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0Abstract
The Security Operations Center (SOC) represents a specialized unit responsible

for managing security within enterprises. To aid in its responsibilities, the SOC

relies heavily on a Security Information and Event Management (SIEM) system

that functions as a centralized repository for all security-related data, providing

a comprehensive view of the organization’s security posture. Due to the ability

to offer such insights, SIEMS are considered indispensable tools facilitating SOC

functions, such as monitoring, threat detection, and incident response.

Despite advancements in big data architectures and analytics, most SIEMs fall

short of keeping pace. Architecturally, they function merely as log search engines,

lacking the support for distributed large-scale analytics. Analytically, they rely on

rule-based correlation, neglecting the adoption of more advanced data science and

machine learning techniques.

This thesis first proposes a blueprint for next-generation SIEM systems that

emphasize distributed processing and multi-layered storage to enable data mining

at a big data scale. Next, with the architectural support, it introduces two data

mining approaches for advanced threat detection as part of SOC operations.

First, a novel graph mining technique that formulates threat detection within

the SIEM system as a large-scale graph mining and inference problem, built on

the principles of guilt-by-association and exempt-by-reputation. The approach

entails the construction of a Heterogeneous Information Network (HIN) that models

shared characteristics and associations among entities extracted from SIEM-related

events/logs. Thereon, a novel graph-based inference algorithm is used to infer a

node’s maliciousness score based on its associations with other entities in the HIN.

Second, an innovative outlier detection technique that imitates a SOC analyst’s

reasoning process to find anomalies/outliers. The approach emphasizes explain-

ability and simplicity, achieved by combining the output of simple context-aware

univariate submodels that calculate an outlier score for each entry.

Both approaches were tested in academic and real-world settings, demonstrat-

ing high performance when compared to other algorithms as well as practicality

alongside a large enterprise’s SIEM system.

This thesis establishes the foundation for next-generation SIEM systems that

can enhance today’s SOCs and facilitate the transition from human-centric to

data-driven security operations.
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0Zusammenfassung

In einem Security Operations Center (SOC) werden alle sicherheitsrelevanten

Prozesse, Daten und Personen einer Organisation zusammengefasst. Das Herzstück

des SOCs ist ein Security Information and Event Management (SIEM)-System,

welches als zentraler Speicher aller sicherheitsrelevanten Daten fungiert und einen

Überblick über die Sicherheitslage einer Organisation geben kann. SIEM-Systeme

sind unverzichtbare Werkzeuge für viele SOC-Funktionen wie Monitoring, Threat

Detection und Incident Response.

Trotz der Fortschritte bei Big-Data-Architekturen und -Analysen können die

meisten SIEMs nicht mithalten. Sie fungieren nur als Protokollsuchmaschine und

unterstützen keine verteilte Data Mining und Machine Learning.

In dieser Arbeit wird zunächst eine Blaupause für die nächste Generation von

SIEM-Systemen vorgestellt, welche Daten verteilt, verarbeitet und in mehreren

Schichten speichert, damit auch Data Mining im großen Stil zu ermöglichen. Zudem

werden zwei Data Mining-Ansätze vorgeschlagen, mit denen auch anspruchsvolle

Bedrohungen erkannt werden können.

Der erste Ansatz ist eine neue Graph-Mining-Technik, bei der SIEM-Daten als

Graph strukturiert werden und Reputationsinferenz mithilfe der Prinzipien guilt-

by-association (Kontaktschuld) und exempt-by-reputation (Reputationsbefreiung)

implementiert wird. Der Ansatz nutzt ein heterogenes Informationsnetzwerk (HIN),

welches gemeinsame Eigenschaften und Assoziationen zwischen Entitäten aus

Event Logs verknüpft. Des Weiteren ermöglicht ein neuer Inferenzalgorithmus

die Bestimmung der Schädlichkeit eines Kontos anhand seiner Verbindungen zu

anderen Entitäten im HIN. Der zweite Ansatz ist eine innovative Methode zur

Erkennung von Ausreißern, die den Entscheidungsprozess eines SOC-Analysten

imitiert. Diese Methode ist besonders einfach und interpretierbar, da sie einzel-

ne univariate Teilmodelle kombiniert, die sich jeweils auf eine kontextualisierte

Eigenschaft einer Entität beziehen.

Beide Ansätze wurden sowohl akademisch als auch in der Praxis getestet und

haben im Vergleich mit anderen Methoden auch in großen Unternehmen eine hohe

Qualität bewiesen.

Diese Arbeit bildet die Grundlage für die nächste Generation von SIEM-Systemen,

welche den Übergang von einer personalzentrischen zu einer datenzentrischen

Perspektive auf SOCs ermöglichen.
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1 Introduction

The Security Operations Center (SOC) is a centralized department in enterprises

responsible for handling security issues at both organizational and technical levels.

The SOC integrates people, processes, and technologies to accomplish its objectives.

Common SOC tasks comprise identifying risks, managing vulnerabilities, meeting

compliance requirements, responding to incidents, and others[183, 266].

Although every organization can establish a SOC, its level of maturity can

vary based on the company’s size and commitment to IT security. Nonetheless,

it’s evident that more and more organizations recognize the significance of SOC

activities. According to the IBM Security Cost of a Data Breach Report 2022, 83% of

organizations have experienced more than one breach[232]. A successful attack on

an organization not only incurs costs but also affects reputation and stock prices.

As such, an effective SOC is critical in today’s threat landscape.

The efficacy of SOC functions is contingent on its personnel, technologies, and

processes. However, the fundamental cornerstone of SOC is its data, data that

facilitate its operations, e.g., asset inventory, vulnerability management, compliance,

monitoring, threat detection/hunting, and incident response.

In this regard, Security Information and Event Management Systems (SIEMs)

function as centralized repositories of all security-relevant data, indispensable tools

that facilitate a multitude of SOC operations [10, 209].

The primary source of the data in SIEMs is event logs produced by IT systems

across the enterprise’s landscape, such as security devices, network infrastructure,

host and endpoint systems, applications, and cloud services. Other data sources

include network telemetry and information about inventories, users, assets, and

vulnerabilities.

While SIEM solutions were initially developed to meet regulatory and compliance

requirements (e.g., PCI DSS, HIPAA, and SOX), their ability to correlate heteroge-

neous data and provide a comprehensive view of enterprise security posture has

made them highly effective for threat detection, hunting, and monitoring [10, 126].

Threat detection is among the most crucial operations executed by SOCs. Al-

though threat detection methods can be deployed across several platforms, includ-

ing firewalls, IPS/IDS, and EDR systems, an increasing number of companies are

dedicating resources to threat detection within SIEMS [10, 80].

The hypothesis here is that if there is a threat that has managed to successfully

1



Chapter 1 Introduction

bypass the perimeters of defense such as firewall, intrusion detection system, anti-

virus, etc., it is quite likely that there are traces of its activities somewhere in these

log data shipped to the centralized repository (SIEM or XDR). In this regard, one

can apply the detection approaches to these events/logs to identify missed threats.

Consider the SolarWinds hack [81], also referred to as Solorigate, Sunburst, or

UNC2452, a prime example of one of the most notable and intricate cyber attacks

ever to occur. This attack impacted major Fortune 500 corporations and various

governmental organizations, and it brought to light the susceptibility of the software

supply chain.

The attackers were able to insert malicious code into a SolarWinds Orion software

update which is used for network and systemmonitoring. This allowed them to gain

access to the networks of numerous SolarWinds customers who had installed the

compromised software update. The attackers were also able to remain undetected

for an extended period of time, reportedly lasting several months, during which

they were able to conduct reconnaissance, move laterally within compromised

networks, and steal sensitive data.

Sophisticated attacks like the SolarWinds hack can be hard to predict and hard

to defend against; however, there are chances to detect them earlier. In the case

of SolarWinds, the security firm FireEye uncovered the hack simply because it

deployed two-factor authentication for all its employees and found unusual activity.

Nevertheless, the attack had left detectable traces within the standard logs collected

by most of the mature organizations, such as Windows Events, EDR, Proxy, DNS,

and so on [81].

Perhaps the SolarWinds hack could have been detected if there were smarter ways

of analyzing terabytes of event logs to uncover the traces of such a sophisticated

attack. The lessons learned from the SolarWinds hack are reinforced by the 2022

Data Breach Investigations Report by Verizon [265], which shows that the majority

of cyberattacks are detected a month or more after the initial breach event, despite

the fact that the traces were available at the time.

Attacks like SolarWinds draw attention to one of the limitations of current cyber

threat detection capabilities, the struggle with detecting unknowns, even when we

have traces that could assist us in uncovering them.

Another noteworthy case is the 2013 Target hack, during which the attackers

infiltrated Target’s network and deployed malware that was specifically designed

to steal credit card information from the retailer’s customers. Several months prior

to the breach, FireEye’s security solution detected signs of the malware and raised

an alert that was subsequently received by Target’s SOC. However, the SOC team

ignored the alert, and no action was taken to address the issue [221].

The malware used in Target’s breach was far from sophisticated. Nonetheless, it
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was able to bypass the security controls and protocols of a large and well-resourced

organization. Despite the presence of traces and alerts related to the malware, the

attackers were still able to successfully carry out their attack.

Data breaches such as Target’s 2013 hack raise awareness of the fact that security

monitoring is typically reactive and heavily relies on human-centered and manual

decision-making processes, with security tools used to support the work of analysts.

1.1 Problem Statement
"Knowledge is power" is the adage that has perhaps not lived up to its potential in

cybersecurity.

Threat detection in today’s enterprises remains human-centric and heuristic-

based [10], which have their limitations [171]. The more specific a signature is, the

easier it becomes for attackers to evade detection. Conversely, the more general a

signature is, the greater the likelihood of generating false positives, leading to alert

fatigue, and the possibility of ignorance [10], e.g., in the case of target hack[221]

Furthermore, these methods are not effective in detecting advanced threats like the

SolarWinds hack or zero-days such as log4j vulnerability exploitation [102].

To address these challenges, academia suggests taking a data-centric approach

utilizing data mining techniques such as anomaly/outlier detection[63, 77, 119, 123,

228, 229, 262]. However, industrial applications of these techniques are still limited

[10, 228].

Architectural limitations— One of the main reasons for the lack of a data-

driven mindset to threat detection can be attributed to the architectural limitations

that hinder our ability to analyze data at scale. In a medium-sized enterprise, an

established Security Operations Center (SOC) assimilates data from thousands

of systems, resulting in a data scale that reaches billions, potentially resulting

in terabytes of data per day[284]. Consequently, this places the company’s data

within the domain of truly big data, characterized by its variety, velocity, and

volume. However, the majority of today’s SIEM systems are based on the early

2000s technologies originally designed as search engines that are now being used

for heuristic-based threat detection, i.e., searching for events that may indicate a

known threat. While these systems are quite advanced in their ability to provide

storage and accessibility at scale, despite their promises, they do not satisfy the

distributed processing requirements for data mining at scale, .e.g, statistical analysis,

machine learning [140, 270], and graph mining [40, 98, 99].

Analytical limitations— The other challenge to adapting data mining and

machine learning techniques in cybersecurity is the legitimate skepticism among
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industry professionals, who have been exposed to false, unrealistic promises both

from industry and academia. This has led to a reluctance to embrace these tech-

niques, resulting in the growing gap between academia (research) and industry

(development) [18]. In a qualitative study conducted by Alahmadi et al. [10], which

surveyed SOCs of varying sizes, it was discovered that there is a lack of adoption

of machine learning (ML). The authors highlighted that SOC analysts are skeptical

of ML in commercial tools, there is a lack of accreditation bodies to attest to the

correctness of the ML model design, and high false positive rates are also a concern.

This finding is consistent with a 2019 study by SANS [49], which found that there

is a general dissatisfaction with AI/ML tools.

1.2 Thesis Contributions
This thesis advocates the shift from a human-centric SOC to data-driven SOC,

specifically focusing on the data-driven threat section. In particular, this thesis

provides three main contributions:

1. Reference Architecture Next-generation SIEMs: Architectural blueprint
for next-generation SIEM systems that emphasize distributed processing

and multi-layered storage to enable data-driven approaches to tackle SOC

problems. The proposed architecture has been implemented as a Proof-of-

Concept (PoC) in an academic setting using open-source technologies (e.g.,

Apache Spark, Flink, Arrow, HDFS, Yarn) as well as in an industrial setting

with commercial alternatives (e.g., Databricks, and Azure Data Lake Storage).

The platform aims to empower a data-driven Security Operations Center

(SOC). This platform can be considered the next-generation SIEM or XDR.

2. Threat detection via Graph-inference: A novel graph mining technique

that formulates threat detection within the SIEM system as a large-scale graph

mining and inference problem, using host-level system events (endpoint logs)

and network events (proxy and DNS server logs) enriched with. The approach

is built on the principles of guilt-by-association and exempt-by-reputation,

with the intuition that an adversary’s resources are limited, thereby making

the reuse of infrastructure and techniques inevitable. The approach entails

the construction of a Heterogeneous Information Network (HIN) that models

shared characteristics of entities extracted from underlying event logs en-

riched with Cyber Threat Intelligence (CTI) and Open-Source Intelligence

(OSINT). These characteristics include parent/sub-processes, written/read
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files, loaded libraries, registry entries, network connections, and other rele-

vant information. Thereon, a novel graph-based inference algorithm is used

to infer a node’s maliciousness score based on its associations with other

entities in the HIN. The algorithm combines the learnings of PageRank and

Belief Propagation to ensure a more accurate inference process.

3. Threat detection via Outlier Detection: An innovative outlier detection

technique that is designed to imitate a SOC analyst’s reasoning process

in finding anomalies/outliers and deciding maliciousness. The approach

emphasizes explainability and simplicity, achieved by combining the output

of simple context-aware univariate submodels that calculate an outlier score

for each entry. The process involves fitting a kernel density estimate-like

function and examining the density and distance of the observation compared

to the underlying distribution.

1.3 Thesis Structure
The thesis is structured as follows:

Chapter: 2 Security Operation Center— provides the necessary back-

ground information to comprehend the context, specifically the terminologies

used within the Security Operation Centers.

Chapter: 3 Next-Generation SIEM Systems with Big Data Architec-
tures— This chapter starts by presenting an extended background required

for understanding big data architectures, leading to the requirements for

next-generation SIEM systems that incorporate big data architectures to

enable advanced analytics. It then presents the architectural blueprint of

next-gen SIEM systems. This will be followed by a case study illustrating the

effectiveness of the next-gen SIEM system for beacon detection at scale. This

chapter will conclude with a summary and a transition to the next chapter.

Chapter: 4 Graph-based Inference for Threat Detection— This chapter

focuses on the application of graph mining, specifically graph inference, as a

method for detecting advanced threats. It begins by providing the necessary

background knowledge on graph theory and inference. Next, it proposes

schemas for a graph/HIN based on SIEM-related logs. Subsequently, the

chapter introduces a novel graph inference algorithm named MalRank, along

with its unique characteristics and requirements. This will be followed by an
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experimental setup and two case studies evaluating MalRank in a real-world

setting. Finally, this chapter will conclude with a discussion, limitations,

future work, a literature review, and a summary.

Chapter: 5 Outlier Detection for Threat Detection—This chapter focuses

on the application of outlier detection and anomaly detection in cybersecurity,

starting with background knowledge on outlier detection, followed by a

section on the requirements and challenges. This leads to the presentation

of a unique outlier detection algorithm. The chapter will continue with

details of experimental setups and evaluations highlighting the superiority of

the proposed algorithm, leading to a discussion section and lessons learned.

Finally, the chapter will end with a literature review, limitations, future work,

and a summary.

Chapter: 6 Conclusion— The final chapter provides an overview and sum-

mary of this thesis’s main contributions and findings, followed by limitations

and areas for further direction. Finally, ends with final thoughts and remarks.
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2 Background Context: SOC

Cybersecurity Framework (CSF) developed by the National Institute of Standards

and Technology (NIST) as of the most popular frameworks for standards, guidelines,

and best practices for cybersecurity-related risk [52], categorizes cybersecurity

functions of Security Operation Centers (2.1) under:
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Figure 2.1: NIST Cybersecurity Framework.

1. Identify: This stage involves identifying and understanding the systems,

assets, data, and capabilities that require protection. It also involves assessing

and managing risk based on business objectives and identifying regulatory

and compliance requirements such as HIPAA, PCI, GDPR, etc.

2. Protect: This stage focuses on the security of infrastructure, assets, and data.

It includes implementing access controls, protective technology, managing

vulnerabilities (scanning and patching), and security awareness training for

employees.

3. Detect: This stage involves monitoring and detecting cybersecurity risks

and threats. It includes implementing continuous monitoring systems and

procedures to identify threats, vulnerabilities, and incidents. As part of

detection, organizations may also perform penetration tests and Purple/Red

teaming exercises to identify gaps and test their detection capabilities.
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4. Respond: This stage focuses on responding to cybersecurity incidents in

a timely and effective manner, including isolation of the targeted systems,

alerting members, implementing playbooks, and remediation steps.

5. Recover : This stage involves restoring the organization’s systems and data to

their pre-incident state. It also includes incorporating lessons learned from

the incident into the organization’s cybersecurity policies, procedures, and

practices.

Many of today’s mature SOCs review NIST recommendations when designing

and implementing their SOC. The standard also formulates a set of concrete tasks

for each category as guidelines for operating SOCs within today’s enterprises.

There are also other standards, frameworks, and guidelines allowing organiza-

tions to better prioritize their cyber defense efforts, e.g., CSI CSC [43], COBIT [45],

and ISO 31000:2018 [116]. The details of these frameworks and guidelines are

beyond the scope of this thesis. However, one could refer to the provided references

to learn more.

While discussing all SOC operations, tools, and procedures that are beyond the

scope of this thesis, in this section, we expand on some key terminologies that

allow us to better understand the rest of this thesis.

2.1 SOC Maturity Model
There are models and frameworks that allow one to assess the maturity of an

organization’s SOC department, e.g., CMMI, SOC-CMM, and ISACA COBIT 5

Process Assessment Model.

If we take a broader perspective on SOC, which encompasses people, processes,

and technology, we can define its maturity levels as follows:

• First-generation SOC: These SOCs have limited data coverage and rely on a

few security tools. They focus mainly on risk management and have limited

incident response practices.

• Second-generation SOC: These SOCs use data correlation and consolidation

to turn data into security-relevant events, enabling automated and simpli-

fied security monitoring and formalized incident response (via the usage of

playbooks). They can provide more advanced risk management and mature

incident response services. However, they are still largely reactive.

8



SOC Tools and Technologies Section 2.2

• Third-generation SOC: These SOCs introduce additional capabilities, such

as vulnerability management and compliance, and are expected to be more

proactive in threat preparation.

• Fourth-generation SOC: These SOCs leverage the latest SOC technologies

and trends, invest significant resources in improving processes, technologies,

and people, and continuously measure, evaluate, and improve their function-

alities. They are not only proactive but also highly adept at monitoring and

responding to security incidents.

In this thesis, we expand on the future of SOC, specifically as a fourth-generation

SOC that leverages data-driven approaches and techniques in order to improve

various SOC activities, including advanced threat detection, vulnerability analysis,

alert prioritization, and more.

2.2 SOC Tools and Technologies
As mentioned, SOC is defined as the combination of people, technology, and pro-

cesses. While people are beyond the scope of this thesis, technologies and processes

are in the scope.

The tools and technologies utilized by the SOC depend on its maturity level.

Figure 2.2 provides an example of the technologies maintained by the SOC for an

organization. Furthermore, while discussing all technologies used within today’s

SOCs is also beyond the scope, here we expand on some of the most relevant ones.

2.2.1 IDS/IPS
An Intrusion Detection System (IDS) is a monitoring system that is typically in-

stalled on a single system attempting to detect suspicious activities and generates

alerts that will be consumed by SOC analysts for further investigation. IDS sys-

tems are usually categorized into Host-Based IDS (HIDS) and Network-Based IDS

(NIDS) [156]. While HIDs are typically installed on endpoints (hosts) to monitor

operating system resources, NIDs are typically deployed on intermediary network

nodes to monitor network traffic. There are two categories of IDS detections:

signature-based techniques and anomaly-based techniques. Signature-based tech-

niques involve evaluating activities using a set of well-known signatures or patterns

of attack stored in the IDS database. When an attempt matches a signature, the IDS

triggers an alert. On the other hand, anomaly-based techniques rely on creating a

baseline profile that represents normal/expected network behavior. Any observed

9



Chapter 2 Background Context: SOC

Employee

 

Endpoint

 

Anti-Spam EDR/XDR Anti-Virus

DNS Security

Endpoint Firewall Posture Assessment Identity Access Control

Threat Intelligence 

SSL DecryptionFirewall IDS/IPS Web Proxy

Vulnerability Management 

Web Security

Data Loss Prevention Flow Analytics Cloud Access Security Internet

SOC SOAR SIEM

Figure 2.2: Solutions and technologies utilized by typical SOC.

deviation from this profile is considered anomalous. This profile is mostly generated

using statistical and historical network traffic data.

An Intrusion Prevention System (IPS) is a network monitoring tool that operates

inline, which means that it can block detected threats to prevent them from reaching

their targets. However, it can also be configured to operate passively, where it only

inspects and copies traffic, acting more like an Intrusion Detection System (IDS).

2.2.2 SIEM
A SIEM system integrates two formerly heterogeneous systems, a Security Informa-

tion Management (SIM) system, and a Security Event Management (SEM) system.

SEM systems were originally designed as a tool to provide real-time monitoring for

security events and alerts oriented to identify and manage threats. In comparison,

SIM systems were designed as a log management tool for recordkeeping and re-

porting of security-related events supporting compliance, forensic investigation,

and analysis of security threats [2]. SIEM systems were raised as the result of

integrating SIM and SEM to simplify the IT landscape. Since then, these systems

have evolved to support a wide variety of needs.

One of the limitations of IDS systems is their limited ability to have a holistic

view of the IT landscape to support better decision-making, i.e., event correlation.

For instance, while a failed login event is nothing to concern with, multiple failed

logins to a different host by a single user is concerning. This can only be recognized

while correlating events from various endpoints. That is why over time, SIEM

10



SOC Tools and Technologies Section 2.2

systems have evolved to also act as an IDS system supporting threat detection as

the last perimeter of defense.

The typical workflow of a SIEM system comprises several stages, starting with

data pre-processing, which involves identifying the data source, parsing data fields,

and converting them into a structured data format comprehensible by the tool.

Additional pre-processing steps, such as normalization and deduplication, may also

be performed. Subsequently, the system moves to data correlation and enrichment,

where additional information is added to the incoming data. Finally, the data is

stored and indexed, with many SIEM solutions built on top of technologies designed

for string search, such as index stores. This is because the majority of data are semi-

structured, with various fields that are challenging to unify. Therefore, allowing

the search for terms in raw data to collect relevant data is a critical capability of

the SIEM system.

Gartner research group [225] characterized the main requirements for Security

Information and Event Management systems as follows:

• Information and Event Management: Themain requirement for SIEM systems

remains as the collection and storage of events and logs from heterogeneous

devices in the organization, allowing SOC analysts to monitor the landscape,

providing visualization, reporting, and alerting mechanisms. These trends

can be created based on real-time and/or historical data to identify patterns

that can aid in gaining insight into high-risk behavior. The report can also

be used to measure the status against compliance regulations and standards

such as PCI DSS, GDPR, HIPAA, and SOX.

• Threat Hunting and Investigation: SIEM systems are expected to be the cen-

tralized repository holding all security-relevant information and event. These

systems are used by SOC analysts to freely explore and analyze data, hunt

for threats, or investigate known security incidents. Thus the search features

and functionality is fundamental in a SIEM tool. This requires the platform

to run efficient ad-hoc queries against massive amounts of data and combine

heterogeneous structured and unstructured data. Searching capability can

vary from a descriptive taxonomy to free-flowing search queries (e.g., regex)

and vendor-specific language.

2.2.3 SOAR
While SIEMs provide the capability to have a holistic view of enterprise security,

they lack the functionality to execute actions in case of an attack. For instance,

blocking the source of an attack or quarantining the affected assets. In the absence
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of this feature, analysts would depend on the SIEM product to stay aware of

events while using alternative means to take action. Organizations may develop

documented procedures for carrying out actions and transform them into playbooks,

which can eventually be automated. This process, known as orchestration, is part

of the incident response.

This is the main functionality of a Security Orchestration, Automation, and

Response (SOAR) system. A system that integrates incident response processes

and automated workflows. SOAR platforms aim to streamline incident response

by automating repetitive tasks such as alert contextualization and prioritization,

playbooks run, and reporting.

SOARs are mostly considered as an extension of the SIEM systems filling the gap

for automated response and orchestration.

2.2.4 TIP

Many organizations use dedicated threat intelligence exchange platforms that

connect to other parties in open and closed circles to collect and share Cyber

Threat Intelligence (CTI), providing security teams and solutions with the latest

threat insights for better signature-based detection of known attacks and threats.

Although often integrated with SIEM, these platforms allow for various forms of

intelligence exchange, including Indicators of Compromise (IoCs), such as lists

of known malware hashes or domains, as well as information on techniques and

tactics employed by threat actors.

2.2.5 Vulnerability Management

Vulnerabilities are weaknesses of systems that can be exploited by an attacker.

Vulnerabilities can be an extremely easyway for attackers to achieve their objectives,

as some could pose significant impacts, e.g., remote code execution.

Vulnerability management and scanner tools are essential components of a ro-

bust SOC. Vulnerability management refers to the process of identifying, assessing,

and mitigating vulnerabilities in an organization’s IT infrastructure. This involves

regular scans of networks, systems, and applications to detect and prioritize vul-

nerabilities based on their risk to the organization. Vulnerability scanner tools are

software applications that automate the scanning process, allowing security teams

to quickly identify potential vulnerabilities and take appropriate remedial action.

These tools use a variety of techniques, such as port scanning, network mapping,

and vulnerability testing, to identify weaknesses in an organization’s security pos-
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ture. There are also various OSINT repositories that today’s SOC utilizes to be

updated with the most recent vulnerabilities, e.g., CVE[50], CWE[51].

2.2.6 EDR/XDR
Endpoint detection and response (EDR) are the ewer iterations of Anti-Virus (AV)

solutions that incorporate a lightweight system agent that monitors system events

(e.g., network connections, file modifications, processes, etc.) and sends events to a

cloud or SIEM system to detect suspicious events. Furthermore, offering remote

control to initiate actions on the system. In addition to standard AV functionalities

such as IOC-based detection, blocking, and quarantining, these solutions often

include behavioral analysis components.

EDRs also collect system events, including the executable’s hash, file name,

file path, command line, parent process, sub-process creation, file modifications,

libraries loaded, registry modifications, and network connections, making EDR

logs one of the most valuable data sources commonly forwarded to the enterprise’s

SIEM systems. 61% of today’s organizations deploy EDR tools [259].

While traditional EDR tools focus only on endpoint data, XDR solutions seek to

unify disparate security tools extending the detection scope beyond the endpoints

to networks, servers, cloud workloads, etc.

Some consider the XDR as the future of SIEM systems, combining the capabili-

ties associated with separate SIEM, UEBA, NDR, and EDR tools while leveraging

advanced analytics and machine learning, and automation.

2.3 Threat Detection in SOC
One of the most vital security operations carried out by today’s SOCs is threat

detection. While the majority of security appliances attempt the detection (hence

possible prevention) at the place in which the appliance is located (e.g., Firewall

where the traffic flow or EDR at the endpoint where processes are executed), there

is a trend of moving the detection as more of an aftermath with the advantage of

getting a holistic view across all solutions (i.e., within the SIEM or XDR solutions).

Whilemost of the literature categorizes detection as signature-based and anomaly-

based, we would like to utilize the Rumsfeld-Matrix [223], which classifies cyber

threats into four categories ofKnown-Knowns, Known-Unknowns, Unknown-Knowns,
Unkown-Unknowns.
Following this categorization of threats, we argue that the detection technique

can fall under known detection and unknown detection.
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2.3.1 Detection of Knowns

Known detection techniques are very similar in nature to signature-based detection

or heuristic-based detection, which focuses on known knowns as well as unknown

knowns. In other words, looking for previously identified threats.

Although signature-based detection remains one of the most commonly em-

ployed techniques in the cybersecurity industry, it is not without its limitations.

The more specific a signature is, the easier it becomes for attackers to evade de-

tection, for instance, through minor modifications in malware that generate new

hashes. In addition, evading techniques such as encryption, packing, obfuscation,

polymorphism, metamorphism, fileless [148], or stealthy malware [79, 148, 153]

challenges the signature-based detection [281]. Conversely, the more general a

signature is, the greater the likelihood of generating false positives, leading to alert

fatigue.

Heuristics can be extended to include behavior, which means looking for specific

Tactics, Techniques, and Procedures (TTPs) rather than a particular signature. The

advantage of this approach is that while an attacker may be able to bypass a specific

static signature, it is much more difficult to modify the underlying behavior. For

example, in the case of ransomware, one would expect the encryption of the hard

drive of the infected system as part of its operation. While attempting to detect the

ransomware via its file hash (signature) can be easily circumvented, the encryption

behavior cannot, as it is a core part of the malware’s behavior.

The majority of today’s known detection is carried out within the enterprise

SIEM system with a set of correlation rules (heuristics) that describes the potential

attack.

Known detection or heuristic-based detection relies on the knowledge of previ-

ously identified threats and attacks, i.e., Cyber Threat Intelligence. This intelligence

can take various forms, including simple IoCs such as file hashes, domain names,

or IP addresses, as well as more complex attack patterns expressed in the form of

heuristics or signatures (TTP) [25].

While for simpler IoCs, there are various formats and standards to exchange

intel, e.g., STIX [248], OPENIOC[117], MISP[267], IODEF [56].

For more complex TTPs, there are frameworks such as MITRE ATT&CK [177]

and CAPEC [35] that allow analysts to better understand complex adversary TTPs

(attacks). These are good sources of CTI both on the tactical level (threat modeling)

and operational level creation of behavioral rules for the detection, as well as

adversary emulation (red teaming) and defensive gap analysis.
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2.3.2 Detection of Unknowns
Although heuristic-based detection is widely accepted and employed in the real

world, it has limitations in detecting unknown threats such as zero-days and APTs.

To address this gap, the industry and academia suggest anomaly detection [63, 77,

119, 123, 228, 229, 262]. The hypothesis is that deviation from normal is an anomaly,

and an anomaly translates to maliciousness (a threat). However, as we will discuss

in later sections, this assumption may not necessarily be true.

While anomaly detection holds the potential for identifying unknown threats,

implementing it correctly can be challenging due to hypothetical and technical

challenges. This thesis aims to explore data-driven solutions to tackle the detection

of unknowns.

2.4 Data in SOC
There are various data one can collect that could benefit the IT security of an

organization; however, one has to consider collection, storage, processing, and the

values possible to derive.

One cannot simply collect all security-relevant data and dump it to a SOC tool

such as SIEM and expect the analyst to find the needle in the haystack. It is

important to define the expectations and the way.

That is why it is crucial to understand the data within today’s SOCs before pro-

ceeding with architecture to handle the big security-related data and the analytical

techniques to derive the desired values.

2.4.1 Event Logs
Logs represent events generated by a computing system ranging from operating

systems to applications and containing information about the actions.

Different types of systems within an organization can generate logs, as shown

in Figure 2.2, which depicts possible security solutions installed in an enterprise.

Each system can have its corresponding logs.

Logs can be found in various forms throughout an enterprise, ranging from

device logs such as IoT devices and physical access controls to application-specific

logs on servers. Although the list of logs can be endless, the following are general

categories of the most relevant logs of interest for SOCs.

• Endpoint (host-based) Logs: Devices such as laptops, servers, mobile devices,

and workstations generate a variety of logs, ranging from the operating
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system to the applications installed. These logs can contain information

about the status of the device as well as the activities performed on the device.

They are essential for threat detection and incident response activities as

they provide visibility into the behavior of devices within an organization.

The information captured via these logs can include details of user activities,

network connections, file access, system events, etc. Examples of endpoint

logs include Windows Event Logs and Endpoint Detection and Response

(EDR) logs.

• Networking (Network-based) Logs: In a typical enterprise, there are a number

of networking devices, such as switches, routers, and load balancers, that

generate logs detailing the network traffic flow. These logs are referred to as

network-based logs. Some of the information observed in these logs includes

the sources and destinations of IP addresses, users, protocols, and traffic

volume. Proxy and DNS logs are considered to be among the most valuable

sources of networking logs.

• Security Tools: As shown in Figure 2.2, one can see that there are many

solutions and tools across the enterprise landscape that could generate event

logs. These tools include but are not limited to firewalls, IDS/IPS (Intrusion

Detection/Prevention System), EDR (Endpoint Detection and Response), and

Access Controls. Due to their focus on possible intrusions, these logs are

considered to be one of the most critical sources of data in the enterprise

security landscape.

2.4.2 Inventory
Effective inventory management is vital to the success of any enterprise, as it

enables organizations to efficiently monitor and manage their digital assets and

resources. However, maintaining up-to-date inventory lists is increasingly challeng-

ing in today’s fast-paced business environment. Nevertheless, a robust inventory

management system facilitates enhancing security operations within an enterprise.

For example, with accurate knowledge of all critical assets, such as the most vital

servers or users known as crown jowls, organizations can prioritize detection efforts

and associate higher risk factors with corresponding alerts.

Inventory data that is valuable to the SOC operations include:

• Identity: User’s information and their link to assets. Common sources of iden-

tity data include Identity and Access Management (IAM) Systems, directories,
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Enterprise Resource Planning (ERP) systems, and Microsoft Active Directory

(AD).

• Asset: Information about the assets and their details, such as device informa-

tion, the owner, location, software running, and their versions. Asset details

can be obtained from tools such as Configuration Management Database

(CMDB) and Network Access Control (NAC).

• Vulnerability Scans: results of the vulnerability scanners and management

tools.

• Network Diagrams: Information regarding asset connectivity and separation

across various networks, VLANs, subnets, and permitted connections.

2.4.3 OSINT/CTI
Open-Source Intelligence, commonly abbreviated as OSINT, refers to any informa-

tion that is gathered from publicly available sources, providing context to a given

situation. This type of information can range from the basic context surrounding

a domain name or IP address (e.g., ASN, registrar) to more complex scrapes of

darknet forums in search of the latest identity leaks or zero-day exploits.

The potential of OSINT to enhance the decision-making processes of Security

Operations Centers (SOCs) is immense. For instance, by monitoring social media

platforms such as Twitter, organizations can stay ahead of the curve in identifying

the latest vulnerabilities [224]. This information can then be correlated with the

organization’s asset inventory to determine whether they are at risk of exploitation

through these vulnerabilities. Furthermore, collecting intelligence on threat actors

of interest and their typical tactics can help organizations prepare and prevent

attacks from occurring.

Furthermore would like to define Cyber Threat Intelligence (CTI) as a subset of

OSINT that can aid particularly with the threat detection tasks (e.g., list of Indicators

of Compromise such as malicious domains or threat TTPs) [42].

There are several curated OSINT/CTI resources maintained by the open-source

community that provides a comprehensive list of valuable sources to gain intelli-

gence for cybersecurity [121, 124, 241].

2.5 Data Collection within SOC
As previously mentioned, there is an abundance of cybersecurity-related data that

can be collected and utilized to derive value. However, it’s not feasible to collect all
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available data. Therefore, SOC teams must carefully evaluate and select which data

sources to use, consider how they can overlap, and identify the insights that can be

extracted from them. Addressing these questions beforehand is crucial to ensure

optimal results, particularly for tasks like detection.

In identifying the need and prioritizing data collection strategies, there are

generally two approaches that can be taken: a problem-mapping mindset and a

capability-assessment mindset.

When approaching the problem-mapping mindset, it’s essential to define the

problem, perform threat modeling, and gain an understanding of the context sur-

rounding the data collection and its purpose. To illustrate this approach, let’s

consider a hypothetical scenario. Through our threat intelligence investigation, we

have determined that the most significant threat actors targeting our organization

use targeted phishing emails to gain an initial foothold, specifically targeting IT

employees with developer rights. Through gap analysis and simulations such as

Red Teaming exercises, we have identified a lack of detection and visibility, particu-

larly regarding email security solutions and insight into the emails received by our

employees. Now that we have defined the problem understood its limitations, and

the need for a solution, we can deploy tools to gain visibility into email headers sent

and received by employees and develop data-driven solutions to detect targeted

phishing emails, such as analyzing the reputation of the sender and attached URLs.

