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Abstract

This work investigates diffusion in nonlinear Hamiltonian systems. The diffusion,
more precisely subdiffusion, in such systems is induced by the intrinsic chaotic be-
havior of trajectories and thus is called “chaotic diffusion”. Its properties are studied
on the example of one- or two-dimensional lattices of harmonic or nonlinear oscilla-
tors with nearest neighbor couplings. The fundamental observation is the spreading
of energy for localized initial conditions. Methods of quantifying this spreading be-
havior are presented, including a new quantity called excitation time. This new
quantity allows for a more precise analysis of the spreading than traditional meth-
ods. Furthermore, the nonlinear diffusion equation is introduced as a phenomeno-
logic description of the spreading process and a number of predictions on the density
dependence of the spreading are drawn from this equation.

Two mathematical techniques for analyzing nonlinear Hamiltonian systems are in-
troduced. The first one is based on a scaling analysis of the Hamiltonian equations
and the results are related to similar scaling properties of the NDE. From this rela-
tion, exact spreading predictions are deduced. Secondly, the microscopic dynamics
at the edge of spreading states are thoroughly analyzed, which again suggests a
scaling behavior that can be related to the NDE. Such a microscopic treatment of
chaotically spreading states in nonlinear Hamiltonian systems has not been done
before and the results present a new technique of connecting microscopic dynamics
with macroscopic descriptions like the nonlinear diffusion equation. All theoretical
results are supported by heavy numerical simulations, partly obtained on one of
Europe’s fastest supercomputers located in Bologna, Italy.

In the end, the highly interesting case of harmonic oscillators with random frequen-
cies and nonlinear coupling is studied, which resembles to some extent the famous
Discrete Anderson Nonlinear Schrödinger Equation. For this model, a deviation
from the widely believed power-law spreading is observed in numerical experiments.
Some ideas on a theoretical explanation for this deviation are presented, but a con-
clusive theory could not be found due to the complicated phase space structure in
this case. Nevertheless, it is hoped that the techniques and results presented in this
work will help to eventually understand this controversely discussed case as well.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Phänomen der Diffusion in nichtlinearen Sys-
temen. Unter Diffusion versteht man normalerweise die zufallsmäßige Bewegung von
Partikeln durch den stochastischen Einfluss einer thermodynamisch beschreibbaren
Umgebung. Dieser Prozess ist mathematisch beschrieben durch die Diffusionsglei-
chung. In dieser Arbeit werden jedoch abgeschlossene Systeme ohne Einfluss der Um-
gebung betrachtet. Dennoch wird eine Art von Diffusion, üblicherweise bezeichnet
als Subdiffusion, beobachtet. Die Ursache dafür liegt im chaotischen Verhalten des
Systems. Vereinfacht gesagt, erzeugt das Chaos eine intrinsische Pseudo-Zufälligkeit,
die zu einem gewissen Grad mit dem Einfluss einer thermodynamischen Umgebung
vergleichbar ist und somit auch diffusives Verhalten provoziert.

Zur quantitativen Beschreibung dieses subdiffusiven Prozesses wird eine Verallgemei-
nerung der Diffusionsgleichung herangezogen, die Nichtlineare Diffusionsgleichung.
Desweiteren wird die mikroskopische Dynamik des Systems mit analytischen Me-
thoden untersucht, und Schlussfolgerungen für den makroskopischen Diffusionspro-
zess abgeleitet. Die Technik der Verbindung von mikroskopischer Dynamik und ma-
kroskopischen Beobachtungen, die in dieser Arbeit entwickelt wird und detailliert
beschrieben ist, führt zu einem tieferen Verständnis von hochdimensionalen chao-
tischen Systemen. Die mit mathematischen Mitteln abgeleiteten Ergebnisse sind
darüber hinaus durch ausführliche Simulationen verifiziert, welche teilweise auf ei-
nem der leistungsfähigsten Supercomputer Europas durchgeführt wurden, dem sp6
in Bologna, Italien.

Desweiteren können die in dieser Arbeit vorgestellten Erkenntnisse und Techniken
mit Sicherheit auch in anderen Fällen bei der Untersuchung chaotischer Systeme
Anwendung finden.
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1. Introduction

1.1. Diffusion, Thermalization and Chaos

Diffusion is a fundamental transport phenomenon appearing in physics, biology,
chemistry and many other branches of science. In its original formulation it described
the migration of particles or molecules in a thermodynamic environment. Its main
feature is that diffusion results in mixing or transport without requiring a directed
force, opposed to convection, for example. Diffusion is typically formulated for some
concentration or density distribution, e.g. a particle density, and its main property
is the linear growth with time of the second moment of the concentration/density.
This is also encoded in the term itself that comes from the Latin word ”diffundere”
which means ”to spread out”. In most applications, as well as in this work, a
diffusion process is described in terms of a spatial spreading of some density with
time. However, the concept can be used in more abstract environments, e.g. diffusion
of energy or probability over any kind of modes that provide a suitable basis. In
this abstract sense diffusion might also be considered as a mechanism to describe the
equilibration of a system. For example, one can think of diffusion of energy initially
trapped in only a few degrees of freedom over the whole system ending in a state
well described by a thermal equilibrium. In this work, mainly spatial diffusion of
energy will be considered. However, the systems are designed in such a way that
the degrees of freedom, or energy modes, coincide with the spatial basis. Hence, the
results can also be related to the more abstract situations of spreading over modes
and the general process of thermalization due to diffusive behavior.

In 1905, Einstein’s work [1] marked a breakthrough in the understanding of diffusion
as the dynamical response of particles or molecules to a stochastic forcing induced by
the thermodynamic environment. With the emergence of Chaos Theory [2] and by
studying the properties of chaotic systems, it became possible to explain diffusive
behavior also without employing thermodynamic assumptions. Even more, ther-
modynamic properties could be, to some extent, derived from microscopic chaotic
dynamics [3]. In such situations the system itself, as being chaotic, shows stochas-
tic, quasi-random behavior and thereby can induce diffusion without requiring an
external stochasticity. The basic, but very instructive example for this effect is
the Standard Map [4] which shows diffusion of energy [5] in the parameter region
where chaos governs the motion. This is a very important result as it provides
an explanation for thermalization of systems initially out of equilibrium, especially
in micro-canonic situations where no interaction with the environment is allowed.
Therefore, diffusion in the Standard Map will be discussed in more details in sec-
tion 1.2. Although being assumed long before and becoming part of physicists intu-
ition, thermalization in closed, classical systems could not be understood until the
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1. Introduction

emergence of Chaos Theory [3,6]. However, although the overall picture that chaotic
behavior leads to thermalization is quite convincing and can even be proven for a
number of systems [3], a lot of understanding is still missing in this field. The main
purpose of this work is to advance the understanding of high dimensional chaotic
systems and to increase the knowledge on the relation between chaotic behavior and
diffusive processes. It has to be noted here already that throughout this work the
term “diffusion” will be used in a very general meaning including subdiffusive and
superdiffusive processes [7], not only the original diffusive behavior as introduced by
Fick [8].

