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Abstract

Knowledge graphs are structured repositories of knowledge that store facts
about the general world or a particular domain in terms of entities and
their relationships. Owing to the heterogeneity of use cases that are served
by them, there arises a need for the automated construction of domain-
specific knowledge graphs from texts. While there have been many research
efforts towards open information extraction for automated knowledge graph
construction, these techniques do not perform well in domain-specific settings.
Furthermore, regardless of whether they are constructed automatically from
specific texts or based on real-world facts that are constantly evolving, all
knowledge graphs inherently suffer from incompleteness as well as errors in
the information they hold.

This thesis investigates the challenges encountered during knowledge graph
construction and proposes techniques for their curation (a.k.a. refinement)
including the correction of semantic ambiguities and the completion of missing
facts. Firstly, we leverage existing approaches for the automatic construction
of a knowledge graph in the art domain with open information extraction
techniques and analyse their limitations. In particular, we focus on the
challenging task of named entity recognition for artwork titles and show
empirical evidence of performance improvement with our proposed solution
for the generation of annotated training data.

Towards the curation of existing knowledge graphs, we identify the issue of
polysemous relations that represent different semantics based on the context.
Having concrete semantics for relations is important for downstream appli-
cations (e.g. question answering) that are supported by knowledge graphs.
Therefore, we define the novel task of finding fine-grained relation semantics
in knowledge graphs and propose FineGReS, a data-driven technique that
discovers potential sub-relations with fine-grained meaning from existing pol-
ysemous relations. We leverage knowledge representation learning methods
that generate low-dimensional vectors (or embeddings) for knowledge graphs
to capture their semantics and structure. The efficacy and utility of the
proposed technique are demonstrated by comparing it with several baselines
on the entity classification use case.

Further, we explore the semantic representations in knowledge graph embed-
ding models. In the past decade, these models have shown state-of-the-art
results for the task of link prediction in the context of knowledge graph comple-
tion. In view of the popularity and widespread application of the embedding
techniques not only for link prediction but also for different semantic tasks,
this thesis presents a critical analysis of the embeddings by quantitatively



measuring their semantic capabilities. We investigate and discuss the reasons
for the shortcomings of embeddings in terms of the characteristics of the
underlying knowledge graph datasets and the training techniques used by
popular models.

Following up on this, we propose ReasonKGE, a novel method for generating
semantically enriched knowledge graph embeddings by taking into account the
semantics of the facts that are encapsulated by an ontology accompanying the
knowledge graph. With a targeted, reasoning-based method for generating
negative samples during the training of the models, ReasonKGE is able to
not only enhance the link prediction performance, but also reduce the number
of semantically inconsistent predictions made by the resultant embeddings,
thus improving the quality of knowledge graphs.



Zusammenfassung

Wissensgraphen sind strukturierte Wissenssammlungen, die Fakten über die
allgemeine Welt oder eine bestimmte Domäne in Form von Entitäten und de-
ren Beziehungen speichern. Aufgrund der Heterogenität der Anwendungsfälle,
für die sie verwendet werden, besteht ein Bedarf an der automatischen Erstel-
lung von domänenspezifischen Wissensgraphen aus Texten. Obwohl es viele
Forschungsbemühungen in Richtung offener Informationsextraktion für die
automatische Konstruktion von Wissensgraphen gegeben hat, sind diese Tech-
niken in domänenspezifischen Umgebungen nicht sehr leistungsfähig. Darüber
hinaus leiden alle Wissensgraphen, unabhängig davon, ob sie automatisch aus
spezifischen Texten oder auf der Grundlage realer Fakten, die sich ständig
weiterentwickeln, konstruiert werden, unter Unvollständigkeit und Fehlern in
den darin enthaltenen Informationen.

Diese Arbeit untersucht die Herausforderungen, die bei der Konstruktion von
Wissensgraphen auftreten, und schlägt Techniken zu ihrer Kuratierung (auch
bekannt als Verfeinerung) vor, einschließlich der Korrektur semantischer Mehr-
deutigkeiten und der Vervollständigung fehlender Fakten. Zunächst nutzen wir
bestehende Ansätze für die automatische Erstellung eines Wissensgraphen im
Kunstbereich mit offenen Informationsextraktionstechniken und analysieren
deren Grenzen. Insbesondere konzentrieren wir uns auf die anspruchsvolle
Aufgabe der Named Entity Recognition für Kunstwerke und zeigen empirische
Belege für eine Leistungsverbesserung mit der von uns vorgeschlagenen Lösung
für die Generierung von annotierten Trainingsdaten.

Im Hinblick auf die Kuratierung bestehender Wissensgraphen identifizieren
wir das Problem polysemer Relationen, die je nach Kontext unterschiedliche
Semantiken repräsentieren. Konkrete Semantiken für Relationen sind wich-
tig für nachgelagerte Anwendungen (z.B. Fragenbeantwortung), die durch
Wissensgraphen unterstützt werden. Daher definieren wir die neuartige Auf-
gabe, feinkörnige Relationssemantiken in Wissensgraphen zu finden und schla-
gen FineGReS vor, eine datengesteuerte Technik, die eine datengesteuerte
Technik, die potenzielle Unterbeziehungen mit feinkörniger Bedeutung aus
bestehenden polysemen Beziehungen entdeckt. Wir nutzen Lernmethoden
zur Wissensrepräsentation, die niedrigdimensionale Vektoren (oder Einbet-
tungen) für Wissensgraphen erzeugen, um deren Semantik und Struktur zu
erfassen. Die Wirksamkeit und Nützlichkeit der vorgeschlagenen Technik wird
durch den Vergleich mit verschiedenen Basisverfahren im Anwendungsfall der
Entitätsklassifizierung demonstriert.

Darüber hinaus untersuchen wir die semantischen Repräsentationen in Mo-
dellen zur Einbettung von Wissensgraphen. In den letzten zehn Jahren ha-
ben diese Modelle in den letzten zehn Jahren die besten Ergebnisse bei der



Vorhersage von Links im Zusammenhang mit der Vervollständigung von Wis-
sensgraphen erzielt. Angesichts der Popularität und der weit verbreiteten
Anwendung der Einbettungstechniken nicht nur für die Linkvorhersage, son-
dern auch für andere semantische Aufgaben, wird in dieser Arbeit eine kritische
Analyse der Einbettungen durch quantitative Messung ihrer semantischen
Fähigkeiten vorgenommen. Wir untersuchen und diskutieren die Gründe für
die Unzulänglichkeiten von Einbettungen in Bezug auf die Eigenschaften der
zugrundeliegenden Wissensgraphen-Datensätze und die von den populären
Modellen verwendeten Trainingstechniken.

Darauf aufbauend schlagen wir ReasonKGE vor, eine neuartige Methode
zur Erzeugung semantisch angereicherter Wissensgrapheneinbettungen durch
Berücksichtigung der Semantik der Fakten, die durch eine den Wissensgraphen
begleitende Ontologie gekapselt sind. Mit einer gezielten, schlussfolgernden
Methode zur Erzeugung von Negativproben während des Trainings der Mo-
delle ist ReasonKGE in der Lage, nicht nur die Leistung der Link-Vorhersage
zu verbessern, sondern auch die Anzahl der semantisch inkonsistenten Vorher-
sagen der resultierenden Einbettungen zu reduzieren und damit die Qualität
der Wissensgraphen zu verbessern.
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Chapter 1

Knowledge Graphs

“The greatest enemy of knowledge is not ignorance,
it is the illusion of knowledge.”

— Stephen Hawking

The advent of Big Data has led to a tremendous increase in the rate of generation of
data over the past decade. While this data in and of itself is useful, the real value lies
in the extraction of important nuggets of information from this data to generate and
accumulate knowledge. This knowledge when stored in a structured and easily accessible
form can power a wide variety of applications. This is where Knowledge Graphs serve an
essential role. Knowledge graphs (KGs) are a popular form of representation of facts that
are extracted from texts contained in Web pages and unstructured or semi-structured
documents.

KGs have become an integral part of the Semantic Web [12], where the stored
information is represented with the help of the RDF standard [96]. Each node in the
knowledge graph corresponds to an entity of the semantic web, which is connected to the
other nodes by means of meaningful relations that are the edges of the graph. A fact is,
thus, represented in RDF language as a triple ⟨subject, predicate, object⟩ where subject
and object belong to a set of entities and predicate refers to the relationship between them.
Knowledge graphs rely on an underlying schema or ontology consisting of the concepts
(that define the type of the entities) and the possible relationships among the concepts.
The ontology holds the key to the semantic meaning of the facts in a KG and dictates the
logical rules as well as restrictions for populating the KG with actual data. They play a
central role in the Semantic Web by providing a set of common rules and standards for
shared communication of data and knowledge [105]. Thus, ontologies encapsulate the
necessary data semantics that can enable machine understanding of real-world data.

After the introduction and popularization of the first web-scale knowledge graph1

by Google in 2012 [41], KGs have been powering not only Google’s search, but also an
increasing number of applications in the area of natural language processing (NLP) and
information extraction (IE) [25, 41]. Several KGs have been made publicly available for
academic research and applications, including Wikidata [160], DBpedia [97], Yago [145]
and NELL [26]. Yago was created from crawling the Wikipedia pages for facts and using
the Wikipedia categories to build the entity types. DBpedia was also built from Wikipedia

1prior to this, databases of facts were known as knowledge bases in the Semantic Web community
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1. KNOWLEDGE GRAPHS

with a focus on the info-boxes to derive the DBpedia ontology. NELL has been constructed
with facts from millions of Web pages based on an initial list of predicates. These KBs
consist of millions of entities and relationships between them, e.g., the birthplace of a
person, the actor or director of a movie, the country that a city is located in and so
on. Such KBs are used for question answering, Web search, recommendation systems,
personal assistants, and a variety of other AI applications [168].

Apart from the general purpose KGs that have been primarily designed and curated
through academic efforts, major technology and financial companies such as Goldman
Sachs, Bosch, Microsoft and Amazon have also created their own KGs that power their
respective use cases, both internally and externally. In addition, KGs are also being
explored for applications in specific domains such as medical, financial, cultural heritage
and so on. As such, domain-specific knowledge graphs have been gathering a lot of
attention for various applications (as discussed in detail in Chapter 2).

1.1 Construction of Knowledge Graphs

While they are undeniably valuable information repositories, the process of construction
of knowledge graphs from textual sources is a long-standing research problem. The
complexity and nuances of natural language makes the extraction of information an
arduous task. Since language allows for a rich variety of expressions for conveying
knowledge, automatic extraction of facts is a complicated endeavour, with several steps of
information extraction, including named entity recognition (NER), entity linking, relation
extraction (RE), as well as the refinement of the extracted facts for a clean and structured
representation in form of a KG. While some of the steps such as NER have been steadily
getting better and show state-of-the-art results comparable to manual efforts, others
such as RE are more difficult and far from an established solution that is adoptable for
practical use cases.

Furthermore, due to the large volumes of data that have been made available by the
Web, the manual creation of a general-purpose KG is nearly an impossibility. As such,
automated methods for KG construction based on machine learning techniques have been
widely employed [26, 142]. These techniques populate a KG based on an ontology which
is assumed to be available beforehand. The availability of a suitable ontology is a strong
assumption, one that puts a constraint on the extraction of all information available in
the text and might even restrict the quality and coverage of the resultant KG. This effect
is especially more pronounced for domain-specific settings where the expertise to design
custom ontologies is often scarce as well as quite expensive. Therefore, Open Information
Extraction (Open IE) techniques, that do not rely on a pre-existing schema for fact
extraction, prove to be more feasible for the construction of KGs in many scenarios.

Open information extraction. Open IE has emerged as a popular approach, where
a large set of relational triples can be extracted from text without any human input or
domain expertise [46] in the absence of a pre-specified list of relations. These techniques
focus on the extraction of triples consisting of noun phrases and relation phrases from
the text as a first step. Thereafter, these triples are canonicalized to ensure a consistent
representation of entities and relations and to remove duplicate information. Several
Open IE techniques have been proposed to build and populate knowledge graphs from

2



1.2 Knowledge Graph Curation

free-form texts [8, 32, 47, 56, 91, 177]. Traditional systems were either rule-based or
statistical and relied heavily on pattern-based extractions. Recently, Open IE techniques
based on neural networks have also been proposed [188]. While these techniques are
fundamentally targeted for domain-independent extractions from heterogeneous corpora,
their evaluation is predominantly performed by using Web and news datasets. Hence,
their scalability and efficacy for unseen and novel datasets are not considered or properly
evaluated. Research on this topic is still ongoing and an effective Open IE pipeline for
the automated construction of a KG from a specific corpus is yet elusive. In the context
of this open question, there is a need to investigate the challenges of employing Open IE
techniques for the construction of a domain-specific knowledge graph and identify the
key areas of improvement.

1.2 Knowledge Graph Curation

Modern KGs store information about millions of facts, however, whether they have
been populated on the basis of an ontology or constructed automatically from texts,
the resulting KGs are often bound to be incomplete in terms of fact coverage and they
are rarely fully correct [54]. Due to the inaccuracies induced by different statistical or
linguistic methods employed for their construction, several types of quality issues can
manifest in the KGs, not only in terms of incorrect facts, but also in the form of semantic
ambiguities or inconsistencies. To address these shortcomings, knowledge graph curation
or refinement is an essential task that ensures the quality of the knowledge graphs before
they can be deployed for downstream applications.

Knowledge graph completion has been the subject of particular interest in many
research efforts. Popular KGs, that represent facts about the real world, are inherently
incomplete due to the evolving nature of the information. Furthermore, for KGs con-
structed from the Web, automatic extraction techniques fail to extract all information,
and the underlying sources can be incomplete themselves. In the case of KG construction
with Open IE techniques, it is hard to establish a recall of 100% for the extraction of
facts from raw text. Even if all the facts were being correctly extracted by Open IE,
it is unreasonable to expect all the information would be explicitly stated in the text
such that it can be extracted. Consider the text ‘US President Barack Obama’s wife
Michelle Obama’ - from this, we could derive triples such as ⟨Obama, presidentOf, US ⟩
and ⟨Barack Obama, hasSpouse, Michelle Obama⟩, but it still does not give us the fact
that Michelle Obama is the first lady of the US. Such facts can only be derived through
inference over the KG facts in the presence of similar information for other entities.

The most common techniques for this type of inference used to be statistical meth-
ods [127, 151]. However, representation learning techniques have recently become quite
popular for KG completion. After the advent of word embeddings as a powerful means
of representation learning for words, similar embeddings were proposed for KG repre-
sentation as well. Just like word embeddings create dense, real valued vectors for the
words in low dimensions (as compared to TF-IDF where the dimensions are as high as
the number of words), Knowledge Graph Embeddings mainly learn the representation
of the input KG by projecting entities and relations in a low-dimensional vector space,
such that these vectors capture some key structural relationships between the entities
and relations on a global level (entire KG). As such, knowledge graph embedding models
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have been employed for KG completion by performing fact prediction or link prediction.
This is the task of predicting facts that are true in the real world, but missing in the
KB. Due to their conceptual simplicity and high scalability, knowledge graph embeddings
have become one of the most popular strategies not only for KG completion, but also for
other semantic tasks such as entity clustering [51] and entity typing [82]. In the following
section, we outline the basic idea for KG embeddings and the way they are trained. We
also present an overview of the most popular types of embedding models with examples.

1.3 Representation Learning with Embeddings

In the last decade, numerous methods for computing knowledge graph embeddings have
been proposed. The methods differ from one another in terms of how they relate the
entities and relations of the KG in the latent space. We explain the most basic embedding
model TransE [20], which is a translation-based model. The embeddings are designed so
that for a triple ⟨h, r, t⟩, the vectors h, r and t satisfy the relation h + r ≈ t or r ≈ t -
h (as denoted in Figure 1.1). For example, if we know ⟨Barack,marriedTo,Michelle⟩
then the model would create the vector Barack + marriedTo to be close to the vector
Michelle. An embedding with these properties has several advantages: firstly, the
embedding allows us to feed entities and relations into machine learning methods that
work on vectors (e.g., classification algorithms). The vectors are typically low in dimension
(e.g., a few hundred), which makes them particularly suited for such applications. Secondly,
the embedding provides a natural way of grouping together similar entities, such that
the vectors for similar entities would lie close to one another in the vector space. In our
example, we would expect Barack to be close in the vector space to other politicians.
Most importantly, as mentioned previously, the embeddings allow for the prediction of
missing links, e.g. if the entity for the spouse of Barack was missing, then the vector
obtained from Barack + marriedTo would correspond to the vector of the correct entity
i.e. Michelle.

In terms of implementation, knowledge graph embeddings are created by trainable
machine-learning models, where they take as input a fact ⟨h, r, t⟩, and output a score of
its likelihood of being true - the higher the score, the more likely the model believes the
fact to be true. This score is typically denoted by f(⟨h, r, t⟩) or fr⃗ (⃗h, t⃗). To train such a
model, it needs to be provided with a set of true facts from the KG, as well as negative
samples associated with the facts so as to avoid over-generalization. The negative samples
are typically generated by corrupting the facts from the KB, i.e., by taking a fact ⟨h, r, t⟩
from the KB and replacing the tail by a random entity t′ (further negative sampling
techniques will be discussed in Chapter 5).

TransE belongs to the class of geometric models which interpret relations as geometric
operations in the vector space. One limitation of TransE is the inability to model
symmetric relationships [166]. TransE also has problems modeling many-to-one, reflexive,
and transitive relations, and to capture multiple semantics of a relation. Subsequently
proposed models such as TransH [166], TransD [83], TransR [101] tried to obviate some
of these issues. For instance, TransH [166] tries to alleviate the limitations of TransE by
allowing an entity to have different representations in the embedding space depending on
the relation it is involved with. Each relation r is represented not only by a vector r, but
also by an hyperplane (i.e. a sub-space of one dimension less than the embedding space).
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Figure 1.1: The relation between the vectors for a triple ⟨h, r, t⟩ in the embedding
space.

Algebraically a hyperplane can be defined by a single vector, namely the vector that is
orthogonal to it. Thus, each relation r is associated with a set of two vectors: r for the
relation itself, and hr for its hyperplane.

Other embedding methods in the semantic matching category compare the vector of
the subject and the vector of the object directly in order to assess how likely the fact is
to be true. In these models, the latent semantics of the entities and relations are matched
to determine the plausibility score of a triple. These models perceive the link prediction
task as a tensor decomposition task where the KG is a tensor(3-D adjacency matrix) that
can be decomposed into entity and relation embeddings as low-dimensional vectors.

RESCAL [119] is the simplest model in this category. Entities are represented as
vectors and relations become bilinear functions (simply represented as square matrices).
A triple ⟨h, r, t⟩ is then scored by the application of the relation-specific bilinear function
to the entity embeddings: f(⟨h, r, t⟩) = h⃗t ·Mr · t⃗, where h⃗ (resp. t⃗) is the embedding of
h (resp. t) and Mr ∈ Rd×d is the representing matrix of r.

DistMult [176] is a variation of the RESCAL model where the relation matrices are
all forced to be diagonal. This simplifies the computations, and reduces the parameter
space. As a drawback, DistMult gives the same score for the triples ⟨h, r, t⟩ and ⟨t, r, h⟩.
Thus, it is unable to model asymmetric relations such as sonOf, actedIn etc. Despite
these limitations, DistMult has been recently shown to perform as well as many recently
proposed models, presumably due to its simplicity and scalability [140]. ComplEx [153]
improves upon the DistMult model by using the same diagonal constraint, but with
complex-valued embedding vectors.

Deep neural architectures have also been introduced for KB embeddings, with the
hope that hidden layers can capture more complex interaction patterns between entities
and relations (and then estimate more complex scoring functions). ConvE [38] is a
popular example of models that are based on convolutional neural networks (CNN). These
can learn complex nonlinear features of the entities and relations with fewer parameters
by using 2D convolutions over embeddings. ConvE has been shown to be particularly
effective for complex graphs with nodes having a high number of incoming edges. The
model introduced the 1-N scoring scheme where for a given triple ⟨h, r, t⟩ where t is to be
predicted, the matching is performed with all the tail entities at the same time, leading

5



1. KNOWLEDGE GRAPHS

to speedier training. ConvE has proven to be a competitive embedding model and a
popular baseline for more recent deep learning approaches.

The embedding models outlined in this section are primarily evaluated in terms
of their performance for the link prediction task related to the KG completion. But
embeddings also implicitly capture the semantics of the KG, and thus can be employed
for tasks such as entity similarity. In this thesis, we take advantage of these embeddings
for performing a novel task of KG curation in terms of refining the semantics of the
relations in the KG. At the same time, it is important to question the limitation of the
semantic representations in embeddings instead of assuming they would perform well
for all semantic use cases. For this, a critical and quantitative analysis of the semantic
capability of embeddings is imperative and thus, a part of this thesis. Furthermore,
ontologies serve as the semantic guide of knowledge graphs which can also improve the
semantics of embeddings when they are included in the training process of the models.
The role of ontologies during the training as well as the performance benefits from this
approach are also an important contribution of this thesis.

1.4 Outline and Contributions

This chapter has provided a short introduction to knowledge graphs as well as research
efforts related to their construction and refinement. We have also discussed popular models
for knowledge graph embeddings and their role in KG representation and completion.
The remainder of the thesis is organized into individual chapters that address a specific
research question in the above context and describe our contributions towards a solution.

Chapter 2 is focused on the construction of knowledge graphs, in particular, the
challenges of constructing a domain-specific KG. We address the following :

(RQ 1) How can a knowledge graph be constructed automatically from domain-specific
texts with the help of existing techniques for Open IE ? In particular, how can we improve
named entity recognition for domain-specific entities?

The chapter first describes our efforts to extract triples from a noisy domain-specific
corpus with the help of Open IE pipeline. The challenges encountered at each step of
the KG construction process are discussed at length. The features and statistics of the
resulting KG are also presented in this chapter. The contributions of this work were the
result of a collaboration with Alejandro Sierra-Munera as well as our students Philipp
Schmidt, Julius Streit, Simon Thormeyer and Maria Lomaeva. This work was published
at the Text2KG workshop at the ESWC 2022 conference [80].

Furthermore, this chapter also presents our contributions towards generating training
data for the named entity recognition task, particularly for domain-specific entities. We
motivate the importance and challenges of identifying artwork titles from a corpus of
art-historic data as well as establish the lack of annotated training data as the main
reason for sub-par performance of existing NER tools. Subsequently, we discuss our
proposed pipeline for automatically generating such annotated data and demonstrate the
improvement in NER results. Alejandro Sierra-Munera and Jan Ehmueller have provided
valuable contributions to this effort in terms of additional experimental results and an
NER demo tool. This work was published as a research paper in the Semantic Web
Journal in the Special Issue on Cultural Heritage 2021 [79].

Chapter 3 is devoted to the curation of knowledge graphs. In this context, we specifi-
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cally address the following:
(RQ 2) How can existing knowledge graphs be refined in terms of having unambiguous
semantics for relations with the help of embedding techniques for knowledge graph repre-
sentation?
This chapter first discusses the issue of relation polysemy in popular knowledge graphs and
the advantages of fine-grained relation semantics for downstream applications. We then
describe our proposed method FineGReS which leverages knowledge graph embeddings
to derive sub-relations having precise semantics in a data-driven and scalable manner.
To demonstrate the effectiveness and utility of this method, an extensive experimental
analysis is also included in this chapter. The chapter is based on the full paper at the
research track of CIKM 2022 conference [78].

Chapter 4 is concerned with the exploration of the semantic representation in knowl-
edge graph embedding models. We address the following:
(RQ 3) Do popular knowledge graph embedding models adequately capture the semantics
of knowledge graph components in a way that is universally applicable for semantic tasks?
This chapter discusses the general adoption of embedding models for various semantic
tasks with examples of related work and presents our investigation of the semantic rep-
resentation in the embeddings. The results of the experimental analysis reveal serious
shortcomings for the fine-grained semantics of entities. Further, the reasons behind the
shortcomings are also explored and detailed in the chapter. The full paper published at
ESWC 2021 forms the basis of this chapter. This work was done in close collaboration
with Jan-Christoph Kalo (PhD student at TU Braunschweig at the time) who contributed
to the design as well as the execution of the experiments.

In Chapter 5, we endeavour to address the shortcomings of KG embedding models for
the prediction of missing links as presented in the previous chapter. Specifically, we look
at the following question:
(RQ 4) How can we improve the semantics and overall performance of knowledge graph
embeddings by integrating ontological reasoning during the training of the models?
We present our technique for negative sampling ReasonKGE that can detect semantically
incorrect predictions being made by an embedding model via ontological reasoning and
generate targeted negative samples for the next iteration of training to prevent such
mistakes. The ReasonKGE approach is able to considerably not only improve link
prediction performance but also improve the ratio of semantically consistent predictions
for any underlying embedding model. The results of further experiments are also included
in this chapter. This work was done during my Ph.D. sabbatical with the Bosch Centre
for AI (Renningen) under the guidance of Daria Stepanova and Trung-Kien Tran with
inputs from Gad-Elrab and it was published as a research paper in ISWC 2021.

Finally, Chapter 6 concludes this thesis by providing a summary of the contributions
made by this thesis. This chapter also discusses the ideas for extending the proposed
contributions for furthering the research in the area of knowledge graphs and their
semantic representation with embeddings.
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Chapter 2

Domain-Specific Knowledge Graph
Construction

“If you wish to make an apple pie from scratch,
you must first invent the universe.”

— Carl Sagan

As outlined in Chapter 1, automated KG construction is an ongoing research area.
While there have been several efforts in this direction, there is no widely accepted and
effective pipeline for the automated construction of a KG from a given corpus. The
problem gets significantly compounded in domain-specific scenarios where general-purpose
techniques for automated KG construction suffer serious limitations [86]. This chapter
is devoted to highlighting the challenges of constructing a domain-specific KG in an
automated manner with Open IE techniques. Domain-specific NER in the absence
of annotation data is one of the major challenges and we show that an approach for
generating large, good quality annotated datasets for NER models can be adapted for
identification of domain-specific entities.

Chiefly, this chapter is based on the contributions in two publications - first is Jain
et al. [80] that presents the details of an Open IE pipeline for domain-specific KG
construction and the limitations thereof. The second is Jain et al. [79] that concerns
with named entity recognition for domain-specific entities, specifically artworks. This
chapter is structured as follows — in Section 2.1 we discuss the need for domain-specific
knowledge graphs as well as the particular difficulties faced during their construction.
Section 2.2 presents related work in the area of domain-specific tasks, relating to Open IE
based techniques for KG construction and named entity recognition for domain-specific
entities. In Section 2.3 we describe the construction of an art-historic KG with the help
of Open IE techniques and the challenges that were encountered at each step. Section 2.4
provides the details of our contributions towards the NER for artworks, where we propose
an automated technique for the generation of training data for NER. Finally, Section 2.5
gives a summary of this chapter.
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2.1 Domain-Specific Knowledge Graphs

General purpose knowledge graphs constructed from Web sources cover a wide range of
domains. As such, they cannot be expected to be comprehensive and semantically aligned
to any single domain in particular. In order for knowledge graphs to be useful for a specific
domain, it is essential to have a semantically-rich and comprehensive representation of
the domain in the KG. This is where domain-specific KGs play an important role. For
instance, the most important concepts and relations differ from one domain to the other
— for the financial domain, concepts such as Bank, Loans, etc. are important to detect
and classify, while for the biomedical domain, the names of Proteins, Genes etc. are
important to be correctly identified. Due to this, general purpose techniques need to be
adapted for the semantic representation of specific domains.

