :SPMblo to be in quasi-steady state (apply-
ing principles of enzyme kinetics), the recruitment rate can be simplified to

recruitment rate =
kcat · Neutblo,tot ·

proh+
kon,1
kon,2

·Bact

Km

1 + S̃PM
h

KI
+

proh+
kon,1
kon,2

·Bact

Km

,

with Km = koff+kcat

kon
, KI =

kI,off

kI,on
and Neutblo,tot = Neutblo+Neutblo :SPMblo+Neutblo,activated.
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We simplified further, normalising the pro-inflammatory cytokine and SPM concen-

trations by Km and KI : cytorec,Neut = pro
h√Km

and SPM = S̃PM
h√KI

. The maximal neutrophil

recruitment rate is described by λNeut,max = kcat · Neutblo,tot. The parameter describing

the relative contribution of bacteria and pro-inflammatory cytokines is wpro,Bact = kon,1

kon,2
.

All different bacterial species
∑

b BactLP are similarly taken into account. This results in

recruitment rate =
λNeut,max ·

(
(cytorec,Neut)

hrec,Neut + wpro,Bact ·
∑

b BactLP

)
1 + SPMhrec,Neut + (cytorec,Neut)

hrec,Neut + wpro,Bact ·
∑

b BactLP

,

with hrec,Neut = h.
Parameter values were set to wpro,Bact = 1·10−6, hrec,Neut = 2 and λNeut,max = 1·108 1

mL·h ,
ensuring the previously stated requirements on neutrophil recruitment. For details on the
cytokine concentration, see Section 2.14.

Apoptosis. We included three different forms of apoptosis: (i) A constant cell death rate
constant µNeut,c = 1

7
1
d

represents the maximal life span of a neutrophil in tissue of 7 d
[67]. (ii) Neutrophils die with the rate µNeut,Phago ·phagocytosis rate of neutrophils, where
1/µNeut,Phago = 50 represents the average number of bacteria each neutrophil can eliminate
before going into apoptosis [68]. (iii) Apoptosis is stimulated by SPM, but inhibited by
pro-inflammatory cytokines, which we implemented using competitive binding of SPM
and pro-inflammatory cytokines to neutrophils, where apoptosis can only be induced in
neutrophils bound to SPM:

Neut

Neut :pro

Neut :SPM Neutapo,

kI,on kI,off

kon

koff µNeut,max

SPMpro

resulting in

induced apoptosis rate =
µNeut,max · Neut · S̃PM

Km

1 + pro
KI

+ S̃PM
Km

,

with the maximal induced apoptosis rate constant set to µNeut,max = 0.35 1
h
. Again, we

included the Km and KI in the weighted sums representing pro-inflammatory cytokines
and SPM, and used the same cytokines as for neutrophil recruitment: cytorec,Neut = pro

KI

and SPM = S̃PM
Km

, so that

induced apoptosis rate =
µNeut,max · Neut · SPM

1 + cytorec,Neut + SPM
.

Thus, the total neutrophil apoptosis rate is

apoptosis rate = µNeut,c · Neut
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+ µNeut,Phago ·
∑
b

 Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

 · Neut

+
µNeut,max · Neut · SPM

1 + cytorec,Neut + SPM
.

Elimination of apoptotic neutrophils. Apoptotic neutrophils are mainly eliminated from
the tissue by macrophages (efferocytosis). We implemented this form of phagocytosis
similar to the phagocytosis of bacteria:

efferocytosis rate =
Vmax,Phago · Neutapo

KmPhago + Neutapo

· NECM,LP,

assuming the same maximal phagocytosis rate Vmax,Phago and concentration for half-
maximal phagocytosis KmPhago. NECM,LP represents the concentration of macrophages,
normalised by their phagocytic activity to neutrophils, i.e. the subset of NECLP corre-
sponding to macrophages, as described in Section 2.6. In addition, we included a low
macrophage-independent elimination rate of apoptotic neutrophils µNeut,apo = 1

48
1
h
, ac-

counting for necrosis. Efferocytosis of apoptotic neutrophils by macrophages influences
the activation state of the macrophages, which we call efferocytosis-type macrophages
(Meffero). This is described in more detail in Section 2.8 (paragraph Efferocytosis). Apop-
totic neutrophils, and, to a much higher extent, efferocytosis-type macrophages, produce
specialised pro-resolving mediators (SPM), which have an important role in the resolution
of inflammation, in detail described in Section 2.15.

The resulting ODEs for neutrophils and apoptotic neutrophils are

d

dt
Neut =

λNeut,max ·
(
(cytorec,Neut)

hrec,Neut + wpro,Bact ·
∑

b BactLP

)
1 + SPMhrec,Neut + (cytorec,Neut)

hrec,Neut + wpro,Bact ·
∑

b BactLP

− µNeut,c · Neut

− µNeut,Phago ·
∑
b

 Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

 · Neut

− µNeut,max · Neut · SPM

1 + cytorec,Neut + SPM

d

dt
Neutapo = µNeut,c · Neut

+ µNeut,Phago ·
∑
b

 Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

 · Neut

+
µNeut,max · Neut · SPM

1 + cytorec,Neut + SPM

− Vmax,Phago · Neutapo

KmPhago + Neutapo

· NECM,LP

− µNeut,apo · Neutapo.
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Figure 5: Neutrophil dynamics. Concentrations of neutrophils and efferocytosis-type
macrophages over time for the two inflammation scenarios of salmonella infection and
mucosal injury.

The resulting time courses of neutrophils and efferocytosis-type macrophages are
shown in Figure 5. The predicted neutrophil concentration peaks 19.5 h after salmonellae
infection and 1.7 h after mucosal injury. In both cases, the peak is earlier than reported in
literature (peak at 24−48 h after infection or inflammatory stimuli [56]). Reasons for this
very early predicted peak (1.7 h) after mucosal injury could be the immediacy of this stim-
ulus in our simulation. Compared to an infection or stimulation with a pro-inflammatory
substance, where the bacteria or molecules have to reach the tissue before neutrophils are
recruited, our simulation of mucosal injury starts with a very high inflow of bacteria at
t = 0, leading directly to a high recruitment of neutrophils and the immediate start of
the immune response.

2.8 Macrophages

The main functions of macrophages in LP are elimination of bacteria, clearance of apop-
totic cells, tissue remodelling and production of many different cytokines [52]. In partic-
ular the production of the anti-inflammatory cytokine IL-10 is important for the mainte-
nance of the regulatory T cell population in LP [69]. In addition, they play an important
role in the resolution of the inflammation [70], further described in Section 2.15. Macro-
phages are recruited as monocytes from the blood; proliferation in the gut LP is negligible
[71]. In contrast to most other tissues, in the gut, macrophages can not be divided into
M1 and M2 macrophages [72], and most gut-resident macrophages do not secrete pro-
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inflammatory cytokines in response to encounter of bacterial antigen [71]. Bain et al.
(2013) [59] showed in mouse colon that macrophages are recruited into the LP in a pro-
inflammatory state, i.e. the same state as the monocytes in the blood, and then gradually
turn into an anti-inflammatory state, mediated by the local anti-inflammatory cytokine
milieu. They were able to identify four different states, which the macrophages transit
through [59]. In inflammation, the transit through those states is delayed, resulting in
an accumulation of more pro-inflammatory macrophages [59]. Macrophages can take up
antigen and present it on MHCII, however, their importance in antigen presentation to
T cells is controversial, especially because of their inability to migrate to LNs [73]. In
case of an infection, the antigen stems mainly from bacteria that have invaded the LP. In
addition, macrophages and/or dendritic cells extend dendrites through the epithelium to
sample antigen from the lumen, which is probably also transferred between macrophages
and dendritic cells [52, 73].

An overview of the macrophage submodel, including involved state variables and all
reactions, is shown in Figure 6.

Recruitment. We calculated the steady state concentration of macrophages in the LP
from the steady state concentration of dendritic cells (derivation in Section 2.9) and the
reported ratio of macrophages to dendritic cells in LP of 3.5 (mouse small intestine) [74]
to be Mtot,ss = 1.98 · 107 1

mL
. For determination of the death rate constant µM = 0.0031 1

h

see next paragraph (Deactivation, based on data by Bain et al. (2013) [59]). This death
rate constant results in an expected life time of 13.3 d of macrophages in the tissue. Based
on death rate and steady state concentration, we calculated the rate constant of steady
state inflow to be λM,c = µM · Mtot,ss = 6.2 · 104 1

mL
. In inflammation there is much

higher recruitment of macrophages into tissue, which we implemented by an additional
recruitment rate dependent on pro-inflammatory cytokines (see Section 2.14), inhibited by
SPM. This cytokine-dependent recruitment rate is structurally similar to the neutrophil
recruitment rate, with two differences: (i) Bacteria do not directly influence macrophage
recruitment. (ii) As the inhibiting role of SPM on macrophage recruitment is not as clear
as on neutrophil recruitment, we implemented SPM binding to blood monocytes without
Hill factor, ensuring that pro-inflammatory cytokine effects can override SPM effects.
This led to

M recruitment rate = λM,c +
λM,max · (cytorec,M)hrec,M

1 + SPM + (cytorec,M)hrec,M
,

where the first summand describes the constant recruitment rate and the second summand
describes the additional recruitment rate in response to inflammation, analogous to the
neutrophil recruitment rate. Parameter values were set to hrec,M = 2 and λM,max =
1 ·106 1

mL·h , ensuring a reasonable macrophage inflow in the tested inflammation scenarios.
For details on the cytokine concentration, see Section 2.14.

Deactivation. Bain et al. (2013) [59] described the step-wise transition from newly re-
cruited pro-inflammatory macrophages to the main gut-resident population of anti-inflam-
matory macrophages. We call this transition deactivation; this does, however, not refer
to the general capability of cytokine production or other functions such as phagocytosis.
Bain et al. (2013) [59] described four different main populations of macrophages, called
P1 to P4, where P1 macrophages are identical to blood monocytes, P4 macrophages rep-
resent the major population in healthy steady state, and P2 and P3 macrophages are
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Figure 6: Macrophage submodel. Macrophages in the LP were implemented as differ-
ent state variables for the four different populations P1 to P4 and efferocytosis-type, before
(MPi) and after (MPi,a) encounter with bacterial antigen. Additional macrophage state
variables will be described in Section 2.13 and 2.18.2. Arrows indicate inflow, death and
transitions between states, with rate constants on the arrows or rates given in the text for
the reactions labeled in grey/light colours. Arrows targeting on arrows mean stimulating
( ) or inhibiting ( ) influence on this reaction. pro: pro-inflammatory cytokines
cytorec,M or cytopro,deact,M, anti: anti-inflammatory cytokines cytoanti,deact,M, SPM: spe-
cialised pro-resolving mediators.

transitional states in between. All subsets contain pro-inflammatory cytokine-producing
and anti-inflammatory cytokine-producing cells, with decreasing and increasing fractions
from P1 to P4, respectively. For simplification, we regarded P1 to P3 as pro-inflammatory
cells producing pro-inflammatory cytokines, and P4, the resident population, as anti-
inflammatory cells producing anti-inflammatory cytokines. In addition, the populations
differ in their phagocytic activity, which increases for P1 to P4 (see Section 2.6).

We used data from different experiments by Bain et al. [59]: (i) Supplementary Fig-
ure 1a + 1g [59] give the steady state fractions of P1 to P3 from CX3CR1int cells, the
fraction of CX3CR1int cells from CD45+ cells, and the fraction of P4 (all CX3CR1high

cells) from CD45+ cells, from which we calculated the steady state concentrations of P1
to P4 in the unit fraction of CD45+ cells in colon LP. (ii) Figure 2b + 2c [59] show the
results of a bromodeoxyuridine (BrdU) pulse-chase experiment, where they injected mice
with BrdU (a thymidine analog that is incorporated into newly synthesised DNA and
can then be detected by antibodies) at time point 0. They derived the percentage of
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BrdU-containing monocytes in bone marrow (BM) and blood at 3 h and 12 h, and in LP,
separately for the four different macrophage populations P1 to P4, at 3 h, 12 h, 24 h and
48 h after the BrdU pulse. BrdU incorporation is assumed only to take place in BM, as
monocytes/macrophages do not proliferate in the periphery, and thus the experiment is
used to follow those BrdU+ cells from BM through blood and the different LP macro-
phage populations. The data [59] are given in % BrdU for each cell compartment. We
transformed the data for P1 to P4 into the unit fraction BrdU+ cells of CD45+ cells,
using the fractions of P1 to P4 from CD45+ cells. Through that we ensured that the
concentrations of P1 to P4 were in the same unit, so that we could model the transit
through those compartments. The transformed data are shown in Figure 7.

We fitted the following macrophage transition submodel to the transformed data:

BrdU BM bl P1 P2 P3 P4

kdeg,BrdU kdeg,BM kdeg,bl µM µM µM µM

kin,BM kin,bl kin,tis νM,P1→P2 νM,P2→P3 νM,P3→P4

The corresponding system of ODEs is:

d

dt
BrdU = − k̂deg,BrdU · BrdU

d

dt
BM = kin,BM · BrdU− k̂deg,BM · BM

d

dt
bl = kin,bl · BM− k̂deg,bl · bl

d

dt
P1 = kin,tis · bl− (νM,P1→P2 + µM) · P1

d

dt
P2 = νM,P1→P2 · P1− (νM,P2→P3 + µM) · P2

d

dt
P3 = νM,P2→P3 · P2− (νM,P3→P4 + µM) · P3

d

dt
P4 = νM,P3→P4 · P3− µM · P4

with k̂deg,BrdU = kdeg,BrdU + kin,BM, k̂deg,BM = kdeg,BM + kin,bl and k̂deg,bl = kdeg,bl + kin,tis.
Using the given steady state concentrations of P1 to P4 (transformed data, see above)
and using bl = 1, the parameters νM,P1→P2, νM,P2→P3, νM,P3→P4 and µM were given as a
function of kin,tis by setting d

dt
P1 = 0, d

dt
P2 = 0, d

dt
P3 = 0 and d

dt
P4 = 0, using bl = 1 for

steady state and solving for the parameters:

νM,P1→P2 =
kin,tis

P1ss + P2ss + P3ss + P4ss

· P2ss + P3ss + P4ss

P1ss

νM,P2→P3 =
kin,tis

P1ss + P2ss + P3ss + P4ss

· P3ss + P4ss

P2ss

νM,P3→P4 =
kin,tis

P1ss + P2ss + P3ss + P4ss

· P4ss

P3ss

µM =
kin,tis

P1ss + P2ss + P3ss + P4ss
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Then we used the data from the BrdU experiment ([59], transformed as described above,
see Figure 7) to estimate the remaining parameters above using least squares estimation.
Due to the different scales, the squared differences of P1 to P3 predictions from obser-
vations were weighted with factor 1000. Data for P4 were not used, because they are
inexplicably high already at very early time points, which is not in accordance with the
proposed mechanism of transit through the different populations (see Figure 7, right, vi-
olet dots). We assumed that this arose from measurement errors, as the original data (in
% BrdU+ cells) at early time points are on similar low levels for P1 to P4, but because of
the higher steady state concentrations of P4, the same % BrdU+ cells transforms to much
higher concentrations in the unit of fraction BrdU+ cells of CD45+ cells. The resulting
parameter values are given in Table 1. Figure 7 shows the data taken from Bain et al.
[59, Fig. 2b + 2c], together with the predicted time course by the above macrophage
transition submodel using the estimated parameter values.

Table 1: Macrophage parameter estimates. Parameters of the macrophage transition
submodel, estimated based on data from Bain et al. (2013) [59], Figure 2 b and c and
Supplementary Figure 1 a and g.

Parameter Value Unit

k̂deg,BrdU 5.68 · 10−2 1
h

kin,BM 9.80 · 10−2 fraction BrdU+ cells
h

k̂deg,BM 5.68 · 10−2 1
h

kin,bl 1.14 · 10−1 fraction BrdU+ cells
h

k̂deg,bl 1.38 · 10−1 1
h

kin,tis 6.24 · 10−4 fraction BrdU+ cells of CD45+ cells
h

νM,P1→P2 4.88 · 10−2 1
h

νM,P2→P3 7.88 · 10−2 1
h

νM,P3→P4 2.21 · 10−2 1
h

µM 3.12 · 10−3 1
h

We used the resulting parameters values for νM,P1→P2, νM,P2→P3, νM,P3→P4 (with a
modification to account for the impact of cytokines as described in the next paragraph,
Influence of inflammation on deactivation) and µM in our systems biology model (as
shown in Figure 6). Those first-order parameters can easily be used in models with state
variables in different units (fraction BrdU+ cells of CD45+ cells vs 1

mL
). As the zero-order

parameter for macrophage inflow into the tissue is in unit fraction BrdU+ cells of CD45+

cells, we could not directly use this parameter in our systems biology model. Instead, we
calculated the steady state inflow rate constant λM,c based on the death rate constant
µM and the steady state concentration of total macrophages, as described in the previous
paragraph (Recruitment).

In our systems biology model we accounted for those four different LP macrophage
populations, which were renamed MP1,tot, MP2,tot, MP3,tot, MP4,tot. The subscript “tot”
was used as they were each further divided into subpopulations (see next paragraphs).

Influence of inflammation on deactivation. Bain et al. (2013) [59] examined the influ-
ence of inflammation on the macrophage populations in mice with dextran sodium sulfate
(DSS)-induced colitis (DSS is a frequently used substance to induce epithelial cell injury
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Figure 7: Macrophage submodel fit. Data from Bain et al. (2013) [59] together with
the corresponding predicted time course using the macrophage submodel described in the
text with estimated parameters given in Table 1. BrdU is given as fraction of initial
concentration; macrophages in bone marrow (BM) and blood (bl) are given as fractions
of BrdU+ macrophages from total macrophages; and the macrophage populations P1 to
P4 in LP are given as fractions of BrdU+ macrophages of this population from all CD45+

cells in LP. Data are given as mean and standard deviation (if available). For P1 to P4,
we calculated the data by multiplication of different reported values (see text), where
we calculated the mean E[Y ] and standard deviation

√
Var[Y ] of the resulting data by

multiplication of independent normally distributed random variables Y = X1 · ... · Xn:
E[Y ] =

∏n
i=1 E[Xi] and Var[Y ] =

∏n
i=1(Var[Xi] + (E[Xi])

2) −∏n
i=1(E[Xi])

2. Data for P4
were not used for parameter estimation (see text).

and thereby intestinal inflammation in mice [75], see also Section 2.18.3). Apart from an
overall increase of macrophages in the colon, they observed an accumulation of P1, P2 and
(to a lower extent) P3 cells, while the numbers of P4 cells decreased. After adoptive trans-
fer of monocytes, they observed a much slower local differentiation through populations
P1 to P4 in inflamed than in healthy mice, strongly suggesting that the deactivation of
pro-inflammatory monocyte-like macrophages to anti-inflammatory resident macrophages
is disrupted in inflammation [59].

We implemented this into our system biology model by assuming the stepwise deac-
tivation from P1 to P4 to be dependent on anti-inflammatory cytokines and inhibited by
pro-inflammatory cytokines, according to the following scheme:

MPi MPi:anti MPj

MPi:pro

kpro,on kpro,off

kanti,on

kanti,off νM,Pi→Pj

antipro



30 2 Systems biology model of the mucosal immune system

for (i, j) = (1, 2), (2, 3), (3, 4). Using the quasi-steady state approximation, this results in
a transition rate of

transition rate MPi(,a) →MPj(,a) =
νM,Pi→Pj · cyto

hanti,deact,M

anti,deact,M

1 + cyto
hanti,deact,M

anti,deact,M + cyto
hpro,deact,M

pro,deact,M

·MPi(,a),

for (i, j) = (1, 2), (2, 3), (3, 4), where cytoanti,deact,M = anti, cytopro,deact,M = pro, the cy-
tokine concentrations (see Section 2.14) are normalised by the corresponding Km or KI ,
and the Hill factors are set to 1 for the reference individual. Subscript “a” refers to antigen
experience, described in paragraph Antigen uptake, and is included here to show that the
transition rate is similar for antigen-experienced and antigen-unexperienced macrophages.

As the parameters described in the previous paragraph (Deactivation) refer to the
healthy steady state, but healthy steady state includes a low level of inflammation, we
multiplied νM,Pi→Pj with factor 1.25 to counteract the inhibiting influence of the present
pro-inflammatory cytokines and ensure the right steady state fractions of the different
populations (as measured by Bain et al. [59]). I.e. νM,P1→P2 = 6.10 · 10−2 1

h
, νM,P2→P3 =

9.85 · 10−2 1
h

and νM,P3→P4 = 2.76 · 10−2 1
h
.

Figure 8 shows (analogous to Figure 4f in Bain et al. (2013) [59]) the distributions of
macrophage populations P1 to P4 before an inflammatory stimulus and at day 4 and 6 of
inflammation. The additional population Meffero,tot (described in paragraph Efferocytosis)
corresponds also to P4. The figure shows that the simulated distribution of macrophage
populations in healthy steady state (day 0) is very similar to the resting distribution re-
ported in Bain et al. (2013) [59]. Slight differences are due to the approximate factor of
1.25 to counteract the inhibiting influence of steady state low-level inflammation and the
efferocytosis reaction. The macrophage populations in the simulation of mucosal injury
show much less inflammation than in the experimental colitis by Bain et al., but the ex-
tent of inflammation seen in the macrophage populations in the simulation of salmonella
infection are comparable to the experimental colitis (e.g. day 6 salmonellae vs experi-
mental colitis). This confirms that our implementation of the inhibition of macrophage
deactivation by pro-inflammatory cytokines qualitatively reflects the experimental results
by Bain et al., as the resulting changes in macrophage populations are of the same order
of magnitude.

Efferocytosis. The role of macrophages in the resolution of the inflammation is described
in more detail in Section 2.15, especially the phagocytosis of apoptotic neutrophils, called
efferocytosis. Phagocytosis of apoptotic neutrophils leads to a change of the state of
the phagocytosing macrophage [66]. We called this state efferocytosis-type macrophage
and included it as an additional population to the macrophage populations P1 to P4,
assuming it similar to P4 macrophages (concerning phagocytic activity and production of
anti-inflammatory cytokines), but in addition able to produce SPM (see Section 2.15). As
described in Section 2.7, we implemented efferocytosis similar to phagocytosis of bacterial
cells, using the same parameter values. A fraction peffero of the macrophages phagocytosing
apoptotic neutrophils become efferocytosis-type macrophages, i.e. the expected number of
apoptotic neutrophils a macrophage has to phagocytose before becoming an efferocytosis-
type macrophage is 1/peffero. For lack of knowledge we set the probability to peffero = 0.1,
resulting in plausible macrophage distributions over time. The efferocytosis rate is, similar
to the phagocytosis rate, different for the macrophage populations P1 to P4, with relative
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Figure 8: Macrophage populations in inflammation. Distribution of macrophage
populations P1 to P4 at different time points before/after an inflammatory stimulus, for
the two simulated inflammation scenarios (salmonella infection, mucosal injury) and ex-
perimental colitis in Bain et al. (2013) [59]. Data for experimental colitis are taken from
Bain et al. [59], Figure 4e. Day 0 is the same for salmonellae and mucosal injury as it
describes the state before the inflammatory stimulus. MP4,tot and Meffero,tot together cor-
respond to MP4,tot in experimental colitis data by Bain et al. (2013) [59]. For description
of Meffero,tot see paragraph Efferocytosis.

weights wphago,P1 = 0.034, wphago,P2 = 0.12, wphago,P3 = 0.31 and wphago,P4 = 1, respectively
[59]. Thus the efferocytosis rate of any macrophage population P1 to P4, independent if
antigen-experienced or not, is

MPi(,a) efferocytosis rate = peffero ·
Vmax,Phago · Neutapo

KmPhago + Neutapo

·MPi(,a) · wphago,Pi,

describing the transition from state variable MPi(,a) to Meffero(,a).
Figure 9 (left column) shows the time course of the different macrophage populations

P1 to P4 and efferocytosis-type over time for the two different inflammation scenarios
(salmonella infection and mucosal injury).

Antigen uptake. Macrophages can take up antigen and present it on MHCII. Their im-
portance in antigen presentation to T cells, however, is controversial, especially because
of their inability to migrate to LNs [73]. Therefore, a direct role in activation of naive
and central memory T cells is not plausible, but presentation of antigen to and activa-
tion of effector memory T cells and effector T cells seems possible (described in detail in
Section 2.11. paragraph Effector memory T cells (LP)).

We implemented antigen uptake by all macrophages populations (P1 to P4 and efferocytosis-
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Figure 9: Macrophage dynamics. Concentrations in LP of different macrophage
subsets over time for the two inflammation scenarios of salmonella infection and mu-
cosal injury. Left column: Time course of the different macrophage populations (P1
to P4 and efferocytosis-type); for each population the sum of antigen-unexperienced,
antigen-experienced, pMHCII-depleted (see Section 2.13) and salmonella-infected (see
Section 2.18.2) macrophages is shown. Right column: Time course of antigen-
unexperienced and antigen-experienced macrophages; antigen-experienced macrophages
include pMHCII-depleted (see Section 2.13) and salmonella-infected (see Section 2.18.2)
macrophages; the sum over the macrophage populations (P1 to P4 and efferocytosis-type)
is shown.

type) dependent on their specific phagocytosis rate. We only considered bacterial anti-
gens; uptake of food or other antigens was neglected. Phagocytosis of a bacterial cell
by an antigen-unexperienced macrophage leads to transition of this macrophage to an
antigen-experienced state. The engulfed bacterial cell determines the bacteria-specificity
of the antigen-experienced macrophage. The activation type (P1 to P4 or efferocytosis-
type) remains the same. For every macrophage population, separate model species de-
scribe antigen-unexperienced (MP1, MP2, MP3, MP4, Meffero) and antigen-experienced
(MP1,a, MP2,a, MP3,a, MP4,a, Meffero,a) macrophages, as shown in Figure 6. Deactivation of
antigen-experienced macrophages was implemented analogous to deactivation of antigen-
unexperienced macrophages. The transition rate from antigen-unexperienced to the re-
spective antigen-experienced state equal the phagocytosis rate of bacteria attributable to
the respective antigen-unexperienced state. Phagocytosis of bacteria by already antigen-
experienced macrophages does not further influence the state, which is a simplification of
the gradual progress of antigen uptake. In addition to phagocytosis of bacteria in LP, we
considered a low rate of antigen uptake from the lumen. We assume this antigen uptake
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rate constant νant.upt = 0.0144 1
h

(corresponding to a half-life of unexperienced dendritic
cells/macrophages of 2 d in case of no bacteria in LP) to be equal between dendritic
cells and the highly phagocytic P4 macrophage population, and lower for P1, P2 and
P3 according to their reported lower phagocytic activities by factors wphago,P1 = 0.034,
wphago,P2 = 0.12 and wphago,P3 = 0.31, respectively [59, Fig. 1e]. Both antigen uptake
rates and the resulting antigen-experienced macrophage populations are bacteria-specific.
Thus, the transition rate from an antigen-unexperienced macrophage population MPi to
the respective antigen-experienced macrophage population MPi,a is

MPi antigen uptake rateb = νant.upt · BactLu,b ·MPi · wphago,Pi

+
Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

·MPi · wphago,Pi

for each bacterial species b.
Figure 9 (right column) shows the time course of total antigen-unexperienced and total

antigen-experienced macrophages over time for the two different inflammation scenarios
(salmonella infection and mucosal injury). It shows that after mucosal injury, almost
all macrophages immediately become antigen-experienced because of the large number
of bacteria in LP. In salmonella infection the number of bacteria in LP is lower, and
the inflammatory reaction is stronger and prolonged compared to mucosal injury, lead-
ing to a larger recruitment of macrophages. The outcome of this is a strong increase of
antigen-experienced and a weaker increase of antigen-unexperienced macrophages, show-
ing that the antigen uptake by macrophages is increased, but the recruitment (of antigen-
unexperienced macrophages) is increased more.

In accordance with the description of the macrophage subpopulations by Bain et al.
[59], after antigen encounter, macrophage populations P1 to P3 produce pro-inflammatory
cytokines, and population P4 produces anti-inflammatory cytokines, i.e. MP1,a, MP2,a

and MP3,a produce pro-inflammatory cytokines, and MP4,a produces anti-inflammatory
cytokines. Cytokine production and their effects are described in Section 2.14. In addition,
antigen-experienced macrophages present the acquired antigen on their surface, and are
able to activate T cells with the specific T cell receptor upon contact, as described in
Section 2.10. This antigen presentation ability can be inhibited by regulatory T cells, as
described in Section 2.13.

The resulting ODEs for the macrophage state variables are

d

dt
MP1 = M recruitment rate− transition rate MP1 →MP2

−MP1 efferocytosis rate−MP1 antigen uptake rate− µM ·MP1

d

dt
MP1,a = − transition rate MP1,a →MP2,a

−MP1,a efferocytosis rate +MP1 antigen uptake rate− µM ·MP1,a

d

dt
MP2 = transition rate MP1 →MP2 − transition rate MP2 →MP3

−MP2 efferocytosis rate−MP2 antigen uptake rate− µM ·MP2

d

dt
MP2,a = transition rate MP1,a →MP2,a − transition rate MP2,a →MP3,a
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−MP2,a efferocytosis rate +MP2 antigen uptake rate− µM ·MP2,a

d

dt
MP3 = transition rate MP2 →MP3 − transition rate MP3 →MP4

−MP3 efferocytosis rate−MP3 antigen uptake rate− µM ·MP3

d

dt
MP3,a = transition rate MP2,a →MP3,a − transition rate MP3,a →MP4,a

−MP3,a efferocytosis rate +MP3 antigen uptake rate− µM ·MP3,a

d

dt
MP4 = transition rate MP3 →MP4

−MP4 efferocytosis rate−MP4 antigen uptake rate− µM ·MP4

d

dt
MP4,a = transition rate MP3,a →MP4,a

−MP4,a efferocytosis rate +MP4 antigen uptake rate− µM ·MP4,a

d

dt
Meffero = MP1 efferocytosis rate +MP2 efferocytosis rate

+MP3 efferocytosis rate +MP4 efferocytosis rate

−Meffero antigen uptake rate− µM ·Meffero

d

dt
Meffero,a = MP1,a efferocytosis rate +MP2,a efferocytosis rate

+MP3,a efferocytosis rate +MP4,a efferocytosis rate

+Meffero antigen uptake rate− µM ·Meffero,a

In Section 2.13, the influence of regulatory T cells on antigen-presenting macrophages
is described, with some additional rates to be added to the above ODEs. All antigen-
experienced macrophage state variables and corresponding reactions are bacteria-specific
(subscript b neglected here for readability).

2.9 Dendritic cells

Dendritic cells are another cell type that eliminates pathogens by phagocytosis [29]. Their
phenotype is very similar to macrophages, but in contrast to macrophages, dendritic cells
are able to migrate to the LN [73]. This is related to their main function: presentation of
the antigen from the phagocytosed and degraded pathogen via MHCII on their surface,
and thereby activation of T cells, mainly in the LN [29]. Through that, dendritic cells
provide the link between the innate and adaptive immune systems [29]. In most tissues,
dendritic cells that sense bacterial antigens become activated and subsequently elicit pro-
inflammatory T helper cell responses [29]. In contrast, in the LP, dendritic cells that
enter the mucosal tissue from blood are kept in a quiescent state by the local cytokine
milieu, so that recognition of bacterial antigen does not result in activated dendritic cells
that mediate pro-inflammatory T cell responses [29]. Instead, these so-called tolerogenic
dendritic cells (antigen-experienced, but not activated) trigger regulatory T cell responses,
which are anti-inflammatory [76]. To become activated, dendritic cells in the gut need
additional pro-inflammatory stimuli from their environment [29, 77]. This mechanism
plays a crucial role in the toleration of commensal bacteria [29].

Dendritic cells can be classified into a variety of different types [77–79]. We sum-
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Figure 10: Dendritic cell submodel. Dendritic cells in the LP were implemented as
four different state variables: quiescent dendritic cells qDC, responsive dendritic cells rDC,
tolerogenic dendritic cells tDC and stimulatory dendritic cells sDC. Arrows indicate inflow,
death, migration and transition between states, with rate constants on the arrows or rates
given in the text for the reactions labeled in grey. Arrows targeting on arrows mean
stimulating ( ) or inhibiting ( ) influence on this reaction. pro: pro-inflammatory
cytokines cytopro,act,DC, anti: anti-inflammatory cytokines cytoanti,act,DC.

marised the different types, and only differentiated between four different dendritic cell
states, dependent on activation state and antigen uptake: quiescent dendritic cells (qDC;
not activated, antigen-unexperienced), tolerogenic dendritic cells (tDCLP; not activated,
antigen-experienced), responsive dendritic cells (rDC; activated, antigen-unexperienced),
stimulatory dendritic cells (sDCLP; activated, antigen-experienced). As for macrophages,
we only considered antigen from bacterial cells, and did not account for other antigen
such as food antigen. Figure 10 shows the four different dendritic cell states in LP and
transition rates between them. Figure 11 shows the time course of the implemented four
different dendritic cell states in LP in the two simulation scenarios (salmonella infection
and mucosal injury).

Recruitment. The concentration of dendritic cells in healthy steady state was calculated
based on the reported concentration of T cells in colon LP [80] and the fractions of T cells
and dendritic cells from mononuclear cells in colon LP [81, 82], resulting in DCtot,LP,ss =
5.65 · 106 1

mL
. The half-life of dendritic cells in tissue is 2 d [83–85], yielding a death rate

constant of µDC,LP = 0.014 1
h
. For dendritic cells, no additional recruitment in response to

inflammatory stimuli was implemented. The constant recruitment rate constant λDC was
calculated such that the literature steady state concentrations were ensured in healthy
steady state. As this depends not only on the death rate, but also on activation and
migration rates, the calculation of this parameter is described at the end of the section
(paragraph Migration to LN ).
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Figure 11: Dendritic cell dynamics. Concentrations of quiescent (qDC), tolerogenic
(tDC), responsive (rDC) and stimulatory (sDC) dendritic cells in LP over time for the
two inflammation scenarios of salmonella infection and mucosal injury. tDC and sDC
include also the respective pMHCII-depleted dendritic cells (see Section 2.13).

Activation. Dendritic cells enter the tissue as qDC, and, if not activated, become tDCLP

after antigen uptake (see next paragraph Antigen uptake), which induce an anti-inflamma-
tory T cell response in the LN. Only when qDC or tDCLP are activated by an inflammatory
environment, they become responsive or, if antigen-experienced, stimulatory dendritic
cells that can induce a pro-inflammatory T cell response. The term activation here refers
to transition from a quiescent or tolerogenic to a responsive or stimulatory state, i.e. the
transition from dendritic cells eliciting anti-inflammatory adaptive immune responses to
dendritic cells eliciting pro-inflammatory responses. We implemented activation of qDC
and tDCLP (resulting in rDC and sDCLP, respectively) analogous to the deactivation of
macrophages (see Section 2.8, paragraph Deactivation), with pro-inflammatory cytokines
stimulating and anti-inflammatory cytokines inhibiting activation, according to the fol-
lowing scheme:

q/tDC q/tDC:pro r/sDC,

q/tDC:anti

kanti,on kanti,off

kpro,on

kpro,off νDC,act

proanti
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resulting in the activation rate

q/tDC activation rate =
νDC,act · cyto

hpro,act,DC

pro,act,DC

1 + cyto
hpro,act,DC

pro,act,DC + cyto
hanti,act,DC

anti,act,DC

· q/tDC,

where cytopro,act,DC = pro, cytoanti,act,DC = anti, the cytokine concentrations are nor-
malised by the corresponding Km or KI , and the Hill factors are set to 1 for the reference
individual. The maximal activation rate was set to νDC,act = 0.03 1

h
, based on the resulting

time course.

Antigen uptake. Antigen uptake of dendritic cells was implemented analogous to anti-
gen uptake by macrophages (see Section 2.8, paragraph Antigen uptake). The resulting
bacteria-specific antigen uptake rate by qDC and rDC (resulting in tDCLP and sDCLP,
respectively) is thus

q/rDC antigen uptake rate = νant.upt · BactLu,b · q/rDC

+
Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

· q/rDC

for each bacterial species b, where the first summand describes the sampling of bacterial
antigen from the lumen, and the second summand describes phagocytosis of bacteria in
LP. The antigen uptake rate and the antigen-experienced dendritic cell states tDCLP and
sDCLP are bacteria-specific.

Migration to LN. Antigen-experienced dendritic cells migrate via the lymph to the drain-
ing mesenteric LNs. There they present antigen on their surface via MHCII. In experi-
ments with Dendra-2 photoconvertible mice, 85 % of migratory dendritic cells (in contrast
to resident dendritic cells, which we did not account for in our model) of the LN were
replaced after 24 h (Vuk Cerovic, RWTH Aachen, unpublished observations). Assuming
a first-order exit rate from the LN, the rate constant results to be µDC,LN = 1.9 1

d
. Tenta-

tive estimations of a dendritic cell ratio in LP to LN of 10 (Vuk Cerovic, RWTH Aachen,
unpublished observations) would yield a rate constant of k = 0.19 1

d
of the dendritic cells

in LP leaving for the LN per day, assuming that all dendritic cells leaving the LP end up
in LN and that migration from LP is the only inflow rate of dendritic cells into the LN.
As, however, only antigen-experienced dendritic cells (tDC and sDC) migrate to the LN,
the migration rate constant has to be adapted accordingly.

The rate constants for migration εDC of tDC and sDC to LN and for recruitment λDC

of qDC into LP were calculated based on the literature values for the steady state con-
centrations of dendritic cells and bacterial cells in LP, the derived death rate constant
µDC,LP and the derived rate constant k of total dendritic cells leaving the LP for the LN
per day. The concentration of bacterial cells in healthy colon LP was reported to be
BactLP,ss = 2.7 · 105 1

mL
[55]. In the following calculation, we only had to account for com-

mensal bacteria, as the situation refers to the healthy steady state (i.e. BactLu,commensal = 1
and Rphago,commensal = 1). From

d

dt
(tDCLP + sDCLP) = ν · (qDC + rDC)− (µDC,LP + εDC) · (tDCLP + sDCLP),
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with ν = νant.upt +
Vmax,Phago·BactLP,ss

KmPhago+BactLP,ss
describing the antigen uptake rate per antigen-

unexperienced dendritic cell (qDC or rDC), follows for the concentration of antigen-
experienced LP dendritic cells

tDCLP + sDCLP =
ν

µDC,LP + ν + εDC

·DCtot,LP,ss.

The total dendritic cell migration rate is

k ·DCtot,LP,ss = εDC · (tDCLP + sDCLP).

Using the above derived concentration of antigen-experienced dendritic cells as function
of total dendritic cells, results in

εDC =
k · (ν + µDC,LP)

ν − k = 0.009
1

h
.

In steady state, the inflow equals the outflow of dendritic cells, i.e. the recruitment rate
equals the sum of the death rate and the migration rate:

λDC = µDC,LP ·DCtot,LP,ss + k ·DCtot,LP,ss = 1.26 · 105 1

mL · h .