One of the first studies investigating chaos as the origin of thermalization were the
famous numerical experiments by Fermi, Pasta and Ulam on a nonlinear Hamiltonian
system nowadays known as the FPU problem [9, 10]. Fermi, Pasta and Ulam took
a, as they thought, very simple toy model to study thermalization properties due
to complex dynamics. Their system was a chain of harmonic oscillators with linear
and nonlinear couplings. The nonlinearity was expected to induce chaos which then
should lead to thermalization. However, this was not observed and the model is
now, over 50 years later, still under investigation (see [11] for a review). Despite the
nonlinearity, Fermi, Pasta and Ulam found quasi-periodic motion instead of ergodic
behavior which was in contradiction to the common understanding that complex,
nonlinear, interacting systems should exhibit chaos leading to thermalization. This,
among other studies (e.g. coupled map lattices [12, 13]), opened the complex and
rich field of chaos in high-dimensional Hamiltonian systems that is also subject of
this work. There are several peculiarities in Hamiltonian systems that make the
understanding of their chaotic properties exceptionally difficult. This will be shortly
summarized in the following using the FPU problem exemplarily.

One of the possible explanations for the absence of ergodicity in the FPU study was
later believed to be the existence of KAM-tori, sets of quasi-periodic solutions in
weakly perturbed integrable systems. Such tori were first proposed 1954 by Kolo-
mogorov [14], later refined by Moser [15] and rigorously proven 1963 by Arnol’d [16].
Named after these three founders, the KAM theorem proves the existence of quasi-
periodic trajectories for weak enough perturbations in Hamiltonian systems. It is
a fundamental result on Hamiltonian chaos described in any textbook on chaotic
dynamics or nonlinear systems, e.g. [2, 17]. Unfortunately, it gives no estimate on
how small the perturbation has to be and in fact it is up to now debated if the
parameters chosen in the inital FPU study indeed lie inside such a quasi-periodic
tori [18] . Especially the high dimensional phase space in the FPU problem, typically
consisting of a chain of hundreds of oscillators, makes it very difficult to find and
quantify KAM tori, a situation that will also be faced in this work.

Even before the emergence of the KAM theory, another feature of such systems has
been discovered. It was found that there exist localized, nonlinear excitations [19,20],
nowadays called breathers [21], solitons or compactons [22]. These structures show
quasi-periodic behavior and can either remain at the same position or travel through
the chain [23]. In both situations they prevent energy from diffusing into the whole

2



1.1. Diffusion, Thermalization and Chaos
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(a) Standard Map with small nonlinearity
(K = 0.6).
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(b) Standard Map with larger nonlinearity
(K = 1.5).

Figure 1.1.: Phase space of the Standard Map (1.4) for small and larger nonlinearity pa-
rameters K = 0.6, 1.5. Both plots show the coexistence of regular motion
and chaotic parts. For larger nonlinearity, the regular islands get smaller and
smaller and a global chaotic region emerges.

system and thus block thermalization. In contrast to KAM tori, such excitations
are strictly nonlinear and are not obtained from perturbative methods.

When studying the emergence of chaos in a magnetic trap, Chirikov developed the
theory of resonance overlaps that gives a quantitative estimate on the onset of chaos
in dependence on the perturbation strength in the system [24]. This can be combined
with the KAM theorem by understanding that the phase space of nonlinear Hamil-
tonian systems can exhibit both regular trajectories with (quasi-)periodic motion
and regions with chaotic motion. This is visualized in Fig. 1.1 for the most simple
chaotic example: the Standard Map (1.4), explained in more detail in the following
section. These graphs show phase space representations of this exemplary model
for Hamiltonian chaos and one clearly sees the coexistence of regular and chaotic
regions, with chaos getting bigger if the nonlinearity is increased. This possibly very
complex phase space structure explains the particular difficulty when dealing with
Hamiltonian systems. Indeed, Izrailev and Chirikov found that the chaotic regions
might be confined to thin resonance layers if the perturbation is too small [25], as
shown in Fig. 1.1a, and thus would not lead to thermalization. Using the resonance
overlap criterion, the critical perturbation strength can be estimated above which
the resonances start to interact. This interaction of resonances typically creates a
global chaotic layer that allows for energy diffusion over the whole phase space hence
leading to thermalization. This situation is visualized in Fig. 1.1b, where a trajectory
starting inside the chaotic region can access almost the whole phase space except
some regular islands that are decreasing further when increasing the nonlinearity.
Applied to the FPU problem this was tested successfully by Izrailev [26, 27] who
found thermalization by increasing the nonlinearity parameter. Later, these results
were refined by considering higher order resonances [28] which explained thermal-
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1. Introduction

ization for smaller perturbations happening at longer timescales. Very recently and
with heavy numerical simulations it was claimed that indeed thermalization happens
in this system also for the original small perturbation strength, but on enormous
time scales not accessible to Fermi, Pasta and Ulam in the 1950s [29].

Lately, a similar problem arose in a very different system: the nonlinear Ander-
son model [30]. There, the interplay between disorder and nonlinearity is studied,
mostly in the framework of a Discrete Anderson Nonlinear Schrödinger Equation
(DANSE). Without nonlinearity, the disorder leads to the celebrated phenomenon
of Anderson localization [31–33] stating the “Absence of Diffusion“ for initially lo-
calized excitations. Again, it was asked if introducing nonlinearity would lead to the
possibility of energy diffusion due to the emergence of chaos in this system. This
question was addressed very extensively in the past years, numerically [30, 34–51]
and analytically [52–56]. It was also picked up experimentally, first investigating An-
derson localization disordered system without nonlinearity [57–61], but lately also
adding nonlinear interactions [62–65]. Despite the numerous efforts and the numer-
ical agreement on subdiffusive spreading, a clear understanding of the long-term
spreading behavior is still lacking [66]. Increasing the understanding of this very
actively studied system is one of the main motivations of this work and therefore
section 1.3 gives a summary of the known results. However, in this work a simplified,
more fundamental situation with possible application to a wider class of Hamilto-
nian systems will be addressed, but nevertheless some conclusions for the nonlinear
Anderson model will be drawn.