In the capability assessment mindset, the focus is on first understanding the

strengths and capabilities of our current setup, such as identifying all available

security tools and the data they can generate. Then, we can explore ways to

supplement this data, reduce blind spots, filter unnecessary data, and consolidate

overlapping data sources. Let’s consider a scenario to illustrate this approach. After

conducting our analysis, we discovered that while we have visibility into endpoint

activities through EDR and network connections via proxy logs, we lack visibility

into DNS requests and responses. We also know that DNS is a commonly misused

protocol in many adversarial techniques, and although we may not be addressing a

specific problem at this point, we recognize that DNS data could be valuable for

further analysis. Therefore, we prioritize collecting DNS data to complement our

visibility and allow better future data-driven approaches to tackle specific problems.

While they are both very similar in practice, they lead to different conclusions.

2.6 Data-Driven SOC
Having established a process to prioritize and collect the most valuable data to

develop impactful data-driven solutions for critical security operations, we now
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require a process for identifying and proposing use cases to tackle specific SOC

problems.

The term use casesin this context is a vernacular for the approach to meaningful

ways to leverage the underlying data to derive a particular value for a particular

problem.

In this regard, one can take different angles when attempting to develop use

cases. More specifically, problem-mapping, data-mapping, and algorithm-mapping

mindsets.

Although it is beyond the scope of this thesis to cover all potential problems,

data, and algorithms that can be addressed through a data-driven approach, we

present a few examples to provide a basic understanding. For more information,

refer to [63, 119, 228, 229, 262].

2.6.1 Problem Mapping
This is a similar concept to problem mapping in data prioritization, here where we

aim to comprehend the critical business needs and prioritize the most impactful

problems.

Example of high-level SOC-related problems that can be tackled using data-

driven approaches includes advanced threat detection, which involves identifying

unknown threats, insider threats, and data exfiltration; prioritizing vulnerability

management; improving alert functionality through correlation and prediction; de-

tecting policy violations and misconfiguration; and vulnerable employee detection.

2.6.2 Data Mapping
The aim here is to understand the data and identify all potential security-relevant

values that can be derived. Then, prioritize the use cases based on the derived

values. For instance, a thorough understanding of all the fields and features within

proxy logs can enable the development of use cases such as command-and-control

beaconing detection or user behavior analytics to identify policy violations.

2.6.3 Algorithm Mapping
The purpose of algorithm mapping is to incorporate learnings and algorithms

from various domains that have proven successful in addressing a wide range of

challenges and applying them to SOC-related challenges. For example, draw from

social networks and graph theory and apply the hypothesis of guilt-by-association to

detect new variations of previously known malware (Chapter 4). Another example
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is utilizing natural language processing (NLP) to summarize alerts. Data mining

techniques that can be adopted for cybersecurity include statistical analysis, graph

inference, time-series analysis, clustering techniques, outlier detection, supervised

and unsupervised machine learning, and NLP, as outlined in [63].
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Upon examining the variety, velocity, and volume of the data available in today’s

SOC, we quickly realize that we are in the realm of big data. In practice, in a

medium-sized company, millions of systems produce data at the scale of trillions

reaching easily terabytes of data per day.

The advent of Big Data presents significant challenges, particularly regarding

storage, processing, and accessibility. Therefore, it is expected that tools such as

SIEMs will efficiently handle this Big Data to provide necessary capabilities like

detection, correlation, and investigation.

Many of today’s organizations leverage big data pipelines and analytics to make

data-driven decisions, e.g., LinkedIn [250], Facebook [261]. Taking advantage of the

emergence of distributed storage systems such as HDFS and Kafka and distributed

processing frameworks like Map Reduce, Hadoop, Hive, and Spark.

Despite the evolving needs of the cybersecurity industry, many organizations

still depend on SIEM solutions that were originally created to fulfill compliance

obligations and offer security visibility as required through event management.

Although these solutions are currently being employed for more extensive pur-

poses, including threat detection, hunting, and analytics, their technology has not

progressed to keep up with these requirements, and they continue to operate as

basic search engines without the capacity for performing large-scale processing to

support data mining at scale.

This limitation prevents today’s SIEM from embracing data-driven approaches.

Some consider XDRs [90] as the evolution of EDRs to integrate many sources, fulfill

threat-centric use cases, and replace SIEM in that regard. However, while XDR

looks promising at first, the trend needs more time to prove itself as truly the future

of today’s SIEM rather than yet another buzzword [141].

Regardless, SIEMs are indispensable tools within organizations[3] due to their

significant role in facilitating SOC activities [10]. Thismakes them a prime candidate

for next-generation big data platforms that enable data mining at scale.

This chapter establishes the background knowledge, requirements, and refer-

ence architectures to build next-generation SIEM systems that embrace big data

architectural patterns to enable data-driven security operations at scale.
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Chapter Contribution

The main contributions of this chapter are summarized below:

• SIEMA RA: Establishing a Reference Architecture (RA) for next-generation

SIEM platforms that incorporate advanced analytical capabilities, hence-

forth referred to as Security Information, Event Management, and Analytics

(SIEMA).

• SIEMA Implementation: Providing valuable insights gained during the

implementation and deployment of next-generation SIEMA both in academic

and real-world settings.

• AA Beaconing Detection: Presenting beaconing detection as a case study

to underscore the necessity and worth of SIEMA systems with Advanced

Analytical (AA) capabilities.

Chapter Structure

This chapter begins by providing the necessary background knowledge to under-

stand big data architectures and design patterns (Section 3.1). Subsequently, it

explores the requirements and design patterns required to bring big data platforms

to the cybersecurity domain and build next-generation SIEM systems capable of

advanced analytics while also supporting traditional SIEM capabilities (Section 3.2).

With the established requirements, the reference architecture required to build

such systems is described in Section 3.3. Section 3.4 illustrates the experimental

setups used in two scenarios, an in-house research workbench and a real-world

enterprise setup. Followed by Section 3.5 providing a case study, highlighting the

need for next-gen SIEM with advanced analytical capabilities. Finally, the chapter

concludes with lessons learned and future directions for research (Section 3.6).

3.1 Background: Big Data Architectures

In this section, we will explore some fundamental principles of Big Data architec-

tures and best practices before introducing our proposed reference architecture,

taking leanings from [71, 139, 168, 272].

The data available to capture come in different structures and formats. Data

engineers tend to categorize the data structures into:
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• Structured data: This is data that has fixed fields with a fixed schema for every

record. The biggest advantage of such data is that it is clearly defined, which

enables better storage, processing, and accessibility procedure. However, the

downside of structured data is the need for a fixed schema, which can be

challenging to evolve if there are changes in format or new fields added over

time. SQL databases are an example of structured data.

• Unstructured data: Unstructured data refers to data that does not have a

specific format or structure, e.g., text, images, audio, video, etc. Unlike

structured data, unstructured data is not stored in a traditional database, and

it can be challenging to analyze and interpret using traditional data analysis

tools.

• Semi-structured data: Semi-structured data is a type of data that has some

organizational structure but does not fit into a traditional relational database

model. Unlike structured data, semi-structured data does not have a rigid

schema, but it contains some tags, metadata, or markers that provide a certain

level of organization. Examples of semi-structured data include XML and

JSON.

The majority of data available in the realm of Security Operations is semi-

structured, with numerous formats falling under this category. Examples of such

formats include Comma-Separated Values (CSV), Syslog, JSON, Parquet, Avro, Pro-

tobuf, and Pickle. Additionally, vendors have created specific data formats to add

structure to the semi-structured nature of event logs, with examples including

Windows Event Logs, Common Event Format (CEF), Common Log Format (CLF),

and Extended Log Format (ELF).

3.1.1 Big Data Storage
In order to enable data-driven solutions to security operations, one has to consider

data storage, particularly considering the different access patterns and utilization

of the big underlying data.

OLTP vs. OLAP

OLAP Online Transaction Processing (OLTP) and Online Analytical Processing

(OLAP) are two different types of database systems mindsets. OLTP is a type of

database system used to process short, simple transactions in real time. The focus

of OLTP systems is on fast and accurate data entry, updates, and retrieval, with a
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high level of concurrency and transaction processing. OLAP is a type of database

system that is designed for data analysis. OLAP databases store large amounts of

historical and aggregated data and provide the ability to query and analyze the

data flexibly and dynamically. OLAP databases are optimized for read-intensive

operations.

Although OLTP and OLAP have been in use for over four decades and have been

replaced by newer terms such as data lake house, the concepts, and ideas behind

them are still relevant today. There are distinct needs for transactional queries and

analytical queries, each with its own specific requirements for insert, update, and

access.

While these terms are more than four decades, outdated, and replaced with

tending topics such as data lake house, the concepts and ideas behind them are

still relevant today. More specifically, even in the most recent data pipelines and

storage systems, there are distinct needs for transactional and analytical queries,

each with its own specific requirements for insert, update, and access.

Scaling with Big Data

When it comes to big data, we need a way to scale as the data grows. There are

two common approaches to scaling a system: scaling up and scaling out.

Scaling up, also known as vertical scaling, involves increasing the resources,

such as CPU, memory, and storage of a single machine. This can be achieved by

upgrading the hardware components of the machine or by adding more resources

to it. Scaling out, also known as horizontal scaling, on the other hand, involves

adding more machines. This approach involves distributing the workload across

multiple machines or nodes.

Both scaling up and scaling out have their advantages and disadvantages. Scaling

up is simpler and requires less coordination; it can be limited as there is a cap on

how much we can upgrade the resources of a single machine. Additionally, the

cost of upgrading a single machine can grow exponentially. In contrast, scaling

out can be more complex and requires coordination between multiple machines,

introducing challenges associated with distributed systems. However, scaling out

can provide virtually unlimited scalability and high availability.

CAP & BASE Theorem

The Consistency, Availability, and Partition tolerance (CAP) theorem, also known

as Brewer’s theorem, expresses a triple constraint related to distributed storage
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systems. It states that a distributed storage system running on a cluster can only

provide two of the following three properties:

• Consistency: stating that a read from any node in the system must result in

the same data.

• Availability: stating that a read/write will always be acknowledged in the

form of a success or a failure, e.g., not a time-out.

• Partition tolerance: stating that the distributed storage system can tolerate

communication outages that split the cluster into multiple silos and can still

service read/write requests

If consistency (C) and availability (A) are required, available nodes need to

communicate to ensure consistency (C). Therefore, partition tolerance (P) is not

possible. If consistency (C) and partition tolerance (P) are required, nodes cannot

remain available (A) as the nodes will become unavailable while achieving a state

of consistency (C). If availability (A) and partition tolerance (P) are required, then

consistency (C) is not possible because of communication requirements between

the nodes, i.e., the database can remain available (A) but with inconsistent results.

On the other hand, partition tolerance (P) must always be supported by a dis-

tributed database by definition; therefore, CAP is generally a choice between

choosing either C+P or A+P. The requirements of the system will dictate which is

chosen.

In practice, CAP is usually implemented as BASE - Basically Available, Soft state,

and Eventual consistency. BASE describes the storage system that is basically
available by responding to a client’s request, either with the requested data or a

success/failure notification. Soft state, which indicates that data may change due to

eventual updates for consistency. Eventual consistency means that a write may not

immediately propagate to all nodes; hence no guarantee of immediate consistency

after a write. In other words, the system will be available but maybe remain in a

soft state until achieving eventual consistency.

The constraint of the BASE model makes it highly desirable for data lakes and

OLAP systems. However, it is not suitable for transactional systems where consis-

tency is critical.

Distributed Storage

Understanding the CAP and BASE theorems enables individuals to comprehend

the fundamental decisions and design choices necessary for creating distributed

storage systems.
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Additionally, there are several concepts worth noting during the development

process.

Append-only—A type of distributed storage system that realizes the BASE theo-

rem for a highly scalable distributed storage system that emphasizes performance by

enforcing an append-only mindset. One of the biggest challenges with distributed

storage systems is to maintain consistency across multiple nodes, particularly with

updates, as they can introduce conflicts or locking (hence reducing performance).

Append-only storage systems overcome this challenge by only allowing data to be

written, pushing the complexity of consistency to a later stage. This way, multiple

nodes can write data to the database simultaneously without the risk of conflicts or

locking. To achieve consistency, the expectation is that the reader will calculate

the most appropriate read from a set of entries. For example, instead of updating

a variable 𝑥 from 2 to 3 in a regular database and having it propagated (hence

sacrificing performance), in an append-only database, two entries are added (x=2

and x=3). Upon reading, the reader finds the most recent value of x (which is 3)

according to logic, such as the write timestamp.

Sharding—The process of horizontally partitioning a large dataset into a col-

lection of smaller, more manageable subsets called shards. These shards are then

distributed across multiple nodes. Each shard is stored on a separate node, and each

node is responsible for only the data stored on it. All shards collectively represent

the complete dataset. By partitioning data into shards, processing loads can be

distributed across multiple nodes, thereby improving read/write times.

Replication— The process of storing multiple copies of a dataset, known as

replicas, on multiple nodes. Replication provides scalability and availability due to

the fact that the same data is replicated on various nodes. Fault tolerance is also

achieved since data redundancy ensures that data is not lost when an individual

node fails. There are different methods of implementing replications: master-slave

and peer-to-peer.

Hadoop, an open-source framework designed for large-scale data storage and

processing on commodity hardware, is an excellent real-world example of a dis-

tributed storage system that incorporates all the principles mentioned above. It

has established itself as a de facto industry platform for contemporary Big Data

solutions.

ETL

Extract Transform Load (ETL) is a process of loading data from a source system into

a target system. The source system can be a database, a flat file, or an application.

Similarly, the target system can be a database or another storage system. ETL
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pipelines are useful in practice to load the data from a variety of data sources to a

centralized data lake.

3.1.2 Big Data Processing

Having an understanding of big data storage systems and practices. It is also

essential to grasp some fundamentals of big data processing fundamentals.

Processing can be scaled both vertically and horizontally, similar to storage.

However, when it comes to big data, it is crucial to enable horizontal scaling for

better processing power. This introduces challenges of how to distribute processing

(task) across multiple nodes.

Parallel & Distributed Data Processing

Parallel data processing involves the simultaneous execution of multiple sub-tasks

that collectively comprise a larger task. The goal is to reduce the execution time

by dividing a single larger task into multiple smaller tasks that run concurrently.

Parallel processing is usually associated with a single machine (i.e., better utilization

of multiple processors or cores). Distributed data processing is similar in mindest,

but rather, focuses on the distribution of tasks to multiple nodes forming a cluster.

Batch & Stream Processing

Big data processing usually divides into two types: batch and stream processing.

Batch processing refers to the execution of a set of tasks or jobs in a batch or batch

jobs, typically performed in offline mode, which in turn results in high-latency

responses. Batchworkloads typically involve large quantities of datawith sequential

read/writes and comprise groups of read or write queries. OLAP systems commonly

process workloads in batches. MapReduce is a widely used implementation of a

distributed batch-oriented processing framework. It is based on the principle of

divide-and-conquer, dividing a big problem into a collection of smaller problems

that can each be solved quickly and separately. In contrast, stream processing

is a real-time data processing technique that continuously processes a stream of

data as it arrives. Stream processing is commonly used for data processing tasks

that require near-real-time processing. Additionally, there are variations between

the two extremes, such as micro-batch processing, which aims to bridge the gap

between batch processing and stream processing.
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Lambda Architecture

Lambda architecture[137] is a data processing architecture designed to combine

batch processing and stream processing and building Big Data systems as a series of

layers; each layer satisfies a subset of the properties and builds upon the function-

ality provided by the layers beneath it. More specifically, in lambda architecture,

data is processed through two parallel pipelines: batch processing and stream

processing. The batch processing pipeline performs time-insensitive computations

on large batches of historical data, generating immutable batch views of the data.

In contrast, the stream processing pipeline processes real-time data as it arrives,

generating real-time speed views of the data. The batch and stream processing

pipelines’ outputs are then combined in a serving layer, creating a unified view of

the data. This enables users to query and analyze the data using the same tools

and APIs, regardless of whether the data is historical or real-time. The system

is designed to tackle the challenges of distributed storage in terms of eventual

consistency while considering the processing aspect.

There are several other architectures that are widely recognized for big data

processing, including the kappa architecture[137], data lake architecture[114],

event-driven architecture[170], and lakehouse architecture[17].

3.2 Requirements

Before proceeding to the reference architecture, it is crucial to outline the added

requirements for the next-gen SIEM system. We categorized the main requirements

into two groups: Business requirements (BR) and Architectural Requirements (AR).

BR1. Data Science (Advanced Analytics)

One of the main limitations of traditional SIEM systems is their reliance on signa-

ture or heuristic-based threat detection, limiting the detection only to previously

known threats. Finding truly unknowns requires the utilization of state-of-the-art

data science (statistics, machine learning, and data mining algorithms). In this

regard, the platform should acknowledge state-of-the-art data science tools and

techniques [113].

Data science can also be used to eliminate static rules which pose high false-

positive rates. For example, instead of looking at 10 authentication failures within

1 minute (i.e., attempt to find brute force attacks), one could learn the threshold

per user and endpoint, thus reducing false positives.
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BR2. Data Engineering (Complex Data Processing)

As different use cases may require different shapes of data, the platform should

be able to handle data engineering pipelines. This can include data aggregation,

correlation, enrichment, normalization, parsing, validation, tagging, duplication,

and transformation. In this regard, a next-gen SIEM should allow data scientists,

data engineers, and SOC analysts to seamlessly develop, combine, manage, and

maintain different data processing pipelines.

AR1. Distributed, Scalable, And Fault-tolerant

A next-gen SIEM is expected to handle big data with 3Vs: large volume, high
rate of generation (velocity), and heterogeneity of the types of structured and

unstructured data (variety). Hence, to cope with the volume, velocity, and variety

of data produced by today’s enterprises, the platform should be scalable and elastic.

To achieve this, the best practices in distributed systems (e.g., distributed storage

and processing) should be followed and adhered across all architectural levels of

the platform.

In a distributed setting, availability and resilience to failure become challenging

yet crucial aspects of the system. In this regard, the platform is also expected to

be fault-tolerant and available during a failure/outage, such as network outages or

hardware failures.

AR2. Extensible

Today’s technology landscape is evolving faster than ever. The most relevant

technologies or solutions of todaymay be irrelevant in a few years. A next-gen SIEM

should be able to undergo numerous modifications and extensions to stay relevant

in an ever-changing technological world, e.g., able to adopt a new distributed

processing framework.

AR3. Open

Today’s open-source community is very active and often ahead of its commercial

competitors. Therefore, the platform needs to respect open-source solutions and

technologies by allowing the adoption of open-source. This will ensure the system’s

relevance with state-of-the-art technologies.

Furthermore, one of the main criticisms of today’s legacy SIEMs is their locked-in

data model. A next-gen SIEM should have an open data model respecting the users

and data portability.
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AR4. Integration

The platform should have standard methods to interface and integrate with other

external tools or systems via APIs. This allows other tools to appreciate better the

values provided by the next-gen SIEM.

AR5. Data Lake for All Storage Requirements

Storage is a core aspect of a next-gen SIEM. Different use cases require different

storage systems, from a relational database to a distributed file store. Particularly,

to enable advanced analytics, new data lake architectures are needed.

AR6. Modular Data Ingestion

A next-gen SIEM is expected to ingest a variety of data. These data can be from

external sources, such as vulnerability data, indicators of compromise, and related

OSINT. It can also be from internal sources, such as event logs from network and

security systems (e.g., Intrusion detection systems, endpoint security, firewalls,

VPN, proxy, DNS), applications, endpoints, assets, network topologies, security

configuration, and policies. Thus, a next-gen SIEM is expected to ingest data

from both external and internal sources. The ingestion should mainly expect

authenticated incoming data and the possibility of crawling or collecting, e.g., to

crawl related OSINT.

AR7. Security and Privacy

Big data is becoming a critical resource for many organizations, bringing it into

the spotlight as a high-value target for cyberattacks. A next-gen SIEM is expected

to guarantee security (security by design).

More specifically, data management: addressing how big data is collected and

identified to ensure the scope of what to protect is properly assessed and under-

stood. Identity and access management: enforcing access control, not only for users,

i.e., who can access the data but also ingestors, i.e., validating where the data is

coming from an authorized source to avoid including modified or unwanted data.

Furthermore, applying the design patterns such as privilege separation, the least

privilege principle, access, and audit logging. Data protection and privacy: the effort
in protecting the big data, such as encryption at rest, as well as addressing any pri-

vacy concerns, e.g., enforcing anonymization or pseudonymization. Infrastructure
security and integrity: securing data as it is collected and moved between systems,

i.e., encryption at transit. Furthermore, securing the platform’s components.”
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Figure 3.1: Module Decomposition of SIEMA Reference Architecture

The Cloud Security Alliance (CSA) Big Data Security Working Group identifies

the top ten security and privacy challenges that need to be addressed for big

data[179], and Ajit [85] has proposed recommendations to tackle the security

challenges in a big data environment.

3.3 Reference Architecture
We design our RA based on decade-long experience and knowledge revolving

around the best practices in designing big data architectures and pipelines, e.g.,

LinkedIn [250], Facebook [261], and other reference architectures [138]. Figure 3.1

shows the high-level reference architecture for the proposed SIEM. Figure 3.2

illustrates the system workflow consisting of five main stages.

PreprocessCollect Store Process
Analyze Consume

1 2 3 4 5

Figure 3.2: SIEMA proposed workflow

Data Ingestion and Collection

This layer is expected to consist of a collection of extendable ingestors and collectors,

each designed to ingest a particular data source. Data sources can be internal data,
such as event logs, telemetries, and inventories, or external data, such as OSINT

and vulnerability data.

Thesemodules can either accept authenticated data being forwarded (pushmodel)

or pull particular data points. Data being forwarded can either come directly from

the data sources or be forwarded by a remote ingestor node. The pull mechanism

is expected to be limited due to the lack of a dedicated agent.
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Pre-Processing

The next stage in the system is pre-processing, i.e., data validation, cleansing, opti-

mization (e.g., de-duplication), parsing, and basic transformation (e.g., standardizing

the timestamps), and basic enrichment/tagging (e.g., tagging the events according

to their type and source).

All pre-processing steps are expected to be simple, efficient, and scalable. Further

enrichment and correlation are expected to be carried out by the analytic/processing

modules.

After pre-processing, the data shall be dumped on messaging queues or directly

to file storage, where the primary data processing pipelines could take the lead for

more advanced data processing (e.g., normalization), storage (e.g., ETL, indexing,

etc.), or analytics.

Storage

Similar to the data lake architectural pattern, storage is a key and fundamental

component of RA. The main objective of the data storage layer is to provide reliable

and efficient access to persisted data. Part of this is to offer multiple representations

for single data records to accommodate different use cases, e.g., OLAP-style data

analytics, OLTP queries, or string searches.

Note that the storage system of such next-gen SIEM is expected to be highly

scalable and agile. This is integral, as organizational and business needs change

over time, calling for adjustments in technologies and environment setups.

One can categorize storage needs based on latency, throughput, access patterns,

and data type. Some examples of storage needs in the context of a next-gen SIEM are:

NoSQL transactional database for results. Index store and search engine to allow

string search on event logs for efficient ad-hoc threat hunting and investigation.

A Distributed file/object-store to satisfy data lake requirements for advanced and

distributed analytics and machine learning models. A queuing mechanism to enable

the reliable transmission of data across different processing layers. For instance,

a messaging queue that enables an enrichment module to enhance the result of

an anomaly detection algorithm, i.e., outliers are pushed to a queue, which the

enrichment module is subscribing to, enriching the outliers with related contexts.

An in-memory caching mechanism allows multiple executors or workers within

a processing module to exchange data efficiently. A graph database to store the

relationships between various internal and external entities.
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Processing

The Processing layer is responsible for efficient, scalable, distributed, and reliable

processing. At a high level, it can serve two main purposes: data engineering and

data science. The data engineering sub-layer is responsible for data processing

and transformation, e.g., event correlation and enrichment, normalization, ETL

pipelines, storage optimization (compression, partitioning, bucketing), pattern

matching, etc. On the other hand, the data science-based modules are concerned

with knowledge extraction from the data, e.g., machine learning, data mining,

statistical analysis, graph analytics, etc. It is worth noting that analytical processing

can be interactive, batch, and stream.

Access

The access layer is the interaction point of the system with external actors. These

actors can be SOC analysts, data scientists, data engineers, administrators, managers,

or external APIs. Each actor is expected to require interaction with a specific part

of the platform for a particular reason. The access layer is responsible for managing

these interactions while ensuring security and load balancing. For example, a SOC

analyst requires an interactive interaction with the platform’s search capabilities to

investigate threats, define rules for the correlation engine and dashboard to view

the alert and visualize the trends.

UI

The user interface layer is responsible for abstracting actors’ interactions with

storage or processing modules. For instance, a UI that enables SOC analysts to run

their query against the storage system or the data science notebooks designed to

allow the data scientist to interactively analyze data loaded from the storage layer

in the processing layer.

Orchestration, Management, and Monitoring

This layer has three main responsibilities: orchestration, management (administra-

tion), and monitoring.

The orchestration module is responsible for providing configuration, manage-

ment, and coordination between the various platform layers and their modules.

This includes job submission, collectors’ configurations, data engineering pipelines,

etc. In addition, this module is also expected to provide monitoring capabilities
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for every module within each layer, e.g., monitoring the analytical jobs and their

status.

The administration/management module is responsible for the configuration,

provisioning, and control of the underlying infrastructure and the platform itself,

e.g., managing the underlying storage system.

Lastly, the platform auditing module supports the health monitoring of the

system and its underlying heterogeneous systems. For instance, it is expected that

the storage layer will consist of multiple systems, e.g., distributed files system,

NoSQL database, and a messaging queue. In this regard, this module should allow

administrators to monitor the health and performance of these systems.

Security

Given the nature of our next-gen SIEM system, there are concerns about the security

and privacy of such big data platforms. In this regard, this layer is responsible for

the security of the platform and its underlying data. This includes enforcement

of access rules, restricting access based on classification or need-to-know, and

securing data at rest or in transit.

3.4 Implementation and Deployment

We have endeavored two implementations of the proposed RA, an in-house aca-

demic research workbench and a real-world experimental setup in an international

enterprise’s infrastructure.

3.4.1 In-house Research Workbench

Our first attempt to develop and deploy a SIEMA system according to the proposed

RA was made on a cluster consisting of two Dell PowerEdge (R730, R820) and five

Fujitsu Primergy RX600 with a total of 1,864 GB RAM, 24 CPUs (200 total cores),

and 4 TB storage interconnected via 10 Gb optical fiber. In addition, an external

Network Attached Storage (NAS) connected to the cluster via 3x 10Gb optical fiber.

Table 3.1 presents the leading underlying technologies used for this setup.

The platform was utilized during multiple successful research to apply different

data mining and machine learning approaches to the problem of malicious Do-

main/IP detection using proxy and DNS logs, resulting in multiple publications [186,

187].
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Table 3.1: In-house SIEMA as a research workbench.

Technology Reference Usage

Kubernetes Orchestration/Management Backbone system and orchestrator.

Ansible Orchestration/Management Platform operation and administration.

Zookeeper Orchestration Configuration maintenance and synchronization.

Apache Spark Processing Distributed processing and analytics engine.

Presto Processing Distributed processing (SQL query engine).

Apache Livy Management Multi-tenancy and job management.

Apache Kafka Storage Distributed messaging and queueing.

Hadoop HDFS Storage Distributed file system and object-store.

Elasticsearch Storage Search engine, index store.

Prometheus Storage Time series database for metrics regarding the plat-

form health.

HBase Storage Distributed NOSQL data store on top of HDFS.

Apache Nifi Processing, UI Orchestration and data preprocessing.

Kibana UI UI for interaction with the search engine.

Grafana UI UI for platform health monitoring.

Zeppelin UI Notebook for ad-hoc data science.

CMAK UI, Orchestration Cluster manager for Apache Kafka

Hue UI Hadoop interface.

3.4.2 Real-world Enterprise Setup

We also had the opportunity to explore a SIEMA system in a real-world setting with

a large international company with quite a mature cyber defense. This company

had a cloud-based legacy SIEM continuously utilized for threat hunting, monitoring,

and rule-based threat detection. We attempted to build around it with analytical

capabilities to explore the potential values. We utilized available cloud-based

services compliant with the company’s policies, such as Azure Data Factory, Azure

Data Lake Storage, and Databricks, to enable advanced data engineering and science.

The first significant value of this platformwas the ability to run basic aggregation,

correlation, and statistical queries over larger time frames (over 100 terabytes of

data) which would not be possible with traditional SIEM systems as they were

designed for only interactive investigation and searches.

The next value was the ability to create successful advanced use cases using

the underlying data (EDR, proxy, DNS). Examples of such use cases are beacon-

ing detection, malicious processes detection, suspicious DNS and proxy requests,

windows logon anomalies, and user behavior analytics over weeks of data. The

result of these use cases led to the rise of multiple incidents missed by traditional

rule-based detections.

Lastly, the ability to train a model to rate and prioritize traditional SIEM alerts

according to past experiences. Most of today’s organizations receive 17, 000 alerts

per week; more than 51% of the alerts are false positives, and only 4% of the alerts

get adequately investigated [108]. Therefore, prioritization of alerts can help SOC

35



Chapter 3 NextGen SIEM

analysts to focus their efforts better [10]. This was the last use case, designed to read

past investigated alerts, their artifacts, and the associated responses (thus labels) to

train a model that attempts to prioritize the new alerts according to their potential

to be true positives. This prioritization was achieved by adding a confidence score

to the alert passed to the traditional SIEM dashboard. The initial impression and

qualitative evaluation of this use case seemed promising.

3.5 Case Study: Beaconing Detection
To better understand the need for advanced analytical capabilities within today’s

SIEM, we decided to prepare a simplified experiment performed on our real-world

setup. Particularly a heavy yet straightforward use case of beaconing detection.

One of the characteristics of sophisticated cyber threats, such as Advanced Persis-

tent Threats (APTs), is periodic attempts to reach out to the command and control

(C&C) infrastructure controlled by the adversary to receive further instructions.

Such heartbeat and callback behavior is known as beaconing.

Malware beaconing is typically characterized by two main configurations: sleep

time and jitter (variations from central value). The beaconing frequency can vary

from slow and stealthy to fast and aggressive (from a few seconds to hours or even

days of sleep time). Nevertheless, generally, the adversaries are expected tomaintain

regular beacons for better visibility and control of the infected machines [109].

While at first glance, beaconing detection seems simple, it is quite challenging:

Temporal Analysis in Big Data: To detect beaconing, one has to analyze

the traffic behavior of all source and destination pairs over an extended period

of time. This makes beaconing detection a big data problem.

Intentional Randomness and Jitter: One of the other challenges with bea-

coning detection is the adversarial strategies to hide the beaconing behavior.

One of the common ways the adversaries attempt to prevent detection is by

varying the sleep time to make it appear as normal traffic. Other methods

can include omitting certain beacons or injecting additional random beacons.

False Positives (Benign Applications): While we discussed the malicious-

ness of beaconing behavior, there are several scenarios in which beaconing

is an integral part of communication and does not indicate maliciousness.

For instance, Network Time Protocol (NTP), automated software patching,

mailing clients, updates, or keep-alive traffic in long-lived sessions may also

appear as beacons.
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External Factors: There can be unanticipated external factors that can

introduce errors while looking at the periodicity, such as the host (endpoint)

going offline or network interruptions.

3.5.1 Detection Approach
Beaconing detection has been studied widely in the literature [87, 109, 234, 264],

and while there are many ways to develop a beaconing detection approach, here

we present one of the simplest ones using statistical methods.

(i) Data Preparation: We start by pre-processing the network connection

events keeping only the source (host unique identifier), the destination (e.g.,

IP address and port), and the timestamp fields. One could also validate to

ensure the destinations are valid and timestamps are in Unix-Timestamp

format.

(ii) Delta Time Calculations: Next, we group connections by source and des-

tination and sort them by their timestamp. This will allow us to calculate

the time deltas between connections of each source and destination pair. For

instance, if host H1 connects to destination D1 at the time t1 and t2, the time

delta between these two connections is 𝑡2 − 𝑡1.

(iii) Clean Time Deltas: To ensure the detection quality, we need to filter out bad
entries, e.g., border time delta (nulls) - indicating no previous connections,

or time deltas equal to zero - indicating network issues resulting in multiple

connections in a very short time.

As mentioned, one of the challenges with beaconing detection can also be

external factors such as network interruptions or the host going offline (host

shutting down). We tackle this challenge by filtering out outliers in time

deltas for each source and destination pair using Interquartile Range [278].

This ensures that when the host has gone offline, the time delta showing the

big gap is treated as an outlier, hence eliminated from further calculations.

(iv) Periodicity via Average and Standard Deviations: While there are more

sophisticatedways to detect periodicity [67, 68, 217], here we take the simplest

approach. We calculate the average and the standard deviation of time deltas

for each source and destination pair to estimate the periodicity of connections.

(v) Destination’s Reputation: To tackle the false positives (i.e., benign applica-

tions), we also calculate the prevalence of each destination, i.e., how many
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hosts (sources) have connected to this destination during the analysis period.

This can be achieved by simple grouping and counting.

(vi) Scoring: At this point, for each source and destination, we have the average

and standard deviation of time deltas, number of connections (beacons), and

the prevalence of the destination. One can now define certain heuristics to

score the beaconing behavior to prioritize the alerts. For this case study, we

simplify our scoring to three main functions:

• Low Coefficient of Variation: The coefficient of variation is defined as

the ratio of the standard deviation to the mean.

While a low standard deviation of time deltas means perfect periodicity

(almost all time deltas are the same), it does not consider how big the

average is. That is why the relative standard deviation (coefficient of

variation) can help by looking at the ratio.

We utilize an exponential function (Equation 3.1) to transform the coef-

ficient of variation into a score. The reasoning here is that all low ratios

(an indication of better periodicity and beaconing behavior) should be

scored closer to 1, and as the ratio gets bigger, it should have a decaying

effect (logarithmic) in the scores, getting closer to 0.

𝑆𝑐𝑣 = 𝑒
−
√︃

𝜎
`

(3.1)

where ` and 𝜎 are the average and standard deviation of time deltas

respectively, and 𝑆𝑐𝑣 is the score derived from the coefficient of variation.

• Low Destination Reputation: Destinations with high reputations (largely

accessed by the majority of the endpoint) typically indicate benign-

ness. That is why we would prioritize those beaconing alerts whose

destination is rarely observed. More specifically:

𝑆𝑟𝑒𝑝 = 𝑒
− 𝑝 (𝑑𝑒𝑠𝑡 )

𝑘 (3.2)

where 𝑝 (𝑑𝑒𝑠𝑡) indicates the prevalence of the destination (i.e., how

many hosts have been observed connecting to this destination). 𝑘 is a

numerical constant internally determined based on domain knowledge

as the threshold to smooth the curve (i.e., after the value for 𝑘 , the scores

should smoothen as we don’t care anymore). For example, if 𝑘 is set to

100 that means as 𝑝 (𝑑𝑒𝑠𝑡) gets closer and passes the threshold of 100

hosts, the score should be low, and there is no significant difference
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between 300 to 600 to 1000, as we only care for low numbers (e.g., 1 or

10 hosts).

• Beaconing Consistency: Sometimes, just the destination prevalence is

insufficient to filter out benign applications, particularly updates. In this

regard, one could take yet another attempt to eliminate those beaconing-

like behaviors. A malicious beaconing could be characterized by its

consistency, whereas some benign behavior, such as an update, will

only appear for a certain time. Thus, one could analyze the consistency

of the beaconing behavior by looking at the ratio of the number of the

beacons and their average delta time to the analysis range.

𝑆𝑐𝑜𝑛 =
𝑏 · `
𝑡𝑒 − 𝑡𝑠

(3.3)

where 𝑏 is the number of beacons, ` is the average, 𝑡𝑒 − 𝑡𝑠 is the analysis
range (e.g., 86400 seconds).

Note that while here we discussed only three simple scoring functions on top

of the information available with our case study, one could design multiple

other heuristics to reduce the false-positive rate. Lastly, we aggregate the

scores via an aggregator function, such as a weighted average, to derive a

single score.

(vii) Alerting: Having a final score for each source and destination pair, we

could sort the alerts descending and take the first 𝑘 items (where 𝑘 is set by

the rate the analyst can handle). One could also do further analysis for the

distributions of the scores to dynamically set 𝑘 .

3.5.2 Experiment Setup
We carried out our experiment for this case study within the premise of a large in-

ternational organization. Particularly, we implemented the described methodology

for beaconing detection as a use case within the enterprise SIEM system as well as

our analytical platform (discussed in Section 3.4.2). Therefore, the implementations

were identical in terms of their logic.

While we cannot discuss the details of the traditional SIEM system used by the

enterprise due to NDA, we can confirm that the SIEM system is among the top

SIEM leaders identified by the Gartner Research Group [126]. Furthermore, the

setup is among one of the largest enterprise SIEM setups, designed to handle the

ingestion of more than 10 TB per day.
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Our analytical platform for this experiment was configured on Databricks with

5 "Standard_D32s_v3" workers. Thus, having a big data platform backed up by

Apache Spark with a total of: 640-GB Memory, 160 vCPU Cores, 1280 GB temp SSD

storage.