In order to motivate and explore the research problems for the construction of domain-
specific KGs, we consider cultural heritage as a representative domain. We are working
in collaboration with the Wildenstein Plattner Institute1 that was founded to promote
scholarly research on cultural heritage collections, where a wealth of information is buried
in large collections of recently digitized art resources. In these resources, cultural objects
such as artworks, auctions, art collections, artistic movements etc. are often mentioned
within semi-structured or unstructured text narratives. The identification and extraction
of the mentions of these cultural objects as named entities and establishing their relations
can facilitate a plethora of applications such as search and browsing in digital resources,
help art historians to track the provenance of artworks and enable wider semantic text
exploration for digital cultural resources.

However, extraction of relevant entities as well as construction of a representative art
knowledge graph is a non-trivial task. This is attributed to the inherent complexities with
cultural heritage data as well the lack of any domain-specific gold standard annotated
datasets for training and evaluation of automated techniques. Consider the task of named
entity recognition (NER) - most of the recent neural network based NER models have
been trained on a few well-established corpora available for the task such as the CoNNL
datasets [149, 150] or OntoNotes [131]. Although these systems attain state-of-the-art
results for the generic NER task, their performance and utility for identifying fine-grained
entities is essentially limited due to the specific training of the models. Thus, it comes as
no surprise that it has been a challenge to adapt NER systems for identifying fine-grained
and domain-specific named entities with reasonable accuracy [130, 132].

Cultural heritage data poses several additional challenges - the data is extremely
heterogeneous and comprises of multiple topics, multiple languages as well as numerous
different text formats ranging from structured tabular data to long passages of unstruc-
tured text descriptions. Data obtained from historical archives also poses significant
linguistic challenges in terms of outdated vocabularies and phrases, such that the modern
natural language processing tools are unable to perform well for these texts [43]. In the
absence of gold standard annotation datasets for NER as well as other natural language
processing and information retrieval tasks, the adaptation of existing solutions to the
art and cultural heritage domain faces significant challenges [156]. We elaborate on this
further in the following sections in the context of constructing an art-historic KG in an
automated manner, including the task of NER for cultural heritage entities.

1https://wpi.art/
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2.2 Related Work

Here, we discuss the previous work related to construction of knowledge graphs in domain-
specific settings, especially in the cultural heritage domain. An overview of efforts for
automated KG construction with Open IE techniques is included as well. We also present
a discussion of previous work on domain-specific and fine-grained NER as well as efforts
related to the cultural heritage domain. Further, we mention previous work in the context
of generation of annotated datasets for NER.

Knowledge graphs for cultural heritage. The construction of domain-specific
KGs has been the subject of investigation in previous works for various domains, e.g.
software engineering [185], academic literatures [72], and more prominently, the biomedical
domain [11, 45, 178]. With the availability of digitized cultural heritage data, previous
works have proposed KGs for art-related datasets [27, 73, 124, 171]. Arco [27] is a large
Italian cultural heritage graph with a pre-defined ontology that was developed in a
collaborative fashion with contributions from domain experts all over the country. While
the Arco KG is quite broad in its coverage, Ardo [161] pertains to a very specific use case
of multimedia archival records. Similarly, the Linked Stage Graph [148] was developed as a
KG specifically for storing historical data about the Stuttgart State Theater. Increasingly,
the principles of linked open data2 have also been widely adopted within the cultural
heritage domain for facilitating researchers, practitioners and generic users to study
and consume cultural objects. Notable examples include the CIDOC-CRM [123], the
Rijksmuseum collection [39], the Zeri Photo Archive3, OpenGLAM [157] among many
others. Most related to our work is the ArtGraph [28] where the authors have integrated
the art resources from DBpedia and WikiArt and constructed a KG with a well-defined
schema that is centered around artworks and artists. While all these works are concerned
with KGs and ontologies for specific art-related corpora, they have leveraged a schema for
representing the information and are not concerned with the challenges of an extraction
process in its absence, which is the main focus of our work.

Open IE for KG construction. Open IE approaches for the construction of KGs
extract triples directly from text, without an explicit ontology or schema behind the
extraction process. Several works have been proposed in the past. TextRunner [177]
relies on a self supervised classifier which determines trustworthy relationships with
pairs of entities, while Reverb [47] uses syntactical and lexical constraints to overcome
incoherent and uninformative relationships. ClausIE [32] relies heavily on dependency
parsing to construct clauses from which the propositions will be extracted. The Stanford
CoreNLP OpenIE implementation [8, 108] leveraged in this work uses dependency parsing
to minimize the phrases of the resulting clauses, and was originally evaluated in a slot
filling task. However, these methods suffer from a number of shortcomings in terms of
their applicability to specific domains [86]. Existing techniques that exhibit state-of-
the-art results on standard, clean datasets fail to achieve comparable performance for
domain-specific datasets [75]. Moreover, none of the the previously proposed automated
methods are directly applicable for the arts and cultural heritage domain, where unique
challenges with respect to the heterogeneity and quality of data are prevalent 2.1 . In

2Linked Open Data: http://www.w3.org/DesignIssues/LinkedData
3https://fondazionezeri.unibo.it/en
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this chapter, we identify and discuss the particular difficulties encountered while applying
existing information extraction techniques to art-related corpora 2.3.2.

NER for cultural heritage. Named Entity Recognition, being an important step
towards KG construction, has been the subject of numerous research efforts [99]. There
is also prior work for domain-specific NER, such as for the biomedical domain. NER
systems have been used to identify the names of drugs, proteins and genes [88, 93, 155].
But since these techniques rely on specific resources such as carefully curated lists for
drug names [90] or biology and microbiology NER datasets [36, 68], they are highly
specific solutions geared towards biomedical domain and cannot be applied directly to
cultural heritage data. In the absence of gold standard NER annotation datasets, the
adaptation of existing solutions to the art and cultural heritage domain faces many
challenges, some of them being unique to this domain. Seth et al. [156] discuss some
of these difficulties and compare the performance of several NER tools on descriptions
of objects from the Smithsonian Cooper-Hewitt National Design Museum in New York.
Segers et al. [141] also offer an interesting evaluation of the extraction of event types,
actors, locations, and dates from unstructured text present in the management database
of the Rijksmuseum in Amsterdam. However, their test data contains Wikipedia articles
which are well-structured and more suitable for extraction of named entities. On similar
lines, Rodriquez et al. [138] discuss the performance of several available NER services
on a corpus of mid-20th-century typewritten documents and compare their performance
against manually annotated test data having named entities of types people, locations,
and organizations. Ehrmann et al. [43] offer a diachronic evaluation of various NER
tools for digitized archives of Swiss newspapers. Freire et al. [50] use a CRF-based
model to identify persons, locations and organizations on cultural heritage structured
data. However, none of the existing works have focused on the task of identifying titles
of paintings and sculptures which are one of the most important named entities for
the art domain. Moreover, previous works have merely compared the performance of
existing NER systems for cultural heritage, whereas our contribution aims to improve the
performance of NER systems by generating domain-specific high-quality training data.

Generation of NER training data. While several prominent systems have achieved
near human performance for the few most common entity types [7, 100, 107, 187], they are
dependent on a few prevalent benchmark datasets that provide gold standard annotations
for training purposes. These benchmark datasets were manually annotated using proper
guidelines and domain expertise. E.g., the CoNNL and OntoNotes datasets, that were
created on news-wire articles, are widely shared among the research community. Since
these NER systems are trained on a corpus of news articles they perform well only
for comparable datasets. Also, these datasets include a predefined set of named entity
categories, which might not correspond in different entity domains. In most cases, these
systems fail to adapt well to new domains and different named entity categories [130, 132].
Manual curation of gold standard annotations for large domain-specific corpus is expensive
in terms of human labour and cost, while also requiring significant domain expertise.
Hence our work complements the efforts of NER model improvements by focusing on the
automated generation of training datasets for these models. In Varma et al. [158], the
authors attempt to aid the creation of labeled training data in weakly-supervised fashion by
a heuristic based approach. There are other works that depend on heuristic patterns along
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with user input [23, 67]. In the context of generating training datasets for NER, previous
works have exploited the linked structure of Wikipedia to identify and tag the entities
with their type, thus creating annotations via distance supervision [5, 121]. Ghaddar and
Langlais further extended this work by adding more annotations from Wikipedia [58] and
adding fine-grained types for the entities [57]. However, these techniques are only useful in
a very limited way for the cultural heritage domain, since Wikipedia texts do not contain
sufficient entity types relevant to this domain. We propose a framework to generate a
high-quality training corpus in a scalable and automated manner and demonstrate that
NER models can be trained to identify mentions of artworks with notable performance
gains.

In the next section, we outline our efforts for building an art-historic KG from a
cultural heritage dataset with an Open IE pipeline. The features of the resulting KG and
the limitations of generic techniques at each step will be discussed in detail as well.

2.3 Knowledge Graph Construction for Cultural Heritage

The art and cultural heritage domain provides a plethora of opportunities for knowledge
graph applications. An art knowledge graph can enable art historians, as well as interested
users, to explore interesting information that is hidden in large volumes of text in a
structured manner. With a large variety of diverse information sources and manifold
application scenarios, the (automated) construction of task-specific and domain-specific
knowledge graphs becomes even more crucial for this domain.

In contrast to general purpose KGs, a KG for the art domain could comprise a specific
set of entity types, such as artworks, galleries, as well as relevant relations, such as
influenced by, part of movement etc., depending on the specific task and on the specific
text collection. The important entities and relations might also differ across different
document types, such as auction catalogues, exhibition catalogues, or art magazines.
On one hand, a general purpose, art-oriented ontology may not be well-suited and
comprehensive enough for specific data collections. On the other hand, designing a
custom ontology for the different art corpora would be a challenging and expensive task
due to the need for significant domain expertise. In the past, several attempts have
been made at creating KGs for art and related domains [27, 73, 171], with the most
recent one by Castellano et al. [28]. However, there exists no systematic method for
the construction of a knowledge graph based on a collection of art-related documents
without a well-defined ontology. The schema-less Open IE approach is attractive for
the art collections since there is no need to rely on existing ontologies to dictate the
information extraction process which might restrict the scope of the entities and relations
that could be extracted from the text (when the ontology is not hand-crafted for the
specific dataset).

This section presents the results from our exploration of existing Open IE techniques
to generate structured information. We discuss our insights in terms of their shortcomings
and limited applicability when deployed for noisy, digitized data in the art domain.

2.3.1 Dataset

A large collection of digitized art historical documents was made available by our project
partners as a representative cultural heritage dataset. The dataset consists of art related
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Table 2.1: Types of documents in WPI dataset

Document type Count Ratio

Auction Catalogues 71,192 0.45
Books 42,370 0.27
Exhibition Catalogues 38,176 0.24
Others 7,054 0.04

Figure 2.1: Example of scanned page

texts in many different languages including English, French, German, Italian, Dutch,
Spanish, Swedish and Danish among others. The collection consists of different types of
documents: auction catalogues, full texts of art books related to particular artists or art
genres, catalogues of art exhibitions and other documents. The auction and exhibition
catalogues contain semi-structured and unstructured texts that describe artworks on
display, mainly paintings and sculptures. Art books may contain more unstructured text
about the origins of artworks and their creators. Table 2.1 shows the proportion of the
different kinds of documents in the dataset. For reference, a few sample documents from a
similar collection of digitized exhibition catalogues4 and historical art journals5 are shown
in Fig. 2.1. The pages of the catalogues and books in the WPI dataset were scanned
with OCR and each page was converted to an entry stored within an elastic search index.
Due to the limitations of OCR, the dataset did not retain its rich original formatting
information which would have been very useful for analysis. In fact, the data suffers from
many spelling and formatting mistakes that need to be appropriately handled. Fig. 2.2
shows a typical text excerpt that highlights the noise in the dataset. After OCR of the
page, the page numbers are merged with the text, any formatting indicators present in
the original page are lost, there are several spelling errors and it is hard to distinguish

4from - Lukas Cranach: Gemälde, Zeichnungen, Druckgraphik ; Ausstellung im Kunstmuseum Basel
15. Juni bis 8. September 1974, (https://digi.ub.uni-heidelberg.de/diglit/koepplin1974bd1/0084,0095)

5from - Studio: international art-2.1894, October 1984, (https://digi.ub.uni-heidelberg.de/diglit/
studio1894/0019)
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Figure 2.2: Example of digitized text

the artwork title from its description.

2.3.2 Open IE for KG construction

In this section, we describe the steps employed for the automated extraction of information
(in form of triples) to construct an art-historic knowledge graph based on our underlying
art-historic dataset. Fig. 2.3 shows an overview of this process. In order to restrict
the size of the dataset for a proof-of-concept of our KG construction process, a subset
of the entire dataset pertaining to information about the artist Picasso was chosen.
The decision of choosing an artist-oriented subset of the collection enabled us to better
understand the context and evaluate the triples that were obtained throughout the process
of KG construction. The data was filtered by querying the document collection using the
keyword query ‘Picasso’, resulting in 224,469 entries (where each entry corresponds to a
page of the original digitized corpus) containing the term ‘Picasso’. Due to the filtering,
each entry is an independent document, in the sense that the neighboring entries do
not always represent the correct context. This led to some of the entries in our dataset
containing incomplete sentences at the beginning or the end of a page. One such example
is an entry starting with ‘to say47—Picasso never belittled his work, until . . . ’ where
the tokens ‘to say’ belong to a sentence which started in a different entry, that might no
longer be a part of the dataset under consideration. It is important to note that in the
same example we can see more noise from the OCR process, e.g., numbers are mixed in
between words in the digitized version of the text. In general, the dataset contains full
sentences, such as ‘Matisse’s return to the study of ancient and Renaissance sculpture
is significant in itself.’, as well as short description phrases, figure captions or footnotes
such as ‘G. Bloch, Pablo Picasso, Bern, 1972, vol. III, p.142’.

Finding named entities

As a first step, it was interesting to inspect if the named entities present in the corpus
could be easily identified. A dictionary-based approach to find the named entities would
identify the mentions with a high precision, but at the cost of very low recall by ignoring
many potentially interesting entities to be discovered in the corpus. Therefore, we chose to
follow a machine learning approach to named entity recognition (NER). Generic NER tools
work very well for the common entity types, such as person, location, organization and
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Figure 2.3: Steps for construction of art-historic KG

so on, though fine-grained or domain-specific entities are harder to identify (Section 2.4).
We employed the SpaCy library6 for finding named entities since its pre-trained models
includes a Work Of Art category that could potentially identify the entities that are
important in the art domain (this could encompass mentions of paintings, books, statues
etc.). Excluding the cardinal entities in order to reduce noise, the SpaCy library with
the pre-trained ‘en core web trf’ model was used to identify the following entity types -
Work Of Art, Person, Product, ORG, LOC, GPE and NORP, which showed reasonably
good results. The process of NER enabled us to filter out any sentences without any
entity mention since such sentences were likely to have no useful information for the KG
construction. Thus, the NER step helped with pruning the dataset for further processing,
as well as improving the quality of the resulting KG.

Triple extraction

After obtaining informative sentences from the previous step, we employed Open IE
tools to extract the triples from them. It is important to note that while there are some
art-related ontologies proposed in previous works such as Arco [27] and ArDo [161], none
of them are suitable for our corpus since they are very specific to the datasets they were
designed for. Other general ontologies such as CIDOC-CRM are, on the other hand,
too broad and would not be able to extract novel and interesting facts from a custom
and heterogeneous corpus such as ours, where the entities and relations among them
are not known before hand. In the absence of such an ontology specifically designed for
the description of art-historic catalogs, open information extraction techniques for the
construction of our KG enabled us to broaden the scope and utility of the extracted
information.

To this end, we ran the Stanford CoreNLP OpenIE annotator [108, 133] to extract

6https://spacy.io/usage/v3
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⟨subject, predicate, object⟩ triples from the sentences. A total of 5,057,488 triples were
extracted in this process, where multiple triples could be extracted from a single sentence.
Another round of filtering was performed at this stage, where any triples that did not
contain a named entity in the subject or object phrase were removed. Additionally,
duplicate entries and triples with serial numbers as entities were also ignored. Some
examples of triples that were removed are: ⟨we, have, good relationship⟩, ⟨i, be, director⟩,
⟨brothel, be in, evening⟩, ⟨drawings, acquired, work⟩. A total of 160,000 triples remained,
a valid triple at this stage looked like ⟨P. Picasso, is, artiste⟩.

Entity linking

Once the triples were extracted, the entity linking component of the Stanford CoreNLP
pipeline [108] was used to link the entities. This component uses WikiDict as a resource,
and uses the dictionary to match the entity mention text to a specific entity in Wikipedia.
Since the entities in our dataset were present in multiple different surface forms, this step
allowed us to partially normalize the entities and identify the unique entities. Though
the number of entities was reduced as a result, the total number of triples remained the
same. Note that this linking could only map entities to their Wikipedia counterpart
if the entity was found as a subject or object in a triple. In many cases though, the
subject and object were noun phrases instead of obvious entities, for which this kind of
linking did not really work. This process was still quite useful as around 108,841 out
of 337,100 entities were successfully linked to their Wikipedia form (leading to 8,369
unique entities). Some of the most frequent entities found in the dataset (along with their
frequencies) were: (Pablo Picasso, 11219), (Paris, 2178), (Artist, 1904), (Henri Matisse,
1769), (Georges Braque, 1352).

Canonicalization

One of the main challenges when constructing a KG through Open IE techniques, is
that of canonicalization. Multiple surface forms of the same entity or relation might be
observed in the triples extracted with Open IE techniques in the form of noun phrases
or verb phrases that need to be identified and tagged to a single semantic entity or
relation in the KG. Since the triples extracted from our dataset via Open IE method
comprised many noisy phrases, as well as new entities, such as titles of artworks, that
may not be available for mapping in existing databases, entity linking techniques would
not suffice in this case. Different from entity linking (that can only link entities already
present in external KGs), canonicalization is able to perform clustering for the entities
and relations that may not be present in existing KGs, by labelling them as OOV (out of
vocabulary) instances. In this work, we chose to perform canonicalization with the help
of CESI [159] which is a popular and openly available approach for this task. The CESI
approach performs clustering over the non-canonicalized forms of noun phrases for entities
and verb phrases for the relations. It leverages different sources of side information for
noun phrases and relation phrases such as entity linking, word senses and rule-mining
systems for learning embeddings for these phrases using the HolE [118] knowledge graph
embedding technique. The clustering is then performed using hierarchical agglomerative
clustering (HAC) based on the cosine similarity of the phrase embeddings in vector space.
In this manner, different phrases for the same entity or relation were mapped to one
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canonicalized form for including in the KG. In total, we obtained 3,789 entity clusters
and 3,778 relation clusters from the CESI approach that contained two or more terms.

Representative selection. An important step in the CESI approach is the assignment
of representatives for the clusters obtained for the noun and relation phrases. This is
decided by calculating a weighted mean of all the cluster members’ embeddings in terms
of their frequency of occurrence. The phrase closest to this mean is selected as the
representative. However, this technique did not work well for our domain-specific and
noisy dataset and many undesirable errors were noticed. For example, an entity cluster
obtained from CESI was: Olga Khokhlova, olga, khokhlova, picasso. Since Picasso is the
most frequent entity in the dataset, it was chosen as representative by CESI, but this
is clearly wrong since Picasso and Olga are different entities. There were several other
errors observed, e.g., all days of the week were clustered together in one cluster. This
could be a result of the embedding and contexts of the days of the week to be quite
similar, hence their vectors would end up together in the vector space. In other cases,
the color blue occasionally showed up in a cluster of phrases related to color red, certain
dates got clustered and certain related but not interchangeable words got clustered (kill
vs murder vs shot). In some cases, the first name was being replaced by the incorrect
full name (not every david is david johnson). To mitigate the above discussed errors, we
had to perform manual vetting of the clusters for verification and selection of the correct
cluster representatives which took around 2-3 person hours. During this process, certain
clusters, where the entities were different, were removed (such as the cluster with days of
the week). After this, the entities and relations were canonicalized as per their chosen
cluster representatives leading to a total of 35,305 unique entities and 33,448 unique
relations in the final KG.7

Entity typing

Since a schema or ontology was not employed to extract the triples from text, the entities
in our KG did not have any entity types implicitly assigned to them. Therefore, we
attempted to identify the types of as many entities in our graph as possible. With the help
of NER, we assigned the types to the entities that were recognized in the triples. A total
of 14,960 entities were typed with this technique to generic types such as Person, Product,
ORG, LOC, GPE, NORP and Work Of Art, as well as numeric types such as Date, Time
and Ordinal. Note that Work of Art is quite a broad category that includes artworks but
also movies, books and various other art forms. Since artworks such as paintings and
sculptures are one of the most important entities in our art-historic KG, it is worthwhile to
identify the mention and type of these entities. However, generic NER process is neither
equipped nor optimized to correctly identify such mentions. Thus, we additionally applied
dictionary-based matching. This was done by compiling a large gazetteer of artwork titles
by querying Wikidata with the help of the Wikidata Query Service8 for the names of
paintings and sculptures, retrieving approximately 15,000 artwork titles (the details of
further work along these lines are described in Section 2.4). In addition, we augmented

7It is to be noted that existing canonicalization techniques such as CESI are largely optimized for
canonicalization of entities and their performance is considerably worse for relations. We also observed
similar results during our analysis.

8https://query.wikidata.org/
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Table 2.2: Statistics of the KG

Attribute
Total
Triples

Unique
Entities

Unique
Relations

Artworks Artists

Count 147,510 35,305 33,448 1,397 656

our dictionary with the names of the artwork entities from the ArtGraph dataset [28]
which contains more than 60,000 artworks derived from DBpedia and WikiArt. If a match
was found for an entity in our KG in the compiled dictionary, the type was assigned
as artwork accordingly. This led to the tagging of further 1,397 entities in our KG as
artworks. The dictionary-based matching for artworks was particularly useful in the cases
where it was able to correctly identify entities that were wrongly assigned as the Person
type by NER, such as la donna gravida, portrait of mary cassatt and st. paul in prison.
Similar to artworks, we attempted to additionally identify the names of artists in our
triples. While NER could only tag entities as Person, we used a dictionary of artist
names from Wikidata to identify 656 unique artist entities in our data. These included
names of artists such as Piet Mondrian, Edvard Munch and Rembrandt.

However, the process of entity typing described above is only able to identify and
tag around half of the entities in our KG. Several domain and corpus-specific challenges
acted as bottlenecks during this process. For example, even after filtering, some triples
extracted from Open IE contained either subject or object noun phrases that were generic
and did not correspond to any named entity. Examples of such phrases include essay,
anthology, periodical, or album that are present in triples such as ⟨album, be shown in,
Paris⟩. Without designing a custom ontology for this corpus, such entities cannot be
hoped to be correctly typed.

The categorization of the relations in the KG is a particularly complicated task due
to the wide variety of relations extracted from the Open IE process. Few of the most
frequent relations in the KG are will, be in, have, show, paint, work etc. We estimated
that the types of the entities could be utilized to find patterns and link the most popular
edges in the KG to the relations in existing graphs such as Wikidata or ArtGraph.
However, preliminary analysis led to some interesting observations. Firstly, we noted the
presence of multiple relations between pairs of entities in the KG. For example, Picasso
and June are connected by various relations such as will be, work and take trip in that
were extracted from different contexts in the corpus and represent separate meaningful
facts. Furthermore, in general, there are several different types of semantic relations
between the popular entity types in our KG. For instance, two entities of the type artist
are connected by several relations including work, meet, know well, be with, friend of and
be admirer of. While this variety indicates that a large number of interesting facts have
been derived by Open IE in the absence of a fixed and limiting schema, normalizing the
relations to improve the quality of the KG is a difficult task that requires further work.

2.3.3 Art-historic knowledge graph

The statistics of the KG generated from the steps as described in the previous section
are shown in Table 2.2. After obtaining this refined set of triples for the first version of
the art-historic KG, we performed a preliminary analysis of the graph to derive useful

19



2. DOMAIN-SPECIFIC KNOWLEDGE GRAPH CONSTRUCTION

insights with the help of the NetworkX9 package. To understand the graph structure,
the number of disconnected components of the graph was measured before and after the
canonicalization step. It was noticed that the number of disconnected components was
reduced to around 1,500 (down from 2,500) after clustering with CESI. This indicates
that canonicalization of entities and relations improved the quality of the knowledge
graph by removing unnecessary disconnected parts that were created through redundant
triples. Additionally, we also performed node centrality on the graph using eigenvector
centrality [19] and link analysis using PageRank [126]. For both the measures, the node
for Pablo Picasso was the most central. This confirms the property of the underlying
dataset which is focused on Picasso. Other central nodes discovered were corresponding
to popular words in the corpus such as work, artist, painting etc. Overall, it is promising
to witness that centrality analysis of the generated KG conforms well regarding the main
entities and topics of the underlying corpus. A hand-picked example of a subset of the
neighborhood of the entity Picasso is shown in Fig. 2.4.

Figure 2.4: Illustration of a subset of the KG

Implementation

Taking cue from related work [28], we have encoded our KG data into Neo4j10 which is a
no-SQL graph database that provides an efficient way of capturing the diverse connections
between the different entities of our knowledge graph. Additionally, the knowledge graph
stored in the Neo4j database can be queried easily with the help of the Cypher language
for enabling data exploration and knowledge discovery. Fig. 2.5 shows the results of a
sample query that can be executed on the KG - persons and/or art styles that Picasso
influenced or was influenced by. In some cases, interesting connections with other relevant

9https://pypi.org/project/networkx/
10https://neo4j.com
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entities are also retrieved, thus providing useful cues for further exploration of the data
in the KG for domain experts as well as interested users.

Evaluation

Due to the lack of any gold standard for direct comparison, the evaluation of the resulting
KG proved challenging. While an absolute measure of the coverage of any KG is a
non-trivial task due to the open world assumption [54], we attempted to perform limited
evaluation in terms of the coverage of the KG in a semi-automated fashion. For this, we
first created a subset of Wikidata [160] by querying for triples about the entity Picasso
and used this as the knowledge graph for comparison. This is motivated by the fact that
Wikidata contains high quality information about Picasso and the entity linking used in
our pipeline performs the linking to Wikipedia (hence, Wikidata) entities. Therefore, it
was likely to have a higher match between the surface forms of entities in our KG to the
Wikipedia entities, as compared to other datasets such as DBpedia.