Due to differences in simulated steady state concentrations of bacteria in LP to the
literature value, the resulting simulated steady state concentration of dendritic cells in LP
is slightly higher than the calculated literature concentration (DCtot,LP,ss = 6.45 · 106 1

mL

compared to DCtot,LP,ss = 5.65 · 106 1
mL

as calculated in paragraph Recruitment using
literature data [80–82]).

The resulting ODEs for the dendritic cell state variables are

d

dt
qDC = λDC − µDC,LP · qDC− qDC antigen uptake rate− qDC activation rate

d

dt
rDC = − µDC,LP · rDC− rDC antigen uptake rate + qDC activation rate

d

dt
tDCLP = qDC antigen uptake rate− tDC activation rate− (µDC,LP + εDC) · tDCLP

d

dt
sDCLP = rDC antigen uptake rate + tDC activation rate− (µDC,LP + εDC) · sDCLP

d

dt
tDCLN = εDC · tDCLP ·

VLP

VLN

− µDC,LP · tDCLN

d

dt
sDCLN = εDC · sDCLP ·

VLP

VLN

− µDC,LP · sDCLN.

Note that tDCLP, sDCLP, tDCLN, sDCLN and all corresponding reaction rates are bacteria-
specific. In Section 2.13 the influence of regulatory T cells on antigen-presenting dendritic
cells is described, with some additional rates to be added in the above ODEs.
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2.10 Antigen presentation to T cells

In the following sections (Section 2.10 - 2.13) we will describe the implementation of T
cell dynamics and effects in our model. T cells are part of the adaptive immune response;
they provide targeted effects against pathogens. T cells present T cell receptors (TCRs)
on their cell surface, where all TCRs of one T cell are identical, but TCRs of different
T cells are different. The TCR binds to a complex of a foreign peptide bound to the
cell surface receptor MHCII (peptide:MHCII, pMHCII). Each TCR only binds to very
specific peptides. In the case of a bacterial infection, bacterial antigens enter the host
tissue, are taken up by antigen-presenting cells (APCs) (dendritic cells and macrophages),
and are subsequently presented as small peptides via MHCII on the APC’s cell surface.
Naive T cells circulate through LNs. Upon encounter of an APC they search its surface
for their cognate antigen. Binding of the TCR to its cognate antigen leads to a closer
and longer contact between the T cell and the APC, and the T cell receives additional
signals from the APC that stimulate the T cell to proliferate and also determine the
effector type the T cell will differentiate into. The thus stimulated naive T cells proliferate
efficiently for several days, the so-called expansion phase, leading to a large increase in T
cell numbers, and then differentiate into effector T cells with specific functions. T cells
derived from the same naive T cell have the same TCR. At the end of an infection, when
the invading pathogen is cleared, most effector T cells die; this is called the contraction
phase. Some effector T cells, however, survive as memory T cells. Memory T cells are
long-lived and can, in the case of a renewed infection with the same pathogen, be again
activated by an APC presenting their cognate antigen, similar to activation of naive T
cells, but with faster and less pronounced proliferation, enabling a faster and more efficient
immune response in secondary compared to primary infection. Memory T cells can be
divided into two classes: Central memory T cells circulate through LNs (similar to naive
T cells) and, when activated, proliferate and differentiate into effector memory T cells.
Effector memory T cells circulate through the tissues and, when activated, proliferate and
differentiate into effector T cells. The two main T cell populations are distinguishable by
the surface proteins CD4 and CD8 and give rise to different effector T cells: CD4+ T cells
differentiate into either regulatory T cells or T helper cells, which play important roles in
bacterial infections, parasite infections and allergic reactions. CD8+ T cells differentiate
into cytotoxic T cells, which kill virus-infected or tumour cells [29].

As we focused our model on bacterial infections of the gut LP, we did not account
for CD8+ T cells, but only included CD4+ T cells, i.e. in the sequel, T cells will refer
to CD4+ T cells. In addition, we simplified memory T cell generation: We did not
account for the influence of an acute immune reaction on the memory T cell repertoire,
but considered it constant, i.e. with constant fractions of memory T cells for the different
bacterial antigens over time. As commensal bacteria are always present, we assumed
that memory T cells specific for commensal antigens are existing; for pathogens that
have not been encountered before (in our simulations of infection with salmonellae or
extracellular pathogens), we assumed the fraction of specific memory T cells to be smaller
but still existing due to conserved structures between bacterial strains that allow for
cross-reactivity between different bacterial strains [86].

For the induction of a T cell immune response, the naive or memory T cell must
encounter its cognate antigen presented by an APC (see Section 2.11). In addition, T
helper cells need to be activated by APCs to produce pro-inflammatory cytokines (see
Section 2.14), regulatory T cells inhibit antigen presentation by APCs in an antigen-
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specific manner (see Section 2.13), and T helper cells type 1 help macrophages presenting
their cognate antigen with the elimination of intracellular bacteria (see Section 2.18.2). For
the implementation of all of these processes, we therefore need the contact rate between
T cells and APCs in LN and LP. We start with the derivation of the concentration of
contacts between T cells and dendritic cells, and then adapt for macrophages. Differences
between LN and LP are given if applicable.

The contact rates of T cells and dendritic cells in the LN have been estimated via
several methods in the literature: Miller et al. (2004) [87] counted the contacts of single
fluorescence-labeled dendritic cells with fluorescence-labeled T cells and back-calculated
the contact rate using the fraction of labeled T cells, resulting in 4630± 670 contacts per
h per dendritic cell. Beltman et al. (2007) [88] performed an in silico study, simulating T
cell and dendritic cell migration in the LN environment, reporting about 2000 contacts per
h per dendritic cell or 100 contacts per h per T cell. Mandl et al. (2012) [89] measured
transit times of T cells and contact durations and, assuming T cells to be in contact
with one dendritic cell at every time point, estimated that each T cell contacts 160-320
dendritic cells per LN transit (≈ 12.2 h), resulting in 13-26 contacts per h per T cell. In
contrast to Mandl et al. [89], Beltman et al. [88] and Miller et al. [87] assumed that one T
cell can be in contact with multiple dendritic cells at a time. As multiple contacts seemed
plausible to us, we included this possibility into the model. Miller et al. [87] measured the
cell surface of dendritic cells and T cells to be ≈ 2400µm2 and ≈ 140µm2, respectively,
and the contact area to be on average ≈ 8µm2. From that, assuming no further sterical
hindrance, we calculated the number of binding sites per dendritic cell and T cell to be
bsperDC = 300 and bsperT = 17.5, respectively. As recently activated T cells (before the
first division) stay in close contact to the dendritic cell and have frequent longer contacts
with it [90], we assumed that these cells occupy binding sites on the dendritic cells that
activated them, and thereby further limit the number of new contacts. We found different
contact durations reported in the literature: 3.4 min [87], 1.3 min [88], 3-4 min [89], 2.5 min
[91], 1 min [92], and used the mean of those: Tcontact = 2.3 min.

Using this information, we propose the following implementation of contact formation
between T cells Ttot and dendritic cells DCtot,LP, assuming similar binding characteristics
of all types of T cells (except the recently activated ones) and of all types of dendritic
cells:

BST,free + BSDC,free

kon−⇀↽−
koff

contacts,

with total concentration of T cell binding sites BST = BST,free + contacts = Ttot · bsperT

and total concentration of dendritic cell binding sites BSDC = BSDC,free + contacts +
BSDC,occ = DCtot,LP · bsperDC, where BSDC,occ describes the DC binding sites occupied by
recently activated T cells, and BSDC,av = BSDC−BSDC,occ = BSDC,free +contacts describes
the dendritic cell binding sites available for contact formation. As the formation and
dissociation of contacts is on a much faster time scale than the change of dendritic cell
and T cell concentrations (contact duration in minutes), we used the quasi-steady-state
approximation to determine the concentration of contacts:

d

dt
contacts = 0 = kon · BST,free · BSDC,free − koff · contacts

0 = (BST − contacts) · (BSDC,av − contacts)− koff

kon

· contacts



2.10 Antigen presentation to T cells 41

0 = contacts2 − (BST + BSDC,av +
koff

kon

) · contacts + BST · BSDC,av

Solving the quadratic equation gives

contacts =
BST + BSDC,av + koff

kon
−
√

(BST + BSDC,av + koff

kon
)2 − 4 · BST · BSDC,av

2
.

The dissociation rate constant koff is determined by the contact duration: koff = T−1
contact.

The association rate constant kon is determined by the contact rate constant between T
cells and dendritic cells kT:DC, corrected for the number of binding sites per T cell and
dendritic cell kon =

kT:DC,LN

bsperT·bsperDC
in LN and kon =

kT:DC,LP

bsperT·bsperDC
in LP, resulting in two

different concentrations of contacts in LN and LP (contactsLN and contactsLP). We chose
the contact rate constant kT:DC,LN = 2 · 10−5 mL

h
so that the resulting steady state contact

rates, 2132 contacts per h per dendritic cell, were in the same order as those reported by
Miller et al. [87] and Beltman et al. [88]. This implied that in steady state, in the LN
each dendritic cell was on average in contact with 204 T cells at a time, and each T cell
was on average in contact with 3 dendritic cells at a time.

As, in contrast to the LN, the environment of the LP is not specialised for T cell -
dendritic cell contacts [93], we assumed the contact rate constant to be lower by a factor
10, i.e. kT:DC,LP = 2 · 10−6 mL

h
, so that in the steady state LP each dendritic cell was on

average in contact with 33 T cells at a time, and each T cell was on average in contact
with 0.7 dendritic cells at a time.

In the LP, not only dendritic cells, but also macrophages present antigen on MHCII on
their cell surface. Therefore it is assumed that macrophages can, at least to some extent,
present antigen to T cells, too. However, the role of macrophages in T cell stimulation
is controversial, and surely lower than the role of dendritic cells [73]. Therefore, in the
LP, we did not only consider dendritic cells, but also macrophages (together: APCs) as
contact partners for T cells. To account for the smaller role of macrophages, we assumed
the number of binding sites smaller than for dendritic cells by factor 20: bsperM = 15, while
assuming the same binding characteristics. This results in a concentration of available
binding sites on APCs

BSAPC,av = BSAPC − BSAPC,occ

= DCtot,LP · bsperDC +Mtot · bsperM − BSAPC,occ,

where BSAPC,occ are again the binding sites occupied by recently activated T cells. From
this follows that the role of a macrophage in comparison to a dendritic cell in T cell
activation is lower by factor

bsperM

bsperDC
= 1/20. In LN we did not have to account for

macrophages, as they are not able to migrate from the LP to the LN [73].
In summary, we calculate the concentrations of contacts in LN (contactsLN) and in LP

(contactsLP) between all present T cells and APCs, replacing in the above equation for
contacts BSDC,av with BSAPC,av. The applying total concentrations of binding sites on T
cells and APCs in LN and LP are

BST,LN =

Tn + Tcm +
∑
b

NT,prol∑
i=2

Tn2Teffi +
∑
b

NT,prol∑
i=2

Tcm2Temi

 · bsperT



42 2 Systems biology model of the mucosal immune system

BST,LP =

∑
b

Teff +
∑
b

Tem +
∑
b

NT,prol∑
i=2

Tem2Teffi

 · bsperT

BSAPC,av,LN = (tDCLN + sDCLN + tDCdep,LN + sDCdep,LN) · bsperDC

− (Tn2Teff1 + Tcm2Tem1)

BSAPC,av,LP = (tDCLP + sDCLP + tDCdep,LP + sDCdep,LP) · bsperDC + (MP1,a +MP2,a

+MP3,a +MP4,a +Meffero,a +MP1,a,dep +MP2,a,dep +MP3,a,dep +MP4,a,dep

+Meffero,a,dep) · bsperM − Tem2Teff1

where Tn, Tcm and Tem are naive, central memory and effector memory T cells, Tn2Teff,
Tcm2Tem and Tem2Teff are proliferating T cells (implemented as NT,prol transit compart-
ments, where the subscript 1 indicates the cells before first division, i.e. recently activated
T cells occupying APC binding sites) and Teff are effector T cells, described in the fol-
lowing Section 2.11 and Figure 14; and the subscript “dep” on APCs indicates pMHCII
depletion by regulatory T cells, described in Section 2.13. To obtain the concentration
of contacts between any specific subset of T cells and any specific subset of APCs, one
has to multiply the total concentration of contacts in the respective tissue (contactsLN or
contactsLP) with the fraction of the specific T cell subset from the total T cell concen-
tration (Ttot,LN or Ttot,LP) and the fraction of available binding sites on the specific APC
subset from the total available binding sites on APCs (BSAPC,av,LN or BSAPC,av,LP).

2.11 TCR stimulation and T cell proliferation

Naive and central memory T cells frequently circulate through LNs [29]. They enter
the LN via high endothelial venules, migrate to the T cell zones, and exit via cortical
sinuses into the lymph, which brings them via the thoracic duct back into blood [94].
The egress from the LN is mediated via a gradient of sphingosine-1-phosphate (S1P), for
which the T cells express the surface receptor S1PR1 [94]. When naive or memory T cells
encounter their cognate antigen presented via MHCII by an APC, they become activated
to proliferate and differentiate [29]. In the following hours, they first stay close to the
stimulating APC, with frequent long contacts; after the first division the T cells only
have brief contacts to APCs [90]. Expression of S1PR1 in T cells is downregulated after
activation, but is then upregulated again, to an even higher level [95]. Effector T cells
that have been activated by dendritic cells derived from the gut LP leave the mesenteric
LN and migrate via the blood to the gut LP, a process called gut homing [96].

We first describe the TCR stimulation and differentiation of naive T cells by tolerogenic
or stimulatory dendritic cells in the LN. Afterwards we describe the differences that apply
in TCR stimulation and proliferation of central memory T cells. Lastly, we describe TCR
stimulation and proliferation of effector memory T cells, which takes place in LP.

Naive T cells (LN). The mean residence time of naive T cells Tn in LNs was reported to
be 9.6 h [89]. We calculated the concentration of naive T cells in the LN using literature
values of the total concentration of CD4+ T cells in lymphoid tissue [97], and the fraction
of naive T cells from CD4+ T cells [98] to be Tnss = 1.9 · 108 1

mL
. Using these values

we calculated the inflow and egress rates of naive T cells in the mesenteric LNs to be
λTn = 1.9 · 107 1

mL·h and µT,LN = 0.10 1
h
, respectively. The resulting ODE for naive T cells
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is
d

dt
Tn = λTn − µT,LN · Tn− Tn activation rate.

In most cases of contact between a T cell and a dendritic cell, the T cell will not find
an antigen matching its TCR. For naive T cells, the probability of a TCR to be specific
for a given antigen is ≈ 10−6 = αTn [99, 100]. We assume that each bacterial cell has on
average β = 10 presentable antigens and each dendritic cell presents only antigen from
one bacterial cell, i.e. from that bacterial cell it engulfed in the LP (in the reaction from
qDC→ tDCLP or rDC→ sDCLP). The activation rate of naive T cells is the dissociation
rate (with dissociation rate constant T−1

contact) of contacts between naive T cells and APCs
( Tn
Ttot,LN

· contactsLN) multiplied by the probability that the naive T cell encounters its

cognate antigen on the APC (αTn · β), i.e.

Tn activation rate =
Tn

Ttot,LN

· αTn · β
Tcontact

· contactsLN.

(Inhibition of this rate by regulatory T cells is not considered here, but will be described
in Section 2.13.)

There are several published models of proliferation and apoptosis of activated T cells.
Two of them seemed most accurate to us:

(i) The “Cyton model” described by Hawkins et al. (2007) [101] and consecutive
publications [102–104]: It describes T cell growth by two competing times, the time
to divide and the time to die, where the shorter one determines a cell’s fate. Those times
are drawn from probability distributions for every cell and division cycle. They introduce
the term of “division destiny”, the division number at which cells stop to divide, which
they show to be normally distributed. From the parameters of the normal distribution
given by experimental data, they calculate back the so-called “progressor fraction”, the
fraction of cells that do not stop dividing after a given number of divisions.

(ii) The “T cell fate decision algorithm” by Arias et al. (2014) [105]: It describes T
cell growth by competition of two inhibitory intracellular molecules: active Rb, which
prevents cell cycle progression, and active Bcl-2, which prevents apoptosis, where the
first of those two to drop below a threshold determines a cell’s fate. They reason that
the number of cell surface receptors determines the change of those molecules over time.
From the initial composition of receptors, which are randomly distributed between the
two daughter cells of a dividing cell, they determine if a cell divides or dies. Through that
“dilution” of receptors over time after the initial stimulation, the typical profile of initial
expansion and subsequent contraction can be simulated.

Both of these models could not be directly implemented in our deterministic model
because of their stochastic nature. However, we summarised the main ideas of those
models [101, 105] as transition of activated T cells through several rounds of division,
where in each division round there is a competition between death and further division,
and the probability to stop division increases with higher numbers of division. Those main
aspects were implemented in our model as follows (see also Figure 12): We used transit
compartments Tn2Teffi (i = 1, ..., NT,prol) to describe the T cells of different division
numbers, with transition rates between them (describing the proliferation) being equal
for all division numbers except the first, which is lower, accounting for the longer time
to the first division [101]: pTn,1 = 0.025 1

h
, pTn,>1 = 0.11 1

h
, representing a time to first

division of 40 h and time for subsequent divisions of 9 h [101, 106]. As the transition rates
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LP

LN

Tn Tn2Teff1 Tn2Teff2

...
Tn2Teff5

...
Tn2TeffNT,prol

DC
µDC,LN

εDC

·2NT,prol−1

activation

pTn,1 pTn,>1 pTn,>1 pTn,>1 pTn,>1λTn

µT,LN µT,prol µT,prol µT,prol µT,prol

Teff

µT,LN (1 + 0.1 · (i− 5)) · µT,LN

Figure 12: Submodel of naive T cell stimulation, proliferation and differenti-
ation. Arrows indicate transitions between states, with rates as indicated by the rate
constants on the arrows or given in the text for the Tn activation rate. Arrows targeting
on arrows mean stimulating influence on this reaction. Colours should simplify reading, as
they indicate the different processes: Tn activation, proliferation of activated Tn, death
of proliferating Tn, egress of fully differentiated T cells from LN into LP.

between the transit compartments describe proliferation, we also need a stoichiometric
coefficient of 2 for the product state variable, i.e. Tn2Teffi → 2 Tn2Teffi+1. The transit
compartment Tn2Teffi consequently describes the proliferating and differentiating T cells
that have divided i − 1 times. Death of proliferating T cells was implemented using the
rate constant µT,prol = 0.047 1

h
[106] independent of the division number. Egress of T

cells from the LN is mediated by S1PR1, which is downregulated after activation, so
that T cells can not leave the LN, but then upregulated again [95]. Pham et al. (2008)
[107] described the egress of activated naive T cells from the LNs to occur only after 4
divisions, and to increase with the division number. We therefore implemented egress rates
from the transit compartments Tn2Teff≥5 with increasing egress rates for higher division
numbers. We assumed a base egress rate constant equal to the egress rate constant of
naive T cells µT,LN for Tn2Teff5, and an increase by 10 % after each additional division,
i.e. (1 + 0.1 · (i − 5)) · µT,LN for Tn2Teffi, i > 5 to mimic the increasing egress rates
reported by Pham et al. [107, Fig. 6B]. T cells leaving the Tn2Teff compartments migrate
as fully differentiated effector T cells Teff to the LP. The number of transit compartments
NT,prol = 18 was chosen so that a higher number would not make a significant effect to the
simulation (i.e. Tn2TeffNT,prol

≈ 0). Figure 12 shows the model of naive T cell stimulation,
proliferation and differentiation into effector T cells. Figure 13 (left) shows the numbers
of proliferating T cells of different division numbers over time per activated naive T cell.

The resulting ODEs for the transit compartments describing proliferating and differ-
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entiating T cells are

d

dt
Tn2Teff1 = Tn activation rate − pTn,1 · Tn2Teff1 − µT,prol · Tn2Teff1

d

dt
Tn2Teff2 = pTn,1 · Tn2Teff1 − pTn,>1 · Tn2Teff2 − µT,prol · Tn2Teff2

d

dt
Tn2Teffi = pTn,>1 · Tn2Teffi−1 − pTn,>1 · Tn2Teffi − µT,prol · Tn2Teffi

−(1 + 0.1 · (i− 5)) · µT,LN · Tn2Teffi · 1{i≥5},

for i = 3, ..., NT,prol, where 1{i≥5} =

{
1, if i ≥ 5
0, if i < 5

. Subscripts b are omitted for readabil-

ity; all proliferating T cells are bacteria-specific, with identical parameters for all bacterial
species (additional details in the following Section 2.12).

Central memory T cells (LN). For central memory T cells Tcm, we assumed inflow
and egress to be similar to naive T cells, i.e. the same egress rate constant µT,LN and
the inflow rate constant corrected by the ratio of naive and central memory T cells in
the blood (implying a first-order inflow rate with same rate constant for both T cell

types): λTcm = λTn · fraction Tcm of CD4+ (bl)
fraction Tn of CD4+ (bl)

= 1.8 · 107 1
mL·h (fractions in blood from [98]).

The resulting steady state concentration of central memory T cells in LN was Tcmss =
1.2 · 108 1

mL
, slightly lower than the literature value of 3.1 · 108 1

mL
(calculated from the

total concentration of CD4+ T cells in lymphoid tissue [97], and the fraction of central
memory T cells from CD4+ T cells [98]). The resulting ODE for central memory T cells
is

d

dt
Tcm = λTcm − µT,LN · Tcm− Tcm activation rate.

The stimulation and proliferation of central memory T cells was implemented largely
similar to that of naive T cells, with the following differences: The number of different
TCR specificities in naive T cells was reported to be ≈ 166 times higher than the number
of TCR specificities in memory T cells [108], resulting in a probability of a memory
T cell’s TCR to be specific for a given antigen of αTm,b = 1.66 · 10−4 for an antigen
that has been encountered before, and αTm,b = 1.66 · 10−4 · RTm,b for an antigen that
has not been encountered before, where 0 ≤ RTm,b ≤ 1 describes the degree of partial
recognition of bacterial antigens due to conserved structures [86]. We chose αTm,commensal =
1.66 ·10−4 (i.e. RTm,commensal = 1) and αTm,extracellular = αTm,salmonellae = 1.66 ·10−4 ·0.7 (i.e.
RTm,extracellular = RTm,salmonellae = 0.7), as commensal bacteria are permanently present
and therefore well recognised by the immune system, and the salmonellae and extracellular
bacteria in our simulations have not been encountered by the immune system before, but
can still be recognised (although to a lower extent). The resulting activation rate of
central memory T cells is

Tcm activation rate =
Tcm

Ttot,LN

· αTm,b · β
Tcontact

· contactsLN.

Transit compartments of proliferating central memory T cells are called Tcm2Tem; T
cells leaving the Tcm2Tem compartments migrate to the LP as effector memory T cells
Tem. As proliferation of memory T cells is shorter and therefore faster than proliferation
of naive T cells, and T cell responses occur shortly after simulation, we used the same
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proliferation rate constant pTn,>1 for all transit compartments but implemented the pos-
sibility of egress already before first division, with the same increase in egress rates for
higher division numbers as for naive T cells.

d

dt
Tcm2Tem1 = Tcm activation rate − pTn,>1 · Tcm2Tem1 − µT,prol · Tcm2Tem1

d

dt
Tcm2Temi = pTn,>1 · Tcm2Temi−1 − pTn,>1 · Tcm2Temi − µT,prol · Tcm2Temi

−(1 + 0.1 · (i− 1)) · µT,LN · Tcm2Temi,

for i = 2, ..., NT,prol. Subscripts b are omitted for readability; all proliferating T cells are
bacteria-specific, with identical parameters for all bacterial species except αTm,b (addi-
tional details in the following Section 2.12).

Effector memory T cells (LP). In contrast to naive and central memory T cells, effector
memory T cell stimulation and proliferation takes place in LP. We neglected possible loss
of T cells during gut homing, i.e. migration from the LN to the LP. Therefore, the inflow
of effector memory T cells Tem into LP is defined by the outflow of fully differentiated
Tem from proliferating Tcm in LN. The lifespan of effector memory T cells is 164 d [109],
i.e. µTem = 2.5 · 10−4 1

h
.

d

dt
Tem =

NT,prol∑
i=1

(1 + 0.1 · (i− 1)) · µT,LN · Tcm2Temi ·
VLN

VLP

− µTem · Tem− Tem activation rate

The stimulation and proliferation of effector memory T cells was implemented similar
to that of naive T cells, the only difference are the stimulating APCs, as in LP there
are macrophages in addition to dendritic cells. As described in Section 2.10, the role
of macrophages in T cell activation is controversial, which is why we implemented their
influence lower than that of dendritic cells by factor

bsperM

bsperDC
= 1/20. Effector memory

T cells can only be activated by the same type of APCs (pro- vs anti-inflammatory) as
the original central memory T cell. Consequently, we need to distinguish between two
different Tem activation rates for pro- and anti-inflammatory-stimulated effector memory
T cells.

TemAPCtype activation rate =
TemAPCtype

Ttot,LP

· BSAPCtype,av,LP

BSAPC,av,LP

· αTm,b · β
Tcontact

· contactsLP

for the different stimulating APC types that are described in the next Section 2.12.
We implemented the duration of proliferation equal to central memory T cells, but

the resulting fully differentiated effector T cells do not leave the tissue, but stay in LP as
effector T cells. The resulting ODEs for proliferating effector memory T cells are

d

dt
Tem2Teff1 = Tem activation rate − pTn,>1 · Tem2Teff1 − µT,prol · Tem2Teff1

d

dt
Tem2Teffi = pTn,>1 · Tem2Teffi−1 − pTn,>1 · Tem2Teffi − µT,prol · Tem2Teffi

−(1 + 0.1 · (i− 1)) · µT,LN · Tem2Teffi,
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Figure 13: Dynamics of proliferating T cells. Proliferating T cells of different division
numbers per activated naive or memory T cell. Shown are Tn2Th1i (left) and Tcm2Tem1i
(middle). For this simulation, the black dashed/dotted lines show the resulting number of
effector/effector memory T cells over time, where death of effector/effector memory T cells
was neglected. Note the different scales of the y-axis. Dynamics of proliferating central
memory and proliferating effector memory T cells are the same; dynamics of proliferating
naive/memory T cells differentiating into different T helper cell types are the same.

for i = 2, ..., NT,prol, specific for the T cells activated by the different APC types. Sub-
scripts b are omitted for readability; all proliferating T cells are bacteria-specific, with
identical parameters for all bacterial species except αTm,b (additional details in the follow-
ing Section 2.12). To ensure the same proliferation characteristics as for central memory
T cells, we used the rate constant µT,LN for the transition from the transit compartments
to the fully differentiated effector T cells.

Figure 13 shows the resulting dynamics of proliferating naive and memory T cells over
time. For this simulation, we considered one activated naive or memory T cell (i.e
Tn2Th11 = 1 or Tcm2Tem1 = 1 at t = 0) and observed the resulting numbers of prolif-
erating cells (Tn2Th1i or Tcm2Tem1i) and effector cells over time. We neglected death
of effector cells to show the total number of effector cells that result from one activated
naive or memory T cell. As expected, the increase in effector T cells after the activation
is faster for memory T cells than naive T cells, but naive T cells give rise to more effector
cells than memory T cells (3.81 vs 2.78 effector cells per activated naive or memory T
cell, respectively). These numbers seem very low compared to the reports of extensive
proliferation in literature [29, 110]. They lead, however, to a considerable and plausible
increase of T helper cells in our inflammation scenarios (see the concentration of T helper
cells over time in Figure 15). This is because of the high number of naive and memory
T cells that are activated in the inflammation scenarios, which can be explained by the
frequency of cognate antigen encounter (αTn and αTm) in relation to the steady state
concentrations of naive and central memory T cells and dendritic cells in the LN.



48 2 Systems biology model of the mucosal immune system

2.12 Effector T cell subsets

In the previous section (2.11) we described how activated naive (Tn) and memory T
cells (Tcm and Tem) differentiated via Tn2Teff, Tcm2Tem and Tem2Teff into effector T
cells Teff . In the model, however, we further differentiated between four different types of
effector T cells: induced regulatory T cells (iTregs) and T helper cells (Ths) of type 1,
2 and 17 (iTreg, Th1, Th2 and Th17, respectively). Other T helper cell types (such as
follicular T helper cells TFH [111, 112] or Th9 [113, 114]) are neglected.

The type of effector T cell is determined at the time point of stimulation of the naive
or central memory T cells in the LN, via signalling molecules secreted by the stimulating
dendritic cell [29]. The dendritic cell produces those signalling molecules in response to
specific triggers [29], so that specific situations result in specific (distributions of) effector
T cells with specific functions that are best adapted to the underlying situations. ITreg is
induced by transforming growth factor (TGF)-β, when IL-6 and other pro-inflammatory
cytokines are absent. TGF-β is produced by dendritic cells when they are not (yet) fully
activated. The effector functions of iTregs are suppression of inflammation and T cell re-
sponses via production of IL-10 and TGF-β [29]. Th1 is induced by IL-12 and interferon
(IFN)-γ. These cytokines are produced by dendritic cells in response to viruses and intra-
cellular bacteria. Th1 effector functions are stimulation of production, recruitment and
activation of macrophages via production of granulocyte-macrophage colony-stimulating
factor (GM-CSF), IFN-γ and lymphotoxin (LT)-α [29]. Th2 is induced by IL-4. This
cytokine is probably produced by eosinophils, basophils and mast cells that have been
activated by parasites. Th2 effector functions are activation of eosinophils, mast cells and
B cells via production of IL-4, IL-5 and IL-13, contributing to allergic reactions, and anti-
inflammatory effects via production of IL-10 [29]. Th17 is induced by IL-6 and TGF-β,
when IL-4 and IL-12 are absent. IL-6, which is crucial in the decision if iTreg or Th17
is induced, is produced by dendritic cells in response to extracellular bacteria and fungi.
Th17 effector functions are recruitment of innate immune cells, especially neutrophils, via
production of IL-17, TNF-α and CXCL1 [29].

As the effector T cell type is determined at the time of activation, we implemented
all following T cell state variables specific to the resulting effector T cell type, i.e. the
given activation rates of Tn, Tcm and Tem are divided into four activation rates each
and all T cell state variables given in Section 2.11 (except Tn and Tcm) are divided
into four separate state variables. Figure 14 shows the resulting scheme of the T cell
proliferation model including all T cell state variables. The above T cell proliferation
model (Section 2.11) applies to all four effector T cell types. The only difference is that
naive T cells differentiating into regulatory T cells have a lower susceptibility to cell death
[115], which we implemented by multiplying the death rate of Tn2Treg by 0.5. In addition,
all activated T cells are bacteria-specific, where the bacteria-specificity is determined by
the bacteria that the stimulating APC engulfed.

We implemented the partition of the activation rates in two steps, representing the
factors that determine the effector T cell type: (i) The distinction between regulatory T
cells and T helper cells was implemented as the result of the stimulating APC: We clas-
sified APCs into pro-inflammatory (stimulatory dendritic cells and antigen-experienced
macrophages of populations P1 to P3) and anti-inflammatory (tolerogenic dendritic cells
and antigen-experienced macrophages of population P4 or efferocytosis-type). T cells
stimulated by pro-inflammatory APCs become T helper cells and T cells stimulated by
anti-inflammatory APCs become regulatory T cells. For this, the activation rates of Tn,
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Figure 14: Submodel of T cell proliferation and differentiation. Arrows indicate
transitions between states, with APCs stimulating the proliferation/differentiation indi-
cated in brown on the arrows. Mpro,a = MP1,a +MP2,a +MP3,a, Manti,a = MP4,a +Meffero,a.
Transit compartments are combined (all state variables with “2” in their names), in-
flow, outflow and death rates are not shown. All state variables of activated T cells (i.e.
all shown state variables except Tn and Tcm) are bacteria-specific, where the bacteria-
specificity is determined by the stimulating APC. For a more detailed representation of
the T cell activation, proliferation and differentiation model for the example of naive T
cells, see Figure 12. State variable names in violet show the previously used T cell state
variables (from Section 2.11) and their division into four separate state variables according
to effector T cell type (e.g. Tn2Teff = Tn2Treg + Tn2Th1 + Tn2Th2 + Tn2Th17).

Tcm and Tem given in Section 2.11 are multiplied by the fraction of available binding sites
on pro-inflammatory APCs divided by available binding sites on all APCs of the tissue
to give the activation rates into T helper cells and by the fraction of available binding
sites on anti-inflammatory APCs divided by available binding sites on all APCs of the
tissue to give the activation rates into regulatory T cells. (ii) T helper cells are further
divided into type 1, 2 and 17 according to fractions that depend on both the bacterial
strain from which the antigen presented by the stimulating dendritic cell is derived and
the host. The activation rates resulting in T helper cells (i.e. by stimulation with pro-
inflammatory APCs) are multiplied by these fractions to give the activation rates into
each of the different T helper cell types.

The fractions determining the distribution of type 1, 2 and 17, dependent on bacterial
strain and host, were derived as follows: To implement the bacteria-specific and host-
specific influences, we assumed that the host APCs have a specific distribution of receptors
(pattern recognition receptors such as e.g. Toll-like receptors [29]) that recognise bacterial
antigens and lead to production of signalling molecules stimulating T cells to become
specific helper cell types. We group these receptors based on the resulting T helper cell
type, i.e. R1 denotes the concentration of all receptors leading to type 1, R2 leading to
type 2 and R17 leading to type 17. In addition, we assume that each bacterial strain has
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a specific distribution of antigens that can be recognised by these receptors; we group
bacterial antigens by the receptor groups that recognise them and denote by A1 the
concentration of those antigens recognised by R1, A2 those recognised by R2 and A17

those recognised by R17. Assuming receptor-specific binding and unbinding rate constants
ki, k−i, the ODE for the concentration of antigen-receptor complex Ri:Ai (i = 1, 2, 17) is

d

dt
Ri:Ai = ki ·Ri · Ai − k−i ·Ri:Ai.

Assuming, because of the very fast intracellular dynamics compared to the cellular level
of our systems biology model, those complexes to be in quasi-steady state, results in the
concentration

Ri:Ai = K−1
i ·Ri · Ai with Ki =

k−i
ki

We described production of signalling molecules Si leading to differentiation of T cells
into a specific helper cell type i (i = 1, 2, 17) assuming a specific production rate constant
pi and degradation rate constant kdeg,i as

d

dt
Si = pi ·Ri:Ai − kdeg,i · Si,

resulting in a quasi-steady state concentration of

Si =
pi ·Ri · Ai
Ki · kdeg,i

=
Ai
hi
,

where hi = pi·Ri

Ki·kdeg,i
is a combination of all host-related parameters. The fractions fi (i =

1, 2, 17) of resulting T helper cell types are finally assumed to be equal to the fractions of
the respective signalling molecules, i.e.

fi =
Si

S1 + S2 + S17

=
Ai/hi

A1/h1 + A2/h2 + A17/h17

=
Ai ·Hi

A1 ·H1 + A2 ·H2 + A17 ·H17

,

where Hi = h−1
i for better direct interpretability and comparison of bacteria- and host-

specific influences. Due to the normalisation, the absolute values of Ai and Hi are irrel-
evant, only the relative values of A1 vs A2 and A17 and accordingly H1 vs H2 and H17

impact the resulting fractions fi. This implies that we can normalise Ai to
∑
Ai = 1 and

Hi to
∑
Hi = 1, so that fi = Ai for host-specific parameters H1 = H2 = H17 = 1/3 and

fi = Hi for bacteria-specific parameters A1 = A2 = A17 = 1/3. Through that, the three
parameters Ai (or Hi) are defined by two parameter values and

∑
Ai = 1 (or

∑
Hi = 1).

Interestingly, this corresponds to the logistic-normal distribution, which allows for sam-
pling of parameters for Ai (or Hi) with specified mean M = [Eh1(A1),E(A2),E(A17)] (or
M = [E(H1),E(H2),E(H17)]) and covariance matrix Σ.

For the inclusion in our systems biology model, it follows that we need three param-
eter values H1, H2 and H17 for the host (can be defined by two parameter values and∑
Hi = 1). For the reference individual, we choose an equal distribution of T helper

cell types, i.e. H1 = H2 = H17 = 1/3. In addition, we need three parameter values A1,b,
A2,b and A17,b per bacterial strain. For commensal bacteria, we assume an equal distri-
bution of elicited T helper cell types, A1,commensal = A2,commensal = A17,commensal = 1/3.
Salmonellae mainly elicit Th1 responses [29], therefore A1,salmonellae = 1, A2,salmonellae =
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A17,salmonellae = 0. Extracellular bacteria mainly elicit Th17 responses [29], therefore
A1,extracellular = A2,extracellular = 0, A17,extracellular = 1. The bacterial strain is defined by the
bacteria-specificity of the APC stimulating the T cell (e.g. a stimulatory dendritic cell
in LN). In the generation of a virtual population (see Section 4), we sample all parame-
ter values from a distribution around the reference individual. There we do not sample
logistic-normal samples, but sample for each individual three host-specific parameters
H1, H2, H17 and three bacteria-specific parameters A1,b, A2,b,A17,b per bacterial strain, so
that the sums

∑
Hi and

∑
Ai do not necessarily equal 1. Due to the normalisation in

the calculation of fi this is, however, not of importance, as the influence on the mean is
small (zero for M = [1/3, 1/3, 1/3]) and we do not aim to control the covariance.

The death rate constant of effector T cells has been reported to be µT,eff = 0.5 1
d

[116].
The resulting ODEs for the four effector T cell types are

d

dt
iTreg =

NT,prol∑
i=5

(1 + 0.1 · (i− 5)) · µT,LN · Tn2Tregi ·
VLN

VLP

+

NT,prol∑
i=1

(1 + 0.1 · (i− 1)) · µT,LN · Tem2Teffi − µT,eff · iTreg

d

dt
Th1 =

NT,prol∑
i=5

(1 + 0.1 · (i− 5)) · µT,LN · Tn2Th1i ·
VLN

VLP

+

NT,prol∑
i=1

(1 + 0.1 · (i− 1)) · µT,LN · Tem2Th1i − µT,eff · Th1

d

dt
Th2 =

NT,prol∑
i=5

(1 + 0.1 · (i− 5)) · µT,LN · Tn2Th2i ·
VLN

VLP

+

NT,prol∑
i=1

(1 + 0.1 · (i− 1)) · µT,LN · Tem2Th2i − µT,eff · Th2

d

dt
Th17 =

NT,prol∑
i=5

(1 + 0.1 · (i− 5)) · µT,LN · Tn2Th17i ·
VLN

VLP

+

NT,prol∑
i=1

(1 + 0.1 · (i− 1)) · µT,LN · Tem2Th17i − µT,eff · Th17

Subscripts b of the state variables are omitted for readability; all proliferating, effector
memory and effector T cells are bacteria-specific.