We ran our main experiment on one day of network connections collected from

an EDR tool (172.5 million events) which spanned approximately 102GB.

3.5.3 Results
Running the described beaconing detection on the traditional SIEM took 45 min-

utes to go over 89 million events before reaching the disk usage limit (set by the

enterprise) and returning 246 events. This is because traditional SIEMs are not

designed for large-scale analysis (i.e., distributed processing). Instead, they tend to

aggregate the events of interest into a single server where the calculations occur. In

contrast, our analytical environment, supported by Databricks and Apache Spark,

was able to go through all 172.5 million events and finish the use case within only

26 seconds.

Although there are many variables in place that make this comparison unfair (e.g.,

the cluster sizes not being the same, the implementations of a simple calculation

such as mean, etc.), one can observe the enormous gap between the capabilities.

One of the other expectations of such analytical platforms is their ability to scale

out. Figure 3.3 shows the runtime of beaconing detection as we add more workers

to run the use case.

Figure 3.3: Beaconing Detection use case runtime on Databricks based on the number of

workers.

Lastly, while we could not run the use case for 5weekdays on the traditional SIEM,
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we could run it in the analytical environment. In this regard, the described setup

(with 5 "Standard_D32s_v3" workers) could analyze approximately 960 million

events (over 550 GB) in 126 seconds.

3.5.4 Discussion and Lessons Learnt

With a simple statistical-based use case, we highlighted that traditional SIEM

systems are not designed for advanced analytics. One could imagine how more

sophisticated analytics, e.g., machine learning, data mining, and graph analytics,

will further challenge traditional SIEMs.

As highlighted by most related work, the ability to run complex data analytics is

one of the most critical capabilities required for the next-gen SIEM systems to give

us a fighting chance against previously unknown threats.

Nevertheless, we cannot underestimate the need for legacy SIEMs, particularly

when investigating incidents and alerts. While the analytical platform will take a

long time to search, as it requires touching almost all files, the legacy SIEMs are

designed for optimized searching, allowing a SOC analyst to run ad-hoc queries

investigating incidents and correlating data on demand. For instance, in our ex-

ample, while the legacy SIEM took 23 seconds to search the context of one of the

alerts, the analytical platform took more than 1 minute. Note that the searches

are on one day of data; as the time frame gets bigger, the analytical platform will

take even longer (for random searches). Although one could argue that there are

ways to speed up the search, e.g., partitioning, bucketing, indexing, and adding

meta-data, it still will not be comparable to traditional SIEMs (i.e., index stores)

that are designed for optimized searches.

This highlights the need for next-gen SIEM systems that integrate the capabilities

of both big data platforms and legacy SIEMs to provide ultimate value to today’s

SOCs.

3.6 Chapter Summary

In this chapter, we have identified the limitations of current SIEM systems, specifi-

cally their inability to perform advanced analytics and incorporate cutting-edge

data mining, machine learning, and graph mining approaches. To address this

gap, we have introduced the concept of SIEMA (Security Information/Event Man-

agement and Analytics), a next-generation SIEM that enables advanced analytical

capabilities.
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We have provided a reference architecture for SIEMA, drawing on best practices

and design patterns from big data architectures and pipelines. Moreover, we have

presented our implementation of SIEMA in two different settings: a research work-

bench using open-source technologies and a version of the proposed architecture

deployed in a real-world environment alongside an international organization’s

traditional SIEM system.

Our work highlights the value of SIEMA’s analytical capabilities not only in

advancing research in data mining for threat detection but also in developing

successful use cases in an industrial setting, leading to the detection of genuine

threats and incidents. Finally, we have presented a case study on beaconing detec-

tion, which clearly demonstrates the limitations of traditional SIEM systems when

compared to those with advanced analytical capabilities.

With SIEMA, it is now possible to address SOC challenges using data-driven

approaches shifting from reactive measures to proactive measures.
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In a comprehensive empirical analysis, Arp et al. [18] identified common pitfalls

that can lead to unrealistic performance and interpretations when applying machine

learning in security. These pitfalls obstruct understanding the security problem and

highlight the gap between the research community and industry. Although many

factors contribute to the skepticism in the adoption of data mining and machine

learning techniques in the cybersecurity industry [18], this chapter focuses on two

specific challenges: feature engineering and the adversarial domain.
Feature engineering plays a critical role in data mining and machine learning,

particularly in the cybersecurity domain, where the majority of features can be

unreliable [10]. The dynamic nature of this fast-growing field can cause older

learning to become obsolete quickly. Moreover, in an adversarial domain, an

adversary can easily exploit this, for example, by changing a few lines to create

a new set of values for a particular feature [247]. To illustrate this challenge,

consider an ML algorithm trained to distinguish between legitimate and malicious

URLs based on the number of subdomains and URL entropy as distinct features.

Although this approach may work initially, it cannot be assumed to perform well

under different circumstances. A slight alteration to the URL string can quickly

defeat the ML classifier, and broadening the pattern recognition approach can

drastically increase the false positive rate. This is one of the main challenges in

applying generic data mining and machine learning algorithms in security. In other

words, the existence of an adversary that can adapt to defeat detection algorithms

cannot be ignored, i.e., adversarial machine learning [271].

Contextualization is another challenge in feature engineering [10]. For example,

if an event count is used as a feature for user behavior analytics (UBA), it is crucial

to consider the time of day, week, and user when analyzing the feature. Event

counts for different users and times should not be compared together.

We refer to such features as local features, which are context-specific, unreliable,

and can be easily forged by the adversary. In contrast, global features are harder

to change, such as behaviors or meaningful associations among entities [25, 130,

187]. For example, in malicious domain detection, the URL structure is a local

feature specific to a single entity. However, IP address resolution or the mapping of

ASNs/IP ranges are global features as they examine the association among different

entities.
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The hypothesis here is that an adversary’s resources are limited due to economic

constraints. Therefore reuse of infrastructure, Tactics, Techniques, and Proce-

dures (TTPs) are inevitable [186, 187], e.g., usage of the same X.509 certificate,

autonomous system, registrar for domains, or even. The other key intuition is

that an external entity is less likely to be malicious when it is associated with a

large number of benign entities, e.g., if a domain is visited by the majority of the

workstations in a company, it is less likely to be a malicious domain [40, 257].

The underlying principles in this chapter can be summarised into guilt-by-
association [144] and exempt-by-reputation. Unsurprisingly, this set of reasoning is

also adopted in SOC or forensic investigation. For example, investigating a poten-

tially malicious domain involves the investigation of open source intelligence and

threat intelligence related to that domain, e.g., its registrar, subdomains, connected

domains, TI feed observation, etc. In this regard, while an association with mali-

cious entities does not necessarily imply maliciousness, it could indicate higher

risk.

This chapter formulates threat detection as a large-scale graph mining/inference

problem using data captured within typical SIEM systems focusing on the detection

of unknown knowns, i.e., new variants of previously knownmalicious entities. More

specifically, it proposes the construction of a Heterogeneous Information Network

(HIN) from SIEM-related logs (EDR, Proxy, DNS) enriched with related Cyber Threat

Intelligence (CTI) and Open-Source Intelligence (OSINT). The HIN emphasizes

shared attributes across processes/files that accommodate maliciousness inference,

such as shared libraries, registry entries, and network connections. Maliciousness

is then inferred from a set of previously known malicious entities, i.e., Indicators

Of Compromise (IOCs), by aggregating messages in the network, continuously

calculating a maliciousness score for each entity considering its prior, neighbors’

priors, in-degree, and the influence weights.

Chapter Contribution

The main contributions of this chapter are summarized below:

• CyberHIN: Modeling SIEM-related events as a Heterogeneous Information

Network emphasizing the most important entities and relationships observed

in endpoint logs like EDR and network logs like DNS and proxy logs. It also

incorporates relevant Open-Source Intelligence (OSINT) and Cyber Threat

Intelligence (CTI) to enrich the HINs. Additionally, the significance of each

entity and relationship contained in the HIN or Knowledge Graph is discussed

in detail.

44



Background: Graph-based Inference Section 4.1

• MalRank: Proposing a large-scale graph inference algorithm adopted from

belief propagation and PageRank algorithm. MalRank is tailored to infer and

emphasizes maliciousness using the associations presented in the HIN.

• MalLink: Designing and implementing a system to connect to an enterprise’s

SIEM, ingesting the underlying event logs, generating the proposed HIN,

running the MalRank, and outputting a set of previously unseen malware

samples with their corresponding maliciousness score.

• Evaluation and Discussion: Present the findings and leanings when evalu-

atingMalLink in a large international enterprise landscape, demonstrating the

feasibility, realism, and effectiveness of detecting previously unseen malware

in a real-world setting.

Chapter Structure

This chapter begins by providing the necessary background knowledge to graph

theory and mining (Section 4.1). Section (4.2), introduces the proposed CyberHIN,

focusing on two specific scenarios, capturing entities and relationships captured

from endpoint-related logs (i.e., EDR) and network events (i.e., proxy and DNS logs).

Section 4.3 presents our novel graph-based inference algorithm, MalRank, followed

by Section 4.4 and 4.5 detailing our implementation of MalRank and the proposed

HIN to build a large-scale system designed for the detection of new threats in a real-

world setting (named MalLink). Two case studies are then presented: one which

tailors the proposed system for malware detection (Section 4.6) and one which

tailors it for detecting malicious domains and IPs (Section 4.7). The limitations of

MalRank and our proposed approach are discussed in Section 4.9, while Section

4.10 provides a comprehensive literature review of graph mining applications, with

a focus on inference for threat detection in the cybersecurity domain. Finally, the

chapter concludes with a summary(Section 4.11).

4.1 Background: Graph-based Inference

In this section, we will explore some fundamental principles of graph theories

taking leanings from [143].
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4.1.1 Heterogeneous Information Network
▶ Definition 4.1. (Information network) [252]: An information network is defined

as a directed weighted graph 𝐺 = (V, E) with an object/entity type mapping

function 𝜏 : V → A and link/relationship type mapping function 𝜑 : E → R,
where each object 𝑣 ∈ V belongs to one particular object type 𝜏 (𝑣) ∈ A, and each

relationship 𝑒 ∈ E belongs to a particular relation 𝜑 (𝑒) ∈ R. Note that we explicitly
distinguish object types and relationship types in the network. If there exists a

relationship from object type 𝐴 to object type 𝐵, denoted as 𝐴
R−→ 𝐵 or simply

A–(R)–B, the inverse relationship 𝑅−1
holds naturally for 𝐴

𝑅−1

←−− 𝐵. Note that 𝑅
and its inverse 𝑅−1

are usually not equal unless the two types are the same, and

R is symmetric. When the types of objects |A| > 1 or the type of relationships

|R | > 1, the network is called a heterogeneous information network; otherwise, it is
a homogeneous information network. ◀

▶ Definition 4.2. (Network schema) Sun and Han [252]: The network schema or
graph schema, denoted as 𝑇𝐺 = (A,R), is a meta template for a heterogeneous

network𝐺 = (V, E) with the object type mapping 𝜏 : V → A and the relationship

type mapping function 𝜑 : E → R, which is a directed weighted graph defined

over object types A, with edges as relationships from R. ◀

In this work, we interchangeably move from HIN to Knowledge Graph, another

similar concept.

4.1.2 Graph-based Inference Algorithms
While investigating all related graph-based inference algorithms in detail is beyond

the scope of this paper, it is still essential to recognize and briefly review the most

influential related work and their shortcomings, hence leading to the introduction

of our MalRank algorithm and how it is designed to fit our requirements the best.

We would like to refer the reader to the references provided to learn more about

the details of each algorithm.

Belief Propagation

(BP) originally proposed by Judea Pearl [202], also known as sum-product, is one of

the most popular and successful applications of label propagation in probabilistic

graphical models such as Bayesian Networks and Markov Random Field. BP views

inference as marginal probability estimation in graphs. At a high level, BP infers a

node’s label from some prior knowledge about that node and other neighboring
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nodes by iteratively passing messages between all pairs of nodes in the graph.

The message-passing phase terminates when messages do not change significantly

between iterations. In the end, each node will calculate its belief which is an

estimated marginal probability [283].

Although BP is the most widely adopted graph-based inference algorithm for

threat detection, this algorithm has various limitations. First, BP is designed to work

best with probabilistic graphical models that do not generally consider the type of

nodes/edges nor directions. Some works have attempted to address those issues,

such as zooBP [74], which proposes a closed form with a guaranteed convergence

version of BP that is intended to work on heterogeneous graphs with multiple types

of nodes and edges. However, there are still limitations that exist within the core

concept of BP. More specifically, BP is used to approximate the marginal distribution

of a random variable being in a particular state (e.g., a malicious or benign node).

Thus, by definition, this probability will be biased towards the majority class

(benignness), and with numerical instability of multiplication, maliciousness will

end up disappearing from the graph. For example, consider a node having 3

connections to neutral nodes with 𝑃 (𝑥𝑢𝑛𝑘𝑛𝑜𝑤𝑛) = 0.5 and 1 connection to a malicious

node with 𝑃 (𝑥𝑚𝑎𝑙 ) = 1; running BP until convergence will change the score of the

node from originally 0.5 (𝑃 (𝑥𝑚𝑎𝑙 ) = 𝑃 (𝑥𝑏𝑒𝑛) = 0.5) to 𝑃 (𝑥𝑚𝑎𝑙 ) = 0.508 , which is

clearly, a low score for such a structure.

RandomWalk with Restart (RWR)

RW-based algorithms emulate random walkers taking steps within a graph while

having a small probability of teleporting to a random node rather than following

an out-edge; hence, Random Walk with Restart. Note that the small probability of

teleportation to a random node, also known as the taxation parameter is to avoid

spider traps, i.e., the surfer reaching a dead end.

RWR has been successfully utilized in numerous settings, perhaps the most

famous algorithm being Google’s classic PageRank (PR) developed by Brin and

Page initially introduced in [32, 194]. PageRank algorithm uses link information

to assign global importance scores to all pages on the web. PR achieves this by

simulating the behavior of many random surfers, each starting at a random page

and at any step, moving at random to one of the pages to which their current page

links. The limiting probability of a surfer being at a given page is the PageRank of

that page. The intuition behind PR is that a web page can be considered important

if other important pages point to it.

The original RWR-based algorithms, such as PageRank, suffer from various

limitations, such as the ability to define different types of nodes and edges or
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the ability to introduce weights on the edges. In this regard, there have been a

number of works tackling those specific issues, e.g., Personalized PageRank [21] and

Topic-Sensitive PageRank [100] to incorporate the node’s context (types), Biased

Random Walks, Weighted PageRank [276] introducing the concept of edge weights.

Furthermore, there has been several adoptions, e.g., TrustRank [146] to detect

web spams by propagating trust label rather than importance using topic-sensitive

PageRank, where the "topic" is a set of pages believed to be trustworthy, similarly

Distrust Rank [58] and SybilRank [34].

Similar to BP, RWR-based algorithms do not fit our requirements since they were

designed to measure the importance and not beliefs. The problem is that importance

is a relative measure which means, in most of the RWR-based algorithms, the values

are never created nor destroyed but rather passed from one node to another. These

works are great in measuring importance but not maliciousness. Maliciousness

needs to be treated like a disease. When someone infects another person with a

particular disease, he does not, in turn, get healthy himself, but rather they will be

both infected (i.e., maliciousness is created). Lastly, RWR-based algorithms assume

a connected graph, whereas our knowledge graph is extremely sparse. Koutra et

al. [144], provide a comparison of BP and RWR-based algorithms.

Diffusion in Social Network

Next is the study of Influence and Diffusion in social networks, e.g., how ideas are

spread among peers. Although the definitions might initially seem irrelevant to

our problem, one can view the algorithms in this field as an inference or label

propagation problem. In this regard, there are various algorithms that model this

influence and diffusion, most notably, Linear Threshold (LT) and Independent

Cascade (IC) [128]. These models, despite being simple, have the closest intuition

to our problem, yet, they require significant adjustments to support our other

requirements, e.g., edge weights, influence maximization, etc.

Others

Other notable algorithms include SimRank [120], a graph-based structural context

similarity measure with the intuition that two objects are similar if they are related

to similar things. Graph-based Semi-Supervised Learning, also known as label

propagation, tackles the problem of unlabeled data with the principle idea that it

can be utilized to decide the “metric” between data points and improve models’

performance [249]. Graph Embedding, which attempts to represent a graph as low

dimensional vectors while preserving the graph structures, e.g., DeepWalk [206],
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Line [258], GraphSAGE [95]. Although these algorithms have proven successful in

other domains, we still feel that they are not sufficiently mature for practical usage

at applications of our scale when raw data could easily reach petabytes. That being

said, we would like to explore some of these algorithms, particularly those based

on graph embedding, in our future research.

4.2 CyberHIN: SIEM-based Knowledge Graph
This section presents a detailed description of the proposed heterogeneous infor-

mation network or knowledge graph (CyberHIN), specifically in two scenarios:

one designed based on endpoints (EDR) logs and another from network logs (DNS,

Proxy, DHCP).

IssuedBy IssuedFor
assignedTo

associatedWith

observedIn

resolvesD

registeredBy

inRange

binds

ownedBy

connectsTo
IP

| address
| last modified

servedBy

ownedBy
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| type [key, value]
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| value name (if is value)
| value data   (if is value)
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| normalized command lines
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resolvesPTR

Content

| content hash

signedBy

spawns
Pipe
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RVTouch 

{modify/set/delete/...}

observedIn

File

| disk class
| normalized path loads

holds

injects

Figure 4.1: HIN network schema based on EDR logs enriched with related

OSINT and CTI.

The nodes in the HIN reflect globally unique and identifiable entities that are

valid across different entities, e.g., Files, Domains, Autonomous Systems, etc. These

entities have mandatory and auxiliary properties. The mandatory properties allow

global re-identification, e.g., file SHA256, Autonomous System Number, whereas
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IssuedBy IssuedFor
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Figure 4.2: HIN network schema based on DNS, Proxy, and DHCP logs

enriched with related OSINT and CTI.

the auxiliary properties are informative, e.g., file name. The relationships capture

object-related actions and resource relations, including actions such as process

creation, loaded libraries, file modification, network connections, and relations

such as IP address to CIDR and domain to a registrar. This modeling allows us to

re-identify (infer) shared behavior and associations across applications.

Figure 4.1 presents CyberHIN solely based on EDR logs, while Figure 4.2 is based

on Proxy, DNS, and DHCP logs,

Below, we expand on the intuition behind the main entities and relationships,

their importance, and their role in maliciousness inference. To ensure consistency

among the EDR data models, we substituted the key underlying events with those

observed in Sysmon logs (See table 4.1). Additionally, we narrowed our focus to

the most frequently occurring fields in proxy and DNS logs. We would like to

acknowledge that one can expand the entities and relationships extracted given

the support from the underlying data source (See the Section 4.9 on future work).

4.2.1 Entities & Relationships Extracted from EDR
As previously mentioned, endpoint events are considered one of the most valuable

sources of information, which can be captured by tools like EDR. Several studies
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have focused on utilizing endpoint and EDR logs for threat detection [12, 134, 192].

In this context, we aim to expand entities and relationships one can capture by

analyzing such logs.

Data provenance, originally introduced by King et al. [135, 136], describes

system execution and facilitates causal analysis of system activities. Provenance

graphs typically encode causal dependence relations between system subjects (e.g.,

processes) and system objects (e.g., files, network sockets), usually represented as a

directed acyclic graph, i.e., provenance graphs.

Provenance graph analysis is a promising approach to investigating cyber at-

tacks. In recent years, there has been significant research in the application of

provenance graphs [292], for instance, alert triage [99], threat detection [270] and

investigation [23, 97, 107, 173, 174, 203].

While provenance graphs were originally expected to be generated by observing

os-level objects and API calls, one can generate such graphs using events generated

by EDR or similar tools. Provenance data are usually represented as a directed

acyclic graph throughout the literature. However, since we are interested only in

the association and not the sequence of events, we represent the underlying data

as a heterogeneous information network, hence the provenance HIN.

Table 4.1: Relevant events available from Sysmon

EventID Description

1 Process created

2 Process changed file creation times-

tamp

3 Network Connection

5 Process terminated

7 Image loaded

8 Remote thread created

10 Process access

11 File Created

12 Registry object created or deleted

13 Registry value set

14 Registry key or value renamed

15 NTFS file stream created

17 Pipe created

18 Pipe connected

22 DNS request

23 File deleted
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Process Execution

A process represents the core unit of execution in today’s operating systems, en-

capsulating and separating all physical and virtual resources bound to a single run

of a particular program [286].

Modeling processes in a generalized form that allows unique and global identifi-

cation can be a challenging task; one has to consider the initial image, open handles,

security context, and shared libraries. In this work, we attempt the best effort by

identifying a process based on its initial image hash, normalized command line,

and parent chain. This approach covers the most relevant inputs given to a process

before it can perform actions and the context in which it is executed, modeling the

initial state of execution.

Malware is often not standalone but rather accesses a network of related exe-

cutables from the operating system (like scripts and pre-installed tools) and other

sources, e.g., the use of Mimikatz is a prominent characteristic of many APT at-

tacks [112]. Sysmon logs the creation of processes under event ID 1. The event

provides information about the newly created process and its parent process, thus

the relationship Process—(spawns)—Process.
Malware often uses process injection techniques [260] to disguise the origin

of action. While there are many different sub-techniques (e.g., Thread Execution

Hijacking, Process Hollowing, or Asynchronous Procedure Calls), all have in com-

mon that one process can execute under the context of another process. With the

Process—(injects)—Process relationship, we model this behavior to preserve

the associations between the actions of the different processes. One can capture

this relationship from Sysmon Event ID 8.

Loaded Executables/Libraries

Relationship Process—(loads)—File captures an association between a process

and a particular library. A library shared between multiple executables indicates

that the executables have access to similar functionality. In Microsoft Windows,

system libraries scope the used operating system APIs [11].

Whenever a process loads an additional image (e.g., a shared library) into its pro-

cess space, Sysmon emits events with the Event ID 7. The loaded image is described

by its image path and its correspondingHash, i.e., File—(hasContent)—Content.

File Operations

A file is a kernel object that exposes content under a certain path. Each file object

contains a set of relevant properties, such as file name and path, that are used in
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our modeling. Paths are usually volatile and ambiguous, thus requiring extensive

normalization and resolution. A path can be split into a volume and location

reference. The volume reference contextualizes the location. One can consider

local and remote filesystems, whereby remote disks are identified by their network

address. Local filesystems can be either the boot and system disk or an internal

or removable data store. The location reference is relative to the volume. For a

globally identifiable address, symbolic links and junctions need to be resolved, and

system-specific path components like usernames need to be removed. As provided

by Sysmon Event 15, NTFS file streams could be considered an extension of the

path.

A set of relationships captured by Process—(FTouch)—File that emphasizes

file accesses/modifications could be used to fingerprint software behavior [274]. In

this regard, program file creation, modification, and removal play a special role -

Droppers are typically used to install malware executables [149], triggering a file

creation event. Viruses work by injecting themselves into executables and libraries,

therefore causing modification events. A similar setting applies to self-modifying

executables, which is a widespread obfuscation technique [191]. Most malware

contains self-removal functionalities that cause delete events [159].

These relationships and entities can be extracted from the Sysmon Event ID

11 (file create), 15 (file create stream), and 23 (file delete), respectively. Note that

capturing file operations via Sysmon-like tools is limited to only TargetFilename
and not content hash.

While in this modeling, we distinguish process from file and content for finer

control over the inference, one can combine all these into a single entity represented

by its image hash to simplify the modeling.

System Observations

With the intuition, that good applications are typically used by many users, whereas

potentially malicious applications tend to only appear on a few computers [40].

One can capture such association by observing a particular file or process within a

particular system, thus File/Process—(observedIn)—System. A system is a

computing element such as a Windows workstation uniquely identified with an

identifier such as MachineGuid.
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Registry Operations

Registry entries are key-value pairs in a system-wide hierarchical database. Keys

are hierarchically structured container objects that can hold values and subkeys,

and values map a key to a value.

While this database is only available on a few operating systems like Microsoft

Windows, it holds various high-relevance entries for malware. Examples include

network hooks, autostart entries for systems and applications, user profiles, and

virus scanner properties [16]. Research also shows success in malware detection

by analyzing registry accesses [255].

File—(RKTouch/RVTouch)—Registry relationships attempt to capture such

association. Note that to avoid ambiguous hive names (i.e., those referring to the

user’s profile), one should normalize paths to ensure global identification across

different machines (e.g., by normalizing user SID components). Registry events can

be extracted from Sysmon event ID 12 (create and delete), 13 (set), and 14 (rename).

Furthermore, as theWindows Registry is structured by component, the hierarchy

of a key-value entry carries information about the scope of its entries. One can

utilize this property, i.e., InNameSpace, to infer risk in the proposed graph structure.
One can further parse the registry values attempting to extract relevant association

to certain files, e.g., for malware setting auto-start entries for an executable. The

relationship pointsTo attempts to capture such meta-paths.

Named Pipes

Windows provides a series of kernel objects to synchronize cooperating processes:

Mutexes, Semaphores, Timers, Events, Pipes, and Mailslots. Pipes [273] can be used

to pass data between two processes. Pipes on Windows are either anonymous or

can have a name by which other processes can connect to the pipe. It is possible to

use pipes across multiple devices with UNC naming and SMB as an RPC transport.

Some malware families are well-known to use named pipes for synchronization and

communication, for example, the Cobalt Strike framework [182]. Pipe access can be

modeled as Process—(PTouch)—Pipe indicating the creation of and connection

to a pipe. Sysmon Event 17 indicates the creation of a new pipe, and Event 18 shows

the connection of another process to the pipe.

DNS Requests

File—(resolves)—Domain is a relationship that models the executables’ attempt

to make a DNS query for a domain name (DNS record type A, AAAA) to the

respective operating system API. This relationship attempts to capture techniques,
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such as spear phishing scenarios [106] and domain generating algorithms [208],

with the intuition that attempting to resolve a malicious domain/IP should not be

seen from a benign context.

Note that, if possible (i.e., data source support), one can expand this via other

DNS record types such as the resolvesPTR relationship modeling PTR records,

MailServerForMX records, NameServerForNS records, and AliasForCNAME

record.

Another relationship extractable from this event is subdomainOf, which at-

tempts to capture the hierarchy of subdomains (e.g., DGA and domain shadowing).

For example, in shared or cloud hosting, it is common to provide subdomains to

different customers. If such a host predominantly hosts malicious content, one can

assume malicious intents. The same principle applies to the upper levels of domain

hierarchy [15], as seen in the SpamHaus ranking of the most abused top-level

domains
1
. Techniques like domain shadowing require a differentiation between

the different domain levels. Sysmon logs all DNS resolution requests through the

local system resolver via Event ID 22.

Network Connections

File—(connectsTo)—Service attempts to capture TCP- and UDP-based net-

work connections of executables to an IP address with a certain port. This combina-

tion of IP address and ports attempts to uniquely identify a service running on a

host and distinguish different activities related to the same IP address.

MITRE ATT&CK
2
defines a set of use cases for which malware might need to

open network connections, including lateral movement, command and control,

and data exfiltration. These network connections are characteristic of malware

and are therefore used for fingerprinting in anti-virus products [274]. As IPv4

addresses are an increasingly rare and expensive resource [64], the probability of

an attacker reusing their addresses increases. This is of particular relevance as

command and control services need persistence when used without indirection.

Only a few hosting organizations don’t comply with abuse reports or provide

anonymous services [188]. At the same time, IP blackholing increases the pressure

for attackers to build reliable communication systems [60]. One can collect network

connection events by filtering for the Sysmon Event ID-3.

1 https://www.spamhaus.org/statistics/tlds

2 https://attack.mitre.org/matrices/enterprise
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4.2.2 Entities & Relationships Extracted from Proxy & DNS

Due to the fact that web traffic is typically allowed by most of the firewalls, HTTP,

HTTPS, and DNS traffic are extensively abused by cybercriminals [47, 178] such

as bots communication with command-and-control servers, hence leading to the

popularity of proxy and DNS log analysis in the security domain.

Oprea et al. [193] discuss the set of features extractable from proxy logs (e.g.,

domain connectivity, the referrer string, the user-agent string) that aid in the

detection of malicious domains. Ma et al. [162, 163] address the same problem

using URL’ lexical and host-based features (e.g., number of dots) with the intuition

that malicious URLs exhibit certain common distinguishing features. Zhang et

al. [289] use term frequency/inverse document frequency (TF-IDF) algorithm to

tackle malicious URL detection. Bilge et al. [26] introduce EXPOSURE, a system that

employs large-scale passive DNS analysis to detect malicious domains using features

such as the number of distinct IP addresses per domain, average TTL, the percentage

of numerical characters, etc. Antonakakis et al. [14] propose Notos, a similar

system to EXPOSURE, while distinguishing itself by incorporating complementary

information such as the registration, DNS zones, BGP prefixes, and AS information.

In later research [15] Kopis is introduced, which separates itself from previous work

by analyzing the DNS traffic at the upper level of the DNS hierarchy rather than

local recursive DNS servers.

These works highlight the value of proxy and DNS log analysis for the purpose of

threat detection/hunting. Unlike these efforts, whichmostly target local features, we

focus on global features extracted from proxy and DNS logs correlated with DHCP.

Subsequently, we are going to further expand on each relationship, describing the

intuition behind its importance for maliciousness inference.

Network Connection

The relationship requestedAccessTo captures an HTTP/HTTPS request or a DNS

query from a client/workstation (with a MAC address) to/for a domain/IP. This can

be extracted from proxy or DNS logs where a client is requesting a domain or an

IP. The intuition here is that if a workstation is known to access a large number

of malicious domains/IPs, it is possible that there exists malware on the machine

which is trying to reach out, e.g., reaching out to the command and control [167].

It is worth noting that the majority of the DNS or proxy servers do not log the

client’s MAC address. Instead, they tend to log the client’s IP address. That is why

it is important to be able to correlate the client IP with the corresponding MAC

address according to the DHCP logs to identify the endpoint.
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HTTP-based Global Features

The relationship referedTo is extracted from the referer field in the HTTP request

header logged in proxy logs capturing a relationship between two domain/IP nodes

if one has referred to the other. The main intuition here is that the majority of

the malware serving networks are composed of a tree-like structure in which the

victims are usually redirected through various hops before landing on the main

distribution site (e.g., exploit kits, drive-by-download, malvertising) [169]. Although

different victims might land on totally different sites, the redirection paths usually

overlap. Furthermore, the HTTP referer is also set while a domain is loading its

modules from potentially different servers, therefore, indicating association among

different domains/IPs. Online advertising networks can introduce a challenge due

to their association with many different entities.

The relationship uses intends to capture the user agents used by each endpoint

with the intuition that even if malware is trying to disguise itself as an innocent

application (e.g., a browser) to reach out using HTTP, the user agent string might

still differ from the major UA used by the workstation (e.g., different browser

version). The user-agent string is extractable from proxy logs (i.e., user agent field).

DNS-based Global Features

Similar to EDR’s DNS-related events, enterprise DNS servers have the ability to log

all DNS requests and responses; however, they are much more comprehensive and

dependable since they are accountable for all resolutions.

In addition to the relationships described in the EDR section (4.2.1), nameServerFor
and mailServerFor, are the underrated relationships that can be extracted from DNS

Resource Record type NS and MX, which indicates the deligations of a domain to

a set of name servers (NS) or mail servers (MX), respectively. The intuition here

is infrastructure reuse. Similarly, aliasFor, a relationship extracted from DNS RRs

type CNAME with the intuition that domains connected by canonical name records

share intrinsic relation and are likely to be in a homophilic state [205].

4.2.3 OSINT Enrichment

Wewould like to define Open-Source Intelligence as any information gathered from

publicly available sources (i.e., open-source) that provide context to those observed

entities extracted from our SIEM-based data.

OSINT can potentially improve the inference and reasoning about the malicious-

ness of an entity (e.g., IP range or ASN for an IP). Antonakakis et al. [14], Khalil
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et al. [130], and Mahjoub [165] make use of ASNs, as part of their feature set to

detect malicious activities with the intuition that cybercriminals tend to use few

hosting services, which allow hiding their identities and don’t react to complaints.

Mishari et al. [175], Holz et al. [105], and Cooper et al. [46] provide a comprehensive

analysis of X.509 certificates and the most important features one can extract for

detecting malicious X.509 certificates.

Similar to event logs, OSINT could also pivot endlessly. Therefore, it is impor-

tant also to define a scope for the related OSINT. OSINT Framework
3
provides a

good overview of all available OSINT sources, Enaqx
4
provides a comprehensive

collection of OSINT tools. However, due to the fact that our event logs can reach

up to 10 terabytes (TB) generated per day, it is also important to select those OS-

INT which can be collected/crawled at scale. Lastly, we would like to distinguish

between passive and active collections. We define active as those that require an

active engagement with a server or an API for the collection, e.g., DNS RRs. While

passives are those that can be collected in bulk without a per-entry interaction (e.g.,

ASN).

Thus for the purpose of this research, we limit our OSINT to IPRanges, ASN,
X.509 certificates, and DNS Resource Records.

OSINT data does not provide actions but relationships between used resources.

CIDR and ASN

IP ranges and Autonomous Systems (AS) define the ownership structure of an IP

address. IANA assigns globally-routable IP addresses to autonomous systems in

chunks of different-sized subnets. As all regional Internet registries require a reason

for new allocations, IP range assignments are often separated by customers, use

cases, or applications. This style of segmentation even applies to internal networks

for routing purposes. Consequently, neighboring IPs are typically associated with

a shared purpose and AS ownership. This relationship has been exploited in IP

neighborhood clustering [115, 189]. As malicious hosting companies have been

observed in the wild, autonomous system numbers can carry a reputation similar

to IP addresses [14, 130, 142, 165]
5
.

It is possible to collect IP ranges and their relationship to autonomous systems

as a passive BGP listener or using RIRs measurements such as those published by

APNIC (https://thyme.apnic.net). IP ranges are uniquely identified by an IP address,

netmask, and ASs by the RIR-assigned autonomous system number (ASN).

3 http://osintframework.com/

4 https://github.com/enaqx/awesome-pentest#osint-tools

5 https://www.spamhaus.org/statistics/botnet-asn
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Certificate

X.509 is a standard for Public Key Infrastructure (PKI) and has been adopted by the

Internet Engineering Task Force (IETF) as the PKI for several IETF protocols such as

HTTPS, IMAPS, SMTPS, and POP3S [46]. X.509 Certificates can build a hierarchy

of trust through cryptographic signatures. To use an X.509 certificate publicly, it

needs to be signed by a Certification Authority (CA) that is trusted by the operating

system or software which is used to connect to a service. PKIX standardizes various

procedures for CA operations, which ensure that public keys are bound to reference

entities like an X.509 Distinguished Name (DN) or Alternative Name (AN), e.g.,

an e-mail address or a DNS entry. These certificates are integral parts of today’s

internet protocols’ security, providing the mean for trust between two parties.

X.509 certificates contain valuable information, such as details related to the issuer,

subject, creation date, and associated domains/IPs. In this regard, Mishari et al.

[175] discuss how features from SSL certificates can be used to detect fraudster

domains, Holz et al. [105], and Cooper et al. [46] provide a comprehensive analysis

of X.509 certificates and the most important features one can extract for detecting

malicious X.509 certificates.

This was particularly relevant before the introduction of free-of-cost TLS cer-

tificates with StartSSL and Let’s Encrypt; TLS certificates were expensive and,

therefore, a rare resource, making them often subject to reuse. X.509 certificate

fingerprint is a threat intelligence type that allows fingerprinting several malware

families’ C&C servers [13, 46]
6
.

Another use of X.509 certificates is code signing, which is required by several

operating systems like macOS andWindows for regular software and kernel drivers.

Measurements by Kim et al. showed that many Windows malware samples have

a valid signature [133]. As these signatures are expensive and hard to obtain,

one can expect to reuse (compromised) developer certificates. A certificate is

uniquely identified by its hash (within the means of collision resistance). One can

collect certificates from certificate transparency logs, executables, TLS-logging web

proxies/DPI instances, and large-scale web scanning of public-facing services.

Although numerous features can be utilized for examining X.509 certificates in

the context of threat detection, our focus is solely on global characteristics that

might suggest a malicious link. These global features comprise the certificate’s

connection to other entities such as domains, IPs, and files, as well as the signing

hierarchy [13, 46, 210].

6 https://sslbl.abuse.ch/statistics
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Registrar and Organization

Registrars allow the registration of publicly reachable domains. While typical TLD

policies require personal identifications, some registrars allow bypassing these

measures, thus attracting more criminal activities. In addition, registrars play a

unique role in detecting fast-flux scenarios, where IP addresses are changed at a

very high pace [66].