From the obtained Wikidata subset, 100 triples were randomly selected that related to
information about Picasso as well as about museums that owned his works. Upon careful
manual inspection (independently by three annotators) and resolution of conflicts with
discussions, it was measured that the facts represented in 43% of these triples were also
present in our KG as a direct match or in a different form with the same meaning. Notably,
our KG was missing information about the museums that own Picasso’s works, this is
because our underlying corpus is also lacking comprehensive information on this topic.
Therefore, triples relating to museums from Wikidata could not be matched. Additionally,
we checked how many of our entities and entity pairs are written in exactly the same way
as in the Wikidata graph. Overall, around 12% of entities and 10% of entity pairs in our
graph have exact matches in Wikidata. These preliminary results are promising and point
towards the need for a domain-oriented construction process for further improvement of
the art-historic KG. In particular, the precision of the triples in art-historic KG is more
important to the users and therefore, verification for the triples that were extracted from
our dataset but are not found in Wikidata needs to be conducted by enlisting the help
of domain experts. While we have performed a semi-automated evaluation for the first
version of our KG, a more rigorous and thorough evaluation of the correctness of the
facts is certainly imperative before this KG can be useful to a non-expert user. One way
to ensure this would be to maintain the provenance and of the facts in the KG, in terms
of their source document as well as their confidence measure. This could also facilitate a
fair and complementary manual evaluation in terms of precision and recall which could
provide further insights.

2.3.4 Observations

Section 2.3.2 described our attempt at constructing a domain-oriented knowledge graph
for the art domain in an automated fashion with Open IE techniques. Due to the noisy and
heterogeneous dataset that is typical of digitized art-historic collections, we encountered
challenges at various steps of the KG construction process. During the very first step,
it was difficult to correctly identify the mentions of artworks (i.e. titles of paintings) in
the dataset due to the noise and inherent ambiguities. This domain-specific issue needs
further attention in order to improve the quality as well as coverage of the resulting KG
and is the main topic of discussion in the next section(2.4).
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While the Open IE approach allowed for the extraction of a wide variety of entities
and relations, this led to canonicalization becoming a complicated task. We observed
that existing techniques for canonicalization on generic datasets, such as CESI, do not
show comparable performance for domain-specific dataset. Another important aspect is
the incomplete tagging of the various types of entities obtained from Open IE. Attributed
yet again to the noise in the process, as well as to lack of any underlying schema, many
entities could not be assigned their correct type. This task needs further exploration for
the enrichment of the KG.

With regard to the implementation of the KG pipeline, while we have so far used off-
the-shelf tools and libraries like SpaCy, Stanford CoreNLP and CESI, further fine-tuning
is needed for the task of domain-specific KG construction. It would also be worthwhile
to explore and evaluate the performance with other available tools such as Flair [2]
and Blink [172] for entity recognition, linking and typing, as well as OpenIE [91] and
MinIE [56] for the extraction of triples.

The evaluation of the art-historic KG is also a crucial task worth discussing. While
we have performed a semi-automated evaluation for the first version of our KG, a more
rigorous and thorough evaluation of the correctness of the facts is certainly imperative
before this KG can be useful to a non-expert user. For this, it is necessary to closely
collaborate with the domain experts.

Figure 2.5: Illustration of a subset of KG, depicting the influence of and
on Picasso (corresponding query: MATCH p=(s)-[:beinfluenceby]-(o) WHERE

s.name="Pablo Picasso" RETURN p)
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In the next section, we put our focus to one of the first challenges of domain-specific
KG construction, which is NER for domain-specific entities. We discuss the particular
intricacies for identifying artwork titles and motivate the necessity of generation of
training data for this problem. Further, we present the merits of this approach in terms
of improved NER performance.

2.4 Named Entity Recognition for Artworks

Identification of mentions of artworks seems, at first glance, to be no more difficult
than detecting mentions of persons or locations. But the special characteristics of these
mentions makes this a complicated task which requires significant domain expertise to
tackle. Artworks in fine-art collections are typically referred to by their titles, these titles
could have been assigned by artists or, in the case of certain old and ambiguous artworks,
by collectors, art historians, or other domain experts. Due to the ambiguities that are
inherent in artwork titles, their identification from texts is a challenging task. As an
example, consider the painting titled ‘girl before a mirror ’ by Pablo Picasso — this title
merely describes in an abstract manner what is being depicted in the painting and thus,
it is hard to identify it as a named entity without knowing the context of its mention.
Similarly, consider the painting with the title ‘head of a woman’ — such phrases can
be hard to be distinguished as named entities from the surrounding text due to their
generality. Yet, such descriptive titles are common in the art domain, as are abstract
titles such as ‘untitled’.

To circumvent ambiguities present in art-related documents for human readers, artwork
titles are typically formatted in special ways — they are distinctly highlighted with
capitalization, quotes, italics or boldface fonts, etc. which provide the required contextual
hints to identify them as titles. However, the presence of these formatting cues cannot be
assumed or guaranteed, especially in texts from art historical archives, due to adverse
effects of scanning errors on the quality of digitized resources [87]. The formatting cues for
artwork titles might vary from one text collection to the other. Therefore, the techniques
for identifying the titles in digitized resources need to be independent of formatting and
structural hints, making the task even more complex. Moreover, the quality of digitized
versions of historical archives is adversely affected by the OCR scanning limitations and
the resulting data suffers from spelling mistakes as well as formatting errors. The issue of
noisy data further exacerbates the challenges for the NER task [138].

2.4.1 Types of errors in detecting artwork titles

We introduce the named entity type artwork that refers to the most relevant and
dominant artworks in our dataset (as mentioned in Section 2.3.1) of digitized collections,
i.e. paintings and sculptures.11 In order to systematically highlight the difficulties that
arise when trying to recognize the artwork entity type in practice, we categorize and
discuss the different types of errors that are commonly encountered as follows — failure of
detection of a artwork named entity, incorrect detection of the named entity boundaries,
and incorrect tagging of the artwork with a wrong type. Further, there are also errors
due to nested named entities and other ambiguities.

11The label artwork for the new named entity type can be replaced with another such as fine-art or
visual-art without affecting the proposed technique.

23



2. DOMAIN-SPECIFIC KNOWLEDGE GRAPH CONSTRUCTION

Incorrectly missed artwork title. Many artwork titles contain generic words that
can be found in a dictionary. This poses difficulties in the recognition of titles as named
entities. E.g., a painting titled ‘a pair of shoes’ by Van Gogh can be easily missed while
searching for named entities in unstructured text. Such titles can only be identified if
they are appropriately capitalized or highlighted, however this cannot be guaranteed for
all languages and in noisy texts.

Incorrect artwork title boundary detection. Often, artworks have long and de-
scriptive titles, e.g., a painting by Van Gogh titled ‘Head of a peasant woman with dark
cap’. If this title is mentioned in text without any formatting indicators, it is likely that
the boundaries may be wrongly identified and the named entity be tagged as ‘Head of a
peasant woman’, which is also the title of a different painting by Van Gogh. In fact, Van
Gogh had created several paintings with this title in different years. For such titles, it is
common that location or time indicators are appended to the titles (by the collectors or
curators of museums) in order to differentiate the artworks. However, such indicators
are not a part of the original title and should not be included within the scope of the
named entity. On the other hand, for the painting titled ‘Black Circle (1924)’ the phrase
‘(1924)’ is indeed a part of the original title and should be tagged as such. There are
many other ambiguities for artwork titles, particularly for older works that are typically
present in art historical archives.

Incorrect type tagging of artwork title. Even when the boundaries of the artwork
titles are identified correctly, they might be tagged as the wrong entity type. This is
especially true for the artworks that are directly named after the person whom they
depict. The most well-known example is that of ‘Mona Lisa’, which refers to the person
as well as the painting by Da Vinci that depicts her. There are many other examples
such as Picasso’s ‘Jaqueline’, which is a portrait of his wife Jaqueline Rogue. Numerous
old paintings are portraits of the prominent personalities of those times and are named
after them such as ‘King George III’, ‘King Philip II of Spain’, ‘Queen Anne’ and so on.
Many painters and artists also have their self-portraits named after them — such artwork
titles are likely to be wrongly tagged as the person type in the absence of contextual
clues. Apart from names of persons, paintings may also be named after locations such as
‘Paris’, ‘New York’, ‘Grand Canal, Venice’ and so on and may be incorrectly tagged as
location.

Nested named entities. Yet another type of ambiguity involving both incorrect
boundaries and wrong tagging can occur in the context of nested named entities, where
paintings with long titles contain phrases that match with other named entities. Consider
the title ‘Lambeth Palace seen through an arch of Westminster Bridge’ which is an artwork
by English painter Daniel Turner. In this title, ‘Lambeth Palace’ and ‘Westminster Bridge’
are both separately identified as named entities of type location, however, the title as a
whole is not tagged as any named entity at all by the default SpaCy NER tool. Due to
the often descriptive nature of artwork titles, it is quite common to encounter person
or location named entities embedded within the artwork titles which lead to confusion
and errors in the detection of the correct artwork entity. Therefore, careful and correct
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Figure 2.6: Overview of the framework showing the progressive improvements of the
training datasets (as described in Section 2.4.2 and summarized in Table 2.3). Each
stage illustrates the enhancements by referring to the datasets obtained with the
corresponding steps.

boundary detection for the entities is imperative for good performance.12

The above examples demonstrate the practical difficulties for automatic identification
of artwork titles. In our dataset, we encountered many additional errors due to noisy
text of scanned art historical archives, as already illustrated in Fig. 2.2, that cannot
be eliminated without manual efforts. Due to the innate complexity of this task, NER
models need to be trained with domain-specific named entity annotations, such that the
models can learn important textual features to achieve the desired results. We discuss in
detail our approach for generating annotations for NER from a large corpus of art related
documents in the next section.

2.4.2 Training data generation

Here, we describe our three stage framework for generating high-quality training data
for the NER task without the need for manual annotations (Fig. 2.6). These techniques
were geared towards tackling the challenges presented by noisy corpora that are typical
of art historical archives, although they can be applicable for other domains as well. The
framework can take structured or unstructured data as input and progressively add and
refine annotations for artwork named entities. A set of training datasets is obtained at
the end of each stage, with the final annotated dataset being the best performing version.
While the artwork titles are multi-lingual, we focus on English texts in this work and
plan to extend to further languages in future efforts. We describe the three stages of the
framework and the output datasets at each stage.

12Details on how our approach handles this complexity are presented in Section 2.4.2.
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Stage I - Dictionary-based matching for labelling artwork titles

In the first stage, we aimed to match and correctly tag the artworks present in our
corpus as named entities with the help of entity dictionaries to obtain highly precise
annotations. Apart from extracting the existing artwork titles from the structured part
of the WPI dataset (1,075 in total), we leveraged other cultural resources that have been
integrated into the public knowledge bases such as Wikidata, as well as linked open data
resources such as the Getty vocabularies for creating these dictionaries. As a first step,
we collected available resources from Wikidata to generate a large entity dictionary or
gazetteer of artwork titles in an automatic way. As already mentioned in Section 2.3,
to generate the entity dictionary for titles, Wikidata was queried for names of artworks,
specifically for names of paintings and sculptures. Since our input dataset was inherently
multilingual, there were many instances where the original non-English titles of paintings
were mentioned in the texts. In order to match such titles, we added all the alternate
names of the paintings and sculptures to our list belonging to the 7 major languages
present in the dataset apart from English (French, German, Italian, Dutch, Spanish,
Swedish and Danish). A large variety of artwork titles were obtained from Wikidata, with
the shortest title belonging to a painting being just a few characters (‘C-B-1’ ), while the
longest title having 221 characters in total (‘Predella Panel Representing the Legend of
St. Stephen ... ’ ). It was noticed that quite a few of the titles having only one word were
highly generic, for instance, ‘Italian’, ‘Winter’, ‘Landscape’, ‘Portrait’ etc. Matching with
such titles was contributing to errors in the annotation process, since common words in
the description of the artworks were being wrongly tagged as the artwork named entity.
In order to maintain high precision of annotations in the first stage, the titles having
only one word were removed from the list even at the slight expense of missed tags for
some valid artwork titles. Since several artwork titles are identical to location names
such as ‘Germania’, ‘Olympia’ which can lead to errors while tagging the named entity
to the correct type, such titles were also ignored. Overall, around 5% of the titles were
removed in this manner.13 A combined list of approximately 15,000 titles in different
languages was obtained, the majority of the titles being in English. The large variety
and ambiguity observed in the titles extracted from Wikidata further confirmed that the
NER for artwork titles is a non-trivial task. Due to inconsistencies in the capitalization
of the words in the title found on Wikidata, as well as in the mention of titles in our
dataset, the titles had to be uniformly lower-cased to enable matching. The annotations
obtained from the combined WPI and Wikidata entity dictionary resulted in the first
version of the training dataset, referred to as WPI-WD.

Furthermore, we explored the Getty vocabularies, such as CONA and ULAN, that
contain structured and hand-curated terminology for the cultural heritage domain and
are designed to facilitate shared research for digital art resources. The Cultural Objects
Named Authority (CONA) vocabulary14 comprises titles of works of art and architecture.
Since these are contributed and compiled by an expert user community, these titles are
highly precise and can lead to good quality annotations. A total of 3,013 CONA titles
were added to the entity dictionary. The Union List of Artist Names (ULAN)15 contains
names of artists, architects, studios and other bodies. We mainly extracted artist names

13one-word titles are encountered during training in Stage III.
14Getty CONA (2017), http://www.getty.edu/research/tools/vocabularies/cona.
15Getty ULAN (2017), http://www.getty.edu/research/tools/vocabularies/ulan.

26

http://www.getty.edu/research/tools/vocabularies/cona
http://www.getty.edu/research/tools/vocabularies/ulan


2.4 Named Entity Recognition for Artworks

from this list (899,758 in total) and tagged them in our corpus via matching, with the
motivation of providing additional context for the identification of artwork titles through
pattern learning. Different versions of the dataset were generated after the iterative
enhancements in annotations by the use of CONA titles and ULAN names, referred to as
WPI-WD-CONA and WPI-WD-CONA-ULAN respectively.

In all cases, the simple technique of matching the dictionary items over the words
in our dataset to tag them as artwork entities did not yield reasonable results. This
was mainly due to the generality of the titles. As an example, consider the painting
title ‘three girls’. If this phrase would be searched over the entire corpus, there could be
many incorrect matches where the text would perhaps be used to describe some artwork
instead of referring to the actual title. To circumvent this issue of false positives, we
first extracted named entities of all categories as identified by a generic NER model
(details in Section 2.4.3). Thereafter, those extracted named entities that were successfully
matched with an artwork title in the entity dictionary, were considered as artworks and
their category was explicitly tagged as artwork. Even though some named entities were
inadvertently missed with this approach, it facilitated the generation of high-precision
annotations from the underlying dataset from which the NER model could learn useful
features.

Improving named entity boundaries. As discussed in Section 2.4.1, there can be
many ambiguities due to partial matching of artwork titles. Due to the limitations of
the naive NER model, there were many instances where only a part of the full title of
artwork was recognized as a named entity from the text, thus it was not tagged correctly
as such. To improve the recall of the annotations, we attempted to identify the partial
matches and extend the boundaries of the named entities to obtain the complete and
correct titles for each of the datasets obtained by dictionary matching. For a given text,
a separate list of matches with the artwork titles in the entity dictionary over the entire
text were maintained as spans (starting and ending character offsets), in addition to the
extracted named entities. It is to be noted that the list of spans included many false
positives due to matching of generic words and phrases that were not named entities.
The overlaps between the two lists were considered, if a span was a super-set of a named
entity, the boundary of the identified named entity was extended as per the span offsets.
For example, consider the nested named entity from the text “..The subject of the former
(inv. 3297) is not Christ before Caiaphas, as stated by Birke and Kertesz, but Christ
before Annas..” , the named entities ‘Christ’, ‘Caiaphas’ and ‘Annas’ were separately
identified initially. However, they were correctly updated to ‘Christ before Caiaphas’ and
‘Christ before Annas’ as artwork entities after the boundary corrections, thus resolving
the particularly challenging issue of missing or wrong tagging for nested named entities.
Through this technique, many missed mentions of artwork titles were added to the training
datasets generated in this stage, thus improving the recall of the annotations and the
overall quality of the datasets.

Stage II - Filtering with Snorkel labelling functions

Identification of artwork titles as named entities from unstructured and semi-structured
text can be aided with the help of patterns found in the text. To leverage these patterns,
we use Snorkel, an open source system that enables the training of models without hand
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Figure 2.7: Getting annotated sentences from Wikipedia

labeling the training data [134] with the help of a set of labelling functions and patterns.
It combines user-written labelling functions and learns their quality without access to
ground truth data. Using heuristics, Snorkel is able to estimate which labelling functions
provide high or low quality labels and combines these decisions to a final label for every
sentence. This functionality is used for deciding whether an annotated sentence is of
high-quality, such that it is retained in the training data while the low-quality sentences
can be filtered out. Since the training dataset contained a number of noisy sentences that
are detrimental to model training, Snorkel helped in reducing the noise by identifying
and filtering out these sentences, while at the same time increasing the quality of the
training data.

Based on the characteristics of the training data, a set of seven labelling functions
were defined to capture observed patterns. For example, one such labelling function
expresses that a sentence is of high-quality if it contains the phrase “attributed to” that
is preceded by a artwork annotation and also succeeded by a person annotation. This
pattern matches many sentences containing painting descriptions in auction catalogues,
which make up a large part of our dataset. Another labelling function expresses that a
sentence is a low-quality sentence, if it contains less than 5 tokens. With this pattern
many noisy sentences are removed that were created either by OCR errors as described in
Section 2.4.1 or by sentence splitting errors that were caused due to erroneous punctuation.
By only retaining the sentences that are labeled as high-quality by Snorkel, the amount
of training data is drastically reduced, as can be seen in Table 2.3. The resulting datasets
include annotations of higher quality that can be used to more efficiently train an NER
model while reducing the noise. As an example, in the case of the WPI-WD dataset
(that contains annotations obtained from matching titles in the combined entity list from
WPI titles and Wikidata titles), using Snorkel reduces the number of sentences to 3.2%
of the original size, while only reducing the number of artwork annotations to 25.5% of
the previous number.

At the end of this stage, we obtained high-quality, shrunk down versions of all three
training datasets that led to improved performance of the NER models trained on them.

Stage III - Enhancements with silver standard training data

Despite efforts for high precision in Stage I, one of the major limitations of generating
named entity annotations from art historical archives is the presence of errors in the
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Table 2.3: Statistics of datasets

Training Dataset Sentences Annotations Unique entities

Ontonotes5 185,254 1,650 -

WPI-WD 13,383,185 1,933,119 36,720
WPI-WD-CONA 13,383,185 1,951,070 37,271
WPI-WD-CONA-ULAN 13,383,185 1,875,711 36,715

WPI-WD (Snorkel) 437,026 492,192 21,838
WPI-WD-CONA (Snorkel) 436,953 496,591 22,027
WPI-WD-CONA-ULAN (Snorkel) 433,154 482,562 21,684

Wikipedia 1,628 1,835 587

Combined Annotated Dataset 434,782 484,397 22,271

training data. Since the input dataset consists of noisy text, it is inevitable that there
would be errors in the matching of artwork titles as well as in the recognition of the
entity boundaries. To enable an NER model to further learn the textual indicators
present in the dataset for identification of artworks, in this stage we augmented our best
performing training dataset with clean and well-structured silver standard16 annotations
derived from Wikipedia articles that proved very useful for NER training. To find such
sentences, firstly, we searched for the Wikipedia pages of all the artwork titles in English
wherever applicable; a total of 2,808 pages were found. We then extracted the relevant
sentences that mentioned the artwork title from these pages. To obtain more sentences,
we also leveraged the link structure of Wikipedia and mined relevant sentences from the
different Wikipedia articles that, in turn, referred to a Wikipedia article of an artwork.
Several previous works have utilized the anchor texts and the tagged categories present
in Wikipedia articles to transform sentences into named entity annotations [70, 122, 154].
We followed a somewhat similar approach — for each Wikipedia page referring to an
artwork, the back-links, i.e. the URLs of the pages that referred to this page were
collected. The pages were searched for the relevant sentences that contained an outgoing
link to the Wikipedia page of the artwork, while also making sure that anchor text of the
outgoing link was identical to the title of the artwork. These sentences were extracted
and the anchor texts of the sentences was tagged as an artwork, serving as accurate
annotations for this category. In this stage, a total of 1,628 sentences were added as
silver standard annotation data to the training set. The process is illustrated in Fig. 2.7.
This data provided correct and precise textual patterns that were highly indicative of the
artwork titles and led to a considerable boost in training data quality. This dataset was
augmented to the best performing dataset obtained from the previous stages (WPI-WD-
CONA-ULAN (Snorkel)) to generate a combined annotated dataset as the final result
of the framework. It is to be noted that at this stage, artwork titles having a single
word were also included in the annotations such that the trained model could learn from
them. Overall, the final model is expected to show a more favorable performance towards
multi-word titles. However, the number of false positives for one-word titles would be
lower due to high quality annotations from the silver-standard annotations.

16The examples are not manually annotated by experts but the annotations are derived in an automatic
fashion, therefore silver standard data is often lower in quality compared to gold standard data.
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2.4.3 Evaluation and results

In this section, we discuss the details of our experimental setup and present the perfor-
mance results of the NER models when trained on the annotated datasets generated with
our approach.

Experimental setup

The input dataset to our framework consisted of art-related texts in many different
languages including English, French, German, Italian, Dutch, Spanish, Swedish and
Danish among others. After removing all non-English texts and performing initial pre-
processing, including the removal of erroneous characters, the dataset included both
partial sentences such as artwork size related entries as well as well-formed sentences
describing the artworks. This noisy input dataset was transformed into annotated NER
data through the three stages of our framework as described in Section 2.4.2. In order to
evaluate and compare the impact on NER performance with improvements in quality
of the training data, we trained two well-known machine learning based NER models,
SpaCy and Flair, for the new entity type artwork on different variants of training data as
shown in Table 2.3 and measured their performance.

Baselines

None of the existing NER systems can identify titles of artworks as named entities
out-of-the-box. While previous works such as [59] and [102] consider a broad ‘art’ entity
type, they do not include paintings and sculptures which are the primary focus of this
work. Thus, these could not serve as baselines for comparison. The closest NER category
to artwork titles was found in the Ontonotes5 dataset17 as work of art. This category
refers not only to artworks such as paintings and sculptures, but also covers a large variety
of cultural heritage objects including movies, plays, books, songs etc. In this work, we
seek to perform NER for a particular subset of this category, i.e. paintings and sculptures.
Therefore, we aim to train the NER models to perform the complex task of learning the
features for paintings and sculptures, while at the same time separating them from other
cultural heritage objects such as book, music etc. For the lack of alternatives, we have
leveraged the work of art NER category in our work for setting up a naive baseline in
which the training was performed on more general annotations. With this baseline, we
will compare the improvements in NER performance obtained by retraining the tools on
our semi-automatically generated corpus with the specialized artwork entity type.

To quantify the performance gains from annotations obtained at each stage, SpaCy
and Flair NER models were re-trained on each of the generated datasets for a limited
number of epochs (as per computational constraints), with the training data batched
and shuffled before every iteration. In each case, the performance of the re-trained NER
models was compared with the baseline NER model (the pre-trained model without any
specific annotations for artwork titles). As the underlying Ontonotes dataset does not
have artwork annotations, the named entity type artwork was not applicable for the
baseline models of SpaCy and Flair. Therefore, a match with the entity type work of art
was considered as a true positive during the evaluations. In the absence of a gold standard

17https://catalog.ldc.upenn.edu/LDC2013T19
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dataset for NER for artwork titles, we performed manual annotations and generated a
test dataset on which the models could be suitably evaluated.

SpaCy. The SpaCy18 library is popular for many natural language processing tasks
including named entity recognition. SpaCy text processing tools were employed for
tokenization and chunking of the texts before the identification of the named entities.
The pre-trained English model of SpaCy has been trained on the Ontonotes5 dataset
which consists of different types of texts including telephone conversations, news-wire,
newsgroups, broadcast news etc. Since this dataset is considerably different from historical
art document collections, the pre-trained NER model showed poor performance for named
entity recognition in the cultural heritage domain, even for the common named entity
types (person, location and organization). With regards to artwork titles, very few were
identified as named entities and many among those were wrongly tagged as names of
persons or locations, instead of being correctly categorized as work of art. With the
pre-trained SpaCy NER model as baseline, the model was trained on the datasets for 10
epochs each and the performance evaluated.

Flair. Similar to SpaCy, Flair [2] is another widely used deep-learning based NLP
library that provides an NER framework in the form of a sequence tagger, pre-trained
with the Ontonotes5 dataset. The best configuration reported by the authors for the
Ontonotes dataset, was re-trained with a limited number of epochs in order to define a
baseline to compare against the datasets proposed in this paper. The architecture of the
sequence tagger for the baseline was configured to use stacked GloVe and Flair forward
and backward embeddings [3, 129]. For training the model the following values were
assigned to the tagger hyper-parameters: learning rate was set to 0.1, and the number of
epochs was limited to 10. These values and the network architecture were kept throughout
all the experiments in order to achieve a fair comparison among the training sets.

It is to be noted that the techniques for improving the quality of NER training data
that are proposed in this work are independent of the NER model used for the evaluation.
Thus, SpaCy and Flair can be substituted with other re-trainable NER systems.

Manual annotations for test dataset

To generate a test dataset, a set of texts were chosen at random from the dataset, while
making sure that this text was representative of the different types of document collections
in the overall corpus. This test data consisted of 544 entries (with one or more sentences
per entry) and was carefully excluded from the training dataset such that there was
no entity overlap between the two. The titles of paintings and sculptures mentioned in
this data were manually identified and tagged as named entities of artwork type. The
annotations were performed by two non-expert annotators (from among the authors)
independently of each other in 3 to 4 person hours with the help of the Enno19 tool and
their respective annotations were compared afterwards. The task of manual annotation
was found challenging due to the inherent ambiguities in the dataset (Section 2.4.1) and
lack of domain expertise. The annotators disagreed on the tagging of certain phrases as
titles on multiple occasions. For example, in the text snippet “An earlier, independent

18SpaCy: https://spacy.io/
19https://github.com/HPI-Information-Systems/enno
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watercolor of almost the same view can be dated to circa 1830 (Stadt Bernkastel-Kues;
see C. Powell, Turner in Germany, exhibition catalogue, London, Tate Gallery, 1995-96,
pp. 108-9, no- 23¿ illustrated in color)..”, the artwork mention ‘Stadt Bernkastel-Kues’
was missed by one of the annotators. The correct boundaries of the artworks was also
disagreed in some cases, such as in the text “Claude Monet, Rouen Cathedral, Facade,
1894, Oil on canvas [W.1356], Museum of Fine Arts, Boston” - the artwork title could
be ‘Rouen Cathedral, Facade’ or ‘Rouen Cathedral ’. It was difficult to correctly tag these
artwork mentions without having expert knowledge of the art domain, especially with
regard to the particular period of art. Due to these reasons, the inter-annotator agreement
was quite low. The Fleiss’ kappa [49] and Krippendorff’s alpha [94] scores were calculated
as -1.86 and 0.61 respectively. (A negative Fleiss’ kappa score indicates poor agreement,
while Krippendorff’s alpha values for data should be above 0.667 to be considered useful).
The poor inter-annotator agreement reflected by these scores reaffirmed that the task of
annotating the artwork titles is difficult, even for humans. Only experts in the particular
artwork collections could have perhaps identified the artworks correctly, however such
expertise is rarely available or even practical. Therefore, in order to obtain the gold
standard test dataset for the evaluation of NER models, the disagreements were manually
sorted out with the help of web search to the best of our understanding and a total of
144 entities were positively tagged as artwork.