The main outcome of this study are the results on the spreading of energy in non-
linear Hamiltonian lattices. The spreading process will be identified as subdiffusive
and, at least in some cases, related to chaotic properties of the dynamics. Subdiffu-
sion refers to a process that is similar to diffusion, but much slower. That means, for
example, that the second moment for a subdiffusive process follows a power law with
an exponent α < 1, c.f. (1.9). The systems studied here are one- or two-dimensional
lattices of linear or nonlinear oscillators coupled by nonlinear nearest-neighbor inter-
action. The absence of linear coupling terms excludes the existence of linear traveling
waves which makes these models inherently easier to study than, for example, the
FPU model. This allows for a much more detailed investigation and leads to a deeper
understanding of the fundamental properties of high-dimensional1 Hamiltonian sys-
tems. So while in the FPU model the main question was if the system thermalizes
and on what time scale, in this work a more detailed analysis of the route towards
equilibration is performed by analyzing the spreading properties of initially localized
energy distributions in large systems. To quantify the diffusion process in these sys-
tems, the nonlinear diffusion equation (NDE) is introduced as a phenomenological
model for the spreading behavior. The application of this macroscopic description

1Unfortunately, there will be two notions of dimensionality in this work. When referring to “one-
or two-dimensional lattices”, the structure of the coupling of oscillators is meant, while when
using the expression “high dimensional Hamiltonian” or “high dimensional system” the phase
space dimensionality is attributed, a crucial quantity for the properties of chaos. Anyhow, it
should be clear from the context which of the two notions of dimension is referred to.

4



1.2. Chaotic Diffusion

of spreading is accompanied by a detailed study of the microscopic Hamiltonian
dynamics in the model leading to a number of analytic predictions on the diffusion
properties. The main analytic tools are firstly the identification of scaling prop-
erties of the equations of motion. Secondly, a resonance analysis as described by
Chirikov [25] will be performed to understand the microscopic dynamics and those
results are then connected to the macroscopic spreading. Finally, the whole study is
supported by extensive numerical simulations in one- and two-dimensional lattices,
partly performed on one of Europe’s fastest supercomputers (sp6 at CINECA in
Bologna, Italy).

1.2. Chaotic Diffusion

The simplest and most instructive example for a diffusive process is Brownian mo-
tion, firstly quantified by the Botanist Robert Brown in 1827 [67, 68]. In one di-
mension, this can be modeled by a random walk where a particle is assumed to
make a jump of length one at every timestep either to the left or to the right with
probability one half. Denoting the position of the particle at timestep i by xi and
considering an ensemble of particle trajectories, one obtains for the ensemble average
of the squared displacement and for large numbers of steps i� 1 the diffusion law:
〈x2
i 〉 = 2i. The mean displacement in this situation tends to zero 〈xi〉 = 0. This can

also be generalized for continuous time leading to the Wiener process:

ẋ(t) = ξ(t), (1.1)

where ξ(t) represents zero mean Gaussian white noise with variance σ2. Again
considering the average over an ensemble of trajectories one finds:

〈x2(t)〉 = D · t with D = 2σ2, (1.2)

where D is called the diffusion constant and depends on the properties of the random
process, here its variance σ2. While this is based on a random process introduced by
the white noise ξ, the behavior of single particles in a thermodynamic environment
can be described by exactly the same mechanism as phenomenologically already
found by Fick [8]. Later, Einstein derived the relation between the diffusion constant
and the temperature T of the environment [1]:

D = µkBT, (1.3)

where µ denotes the particles mobility and kB is the Boltzmann factor. This com-
pleted the understanding of diffusion in thermodynamic environments.

With the emergence of Chaos Theory, it was later found that diffusion can also be
observed in systems that are not subject to any random forcing nor connected to a
heat bath. In this case, diffusion is induced by the quasi-randomness of the chaotic
system itself and the diffusion constant supposingly depends on the properties of

5



1. Introduction

chaos. In such a situation, the process is denoted as chaotic diffusion [69]. The
simplest case where this can be studied is the so called Standard Map, introduced
by Chirikov [24] and defined as a two dimensional map for an action and an angle
coordinate p and ϕ:

pn+1 = pn +K sinϕn

ϕn+1 = ϕn + pn+1.
(1.4)

The index n denotes the discrete time and K is the nonlinearity parameter leading
to chaos when being large enough. For small values K � 1, on the other hand, KAM
tori prevail and the trajectories are mainly quasi-periodic. For detailed reviews on
the properties of the Standard Map see any chaos textbook, e.g. [2] or [17]. Here,
only the results on diffusion in the chaotic regime should be emphasized. If K is
large enough to ensure the destruction of the last separating KAM tori in the system,
K > Kc ≈ 0.972, one finds diffusion in action space [5, 70]:

〈p2〉 = D · t, with D ≈
{

1
3(K −Kc)

3 for Kc < K < 4
1
2K

2 for K > 4.
(1.5)

The result for large K > 4 can be easily obtained by a random phase approxima-
tion assuming uncorrelated phases ϕn and ϕn+1. For values K close to the critical
strength Kc on the other hand, the phase space is very complicated showing both
chaotic regions and islands of stability which makes analytical treatments of the
diffusion process very complicated [5]. Moreover, small but still always present
correlations give corrections to the relations above, but these details are of minor
importance for this work and thus are not further discussed.

Although being the most popular and intensively studied example, the Standard
Map is not the only chaotic map that exhibits diffusive behavior. Quite conversely,
this is a universal phenomenon in chaotic systems. For example, a whole class of
one-dimensional maps has been studied by Klages [69], where a very complex, even
fractal, dependence of the diffusion constant on the nonlinearity parameter of the
maps is reported. Also, diffusion in coupled lattices has been extensively studied
by Kaneoko and Konishi [71]. Despite the possibly very complicated dependence of
the diffusion constant on the details of the mappings, these situations have similar
fundamental properties:

• Assuming there is one parameter controlling the integrability of the system,
from the KAM theorem one expects the existence of a lower bound below which
KAM tori prevail and no diffusion is possible due to phase space separation.

• For values above this critical threshold, diffusive behavior is observed with a
diffusion constant depending on the system parameters but not on time, hence
one always observes normal diffusion in those models.