A domain registrar can be requested using the WHOIS [53] or Registration Data

Access Protocol
7
(RDAP) for most public TLDs. This allows querying authoritative

metadata on domains and IP addresses. Registrars are uniquely identified by their

IANA-issued registrar ID.

Organizations are legal entities that can hold virtual resources. References to

legal entities are provided in X.509 certificates and RDAP/WHOIS responses to

requests on domain names and IP addresses. For many legitimate businesses, these

references correlate across their activities, such that benignness can be inferred

between legitimate resources. However, malicious actors don’t have any incentive

to provide this form of correlation between their activities but sometimes reuse

identifiers.

DNS Records

DNS data is among those valuable information sources that have a lot of potential

for threat detection. Significant research exists exploring threat detection via DNS

log analysis [15, 26], and many others that expand on the relationships extracted

from DNS data logs [110, 130, 186, 187, 293].

Even though the process endpoint of proxy logs may only capture an effort

by a process to resolve a domain name or IP address, such resolution might not

always be available. Therefore is possible to enrich all observed domains and IPs

by obtaining their corresponding DNS records (for instance, through the use of the

Gieben DNS library
8
). Nevertheless, it is essential to remember that the results may

not always be accurate as responses may vary during the query due to DNS-level

load balancing, CDNs, traffic manipulation, fast-flux networks, and other factors.

4.2.4 CTI Enrichment
As mentioned, our approach exercises guilt-by-association. In this regard, it is

essential to introduce seed maliciousness for propagation and inference. This

7 https://www.icann.org/rdap

8 https://github.com/miekg/dns
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can be achieved by matching the HIN’s entities against Cyber Threat Intelligence

(CTI). The term cyber threat intelligence or threat intelligence is defined and used

differently throughout the literature. However, we would like to use Chismon’s

definition [42]. Threat intelligence is information that can aid with threat detection

tasks. Similarly to OSINT, CTI could also be endless (e.g., indicators, TTPs). For

the purpose of this research, we focus only on Indicators of Compromise (IOCs)

related to our observed entities, particularly file hashes, domain names, and IP
addresses. Furthermore, we limit our sources to those that can be used for passive

collection at scale with no API limitation. Slatman provides a curated list of threat

intelligence [241] resources.

4.3 MalRank: Graph-based Inference Algorithm
This section begins by defining the problem and requirements that led to the

development of our proposed graph inference algorithm, MalRank.

4.3.1 Problem Definition
At a high level, we would like to reason about an entity based on its association

with other entities, with the intuition that malicious entities tend to share some

global properties. In this regard, graphs or heterogeneous information networks are

ideal for this task due to their capability to preserve the correlation and association

among different entities. That is why we formulate our problem as a graph-based

inference problem. More specifically,

Given:

• A directed weighted graph or a heterogeneous information network 𝐺 =

(V, E), with a particular network schema 𝑇𝐺 = (A,R).

• A Prior score 𝑠𝑜 and prior confidence 𝑐 defined over all 𝑥 ∈ V , where

𝑠𝑜 (𝑥) ∈ {0, 1} and 𝑐𝑠𝑜 (𝑥) ∈ [0, 1]. Where 𝑠𝑜 (𝑥) = 0 denotes 𝑥 as a neu-

tral node and 𝑠𝑜 (𝑥) = 1 denotes 𝑥 as a known malicious node. 𝑐 represents

the confidence in the label, 0 being no confidence, and 1 absolute confidence

in the trustworthiness of that label (expected to be set according to the TI

source).

• An edge weight 𝜔 defined over each edge type 𝑟 ∈ R and its inverse 𝑟−1
,

denoting the influence of relationship type in each direction. 𝜔𝑟 , 𝜔𝑟−1 ∈ [0, 1].
The higher the edge weight, the higher the influence.
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Find:

• Maliciousness score S(𝑥) of a node 𝑥 , i.e., S(𝑥) ∈ [0, 1]. A higher score

indicates a higher risk.

4.3.2 Graph Inference Requirements

The graph-based inference has been studied widely in a variety of domains. Al-

though it is referred to differently depending on the domain (e.g., influence, diffusion,

propagation, transductive classification, meta-path-based similarity), at its core,

the problem can be simplified to the inference of nodes’ properties based on their

neighbors. In our case, inferring the maliciousness of a node based on the mali-

ciousness of its neighbors. This is also known as guilt-by-association throughout

the literature [257].

Before presenting our graph-based inference algorithm, it is essential to estab-

lish our primary requirements for the use case. By doing so, we can assess the

constraints of existing algorithms and recognize the necessity for a new graph

inference algorithm, namely MalRank.

Single Diffused Label

Since CyberHIN is constructed from entities and relationships observed in an

enterprise’s SIEM, it is quite unlikely that the number of benign and malicious

entities is proportional, i.e., the majority of the entities are expected to be benign.

This is due to the fact that the most traffic within an organization is expected to be

benign. That is why it is important for us to consider only one label (maliciousness).

Therefore, the algorithm should be able to infer a maliciousness score for any given

node based on its neighbors’ maliciousness score while considering the number of

neutral neighbors to reduce the maliciousness. In other words, if a node has a high

degree with a large number of neutral neighbors, it is less likely to be malicious

(Figure 4.3). For example, a malicious domain is more likely to be accessed by a few

of enterprise workstations rather than the majority of them [167]. This requirement

also allows us to eliminate supernodes (nodes with a high degree, e.g., content

delivery networks, web hosting services, or advertising networks). In this regard,

while the majority of the previous efforts take supernodes as a challenge, thus

eliminating them from the final graph, with this requirement, we can ensure that

supernodes won’t affect the algorithm due to a high number of neutral neighbors.
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Figure 4.3: The effect of the neutral neighbors on a node’s MalRank score.

Directed Weighted Propagation

The next important requirement is the ability to define edge weights. Since the

knowledge graph is expected to consist of various types of nodes and edges, the

algorithm must be capable of considering how maliciousness should be propagated

through a particular association. For instance, a resolvesTo edge should have a much

greater influence than requestedAccessTo. Furthermore, although the majority of

the relationships described in the previous section can be treated as bidirectional

edges, the algorithm should be able to incorporate not only edge directions but also

different edge weights in different directions. This would allow one to have much

more control over the influence weights and their directions. This is important as it

can stop an adversary from rendering the algorithm ineffective by connecting to a

large number of neutral nodes (e.g., referring to a large number of benign domains

or adding CNAME records pointing to other legitimate domains). Although it’s

quite unlikely that this is happening at the moment, one must also consider this as

part of threat modeling.

Maliciousness Influence Maximization

Maliciousness should be treated like a disease, i.e., the more malicious a node is,

the greater its influence. This ensures that the maliciousness does not fade within

a graph of extreme bias towards benignness. Thus, the algorithm should have a

mechanism to adjust the edge weights depending on the source’s maliciousness

score, i.e., if a node gets more malicious, the edge weights on the edges connecting

that node to others should be increased accordingly, thus allowing maliciousness

to be propagated more effectively.

Scalable and Iterative

Lastly, due to the amount of our data, which can easily reach 10 TB per day,

the algorithm should be able to scale both vertically and horizontally to allow
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parallelization across multiple machines. Furthermore, having the possibility to

have an iterative implementation that is better supported by the current state of

the art for large-scale graph analytics.

4.3.3 MalRank Formulation
Let us denote the maliciousness score (MalRank score) of a node 𝑥 ∈ V as S(𝑥);
following our earlier intuition and definition, the simplified S(𝑥) can be calculated

with:

S(𝑥) = 𝑐
𝑠𝑜 (𝑥 )𝑠

𝑜 (𝑥) + (1 − 𝑐
𝑠𝑜 (𝑥 ) )

∑
𝑦∈𝑁 (𝑥)

∑
𝑟∈T𝑥𝑦
S(𝑦).�̂�

𝑥𝑦𝑟
−1∑

𝑦∈𝑁 (𝑥)

∑
𝑟∈T𝑥𝑦

�̂�
𝑥𝑦𝑟
−1

(4.1)

Where 𝑠𝑜 (𝑥) ∈ 0, 1 refers to the prior of node 𝑥 . If 𝑥 is a known malicious node

𝑠𝑜 (𝑥) = 1, and 0 otherwise (usually set if 𝑥 is observed in a TI source). 𝑐𝑠𝑜 (𝑥) ∈ [0, 1]
is the prior confidence of 𝑠𝑜 (𝑥). This indicates the trust level of the prior. The

value is decided according to the trust level for the corresponding TI source. This

is introduced to control low-quality threat intelligence; we shall discuss this later.

𝑁 (𝑥) is the set of nodes neighboring node 𝑥 , T𝑥𝑦 ⊂ R is the set of relationship

types between 𝑥 and 𝑦. �̂�
𝑖

𝑥𝑦𝑟
−1

is the maximized/minimized edge weight on the

relationship type 𝑟 directed from 𝑦 to 𝑥 .

▶ Definition 4.3. Maximized/Minimized Edge Weight (�̂�)
As discussed previously, there are three main requirements to control the propa-

gation and influence: first, the ability to decay the influence differently on different

edge types. This is achieved by introducing edge weights, 𝜔𝑟 denoting the weight

on the edge of type 𝑟 . Second is the ability to have different weights in different edge

directions. This is achieved by distinguishing the direction of the influence; hence

𝜔𝑟−1 is the inverse direction of𝜔𝑟 . For instance, if 𝑟 is a relationship spawns between
node 𝑥 and 𝑦 (𝑥—spawns—𝑦), 𝑟−1

is the inverse relationship (𝑦—isSpawnedBy—𝑥)
which can have a different weight. Thus, 𝜔𝑥𝑦𝑟 does not need to be the same as

𝜔
𝑥𝑦𝑟
−1 . This allows us to differentiate the impact of influence via a relationship

in each direction. It is also worth mentioning that this is how the algorithm sees

the directions. In this regard, although our knowledge graph is a directed graph,

from the algorithm perspective, all edges are bidirectional, but the influence can

be different in each direction. This way, one could define the 𝜔𝑥𝑦𝑟 = 𝜔𝑟 = 𝑑 and

𝜔
𝑥𝑦𝑟
−1 = 𝜔𝑟−1 = 0 if the edge type 𝑟 has only one direction, i.e., from source vertex

𝑥 to destination vertex 𝑦. Lastly, the ability to adjust this decay based on the score

64



MalRank: Graph-based Inference Algorithm Section 4.3

of the influencer. Thus, introducing the maximized/minimized edge weight (�̂�𝑥𝑦𝑟 ).

This value is calculated by taking the weighted average of the original edge weight

and the source maliciousness score:

�̂�𝑥𝑦𝑟 =

{
0, if 𝜔𝑜𝑟 = 0

𝑘S(𝑥)+(1 − 𝑘).𝜔𝑜𝑟 , otherwise
(4.2)

where 𝜔𝑜𝑟 is the original edge weight for relationship type 𝑟 . Note that initial

edge weights are defined over relationship types and not on each edge, whereas

the �̂�𝑥𝑦𝑟 are defined over each edge. 𝑘 is the maximizer factor which is expected to

take a value between 0.5 and 0.8. The higher 𝑘 values enforce a higher maximiza-

tion/minimization for the new weight (�̂�) according to the influencer’s score. ◀

While the equation 4.1 is exact for singly-connected (acyclic) and directed graph,

i.e., there are no loops or bidirectional edges in the graph, this is not the case

in a directed graph in which there could be loops or connected components. In

particular, in the case of singly-connected networks, the computation starts from

the nodes at the root of the graph and only computes scores when the parent scores

are calculated. In that case, it is easy to recognize that each score needs to only be

computed once. In other words, the whole computation takes time proportional to

the number of links in the graph.

However, when loops are present, the algorithm eventually runs into trouble,

but if we ignore the existence of loops and continue with the calculation with no

guarantee for convergence, the scores will mostly converge to a stable equilibrium

as time goes on. This phenomenon is very similar to what we observed in loopy

belief propagation [184]. For this purpose MalRank can be calculated iteratively

via message passing as follows:

S(𝑥)𝑖+1 = 𝑐
𝑠𝑜 (𝑥 )𝑠

𝑜 (𝑥) + (1 − 𝑐
𝑠𝑜 (𝑥 ) )

∑
𝑦∈𝑁 (𝑥)

∑
𝑟∈T𝑥𝑦

𝑚
𝑖

𝑥𝑦𝑟
−1∑

𝑦∈𝑁 (𝑥)

∑
𝑟∈T𝑥𝑦

�̂�
𝑖

𝑥𝑦𝑟
−1

(4.3)

𝑚
𝑖+1
𝑥𝑦𝑟 = [S(𝑥)

𝑖 − (1 − 𝑐
𝑠𝑜 (𝑥 ) )

∑
𝑟∈T𝑥𝑦

𝑚
𝑖

𝑥𝑦𝑟
−1∑

𝑦∈𝑁 (𝑥)

∑
𝑟∈T𝑥𝑦

�̂�
𝑖

𝑥𝑦𝑟
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
echo cancellation

] .�̂� 𝑖+1
𝑥𝑦𝑟 (4.4)
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�̂�
𝑖+1
𝑥𝑦𝑟 =

{
0, if 𝜔𝑜𝑟 = 0

𝑘S(𝑥)𝑖 + (1 − 𝑘).𝜔𝑜𝑟 , otherwise
(4.5)

where S(𝑥)𝑖 is the maliciousness score of a node 𝑥 ∈ V in iteration 𝑖 .

𝑚
𝑖

𝑥𝑦𝑟 is the message (influence) sent from node 𝑥 to node 𝑦 in iteration 𝑖 + 1 over

edge type 𝑟 , and𝑚
𝑖+1

𝑥𝑦𝑟
−1
, is the message sent from node 𝑦 to node 𝑥 in iteration 𝑖 .

Note the echo cancellation term designed to eliminate the continuous increase of

maliciousness among two nodes, i.e., node 𝑥 sends a high maliciousness influence

to itself via a neighbor 𝑦 (𝑥 → 𝑦 → 𝑥 ). This is achieved by removing the influence

of a node from the previous iteration. In other words, the message node 𝑥 sends

to node 𝑦 in iteration 𝑖 + 1 should eliminate the influences of node 𝑦 on 𝑥 in the

previous iteration (via any link between these two nodes).

�̂�
𝑖+1
𝑥𝑦𝑟 is an instance of maximized/minimized edge weight on the relationship

type 𝑟 between node 𝑥 and 𝑦 in iteration 𝑖 + 1. 𝜔𝑜𝑟 is the original edge weight for

relationship type 𝑟 .

Figure 4.4 shows the effect of running 20 iterations of MalRank on a syntactically

created HIN. Figure 4.5 shows how the MalRank scores and the maximized/mini-

mized edge weights evolve over time and eventually converge after several itera-

tions.

4.3.4 MalRank vs. Belief Propagation

The majority of the literature in this domain has adopted belief propagation as the

inference algorithm. During the previous section, we briefly described why there is

a core fundamental limitation with belief propagation that prevents it from being

effectively used as a malicious inference algorithm based on our requirements. Here

we are going to expand this more by providing a simple example showcasing how

MalRank scores are compared with BP under a very similar setting.

Table 4.2: MalRank and Belief Propagation algorithms’ parameters for the Zachary

experiment.

MR Parameter

∀𝑟 ∈ R : 𝜔𝑜𝑟 = 𝜔
𝑜
𝑟−1

= 0.5

𝑘 = 0.7

𝑠𝑜 (𝑥) =
{

0.9, if 𝑥 ∈ {6, 24}
0, otherwise

𝑐
𝑠𝑜 (𝑥 ) =

{
0.99, if 𝑥 ∈ {6, 24}
0, otherwise

BP Node Potential BP Edge Potential

Node 𝑃 (𝑚𝑎𝑙) 𝑃 (𝑏𝑒𝑛) 𝜓𝑖 𝑗 (𝑥𝑖, 𝑥 𝑗 ) 𝑥 𝑗 = 𝑏𝑒𝑛 𝑥 𝑗 =𝑚𝑎𝑙

Malicious (6, 24) 0.99 0.01 𝑥𝑖 = 𝑏𝑒𝑛 0.5 + 𝜖 0.5 − 𝜖
Unknown (rest) 0.5 0.5 𝑥𝑖 =𝑚𝑎𝑙 0.5 − 𝜖 0.5 + 𝜖
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(b) After 20 Iterations

Figure 4.4: How MalRank scores and edge weights are evolved in a synthetically created

graph after 20 iterations.

In this regard, table 4.6 (b) shows the effect of running 10 iterations of MalRank

and 10 iterations BP on the graph presented in figure 4.6 (a) under a similar setting

described in table 4.2 and table 4.2.

While BP can provide meaningful results under a balanced setting in which there

is symmetry among classes (e.g., malicious and benignness/unknown), it fails when

there is a huge bias towards a particular class, in our case, benignness. This is also

shown in the results. For instance, 10 iterations of MalRank change the MalRank

score of node-17 from 0 to 0.6, whereas 10 iterations of BP change its BP score from

0.5 to 0.508 (which would result in a miss-classification).

4.3.5 Naive Incremental Calculation
In a real deployment, the HIN is expected to be extremely dynamic in which new

entities (vertices) or links (edges) are added or priors (maliciousness indicators)

modified over time. In such a setting, it is not infeasible to expect to run MalRank
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(a) MalRank Score, S(𝑥).

(b) Adjusted edge weights, �̂�
𝑖

𝑥𝑦𝑟 .

Figure 4.5:MalRank scores and edge weights evolve and converge over iterations.

inference on the entire graph every time such updates occur. Moreover, these

updates should not significantly affect the entire graph. In this regard, to avoid the

re-computation of MalRank scores from scratch, we outline a variety of MalRank

which allows us to perform incremental batch updates for the areas of the graph

that is most affected by the addition of the new vertices, edges, and priors.

The intuition behind Naive Incremental MalRank is that these updates should

result in minor changes in the immediate neighbors of those inserted/updated nodes

and edges. At the same time, the effect will not be strong enough to propagate

to the rest of the graph. To achieve this, we adopt the underlying idea behind

Single-Pass Belief Propagation [88] and NetProbe [195].

An update includes either the addition of new nodes with particular links to each

other or existing nodes; note that each new node is expected to have its own prior

(0 if unknown, 1 if known malicious). It could also be the addition of new links
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(a) Zachary karate club graph.

MalRank Belief Propagation

Node 𝑠0(𝑥) 𝑠10(𝑥) 𝑃 (𝑚𝑎𝑙)0 𝑃 (𝑚𝑎𝑙)10

6 0.9 0.826 0.9 0.900

24 0.9 0.823 0.9 0.900

17 0 0.622 0.5 0.508

11 0 0.491 0.5 0.508

7 0 0.484 0.5 0.508

26 0 0.473 0.5 0.508

28 0 0.425 0.5 0.508

30 0 0.414 0.5 0.508

5 0 0.375 0.5 0.500

25 0 0.345 0.5 0.500

27 0 0.321 0.5 0.500

32 0 0.270 0.5 0.500

33 0 0.266 0.5 0.508

1 0 0.256 0.5 0.508

12 0 0.255 0.5 0.500

(b)MalRank and BP scores.

Figure 4.6: Changes in MalRank scores vs. BP scores after 10 iterations on Zachary karate

club graph with two nodes marked as malicious.

between already existing nodes. Lastly, changing the priors of existing nodes, e.g.,

marking an existing node as malicious.

At a high level, whenever an update occurs, particularly with a set of newly

added/updated verticesV ′
each with their own prior, and set of edges E ′ , we shall

re-calculate the MalRank score of all nodes which are at most ℎ hops away from

any node in setV∗, or ℎ − 1 away from any source or destination vertex of an edge

in set E∗, where ℎ is configurable noting the trade-off between computational cost

and influencing the larger portion of the graph.
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Algorithm 1: Naive Incremental MalRank Pseudocode

input : MalRank Graph with Vertices and Edges 𝐺 (𝑉 , 𝐸)
New Vertices 𝑉 ′

New Edges 𝐸′

Vicinity ℎ

Output: Updated MalRank Graph 𝐺′

// upsert new nodes/links to the MalRank scored graph G
1 𝐺′← 𝑢𝑝𝑠𝑒𝑟𝑡 (𝐺,𝑉 ′, 𝐸′);
2 𝐻 = {};
3 for 𝑣 in 𝑉 ′ do

// find all nodes that are at most ℎ hops away from
vertices in 𝑉 ′

4 𝐻.𝑖𝑛𝑠𝑒𝑟𝑡 (𝐵𝐹𝑆 (𝐺′, ℎ, 𝑣)) ;
5 end
6 for (𝑠𝑣, 𝑑𝑣) in 𝐸′ do

// find all nodes that are at most ℎ − 1 hops away from
the src or dest vertex of the edges in 𝐸′

7 𝐻.𝑖𝑛𝑠𝑒𝑟𝑡 (𝐵𝐹𝑆 (𝐺′, ℎ − 1, 𝑠𝑣)) ;
8 𝐻.𝑖𝑛𝑠𝑒𝑟𝑡 (𝐵𝐹𝑆 (𝐺′, ℎ − 1, 𝑑𝑣)) ;
9 end

10 while 𝑖 < ℎ + 1 or scores are not converged do
11 for (𝑠𝑣, 𝑑𝑣) in 𝐺′ do

// upgrade messages and weights on all edges that
their destination vertex is in 𝐻

12 if 𝑑𝑣 ∈ 𝐻 then
13 𝑢𝑝𝑑𝑎𝑡𝑒𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠 (𝑑𝑣, 𝑠𝑣) ;
14 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑀𝑠𝑔(𝑑𝑣, 𝑠𝑣)
15 end
16 end

// upgrade MalRank score of all nodes in 𝐻, by
aggregating the newly sent msgs as well as
previous msgs

17 for 𝑣 in 𝐺′ do
18 if 𝑣 ∈ 𝐻 then
19 𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑎𝑙𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒 (𝑣) ;
20 end
21 end
22 end
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Figure 4.7: Showing the 2 − 𝑣𝑖𝑐𝑖𝑛𝑖𝑡𝑦 of two newly added nodes 𝐼 and 𝐽 for incremental

MalRank.

It is important to pay particular attention to the boundary nodes, i.e., those nodes

that are exactly ℎ hops away. In this regard, it is important not to eliminate the

rest of the graph when re-calculating the scores or messages surrounding these

boundary nodes. Eliminating those untouched areas completely will disrupt the
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global equilibrium. Furthermore, note that MalRank needs to be calculated at least

ℎ + 1 iterations allowing the desired inference/influence.

Figure 4.7 shows ℎ−vicinity of two newly added nodes: V ′
= {𝐼 , 𝐽 } and and

two newly added bi-directional edges: E ′ = {𝐽 𝐹, 𝐹 𝐽 , 𝐼𝐺,𝐺𝐼 }, where ℎ = 2. In this

regard, as shown in the graph, finding the ℎ = 2−vicinity of𝐺′ | V ′
, E ′ will give us

{𝐼 , 𝐽 ,𝐺, 𝐹, 𝐸, 𝐷}. Next, we will update all messages (using equation 4.4 and 4.5) on

all edges whose destination vertex is in 2−vicinity, i.e., IG, GI, JF, FJ, GE, EG, GF,
FG, FD, DF, AD, CE. Having the updates messages, for each node in 2−vicinity, we
will update the MalRank scores using equation 4.3. This process shall be repeated

at least 3 times.

Lastly, it is worthmentioning that by using this naive approach, the re-calculation

of the MalRank scores of the whole graph should be done every now and then.

Furthermore, note that we have not discussed the removal of vertices or edges in

this naive approach.

4.4 MalLink: a Framework for CyberHIN &
MalRank

In this section, we delve into the design and implementation of MalLink, a sys-

tem/framework created to run on SIEMA, interface with the underlying storage,

load and parse the event logs stored within, generate the CyberHIN described in

Section 4.2, perform OSINT enrichment and CTI marking, and ultimately execute

MalRank to identify potentially unknown malicious entities.

4.4.1 MalLink Architecture

System 
Event Logs

1 2 3
Provenance HIN

Generation
OSINT

Enrichment
Seed CTI 
Indicator

4
Maliciousness

Inference

Figure 4.8:MalLink’s high-level approach to threat detection.

Figure 4.8 shows an overview of the proposed approach, and Figure 4.9 shows

the architectural design of the MalLink system. Due to scalability requirements,

we decided to build MalLink using Apache Spark, which would allow us to scale
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Figure 4.9: Overview of MalLink architecture.

our data processing pipeline as well as the inference algorithm (using GraphX).

MalLink is expected to run as a plugin on top of the proposed SIEMA in Chapter 3.

In the following section, we elaborate on the function of each module and

provide an overview of the design choices made for their incorporation within the

architecture of MalLink.

Log Collection and Processing

MalLink is designed to attach to a data lake (e.g., Amazon S3, Azure Data Lake

Storage) to ingest the raw, semi-structured event logs of interest. These logs are then

preprocessed (e.g., cleaned, deduplicated, parsed, and validated). Lastly, entities

and relationships of interest (according to desired network schema) are extracted

and transformed into independent vertex and edge objects which are then passed

to the HIN construction and the OSINT enrichment modules.

Each vertex object has a vid (vertex identifier), name, type, tiObservation, and
mrScore. Each edge has a srcId, dstId, srcV (the whole source vertex object), dstV,
and eType (edge type). The intuition behind this specific design is to embrace micro-

service, stateless, and distributed design patterns. In this regard, despite duplicating

each vertex within each edge object, the system can scale out more efficiently. This

is because the loading module can independently process the received vertices and

edges, regardless of order or distribution.

OSINT Enrichment

As mentioned, we are interested in further enriching certain entities of interest with

related open-source intelligence. In this regard, MalLink consists of various enricher

modules awaiting particular entity types to enrich accordingly, e.g., CIDR/ASN
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enricher module configured to enrich all IP entities with their corresponding CIDR

range and ASN.

HIN Construction and CTI Marking

Given a set of preprocessed vertex and edge objects, MalLink builds a HIN. To

provide the maliciousness seed for later inference, the TI Marking module marks

those vertices observed within previously collected CTI.

All extracted and processed entities and relationships arrive independently at the

loading module. This module is responsible for de-duplicating, indexing, cleaning,

and combining all the vertices and edges. It is also responsible for labeling all

vertices according to the TI collected previously while marking some for evaluation.

The output of this layer is the final labeled and processed distributed graph.

Graph Inference

After generating the HINmarkedwith the seed CTI, next, MalLink runs a distributed

and iterative implementation of the MalRank algorithm described in Section 4.3 on

the generated graph.

MalRank algorithm is implemented using Pregel’s computational model using

Apache Spark GraphX. Pregel, initially introduced by Malewicz et al. [166], brings

graph algorithms into the map-reduce world by expressing graph algorithms as

a sequence of iterations, in each of which a vertex can receive messages sent in

the previous iteration, send messages to other vertices, and modify its own state

and that of its outgoing edges or mutate graph topology. Using this vertex-centric

intuition ("think like a vertex"), one can express a broad set of algorithms while

parallelizing its computation across any number of nodes. GraphX is Apache

Spark’s API for parallel and fault-tolerant graph computation at scale.

Algorithm 2 presents MalLink inference pseudocode. In each iteration for every

edge in the graph, a map function updates the edge weights and calculates the

message to be sent to the destination vertex (according to Eq. (4.4), and (4.5)).

Intuitively, by the end of this mapper round, each vertex receives a message for

every incoming edge (from other vertices). Then the reduce function combines all

messages at each vertex, Eq. (4.3). The reduce function is written to handle only

two messages at a time but will be repeated until all messages have collapsed into

a single message.

The described system is designed to work both in streaming and batch mode.

However, in this research, we only utilized its batch mode. In other words, one

must re-run the MalRank algorithm to score newly added vertices. We would like
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Algorithm 2: MalLink Graph-based Inference Algorithm Pseudocode

input :
Vertices 𝑉 (S, 𝑠𝑜 , 𝑐

𝑠𝑜
, InDgrWeightSum )

Edges 𝐸 (𝑥 , 𝑦,𝑚𝑥𝑦 ,𝑚𝑥𝑦−1
, 𝑟 , �̂�𝑟 , �̂�𝑟−1 , 𝜔𝑜

𝑟 , 𝜔𝑜

𝑟−1
)

k

Output: Graph 𝐺

1 begin
2 𝑐𝑙𝑒𝑎𝑛𝐴𝑛𝑑𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝑉 , 𝐸 ) ;
3 while 𝑖 < max iteration or "scores are not converged" do

// mapper: upgrade weights and messages on all edges
4 for 𝑒 in 𝐸 do

// using equation 4.5
5 �̂�𝑟 ← updateEdgeWeight (S(𝑥 ), 𝑘,𝜔𝑜

𝑟 )

6 �̂�𝑟−1 ← updateEdgeWeight (S(𝑦), 𝑘,𝜔𝑜

𝑟−1
) ;

// using equation 4.4, simultaneously update
7 𝑚𝑥𝑦 ← updateEdgeMsg (S(𝑥 ), 𝑐

𝑠𝑜 (𝑥 ) , �̂�𝑟 ,𝑚
𝑥𝑦−1

, InDgrWeightSum) ;

8 𝑚
𝑥𝑦−1

← updateEdgeMsg (S(𝑦), 𝑐
𝑠𝑜 (𝑦) , �̂�𝑟 ,𝑚𝑥𝑦 , InDgrWeightSum) ;

// reducer: aggregate messages and weights to update scores
9 for 𝑥 in𝑉 do
10 sumOfInAggregatedMsgs← 0 ;

11 InDgrWeightSum← 0 ;

12 for 𝑒 𝑖𝑛 − 𝑑𝑒𝑔𝑟𝑒𝑒 of 𝑥 do
13 sumOfInAggregatedMsgs + =𝑚

𝑥𝑦−1
;

14 InDgrWeightSum + = �̂�𝑟−1 ;

// using equation 4.3
15 last_𝑆 (𝑥 ) ← S(𝑥 ) ;
16 S(𝑥 ) ← updateNodeScore(last_𝑆 (𝑥 ), 𝑠𝑜 (𝑥 ), 𝑐

𝑠𝑜 (𝑥 ) ,

17 sumOfInAggregatedMsgs, InDgrWeightSum ) ;

to leave this to our future work, expanding the implementation to support the

temporal incremental mode of MalRank, which not only operates on streams but

also takes time (first-seen and last-seen) into consideration.

4.5 Experiment Setup
Infrastructure

For this research, we utilized two variants of the proposed SIEMA (a big data

platform that runs on top of a legacy SIEM system).

More specifically, a research workbench used for case study 4.7 consisting of

one Dell PowerEdge (R730, R820) and five Fujitsu Primergy RX600 with a total

of 1,864 GB RAM, 24 CPUs (200 total cores), and 4 TB storage interconnected via

10 Gb optical fiber. In addition, the data was initially stored on an external Network
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Attached Storage (NAS) connected to the cluster via 3x 10Gb optical fiber. A cluster

backed by Kubernetes
9
for orchestration, Apache Spark

10
for distributed processing,

and Apache Kafka
11
for distributed queueing.

Aswell as commercial alternatives for case study 4.6 consisting of AzureDatabricks

(configured with 8 "Standard_D32s_v4" workers). Thus, having a big data platform

backed up by Apache Spark with a total of; 1024-GB Memory, 256 vCPU Core,

having access to Azure Data Lake Storage, where the company’s EDR logs were

residing.

MalLink Configuration

When configuring the MalRank algorithm throughout our experiments and case

studies, we decided to rely on expert knowledge to initialize the parameters of each

vertex (entity) and edge (relationship) according to Table 4.3.

Table 4.3: MalRank configuration for the experiment

MR Parameter Description

∀𝑟 ∈ R : 𝜔𝑜𝑟 = 𝜔
𝑜
𝑟−1

= 0.4 All edge weights initialized with 0.4 in both directions

𝑘 = 0.75 The maximizer factor for the calculation of �̂�

𝑠𝑜 (𝑥) =
{

1, if 𝑥 ∈ 𝑋𝑚𝑎𝑙

0.0001, otherwise

Node 𝑥 initial score depending on whether it was observed

as an IOC by a TI source

𝑐
𝑠𝑜 (𝑥 ) =

{
𝐶𝑇𝐼𝑐, if 𝑥 ∈ 𝑋𝑚𝑎𝑙

0, otherwise

Prior’s confidence, derived from TI confidence

MalRank has a mechanism to incorporate confidence in an indicator (𝑐
𝑠𝑜 (𝑥 ) ).

Almost all of our TI sources provided a trust level that we adjusted for the MalRank

confidence scores during our experiment.

4.6 Case Study: Malware Detection
In this section, we present the details of our experiment, deploying MalLink in a

real-world environment using EDR logs. The objective was to generate the EDR-

based CyberHIN depicted in Figure 4.1 and utilize MalRank to detect new malware

variants.

9 https://kubernetes.io/

10 https://spark.apache.org/

11 https://kafka.apache.org/
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Figure 4.10: Node degree distribution and connected component size of the final graph in

log-log scale.

4.6.1 CyberHIN Construction Details
Dataset— This research used 8 days of process activity logs collected by a large

international enterprise SIEM, spanning over 20 TB. These logs were generated

from a commercial tool similar to Sysmon. However, due to the lack of certain

event types, our final generated HIN lacked certain entities and relationships, see

Table 4.8.

The Indicators of Compromises (IOCs) that were used as the seed for known

maliciousness during this experiment were collected from several commercial

Threat Intelligence providers that were available within the company’s landscape.

In addition, several other resources were used to collect indicators (e.g., malicious

files previously detected by the endpoint protection solutions or closed incidents).

We focused particularly on IOCs related to our observed entities, i.e., domains, IPs,
and Files. Furthermore, we limited the IOCs to those that were last seen during

the experiment time frame. This is important as CTI is time-sensitive. In total,

we collected 60 thousand IPv4, 19 thousand File:sha256, and 4 thousand Domain
indicators. Note that one could also utilize various open-source and free resources

12
.

The Generated HIN Characteristics

Before proceeding to the evaluation, it is essential to understand some characteris-

tics of the final network. The final network was generated from 32 million unique

vertices and 128 million unique edges spanning over 50 GB in memory. Table 4.8

depicts each entity and relationship counts after passing the raw data through the

first two layers (PET and OSINT enrichment). Note the malicious count for each

12 https://github.com/hslatman/awesome-threat-intelligence
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entity type. These values are the portion of the collected CTI that matched against

the entities of the final generated HIN. For example, out of the 19 thousand total

malicious file hashes collected, only 500 hundred were observed in our data.

Figure 4.16 shows the degree distribution and the connected component sizes. It

is worth noting that the giant component of the generated graph (the point at the

right side) accounts for 99.9% of the nodes in the graph. Additionally, all matched

IOCs were also part of this giant connected component.

Table 4.4: The count of each vertex and edge type loaded into the final graph.

Edges Vertices

Type # Type # #Malicious

observedIn 70 million Domain 14m 1.3k

resolvesD 18m Registry:value 6.5m -

RVTouch 6.6m Registry:key 5.8m -

hasValue 6.5m File/Content/Process 4.3m 0.5k

pointsTo 6.2m IP/Service 1.2m 2.5k

RKTouch 5.7m System 134k -

subDomainOf 5.6m CIDR 70k -

FTouch 4m AS 12k -

connectsTo 4m

inRange 0.9m

loads 0.8m

spawns 0.4m

assignedTo 70k

4.6.2 Evaluation
Stratified Shuffle Split Cross-Validation

Like most related work in this domain, we decided at first to evaluate MalLink

using cross-validation, particularly Stratified Shuffle Split Cross-Validation with

different metrics discussed in Table 4.5. Note that MalLink requires seeds for

maliciousness inference; thus, for each test, we divided the collected TI into seeds

and test sets. More specifically, we passed the output of the TI Marking layer to an

evaluation layer responsible for generating 𝑘 (where 𝑘 = 10) splits in which 𝑘% of

each class (strata) is randomly sampled/marked for the evaluation. This resulted

in the generation of 10 splits, each with 50 randomly sampled known malicious

files for testing the positive class and 429950 unknown samples to test the negative

class. The rest of the TI (1300 domains, 25000 IPs, 450 files) were used as the seeds.

Note that while we used all IOC types (domains, IPs, files) as the maliciousness

77



Chapter 4 Graph-based Inference for Threat Detection

Table 4.5:Metrics for evaluation [78]

Metric Description

True Positives (TP) Malicious item correctly scored as malicious

False Positives (FP) Benign item incorrectly scored as malicious

True Negatives (TN) Benign item correctly scored as benign

False Negatives (FN) Malicious item incorrectly scored as benign

True Positive Rate (TPR) TP/(TP+FN)

False Positive Rate (FPR) FP/(FP+TN)

Accuracy (TP+TN)/(TP+FP+TN+FN)

Precision TP/(TP+FP)

Recall TP/(TP+FN)

F1 2×(precision · recall) / (precision + recall)

Figure 4.11: Average Receiver Operating Characteristics (ROC, left) and Precision-Recall

(PR, right) curves for 10 Stratified Shuffle Split Cross-Validation

seeds, we sampled only files for testing the positive class (maliciousness). Lastly,

we ran 10 iterations of the inference on each set, thus generating 10 outputs for

evaluation (10 strata).