The implementation of effector functions of iTregs are described in Sections 2.13 (cell
contact-dependent effects) and 2.14 (cytokine-mediated effects). The effector functions of
Th1, Th2 and Th17 are mainly conducted via cytokines that regulate several processes.
Cytokine production and effects are described in detail in Section 2.14. In addition to cy-
tokine production, Th1 help macrophages infected with intracellular bacteria to eliminate
those [29], see Section 2.18.2.
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2.13 Regulatory T cells

Another type of effector T cells that we included in our model are regulatory T cells
(Tregs). Two main types of Tregs can be distinguished: Natural regulatory T cells
(nTregs) are generated in the thymus, whereas induced regulatory T cells (iTregs) are
induced in peripheral lymphoid organs, via stimulation of naive or memory T cells by
tolerogenic dendritic cells, as described above [29]. It is assumed that iTregs dominate
over nTregs in tissues that are exposed to many different foreign antigens, such as the
gut mucosa, where they are constantly induced [117, 118]. As iTregs are induced in the
gut by stimulation with bacterial antigen, their resulting TCR repertoire is assumed to
be specific for the antigens present in this tissue, whereas the nTreg TCR repertoire is
expected to be much less specific [118]. Therefore, we neglected nTregs in our model,
and focused on iTregs. Several mechanisms by which Tregs suppress inflammation and T
cell proliferation have been reported, such as production of anti-inflammatory cytokines
(IL-10 and TGF-β), modulation of dendritic cell activation status or function, reduction
of contact formation between dendritic cells and T cells, inhibition of T cell proliferation
by reducing the division destiny, inhibition of activated effector and memory T cells, and
others [104, 119–121].

We considered two different mechanisms of effect of Treg-mediated inhibition in our
model, which seemed, based on literature, most relevant to us: (i) inhibition of T cell pro-
liferation via inhibition of T cell activation by APCs and (ii) effect on the activation sta-
tus of dendritic cells and macrophages via IL-10 (and other anti-inflammatory cytokines),
thereby influencing their cytokine production and T cell activation. For this, we assumed
all stimulated Tregs after first division to be equally functional, i.e. the (bacteria-specific)
total population of Tregs in LN and LP is

iTregtot,LN =

NT,prol∑
i=2

Tn2Tregi

iTregtot,LP = iTreg + Temreg +

NT,prol∑
i=2

Tem2Tregi.

Figure 15 shows the time course of Tregs compared to T helper cells in LN and LP for
the two different inflammation scenarios (salmonella infection and mucosal injury). In
healthy steady state, Tregs dominate over T helper cells. In the simulation of infection
with salmonellae, especially in LP, a strong increase of the T helper cell concentration
and decrease of the Treg concentration leads to almost equal levels of regulatory and T
helper cells. In the simulation of mucosal injury this effect is not as pronounced, but the
ratio of T helper cells to regulatory T cells also markedly increases during inflammation.

The implementation of IL-10 production and IL-10 effects is described in Section 2.14.
The implementation of Treg effects on T cell activation/proliferation is described in the
rest of this section:

Although many experiments indicated Tregs to be able to inhibit proliferation in an
antigen-unspecific manner (so-called bystander inhibition) [122, 123], Akkaya et al. (2019)
[124] very recently showed that bystander suppression could only be observed in vitro,
but not in vivo. They suggested that Tregs inhibit activation of naive T cells of the same
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Figure 15: Regulatory T cell dynamics. Concentrations of Tregs versus T helper
cells in LP and mesenteric LNs. Thtot,LP = Th1 + Th2 + Th17 + Tem1 + Tem2 +

Tem17 +
∑NT,prol

i=2 (Tem2Th1i + Tem2Th2i + Tem2Th17i), iTregtot,LP = iTreg + Temreg +∑NT,prol

i=2 Tem2Tregi, Thtot,LN =
∑NT,prol

i=2 (Tn2Th1i + Tn2Th2i + Tn2Th17i), iTregtot,LN =∑NT,prol

i=2 Tn2Tregi For each state, the sum over all bacteria-specificities is shown.

antigen specificity by removal of pMHCII complexes from the dendritic cell’s surface, as
they showed the uptake of pMHCII into Tregs, and the diminished ability of dendritic
cells pre-incubated with Tregs to stimulate naive T cells of the same antigen specificity,
but unchanged ability to stimulate naive T cells specific to other antigens [124].

We implemented this mechanism by adding state variables of pMHCII-depleted APCs.
PMHCII depletion is of course fluent and must not necessarily be complete, i.e. it is prob-
able that as a result APCs have lower, but not zero, levels of pMHCII. As this is, however,
difficult to implement, we only differentiated between non-depleted (i.e. full pMHCII lev-
els) and fully pMHCII-depleted (i.e. no pMHCII left) APCs. In total, the fractions of non-
depleted APCs from all APCs represent the fractions of remaining pMHCII on the surface
of all APCs, i.e. the reduction in T cell stimulation potential is the same using this sim-
plification. The resulting new pMHCII-depleted state variables – one for each APC state
variable – are tDCdep,LN, sDCdep,LN, tDCdep,LP, sDCdep,LP, MP1,a,dep, MP2,a,dep, MP3,a,dep,
MP4,a,dep and Meffero,a,dep. Those pMHCII-depleted APCs are, in contrast to non-depleted
APCs, not bacteria-specific, as the only bacteria-specific part of the APCs – the presented
peptides – are removed, i.e. pMHCII depletion of an APC of any bacteria-specificity re-
sults in the same pMHCII-depleted APC. Apart from that, they behave mostly as their
non-depleted counterparts, with the same death and migration (for dendritic cells) rates,
and the same activation or deactivation rates as the respective non-depleted APCs. They
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also have the same phagocytic activity, but uptake of bacterial antigen leads to transition
back to the non-depleted state, as this leads to acquirement of new bacterial antigen that
can be presented on the APC’s cell surface, i.e. the antigen uptake rate is according to the
antigen uptake rate of qDC, rDC, MPi (i = 1, ..., 4) and Meffero. The depletion of pMHCII
only affects the potential to stimulate T cells, but does not affect cytokine production,
i.e. cytokine production rates are the same for non-depleted and pMHCII-depleted APCs
(see Section 2.14).

PMHCII depletion occurs when a Treg encounters ist cognate antigen presented on an
APC’s surface. We used the concentration of contacts between Tregs and the respective
APC, calculated from the total concentration of contacts between T cells and dendritic
cells derived in Section 2.10. This concentration is bacteria-specific, i.e. the concentration
of Tregs specific for one bacterial strain with the respective APCs specific for the same
bacterial strain. Then the rate of pMHCII depletion, defined by the concentration of these
contacts times the dissociation rate constant (T−1

contact) times the probability αTh · β that
the Treg is specific for any antigen presented by the APC, is on the level of binding sites.
This follows from the assumption that the Treg searches the full surface of the APC, i.e.
is able to find any presented antigen [92], but can only eliminate the pMHCII complexes
of the binding site, as it eliminates them via engulfment of the APC’s membrane [124].
The probability that a Treg is specific for a given antigen presented by an APC of the
same bacteria-specificity is αTh,b = 1

Nantigen,b
, where Nantigen,b is the number of different

bacterial antigens of this bacteria-specificity. As we implemented commensal bacteria as
a combination of bacterial strains, the number of antigens is much higher than for a single
strain such as salmonellae or the implemented generic extracellular bacteria. We assumed
Nantigen,commensal = 1000 different commensal bacterial antigens, accounting for the high
number of different strains but also a high level of overlap due to conserved structures.
For salmonellae and extracellular bacteria, Nantigen,salmonellae = Nantigen,extracellular = β = 10,
as β was earlier (in Section 2.11) defined as the number of different antigens per bacterial
cell, which are presented by the APC that take up this bacterial cell via phagocytosis.
To translate the pMHCII depletion rate to the level of cells, it is multiplied by bs−1

perDC or

bs−1
perM for dendritic cells or macrophages, respectively. The resulting ODEs for pMHCII-

depleted APCs are

d

dt
tDCdep,LN = εDC · tDCdep,LP ·

VLP

VLN

− µDC,LN · tDCdep,LN

+
∑
b

iTregtot,LN

Ttot,LN

· tDCLN · bsperDC − (Tn2Treg1 + Tcm2Temreg1)

BSAPC,av,LN

· αTh,b · β
Tcontact

· contactsLN · bs−1
perDC

d

dt
sDCdep,LN = εDC · sDCdep,LP ·

VLP

VLN

− µDC,LN · sDCdep,LN

+
∑
b

iTregtot,LN

Ttot,LN

· sDCLN · bsperDC − (Tn2Th1 + Tcm2Temh1)

BSAPC,av,LN

· αTh,b · β
Tcontact

· contactsLN · bs−1
perDC



2.13 Regulatory T cells 55

d

dt
tDCdep,LP =

∑
b

iTregtot,LP

Ttot,LP

·
tDCLP · bsperDC ·

(
1− Tem2Treg1

tDCLP·bsperDC+Manti,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perDC

− µDC,LP · tDCdep,LP − εDC · tDCdep,LP

− tDCi activation rate− tDCi antigen uptake rate

d

dt
sDCdep,LP =

∑
b

iTregtot,LP

Ttot,LP

·
sDCLP · bsperDC ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perDC

− µDC,LP · sDCdep,LP − εDC · sDCdep,LP

+ tDCi activation rate− sDCi antigen uptake rate

d

dt
MP1,a,dep =

∑
b

iTregtot,LP

Ttot,LP

·
MP1,a · bsperM ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

− µM ·MP1,a,dep − transition rate P1→ P2

−MP1,a,dep antigen uptake rate−MP1,a efferocytosis rate

d

dt
MP2,a,dep =

∑
b

iTregtot,LP

Ttot,LP

·
MP2,a · bsperM ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

− µM ·MP2,a,dep + transition rate P1→ P2− transition rate P2→ P3

−MP2,a,dep antigen uptake rate−MP2,a efferocytosis rate

d

dt
MP3,a,dep =

∑
b

iTregtot,LP

Ttot,LP

·
MP3,a · bsperM ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

− µM ·MP3,a,dep + transition rate P2→ P3− transition rate P3→ P4

−MP3,a,dep antigen uptake rate−MP3,a efferocytosis rate

d

dt
MP4,a,dep =

∑
b

iTregtot,LP

Ttot,LP

·
MP4,a · bsperM ·

(
1− Tem2Treg1

tDCLP·bsperDC+Manti,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

− µM ·MP4,a,dep + transition rate P3→ P4
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−MP4,a,dep antigen uptake rate−MP4,a efferocytosis rate

d

dt
Meffero,a,dep =

∑
b

iTregtot,LP

Ttot,LP

·
Meffero,a · bsperM ·

(
1− Tem2Treg1

tDCLP·bsperDC+Manti,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

− µM ·Meffero,a,dep −Meffero,a,dep antigen uptake rate

+MP1,a efferocytosis rate +MP2,a efferocytosis rate

+MP3,a efferocytosis rate +MP4,a efferocytosis rate

where Tn2Th = Tn2Th1 + Tn2Th2 + Tn2Th17 and equivalently for Tcm2Temh and
Tem2Th; Mpro,a = MP1,a + MP2,a + MP3,a and Manti,a = MP4,a + Meffero,a. Note that we
assumed that recently activated T cells occupy binding sites on the dendritic cells that
activated them (as described in Section 2.10); therefore these binding sites are also not
available for binding of Tregs, and are subtracted in the above terms. The transition rates
from and to non-depleted (bacteria-specific) APCs (pMHCII depletion rates and MPi,a,dep

antigen uptake rates) are added to the respective non-depleted APCs’ ODEs derived in
Section 2.8 and 2.9.

In the simulated healthy steady state LN, 12.3 % of tDC and 15.6 % of sDC are
pMHCII-depleted, and in the simulated healthy steady state LP, 11.2 % of tDC, 14.6 % of
sDC and 17.7 %, 16.4 %, 23.4 %, 18.2 % and 18.9 % of antigen-experienced macrophages of
populations 1, 2, 3, 4 and efferocytosis-type, respectively, are pMHCII-depleted. The time
courses of pMHCII-depleted and non-depleted APCs for the two different inflammation
scenarios are shown in Figure 15 for tolerogenic and stimulatory dendritic cells in LN and
LP.

As the pMHCII-depleted APCs do not take part in T cell activation, but still bind
to APCs and thereby occupy binding sites, the activation rates of Tn, Tcm and Tem are
decreased. For example, the Tn activation rate by stimulatory dendritic cells is

Tn activation rate by sDC =
Tn

Ttot,LN

· sDCLN · bsperDC − (Tn2Th1 + Tcm2Temh1)

BSAPC,av,LN

· αTn · β
Tcontact

· contactsLN.

BSAPC,av,LN includes all APCs of the LN (tDCLN, sDCLN, tDCdep,LN, sDCdep,LN) and
is therefore independent of the fraction of pMHCII depletion, but the concentration of
(non-depleted) sDCLN decreases with higher fractions of pMHCII depletion, which linearly
translates to the resulting Tn activation rate.

2.14 Cytokine-mediated interactions

Cytokines are signalling molecules produced by cells, sensed by the same or other cells
via receptors and thereby starting a signalling cascade that leads to specific reactions, e.g.
production and secretion of proteins [29].

We did not account for any cytokines as explicit state variables, because of their
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Figure 16: Dynamics of pMHCII-depleted APCs. Concentrations of non-depleted
vs pMHCII-depleted tolerogenic and stimulatory dendritic cells in LP and LN over time
for the two inflammation scenarios of salmonella infection and mucosal injury.

very short half-lives in the order of minutes [125]. On the time scale of the cellular
concentrations, which is much slower, the cytokine concentrations would directly follow
the cytokine-producing cell concentrations. Applying a quasi-steady state approach yields
the cytokine concentration to be a sum of the producing cell concentrations weighted by
the specific production rate constants, divided by the degradation rate constant of the
cytokine, i.e. a linear combination of the producing cell type concentrations. For any
cytokine produced by n different state variables Si, i = 1, ..., n, the concentration can be
described as

d

dt
cytokine = p1 · S1 + ...+ pn · Sn − kdeg · cytokine

cytokineqss =
p1 · S1 + ...+ pn · Sn

kdeg

,

with production rate constant pi of the cytokine by cell type Si and degradation rate
constant kdeg. Given the current data situation in literature, it is not feasible to differ-
entiate between the many different cytokines involved in the mucosal immune response,
as a quantitative and comparable description of production and effects on target cells for
the different cytokines is not available. Therefore, we substantially simplified cytokine
production in our model: For each process k that is influenced by cytokines produced by
other cell types, we summarised the effects of all cytokines cytokinek,j that are important
in this process. Assuming the same degradation rate constant kdeg for all cytokines, the
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concentration of all cytokines important in this process k can be described by

cytokinesk =
∑
j

cytokinek,j =
∑
j

pk,j,1 · S1 + ...+ pk,j,n · Sn
kdeg

=

∑
j pk,j,1 · S1 + ...+

∑
j pk,j,n · Sn

kdeg

= w′k,1 · S1 + ...+ w′k,n · Sn,

with w′k,i =
∑

j pk,j,i

kdeg
. Thus, the concentration of cytokines acting on a specific process is a

weighted sum of the producing cell type concentrations.
As T helper cells only produce cytokines after renewed stimulation by cognate anti-

gen [29], we implemented those cytokine levels dependent on the rate of antigen-specific
contacts between T helper cells and APCs. Multiplication of this contact rate with the
expected timespan of cytokine production after stimulation gives the concentration of
cytokine-producing T helper cells. Therefore, in the above equation, for a T helper cell,
Si is replaced by the activation rate, which is the rate of antigen-specific contacts over
time between the respective T helper cell and any APC (as described in Sections 2.10 and
2.11). The timespan of cytokine production after stimulation Tcytokine production is included

in the respective weights w′i =
∑

j pk,j,i

kdeg
· Tcytokine production.

As the weights w′k,i for each producing cell type Si are defined separately for each
process k, we included the Michaelis-Menten constants Km of the targeted processes in

the weights, i.e. wk,i =
w′

k,i

Km
, in order to minimise the number of free parameters. The

resulting weights (in mL · h for T helper cells, and in mL for all other cytokine-producing
cell types) can be interpreted as the inverse of the concentration of the respective cytokine-
producing cell type (or activation rate for T helper cells) that would lead to a half-maximal
effect in the respective process.

We determined the weights separately for each process so that the resulting relative
influences of the different cell types matched the qualitative descriptions obtained from
literature and the total effects resulted in the expected model behaviour in the different
infection scenarios. The resulting parameter values for the weights are listed in Table 2. A
summary of qualitative literature data on the cytokine-mediated influence of different cell
types on the different processes and how we implemented this is given in the paragraphs
below, for each of the targeted processes. Figure 17 shows the resulting time courses of
the cytokine values in the mucosal injury scenario for the different targeted processes,
which are described in detail in the last paragraph of this section, Cytokine time courses.

We assumed the production of cytokines by dendritic cells to be quantitatively negli-
gible in comparison to macrophages, as their main function is the antigen presentation to
and activation of T cells. Therefore, we neglected dendritic cells in cytokine production.
For macrophages, we only considered antigen-experienced macrophages, as macrophages
release cytokines in response to the encounter of bacterial antigen [29]. As pMHCII deple-
tion is not related to cytokine production, we assumed macrophage cytokines to be pro-
duced by antigen-experienced non-depleted and pMHCII-depleted macrophage state vari-
ables to the same extent, but differentiated between pro- (P1 to P3) and anti-inflammatory
(P4 and efferocytosis-type) macrophages.

Mpro,a(,dep) = MP1,a +MP2,a +MP3,a +MP1,a,dep +MP2,a,dep +MP3,a,dep
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Table 2: Cytokine production weights. Parameter values for the weights wk,i describ-
ing the relative contribution of different cell types Si (rows) to the cytokine effects in
process k (columns), here defined by name of the process and the name of the cytokine
concentration as used in previous sections. For effector T cells, activation rate is used
instead of the cell concentration, see text. Parameter values are in unit mL ·h for effector
T cells, and in mL for all other cytokine-producing cell types.

Process (pro-inflammatory effect)

Cell
type

neutrophil macrophage macrophage dendritic cell damage to damage to
recruitment recruitment deactivation activation epithelium tissue
cytorec,Neut cytorec,M cytopro,deact,M cytopro,act,DC cytodestr,epi cytodestr,tis

Th1tot 0 1 · 10−7 2 · 10−7 3 · 10−8 1 · 10−9 1 · 10−9

Th17tot 5 · 10−8 1 · 10−8 2 · 10−8 3 · 10−9 1 · 10−9 1 · 10−9

Neut 2 · 10−9 2 · 10−8 2 · 10−8 1 · 10−7 5 · 10−9 5 · 10−9

Mpro,a(,dep) 3 · 10−8 3 · 10−8 3 · 10−8 1 · 10−7 1 · 10−9 1 · 10−9

Th2tot 0 0 0 0 2 · 10−9 2 · 10−9

Process (anti-inflammatory effect)

Cell
type

macrophage dendritic cell tissue
deactivation activation remodelling

cytoanti,deact,M cytoanti,act,DC cytoremod,tis

iTregtot,LP 8 · 10−9 8 · 10−9 0
Th2tot 5 · 10−9 5 · 10−9 2 · 10−9

Manti,a(,dep) 3 · 10−8 3 · 10−8 1 · 10−9

Manti,a(,dep) = MP4,a +Meffero,a +MP4,a,dep +Meffero,a,dep

We implemented cytokine production by all activated T cells, dependent on re-stimulation
in the tissue (using the activation rate for T helper cells, as described above):

iTregtot,LP = iTreg + Temreg +

NT,prol∑
i=2

Tem2Tregi

Th1tot = Th1 + Tem1 +

NT,prol∑
i=2

Tem2Th1i

Th2tot = Th2 + Tem2 +

NT,prol∑
i=2

Tem2Th2i

Th17tot = Th17 + Tem17 +

NT,prol∑
i=2

Tem2Th17i
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Figure 17: Cytokine production dynamics. Shown are the total unitless cytokine
values over time for the mucosal injury scenario and the contributions of the different
cytokine-producing cell types per affected process. Due to the integration of the Km
value of the respective process into the cytokine production weights, a resulting cytokine
value of 1 (indicated by a grey line) corresponds to a half-maximal effect on the respective
process. Note that cytoanti,act,DC = cytoanti,deact,M and cytodestr,tis = cytodestr,epi.

Neutrophil recruitment. The main effect of T helper cells type 17 is to recruit neutrophils
to the tissue (see Section 2.12). In comparison, Th1 and Th2 effects on neutrophil recruit-
ment are negligible and therefore not accounted for in the model. We also accounted for
pro-inflammatory macrophages producing cytokines and chemokines that are involved in
recruitment of neutrophils [52, 60, 61], and neutrophil recruitment by neutrophils them-
selves [61]. In addition, a direct effect of the bacteria concentration in LP on neutrophil
recruitment was implemented, representing both the direct and indirect effect of bacterial
products on recruitment of neutrophils [56]. The bacteria concentration is, however, not
included in the weighted sum but added as an extra term in the neutrophil recruitment
function, because of the different Hill kinetics (see Section 2.7).
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Macrophage recruitment. As macrophages are constantly present in the LP, we imple-
mented a constant cytokine-independent recruitment rate (see Section 2.8). For the ad-
ditional recruitment in case of inflammation, which was implemented dependent on cy-
tokines, we accounted especially for the influence of Th1 and neutrophils, both of which
are important for macrophage recruitment (see Section 2.12, [29]). In addition, we ac-
counted for production of pro-inflammatory cytokines leading to macrophage recruitment
by Th17 and pro-inflammatory macrophages themselves.

Macrophage deactivation. Deactivation of macrophages, implemented as a step-wise tran-
sition from newly recruited pro-inflammatory to resident anti-inflammatory macrophages,
is influenced by the inflammation status of the LP [59], which we implemented by a depen-
dency of the deactivation transition rate on anti-inflammatory cytokines and an inhibition
of this rate by pro-inflammatory cytokines (see Section 2.8). Anti-inflammatory cytokines
in the LP (mainly IL-10, but also others such as TGF-β [119]) are mostly produced by
iTreg and anti-inflammatory macrophages, but also by Th2 [126]. As Th1 are specialised
on macrophage activation (see Section 2.12), we implemented a high influence of Th1 on
inhibition of macrophage deactivation, and a lower influence of the other pro-inflammatory
cytokine-producing cell types Th17, neutrophils and pro-inflammatory macrophages.

Dendritic cell activation. The influence of pro- and anti-inflammatory cytokines on den-
dritic cell activation was implemented largely similar to macrophage deactivation, with
reversed roles of pro- and anti-inflammatory cytokines; i.e. dendritic cell activation de-
pends on pro-inflammatory cytokines, but is inhibited by anti-inflammatory cytokines
(see Section 2.9). We used the same weights for anti-inflammatory cytokine-producing
cell types as for macrophage deactivation. For pro-inflammatory cytokines we imple-
mented a higher influence of neutrophils and macrophages than T helper cells, as none of
the T helper cell types is specialised on dendritic cell activation in a way that relates to
Th1’s specialisation on macrophage activation.

Damage to epithelium/ damage to tissue. For simplicity, we assumed the same total
influence of the different cytokine-producing cell types for the destruction of tissue and
epithelium (see Section 2.5). Pro-inflammatory macrophages and neutrophils secrete re-
active oxygen species, ECM-degrading enzymes and pro-inflammatory cytokines [54]. Re-
active oxygen species are important mediators in the defence against bacterial invasion;
however, they also induce local tissue damage [54, 127]. ECM-degrading enzymes, such
as MMPs, allow for increased inflow of immune cells into the tissue, but require tight
regulation by their inhibitors to limit tissue damage [54]. In addition, transepithelial
migration of neutrophils into the gut lumen leads to small gaps between epithelial cells,
increasing the permeability of the epithelium [56]. We accounted for the high influence of
neutrophils and pro-inflammatory macrophages on tissue and epithelial destruction, and
also for a smaller influence of other pro-inflammatory cytokine-producing cell types.

Tissue remodelling. Tissue remodelling ensures wound repair (see Section 2.5). It is
mainly mediated by cytokines produced by tissue-resident, anti-inflammatory macro-
phages and Th2 [52, 53].
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Cytokine time courses. The resulting time courses of the cytokines values in the mucosal
injury scenario (Figure 17) show the influence of the different cytokine-producing cell types
on the different processes. As the cytokine values are relative to the Km values of the
targeted process, a cytokine value of 1 corresponds to a half-maximal effect on the tar-
geted process. The chosen parameter values for the cytokine production weights fulfil the
qualitative requirements obtained from literature (described in the previous paragraphs):
For neutrophil recruitment (cytorec,Neut), shortly after the stimulus neutrophils themselves
have a very high influence, then the influence of pro-inflammatory macrophages and Th17
becomes stronger. This cytokine value does not reach 1 (for half-maximal effect), as it
does not include the additional effect of the bacterial concentration on neutrophil recruit-
ment. Macrophage recruitment (cytorec,M) is in the beginning of the inflammation mostly
mediated by neutrophils, and later by Th1 and pro-inflammatory macrophages. The rel-
ative influences of pro-inflammatory cytokines on macrophage activation (cytopro,deact,M)
are very similar to macrophage recruitment, but with an even higher influence of Th1.
Dendritic cell activation by pro-inflammatory cytokines (cytopro,act,DC) is mediated by
neutrophils (in the beginning of the inflammation) and pro-inflammatory macrophages
(later). The anti-inflammatory environment stimulating macrophage deactivation and in-
hibiting dendritic cell activation (cytoanti,deact,M and cytoanti,act,DC) is mainly due to iTreg,
and, to a lower extent, anti-inflammatory macrophages. Destruction of tissue and epithe-
lium (cytodestr,tis and cytodestr,epi) is mainly mediated by neutrophils; tissue remodelling
(cytoremod,tis) is mainly mediated by anti-inflammatory macrophages. Those cytokine
values, however, do not reach 1 over the course of the inflammation. This ensures an
almost linear effect of those cytokines on the targeted process (as saturation becomes
more pronounced only for values higher than 1), and allows for much higher effects on
those processes under different inflammation scenarios.

2.15 Resolution of inflammation

At the end of an infection, when the pathogens are cleared from the tissue, the immune
system should return to its healthy steady state. Otherwise, this results in chronic inflam-
mation, underlying many chronic diseases [128]. This return to healthy steady state is
called the resolution phase. Resolution was long thought to be a passive process, resulting
from decreasing pro-inflammatory processes, but is now known to be an active process
[128]. Crucial to it is the lipid mediator class switch in neutrophils, which happens at apop-
tosis: The neutrophil switches from production of pro-inflammatory mediators to so-called
specialised pro-resolving mediators (SPM) (lipoxins, resolvins, protectins and maresins)
[63, 128]. Those SPM stop the production of pro-inflammatory cytokines by the neu-
trophil, inhibit further neutrophil recruitment, stimulate efferocytosis of the neutrophil
by macrophages, and stimulate a pro-resolving phenotype in the efferocytosing macro-
phage (called “efferocytosis-type macrophage” in our implementation) [63, 70]. Those
macrophages produce SPM (in even much higher amounts than apoptotic neutrophils
[66]), stimulate tissue repair (see Section 2.14, paragraph Tissue remodelling), and are
more efficient in phagocytosis of bacteria and efferocytosis of apoptotic cells [63, 128].
Through that, neutrophil apoptosis, and the associated lipid mediator class switch, is
the first step to resolution of the inflammation [60], initiated already very early in the
infection.

As for pro- and anti-inflammatory cytokines (see Section 2.14), we implemented SPM
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as a weighted sum of SPM-producing cells, i.e. apoptotic neutrophils and efferocytosis-
type macrophages, normalised by the KI value of the inhibited process. The correspond-
ing weights are shown in Table 3. The resulting unitless SPM value is relative to the
KI , i.e. an SPM value of 1 corresponds to half-maximal inhibition of the targeted pro-
cess by SPM. Our implementation results in SPM values larger than 1 even at healthy
steady state (SPMss = 2.5), and increasing in the course of the inflammation. This means
that the inflow of neutrophils and macrophages is already strongly controlled by SPM
in healthy steady state, but the implementation allows also for much lower inhibition in
case of insufficient SPM, leading to impaired resolution of inflammation. The relative
production of SPM by macrophages is much higher than by apoptotic neutrophils (factor
430 [66]), so that the contribution of apoptotic neutrophils to SPM levels is negligible and
the SPM value is directly proportional to the concentration of efferocytosis-type macro-
phages. This does, however, not mean that the neutrophils’ role in the resolution is
smaller; the effect of the apoptotic neutrophils producing SPM is implicitly implemented
in the model in the fact that these molecules stimulate the phagocytosing macrophages
to become efferocytosis-type macrophages, which produce SPM, participate in tissue re-
pair, and have a higher phagocytosing capacity than pro-inflammatory macrophages. As
efferocytosis-type macrophages themselves produce SPM, which increase neutrophil apop-
tosis and thereby the efferocytosis of apoptotic neutrophils by macrophages leading to a
further increase in efferocytosis-type macrophages, the resulting resolution process is self-
increasing, i.e. SPM-producing macrophages start to accumulate shortly after the start of
the inflammation, until they are sufficient to considerably inhibit further recruitment of
neutrophils and pro-inflammatory macrophages, thereby leading to a return of the system
back to the healthy steady state.

Table 3: SPM production weights. Parameter values for the weights wSPM,i describing
the relative contribution of different cell types Si (rows) to SPM production. Parameter
values are in unit mL. Meffero,tot = Meffero +

∑
bMeffero,a +Meffero,a,dep +Meffero,inf .

Cell
type

SPM production

Neutapo 1.12 · 10−9

Meffero,tot 4.8 · 10−7

2.16 B cells and antibodies

B cells are, as T cells, part of the adaptive immune response, i.e. cells that provide antigen-
specific help in an immune response. Their B cell receptors (BCRs) are structurally related
to TCRs. B cells are activated by TFH with the same antigen specificity in secondary lym-
phoid organs, and subsequently secrete their BCRs as antibodies (immunoglobulins, Ig)
that are able to bind the specific antigen. Antibody coating of pathogens directly hinders
their function and facilitates recognition and subsequent elimination of the pathogen by
innate immune cells [29]. Epithelial cells of the gut mucosa transport IgA via the poly-
meric Ig receptor (pIgR) into the mucus layer, where it is called secretory immunoglobulin
A (SIgA). SIgA coats bacterial cells and sterically hinders them from reaching the epithe-
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lium [46, 129].
As commensal bacteria are constantly present in the colon and known to the im-

mune system, we assumed that SIgA specific for commensal bacteria is also constantly
present and does not significantly change during inflammation. Benckert et al. (2011)
[130] reported that 25 % of antigen-producing B cells of the intestine were polyreactive,
i.e. binding to diverse self- and non-self antigens, and Keasey et al. (2009) [86] reported ex-
tensive cross-reactivity of antibodies to Gram-negative bacteria. From that we concluded
that also pathogenic bacteria, even if not encountered by the immune system before, can
sufficiently be coated by the available immunoglobulin in LP and SIgA in the mucus layer,
and induction of B cells and antibodies specific for the pathogenic antigens does not sig-
nificantly alter pathogen inflow into LP via the mucus layer or recognition of pathogens
in the LP. Therefore we did not explicitly account for B cells or antibodies in our model.
However, as we assume their concentrations and therefore their effects to be constant,
those are implicitly accounted for, i.e. in the recognition of bacteria by phagocytic cells
and as part of the mucus barrier including SIgA.

Gut-associated lymphoid tissue (GALT). The GALT of the colon (the part of the intes-
tine that our model focuses on) consists mainly of isolated lymphoid follicles and colonic
patches, the colonic counterpart of Peyer’s patches in the small intestine. Isolated lym-
phoid follicles contain mainly B cells. Colonic patches, as Peyer’s patches, consist of
several B cell follicles and a smaller number of T cells in a defined T cell area. They are
localised in the LP with direct contact to the lumen, and their epithelium contains M
cells, special epithelial cells that sample antigen from the lumen and transfer it to under-
lying dendritic cells [29, 131]. As we did not account for B cells in our model, we also
neglect isolated lymphoid follicles and colonic patches. The dynamics of T cell activation
in colonic patches is qualitatively parallel to LNs, and therefore implicitly accounted for.
Antigen sampling of APCs via M cells is implicitly included as part of the LP.

2.17 Healthy steady state

An ODE system, especially a complex one such as our systems biology model, can be
expected to have several steady states. To determine a steady state corresponding to the
healthy state, we simulated the model using the initial values x0,tissue = x0,epi = x0,mucus =
x0,BactLu,commensal

= 1 and x0,i = 0 for all other state variables for a long time span, until

the relative change over time was
d
dt
xi
xi

< 1 · 10−5 for all state variables xi. Physiologically,
by healthy steady state we denote the state of the mucosal immune system without any
additional trigger such as pathogens or injury, corresponding to a healthy patient, i.e.
without gut-related disease. Commensal bacteria are, of course, also present in the LP in
the healthy steady state. Note that physiologically, there is never a real steady state, i.e. a
state where the cell concentrations do not change at all, as there are always changes in the
environmental influences (such as food, commensal bacteria composition, inflammation
in other parts of the body,...).

The resulting simulated steady state xss was then used as initial values x0 in subsequent
simulations of inflammation scenarios (see Section 2.18). In all figures of this chapter
showing times courses of the species of the different submodels, the healthy steady state
is shown for t < 0.
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In Table 4 we compare the simulated healthy steady state to literature values of healthy
steady state, for all model species where we found corresponding literature values. Note
that some of the literature data were used to derive model parameters corresponding to
the respective model species, i.e. inflow, outflow, death or transition rate constants (Tn,
DCtot,LP, Mtot, MPi,tot), whereas others were only used to validate the model by comparing
if the magnitude approximately corresponds (Tcm, Tem, iTregtot,LN, iTregtot,LP, Neut,
BactLP). The given literature values were calculated from different human studies (with
two exceptions, where the data were taken from mouse studies), using mean values over
different subjects. Because of high variability between individuals and expected high
variability between measurements in different studies, the literature values have to be
taken with care. Overall, we evaluate our simulated healthy steady state concentrations
compared to the corresponding literature values as appropriate.

2.18 Inflammation scenarios

In order to test and show the ability of the developed model to qualitatively reflect the
physiological time course of the mucosal immune system in response to bacterial chal-
lenge, we considered three different inflammation scenarios: (i) infection with a generic
extracellular bacterium (not referring to a specific bacterial strain), (ii) infection with
salmonellae (intracellular bacteria), and (iii) mucosal injury leading to an inflow of com-
mensal bacteria into the tissue. Infection with salmonellae and response to mucosal injury
were used in the previous sections to illustrate the time course of state variables of the
submodels in response to bacterial challenge or injury (Figures 2, 5, 9, 11, 15, 16, 17). For
all simulations of inflammation scenarios, we assumed the host to be in healthy steady
state, then either added pathogenic (extracellular or intracellular) bacteria to the bac-
terial lumen or decreased the values of the tissue and epithelium state variables at time
point t = 0 (mucosal injury).

Figure 18 shows the time course of bacterial concentrations in LP and total concen-
trations of neutrophils, macrophages, dendritic cells and T helper cells in LP for the three
different inflammation scenarios. Although the amount of inflowing bacteria (note that
the total amount of bacteria, i.e. commensal and pathogenic bacteria in LP, is shown) dif-
fers highly between the different inflammation scenarios, the time course of immune cells
in response to the stimulus, especially their chronological order of increase and decrease,
is highly similar between the different simulations. The comparably high concentration of
extracellular bacteria in LP is a result of the implemented characteristics of the generic
extracellular pathogen: As it is easier eliminated by innate immune cells in the LP than
salmonellae, we implemented a higher inflow rate to obtain comparable extents of immune
reactions.

2.18.1 Infection with generic extracellular pathogen

There are several common extracellular pathogens infecting the human gut. However,
most of them mainly infect the stomach (e.g. Helicobacter pylori [135]) or small intestine
(e.g. Campylobacter jejuni [136]), do not invade the tissue (e.g. Clostridium difficile [137]),
or have special characteristics, such as induction of extensive diarrhoea (e.g. Clostridium
difficile, Vibrio cholerae, diarrhoeagenic Escherichia coli [137–139]), that we would have
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Table 4: Healthy steady state: comparison of literature and simulated values.
Healthy steady state concentrations calculated from literature data (green, above, with
the corresponding references and details to the measurements) in comparison to simulated
healthy steady state concentrations (violet, below), for all model species where we found
literature data. All literature values refer to human data, except specified otherwise.
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Figure 18: Time course of inflammation. Concentrations of bacteria and selected
immune cells in LP over time. Bacteria:

∑
b BactLP, neutrophils: Neut, macrophages:

Mtot, dendritic cells: DCtot,LP, T helper cells: Th+Tem1+Tem2+Tem17+
∑NT,prol

i=1 Tn2Th.
Note the different y-axis for the bacterial concentration in the different inflammation
scenarios.

had to account for in our model. Therefore, we implemented a generic extracellular
pathogen, which does not correspond to a single specific pathogen, but possesses the main
characteristics of extracellular pathogens invading the colon LP, i.e. its pathogenicity is
defined by its ability to cross the epithelial barrier and evade recognition and phagocytosis
by innate immune cells. Potential additional characteristics, such as access to blood or
LNs or triggering of diarrhoea, were not considered. Therefore, this simulation should be
interpreted with care, as it is only intended to show the characteristics of our model—
which aims at the simulation of IBD—and not to analyse infections with extracellular
pathogens.

The differences in parameters concerning extracellular pathogenic bacteria compared
to commensal bacteria, and thereby defining the modelled generic extracellular pathogen,
are the following: Bacterial growth in lumen is lower than for commensal by bacteria by
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factor 0.8 (see Section 2.4). Bacterial growth in tissue is similar to commensal bacteria
(see Section 2.6). Compared to commensal bacteria, which we implemented as a combi-
nation of different strains, we considered only a single strain of extracellular pathogenic
bacteria. The pathogenicity is determined by the ability to cross the epithelial barrier,
with rate constant εBact,2,extracellular = 1 · 1011 (see Section 2.5) and a decreased recogni-
tion and phagocytosis by immune cells by factor 10 compared to commensal bacteria, i.e.
Rphago = 0.1 (see Section 2.6). As extracellular pathogens mainly invoke Th17 responses,
A1,extracellular = A2,extracellular = 0, A17,extracellular = 1 (see Section 2.12). We simulated
a primary infection, i.e. recognition by memory T cells is only due to conserved struc-
tures, which we implemented as a decreased probability of antigen recognition by factor
RTm,extracellular = 0.7 (see Section 2.11, paragraph Central memory T cells (LN)).

Figure 19 shows the time course of bacterial concentrations and neutrophils, macro-
phages and T helper cells in LP in response to different amounts of pathogenic extracel-
lular bacteria. The immune response to the different initial loads differs in the extent of
the recruited cells; the general time course and the time to resolution, however, is highly
similar.

2.18.2 Infection with Salmonella Typhimurium (S. Typhimurium)

Infection of the gut with salmonellae is a widely used model for gut infection. Their
pathogenicity is mediated by proteins encoded in two regions: salmonella pathogenic-
ity islands 1 and 2, mediating engulfment of bacteria, formation of so-called salmonella-
containing vacuoles and prevention of reactive oxygen species (ROS) production by macro-
phages, facilitating intracellular survival [140, 141]. Infected macrophages need help from
Th1 to successfully eliminate the intracellular salmonellae [29, 36]. Salmonella enterica
subspecies enterica serovar Typhimurium (Salmonella Typhimurium (S. Typhimurium))
is responsible for most cases of food poisoning in human [142]. In mice, S. Typhimurium
does not elicit an inflammatory response in the gut LP. To reproduce an infection be-
haviour as in human, i.e. invasion of gut LP causing an inflammatory response, a model
of streptomycin-pretreated mice was developed [143]: Pre-treatment of the mice with
the antibiotic streptomycin, degrading commensal bacteria and thereby favouring S. Ty-
phimurium, led to much higher S. Typhimurium numbers in faeces and elicitation of
colitis, compared to control mice. Using this model system, the main characteristics of
human salmonella infection, such as epithelial ulceration and a massive inflow of neu-
trophils, could be reproduced [143].