It should be noted at this point that the Hamiltonian nonlinear oscillator lattices
studied later in this work have substantially different properties which will lead to
subdiffusive behavior, opposed to the normal diffusion for the mappings presented
above.

6



1.3. Spreading in Nonlinear Anderson Models

1.3. Spreading in Nonlinear Anderson Models

First predicted in 1957 by Anderson, the phenomenon of localization in disordered
systems is still a subject of intensive studies nowadays. At that time, one was in-
terested in the transport properties of electrons in systems that are not perfectly
periodic but exhibit impurities at random places as any material in real life does.
Such a situation can be simplified to the fundamental property of having a disordered
potential. In his pioneering work titled “Absence of Diffusion in Certain Random
Lattices” [31], Anderson describes localized eigenstates in linear systems with dis-
ordered on-site potential. One example of such a system is the discrete Schrödinger
equation governing the time evolution of some complex valued wavefunction ψn(t):

iψ̇n = Vnψn + ψn−1 + ψn+1. (1.6)

The potential Vn at lattice site n is a random variable, typically chosen uniformly,
independent and identically distributed (iid.) from some interval [−U/2, U/2], but
fixed in time. The nearest neighbor couplings arise from the discretization of the
Laplace operator of the original Schrödinger equation. It is known for such models
that in one dimension all eigenfunctions are exponentially localized with a local-
ization length depending on the corresponding energy eigenvalue and the disorder
strength U [32]. More details on the properties of linear, disordered systems can be
found in the very good review from Lee and Ramakrishnan [72].

The situation gets much more delicate if nonlinearity is added to the system. This
allows for interactions between the linear eigenmodes and hence the possibility to de-
stroy Anderson localization by introducing chaotic diffusion. This has been studied
very extensively in the framework of the (generalized) Discrete Anderson Nonlinear
Schrödinger Equation (gDANSE):

iψ̇n = Vnψn + ψn−1 + ψn+1 + β|ψn|2σψn, (1.7)

which is the same as above but with an additional nonlinear term β|ψn|2σψn where
β denotes the nonlinear strength and σ the power of nonlinearity. The standard
choice is σ = 1, for which the model is called just DANSE model and that is of con-
siderable physical importance. It describes, for example, Bose-Einstein-Condensates
in a random potential in a low-density mean field approach [51,61,65]. Moreover, it
also appears for light propagation in arrays of optical wave guides using nonlinear
optical media [62, 63], where the time t is replaced with the spatial directionalong
the wave guides z. This triggered a lot of numerical studies [30,34–51], mainly aim-
ing at the long-time behavior not yet reachable by experiments, as well as analytic
treatments [52–56]. Although other choices σ > 0 have less physical meaning in
terms of experimental observations, they are very important for checking analytical
results on the model and verifying theoretical assumption on the relation between
nonlinearity, chaos and spreading as shown later in this work.

The understanding of the aymptotic spreading behavior in the DANSE model is
one of the main motivations for this work. Thus, a short summary of the vast
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Figure 1.2.: Spreading in the gDANSE model (1.7) for different nonlinearity exponents σ
together with power law fits ∆n2 ∼ tα (1.9), with the fitting exponents α also
shown in the labels. These results were obtained for β = 1 and U = 4 and are
part of previous works of the author [44,73].

numerical results obtained for this problem will be given here. The fundamental
observation is a subdiffusive spreading for initially localized distributions in the
gDANSE model (1.7). That means one starts with only a few sites initially having
positive amplitudes |ψn|2 > 0 and observes how other, initially resting sites get
excited with time. For the linear case, Anderson localization prevents the excitation
of sites far from the starting points. This changes when adding nonlinearity and
a slow diffusion, i.e. subdiffusion, of energy into distant parts of the lattice can be
observed. This is typically quantified by measuring the second moment of the norm
distribution |ψn|2 of the wavefunction:

∆n2(t) =
∑
n

(n− n̄(t))2|ψn(t)|2, with n̄(t) =
∑
n

n|ψn(t)|2, (1.8)

where n̄(t) denotes the spatial center of the distribution. More methods of quanti-
fying the spreading will be described more sophisticatedly in section 2.5. Fig. 1.2
shows the main results obtained in [73], where the spreading of initially localized
excitations was studied for different nonlinearity exponents σ. The graphs present
averages over disorder realizations and thus describe the average spreading behavior
rather than single trajectories. The main observation is a subdiffusive spreading for
all considered values of σ:

∆n2 ∼ tα, with 0 < α < 1, (1.9)

where α(σ) is the spreading exponent depending on the power of the nonlinear
term. The spreading exponent for the most important case σ = 1 was found to be
α1 ≈ 1/3, a value confirmed by many other numerical studies, e.g. [38, 47], but has
no convincing theoretical explanation, yet.
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1.3. Spreading in Nonlinear Anderson Models

To study the spreading mechanism that is induced by the nonlinearity analytically,
a transformation to the basis of eigenmodes of the linear system is very helpful. For
simplicity, the presentation here will be restricted to the fundamental case σ = 1,
for a similar treatment of the general case see [73]. Denoting the k-th eigenmode
represented in the spatial basis with ϕk,n and the corresponding eigenvalues with εk,
it is known that those eigenmodes are exponentially localized around some center n̄
with some localization length ξk [32]:

|ϕk,n|2 ∼ e−|n−n̄k|/ξk . (1.10)

The index k in ξk indicates the dependence of the localization length on the energy
eigenvalue of the mode εk. Note, that the energy eigenvalues {εk} depend on the
random potential {Vn} and are therefore random quantities as well. Introducing the
representation in terms of the complex valued eigenmode amplitudes Ck gives:

ψn(t) =
∑
k

ϕk,nCk(t). (1.11)

Without the nonlinear term, the time evolution of Ck would be a trivial phase
rotation. With nonlinearity, however, substituting (1.11) in (1.7) yields:

iĊk = εkCk+β
∑
p,l,m

Vk,p,l,mCpC
∗
l Cm with Vk,p,l,m =

∑
n

ϕk,nϕ
∗
p,nϕl,nϕ

∗
m,n. (1.12)

The 4-mode overlaps Vk,p,l,m describe the coupling strength between the linear modes
due to the nonlinearity. Formally, the local-in-space nonlinearity introduces an all-
to-all coupling when viewed in eigenmode space. However, as the eigenmodes are
exponentially localized also the overlap Vk,p,l,m decreases exponentially with the
spatial distance between the modes. Hence, each mode effectively interacts only
with those modes that are centered within a distance of roughly the localization
length. As the localization length also depends on the disorder strength U , this
coupling range can be adjusted by changing U where an increase leads to stronger
localization and hence a shorter effective coupling range.