Evaluation metrics

The performance of NER systems is generally measured in terms of precision, recall
and F1 scores. The correct matching of a named entity involves the matching of the
boundaries of the entity (in terms of character offsets in text) as well as the tagging of the
named entity to the correct category. The strict F1 scores for NER evaluation were used
in the CoNNL 2003 shared task20, where the entities’ boundaries were matched exactly.
The MUC NER task21 allowed for relaxed evaluation based on the matching of left or
right boundary of an identified named entity. In this work, the evaluation of NER was
performed only for artwork entities and therefore, it was sufficient to check only for the
boundary matches of the identified entities. Since there are many ambiguities involved
with entity boundaries of artwork titles, as discussed in Section 2.4.1, we evaluated the
NER models with both strict metrics based on exact boundary match, as well as the
relaxed metrics based on partial boundary matches. The relaxed F1 metric allowed for
comparison of the entities despite errors due to wrong chunking of the named entities in
the text. Precision, recall, as well as F1 scores obtained for the NER models trained with
different training dataset variants are shown in Table 2.4.

Results

The results demonstrated definitive improvement in performance for the NER models
that were trained with annotated data as compared to the baseline performance. Since
the relaxed metrics allowed for flexible matching of the boundaries of the identified titles,
they were consistently better than the strict matching scores for all cases. The training
data obtained from Stage I, i.e. the dictionary based matching, enabled an improvement

20https://www.clips.uantwerpen.be/conll2003/ner/
21https://www-nlpir.nist.gov/related projects/muc/proceedings/muc 7 proceedings/overview.html
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Table 2.4: Performance of NER Model trained on different datasets

Training Dataset Stage
SpaCy Flair

Strict Relaxed Strict Relaxed
P R F1 P R F1 P R F1 P R F1

Default Unannotated (baseline) – .14 .06 .08 .22 .08 .12 .22 .04 .07 .29 .05 .09

WPI-WD I .24 .23 .23 .41 .42 .41 .03 .05 .04 .06 .09 .07
WPI-WD-CONA I .27 .26 .26 .43 .45 .44 .04 .08 .06 .08 .14 .10
WPI-WD-CONA-ULAN I .28 .26 .27 .48 .45 .46 .05 .08 .07 .09 .14 .11

WPI-WD (Snorkel) II .31 .28 .30 .50 .49 .50 .07 .12 .08 .12 .21 .15
WPI-WD-CONA (Snorkel) II .31 .31 .31 .53 .51 .52 .07 .11 .08 .13 .22 .17
WPI-WD-CONA-ULAN (Snorkel) II .32 .33 .33 .55 .51 .53 .09 .16 .11 .14 .24 .18

Wikipedia III .17 .13 .15 .38 .30 .34 .12 .34 .17 .21 .61 .31

Combined Annotated Dataset All .46 .41 .43 .68 .62 .65 .21 .45 .29 .28 .59 .38

in NER performance due to the benefit of domain-specific and entity-specific annotations
generated from the Wikidata entity dictionaries and Getty vocabularies, along with the
boost from additional annotations by the correction of entity boundaries. Further, the
refinement of the training datasets obtained with the help of Snorkel labelling functions
in Stage II led to better training of the NER models reflecting in their higher performance
especially in terms of recall. To gauge the benefits from the silver standard annotations
from Wikipedia sentences, a model was trained only on these sentences(Stage III). It
can be seen that the performance of this model was quite high despite the small size
of the dataset, indicating the positive impact of the quality of the annotations. The
NER models re-trained on the combined annotated training dataset obtained through
our framework, consisting of all the annotations obtained from the three stages, showed
the best overall performance with significant improvement across all metrics, particularly
in terms of recall. This indicates that the models were able to maintain the precision
of the baseline while being able to find much more entities in the test dataset. The
encouraging results demonstrate the importance of training on high-quality annotation
datasets for named entity recognition. Our approach to generate such annotations in
a semi-automated manner from a domain-specific corpus is an important contribution
towards this direction. Moreover, the remarkable improvement for NER performance
achieved for a novel and challenging named entity of type artwork, proves the effectiveness
of our approach. It would be interesting to extend the techniques for named entity
recognition to other important entities such as auctions, exhibitions and art styles in the
corpus. Furthermore, this approach is not limited to the cultural heritage domain but
can also be adapted for finding fine-grained entity types in other domains, where there is
shortage of annotated training data but raw text and dictionary resources are available.

2.5 Summary

In this chapter, we discussed the importance of domain-specific KGs in the context of the
cultural heritage domain that poses multiple challenges. We presented our approach to
construct an art-historic KG from digitized texts in an automated manner, where existing
Open IE tools were leveraged for various stages of the KG construction process. The
limitations and challenges while adapting these generic tools for domain-specific datasets
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were also presented in detail. Specifically, we looked into the issue of underwhelming
performance of NER tools for artwork titles and motivated the need for high-quality
annotations for training. We proposed techniques for generating the relevant training
data for NER in a semi-automated manner. Experimental evaluations showed that the
NER performance can be significantly improved by training on high-quality training data
generated with our methods. This indicates that even for noisy datasets, such as digitized
art archives, supervised NER models can be trained to perform well.

On the whole, while the discussion in this chapter has shown encouraging results, it
has also given clear indications of the points of improvement for creating a more refined
and comprehensive version of an art-historic KG which is a pre-requisite for supporting
downstream tasks such as search and querying. In the next chapter, we discuss and solve
a specific research problem in the context of refinement of knowledge graphs and illustrate
how knowledge graph embeddings could play a vital role in this task.
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Chapter 3

Discovering Fine-Grained
Semantics in Knowledge Graph
Relations

“I think it’s much more interesting to live not knowing
than to have answers which might be wrong.”

— Richard P. Feynman

So far we have presented our contributions towards the construction of knowledge
graphs and the challenges involved in the process. KGs obtained by automated methods,
and even those curated with manual efforts, suffer from several issues in terms of com-
pleteness and correctness as outlined in Chapter 1. In order to be useful for downstream
applications, it is important to identify these issues and perform refinement of the KGs
to improve their quality. In this chapter, we focus on an often overlooked issue in KGs
that have been constructed from textual sources - the presence of polysemous relations
that convey ambiguous semantics. To tackle this, we propose a data-driven technique to
discover fine-grained semantics for the refinement of existing KG relations.

The main contributions highlighted in this chapter are based on the work in Jain et
al. [78]. The chapter is organized as follows — firstly, Section 3.1 introduces the issue
of polysemous relations in knowledge graphs with the help of examples. Section 3.2
clearly lays down the importance of fine-grained relation semantics by discussing various
application scenarios. This is followed by a discussion of previous work related to this
topic in Section 3.3. Then, Section 3.4 introduces the problem statement and provides
the necessary background on KG embeddings and entity types in the ontologies. In
Section 3.5, we describe the details of the proposed method and present the results of our
detailed empirical evaluation in Section 3.6. Finally, we conclude and discuss future work
in Section 3.7.

3.1 Polysemous Relations in Knowledge Graphs

In Chapter 1, we have established that KGs represent real-world data in the form of
⟨subject, predicate, object⟩ triples. Here, subject and object are chosen from a set of
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Figure 3.1: The unique type pairs associated with different relations in Yago

entities, while the predicate that links the entities to each other belongs to a set of
relations. In textual data, the relations are often polysemous by nature, i.e., they exhibit
distinct meanings in different contexts. For example, the relation ‘part of ’ has different
semantics in ‘..Sahara is part of Africa’ and ‘finger part of hand ’. As the triples in
KGs are derived from and represent factual information from such texts, ambiguity from
texts often makes it way into the KG triples as well. Specifically, the KG relations may
represent multiple meanings depending on the context, which is defined by the types of
the entities being connected by the relations in the case of KG triples.

Relation polysemy in KGs is a particularly important issue due to the widespread
application of KGs in several downstream tasks where semantics play a crucial role.
However, it has received surprisingly little attention until now. In order to gauge the
magnitude of the issue in popular KGs, we analysed the relations in the Yago3 [106]
dataset in terms of the number of unique entity type pairs that are connected by a single
relation (in the KG triples) without any further semantic specialization. The results are
plotted in Figure 3.1. It can be seen that for a majority of the relations, the triples in
which they occur contain subject and object entities belonging to various entity types.
Among these, many relations such as owns and created exhibit very high plurality of
entity types which indicates that they are quite generic with regards to their meaning.
Similar insights were also derived from the NELL-995 [174] dataset, which is a subset
of the 995-th iteration of NELL. Table 3.1 shows some examples of the different entity
types associated with relations from these KGs.

We advocated that for such relations that are associated with a number of different
entity type pairs that are semantically distant from one another, it would be prudent
to replace them with sub-relations that have a more distinct meaning according to the
context. The exact meanings of the sub-relations could be clearly defined based on the
distinct types of the associated entities. Indeed, this underlying idea is derived from
the task of word sense disambiguation in Linguistics, as advocated by Firth : ‘a word
is characterized by the company it keeps’ [48]. In the context of KGs, one could say ‘a
relation is characterized by the entity types it connects’.

However, it is to be emphasized that while being intuitive, this task is extremely
tricky due to a wide variance in the types of the entities in large KGs. Let us consider the
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Table 3.1: Examples of multiple semantics of relations

Yago created
NELL agentBelongsTo-
Organization

(writer, movie) (politician, politicalparty)
(player, movie) (country, sportsleague)
(artist, movie) (sportsteam, sportsleague)

(officeholder, movie) (coach, sportsleague)
(writer, fictional character) (person, charactertrait)
(artist, computer game) (televisionstation, company)

(artist, medium)
(writer, television)

(company, computer game)

relation created from the Yago dataset (Table 3.1). While some types such as television
and movie for the created relation are semantically similar to one another, other types
are quite different, for instance company and writer. If the relation is trivially replaced
by multiple relations based on the different entity type pairs in a straightforward manner,
without taking the similarity as well as frequency of these types into account, the resultant
sub-relations would end up being remarkably similar to each other, thus leading to a
high degree of duplication. Due to the complex hierarchy of classes (entity types)1 in the
underlying ontology, entity types often belong to different granularity levels [76], leading
to a broad range of semantic similarity between them. The frequency with which a
relation connects different type pairs is also widely variable. It is, therefore, a non-trivial
task to decide how to define the sub-relations based on the semantics of the entity types
associated with a relation, both in terms of the number of sub-relations as well the subset
of entity types that the sub-relations should encompass.

Knowledge graph embedding models have shown a lot of promise for the task of
knowledge graph completion and refinement as already discussed in Section 1.3. In
essence, these models aim to encapsulate the structure of the KG, as well as the latent
semantics of entities and relations, by embedding them in low-dimensional vector space.
Previous works have shown that the vector representations obtained from these models
can be used for semantic analysis in KGs [84, 85]. We extended this idea further by
demonstrating that these vectors also capture relation semantics such that they can be
leveraged to successfully identify polysemous relations. The proposed method used these
vectors for finding representative clusters in the latent space and derive the fine-grained
semantics from polysemous relations in an effective manner.

To the best of our knowledge, the task of fine-grained relation semantics had not
been systematically explored in the context of KG relations. In view of this, we provide
a formal definition of the task of fine-grained relation discovery which refers to the
disambiguation of polysemous relations in knowledge graphs and motivate its importance
and benefits. We propose a data-driven and scalable method FineGReS (Fine-Grained
Relation Semantics) to identify multiple sub-relations that capture the different underlying
semantics of the relations via clustering in the latent space. Several feature-based baselines
were established to show the promise of our embedding-based solution that outperforms a

1The terms class and entity type will be used interchangeably in the rest of the text.

37



3. DISCOVERING FINE-GRAINED SEMANTICS IN KNOWLEDGE GRAPH
RELATIONS

previous, related non-embedding approach in the context of open relation extraction [110]
for downstream applications.

3.2 Fine-Grained Relation Semantics

Relation polysemy is quite common in knowledge graphs due to two primary reasons.
Firstly, the schema for most large scale KGs that are in use today have been constructed
through manual or semi-automated efforts, where the relations between the entities are
curated from text. Relations are often abstracted in such KGs for simplification and
avoidance of redundancies. This may result in cases where a single relation serves as
a general notion between various different types of KG entities and has more than one
semantic meaning associated with it. However, due to the diversity of the kinds of associ-
ations between the entities, the abstract relations may not be sufficiently representative of
the underlying semantics that they are supposed to capture. In addition to this, the fact
that these KGs represent real-world facts that are expressed in natural language having
inherent ambiguities, contributes further to the relation polysemy in KGs. For instance,
the relation phrase ‘part of ’ represents varied semantics based on its context of biology
(finger part of hand), organizations (Google part of Alphabet), geography (Amazon part
of South America) and many others. Even KGs that have a large number of different
relations can suffer from ambiguous relations, for instance DBpedia has around 300
relations that are relatively well-defined in terms of their entity types, however there exist
relations such as award and partOf that still convey ambiguity. The determination of
fine-grained relation semantics in relational data is an important task which can bring
substantial benefits to a wide range of use cases as discussed further in this section.

The task of relation extraction is essential for information extraction from texts and
it continues to be challenging due to the varied semantics of the evolving language. For
identifying patterns and extracting relation mentions from text, unsupervised techniques
typically rely on the predefined types of relation arguments [29, 66, 143]. Given an
existing KG and schema, with the goal to extract facts for a particular relation from a
new corpus of text, a distant supervision approach will leverage relation patterns based
on the types of entities over the text. As an example, if the relation created has been
established between a painter and artwork, then the identification of this relation can be
aided by specific patterns in text. However, if the relation created is generically defined
between any person entity and any work entity, then the resulting text patterns for this
relation will be noisy and varied, therefore may fail to identify the correct fact triples
from text. Identifying the different meanings of a relation in different contexts can help
with defining concrete patterns for extraction of relation phrases.

This is also useful for identification and classification of entities by their types in
a knowledge graph. E.g. the target entity of the relation directed is likely to be of
type movie or play. If the relations have a wider semantic range, the type of entities
cannot be identified at a fine-grained level. For instance, it might be only possible to
identify the entity type as work and not specifically movie, which could adversely affect
the performance of further applications such as entity linking and question answering.
Numerous question answering systems that use knowledge graphs as back-end data
repositories (KBQA) [33] rely on the type information of the entities to narrow down the
search space for the correct answers. Thus, distinct relation semantics in terms of the
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types of connected entities are essential for supporting QA applications over KGs.

It is to be noted that the discovery of fine-grained relation semantics is important
in the context of KG refinement, not being merely limited to already existing datasets,
but also in general. KGs usually evolve over time and often in a fragmented fashion,
where new facts might be added to a KG that do not strictly conform or can be correctly
encapsulated by the existing ontology. Addition of such new facts might easily lead
to noisy and abstracted semantics in previously well-defined KG relations. Relation
disambiguation would therefore play a important role in identifying new fine-grained
sub-relations with precise semantics. The proposed FineGReS method is generally
applicable and could prove to be incredibly useful in all the above scenarios. Finally,
it is also important to note that the approach of determining semantic sub-relations in
existing KGs and their ontology can be applied to the very important open challenge
of constructing domain-specific KGs from new corpora [86]. By way of adding novel
relations to already existing ontologies, this work shows the potential and promise of
aiding ontology matching [125] for supporting new domains.

3.3 Related Work

In this section, we discuss various works related to the semantics of relations in KGs. We
also point out the approaches related to KG embeddings that have considered relation
semantics and highlight the differences with our approach. In addition, we include a brief
overview of the work pertaining to relation extraction from texts to put our work in the
correct context.

Relation semantics. While the idea of learning embeddings for words by considering
their multiple contextual semantics is not new [162], the contextual semantics of existing
relations in knowledge graphs have not been studied as much. This is due to the fact
that most KGs are populated on the basis of a pre-defined ontology where the relations
and their semantics have already been fixed [106, 112]. Yet, issues with the relations in
such KGs still persist. Kalo et al. [85] have previously presented a detailed analysis on
finding and unifying synonymous relations that are found in most large KGs to reduce
the number of relations for the sake of better semantics. Similar in spirit, we bring
attention to the complementary problem statement of identifying the relations in KGs
that exhibit more than one meaning based on different contexts and claim that they
should be represented by multiple sub-relations with more precise semantics.

In other related work, Jiang et al. [84] explore the entailment between relations, e.g.
the relation creator entails author or developer in the sense that creator subsumes the
other relations. Similar to our work, the authors leverage the entity type information to
solve the multi-classification problem of assigning the child relations to the parent ones.
Our problem statement of fine-grained relation refinement is significantly more challenging
and impactful in the sense that it involves the identification of novel sub-relations in an
unsupervised manner.

Relations and KG embeddings. In the context of relational learning models, few
works have looked into KG relations for the goal of learning better embeddings. For
instance, Lin et al. [101] advocated the need for learning multiple relation vectors to
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capture the fine-grained semantics, however this study was limited in scope and lacked
any consideration for complex entity type hierarchies in KGs. In Zhang et al. [184],
the authors create a 3-level relation hierarchy which combines similar relations as well
splits relations into sub-relations, in order to improve the embeddings for relations.
The proposed approach is quite rigid and opaque in terms of the actual semantics of
the relations obtained from it. In fact, the number of clusters was predefined for all
relations across a dataset, in contrast to the FineGReS method that can determine an
optimal number of clusters separately for each relation based on the associated entity
types. The diverse semantics of relations was also considered by Ji et al. [83] where the
authors proposed two different vectors for the relations as well as entities, to capture
their meanings and connections with each other. Similarly, Xiao et al. [173] discussed
the generation of multiple translation components of relations based on their semantics
with the help of a bayesian non-parametric infinite mixture model. However, they do not
perform a systematic analysis of the relations semantics and a qualitative evaluation of
their approach is missing.

In general, previous works have only discussed the semantics of KG relations in the
context of KG embeddings with the primary goal of training better models that can show
improvement on the link prediction (or knowledge graph completion) task. However,
this work explicitly pays attention to the identification of polysemous relations in the
KGs and discovery of the latent relation semantics with the overall goal of knowledge
graph refinement and improvement of the quality of the relations in underlying ontology.
Relational models have been leveraged as effective and promising enablers for this task
instead of being the focal topic of this work. More importantly, none of the previous works
have explored the challenges of deriving fine-grained relations from an existing polysemous
relation in the presence of complex semantic relationships between the associated entity
types, which is quite common for real-world datasets. We present a systematic and
data-driven method for this task.

Relation extraction and Open IE. While this work is concerned with relations
between entities, it is important to distinguish it from the task of relation extraction from
texts. There are many previous approaches that identify relationships between entities in
texts and perform clustering on phrases to derive the relations [18, 113, 136, 167], such
approaches aim to identify relation patterns that exactly conform to a singular semantic
intent. In stark contrast, we aim to find the different semantic intents that may be
already present in a single KG relation. Moreover, relation extraction techniques heavily
rely on the contextual cues available in the text, whereas the only context available with
regard to the relations in KGs is the associated entities and their types. As such, these
approaches are indeed not comparable to our work.

Research pertaining to the processing of entity and relation phrases in the context of
Open Information Extraction is more relatable to our goals. Previous approaches on the
canonicalization of relation phrases (that are present in Open IE triples) have attempted to
establish the semantics of the relations by performing clustering over the phrases [53, 159].
Among such approaches, the closest to ours is the work by Min et al. [110] that discusses
the ambiguity in the meanings of relation phrases present in Open IE triples such
as ⟨Euro, be the currency of,Germany⟩ and ⟨authorship, be the currency of, science⟩.
While this approach concerns with disambiguation of relation phrases in texts rather than
relations in KGs, we still consider this work as a baseline approach that does not employ
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embeddings for deriving the semantics and compare our embeddings-based approach
against it.

3.4 Notations

In this section, we recall the basic concepts and establish the notations that will be used
while explaining our approach in the remainder of the chapter.

For a knowledge graph G, the set of unique relations is denoted as R. A KG fact (or
triple) F = ⟨eh, r, et⟩ consists of the head entity eh, the tail entity et and the relation r
that connects them, where eh and et belong to the set of entities E . A given relation r ∈
R appears in several triples, forming a subset Gr of G.

The semantic types or classes of the entities are defined in an ontology associated
with a KG that defines its schema. The entities e ∈ E are connected with their types by
ontological triples such as ⟨e, typeOf, t⟩, where t ∈ T , the set of entity types in the ontology.
We define a type pair as the tuple ⟨th, tt⟩ where ⟨eh, typeOf, th⟩ and ⟨et, typeOf, tt⟩. A
set of unique type pairs for a given relation r and corresponding Gr is denoted as Pr.
Thus we have, Pr = {⟨th, tt⟩|⟨eh, typeOf, th⟩, ⟨et, typeOf, tt⟩, ⟨eh, r, et⟩ ∈ Gr}. The total
number of such unique type pairs for relation r is denoted by Lr.

As discussed in Section 1.3, knowledge graph embeddings have gained immense
popularity and success for representation learning of relational data. They provide an
efficient way to capture latent semantics of the entities and relations in KGs. The main
advantage of these techniques is that they enable easy manipulation of KG components
when represented as vectors in low dimensional space. E.g. in TransE [20], for a triple
⟨h, r, t⟩ the vectors h, r and t satisfy the relation h + r = t or r = t - h. In this work, we
leverage the representational abilities of the embeddings to obtain the semantic vectors
for relations expressed in terms of the entities associated with them. For vectors eh, r
and et as obtained from an embedding corresponding to a KG triple ⟨eh, r, et⟩, we define
a vector ∆r which is a function of eh and et. Further, every ∆r vector is mapped to a
type pair ⟨th, tt⟩ corresponding to the entities eh, et.

Problem definition. Given a relation r ∈ R in G, the set of vectors {∆r1∆r2 ...∆rGr
}

for the graph Gr and the set of type pairs for this relation as denoted by Pr, the goal is to
find an optimal configuration of clusters Copt = {C1, C2...CN}, where the ∆ri vectors are
uniquely distributed among the clusters i.e. each ∆ri ∈ Cj , i = 1...|Gr|, j = 1...N , s.t. an
objective function F(Copt) is maximized. Further, each cluster Cj represents the semantic
union of a subset of type pairs from Pr such that ∃ ∆ri ∈ Cj where ∆ri is mapped to one
of the type pairs in this subset. Thus, the optimal configuration of clusters corresponds
to the optimal number of sub-relations and their fine-grained semantics as defined by the
type pairs that they represent. The proposed FineGReS method can derive this optimal
configuration for the relations of a KG.

3.5 FineGReS

In this section, we describe the design and implementation details of the proposed
FineGReS method for a relation that can be easily scaled to any number of relations in
the dataset.
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(a) owns relation in Yago (b) agentcontrols relation in NELL

Figure 3.2: Visualization (after PCA reduction) of relation vectors with associated
type pairs

3.5.1 Semantic mapping for facts

For every unique relation r in G, we firstly find the subset of triples Gr where r appears.
To understand the semantics of the entities associated with r, the entities are mapped to
their corresponding classes as defined in the underlying ontology. By doing so, we obtain
a list of entity type pairs ⟨th, tt⟩ for the relation. Note that several entities in Gr might
map to the same type and therefore, a single type pair tuple would be obtained several
times. Therefore in the next step, we identify the unique type pairs for a relation r as
the set P2. At this stage, every triple in Gr is associated with a type pair ⟨th, tt⟩ ∈ P
that represents the semantics of this triple. For example, for the created relation, a triple
⟨DaV inci, created,MonaLisa⟩ would be mapped to ⟨artist, painting⟩ as per the types
of the head and tail entities.

3.5.2 Vector representations for relations

For representing the semantics of r in terms of the associated entities, we leverage pre-
trained KG embeddings. As proposed in previous work [84], we derive a representation
for the relation from eh and et vectors corresponding to every triple in Gr. In this way,
for every relation r, a set of vectors ∆r is obtained from the KG embeddings, in addition
to the actual r vector that the embedding already provides. These ∆r vectors are then
mapped to the corresponding type pairs (according to the types of the underlying entities).
With this, each unique type pair is, in turn, mapped to and represented by a subset of
∆r vectors. The ∆r vectors encode the combined information conveyed by the head and
tail entity types and represent the relationship between the entities, thus encapsulating
the latent semantics of the relations in different triples. The ∆r vectors serve as the data
points for the clustering (with the associated type pairs being their labels).

Relation semantics. While it is believed that KG embeddings are able to capture
relation similarity in the embedding space, i.e., relations having similar semantics occur

2We denote Pr as P when the relation r is clear from the context.
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close together in the vector space [40, 85], we found that relations having multiple
semantics (based on the context of their entities) are, in fact, not represented well in the
vector space. For polysemous relations, the vectors obtained for a single relation (from
the different facts that it appears in) form separate clusters in the vector space that do
not overlap with the actual relation vector r obtained from the embeddings. This happens
due to the fact that multiple entity pairs connected by the same relation are semantically
different from one another. Figure 3.2 shows examples from the NELL and Yago datasets
where this behaviour of the embedding vectors for relations is clearly visible. We leverage
this semantically-aware behaviour of the embedding vectors to determine meaningful
clusters of ∆r vectors that represent the distinct latent semantics exhibited by different
entity type pairs connected by the same relation, as described next.

3.5.3 Clustering for fine-grained semantics

For each relation r, the total number of unique type pairs L = |P| is theoretically the
maximum number of possible semantic sub-relations or clusters that could be obtained
for r. This will create a different sub-relation for every different type pair. However, in
practice, it is rare that all the type pairs would have completely different semantics. For
example, the created relation in Yago has type pairs ⟨artist, painting⟩ and ⟨artist,music⟩
that have the same head entity type, while the type pair ⟨organization, software⟩ conveys
quite a different meaning. While a single relation is not sufficient to be representative of
the semantics of all triples that it appears in, at the same time, a naive assignment of
sub-relations pertaining to all unique type pairs would also be inefficient and lead to a
large number of unnecessary sub-relations.