Figure 4.12: Confusion matrix (1 representing positive class, i.e., malicious), ROC, and PR

curves for the manual evaluation of highest and lowest scored nodes.
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Figure 4.11 shows the Receiver Operating Characteristics (ROC) curve plotting

the True Positive Rate (TPR) versus the False Positive Rate (FPR) as the threshold

varies through the range of data values for each testing set.

While the ROC Area Under Curve (AUC) of 0.93 seems impressive at first, it is

not a correct metric for evaluation due to the significant skew in class distribution,

thus testing. Intuitively in such a situation, we will end up testing a much larger

number of benign/unknown samples for every malware sample, as the number of

negative cases would tend to be much larger than the set of positive cases. Thus,

increasing the chance of correct classification of a negative class (True Negatives)

and dominating the ROC analysis with TNs, making False Positive Rate (FPR), not

such a useful metric.

In this regard, it makes more sense to replace FPR with another metric that

does not directly take TN, i.e., precision [245]. That is why Precision and Recall

(PR) curves are much better suited in such an imbalanced setting. However, in

that case, we can be very harsh on the algorithm as testing on that large number

of unknown samples poses a much greater chance of finding FPs. Figure 4.11

shows the precision-recall curve for 10-split stratified shuffle cross-validation with

a downsampled unknown class, i.e., before PR evaluation, for each split, the test

samples for the unknown class were randomly reduced to match the size of the

malicious class (50).

Previously Unknowns

While we attempted to evaluate MalLink similarly to the related work, i.e., using

Cross-Validation (dividing the data into training and testing sets), it is not the most

appropriate evaluation. That is not because we had to downsample but because the

underlying problem is not a generic classification problem but rather an inference

problem. In other words, the idea is not to classify every node as malicious or not

(two-class classification) but rather to infer maliciousness (single-class inference).

We explicitly tried to avoid using the term "benignness" as we are more interested

in determining maliciousness through inference. That means that a false positive

does not necessarily imply a wrong classification of a benign entity as malicious but

rather that an unknown entity was sampled. Despite the expectation of unknown

classification, the algorithm classified it as malicious, which could be, in fact, true.

Furthermore, our labeled data (previously known malicious files) accounted for

only 0.04% of all data.

To ensure our approach’s effectiveness, we manually investigated the 50 highest

and the 50 lowest-scored nodes with prior 0 (previously unknowns with no label).

We decided to make this split to simulate a SOC analyst’s reasoning and hunting.
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In this regard, we expect an analyst to pick the top 𝑘 nodes with the highest scores

and no prior to find previously unknown malware samples. In contrast, the nodes

with the lowest scores should represent highly reputable applications that should

be benign.

For this investigation, we utilized various external sources such as Hybrid Anal-

ysis
13
, VirusTotal

14
, and ANY.RUN

15
as well as internal resources such as the

enterprise SIEM system and other security solutions. We concluded maliciousness

by examining whether the aforementioned external or internal resources suggested

unanimously or, in their majority, clear maliciousness. In addition, the examination

of our entity’s behavior within the SIEM was also considered.

Figure 4.12 shows the Receiver Operating Characteristic (ROC) curve, Precision-

Recall curve, and confusion matrix. As presented in the figures, out of 100 investi-

gated files, we validated 37 to be true positives (F1-score of 0.85). This evaluation

proves the ability of this approach to detect previously unknown malicious files.

Investigation of FPs and FNs

We decided to further investigate the false positives and false negatives, attempting

to identify the reason for the misclassifications. In this regard, we noticed that

the fundamental reason for the misclassifications was the ingestion of bad TI.

Notably, we ingested anti-virus (AV) alerts as another source of known malicious

files. However, at the time, we did not notice that some of the alerts were associated

with the usage of a particular file, not the file itself (e.g., the command line being

marked as malicious). Similarly, some of the other ingested commercial TI marked

primary core Windows services as malicious due to their misuse by criminals.

These bad IOCs were the reason for the presence of FPs and FNs, which proved

another hypothesis of this approach, i.e., exempt-by-reputation. Although certain

nodes were falsely identified as malicious, not all entities connected to the bad TI

were misclassified.

Figure 4.13 illustrates how bad TI affected MalLink inference. While CMD

(representing a bad IOC) affects node 𝑀 to be wrongly classified as malicious, it

does not affect 𝐴, 𝐵, 𝐶 , due to their high reputation (association to other entities).

Interestingly these FPs were files that had a similar structure to node𝑀 ; however,

they were only observed on a few hosts that were not necessarily malicious such

as gaming clients.

13 https://www.hybrid-analysis.com/

14 https://www.virustotal.com/

15 https://any.run/
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Figure 4.13: Illustrating how node𝑀 was classified as malicious (false positive) due to a

bad TI (CMD ingested as IOC) influencing all its neighborhood, while nodes 𝐴, 𝐵, 𝐶 , were

not influenced greatly due to other connections, node𝑀 got influenced greatly due to

limited association to other nodes.

Comparison with Polonium

Lastly, we decided to compare our approach with one of the most related works,

Polonium [40]. While an exact comparison is impossible due to proprietary com-

ponents of Polonium, e.g., machine reputation or file prevalence, 2) the difference

between the underlying data sources, 3) the labeling mechanism, we tried to keep

the comparison as close as possible. In this regard, we followed a similar process to

that described in Figure 4.9. We limited our constructed HIN to only file observa-

tions in a system, attempting to build the undirected bipartite machine-file graph

of Polonium. The underlying algorithm used in Polonium is Belief Propagation.

In this regard, we adopted Hewlett Packard’s implementation of BP in Apache

Spark [161]. BP was then configured as shown in Table 4.9. Since we intentionally

did not use benignness in our experiment, we adapted Polonium proposals for node

potential to only malicious and unknown labels.

Table 4.6: Node and edge Potential configuration for Polonium experiment.

Edge Potential Node Potential

𝜓𝑖 𝑗 (𝑥𝑖, 𝑥 𝑗 ) 𝑥 𝑗 = 𝑢𝑛𝑘 𝑥 𝑗 =𝑚𝑎𝑙 Node 𝑃 (𝑚𝑎𝑙) 𝑃 (𝑢𝑘𝑛)
𝑥𝑖 = 𝑢𝑛𝑘 0.5 + 𝜖 0.5 − 𝜖 Malicious 0.98 0.02

𝑥𝑖 =𝑚𝑎𝑙 0.5 − 𝜖 0.5 + 𝜖 Unkown 0.5 0.5

Figure 4.14 shows the ROC and PR curve comparison of Stratified Shuffle Split

Cross-Validation for MalLink and Adapted Polonium. While it is difficult to identify

the exact reason, it is possible to observe the overall MalLink’s superiority com-

pared to Polonium. In our future work, we would like to explore the reason for
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Figure 4.14: The mean ROC and PR curves for 10-Stratified Shuffle Split Cross-Validation

compering MalLink and Polonium [40].

such improvement further, particularly by examining the effect of switching the

underlying algorithms and measuring the effectiveness of each relationship in our

HIN.

4.6.3 Discussions
Convergence and Effect of Iterations

Although the inference algorithm is not exact for HIN, if one continues the iterative

calculation without a guarantee for convergence, the scores will mostly converge

to a stable equilibrium as time progresses. This phenomenon is similar to what we

observed in loopy belief propagation [184]. Figure 4.15 shows the transformation

of scores and the maximized/minimized edge weights (�̂�) over iterations coming to

a stable equilibrium after the first few iterations. Moreover, the figure highlights

the direct effect of a change in a node’s score on the weight of its outgoing edges.

Resilience to Inaccurate Threat Intelligence

When investigating false negatives, we noticed how MalLink could, to some extent,

correct the impact of incorrect IOCs. Therefore, we decided to check whether this

approach could be potentially used to evaluate the accuracy of IOCs. In this regard,

we adjusted our original hypothesis to examine IOC quality. In particular, we

hypothesized that an indicator is more malicious if it shares certain characteristics

with other malicious entities and less malicious if it is highly reputable across the

landscape.

To evaluate this hypothesis, we experimented with known malicious files, espe-

cially those with the most significant drop in their maliciousness score. Note that,
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Figure 4.15: Node scores and edge weights over iterations. Node 𝑋 is one of the

high-scored nodes, and node 𝑌 is a high-scored node with a high degree (163). Node 𝑍 is a

high-scored node with no immediate malicious neighbor. 𝐾 is a low-scored node, and 𝐿 is

a TI node with a significant adjustment in its prior (i.e., bad TI node). 𝑋𝑒 is one of the

randomly selected outgoing edges of node 𝑋 .

as mentioned in the experiment setup section (Table 4.3), we set the CTI nodes’

prior (𝑠𝑜 (𝑥)) equal to 1; however, with different confidence (𝑐
𝑠𝑜 (𝑥 ) ) according to

the TI source confidence score (provided by the sources itself). These scores were

mainly set from 0.6 to 0.9. Since these confidence values were less than 1, the

corresponding nodes’ scores could drop in theory.

We picked those nodes with prior 1 that had the most drop in their score, bringing

it closer to 𝑠𝑜 (𝑥) .𝑐
𝑠𝑜 (𝑥 ) . This indicated that the algorithm did not believe the node

to be as malicious as it was initially considered. For example, a node with prior 1

and confidence 0.7 would have a final score of 0.7.

Investigating the top 20 files with the mentioned behavior presented compelling

observations: First, the approach’s capability to identify bad indicators. In this

regard, we noticed several bad ingested TI, such as "SVC host" or "CMD", which are

not malicious themselves but rather have the potential to be misused for malicious

activities, thus scored down due to their association with a large number of entities

(thus high reputation). A similar observation was made when one of the TI sources,

particularly the AV, alerted on files that were part of a tailored solution of that

company, hence, scoring them low due to their presence in a large number of
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hosts. Second, irrespective of an entity’s maliciousness, if it’s associated with a

large number of nodes (e.g., registries and files), its maliciousness score would be

reduced. This points to one of the limitations of this work, i.e., adversarial attacks

and manipulation, further discussed in the limitation and future work section.

In summary, we have seen opportunities to use MalLink’s approach to increase

and measure the quality of CTI whilst acknowledging how certain factors of the

algorithm can be potentially misused to force a good score. This explains how one

has to better engineer initial edge weights and directions to combat such misuse,

especially those that can easily be misused.

4.7 Case Study: Malicious Domain/IP Detection
This section presents a detailed description of our experimental approach, which

involved deploying MalLink in a real-world setting utilizing Proxy and DNS logs.

Our primary objective was to generate the Proxy and DNS-based CyberHIN as

illustrated in Figure 4.2, with the purpose of utilizing MalRank to detect novel

malicious domains and IPs.

4.7.1 CyberHIN Construction Details
Dataset— For the purpose of this research, we used two days of Proxy, DNS, and

DHCP logs (almost 3 billion events) collected by a large international enterprise

SIEM, spanning over 3 TB. Table 4.7 shows the statistics related to the raw event

logs.

Table 4.7: The statistics of our SIEM logs for the experiment

Source Size #Events

DNS Logs 2TB (120GB gzip compressed) 2 billion

Proxy Logs 1TB (100GB gzip compressed) 755 million

DHCP Logs 12GB (800MB gzip compressed) 4m

The described event logs were later enriched with related OSINT as described in

Section 4.2, i.e., ASN, X.509 certificates, and DNS RRs. In this regard, we used the

sanitized version of the BGP prefixes, origin ASNs
16
, and ASN to organization name

mapping
17
available at thyme.apnic.net. These files span approximately 20 MB in

total. For X.509 certificates, we used a Censys
18
IPv4 snapshot which contains a full

16 http://thyme.apnic.net/current/data-raw-table

17 http://thyme.apnic.net/current/data-used-autnums

18 https://censys.io/
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portscan of the entire IPv4 address space. This data spans over 1.2 TB of disk space.

Note that we were only interested in port 443 scans. Alternative sources for X.509

certificates are Certificate Transparency Logs and the automated collection of TLS

handshakes. Due to the enterprise’s configuration for DNS servers to not log the

DNS responses (DNS RRs), we had to pass all the DNS queries (logged by the DNS

server) to our active OSINT-DNS enricher (based on Gieben’s DNS library
19
and

MassDNS
20
) and log the responses ourselves.

Lastly, we utilized various sources (e.g., Google’s Safe Browsing, malwaredo-

mains.com, etc.
21
) to collect our threat intelligence that was used as the ground

truth throughout our experiments. Ultimately, we managed to passively collect

a total of 1.5 million malicious indicators (domains and IPs) and 1 million benign

domains (from Cisco’s top 1 million domains, one can also use Alexa’s top 1 million

domains). Note that our algorithm does not rely on benignness, and this list was

collected only for evaluation.

HIN Characteristics

After passing the described data set through the event processor, 13 million vertices

and 122 million edges were extracted. This process took approximately 4 hours on

the described researchworkbench setup. Next, after passing through the enrichment

layer, an extra 6 million vertices and 12 million edges were added, making a total

of 19 million vertices and 134 million edges passed to the loading module. The

enrichment layer processing time was about 2 hours. After the loading module

stage, the final graph was created with 15 million unique vertices and 132 million

unique edges.

Table 4.8 shows the count of each vertex and edge type, and figure 4.16 shows

the degree and component distribution of the created knowledge graph. The

distribution follows a power-law distribution, indicating an extremely sparse graph

with very few edges between the majority of the node and a minority with high-

degree connected clusters. This is understandable since most of our relationships

enforce low degrees when we have no global view of the association but rather

an enterprise-level view of only observed entities. The majority of high-degree

nodes were entities associated with the enterprise itself, e.g., enterprise domains

and workstations.

19 https://github.com/miekg/dns

20 https://github.com/blechschmidt/massdns

21 https://github.com/hslatman/awesome-threat-intelligence/
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Table 4.8: The count of each vertex and edge type loaded into the final knowledge graph.

Edges Vertices

Type # Type #

requestedAccessTo 103 million Domain 12.4m

subDomainOf 10m Ipv4 1.8m

resolvedTo 7m Organization 0.28m

uses 3m X509cert 0.27m

aliasFor 2.5m Mac 0.12m

referedTo 2m ipRange 0.08m

associatedWith 1.7m Useragent 0.07m

isInRange 1.3m Asn 0.02m

mailServerFor 1m

issuedBy 0.26m

issuedFor 0.26m

signedBy 0.23m

nameServerFor 0.12m

assignedTo 0.08m

belongsTo 0.03m

4.7.2 Evaluation

Previously Known Malicious

Those are nodes that were known to be malicious at first (e.g., indicated by a TI

source). However, they were marked as unknown (prior set to 0) when passed to

the algorithm so that later they could be utilized to evaluate the algorithm detection

capability (i.e., the testing set). Following the standard practices, in order to evaluate

the detection capability of our approach, we decided to utilize a Receiver Operating

Characteristic (ROC) curve as well as the Precision and Recall (PR) curve.

It is worth remembering the testing set could only be derived from the 20K labeled

data points that are connected. This is due to the fact that, first, the rest of the data

points did not have any label in the first place that could be used for evaluation.

Second, taking random samples in a sparse graph with a low degree distribution

could result in samples that have no connection to any other labeled nodes, thus

eliminating the ability to evaluate the inference. Figure 4.17 illustrates this idea. If

black nodes are previously known malicious nodes and white nodes are unknown

(unlabeled) nodes, we only consider nodes such as 𝐴 and 𝐵 for our test samples, as

choosing 𝑋 or 𝑌 will give us no value because they are not connected to any other

labeled nodes to allow effective maliciousness propagation. More specifically, to

select the testing samples for a class (e.g., maliciousness) in an evaluation run, the

loading module first calculates the connected components (clusters) for that class,
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Figure 4.16: Node degree distribution and connected component size of the final graph in

log-log scale.

Figure 4.17: Pseudo-random sampling for the purpose of evaluation. In this regard, to

select the testing set, we only consider connected nodes such as 𝐴 and 𝐵.

next, from each of those clusters that have more than one member, selects

√
𝑘 nodes

at random (where 𝑘 is the number of labeled nodes in each cluster). For instance, if

Figure 4.17 is our knowledge graph, we would take only 𝐴 or 𝐵 at random. In our

experiment, this process led to the random selection of approximately 2, 000 nodes

(1, 000 known malicious and 1, 000 known benign nodes) in each evaluation run.

Figure 4.18 shows the ROC and PR plot for 9 iterations of MalRank with the

configuration described in Table 4.3 on the described data set with the described

testing set. Note that the whole experiment (including the sampling) was repeated

4 times to flatten out the outliers. The results show a high accuracy (AUC = 96%,

with the peak F1-score = 0.905, and Accuracy = 0.900)

In order to better understand the algorithm’s results, we investigated the false

positives (FPs) and false negatives (FNs). In this regard, we had the following ob-

servations; first, in contrast to our original intuition and the common practice used

in past efforts, top-ranked domains by Cisco Umbrella or Alexa did not necessarily

reflect benign domains. In this regard, there were multiple instances of domains

being marked as malicious after MR due to association with multiple malicious

entities despite appearing on Umbrella’s top 1 million domains (therefore FP). This

was also confirmed by [222]. A good example of this was world.rickstudio.ru, which
appeared among the top 1 million domains under the umbrella while being ma-
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Figure 4.18: Receiver Operating Characteristic and Precision-Recall curves of 9 iterations

of MalRank ran 4 times.

licious. This was also due to our random selection of benign samples from the

entire 1 million, one should at least ensure that the samples are from the top 𝑘

thousand. Other legitimate false positives were due to the association of malicious

IPs to benign domains, this could be explained by the web hosters that might share

IPs among domains.

The Majority of the false negatives were also due to bad-quality Threat Intelli-

gence. For instance, ingesting a TI source where github.com and google.de were
marked as malicious by the TI. These were later marked as non-malicious by our

algorithm due to their association with major neutral nodes. Other FNs were also

due to content delivery networks (CDN) in which a TI was reporting an IP malicious

while it was also associated with a couple of legitimate domains through a proxy

server.

Investigating these FNs and FPs confirmed one of our initial intuitions in which

we hypothesized that MalRank could also be used to improve the quality of Cyber

Threat Intelligence. We would like to explore this further in our future work.

Comparison with Belief Propagation

In order to evaluate MalRank’s efficiency and accuracy, we decided to compare

it with Hewlett Packard’s implementation of Belief Propagation implemented in

Apache Spark [161]. BP is themost popular algorithm used throughout the literature

as a graph-based inference algorithm in the context of security.
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Table 4.9: Node and edge Potential configuration for Belief Propagation experiment.

Edge Potential Node Potential

𝜓𝑖 𝑗 (𝑥𝑖, 𝑥 𝑗 ) 𝑥 𝑗 = 𝑏𝑒𝑛 𝑥 𝑗 =𝑚𝑎𝑙 Node 𝑃 (𝑚𝑎𝑙) 𝑃 (𝑏𝑒𝑛)
𝑥𝑖 = 𝑏𝑒𝑛 0.5 + 𝜖 0.5 − 𝜖 Malicious 0.99 0.01

𝑥𝑖 =𝑚𝑎𝑙 0.5 − 𝜖 0.5 + 𝜖 Benign 0.5 0.5

Figure 4.19 shows the ROC plot for 9 iterations of MR vs. 9 iterations of BP on

the same knowledge graph with the same testing set.

Table 4.9 and 4.3 shows BP and MR algorithm configuration for this experiment,

respectively. It is also worth noting that due to the fact that MalRank utilizes

only one class label (maliciousness), whereas BP requires at least two class la-

bels (maliciousness and benignness), we decided to configure BP by initializing

all unknown and benign nodes with 0.5 as the probability of maliciousness (i.e.,

𝑃 (𝑥𝑚𝑎𝑙 ) = 𝑃 (𝑥𝑏𝑒𝑛) = 0.5) and 1 for those previously known malicious nodes (i.e.,

𝑃 (𝑥𝑚𝑎𝑙 ) = 1, 𝑃 (𝑥𝑏𝑒𝑛) = 0.5).

As shown in Figure 4.19, MR is outperforming BP not only in terms of accuracy

but also the run-time. In this regard, with almost an identical implementation in

GraphX, MalRank finishes 9 iterations within 20 minutes, whereas BP takes about 2

hours. It is worth mentioning that BP memory utilization was almost 6 times higher

than MalRank. It is also important to note that while BP shows high accuracy, this

is not true in all cases. The main reason for this accuracy in this experiment is that

the majority of the testing set were nodes with a low degree, and as we discussed

in the previous sections, BP starts introducing errors as the node’s degree increases.

This was observed mostly in our next experiment when investigating previously

unknown threats.

Belief Propagation (0.89 AUC)
 MalRank (0.95 AUC)
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Figure 4.19: ROC curve for 9 iterations of MalRank vs. Belief Propagation.
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Investigation of FPs and FNs

ROC and PR curves are useful for evaluating a threat detection technique. Never-

theless, plotting such curves requires a testing set, and as mentioned before, the

choice of the testing set for our approach is a challenging task. More specifically,

our approach is not a generic classifier that can classify any arbitrarily given en-

tity as malicious or non-malicious. Instead, it is an inference model designed to

increase the quantity and the quality of our threat intelligence by discovering new

malicious entities associated with previously known malicious entities. Therefore,

the most relevant validation for us is the evaluation of previously unknown and

inferred maliciousness. In this regard, we decided to manually investigate top high

MalRank-scored nodes that did not have a prior (not observed in our TI). For this

manual investigation, we utilized ThreatCrowd, VirusTotal, ThreatMiner, URLVoid,
AlienVault, Robtex and MXToolBox. We categorized our investigation depending on

the type of entity.

When investigating the top 200 Domains/IP, we were able to find an indicator for

67% of those. While the majority of those were the result of maliciousness inference

on resolvesTo relationship, there were those high-degree nodes that were scored
mostly due to mailServerFor, isInRange, and referedTo. As a result, we were able to
identify a large number of previously unknown malicious domains and IPs. We

were also able to identify a surprising number of pornographic domains that were

ranked high. We assume this is due to malvertising, and clickjacking techniques

widely adopted by such domains.

When investigating the top high-scored X.509 certificates, we were mostly capa-

ble of identifying parking domains (i.e., domains registered solely for the purpose

of displaying web advertisements with typically no real content [147]) and rogue

web hosters (e.g., *.000webhostapp.com whom its subdomains are regularly misused

by cybercriminals to host scams). Hence allowing us to capture further potentially

unknown malicious Domains/IPs.

We had the same observation when investigating the top malicious organiza-

tions, as one of the top MalRanks scored ones was the organization responsible for

*.000webhostapp.com. We were also able to identify a number of self-signed certifi-

cates associated with an organization which led us to find associated Domains/IPs

which were in fact, classified as malicious by VirusTotal.

We didn’t investigate MAC address, ASN or User Agent (UA) as the majority

of nodes did not come up with high scores (less than 0.2). This was reasonable,

considering we had only access to two days of data.

Lastly, we investigated a set of malicious domains which was identified by the

enterprise’s SOC analysts to be associated with malware beaconing on a number of
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clients. More specifically, these were domains starting with imp (i.e., ^imp\\..+)
such as imp.searchlff.com22

. When we checked the MalRank score of these previ-

ously unknown malicious domains, we noticed that the algorithm scored them

as malicious (0.6 - 0.7) due to association with TI (through IP address and range

sharing).

Interestingly, when we investigated the BP score for the above findings, we could

verify our initial intuition, i.e., BP’s limitation to infer maliciousness for high-degree

nodes with unbiased labeled neighbors. In this regard, the majority of previously

unknown malicious entities were scored between 0.51-0.56, which makes them

susceptible to misclassification by BP.

In summary, although we were unable to validate all high-score nodes, according

to our investigations, MalRank proved to be an effective method to increase the

quality and quantity of threat intelligence. While one could argue that these were

low-hanging fruits, we still see the value in our approach. Furthermore, It is also

worth noting that the SIEM logs usedwithin this researchwere from an international

enterprise that already utilizes various security measures and practices (e.g., IDS,

AV, Proxy/DNS blacklisting, signature checking, and etc.) therefore making it

rare to encounter various threats, yet MalRank was capable of detecting valuable

previously unknown malicious entity, i.e., the detection of a potential malware

beaconing case.

It is worth noting that, throughout our investigation, we came across a number of

nodes and cases in which the nodes were scored high (malicious), but we could not

validate the maliciousness as it seemed harmless (e.g., parked domains, link farms,

and other dubious domains/IPs). Even though such entities seemed non-malicious

(FPs), we argue that blocking them at the enterprise level should not have a drastic

effect, as the main reason for their false classification was having a number of

associations with high-scored nodes.

4.7.3 Discussions
Number of Iterations

In the majority of our experiments, we chose 9 as the maximum number of iter-

ations. The main reason for this choice is that, within our knowledge graph, the

inference from more than 4 hops away does not make much sense. Consider the

requestedAccessTo edge isolated from all the others. This edge captures the rela-

tionship between a MAC address and a set of domain/IP nodes (shaping a bipartite

graph). In order to decide the label for a domain, it makes sense to traverse back

22 https://www.threatcrowd.org/domain.php?domain=imp.searchlff.com
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18 iteration (0.958 AUC − 30min)
27 iteration (0.958 AUC − 44min)
9   iteration (0.956 AUC − 20min)
3   iteration (0.944 AUC − 12min)
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Figure 4.20: Receiver Operating Characteristic and Precision-Recall curves of 9 iterations

of MalRank ran 4 times.

to the MAC address that requested this domain and check the score for all other

domains visited by that MAC (perhaps an indication of malware trying to reach out

to malicious IPs or Domain for C&C), i.e., inference from two hops away. It also

makes sense to check another two hops, i.e., check whether there exist other work-

stations which connect to similar known malicious nodes. However, going deeper

than that loses the intuition entirely. This could also be observed in Figure 4.20,

which shows the ROC curve for a different number of iterations. As shown in the

figure, while the results do not vary drastically after 7 iterations, the algorithm

runtime increases drastically. For instance, when we change from 9 to 18 iterations,

we increase the accuracy by 0.2% and the run-time by 50%.

4.8 Case Study: Maliciousness in Common Crawl
Web Graph

The utilization of private data in our main experiment poses a significant challenge

for the evaluation of MalRank, especially given that the algorithm itself is a key

contribution to this study. As a result, we attempted to apply MalRank to a public

dataset. Regrettably, we were unable to replicate our SIEM-based knowledge graph

due to the absence of publicly available and recent Proxy and DNS. While one can

find Proxy and DNS logs, we cannot use them due to the fact that half of our cyber

graph is composed of OSINT and TI, which are challenging to obtain for events

logs that are several years old.
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Figure 4.21: ROC Curve comparison between 3 iterations of MalRank and 3 iterations of

Belief Propagation on CommonCrawl web graph.

The CommonCrawl web graph
23
, which consists of host-level and domain-level

web crawls, was the most relevant alternative graph structure data that we found

online. We employed the most recent version of the CC domain-level web graph

(Feb 2018) in our system and labeled the nodes with the same TI that we collected

previously. We subsequently executed both MR and BP and compared the outcomes.

The generated graph’s size was around 600GB in memory, with a high degree of

connectivity. This caused MR to take several hours, and BP took a day to complete

three iterations. Figure 4.21 displays the ROC curve for this experiment.

4.9 Limitations and Future Work
CTIQuality

The quality of Cyber threat intelligence (CTI) is a crucial factor that affects the

effectiveness MalRank. In our work, we encountered significant limitations due to

the quality of CTI, which resulted in a high false positive rate. MalRank relies on

a small set of previously known malicious nodes as seeds to infer maliciousness.

These seeds are expected to be validated CTI. However, most publicly available

CTI sources exhibit low quality, containing a significant number of false positives.

Utilizing such false TI can lead to further false positives, thus negatively impacting

the overall performance of MalRank.

23 http://commoncrawl.org/
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Although MalRank incorporates a mechanism to incorporate the quality of CTI,

our experiments lacked an approach to evaluate the sources of TI, resulting in a

significant number of false positives caused by the ingestion of bad TI from a source.

Future work should focus on using better-quality CTI, even if that means imposing

some API limitations.

Additionally, we propose the utilization of MalRank as a CTI validation and

measuring algorithm first before using it for threat detection. In other words, run

MalRank to find the confidence of the CTI seed nodes and run it a second time with

the adjusted weights, thereby enhancing its overall effectiveness in detecting and

mitigating malicious activities.

In addition, we suggest using MalRank as a tool to validate and measure Cyber

Threat Intelligence (CTI) before utilizing it for threat detection (as discussed in

Section 4.6.3). This involves running MalRank once to determine the confidence

levels of the CTI seed nodes and then running it again with adjusted weights based

on the initial results. By doing so, MalRank can better detect and mitigate malicious

activities, thereby improving its overall effectiveness.

Adversarial Attacks

A significant concern with our approach is the potential for adversaries to influence

MalRank scores. For example, a malicious entity might attempt to increase its

reputation by forcing associations with a large number of other entities, thereby

reducing its score. This issue was observed when investigating false negatives (FN).

To address this, it is crucial to set edge weights in a way that makes it difficult for

malicious entities to manipulate their reputation. Specifically, relationships that can

be easily abused should receive lower weights. This approach increases the effort

required for malicious entities to build their reputation and makes manipulation

more challenging.

Despite the algorithm’s capability to support directional edge weights, we relied

on naive expert knowledge during our experiments and specified edge weights in

both directions as 0.4. MalRank has a mechanism to adjust weights within each

iteration, reducing the effect of benignness. However, for future work, we plan to

investigate the importance of each edge and its direction, hypothesizing that not

all edges should be treated equally. Some edges are more important than others for

malicious propagation, and the weights of both directions of an edge should not be

the same. Careful setting of edge weights should allow us to combat adversarial

attacks more effectively.
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HIN Schema Expansion

Our research focused on process and networking logs, explicitly modeling the main

entities and relationships present in EDR, proxy, and DNS logs. However, there are

still some areas that we have not explored in detail. For example, parsing command

line or registry values, extracting additional entities and relationships, examining

remote executions and services (e.g., viaWinRM,WMI) that are frequently exploited

by attackers, and incorporating scheduled tasks and services could be valuable

research directions. Additionally, we simplified the original HIN due to limited data

sources during our experiments. Therefore, investigating different HIN network

schemas to identify new entities and relationships and further correlating them

with other log types and open-source intelligence may yield exciting results.

Algorithmic Improvements

Wewould also like to exploreMalRank algorithmic improvements. More specifically,

first, finding the closed formula in terms of matrix operation should improve

its efficiency and better reason for its convergence. Second, expand the naive

incremental MalRank to better incorporate time and node/edge expiry for truly

incremental calculation. Last, experimenting with other aggregator functions such

as LSTM and Pooling [95] as opposed to the weighted average.

Graph-based Outlier Detection— In our study, we approached threat detection

as an inference problem that relies heavily on the seed CTI. Without validated

CTI, it becomes impossible to determine the maliciousness of a node. For example,

suppose we have two nodes, one with only five connections to unknown neighbors

and the other with over a thousand connections. In this scenario, MalRank will

score both nodes equally at zero since there is no evidence of maliciousness. Due

to the challenge of acquiring validated CTI, it may be worthwhile to investigate a

modified version of MalRank that puts more emphasis on exception-by-reputation.

Benignness— As previously mentioned, we focused specifically on single-class

diffusion, or the propagation of maliciousness, and considered all other nodes

as benign unless they were guilty by association or intern except by reputation.

However, it would be an interesting experiment to include validated benignness in

our approach.

Incremental Mode

Our experiment was designed as a batch job, i.e., one would have to run the whole

system (PET, OSINT Enrichment, Graph Loading, TI Marking, Graph-based Inference)
every time a new node or link is added, or a prior is modified.

95



Chapter 4 Graph-based Inference for Threat Detection

In a real-world setting, such a large-scale re-run is computationally intensive and

redundant, especially considering how such updates should only affect a certain

portion of the graph. In this regard, we would like to outline a naive incremental

mode of the proposed approach 4.3.5, which shall operate in a streaming mode as

opposed to batch, with the underlying intuition that an update should result in

minor changes in the immediate neighbors of those inserted/updated nodes and

edges. At the same time, the effect will not be strong enough to propagate to the

rest of the graph [88, 195].

Following Figure 4.9, at a high level, as new logs are presented, the PET extracts

and prepares the desired entities and relationships, OSINT Enrichment enriches
certain entities, Graph Loading, updates the previous graph with the new set of

relationships and entities, TI Marking changes priors if necessary (by removing

adding TI on existing nodes or to the newly added nodes). Lastly, considering

the newly added/updated vertices,V ′
each with their own prior, and set of edges

E ′ , Graph-based Inference re-calculates the score of all nodes that are at most ℎ

hops away from any node in setV ′
, or ℎ − 1 away from any source or destination

vertex of an edge in set E ′ , where ℎ is configurable noting the trade-off between

computational cost and influencing the larger portion of the graph.

Ensemble Systems

Integrating our approach with previous works that focused on local features would

be interesting. One could utilize the local features to derive an initial score for each

node (e.g., 0.5) and then run MalRank to obtain the MR scores. By looking back at

the nodes, if the MR score was increased further, it would be possible to conclude

maliciousness with higher confidence, as the node was marked malicious based on

not only its local features but also global ones.

An alternative approach would be to combine MalRank scores with other features

and train another machine learning (ML) classifier to improve detection accuracy

further. We anticipate that by ensembling MalRank with other approaches, the

false positive rate could be significantly reduced.

Graph-based Threat Hunting

All our investigations of high-scored nodes were so far manual, which can be an

exhausting task. It would be beneficial to have an additional layer in our system

that sorts and enriches high-scoring nodes and their connected components based

on their degree and type. This layer could actively gather further threat intelligence

(TI) and open-source intelligence (OSINT) and present the cases as a subgraph that
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can be more easily evaluated by a SOC analyst. For example, for a high-scored

domain, this layer could check it against VirusTotal and ThreatMiner APIs to

obtain better quality TI, enrich it with registrar details, and present the domain

its connected components, and add OSINT/TI as a subgraph. In our research, we

focused on collecting OSINT/TI at scale and did not discuss active enrichment.

However, for evaluation purposes, as the number of potentially malicious nodes is

lower, it is possible to enrich the results further with active queries.

4.10 Literature Review
Significant research exists on the application of data mining for malware detec-

tion [244, 263, 281]. This section will only focus on the most related work, partic-

ularly those that mine host-level event logs and primarily consider intrinsic and

global characteristics for threat detection.

Malware Detection via Graph Inference

Chau et al. [40] introduce Polonium as one of the first and arguably the most

innovative and successful works that tackle the problem of malware detection using

large-scale graph inference with the intuition that, good applications are typically

used by many users, whereas unknown (i.e., potentially malicious) applications

tend to only appear on a few computers. The authors achieve this by running an

adapted version of Belief Propagation [283] on an undirected, unweighted bipartite

machine-file graph. The authors perform a large-scale evaluation of Polonium over

a real, billion-node machine-file graph, demonstrating the capability of such an

approach in detecting previously unknown malware.

Ye et al. [282] hypothesize that combining file content (API calls) and file rela-

tionships (co-occurrence of files, e.g., shared across multiple clients, can improve

malware detection. The authors formulate the classification problem as a graph

regularization framework. In later research, Chen et al. [41] extend Ye’s work by

focusing solely on file relation graphs and adopt belief propagation as the inference

algorithm. Tamersoy et al. [257] propose Aesop, which tackles the same problem

using locality-sensitive hashing to measure the similarity between files to even-

tually construct a file-file bipartite graph and running BP to infer files’ goodness

based on its neighbors.

Other similar efforts include: Kwon et al. [149] proposing malware detection

using features derived from downloader-graph. The authors show that the graph

structures for download activity on hosts differ when comparing benign and mali-
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cious downloads. Karampatziakis et al. [125] explore maliciousness propagation

via a logistic regression classifier. The authors focus on file-file relationships based

on co-occurrences of files within a certain containment, such as a zip archive. Inv-

ernizzi et al. [115] build undirected neighborhood graphs using HTTP traffic on

each host, hypothesizing the shared behavior across IP addresses, domain names,

FQDNs, URLs, URL paths, file names, file hash, and hosts can aid with malware

drive-by.

The underlying hypothesis of our work is similar to those mentioned above,

particularly Polonium. However, while they focus on bipartite graphs (e.g., file-file,

file-machine) to infer maliciousness based on co-occurrences of files within a sys-

tem/machine, we construct a comprehensive heterogeneous information network.

We emphasize only the co-occurrences of files within a system/machine as the

shared attribute but also on multiple other global attributes such as registry keys

touched, files written, and network connections made to improve the inference

process.