We included salmonellae into the model in the following way: As it is a pathogenic
bacterium infecting the gut, S. Typhimurium is able to cross the epithelial barrier. In con-
trast to extracellular bacteria, S. Typhimurium mainly proliferates intracellularly, mostly
in macrophages. Therefore we neglected extracellular growth, assumed that recognition
by phagocytic cells is not lower than for commensal bacteria, and implemented infection
of macrophages by S. Typhimurium based on two published models:

i) Brown et al. (2006) [144] described the distribution of numbers of S. Typhimurium
per cell in mouse liver sections using different mathematical models. The simplest one
uses two parameters, an intracellular growth rate constant and a burst threshold Nburst of
intracellular bacteria in a host cell, at which the host cell dies and releases Nburst bacteria
that directly infect Nburst new host cells. The rate of intracellular growth, i.e. transition
from the state of a cell containing n bacteria Mn to the state containing n + 1 bacteria
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Figure 19: Time course of infection with generic extracellular pathogen for
different initial loads. Concentrations of bacteria and selected immune cells in LP over
time in response to different initial amounts of pathogenic extracellular bacteria at time
point t = 0 in lumen. As described in Section 2.4, pathogenic bacteria in the lumen are
modelled by a unitless value describing the fraction of pathogenic bacteria from steady
state commensal bacteria. i.e. initial = 0.1 corresponds to a pathogen load of 10 % of
the commensal bacteria in lumen at t = 0. Bacteria:

∑
b BactLP, neutrophils: Neut,

macrophages: Mtot, T helper cells: Th + Tem1 + Tem2 + Tem17 +
∑NT,prol

i=1 Tn2Th.
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Mn+1 is n · growth rate constant ·Mn. They found that, although the absolute number
of infected cells is increasing, the proportion of cells containing n bacteria is given by
Qn = Nburst

(Nburst−1)·n·(n+1)
(independent of the growth rate constant) [144]. They reported the

best fit for the burst threshold to be Nburst = 30.
ii) Gog et al. (2012) [145] described the early infection dynamics of bone-marrow-

derived macrophages with S. Typhimurium in vitro, i.e. the distribution of numbers of
bacteria per cell 10 min after infection for different multiplicities of infection (MOIs) (ratio
of bacteria to host cells). Their mathematical model, describing the fractions of macro-
phages containing 0, 1, ..., 8 or 9 and more bacteria, included an infection rate constant
specific for MOI, and a growth rate constant. Death of macrophages was negligible in
the given setting. In addition, they showed that reinfection of macrophages already con-
taining at least one bacterial cell was lower than infection of uninfected macrophages
(implemented as a relative reinfection constant < 1). They fitted a Michaelis-Menten
equation to the MOI-specific infection rate constants, giving a maximal infection rate
Vmax per macrophage per MOI, and a unitless KM value, i.e. the MOI for half-maximal
infection rate.

Using the main results and parameters from those two models, we implemented macro-
phage infection by S. Typhimurium as follows: We combined the models by Gog et al.
and Brown et al., i.e. we considered infection of macrophages by extracellular S. Ty-
phimurium, intracellular growth and burst of the macrophage at the burst threshold,
releasing S. Typhimurium into the tissue. We neglected reinfection of already infected
macrophages, although infected macrophages were able to further eliminate extracellular
S. Typhimurium but without effect to the number of intracellular bacteria. We used the
intracellular growth rate constant pSTm,int from Gog et al. [145] and the burst threshold
Nburst from Brown et al. [144]. From the Michaelis-Menten parameters for the infection
rate per macrophage per MOI by Gog et al. [145] we calculated the Michaelis-Menten
parameters for the infection rate per macrophage and S. Typhimurium concentrations
by dividing Vmax and KM by the reported concentration of macrophages in the experi-
mental setting. Those values (Vmax = 11.9 1

h
, KM = 3.9 · 107 1

mL
) are very similar to the

Vmax and KM values that we derived from Li et al. [58] for the elimination of bacteria
from the tissue (Vmax = 22.2 1

h
, KM = 3.7 · 107 1

mL
) in Section 2.6. Therefore, we used

the parameters derived from Li et al. [58] for phagocytosis/elimination of all bacteria
in the LP, where phagocytosis of S. Typhimurium by macrophages resulted in intracel-
lular infection. All different subsets of macrophages in the model (different activation
states, antigen-unexperienced/-experienced, efferocytosis-type and pMHCII-depleted; see
Sections 2.8 and 2.13) can be infected by S. Typhimurium, where the infection rate is
slightly different between the subsets (population P1 to P4) depending on the differences
in phagocytosis efficiency (see Section 2.8, [59]). All infected macrophages are antigen-
experienced, with bacteria-specificity to S. Typhimurium, resulting in the five different
model species of infected macrophages MP1,inf , MP2,inf , MP3,inf , MP4,inf and Meffero,inf , with
rates applying as described in the previous sections (Section 2.8 and 2.13) for the cor-
responding uninfected macrophage species, an additional rate of macrophage death at
bacterial release, and an additional rate for Th1-helped elimination of intracellular bac-
teria. We calculated the rate of bacterial release according to the model by Brown et al.
[144]:

bacterial release = Nburst · (Nburst − 1) · pSTm,int ·MPi,inf,N−1

= Nburst · (Nburst − 1) · pSTm,int ·QPi,inf,N−1 ·MPi,inf
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= Nburst ·
pSTm,int

Nburst − 1
·MPi,inf ,

where MPi,inf,N−1 is the concentration of infected macrophages of population Pi containing
exactly N − 1 bacteria, QPi,inf,N−1 is the corresponding proportion of macrophages of
population Pi containing N −1 bacteria, and MPi,inf is the total concentration of infected
macrophages of population Pi. Note that MPi,inf,N−1 was only used to derive the bacterial
release rate as a function of MPi,inf , but was not included as a state variable in the model.
The corresponding death rate of macrophages (which die at release of bacterial cells) is

macrophage death at bacterial release =
pSTm,int

Nburst − 1
·MPi,inf .

We implemented Th1 help for macrophages in elimination of intracellular bacteria on
a cell-contact basis, as described in Section 2.10. Upon the contact of a Th1 specific to
S. Typhimurium with a salmonella-infected macrophage MPi,inf , the macrophage reverts
to an uninfected state, i.e. an antigen-experienced macrophage of the respective popula-
tion with bacteria-specificity for salmonellae. The rate from MPi,inf to MPi,a,salmonellae is
therefore

Thtot,LP,salmonellae

Ttot,LP

·
MPi,inf · bsperM ·

(
1− Tem2Treg1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

for P1 to P3 (pro-inflammatory) and

Thtot,LP,salmonellae

Ttot,LP

·
MPi,inf · bsperM ·

(
1− Tem2Treg1

tDCLP·bsperDC+Manti,a·bsperM

)
BSAPC,av,LP

for P4 and Meffero (anti-inflammatory).
Infected macrophages function as APCs and are therefore included in the calculation

of available binding sites on APCs BSAPC,av,LP. In addition, they produce cytokines to
the same extent as the other pro- or anti-inflammatory antigen-experienced macrophage
species.

S. Typhimurium growth in lumen is aimed to be lower than for commensal by bac-
teria by factor 0.8 (see Section 2.4). Growth in LP (extracellular) is neglected, i.e.
pBact,LP,salmonellae = 0. Recognition and phagocytosis by phagocytic cells is assumed similar
to commensal bacteria Rphago,salmonellae = Rphago,commensal = 1. Compared to commensal
bacteria, which we implemented as a combination of different strains, S. Typhimurium
are implemented as a single strain. The rate constant for crossing the epithelial barrier
(with toxin) is εBact,2,salmonellae = 1 · 1010 (see Section 2.5). Note that the inflow rate con-
stant and the initial value of bacterial load in lumen (unitless, given as fraction of steady
state commensal bacteria) are highly correlated, i.e. a higher value of S. Typhimurium in
lumen and a lower inflow rate constant lead to the same concentration in LP as a lower
value of S. Typhimurium in lumen and a higher inflow rate constant. As intracellular
pathogens mainly invoke Th1 responses, A1,salmonellae = 1, A2,salmonellae = A17,salmonellae = 0
(see Section 2.12). We simulated a primary infection, i.e. recognition by memory T cells
is only due to conserved structures, which we implemented as a decreased probability of
antigen recognition by factor RTm,salmonellae = 0.7 (see Section 2.11, paragraph Central
memory T cells (LN)).
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Figure 20: Time course of S. Typhimurium infection for different initial loads.
Concentrations of bacteria and selected immune cells in LP over time in response to
different initial amounts of S. Typhimurium at time point t = 0 in lumen. As described
in Section 2.4, pathogenic bacteria in the lumen are modelled by a unitless value describing
the fraction of pathogenic bacteria from steady state commensal bacteria. i.e. initial =
0.01 corresponds to a pathogen load of 1 % of the commensal bacteria in lumen at t = 0.
Bacteria:

∑
b BactLP, neutrophils: Neut, macrophages: Mtot, T helper cells: Th+Tem1+

Tem2 + Tem17 +
∑NT,prol

i=1 Tn2Th.
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Figure 21: Infected macrophages by S. Typhimurium and their control by Th1
over time. Infected and uninfected macrophages and salmonella-specific Th1 over the
time course of an infection with S. Typhimurium (initial amount in lumen of 0.01 of
steady state commensal bacteria, corresponding to the last row of Figure 20). Left:
Uninfected and infected macrophages over time. Right: Infected macrophages, total
effective salmonella-specific Th1 Th1tot,salmonellae and salmonella-specific effector memory
T cells type 1 Tem1salmonellae. Note that Tem1salmonellae is included in Th1tot,salmonellae.

Figure 20 shows the time course of bacterial concentrations and neutrophils, macro-
phages and T helper cells in LP in response to different initial amounts of S. Typhimurium.
As in the simulated infection with generic extracellular pathogen, we observed that the
immune response to the different initial loads differs in the extent of the recruited cells, but
the general time course is highly similar. The recurrent peaks in the LP concentration of
bacteria (note that the sum of commensal bacteria and extracellular salmonellae is shown)
are due to the control of infected macrophages by Th1 (see Figure 21): The concentration
of salmonellae decreases when the salmonella-specific Th1 concentration is high enough
to control the infected macrophages, but a decrease in the salmonella concentration also
leads to a decrease in salmonella-specific Th1, as they are only induced by salmonella
antigens, leading to a recurrent increase in the salmonella concentration when Th1 levels
are too low. The increase in effector memory T cells specific for salmonellae is slower but
more sustained than the dynamics of fully differentiated Th1; therefore salmonella-specific
effector memory T cells accumulate over the course of the infection, allowing for a faster
supply of fully differentiated Th1 in response to an outbreak of the salmonella infection.
The pattern of recurrent outbreaks of the salmonella infection, followed by increases in the
salmonella-specific Th1 concentration, is repeated until the salmonella concentration can
be controlled strong and long enough to fully eliminate salmonellae from the LP. In our
simulation, all cells of the same type behave identically, whereas in reality there is spatial
and stochastic variability and therefore this synchronous behaviour would probably not
be visible.

As we use a deterministic approach, the salmonella concentration will never reach
zero after an infection, and already a very low concentration will result in a new outbreak
once the Th1 concentration returns to normal levels. This does, of course, not reflect the
biological behaviour. For very small concentrations of bacteria in the LP, a stochastic
approach to analyse the model behaviour would be more appropriate. Such an approach
(e.g. using the Gillespie algorithm [146]) could be used to evaluate possible time courses of
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very low numbers of salmonellae and infected macrophages, using the probabilities that the
different reactions (infection of macrophages leading to production of new pathogens, or
elimination of salmonellae) take place in the next infinitesimal time interval (propensities).
This approach, in contrast to the deterministic approach, allows for extinction of the
pathogen. However, detailed analysis of salmonella infections for very low numbers of
bacteria was not the intention of this work. Therefore we did not further consider this
problem, but set the concentration of S. Typhimurium in LP to zero, if the absolute
number of S. Typhimurium in the whole gut LP is lower than 1, i.e. BactLP,salmonellae·VLP <
1. We note, however, that the developed systems biology model could be used to analyse
the behaviour of salmonella infections stochastically, e.g. by applying a hybrid stochastic-
deterministic algorithm [147].

In most experiments, the amount of S. Typhimurium eliciting the infection was re-
ported as the amount of S. Typhimurium orally given [143, 148, 149], whereas the starting
point for our simulation is the amount of S. Typhimurium in colon lumen, given as the
fraction of steady state commensal bacteria. The relation between those two numbers
was unknown to us. In addition, we did not account for proliferation of S. Typhimurium
in lumen or back-transport of S. Typhimurium from LP into lumen, as we focused on the
dynamics in the tissue and the elicited immune response. In many studies, however, S.
Typhimurium count in faeces was the main measurement to evaluate the degree of infec-
tion [143]. In order to quantitatively compare those experimental results (which are even
highly diverse between different experimental studies) to our model simulations, we would
have had to adapt our model to the single experiments; as, however, the simulation of S.
Typhimurium infection was not the intention of our work, but only a means to evaluate
our model, we did not pursue these efforts.

On a qualitative level, however, our simulation results reproduce the main character-
istics of human salmonella infection and infection of streptomycin-pretreated mice: Most
importantly, our virtual immune system is able to timely eliminate the pathogen from the
tissue by eliciting an appropriate immune response, i.e. S. Typhimurium infection elicits a
self-limited inflammation. Thereby, the extent of the immune response, i.e. the increase of
the concentration of immune cells, depends on the initial amount of S. Typhimurium, but
already very low numbers of S. Typhimurium lead to an infection and considerable im-
mune response. Lastly, the control of the disease is dependent on the help from Th1. See
also Section 3.1.2 for the simulated effect of Th1 knockout on the course of a salmonella
infection.

2.18.3 Immune response to mucosal injury

Mucosal injury, i.e. injury of the epithelial or tissue layer, resulting in an inflow of com-
mensal bacteria into the tissue, where they elicit an immune response, can occur due
to several different reasons: Non-steroidal anti-inflammatory drugs (NSAIDs) (used in
treatment of e.g. rheumatoid arthritis or cardiovascular diseases) very frequently lead to
injuries mainly in gaster and small intestine [150], but also in colon (in approximately 3 %
of patients under long-term treatment with NSAIDs [151]). The drug induces damage
of mitochondria, leading to an increased production and release of ROS, which in turn
destroy intercellular junctions, increasing the barrier permeability. In addition, NSAIDs
inhibit cyclooxygenase, which is required in prostaglandin synthesis, thereby leading to
decreased levels of prostaglandins, which are important in tissue repair and resolution of
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inflammation [150, 152]. Trauma can lead to a decreased epithelial barrier, as the blood
flow is redistributed to supply vital organs, leading to ischemia in the intestine, result-
ing in disruption of tight junctions and increased epithelial cell apoptosis [153]. Another
example of mucosal injury is radiation colitis: Radiation therapy targets cellular DNA,
which can lead to death, inability to proliferate, or abnormal cell functions in epithelial
cells, resulting in a decreased epithelial barrier [154, 155].

Acute DSS colitis is a mouse model for acute colitis due to epithelial damage (in
contrast to chronic DSS colitis, which is a widely used mouse model for IBD). Dextran
sodium sulfate (DSS), which is administered via drinking water, acts as chemical toxin
to colon epithelium, inducing epithelial damage. Consequently, commensal bacteria can
enter the colon LP and induce an inflammatory response [75]. Acute DSS colitis is induced
by administration of DSS for 6-10 d. The first signs of disease are changes in the expression
of tight junction proteins after approximately 1 d, followed by worsening symptoms such
as increased intestinal permeability, bleeding and even death [75].

We simulated the immune response to mucosal injury and the resulting inflow of
commensal bacteria into the gut LP by reducing the values of epithelium and/or tissue
at time point t = 0, and simulating until the system reached healthy steady state again.
As the build-up of the epithelium state variables depends on the tissue state variable,
und the build-up of the mucus state variable depends on the epithelium state variable,
both decrease of the epithelium and the tissue state variable lead to a decrease of the
barrier function and therefore to an inflow of commensal bacteria into LP. Bacteria in LP
consequently elicit an immune response. Note that in comparison to physiological causes
of mucosal injury, especially to DSS colitis in mice, we simulate mucosal injury as being
elicited by an abrupt trigger of epithelial barrier disruption at t = 0, without any further
triggers for t > 0.

Figure 22 shows the bacterial concentrations and neutrophils, macrophages and T
helper cells in LP in response to different combinations of tissue and epithelial destruc-
tion. As bacterial inflow depends on the epithelial barrier (and the mucus layer, which
strongly follows the epithelial barrier), but not directly on tissue, the peak of the bacterial
concentration in LP is higher for pure epithelial damage (2nd row) than for pure tissue
damage (3rd row). However, tissue damage leads to a longer-lasting inflow of bacteria
and inflammation response (3rd row) than epithelial damage without tissue damage (2nd
row), because the epithelium depends on tissue integrity and can only be fully functional
when the tissue layer is fully functional.

Nunes et al. (2018) [156] analysed the time course of acute DSS colitis in mice, which
is qualitatively widely consistent with our model simulations. Unfortunately, results are
only reported for the first 8 d, later time points were not analysed. Note that they induced
acute DSS colitis by DSS in drinking water for a time span of 7 d, whereas our simulations
assume an abrupt disruption of the epithelial barrier and/or underlying tissue. Despite
the additional limitations and unknowns in the translation of the mouse model to human,
a qualitative comparison of our simulation results with those experimental results can be
used to qualitatively validate our systems biology model. In the acute DSS colitis model,
the concentration of macrophages increases up to more than 4-fold during the first 8 d,
and the concentrations of T helper cells and regulatory T cells increase up to ≈3-fold
during the first 8 d [156]. The increase in macrophages and T helper cells can also be
seen in our model simulations (right column of Figure 22). The increase in regulatory
T cells, however, is much less pronounced in our model simulations (see Figure 15).
The severity of the acute DSS colitis, measured by clinical and histological scores, was
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Figure 22: Time course of mucosal injury. Concentrations of bacteria and selected
immune cells in LP and barrier state variables (unitless) over time in response to different
extents of mucosal injury at time point t = 0. As described in Section 2.5, state variables
describing tissue, epithelium and mucus layer are modelled as unitless values describing
the relative functional intactness of the respective layer. The degree of mucosal injury
is given as “relative epithelial destruction/relative tissue destruction”, where 0 means
no destruction, and 1 means complete destruction, i.e. setting the state variable to 0
at t = 0. Bacteria:

∑
b BactLP, neutrophils: Neut, macrophages: Mtot, T helper cells:

Th + Tem1 + Tem2 + Tem17 +
∑NT,prol

i=1 Tn2Th.



2.19 Conclusion 77

reported to depend on the concentration of DSS in drinking water [156]. The difference
in DSS concentration probably results in different extents of epithelial destruction. We
also observed this dependency in our simulations (compare Figure 22, row 4: 1/1 and
row 5: 0.5/0.5): The increase in neutrophil, macrophage and T helper cell concentrations
is higher for simulated complete than for half-maximal destruction of epithelium and
tissue. The difference between these two simulations is, however, not as pronounced as
the difference between the acute DSS colitis models resulting from 1 %, 2 % and 3 % DSS in
drinking water (but we also don’t know how the difference in DSS concentration translates
to different extents of epithelial destruction). For a mucosal injury due to physical or drug
effects in human, we expect the resulting inflammation to be self-limited after removing
the trigger, which is described by our model as a timely return to healthy steady state
for all extents of mucosal injury.

2.19 Conclusion

We aimed at developing a systems biology model describing the healthy mucosal immune
response on a cellular level (for use in analysis of IBDs and their treatment, as described
in the following chapters). The requirements for this model were to describe the mucosal
immune system adequately both on the cellular level and on the level of the overall im-
mune response, i.e. it had to adequately describe both the qualitative and quantitative
characteristics known from literature about the separate cell types and processes of the
mucosal immune response, and the overall time course of an immune response to differ-
ent infectious and inflammatory stimuli. To achieve this aim, we performed an extensive
literature research, based on which we determined the most important cell types and pro-
cesses, also with respect to IBDs. See Figure 23 for a summary of our modelling approach.
For each of the determined most important cell types and processes, we developed a sub-
model based on the results of our literature research, to describe the available qualitative
and quantitative data. Interactions between different cell types were implemented based
on cell-cell contacts and cytokines. Simultaneously, we designed the model so that the
integrated systems biology model was able to describe the key characteristics of the dif-
ferent inflammation scenarios, especially the successful fighting of pathogen or commensal
bacteria, and the timely return to healthy steady state.

The resulting systems biology model is a systematic combination of available knowl-
edge on the local gut immune effects, which sets isolated findings from various literature
sources into context. It is relatively robust to variations in the parameter values, as will be
further described in Chapter 4, where the large majority of a virtual population generated
by introducing variability in the parameters react adequately to inflammatory triggers,
comparable to the reference individual described in the current chapter. Our novel sys-
tems biology model provides a quantitative (cell concentration-based) and time-resolved,
very detailed description of the mucosal immune response, based on an extensive liter-
ature research, where we separately investigated the dynamics of each implemented cell
type and process. None of the previously published mathematical models of the mucosal
immune response and IBDs known to us [24–27] fulfil all of these points.

Limitations. Due to the limited data situation and the simplification of complex phys-
iological processes that is required to develop a systems biology model with acceptable
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Figure 23: Summary of the modelling approach. Overview of the different steps of
the modelling approach and the different levels of the resulting systems biology model:
The model represents the gut immune system on the cellular level, which we separated
into different submodels representing separate cell types or processes. Each submodel
on its own was designed based on qualitative and quantitative data from literature, to
adequately reproduce the key characteristics of this cell type or process. Combination
of all submodels into the systems biology model of the mucosal immune system ensures
that the requirements on the cellular level are fulfilled. In addition, the integrated model
is able to describe the overall response of the gut immune system in different infection
scenarios.
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runtimes, our model has—as any (systems biology) model—limitations:
To validate the model using the overall time courses of our different inflammation

scenarios, time course data of different immune cell concentrations in an inflammation
setting representable by our model would have been ideal. Unfortunately, such data were
not available to us. Therefore we had to use qualitative data (e.g. knowledge on the
chronological succession of cell concentration increases and decreases) and isolated exper-
imental findings (e.g. the relative increase of specific cell concentrations in inflammation)
(see Sections 2.18.2 and 2.18.3). Note that these isolated findings come from different
experiments with different experimental settings (regarding e.g. model species, extents of
stimulus or measurement time points), and quantitative comparisons were therefore not
expected to be very accurate.

For parameterisation of the submodels, we integrated many different experimental data
from various sources, including data from in vivo experiments in different species (human,
mouse, rat) and in vitro and in silico studies. For several parameters, no quantitative data
could be obtained from the literature, so that we had to define the parameters based on
rough estimates of their magnitude and the resulting model behaviour on the cellular and
overall levels. Note that, however, more suitable data than those we built our model on
are unfortunately currently not available, and therefore a more reliable parameterisation
is currently hardly possible. Apart from that, this model can in the future be used to
plan further, targeted experiments, to generate hypotheses, and to demonstrate where
additional knowledge is required for a deeper and more quantitative understanding of the
mucosal immune response.

Not only the parameter values, but also the model structure is based on different hy-
potheses obtained from the literature, which naturally only repeat the current state of
knowledge. In the previous sections (Section 2.2-2.18.3) we stated the assumptions we
made to derive the model structure of the different submodels. In addition, we focused on
those cell types and processes we identified as being most important for the mucosal im-
mune response, especially with regard to IBDs. Other cell types were neglected, although
their roles in the mucosal immune response and IBDs have been stated in literature (e.g.
NK cells, NKT cells, fibroblasts or B cells), in order to keep the model complexity man-
ageable. This leads (as in every model) to a simplification. Additional processes and cell
types, however, can easily be incorporated into the systems biology model by providing
the respective ODEs and parameters.

The representation of the mucosal immune system using only two spatial compart-
ments, the LP and the mesenteric LNs, is also a simplification: The different spatial dis-
tributions of cell types inside the tissue are neglected, i.e. we implicitly assumed that all
cell types are equally distributed among the tissue. It is, however, known that some cells
(e.g. macrophages [157]) typically reside closer to the epithelium. We modelled transport
of cells via blood as an immediate reaction from one compartment to the other, without
accounting for loss of cells on the way or for the duration of this transport. The effect
of food antigens on the mucosal immune system was not accounted for by our model.
In our model we focus on the mucosal immune system of the colon; other parts of the
gastrointestinal tract—which are also important for IBDs—are, however, known to differ,
e.g. regarding cell concentrations. Simulating the gut immune response in such an iso-
lated way also implies that the influence of the rest of the body (e.g. infections in other
parts of the body) is neglected. Nonetheless, we showed that our novel systems biology
model is, despite all those simplifications, able to qualitatively and to a certain extent
quantitatively describe the healthy mucosal immune response to various inflammatory
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stimuli.

Using this novel systems biology model, in the next steps we analysed possible IBD dis-
positions and generated hypotheses about IBD pathogenesis using a virtual population
of IBD patients. In addition, we implemented different treatment mechanisms into the
systems biology model, proposed how to predict individual patients’ responsiveness to
different drugs, analysed differences between virtual responders and non-responders, and
evaluated different combination treatments. These are of course only a few possible appli-
cations of the novel systems biology model; for a list of suggested additional applications,
see the Discussion (Section 7.6).
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3 Model evaluation

In the previous chapter, we developed a mathematical model of the healthy mucosal
immune system, which we will use in the following chapter to generate a virtual population
of individuals by including variability in the model parameters, with the aim to get insights
into the development and potential treatment of IBD. Before, however, we would like to
evaluate the model, by challenging it to see how accurate it can describe the mucosal
immune response, and to find out its limitations. In addition, via basic model analyses,
we want to get first insights into the role of the different parameters and cell types on the
immune response.

3.1 Knockout scenarios

To confirm the functionality of the model and identify limitations, which is fundamental
for the evaluation of the results on IBD development and treatment that we will generate
in the following chapters based on this novel systems biology model, we simulated different
knockout studies and compared the resulting mucosal immune response (salmonella in-
fection and mucosal injury) to comparable literature studies. All knockout scenarios were
based on the reference individual, where specific reactions were inhibited (full or partial)
to obtain a “knockout individual” for each scenario. Using that “knockout individual”,
first the steady state was simulated, which was, depending on the knockout scenario,
different from the healthy steady state of the reference individual. Then, the time course
of inflammation as response to salmonella infection or mucosal injury was simulated (in
the same ways as for the reference individual in Figure 18). All figures below include the
reference individual’s time course for comparison. Please note that the literature studies
of knockout scenarios cited below mainly described observations in mice. In addition, as
we only simulate and observe cell concentrations within the gut, neglecting interactions
with and consequences on the rest of the body, those knockout simulation results have to
be treated with care and have only limited interpretability.

3.1.1 T cell knockout

We implemented full knockout of T cells by inhibiting the inflow of naive and memory
T cells into the LN, which, in our model, is the source of also all effector T cells (T
helper cells and regulatory T cells). In Figure 50 (appendix) we show the time course
of salmonella infection and mucosal injury in a “knockout individual” with full T cell
knockout (i.e. 100 % inhibition of T cell inflow) or partial knockout.

For salmonella infection, we observed that without T cells, salmonellae could not be
eliminated from the tissue, and a new steady state with persisting levels of bacterial
cells in the LP and consequently higher levels of neutrophils was reached. This is in
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accordance with many literature sources (e.g. [29, 36, 158]), describing that especially
T helper cells of type 1 are crucial for successful elimination of salmonellae from the
tissue. In addition, to show the dependence of salmonella elimination on T helper cells
in more detail, we show the time course of salmonella infection for a partial knockout of
T cells. For a partial knockout of T cells, we observed a recurrent salmonella infection,
i.e. the bacterial cells could not be completely eliminated from the tissue, but could be
kept at a lower concentration than for the full T cell knockout. In this case, the model
did not reach a steady state, but the simulation showed a recurring pattern of increasing
salmonella concentrations, resulting in increasing concentrations of immune cells that led
to a decrease in bacterial concentrations and subsequently in immune cell concentrations.
For the mucosal injury scenario, we observed that the overall time courses of neutrophils
and macrophages did not differ significantly from the respective time courses in the healthy
reference individual.

3.1.2 T helper cell knockout

To directly assess the influence of T helper cells on the time course, we implemented a
knockout of T helper cell functionality, i.e. cytokine production by T helper cells was
inhibited (which is the only means of impact of T helper cells on other model state
variables). In comparison to the full T cell knockout described in the previous section,
here the regulatory T cells remained functional. In Figure 51 (appendix) we compare the
time course of salmonella infection and mucosal injury in a “knockout individual” with
full T helper cell knockout (i.e. 100 % inhibition of cytokine production by T helper cells)
or partial knockout. Note that, as only the effects of T helper cells are inhibited in this
simulation, their concentrations will still add to the concentrations of T cells shown in
Figure 51.

Simulation results are very comparable to the simulation of the full T cell knock-
out: Salmonella infection can not be resolved without T helper cells. The “knockout
individual” with partial knockout of T helper cells can keep the salmonellae at a lower
concentration than the “knockout individual” with full T helper cell inhibition, although
only by keeping a high concentration of immune cells and not being able to completely
eliminate the salmonellae. For the mucosal injury scenario we again observed no large
impact of the knockout on the overall time course, although the diminished increase of
macrophages in the “knockout individual” shows the close interaction of the different cell
types.

3.1.3 Regulatory T cell knockout

Regulatory T cell knockout was implemented by inhibiting the functionality of regulatory
T cells, i.e. its inhibiting effects on dendritic cells and macrophages and anti-inflammatory
cytokine production. In Figure 52 (appendix) we compare the time course of salmonella
infection and mucosal injury in a “knockout individual” with full regulatory T cell knock-
out (i.e. 100 % inhibition of cytokine production and effects) or partial knockout.

For the “knockout individual” with full regulatory T cell knockout, we already ob-
served significant differences to the healthy reference individual in steady state (before
salmonella infection or mucosal injury), where the “knockout individual” showed higher
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concentrations of macrophages and much higher concentrations of T helper cells. This
highlights the importance of regulatory T cells for keeping the constant low levels of in-
flammatory cells in the gut tissue. The “knockout individual” can resolve the salmonella
infection, but the inflammation during the course of the infection, and the resulting tissue
destruction (not shown), are worse and take longer to resolve, in accordance with above
observation of higher levels inflammatory cells due to the missing control by regulatory
T cells. The higher inflammation levels due to the regulatory T cell knockout have also
been described widely in literature (e.g. [119–121]).

3.1.4 Commensal bacteria knockout

It is widely known that the frequent encounter of commensal bacteria is crucial for the
mucosal immune response to develop its full functionality [29, 159, 160]. To examine if
this behaviour can also be reproduced by our novel systems biology model, we simulated
partial commensal bacteria knockout by reducing proliferation of commensal bacteria in
the lumen, leading to lower commensal bacteria levels. In Figure 53 (appendix) we show
the time course of salmonella infection and mucosal injury in a “knockout individual”
with reduced level of commensal bacteria.

For 50 % reduction of commensal bacteria, we observed chronic inflammation already
in steady state. For 30 % reduction of commensal bacteria, we observed that salmonellae
could not be eliminated from the tissue (leading to chronic infection with high levels
of immune cell concentrations), and the mucosal injury could not be resolved, resulting
in chronic inflammation after the mucosal injury. This means that our systems biology
model can, at least to some degree, reproduce the complex interplay of commensal bacteria
with the healthy mucosal immune response. Interestingly, the mucosal injury time course
is similar to responses in our virtual IBD patients in the following chapter, indicating
already the complex role of commensal bacteria in the development of IBD.

3.1.5 Neutrophil knockout

We implemented neutrophil knockout by inhibiting neutrophil inflow into the LP. In
Figure 54 (appendix) we show the time course of salmonella infection and mucosal injury in
a “knockout individual” with full neutrophil knockout (i.e. 100 % inhibition of neutrophil
inflow).

For both the salmonella infection and the mucosal injury, we observed that our virtual
mucosal immune system is still able to eliminate the invading pathogens and commen-
sal bacteria, and also to resolve the inflammation, but much higher concentrations of
T cells and especially macrophages are needed, therefore the inflammation takes longer
and is much more pronounced, with much higher tissue damage (not shown). This is in
accordance with the clinical observations of neutropenia (abnormally low levels of neu-
trophils), where patients show much worse (up to life-threatening) reactions to infections
than healthy subjects [29, 161].
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3.2 Local sensitivity analysis

To analyse, which parameters of our novel systems biology model were most important for
the mucosal immune response, we conducted a local sensitivity analysis. Sensitivity anal-
yses are used to analyse the effects of parameter changes on model outputs, to determine
how the response quantitatively depends on the parameter values, and which parameters
determine the response most strongly. In contrast to a global sensitivity analysis, where
the influence of large variations in the parameter set is examined, a local sensitivity anal-
ysis (LSA) quantifies effects of very small perturbations of single model parameters on the
model output, via the so-called sensitivity coefficients, which are defined as the deriva-
tives of the model output with respect to the model parameters [162]. We used finite
difference approximation as a simple method to approximate those sensitivity coefficients
[162]: For a system of ODEs d

dt
x(t) = f(x(t)), with an output function y(t) = h(x(t)),

for each parameter pj, the derivative of the output y(t) with respect to the parameter pj
is approximated by introducing a small perturbation factor ∆ = 0.01,

∂y(t, pj)

∂pj
≈ y(t, pj + ∆pj)− y(t, pj)

∆pj
.

To facilitate comparison of sensitivity coefficients between parameters, which have dif-
ferent magnitudes, we further normalised to obtain the normalised sensitivity coefficient
[162]

S(t) =
∂y(t, pj)

∂pj
· pj
y(t, pj)

=
y(t, pj + ∆pj)− y(t, pj)

∆ · y(t, pj)
.

Our aim was to analyse the importance of our model parameters on the mucosal
immune response. As the mucosal injury scenario will be our starting point for analysis
of IBD in the following chapter, we chose this inflammation scenario as reference. As
the extent of the mucosal immune response is not trivially quantifiable, we regarded
three different model outputs, the concentrations of total T helper cells (Thtot,LP), total
macrophages (Mtot) and neutrophils (Neut) over time, to obtain a broad overview. In
Figure 24 we show the sensitivity coefficients of the parameters with highest sensitivity
coefficients (maximal value over the timespan) for the three different outputs.

Sensitivity coefficients can be negative or positive, dependent if an increase of the
parameter leads to an increase or decrease of the output, respectively. In Figure 24,
we show the sensitivity coefficients before mucosal injury (t < 0), which describe the
dependence of the steady state concentration of the output on the parameters, and over the
time course of inflammation after mucosal injury, which show how the different parameters
play different roles during different stages of the inflammation time course. Naturally, we
see large differences in the sensitivity coefficients, and the ranking of the most important
parameters, between the different outputs. However, three parameters appeared among
the highest sensitivity coefficients for all three outputs: The T cell proliferation rate
constant pTn,>1, the macrophage death rate constant µM and the neutrophil recruitment
Hill factor hrec,Neut. The fact that those three universally important parameters relate to
three different cell types nicely shows the high complexity of our virtual immune system,
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Figure 24: Sensitivity coefficients over time for different outputs. Sensitivity
coefficients over a time span of 100 d after mucosal injury, using T helper cells (Thtot,LP),
macrophages (Mtot) or neutrophils (Neut) as output. Sensitivity coefficients for t < 0
show the dependence of the steady state concentration on the parameter values. Here
we show only the ten state variables with highest maximal value. The legend shows
the sensitivity coefficients ordered by their maximal value. (Note that the colours are
therefore not comparable among the subplots.) The grey line indicates S = 0.
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and the importance of the interplay between the different cell types.
For T helper cells, we observed several parameters that are approximately equally im-

portant for the steady state concentration (all of the shown parameters except µtis). Dur-
ing acute inflammation, however, the T helper cell concentrations appears to be mainly
determined by the three parameters pTn,>1, µT,LN and µT,prol, i.e. the parameters de-
scribing T cell proliferation and death. However, the other parameters among the top
10 sensitivity coefficients, determining mainly steady state and the resolution phase of
the inflammation, again relate to various different parts of the model: macrophages (µM ,
νM,P3→P4), neutrophils (hrec,Neut), dendritic cells (hpro,act,DC, νDC,act, µDC,LP) and epithelial
barrier (µtis).

For macrophages, we could clearly determine the two parameters determining the
steady state concentration: the constant macrophage recruitment rate λM,c and the macro-
phage death rate constant µM . Those two parameters become much less important dur-
ing acute inflammation, where other parameters become dominant, nicely mimicking the
chronological order of the inflammation time course: In the earlier stage, λM,max, hrec,Neut

and wSPM,Meffero are most dominant, as neutrophils are the first immune cells recruited
to the site of inflammation, and therefore the first cells that recruit macrophages via
pro-inflammatory cytokines. In the later stage, the macrophage concentration becomes
stronger dependent on T cells (pTn,>1, β and αTh), which are in turn dependent on den-
dritic cells (λDC and µDC,LP). wSPM,Meffero plays an important role also during the later
stage, highlighting the important role of SPM for the resolution of the inflammation.

For neutrophils, we observed the macrophage death rate constant µM as the most in-
fluential parameter, with positive influence on neutrophil concentration, probably because
higher macrophage death rate leads to lower secretion of SPM and thereby diminished
resolution. The importance of SPM production on neutrophil concentration also becomes
apparent via the high negative sensitivity coefficient of wSPM,Meffero and the rate constant
for transition of macrophages to the SPM-producing efferocytosis type, peffero. Other im-
portant parameters on the neutrophil concentration, all negatively influencing neutrophil
concentration, are related to neutrophil recruitment and death (hrec,Neut, µNeut,max), tissue
remodelling (µtis, Manti,a(,dep) → cytoremod,tis), macrophage recruitment (λM,c, λM,max) and
T cell proliferation (pTn,>1). Again, the identified important parameters relate to various
cell types and processes of our model.

3.3 Input-response indices

In addition to the influence of the different parameters, we were also interested to see
which state variables play major roles in the simulated mucosal immune response. For
this, we used the concept of input-response (IR) indices, introduced by Knöchel et al.
(2018) [163]. The IR indices quantify the effect of a specific input on a state variable at a
specific time point, and the effect of this variation on a specific output over the remaining
time interval.