The FineGReS method aims to find an optimal number and composition of clusters
Copt for the type pairs that can convey distinct semantics of the relations based on the
data, by combining similar type pairs while separating the dissimilar ones. Each of the
clusters having one or more than one semantically similar type pairs represents a potential
sub-relation. In order to obtain this configuration, various compositions of the clusters
need to be analysed for optimality. For this, clustering is performed in an iterative manner
with a predefined number of clusters and combinations of type pairs within each cluster
for the iterations. Since it is not feasible or practical to consider an exhaustive number
of possible clusters, FineGReS leverages the semantic similarity of type pairs to narrow
down the search space for obtaining the optimal clusters. First, the vector representations
for the types are derived. Subsequently, the similarity scores between all combinations of
the unique type pairs (thi

, tti), (thj
, ttj ) are obtained by calculating the similarity scores

between the vectors corresponding to the head entity types thi
and thj

as well as the tail
entity types tti and ttj and then taking their mean value.

Iterative clustering. The iterative clustering begins with L clusters, with each cluster
corresponding to one type pair for the relation in the first iteration. At this point, the
cluster labels for the data points (∆r vectors) are denoted by individual type pairs
directly and serve as the ‘ground truth’ for evaluation. Next, the similarity scores of all
the type pair combinations are calculated, and the two type pairs that are most similar
are considered as candidate pairs to be merged together and placed in a single cluster for
the second iteration. To generate the cluster labels, the data points corresponding to the
candidate type pairs are assigned the same distinct label (that could be generated e.g. by
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combining the individual label names). The number of clusters is given as L - 1 during
the second iteration of clustering, and the cluster labels consist of L - 2 original type pairs
and the one merged type pair. If two combinations of type pairs have the same similarity
score in any iteration, ties are broken arbitrarily. This process of selecting the most
similar type pairs as candidates for merging in the next iteration to reduce the number of
clusters is repeated until all type pairs have been gradually merged back together in a
single cluster. In some iterations, the most similar type pairs could be already in the same
cluster, so the next most similar pairs are considered until candidates to merge are found.
This ensures that the number of clusters always shrinks in subsequent iterations until
eventually all clusters are merged back and the algorithm converges. At each iteration,
the quality of the clusters is calculated (as detailed in 3.6.2) and this is regarded as
the function F(Copt). The results from the iteration having the maximum value of this
function is chosen as the optimal configuration of clusters Copt. The complexity of this
algorithm for a relation is proportional to the number of unique type pairs in the dataset
and in practice, the run time of iterative clustering process ranges between a few seconds
to a few minutes per relation. It is to be noted that while this approach discovers the
sub-relations, their labeling is a separate task on its own. In this work, we simply use
the type pairs to derive representative labels, e.g. a sub-relation of created that connects
company with computer game could be named as created-company-computer game and
so on. However, a proper naming scheme for these relations is concerned with the task of
ontology design and is out of the scope of the current work.

3.6 Experiments

We evaluate the effectiveness of our proposed method by performing a series of experiments
with several feature-based baselines and a non-embedding baseline approach, as well as
variations of the FineGReS technique with different embedding models and clustering
techniques. In Section 3.6.2 we evaluate if the FineGReS approach finds meaningful and
useful fine-grained relation semantics as compared to baselines. Section 3.6.3 explores
whether the sub-relations obtained from FineGReS really reflect what the users need in
terms of semantics. Finally, we perform an analysis of the benefits of fine-grained relation
semantics for a KG-based application such as entity classification in Section 3.6.4. The
experiments are also supported by a qualitative analysis and detailed discussion of the
results.

3.6.1 Experimental setup

Datasets. We prepared datasets derived from Yago3 and NELL-995 knowledge graphs
for the experiments. For the Yago3 dataset, the entity types (concepts) of all entities
were extracted from the accompanying ontology and ranked in terms of frequency. Yago
ontology is composed of concepts that are derived from Wordnet as well as from Wikipedia
categories (Wikicat). Since the Wikicat concepts are often fine-grained sub-classes of
Wordnet concepts, we only consider Wordnet concepts for obtaining non-overlapping
clean set of concepts. We considered the top 53 frequent concepts for creating our dataset
as the frequencies dropped considerably thereafter. The accounted concepts each had
atleast 10,000 entities associated with them. Thereafter, we extracted the facts triples
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Table 3.2: Performance of FineGReS clusters in comparison with feature-based
baselines (best values in bold, best for a model underlined)

TransE DistMult
KMC HAC OPC KMC HAC OPC

Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

Yago

subject .359 .258 .358 .242 .0013 .0001 .426 .260 .434 .258 .0007 .00003
object .213 .167 .187 .112 .0009 0 .248 .136 .339 .167 .0007 .00007
pair .153 .095 .162 .064 .0012 .0002 .140 .266 .058 .095 .0007 .00006
FineGreSentity .472 .337 .527 .339 .0014 .0002 .519 .321 .532 .337 .0008 .00008
FineGreSconcept .537 .357 .525 .329 .0011 .0002 .597 .376 .582 .347 .0008 .00008

NELL

subject .217 .125 .256 .159 .006 .0026 .281 .155 .255 .151 .004 .0009
object .302 .209 .286 .176 .006 .0017 .291 .204 .323 .204 .005 .0006
pair .128 .083 .132 .070 .005 .0033 .089 .051 .137 .079 .005 .0013
FineGreSentity .345 .178 .467 .210 .007 .0034 .686 .194 .454 .207 .006 .0014
FineGreSconcept .576 .379 .711 .434 .008 .0039 .376 .387 .719 .431 .006 .0014

from Yago3 that were comprised of subject(head) and object(tail) entities associated with
the chosen concepts. This resulted in a set of 1,492,078 triples, which were augmented
with the corresponding types of entities. The final dataset consists of 31 relations and
917,325 unique entities. Note that only the data points from the relations having multiple
type pairs (after filtering out the ones having too few triples to avoid errors from incorrect
entity type mapping) associated with them were considered for clustering.

A similar process was followed for the NELL-995 dataset. In this dataset, the type
information is embedded with the entities and thus could be directly extracted from the
data triples. Similar to the above heuristics, the types of the entities were restricted to
the most frequent types (top 41) found in the dataset (with the less frequent types being
replaced by their more frequent supertypes when found in the NELL ontology3). The
numerical entities were removed from the dataset since they did not have an associated
type. The final dataset consists of a total of 200 relations and 75,492 entities along with
their corresponding types, and 154,213 triples in total.

Finding Type Similarity. The process of iterative clustering is guided by the semantic
similarity of the different type pairs for a given relation and therefore, obtaining the
representations for the entity types is an important step in the FineGReS method. Here,
we describe two different strategies to derive these representations — concept-based
embeddings and entity-based embeddings.

Concept-based type representations— In order to directly obtain vector representations
of the entity types, we use the pre-trained ConVec embeddings [44] that are publicly
available.4 These 300-dimensional embeddings were obtained by training over a dataset
of 1.5 million words including the Wikipedia concepts and thus represent the semantics
for the entity types quite well. While the ConVec embeddings work well in most cases,
sometimes the entity types are multi-word phrases, especially in the case of NELL
dataset. In addition, the NELL ontology is quite large with a much wider vocabulary
due to the continuous learning paradigm of NELL. As such, in order to obtain the
vector representations that are not found in ConVec and to calculate the similarity scores
between the entity types (including both words and phrases), we leveraged the pre-trained
Sentence-BERT [135] models from the HuggingFace library [170].

3Available at - http://rtw.ml.cmu.edu/rtw/resources
4https://github.com/ehsansherkat/ConVec
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Entity-based type representations — The entities associated with the types can also
provide meaningful representations for the entity types. For each type, we first obtain
the vectors for the corresponding entities from Wikipedia2Vec tool [175]. Since the
Wikipedia2Vec embeddings were derived from the mentions of the entities on the entire
Wikipedia corpus, they effectively encapsulate the textual semantics of the entities. The
vector representation for the entity type was then obtained by taking the average of the
entity embedding vectors. Once the type vectors were obtained from either of the above
strategies, the cosine similarity measure was used for calculating the similarity matrix
between the entity types pairs.5

Knowledge graph embeddings. We perform our experiments on the following widely
used KG embedding models — TransE [20] and DistMult [176]. These models are chosen
to serve as prominent examples of embeddings using translation distance and semantic
matching techniques respectively. We use the model implementations from the LibKGE
library [22] for Yago3-10 dataset and from the OpenKE library [64] for NELL-995 dataset.

Clustering techniques. Several different clustering algorithms were employed to
obtain the clusters in the vector space — KMeans clustering (KMC), Optics (OPC) and
Hierarchical Agglomerative clustering (HAC).

Baselines. To the best of our knowledge, there is no existing research that has leveraged
knowledge graph embeddings to discover fine-grained semantics of relations in large KGs.
As such, we establish several baselines in this work for analysis and comparison of our
proposed approach as well as future works.

Feature-based — To derive sub-relations from a polysemous relation in the KG, several
simplistic configurations were explored. The semantics can be driven by the entity types
of solely subject or object entities. The different type pairs can also be a criteria for new
sub-relations. Hence, we define the baselines as —
pair - Sub-relations obtained on the basis of every unique type pair that is associated
with a relation, this setting corresponds to the maximum number of sub-relations.
subject - Sub-relations created by grouping the type pairs by subject entity types i.e.
each sub-relation represents all type pairs associated with a common subject type and
different object types.
object - Similar to subject, but grouping instead by the object entity types.

Non-embedding baseline — Few previous works have discussed the ambiguity in the
meanings of relation phrases present in Open IE triples [53, 110]. Particularly, in Min
et al. [110] the authors propose ‘Type A’ relations where the same relation phrase is
associated with different types of subject and object entities, hence denoting different
semantics. Such polysemous relation phrases are indeed identified as distinct relations
through a variant of the Hierarchical Agglomerative Clustering(HAC) technique. Note
that this approach heavily relies on the textual context of the entities and relations which
is missing in KG triples. Nevertheless, as this is the closest related approach to our
work, we consider it as a non-embedding baseline that is purely text-driven. To best

5We also tried the euclidean similarity measure and it shows very similar results. For the rest of the
paper, we only refer to results from the cosine similarity scores.
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Table 3.3: Performance of FineGReS compared to non-embedding baseline

Yago NELL
Micro Macro Micro Macro

Baseline .439 .275 .442 .261
TransE .537 .357 .711 .434
DistMult .597 .376 .719 .431

Table 3.4: Examples of FineGReS sub-relations

Dataset - Relation (Setting) Count FineGReS Sub-Relations

Yago - owns
(TransE -HAC)

3
{⟨company, airport⟩ ⟨organization, airport⟩},
{⟨sovereign, building⟩}, {⟨company, club⟩
⟨company, company⟩, ⟨country, club⟩}

Yago - created
(TransE -OPC)

4

{⟨artist,medium⟩ ⟨officeholder,movie⟩},
{⟨writer, fictional character⟩}, {⟨writer,movie⟩

⟨writer, television⟩ ⟨artist,movie⟩
⟨artist, computer game⟩ ⟨player,movie⟩},

{⟨company, computer game⟩}

NELL-agentCompetesWith
(TransE -KMC)

5

{⟨company, person⟩ ⟨website, person⟩
⟨person, person⟩, ⟨sportsteam, sportsteam⟩},

{⟨person, company⟩, ⟨person,website⟩}
{⟨animal, animal⟩, ⟨bird, animal⟩},

{⟨bank, bank⟩}, {⟨mammal, politicsissue⟩}

NELL-subpartOfOrganization
(DistMult-KMC)

8

{⟨sportsteam, sportsteam⟩ ⟨stateorprovince, sportsteam⟩
⟨university, sportsteam⟩ ⟨city, sportsteam⟩ },

{⟨organization, organization⟩}, {⟨televisionstation, city⟩},
{⟨company, company⟩ ⟨televisionstation, company⟩},

{⟨sportsteam, sportsleague⟩}, {⟨televisionstation, website⟩}
{⟨televisionstation, televisionnetwork⟩}, {⟨bank, bank⟩}

implement this baseline approach from Min et al. [110], the entity similarity was derived
from text-driven entity embeddings [175] instead of the KG embedding models (as done
in our approach). These text-driven embeddings encapsulate the textual context as well
as sentence-level lexical patterns available in Wikipedia texts via word-based skip gram
and anchor context models. An entity similarity matrix (corresponding to the entity
similarity graph in [175]) was thus constructed from these entity embeddings and the
clustering was performed based on the pairwise similarity values from this matrix to
obtain relations with distinct semantics.

3.6.2 Evaluation of FineGReS relation semantics

Following previous works related to relation phrase clustering [53, 159], we employ micro
and macro metrics to evaluate the quality of the clustering in terms of precision, recall
and F1. Table 3.2 reports the weighted (as per the number of data points) F1 metrics for
the datasets obtained by the feature-based baselines and the FineGReS method in the
different settings of KG embeddings and clustering techniques. Note that FineGreSconcept

and FineGreSentity correspond to the different variations of the FineGReS approach in
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terms of obtaining type representations (refer to Section 3.6.1). Additionally, we also
compared the best performing setting of the FineGReS method in case of DistMult and
TransE models to the non-embedding baseline and present the results in Table 3.3.

Observations. It can be seen that in all settings the clusters obtained by the proposed
FineGReS method outperform the baselines in terms of both micro and macro metrics
on Yago and NELL datasets. Clustering with kmeans and hierarchical agglomerative
techniques show better results in comparison with optics which is a density-based clustering
technique.6 Overall, the results provide strong evidence in support of the efficacy of
our method for finding optimal configurations of clusters for the relations, from which
sub-relations with well-defined semantics can be derived. Furthermore, it is observed that
FineGreSconcept performs better than FineGreSentity in majority of the cases for both
Yago and NELL datasets. We conjecture this is due to the fact that the semantics of the
entity types directly obtained from ConVec vectors (see Section 3.6.1) are more precise,
whereas, the semantics derived from the vectors of the entities associated with the types
are prone to noise and errors. Therefore, the type similarities would be more semantically
aligned in the case of FineGreSconcept, thereby leading to superior performance of the
method. Another important insight from the results is that while it is indeed favorable
to replace a polysemous relation with multiple sub-relations, it is certainly not a trivial
task to obtain these sub-relations by simply defining their semantics in terms of unique
type pairs. The pair baseline that corresponds to such sub-relations can be seen to score
consistently lower in all settings. The subject and object baselines fair better in this regard,
though the proposed FineGReS approach is clearly the most optimal. From Table 3.3, it
can be seen that the non-embedding baseline was outperformed by FineGReS with the
exception of TransE giving better result for NELL dataset. As mentioned, this baseline
benefits from textual context which is lacking for our approach and therefore, a fare
comparison is hard to perform. Still, the results indicate that KG embeddings are able to
represent the semantics of the relations and identify fine-grained relation semantics in
large KGs, even in the absence of additional cues or background knowledge.

Qualitative results. Table 3.4 shows a few representative examples of the sub-relations,
along with their count, obtained by FineGReS in different settings for Yago and NELL. It
can be seen that semantically different entity type pairs have been clearly separated out as
distinct sub-relations, e.g. the ⟨sovereign, building⟩ pair for owns relation where sovereign
is semantically distant from other types or agentCompetesWith where ⟨bank, bank⟩ is a
separate sub-relation. Other sub-relations have multiple type pairs associated with them
based on their semantic proximity. Note that in a few cases, the optimal configuration for
a relation could indeed correspond to the pair or subject/object baseline depending on
the associated type pairs. The FineGReS method is able to automatically determine this
optimal configuration of the sub-relations for each relation relying solely on the triples in
the KG dataset and the associated entity type information.

3.6.3 Manual evaluation with Yago

In order to estimate the usefulness of the fine-grained sub-relations obtained from
FineGReS , we performed a limited manual evaluation and analysis on the Yago dataset.

6This was also observed by previous work in the context of KG embeddings [76].
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Three annotators were given the different type pairs associated with 15 candidate relations
in Yago having more than two distinct type pairs) and asked to independently identify
any potential sub-relation clusters by assigning labels to the type pairs. The relations for
which atleast two annotators agreed on the label assignments were taken into considera-
tion as the true values. These were then compared with the labels obtained from the top
k best performing FineGReS settings from Table 3.2 for each relation and the Hits@k
metric was calculated. Essentially, we measure how often the sub-relations identified by
human annotators for each relation were also found by the proposed technique among
the top k performers. The values of Hits@1 and Hits@3 were found to be 0.33 and 0.66
respectively, indicating that the sub-relations discovered by FineGReS indeed resembled
the semantics that the human annotators had identified to be useful for many of the
relations. The manual evaluation proved to be challenging due to the subjective nature
of this task, where humans could not always identify the precise semantics of potential
sub-relations in the absence of additional context. Embeddings derived from relational
learning models are superior in this regard as they are able to encapsulate the latent
semantics of the KG relations, hence they are well-suited to the task of fine-grained
relation discovery.

Discussion. A closer inspection of the sub-relations obtained from FineGReS revealed
further interesting insights. First of all, due to the data-driven nature of the proposed
approach, where only KG triples serve as data points, the results are worse for relations
with a smaller representation in terms of the number of triples in the dataset, as compared
to the relations with a larger number of triples. This is quite expected as the clustering
algorithms fail to identify good clusters in the vector space when there are very few data
points available. Along the same lines, it is important to point out that if a type pair has
few data points but it is semantically distinct from the others, it is still identified as a
separate cluster, e.g. in the case of ⟨bank, bank⟩ type pair for the agentCompetesWith
relation in NELL (Table 3.4). This way, the semantics of the type pairs for a relation play
a decisive role in the clustering, rather than the number of data points (i.e. frequency
with which the relation connects the different type pairs). Furthermore, it was seen that
the proposed approach is rather too aggressive for some relations, where there might
be different entity types associated with the relation but they still represent the same
semantic. Especially in Yago, while relations such as lives In and married To convey a
clear meaning, due to the hierarchical ontology structure, the entities associated with
these relations form different type pairs such as (officeholder, country) and (scientist, site)
in the case of lives In relation. Therefore, the FineGReS approach discovers separate
sub-relations for these relations despite the same semantic. In the same dataset there is
another relation participatedIn where the types officeholder and scientist play distinctly
different roles and indeed belong to separate sub-relations. As the mapping of the entities
to their types is performed consistently for all the triples in the dataset, and not on a
per-relation basis, the proposed method cannot distinguish the cases where the entities
such as officeholder and scientist should be abstracted to represent the person type, as a
human annotator would understand. Related to this discussion, it is noteworthy that the
assignment of the types to the entities can be differently performed in the underlying
dataset depending on the required level of granularity. The proposed method can, in
principle, work at different levels of fine-grained semantics as dictated by richness of type
assignment of the entities in the hierarchy of the ontology or as desired by a downstream
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Table 3.5: Performance comparison for entity classification task for Yago and NELL
(R refers to original relations, Base refers to the non-embedding baseline)

FineGReS
R pair subject object Base TransE DistMult

Yago
P .893 .916 .906 .918 .926 .923 .928
R .908 .925 .921 .935 .938 .941 .942
F1 .894 .914 .909 .924 .926 .931 .931

NELL
P .643 .692 .696 .665 .567 .705 .713
R .689 .727 .729 .703 .645 .736 .747
F1 .650 .701 .713 .683 .584 .715 .726

application.

3.6.4 Entity classification use case

In order to empirically evaluate the FineGReS method in terms of the usefulness of the
derived sub-relations, we consider the popular use case of entity classification which is
an important task for KG completion [116]. It is modeled as a supervised multi-label
classification task, where the entities are assigned to their respective types. Previous
works have performed type prediction for entities in KGs based on statistical features [127],
textual information [89] as well as embeddings [17]. Taking cue from the same, we design
a simple architecture with a CNN classifier [181] for the multi-label classification task
which can jointly classify both the entities in a given triple to their respective types.7

The model consists of a convolutional layer with feature detector, and ReLu activation,
this is followed by a max pooling layer and dropout layer to reduce over-fitting. The
output is passed through a fully connected layer with softmax activation to obtain the
probability of the different classes for being the predicted type for the entities. The Adam
optimizer was used with the learning rate set to 0.0001. The experiments were run on a
server with Intel X86 CPU and using a single NVIDIA GTX1080 GPU with 11GB RAM.
The dataset for the classification task was obtained by replacing the original polysemous
relations in the KG dataset with their corresponding fine-grained sub-relations in the
relevant triples, obtained from the best performing setting of the FineGReS method as
well as from the baseline techniques described in Section 3.6.1. The performance of entity
classification measured in terms of weighted precision, recall and F1 scores (averaged over
10 runs) is shown in Table 3.5 for Yago and NELL. The main objective is to measure
the improvement in performance when the relations in the triples of the KG are dictated
by well-defined, fine-grained semantics as opposed to ambiguous semantics. The results
confirm that entity classification task indeed sees an improvement when the underlying
dataset is comprised of relations with fine-grained semantics obtained from FineGReS
method, in comparison to the original polysemous relations (denoted as R in the tables),
as well as the relations obtained from other feature-based and non-embedding baselines.
In particular, the gains seen over the pair setting are indicative of the superiority of the
FineGReS method in terms of not merely finding any set of sub-relations but finding the

7The setup is intentionally simple in these experiments so as to draw attention to the effect on
performance from different configurations of relations and pseudo sub-relations in the KG dataset. It
could arguably be replaced by any state-of-the-art technique.
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optimal configuration of the sub-relations that best represent fine-grained semantics for
the relations.

3.7 Summary

In this chapter, we have presented the task of fine-grained relation discovery for knowledge
graph refinement, which is an important problem that has not been fully explored. The
proposed scalable and data-driven method FineGReS automatically determines an optimal
configuration for deriving fine-grained sub-relations by taking advantage of the latent
relation semantics represented by KG embedding models. This technique does not rely on
additional background knowledge and thus it can be employed for arbitrarily large and
heterogeneous KGs. We established several baselines and conducted extensive empirical
evaluation that demonstrated the difficulty of this task and the efficacy of the proposed
method for learning fine-grained relation semantics. The improved performance for the
task of entity classification strongly indicates the promise of this approach. Since the
method relies on the type information of the entities, FineGReS can currently be applied
only to the KGs accompanied by their ontologies. It would be interesting to extend the
approach to derive relation semantics from other sources, such as text.

While knowledge graph embeddings have been successfully leveraged for finding fine-
grained relation semantics in the proposed FineGReS approach, limitations regarding the
semantic representation of KG entities were also discovered that warrant closer inspection.
The next chapter presents a discussion and systematic evaluation of these shortcomings
in KG embeddings.
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Chapter 4

Semantic Representation in
Knowledge Graph Embeddings

“I would rather have questions that can’t be answered
than answers that can’t be questioned.”

— Richard Feynman

In the last chapter, we have seen how knowledge graph embeddings can be used for
deriving the semantics of the relations in the underlying KG datasets. In this chapter,
we take a closer look at the embeddings models themselves, particularly, how well the
latent KG semantics are actually encapsulated by the embeddings. While embeddings
have indeed been used for various semantic tasks in the past, it is important to perform
a critical and quantifiable analysis of the semantic representations in popular embedding
models to understand their scope and limitations. Such an analysis has been missing
from previous works and is the main focus of this chapter. Our systematic analysis shows
that though it seems intuitive to leverage KG embeddings for semantic interpretability
(just like word embeddings successfully have been), this is not always the case. The
performance of embeddings is, in fact, limited in reality and heavily dependent on the
dataset characteristics.

The chapter is primarily based on the work published in Jain et al. [76]. It is structured
as follows — Section 4.1 discusses the semantics of knowledge graph embeddings and
motivates the need for a critical analysis. Section 4.2 provides an overview of the related
works that have leveraged embedding model for various tasks as well as those that
have analysed different aspects of these models. Section 4.3 explains the design of our
experimental analysis in terms of dataset preparation and techniques. The experimental
setup and the results are presented in Section 4.4. Then, Section 4.5 contains a detailed
analysis of the shortcomings that were observed and the lessons learnt from this analysis.
Finally, we conclude this chapter in Section 4.6 with a summary of the major insights
and points for improvement.

4.1 Knowledge Graph Embeddings and Semantics

As previously mentioned, the fundamental idea behind latent embedding models or
knowledge graph embedding models (used interchangeably throughout this chapter) is
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the representation of entities and relations by low-dimensional dense vectors that can
capture the semantics and interactions within the knowledge graph. In the past decade,
latent embedding models have garnered considerable attention due to their success on
the link prediction task. Following the introduction of the TransE embeddings by Bordes
et al. in 2013 [20], a flurry of different models have been proposed in the recent years,
as summarized by Wang et al. [165]. Many different models have been proposed that
achieve state of the art performance for the task of triple completion in knowledge graphs,
on which these models have been trained and evaluated.

It is important to note that while these models were originally proposed for knowledge
graph completion, the intense popularity and frequency of novel ideas towards better KG
embedding models has encouraged the research community to exploit these embeddings
for other tasks as well. Since the basic premise of KG embeddings is centered around
the semantic relationships between various entities, there is a widespread notion that
embeddings must be able to capture the semantics and features of KG components very
well. As such, embeddings have been used for many similarity-based tasks including
entity similarity [146], and conceptual clustering [51, 52, 163]. Moreover, several previous
works have attempted to leverage KG embeddings for performing reasoning with rules [69,
176, 180].

While the results look promising, none of these previous works have performed a
detailed analysis of the benefits of the embeddings across different datasets as well as across
different entities within a single dataset. In some cases, a measurement of the consistency
and scalability of the proposed embedding-based approach for different real-world datasets
is largely lacking. The oversight of the limitations of KG embeddings and emphasis on
the success for the simpler cases might prove misleading to research community. There is
a need for addressing the above issue by studying the characteristics of the latent vectors
obtained from several KG embedding models and quantitatively measuring their ability
for semantic representation. With the aid of a systematic evaluation, it needs to be
ascertained that when embeddings are trained on the KG entities to learn their semantic
features, whether this learning is uniform or the quality of semantic representation varies
largely across different entities within the dataset. Evidence of non-uniform quality would
raise doubts about the applicability of KG embeddings not only for semantic reasoning,
but also for triple completion and link prediction.

4.2 Related Work

KG embeddings have been used for a variety of applications over the years. We provide
an overview of the related works that follow embeddings-based approach and discuss
them in the context of semantics in the embeddings. We also mention previous works
that have critically analysed embedding methods.

Entity typing. Finding missing type information for entities in KGs has been a long
standing problem. Early techniques usually relied on probabilistic methods for predicting
the class membership of entities based on their properties [127]. More recently, KG
embeddings have been used together with classification algorithms. As an example, Nickel
et al. use RESCAL to predict new type information in a small Yago dataset and show
good results on high-level classes such as persons, locations and movies [120]. Moon
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et al. propose a new embedding technique for performing entity typing [114]. In the
example illustration for clustering shown in this paper, it can already be observed that the
embedding technique seems to be problematic at distinguishing fine-granular classes such
as author and actor. To a certain degree, their results show that entity typing with KG
embeddings is far from being an ideal solution. More recently, an improved embedding
technique for entity typing has been proposed [186]. Similar to us, the authors perform
an evaluation of embeddings on Freebase and Yago for the entity typing task. While the
results already reveal some problems when using entity embeddings for typing, a larger
analysis is not performed. In contrast, our work undertakes a detailed analysis of the
limits of entity typing when using KG embeddings and shows how classical techniques
(e.g. SDType [127]) are often superior.