From the structure of the equation one sees that not only the eigenmode frequen-
cies εk, but also the coupling strengths Vk,p,l,m depend on the actual realization
of the disordered potential {Vn} and hence are random variables. This creates a
highly complicated situation with a very complex phase space structure that is hard
to treat analytically, also seen from the lack of a convincing spreading theory for
this model. Additionally, this model exhibits two conserved quantities: norm and
energy [73], opposed to the systems considered later in this work where only the
energy is conserved. The qualitative picture, however, that the nonlinear interac-
tions induce chaos in the system which then leads to diffusion of energy seems to be
correct, but a quantitative theoretical result on this spreading process is yet to be
developed. One approach is presented in [39], where the concept of “chaotic heat-
ing” is introduced and the properties of chaos are tried to be modeled by an effective
noise theory. This idea was recently also followed by Michaely and Fishman in a
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1. Introduction

detailed study [48]. In this picture, the excited modes, that is those with non-zero
amplitude |ψn|2 > 0, show chaotic motion and thus transfer energy to the unexcited
modes via the coupling. However, this relies on a number of assumptions, especially
on the quantitative role of resonances as a source chaos. Some of those assumptions
have been tested in detailed in [74,75], but the picture is still far from complete [66].

In this work a similar, but less complex model will be studied introduced in chapter 2.
But before going to this simplification, the essential properties of the DANSE model
should be highlighted:

• Hamiltonian structure with norm as additional conserved quantity.

• Absence of linear waves due to Anderson Localization; without nonlinearity
no spreading would occur.

• Finite range (exponentially decaying) nonlinear coupling between localized
linear modes.

• Neighboring modes have random frequencies εk and hence are typically not in
resonance.

1.4. Scope of this Work

In the following chapters, a class of nonlinear Hamiltonian lattices will be studied
that represent a simplification of the DANSE model, but with some similar proper-
ties. This allows for a more detailed study of the microscopic dynamics from which
theoretical predictions on the exact spreading exponents will be deduced, at least
in some cases. The idea is that by considering a simplified system, the microscopic
dynamics can be analyzed and spreading can be quantified based directly on dy-
namical properties. So in this work, no assumptions on the properties of “chaotic
heating” or the influence of resonance probabilities will be made, all results are
based on the microscopic dynamics of the system. Besides introducing the model
and its properties in chapter 2, also a new observable used to quantify spreading
will be presented, called excitation time [46]. Then, the properties of the nonlinear
diffusion equation and its self-similar solution will be illuminated in chapter 3. This
equation serves as a phenomenological model to describe the spreading process and
predictions for spreading in Hamiltonian lattices will be made. Chapter 4 contains
the main results of the work, including scaling and resonance analysis of the micro-
scopic dynamics in nonlinear Hamiltonian lattices Accordingly, predictions for the
spreading properties will be drawn and compared with heavy numerical simulations
in one- and two-dimensional lattices. Finally, chapter 5 gives conclusions and also
tries to relate these findings back to the original problem of spreading in nonlinear
Anderson models.
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2. Nonlinear Hamiltonian Lattices

The objects of study in this work are Hamiltonian chains (1D) or lattices (2D),
possibly including disorder, of harmonic or nonlinear oscillators with a nonlinear,
power-law, nearest neighbour coupling. The one-dimensional oscillator chain will be
introduced and described explicitly in the next section. Then, a short preview on the
spreading behavior will be given followed by a detailed formulation of how spreading
can be quantified in this system. Finally, a generalization to two dimensional lattices
of oscillators will be presented.

2.1. One-dimensional Oscillator Chains

The nonlinear Hamiltonian systems studied in most parts of this work are formulated
in terms of a Hamilton function H(~q, ~p) : RN×RN → R for positions ~q = {qk} ∈ RN
and momenta ~p = {pk} ∈ RN of oscillators at lattice sites k = 1 . . . N :

H =

N∑
k=1

p2
k

2
+ U

ω2
k

κ
qκk +

β̃

λ

N−1∑
k=1

(qk+1 − qk)λ , (2.1)

with parameters κ, λ, U , β̃ and {ωk}. The exponents κ ≥ 2 and λ > 2, λ ≥ κ
denote the powers of the on-site potential and the coupling term, respectively. This
represents the very general situation of a one-dimensional chain of harmonic (κ = 2)
or nonlinear (κ > 2) oscillators with a power-law nearest-neighbor coupling. Note
that for the sake of simplicity of the presentation, in this work only even powers
κ = 2, 4, 6; λ = 4, 6 are chosen. A generalization of H to odd or even to non-
integer powers is straightforward by writing the local potential as ∼ |qk|κ and the
coupling as ∼ |qk+1−qk|λ to ensure positivity of the energy. Many of the later results
can be generalized to these cases. Additionally, a local potential strength U > 0 and
a coupling strength β̃ > 0 have been included. But as shown in the next section,
these generally are not independent parameters of the system and can mostly be
set to unity. The tuple {ωk} are parameters of the local potential, i.e. the oscillator
frequencies in the harmonic case κ = 2, and three situations are considered in this
work:

soft disorder: ωk ∈ [0, 1] uniformly random iid., abbreviated ”sd“.

hard disorder: ωk ∈ [0.5, 1.5] uniformly random iid., abbreviated ”hd“.

regular: ωk = 1, no disorder, abbreviated ”re“.
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2. Nonlinear Hamiltonian Lattices

This system can be viewed as a generalization of the so called Fröhlich-Spencer-
Wayne model introduced in [76]. To refer to a specific choice of nonlinearities
throughout this work, the expression “κ–λ” will be used. So for example the term
2–4sd refers to the case with harmonic on-site potential κ = 2, power-4 coupling term
λ = 4, and soft disorder ωk ∈ [0, 1]. If not indicated differently, generally the one-
dimensional case introduced here is considered. Obviously, the Hamiltonian nature
of the model implies that the energy of the system E = H(~q(t), ~p(t)), with ~q(t), ~p(t)
being some trajectory, is a conserved quantity dE/dt = 0.

In this work, the behavior of trajectories ~q(t), ~p(t) obtained from the initial value
problem derived from the Hamilton function (2.1) is investigated:

q̇k =
∂H

∂pk
= pk

ṗk = −∂H
∂qk

= −ω2
kq
κ−1
k − β

(
(qk − qk+1)λ−1 + (qk − qk−1)λ−1

)
qk(0) = qk,0, pk(0) = pk,0.