While the majority of these works focus on bipartite graphs (e.g., file-file, file-

machine), we construct a comprehensive heterogeneous information network em-

phasizing not only the co-occurrences of files within a system/machine but also

multiple other global attributes such as registry keys touched, files written, network

connections made, to improve the inference process. Furthermore, in comparison

to the previous works which adopt Belief Propagation [283] as the core, we adopt

MalRank [186], which allows us to better tackle a number of issues such as the

incorporation of directed edge weights, reduction of the score based on the number

of neighbors, and most importantly the resilience of the high skew in a graph with

large biased towards benignness.

Threat Detection via Graph Embedding

With the recent advancement in graph embedding [84, 93, 95, 206, 258], a number of

works have utilized graph embedding techniques to tackle malware detection. Fan

et al. [76] utilize both content- and relation-based features for malware detection.

To extract relation-based features, the authors propose the construction of a HIN.

Entities are file, archive, machine, API, and DLL. Relationships are file-archive, file-

machine, file-file, API-DLL, and file-API relations. The authors evaluate different

graph embedding techniques such as DeepWalk, and LINE and eventually propose

metagraph2vec to learn the low-dimensional representation of nodes in the HIN.

Peng C et al. [204] propose MalShoot, utilizing LINE algorithm [258] to embed a

domain-IP bipartite graph, attempting to detect malicious domains using passive

DNS. Wenxuan et al. [101] address the same problem but emphasize more on the
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construction of a domain-domain graph and utilize a modified version of Deep-

Walk as a graph embedding algorithm. Yuta et al. [127] propose the usage of a

Graph Convolutional Network (GCN)-based method attempting to estimate the

maliciousness of IoCs.

In this research, we consider graph embedding techniques out of context. Graph

embedding is a new field based on the advancement of neural networks and deep

learning. While they have shown promising results in other fields [33, 92], the

lack of explainability and parallelization makes it challenging when applied in

the Cybersecurity domain, considering the adversarial setting and highly skewed

and noisy data [197]. We leave this to our future work to evaluate different

graph embedding techniques and compare them to our proposed inference and

propagation approach.

Wang et al. propose PROVDETECTOR [270], a system that aims to detect stealthy

impersonation malware using kernel-level provenance monitoring to capture the

dynamic behaviors of each target process. The system models process activity data,

i.e., a program’s runtime behaviors such as file read, write, execute, or network con-

nections as a Directed Acyclic Graph (DAG). Next, these DAGs are embedded using

Doc2vec and are eventually passed through Local Outlier Factor (LOF) to detect

anomalous patterns, hence previously unseen attacks. Several other works have

taken a very similar approach to PROVDETECTOR, [62, 99] exploring anomalous

process behaviors.

Malicious Domain Detection via Graph Inference

Manadhata et al. [167] address the problem of malicious domains/IPs detection us-

ing enterprise HTTP proxy logs. A host-domain bipartite graph is then constructed

to capture workstations’ connections to external domains, BP is then run to infer

maliciousness from a set of seed malicious nodes. The authors show the effective-

ness of graph inference for malicious domain detection. Khalil et al. [130] address

the same problem using passive DNS data, focusing on a domain-IP bipartite graph.

Several other works adopt Belief Propagation as an inference algorithm attempting

to infer maliciousness in graphs constructed from DNS or Proxy logs [131, 187,

293].

There exists further research that tackles the same problem (malicious domain/IP

detection via DNS, Proxy data), but by taking a different graph mining approach,

e.g., meta path-based transductive classification [251]. Najafi et al. [186] propose

MalRank, a graph-based inference algorithm designed to infer a node malicious-

ness in knowledge graphs, taking into consideration the edge types, weights, and

directions for better propagation of maliciousness. They evaluate their proposal on
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a knowledge graph constructed from Proxy and DNS logs enriched with related

OSINT. They show that MalRank can outperform Belief Propagation.

Our approach is very similar to Najafi’s MalRank [186]. However, it differs in the

underlying problem definition and data sources used. While Najafi et al. construct

their graph from Proxy and DNS data to detect malicious Domains/IPs, we focus

on detecting malicious files (malware) through the use of host-level system events

and discuss those global features observed in EDR or similar tools’ logs.

The main difference between our work on these works is the underlying problem

and data. While these works mostly construct their graph from Proxy and DNS

data to detect malicious Domains/IPs, we focus on process activity logs and discuss

those global features observed in Windows Event Logs, Sysmon, or EDR logs to

detect malicious files (malware).

This section provides an overview of the most relevant and influential work in

the context of graph-based inference for cybersecurity.

Chau et al. [40] introduce Polonium as one of the first and arguably the most

successful works that tackle the problem of malware detection using large-scale

graph inference with the intuition that good applications are typically used by

many users, whereas unknown (i.e., potentially malicious) applications tend to

only appear on few computers. The authors achieve this by running an adopted

version of belief propagation on an undirected, unweighted bipartite machine-file

graph. In similar research, Tamersoy et al. [257] propose Aesop, which tackles the

same problem using locality sensitive hashing to measure the similarity between

files to eventually construct a file-file bipartite graph and running BP to infer files’

goodness based on its neighbors.

Manadhata et al. [167] address the problem of detecting malicious domains by

using enterprise HTTP proxy logs to construct a host-domain bipartite graph cap-

turing workstations’ connection to external domains, then running BP to discover

malicious domains based on a set of seed malicious nodes. The intuition in this

research is that infected hosts are more likely to visit various malicious domains,

whereas user behavior on benign hosts should result in benign domain access.

Khalil et al. [130] address the same problem using passive DNS data focusing on

a domain-IP bipartite graph with the intuition that a domain/IP is malicious if it

has a strong association with a previously known malicious domain/IP. While the

authors evaluate BP as part of their evaluation, their main proposal takes a different

approach. In this regard, the authors formulate the problem as a similarity measure

between a pair of domains based on the number of IPs shared to derive a domain-

domain similarity graph and use a path-based algorithm to infer a maliciousness

score for each domain according to their topological connection to knownmalicious

domains. In a later research, Khalil et al. [131] discuss the limitations of their
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previous work [130], which is the computational complexity leading them to adopt

belief propagation again on an adjusted graph while emphasizing ASN.

Zou et al. [293] takes a similar approach focusing on DNS logs. In this regard, the

authors focus on three main relationships extractable from DNS logs: 1) connection

request from an enterprise’s workstation to a domain, 2) resolves to a relationship

(DNS record type A), which indicates a domain resolving to an IPv4 address, and 3)

CNAME DNS RRs which indicates a domain being an alias for another domain.

Najafi et al. [187] also tackle the problem of malicious domain/IP detection using

BP on a property graph focusing on domain-to-IP resolution (DNS record type A),

domain-to-domain referral (proxy log referer header) and sub-domain relationship.

There are also some other works that take a different approach using advance-

ment in the field of neural networks. In this regard, Peng C et al. [204] propose

MalShoot, a graph embedding technique to detect malicious domains using passive

DNS. The authors utilize Line algorithm [258] on a domain-IP bipartite graph to

calculate feature vectors to eventually train a RandomForest classifier to detect

malicious domains. Wenxuan et al. [101] address the same problem but emphasize

more on the construction of a domain-domain graph. The authors utilize a modified

version of DeepWalk as a Graph embedding algorithm to extract local structure fea-

tures, combined with other domain and PDNS structural, linguistic, and statistical

features to train a RandomForest classifier to detect malicious domains.

Yuta et al. [127] take a different angle by proposing the same approach but

to estimate the maliciousness of IoCs with the hypothesis that traditional CTI

cannot be trusted and one should evaluate maliciousness by combining IoCs’ local

features with their global features (associations). For this, the authors propose

gathering network-based and OSINT-based information related to IoCs and utilizing

a graph convolutional network (GCN)-based method attempting to estimate the

maliciousness of IoCs more accurately.

Other works include, Xiaoqing et al. [251] propose HinDom, a malicious domain

detection system that treats DNS data as a Heterogeneous Information Network

(HIN), allowing meta path-based transductive classification to infer maliciousness.

Huang et al. [110] investigating the connection between domain, IP, and URL.

Oprea et al. [193] addressing the early-stage APT detection using BP on host-domain

graph extracted from proxy logs. Rahbarinia et al. [214] propose Segugio to detect

new malware-control domains based on DNS traffic analysis with a very similar

intuition to Manadhata et al. [167]. Mishsky et al. [176] explore the same issues

from a slightly different angle. Simeonovski et al. [239] approach the problem using

taint-style techniques for the propagation of labels in a property graph built from

nodes consisting of domains, organizations, and ASNs. Peng et al. [205] build a

domain-domain graph using DNS CNAME RRs with the intuition that domains
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connected by DNS CNAME RRs share intrinsic relations and are likely to be in a

homophilic state.

While the majority of the mentioned works focus on single edge type isolated (i.e.,

a bipartite graph), we construct a comprehensive knowledge graph that incorporates

various types of nodes and edges. To the best of our knowledge, this is the first work

exploring knowledge graphs at this scale within the security domain. Furthermore,

in contrast to other works, while we evaluate BP, we introduce a much more

effective and efficient algorithm that allows us to better infer maliciousness in

knowledge graphs. Lastly, while the majority of the other works (e.g., graph

embedding-based approaches) work well in theory or a test environment, they fail

in a real-world application, particularly in an enterprise environment due to the

vast amount of data which requires massive parallel and distributed computing

which is challenging for the current state-of-the-art neural networks.

4.11 Chapter Summary
In this chapter, we first introduced the intuition behind global features for threat

detection. Next, we presented the CyberHIN, a SIEM-based Heterogeneous In-

formation Network (knowledge graph), which is constructed from entities and

relationships observed within data captured by an enterprise’s SIEM. More specifi-

cally, endpoint EDR logs and network Proxy and DNS logs. We also covered the

most relevant OSINT and CTI that can be collected at scale.

We formulated threat detection as a large-scale graph inference problem based

on two fundamental principles: guilt-by-association and exempt-by-reputation. This
led us to the introduction of our proposed algorithm named MalRank, a scalable

graph-based inference algorithm designed to infer a node’s maliciousness score

based on its association with other nodes. We also discussed MalRank’s unique

characteristics that set it apart from other graph-based inference algorithms.

Next, we proposed a framework/system named MalLink designed to automate

the process of tailoring the generation of CyberHIN and executing MalRank in a

real-world setting. MalLink and MalRank are built on top of Apache Spark to satisfy

the scalability requirements, making them suitable to run on SIEMA described in

Chapter3.

In the evaluation phase, we configured MalLink for two distinct use cases: mal-

ware detection and the identification of malicious domains and IPs. The results of

the study demonstrated the superiority of MalRank over other graph-based infer-

ence algorithms, mainly Belief Propagation. Additionally, MalLink demonstrated

effective detection capabilities, confirming the initial guilt-by-association hypoth-
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esis. In essence, the proposed approach was successful in identifying previously

unknown threats by inferring maliciousness from the known malicious entities

(i.e., CTI, including malware hashes or malicious domains) that were utilized as

seed nodes.

In addition, we have discussed certain intrinsic features of this approach, partic-

ularly its ability to correct erroneous threat intelligence data and its potential to

evaluate and measure the accuracy of CTI.

In summary, the successful implementation of MalLink serves as a significant

contribution to the cybersecurity community. The results of this study provide

valuable insights into the effectiveness of graph-based inference for identifying

malicious entities, highlighting the applicability of guilt-by-association for cyberse-

curity applications. Despite some of its limitations and shortcoming, MalLink has

demonstrated significant capabilities to detect previously unknown low-hanging

fruits and has proven to be efficient and feasible for large-scale deployment in a

real-world setting. The integration of MalLink with other detection approaches,

such as PROVDETECTOR [270], has the potential to enhance our detection capa-

bilities and provide a better fighting chance against the continuously evolving and

advancing malware landscape.
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5 Human-assisted
Outlier Detection

The constantly evolving and sophisticated nature of cyber threats, such as the

emergence of fileless malware [148], APT attacks [213], supply chain attacks [75]

is putting the efficiency of heuristic-based detection techniques in question [171].

According to CrowdStrike, adversaries’ utilization of traditional malware decreased

significantly from 61% in 2018 to 29% in 2022 [48]. As the number of sophisticated

threats continues to rise, the shortcomings of heuristic-based techniques, which

are primarily developed to identify known threats, are becoming more apparent.

As a result, it has become imperative to explore more advanced detection tech-

niques that utilize state-of-the-art data-driven analytics, such as statistical analysis,

machine learning [140, 270], and graph mining [40, 98, 99, 186]. However, the

lack of high-quality labeled data in this domain [7] renders most supervised data-

driven approaches irrelevant, and unsupervised methods such as Anomaly/Outlier

Detection (OD) [132, 280] become the most viable option.

Outlier detection has been extensively studied across various domains, such as

NLP, bioinformatics, stock market analysis, financial fraud detection [103, 201],

health diagnosis [89], industrial defect detection [36], e-commerce [215], social

media [287], and others [269].

One of the domains that have also been associated highly with outlier detection

is cybersecurity [7, 19, 132], largely due to the widely accepted hypothesis that

"deviation from normal behavior (e.g., of a user or an entity) indicates a potential
threat". In theory, outlier detection has the potential to identify a wide range of

previously unknown threats. This is because anomalous actions may be indicative

of previously unknown threats.

However, despite extensive research on anomaly/outlier detection in cyberse-

curity, particularly in the context of HIDS[123] or NIDS [69], there is still a lack

of systematic understanding and demonstration of real-world value [237]. This is

largely due to the continuously evolving nature of the cybersecurity domain, which

results in unreliable and context-specific features. Additionally, the existence of

adversaries that are constantly adapting which further contributes to this challenge

[183].

Outlier detection is not transferable, i.e., one cannot develop a universally appli-

cable outlier detection method. Instead, individual outlier detection methods must

be tailored to specific applications [10, 39].
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In this section, we focus on the challenges of outlier detection in cybersecurity

and propose a simple yet effective outlier detection framework. Our proposed

approach builds on how an analyst would reason about possible maliciousness by

asking simple questions from different angles, i.e., evaluating univariate features

within a specific context.

We argue that SOC analysts are indispensable. They rely on their tacit knowledge

and experience to develop analytical questions and reasoning that help them in-

vestigate the issue at hand [18]. Therefore, an outlier/anomaly detection approach

should promote human-machine collaboration acknowledging the importance of

the analyst’s expertise rather than attempting to automate blindly. In line with

this principle, we propose the Human-assisted Ensemble Outlier Detection (HEOD)

framework. HEOD leverages the analytical capability of SOC analysts to design

outlier detection systems that can be easily interpreted and utilized by the analysts

themselves. By emphasizing the importance of analysts’ insight and involvement.

Chapter Contribution

The main contributions of this chapter are summarized below:

• HEOD: Propose a simple yet effective statistics-based outlier detection frame-

work that emphasizes scalability, simplicity, and interoperability.

• Discussion and Evaluation: Evaluate the proposed framework not only on

public data sets but also in a real-world enterprise environment. Furthermore,

discussing the challenges and lessons learned over a decade of research and

industrial application of outlier detection in cybersecurity.

Chapter Structure

The chapter begins by providing the requisite background knowledge for outlier

detection (Section 5.1). Section 5.2 discusses the challenges in the adoption of OD

in cybersecurity, paving the way for Section 5.3 wherein we unveil HEOD, our

proposed framework for outlier detection. Section 5.4 outlines the implementation

details and experimental setup used for evaluating HEOD. Following this, in Section

5.5, we present the reproducible results obtained from evaluating HEOD against

other well-known OD algorithms. A case study of HEOD’s application in a real-

world setting for detecting LOLBins is presented in Section 5.6. In Section 5.7, we

discuss the lessons learned from operating OD in real-world settings, attempting

to separate myth from reality. The limitations and future work directions of HEOD

are presented in Section 5.8. This leads to a comprehensive review of related work
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in outlier detection and their applicability in the cybersecurity domain in Section

5.9. Finally, the chapter concludes with a summary in Section 5.10.

5.1 Background: Outlier Detection

While defining outliers can itself be a complex task [20], we consider outliers

as data points that are significantly dissimilar to other data points and do not

imitate the expected typical behavior of the other points [104]. Thus, we define

outlier detection as the process of finding data that is significantly different from

or inconsistent with the rest of the data within a given dataset.

Over the years, the process of outlier identification has carried many names

in machine learning and data mining, such as outlier mining, novelty detection,

outlier modeling, anomaly detection, etc. [269]. Another similar concept to outlier

detection is clustering. Clustering finds the majority of patterns in a data set and

organizes the data accordingly. While outlier detection and clustering analysis serve

different purposes, one can formulate outlier detection as a clustering problem.

5.1.1 Types of Outliers

Outliers can be categorized under global outliers, contextual Outliers, and collective

outliers [96].

Global outliers— Data points that deviate significantly from the rest of the

data. These outliers are the simple type, and most outlier detection methods aim at

finding them.

Contextual outliers— Data objects that deviate significantly with respect to a

specific context. Therefore, in contextual outlier detection, the context has to be

specified as part of the problem definition. Contextual outliers are often referred

to as local outliers. Global outlier detection can be regarded as a special case of

contextual outlier detection where the set of contextual attributes is empty.

Collective outliers— A subset of data that, as a whole, deviates significantly

from the entire data set. Importantly, the individual data may not be outliers.

However, their collective occurrence is considered an outlier.

5.1.2 Outlier Detection Types

At a high-level, outlier detection methods can be divided into supervised, semi-

supervised, and unsupervised techniques.
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Supervised Outlier Detection— Supervised methods model outlier detection

as a classification problem where a domain expert is expected to label a sample of

the underlying data to be used to train a classifier that can recognize the outliers. In

other variations, the expert can label the normal data points and have the classifier

trained to recognize normality; hence the inverse being the anomaly. However,

in real-world applications, supervised techniques may face limitations due to the

nature of imbalanced data in real-world problems, where the number of outliers

may be too small to train an effective classifier. Although there are techniques

to overcome this issue, such as oversampling or undersampling, the applicability

of supervised methods in outlier detection is still limited. Moreover, similar to

signature-based approaches, supervised techniques are restricted to previously seen

anomalies [96].

Unsupervised Outlier Detection— Unsupervised techniques do not require

labeled data. Instead, these techniques assume that normal objects are clustered

together in feature space, while outliers are expected to occur far away from other

observations. The main advantage of unsupervised techniques is that they are not

limited by the number of known anomaly samples, allowing the model to recognize

new anomalies. However, developing unsupervised techniques on a large scale,

especially in real-world scenarios, can be challenging due to their tendency to

generate substantial false positives, despite their intuitive concept.

Semi-supervised Outlier Detection— Semi-supervised methods combine ele-

ments of both supervised and unsupervised approaches. In this technique, a small

set of labeled data is used to train a model that can recognize outliers. Then the

model is applied to the remaining unlabeled data to identify any additional outliers.

Semi-supervised outlier detection can be more effective than unsupervised tech-

niques since it can leverage some prior knowledge about the data while still being

flexible enough to identify new types of outliers.

5.1.3 Outlier Detection Techniques
One can categorize the outlier detection techniques as statistical methods, proximity-

based methods, and clustering-based methods [96, 104].

Statistical Methods

Statistical methods make assumptions of data normality. They assume that normal

data objects are generated by a statistical (stochastic) model and that data not

following the model are outliers. These methods focus on outlier detection using

statistical properties of the underlying distribution, such as median, mean, variance,
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and statistical tests (e.g., box-plot, trimmed mean, extreme studentized deviate, and

the dixon-type test [268]).

Statistical-based methods are usually classified into two main groups - the para-

metric and non-parametric methods. Parametric statistical models have assump-

tions about the underlying distribution in given data (e.g., Gaussian or Poisson

distribution), and it estimates the parameters of the distribution model. Two well-

known methods adopted for outlier detection are the Gaussian Mixture model [279]

and the Regression model [227]. The effectiveness of parametric statistical methods

highly depends on whether the assumptions made for the underlying distribution

hold true for the given data. On the other hand, non-parametric statistical methods

make no assumptions about the underlying distribution of the data [72]. Kernel

Density Estimation (KDE) is a common non-parametric approach for detecting

outliers by comparing each point’s local density to that of the neighbor’s local

density[151, 200]. Histogram-Based Outlier (HBOS) is another non-parametric

method that uses static and dynamic bin width histograms to model univariate

feature densities and score data instances[91].

Proximity-based Methods

Proximity-based methods assume that an object is an outlier if the nearest neighbors

of the object are far away in feature space, i.e., the proximity of the outlier object to

its neighbors significantly deviates from the proximity of most of the other objects

to their neighbors in the same data set.

The effectiveness of proximity-based outlier detection techniques largely depends

on the choice of distance measure used to calculate the proximity or distance be-

tween data points. There are various distance measures available, such as Euclidean,

Manhattan, Cosine, Hamming, and Mahalanobis distances [55, 59, 236].

There are two major types of proximity-based outlier detection: distance-based

and density-based. Density-based outlier detection methods identify outliers as data

points that are located in areas of low data density, where data density is defined

as the number of data points in a given neighborhood. In contrast, distance-based

outlier detection methods identify outliers based on the distance or proximity of a

data point to its nearest neighbors. Local Outlier Factor (LOF) is an example of a

loosely related density-based outlier detection method [31], and k-nearest neighbor

(KNN) is a type of distance-based [54].
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Clustering-based Methods

The underlying assumption of clustering-based outlier detection methods is that

normal data objects belong to dense and large clusters, whereas outliers either

belong to small or sparse clusters or do not belong to any clusters at all.

The performance of clustering-based techniques is highly dependent on the

effectiveness of the clustering algorithm and its parameters. Nevertheless, The

unsupervised nature of clustering-based methods makes them appealing for a wide

range of applications.

Clustering-basedmethods sharemany characteristics with proximity-basedmeth-

ods, as they both rely on measures of distance or density. Some of the most widely

used clustering-based algorithms include K-Means [164], and DBSCAN [73].

Ensemble-based Methods

Ensemble-based methods combine multiple outlier detection methods into a sin-

gle framework in order to improve the overall performance of outlier detection.

Example of ensemble-based includes Isolation forest [157] and Extreme Gradient

Boosting Outlier Detection (XGBOD) [290].

Other Methods

Outlier detection has gained significant attention in recent years, resulting in the

development of new techniques and approaches. Notably, there has been a surge

of interest in active learning[57, 207], deep learning [38], and graph-based outlier

detection [9].

5.2 Challenges and Requirements
Before delving into the specifics of our proposed approach, it is crucial to first

address the primary challenges, hence requirements that must be considered for a

successful anomaly/outlier detection in cybersecurity.

Contextualization

In the rapidly changing field of cybersecurity, where the distinction between normal

and malicious behavior can be subtle, contextualization is essential to enhance our

ability to discern and make more informed decisions. [10, 18]

Consider an employee that is found to have logged in to several computers.

This act might initially appear unusual, as it could indicate a malicious attempt to
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move laterally within a network. However, if further investigation reveals that the

employee in question is an administrator, this activity would be deemed acceptable

and no longer anomalous, as administrators frequently access multiple assets. This

illustrates the necessity for contextualization, for instance, grouping individuals

based on their roles prior to conducting any analysis.

Interoperability and Explainability

The term "interpretability" or "explainability" is defined as the ability to provide

understandable explanations for a human and an end-user.

Sejr et al. [233] discuss how outliers are context-dependent and, therefore, can

only be detected via domain knowledge, algorithm insight, and interaction with

end-users. Emphasizing how interpretation, explanation, and user involvement

have the potential to provide the missing link to bring complex outlier algorithms

from research into real-life applications.

This is particularly relevant in cybersecurity, where outliers do not always

indicate malicious activity, leading to alert fatigue in real-world settings [99].

Analysts’ involvement in SOCs is indispensable, and the lack of interpretability

and explainability poses difficulties for human analysts to effectively decide whether

the anomaly is of interest (i.e., malicious and true positive) or not (i.e., benign and

false positive). This is because, without explainability, the analysts would spend

most of their time investigating why an alert is handed to them in the first place.

However, many of today’s complex and advanced outlier detection algorithms

(e.g., deep learning-based, autoencoder-based) lack interpretability [10, 226, 277].

As a result, it is highly desirable to develop outlier detection algorithms that

provide interpretable explanations in addition to outlier scores to facilitate more

efficient analysis and decision-making by human analysts.

It is also essential to distinguish between explainable and interpretable. Even

in the face of explainable outlier detection, an analyst would still have difficulty

comprehending the justification in a multi-dimensional setting. In contrast, it is

much easier to comprehend a simple univariant feature given a context.

Scalability

As the amount of data that companies collect continues to grow, the concept of

big data, which encompasses data generated at a high volume, diverse variety, and

rapid velocity, becomes increasingly relevant. A company of moderate size can

easily collect and process tens of terabytes of data daily in near real-time. This

data can come from various sources, including endpoints (e.g., EDR, Windows
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Event Logs), network devices (e.g., proxy and DNS servers), and servers, among

others [183]. This highlights the necessity for outlier detection algorithms that are

efficient and scalable, utilizing distributed systems and parallel computation for

scaling outs [145].

Incremental and Adaptive Learning

In this rapidly evolving cybersecurity landscape, new learnings can significantly

influence the interpretation of existing knowledge. As such, it is crucial for outlier

detection algorithms to have the capability to adapt continuously in response to

changing data and its distribution.

Consider file hashes as a feature in an anomaly detector. Within a typical enter-

prise setting, the number of unique hashes observed daily can be substantial, on

the order of thousands. An anomaly detection algorithm may become ineffective

without the ability to incorporate new data efficiently.

Many traditional outlier detection methods necessitate the complete retraining

of models when new data is introduced. This can be computationally intensive

and may not be practical when dealing with large, dynamic datasets. Therefore,

outlier detection algorithms need to have the capability of quickly and efficiently

incorporating new data into the model without the need for complete retraining.

This ensures the continued effectiveness and robustness of the outlier detection

system.

Feature engineering represents a critical step in creating an effective outlier

detection algorithm. This is especially important in the continuously evolving

realm of cybersecurity. In the face of evolving threats, some knowledge becomes

obsolete while new knowledge arises. Therefore, it is also imperative that the

outlier detection algorithm possess the capability to not only support incremental

learning but also facilitate adaptation to changing conditions through the continual

update and modification of features to ensure its ongoing effectiveness.

Categorical Data

Categorical features often need to be encoded into numeric form, as the majority

of outlier detection algorithms take attributes as either discrete or continuous.

However, this can be a difficult task if the categorical variables have a large number

of categories or if there is a high or low degree of cardinality, making identifying

outliers based on their frequency or distribution difficult. Furthermore, the inherent

property of categorical data, which lacks ordinality and a numerical scale, presents

a challenge for applying traditional outlier detection techniques that utilize metrics
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for measuring the dissimilarity between observations (e.g., density or distance

measures) [254]. Therefore, the ability to treat categories simply as categories is

favored.

Non-Parametric

The selection of appropriate hyperparameters is a significant challenge in many

outlier detection algorithms, as it can significantly impact the quality of the re-

sults [155]. For example, in k-means clustering, the number of clusters, k, is a

hyperparameter that needs to be specified in advance. The optimal value of k

depends on the structure of the data and the problem at hand. A common approach

is to use trial and error to find the best value of k, which can be time-consuming

and computationally expensive. Additionally, because parametric models are based

on assumptions about the distribution of the data, their results can be unreliable for

practical situations and applications when prior knowledge about the underlying

distribution is limited. This is particularly relevant for outlier detection in the field

of cybersecurity, where the distribution of data can be highly skewed and varied

across different contexts.

This makes non-parametric algorithms that do not assume a particular distribu-

tion particularly appealing.

Event Count vs. Prevalence

Outliers can be understood as data points with a low frequency of occurrence and

typically indicate the number of times an event with a particular attribute has been

observed. However, in some instances, the focus may not be on the frequency of

observation of the primary attribute but rather on the number of unique occurrences

of a secondary attribute that have been observed in relation to the primary attribute.

As an example, consider the scenario of executable file hashes. In this case, the

focus may not be on the frequency of the file hash occurrence but rather on the

number of unique assets that have been observed running the executable. In such

a scenario, the emphasis would be on identifying the count of unique asset IDs

associated with the file hash rather than counting the events associated with that

file hash.
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5.3 HEOD: Human-assisted Ensemble Outlier
Detection

In this section, we present our proposed approach, taking into account the chal-

lenges and requirements previously discussed. We begin with a motivating example

that serves as a basis for introducing the framework. We then provide an overview

of the approach and conclude with a detailed explanation of the technique. This

includes an explanation of the underlying algorithm and a justification for each

design decision.

Consider network traffic, particularly proxy logs. There is valuable information

in such logs, including the protocol, URL, HTTP method, duration, response code,

request/response length, user-agent, client IP, and destination IP [186]. To decide

on whether a request is potentially malicious based on its corresponding event

log, an analyst may consider various factors, such as the rarity of the destination,

the rarity of the destination given the source, the response code in relation to the

domain, and the request length in relation to the domain given the HTTP-method.

Following this mindset, we propose a framework that mirrors the thought process

of an analyst who evaluates a log entry from multiple perspectives, i.e., different

features within their corresponding contexts. Hence, an ensemble of simple uni-

variate models, each specifically designed to examine a single, carefully selected

feature within a given context tree to determine the level of abnormality for the

observation.

The core idea is that by combining simple well-thought submodels, each of

which examines different sub-spaces of the data from different perspectives, we can

achieve a thorough and holistic evaluation of log entries that are explainable and

intuitive. This is possible as every submodel’s unique contribution to the overall

score is measurable and explainable.

At a high level, a submodel consists of several histograms of frequency observa-

tions representing a single feature within different contexts, e.g., request length

(feature) per destination and HTTP method (context). Now, given a histogram, we

can define outliers as data points that occur in low-density parts and are distant

from the main densities. The lower the observation density and the further from

the closest density, the more significant the outlier. Finally, the submodels’ inde-

pendent output is combined to derive a single outlier score representing the overall

outlierness of an entry, hence ensembling.

In Summary, the main features of the proposed HEOD are:

• Simplify detection to a single well-thought feature within a context.
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Figure 5.1: The proposed HEOD framework.

• Incorporate expert/domain knowledge, i.e., feature engineering and defining

how every feature should be contextualized.

• Density and distance-based scoring functions that are unique to cybersecurity

with an emphasis on skewness.

• Every detection can be easily explained and interpreted due to the simplicity

of the submodels and the ensembling process.

More formally, suppose we have 𝑛 data points X = 𝑋1, 𝑋2, ..., 𝑋𝑛 , each with 𝑓

dimensions or features. The objective is to compute the aggregated or ensembled

score
¯O𝑖 for each data point𝑋𝑖 passed through all submodels in a set of fine-grained

univariate models denoted byM = 𝑀1, 𝑀2, ..., 𝑀𝑛 .

Figure 5.1 shows the high-level architecture of the proposed approach. In the

following, we expand on the details of each component. Table 5.1 presents a

summary of the symbols and notations that will be used throughout the rest of this

section.

5.3.1 Submodels
Submodels are univariate statistical models that are designed to baseline and score

observation within a defined context. Hence a submodel𝑀𝑖 :=M𝜔
𝑓 |𝑐,𝑦 will have the

following configuration.
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Table 5.1: The list of symbols and notations used in this section.

Symbol Description

X the set of data, e.g., the whole table

𝑋𝑖 a data point (e.g., a row in a table)

X 𝑓 |𝑐
𝑖

the value under feature 𝑓 for the data point𝑋𝑖 with context tree 𝑐 , corresponding

to row 𝑖 and column 𝑓 , while also having access to other columns denoted by 𝑐

in row 𝑖 .

M the set of all submodels.

𝑀𝑖 :=M𝜔
𝑓 |𝑐,𝑦 ∈ M a submodel that is configured with feature 𝑓 , of type 𝑓𝑡 , context tree 𝑐 , count of

𝑦, and submodel weight of 𝜔
¯O𝑖 the final ensembled score for data point𝑋𝑖 that has passed through all submodels

in M
ℎ𝑖𝑠𝑡 (𝑀𝑖) the baseline of model𝑀𝑖

ℎ𝑖𝑠𝑡 (𝑐 | 𝑀𝑖) the portion of baseline table (histogram) for model𝑀𝑖 where the context is 𝑐

ℎ𝑖𝑠𝑡𝑆𝑡𝑎𝑡𝑠 (𝑀𝑖) the statistical points derived from the baseline for the submodel𝑀𝑖

ℎ𝑖𝑠𝑡𝑆𝑡𝑎𝑡𝑠 (𝑐 | 𝑀𝑖) the portion of baseline statistics table for model𝑀𝑖 where the context is 𝑐

𝐹 (𝑋𝑖 | 𝑀𝑖) an estimate of the observation count of data point 𝑋𝑖 from the perspective of

model𝑀𝑖 , according to its configured feature and context tree

𝑆𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑋𝑖 | 𝑀𝑖) the density score for data point 𝑋𝑖 given by model𝑀𝑖

𝑆𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑋𝑖 | 𝑀𝑖) the distance score for data point 𝑋𝑖 given by model𝑀𝑖

𝑆 (𝑋𝑖 | 𝑀𝑖) the outlier score (a composite of the distance and density scores) for data point

𝑋𝑖 given by model𝑀𝑖

𝑆𝑐 (𝑋𝑖 | 𝑀𝑖) the confidence in the outlier score given to data point 𝑋𝑖 by model𝑀𝑖

𝑂 (𝑋𝑖) = {(𝑆 (𝑋𝑖 | 𝑚), 𝑆𝑐 (𝑋𝑖 | 𝑚)),∀𝑚 ∈ 𝑀} the set of outlier scores and outlier confidence scores for 𝑋𝑖 given by all models

in the set ofM
¯O𝑖 = 𝐸𝑖 = 𝐸 (𝑂 (𝑋𝑖)) the ensembled score for data point 𝑋𝑖 after passing through all modelsM

• feature (𝑓 ): the dimension/feature the submodel is designed to evaluate.

• feature type (𝑓𝑡 ): the type of the feature, i.e., numerical or categorical. That

is important as we use a different hypothesis to score a categorical feature,

even though the categorical feature might be represented by numeric values

(e.g., label encoding or one hot encoding).

• context tree (𝑐): the context to which the feature is bound. This context can in-

clude a sequence of features. For instance, bounding the feature bytes_sent
to context dest→http_method, indicating that the bytes sent for different

destinations and different HTTP methods (e.g., POST vs. GET) should not be

compared together.

• count (𝑦): the secondary feature to define the count rule. This feature would

allow us to treat outlier detection as a prevalence problem. For instance,

instead of counting how many times (event count) we see a particular file

hash, we count unique endpoint observations (i.e., on how many assets we

observed executing that file). This functionality is particularly significant

since there may be instances in which the focus is not on the observation

of a given feature value but instead on the unique observation of another

feature that corresponds to the original feature 𝑓 .
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• weight (𝜔 ∈ [0, 1]): the weight of the submodel defined by the expert.

Each submodel is expected to possess three primary functionalities: data prepa-
ration, baselining/fitting, and scoring/predicting. The data preparation function

is relatively straightforward, entailing the ability to pre-process an input source

(e.g., table, dataframe, CSV), select relevant contextual information and features

of interest, and subsequently, validate them. On the other hand, the fitting and

scoring function is comparatively more complex. In the following discussion, we

expand further into these functions.

Submodel Fitting

Fitting is simply counting the observation of a feature within a context. This count

can take the form of a simple count of the occurrences of a particular value or a

unique count of a secondary feature associated with the primary feature. The fitting

can be conceptualized as a method of grouping and aggregating data as follows:

data.groupBy(c_1,c_2,...,c_n, f)
(1) .agg(count())
(2) .agg(countDistinct(y))

Fitting/Baselining leads to the creation of a table conceptualized as a collection

of multiple histograms separated by the context tree, histograms that denote the

feature values on the x-axis, and the count of observations on the y-axis. Through-

out this paper, the terms frequency, observation count, and height are utilized

interchangeably to denote the number of observations on the y-axis.

Consider events associated with the execution of executable files, identified by

sha256, in an endpoint (computerName), which we have enriched with depart-

mental information (peerGroup). Now consider two almost equivalent models

configured with the following:

(1)M1.0
sha256|peerGroup,- (2)M1.0

sha256|peerGroup,computerName

Two models designed to evaluate feature 𝑓 =sha256within context tree 𝑐 =peer
Group, but one with y=None(-), i.e., simply counting event observations, and

the other with y=computerName, i.e., counting unique observation of endpoints

associated with the sha256. In this regard, one can conceptualize the baselining

process of these two models as follows.

(1) data.groupBy(peerGroup,sha256).agg(count())
(2) data.groupBy(peerGroup,sha256).agg(countDistinct(computerName)
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In this example, the first model determines the frequency of event observations

related to a given file within a specific peer group (e.g., the HR department). Ad-

dressing the questions: How many times have we seen this file executed in each peer
group? Whereas the second model focuses on determining the count of unique

machines on which a particular file has been executed within a given peer group.