Entity clustering. Besides link prediction, entity clustering is another popular appli-
cation of KG embeddings. Gad-elrab et al. [51], perform a limited analysis of several
clustering algorithms on fine-grained classes. In a related work, the authors leverage
rules and embeddings in conjunction to derive explainable clusters from the dataset [52].
However, the results have been shown to work well only for relatively easy relational
datasets having well-defined relations between the entities and for small, targeted subsets
of Yago. A scalability analysis of these techniques for actual knowledge graphs where
their applicability would be most useful is missing. Another related work is presented
by Jain et al. [82] where the authors incorporate type information of entities to design
better embedding models and demonstrate their results on entity clustering. However,
clustering results are illustrated only for limited classes such as persons, organizations
and locations without any details on the performance across all classes in the dataset.

Another branch of research concerns with using path-based graph embeddings to
perform node classification and clustering tasks [74]. Generally, these techniques aim
at creating node (or entity) embeddings using longer paths, instead of relying only on
triples like common KG embeddings. However, these techniques are usually evaluated on
datasets that do not share the characteristics of knowledge graphs in terms of having
fine-grained entity types. Still, as a representative for path-based embeddings, we also
evaluate RDF2Vec [137] in this work.

Other applications. Besides knowledge graph completion, KG embeddings have been
employed in a number of other settings. Similar to previous tasks, it is crucial that KG
semantics are captured properly for embeddings to scale well for arbitrary real-world
datasets. Embedding approaches have been explored in the context of rule mining on
KGs by many previous works with seemingly good results. Existing techniques have
either attempted to mine rules directly from the embeddings [176], or use embeddings to
support rule mining for confidence computation [69, 180] such that rules of higher quality
can be mined. The latter works have not studied or quantified the benefits of embeddings
on their work or explored which entities are positively impacted by them.

Furthermore, embeddings are often used to measure the semantic similarity of the
entities and relations to perform data integration via entity or relation alignments [30, 85].
An overview of several entity alignment techniques which are based on embeddings is
presented in [146]. In our work, embeddings based approaches are compared to classical
non-embedding approaches showing no real advantages. This result may already imply
that entity semantics is not represented properly in embeddings.
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Criticism of KG embedding models. For several years, a large variety of knowledge
graph embeddings has been developed to perform link prediction to cope with incomplete
information in KG. However, recent works have also put the efficacy of KG embeddings
techniques under scrutiny [4, 139, 140]. A re-evaluation of knowledge graph embedding
methods shows several quality problems in the evaluation of KG embedding models as
well as the carefully curated benchmark datasets that have been universally used for
performance comparison [4]. Akrami et al. demonstrate that existing datasets show
several redundancies and cross-product relations. Redundancies in the datasets lead to
heavy data leakage thereby making them unrealistically simple in contrast to real-world
KG. Furthermore, cross-product relations, connecting all entities to all other entities
are frequently used. The authors point out that predictions for these relations is trivial
and leads to overestimating the performance of embedding techniques. They show that
cleaning the datasets from these defects significantly reduces the link prediction quality
of KG embeddings. In another study, the performance gains claimed by newer and
more complex models in comparison with the first KG embedding models has also been
questioned [140].

The above mentioned works have evaluated and criticized the KG embedding models
primarily in terms of their performance on the link prediction task. In this chapter, we
focus instead on the utility of the KG embeddings for providing semantic interpretations
(or rather, the lack thereof). Our work extensively analyses the problems of current
embedding models in terms of their semantic representation, casting doubt on their overall
usability in complex real-world KG settings.

4.3 Analysis of the Semantics in Embeddings

In this section, we explain our approach to perform a systematic evaluation of the
embeddings for checking their semantic soundness. We also elaborate on the design of
our experiments based on popular benchmark datasets.

4.3.1 Categorization of entities

KG embeddings are trained to capture the structural information of the underlying
dataset. Ideally, if latent embeddings were able to embody all the latent features of
entities, then entities with similar features would be similar in the vector space as well.
That is, entities belonging to a particular type, and therefore having similar features would
result in similar vectors [163]. Inversely, the embeddings that are close to each other in
the vector space would correspond to entities having similar types or features [114]. This
implies that it should be possible to identify the entities belonging to a particular type
from the KG embeddings. Therefore, in this work we focus on verifying whether the
entities can be categorized or assigned to their respective types from their corresponding
latent vector representations.

While this is similar to the task of entity typing as discussed in Section 4.2, in this
work we chose to follow a comparatively straightforward approach to analyse whether the
embeddings in high dimensional space can indeed express the similarities between entities
belonging to the same class or concept. We perform a systematic investigation with two
distinct sets of classification and clustering experiments for the entity embeddings in the
vector space.
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Both these methods are suitable for semantic analysis as they can identify salient
features of the embeddings, if any. These can be used to assign the correct class label to
the entities in the case of classification, and segregate the entities into separate clusters
as per their classes in the case of clustering. If latent embeddings are able to capture the
connotations of entities, then this should be reflected in the performance of classification
and clustering results obtained by using the embedding vectors as representation. The
intentional choice of these techniques is also, in part, to their simplicity, which will
enable us to lay the focus on the quality of the embeddings instead of the quality of the
evaluation technique itself.

Classification. With the aid of the supervised approach of classification, we hope to
discover the salient semantic features that the latent embeddings are assumed to have
learned and use these features to identify the correct class labels for entities. Since
an entity can belong to multiple classes in a KG, this entity typing task is a multi-
label classification problem where one or many class/type labels can be assigned to an
entity. For our experiments, we employed three different types of classification algorithms
which work well for multi-label data. The Multi Layer Perceptron (MLP) classifier is a
neural-network-based classifier using a simple feed-forward network. We chose the most
basic architecture with a single hidden layer with 100 units. As a second classification
technique, we chose a K-Nearest-Neighbour (KNN) classifier. Lastly, Random Forest (RF)
classification is used as a decision-tree-based algorithm.

Clustering. Being an unsupervised task, clustering is used for identifying the class
membership of entities by assigning them to separate clusters, each cluster ideally
representing a class. For our experiments, since the ground truth for class labels of
entities is known, we are able to measure the quality of clustering by comparing the
actual labels with the predicted class labels. Previous works have attempted to identify
conceptual clusters in a vector space by applying simple techniques such as K-Means to
entity embeddings obtained from KG embedding models [52]. We expand our analysis to
multiple clustering techniques to weigh the merits and flaws of the techniques and draw
conclusions about the characteristics of the underlying embeddings on which clustering is
performed. In our experiments, we leverage Spectral clustering, Optics clustering as well
as Hierarchical Agglomerative clustering techniques in addition to the simple K-Means
technique. While hierarchical clustering is particularly suitable for representing the
class hierarchy present in most KG ontologies, Spectral clustering has shown promising
performance for graph based data. Optics is a density-based technique that is suited for
identifying clusters in spatial data and fits well to our use case.

It is to be noted that our intention for performing clustering in this work is not to
discover new concepts but rather to re-discover the existing concepts that the entities are
already associated with. Therefore, we provide the required parameter of the number of
expected clusters and calculate cluster quality based on ground truth class labels of the
entities under consideration.

4.3.2 Datasets

For the experiments, we have chosen the popular benchmark datasets Yago3-10 and
FB15K-237. This allows for our results to be put in the correct context with regard to the
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Figure 4.1: Yago3-10 class frequency analysis

numerous other related works that have shown good performance on these datasets [22].
Here, we discuss the main characteristics of these datasets and describe the selection of a
suitable subset for the clustering and classification experiments.

Yago3-10. This dataset was created from the Yago3 knowledge graph [106] by filtering
out the entities having less than 10 relations. It consists of a total of 1,079,040 triples
with 123,181 entities and 37 relations. It is important to note that Yago is a semantic
knowledge base associated with a hierarchical ontology that was derived from Wordnet
taxonomy [109] combined with Wikipedia categories that are often fine-grained and noisy.

In order to explore the differences in semantic representation for entities with varying
type granularity, we proceeded to extract entities belonging to classes at different levels
of the Yago ontology that resembles a tree-like structure. We limited our analysis to
the concepts in Yago that are directly mapped to the Wordnet taxonomy to obtain a
clean sub-tree of classes that are related to each other. Starting with the main branches
of Yago class hierarchy, we chose the classes person, organization, body of water and
product, then progressively explored their sub-trees to design experiments at different
levels of the class hierarchy. For this, we manually performed a systematic analysis of
the sub-classes of the above four classes and chose the most frequent classes for our
experiments. This was a non-trivial task for the Yago3-10 dataset due to the presence of a
highly skewed class frequency distribution. As reported previously [65], a large proportion
of the entities in this dataset belongs to very few classes, while a long list of classes have
very few representative entities. Almost 62% of all the entities belong to the 1% most
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Table 4.1: Yago3-10 experiments for different levels

Experiment Classes

Level-1 person, organization, body of water, product
Level-2-organization institution, musical organization, party, enterprise, nongovernmen-

tal organization
Level-2-body of water stream, lake, ocean, bay, sea
Level-2-person artist, politician, scientist, officeholder, writer
Level-3-person-writer journalist, poet, novelist, scriptwriter, dramatist, essayist, biographer
Level-3-person-artist painter, sculptor, photographer, illustrator, printmaker
Level-3-person-player hockey player, soccer player, ballplayer, volleyball player, golfer
Level-3-person-scientist social scientist, biologist, physicist, mathematician, chemist, linguist, psy-

chologist, geologist, computer scientist, research worker

Table 4.2: FB15K-237 experiments for different levels

Experiment Classes

Level-1 person, organization, body of water, product
Level-2-organization institution, musical organization, party, enterprise, nongovernmen-

tal organization
Level-2-person artist, politician, scientist, officeholder, writer
Level-3-person-writer journalist, poet, novelist, scriptwriter, dramatist, essayist, biographer

frequent classes in this dataset. The frequency distribution of the classes (having at least
1000 entities) is graphically represented by Fig. 4.1 which shows that the class frequency
distribution follows Zipf’s law.

Due to the constraint of sparse entities in many cases, for each class, a list of sub-
classes having entities above a minimum threshold were explored and used for designing
the experiments (sub-classes leading to a high skew were omitted to ensure data balance).
This was done for three levels starting with the main Yago classes as stated above. Each
experiment contains a set of classes that belong to the same level in the ontology. This is
important for a fair comparison of the semantic representation of the classes at different
granularity levels of the class hierarchy. Table 4.1 lists all the experiments at different
levels along with their classes. For each experiment all the entities belonging to the set of
classes in the experiment was compiled from the Yago dataset, then the corresponding
embeddings for these entities was extracted from pre-trained KG embeddings models to
serve as data for the clustering and classification experiments.

FB15K-237. This second dataset is a subset of the Freebase knowledge graph, frequently
used by knowledge graph embedding models. FB15K-237 [151] comprises 272,115 triples
with 14,541 entities and 237 relations. It was derived from the FB15k [20] dataset by
filtering out redundant and inverse relations. With regard to the domains, it mainly
pertains to persons, organizations and products and we aimed to design our experiments
with a similar structure. We performed the mapping of Freebase entities to Yago through
existing sameAs links and chose classes and sub-classes by following the Wordnet taxonomy.
The experiments were designed in the same way as described above for the Yago dataset
for allowing direct comparisons. The Freebase dataset is significantly smaller than the
Yago dataset, such that the number of entities reduces dramatically when considering the
classes at level-3. Therefore, we had to limit ourselves to fewer experiments as listed in
Table 4.2.
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4.3.3 Knowledge graph embeddings

For all the experiments, we obtain the pre-trained embeddings models for the benchmark
datasets from the LibKGE library [22] since extensive hyperparameter tuning has already
been performed. We used five different embedding techniques (as introduced in 1.3) that
are widely popular — TransE, RESCAL, Complex, DistMult and ConvE. Since for Yago3-
10 only the Complex embeddings were available, we trained the remaining embeddings
ourselves by adapting the parameters that were used for the Freebase dataset1. Another
popular branch of embedding approaches is based on paths in a knowledge graph, usually
showing good results in entity typing tasks as discussed in Section 4.2 [137]. RDF2Vec
was trained using paths created by a random walker algorithm which created paths of
length 4. Then the model was trained for 50 iterations using pyRDF2Vec library.2

4.4 Experiments

In this section we present the results of our experiments for clustering and classification on
Yago3-10 and FB15k-237 datasets. Additionally, we draw comparisons with a traditional
statistical approach.

4.4.1 Non-embedding baseline

To ensure that the results are not driven solely by the performance of clustering and
classification algorithms, we found it important to include a baseline that is unrelated to
the embeddings. For this, we leveraged the SDType approach as introduced by Paulheim
et al. in 2013 [127]. This is a heuristics based technique that simply uses the links
between the entities to infer their type. Based on the incoming and outgoing relations
associated with a particular entity, the average probability of each type for an entity is
calculated. Purely relying on the statistical distributions of the entity links, this method
is robust to noisy facts in the dataset and agnostic to existing type information. We
rely on this approach to stipulate whether any semantic features are present in the
underlying data that can help with the deduction of type information for the entities. If
the statistical approach can already leverage the semantic features in data to identify the
types for entities, this indicates that unsatisfactory scores for classification or clustering
on embeddings must be due to the failure of embedding models to capture these semantic
features during training. We report the performance of SDtype for our experiments along
with the classification results in terms of the best F1 measure obtained (P-R curves are
available on github link).

4.4.2 Evaluation metrics

Similar to previous works [52], we measured the Adjusted Rand Index (ARI), Normalized
Mutual Information (NMI) and the V-measure to estimate the quality of the clusters. With
the true and predicted labels as input, ARI measures the similarity of the assignments
with values between -1 and 1 (0 stands for random assignment, 1 is the perfect score).
NMI measures the agreement of the assignments and V-measure is the harmonic mean of

1The training parameters and performance scores are available on github link.
2https://github.com/IBCNServices/pyRDF2Vec
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Figure 4.2: F1 measure for Yago3-10 classification experiments (best viewed in color)

Figure 4.3: F1 measure for FB15K-237 classification experiments

homogeneity and completeness of the clusters. For both, the values lie between 0 and 1,
with 1 being a prefect score. For the evaluation of classification experiments, an 80-20
ratio was used to split the dataset (consisting of entity embeddings and class labels) into
train and test set. Since the task is a multi-label classification, the weighted average of
F1 measures per class (in %) in the test set was used as an evaluation measure.

4.4.3 Classification results

Fig. 4.2 shows the weighted F1 measures for Yago3-10 dataset across all the embedding
models (color coded) as well the different classifiers (pattern coded). It can be seen
from this figure that all the classifiers perform very well for level-1 experiment (refer to
Table 4.1), where the considered classes are coarse-grained and distinct from one another.
However, the performance starts degrading once experiments at level-2 are considered
and becomes worse for level-3, where the F1 measure drops below 20 for sub-classes
of the scientist class. This is due to the fact that classes are finer-grained for these
experiments, where they all have a common parent class and share certain common
features. For instance, different types of persons, and further, different types of artists,
scientists etc. would all share common properties of the person class (discussed in detail
in Section 4.5). Even though the considered classes are conceptually distinct from one
another, the classification algorithms find it hard to perform label matching correctly
based on embeddings. This behaviour is uniform across all clustering algorithms and
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Figure 4.4: NMI measure for YAGO3-10 clustering experiments (best viewed in color)

Figure 4.5: NMI measure for FB15K-237 clustering experiments

all embedding models, with no setting performing particularly better or worse. Though
fine-grained entity typing is indeed a hard problem, our experiments are designed only for
the top three levels of classes. It is indicated by these results that embeddings simply do
not possess the necessary semantic features such that classification could identify correct
entity types beyond the highly coarse-grained classes.

Similar trends are also seen for the FB15k-237 dataset (Fig. 4.3) where classification
performs very well for the level-1 experiment, but gets worse progressively for level-2 and
level-3. A few exceptions in this trend are noticed when the dataset is highly skewed
towards entities of a particular class, such as players in case of Yago and artists in case of
Freebase. In this case, the performance is improved to some degree as compared to other
experiments at the same level. The performance of Freebase is generally better than
Yago due to the presence of more relations in the dataset. Overall, the drop in classifier
performance with increasing levels indicates a lack of sufficient semantic representation
in embeddings for fine-grained entities for both the datasets.

To compare and contrast the performance of the SDType baseline approach, the F1
measures for SDType are also shown in Fig. 4.2 and Fig. 4.3 (coded with a different
color and symbol). Significantly, it can be seen that SDType is able to achieve quite
competitive results as compared to the embeddings, notably for the level-3 classes. This
provides strong evidence for the shortcomings of embeddings for representing fine-grained
classes for which even simple statistical approach can already give comparable results.
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4.4.4 Clustering results

The results for the clustering experiments are reported in terms of the NMI scores and
shown in Fig. 4.4 for the Yago3-10 dataset and Fig. 4.5 for the FB15k-237 dataset.
Overall, clustering performs worse than classification, which raises doubts over the
expected spatial closeness of similar entities in the vector space. Further, the clustering
results also demonstrate a similar pattern to the classification results. The NMI scores
are relatively better for level-1 classes but get progressively worse for lower levels3. All
embedding techniques fair similarly, thus conveying that it is difficult to identify or
re-discover even the existing entity types or classes from any of the embeddings with the
help of clustering, except for very high-level classes. Considering the different algorithms,
Optics shows worse clustering scores in many cases. Since Optics is a density-based
clustering technique, the low quality of clusters again point towards the lack of proper
conceptual representation in the embeddings in vector space.

4.5 Analysis

From the experimental results on both supervised and unsupervised tasks, it is clear that
KG embeddings are unable to capture the latent features that would be sufficient for
a good semantic representation for all entities of a KG. While entities belonging to a
small set of high-level easy classes are relatively well-represented, the same does not hold
true for most of the entities corresponding to other important classes in the dataset. We
investigated further to understand the plausible reasons for this shortcoming and discuss
our findings here.

Looking beyond the flaws in the training and evaluation process of the KG embedding
models (that has been the focus of previous works as discussed in Section 4.2), we studied
the characteristics of the underlying KG datasets on which the various embeddings are
trained. Knowledge graphs such as Yago and Freebase are comprised of real world entities
that frequently belong to more than one semantic type or class e.g. an artist can also be
a politician in real life. Since such entities would reflect the characteristics of multiple
classes, they are associated with a number of different relations that are neither unique
nor indicative of any single class in particular.

To explore this further, we performed an analysis of the relations associated with the
different classes that were used in our experiments for the Yago3-10 dataset. For each
class, the incoming and outgoing relations associated with all the entities of the class
were separately identified. Thereafter, the classes were compared to each other in terms
of their relations within the same experiment as well as across experiments at different
levels (as listed in Table 4.1). Fig. 4.6 shows a comparison for classes at different levels
based on their outgoing relations for a few representative experiments. Here, a slot is
shaded depending on the premise that the relation was found for a minimum number of
entities of the class. The figure demonstrates that the classes at level-1 have different sets
of relations associated with them, i.e. there are few overlapping relations. This is less
so for level-2 classes where several relations are found to be common. Finally, at level-3
there are hardly any unique relations that could distinguish one class from another and
the relations overlap is quite substantial.

3ARI and V-measure show similar trend, full results are available on github link.
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Figure 4.6: Representation of outgoing relations at different levels in Yago

These results stem directly from the characteristics of real-world data where, for
instance, all persons have similar properties (e.g. wasBornIn, isCitizenOf ) regardless of
their profession. In Yago3-10, any specific relations that could have uniquely identified,
e.g. an artist from a politician seem to be either missing or very sparse. This directly
affects the embeddings since they are trained to learn the associations between the
different entities of a KG (a heuristics based approach like SDType can exploit sparse
links much better). The presence of overlapping relations among entities belonging to
different semantic types hinders their ability to encapsulate type-specific features. In
this case, an embedding model can only hope to learn from other entities that are found
in the triples of the entities of a particular class, and find patterns and features from
those entities. However, recent work has shown that relations in knowledge graphs can be
ambiguous in the way they connect different entities [77]. This means that various types
of entities might be connected to a particular entity by the same relation. Such generic
and noisy links make it even harder for embedding models to derive type-specific features
about the entities, thus limiting their capability to learn similar entities or identify any
common traits for all entities belonging to the same class. It is worthwhile to note that
some classes such as musical instrument and tv program in Freebase have been shown to
cluster well in the vector space [114]. A closer inspection reveals that these classes have
very few and unique incoming relations such that the embeddings would be able to learn
their features well. However, classes with unique representative properties are not very
common in real-world datasets.

The key insight from our detailed analysis in this work is that while KG embeddings
are assumed to be representing the semantics for entities and relations, in reality their
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semantic soundness is severely restricted and highly dependent on the datasets on
which they are trained. Experimental results have clearly shown that several prominent
embedding models often record worse semantic capability for a majority of the entities in
real-world datasets as compared to a simple heuristics based approach that can derive the
semantics directly from KG triples without any additional information. These findings
indicate that a thorough inspection of the advantages and weaknesses of KG embeddings
is necessary when employing them for semantic tasks. While the semantic web community
is focused on novel architectures for training the KG embeddings models, a careful eye
on the generalizability of these models in terms of their semantic representation also
deserves more attention. We hope this work will guide further research in this direction.
Recent efforts towards the explainability in KG embedding models [13, 52] could be the
first steps towards understanding these models that could benefit all semantic tasks that
leverage them.

4.6 Summary

In this chapter, we presented a comprehensive analysis of the popular knowledge graph
embedding models in terms of their semantic utility. The results from our classification
and clustering experiments on top of these embeddings brings attention to the weaknesses
in semantic representation of embeddings. We showed that embeddings fare poorly in
terms of identifying the concepts or classes for a majority of the entities in the underlying
knowledge graph and simple statistical approaches can compete very well with them. We
also presented a detailed analysis of the reasons for limited semantic understanding of the
embeddings relating to sparse and noisy links in real-world datasets. We hope the results
from this work would serve as a precautionary tale and help the research community
become cognizant of the realistic semantic benefits of knowledge graph embeddings, such
that they can make prudent decisions when applying these embeddings to new problem
statements and semantic tasks. It would be interesting to extend this analysis to include
further and more recent embedding techniques.

In the next chapter, we continue our exploration KG embeddings and look closer
into the semantic soundness of their predictions for KG completion. Further, we present
our approach for improving the semantics of existing embedding models by explicitly
providing ontological knowledge during the training process.
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Chapter 5

Improving Knowledge Graph
Embeddings with Ontological
Reasoning

“I’m smart enough to know that I’m dumb.”
— Richard P. Feynman

In the previous chapters, we have discussed the inherent issue of incompleteness in
knowledge graphs and the role of knowledge graph embedding methods for the knowledge
completion task, i.e. predicting new triples. Chapter 4 has also established the limitations
of existing embedding models for semantic tasks. In this chapter, we further explore the
embedding models with regard to the flaws in their training process that may lead to
semantically incorrect predictions. Significantly, the lack of ontological knowledge during
the training is identified as the main reason behind this issue. As such, we propose a
novel technique called ReasonKGE that generates reasoning based negative samples to
improve the model performance.

The contributions in this chapter are based on the work done in Jain et al. [81]. The
rest of the chapter is divided into sections as follows — in Section 5.2 we discuss the
related work that concerns with negative sampling techniques and inclusion of ontology
in embedding models. Section 5.3 presents the necessary background and notations on
KGs, ontologies and embedding models. In Section 5.4 our ReasonKGE approach is
introduced and the different modules are described in detail. Then, in Section 5.5 we
discuss the results of our empirical evaluation that demonstrate the improvement in
the performance of embedding models with our approach. Finally, we summarize and
conclude in Section 5.6.

5.1 Training of Embedding Models

As mentioned in Section 1.3, typically, the training of KG embedding models aims at
discerning between correct (positive) and incorrect (negative) triples. A completion model
then associates a score with every input triple. The goal of the embedding models is to
rank every positive triple higher than all its negative alternatives. Therefore, the quality
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of embedding models is heavily impacted by the generated negative triples. Since KGs
store explicitly only positive triples, proper negative triple generation is acknowledged to
be a challenging problem [42, 92, 182, 183].

In the majority of existing methods the generation of negative triples is done either
completely at random [20], relying on the (local) closed world assumption [117], or by
exploiting the KG structure for the generation of likely true negative samples (e.g. [1,
6, 183]). However, these methods do not guarantee that the generated negative samples
are actually incorrect ones. In d’Amato et al. [42] this issue is partially addressed by
taking as negative examples precomputed triples that are inconsistent with the KG
and the accompanied ontology. Since the generation of all such possible inconsistent
triples as negative samples is clearly infeasible in practice, only a subset of them is
precomputed, and hence certain important inconsistent triples might be missing in the
set obtained in [42]. Furthermore, as embedding models rely purely on the data in
the input KGs, they often lose the real semantics of entities and relations, and hence
provide undesired predictions [169]. This calls for more goal-oriented approaches in
which ontological reasoning is used to verify and improve the actual predictions made by
embedding models.

To address the presented shortcomings, in this work we propose an iterative method
that dynamically identifies inconsistent predictions produced by a given embedding model
via symbolic reasoning and feeds them as negative samples for retraining this model.
We first start with any available negative sampling procedure (e.g., [92, 183]) and train
the embedding model as usual. Then, among predictions made by the model, we select
those that cause inconsistency when being added to the KG, as negative samples for the
next iteration of our method. To avoid predicting similar wrong triples, along with the
inconsistent triples explicitly inferred by the embedding model, we also generate triples
that are semantically similar via a generalization procedure. To address the scalability
problem that arises when integrating ontological reasoning into the training process
of embedding models, we consider ontologies in an extension of the Description Logic
(DL) DL-Lite [9] so that consistency checking and the generalization procedure can be
performed efficiently. Our method can support any embedding model, and with the
increasing number of iterations it yields better embeddings that make less inconsistent
predictions and achieve higher prediction accuracy w.r.t. standard metrics.

In this chapter, we introduce the ReasonKGE framework for exploiting ontological
reasoning to improve existing embedding models by advancing their negative sampling. To
efficiently filter inconsistent embedding-based predictions, we exploit the locality property
of light-weight ontologies. Moreover, in the spirit of previous work by Tran et al. [152] we
generalize the computed inconsistent facts to a set of other similar ones to be fed back
to the embedding model as negative samples. The evaluation of the proposed method
on a set of state-of-the-art KGs equipped with ontologies, demonstrates that ontological
reasoning exploited in the suggested way indeed improves the existing embedding models
with respect to the quality of fact prediction.

5.2 Related Work

We discuss previous works related to our approach in separate categories, including those
concerned with various negative sampling techniques for embedding models as well as
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the ones that integrate ontological reasoning with embeddings in different ways. We also
discuss previous works relating to inconsistencies in ontologies.