(2.2)

The focus lies on the typical behavior of such trajectories for random potential
realizations {ωk} or random initial conditions rather than a specific result for some
carefully chosen potential or initial condition. This typical behavior is extracted by
performing Monte-Carlo studies on many potential realizations or initial conditions
and then analyzing the averages of these ensembles of trajectories.

More precisely, two different setups will be studied here: In section 2.4, short chains
with N = 8 . . . 64 sites are considered and periodic boundary conditions are used
qN+1 = q1 and pN+1 = p1. There, the energy is initially spread over all sites and the
properties of chaos of such situations are studied in terms of Lyapunov exponents.
The main results on the other hand, presented in chapter 4, deal with localized
initial excitations where the energy is distributed over a few sites only. Then the
diffusion properties are analyzed in terms of energy spreading. In this situation the
number N of oscillators is considered to be large enough such that no boundary
effects will occur, hence boundary conditions are irrelevant for those studies.1

Before analyzing the properties of this model more deeply in a mathematical way,
some general properties should be mentioned, especially in comparison to the DANSE
model (1.7). Similarly, the above model does not exhibit linear waves, but rather
due to the absence of linear2 coupling terms than due to Anderson Localization.
Therefore, disorder as source of Anderson Localization is not essentially required
to block linear waves as they can not exist without linear coupling at all. How-
ever, as it will be shown in section 2.3, there might exist nonlinear waves in the
lattice. As traveling waves complicate the observation of diffusive spreading, their
existence should be avoided. This is realized here by introducing local disorder in

1Typically, initial excitations will be chosen to lie in the center of the lattice with N being large
enough such that the boundary is never reached by the excitation.

2λ = 2 in (2.1) would be a ”linear” coupling term as ”linearity” refers to the equations of motion
not to the Hamilton function itself.
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terms of {ωk} and the two cases hard and soft disorder. So while the disorder in
the DANSE model (1.7) is required to block linear waves by the mechanism of An-
derson Localization, here disorder is introduced to block possible nonlinear waves,
at least in one-dimensional chains. For two-dimensional lattices, however, nonlinear
waves seem not to exist even without disorder (ωk = 1), a situation described later
in section 2.6. It should be noted here that the absence of nonlinear waves due to
disorder in 1D or in general in 2D systems is not rigorously shown and also not
yet studied in much detail. Accordingly, this work mainly relies on the numerical
observation that such solutions do not exist or are at least not significant. Further
investigations in this matter are definitely required. Another key difference to the
DANSE model is the rather simple, nearest neighbor coupling in (2.1), in contrast
to the complicated four-mode overlaps with exponentially decaying coupling terms
in (1.7) [74, 75]. This creates the possibility to understand the microscopic dynam-
ics and develop theoretical predictions for the spreading exponent which is done in
chapter 4. Before, however, some peculiarities of the Hamiltonian system itself have
to be explained.

2.2. Scaling Properties

Here, the crucial, independent parameters of the model will be identified and in
this course its scaling properties are highlighted. First, consider the Hamiltonian
system (2.1) for some fixed powers κ 6= λ with either hard/soft or no disorder. This
case will be called “nonhomogeneous” because of the different nonlinear powers. The
Hamiltonian then contains two parameters, U and β̃, that govern the strength of
local and coupling potential. However, these parameters are not independent and
can be set to unity. To show this, a canonical transformation to new positions Qk,
momenta Pk, time t′ and Hamilton function H ′ is performed:

qk = U bβ̃−bQk

pk = Uλb/2β̃−κb/2Pk

t = U (2−λ)b/2β̃(κ−2)b/2t′

H = Uλbβ̃−κbH ′,

(2.3)

with b = 1/(λ − κ). This transformation is indeed canonical, as shown in ap-
pendix A.1.1. Renaming the variables again: Qk → qk, Pk → pk, t

′ → t and
H ′ → H, the Hamiltonian after the transformation reads:

H =

N∑
k=1

p2
k

2
+
ω2
k

κ
qκk +

1

λ

N−1∑
k=1

(qk+1 − qk)λ . (2.4)

The only remaining parameter, besides the choice of disorder {ωk}, is the total
conserved energy E in the system. That means, for example, that changing the
nonlinear strength in the original Hamiltonian (2.1) is, by a rescaling of {qk}, {pk}
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2. Nonlinear Hamiltonian Lattices

and time, equivalent to a change of the total energy of the system connected with a
change of the time scale. This is an important observation that will be used heavily
in later calculations. However, it should be noted again that this is only true for the
nonhomogeneous case where κ 6= λ, as immediately seen from the divergence of the
transformation parameter b for κ = λ in (2.3).

For the special case of homogeneous powers, κ = λ, the above canonical transforma-
tion is not possible. However, this case is highly interesting as it has the particular
property that the energy can be rescaled and is not an independent parameter in
the model. To show this, the following variable transformation is performed:

qk = E1/κU−1/κQk

pk = E1/2Pk

t = U−1/κE1/κ−1/2t′

H = EH ′ .

(2.5)

This indeed represents a canonical transformation as shown in appendix A.1.2.
Again, after renaming the variables back to qk, pk, t and H, and with introduc-
ing β = β̃/U , the Hamiltonian is found as:

H =

N∑
k=1

p2
k

2
+
ω2
k

κ
qκk +

β

κ

N−1∑
k=1

(qk+1 − qk)κ . (2.6)

Thus, the only relevant parameter in this model is the relative coupling strength β,
while the energy can always be scaled to, e.g. E = 1, which also involves a rescaling
of time according to (2.5). This is a striking result and will be used later to obtain
an exact prediction on the spreading behavior for the homogeneous case.

To summarize, two inherently different cases have been identified here:

1. The nonhomogeneous case κ 6= λ with the energy as crucial parameter that
will be studied in terms of the Hamiltonian (2.4).

2. The homogeneous case κ = λ where the energy can be scaled out and the rela-
tive nonlinear strength β is the crucial parameter, described by the Hamilton
function (2.6).

In the nonhomogeneous system, the energy determines the integrability of the sys-
tem. For very small values E → 0, the oscillators decouple and hence the system is
integrable. The general picture of Hamiltonian chaos then is that for fixed N and
increasing E, KAM-tori will first prevail and a mixed phase space with regular and
chaotic parts will emerge until for some large enough energy, the whole phase space
will be chaotic. This will be numerically analyzed in section 2.4.