In our case, we chose the mucosal injury scenario, i.e. the input was destruction of epi
and tissue by factor 0.5 at time point t = 0 (see Section 2.18.3), with the resulting time
course of all state variables as reference time course xref . Then the input was perturbed by
different factors ∆u = {0.5, 0.8, 1.2, 1.5}, resulting in the time course x∆u . For each time
point t∗ ∈ [0, tend = 100 d], the effect of the perturbed input on all state variables xi was
calculated as the difference to the reference time course, ∆xi(t

∗) = (x∆u(t∗) − xref(t
∗))i;
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this refers to the controllability of the state variables. In a next step, for each state variable
xi, at each time point t∗, the effect of this difference ∆xi(t

∗) on the remaining time course
[t∗, tend] was calculated by solving the ODE system from t∗ to tend, using as initial values
xref(t

∗), with ∆xi(t
∗) added to the respective state variable concentration xref,i(t

∗); this
refers to observability of the state variables. The time- and state variable-specific IR index
iri(t

∗) is calculated as the integrated difference of the resulting output from the reference
output over the remaining time interval [t∗, tend] and further normalised, averaged over
the different perturbation factors. For details see Knöchel at al. (2018) [163]. As for the
LSA, we chose the concentrations of T helper cells (Thtot,LP), macrophages (Mtot) and
neutrophils (Neut) as outputs. For each of the three outputs, we show the ten IR indices
with the highest maximal values over the full time span in Figure 25.

Note that the IR index is high only if both the effect of the input on the state vari-
able is high and the effect of this variation on the output over the remaining time course
is high. As expected, epi and tissue were very important for all three outputs, as they
were directly affected by the input, i.e. destruction of epithelium and tissue, and this
destruction was the cause for the resulting immune reaction. Their importance, however,
decreases over time, and at later time points other state variables are more important. In
addition, antigen-experienced efferocytosis-type macrophages (Meffero,a) were among the
highest IR indices for all three outputs, and were the most important state variables in
the later phase of the immune response, showing the highest IR indices from ≈ 20 d to
≈ 50 d. In the end phase, from ≈ 50 d, antigen-experienced macrophages of population P4
(MP4,a) were dominant on both T helper cells and macrophages as output. Naturally, the
most important state variables include Th1 for the output of total T helper cells, various
subpopulations of macrophages for the output of total macrophages, and neutrophils for
the output of neutrophils. For T helper cells, the pro-inflammatory macrophage popula-
tions MP1,a and MP3,a, as well as several dendritic cell state variables in LP, have high
IR indices. This is due to the dependence of T helper cells to be activated by antigen-
experienced dendritic cells or macrophages in LP. For macrophages, we also observed
stimulatory dendritic cells (sDCLP) among the highest IR indices. As those do not have a
direct effect on macrophages in our model, this effect is probably due to their effect on T
helper cell activation, which subsequently secrete pro-inflammatory cytokines acting on
macrophage recruitment and activation. For neutrophils, we also observed mucus among
the most important state variables, which is directly controlled by epi, highlighting the
role of neutrophils as the first cells responding to bacterial inflow resulting from barrier de-
struction. In addition, several antigen-experienced macrophage subpopulations, both pro-
and anti-inflammatory, have high IR indices, showing that the neutrophil concentration
depends on the cytokine milieu, which is mainly secreted by pro- and anti-inflammatory
macrophages. Interestingly, also the pMHCII-depleted anti-inflammatory macrophages
(MP4,a,dep and Meffero,a,dep) have high IR indices, showing also the influence of regulatory
T cells (which deplete macrophages) on the time course of inflammation.

We conclude that a wide variety of different state variables play important roles during
the time course of inflammation resulting from mucosal injury. The importance of the
different state variables, naturally, varies with the regarded output, but especially macro-
phages seem to be important for all three analysed outputs, confirming their important
role in the mucosal immune response, which has also been widely reported in literature
[52, 72, 164, 165].
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Figure 25: IR indices for different outputs. IR indices [163] over a time span of 100 d
after mucosal injury, using T helper cells (Thtot,LP), macrophages (Mtot) or neutrophils
(Neut) as output. Here we show only the ten state variables with highest maximal value.
The legend shows the IR indices ordered by their maximal value. (Note that the colours
are therefore not comparable among the subplots.)
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3.4 Conclusion

The presented knockout scenarios show that our novel systems biology model is able to
reproduce a wide range of findings from experimental knockout experiments. The sen-
sitivity analyses of influence of parameters (LSA) and state variables (IR) on the time
course of main cell types (T cells, macrophages, neutrophils) for an exemplary inflamma-
tion scenario (mucosal injury) confirmed the complex interplay of different cell types and
processes in the model, as different parameters related to different cell types/processes,
and different state variables describing cell types could be identified as important for the
extent of the mucosal immune response to mucosal injury.

In the next chapter, we will analyse in detail, which parameters and state variables are
important for the development of IBD. As in the presented sensitivity analyses we used
the mucosal injury scenario as input, which will also be the starting point for the analysis
of IBD, we expect that the parameters and state variables we identified as important here,
may also prove important on the development of IBD in the next chapter.
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4 Simulation and analysis of IBD using a
virtual population

The aim of this chapter is to use our novel systems biology model of the healthy mucosal
immune response to get insights into the development of IBD, and to provide a popu-
lation of virtual IBD patients to study their reaction to different treatment effects (see
Chapter 5).

Pathogenesis of IBD. IBDs are chronic diseases defined by chronic inflammation of vari-
ous parts of the gastrointestinal tract, due to overreaction of the mucosal immune system
to commensal bacteria [1, 7]. The disease course is characterised by relapses (so-called
“flares”) and remitting phases [166, 167]. The full pathogenesis is still unclear. With
the exception of early-onset IBD, where patients develop IBD at a very young age and
the disease can often be traced back to a single mutation, IBD is a multifactorial disease
[168, 169]. A wide variety of genetic predispositions and environmental risk factors for
IBD have been found to be linked to the disease [3, 170]. Every patient has accumulated
several changes compared to healthy individuals, which together lead to the outbreak of
disease. Some of those changes are genetic predispositions, some are environmental (i.e.
accumulate over time). This means that before the outbreak of the disease, IBD pa-
tients must be in a pre-disease state, having accumulated several risk factors, where one
additional trigger leads to the outbreak of the disease. The exact trigger, which is prob-
ably highly variable between patients, is not completely known. Many literature sources,
however, discuss environmental factors such that perturb the mucosal barrier, alter the
balance of gut microbiota and abnormally stimulate the immune system of the gut, as
triggers for the onset of disease [4, 6, 7].

Representation of IBD in the systems biology model. We assume the accumulation of
risk factors for IBD to be the result of the normal variability, i.e. in a population of
many different individuals, some will develop IBD. Therefore, in a virtual population of
individuals, based on the presented systems biology model of the healthy mucosal immune
response, where each individual is characterised by a set of parameters that are sampled
around the reference parameters, we expect to find some IBD patients.

To detect those IBD patients, we assumed the following characteristics: As described
in the last paragraph, an IBD patient is an individual in a pre-disease state, that after
some final trigger develops chronic inflammation. We defined this pre-disease state as the
steady state of the individual. Regarding the trigger, we focused on perturbation of the
mucosal barrier, as discussed in literature [4, 6, 7]. Therefore we used the mucosal injury
scenario presented in Section 2.18.3 as trigger. After response to this trigger, a healthy
individual is expected to be able to resolve the inflammation and return to healthy steady
state, whereas a virtual IBD patient is expected not to be able to resolve the inflammation
and to develop chronic inflammation.
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Our virtual representation of IBD does of course have limitations: Naturally it can
only describe the patients given the underlying model, i.e. only describe the disease in the
represented space of the colon mucosa, and only in the level of detail of the model. This
level of detail does, for example, not allow for discrimination between CD and UC. In
addition, as we did not account for changing environmental factors, the model can only
describe the development of a single flare in a previously asymptomatic individual. The
return to the asymptomatic state after the flare without further intervention can therefore
not be described by the model; only the effects of treatment, as described in Chapter 5.

4.1 Generation of a virtual population

Sampling of virtual individuals using variability. We generated a virtual population by
sampling 1,000,000 sets of parameters around the reference parameter set described in
Chapter 2 (Table 10 in the appendix). We used a lognormal distribution with mean
µ = 0 and standard deviation σ = 0.4 of the underlying normal distribution for generation.
We then multiplied the reference parameter set with the variation factors to obtain the
individual parameter sets. We are aware that it is a rough simplification to assume the
same distribution for all parameters. The literature, however, is very rare. In addition,
one of our aims was to analyse the possible influence of the single parameters on the
development of IBD; hence using the same distribution on all parameters might at the
time prevent bias. Each of the resulting parameter sets represented one individual of our
virtual population, with a specific time course of the mucosal immune response to the
mucosal injury trigger.

Classification of virtual individuals. We then classified the individuals of the generated
virtual population. For this we simulated for each individual the pre-trigger steady state
(compare healthy steady state of the reference individual, Section 2.17) and the response
to the mucosal injury trigger (Section 2.18.3) until the post-trigger steady state was
reached.

We expected to observe different types of individual behaviour in our virtual popula-
tion:

(i) Healthy individuals: comparable, healthy, response to the mucosal injury trigger,
i.e. invading commensal bacteria are eliminated from the tissue, the inflammation is
resolved and the system returns to the pre-trigger healthy steady state (post-trigger
steady state = pre-trigger steady state)

(ii) Chronic inflammation: out-of-control immune response, i.e. chronic inflammation
already in the pre-trigger steady state and never an asymptomatic steady state.
These virtual individuals do not necessarily relate to any real-world patients.

(iii) Chronic infection: individuals not able to deal with the amount of inflowing bacteria
and developing a chronic infection, i.e. a high concentration of commensal bacteria
in LP, probably resulting also in high concentrations of immune cells, in the post-
trigger steady state

(iv) IBD: pre-trigger steady state comparable to the healthy reference individual’s steady
state, but high concentrations of immune cells in the post-trigger steady state

Based on these considerations, we classified the virtual individuals into four classes
(i)-(iv). For this, we used the concentrations of T helper cells (Thtot,LP), macrophages
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(Mtot) and neutrophils (Neut) and considered the pre-trigger steady-state concentrations
normalised by the reference individual’s steady state and the ratio of post-trigger to pre-
trigger steady-state concentration. In addition, we used the concentration of bacteria in
LP (BactLP) to identify chronic infection. See Section 9.5 in the appendix for details on the
classification. We obtained a virtual population of 695.101 healthy individuals (69.5 %),
22.252 IBD individuals (2.2 %), 197.074 chronic inflammation individuals (19.7 %), and
31.163 chronic infection individuals (31.1 %). In addition, in some cases (54.410 individu-
als/5.4 %), the pre-trigger steady state could not be simulated because of oscillations. We
excluded those individuals, as such behaviour, although it may not be completely unphys-
iologic, was hindering further analyses. Note that we use the term “IBD individual” to
denote both, IBD patients and individuals with IBD predispositions before the outbreak
of disease.

Figure 26 shows the time course of the mucosal immune response (bacteria, barrier
state variables, T cells, macrophages and neutrophils in IBD) to mucosal injury for the
different classes. Figure 27 shows the distributions of pre-trigger and post-trigger steady-
state concentrations of the same immune cells for healthy and IBD individuals. Healthy
individuals show an immune response comparable to the reference individual’s immune
response (for the reference individual’s immune response, compare Figure 22, third row).
The chronic inflammation individuals show a high concentration of immune cells and
reduced epithelial barrier integrity already before the trigger; the reaction to the mucosal
injury trigger is relatively small, as there are already enough immune cells available. The
distribution of pre-trigger steady-state concentrations in the chronic infection individuals
is comparable to healthy individuals, but following the mucosal injury trigger, the bacterial
concentration rises fast to its maximal concentration (Cmax,Bact,ref = 1010 1

mL
), resulting in

a post-trigger steady state with immune cell concentrations higher and epithelial barrier
state variable lower than in healthy individuals.

The distribution of pre-trigger steady-state concentrations in IBD individuals is com-
parable to healthy individuals, but following the mucosal injury trigger, the average in-
crease of immune cells is much higher, and concentrations do not return to the pre-trigger
steady state. In the post-trigger steady state, immune cell concentrations are much higher
than in healthy individuals (see bottom row in Figure 27). In addition, the epithelial bar-
rier state variable is epi < 1, describing the reduced integrity of the epithelium that leads
to constant bacterial inflow into the LP, resulting in bacteria levels in LP higher than in
healthy individuals. Note that the concentration of bacteria in LP decreases after the first
peak, but is higher in post-trigger steady state than in pre-trigger or healthy steady state.
In some virtual patients, the tissue state variable is tissue > 1, representing fibrosis.

For the following analyses, we only considered healthy individuals and IBD individuals.
The fraction of IBD individuals in the virtual population (3.1 %) depends on σ and was
on purpose designed to be higher than the reported prevalence of 0.3 % [2]. The reason
was that we intended to make sure not to miss out on extreme values for some parameters
potentially leading to IBD.

4.2 Evaluation of the model representation of IBD by comparison with lit-
erature

Figure 28 shows a comparison of selected LP cell type concentrations with literature.
As absolute concentration values of cells in human healthy and diseased LP are rarely
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Figure 26: Time course of mucosal injury in the different classes. Concentrations
of bacteria and selected immune cells in LP and barrier state variables (unitless) over
time in response to mucosal injury at time point t = 0. Note the different y-axis scale for
bacteria for chronic infection. Median (solid line) and 90 % variability in virtual popula-
tion (area). The distribution of pre-trigger and post-trigger steady-state concentrations
of the shown immune cells and bacteria are also shown in Figure 27.
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Figure 27: Pre-trigger and post-trigger steady-state concentrations in healthy
and IBD individuals. Boxplots show the median (central line), 25th and 75th per-
centiles (box) and the most extreme data points not considered outliers, i.e. not more
than 1.5 times the inter-quartile range from the box (whiskers), for the distributions of
LP concentrations of T helper cells, macrophages, neutrophils and bacteria before (pre-)
and after (post-) the trigger in the virtual populations of healthy and IBD individuals.

reported in literature, we compared to an analysis of fractions of the different cell types in
UC patients and healthy controls [171]. For this, we calculated for the different cell types
analysed by Xue et al. (2021) [171] (corresponding to sums of state variables simulated by
our systems biology model) the fractions from the total simulated LP cell concentrations.
As Xue et al. [171] reported also additional cell types that were not simulated by our
systems biology model (e.g. B cells), we adapted their reported fractions of those cell types
also simulated by our systems biology model to also sum up to 1. In Figure 28, we show the
simulated and literature-reported [171] fractions for healthy and IBD individuals (post-
trigger steady state). The shown literature data were not used for model development
or generation of the virtual population. Comparing the fractions in healthy individuals
(green) between simulation (left) and literature (right), we observed an over-prediction of
T cell activation, i.e. fractions of activated memory T cells and regulatory T cells were
simulated higher, and the fraction of resting memory T cells was simulated lower than the
respective literature values. In addition, fractions of anti-inflammatory (M2) macrophages
and activated dendritic cells are lower in simulations compared to literature. Despite those
differences, the simulated changes of fractions from healthy to IBD largely agree with the
changes in the literature values, as can be seen by comparing the grey trend lines between
simulated (left) and literature-reported (right) healthy and IBD fractions. This confirms
that the model representation of IBD is in high accordance with real-life IBD phenotype
and therefore increases confidence in the presented systems biology model.



96 4 Simulation and analysis of IBD using a virtual population

T
ce

ll
s

C
D

4
m

em
or

y
re

st
in

g

T
ce

ll
s

C
D

4
m

em
or

y
ac

ti
va

te
d

T
ce

ll
s

re
gu

la
to

ry

M
ac

ro
p

h
ag

es
M

1

M
ac

ro
p

h
ag

es
M

2

D
en

d
ri

ti
c

ce
ll

s
re

st
in

g

D
en

d
ri

ti
c

ce
ll

s
ac

ti
va

te
d

N
eu

tr
op

h
il

s

0

0.2

0.4

0.6

0.8

1
healthy simulated
IBD simulated
healthy literature
IBD literature

Figure 28: Post-trigger steady state concentrations in healthy individuals and
IBD patients, in comparison with literature data. Means of simulated (circles) and
literature-reported (squares) fractions of different LP cell types (corresponding to sums
of state variables in the model simulations) for the populations of healthy (green) and
IBD (red) individuals, with standard deviation. Grey trend lines highlight the changes of
the fractions between healthy and IBD. Literature values taken from Xue et al. (2021),
Supplementary table 10 [171], reporting the fractions in UC patients and healthy controls.

4.3 Comparison of parameters to detect IBD predispositions

In Section 4.1, we have generated a virtual population of individuals, where most indi-
viduals show a healthy immune response to the mucosal injury trigger, but some develop
IBD. As we only defined healthy and IBD individuals based on their phenotype, we do
not know the reason for these different reactions to the mucosal injury trigger yet. As
our virtual individuals are defined by sets of parameters, the cause for the development
of IBD must be due to parameter differences. To find these parameter differences, we
compared parameters between healthy and IBD individuals. We expected that the cause
of the disease could be either in a change of (i) a single parameter or (ii) a combination
of parameters. Parameter differences identified for our novel systems biology model could
then be translated to predispositions or risk factors for IBD and give valuable insight into
IBD pathogenesis.

We compared the distributions of all parameters between healthy and IBD individ-
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Figure 29: Comparison of parameter distributions between healthy individu-
als and IBD patients. Histograms show the parameter value distributions for the
six parameters with highest Kolmogorov-Smirnov test statistic D (testing for difference
between healthy and IBD), for healthy (green) and IBD (red) individuals. Green and
red vertical lines indicate the corresponding population medians; the black line indicates
the reference value (mostly overlying the healthy median). Outliers (values above 1.5
times the 95th quantile) were removed to improve readability of the plot. Kolmogorov-
Smirnov test statistic D. Parameter “Mpro,a(,dep) → cytopro,deact,M” refers to the weight
of pro-inflammatory macrophages in the production of cytokines inhibiting macrophage
deactivation.

uals. To quantify the difference between the two distributions, we used the two-sample
Kolmogorov-Smirnov test. The test statistic D of the two-sample Kolmogorov-Smirnov
test is the maximum absolute difference between the cumulative density functions of the
two sample distributions (Matlab function kstest2), i.e. a value between 0 and 1, where
0 means the two distributions are similar, and 1 means that there is a clear threshold
between the two distributions where all parameter values of one distribution are below
and all of the other distribution are above the threshold.

In Figure 29 we show the parameter distributions for the six parameters with high-
est Kolmogorov-Smirnov test statistic D, indicating largest difference, i.e. potentially
strongest correlation to the outcome (healthy or IBD). The corresponding p-values for
the Kolmogorov-Smirnov test are very low for a wide range of parameters (p < 0.01 for
59 % of parameters). This means that there seems to be a strong correlation of more
than half of the parameter distributions with the outcome (healthy vs IBD), although
the corresponding correlations may be very small and therefore may not be clinically
significant.

Four of the six parameters with strongest correlation to the outcome are Hill factors
(h). Those Hill factors determine how sensitive the reaction rate is to a change in the
cytokine concentration driving this reaction. They have a large potential to favour the
switch between asymptomatic and chronically inflamed steady states that we see in IBD
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individuals (the different pre-trigger and post-trigger steady states), as a larger Hill factor
results in a larger difference in reaction rates for small changes in the cytokine concentra-
tion. Since Hill kinetics are often used as an empirical simplified model for a saturable,
cooperative process (as in our case), the physiological interpretation of Hill factors beyond
“sensitivity” is difficult. In our model, we used Hill kinetics for all reactions influenced by
pro- and/or anti-inflammatory cytokines (i.e. recruitment, activation and deactivation).
Due to lack of detailed knowledge on the cooperativity of those reactions, most Hill fac-
tors were set to 1, i.e. no cooperativity, in the reference individual. The Hill factors were,
however, still included in the model to allow for cooperativity in individuals of the virtual
population, as we could not exclude that they may be important. This analysis showed
that Hill factors are indeed potentially very important for the development of IBD in our
virtual population. Among the parameters that are strongly correlated with the disease,
five out of six relate to macrophages. This suggests an important role of macrophages
for the development of IBD, which again is in line with extensive reports in literature
[52, 172].

4.4 Disease-relevant parameter changes for IBD

Next we analysed which parameters led to the disease in single patients, i.e. if a single
parameter change compared to the healthy reference individual was sufficient, or if a
combination of parameter changes was needed, and if, which combinations could elicit
the disease.

In every virtual IBD individual, all parameters differ more or less from the reference
individual, as variability was included in all parameters. We aimed at finding those param-
eter changes that are crucial to elicit IBD in an individual, i.e. those parameter changes
without which the individual would be healthy. That means, for each IBD individual, we
determined the combination of parameter changes that led to the development of IBD
(termed “disease-relevant parameter changes” in the following). See Section 9.6 for the
derivation of disease-relevant changes.

Figure 30 shows the distribution of the number of disease-relevant parameter changes
per IBD individual. This number ranged from 1 to 60 in our virtual IBD population
(22,252 individuals), with a mean of 4.54 and median of 4 disease-relevant parameter
changes.

Parameter changes that are most frequently disease-relevant. Figure 31 shows the ten
parameters that are most frequently among the sets of disease-relevant parameter changes.
Those are largely correlated with those parameters identified to be most different between
healthy and IBD individuals in the previous section, and are related to very different cell
types and processes of our systems biology model, which emphasises the complexity of the
disease development due to changes in different parts of the mucosal immune system. Of
note, each parameter of the model was at least once among the disease-relevant parameter
changes of an IBD individual.

By far the most frequent parameter among the disease-relevant parameter changes
was hpro,deact,M. hpro,deact,M is the Hill factor for the pro-inflammatory cytokine concen-
tration cytopro,deact,M in the deactivation of macrophages, i.e. it describes how sensitive
the macrophage deactivation rate is to a change in the pro-inflammatory cytokine con-
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Figure 30: Distribution of the number of disease-relevant parameter changes
per IBD individual. For details, see description in Section 4.4.
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Figure 32: Extent of disease-relevant parameter change versus number of
disease-relevant parameter changes. Each cross marks for one IBD individual the
average extent of disease-relevant parameter changes vs the number of disease-relevant
parameter changes.

centration. This seems to have a high influence on IBD development. However, although
disease-relevant in 67.9 % of the IBD individuals, this parameter is not absolutely required
to develop the disease, as the other 32.1 % developed IBD without this parameter change.
hpro,deact,M is also the only parameter that we identified to be able to cause IBD on its
own. See Section 9.7 for a more detailed analysis of hpro,deact,M.

Extent of disease-relevant parameter changes for IBD. Figure 32 shows for each IBD
individual the average extent of its disease-relevant parameter changes and its number
of disease-relevant parameter changes. We observed a negative correlation between the
average extent and the number of disease-relevant parameter changes. This means that
the development of IBD in our virtual population can result from both a small number
of large parameter changes or a higher number of small parameter changes.

Combinations of disease-relevant parameter changes for IBD. In the previous section,
we have seen that IBD in our virtual population, with very few exceptions, develops due
to a change in several parameters. This leads to the question whether there are frequent
combinations of parameter changes that can be observed in a large number of IBD individ-
uals, and that we could use to stratify the IBD population into subgroups of individuals
that are very similar to each other, as their disease is caused by the same combination of
parameter changes (i.e. physiologically interpretable as a common combination of predis-
positions).

The most frequent combination of two disease-relevant parameter changes (on their
own or together with other parameter changes) was hrec,M and hpro,deact,M, in 22.3 % of
the IBD individuals. The most frequent combination of three disease-relevant parameter
changes (on their own or together with other parameter changes) was hrec,M, hpro,deact,M

and hanti,deact,M, in 5.7 % of the IBD individuals. The small percentages show that the
IBD individuals can not be easily grouped into large subgroups with similar combinations
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of parameter changes, and the population is rather very heterogeneous regarding their
individual combinations of disease-relevant parameter changes.

Processes affected by disease-relevant parameter changes for IBD. To analyse the IBD
development in more detail, we next determined, which processes were most frequently
affected by disease-relevant parameter changes. The aim was to get a better understand-
ing of which cell types and processes have the potential to influence disease development.
To this end, we stratified the parameters based on the processes (or cell types) they af-
fect: bacteria, neutrophils, macrophages, dendritic cells, T cells, phagocytosis, resolution,
barrier and other. With 93.1 % of IBD individuals, parameters affecting macrophages are
most often among the disease-relevant parameter changes. Parameters affecting T cells
(54.5 %) and dendritic cells (46.1 %) each are also among the disease-relevant parameter
changes in about half of the cases, whereas bacteria (17.5 %), neutrophils (9.2 %), barrier
(6.0 %), phagocytosis (4.6 %) and resolution (4.3 %) are less often affected. Note that of
course every parameter does not only affect a single process/cell type, but does also have
indirect effects on the rest of the system.

As we were not successful in finding large subgroups of IBD individuals with the same
combinations of disease-relevant parameter changes, we next tried to find subgroups of
IBD individuals with the same combinations of affected processes. We could group 71.0 %
of the IBD individuals into five groups of combinations of affected processes. The largest
subgroup consisted of IBD individuals with only disease-relevant parameter changes di-
rectly affecting macrophages. Other large subgroups consisted of IBD individuals with
disease-relevant parameter changes affecting macrophages in combination with T cells,
or additionally in combination with dendritic cells, or additionally in combination with
bacteria. The fifth-largest subgroup consisted of IBD individuals where only T cells and
dendritic cells were affected, but not macrophages. This analysis again showed the very
important, but not exclusive, role of macrophages on IBD development.

In summary, the analysis of necessary parameter changes revealed the large heterogeneity
of our virtual population of IBD individuals. This aligns well with the heterogeneity in
clinical studies of IBD predispositions.

4.5 Comparison of the pre-trigger steady state to detect early biomarkers
for IBD

To draw conclusions on potential biomarkers for very early detection of IBD, we aimed at
identifying differences in steady-state concentrations between healthy and IBD individuals
before the outbreak of the disease (i.e. before the mucosal injury trigger). To this end,
we compared the distribution of all pre-trigger steady-state levels between healthy and
IBD individuals and quantified the difference between the two distributions using the
two-sample Kolmogorov-Smirnov test.

In Figure 33 we show the distribution of the six pre-trigger steady state variables
with highest Kolmogorov-Smirnov test statistic D, indicating strongest correlation to
the outcome (healthy or IBD). Although the correlations of the distributions with the
outcome (healthy vs IBD) were statistically significant for almost all pre-trigger steady
state variables, the differences between the distributions of healthy and IBD individuals
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Figure 33: Comparison of pre-trigger steady state distributions between healthy
and IBD individuals. Histograms show the pre-trigger steady state distributions for
the pre-trigger steady state variables with highest Kolmogorov-Smirnov test statistic D
(testing for difference between healthy and IBD), for healthy (green) and IBD (red) indi-
viduals. Green and red vertical lines indicate the corresponding population medians; the
black line indicates the reference value. Outliers (values above 1.5 times the 95th quantile)
were removed to improve readability of the plot. Kolmogorov-Smirnov test statistic D.

were very small, as can be seen in the plot, where only the distributions with largest
correlation to the outcome are shown, and even then only small differences between the
distributions can be observed. Unfortunately, those comparisons do not allow to draw
any conclusion on potential biomarkers for detection of IBD before the outbreak of the
disease.

The differences in pre-trigger steady state could, however, give some more insight into
the disease: The largest differences were observed in regulatory T cells (both fully differ-
entiated and proliferating) and pMHCII-depleted tolerogenic dendritic cells and macro-
phages (i.e. inhibited by regulatory T cells). This emphasises the role of regulatory T cells
and the anti-inflammatory role of macrophages for IBD in our virtual population, which
is in line with many studies in literature describing the importance of those cell types for
IBD [118, 172–174].

4.6 Prediction of IBD based on selected parameters and pre-trigger state
variables

As we saw in the previous sections, we could not determine a priori if an individual
develops IBD based on single parameters or pre-trigger steady-state levels. In this sec-
tion, therefore, we aim at predicting the development of IBD based on combinations of
parameter values or pre-trigger steady-state levels (without solving the ODEs). In ad-
dition, we want to reduce the number of parameters/state variables (i.e. features) used
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for this prediction to find the best predictors of disease. This is called feature selection.
See Section 9.8 for a short introduction to classification and feature selection, and for
a comparison of different classification methods tested on our datasets of parameters or
pre-trigger steady-state values. We determined linear discriminant analysis (LDA), which
has an embedded method for feature selection, to be the best suited classification method
for our analysis.

In Figure 34, the performance (i.e. fraction of correctly classified individuals) depen-
dent on the number of features is shown for the different datasets of parameters or pre-
trigger steady-state variables. For each of those datasets, we used two different versions:
including all virtual IBD individuals (blue line); or, using a virtual analog of the disease
score CDEIS (described in Section 9.10 in the appendix), excluding patients with low dis-
ease activity, defined by CDEIS < 6, to increase the difference between IBD and healthy
individuals (violet line). In addition, for pre-trigger steady-state variables, we reduced
and summarised the state variables to include only measurable state variables (red and
green lines). Each dataset contained the same number of IBD and healthy individuals.
Table 5 gives for each of those datasets the linear models including one, two and three
features. For more details and interpretation, see the following paragraphs.

Feature selection based on parameters. Comparing distributions of single parameters (see
Section 4.3) did not yield a means to directly identify healthy and IBD individuals based
on parameter values. Therefore we used LDA to find a combination of parameters that
can be used for classification of individuals into healthy and IBD individuals. Using all
parameters in a linear model resulted in a performance of 87 % of correctly classified indi-
viduals. The best predictors identified by the LDA were hpro,deact,M, hrec,M and hpro,act,DC,
resulting in 71, 73 or 76 % correctly classified if used alone, two together or all three to-
gether, respectively. When excluding IBD individuals with low disease activity, i.e. only
including those with CDEIS > 6, the performance was even higher, resulting in 91 %
correctly classified using all features or 79, 80 or 82 % correctly classified using only one,
two or three features, respectively, and the best predictors were hpro,deact,M, λM,max and
hrec,M. Those four parameters (hpro,deact,M, hrec,M, λM,max, hpro,act,DC) were already identi-
fied as most important parameters for development of IBD based on differences between
parameter distributions of healthy and IBD individuals (see Section 4.3) and based on
disease-relevant parameter changes (see Section 4.4). In summary, the linear models al-
lowed for a good classification based on parameters values. However, as (most) parameter
values can not be measured in humans, this result is only interesting with regards to the
theoretical analysis of differences between IBD and healthy individuals, but can not be
used to classify real-life individuals.

Feature selection based on pre-trigger state variables. As pre-trigger steady state vari-
ables, in contrast to parameter values, are at least to some degree measurable in real-life
individuals, we also performed a LDA using the pre-trigger steady-state values as features.
Compared to using parameters as features, the performance was substantially lower; only
67 % of individuals could be correctly classified using all features. Surprisingly, excluding
IBD individuals with low disease activity did not improve the performance. When only
using measurable state variables (i.e. excluding state variables that are not be expected
to be measurable in real-life patients or pooling state variables describing different sub-
sets of a cell type), the performance was only 60 % correctly classified individuals, i.e.
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Figure 34: Performance of linear models dependent on number of included
features. Performance, given as fraction of correctly classified individuals, over number
of features included in the linear model, for datasets containing parameters or pre-trigger
steady state variables, including all IBD individuals or only IBD individuals with CDEIS
> 6, using all features or only measurable features. All datasets contain in addition the
same number of healthy individuals as IBD individuals. Dashed lines indicate the highest
performance per dataset, i.e. including all features.
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Table 5: Linear models. For each dataset from Figure 34, top and middle row, we give
three linear models including one, two or three features and the resulting performance
(Perf., fraction correctly classified). The linear model is applied to an individual by
substituting the values for the features; if the result is > 0, the individuals is classified as
IBD individual, otherwise it is classified as healthy individual. In some cases, adding a
feature did not improve the performance, only in combination with a second added feature.
In this case, we show the next higher number of features. Features (state variables and
parameters) are coloured blue to improve readability.

Dataset Linear model Perf.

Parameters

all features/
all patients

−3.01 + 2.28 · hpro,deact,M 0.71
−4.36 + 0.678 · hrec,M + 2.08 · hpro,deact,M 0.73
−6.11 + 1.28 · hpro,act,DC + 0.713 · hrec,M + 2.18 · hpro,deact,M 0.76

all features/
CDEIS > 6

−4.54 + 3.21 · hpro,deact,M 0.79
−6.51 + 1.53 · 10−6 · λM,max + 3.29 · hpro,deact,M 0.80
−6.94 + 1.19 · 10−6 · λM,max + 0.619 · hrec,M + 2.84 · hpro,deact,M 0.82

Pre-trigger
steady state

all features/
all patients

−0.219 + 2.93 · 10−7 · tDCdep,LP 0.62
0.0351 + 2.56 · 10−7 · tDCdep,LP − 0.0766 · SPM 0.63
0.261 + 2.28 · 10−7 · tDCdep,LP − 1.18 · 10−8 ·MP4,a

− 9.78 · 10−7 ·Meffero − 0.0699 · SPM
0.63

all features/
CDEIS > 6

−0.178 + 2.52 · 10−7 · tDCdep,LP 0.59
0.0384 + 2.7 · 10−7 · tDCdep,LP − 0.076 · SPM 0.60
0.176 + 2.31 · 10−7 · tDCdep,LP− 1.31 · 10−6 ·Meffero− 0.0629 · SPM 0.61

measurable/
all patients

−0.0993 + 4.39 · 10−9 · Th1tot 0.56
−0.389 + 4 · 10−8 ·DCtot,LP + 4.4 · 10−9 · Th1tot 0.56
−0.32−4.3 ·10−8 ·Neut+4.06 ·10−8 ·DCtot,LP +6.11 ·10−9 ·Th1tot 0.58

measurable/
CDEIS > 6

−0.108 + 4.98 · 10−9 · Th1tot 0.54
0.136− 2.92 · 10−8 ·Mpro + 6.15 · 10−9 · Th1tot 0.55
−0.135+3.37·10−8 ·DCtot,LP−2.36·10−8 ·Mpro+5.14·10−9 ·Th1tot 0.56
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only slightly higher than the 50 % correctly classified individuals that are expected by
chance. Nevertheless, the identified best predictors can still give valuable information on
the development of the disease: As already identified based on differences between pre-
trigger steady state distributions of healthy and IBD individuals (see Section 4.5), the
best predictors using all pre-trigger steady state variables (tDCdep,LP, SPM, Meffero and
MP4,a) emphasise the importance of anti-inflammatory and pro-resolving mechanisms on
the disease development. The best predictors using only measurable pre-trigger steady
state variables (Th1tot, DCtot,LP, Mpro, Neut) show again the interplay of different cell
types and processes in this complex disease.

We conclude that (i) classification into healthy and IBD individuals using LDA based on
parameter values is feasible with reasonably good performance (87 % correctly classified),
but classification based on pre-trigger steady-state variables is much less reliable (67 %
correctly classified); and (ii) parameters and state variables identified as important by
the LDA are in the main the same as identified by the comparison of parameter and
pre-trigger steady-state distributions between healthy and IBD individuals.

4.7 Subclasses of IBD individuals based on required trigger extent

In our virtual population, we triggered IBD by a complete mucosal injury, i.e. setting the
values for epi and tissue to 0. However, it is also of interest, which amount of mucosal
injury is needed to trigger the disease, if this required mucosal injury differs between
different virtual IBD individuals, and how the amount of required mucosal injury might
correlate with predispositions and severity. For this, we simulated the response of each
IBD individual (defined by elicitation of disease after the highest mucosal injury trigger,
i.e. epi = tissue = 0, see Section 4.1) to different extents of mucosal injury. We used
identical levels of destruction of epi and tissue and a step-size of 0.1. We observed that
some individuals only developed the disease after a strong trigger (i.e. epi and tissue
set to very low values), whereas other individuals developed the disease also in response
to a very small trigger (i.e. epi and tissue set to values close to 1). Interestingly, in
almost all IBD individuals (> 99.9 %), the post-trigger steady state is independent of the
extent of mucosal injury, i.e. there is only one inflamed steady state per patient; after
any mucosal injury trigger, the IBD individual either reaches its inflamed steady state
or its asymptomatic (pre-trigger) steady state. We then classified the IBD individuals
based on their minimally required extent of mucosal injury to elicit the disease: Type 1
for a minimal required trigger of epi = tissue = 0.9, type 2 for a minimal required trigger
of epi = tissue = 0.8, ... , type 10 for a minimal required trigger of epi = tissue = 0.
(Naturally, the minimal required trigger is a continuous variable, which we discretised
here to obtain groups of IBD individuals for comparison.) To illustrate the different IBD
types, Figure 35 shows the time courses of two exemplary virtual IBD individuals (named
patient A and patient B) after a high mucosal injury trigger (epi = tissue = 0) and a
lower mucosal injury trigger (epi = tissue = 0.5). Patient A, which has IBD type 8, only
develops the disease after a relatively high trigger (epi = tissue ≤ 0.2) so that in Figure 35
the disease is only elicited after the high trigger, but not after the lower trigger. Patient B,
which has IBD type 3, only requires a lower trigger to elicit the disease (epi = tissue ≤ 0.7)
so that in Figure 35 the disease is elicited after both tested trigger extents. Note that
patient B’s post-trigger steady state is the same after the two different trigger extents
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eliciting the disease. As shown in Figure 36, lower types (lower extent of trigger required)
are more frequent in the population than higher types (higher extent of trigger needed).

Figure 37 shows the median time course of bacteria, epithelium, tissue, T helper
cells, macrophages and neutrophils for the different IBD types. Note that, of course,
there is variability between individuals of the same IBD type, which is not shown here.
By comparing the median, however, we can observe that there is a clear correlation
between IBD type and time course of epithelium, tissue, T helper cells, macrophages and
neutrophils. Epithelium and tissue tend to be repaired more slowly, but reaching a higher
level (i.e. less destruction) at steady state for lower types. T helper cell levels are on
average higher in lower IBD types. Macrophage levels tend to increase faster in lower
IBD types, but reach lower levels in steady state (note that the time frame shown in
Figure 37 does not show the steady state in all individuals, i.e. median macrophage levels
of high IBD types still increase at 150 days post trigger). Post-trigger neutrophil steady-
state levels are lower in lower IBD types. For the higher IBD types we observed that
the average individuals tend to take longer to reach the post-trigger steady state than for
lower IBD types, that the epithelium and tissue values first rise and then decrease again
and the neutrophil levels first decrease and then increase again, i.e. the inflammation first
seems to resolve, but then worsens again.

To have a closer look at the difference in the inflamed steady states (i.e. the post-trigger
steady state when the disease is elicited) between different IBD types, we calculated the
Pearson correlation coefficient ρ between the inflamed steady-state levels and IBD type
for all state variables. See Figure 56 in the appendix for the distribution of the six state
variables with largest correlation of IBD type to inflamed steady state value. Highest
correlation was observed for epithelium, tissue, and different macrophage subpopulations.
For those state variables, the inflamed steady-state levels were closer to the reference
(healthy) steady-state levels for lower IBD types. This was well in line with our previous
observation that lower IBD types seemed to correlate with less tissue destruction and
inflammation.

Correlation of parameter value with IBD type was highest for hpro,deact,M (ρ = 0.16),
µM (ρ = −0.11) and hrec,M (ρ = 0.10); see Figure 57 in the appendix for the distributions.
These parameters were among the parameters previously identified to be most correlated
with the development of disease (see Section 4.3).