Answering the questions; What is the prevalence of this file within each peer group?
This latter metric is often deemed more informative as it provides insight into the

distribution of a file across different machines rather than simply counting the

number of events associated with that file.

Categorical Feature Baselining: Baselining a categorical feature is straightfor-
ward. It simply involves counting the number of observations of the different values

within a defined context, such as the frequency of different HTTP methods for a

particular destination.

Numerical Feature Baselining: In the case of numerical features, the process

becomes more complex. While it is still possible to count all observations, the

continuous nature of numerical data and the potential for different resolution scales

must be considered. In the following sub-section on scoring, we elaborate on the

technique used to estimate frequency (count of observations) by utilizing a kernel

density estimation-like function. While our proposed technique does not require

data binning or clustering, one can deploy various optimization strategies to reduce

the data and tier it into different layers (i.e., bronze, silver, gold). For example, when

baseline the feature bytes_sent, rather than counting two data points 𝑥1 = 1.0001

and 𝑥2 = 1.0003 as two distinct values with a count of one each, they can be

combined and represented by a single value (e.g., 𝑥1 = 1.0002) with a count of two.

There are many strategies for data reduction, such as discretization/binning [27,

37], clustering[118], and sampling[235].

To gain a deeper understanding of the baselining process, let’s consider the

example mentioned at the beginning of this section. Suppose that one of the models

is configured with the following configuration:

M1.0
𝑓 =request_length|𝑐=destination-http_method,𝑦=-

A model that is constructed to analyze the occurrences of request lengths, differenti-
ated by destination and HTTP method. The hypothesis underlying this model is that

the destination and HTTP method (context tree) plays a role in determining the

distribution of request lengths. For instance, the request lengths for GET requests

should not be directly compared with those of POST requests.

An example of the data beneath the baseline table for the mentioned model is
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presented in Table 5.2. The first row indicates that there have been five instances

of a POST event to dest1.com with a request length of 10.

Table 5.2: Example for a submodel baseline table.

𝑐 − 1: dest 𝑐 − 2: http_method 𝑓 : request_length 𝑦: EventCount

dest1.com POST 10 8

dest1.com POST 12 1

dest1.com POST 13 3

dest1.com POST 17 3

dest1.com POST 25 1

dest1.com GET 1 2

dest1.com GET 3 3

dest1.com GET 25 3

dest2.com POST 120 2

It is important to note that this baseline table can be conceptually understood

as a collection of histograms. Specifically, a set of histograms defined by the

context trees. For instance, in the above example, given the context tree of dest
→ http_method, one can conceptualize three distinct histograms, one for each

branch in the context tree.

Through the process of submodel baselining, a series of tables can be generated

to facilitate scoring and prediction.

• Frequency table, ℎ𝑖𝑠𝑡 (𝑀𝑖): a table that records the frequency of each obser-

vation value within a specific context tree.

• Frequency stats table, ℎ𝑖𝑠𝑡𝑆𝑡𝑎𝑡𝑠 (𝑀𝑖): a table used to maintain critical statisti-

cal points of the observation table, such as the median, average value, and

hyperparameters for any relevant techniques such as the bin-width or kernel

bandwidth.

Submodel Scoring

At a high level, submodel scoring is based on two fundamental principles, the

lower the frequency observation of the value, the higher the outlier score, referred

to as the density score, and the further the distance of the value from the closest

high-density region, the more significant the outlier, referred to as the distance
score.

The scoring process aims to seek answers to the following questions:

1. What is the frequency of occurrence for this value or similar values?

2. How does the observation count for this value compare to observation counts?
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3. How does the value of this observation compare to other observed values?

Let’s consider the model described previously (Table 5.2) to better grasp the

difference between the density and the distance score. Given an average request

length of 𝑘 bytes for dest1.com and the POSTmethod, while observations of 𝑘+1000

and 𝑘 + 1000000 would both fall within low-density regions and thus be assigned

a high outlier density score, the second observation may be considered a more

significant outlier due to its greater deviation. The distance score provides a means

of assessing the relative significance of outliers based on their distance from the

high-density regions in the data. This highlights the importance of considering

both density and distance when assessing the outlierness.

As mentioned before, scoring techniques vary depending on the type of feature

being considered. For categorical features, distance is not a relevant factor since

they lack the concept of distance. Additionally, determining the frequency count

of a value 𝑋𝑖 for a categorical feature is a straightforward process of joining the

relevant baseline table to find the frequency. However, with numerical features,

because they may have a continuous nature, it is necessary to be able to estimate

the frequency. Below, we detail the specific procedure for calculating scores based

on the feature type.

Categorical Feature Scoring: In order to predict the density score of a data

point 𝑋𝑖 , the model must first isolate the corresponding baseline, specifically, the

histogram that aligns with the context tree values of 𝑋𝑖 . As an example, in the case

of a model that is evaluating the feature response_code and is contextualized by

the http_method, if the data to be scored has an HTTPmethod of POST, the model

must first isolate the histogram associated with the POST context, i.e., the portion

of the baseline table that pertains to the POST context (denoted as ℎ𝑖𝑠𝑡 (𝑐 | 𝑀𝑖) and
ℎ𝑖𝑠𝑡𝑆𝑡𝑎𝑡𝑠 (𝑐 | 𝑀𝑖)).

Next, determine the observation count for the given response code. This can be

accomplished by simply joining the observed context and feature value to find the

observation count.

More formally, 𝐹 (𝑋𝑖 | 𝑀𝑖) ∈ ℝ is the frequency observation of data point 𝑋𝑖 with

respect to model𝑀𝑖 :=M𝜔
𝑓 |𝑐,𝑦 which evaluates feature/dimension 𝑓 within context

tree 𝑐 and counting observations of 𝑦.

After the count estimation, it is necessary to transform the unbounded frequen-

cies into a density-based outlier score that is both bounded and interpretable, such

as probabilities [86], i.e., 𝑆𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑋𝑖 | 𝑀𝑖) ∈ [0, 1]. This conversion process is

commonly referred to as data scaling or normalization in data mining. This step is

necessary as the independent scores must ultimately be integrated into a unified

ensemble score.
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Figure 5.2: The scaling challenge in a highly skewed distribution.

There are several techniques for achieving data scaling or normalization, such as

Min-Max or MaxAbs scaling. More generally, this can be viewed as a data transfor-

mation problem that involves applying mathematical functions or algorithms to

the data to alter its distribution, range, or format. This generalization enables the

use of transformers, including Quantile, Power, Logarithmic, Box-Cox, Sigmoid,

Square root, and Exponential transformations [8].

In this work, we draw inspiration from the technique of quantile transformation.

Our proposed approach is particularly beneficial in cybersecurity, where we often

encounter highly skewed distributions, and it is imperative to preserve the relative

order of values. For instance, when dealing with a dataset comprising a vast number

of small values and a few large values, our approach mitigates the impact of the

large common values on the transformed data, allowing for an improved focus on

outliers.

Consider a highly skewed distribution (long-tailed) where a few values are

observed frequently, such as 1 KB being observed over ten million times (See Figure

5.2). The same histogram also contains values in the tail that are only observed at

the scale of thousands. If we were to use a Min-Max scaler, the large number of 1

KB observations would dominate the scaling process, resulting in a score of 0.0 for

1KB and a score above 0.9 for all other observations. This would make it difficult to
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distinguish between observations that fall between 1 and 100 observation counts,

e.g., 20, 40 KBs.

In this work, we propose a dynamic transform function that is interpolated based

on a few given thresholds. The transformer (Function 5.3) is a multi-condition

function that oscillates between Equation 5.1 and Equation 5.2

𝑓𝑑𝑒𝑛𝐴 (𝑥,𝑦𝑠, 𝑦𝑒, 𝑥𝑠, 𝑥𝑒) = 𝑦𝑠 − (𝑦𝑠 − 𝑦𝑏)
(𝑥 − 𝑥𝑠)2
(𝑥𝑠 − 𝑥𝑒)2

(5.1)

𝑓𝑑𝑒𝑛𝐷 (𝑥,𝑦𝑠, 𝑦𝑒, 𝑥𝑠, 𝑥𝑒) = 𝑦𝑠 − (𝑦𝑠 − 𝑦𝑏)
(𝑥 − 𝑥𝑠)3
(𝑥𝑠 − 𝑥𝑒)3

(5.2)

𝑓𝑑𝑒𝑛 (𝑥, 𝑡𝑙 , 𝑡𝑐, 𝑡𝑢) =



𝑓𝑑𝑒𝑛𝐴 (𝑥,1.00,0.75,0,𝑡𝑙−𝜖), if 𝑥≤𝑡𝑙−𝜖

𝑓𝑑𝑒𝑛𝐷 (𝑥,0.75,0.50,𝑡𝑙−𝜖,𝑡𝑐 ), if 𝑡𝑙−𝜖<𝑥≤𝑡𝑐

𝑓𝑑𝑒𝑛𝐴 (𝑥,0.50,0.25,𝑡𝑐 ,𝑡𝑢+𝜖), if 𝑡𝑐<𝑥≤𝑡𝑢+𝜖

𝑓𝑑𝑒𝑛𝐷 (𝑥,0.25,0.0,𝑡𝑢+𝜖,1+2·(𝑡𝑢−𝑡𝑐 )), if 𝑡𝑢+𝜖<𝑥≤1+2·(𝑡𝑢−𝑡𝑐 )

0 otherwise

(5.3)

Where 𝑥 represents the frequency (i.e., the estimated number of observations)

of a random variable, and 𝑡𝑙 , 𝑡𝑐 , and 𝑡𝑢 are thresholds derived from the underlying

distribution. These thresholds regulate how the observed frequency is compared to

other frequencies. For instance, consider a histogram where numerous observed

values (on the x-axis) have a frequency count of 1 (on the y-axis). While an individual

observation may appear to be an anomaly (i.e., only once observed), the fact that

this frequency occurs frequently should reduce the significance of the outlier.

The epsilon is used to control scenarios where all thresholds are equal. For

instance, if many values have only one observation count, in this case, all thresholds

will be equal. Such a scenario is prevalent in reality as novel things are consistently

emerging, resulting in observation counts of one.

Figure 5.3 (a) shows an example of the proposed density function interpolated

from thresholds of 𝑡𝑙 = 2, 𝑡𝑐 = 4, and 𝑡𝑢 = 10. The dotted red and blue lines on the

figure represent the underlying functions utilized to oscillate between different

thresholds (using Equations 5.1 and 5.2). The figure illustrates that observation

counts from 0 to 𝑡𝑙 = 2 are relevant, and their score should decline from 1 to 0.75

accordingly.

Therefore, the density score for data point 𝑋𝑖 given by model𝑀𝑖 :=M𝜔
𝑓 |𝑐,𝑦 that

evaluates feature value 𝑓 within context tree 𝑐 , is calculated as follows:
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(a) Density transformation function (b) Distance transformation function

Figure 5.3: Density and distance transformation function with threshold examples.

𝑆𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑋𝑖 | 𝑀𝑖) := 𝑆𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (X 𝑓 |𝑐𝑖
| M𝜔

𝑓 |𝑐,𝑦) = 𝑓𝑑𝑒𝑛 (𝐹 (X
𝑓 |𝑐
𝑖
), 𝑡𝑙 , 𝑡𝑐, 𝑡𝑢)

{𝑡𝑙 , 𝑡𝑐, 𝑡𝑢} ∈ ℎ𝑖𝑠𝑡𝑆𝑡𝑎𝑡𝑠 (𝑐 | 𝑀𝑖)

Where 𝐹 (X 𝑓 |𝑐
𝑖
) represents the frequency observation of data point 𝑋𝑖 ’s feature 𝑓

given context tree 𝑐 , one can conceptualize a table where the row is 𝑖 , the column

is 𝑓 , and we also have access to other columns 𝑐 in that row (context tree).

Note that the thresholds ({𝑡𝑙 , 𝑡𝑐, 𝑡𝑢}) should be determined based on the underly-

ing distribution of the mode’s baseline corresponding to the related context tree,

represented as ℎ𝑖𝑠𝑡𝑆𝑡𝑎𝑡𝑠 (𝑐 | 𝑀𝑖). These thresholds should reflect the essential statis-
tical properties of the frequencies in the distribution. For instance, providing insight

into the average observed frequency enables the comparison of the observation

counts at hand with others in the distribution.

To better understand the underlying concept, let’s consider a model that is

designed to evaluate the rarity of an executable path (a categorical feature) con-

textualized by the executable’s name. The hypothesis is that executables run from

uncommon locations may pose security risks. After one month of baseline, all

paths for a given executable end up with a table that can be conceptualized by a

histogram per executable, where the x-axis represents the observed normalized

paths, and the y-axis represents the number of times we have seen that particular

executable within that path. Suppose we observe a new path associated with that

executable. The density score can tell us how anomalous this observation is com-

pared to the others. However, to give a more accurate score, the model will also
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take into consideration the variety of path observations for that executable. More

specifically, if we have never seen this path before and we have observed many

different paths only once (with an average observation count of 1), then the outlier

may not be as significant. However, suppose we have mainly observed one path

(resulting in a much higher average of path observation count), and the path in

question has never been observed before; the outlier score should be much more

significant. This is the role of the thresholds, allowing us to control the decaying

better.

For instance, one can derive the thresholds from the underlying statistics as

follows:


𝑡𝑙 = 𝐺𝑀 (𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛,𝑚𝑒𝑑𝑖𝑎𝑛)
𝑡𝑐 = 𝐺𝑀 (𝑚𝑒𝑎𝑛,𝑚𝑒𝑑𝑖𝑎𝑛)
𝑡𝑢 = 𝐺𝑀 (𝑚𝑎𝑥, 𝑞3,𝑚𝑒𝑎𝑛,𝑚𝑒𝑑𝑖𝑎𝑛)

𝐺𝑀 =

(
𝑛∏
𝑖=1

𝑥𝑖

) 1

𝑛

Note that the properties are of the count observations, e.g., min is the minimum

count observation in the table/histogram, q1 is the first quartile of count observa-
tions, and so on. We found through experimentation that this particular setting was

the most suitable for our experiment, as it allowed the minimum and maximum

values to have an impact. However, one could experiment with different statistical

properties, e.g., skewness and kurtosis.

Although we only used three thresholds to interpolate the defined function, one

can achieve similar results using linear interpolation withmore points. Furthermore,

note that the transformation function changes the underlying distribution. However,

it does not affect our ability to detect outliers. In fact, it improves by emphasizing

outliers and reducing the importance of the majority class.

Hence for the categorical feature, the final outlier score 𝑆 for data point 𝑋𝑖 given

by model𝑀𝑖 is:

𝑆 (𝑋𝑖 | 𝑀𝑖) = 𝑆𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑋𝑖 | 𝑀𝑖)

Numerical Feature Scoring: Since numerical values can be continuous and not

limited to a set of discrete options, it is not possible to perform an exact join on a

table, as is the case with categorical features. To address this issue, we must employ

a method to estimate the frequency or count of a data point and its feature.

Formally, 𝐹 (𝑋𝑖 | 𝑀𝑖) ∈ ℝ denotes the frequency observation of data point 𝑋𝑖
relative to model𝑀𝑖 =M𝜔

𝑓 |𝑐,𝑦 , which assesses feature or dimension 𝑓 within context

124



HEOD: Human-assisted Ensemble Outlier Detection Section 5.3

tree 𝑐 and tallies the observations of 𝑦. We refer to the histogram or data points

extracted from the baseline table of model 𝑀𝑖 for which the context tree is 𝑐 as

ℎ𝑖𝑠𝑡 (𝑐 | 𝑀𝑖). Let Z = 𝑧1, 𝑧2, ..., 𝑧𝑛 denote the data tuples derived from ℎ𝑖𝑠𝑡 (𝑐 | 𝑀𝑖),
where each tuple 𝑧𝑘 contains 𝑧

(𝑖)
𝑘

as the x-axis value and 𝑧
( 𝑗)
𝑘

as the y-axis count.

The task at hand is to estimate the count observation for the feature value 𝑓 of data

point 𝑋𝑖 , i.e., X 𝑓 |𝑐𝑖
, given ℎ𝑖𝑠𝑡 (𝑐 | M𝜔

𝑓 |𝑐,𝑦).
To achieve this, we adopt Kernel Density Estimation [198], with a slight alteration

to give us the height (count/frequency) rather than density. This technique allows

us to estimate regardless of underlying data distribution which is an essential

requirement in cybersecurity.

𝐾𝐻𝐸 (𝑥 | 𝑍 ) =
𝑛∑︁
𝑘=1

𝑧
( 𝑗)
𝑘
· 𝐾 (

𝑥 − 𝑧 (𝑖)
𝑘

ℎ
)

𝐾 (𝑢) = 𝑒−0.5·𝑢2

𝐹 (𝑋𝑖 | 𝑀𝑖) := 𝐹 (X 𝑓 |𝑐
𝑖
| M𝜔

𝑓 |𝑐,𝑦) = 𝐾𝐻𝐸 (X
𝑓 |𝑐
𝑖
, ℎ𝑖𝑠𝑡 (𝑐 | M𝜔

𝑓 |𝑐,𝑦)) (5.4)

Where 𝐾 is the adjusted Kernel, a non-negative function, ℎ > 0 is a smoothing

parameter called the bandwidth; intuitively, one wants to choose h as small as

the data will allow; however, there is always a trade-off between the estimator’s

bias and its variance. A substantial amount of academic literature exists that

explains the most optimal selection of bandwidth (ℎ) [230]. However, throughout

our experiments, we utilized Silverman’s rule of thumb [238].

ℎ = 0.9 ·𝑚𝑖𝑛(�̂�, 𝐼𝑄𝑅
1.34

) · 𝑛 −1

5

where �̂� is the standard deviation derived from ℎ𝑖𝑠𝑡 (𝑐 | 𝑀𝑖), 𝐼𝑄𝑅 is the interquar-

tile range 𝑄3 −𝑄1, and 𝑛 is the total sample size in the histogram

As mentioned before, one could perform various optimization to improve the

computational cost, e.g., sub-sample data for the KHE or cluster data to reduce the

baselines table.

Numerical Feature Density Score: After frequency estimation, similar to the categor-

ical feature, we use the same formulas to convert the frequencies to a density-based

outlier score 𝑆𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑋𝑖 | 𝑀𝑖) ∈ [0, 1].
To enable this transform function, we require a set of thresholds derived from

the statistical properties of the frequencies observed (e.g., what is the average
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count/hights observed per histogram). However, while in the case of categorical

data, one can easily find the count statistics (e.g., mean of counts), in the case of

numerical data obtaining the basic statistics of the count can be challenging.

There are several methods to obtain these statistics, including identifying all

critical points in the derived KHE function (such as global and local maxima) using

techniques like the First Derivative Test [246], sampling data to estimate the count

statistics, or binning the values and computing the statistics based on the heights

of the bins. While all of these approaches produced comparable thresholds in our

experiments, we ultimately opted to utilize binning due to its efficiency, particularly

in a distributed map-reduce fashion.

More specifically, we employed modified versions of Freedman–Diaconis [82],

and Scott’s [231] rules taking into account the skewness of the data to determine

the optimal bin size and calculate the statistical measures for the bin heights (e.g.,

min, median, average bin height). These measures were then inserted into the

ℎ𝑖𝑠𝑡𝑆𝑡𝑎𝑡𝑠 (𝑀𝑖) table, which was later used to derive the necessary thresholds for

the transformation.

Numerical Feature Distance Score: As mentioned, with numeric features, we in-

troduce a novel aspect - the outlier distance score. This property allows for the

detection of significant anomalies that may not be detected through density-based

techniques alone.

Figure 5.2 illustrates the challenge posed by relying solely on a density-based

score. In such a scenario, values of 10 and 40 will receive similar density scores,

as they are both situated in areas of low density (i.e., their estimated observation

count will be identical).

In the field of cybersecurity, the detection of extreme values is often of particular

interest. For instance, consider the feature of bytes sent. Suppose the value 10MB

is assigned the same density score as a value of 10GB. In that case, the 10GB outlier

will be of significantly greater interest, thereby highlighting the importance of

utilizing a distance score.

To derive the distance score 𝑆𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑐𝑒 (𝑋𝑖 | 𝑀𝑖) ∈ [0, 1], we measure how far an

observation value is from the closest density (mode). Our implementation of HEOD

uses global density (or the largest mode) as the reference point. However, one can

further improve this by finding the closest local density.

In this regard, similar to the density score, we interpolate a transformer function

that maps a given feature value to a score between 0 and 1 based on a set of

thresholds.

𝑓𝑑𝑖𝑠𝐴 (𝑥, 𝑥𝑠, 𝑥𝑒) = 1 − 𝑒
−2(𝑥−𝑥𝑠 )2
𝑒 (𝑥𝑠−𝑥𝑒 )2 (5.5)
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𝑓𝑑𝑖𝑠 (𝑥, 𝑡𝑙 , 𝑡𝑐, 𝑡𝑢) =
{
𝑓𝑑𝑖𝑠𝐴 (𝑥, 𝑡𝑐, 𝑡𝑙 − 𝜖), if 𝑥 < 𝑡𝑐

𝑓𝑑𝑖𝑠𝐴 (𝑥, 𝑡𝑐, 𝑡𝑢 + 𝜖), otherwise
(5.6)

Figure 5.3 (b) shows an example of the distance transformer function, highlighting

that as we move from the densest area (5) to further values, e.g., 16, the distance

score gets closer to one.

𝑆𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑋𝑖 | 𝑀𝑖) := 𝑆𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (X 𝑓 |𝑐𝑖
| M𝜔

𝑓 |𝑐,𝑦) = 𝑓𝑑𝑖𝑠 (X
𝑓 |𝑐
𝑖
, 𝑡𝑙 , 𝑡𝑐, 𝑡𝑢)

{𝑡𝑙 , 𝑡𝑐, 𝑡𝑢} ∈ ℎ𝑖𝑠𝑡𝑆𝑡𝑎𝑡𝑠 (𝑐 | 𝑀𝑖)


𝑡𝑙 = 𝑑 · (𝑚𝑒𝑎𝑛 + 𝑠𝑡𝑑𝑑𝑒𝑣) + (1 − 𝑑) ·𝑚𝑖𝑛
𝑡𝑐 =𝑚𝑒𝑎𝑛

𝑡𝑢 = 𝑑 · (𝑚𝑒𝑎𝑛 + 𝑠𝑡𝑑𝑑𝑒𝑣) + (1 − 𝑑) ·𝑚𝑎𝑥

Note that here the stats are from the distribution, e.g., min is the minimum value

observed in the related table/histogram, q1 is the first quartile of values, and so on.

We set the parameter 𝑑 to 0.8 during our experiments.

Therefore, when the feature is numerical, the outlier score 𝑆 (𝑋𝑖 | 𝑀𝑖) is calculated
as follows:

𝑆 (𝑋𝑖 | 𝑀𝑖) = 𝜔𝑑𝑒𝑛𝑠𝑖𝑡𝑦 · 𝑆𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑋𝑖 | 𝑀𝑖) + 𝜔𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 · 𝑆𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑋𝑖 | 𝑀𝑖).

Throughout our experiment, we set the density score weight (𝜔𝑑𝑒𝑛𝑠𝑖𝑡𝑦) to 0.8 and

the distance score weight (𝜔𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ) to 0.2.

Figure 5.4 illustrates the kernel height estimation function, the density, and the

distance score of an example distribution.

Outlier Confidence Score

In this section, outliers were defined as observations with different characteristics

to other data points. However, this definition lacks clarity on what constitutes

"different". For instance, if our baseline consists of only one item and we encounter

a dissimilar observation that is also different, however, it should not be considered

a top-priority outlier as there is no well-established baseline. Thus, it is crucial

to not only identify outliers but also to quantify the degree of certainty for the

detection. Confidence scores prove helpful in practice as they assist in reducing

potential false positives and prioritizing which outliers to investigate first.

Confidence is particularly important in our proposed framework, as contextual-

ization may introduce discrepancies between the baselines. Therefore, it becomes

crucial to establish a high degree of confidence in the identification of outliers,
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Figure 5.4: HEOD functions on an example distribution highlighted by the blue bins. The

black dotted lines express the kernel height estimation function (KHE) of the underlying

distribution. The purple dotted line represents the density score for a given value of 𝑥 ,

while the green dotted line represents the distance score. The red line represents the

ultimate final score, which is obtained by combining both the density and distance scores.

to account for variations in contexts and baselines. Suppose that in a given sce-

nario, the feature under consideration is bytes sent contextualized based on the

HTTP method. Consider we have established a baseline of 90 POST events and 10

GET events (i.e., two separate histograms). Now, we have identified two outliers:

one POST event that differs significantly in bytes sent compared to other POST

events and one GET event that substantially differs from other GET events. In this

scenario, both events are considered outliers since they deviate significantly from

their respective baselines. However, there is more confidence in identifying the

POST event as an outlier. This is because there were more observations available

to compare its byte sent value to, in contrast to the GET event, which had fewer

observations to compare against. Thus, the POST event should carry more weight

in the outlier analysis as it is the more confident outlier identification.

In this work, we propose another transform function 𝐶𝑤 ∈ [𝑑, 1], to derive a
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confidence weight for an outlier score given the total number of observations

beneath the corresponding histogram. The fundamental concept entails starting

from the minimum weight (𝑑) and elevating the outlier score as we approach the

anticipated minimum baseline size expectation.

𝐶𝑤 (𝑛,𝑑) = 1 − (1 − 𝑑).𝑒
−𝑒𝑛2

ℎ2

𝑆𝑐 (𝑋𝑖 | 𝑀𝑖) = 𝐶𝑤 (𝑛,𝑑)
Where 𝑑 denotes the minimum weight value (throughout our experiment, set to

0.8), ℎ is the parameter allowing one to control the minimum expectations of the

baseline size (e.g., 100). 𝑛 is the actual size of the underlying baseline/histogram

(defined by a context) taken from the ℎ𝑖𝑠𝑡𝑆𝑡𝑎𝑡𝑠 (𝑐 | 𝑀𝑖).
Note that while we derived the confidence from baseline size here, one could

expand with other concepts such as age.

5.3.2 Ensemblers
The ensemble modules rely on a distinct attribute to establish a correlation between

submodel outputs. Examples of such attributes include event ID, username, and

asset. This attribute is highlighted as the "via" field in Figure 5.1. Once the ensemble

module has determined the correlation attribute, it combines the independent

outputs generated by each submodel when evaluating 𝑋𝑖 to produce a unified and

meaningful value called the ensemble score for that particular entry. This score is

then utilized to rank the entry 𝑋𝑖 .

In the realm of probabilities, numerous approaches exist for deriving joint proba-

bilities. Nonetheless, in this study, we have opted to avoid probabilities due to their

numerical instability when handling highly skewed distributions. Ensembling tech-

niques have been studied extensively, particularly in the context of classification

problems, e.g., bagging[29], boosting [83], stacking[44, 242, 275], random forests

[30], model averaging [61], and a bucket of models [65]. Furthermore, numerous

outlier detection algorithms underneath utilized ensemble techniques [91, 155, 157].

In this work, we have separated the ensembling process to not only formalize it

but also facilitate continuous improvement of the underlying technique over time.

Formally, the objective is to derive the ensemble score 𝐸𝑖 for a given data point

𝑋𝑖 passed through all submodels inM, where each submodel (𝑀𝑖 :=M𝜔
𝑓 |𝑐,𝑦) outputs

the following attributes for every data point 𝑋𝑖 :

• Outlier score 𝑆 (𝑋𝑖 | 𝑀𝑖) ∈ [0, 1]
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• Outlier confidence score 𝑆𝑐 (𝑋𝑖 | 𝑀𝑖) ∈ [0, 1]

• Submodel’s weight 𝜔 ∈ [0, 1]

Our objective is to compute the final ensemble score
¯O𝑖 = 𝐸 (𝑋𝑖 | 𝑀) for data

point 𝑋𝑖 by aggregating all the outlier scores 𝑺 and outlier confidence scores 𝑺𝒄
assigned to it by the models inM while taking into consideration the submodel’s

weight 𝜔 .

Let 𝑂 (𝑋𝑖) = {(𝑆 (𝑋𝑖 | 𝑚), 𝑆𝑐 (𝑋𝑖 | 𝑚)),∀𝑚 ∈ 𝑀} = {(𝑠1, 𝑠𝑐1), (𝑠2, 𝑠𝑐2), ..., (𝑠𝑛, 𝑠𝑐𝑛)}
denote a set of tuples that contains all the outlier scores and their corresponding

outlier confidence scores assigned to data point 𝑋𝑖 by the models in M. Let𝑊 =

{𝜔1, 𝜔2, ..., 𝜔𝑛} be the set of submodel weights in M. Function 5.7 is designed to

compute the ensemble score from a set of independent outlier scores and their

corresponding confidence levels.

𝐸 (𝑂,𝑊 ) =
𝑛∑︁
𝑖=1

(𝑠𝑖 · 𝑠𝑐𝑖 · 𝜔𝑖)3 (5.7)

Hence, the final ensemble score is calculated as follows:

¯O𝑖 = 𝐸𝑖 = 𝐸 (𝑂 (𝑋𝑖),𝑊 )

The main intuition behind the ensembling functions is to magnify significant

outlier scores to prevent them from averaging out due to the presence of numerous

low scores. In essence, if poorly derived models are present, irrelevant scores from

various components can weaken the overall outlier score.

Consider the following sets of scores, where each item in a set represents a

submodel’s score for an item.

(1) X1=[0.2, 0.2, 0.2, 0.2]
(2) X2=[0.0, 0.0, 0.4, 0.4]
(3) X3=[0.0, 0.0, 0.0, 0.8]

When considering the three items, selecting the average as the combination

function results in equal outlier scores for all three scenarios. However, such an

approach is not desirable, especially when considering domain knowledge. Item (3)
should be regarded as more important as a model outputs a very high outlier score.

While using the average as the combination function results in an equal value of

0.2 for all three scenarios, our function yields 𝐸 (𝑋1) = 0.032, 𝐸 (𝑋2) = 0.128, and

𝐸 (𝑋3) = 0.512, which better reflects the desired rank, i.e., (3), (2), and (1).
One can use various other methods to obtain comparable outcomes, such as
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utilizing the maximum function, logarithmic sum, damped averaging, and pruned

averaging [5].

Explainable Results

The paper emphasized the significance of producing explainable interpretable out-

liers. HEOD’s simple, intuitive design enables it to add interpretable justifications to

each element. Every time a submodel scores an event, it approximates the number

of times a particular feature value or values close to it have been observed under

the given context. Each submodel also contains a baseline with statistics on its

previous observations. The baseline statistics facilitate the submodel to generate

not only the prediction but also the statistical focal points that led to that prediction,

i.e., the thresholds used for the transformer functions.

Let us take an example of a submodel configuration with the feature bytes

sent and the context of the HTTP method. When this submodel generates the

density score for a given value of bytes sent, it can also provide the estimated

frequency, average, standard deviation, and median of the underlying distribution

(i.e., other bytes sent within the same context). This information enables the end-

user to investigate easier why a specific event has received a particular score by a

particular submodel.

Similarly, the ensmebler can aggregate and summarize all reasoning attached to

the submodel outputs along with their contribution to the overall ensemble score.

This feature enables the end-user to promptly analyze an outlier.

5.3.3 HEOD Framework: Ensemble of Ensembles

Having grasped the notions of submodels and ensemblers, we are now equipped to

construct comprehensive models comprised of diverse submodels, each examining

distinct data from various perspectives. These submodels can be combined through

ensemblers to generate comprehensive models.

Figure 5.5 demonstrates how it is possible to link various submodels and their

corresponding ensemblers to construct comprehensive models.

5.4 Experimental Setup

In this section, we present the details of our experimental setup for evaluating the

proposed framework.
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Figure 5.5: HEOD framework.

5.4.1 Implementation

One of our main requirements was the ability to handle big data in a real-world

setting. As our framework enables us to embrace modular and distributed setups,

we decided to implement the proposed framework in Apache Spark, an open-source

distributed computing framework specially designed for big data processing and

analytics. In addition, we specifically tailored the implementation for Databricks.

The proposed framework is intended to be operated and configured by an expert.

Therefore we emphasized the importance of keeping the end user (in our case,

the security analyst) in the loop for the design of the outlier detection framework.

To achieve this, we asked a security analyst to evaluate each dataset used in the

assessment thoroughly. They identified important features and how they could be

contextualized. Then we utilized this information to derive our expert sub-models.

Nevertheless, we have also implemented a default version of the framework to

ensure comparability with other algorithms. This version spawns default submodels

for each data column (i.e., feature) with no context. The default submodel is assigned

according to the feature type (i.e., categorical or numerical) with no context tree

and a default weight of 1.

5.4.2 Infrastructure

We deployed our framework on a big data platform consisting of Azure Databricks

and Azure Data Lake Storage. We used this infrastructure to evaluate our framework

on public datasets and run it in a real-world setting. Specifically, the infrastructure

was integrated into a large international organization, where a portion of the

company’s SIEM logs was residing.

Throughout our experiments, we configuredDatabrickswith 8 "Standard_D32s_v4"

workers. Thus, having a big data platform backed up by Apache Spark with a total
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of; 1024-GB Memory, 256 vCPU Cores having access to petabytes of data. We

expand on the details of the data in the next section.

5.5 Evaluation
Outlier analysis is considered the most challenging core data mining problem to

evaluate, particularly on real datasets, due to its unsupervised nature and small

sample space. This is especially true in the cybersecurity domain. However, to

ensure the effectiveness of our proposed technique, we have followed best practices

in the literature by evaluating it alongside other algorithms in a cybersecurity-

specific setting using a relevant dataset.

It is important to note that in cybersecurity, the focus is not solely on identifying

outliers. Instead, the primary objective is to detect malicious activity, which outliers

may not always reflect. Therefore, it is critical to have a comparison of algorithms

that considers the specific requirements and objectives of the cybersecurity domain.

More specifically, we aim to answer the following questions as part of our

evaluation:

• EQ1. How does the performance of our proposed outlier detection algo-

rithm compare to other well-known algorithms when applied to public

cybersecurity-related datasets?

• EQ2. Is our hypothesis valid that human-assisted outlier detection will per-

form better, meaning do the expert models defined by the analyst aid in

enhancing the results and better transition from outlierness to malicious-

ness?

Finding a suitable dataset in the cybersecurity domain presents a significant

challenge. Most well-known datasets, such as KDD CUP, suffer from issues, such as

uneven distributions and imbalanced classes due to synthetic attack generation [132,

218, 240]. As a result, there is a need for more high-quality reference data points in

the cybersecurity domain for algorithmic evaluation. Despite the challenges, we

endeavored to identify datasets that could best meet our requirements. Specifically,

we sought labeled datasets that closely resemble logs collected by a typical enter-

prise, preferably collected from a real-world setting. Lastly, a dataset consists of

negative class labels (anomalies or attacks) that are significantly less prevalent than

normals. In this regard, we selected Kyoto 2006+ [243] and UNSW-NB15 [181] as

our preferred datasets.

The UNSW-NB15 dataset [181] comprises the raw network packets generated by

the IXIA PerfectStorm tool in the Cyber Range Lab of UNSW Canberra. The dataset
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is composed of a hybrid of real normal activities and synthetic contemporary attack

behaviors, mainly nine types of attack categories known as the Analysis, Fuzzers,

Backdoors, DoS Exploits, Reconnaissance, Generic, Shellcode, and Worms. The raw

traffic was captured using the tcpdump tool, resulting in 100 GB of traffic, which

was then processed using the Argus and Bro-IDS tools to generate a total of 49

features, each with a corresponding class label.

The whole dataset available on USNWwebsite
24
spawns over 0.58 GBwith a total

of 2, 540, 044 events stored in the four CSV files, namely, UNSW-NB15_1.csv, UNSW-

NB15_2.csv, UNSW-NB15_3.csv, and UNSW-NB15_4.csv. The dataset contains

2, 218, 761 legitimate flows and 321, 283 attack flows, with the attacks accounting

for 14% of the whole dataset. Moustafa et al. [211] provide detailed information

about the dataset and analyze the statistical properties of its features.

The original Kyoto 2006+ [243] dataset
25
was built on the three years of real

traffic data from November 2006 to August 2009, then extended to December 2015.

It consists of fourteen statistical features derived from the KDD Cup 99 dataset and

ten additional features. It was collected using honeypots, darknet sensors, email

servers, and web crawlers. Protić [211] provides a comprehensive analysis and

review of the dataset.

The Kyoto 2006+ dataset spawns over 19.683 GB compressed (over 138 GB

uncompressed). It includes 806, 095, 624 events classified into three main labels:

normal (1), known attacks (−1), and unknown attacks (−2). More specifically,

160, 873, 849 (19.95%) are normal, 640, 618, 555 (79.47%) are known attacks, and

4, 603, 220 (0.57%) are unknown attacks.