For the homogeneous model, the integrability is determined by the parameter β,
and for β → 0 the system is integrable. Increasing β above some threshold also
eventually leads to a fully chaotic phase space. Note that the value chosen in this
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2.3. Phenomenology of Energy Spreading

work β ∼ 1 corresponds to such a situation. Decreasing the energy in this model
just slows down the dynamics as seen from the scaling (2.5) and thus also decreases
the time scale of chaos but not the phase space structure.

2.3. Phenomenology of Energy Spreading

The main purpose of this work is to understand chaotic diffusion in the nonlinear
Hamiltonian systems introduced in the previous sections. The diffusion properties
will mainly be studied by analyzing the spreading of initially localized excitations.
The fundamental observation is as follows: starting only with a few neighboring
oscillators with non-zero amplitude while the others are at rest, more and more os-
cillators, one after another, become excited with time, due to the nonlinear coupling
to an excited neighbor. The level of excitation of an oscillator is measured by its
local energy density:

wk =
Ek
E

= E−1

(
p2
k

2
+
ω2
k

κ
qκk +

β

2λ
[(qk+1 − qk)λ + (qk − qk−1)λ]

)
. (2.7)

This definition holds for both the homogeneous and the nonhomogeneous case where
in the latter β = 1 should be assumed. The density distribution {wk} fulfills
0 ≤ wk ≤ 1 and

∑
k wk = 1 and hence defines a probability distribution on the lat-

tice.

As mentioned before, this work focuses on the case when this energy transfer from
excited to nonexcited oscillators is based on chaotic diffusion. Specifically, this means
that the existence of traveling nonlinear waves in the system should be avoided.
Such nonlinear waves, also called compactons, are a quite general phenomenon in
nonlinear systems [77,78]. They have been studied excessively in a similar nonlinear
chain as given by (2.1), but with absence of the local potential ωk = 0 [22,23]. There,
shape and speed of such compactons were found and it was observed that they are
stable and emerge out of arbitrary, even random initial conditions. When adding a
regular, local potential, i.e. ωk = 1, those compactons still survive in the sense that
one can find traveling waves emerging out of random initial conditions, called “quasi-
compactons” here. This is illustrated in Fig. 2.1a, where the time evolution3 for the
4–6re case is shown (ωk = 1). The initial conditions were 10 randomly excited sites
with a total energy E = 10 and one clearly sees the emergence of a quasi-compacton
traveling to the right from the initial excitation. Opposed to the case without local
potential studied in [22, 23], the quasi-compacton in Fig. 2.1a loses energy as seen
from the non-zero energy density at the lattice sites after the compacton passed
through. To avoid such quasi-compactons, disorder is introduced as illustrated in
Fig. 2.1b. It shows a similar time evolution but for the 4–6hd case, i.e. a disordered
local potential ωk ∈ [0.5, 1.5], again with 10 initially excited sites and E = 10. There,

3Details on the setup of the simulations and the employed numerical methods are given in sec-
tion 4.1.
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(a) 4–6re, no disorder ωk = 1.
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(b) 4–6hd, hard disorder ωk ∈ [0.5, 1.5].

Figure 2.1.: Time evolution of an initially localized state for the case 4–6 and energy E = 10,
for both a regular lattice (a), and a lattice with “hard” disorder (b). The color
coding corresponds to the logarithm of the local energy density log10 wk. The
initial condition was a random excitation on 10 sites. The time evolution is
shown up to T = 140 for the regular case (a) and T = 300 for the disordered
potential (b).

no quasi-compactons travel through the system and the spreading is much slower.
Also, the dynamics of the excited region seem chaotic and hence it is natural to call
the process chaotic diffusion. Of course, Fig. 2.1b shows only an exemplary time
evolution and no proof of the absence of quasi-compactons will be presented here.
However, no such structures have been observed for any of the numerical studies of
this model as soon as disorder was present. Nevertheless, a detailed investigation of
such traveling waves and their properties might be an interesting extension of the
existing work in this field. It should be noted that only exemplary results for the
case 4–6 are shown here. However, these are general observations and can be found
for any case of nonlinearly coupled oscillators. Similar results as shown in Fig. 2.1
(and also Fig. 2.2, discussed shortly) have been obtained for other combinations of
κ and λ but are omitted here.

Another observation from Fig. 2.1 are the very sharp edges of the excited area (note
the logarithmic scale of the color coding). This is seen more clearly in Fig. 2.2
where, for the model 4–6sd, the instantaneous energy densities wk at different times
t = 104, 106, 108 are plotted. The initial condition was a single site excitation with
energy E = 1 and the main observation are the very sharp edges of the spreading
state. Note, that the y-axis is logarithmic and the excitations drop enormously
fast in this scale. Hence, the tails of the excitations are decaying clearly faster
than exponentially at the excitation border. This is remarkable, but not surprising
and rather a general property of systems with purely nonlinear coupling terms.
For example, also breathers [79] and compactons [23] in similar models without
linear coupling terms were found to have such super-exponential tails. However,
this property allows to quite precisely define the excitation area by counting the
number of excited sites. This will be used in section 2.5.2 to introduce the notion of
excitation times, an important observable to quantify spreading in these systems.
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Figure 2.2.: Spreading of an initial single site excitation for the (disordered) case 4–6sd and
energy E = 1.0. The plot shows local energy density wk vs. lattice site k for
increasing times 104, 106, 108 (inner to outer curves). Note the logarithmic
scaling of wk and the exponential drops in this scale. L denotes the number of
excited sites defined in section 2.5.2.

Additionally, Fig. 2.2 already reveals that the spreading takes place on exponential
time scales. Increasing the time by two orders of magnitude leads to roughly a dou-
bling of the number of excited sites. This is clearly slower than usual diffusion where
the excitation area should have increased roughly by a factor of 10 and therefore
this is already an indication for subdiffusive behavior.

2.4. Properties of Chaos

In the previous section, first signatures of spreading were shown. This spreading is
claimed to be induced by chaotic behavior of the trajectories. Although it seems
quite natural to assume chaoticity in the system due to its complicated, high di-
mensional phase space, such an assumption needs to be checked carefully. This is
especially required as chaos is one of the fundamental ingredients for the under-
standing of spreading.

A numerical study on the properties of chaos in nonlinear Hamiltonian systems as
described by (2.1) has been done by the author et. al in [80] for the case 4–6re.
Here, these results are reported together with new outcomes of similar studies on
the 2–4 case. These considerations focus on the nonhomogeneous case because only
there the energy is the relevant parameter and one obtains interesting results with
implications also for the spreading setup.