Finally, we analysed whether the disease is less severe for IBD type 1, in terms of
the CDEIS, a score for the severity of CD (described in Section 9.10 in the appendix).
Indeed, the distribution of CDEIS values was lower for lower IBD types, especially for
type 1, as can be seen in Figure 38. In clinical studies, a CDEIS value of 4 is a frequently
used threshold for mucosal healing [175]. In Figure 38 we see that approximately half of
our virtual patients of IBD type 1 have CDEIS values below 4, whereas only about one
quarter of the virtual patients of IBD types 5 to 10 have CDEIS values below 4.

We conclude that in our virtual population, IBD individuals differ in the extent of trigger
required to elicit the disease. The extent of required trigger correlates with parameter
values, inflamed steady-state levels and severity of the disease. IBD individuals with
higher required trigger tend to develop more severe disease. In a physiological interpre-
tation, we expect the extent of required trigger to be inversely related to the number of
flares, i.e. when a lower trigger is needed, a flare can be more easily elicited and flares
will occur more frequently. Then, the number of flares and the severity of disease would
also be inversely related, i.e. patients with more flares tend to develop less severe disease,
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Figure 35: Exemplary time courses in response to different mucosal injury
extents. Concentrations of bacteria and selected immune cells in LP and barrier state
variables (unitless) over time in response to two different mucosal injury extents at time
point t = 0. Top rows: high trigger, i.e. epi = tissue = 0. Bottom rows: lower trigger, i.e.
epi = tissue = 0.5.
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Figure 36: Distribution of IBD types. Histogram of IBD types in the virtual IBD
population. The IBD type is defined by the minimally required extent of mucosal injury
to elicit the disease, where a lower IBD type (e.g. type 1) requires less mucosal injury
(e.g. epi = tissue = 0.9).
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Figure 37: Time course of mucosal injury for different IBD types. Concentrations
of bacteria and selected immune cells in LP and barrier state variables (unitless) over time
in response to mucosal injury at time point t = 0. To compare the different types, we
show the reaction to the highest trigger (epi = tissue = 0). Compare Figure 26 (2nd row)
for the time course of the total IBD population. The lines show the median time course
of the different IBD types: Type 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
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Figure 38: CDEIS distribution among IBD types. Violin plots (showing median,
quartiles, and the density function) for CDEIS per IBD type. Type 1, 2, 3, 4, 5, 6, 7, 8,
9, 10. Black line indicates CDEIS = 4, which is a frequently used threshold for mucosal
healing.

whereas patients with less flares tend to develop more severe disease. This is, however,
only a general trend, and does not hold for all patients, as the IBD population is very
heterogeneous and also includes patients with high amount of required trigger (i.e. fewer
flares) and mild disease and patients with low amount of required trigger (i.e. more flares)
and severe disease.

Interestingly, this finding in our virtual population is in contrast to the finding of
a large internet-based survey [176] that asked patients about their flare frequency and
severity and found a positive correlation between frequency and severity. However, as the
CDEIS distribution in Figure 38 shows, a lot of the virtual patients of IBD type 1 have very
low CDEIS values (note that CDEIS refers to the inflamed steady state, i.e. during a flare),
which means that those would probably not be diagnosed as IBD patients in clinics, as they
would probably have no or very few/low symptoms. When we consider only virtual IBD
individuals with CDEIS> 4, the difference in CDEIS distribution between the IBD types
is much smaller. While the model includes important processes of the mucosal immune
system, it does not, however, include individual difference in perception or intensification
of the disease. In addition, the model does not include disease progression so far. This
has to be taken into account when comparing survey data with model predictions.

From a model perspective, we observed that all our virtual IBD patients have (at
least) two steady states: the asymptomatic pre-trigger steady state and the inflamed
steady state (post-trigger steady state for at least the highest trigger epi = tissue = 0).
The patients, however, differ in the amount of disturbance required to switch from the
asymptomatic steady state to the inflamed steady state (different IBD types). The switch
from the inflamed steady state back to the asymptomatic pre-trigger steady state will be
the subject of the next chapter (Chapter 5 about treatment of IBD).

4.8 Conclusion

In this chapter, we described the successful generation of a virtual population of healthy
and IBD individuals. We want to especially emphasise that we defined IBD only pheno-
typically, without any a-priori assumptions on parameter differences between healthy and
IBD individuals. This is in contrast to the approach taken by many other computational
disease models (e.g. [24, 28]), where single parameters are changed to describe the disease



4.8 Conclusion 111

or where differences between healthy and diseased subjects are limited to a pre-specified
set of parameters. For a complex, heterogenous disease such as IBD, our approach is
preferable as (i) a high level of unknowns in the disease development make it impossi-
ble to correctly foresee the disease-eliciting parameters, and (ii) it simultaneously allows
to draw valuable conclusions and hypotheses on causes and development of the disease.
Our novel systems biology model, which was only based on literature from the healthy
mucosal immune response, not including IBD-specific information, in itself contains the
ability to also describe IBD as result of variability, where the resulting IBD individuals
show convincing similarities to real-life IBD patients.

Analysis of the parameter distributions of healthy and IBD individuals revealed signif-
icant differences, which were most pronounced in Hill factors and in parameters relating
to macrophages. We could not detect a single parameter or simple parameter combination
that allows for definite discrimination between healthy and IBD individuals—this is in
line with the known heterogeneity in the development of the disease. Prediction of dis-
ease based on parameter values was possible with 91 % precision using a high number of
different parameters, and with > 70 % precision using only 1-3 parameters. The analysis
of disease-relevant parameter changes revealed that also only one parameter change is
able to elicit the disease on its own, and that in general either a small number of large
parameter changes or a higher number of small parameter changes are needed to elicit
the disease. The identified most frequently changed parameters in IBD individuals were
related to many different processes, which emphasises how different processes of the mu-
cosal immune response can be involved in the development of this highly complex disease.
Although this parameter comparison is useful to get insights on the pathogenesis of the
disease, it can, however, not be used for identification of IBD patients, as parameter values
can in general not be clinically measured.

Analysis of the pre-trigger steady-state distributions in healthy and IBD individuals
showed only small differences. In addition, a LDA confirmed that prediction of IBD based
on pre-trigger cell concentrations is limited.

IBD individuals of our virtual population differed in the extent of the mucosal injury
trigger required to elicit the disease. This required extent also correlated with parameter
values, inflamed steady-state levels and severity of the disease (measured by a virtual
analog of the CDEIS disease score), where a higher needed extent correlated with more
severe disease.

In summary, we obtained and characterised a very heterogenous virtual population
of IBD individuals, with many convincing similarities to available literature reports on
development and phenotype of IBD in real life. This virtual population is a good basis
for evaluation of existing and potential new treatment options for IBD, as described in
the next chapter.
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5 Implementation and analysis of different
treatment effects

The aims of this chapter are to describe virtual IBD patients’ time courses in response to
different treatment effects based on our novel systems biology model and the virtual IBD
population generated in the previous chapter. From the virtual treatment of virtual IBD
patients, we aim at drawing conclusions and to generate hypotheses on possible reasons
for non-response or relapse of some patients by comparing responders, non-responders
and relapsing patients in terms of the different implemented treatment effects and pre-
treatment (i.e. inflamed steady-state) cell levels.

We will first give a general introduction to our approach for virtual study simula-
tions and translation of model results to clinical study outcomes, followed by the general
description of implementation of treatment, and detailed descriptions of the specific im-
plemented treatment effects. Then we will describe the resulting response in our virtual
population, and the analysis of non-response and relapse.

5.1 Virtual study simulation

For the simulation of the response of a specific virtual IBD individual to a treatment
effect, the initial values were set to the pre-treatment steady state, i.e. the post-trigger
steady state of the specific IBD individual. Then the parameters were adapted to account
for the treatment as described below and the time course was simulated for the treatment
duration. Using the predicted states at the end of the treatment duration as initial values,
the further time course without treatment effect was simulated until a steady state was
reached, i.e. the post-treatment steady state.

To calculate response rates from individual time courses, a means of translation of
the individual immune cell concentrations and state variables to an outcome parameter
defining response is required. In clinical studies, different disease scores are in use to
define response to treatment. One of the most commonly used disease scores is the
Crohn’s disease endoscopic index of severity (CDEIS), which evaluates the disease state
based on an endoscopic examination of different segments of the colon [177]. To retain
comparability of our virtual studies to clinical studies, we designed a virtual CDEIS analog
based on model variables. For more details, see Section 9.10 in the appendix. Using this
method, the virtual CDEIS analog (called CDEIS in the following) can be calculated for
every time point (before, during or after treatment). Then, using the CDEIS, we defined
a (binary) response using a threshold for the CDEIS.

We used the CALM study design (Colombel et al., 2017 [175]) as a guiding example
of a clinical study in IBD patients, and defined our virtual IBD study population and the
response threshold accordingly: According to the inclusion criteria, only IBD individuals
with CDEIS > 6 were included, which resulted in a virtual IBD study population of 13.421
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subjects (i.e. 60.1 % of the 22.252 subjects in the full virtual IBD population as defined in
the previous chapter). Response was defined as CDEIS < 4 at end-of-treatment (EOT).
For a specific treatment effect, the response rate is thus defined as:

response rate = % IBD individuals with CDEIS < 4 at EOT

In addition, we calculated response at the post-treatment steady state; the relapse rate
is then given by the percentage of IBD individuals with CDEIS ≥ 4 at post-treatment
steady state among the responders. This relapse of virtual patients has to be treated with
caution, as it is not directly comparable to relapse of real patients after stop of treatment.
Relapse of real patients can occur in response to various reasons, non-sufficient treatment
effects, but also events or environmental stimuli triggering a new disease flare. Additional
events and environmental stimuli, however, are not accounted for in our virtual study
so that the relapse analysed here only describes relapse due to non-sufficient treatment
effects. Note that also relapse under treatment (i.e. initial response to treatment but loss
of response over time) can not yet be described by our model.

5.2 Implementation of treatment effects

In principal, drug effects can be implemented on all targets (e.g. parameters or con-
centrations) that are part of the model, using an additional parameter η on a specific
parameter or reaction rate. This parameter η is dependent on the drug concentration (i.e.
time-dependent), in many cases by

η(t) =
Ceffect(t)

KI + Ceffect(t)
.

To simulate response to a specific drug, therefore, we would need to know the drug con-
centration in the effective compartment over time Ceffect(t) and the drug concentration
resulting in half-maximal inhibition KI . As those data are rarely accessible, we simplified
by implementing the effects of groups of drugs with a shared target, called “treatment
effects” in the following, with a variable treatment effect extent parameter η. As those
groups of drugs would naturally not have the same pharmacokinetics (PK), we also sim-
plified with respect to PK, assuming a constant drug effect for a treatment duration of
24 weeks for all implemented treatment effects. This approach also allowed to analyse the
dependence of the response rate on the treatment effect extent parameter η. We would
like to emphasise, however, that with the knowledge of drug-specific PK and binding be-
haviour, a specific drug effect can easily be implemented in the presented systems biology
model.

Each constant treatment effect was implemented by a treatment effect extent param-
eter η, which specified the extent of the change of the affected parameters and/or rates
over the treatment duration. As the affected parameter(s)/rate(s) were multiplied by
(1− η) to incorporate the treatment effect, η = 0 means no treatment effect, η = 1 means
complete inhibition of the affected parameter(s) and η < 0 means stimulation or increase
of the affected parameter(s). Note that in one case (FMT), the treatment effect extent
parameter η was defined not as a relative change of the parameter, but as the respective
parameter itself.
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Implementation of the effects of specific treatments will be explained in the following
sections (Sections 5.3-5.9), including a short introduction to the mechanism of action
described in literature, our implementation in the model, and an interpretation of the
virtual study outcome in the context of clinical study outcomes. As the treatment effect
extent parameters cannot be directly derived from literature, we tested for each treatment
effect different treatment effect extent parameters η. To reasonably compare different
treatment mechanisms (see Section 5.10-6.2), we determined for each treatment effect the
treatment effect extent parameters η that resulted in 30 % and 50 % response rates in the
virtual IBD study population.

Figure 39 shows the simplified model scheme (Figure 1), including the targets of all
implemented treatment effects described in this chapter. Figure 40 shows the time courses
of the mucosal immune response for two exemplary virtual IBD individuals to two dif-
ferent treatment mechanisms (cytokine inhibitor and anti-cell adhesion treatment; see
Sections 5.3 and 5.4). Figures 41 and 42 show the response rates over the treatment effect
extent parameter η for the different implemented treatment effects. Note that, naturally,
not the full range of displayed treatment effect extent parameters is physiologically rele-
vant, and that the response rates per tested treatment effect extent parameter do not allow
to draw conclusions on comparison of achievable response rates of the different drugs, as
we do not know how easily the different treatment effect extents η can be achieved with
the available drugs. Figure 43 shows the relapse rates for the different treatment effects
for the treatment effect extent parameters resulting in 30 % and 50 % response in the
virtual IBD population.

5.3 Monoclonal antibodies targeting cytokines/cytokine production

Several different drug classes aim at decreasing pro-inflammatory cytokine levels, e.g.
monoclonal antibodies targeting tumour necrosis factor (TNF)-α (e.g. adalimumab, in-
fliximab), the IL-23 pathway (e.g. Ustekinumab inhibiting a subunit of IL-12/IL-23) or
IL-6 [14]. In addition, JAK inhibitors, small molecules inhibiting the Janus kinase (JAK),
part of the JAK-STAT pathway involved in the production of many different cytokines,
also result in a decrease in the production of several pro-inflammatory cytokines [14]. We
comprised all those different modes of action into one treatment effect, which is decrease
of pro-inflammatory cytokine concentrations (collectively called “cytokine inhibitors” in
the following). Note that potential other direct effects of the above mentioned drug
classes (e.g. anti-TNF-α monoclonal antibodies inducing T cell apoptosis via inhibition of
membrane-bound TNF-α) were neglected here. In the model, pro-inflammatory cytokines
are not further differentiated into different cytokines and are represented by a linear com-
bination of the cytokine-producing cell concentrations (see Section 2.14). The treatment
effect of cytokine inhibitors was implemented by reducing all cytokine production weights
for pro-inflammatory cytokines (i.e. cytokines acting in the processes of neutrophil re-
cruitment, macrophage recruitment, macrophage deactivation, dendritic cell activation,
damage to epithelium and damage to tissue; see Table 2) by the treatment effect extent
parameter η.

As shown in Figure 41 (top left), the response rate of the virtual IBD study population
to cytokine inhibitors increases with higher treatment effect extent parameters η, with
100 % response for η close to 1. Note that, however, η values close to 1 are neither
physiologically plausible (as this would include complete inhibition of all pro-inflammatory
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Figure 39: Simplified model scheme including targets of treatment effects.
Overview of the cell types that we included into the model, and their interactions. See Fig-
ure 1 for the legend. Grey arrows (stimulating or inhibiting) show the implementation of
different treatment effects (CI cytokine inhibitor, ACA anti-cell adhesion, S1PRM S1PR
modulator, PC orally administered phosphatidylcholine, FMT faecal microbial transplant,
TPI T cell proliferation inhibitor, ABX antibiotics).

cytokines of the mucosal immune response) nor clinically desirable (as a certain level
of pro-inflammatory cytokines is required to maintain normal activities of the mucosal
immune response). Treatment effect extent parameters η = 0.1456 and η = 0.2258 result
in response rates of 30 % and 50 % in the virtual IBD study population. The relapse rate,
see Figure 43, was moderate, e.g. 30 % for a response rate of 50 % and 39 % for a response
rate of 30 %. Note that, although the numbers are comparable, those simulated rates of
relapse after EOT can not be compared to the literature-reported clinical loss-of-response
rates of anti-TNF-α monoclonal antibodies under treatment (≈ 40 % [14]).

Obviously, the collective implementation of the effects of all drug classes described
above in the same way is a crude approximation, not accounting for the different modes of
action, different affected pro-inflammatory cytokines or additional effects beyond cytokine
inhibition. Nevertheless, our simulations show the potential of cytokine-inhibiting drugs
for the treatment of IBD. The implementation of the effect of a specific cytokine-inhibiting
drug into our systems biology model is feasible, but requires knowledge on the specific
targeted cytokines and on their respective contribution to the different cytokine-mediated
processes.
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Figure 40: Exemplary virtual patient time courses of treatment with cytokine
inhibitor or anti-cell adhesion treatment. Concentrations of bacteria and selected
immune cells in LP and barrier state variables (unitless) over time in two selected virtual
IBD patients (defined by their specific sets of parameters). The first 200 days show the
response to the mucosal injury trigger, resulting in an inflamed steady state. The following
24 weeks (yellow) show the response to the two different treatment mechanisms (cytokine
inhibitor or anti-cell adhesion treatment), i.e. initial values equal the post-trigger steady
state and parameters are modified according to treatment mechanism (η = 0.1456 for
cytokine inhibitor and η = 0.2610 for anti-cell adhesion treatment, corresponding to
response rates of 30 % in the virtual IBD study population). The last part of the time
course shows the post-treatment time course, i.e. initial values equal the EOT state with
no treatment effect on the parameter values.
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Figure 41: Response rate over treatment effect extent parameter η for different
treatment effects. Response rate at end-of-treatment (EOT) (violet) and in post-
treatment steady state (turquoise). (Note that for antibiotics the two curves overlap.)
The difference of the two response rates equals the percentage of patients that relapse. For
the S1PR1 modulator, only the response rate over the treatment effect extent parameter
ηegress is shown; see Figure 42 for the response rate over both treatment effect extent
parameters ηegress and ηTreg.
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Figure 42: Response rate over treatment effect extent parameters η for S1PR
modulators. The left plot shows the response rate over treatment effect extent param-
eter ηTreg for different treatment effect extent parameters ηegress (by colour). The right
plot shows the response rate over treatment effect extent parameter ηegress for different
treatment effect extent parameters ηTreg (by colour). Note that both plots show exactly
the same data points. In Figure 41, only the response rate over ηegress is shown, assum-
ing ηTreg = 0, i.e. the blue curve of the right plot shown here. For implementation and
interpretation of the two treatment effect extent parameters, see Section 5.5.

5.4 Anti-cell adhesion molecules

A further means to limit mucosal inflammation is the inhibition of the migration of im-
mune cells into the LP. This concept is used by anti-cell adhesion molecules (e.g. the
monoclonal antibodies vedolizumab, natalizumab or etrolizumab) that block specific in-
tegrins on the surface of immune cells. As those integrins are required for the adhesion
of immune cells to endothelial cells, integrin inhibition prevents adhesion to and sub-
sequent migration through the endothelium into the LP [14]. The treatment effect of
anti-cell adhesion molecules was implemented by reducing the inflow rate constants of
macrophages (constant λM,c and cytokine-dependent λM,max; see Section 2.8, paragraph
Recruitment), dendritic cells (λDC; see Section 2.9, paragraph Migration to LN ), and neu-
trophils (λNeut,max; see Section 2.7, paragraph Recruitment) into the LP and the inflow
rate constant of T cells (naive λTn and central memory λTcm; see Section 2.11, paragraphs
Naive T cells (LN) and Central memory T cells (LN)) into the LN. The extent of reduc-
tion was approximated to be the same for all described inflow rate constants, given by
the treatment effect extent parameter η.

As shown in Figure 41 (top middle), the response rate increases with higher η values,
up to ≈ η = 0.8, but for η > 0.7, long-term effects of the treatment decrease, i.e. higher
η values result in a lower percentage of responders that do not relapse after EOT. This is
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Figure 43: Relapse rates for different treatment effects. Percentage of responders
that relapse, per treatment effect, for the treatment effect extent parameters η that result
in 30 % (top) or 50 % (bottom) response rates in the virtual IBD population for each of
the treatment effects. Note that for the proliferation inhibitor 50 % response rate, and for
antibiotics 30 % and 50 % response rates could not be reached in the simulation, so that
no relapse rate could be given in this case.
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probably due to the fact that inhibiting T cell inflow also inhibits the beneficial regulatory
T cells. Treatment effect extent parameters η = 0.261 and η = 0.3785 result in response
rates of 30 % and 50 % in the virtual IBD study population.

5.5 Sphingosine-1-phosphate receptor modulators

Egress of T cells from the LN is mediated by sphingosine-1-phosphate receptor type 1
(S1PR1) on the T cells’ surface, see Section 2.11. S1PR modulators (e.g. fingolimod,
ozanimod, etrasimod) are small molecules down-regulating S1PR1, thereby inhibiting the
outflow of T cells out of the LN [14]. Another described effect of S1PR1 is suppression
of regulatory T cell development, so that S1PR modulators down-regulating S1PR1 lead
to higher regulatory T cell concentrations [178]. We separately implemented those two
different mechanisms: The treatment effect of inhibition of T cell egress from LN was im-
plemented by reducing the egress rate constant of naive and central memory T cells µT,LN

(see Section 2.11, paragraphs Naive T cells (LN) and Central memory T cells (LN)), and
of differentiated T cells (see Section 2.11, paragraphs Naive T cells (LN)) from the LN
by treatment effect extent parameter ηegress. The treatment effect of regulatory T cell ac-
tivation was implemented by increasing the effects of regulatory T cells (without directly
increasing regulatory T cell concentrations), i.e. by increasing the anti-inflammatory cy-
tokine production weights by regulatory T cells (relevant for the processes of macrophage
deactivation and dendritic cell activation; see Table 2) and the Treg-mediated pMHCII-
depletion of APCs (macrophages and dendritic cells in LP and LN). The extent of increase
was described by treatment effect extent parameter ηTreg, with ηTreg < 1.

Figure 42 shows the response rate in the virtual IBD study population over the treat-
ment effect extent parameters ηTreg and ηegress. The response rate increases for lower values
of ηTreg (i.e. for higher regulatory T cells increase). The response rate also increases for
higher values of ηegress, up to ηegress ≈ 0.95, but decreases for higher values of ηegress. This
is probably due to the fact that inhibition of T cell egress also includes inhibition of
regulatory T cell egress.

As the quantitative relation of the two treatment effects (inhibition of T cell egress
and activation of regulatory T cells) is unclear, and the main described effect in literature
is inhibition of T cell egress [14], we focused on the treatment effect of inhibition of T
cell egress in the following analyses, i.e. activation of regulatory T cells was neglected
(ηTreg = 0 and η = ηegress). For this scenario, the treatment effect extent parameters
η = 0.51 and η = 0.723 result in response rates of 30 % and 50 % in the virtual IBD study
population.

5.6 Orally administered phosphatidylcholine

Although the respective Phase III trial has been stopped, another interesting approach to
counteract mucosal inflammation in IBD is orally administered phosphatidylcholine [14].
Phosphatidylcholine is a main part of the mucus layer, which is increasingly destroyed in
IBD. We implemented this treatment effect as an increase in mucus production rate (see
Section 2.5) by treatment effect extent parameter η, with η < 0.

As shown in Figure 41 (middle left), where we evaluated an increased mucus production
rate of up to 2-fold (corresponding to η = −1), the response rate increases with lower
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η values, while the relapse rates after EOT are relatively low. Treatment effect extent
parameters η = −0.3292 and η = −0.4507 result in response rates of 30 % and 50 % in
the virtual IBD study population.

5.7 Faecal microbial transplant

The local milieu of commensal bacteria (microbiota) is known to highly influence the mu-
cosal immune response; among others the differentiation of T cells into different T helper
cell types (Th1, Th2 and Th17) are dependent on the bacteria providing the bacterial
antigen (see Section 2.12). Modification of the microbiota, e.g. via faecal microbial trans-
plant (FMT) (infusion of faecal solution from a healthy donor to the IBD patient), has
shown positive results in several studies [14].

See Section 2.12 for the implementation of the differential effects of the microbiota
composition on phagocytic cells and subsequent differentiation of T helper cells in our
systems biology model. In summary, the fractions of T helper cell types 1, 2 and 7
are determined by host-specific and bacteria-specific parameters, where both the host-
specific parameters and the bacteria-specific parameter define a distribution between the
three cell types, which are then combined into the resulting fractions. We implemented
the treatment effect of FMT by increasing the bacteria-specific fraction of Th2 induction,
where the treatment effect extent parameter η was defined as the fraction of Th2 (fractions
for Th1 and Th17 were set to 1−η

2
, each). As shown in Figure 41 (middle middle), the

response rate of the virtual IBD study population to FMT increases with higher treatment
effect extent parameters η, but is limited at 50 %. Treatment effect extent parameters
η = 0.721 and η = 0.945 result in response rates of 30 % and 50 % in the virtual IBD
study population.

5.8 T cell proliferation inhibitors

Some drugs used in treatment of IBD, e.g. the small molecule drugs azathioprine or
(among other discussed effects) methotrexate, use inhibition of T cells proliferation to
limit the mucosal inflammation [179–181].

We implemented the effect of T cell proliferation inhibitors by decreasing the T cell
proliferation rate constants pTn,1 and pTn,>1 (see Section 2.11) by the treatment effect
extent parameter η. As shown in Figure 41 (middle right), the response rate increases for
higher η values, but is limited at 41 %, i.e. in 59 % of the virtual IBD study population,
even complete inhibition of T cell proliferation does not result in response. Treatment
effect extent parameter η = 0.518 results in a response rate of 30 % in the virtual IBD
study population.

5.9 Antibiotics

Another approach in the treatment of IBD is the use of antibiotics, although data are
limited and controversial [14].

We implemented the treatment effect of antibiotics by decreasing the bacterial prolif-
eration rate constants in the intestinal lumen (pBact,Lu) and LP (pBact,LP) by the treatment
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effect extent parameter η.
As shown in Figure 41 (bottom left), the response rates in the virtual IBD study

population were very low (< 2 % for η ≤ 0.8, 12 % for η = 0.9, and numerical problems
for η > 0.9). This is, however, in accordance with the controversial data about success of
antibiotics treatment in IBD in clinical studies [14]. In addition, it has to be noted that
our simulations show the (low) effectiveness of giving antibiotics if the flare is already
present; it may be more effective at preventing flares, i.e. when given before the mucosal
injury eliciting the flare. Interestingly, we did not observe any relapse after EOT with
antibiotics.

5.10 Comparison of parameters between responders and non-responders

The high rates of non-responders observed in the treatment of real-life IBD patients pose
a large burden, both financially and for the individual patient, as in many cases several
treatments have to be tried before finding a successful treatment option. It would be
highly desirable to be able to a priori choose the treatment option with best chance of
success for a specific patient. To that end, we would need to know what determines success
of a treatment effect, i.e. what are the differences between responders and non-responders
to a treatment effect.

For each treatment effect, we compared the distributions of all parameters between
responders and non-responders, as described previously in Section 4.3. Table 6 shows for
each treatment effect the two-sample Kolmogorov-Smirnov test statistic D, testing for the
difference between responders and non-responders, for the 5 most different parameters.
For the simulation, for each treatment effect the treatment effect extent parameter η re-
sulting in 30 % response rate in the virtual IBD study population was assumed. (Note
that, therefore, antibiotics were not included in this analysis.) Assuming treatment effect
extent parameters η resulting in 50 % response rates in the virtual IBD study popula-
tions (data not shown) yields, with few small exceptions, the same lists of most different
parameters between responders and non-responders.

The shown parameters are those that best distinguish responders from non-responders,
i.e. that are most probably responsible for the success of a therapy. Overall, we observed
that macrophages seem to be important in describing the differences between responders
and non-responders, as parameters related to macrophages appear among the most dif-
ferent for all treatment effects. Especially for cytokine inhibitors and anti-cell adhesion
treatment, only parameters relating to macrophages appear among the most different. For
S1PR modulators, we observed T cell proliferation and death rate constants to be highly
influential, which is in accordance with their treatment mechanism of inhibition of T cell
egress from the LN. For orally administered phosphatidylcholine, also in accordance with
its treatment mechanism, in addition to parameters relating to macrophages, parameters
relating to the mucosal barrier destruction and bacterial death in the lumen appeared
among the most different. For FMT, we observed both parameters relating to macro-
phages and to T cells among the most different. Of special interest was the identified
parameter H1, which describes the host’s tendency to differentiate T cells into T helper
cells of type 1, as it is directly related to the treatment effect of changing the fractions
of T helper cell types. For proliferation inhibitors, in addition to macrophage-related pa-
rameters, we identified the T cell proliferation rate constant to be most important, which
also directly relates to the treatment mechanism. In summary, the connection between
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Table 6: Comparison of parameter distributions between responders and non-
responders. Kolmogorov-Smirnov test statistic D, testing for the difference in pa-
rameter distributions between responders and non-responders, for the 5 most different
parameters, for each treatment effect. Treatment effect extent parameters η resulting
in 30 % response rate in the virtual IBD study population were assumed. Parameter
“Mpro,a(,dep) → cytopro,deact,M” refers to the weight of pro-inflammatory macrophages in
the production of cytokines inhibiting macrophage deactivation. D = 0 indicates no
difference, i.e. perfectly overlapping distributions; D = 1 indicates maximal difference,
i.e. completely separated distributions. The corresponding p-values are p < 0.001 for all
shown parameters.

Cytokine inhibitor Anti-cell adhesion S1PR modulator

hpro,deact,M 0.18 λM,max 0.14 pTn,>1 0.45
µM 0.15 µM 0.14 hpro,deact,M 0.23
λM,max 0.11 hpro,deact,M 0.12 µT,prol 0.22
hrec,M 0.09 hrec,M 0.1 µT,LN 0.18
Mpro,a(,dep) →

cytopro,deact,M

0.07 Mpro,a(,dep) →
cytopro,deact,M

0.09 λM,max 0.12

Phosphatidylcholine FMT Proliferation inhibitor

µM 0.20 hpro,deact,M 0.25 hpro,deact,M 0.34
Fmax,epi 0.18 pTn,>1 0.24 pTn,>1 0.28
hpro,deact,M 0.11 Mpro,a(,dep) →

cytopro,deact,M

0.21 Mpro,a(,dep) →
cytopro,deact,M

0.26

µBact,Lu 0.10 λM,max 0.18 hpro,act,DC 0.25
λM,max 0.09 hrec,M 0.17 λM,max 0.19

the treatment targets and the identified most influential parameters for treatment success
was very prominent. As a result, the different treatment effects showed large differences
with regard to the most influential parameters, which could be a promising evidence that
different IBD individuals, characterised by different sets of parameters, might benefit from
different treatments.

5.11 Influence of disease-relevant parameter changes on response to treat-
ment

In addition to comparing the parameter distributions between responders and non-res-
ponders to the different treatment effects, we compared the disease-relevant parameter
changes (see Section 4.4) between responders and non-responders, with the aim to gain ad-
ditional insights into the differences between responders and non-responders with regard
to their individual disease-causing factors. For this analysis, we used for each IBD indi-
vidual of the virtual IBD study population its specific set of disease-relevant parameters,
as determined in Section 4.4. Figure 44 shows, for the 10 most frequent disease-relevant
parameter changes in the virtual IBD study population, the response rates in the sub-
populations where the respected parameters are or are not disease-relevant.

From this comparison we could draw conclusions on the influence of the disease-causing
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Figure 44: Response rates by disease-relevant parameter changes. Response rates
to the different treatment effects, for subpopulations of the virtual IBD study population
where specific parameters (on x-axis) are disease-relevant (red) or are not disease-relevant
(blue). The grey dashed line indicates the response rate of 30 % in the full virtual IBD
study population. Shown are the ten parameters that were most frequently disease-
relevant in the virtual IBD study population. The percentages in brackets of the x-axis
labels give the frequencies of the respective parameters to be disease-relevant in the full
virtual IBD study population.
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factors, i.e. the disease-relevant parameter changes, on the response to the different treat-
ment effects. If the red bar is higher than the blue bar, then the respective disease-relevant
parameter change is correlated with better response, i.e. patients for which this parame-
ter change is disease-relevant have better prospects of success to the respective treatment
effect. If the blue bar is higher than the red bar, then the respective disease-relevant
parameter change is correlated with worse response, i.e. patients for which this parame-
ter change is disease-relevant have worse prospects of success to the respective treatment
effect.

For most of the shown parameters (all except Mpro,a(,dep) → cytopro,deact,M), the influ-
ence of parameter change on response was the same for all implemented treatment effects.
I.e. when disease was caused by hanti,deact,M, pTn,>1, hpro,act,DC, β, αTh or νDC,act, the IBD
patients generally had better prospects to be successfully treated than when the disease
was caused by hpro,deact,M, hrec,M or λM,max, independent of the chosen treatment effect.
Based on the profiles of response rates we could distinguish two groups of treatment
effects with similar profiles: For the first group, consisting of cytokine inhibitors, anti-
cell adhesion treatment and orally administered phosphatidylcholine, the influence of all
shown disease-relevant parameter changes on response rate was relatively small. For the
second group, consisting of S1PR modulators, FMT and T cell proliferation inhibitions,
the observed influence was considerably larger. These three treatment effects are those
that directly concern T (helper) cells, and the observed influences of disease-relevant pa-
rameter changes on response rate are related to this treatment target: For IBD patients
where parameter changes related to T cell activation or proliferation (αTh, β, pTn,>1), or
to activation of dendritic cells (which in turn activate T helper cells) (hpro,act,DC, νDC,act),
were disease-relevant, the prospects of success to these treatment effects were much higher
than for other IBD patients. In addition, the prospects of success were much higher if pa-
rameter changes highly related to macrophages (hpro,deact,M, Mpro,a(,dep) → cytopro,deact,M)
were not among the disease-relevant parameter changes.

5.12 Comparison of the pre-treatment steady state between responders and
non-responders

As the interpretation of state variables (i.e. mostly cellular concentrations) in the context
of real-life IBD patients is much easier than for parameter values, we also compared the
pre-treatment steady-state variable distributions between responders and non-responders,
with the aim to find promising means to differentiate responders from non-responders to
the different treatment effects before start of treatment.

For each treatment effect, we compared the distributions of all pre-treatment steady-
state variables between responders and non-responders, as described previously in Sec-
tion 4.5. Table 7 shows for each treatment effect the two-sample Kolmogorov-Smirnov
test statistic D, testing for the difference between responders and non-responders, for the
5 most different state variables. For the simulation, for each treatment effect the treat-
ment effect extent parameter η resulting in 30 % response rate in the virtual IBD study
population was assumed.

The shown steady-state variables are those that best distinguish responders from non-
responders, i.e. that are the best predictors for treatment success (when only looking at
single state variables as predictors). For cytokine inhibitors, anti-cell adhesion treatment
and orally administered phosphatidylcholine, the state variables describing functional in-
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Table 7: Comparison of pre-treatment steady-state distributions between res-
ponders and non-responders. Kolmogorov-Smirnov test statistic D, testing for
the difference in pre-treatment steady-state distributions between responders and non-
responders, for the 5 most different state variables, for each treatment effect. Treatment
effect extent parameters η resulting in 30 % response rate in the virtual IBD study popula-
tion were assumed. D = 0 indicates no difference, i.e. perfectly overlapping distributions;
D = 1 indicates maximal difference, i.e. completely separated distributions. The corre-
sponding p-values are p < 0.001 for all shown state variables.

Cytokine inhibitor Anti-cell adhesion S1PR modulator

epi 0.46 epi 0.49 iTregLP 0.65
mucus 0.46 mucus 0.49 Tem2Treg 0.61
MP4 0.43 tissue 0.38 Th1 0.58
MP3 0.40 MP1,a 0.37 Th2 0.57
MP1,a 0.39 MP4 0.35 Th17 0.56

Phosphatidylcholine FMT Proliferation inhibitor

epi 0.62 MP1,a 0.54 MP1,a 0.57
mucus 0.62 MP4,a,dep 0.50 MP4,a,dep 0.53
MP4 0.40 MP3,a,dep 0.47 MP3,a,dep 0.49
MP1,a 0.38 MP4 0.43 MP4 0.47
MP3 0.38 sDCdep,LP 0.42 sDCdep,LP 0.47

tegrity of the epithelial barrier (epi, mucus and tissue) are most strongly correlated to
response. In this case, higher integrity of the epithelial barrier before start of treatment
correlates with better response. In addition to epithelial barrier state variables, only
macrophages state variables were observed among the most different for those treatment
effects, which is in accordance to the results of the previous comparison of parameter dis-
tributions between responders and non-responders, where parameters relating to macro-
phages were identified to be most different. For S1PR modulators, we observed regulatory
T cells (fully differentiated and maturing), and T helper cells to be most correlated to
the response, which is in accordance with its T-cell-related mechanism. For FMT and
T cell proliferation inhibitors, we observed mainly macrophages (also pMHCII-depleted)
and stimulatory dendritic cells to be most correlated to the response.

5.13 Prediction of individual patients’ responsiveness based on the pre-treat-
ment steady state

Although correlations of response to the different treatment effects with single pre-treat-
ment steady-state variables could be detected, for better prediction of treatment success
before start of treatment, a combination of pre-treatment steady-state variables has to
be considered. We used, as described in Section 4.6, linear discriminant analysis (LDA)
to find linear models to predict if an IBD individual will respond to a specific treatment
effect.

Each dataset used in the LDA contained the same number of responders and non-
responders to a specific treatment. Therefore, where possible, the treatment effect extent
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Table 8: Linear models to predict response based on pre-treatment steady
state. For each treatment effect, we give the best linear model including two features,
for the full dataset (all features) and the measurable dataset (defined as in Section 4.6).
Performance (Perf.) given as fraction correctly classified, as described in the text. The
linear model is applied to an individual by substituting the values for the features (pre-
treatment steady state variables); if the result is > 0, the individual is predicted to be
a responder, otherwise it is predicted to be a non-responder. In some cases, adding the
second feature did not improve the performance, only in combination with a third added
feature. In this case, we show the best linear model including three features. For cy-
tokine inhibitors, anti-cell adhesion treatment, S1PR modulators and orally administered
phosphatidylcholine, treatment effect extent parameters η resulting in 50 % response rate
in the virtual IBD study population were assumed. For FMT and T cell proliferation
inhibitors, treatment effect extent parameters η resulting in 30 % response rate in the
virtual IBD study population were assumed. For antibiotics, treatment effect extent pa-
rameter η = 0.9, resulting in 12 % response rate in the virtual IBD study population, was
assumed. Features (pre-treatment steady-state variables) are coloured blue to improve
readability.

Drug Linear model Perf.