5.5.1 Data Preprocessing

Both datasets present similar features, capturing network traffic. The features in-

clude basic flow features such as source and destination IP address/port, source/des-

tination bytes, etc., as well as context-specific features. For the detailed features

description, refer to the provided references. These features primarily comprise nu-

merical features with a few categorical features. Although our proposed algorithm

can handle categorical data, other algorithms require numeric representations.

Therefore, to ensure a fair comparison, we encoded all categorical data using label

encoding for other algorithms.

Both Kyoto 2006+ and UNSW-NB15 raw data are quite large. Kyoto 2006+ 138GB

24 https://research.unsw.edu.au/projects/unsw-nb15-dataset

25 https://www.takakura.com/Kyoto_data/
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with more than 808 million events, and UNSW-NB15 dataset with more than 2

million events

Although our algorithm can easily handle these datasets, even with our large-

scale deployment, we were still unable to process the entire datasets when evalu-

ating other outlier detection algorithms under PyOD
26
. This is because the PyOD

implementation of the algorithms only includes single-machine parallel processing.

To address this, we had to reduce the amount of data used. For UNSW-NB15, we

only used one-quarter of the data (UNSW-NB15_1.csv file), which amounted to

700, 001 events (677, 786 normal and 22, 215 attack).

For Kyoto 2006+, we only utilized the data from July to December 2015. Another

issue with the Kyoto dataset is that most of the data consist of attacks. While

this may be appropriate for a supervised learning task, it is not realistic for eval-

uating outlier detection in the field of cybersecurity, where we expect attacks to

be extremely disproportionate to normal traffic. Therefore, we had to refine the

data further by reducing the known attacks to match realistic expectations. En-

suring proper downsampling while preserving the underlying distribution can be

exceedingly challenging. We attempted random stratified sampling of the known

attack class for our experiments to be approximately less than 1% of the entire data.

To ensure the best practices in preserving the original distribution, we used the

months as the strata for sampling. This downsizing reduced the dataset to a total

of 2, 939, 350 (2, 912, 578 normal, 25, 888 known attacks, and 884 unknown attacks).

Lastly, we removed any features that are unrealistic in a real-world scenario and

may cause a bias toward the label. For instance, we excluded the IDS_detection,

Malware_detection, Ashula_detection features from the dataset.

5.5.2 Results

We have followed the standard practices in the field to evaluate the effectiveness of

our proposed algorithm against other commonly used algorithms. The evaluation

was conducted using the metrics described in Table 4.5.

Figure 5.6 (a) and 5.6 (b) presents the Receiver Operating Characteristics (ROC)

curve, which depicts the performance of the HEOD algorithm against the selected

algorithms using the UNSW-NB15 and Kyoto 2006+ datasets. Receiver Operating

Characteristic (ROC) curve is a commonly used tool to evaluate the performance of

a binary classifier. However, when dealing with imbalanced datasets and problems

(e.g., outlier detection in the real world), where one class significantly outweighs

the other, ROCmight not be the best metric to highlight the classifier’s performance.

26 https://pyod.readthedocs.io/en/latest/
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Figure 5.6: The Receiver Operating Characteristics (ROC) and Precision-Recall (PR)

curves for evaluating the performance of the HEOD outlier detection algorithm against

other commonly used algorithms on UNSW-NB15 and Kyoto 2006+ datasets
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This is because ROC is insensitive to class imbalance and instead focuses on the

overall accuracy of the classifier, which can be misleading. In imbalanced datasets,

the classifier may achieve high accuracy by simply predicting the majority class

(TNs) most of the time, ignoring the minority class. A more appropriate metric

would be the precision-recall curve, which better represents the classifier’s perfor-

mance in an imbalanced setting as it replaces TN with another metric that does

not directly take TN, i.e., precision [18, 245]. Figure 5.6 (d) and 5.6 (c) shows the

precision-recall curve when evaluating the performance of the HEOD algorithm

on the two USNW-NB15 and Kyoto 2006+ datasets.

While the precision-recall curve is an excellent metric to evaluate overall perfor-

mance, it is not well-suited for real-world scenarios. We can see that even in this

public dataset, if we ensure feasibility (i.e., scale the outlier proportion to reflect

the real world), the precision-recall curve demonstrates poor performance.

In the real world, where the data scale can reach terabytes with billions of events,

typical precision-recall metrics would not be realistic. In other words, an analyst

would never expect to find all true positives in the entire dataset. Instead, they

expect to see the best results at the top 𝑘 according to the rate they canmanage. This

is important as outlier detection in practice is not a binary classification problem

but a ranking problem.

To better reflect the ranking as the additional objective of the outlier detection,

we will be introducing three additional metrics: TP@K, Precision@K, and F1@K

curves reflected in Figure5.7

The TP@K curve provides valuable information on the number of true positives

detected as we increase the threshold for the top 𝑘-ranked outliers. This helps to

answer the question of how many true positives are identified when considering

the top 𝑘 outliers. In addition, the Precision@K curve offers further insights into

false positives by analyzing the number of true positives and false positives among

the top 𝑘 results. This aids in determining the level of precision the algorithm

achieves at different values of 𝑘 . Furthermore, the F1@K curve provides additional

insights into missed outliers (TNs) by reflecting the F1 score, which is the harmonic

mean of precision and recall, against the threshold 𝑘 . This addresses what happens

when the top 𝑘-ranked outliers are analyzed, i.e., how many are true outliers (TP),

how many are missed (FN), and how many are false outliers (FP)?

These new metrics are particularly useful for evaluating the performance of

our algorithm against others, as they reflect the mindset of a SOC analyst who

is limited by time and resources and is therefore focused on identifying the most

significant outliers [10]. As a result, the analyst expects to find true positives at

the beginning of the ranked list while minimizing the number of false positives

encountered during the analysis.
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(a) The TP@K curve on the Kyoto 2006+.
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(b) The TP@K curve on the UNSW-NB15.

200 400 600 800 1000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision@K Curve
hbos
iforest
cblof
ecod
copod
eod_default
eod_expert

(c) The Precision@K curve on the Kyoto 2006+.
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(d) The Precision@K curve on the UNSW-NB15.
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(e) The F1@k curve on the Kyoto 2006+.
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Figure 5.7: The TP@K, Precision@K, and F1@K (k=1000) curves for evaluating the

performance of the HEOD outlier detection algorithm against other commonly used

algorithms on the UNSW-NB15 and Kyoto 2006+ datasets.
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The experiments demonstrate that our proposed algorithm consistently performs

well compared to other well-known algorithms. Furthermore, it validates our

hypothesis that human-assisted outlier detection, specifically an expert model

where a domain expert contextualizes features, can significantly improve the results

by enabling a more accurate transition from outlierness to maliciousness.

5.6 Case Study: LOLBins Detection
While the previous sections focused on evaluating HEOD as an outlier detection

algorithm, this section will assess its potential for threat detection, especially in a

real-world scenario. Particularly aimed at answering the following questions as

part of the evaluation:

• EQ3. How feasible is it to run our proposed framework in a real-world

setting?

• EQ4. What is the experience of running HEOD as an outlier detection use

case for threat detection in a real-world setting?

In this regard, we have implemented HEOD on the described infrastructure (Sec-

tion 5.4.2) and have productized it in a real-world setting, following the described

implementation (Section 5.4.1).

The described big data platform was part of a larger cyberdefense infrastructure

belonging to a major international organization with over 100, 000 assets. In this

regard, we had access to the enterprise’s EDR logs that were sent to the central

SIEM. These logs were being streamed (near real-time) at scale (4TB compressed

JSON per day), a true big data arriving at a high volume and velocity. This data was

used to evaluate the HEOD framework in production over one month.

Data

The Endpoint Detection and Response (EDR) logs are among one the most valu-

able sources of logs as they provide visibility into activities and events that occur

on the endpoints. EDR logs can include information on processes executed, net-

work connections established, system events, security events, and other endpoint

activities.

There are several commercial EDR solutions available, including CrowdStrike

Falcon
27
and Microsoft Defender for Endpoint. Microsoft offers a comprehensive

27 https://www.crowdstrike.com/products/endpoint-security

139



Chapter 5 Human-assisted Outlier Detection

overview of all events captured by such EDR solutions [172]. Other alternative

solutions to allow one to capture similar events to those captured by EDR includes

Windows Event Logs, and Sysmon [70].

While EDR logs contain a broad range of events, such as network connections,

DNS resolutions, files, and registry modifications, for this experiment, we focused

solely on one of the most valuable event types: process creation. This event in-
cludes details regarding the process executed, including but not limited to a device

identifier, initiating process file name and file hash, execution path, command

line, process integrity level, account SID, parent process ID, and others. To better

understand the features captured by this event type, readers may refer to Microsoft

Defender for endpoint event type DeviceProcessEvents [1] or Sysmon event

ID 1 (Process Creation) [253].

Data Pre-processing

As mentioned, the raw data arrived in the form of compressed JSON files on

ADLS, with each file containing various event types. The pipeline included an ETL

workload that involved opening the compressed JSON files, parsing, duplicating,

and partitioning events based on the event type and the date, and writing to ADLS

as partitioned snappy compressed parquet files.

This data was also enriched with contextual information, such as attaching

inventory data (information about the asset, users, and peer groups).

As previously stated, for this case study, we concentrated solely on process

execution. Specifically, incremental baselining was performed over one month of

data, which spanned over 12TB of compressed parquet files and contained over

4.1 billion events. Following this, a week’s worth of data was utilized for scoring

purposes, spanning over 2.7TB and containing over 2 billion in events.

5.6.1 HEOD Setup

We formulated the problem as detecting advanced threats that involve the use

of Living-off-the-Land Binaries (LOLBins). LOLBins is a term used to describe

legitimate executables, tools, or scripts that attackers can exploit to carry out

malicious activities on a victim’s system while also evading detection by security

tools [148]. The misuse of LOLBins has become increasingly pertinent in today’s

security landscape, as their detection presents significant challenges. It is difficult

to create signatures or heuristics to identify misuse of valid system tools, such as

word.exe or cmd.exe, and blocking them is not a feasible solution. Thus making
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their detection a good case study for an anomaly-based detection approach via the

proposed HEO framework.

To achieve this objective, we filtered the executions only to include those that

were associated with LOLBin executables [160]. We solicited the input of SOC

analysts to design a set of submodules for EDR’s process execution events. These

submodules were created with the aim of targeting specific dimensions or features

within particular contexts, with a focus on identifying possible behavior outliers

that could indicate LOLBins.

Table 5.3 presents examples of the finalized submodules obtained following the

consolidation process with the SOC analysts and performing Exploratory Data

Analysis (EDA). For information about the features used, refer to [1]. In addition

to the default features provided by DeviceProcessEvents, we engineered a few

additional ones, including asset peer group ID based on the enterprise inventory

list and command line features [190], such as length, entropy, and the number of

special characters.

Table 5.3: Example of submodel configuration for evaluating HEOD on process execution

logs.

#SM Context Tree (𝑐) Feature (𝑓 ) count (𝑦) Type (𝑓𝑡 ) Weight (𝜔)

1 - ProcessChain(Parent-Child) - Categorical 1.00

2 - InitiatingProcessSHA256 DeviceId Categorical 1.00

3 InitiatingProcessFileNameNormalized InitiatingProcessSHA256 - Categorical 1.00

4 PeerGroupId -> ProcessChain ProcessIntegrityLevel - Categorical 0.85

5 PeerGroupId -> ProcessChain InitiatingProcessNormaAccountSid - Categorical 0.90

6 PeerGroupId -> ProcessChain InitiatingProcessNormalizedFolderPath - Categorical 1.00

7 PeerGroupId -> NormProcessFilename ProcessCommandLineLength - Categorical 0.65

8 PeerGroupId -> NormProcessFilename ProcessCommandLineEntropy - Numerical 0.70

9 PeerGroupId -> NormProcessFilename ProcessCommandLineSpecialChars - Numerical 80

10 PeerGroupId -> NormProcessFilename ProcessCommandLineParamCount - Numerical 0.70

5.6.2 Results
As previously noted, the HEOD framework does not approach outlier detection as

a classification problem but rather as a ranking problem. Consequently, all events

are assigned an ensemble score. The goal is to achieve high precision when taking

the top 𝑘 events on a daily basis, whereby all top 𝑘 events (alerts) should result in

the identification of an event of interest in the best-case scenario.

However, in practice, achieving a binary categorization where the top 𝑘 alerts are

classified as either false positives (normal behavior with no threat) or true positives

(a threat) is a challenge. To address this, we proposed the following categorization

when evaluating the top 𝑘 alerts per day:
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• False Positive: The outliers that retain anomalous characteristics but do not

exhibit any malicious intent.

• Suspicious: Outliers that initially appeared suspicious, but upon investigation,

they were found to be not a threat, including instances of uncommon human

behavior that may seem malicious.

• Risky: Outliers that indicate a potential risk that requires mitigation but

may not have the most significant impact. Examples of such risks include

indications of misconfigurations and policy violations (such as file transfer,

tunneling, and crypto miners).

• Incident: An outlier that led to the escalation of an incident requiring attention
from the response team.

We request the assistance of the enterprise’s threat hunters and monitoring team.

Specifically, we requested that they allocate time to review the top unique 𝑘 alerts

produced daily. We have represented the results of the investigations in Table 5.4,

where each row corresponds to the findings for a particular day.

Table 5.4: HEOD case study results for detecting LOLBins in a real-world setting.

Day 0 (False Positive) 1 (Suspicious) 2 (Risky) 3 (Incident) Total Alerts (k)

1 74 17 5 2 98

2 84 14 1 1 100

3 81 5 2 0 88

4 75 7 3 0 85

5 78 11 2 2 93

6 74 20 10 3 107

7 69 12 1 1 83

Total 535 86 24 9 654

After combining all classes into one (class TP) and calculating precision, the

resulting value was 0.18, revealing a common misconception in cybersecurity

about outlier/anomaly detection, particularly in real-world scenarios where high

detection rates are not realistic and false positives remain a significant challenge

[10]. This is not necessarily due to the outlier detection algorithm, as we have

demonstrated that our proposed method performs equally well as other algorithms,

particularly when contextualizing features with expert knowledge. Instead, the

fault lies with the domain itself, where outlier behavior does not always translate
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to maliciousness. Effective outlier detection in cybersecurity requires extensive

effort in feature engineering, threat modeling, and problem definition.

It is also worth noting that the number of successful attacks in large enterprises

with numerous security solutions may be relatively low. In this regard, out of the

nine incidents reported, only a handful was deemed to have significant value after

triaging.

As a part of the case study, we also requested the analysts to share their feedback

on hunting for results. The initial response indicated that the quality of the results

was poor as the analysts were accustomed to evaluating alerts generated from

heuristics (signatures), making their evaluation relatively straightforward. However,

hunting for outlier results requires a different mindset, even though every outlier

was adequately explained by the HEDO framework (thus ensuring explainability).

These findings underscore the interpretability challenges associated with outlier

detection, even when the results are explainable.

5.7 Discussion: Outlierness vs. Maliciousness

What is an "outlier"? Typically, an outlier refers to a data point or observation

that falls beyond the normal range or distribution of a given dataset. In our case,

this is characterized by density and distance. However, as mentioned before, it is

important to note that the definition of an "outlier" can vary significantly depending

on the context. One philosophical consideration is that the notion of an outlier is

inherently subjective. The determination of what is deemed "typical" or "normal"

can differ based on the observer’s perspective, and what may be considered an

outlier in one setting may not be regarded as such in another. Furthermore, the

definition of an outlier can evolve over time. This is particularly relevant as we

introduce more complex features, i.e., the curse of dimensional [129]. In this regard,

the likelihood of finding outliers increases as the number of dimensions grows.

Outlierness Implies Maliciousness! Virtually all forms of anomaly detection in

cybersecurity have two implicit assumptions: (i) there is some way to define the

normal patterns, and (ii) deviations from the norm are indicators of undesirable

activities. What if that is not the case? Outliers, or data points that deviate signifi-

cantly from the norm, are often viewed as potential indicators of malicious activity

in cybersecurity. However, it is essential to note that outlierness does not necessar-

ily translate to maliciousness. In many cases, outliers can be the result of legitimate

behavior, such as system fault, changes in system behavior, misconfiguration, noise,

data quality issues (e.g., collection, parsing, etc.), human error, operational fail-
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ures, environmental changes, and generally random human behavior. These are

particularly common in the continuously changing IT landscape.

For example, a system administrator may perform tasks that deviate from the

norm, such as running software updates or installing new programs, but these

actions are not malicious in nature. Similarly, a user accessing the network from an

unusual location or time may be flagged as an outlier, but this does not necessarily

indicate malicious intent.

This way, using outlier detection alone as a method for identifying malicious

activity can lead to a high number of false positives and many alerts that need to

be investigated. This can be time-consuming and resource-intensive for security

teams, leading to alert fatigue and reduced ability to respond to real threats [10].

That is also what we observed during our investigations.

This is a paradigm change as we are challenging the philosophy of outlier detec-

tion in cybersecurity, as legitimate but unusual behavior is more common than one

thinks.

How to get to Maliciousness? In this chapter, we emphasized the significance

of feature engineering and contextualization in enhancing the effectiveness of

an outlier detection algorithm. This is critical in facilitating our transition from

outlierness to maliciousness. In other words, define the problem as much as possi-

ble, incorporate domain knowledge, and select contextualized features that their

anomalies can let us deduce maliciousness.

Consider an attackerwho attempts tomisuse standard system tools (LOLBins) like

powershell.exe and cmd.exe to carry out their malicious intentions. In such cases,

the application itself may not be anomalous, but its anomalous behavior, such as

spawned processes and established network connections, can enable the detection.

Therefore well-thought problem definition and threat modeling, contextualization,

and feature engineering play a crucial role.

Nevertheless, it remains challenging to deducemalicious intent accurately. Hence,

solely relying on anomaly detection to identify malicious activity is not recom-

mended. As suggested by [134] and supported by our own experience. Outlier

detection is based on statistics and probability, which means that analysts should

exercise caution when relying solely on the system’s prediction. Instead, analysts

should use the system’s explanations to determine the best curse of action and form

their own further investigation [10]. Hence, it’s crucial to develop such mindsets

recognizing the limitations of outlier detection and approaching anomaly detection

with a threat-hunting mindset rather than threat detection.

A promising avenue for future research involves merging outlier detection with

expert knowledge and heuristic-based detection sequentially, thereby bridging the
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gap between human-centric and ML-centric detection. Furthermore, involving the

analysts in the process helps establish trust and minimize skepticism [10].

5.8 Limitations and Future Work

Multivariate Features— In our approach, one fundamental limitation is the in-

ability to capture the intricate relationships and dependencies between multiple

features or attributes that may exist in a multivariate dataset. As a result, our

method may not detect outliers that exist in multiple dimensions or only become

apparent when multiple features are examined simultaneously.

We addressed this problem by contextualizing features to capture their dependen-

cies based on expert knowledge. We emphasized the importance of contextualiza-

tion in this domain. Nevertheless, one can further extend this approach by enabling

submodels that support multivariate features, such as considering both request

length and response length together and contextualizing them by destination and

HTTP method.

One could also introduce more advanced submodels, particularly for the numeri-

cal features. For instance, a model that combines features such as transferred bytes

and the duration into a normalized sparse vector contextualized by the destination

and HTTP method and measures the density and distance in high-dimensional

feature space. LOF [31], and GMM [219, 220] are notable examples of algorithms

capable of density estimation in high-dimensional spaces. In addition, Mahalanobis

[59], Euclidean [55], Manhattan [236], Cosine, and Hamming are widely recognized

distance measurement techniques.

Algorithmic Improvement— In this chapter, we presented the rationale behind

each aspect of our proposed algorithms. We also made an effort to keep the design

as modular as possible, recognizing possible future improvements and optimiza-

tions to the underlying techniques, such as enhancing the density measurement,

approximating height/count observations, and data reduction.

An area of improvement for our approach is the kernel height estimation function.

Currently, one of the most computationally intensive tasks in our approach is the

calculation of the estimated height, which requires extensive data shuffling and data

collection, notably, if the data is not reduced (sampled or clustered). An intriguing

future direction could involve adopting signal processing techniques and replacing

the KDE with Fourier coefficients. By doing so, the coefficients can be stored

and utilized for estimating the observation counts. Another potential algorithmic
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improvement involves the ensembling function, where the combination function

could be learned to improve performance.

Highly Correlated Submodels— One of the limitations of our approach is its

reliance on expert-defined submodels. If submodels are not carefully chosen, irrele-

vant outputs may be generated even though the ensembling process attempts to

discard them. Furthermore, if the expert creates highly dependent submodels in

which a high score in one submodel results in a high score in the others, in that

case, the results may be unintentionally biased towards that particular submodel or

feature. Therefore, it is crucial to perform basic exploratory data analysis (EDA)

and feature correlation analysis to determine the submodel configuration.

In addition, it may be worthwhile to explore the possibility of learning submodel

weights over time, which would introduce a feedback loop into the system.

Dependence Ensemble Framework— Our work introduced an ensemble frame-

work that combines multiple submodels to create more comprehensive models

for outlier detection. However, it is possible to introduce more complex logic to

connect models and integrate signature-based filtering or dynamic thresholding

into the pipeline for even greater effectiveness.

5.9 Literature Review

Outlier Detection

As a result of the inherent importance of outlier detection in various areas, con-

siderable research efforts in the survey of outlier detection methods have been

made [4, 6, 9, 38, 39, 94, 150, 199, 216, 256, 269, 288, 291].

One of the most comparable unsupervised outlier detection techniques similar

to ours is the Histogram-Based Outlier (HBOS) algorithm [91]. This method uses

static and dynamic bin width histograms to model the univariate feature densities

and calculate the outlier score for each data instance. HBOS has shown high per-

formance while maintaining computational efficiency, but it has been criticized for

its lack of theoretical foundation and sensitivity to bin width. Nevertheless, HBOS

remains a popular and widely used method for unsupervised anomaly detection.

Our proposed algorithm follows in the footsteps of HBOS but has several key

differences. First, we use kernels instead of histograms to estimate the density.

Second, we propose a scaling function that considers skewness rather than the

default MaxAbs scaling. Third, we introduce a distance function in addition to the

density-based score of HBOS. Lastly, we use different ensemble functions.
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Other well-known algorithms in the domain include Isolation Forest [157], Local

Outlier Factor [31], COPOD[154], and ECOD[155]. Although deep learning has been

successful in many domains, there are still some technical uncertainties regarding

its adoption for real-world anomaly detection applications, such as scalability and

interoperability [196].

Anomaly/Outlier Detection in Cybersecurity

Several academic works have conducted surveys on the applications of anomaly

detection in cybersecurity [7, 24, 69, 77, 123], particularly applied to Intrusion

Detection Systems (IDS) [7, 19, 132]. Here we go through the most relevant works.

Yen et al. [284] introduce Beehive, a novel system designed to improve upon

signature-based approaches for detecting security incidents using proxy logs. Bee-

hive is a three-stage system that involves parsing, filtering, and normalizing data,

followed by feature generation and clustering-based detection. The authors propose

a set of 15 features, categorized as destination-based, host-based, policy-based, and

traffic-based. These features are combined into a feature vector, which is then

subjected to Principal Component Analysis (PCA) to reduce its dimensionality.

Beehive uses an adopted K-means clustering method for anomaly detection, which

does not require the number of clusters to be specified in advance. The authors

evaluate Beehive using terabytes of event logs from a real-world setting at EMC

and highlight its ability to detect malware infections and policy violations.

Our proposed HEOD framework follows a similar logic to the Beehive feature cal-

culation; for instance, the destination prevalence feature of Beehive is equivalent to

one of the potential HEOD submodels. Beehive composes the independent features

into a vector, reduces its dimensionality via PCA, and uses K-means clustering for

anomaly detection, while HEOD uses an ensemble function on top of independent

univariate submodels’ outputs. Beehive’s emphasis on feature engineering and its

deployment in a real-world setting makes it a valuable contribution to the field of

threat detection. HEOD formalizes this mindset further as a generic framework for

outlier detection applied to threat detection.

Lei [152] proposes an anomaly traffic detection algorithm that utilizes Support

Vector Machine (SVM) algorithm with particle swarm optimization (PSO) to es-

timate parameters with greater accuracy. The proposed technique is evaluated

on both the DARPA and KDDCup99 datasets. Yin et al. [285] present a deep

learning-based approach for developing an anomaly intrusion detection system

using a recurrent neural network (RNN). The RNN is employed for supervised clas-

sification learning, incorporating feedback from previous information and applying

it to the current output. The authors evaluated the model’s performance on the
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NSL-KDD dataset through two experiments: binary classification and multiclass

classification. Moustafa et al. [180] proposed a collaborative anomaly detection

framework (CADF). The proposed approach involves capturing and logging net-

work data, followed by pre-processing and employing the Gaussian Mixture Model

(GMM) in combination with the interquartile range to identify abnormal patterns.

Kim et al. [134] proposed an anomaly detection approach to identify unknown

intrusions in the endpoint environment by utilizing Local Outlier Factor (LOF) and

Autoencoder. The authors also introduced an attack profiling concept to create rules

based on particular scenarios (e.g., Ransomware, Drive-by-Download) to identify

malicious behavior from a set of anomalous suspicious events. The feature set

used for anomaly detection includes the process name, local IP address, remote IP

address, UNIX timestamp, file name, and event type. The authors confirmed the

effectiveness of their proposed approach by detecting 107 new suspicious processes

that were not identified previously using their self-collected dataset. In a study,

Alhawi et al. [12] developed a decision tree classifier to identify Windows ran-

somware by utilizing features such as protocol type, IP addresses, packet and byte

counts, and duration of network traffic. The researchers evaluated their approach

and showed that the model achieved high accuracy in identifying ransomware

using the created feature database.

Ongun et al. [192] propose an Active Learning framework called LOLAL to

detect LOLBins. The authors introduce a novel command-line vectorization method,

cmd2vec, which involves tokenizing and word embedding (using word2vec and

FastText) to transform command lines into feature vectors. The active learning

module in LOLAL uses a non-linear boosting classifier and a naïve Bayes anomaly

detector, along with an adaptive sampling strategy, to iteratively select anomalous

and uncertain samples for labeling by a human analyst. The authors demonstrate

that LOLAL can achieve an F1 score of 96%. In a similar study, Utz [190] discusses

an unsupervised approach for the same problem of LOLBins detection. The author

proposes a set of features derived from the execution command line, including the

existence of URL encoding, potential obfuscation, anomalous arguments, and others,

in addition to the parent-child relationship of the process. These features are used

as part of outlier detection using various algorithms such as Isolation Forest, LOF,

and One-Class SVM. Both papers emphasize the importance of contextualization

and feature engineering as integral parts of threat modeling.

As supported by the relevant literature, there is substantial potential for using

unsupervised machine learning, particularly in cybersecurity, for identifying out-

liers and possibly detecting threats. One thing in common in most studies was the

importance of feature engineering and threat modeling. Notably, the best outcomes

were achieved when the features were generated with a cybersecurity-oriented
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perspective. For example, rather than blindly use Sha256 as part of a feature vector,

calculate the prevalence based on the Sha256 and use that as a feature. The HEOD

framework has been developed to facilitate this process while providing an intuitive

and scalable algorithm tailored to cybersecurity requirements.

5.10 Chapter Summary
This chapter challenges the traditional assumptions associated with anomaly detec-

tion in cybersecurity and elaborates on the requirements for successful adoption.

Leading to the proposed HEOD framework designed to bring outlier detection to

cybersecurity.

HEOD emphasizes explainability and interoperability, adopting a SOC analyst

mindset that examines independent features within their specific contexts. The

framework consists of an ensemble of simple uni-variate submodels specifically

designed to examine a single, carefully selected feature within a given context

(hence human-assisted). Every submodel consists of baselines which can be con-

ceptualized as a set of histograms showing frequency observations of a single

feature within different contexts. Given a histogram, the submodel is capable of

scoring observation values. The scoring is based on two principles: the lower the

observation density and the further from the closest density, the more significant

the outlier. The submodels’ independent outputs are then combined to derive a

single outlier score representing the overall outlierness of an event.

We assessed the HEOD algorithm’s performance against other commonly used

outlier detection algorithms on the USNW-NB15 and Kyoto 2006+ datasets. Apart

from the conventional metrics, such as ROC and PR curves, we introduced two

novel metrics - Precision@K and F1@K. These metrics are based on the expectation

that a reliable outlier detection algorithm should keep true positives (TP) in the

top 𝑘-scored entries while minimizing the false positives (FP), where 𝑘 reflects the

analyst’s capacity to handle alerts in a real-world scenario. Our findings revealed

that HEOD surpassed all other algorithms, particularly in Precision@K. Further-

more, the results validate our hypothesis that integrating domain expert knowledge

(contextualized features) significantly enhances overall performance.

Finally, as part of a case study, we deployed the HEOD framework in a real-world

setting next to the SIEM system of a larger international enterprise, analyzing

14.7 TB of data with more than 6.1 billion events. The system was configured

with a set of submodels tackling the problem of LOLBins detection via Endpoint

Detection and Response (EDR) logs, particularly process execution events. The

results demonstrated that a good anomaly detection technique has the potential
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to identify unknowns while highlighting the unavoidable challenge of high false

positive rates in a real-world setting. This led us to a discussion and future work on

how we can continue to improve anomaly detection in cybersecurity, not just as an

algorithm but as a paradigm shift, by challenging the mindset of threat detection

versus threat hunting.

In Summary, the HEOD framework is intended to assist cybersecurity SOC an-

alysts in effectively utilizing outlier detection. The approach focuses on threat

modeling and collaboration with domain experts to generate submodels with uni-

variate and contextualized features. As a result, the framework can be customized

to address various issues, such as command-and-control detection through analysis

of proxy logs (e.g., infrequent destinations, user agents, duration, etc.), malware

detection using process execution logs (e.g., Sha256 prevalence, path, SID, etc.), and

so on. Moreover, the theories used in HEOD, which involves breaking down large

problems into smaller ones and utilizing independent submodels with a mechanism

to combine their scores, can be applied to address problems that don’t necessarily

require outlier detection. For example, a system designed to detect beaconing

could be composed of multiple submodels, each intended to score a specific at-

tribute such as periodicity of connection, executable prevalence, and rarity of other

features [185].
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Data-driven decision-making is the process of making informed and objective deci-

sions by analyzing relevant data and information. This process typically involves

applying various techniques, such as data mining, statistical analysis, and machine

learning, to extract insights from large datasets. The overarching goal of data-driven

decision-making is to improve the accuracy and efficiency of decision-making by

basing decisions on empirical evidence and objective analysis rather than intuition

or personal experience alone.

Many of today’s organizations use data-driven decision-making to optimize their

operations, enhance their performance, and achieve their strategic objectives, such

as more effective maintenance, marketing, recommendations, etc. [28, 212].

Despite being one of the most data-rich domains, the cybersecurity industry has

failed to fully incorporate data-driven decision-making into its practices. While

there have been significant advancements in cybersecurity technologies and tech-

niques, decision-making within the industry continues to rely heavily on human

intuition and experience, with the underutilization of data-driven approaches [10].

The cybersecurity research community has been actively exploring advanced

data mining techniques to tackle the ever-increasing complexity of cybersecurity

problems. However, while there has been significant progress in this area, many of

these techniques are yet to be successfully adopted in real-world settings. Many

of the techniques being discussed in the cybersecurity research community are

considered unrealistic, and lack practicality [10, 18].

6.1 Contributions of this Thesis
The contributions of this thesis can be summarized as follows:

Security Information, Event Management, and Analytics (SIEMA)

Identifying the limitations of current SIEM systems, specifically their inability to

perform advanced analytics and incorporate cutting-edge data mining, machine

learning, and graph mining approaches. To address this gap, it introduces the

concept of SIEMA (Security Information/Event Management and Analytics), a

next-generation SIEM that enables advanced analytical capabilities.
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The reference architecture for SIEMA is drawn from best practices and design

patterns of big data architectures and pipelines.

Two versions of SIEMA were implemented and deployed: a research workbench

using open-source technologies (e.g., Apache Spark, Flink, Arrow, HDFS, Yarn)

for academic purposes and an industrial PoC with commercial alternatives (e.g.,

Databricks and Azure Data Lake Storage) in a real-world environment alongside

an international organization’s traditional SIEM system.

The analytical capabilities of SIEMA contribute to advancing research in data

mining for threat detection and developing realistic and successful use cases in an

industrial setting.

Data-driven Threat Detection

With architectural support, one can tackle many SOC operations. This thesis

specifically focused on data-driven threat detection through the application of

outlier detection Chapter 5 and graph mining Chapter 4. More specifically:

CyberHIN, MalRank, MalLink: Formulating threat detection as a large-

scale graph inference problem based on two fundamental principles: guilt-
by-association and exempt-by-reputation. This led to the introduction of our

proposed graph-inference algorithm named MalRank, a scalable graph-based

inference algorithm designed to infer a node’s maliciousness score based on its

association with other nodes. MalRank offers several unique characteristics

that distinguish it from other graph-based inference algorithms, as evidenced

by its superior performance when compared to other algorithms, including

Belief Propagation.

MalRank is designed to operate on a Heterogeneous Information Network

(HIN) that is derived from events/logs within SIEM systems. This thesis

proposes CyberHIN, a knowledge graph that is constructed from entities and

relationships extracted from endpoint EDR logs and network Proxy and DNS

logs, further enriched with related OSINT and CTI. The entities and rela-

tionships in CyberHIN emphasize on global features - shared characteristics

and associations among different entities such as written/read files, loaded

libraries, network connections, ASN, and registrar associations.

Subsequently, MalLink is introduced, a system designed to automate the

process of tailoring the generation of CyberHIN and executing MalRank in a

real-world setting. Both MalLink and MalRank utilize Apache Spark to meet

the scalability requirements, enabling them to run effectively on SIEMA.
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In a subsequent real-world deployment, MalLink was leveraged to detect

variants of previously known malicious entities. The obtained results validate

the original hypotheses of guilt-by-association and exempt-by-reputation.

Moreover, MalLink has highlighted several intrinsic features, including its

ability to rectify erroneous threat intelligence data and its potential to assess

and quantify the accuracy of CTI.

HEOD: Challenging the philosophy of outlier detection when applied in

cybersecurity and emphasizing the importance of keeping the SOC analysis

in the loop, leading to the introduction of Human-assisted Ensemble Outlier

Detection (HEOD). HEOD framework is designed to bring outlier detection

to cybersecurity by stressing explainability and interoperability, adopting

a SOC analyst mindset that examines independent features within their

specific contexts. The framework consists of an ensemble of simple uni-

variate submodels specifically designed to examine a single, carefully selected

feature within a given context (hence human-assisted).

The algorithm underlying the HEOD framework has demonstrated superior-

ity compared to other widely used outlier detection algorithms, particularly

when evaluating the top 𝑘 scored outliers. Additionally, the real-world im-

plementation of HEOD for detecting LOLBins has been found to be feasible,

but not without its challenges.

Despite this, the research underscores the challenging task of transitioning

from outlierness to maliciousness.

6.2 Future Work

This thesis primarily focuses on addressing one of the most critical operations of

today’s Security Operations Center (SOC), which is threat detection. The study has

incorporated learnings from outlier detection and graph mining to design advanced

use cases. However, there are numerous other research avenues that could be

explored to enhance SOC operations further. For instance, the incorporation of

Natural Language Processing (NLP) techniques [158, 270] or time series analysis

[111]. Furthermore, data-driven problem-solving approaches can also be applied to

address other SOC-related challenges such as risk assessment, alert prioritization

[10, 22], vulnerability prediction [122], etc.

One of the principal contributions of this thesis was the development of custom

algorithms that are unique in their design. Although we provided the rationale for
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each design decision, we acknowledge the potential for improvements, as discussed

in the future work section of the respective chapters.

Lastly, modern organizations require more than a next-generation SIEM with

advanced analytical capabilities; they need a fully managed system that is also

capable of taking actions, i.e., SOAR and XDR. However, this thesis solely focused

on the SIEM and analytical capabilities and excluded data collection and incident

response from its scope. Nevertheless, it is plausible to extend the system’s func-

tionality by assuming the presence of dedicated agents that can manage and enable

new capabilities, including enhanced event collection, correlation, edge processing,

asset discovery, vulnerability assessment and scanning, policy and configuration

checking, file integrity, incident response, and many others. With such a system,

one can take data-driven decision-making one step further and automate decision

execution.

6.3 Final Remarks
Applying a data-driven mindset to security operations is challenging due to several

factors, including the architectural limitations of current systems, the complexity of

cybersecurity data, the shortage of skilled data scientists with expertise in cyberse-

curity, and the domain’s rapidly evolving and adversarial nature. However, despite

these challenges, this thesis advocates the shift from human-centered security

operations toward a more data-centric approach, promoting next-generation SOCs.
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