Negative sampling strategies. The closest to our method is the work by d’Amato
et al. [42], in which ontologies are used to generate a selection of negative samples in
the pre-processing step for training a certain embedding model. While we use this
pre-processing based sampling as a baseline for comparison in Section 5.5, our method is
different in that we do not generate all negative examples at once, but rather compute
them iteratively on demand relying on the inconsistent predictions produced by the given
embedding. The major advantage of the ReasonKGE method compared to [42] is the
dynamic and adaptable nature of negative sample generation, wherein, the method is
able to specifically target the weaknesses of the previously trained model by leveraging
inconsistent predictions to derive negative samples, and use them for re-training of the
model in next iterations. This is in contrast to the process of precomputing negative
samples using ontology axioms as suggested in d’Amato et al. [42].

Another related method is concerned with type-constrained negative sampling [95].
Given a triple from the KG, the negative candidates (subjects or objects) are mined by
constraining the entities to belong to the same type as that of the subject or object of the
original triple. However, unlike our inconsistency-driven method, the typed-constrained
sampling can generate false negatives. This sampling method can be in principle also
used as the starting point for our method instead of the random sampling.

More distant random negative samplings generate false candidate triples based on
the (local) closed world assumption [117]. Alternatives include Distributional Negative
Sampling (DNS) [34] and its variation [6], where during training, given a positive triple,
negative examples are generated by replacing it’s entity with other similar entities. Unlike
in our method, no ontological information is considered in these sampling strategies. The
same holds for the triple perturbation or triple corruption approach [144].

Nearest Neighbor and Near Miss sampling [92] resp. exploit a pre-trained embedding
model for generating negative samples by selecting triples that are close to the positive
target triple in vector space. Intuitively, this strategy is supposed to help the model
to learn to discriminate between positives and negatives that are very similar to each
other. These approaches are similar to ours, in that the embedding training procedure
itself is exploited for the generation of negative samples. However, in [92] no ontological
knowledge is taken into account which is in contrast to our work.

Another research direction concerns making use of Generative Adversarial Networks
(GANs) [24, 164, 182] for negative sampling. Ahrabian et al. [1] present structure-aware
negative sampling (SANS), which utilizes the graph structure by selecting negative
samples from a node’s neighborhood. The NSCaching sampling method [183] suggests to
sample negatives from a cache that can dynamically hold large-gradient samples. While in
these works negative triples are updated dynamically like in our method, these approaches
are totally different from ours, as they rely purely on the machine learning techniques,
and do not consider any extra ontological knowledge. Thus, the proposals are rather
complementary in nature.

Integration of ontological knowledge into KG embeddings. Another relevant
line of work concerns the integration of ontological knowledge directly into embedding
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models (e.g., [42, 55, 65, 95, 111, 169, 189]), which is typically done via changes in the
loss function, rather than negative sampling.

For example, a related method Embed2Reason (E2R) has been proposed by Garg
et al. [55]. E2R relies on the quantum logic, and injects ontology axioms via the loss
function, by summing up the terms relevant for these axioms. However, it is unclear
how this method captures the interaction among the axioms, which is often the reason
for inconsistency. Since the available code of [55] only supports a limited set of axioms,
i.e., SubClassOf, SubPropertyOf, Domain, Range, which are insufficient for generating
inconsistencies, we could not perform a direct comparison of our method to E2R. Note
that in general, our method is conceptually different from E2R. Indeed, in contrast to [55],
we focus on ontology-driven targeted improvements of the negative sampling procedure
with the goal of teaching a given embedding model to make only consistent predictions,
and interactions among the axioms are key to our method. Moreover, our proposed
approach can be built on top of any embedding model including [55], making the two
methods rather complementary in nature.

The recent work [169] suggests to exploit ontological reasoning for verifying consistency
of predictions made by a machine learning method (e.g., embedding or rule learning).
However, instead of feeding inconsistent predictions back to the given embedding model,
the authors propose to get rid of them and feed other consistent predictions along with the
original KG as input to a further KG completion method. In Hao et al. [65] the ontology
is explicitly included in the training data to jointly embed entities and concepts. By
treating the ontology and KG in the same way, only very restricted ontological knowledge
is accounted for.

Our work can be also positioned broadly within neural-symbolic methods, and we
refer the reader to relevant publications [14, 179] for other less related neural-symbolic
approaches.

Inconsistency in ontologies. The problems of explaining and handling inconsistency
in ontologies have been tackled in different settings [15, 16, 71, 98, 128, 152]. However,
typically these works focus on detecting inconsistency [16, 71], scalable reasoning [128,
152], or performing reasoning in the presence of such inconsistency [15, 98] assuming
that the KG is constructed and complete. In other words, these approaches deal purely
with data cleaning rather than KG completion. In contrast, our method integrates the
reasoning process into the embedding models to improve the accuracy of predicted triples.

5.3 Background

In this section, we introduce the basic concepts and notations that will be used in the
rest of the chapter. We assume countable pairwise disjoint sets NC,NP and NI of class
names (a.k.a. types), property names (a.k.a. relations), and individuals (a.k.a. entities).
We also assume the standard relation rdf :type (abbreviated as type) to be included in NP.
A knowledge graph (KG) is denoted as G having a finite set of triples of the form ⟨s, p, o⟩,
where s ∈ NI, p ∈ NP, o ∈ NI, if p ̸= type, and o ∈ NC otherwise. It is to be recalled that
KGs typically follow Open World Assumption (OWA), meaning that they store only a
fraction of positive facts. For instance, given the KG from Fig. 5.1 ⟨john, type, person⟩
and ⟨john, livesIn, germany⟩ are true KG facts; however, whether ⟨john,worksAt , bosch⟩
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Figure 5.1: Example knowledge graph with its ontology, where solid links correspond
to the true facts, while the dashed one to a spurious predicted fact.

holds or not is unknown. Given a triple α, we denote by Ent(α) a set of all entities
occurring in α and extend this notation to a set of triples as Ent(G) =

⋃
α∈G Ent(α).

An ontology O (a.k.a. TBox) is a set of axioms expressed in a certain Description
Logic (DL) [10]. In this work we focus on DL-LiteS⊔, i.e., extension of DL-Lite [9] with
transitive roles and concept disjunctions. Classes C denoting sets of entities, and roles R
denoting binary relations between entities, obey the following syntax:

C ::=A | ∃R | A ⊔B | A ⊓B | ¬C
R ::=P | P−

Here, A,B ∈ NC are atomic classes and P ∈ NP is an atomic property (i.e., binary
relation). An ontology O is a finite set of axioms of the form C1 ⊑ C2, R1 ⊑ R2,
R ◦R ⊑ R, reflecting the transitivity of the relation R. The summary of the DL syntax
in DL-LiteS⊔ and its translation to OWL 21 is presented in Table 5.1. In the rest of the
paper, we assume that all ontologies in this work are expressed in DL-LiteS⊔.

Our running example of a KG with an ontology given in Figure 5.1 reflects the
domain knowledge about people and their working places. The ontology states that (1)
the domain of worksAt relation is person, (2) the range of locatedIn is location, and (3)
person is disjoint with location.

Inconsistency and explanations. The semantics of knowledge graphs and ontologies
is defined using the direct model-theoretic semantics via interpretations [115]. An
interpretation I = (∆I , ·I) consists of a non-empty set ∆I , the domain of I, and an
interpretation function ·I , that assigns to each A ∈ NC a subset AI ⊆ ∆I , to each R ∈ NR

a binary relation RI ⊆ ∆I×∆I , and to each a ∈ NI an element aI ∈ ∆I . This assignment
is extended to (complex) classes and roles as shown in Table 5.1.

An interpretation I satisfies an axiom α (written I |= α) if the corresponding condition
in Table 5.1 holds. Given a KG G and an ontology O, I is a model of G ∪ O (written
I |= G ∪ O) if I |= α for all axioms α ∈ G ∪ O. We say that G ∪ O entails an axiom α
(written G ∪ O |= α), if every model of G ∪ O satisfies α. A KG G is inconsistent w.r.t.
an ontology O if no model for G ∪O exists. In this case, G ∪O is inconsistent. Intuitively,
G ∪ O is inconsistent when some facts of G contradict some axioms of O.

1https://www.w3.org/TR/owl2-overview/
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DL Syntax OWL Syntax Semantics

R R RI ⊆ ∆I ×∆I

R− ObjectInverseOf(R) {⟨e, d⟩ | ⟨d, e⟩ ∈ RI}

A A AI ⊆ ∆I

⊤ owl:Thing ∆I

⊥ owl:NoThing ∅
¬C ObjectComplementOf(C) ∆I \ CI

C ⊓D ObjectIntersectionOf(C,D) CI ∩DI

C ⊔D ObjectUnionOf(C,D) CI ∪DI

∃P ObjectSomeValuesFrom(P,owl:Thing) {d | ∃e ∈∆I:⟨d, e⟩ ∈ P I}

C ⊑ D SubClassOf(C,D) CI ⊆ DI

P ⊑ S SubObjectPropertyOf(P, S) P I ⊆ SI

P ◦ P ⊑ P TransitiveObjectProperty(P ) P I ◦ P I ⊆ P I

⟨a, type, c⟩ ClassAssertion(C, a) aI ∈ CI

⟨a, p, b⟩ ObjectPropertyAssertion(P, a, b) ⟨aI , bI⟩ ∈ P I

Table 5.1: Syntax and semantics of the ontology language considered in this paper
where A,R are a class name and property name, respectively; C and D are class
expressions, P, S are property expressions, and a, b are entities.

Under the considered ontology language, KG inconsistency has a locality property, i.e.,
the problem of checking inconsistency for a KG (w.r.t. an ontology O) can be reduced to
checking inconsistency for separated KG modules (w.r.t. O) [152].

Definition 1 (Modules). Given a KG G and an entity e ∈ Ent(G), the module of e
w.r.t. G is defined as M(e,G) = {α | α ∈ G and e occurs in α}. We denote the set of all
modules for individuals occurring in G as MG = {M(e,G) | e ∈ Ent(G)}.

Lemma 1 (Consistency Local Property). Let G be a KG and O an ontology. Then G ∪O
is consistent iff M(a,G) ∪ O is consistent for every a ∈ Ent(G).

An explanation for inconsistency of G ∪ O [71], denoted by E = EG ∪ EO with EG ⊆ G
and EO ⊆ O, is a (subset-inclusion) smallest inconsistent subset of G ∪ O.

Example 1. The KG from Fig. 5.1 with all facts including the dashed red one is
inconsistent with the ontology O, and a possible explanation for that is E = EG ∪ EO with
EG = {⟨bosch, locatedIn, john⟩, ⟨john, type, person⟩} and EO = {∃locatedIn− ⊑ location,
person ⊓ location ⊑ ⊥}.

KG embeddings. As presented in Section 1.3, KG embeddings represent all entities and
relations in a continuous vector space (usually as vectors or matrices called embeddings)
and can be used to estimate the likelihood of a triple to be true via a scoring function:
f : NI × NP × NI → R. Concrete scoring functions are defined based on various vector
space assumptions. The likelihood that the respective assumptions of the embedding
methods hold, should be higher for triples in the KG than for negative samples outside
the KG. The learning process is done through minimizing the error induced from the
assumptions given by their respective loss functions. Below we briefly recall widely-used
assumptions for KG embeddings, particularly for TransE and ComplEx models that are
used in this work:

(i) The translation-based assumption, e.g., TransE [20] embeds entities and relations
as vectors and assumes vs + vp ≈ vo for true triples, where vs,vp,vo are vector
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embeddings for subject s, predicate p and object o, respectively. The models
that rely on the translation assumption are generally optimised by minimizing the
following ranking-based loss function∑

⟨si,pi,oi⟩∈S+

∑
⟨s′i,pi,o′i⟩∈S−

[γ − f(si, pi, oi) + f(s′i, pi, o
′
i)]+ (5.1)

where f(s, p, o) = −∥vs + vp − vo∥1, S
+ and S− correspond to the sets of positive

and negative training triples respectively, that are typically disjoint.

(ii) The linear map assumption, e.g. ComplEx [153] embeds entities as vectors and
relations as matrices. It assumes that for true triples, the linear mapping Mp of
the subject embedding vs is close to the object embedding vo: vsMp ≈ vo. The
loss function used for training the linear-map embedding models is given as follows:∑

⟨si,pi,oi⟩∈S+

∑
⟨s′i,pi,o′i⟩∈S−

l(1, f(si, pi, oi)) + l(−1, f(s′i, pi, o
′
i))) (5.2)

where f(s, p, o) = vsMpvo and l(α, β) = log(1− exp(−αβ)).

5.4 Ontological Reasoning for Negative Sampling

While a variety of embedding models exist in the literature [165], one of the major
challenges for them to perform accurate fact predictions is finding an effective way for
generation of relevant negative samples [42, 140, 164]. Commonly used approaches for
negative sampling randomly corrupt existing triples by perturbing their subject, predicate
or object [20, 38, 144] or rely on the (local) closed world assumption (LCWA). Based on
CWA all triples not present in the KG are assumed to be false, while LCWA is a variation
of CWA, in which for every ⟨s, p, o⟩, only facts of the form ⟨s, p, o′⟩ ̸∈ G are assumed to be
false. For instance, given the facts in Figure 5.1, the corrupted negative triples obtained
based on the LCWA could be ⟨john, livesIn, hpi⟩ or ⟨bob,worksAt , bosch⟩.

However, since KGs follow OWA, the standard sampling methods might often turn
out to be sub-optimal, resulting in false positive negative samples [42]. For example, the
corrupted triple ⟨bob,worksAt , bosch⟩ from above might actually be true in reality.

A natural method to avoid false positives and generate only relevant negative samples
is by relying on ontologies with which KGs are typically equipped. A naive approach
for that is to generate all facts that can be formed using relations and entities in G
(i.e., construct the Herbrand base) and check which among the resulting candidates
are inconsistent with G ∪ O. As modern KGs store millions of facts, the described
procedure is infeasible in practice. To still sample some inconsistent triples, in [42] facts
p(s, o) ∈ G are corrupted by substituting s (resp. o) with s′ (resp. o′) s.t. s and s′ (resp.
o and o′) belong to disjoint classes and the resulting corrupted triple is inconsistent.
For example, given G and O in Fig 5.1, from ⟨bob,worksAt , germany⟩ we can obtain
α1 = ⟨germany ,worksAt , germany⟩ or α2 = ⟨bob,worksAt , john⟩, as person is disjoint
with location. However, this method might fail to avoid the inconsistent triples that the
model actually predicts. E.g., ⟨bosch, locatedIn, john⟩ is not generated by this method as
a negative example, and the model can in principle still predict it.
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Figure 5.2: Standard embedding pipeline (grey dotted frame) and our reasoning-based
method (black frame) in a nutshell

Therefore, instead of pre–computing a static set of negative examples, we propose to
iteratively generate and improve this set (and subsequently also the embedding model)
dynamically by computing a collection of negative samples in a guided fashion from
embedding model based on its predictions that are inconsistent with the ontology. We
refer to this negative sampling strategy as dynamic sampling. On the one hand, this
intuitively allows us to overcome the computational challenge of generating all possible
negative examples at once, but rather add the most relevant ones on demand to the
embedding training process. On the other hand, this approach is capable of reducing
frequently encountered errors (in terms of inconsistent predictions) for particularly difficult
triples by directly incorporating feedback from incorrect predictions back to the model for
further training. Indeed, when trained for increasing number of iterations, such method
is capable of generating embeddings that predict fewer inconsistent facts, as empirically
demonstrated in Section 5.5.

5.4.1 Overview of ReasonKGE

In this section, we describe in more detail the proposed framework referred to as Rea-
sonKGE, whose main steps are depicted in Figure 5.2. Given a KG, ontology and an
embedding method, we aim at generating an enhanced KG embedding, which is trained
for predicting facts that are consistent with the KG and the ontology at hand.

The input to our method (represented by blue dashed boxes) is the KG and the
ontology, while the output (the red dashed box) is the set of negative samples that is
incorporated during the iterative training and tuning of a KG embedding model in each
iteration. As negative samples are obtained based on predictions made by an existing
embedding, a baseline model is required in the first iteration. For this, in step (1) we
obtain the negative samples with standard negative sampling using any of the existing
methods [20, 38, 42, 144]. We then perform embedding training in step (2) to construct
the initial KG embedding model.

This model is used for obtaining predictions and computing the set of negative
samples for the next training iteration. Specifically, in step (3) the model is used for
fact prediction as follows. For every triple in the training set, given its subject s and
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Algorithm 1 Training embedding models with negative samples using ontological
reasoning
Input :Baseline embedding model E, a knowledge graph G, and an ontology O
/* Step 1 and Step 2 */

1 Train the baseline embedding model E for a certain number of epochs. /* Retrain the baseline model

with negative samples derived from reasoning */

2 Loop
/* Step 3 */

3 foreach triple α = ⟨s, p, o⟩ ∈ G do
4 Get a set Predictions(α) of predicted triples of the form ⟨s, p, ô⟩ and ⟨ŝ, p, o⟩ by giving ⟨s, p⟩ and

⟨p, o⟩ as inputs to E and obtaining predicted entities ô and ŝ, respectively. /* Step 4 */

5 NegSamples(α)← ∅ foreach predicted triple β ∈ Predictions(α) do
6 Compute the relevant set Relv(β,G) of β w.r.t. G. if Relv(β,G) ∪ O is inconsistent then

/* Step 5 */

7 Compute explanations for inconsistency. foreach inconsistency explanation EG ∪ EO
do

8 Compute GeneralizedSamples(β) as defined in Definition 4. NegSamples(α) ←
NegSamples(α) ∪ GeneralizedSamples(β)

9 Retrain E in which, for each training step that considers α ∈ G, NegSamples(α) is used as negative
samples in the loss function, e.g. Equation 5.1 or Equation 5.2.

predicate p, we retrieve the top ranked object and obtain the fact ⟨s, p, o⟩ as the respective
prediction. The same is done inversely for computing the top ranked subject given the
object o and predicate p in the training set. Note that only triples that are not in the
training set are considered as predictions. In step (4) we check whether the predicted
triple complies with the ontology relying on the consistency checking procedure. In
case the respective triple is found to be inconsistent, in step (5) we generalize it to other
semantically similar triples using the generalization procedure to obtain an extended
set of negative samples. Finally, the computed negative samples, both for subject and
object predictions are fed back as input to the next iteration of the embedding training
process. The detailed steps are presented in Algorithm 1 and explained in what follows.

5.4.2 Consistency checking

The goal of the consistency checking procedure is to verify which predictions made by
the embedding model in step (3) are inconsistent with the ontology O and the original
KG G. In principle, any reasoner capable of performing consistency checking effectively
for ontologies in the considered DL-LiteS⊔ language can be used in this step. As the
task that we consider concerns verifying whether a particular triple causes inconsistency,
for the target DL when performing the consistency check one does not need to account
for the whole KG, but only a small subset of relevant facts. To this end, we define the
relevant sets as follows.

Definition 2 (Relevant set). Let G be a KG and α be a triple. The relevant set Relv(α,G)
of α w.r.t. G is defined as Relv(α,G) = {α} ∪ {β ∈ G |Ent(β) ∩ Ent(α) ̸= ∅}.
Example 2. For α = ⟨bosch, locatedIn, john⟩ and G in Fig. 5.1, we have the following
relevant set Relv(α,G) = {α} ∪ {⟨john, livesIn, germany⟩, ⟨john, friendOf , bob⟩,
⟨john, type, person⟩, ⟨bosch, type, company⟩}.

The following proposition allows us to reduce the consistency checking of α ∪ G ∪ O
to the consistency checking of Relv(α,G) ∪ O.

75



5. IMPROVING KNOWLEDGE GRAPH EMBEDDINGS WITH ONTOLOGICAL
REASONING

Proposition 2. Let G be a knowledge graph, O an ontology such that G ∪O is consistent,
and α a triple. Then, α ∪ G ∪ O is consistent iff Relv(α,G) ∪ O is consistent.

Proof. Since Relv(α,G) ⊆ G, we have α ∪ G ∪ O being consistent implies that Relv(α,G)
∪O is also consistent. We start showing the remaining direction by assuming that
Relv(α,G) ∪ O is consistent and then show that α ∪ G ∪ O is also consistent. Let
α = ⟨s, p, o⟩, by Definition 2, we have Relv(α,G) = M(s, α ∪ G) ∪ M(o, α ∪ G). Since
G ∪ O is consistent, by Lemma 1, we have M(e,G) ∪ O is consistent for every entity
in Ent(G) \ {s, o}. Since e /∈ {s, o}, we have M(e,G) = M(e, α ∪ G), which implies
M(e, α ∪ G) ∪O is consistent (⋆). From the assumption that Relv(α,G) ∪O is consistent
and Relv(α,G) = M(s, α ∪ G) ∪ M(o, α ∪ G), we obtain M(s, α ∪ G) and M(o, α ∪ G)
are consistent w.r.t. O (†). From (⋆) and (†) we have α ∪ G ∪ O is consistent using
Lemma 1.

Relying on Proposition 2, it is sufficient to check the consistency of a triple α with
respect to G ∪O using Relv(α,G) rather than the whole KG. We make use of this property
in step (4), and for every prediction produced by the embedding model, we first construct
the relevant set for the respective prediction, and then perform the consistency check
relying only on the corresponding relevant sets.

Example 3. Assume that the fact α = ⟨bosch, locatedIn, john⟩ has been predicted by
the embedding model in step (3). Then in the consistency checking step (4) we first
construct the relevant set for α as Relv(α,G) given in Example 2 and check the consis-
tency of Relv(α,G) ∪ O. Clearly, we have Relv(α,G) ∪ O= {⟨bosch, locatedIn, john⟩}∪
{⟨john, livesIn, germany⟩, ⟨john, type, person⟩, ⟨john, friendOf , bob⟩, ⟨bosch, type,
company⟩} ∪ O is inconsistent, since ⟨bosch, locatedIn, john⟩ and {∃locatedIn− ⊑
location} ∈ O imply that ⟨john, type, location⟩, which contradicts the fact that ⟨john,
type, person⟩ ∈ G and person ⊓ location ⊑ ⊥ ∈ O. Thus, we have that α ∪ G ∪ O is
inconsistent by monotonicity. Proposition 2 further guarantees that it is sufficient to
check the consistency of α ∪ G ∪ O this way.

5.4.3 Negative sample generalization

Given each triple of the input KG in the training step, one needs to sample not a single
corrupted triple but a set of such triples to train the embedding model at hand. In
other words, the inconsistent prediction needs to be generalized to obtain a set of similar
inconsistent facts within the KG, which ideally have the same structure. Therefore,
once an inconsistent prediction for a triple is identified, we proceed with detecting the
inconsistency pattern from that prediction and relying on the respective pattern we
generate other similar incorrect triples (in step 5 of our method). This allows us to
compute sufficient number of negative samples for retraining the embedding model, and to
give hints to the embedding model about the wrong patterns that it learned, subsequently
avoiding the prediction of similar incorrect triples in next iterations.

A naive approach to obtain the generalized triples of an inconsistent predicted triple,
e.g. ⟨s, p, ô⟩, is to replace ô by another entity o in the input KG such that o has similar
KG neighborhood as ô. However, it might happen that only a subset of triples containing
ô is inconsistent w.r.t. the ontology. Therefore, it is sufficient to find such o that it has
similar triples as in that subset. This will increase the number of generalized triples as
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demonstrated in Example 4. To compute a subset of triples of ô that is inconsistent w.r.t.
the ontology, we compute explanations for the inconsistency of Relv(⟨s, p, ô⟩,G) ∪ O.

Example 4. Consider the KG G and ontology O as in Figure 5.1. Assume that
α = ⟨bosch, locatedIn, john⟩ is the predicted triple, i.e., the embedding model predicted
john as the object entity for the given subject bosch and relation locatedIn. The ex-
planation for inconsistency of Relv(α,G) ∪ O is E = EG ∪ EO, for which it holds that
EG = {⟨bosch, locatedIn, john⟩, ⟨john, type, person⟩} and EO = {∃located− ⊑ location,
person ⊓ location ⊑ ⊥}. Note that there is no other entity in G that has similar triples as
those for john. However, if we restrict to the triples in the explanation for inconsistency
of Relv(α,G) ∪ O, then bob has the same neighborhood triple ⟨bob, type, person⟩ as john
(the predicted triple is ignored). Therefore, we can take ⟨bosch, locatedIn, bob⟩ as another
negative sample, which together with G is clearly inconsistent w.r.t. O.

To formally obtain generalized triples as in Example 4, we rely on the notion of local
type of an entity [61, 62, 152] as follows.

Definition 3 (Local Types). Let T be a set of triples and e an entity occurring in T.
Then, the local type of e w.r.t. T, written as τ(e,T) or τ(e) when T is clear from the
context, is defined as a tuple τ(e) = ⟨τi(e), τc(e), τo(e)⟩, where τi(e) = {p | ⟨s, p, e⟩ ∈ G},
τc(e) = {t | ⟨e, type, t⟩ ∈ G}, and τo(e) = {p′ | ⟨e, p′, o⟩ ∈ G}.The local type t = ⟨ti, tc, to⟩
is smaller than or equal to the local type t′ = ⟨t′i, t′c, t′o⟩, written as t ⪯ t′, iff ti ⊆ t′i, tc ⊆ t′c,
and to ⊆ t′o.

Intuitively, a local type of an entity represents a set of types (τc) as well as the
incoming relations (τi) and outgoing relations (τo) for that entity in a set of triples.

Example 5 (Example 4 continued). For bob in Fig. 5.1, we have the local type of bob
w.r.t. G being τ(bob) = ⟨{friendOf }, {person}, {worksAt}⟩. The local type of john w.r.t.
EG \ α is τ(john) = ⟨∅, {person}, ∅⟩ and it holds that τ(john) ⪯ τ(bob).

We now define the set of generalized samples of a given inconsistent predicted triple.

Definition 4 (Generalized Samples). Let G be a KG, O an ontology, and α = ⟨s, p, ô⟩
be a triple in which ô is predicted by an embedding model given the subject entity s
and relation p. Furthermore, let E = EG ∪ EO be an inconsistency explanation of
Relv(α,G) ∪ O. Then, the set of generalized samples of α (w.r.t. ô, E, and G) is
defined as GeneralizedSamples(α, ô) = {⟨s, p, o⟩ | τ(ô, EG \ α) ⪯ τ(o,G)}. The generalized
samples GeneralizedSamples(β, ŝ) of β = ⟨ŝ, p, o⟩, in which ŝ is predicted by an embed-
ding model, is defined analogously. When it is clear from the context, we often write
GeneralizedSamples(α) without mentioning the corresponding entity.

Example 6 (Example 5 continued). According to Definition 4 and the local types
of john and bob computed in Example 5, we have GeneralizedSamples(α) = {α} ∪
{⟨bosch,LocatedIn, bob⟩}.

The following Lemma guarantees that if a triple is inconsistent (together with the input
KG) w.r.t. an ontology O then all generalized triples of that triple are also inconsistent.