All features

Cytokine inhibitor −7.18 + 14.5 · epi− 4.39 · 10−9 ·MP1,tot 0.76

Anti-cell adhesion −8.28 + 16.5 · epi− 4.63 · 10−9 ·MP1,tot 0.77

S1PR modulator 0.359 + 8.34 · 10−8 · Tcm2Temreg7 − 6.95 · 10−9 ·MP1,a 0.79

Phosphatidylcholine −16.4 + 6.53 · 10−9 ·MP1 + 27.2 · epi 0.84

FMT 0.387− 4.54 · 10−9 ·MP1,a + 3.37 · 10−8 ·MP2,a,dep 0.82

Prol. inhibitor 1.73−4.75·10−9·MP1,a−1.48·10−8·Neut−2.70·10−9·MP1,tot 0.77

Antibiotics −0.280− 2.35 · BactLu + 1.51 · nutrients 0.81

Measurable features

Cytokine inhibitor −6.42 + 12.0 · epi− 1.64 · 10−9 ·Mpro 0.74

Anti-cell adhesion −6.85 + 13.1 · epi− 2.08 · 10−9 ·Mpro 0.76

S1PR modulator −0.117− 1.16 · 10−9 ·Mpro + 1.62 · 10−9 · Tcmprol 0.69

Phosphatidylcholine −15.4 + 26.8 · epi− 3.06 · 10−7 · BactLP 0.84

FMT 0.118− 2.04 · 10−9 ·Mpro + 1.90 · 10−9 · Tcmprol 0.73

Prol. inhibitor −0.944 + 4.69 · 10−9 ·Manti + 1.12 · 10−9 · Tcmprol 0.65

Antibiotics 1.02− 4.92 · 10−7 · BactLP − 1.90 · 10−9 ·Mpro 0.68
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parameter η was chosen such that the response rate in the virtual IBD study population
was 50 % (and consequently all virtual patients were included in the dataset); otherwise
(for FMT and T cell proliferation inhibitors) η was chose such that the response rate was
30 % (and some non-responders were randomly excluded from the dataset to obtain the
same number of responders and non-responders); or (for antibiotics) the highest possible
η value was chosen. Table 8 gives the best linear models including two features (either
all pre-treatment steady-state variables or only measurable pre-treatment steady-state
variables; see Section 4.6 for definition) to predict response for each of the treatment
effects.

For cytokine inhibitors, anti-cell adhesion treatment and orally administered phos-
phatidylcholine, the best predictors were epithelial barrier functionality and pro-inflam-
matory macrophages, for phosphatidylcholine also bacteria in LP. For antibiotics, bac-
terial load in lumen and LP were the best predictors, as expected by the treatment
mechanism. For S1PR modulators, FMT and T cell proliferation inhibitors, proliferat-
ing T cell concentrations were identified as good predictors, in addition pro- and and
anti-inflammatory macrophages.

We achieved performances of the linear models for the different treatment effects of
76-84 % for all features or 65-84 % using only measurable features. Compared to the
random chance of correct identification of responders and non-responders (50 %), using
the linear models provides a considerably better prediction of response. Note, however,
that still 16-35 % of patients are wrongly predicted using the shown linear models.

5.14 Correlation of treatment response with IBD type

To analyse if the IBD type, referring to the extent of the mucosal injury trigger required
to elicit the disease (see Section 4.7), has an influence on the prospect of success for the
different treatment effects, we looked at the correlation of the response rate with the IBD
type. Remember that IBD type 1 meant that less mucosal injury (epi = tissue = 0.9)
was required to elicit the disease, whereas IBD type 10 meant that more mucosal injury
(epi = tissue = 0) was required.

Figure 45 shows the response rate over the IBD type for the different implemented
treatment effects. We observed moderate correlations between IBD type and response rate
for all treatment effects except phosphatidylcholine, with p-values (of Pearson correlations
coefficients) of p < 0.05 and response rate differences of 3 to 17 % between IBD types 1
and 10. Interestingly, for cytokine inhibitors, anti-cell adhesion treatment and S1PR
modulators, the response rate is positively correlated with IBD type, whereas for FMT
and proliferation inhibitors, it is negatively correlated.

5.15 Prediction of (immediate) relapse post-treatment

As described above (Section 5.1) and shown in Figures 41 and 43, we calculated the rate
of relapse after EOT, defined as response at EOT but not at post-treatment steady state.
This relapse rate only describes relapse due to non-sufficient treatment effects, but not
relapse due to additional stimuli (triggering new disease flares) and that it should not
be mistaken for relapse under treatment (i.e. initial response to treatment but loss of
response over time), which can not be described by our model.
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Figure 45: Response rates per IBD type. Response rates to the different treatment
effects, for subpopulations of the virtual IBD study population with different IBD types.
IBD type 1 means mucosal injury of extent epi = tissue = 0.9 is required to elicit the
disease; IBD type 10 means mucosal injury of extent epi = tissue = 0 is required to elicit
the disease; with uniform steps in between. Treatment effect extent parameters η resulting
in 30 % response rate in the virtual IBD study population were assumed. ρ denotes the
Pearson correlation coefficient between the IBD type (1-10) and the response rate. ρ = −1
indicates perfect negative correlation; ρ = 1 indicates perfect positive correlation, ρ = 0
indicates no correlation. p denotes the corresponding p-value.
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To support the decision if it is safe to stop treatment, a means to predict the probability
of relapse after EOT would be very helpful. Therefore we applied LDA to find the best
linear models to predict relapse after EOT for the different treatment effects. Analogous
to the derivation of datasets for the prediction of response described in Section 5.13,
each dataset contained the same number of responders that relapse and responders that
do not relapse, with the same treatment effect extent parameters η as in Section 5.13
to obtain the largest possible datasets. Antibiotics were excluded from the analysis due
to the very small dataset (among the virtual IBD study population only 8 individuals
responded to antibiotics and showed relapse after EOT). In addition to separate models
to predict relapse after EOT for the different treatment effects, we also applied LDA to a
combination of all those datasets, to find the best overall linear model to predict relapse
based on the EOT state, independent of the treatment effect.

Table 9 gives the best linear models including two features (either all EOT state
variables or only measurable EOT state variables; see Section 4.6 for definition) to predict
relapse for each of the treatment effects and independent of the treatment effect. For the
overall model, adding the performance of the best linear model including two features was
only very slightly better than for the best linear model including one feature; therefore
we reported the best linear model including one feature.

We observed that the epithelial barrier functionality (epi) was the best single predic-
tor of relapse after EOT for all treatment effects except S1PR modulators. Therefore it
is not surprising that for the overall model, epi was the best predictor, achieving very
high performance (82-96 %) for all treatment effects except S1PR modulators, with per-
formance only slightly lower than using the best treatment effect-specific linear models.
The differences in performance of linear models based on the full and measurable datasets
were negligible, as epi (the best predictor) was available in both datasets. Interestingly,
prediction of relapse after EOT with S1PR modulators was much worse than for the
other treatment effects, with only moderate performance of 65 % correctly classified using
the treatment effect-specific linear model. For this treatment effect, the epithelial bar-
rier functionality had no predictive benefit at all, as the overall model based on epi only
resulted in a performance of 50 % (i.e. not better than random classification).

In summary, we conclude that (except for S1PR modulators) the epithelial barrier
integrity is a very good predictor of relapse after EOT, and therefore the disease scores
assessing epithelial barrier integrity (such as CDEIS) are a useful means to support the
decision of stop of treatment.

5.16 Conclusion

In this chapter, we described the implementation of different treatment effects into the
systems biology model and showed how to use it to draw conclusions on the prediction of
treatment success and relapse. We broke down different treatment effects currently used in
treatment of IBD to a level that could easily be implemented in the model and simulated
virtual clinical studies by simulating the virtual IBD study population’s response to the
different treatment effects. By providing a virtual analog of the frequently used disease
score CDEIS, we could quantify the response rates of the virtual IBD study population
to the different treatment effects. Analysing parameters and pre-treatment steady states
of the responders and non-responders to the different treatment effects, we found which
disease-causing factors and which phenotypes were influencing the prospects of success of
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Table 9: Linear models to predict (immediate) relapse based on EOT state. For
each treatment effect, we give the best linear model including two features, for the full
dataset (all features) and the measurable dataset (defined as in Section 4.6). Performance
(Perf.) given as fraction correctly classified, as described in the text. The last column gives
the performance of the overall model applied to the different treatment effect datasets.
The linear model is applied to an individual by substituting the values for the features
(EOT state variables); if the result is > 0, the individual is predicted to relapse, otherwise
it is predicted not to relapse. For cytokine inhibitors, anti-cell adhesion treatment, S1PR
modulators and orally administered phosphatidylcholine, treatment effect extent param-
eters η resulting in 50 % response rate in the virtual IBD study population were assumed.
For FMT and T cell proliferation inhibitors, treatment effect extent parameters η result-
ing in 30 % response rate in the virtual IBD study population were assumed. Antibiotics
were excluded from the analysis due to the very small size of the dataset. Features (EOT
state variables) are coloured blue to improve readability.

Drug Linear model Perf.

All features

Overall model 15.5− 16.9 · epi 0.80

Cytokine inhibitor 74.5− 86.4 · epi + 9.64 · 10−9 ·Mtot 0.96 0.96

Anti-cell adhesion 38.0− 2.78 · 10−6 · Neutapo − 42.7 · epi 0.91 0.89

S1PR modulator −0.591 + 2.43 · 10−7 · tDCdep,LP + 7.72 · 10−11 ·Tem1 0.65 0.50

Phosphatidylcholine 23.1− 5.56 · 10−7 · tDCLP − 23.9 · epi 0.90 0.85

FMT 73.6− 86.2 · epi + 1.07 · 10−8 ·Mtot 0.96 0.95

Prol. inhibitor 18.1 + 5.56 · 10−7 · sDCLP − 20.9 · epi 0.85 0.82

Measurable features

Overall model 23.0− 25.1 · epi 0.80

Cytokine inhibitor 81.2− 94.0 · epi + 1.60 · 10−8 ·Mpro 0.96 0.96

Anti-cell adhesion 36.8− 43.3 · epi + 1.95 · 10−8 ·Mpro 0.91 0.89

S1PR modulator −0.372 + 1.07 · 10−11 ·Tem + 1.84 · 10−12 · iTregtot,LP 0.65 0.50

Phosphatidylcholine 34.6− 38.7 · epi + 7.91 · 10−9 ·Mtot 0.89 0.85

FMT 76.0− 88.8 · epi + 1.78 · 10−8 ·Mpro 0.96 0.95

Prol. inhibitor 18.1− 20.1 · epi + 1.93 · 10−8 · Th1tot 0.84 0.82
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the different treatment effects in individual virtual IBD patients. In addition, we found
that the relative intactness of the epithelial barrier was a good predictor to predict the
virtual patients’ relapse after EOT (except for the treatment effect of S1PR modulators).

Naturally, all assumptions and simplifications made in the development of the model
also limit the predictive capability of the response to treatment. In addition, we made
further simplifications in the implementation of the treatments themselves on different lev-
els: (i) We implemented single treatment effects, although often treatments/drugs cause
and work via a combination of several different treatment effects. (ii) Each treatment
effect was quantified using a single treatment effect extent parameter that described the
inhibition of several model reactions or parameters (e.g. for anti-cell adhesion treatment,
inflow rates of different cell types), thereby assuming the same extent of inhibition. (iii)
The mechanisms of action of the different drugs were translated to the cellular level that
our systems biology model focuses on, i.e. implementation of drugs targeting sub-cellular
processes such as specific signalling cascades or receptors was done on the cellular level, by
implementing the effect of the sub-cellular change on the cellular level. Especially in the
case of cytokine inhibitors, the simultaneous and equal reduction of all pro-inflammatory
cytokines is a relatively crude simplification. This can already be seen by the fact that sev-
eral different drug classes (e.g. monoclonal antibodies targeting TNF-α, IL-23 inhibitors
and JAK inhibitors) were pooled into the same implementation. This simplification is due
to the—in our opinion—insufficient quantitative knowledge on specific cytokine effects on
the cellular level, which caused us to implement cytokine effects on the less detailed level
described in Section 2.14, using weighted sums of cytokine-producing cell types specific
for different cytokine-influenced processes. In order to implement more detailed treat-
ment mechanisms of specific cytokine inhibitors, more specific quantitative knowledge on
the respective inhibited cytokine(s) would be needed, regarding the cytokine’s production
from different cell types and its influence on the cytokine-influenced processes, especially
with respect to the proportionate effects with regard to other cytokines influencing this
process. (iv) Lastly, we implemented the treatment effects as constant effects over the
treatment duration, neglecting the influence of the drugs’ PK. In addition, our model
does not account for side effects, which are, of course, important limitations of every drug
treatment.

The structure of our model, however, allows for easy extension, implementation of
more detail, and integration of drug PK. A user aiming to predict or simulate the effects
of a specific drug in the virtual population of IBD patients would have to make sure
enough detail with respect to the targeted process in included in the model, implement
all treatment effects caused by the drugs, and link a PK model, where the treatment effect
extent parameter has to be written as a function of the drug concentration. Then the
user can easily follow the steps described in this chapter to simulate the response of the
virtual IBD study population to the drug, to compare responders and non-responders with
regard to underlying disease-causing factors or pre-treatment phenotype, and to derive
predictors for response and relapse.
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6 Model-guided choice of second-line treat-
ments and combination therapies

In Section 5.13 we gave linear models to predict the success of different treatment mecha-
nisms in individual virtual patients. Our prediction accuracy was, however, only 65-84 %,
i.e. a considerable percentage of our virtual IBD patients does not respond to their ini-
tial treatment. In addition, it remains questionable if the required predictors for our
linear models would be available for all patients in a clinical setting. Therefore, another
main task in treatment of IBD patients is the selection of a second-line treatment in non-
responders to the first-line treatment (termed “first-line non-responders” in the following).
In addition, combination therapies may increase response rates to treatment.

6.1 Correlations between responsiveness to different treatments

Using our virtual IBD study population and their response to the implemented treat-
ment effects, we calculated the response rates to second-line treatments in first-line non-
responders for all combinations of first- and second-line treatments. As, of course, the
response rate mainly depends on the treatment effect extent parameter η, we chose η
for each treatment effect to result in the same response rate of 30 % or 50 % in the full
virtual IBD study population (as antibiotics and T cell proliferation inhibitors resulted in
response rates < 30 % or < 50 %, respectively, those treatment effects were not included
in the respective analyses). Note that our simulations do not account for PK-related non-
response such as too low dosing or anti-drug antibodies, but only refer to the molecular
treatment mechanisms.

The resulting response rates to second-line treatments in first-line non-responders are
shown in Figures 46 and 47 for η values resulting in response rates of 30 % and 50 % in
the virtual IBD study population, respectively. For the analysis using η resulting in 30 %
(or 50 %) response rate, the response rate to the second-line treatment would be 30 %
(or 50 %, respectively) if the response rates were completely independent, and 0 % if the
response rates were completely dependent (i.e. if the individual does not respond to the
first-line treatment, it also doesn’t respond to the second-line treatment). Note that the
response rates in the virtual IBD study population are not exactly 30/50 %, but only
correct to one decimal place, so that the resulting matrices (Figures 46 and 47) are not
completely symmetrical.

Figures 47 and 46 show that the response rates to the second-line treatments differ
substantially between the treatment effects. Hence the knowledge about the non-response
of a patient to a first-line treatment is informative for choosing the best second-line treat-
ment. If first-line treatment is cytokine inhibitors, anti-cell adhesion treatment or orally
administered phosphatidylcholine, the best second-line treatment is an S1PR modulator,
resulting in response rates in the population of first-line non-responders close to the re-
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Figure 46: Response rates to second-line treatments in first-line non-responders,
assuming η resulting in 30 % response rate in the virtual IBD study population.
Note that the matrix is not completely symmetrical, as the response rates in the virtual
IBD study population are not exactly 30 %, but only correct to one decimal place.

sponse rate of 30 % or 50 % in the virtual IBD population, indicating that the response
rates are almost independent. If first-line treatment is FMT or proliferation inhibitors, the
best second-line treatments are cytokine inhibitors, anti-cell adhesion treatment, orally
administered phosphatidylcholine or S1PR modulators; however, the resulting response
rates in the population of first-line non-responders are lower. The response to cytokine
inhibitors and anti-cell adhesion treatment was observed to be highly correlated, result-
ing in very poor response rates when one of them was used as second-line treatment in
first-line non-responders to the other.

Comparing those results to our observations from the comparison of parameter and
pre-treatment steady-state distributions between responders and non-responders to the
different treatment effects (Sections 5.10 and 5.12), we infer: Those treatment effects that
showed the same parameters or pre-treatment steady state variables to be important in
distinguishing responders from non-responders, also show high correlation here, emphasis-
ing that those treatment effects work well in the same subpopulations of our virtual IBD
study population (and therefore using one of them as second-line treatment in first-line
non-responders to the other is not a good choice).
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Figure 47: Response rates to second-line treatments in first-line non-responders,
assuming η resulting in 50 % response rate in the virtual IBD study population.
Note that the matrix is not completely symmetrical, as the response rates in the virtual
IBD study population are not exactly 50 %, but only correct to one decimal place.

6.2 Combination treatments

When single treatments are not successful (e.g. as the dose can not be increased due to
side effects, or the mechanism of effect is limited in itself; as can be seen in Figure 41,
for some treatment effects the treatment effect extent parameter η can not be increased
such that all patients respond), then a combination treatment of two different treatment
effects could be an option. Of course, using a combination of two treatments naturally
also comes with higher risks for side effects and higher costs. Therefore it is important
to carefully ponder the benefits of a combination treatment versus a single treatment, or
sequential trying of different single treatments, e.g. as first- and second-line treatments
(see previous Section 6.1). For sake of illustration, we simulated combinations of cytokine
inhibitors with other treatment effects, assuming that all treatment effects were similarly
effective on their own, i.e. assuming treatment effect extent parameters η resulting in 30 %
response rates in the virtual IBD study population for each treatment effect on its own
(so that all treatment effects except antibiotics could be included in the analysis).

Figure 48 shows the response rates to the different combination treatments (cytokine
inhibitors with other treatment effects; red bars) in comparison to the (total) response
rates when using the same treatment effects as second-line treatments for non-responders
to the cytokine inhibitor (blue bars). The benefit of the combination treatment compared
to both treatments sequentially (as first- and second-line treatment) is quantified by the
difference of the red bar to the blue bar. This difference is composed of two fractions
of patients: (i) those that respond to the combination treatment, but neither to the
first- nor second-line treatment alone (yellow bar); those are the patients that benefit
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Figure 48: Response rates to combinations of cytokine inhibitors with other
treatment effects. The blue bars show the fractions of patients (i.e. response rates)
responding to first-line treatment (cytokine inhibitor) or second-line treatment (indicated
on x-axis) or both. The red bars show the fractions of patients (i.e. response rates)
responding to the simultaneous combination treatment of both treatment effects (cytokine
inhibitor and treatment effect indicated on x-axis). The green bars show the fractions
of patients responding to the first- or second-line treatment, but not to the combination
treatment. The yellow bars show the fractions of patients responding to the combination
treatment, but neither to the first- nor second-line treatment alone. All fractions are given
in % of the virtual IBD study population. Treatment effect extent parameters η resulting
in 30 % response rate in the virtual IBD study population were assumed.
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from the combination treatment in comparison to sequential trying of first- and second-
line treatment. (ii) However, for some combinations of treatments, there are patients that
respond to the first- or second-line treatment alone, but do not respond to the combination
treatment (green bar). Hence, the benefit of the combination treatment is highest if the
yellow bar is high and the green bar is low.

Especially for the combination of the cytokine inhibitor with another cytokine in-
hibitor, but also with anti-cell adhesion treatment, orally administered phosphatidyl-
choline or FMT, our model simulations predict a high benefit of the combination treat-
ment, as large proportions of the non-responders to the sequential treatments (i.e. neither
to first- nor second-line treatment) respond to the combination treatment (see yellow bar).
In contrast, the model predicted the combination treatment of the cytokine inhibitor with
an S1PR modulator to be less successful than using the S1PR modulator as second-line
treatment for non-responders to the cytokine inhibitor. The main reason is that a large
proportion of patients that respond to the cytokine inhibitor (25.9 %) do not respond to
the combination of cytokine inhibitor plus S1PR modulator (see green bar), while S1PR
modulators are quite effective as second-line treatment (see blue bar). This effect was
also observed to a lower extent for the combination treatment of the cytokine inhibitor
with a T cell proliferation inhibitor.

Overall, we observed that if two treatments are successful in the same subpopulation of
patients (e.g. cytokine inhibitor and anti-cell adhesion treatment), our analysis suggests to
use them in a combination therapy, whereas if two treatments are successful in different
subpopulations of patients (e.g. cytokine inhibitor and S1PR modulator), our analysis
suggests to rather start with one of them and switch to the other as second-line treatment.
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7 Discussion

7.1 Summary

We presented in this thesis a novel systems biology model in the context of IBD that can be
viewed a comprehensive summary of available knowledge on the mucosal immune response.
We used this model to generate a virtual population representing healthy individuals and
IBD patients. Importantly, we defined IBD via its phenotype, i.e. the response of the
patient’s immune system to a potential trigger, rather than in terms of hypothesised
changes of a number of parameter values. This approach allowed us to study potential
IBD predispositions in an unbiased way. We implemented different treatment effects into
the model, allowing for analysis of characteristics of individual drug therapy. Lastly, we
illustrated how the model can be used to decide for alternative treatments with best
prospects in the case of non-response, and to identify promising combination therapies.

7.2 Setting our work in context

A few systems biology models for IBD have been previously published (e.g. [24–28, 34]),
as critically discussed in Section 2.1, including the reasons why we decided to develop a
novel systems biology model that we assess more appropriate as underlying model for the
presented analyses. The unique feature of our model, setting it apart from all previously
published systems biology models in the context of IBD known to us ([24–28, 34]), is that
it was developed to describe the healthy mucosal immune response, without including
any data from IBD patients. Also in the generation of the virtual population from the
model, by including inter-individual variability in all model parameters, we did not need
to rely on any prior knowledge on IBD development (such as knowledge on parameters
likely to differ between healthy and IBD). Only in the step to identify IBD patients in
the virtual population, we obviously used information on IBD. Through this, we ensured
to have included the most important processes of the mucosal immune response, as the
healthy immune response can be adequately simulated, and obtained an “unbiased” IBD
population covering the space of possible parameter combinations that (based on the
underlying model) could lead to IBD.

Comparison to the model by Rogers et al. (2020). After research for this thesis was
completed (February 2020), Rogers et al. (2020) [28, 34] published a systems biology model
of IBD that also aimed at analysing treatment effects using a virtual IBD population, but
with differences both in the underlying model structure describing the mucosal immune
response and the generation of the virtual population of healthy and IBD individuals. In
contrast to the previously published models discussed in Section 2.1, the model by Rogers
et al. [28, 34] was, in our opinion, well suitable for the analyses they present (which highly
overlap with the analyses presented in this thesis).
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Their approach was in many regards similar to our approach, developing a structural
model including different cell types and processes of the mucosal immune response, which
was then used to generate a virtual population of healthy and IBD individuals that were
each defined by a set of parameters. In summary, Rogers et al. developed a systems bi-
ology model comprising 334 parameters and 116 reactions (compared to 79 parameters
and 133 reactions in our model). Based on steady-state protein concentrations of healthy
and diseased subjects, an ensemble of plausible parameter sets was generated. Only 24
pre-defined parameters were allowed to differ between healthy, CD and UC patients. To
compare simulations to clinical study results, the ensemble of parameter sets was further
stratified based on matching of C-reactive protein (CRP) and fecal calprotectin (FCP)
concentrations. Using the generated virtual populations, they simulated the response to
IL-17 inhibition, identified important parameters by performing a sensitivity analysis of
CRP and FCP, simulated treatments of CD patients with anti-TNF-α, anti-IL-12p40,
anti-IL-23 and anti-IL-6 treatment and a combination of anti-TNF-α and anti-IL-12p40,
and identified differences in baseline species (i.e. pre-treatment steady states) and param-
eters between responders and non-responders.

We would like, however, to point out some significant differences between the two
approaches: In contrast to our decision to focus on the cellular level, with many differ-
ent states of each cell type, Rogers et al. focused more on specific cytokines, which they
modelled as explicit state variables. As pointed out previously, we did not restrict the
differences between healthy and IBD individuals by including prior knowledge on param-
eter differences, whereas Rogers et al. only allowed 24 parameters to be different between
healthy and IBD. The derivation of parameters differed, as we derived the model pa-
rameters from literature, carefully evaluating the resulting model behaviour on the level
of single cell types and processes to ensure that each process or cell type itself was ap-
propriately described by the model, and then sampled the parameter sets of the virtual
population based on those reference parameters. In contrast, Rogers et al. generated the
parameter sets of the virtual population by setting wide limits for each parameter and
selecting plausible parameter sets by random sampling of parameters within the limits
and comparison of the simulation output with experimental steady-state protein data.
For simulation of treatment, Rogers et al. implemented specific drug PK models and
binding reactions to the target cytokines, whereas we focused on generalised treatment
mechanisms implemented by constant treatment effects. In our opinion, their approach
includes two critical limitations, (i) the usage of only steady-state concentrations to es-
timate model parameters, but subsequent interpretation of the model simulations in a
time-resolved manner, and (ii) the very high number of 334 model parameters compared
to the very small virtual CD population size of 357 individuals, which, in our opinion,
can not be sufficient to appropriately cover the possible parameter space. Interestingly,
and in contrast to our findings, Rogers et al. did not observe different steady states of
the model, i.e. after stop of treatment, all subjects returned to the pre-treatment steady
state (according to Figures 3, 4, 5 and 7 in [34]).

7.3 Limitations

As every (mathematical) model describing a complex biological process, our systems biol-
ogy model is based on simplifications and thus has limitations, which naturally also affect
its predictive capabilities. Although the complexity of the presented model is already
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considerably high (133 reactions, 47 state variables), it is of course far from representing
the full complexity of the human mucosal immune system. In Section 2.19 a detailed
description of the limitations of the model is given. Including additional processes, cell
types or reactions in the model would aim to increase its predictive capacity, but at the
same time would require additional data needed for parameterisation (which are often not
available in literature).

Naturally, the generated virtual IBD population is highly dependent on the underlying
systems biology model of the mucosal immune response and all included assumptions
and simplifications. Therefore, all conclusions drawn from the analysis of the virtual
IBD population are conditional on the accuracy of the systems biology model (see also
Section 4.8).

Those limitations consequently also apply to the simulations of the virtual IBD pop-
ulation’s response to the different treatment effects (see also Section 5.16).

In summary, results from our model simulations are intended rather qualitative, e.g.
finding parameters with high potential for IBD predispositions, identifying cell concentra-
tions that could be used as predictors for responsiveness, or testing hypotheses on novel
drug targets.

7.4 Main findings

The analysis of the virtual IBD population resulted in a number of important findings
with regard to IBD predispositions and treatment of IBD.

We were able to qualitatively describe the mucosal immune response to the different
inflammatory stimuli of pathogenic infection and mucosal injury. In addition, we were
able to generate a virtual population that contained both healthy and IBD patients, by
simply adding inter-individual variability to all parameters, without need for inclusion
of any prior knowledge on parameter differences between healthy and IBD. Therefore,
we conclude that the implemented processes suffice to qualitatively describe the mucosal
immune response to different inflammatory stimuli and the occurrence of IBD as result
of inter-individual variability.

The population of virtual IBD individuals showed a high heterogeneity (regarding
both the time course of cell concentrations and the predispositions), which reflects the
heterogeneity known from clinical studies of IBD. Throughout the enormous diversity of
predispositions, we found that IBD can result from both a small number of large parameter
changes or a higher number of small parameter changes.

When analysing the IBD predispositions, which are reflected by parameters in the
model, one type of parameters seemed to play a dominant role: Hill factors (for recruit-
ment or activation of macrophages, dendritic cells or neutrophils) were most often among
the identified disease-relevant parameters. Although a direct biological interpretation of
those Hill factors is difficult, they describe the sensitivity of the respective activation or
recruitment rates on changes of cytokine concentrations and thereby highly influence the
switch of the model system between the asymptomatic and the inflamed steady state.

Using the virtual IBD population generated with the systems biology model and differ-
ent implemented treatment effects, we were able to identify predictors for responsiveness
(e.g. pro-inflammatory macrophages and epithelial destruction for cytokine inhibitors). In
addition, we could provide possible explanations for the high inter-individual differences
in treatment responsiveness via identification of parameter differences between responders
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and non-responders. This does, however, not imply that they all relate to differences in
real IBD patients, but they can give a good overview of possible reasons, and be a good
starting point for further analyses in clinical studies via biomarkers.

The model allowed for an analysis of sequential (first- and second-line) treatments and
combination treatments. We showed which second-line treatments are most promising in
non-responders to the different treatments, and which treatment mechanisms are most
promising for combination therapies with cytokine inhibitors. Interestingly, we found
that good choices of treatments in a sequential therapy are less promising when used as
combination treatments.

7.5 Further research questions

Although the presented systems biology model is already quite complex, it still includes
many simplifications and assumptions, focusing only on specific parts of the mucosal im-
mune response (regarding processes, spatial location and detail, e.g. cell-level as compared
to molecular level), naturally limiting the conclusions drawn from model simulations. To
also quantitatively improve the accuracy of model predictions and to expand the pre-
dictions to a broader context, the level of detail in the systems biology model could be
improved. Of note, including more complexity, especially when additional assumptions
have to be taken, also increases the risk for inaccuracies.

It would be very interesting to use the model to identify differences in predispositions
for CD and UC to see if the differences in risk factors between CD and UC described
in literature can be reproduced by the systems biology model. For this, more detail
regarding different cytokines and spatial location of the disease would be required in the
model, so that the virtual IBD population could be divided into a CD population and a
UC population.

With regard to predictions in the context of clinical drug development, the specific
effects of specific drugs can be implemented. Then, the systems biology model can be
combined with a drug-specific PK model, using the time-dependent drug concentration
predicted by the PK model to calculate the treatment effect extent, e.g. via a binding
reaction to the target. This will allow for the simulation of time-resolved treatment ef-
fects (as opposed to the constant treatment effects assumed in our simulations), enabling
also analyses of the influence of PK parameters on the treatment response (e.g. increased
clearance dependent on the level of inflammation or anti-drug antibodies emerging over
time), and quantitative comparison of PK-related and mechanism-related reasons for the
missing treatment success in non-responders to the respective treatment. It requires,
however, additional data on the dependency of the treatment effect on the drug concen-
tration, e.g. parameter values of the binding reaction, and reliable prediction of the drug
concentrations in the respective tissue (not only in blood, i.e. the central compartment of
most classical PK models).

Another improvement of the model with regard to predictions for clinical drug de-
velopment would be the inclusion of relevant biomarkers used in clinical studies of IBD,
e.g. fecal calprotectin (FCP). FCP is a highly abundant protein in neutrophils, which is
probably released from the neutrophils due to cell disruption and death, i.e. it is assumed
to be correlated with the amount of neutrophils migrating from the LP into the intestinal
lumen via the disrupted epithelial barrier [182]. For the implementation of FCP into the
systems biology model we therefore suggest to simulate the FCP concentrations based on
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the neutrophil concentration in LP and the barrier integrity.

7.6 Potential applications of the novel systems biology model

In addition to the results described in this thesis, we are confident that the presented
systems biology model, and the virtual IBD population generated with it, can be applied
in multiple more occasions to gain additional insights into the disease and to support
development and optimisation of treatment of IBD.

The presented systems biology model is easily applicable to test new hypotheses on
disease development: To analyse the effect of changes (e.g. inhibition or increase) of
single parameters or small combinations of parameters on the healthy mucosal immune
response, those can easily be changed based on the reference parameters and the resulting
time course, also with regard to specific cell types of interest, can be compared to the
reference individual’s time course. To test a hypothesised risk factor, we suggest to
generate an additional virtual population by applying inter-individual variability to all
parameters (as described in Section 4.1), and adding the risk factor (e.g. inhibition of
a specific parameter) to all individuals. In a subsequent comparison of the fraction of
IBD individuals with the original virtual population, it can easily be evaluated if the
population with the hypothesised risk factor tends to more development of IBD.

We recommend to use our systems biology model for an easy and very cheap pre-
evaluation of potential new treatment targets: For that, the proposed drug effect can be
implemented into the model so that the response of the virtual IBD study population can
be simulated. Through this, the user can get valuable information on the potential efficacy
of the proposed treatment mechanism, e.g. how strong the inhibition of the targeted
parameter or process has to be for a reasonable response rate.

In summary, we believe that the presented systems biology model of the mucosal im-
mune response and analyses of the generated virtual IBD population are an important
step towards better understanding IBD and the different treatment options.
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Abbreviations

S. epidermidis Staphylococcus epidermidis
S. Typhimurium Salmonella Typhimurium

AMP antimicrobial peptide
APC antigen-presenting cell

BCR B cell receptor
bl blood
BM bone marrow
BrdU bromodeoxyuridine

CD Crohn’s disease
CDEIS Crohn’s disease endoscopic index of severity
CRP C-reactive protein

DSS dextran sodium sulfate

ECM extracellular matrix
EOT end-of-treatment

FCP fecal calprotectin
FMT faecal microbial transplant

GALT gut-associated lymphoid tissue
GM-CSF granulocyte-macrophage colony-stimulating factor

IBD inflammatory bowel disease
IFN interferon
IL interleukin
IR input-response
iTreg induced regulatory T cell

JAK Janus kinase

LDA linear discriminant analysis
LN lymph node
LP lamina propria
LSA local sensitivity analysis
LT lymphotoxin

MMP matrix metalloproteinase
MOI multiplicity of infection

NEC neutrophil equivalent concentration
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NSAID non-steroidal anti-inflammatory drug
nTreg natural regulatory T cell

ODE ordinary differential equation

PK pharmacokinetics

QSS quasi-steady state

ROS reactive oxygen species

S1P sphingosine-1-phosphate
S1PR1 sphingosine-1-phosphate receptor type 1
SIgA secretory immunoglobulin A
SPM specialised pro-resolving mediators

TCR T cell receptor
TGF transforming growth factor
Th T helper cell
TNF tumour necrosis factor
Treg regulatory T cell

UC Ulcerative colitis
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quantitative systems pharmacology and machine learning models across diseases.
Journal of Pharmacokinetics and Pharmacodynamics, 49(1):19–37, 2022.

[24] Katherine Wendelsdorf, Josep Bassaganya-Riera, Raquel Hontecillas, and Stephen
Eubank. Model of colonic inflammation: Immune modulatory mechanisms in in-
flammatory bowel disease. Journal of Theoretical Biology, 264(4):1225–1239, 2010.

[25] Wing-Cheong Lo, Razvan I. Arsenescu, and Avner Friedman. Mathematical Model
of the Roles of T Cells in Inflammatory Bowel Disease. Bulletin of Mathematical
Biology, 75(9):1417–1433, 2013.

[26] G Dwivedi, L Fitz, M Hegen, S W Martin, J Harrold, A Heatherington, and C Li.
A multiscale model of interleukin-6-mediated immune regulation in Crohn’s disease
and its application in drug discovery and development. CPT: pharmacometrics &
systems pharmacology, 3(1):e89, 2014.

[27] Violeta Balbas-Martinez, Leire Ruiz-Cerdá, Itziar Irurzun-Arana, Ignacio González-
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9 Appendix

9.1 ODEs of the model

Only ODEs for infection with commensal bacteria or generic extracellular pathogen are
shown here. To simulate infection with salmonellae, additional terms and ODEs have
to be added as described in Section 2.18.2 to account for infection of macrophages by
salmonellae. The ODEs shown here suffice to generate the virtual population of IBD
patients.

d

dt
nutrients = λnutrients −

∑
b

pBact,Lu,b · BactLu,b · nutrients

d

dt
BactLu,b = pBact,Lu,b · BactLu,b · nutrients− µBact,Lu · BactLu,b

d

dt
tissue = λtis ·

(
1 +

Fmax,tis · cytoremod,tis

1 + cytoremod,tis

)
− µtis · tissue ·

(
1 +

Fmax,tis · cytodestr,tis

1 + cytodestr,tis

)
d

dt
epi = λepi ·min(tissue, 1)− µepi · epi ·

(
1 +

Fmax,epi · cytodestr,epi

1 + cytodestr,epi

)
− µepi,Bact ·

∑
b

εBact,2,b · (1−mucus) · epi · BactLu

d

dt
mucus = λmucus · epi− µmucus ·mucus

d

dt
BactLP,b = bacterial inflowb + pBact,LP,b ·

(
1−

∑
b BactLP,b

Cmax,Bact

)
· BactLP,b

− Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

· NECLP

d

dt
Neut =

λNeut,max ·
(
(cytorec,Neut)

hrec,Neut + wpro,Bact ·
∑

b BactLP

)
1 + SPMhrec,Neut + (cytorec,Neut)

hrec,Neut + wpro,Bact ·
∑

b BactLP

− µNeut,c · Neut

− µNeut,Phago ·
∑
b

 Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

 · Neut

− µNeut,max · Neut · SPM

1 + cytorec,Neut + SPM

d

dt
Neutapo = µNeut,c · Neut
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+ µNeut,Phago ·
∑
b

 Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

 · Neut

+
µNeut,max · Neut · SPM

1 + cytorec,Neut + SPM

− Vmax,Phago · Neutapo

KmPhago + Neutapo

· NECM,LP

− µNeut,apo · Neutapo

d

dt
MP1 = M recruitment rate− transition rate MP1 →MP2

−MP1 efferocytosis rate−MP1 antigen uptake rate− µM ·MP1

d

dt
MP1,a = − transition rate MP1,a →MP2,a

−MP1,a efferocytosis rate +MP1 antigen uptake rate− µM ·MP1,a

− iTregtot,LP

Ttot,LP

·
MP1,a · bsperM ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

+MP1,a,dep antigen uptake rate

d

dt
MP2 = transition rate MP1 →MP2 − transition rate MP2 →MP3

−MP2 efferocytosis rate−MP2 antigen uptake rate− µM ·MP2

d

dt
MP2,a = transition rate MP1,a →MP2,a − transition rate MP2,a →MP3,a

−MP2,a efferocytosis rate +MP2 antigen uptake rate− µM ·MP2,a

− iTregtot,LP

Ttot,LP

·
MP2,a · bsperM ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

+MP2,a,dep antigen uptake rate

d

dt
MP3 = transition rate MP2 →MP3 − transition rate MP3 →MP4

−MP3 efferocytosis rate−MP3 antigen uptake rate− µM ·MP3

d

dt
MP3,a = transition rate MP2,a →MP3,a − transition rate MP3,a →MP4,a

−MP3,a efferocytosis rate +MP3 antigen uptake rate− µM ·MP3,a

− iTregtot,LP

Ttot,LP

·
MP3,a · bsperM ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

+MP3,a,dep antigen uptake rate
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d

dt
MP4 = transition rate MP3 →MP4

−MP4 efferocytosis rate−MP4 antigen uptake rate− µM ·MP4

d

dt
MP4,a = transition rate MP3,a →MP4,a

−MP4,a efferocytosis rate +MP4 antigen uptake rate− µM ·MP4,a

− iTregtot,LP

Ttot,LP

·
MP4,a · bsperM ·

(
1− Tem2Treg1

tDCLP·bsperDC+Manti,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

+MP4,a,dep antigen uptake rate

d

dt
Meffero = MP1 efferocytosis rate +MP2 efferocytosis rate

+MP3 efferocytosis rate +MP4 efferocytosis rate

−Meffero antigen uptake rate− µM ·Meffero

d

dt
Meffero,a = MP1,a efferocytosis rate +MP2,a efferocytosis rate

+MP3,a efferocytosis rate +MP4,a efferocytosis rate

+Meffero antigen uptake rate− µM ·Meffero,a

− iTregtot,LP

Ttot,LP

·
Meffero,a · bsperM ·

(
1− Tem2Treg1

tDCLP·bsperDC+Manti,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

+Meffero,a,dep antigen uptake rate

d

dt
MP1,a,dep =

∑
b

iTregtot,LP

Ttot,LP

·
MP1,a · bsperM ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

− µM ·MP1,a,dep − transition rate P1→ P2

−MP1,a,dep antigen uptake rate−MP1,a efferocytosis rate

d

dt
MP2,a,dep =

∑
b

iTregtot,LP

Ttot,LP

·
MP2,a · bsperM ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

− µM ·MP2,a,dep + transition rate P1→ P2− transition rate P2→ P3

−MP2,a,dep antigen uptake rate−MP2,a efferocytosis rate

d

dt
MP3,a,dep =

∑
b

iTregtot,LP

Ttot,LP

·
MP3,a · bsperM ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP
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· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

− µM ·MP3,a,dep + transition rate P2→ P3− transition rate P3→ P4

−MP3,a,dep antigen uptake rate−MP3,a efferocytosis rate

d

dt
MP4,a,dep =

∑
b

iTregtot,LP

Ttot,LP

·
MP4,a · bsperM ·

(
1− Tem2Treg1

tDCLP·bsperDC+Manti,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

− µM ·MP4,a,dep + transition rate P3→ P4

−MP4,a,dep antigen uptake rate−MP4,a efferocytosis rate

d

dt
Meffero,a,dep =

∑
b

iTregtot,LP

Ttot,LP

·
Meffero,a · bsperM ·

(
1− Tem2Treg1

tDCLP·bsperDC+Manti,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perM

− µM ·Meffero,a,dep −Meffero,a,dep antigen uptake rate

+MP1,a efferocytosis rate +MP2,a efferocytosis rate

+MP3,a efferocytosis rate +MP4,a efferocytosis rate

d

dt
qDC = λDC − µDC,LP · qDC− qDC antigen uptake rate− qDC activation rate

d

dt
rDC = − µDC,LP · rDC− rDC antigen uptake rate + qDC activation rate

d

dt
tDCLP = qDC antigen uptake rate− tDC activation rate− (µDC,LP + εDC) · tDCLP

− iTregtot,LP

Ttot,LP

·
tDCLP · bsperDC ·

(
1− Tem2Treg1

tDCLP·bsperDC+Manti,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perDC

+ tDCi antigen uptake rate

d

dt
sDCLP = rDC antigen uptake rate + tDC activation rate− (µDC,LP + εDC) · sDCLP

− iTregtot,LP

Ttot,LP

·
sDCLP · bsperDC ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perDC

+ sDCi antigen uptake rate

d

dt
tDCLN = εDC · tDCLP ·

VLP

VLN

− µDC,LP · tDCLN

− iTregtot,LN

Ttot,LN

· tDCLN · bsperDC − (Tn2Treg1 + Tcm2Temreg1)

BSAPC,av,LN
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· αTh,b · β
Tcontact

· contactsLN · bs−1
perDC

d

dt
sDCLN = εDC · sDCLP ·

VLP

VLN

− µDC,LP · sDCLN

− iTregtot,LN

Ttot,LN

· sDCLN · bsperDC − (Tn2Th1 + Tcm2Temh1)

BSAPC,av,LN

· αTh,b · β
Tcontact

· contactsLN · bs−1
perDC

d

dt
tDCdep,LP =

∑
b

iTregtot,LP

Ttot,LP

·
tDCLP · bsperDC ·

(
1− Tem2Treg1

tDCLP·bsperDC+Manti,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perDC

− µDC,LP · tDCdep,LP − εDC · tDCdep,LP

− tDCi activation rate− tDCi antigen uptake rate

d

dt
sDCdep,LP =

∑
b

iTregtot,LP

Ttot,LP

·
sDCLP · bsperDC ·

(
1− Tem2Th1

sDCLP·bsperDC+Mpro,a·bsperM

)
BSAPC,av,LP

· αTh,b · β
Tcontact

· contactsLP · bs−1
perDC

− µDC,LP · sDCdep,LP − εDC · sDCdep,LP

+ tDCi activation rate− sDCi antigen uptake rate

d

dt
tDCdep,LN = εDC · tDCdep,LP ·

VLP

VLN

− µDC,LN · tDCdep,LN

+
∑
b

iTregtot,LN

Ttot,LN

· tDCLN · bsperDC − (Tn2Treg1 + Tcm2Temreg1)

BSAPC,av,LN

· αTh,b · β
Tcontact

· contactsLN · bs−1
perDC

d

dt
sDCdep,LN = εDC · sDCdep,LP ·

VLP

VLN

− µDC,LN · sDCdep,LN

+
∑
b

iTregtot,LN

Ttot,LN

· sDCLN · bsperDC − (Tn2Th1 + Tcm2Temh1)

BSAPC,av,LN

· αTh,b · β
Tcontact

· contactsLN · bs−1
perDC

d

dt
Tn = λTn − µT,LN · Tn− Tn activation rate

d

dt
Tn2Teff1 = Tn activation rate− pTn,1 · Tn2Teff1 − µT,prol · Tn2Teff1

d

dt
Tn2Teff2 = pTn,1 · Tn2Teff1 − pTn,>1 · Tn2Teff2 − µT,prol · Tn2Teff2

d

dt
Tn2Teffi = pTn,>1 · Tn2Teffi−1 − pTn,>1 · Tn2Teffi − µT,prol · Tn2Teffi

−(1 + 0.1 · (i− 5)) · µT,LN · Tn2Teffi · 1{i≥5}
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for i = 3, ..., NT,prol

where 1{i≥5} =

{
1, if i ≥ 5
0, if i < 5

d

dt
Tcm = λTcm − µT,LN · Tcm− Tcm activation rate

d

dt
Tcm2Tem1 = Tcm activation rate− pTn,>1 · Tcm2Tem1 − µT,prol · Tcm2Tem1

d

dt
Tcm2Temi = pTn,>1 · Tcm2Temi−1 − pTn,>1 · Tcm2Temi − µT,prol · Tcm2Temi

−(1 + 0.1 · (i− 1)) · µT,LN · Tcm2Temi

for i = 2, ..., NT,prol

d

dt
Tem =

NT,prol∑
i=1

(1 + 0.1 · (i− 1)) · µT,LN · Tcm2Temi ·
VLN

VLP

− µTem · Tem− Tem activation rate

d

dt
Tem2Teff1 = Tem activation rate− pTn,>1 · Tem2Teff1 − µT,prol · Tem2Teff1

d

dt
Tem2Teffi = pTn,>1 · Tem2Teffi−1 − pTn,>1 · Tem2Teffi − µT,prol · Tem2Teffi

−(1 + 0.1 · (i− 1)) · µT,LN · Tem2Teffi

for i = 2, ..., NT,prol

d

dt
iTreg =

NT,prol∑
i=5

(1 + 0.1 · (i− 5)) · µT,LN · Tn2Tregi ·
VLN

VLP

+

NT,prol∑
i=1

(1 + 0.1 · (i− 1)) · µT,LN · Tem2Teffi − µT,eff · iTreg

d

dt
Th1 =

NT,prol∑
i=5

(1 + 0.1 · (i− 5)) · µT,LN · Tn2Th1i ·
VLN

VLP

+

NT,prol∑
i=1

(1 + 0.1 · (i− 1)) · µT,LN · Tem2Th1i − µT,eff · Th1

d

dt
Th2 =

NT,prol∑
i=5

(1 + 0.1 · (i− 5)) · µT,LN · Tn2Th2i ·
VLN

VLP

+

NT,prol∑
i=1

(1 + 0.1 · (i− 1)) · µT,LN · Tem2Th2i − µT,eff · Th2

d

dt
Th17 =

NT,prol∑
i=5

(1 + 0.1 · (i− 5)) · µT,LN · Tn2Th17i ·
VLN

VLP

+

NT,prol∑
i=1

(1 + 0.1 · (i− 1)) · µT,LN · Tem2Th17i − µT,eff · Th17
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with

bacterial inflowb = εBact,1 · (1−mucus) · (1− epi) · BactLu,b

+ εBact,2,b · (1−mucus) · epi · BactLu,b

cNECb = pBact,LP,b ·
(

1−
∑

b BactLP,b

Cmax,Bact

)
·

KmPhago

Rphago,b
+
∑

b BactLP,b

Vmax,Phago

M recruitment rate = λM,c +
λM,max · (cytorec,M)hrec,M

1 + SPM + (cytorec,M)hrec,M

transition rate MPi(,a) →MPj(,a) =
νM,Pi→Pj · cyto

hanti,deact,M

anti,deact,M

1 + cyto
hanti,deact,M

anti,deact,M + cyto
hpro,deact,M

pro,deact,M

·MPi(,a)

MPi(,a) efferocytosis rate = peffero ·
Vmax,Phago · Neutapo

KmPhago + Neutapo

·MPi(,a) · wphago,Pi

MPi antigen uptake rateb = νant.upt · BactLu,b ·MPi · wphago,Pi

+
Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

·MPi · wphago,Pi

q/tDC activation rate =
νDC,act · cyto

hpro,act,DC

pro,act,DC

1 + cyto
hpro,act,DC

pro,act,DC + cyto
hanti,act,DC

anti,act,DC

· q/tDC

q/rDC antigen uptake rate = νant.upt · BactLu,b · q/rDC

+
Vmax,Phago · BactLP,b

KmPhago

Rphago,b
+
∑

b BactLP,b

· q/rDC

contactsLN

=
BST,LN + BSAPC,av,LN + koff

kon
−
√

(BST,LN + BSAPC,av,LN + koff

kon
)2 − 4 · BST,LN · BSAPC,av,LN

2

with kon =
kT:DC,LN

bsperT · bsperDC

contactsLP

=
BST,LP + BSAPC,av,LP + koff

kon
−
√

(BST,LP + BSAPC,av,LP + koff

kon
)2 − 4 · BST,LP · BSAPC,av,LP

2

with kon =
kT:DC,LP

bsperT · bsperDC

BST,LN =

Tn + Tcm +
∑
b

NT,prol∑
i=2

Tn2Teffi +
∑
b

NT,prol∑
i=2

Tcm2Temi

 · bsperT

BST,LP =

∑
b

Teff +
∑
b

Tem +
∑
b

NT,prol∑
i=2

Tem2Teffi

 · bsperT

BSAPC,av,LN = (tDCLN + sDCLN + tDCdep,LN + sDCdep,LN) · bsperDC
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− (Tn2Teff1 + Tcm2Tem1)

BSAPC,av,LP = (tDCLP + sDCLP + tDCdep,LP + sDCdep,LP) · bsperDC + (MP1,a +MP2,a

+MP3,a +MP4,a +Meffero,a +MP1,a,dep +MP2,a,dep +MP3,a,dep +MP4,a,dep

+Meffero,a,dep) · bsperM − Tem2Teff1

Tn activation rate =
Tn

Ttot,LN

· αTn · β
Tcontact

· contactsLN

Tcm activation rate =
Tcm

Ttot,LN

· αTm,b · β
Tcontact

· contactsLN

TemAPCtype activation rate =
TemAPCtype

Ttot,LP

· BSAPCtype,av,LP

BSAPC,av,LP

· αTm,b · β
Tcontact

· contactsLP

Tn activation rate by sDC =
Tn

Ttot,LN

· sDCLN · bsperDC − (Tn2Th1 + Tcm2Temh1)

BSAPC,av,LN

· αTn · β
Tcontact

· contactsLN

Tn2Teff = Tn2Treg + Tn2Th1 + Tn2Th2 + Tn2Th17

Tn2Th = Tn2Th1 + Tn2Th2 + Tn2Th17

Tcm2Temh = Tcm2Tem1 + Tcm2Tem2 + Tcm2Tem17

Tem2Th = Tem2Th1 + Tem2Th2 + Tem2Th17

Mpro,a = MP1,a +MP2,a +MP3,a

Manti,a =MP4,a +Meffero,a

Mpro,a(,dep) = MP1,a +MP2,a +MP3,a +MP1,a,dep +MP2,a,dep +MP3,a,dep

Manti,a(,dep) = MP4,a +Meffero,a +MP4,a,dep +Meffero,a,dep

iTregtot,LP = iTreg + Temreg +

NT,prol∑
i=2

Tem2Tregi

iTregtot,LN =

NT,prol∑
i=2

Tn2Tregi

Th1tot = Th1 + Tem1 +

NT,prol∑
i=2

Tem2Th1i

Th2tot = Th2 + Tem2 +

NT,prol∑
i=2

Tem2Th2i

Th17tot = Th17 + Tem17 +

NT,prol∑
i=2

Tem2Th17i

Subscripts b of the state variables are omitted for readability in several state variables.
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9.2 Parameters of the model

Table 10: Parameter values. Parameters used in the novel systems biology model,
including the literature references used for derivation and a reference to the section where
the detailed derivation of the parameter is described.

Parameter Value Unit Reference Section

αTh,b
1

Nantigen,b
− - 2.13

αTn 10−6 − [99, 100] 2.11

αTm,b 1.66 · 10−4 ·RTm,b − - 2.11

bsperDC 300 − [87] 2.10

bsperM 15 − - 2.10

bsperT 17.5 − [87] 2.10

Cmax,Bact 1010 1
mL

- 2.6

εBact,2,commensal 0 1
mL·h - 2.5

εBact,2,salmonellae 1 · 1010 1
mL·h - 2.5

εBact,2,extracellular 1 · 1011 1
mL·h - 2.5

εBact,1 3 · 108 1
mL·h - 2.5

εDC 0.009 1
h

[55, 80–85] 2.9

Fmax,epi 1 − - 2.5

hanti,deact,M 1 − - 2.8

hanti,act,DC 1 − - 2.9

hpro,deact,M 1 − - 2.8

hpro,act,DC 1 − - 2.9

hrec,Neut 2 − - 2.7

hrec,M 2 − - 2.8

KmPhago 3.7 · 107 1
mL

[58] 2.6

kT:DC,LN 2 · 10−5 mL
h

- 2.10

kT:DC,LP 2 · 10−6 mL
h

- 2.10

λDC 1.26 · 105 1
mL·h [55] 2.9

λepi 0.0096 1
h

[38] 2.5

λM,c 6.2 · 104 1
mL

[59, 74, 80–82] 2.8

λM,max 1 · 106 1
mL·h - 2.8

λmucus 0.9 · µmucus
1
h

- 2.5

λNeut,max 1 · 108 1
mL·h - 2.7
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λnutrients
1
24

1
h

- 2.4

λTcm 1.8 · 107 1
mL·h [98] 2.11

λtis 0.0048 1
h

[38] 2.5

λTn 1.9 · 107 1
mL·h [97, 98] 2.11

µBact,Lu
1
24

1
h

- 2.4

µDC,LP 0.014 1
h

[83–85] 2.9

µDC,LN 1.9 1
d

Vuk Cerovic,
RWTH Aachen,
unpublished
observations

2.9

µepi 0.0096 1
h

[38] 2.5

µepi,Bact 1 · 10−10 mL - 2.5

µM 0.0031 1
h

[59] 2.8

µmucus 0.46 1
h

[41] 2.5

µNeut,apo
1
48

1
h

- 2.7

µNeut,c
1
7

1
d

[67] 2.7

µNeut,max 0.35 1
h

- 2.7

µNeut,Phago 1/50 − [68] 2.7

µT,eff 0.5 1
d

[116] 2.12

µtis 0.0048 1
h

[38] 2.5

µT,LN 0.10 1
h

[97, 98] 2.11

µTem 2.5 · 10−4 1
h

[109] 2.11

µT,prol 0.047 1
h

[106] 2.11

NBact 3 − - 2.2

NT,prol 18 − - 2.11

νant.upt 0.0144 1
h

- 2.8

νDC,act 0.03 1
h

- 2.9

νM,P1→P2 6.10 · 10−2 1
h

[59] 2.8

νM,P2→P3 9.85 · 10−2 1
h

[59] 2.8

νM,P3→P4 2.76 · 10−2 1
h

[59] 2.8

pBact,LP,commensal 0.72 1
h

[58] 2.6

pBact,LP,extracellular 0.72 1
h

[58] 2.6

pBact,LP,salmonellae 0 1
h

- 2.6

pBact,Lu,commensal
1
24

1
h

- 2.4

pBact,Lu,extracellular 0.8 · pBact,Lu,commensal
1
h

- 2.4
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pBact,Lu,salmonellae 0.8 · pBact,Lu,commensal
1
h

- 2.4

peffero 0.1 − - 2.8

pTn,1 0.025 1
h

[101, 106] 2.11

pTn,>1 0.11 1
h

[101, 106] 2.11

Rphago,commensal 1 − - 2.9

Rphago,extracellular 0.1 − - 2.9

Rphago,salmonellae 1 − - 2.9

RTm,commensal 1 − - 2.11

RTm,commensal 0.7 − - 2.11

RTm,commensal 0.7 − - 2.11

Tcontact 2.3 min [87–89, 91, 92] 2.10

VLN 5.5 mL [38] 2.3

VLP 87 mL [39, 40] 2.3

Vmax,Phago 22.2 1
h

[58] 2.6

wphago,P1 0.034 − [59] 2.8

wphago,P2 0.12 − [59] 2.8

wphago,P3 0.31 − [59] 2.8

wphago,P4 1 − [59] 2.8

wpro,Bact 1 · 10−6 − - 2.7

For cytokine production weights and SPM production weights, see Tables 2 and 3, re-
spectively.

9.3 Full model scheme

Figure 49: Full model scheme. Complete model scheme showing all state variables
and reactions of the novel systems biology model, corresponding to the ODEs given in
Section 9.1, including state variables and reactions describing infection by salmonellae.
Bacteria-specific state variables are not shown separately, all entries of that state variable
(each corresponding to one bacterial strain or combination of bacterial strains) are affected
by the same reactions.
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9.4 Knockout simulations

Simulations of mucosal immune response to salmonella infection and mucosal injury under
different knockout conditions. See Section 3.1.
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Figure 50: Time course of T cell knockout. Concentrations of bacteria and selected
immune cells in LP over time in response to different initial amounts of S. Typhimurium
at time point t = 0 in lumen. As described in Section 2.4, pathogenic bacteria in the
lumen are modelled by a unitless value describing the fraction of pathogenic bacteria from
steady state commensal bacteria. i.e. initial = 0.01 corresponds to a pathogen load of 1 %
of the commensal bacteria in lumen at t = 0. Bacteria:

∑
b BactLP, neutrophils: Neut,

macrophages: Mtot, T helper cells: Th + Tem1 + Tem2 + Tem17 +
∑NT,prol

i=1 Tn2Th.
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Figure 51: Time course of T helper cell knockout. Concentrations of bacteria and
selected immune cells in LP over time in response to different initial amounts of S. Ty-
phimurium at time point t = 0 in lumen. As described in Section 2.4, pathogenic bacteria
in the lumen are modelled by a unitless value describing the fraction of pathogenic bacteria
from steady state commensal bacteria. i.e. initial = 0.01 corresponds to a pathogen load
of 1 % of the commensal bacteria in lumen at t = 0. Bacteria:

∑
b BactLP, neutrophils:

Neut, macrophages: Mtot, T helper cells: Th + Tem1 + Tem2 + Tem17 +
∑NT,prol

i=1 Tn2Th.
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Figure 52: Time course of regulatory T cell knockout. Concentrations of bacteria
and selected immune cells in LP over time in response to different initial amounts of S. Ty-
phimurium at time point t = 0 in lumen. As described in Section 2.4, pathogenic bacteria
in the lumen are modelled by a unitless value describing the fraction of pathogenic bacteria
from steady state commensal bacteria. i.e. initial = 0.01 corresponds to a pathogen load
of 1 % of the commensal bacteria in lumen at t = 0. Bacteria:

∑
b BactLP, neutrophils:

Neut, macrophages: Mtot, T helper cells: Th + Tem1 + Tem2 + Tem17 +
∑NT,prol

i=1 Tn2Th.
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Figure 53: Time course of commensal bacteria knockout. Concentrations of
bacteria and selected immune cells in LP over time in response to different initial
amounts of S. Typhimurium at time point t = 0 in lumen. As described in Sec-
tion 2.4, pathogenic bacteria in the lumen are modelled by a unitless value describ-
ing the fraction of pathogenic bacteria from steady state commensal bacteria. i.e.
initial = 0.01 corresponds to a pathogen load of 1 % of the commensal bacteria in lu-
men at t = 0. Bacteria:

∑
b BactLP, neutrophils: Neut, macrophages: Mtot, T helper

cells: Th + Tem1 + Tem2 + Tem17 +
∑NT,prol

i=1 Tn2Th.
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Figure 54: Time course of neutrophil knockout. Concentrations of bacteria and
selected immune cells in LP over time in response to different initial amounts of S. Ty-
phimurium at time point t = 0 in lumen. As described in Section 2.4, pathogenic bacteria
in the lumen are modelled by a unitless value describing the fraction of pathogenic bacteria
from steady state commensal bacteria. i.e. initial = 0.01 corresponds to a pathogen load
of 1 % of the commensal bacteria in lumen at t = 0. Bacteria:

∑
b BactLP, neutrophils:

Neut, macrophages: Mtot, T helper cells: Th + Tem1 + Tem2 + Tem17 +
∑NT,prol

i=1 Tn2Th.
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9.5 Classification of the virtual population

We classified the virtual individuals into four classes (i)-(iv). For this, we used the con-
centrations of T helper cells (Thtot,LP), macrophages (Mtot) and neutrophils (Neut) and
considered the pre-trigger steady-state concentrations normalised by the reference individ-
ual’s steady state and the ratio of post-trigger to pre-trigger steady-state concentration.
In addition, we used the concentration of bacteria in LP (BactLP) to identify chronic
infection. We then defined class centroids for those concentration ratios describing our
expectation of a typical individual of the respective class, i.e. the typical healthy individ-
ual is similar to the reference individual; the typical IBD patient is similar to the healthy
individual before the trigger, but the post-trigger steady state immune cell concentrations
are higher than before the trigger; the typical chronic inflammation individual has much
higher immune cell concentrations already before the trigger; and the typical chronic in-
fection individual has very high bacterial concentrations in LP (set to

Cmax,Bact,ref

10
). The

class centroids are given in Table 11. Each individual was assigned to the class to which
its Euclidian distance was smallest.

Table 11: Centroids for classification of virtual individuals.
Pre-trigger steady state
Reference steady state

Post-trigger steady state
Pre-trigger steady state

Post-trigger steady state
Reference steady state

Thtot,LP Neut Mtot Thtot,LP Neut Mtot BactLP

healthy 1 1 1 1 1 1 1

IBD 1 1 1 2 2 2 1

chronic inflammation 10 10 10 1 1 1 1

chronic infection 1 1 1 1 1 1
NBact,ref

10·Cmax,Bact,ref

9.6 Derivation of disease-relevant parameter changes for IBD

We determined the set of disease-relevant parameter changes separately for each virtual
IBD individual using the following workflow: Using the order of parameter correlation with
the outcome determined in the last section, we started with the least correlated parameter
and set it back to the reference parameter value. If this modified set of parameter values
still resulted in an IBD individual (determined by simulating the mucosal injury scenario
and classification as described above in Section 4.1), the parameter change was assumed
not disease-relevant and the parameter was kept at the reference value. Otherwise, it was
kept at its original value. This procedure was repeated for all parameters, in increasing
order of correlation with the outcome. As it is possible that a parameter change results
in IBD only in a certain combination with other parameter changes, we repeated the
procedure until no further parameter could be changed to the reference value without
losing IBD status. I.e. when any of the parameters of this resulting set of disease-relevant
parameter changes is set back to the reference value, the resulting individual is not an
IBD individual anymore.

Through the described procedure, we obtained for each IBD individual the set of
disease-relevant parameter changes. This does also include parameters that lead to chronic
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infection, chronic inflammation, or problems in steady state calculation (oscillations),
when changed back to the reference value. Out of 22,252 disease-relevant parameter sets
(one per original IBD individual), 995 (4.5 %) contain at least one parameter that, if
changed back to the reference value, results in problems (oscillations, no steady state, in
the following called “problematic parameters”) and 4347 (19.54 %) contain at least one
parameter that, if changed back to the reference value, results in chronic inflammation
(before trigger) or chronic infection (in the following called “chronic parameters”). In
the parameter sets including “problematic parameters”, between 1 and 59 parameters
cause those problems (mean 1.49, median 1). In the parameter sets including “chronic
parameters”, between 1 and 28 parameters cause chronic inflammation/infection (mean
2.45, median 1). For most of the detected disease-relevant parameters, however, a change
to the reference value results in a healthy individual, i.e. those parameters make the
difference between health and disease for this individual. In the analysis of disease-
relevant parameter changes, we only considered the parameter changes leading to a healthy
individual if changed back to reference.

9.7 hpro,deact,M, the most frequent parameter among the disease-relevant pa-
rameter changes

By far the most frequent parameter among the disease-relevant parameter changes, and
the only parameter that we identified to be able to cause IBD on its own, was hpro,deact,M.
hpro,deact,M is the Hill factor for the pro-inflammatory cytokine concentration cytopro,deact,M

in the deactivation of macrophages, i.e. it describes how sensitive the macrophage deacti-
vation rate is to a change in the pro-inflammatory cytokine concentration. The reference
value for this parameter is 1; the lowest value for hpro,deact,M observed to cause IBD without
any other parameter change is 3.21. Figure 55 shows the macrophage deactivation rate
over the pro-inflammatory cytokine concentration cytopro,deact,M for different values of the
Hill factor hpro,deact,M. For the range of pro-inflammatory cytokine values influencing the
deactivation of macrophages, compare Figure 17 (cytopro,deact,M, left column, middle row):
in steady state cytopro,deact,M ≈ 0.3, with a maximal value of cytopro,deact,M ≈ 2 over the
time course of the mucosal injury scenario in the reference individual. In Figure 55 we can
observe that the switch between very low and very high macrophage deactivation rates is
more pronounced for higher Hill factors. A direct biological interpretation of the parame-
ter hpro,deact,M is difficult. It describes, how sensitive the macrophage deactivation rate is
to a change in the pro-inflammatory cytokine concentration, and is therefore a summary
of complex intracellular signalling cascades that take place inside the macrophage after
the encounter of a pro-inflammatory cytokine eventually leading to deactivation.
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Figure 55: Influence of Hill factor hpro,deact,M on macrophage deactivation rate
dependent on pro-inflammatory cytokine concentration cytopro,deact,M. Relative
macrophage deactivation rate (i.e. rate constant for the transition from macrophage pop-
ulation M1 to M2; transitions between other macrophage populations are only different
by a constant factor) for a range of pro-inflammatory cytokine concentrations, assuming
different Hill factors h = hpro,deact,M. All other parameters were set to the reference values.
For the calculation of the anti-inflammatory cytokines influencing the macrophage deacti-
vation rate, the steady-state concentrations from the reference individual were used. For
derivation of the macrophage deactivation rate, refer to Section 2.8, paragraph Influence
of inflammation on deactivation. For the reference individual, the Hill factor was set to
h = 1.

9.8 Classification and feature selection

Short introduction to classification methods. Classification methods aim at classifying n
observations (here: individuals; subscript i) based on p specific features (here: param-
eter values or pre-trigger steady-state levels) into their correct classes (here: IBD and
healthy; subscript g). The corresponding dataset is X ∈ Rp×n, Xg,i ∼ N(µg,Σ), i.e. we
assume each individual to be described by features that are distributed with a multivari-
ate normal distribution, where the mean µg is specific for the class, and the standard
deviation (matrix) Σ is equal for all classes (i.e., Σhealthy = ΣIBD). The classification
method determines a classification model that maximises the number of correctly classi-
fied individuals. (Of course, in our case the best classification model is to solve the ODE
system using the individual parameter values and to classify the individual based on the
resulting mucosal injury time course as described in Section 4.1 (paragraph Classification
of virtual individuals). This is, however, not our intention, as we want to learn about the
importance of different parameters and cell types and to potentially draw conclusions for
clinical settings.)

We tested the following classification methods on four different datasets: (i) parameter
values and (ii) pre-trigger steady state values. (iii)-(iv) In addition, we used reduced
datasets where patients with low disease activity were excluded. This was determined
using the CDEIS score, see Section 9.10. Each dataset contained either all IBD patients
(i)-(ii) or all IBD individuals with CDEIS > 6 in the post-trigger steady state (iii)-(iv)
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and the same number of randomly chosen healthy individuals. All values were normalised
by the according value of the reference individual.

• LDA optimises a linear model to best discriminate between two (or more) classes
(see next paragraph for more details). (Matlab function fitcdiscr)

• A support vector machine optimises a hyperplane to best discriminate between
two classes. (Matlab function fitcsvm)

• A Decision tree or classification tree consists of ordered decisions based on tests
on single features of the data. (Matlab function fitctree)

• A Random forest consists of a large number of decision trees, each trained on a
bootstrap sample of the original dataset using a random subset of features. The
results of the single decision trees are averaged to give the overall result. (Matlab
function TreeBagger with 100 trees)

• In k-nearest neighbours classification, a test datapoint is classified to the class
that the majority of its k nearest neighbours in the training dataset belong to.
(Matlab function fitcknn with k = 20)

• An artificial neural network consists of different layers that process their inputs
using nonlinear functions, returning the output to the next layer, where the weights
of the different inputs are optimised. (Matlab functions patternnet and train

with 10 hidden layers)

• Gaussian process regression models are nonparametric kernel-based proba-
bilistic models. (Matlab function fitrgp, initial values for kernel parameters:
Sigma = 0.7,KernelParameters = (5, 1))

Except for the mentioned cases (where parameter values are given in the list above), the
classifiers were used with default options of the respective Matlab functions.

To compare the performance of the different classification methods on our datasets (N
= 44,504 for full dataset, N = 26,842 for CDEIS > 6), we split each dataset into a test
dataset of 1000 individuals and a training dataset containing the remaining individuals,
trained each classifier on the training dataset and used the test dataset to determine the
fraction of correctly classified individuals using the trained classification models. This
was repeated 10 times with different random splitting into training and test datasets; the
average performance (fraction of correctly identified individuals into healthy and IBD)
per classification method and dataset is shown in Table 12.

As can be inferred from Table 12, Gaussian process regression shows the best per-
formance for the parameter datasets, but not for the pre-trigger steady state datasets.
LDA, random forests and artificial neural networks show comparably good performance
for all datasets. Support vector machines show similar good performance on the param-
eter datasets, but fail for the pre-trigger steady state datasets (very high sensitivity, but
very low specificity, i.e. almost all individuals classified as diseased). Decision trees and
the k-nearest-neighbour algorithm show inferior performance to LDA, random forests and
artificial neural networks for all datasets. In summary, we concluded that LDA, random
forest and artificial neural network are the best of the tested classification methods when
applied to our datasets.
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Table 12: Performance of classification methods. Fraction of correctly classified
individuals (to classes IBD or healthy) using different classification methods applied to
the datasets of parameters (par) or pre-trigger steady state values (pre). In addition to the
full datasets, reduced datasets excluding IBD patients with low disease activity (CDEIS
< 6) are used. In all datasets, the number of healthy individuals equals the number of
IBD patients. We used the following classification methods: linear discriminant analysis
(LDA), support vector machine (SVM), decision tree (tree), random forest (forest), k-
nearest neighbour (knn), artificial neural network (ANN), and Gaussian process regression
(GPR) as described in the text.

LDA SVM tree forest knn ANN GPR

par
full 0.86 0.86 0.74 0.84 0.77 0.85 0.90

CDEIS > 6 0.90 0.90 0.80 0.87 0.83 0.90 0.93

pre
full 0.67 0.49 0.60 0.69 0.64 0.66 0.63

CDEIS > 6 0.65 0.49 0.60 0.67 0.61 0.61 0.61

Short introduction to feature selection. Feature selection denotes the process of finding
the best (combination of) predictors (also called features) among a set of possible predic-
tors/features for a classification problem, in order to improve the prediction performance
and better understand the underlying biological mechanisms. For our case, that means we
aimed to find a combination of few selected features (parameters or steady-state levels)
that best predict if the virtual individual is healthy or diseased. For a detailed overview of
feature selection methods, see e.g. Guyon & Elisseeff (2003) [183]. For LDA, an embedded
method is available, as described below. Therefore, the preferred classification algorithm
for our datasets was LDA.

Linear discriminant analysis (LDA). In the following, we give a short introduction to
LDA; for a more detailed derivation please see Guo et al. (2007) [184]. For a given
dataset X ∈ Rp×n, xg,i ∼ MVN(µg,Σ) with n observations (individuals i) and p features
(parameters/pre-trigger steady state variables), covariance matrix Σ ∈ Rp×p estimated
from data as Σ̂ = 1

n
(X − X̄)(X − X̄)T (assuming the same covariance matrix for all

classes) and feature means µg for each class g (IBD or healthy) estimated from data as
µ̂g = x̄g = 1

ng

∑ng

i=1 xg,i, xg,i is classified to class g̃ so that the likelihood of the observation

is maximal. Including the prior knowledge of the proportion of the class πg, this leads

to the discriminant function d̂g(x) = xT Σ̂−1x̄g − 1
2
x̄Tg Σ̂−1x̄g + log πg. In our case of two

classes, an observation x is classified to class g̃ = IBD if d̂IBD(x) > d̂healthy(x), i.e. d̂IBD(x)−
d̂healthy(x) > 0. This yields the (linear) discriminant function

d(x) = xT Σ̂−1(x̄IBD − x̄healthy)︸ ︷︷ ︸
linear coefficients

+
1

2
(x̄ThealthyΣ̂−1x̄healthy − x̄TIBDΣ̂−1x̄IBD)︸ ︷︷ ︸

constant coefficient

[184].
Regularisation of this linear discriminant function using two additional parameters γ

and δ can be used for feature selection:
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• To avoid singularity of the covariance matrix, and improve predictive performance,
it is regularised using parameter γ: Σ̃ = (1− γ) · Σ̂ + γ ·diag(X̂T · X̂). For this step,
it is important to use centered data, i.e. X̂ = X − µg.

• To reduce the number of features, all linear coefficients with absolute value smaller
than parameter δ are set to zero. The respective features do thus not influence the
discriminant function anymore. This step also assumes normalised data, so that the
same parameter δ can be applied as threshold to all linear coefficients.

To find the optimal classification model(s), the linear discriminant function was deter-
mined for a large range of γ and δ values (using Matlab function cvshrink), resulting for
each combination of γ and δ in a linear discriminant function with a specific number of
features. Then, for each number of features (from 1 to p), the combination of γ and δ
yielding best performance, i.e. highest fraction of correctly classified individuals in the test
dataset, was selected. As all parameter and pre-trigger steady-state values in the datasets
were normalised by the according value of the reference individual, for the resulting linear
model, the coefficients were back-transformed to the original scale.

9.9 Subclasses of IBD individuals based on required trigger extent
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Figure 56: Comparison of inflamed steady state distributions between IBD
types. Density function of inflamed steady-state levels per IBD type for the inflamed
steady state variables with highest absolute Pearson correlation coefficient ρ to the IBD
type. Type 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Vertical lines (in the respective colours) indicate
medians of the distributions and the reference value, i.e. value in the healthy reference
individual (black vertical line).
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Figure 57: Comparison of parameter distributions between IBD types. Density
function of parameter values per IBD type, for the parameters with highest absolute
Pearson correlation coefficient ρ to the IBD type. Type 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Vertical lines (in the respective colours) indicate medians of the distributions and the
reference value, i.e. value in the healthy reference individual (black vertical line).

9.10 Virtual CDEIS analog

The Crohn’s disease endoscopic index of severity (CDEIS) was described by Mary and
Modigliani (1989) [177] and has been used in numerous clinical studies (e.g. [175]). It
evaluates the disease state based on an endoscopic examination of different segments of
the colon, giving scores to the amount and degree of ulcerations and diseased tissue. A
simple one-to-one correspondence of the CDEIS is not available in the model, as the model
does not simulate the appearance of tissue. In addition, the model simulates the dynamics
of a generic position of the colon gut wall, and does currently not account for differences
between segments. Nevertheless, we were able to determine a plausible CDEIS analog
based on a combination of model outcomes; see Table 13 for details.

For the calculation of the virtual CDEIS analog, we determined close representations of
the CDEIS subscores among our model outcome (i.e. post-trigger steady-state variables).
Ulcerations are damages of the gut wall; the CDEIS differentiates between deep and
superficial ulcerations. In our systems biology model, the gut wall is represented by the
three state variables mucus, epi and tissue, where epi describes the layer of epithelial
cells, tissue describes the underlying tissue of the LP, and mucus is secreted by the cells
of the epithelial layer. Superficial ulcerations are translated to the model level as damage
of the epithelial barrier of the gut wall; as the state variable epi describes the functional
integrity of the epithelial barrier, this translates to a low value of epi. Deep ulcerations are
translated to the model level as damage of the gut wall that also affects the underlying
tissue; as the state variable tissue describes the functional integrity of the tissue, this
translates to a low value of tissue. The cut-off values were chosen such that the majority
of IBD individuals have CDEIS > 4, which is a frequently used threshold for mucosal
healing, but all healthy individuals have CDEIS values close to zero and no healthy
individual has CDEIS > 4. State variable values below the cut-off were linearly projected
to the allowed subscore values (0-12 for deep ulcerations/ 0-6 for superficial ulcerations),
with the highest subscore value for tissue = 0 or epi = 0, respectively. The CDEIS
also evaluates the ulcerated surface, i.e. the fraction of the gut surface that is affected
by ulcerations. For that, we combined the subscores of deep and superficial ulcerations
to represent the relative occurrence of ulcerations of both types. In addition, the score
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evaluates the surface involved by disease, i.e. the fraction of the gut wall that is visibly
(by endoscopy) inflamed. As this status of visible inflammation is expected to represent
the level of inflammation in the LP, to represent this subscore we used a cell type of
acute inflammation: neutrophils. For this, we scaled the neutrophil concentration to the
subscore between 0 and 10 using an Emax model, with a maximal subscore of 10 according
to the CDEIS and Km set to 4.74 · 107, giving reasonable subscores between 0 and 10 for
both healthy individuals and IBD patients. The CDEIS gives extra 3 points in the cases
of non-ulcerated or ulcerated stenosis. Stenosis, a constriction of the gut, is caused by
fibrosis, i.e. too much proliferation of the tissue. This is in the model represented by values
of tissue > 1. Therefore, we defined non-ulcerated stenosis as tissue > 1.1 (assuming
a small margin of fibrosis not directly leading to stenosis) and ulcerated stenosis by a
combination of stenosis and a considerable level of ulceration.

Table 13: CDEIS calculation. Column “endoscopy” describes the scoring based on
endoscopy, introduced by Mary and Modigliani (1989) [177], which is frequently used in
clinical studies. Column “translation” describes our proposed calculation of the CDEIS
based on the model’s state variables.

endoscopy translation

deep ulcerations 0 or 12 0, if tissue > 0.90; 12, if tissue < 0.61;
linear in between

superficial
ulcerations

0 or 6 0, if epi > 0.80; 6, if epi < 0.37;
linear in between

surface involved by
disease

0 to 10 10·Neut2

Km2+Neut2

ulcerated surface 0 to 10 10 · (1− (1− deep
12

)(1− superficial
6

))

non-ulcerated
stenosis

+3 +3, if tissue > 1.1

ulcerated stenosis +3 +3, if non-ulcerated stenosis AND ulcerated surface
> 0.5
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