Lemma 3. Let G be a KG, O an ontology, α a triple such that Relv(α,G) ∪ O is
inconsistent with an explanation E = EG ∪ EO, and GeneralizedSamples(α) is the set of
generalized triples of α w.r.t. E, G, and some entity occurring in α. Then, we have
Relv(β,G) ∪ O is inconsistent for every β ∈ GeneralizedSamples(α).
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Sketch. W.l.o.g. let α = ⟨s, p, ô⟩, GeneralizedSamples(α) is w.r.t. ô, and β = ⟨s, p, o⟩.
Using the result in [152], one can show that if ⟨s, p, ô⟩ ∈ EG then EG does not contain
⟨s′, p, o⟩, where s ̸= s′ due to the minimality of explanations. Together with the condition
τ(ô) ⪯ τ(o), we can construct a homomorphism from Relv(α,G) to Relv(β,G), which
implies that Relv(β,G) ∪ O is inconsistent.

We now describe the details of step (5). For each predicted triple that is inconsistent
w.r.t. the input KG and the ontology, we compute explanations for inconsistency, and for
each such explanation, we obtain the generalized triples using Def. 4. These generalized
triples are then used as negative samples to retrain the embedding model.

5.5 Experiments

We have implemented the proposed method in a prototype system ReasonKGE and
evaluated its performance on the commonly used datasets enriched with ontologies. In
this section, we present the results of the evaluation in terms of the impact of our method
on the quality of fact predictions compared to the baselines.

5.5.1 Experimental setup

Datasets. Among commonly used datasets for evaluating embedding models, we chose
those datasets that are equipped with ontologies. More specifically, the following datasets
with their respective ontologies have been selected (Yago3-10 was already introduced in
the last chapter, it is mentioned here again for the sake of completeness) —

• LUBM3U: A synthesized dataset derived from the Lehigh University Benchmark
[63]. The ontology describing the university domain contains 325 axioms. The
respective KG stores data for 3 universities.

• Yago3-10: A subset of the widely used Yago dataset. We use the ontology with
4551 axioms introduced in [145] based on Yago schema and class hierarchy.

• DBpedia15K: A subset of DBpedia KG proposed in [103]. We exploit the general
DBpedia ontology enriched with axioms reflecting the disjointness of classes. The
ontology comprises of 3006 axioms.

The statistics of the respective datasets are presented in Table 5.2.

Embedding Models. To demonstrate the benefits of the proposed iterative ontology-
driven negative sampling, we apply our method over the following widely used embeddings:
ComplEx and TransE. These models have been selected as prominent examples of
translation-based and linear-map embeddings. While more recent embedding models
exist in the literature, as shown in [140] classical embeddings are in fact very competitive
when combined with effective parameter search. Thus, as baselines we have selected the
most widely used and popular embedding models with the best parameters found using
the LibKGE library [140].

We also consider another baseline [42] that incorporates background knowledge into
the embedding models. We refer to such technique as static sampling because in contrast
to our proposed dynamic sampling method, the approach from [42] generates the negative
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Table 5.2: Knowledge graph statistics

LUBM3U Yago3-10 DBpedia15K

# Entities 127,645 123,182 12,842
# Predicates 28 37 279
# Training Facts 621,516 1,079,040 69,320
# Validation Facts 77,689 5,000 9,902
# Test Facts 77,689 5,000 19,805
# TBox Axioms 325 4,551 3,006

samples for all triples of the KG in the pre-processing step. Since the authors in [42] only
mentioned that they utilized ontology axioms such as Domain, Range, Functional, and
Disjointness without describing the exact procedure of how these were actually exploited
to generate negative samples, we implemented such static sampling strategy based on our
best knowledge and present detailed steps in Algorithm 2. Intuitively, for each entity e
we first compute both asserted classes (explicitly known in the input KG) and derived
classes (using ontology axioms together with the input KG) to which the entity belongs.
Based on the DisjointClasses axioms, we then identify a set of entities that belong to any
class known to be disjoint with one of the classes of e and refer to these entities as a set
of corrupted entities for e. Such corrupted entities for e are then subsequently used to
generate negative samples in the training step that considers triples in which e occurs.

One of the main steps of Algorithm 2 is to compute the TypeSet of an entity, which is
the set of classes to which the entity belongs. For each entity in the KG, the local type of
the entity (as defined in 3) is leveraged. A TypeSet of each entity is created as follows
- the set of types (τc) is extended by adding the respective superclasses (parent types)
of the classes present in (τc). For the set of incoming relations (τi), the super-relations
of all incoming relations in the set (τi) are calculated, and the classes belonging to the
range of these relations are extracted. Similarly, for the set of outgoing relations (τo),
the super-relations of all outgoing relations in the set (τo) are computed and the classes
belonging to the domain of these relations are extracted. The TypeSet is constructed by
taking the union of the extracted classes. Thereafter, the set of classes that are disjoint
with any of the classes in TypeSet are retrieved. For each entity e, every entity e′ is added
to the set of corrupted entities of e if e′ has some type that is disjoint with at least one
type in TypeSet of e.

During the training steps of embedding models, for each KG triple, the set of negative
samples can be obtained by replacing the subject or object entity with the corresponding
set of pre-computed corrupted entities.

Measures. We evaluate the performance of the embedding models in terms of the
traditional metrics i.e MRR and Hits@k in the filtered setting [20]. In addition, we also
compute the proportion of inconsistent facts (Inc@k) ranked in the top-k predictions
produced by the presented methods. The measure Inc@k intuitively reflects how well
the model is capable of avoiding inconsistent predictions (the lower the better).

System Configuration. In the experiments, we used HermiT [60] as the reasoner
and the explanation method in [71] to compute inconsistency explanations. We run
ReasonKGE for multiple iterations. In every iteration, the model is trained for n = 100
epochs during which, for each subject and object of a triple, m >= 1 negative examples
are generated. We exploit the optimal value of m tuned for the respective baseline model.
In the first iteration, m negative samples are generated using the default random sampling
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Algorithm 2 Precomputing negative samples using ontology axioms
Input :A knowledge graph G, and an ontology O
Output :A set of negative samples NegSamples(⟨s, p, o⟩) for each triple ⟨s, p, o⟩ in G
/* Compute classes/types for each entity in G */

10 foreach entity e occurring in G do
11 TypeSet(e) ← ∅ Compute local type τ(e) = ⟨τi(e), τc(e), τo(e)⟩ of e w.r.t. G /* Compute super

classes/types of e */

12 τ ′
c(e) = {B | O |= A ⊑ B, and A ∈ τc(e)}. /* Compute incoming and outgoing

super-properties/relations of e by calling a reasoner */

13 τ ′
i(e) = {S | O |= R ⊑ S, and R ∈ τi(e)} τ ′

o(e) = {S | O |= R ⊑ S, and R ∈ τo(e)} /* Calculate

the TypeSet (e) for the entity e */

14 TypeSet(e) = τ ′
c(e) ∪ {A | O |= DomainOf(R) ⊑ A,R ∈ τ ′

o(e)} ∪ {B | O |= RangeOf(P ) ⊑ B,P ∈
τ ′
i(e)}

/* Compute the set of corrupted entities for e */

15 foreach entity e occurring in G do
16 DisjointType(e)← ∅ foreach A ∈ TypeSet(e) do
17 DisjointType(e) = DisjointType(e) ∪ {B | O |= A ⊓B ⊑ ⊥}
18 CorruptedEntities(e)← {e′ | DisjointType(e) ∩ TypeSet(e′) ̸= ∅}

/* Compute negative samples for each triple in G */

19 foreach ⟨s, p, o⟩ ∈ G do
20 NegSamples(⟨s, p, o⟩)← {⟨s′, p, o⟩ | s′ ∈ CorruptedEntities(s)} ∪ {⟨s, p, o′⟩ | o′ ∈ CorruptedEntities(o)}

Table 5.3: Link prediction results

Model KG
Default Training Static Sampling ReasonKGE

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

TransE
LUBM3U 0.119 0.069 0.214 0.125 0.082 0.213 0.135 0.079 0.256
Yago3-10 0.226 0.044 0.537 0.351 0.183 0.621 0.367 0.197 0.629
DBpedia15k 0.109 0.061 0.206 0.101 0.073 0.254 0.118 0.101 0.299

ComplEx
LUBM3U 0.159 0.119 0.242 0.181 0.136 0.276 0.233 0.195 0.313
Yago3-10 0.482 0.400 0.643 0.515 0.431 0.665 0.530 0.453 0.668
DBpedia15k 0.099 0.061 0.174 0.098 0.107 0.193 0.115 0.125 0.221

strategy.2 In the subsequent iterations, we use the trained model to obtain the top k = 1
subject and object predictions and compute the inconsistent negative samples to be
used for the next iteration of the embedding training as described in Section 5.4. The
number m of negative samples for the next iteration is dynamically computed based on
the statistical mean of the size of the generalized samples sets as an indicator.

5.5.2 Results

The results of the conducted experiments illustrate the benefit of ReasonKGE in producing
higher quality predictions with less inconsistencies compared to the baselines.

Link prediction quality. Table 5.3 reports the results for the link prediction task
obtained by our method and the baselines. Both TransE and ComplEx were trained
using the default random sampling strategy [20], the static sampling [42], and using
ReasonKGE for 3 iterations. For fair comparison, the number of the training epochs was
kept the same as for ReasonKGE in all cases (i.e., 300 epochs).

2For each triple the subject (resp. object) is randomly perturbed to obtain m samples [20].
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Table 5.4: Link prediction results for different iterations

Model KG
ReasonKGE - Iteration 2 ReasonKGE - Iteration 3

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE
LUBM3U 0.133 0.078 0.159 0.242 0.135 0.079 0.162 0.256
Yago3-10 0.356 0.184 0.493 0.627 0.367 0.197 0.511 0.629
DBpedia15k 0.116 0.091 0.130 0.287 0.118 0.101 0.132 0.299

ComplEx
LUBM3U 0.229 0.190 0.237 0.310 0.233 0.195 0.240 0.313
Yago3-10 0.521 0.442 0.569 0.664 0.530 0.453 0.577 0.668
DBpedia15k 0.111 0.119 0.154 0.216 0.115 0.125 0.162 0.221

One can observe that reasoning-based sampling consistently achieves better results
than random sampling for training all considered embeddings on all KGs. For the
Yago3-10 dataset the improvements are the most significant, achieving more than 10%
enhancement for all measures over TransE. This indicates the advantage of ontology-based
reasoning for enhancing the existing KG embeddings.

The comparison of our dynamic sampling method against static sampling [42] presented
in Table 5.3 reveals that ReasonKGE outperforms the static sampling approach in almost
all cases, which illustrates the benefits of exploiting inconsistent predictions as negative
samples dynamically using our method, as opposed to their pre-computation.

By keeping the same training configuration and total number of training epochs, we
ensure that the reflected performance gains are not merely due to additional training
steps, but rather a result of the proposed reasoning-based approach.

Intermediate training results. We also present the complete results obtained by the
ReasonKGE method at all iterations. As explained in Section 5.5.1, in the first iteration
the negative samples generated using the default random sampling technique are exploited
for training the embedding model. Thereafter, further iterations leverage the trained
model from the previous iteration to predict subjects for given relations and objects, as
well as similarly, to predict objects for given relations and subjects. Predicted triples that
are found to be inconsistent w.r.t. the existing KG and ontology are then subsequently
used for the generation of further negative samples for the next round of model training.
This process is repeated for multiple iterations until no significant improvement in the
performance of the embedding model is observed. In Table 5.4 we present the results of
all iterations of our method. With every iteration, the model is trained for additional
100 epochs, i.e., in the second iteration the model training has been performed for 200
epochs, while in the third iteration altogether for 300 epochs respectively.

It can be seen that the improvement from iteration 2 to iteration 3 is below ap-
proximately 1% for all datasets. Therefore, in our experiments reported in Table 5.3 of
Section 5.5 the training has been stopped at the third iteration, and the best results
obtained have been compared to the results for the default training approach run for the
same number of epochs (i.e., 300). In general, the differences in the results of the model
obtained with the increasing number of iterations can be used as a stopping criteria for
finalizing the training process, i.e., the small difference witnesses the convergence of the
training process.
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Table 5.5: Ratio of inconsistent predictions (the lower, the better)

Model KG Prediction
Default Training Static Sampling ReasonKGE
Inc@1 Inc@10 Inc@1 Inc@10 Inc@1 Inc@10

TransE

LUBM3U
subject 0.169 0.270 0.428 0.250 0.037 0.133
object 0.095 0.097 0.212 0.104 0.005 0.007

YAGO3-10
subject 0.075 0.280 0.629 0.492 0.075 0.273
object 0.026 0.136 0.114 0.089 0.020 0.117

DBpedia15K
subject 0.311 0.652 0.401 0.663 0.217 0.585
object 0.413 0.538 0.428 0.544 0.170 0.460

ComplEx

LUBM3U
subject 0.041 0.097 0.177 0.136 0.036 0.069
object 0.008 0.012 0.003 0.007 0.005 0.007

YAGO3-10
subject 0.113 0.198 0.169 0.128 0.071 0.143
object 0.037 0.115 0.065 0.084 0.015 0.074

DBpedia15K
subject 0.488 0.667 0.436 0.695 0.344 0.583
object 0.397 0.585 0.365 0.528 0.318 0.533

Consistency of predictions. In Table 5.5, we measure the proportion of inconsistent
facts that were obtained when retrieving top-k (k = {1, 10}) predictions for the triples in
the test set. We report the inconsistency values both for the prediction of the subject and
the object of the triple separately. From the results, we can observe that for all models
in the majority of the cases ReasonKGE managed to reduce the ratio of inconsistent
predictions over the test sets compared to the results of training the models using default
random and static sampling. This illustrates that the proposed procedure is effective for
improving embeddings with respect to the overall consistency of their predictions.

SANS vs. ReasonKGE negative sampling. In this section, we additionally compare
our ReasonKGE sampling technique with a recently proposed state-of-the-art sampling
method SANS (structure aware negative sampling) by Ahrabian et. al [1]. SANS
generates negative samples for an entity by utilizing the graph structure of the knowledge
graphs. Hard negative samples are constructed for a triple from the entities in the k-hop
neighbourhood of the head or tail entity that have no direct relation in the knowledge
graph.

This technique requires the pre-processing step of the construction of the k-hop
neighbourhood for each entity in the KG, which is a computationally intensive task.
Therefore, the authors approximate the local neighbourhood with the help of n rw
random walks. Both k and n rw are parameters that need to be optimized by manual
tuning on the validation split of the KG datasets that were considered by the paper.
We similarly obtain the TransE and ComplEx embedding models by training with the
SANS technique on LUBM3U and Yago3-10 datasets. There are two proposed variants
of SANS, the first is based on uniform sampling (Uniform SANS) while the other extends
the Self-adversarial approach (Self-Adv. SANS) as proposed by Sun et al. [147].

The link prediction results for both variants with different parameter configurations are
shown in Table 5.6 and compared with the ReasonKGE. It can be seen that ReasonKGE
outperforms SANS for most configurations, especially in the case of ComplEx embeddings.
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Table 5.6: Link prediction results with SANS sampling and ReasonKGE

Model Sampling
LUBM3U Yago3-10

MRR Hits@10 MRR Hits@10

TransE

Uniform SANS (k=3) 0.204 0.280 0.412 0.611
Self-Adv. SANS (k=3) 0.205 0.278 0.409 0.581
Uniform SANS (k=4) 0.202 0.278 0.405 0.604
Self-Adv. SANS (k=4) 0.180 0.275 0.408 0.583
ReasonKGE 0.135 0.256 0.367 0.629

ComplEx

Uniform SANS (k=3) 0.089 0.111 0.401 0.544
Self-Adv. SANS (k=3) 0.072 0.091 0.379 0.505
Uniform SANS (k=4) 0.088 0.111 0.396 0.545
Self-Adv. SANS (k=4) 0.065 0.086 0.386 0.520
ReasonKGE 0.233 0.313 0.530 0.668

5.6 Summary

This chapter has presented a method for ontology-driven negative sampling that proceeds
in an iterative fashion by providing at each iteration negative samples to the embedding
model on demand from its inconsistent predictions along with their generalizations. The
main insight from this work is that targeted negative example generation is beneficial for
training the embedding models to predict consistent facts, as witnessed by our empirical
evaluation on state-of-the-art KGs equipped with ontologies. In this way, ontological
knowledge can be useful for improving not only the overall link prediction performance,
but more importantly, the semantic representation in the embedding model as well.
Notably, the proposed ReasonKGE method is independent of the embedding model used,
and can be exploited for improving any of the existing embedding methods. Indeed, it
would be insightful to extend this work to more embedding models.
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Chapter 6

Conclusion

“We live on an island surrounded by a sea of ignorance. As our island
of knowledge grows, so does the shore of our ignorance.”

- John Archibald Wheeler

In this thesis, we have explored the research problems relating to knowledge graphs,
their construction and curation. We have investigated knowledge graph embeddings as
models for representation of the data in KGs, and explored their shortcomings as well
as semantic enhancement. This final chapter concludes the thesis with a summary and
brief discussion of the overall work. This chapter also includes a discussion of the future
directions in the area, particularly in the context of the research problems that were the
focus of this thesis.

6.1 Summary

Knowledge graphs are the most popular repositories for structured and organized infor-
mation on the real-world. While they have been acting as the backbone for numerous
applications such as search, recommendation and chat bots, there are several important
research gaps concerned with their construction, curation and representation that have
been the central focus of this thesis.

In Chapter 1, we discussed knowledge graphs and the issues concerning automated
KG construction and curation. We also included an explanation of the basics concepts
for open information extraction as well as for knowledge graph embeddings that are used
for KG representation. Here, we summarize the contributions of the remaining chapters
comprising this thesis in terms of how they address the research questions as stated in
Section 1.4.

Chapter 2 introduced the research challenges for constructing knowledge graphs,
particularly in domain-oriented scenarios. We address the first research question con-
cerning the use of Open IE techniques for the construction of a domain-specific KG and
the recognition of domain-specific named entities. We considered the cultural heritage
domain and described our approach to construct an art-historic KG from unstructured
and noisy texts with the help of existing Open IE techniques. This chapter not only
described the features of the obtained KG, but also highlighted and discussed in detail the
various shortcomings that were encountered at each step during the process in Section 2.3.
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Moreover, NER, being one of the first and most important steps towards the creation
of KGs, was further explored and the lack of training data was identified as the main
limiting factor for the poor performance. As such, an approach for generating domain
and task specific annotated training data was also proposed and explained in Section 2.4.
This approach was shown to be successful at significantly improving the performance
of NER for artworks. Overall, the contributions of this chapter emphasize the need for
recognizing the limitations of generic solutions in the face of domain-specific challenges.
Our solution towards improving NER for domain oriented entities is easily extensible for
other entities in the same domain as well as adaptable to various other domains.

Chapter 3 presented our solutions for the research question of refining the knowledge
graphs, in particular, relating to the disambiguation of polysemous relations in KG. The
inherent ambiguity in the natural language from which KG facts are extracted, coupled
with the added noise and errors during the process of construction of KGs, inadvertently
lead to semantic and factual mistakes in the resulting KGs. This chapter focused on the
presence of polysemous relations in KGs that convey different semantics depending on
the context. The motivation for finding fine-grained relation semantics is discussed in
detail in the context of various use cases that depend on them. To address this gap, our
proposed approach FineGReS is presented and explained in Section 3.5 which identifies
polysemous relations and discovers the sub-relations with finer semantics by leveraging
knowledge graph embeddings and performing clustering in the vector space. The benefits
from this approach were demonstrated with the help of extensive experimental evaluation
in terms of firstly, the quality of the clusters compared to several baselines and secondly,
the positive impact on a downstream application of entity classification, as shown in
Section 3.6.

Chapter 4 concentrated on the semantic representation in knowledge graph embeddings
and addressed the research question on the non-uniform semantic capabilities of popular
embeddings models. Embedding models have been utilized for several different semantic
tasks in recent literature, including our own work for representing and distinguishing
multiple semantics for KG relations. However, closer scrutiny of their semantic capability
had not been performed in a systematic manner. This chapter motivated the importance
of the task and presented our experiments for a quantitative evaluation of the semantics
in popular embedding models. The results clearly and concretely demonstrated the
limitations of the models for representing the semantics of entities in KGs beyond the
most generic types such as person and organization. This study necessitates the need for
a careful analysis of the properties and utility of embedding models when applying them
to logical and reasoning based tasks such as rule mining.

For addressing the research question pertaining to the semantic issues in the embedding
models, in Chapter 5 we presented a novel and ontology-driven approach ReasonKGE for
generating negative samples during the training of the models. Section 5.4 presented the
details of the approach that identifies semantically-inconsistent predictions made by a
model with the help of an ontological reasoner and generalizes the inconsistency patterns
to derive negative samples to be fed to the next iteration of the training. ReasonKGE
method showed notable improvements for the link prediction quality of popular embedding
methods, not only in terms of the higher number of correct predictions, but also for
obtaining a higher ratio of semantically consistent predictions, as shown in Section 5.5.
Moreover, the proposed method is agnostic to the underlying negative sampling technique
or scoring function and can be leveraged for improving any existing embedding model
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that can be employed for KG curation and completion.

6.2 Outlook

This thesis has advanced the state-of-the-art with respect to different research problems
within the Semantic Web and Knowledge Graphs community. There are several directions
for future work that have been identified by the results of this work.

With regard to the construction of domain-specific knowledge graphs, there are
several open questions as well as opportunities for improvement. Due to the noisy and
heterogeneous dataset that is typical of digitized art-historic collections, we encountered
challenges at various steps of the KG construction process. During the very first step,
it was difficult to correctly identify the mentions of artworks (i.e. titles of paintings)
in the dataset due to the noise and inherent ambiguities. We proposed a method to
mitigate this by generating annotated datasets for the identification of artwork titles
(Section 2.4) and it would be interesting to extend our techniques for named entity
recognition to other important entities in the corpus such as auctions, exhibitions and
art styles. This could improve the quality as well as coverage of the resulting KG to
facilitate entity-centric text exploration for cultural heritage resources. In addition, a
co-reference resolution tool [31] could greatly help with the identification and linking of
relevant entities. While we leveraged existing tools and libraries like SpaCy for NER,
Stanford CoreNLP for triple extraction and CESI for canonicalization, these off-the-self
solutions need to be further fine-tuned for domain-specific KG construction. In particular,
we observed that existing techniques for canonicalization on generic datasets do not show
comparable performance for domain-specific datasets. The performance is especially poor
for the canonicalization of relation phrases which has been largely overlooked by the
state-of-the-art methods [35, 159] in terms of a quantitative evaluation. We have been
working towards addressing this research gap in terms of generating a gold standard for
the evaluation [104] and plan to propose better techniques for relation canonicalization in
the near future. This would facilitate the extraction of meaningful triples from the text
via Open IE methods towards obtaining a KG with high quality. The scalability of the
Open IE approach and the completeness of the resulting KG in the presence of new and
expanding cultural heritage datasets is also an open research question to be addressed by
future works.

Following KG construction, the task of KG curation encompasses the efforts for
finding missing triples in existing KGs as well as alleviate issues pertaining to factual and
semantic errors. We identified one such issue of semantic ambiguity in the relations of
popular KGs, that had received surprisingly little attention by previous works. While the
proposed FineGReS technique as presented in Chapter 3 identified fine-grained relation
semantics and served as a first step to address this research gap, the utility and impact
of this approach could be further studied with other downstream applications such as
question answering and search. These applications would demonstrate the most benefit
from precise and unambiguous relations in the KGs that they query. Apart from relation
polysemy, there are various other quality issues in KGs resulting from inaccuracies during
the construction process, such as missing entries for domain or range of relations in the
ontology, incorrect facts, duplication of information etc. Though not part of this thesis,
these curation tasks are challenging and warrant detailed research exploration to ensure
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the quality and reliability of knowledge graphs for practical usability.
Towards knowledge graph completion, this thesis has investigated knowledge represen-

tation learning methods that aim to predict missing links in KGs by representing entities
and relations as vectors. On one hand, these embeddings models have shown promising
performance for link prediction, but at the same time, their semantic capabilities have
not been properly understood and analysed. Our investigation of the entity semantics
in popular knowledge graphs embeddings models to judge their capability for semantic
tasks, as discussed in Chapter 4 is a step in this direction. There is a lot more to be done
to ascertain the interpretability of the KG embeddings. Ongoing work on conceptual
spaces for identifying semantically meaningful properties in the dimensions of vector
spaces [21, 37] could pave the way for future research on this important topic. In the
context of ensuring semantically consistent predictions from KG embedding models, our
proposed method ReasonKGE leverages ontological reasoning to detect inconsistencies
as explained in Chapter 5. Other avenues for detecting nonsensical predictions such as
commonsense reasoning and language models could also prove effective and need to be
further explored to determine their feasibility.

This thesis has contributed to advancing the state-of-the-art on several research
problems related to knowledge graphs and their representation and curation. It is our
sincere hope that the findings and insights from this work would pave the way for future
research efforts on these topics.
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Ré. Incremental Knowledge Base Construction using Deepdive. In Proceedings
of the VLDB Endowment International Conference on Very Large Data Bases,
volume 8, page 1310, 2015.

[143] Yusuke Shinyama and Satoshi Sekine. Preemptive information extraction using
unrestricted relation discovery. In Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference, pages 304–311, 2006.

[144] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Rea-
soning with neural tensor networks for knowledge base completion. In Advances in
Neural Information Processing Systems, pages 926–934, 2013.

[145] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A Core of
Semantic Knowledge. In Proceedings of the 16th International Conference on World
Wide Web, pages 697–706, 2007.

100



REFERENCES

[146] Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muhao Chen, Farahnaz
Akrami, and Chengkai Li. A benchmarking study of embedding-based entity
alignment for knowledge graphs. Proc. VLDB Endow., 13(12):2326–2340, July 2020.

[147] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge
graph embedding by relational rotation in complex space. In Proceedings of the
International Conference on Learning Representations, 2018.

[148] Tabea Tietz, Jörg Waitelonis, Kanran Zhou, Paul Felgentreff, Nils Meyer, Andreas
Weber, and Harald Sack. Linked Stage Graph. In SEMANTICS Posters&Demos,
2019.

[149] Erik F. Tjong Kim Sang. Introduction to the CoNLL-2002 Shared Task: Language-
Independent Named Entity Recognition. In Proceedings of the 6th Conference
on Natural Language Learning - Volume 20, COLING-02, page 1–4, USA, 2002.
Association for Computational Linguistics.

[150] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003
Shared Task: Language-Independent Named Entity Recognition. In Proceedings of
the 7th Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4,
CONLL ’03, page 142–147, USA, 2003. Association for Computational Linguistics.

[151] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge
base and text inference. In Proceedings of the 3rd Workshop on Continuous Vector
Space Models and their Compositionality, pages 57–66, 2015.

[152] Trung-Kien Tran, Mohamed H Gad-Elrab, Daria Stepanova, Evgeny Kharlamov,
and Jannik Strötgen. Fast computation of explanations for inconsistency in large-
scale knowledge graphs. In Proceedings of The Web Conference 2020, pages 2613–
2619, 2020.
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