The idea of [80] was to quantify the fraction of phase space that exhibits chaotic
motion by a Monte-Carlo study. Therefore, rather small Hamiltonian chains with
N = 8 . . . 64 oscillators with periodic boundary conditions were considered. Such
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2. Nonlinear Hamiltonian Lattices

a setup was studied even before for the DANSE model in [81]. In contrast to the
spreading studies performed later, here all oscillators are initially excited and the
chaoticity of the trajectory is analyzed. So for some system size N and some fixed
energy E, many random initial conditions where chosen and their time evolution
up to a time T = 106 was computed with numerical methods.4 Simultaneously,
the largest Lyapunov exponent λ was obtained as a measure of chaoticity of this
trajectory. The Lyapunov exponent is an established way to quantify the strength
of chaos along a trajectory by measuring the mean logarithmic growth rate of small
perturbations. Positive Lyapunov exponents indicate chaos, while λ = 0 corresponds
to a regular Hamiltonian system, more details can be found in any textbook on this
subject, e.g. [2, 17].

Here, a trajectory is identified as being chaotic if λ > 20/T . In this case the initial
condition belonged to the chaotic fraction of the phase space. The positive lower
bound for chaotic λ has to be introduced because due to the conserved quantity in
Hamiltonian systems, one Lyapunov exponent is always zero and the convergence to
this value is typically as 1/T . The specific choice for the critical value was justified
by a statistical analysis of the Lyapunov exponents [80]. Then, the fraction of chaotic
initial conditionsNch of the total number of runsNtot was calculated Pch = Nch/Ntot.
This quantity was called probability of chaos and can be understood as a measure
for how much of the phase space belongs to the chaotic component, while the rest
exhibits regular motion. Pch depends on the system size N and the energy E,
hence simulations were repeated for many N = 8 . . . 64 and energies E = 10−8 . . . 1.
To allow a natural connection of these results with the spreading problem, here the
energy density W = E/N will be used as system parameter. For large enough values
of the energy density one expects a fully chaotic phase space, hence Pch = 1. This
comes from the fact that high energies correspond to strong perturbations which
means chaos almost surely for any initial condition. Then for some fixed N and a
decreasing energy density W , at some critical value Wc the emergence of KAM-tori
will set in. Consequently, a fraction of the initial conditions will lie inside those
regular islands (c.f. Fig. 1.1), hence Pch will start to decrease for W < Wc.

The important question, however, is the dependence on the system size N , e.g.
Wc(N). Generally, one expects that an increase of N allows chaoticity for smaller
values of the energy density because the complexity of the system increases. Hence
Wc should decrease with increasing N . Here, this influence of N will be revealed
numerically by obtaining results on Pch for several values of N and then trying
to find a scaling function f(N) such that those curves fall onto each other when
plotted for the scaled variables Pch(Wf(N)). The function f(N) has the following
meaning: given two system sizes N1 < N2 with critical densities Wc1 > Wc2, then
f(N1)/f(N2) = Wc2/Wc1. It will turn out that the functions f(N) are particularly
easy, i.e. simple power laws f(N) = Nµ.

The results of Pch(W ) and its scaling with system size N for the fully nonlinear,
nonhomogeneous, regular case 4–6re, as obtained in [80], are are shown in Fig. 2.3a.

4For more details on the numerical setup see section 4.1.
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Figure 2.3.: Probability of chaos Pch(W ) as function of energy density W for different num-
bers of oscillators N for the regular case 4–6re (a) and the disordered case
4–6hd (b). The x-axis includes the observed scaling with system size N , i.e.
f(N) = N1.7, f(N) = N1.5 respectively. The arrows indicate the direction of
spreading states in these plots (see text).

Note, that in [80], a different parametrization has been used with the coupling
strength β (denoted γ there) as the only parameter and the energy being fixed
to E = N . These two parametrization are equivalent and can be compared by
identifying β2 = W , as seen from the scaling described in section 2.2 in eq. (2.3).
Additionally, the disordered case 4–6hd is shown in Fig. 2.3b exhibiting a very similar
behavior. In both cases, regular and disordered, one finds the emergence of regular
islands at some critical energy density Wc, which is slightly larger for the disordered
case as seen in Fig. 2.3b. Morevoer, the scaling with system size is found numerically
to follow N1.7W (i.e. f(N) = N1.7) for the regular case shown in Fig. 2.3a and
N1.5W for the disordered case in Fig. 2.3b. This is seen from the overlap of results
for different values N = 8, 16, 32, 64 when plotted with this rescaled coordinate.

This scaling has a remarkable consequence for the spreading process. During the
spreading, the average energy density W = E/L decreases as the total energy E
remains constant, but the number of excited sites L increases. The relation to the
spreading can be found from assuming that the phase space of the short chains
with length N investigated here also effectively models the phase space around a
spreading trajectory currently extended over L = N sites. Then, increasing number
of sites can, in this sense, be interpreted as an effective increase of the dimensionality
of phase space accessed by the trajectory. So assuming W = E/L and N ∼ L, the
scaled variable in Fig. 2.3 increases for spreading states as N1.7W ∼ L1.7W ∼ L0.7E,
or L0.5E respectively. That means in the course of spreading the trajectory is
driven away from the regular parts of the phase space! This is a quite surprising,
even counter-intuitive result as one would naturally expect that for small energy
densities eventually a KAM-regime will be reached. But this is only true for a fixed
system size. For spreading states, however, together with decreasing W , also the
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Figure 2.4.: Probability of chaos Pch(W ) as function of energy density W for different num-
bers of oscillators N for the regular case 2–4re (a) and with disorder 2–4hd (b).
The x-axis includes the observed scaling with system size N , i.e. f(N) = N0.3.
The arrows indicate the direction of spreading states in these plots (see text).

effective dimensionality is increased and it turns out numerically that the latter
effect is stronger (∼ N1.7 vs. ∼ 1/N). Hence, the KAM regime will not be reached
for this case. This is true for both regular and disordered potential in the 4–6 model,
but with slightly different scaling exponents. However, the comparison of spreading
states with the properties of chaos for fixed sized chains is, although physically
reasonable, rather speculative at this point requires further justification.

The situation changes fundamentally when linear oscillators are considered, as seen
in Fig. 2.4. There, a similar analysis of Pch is obtained for the 2–4 model, again for
both the regular case (ωk = 1, Fig. 2.4a) and a disordered potential (ωk ∈ [0.5, 1.5],
Fig. 2.4b). In contrast to the fully nonlinear case before, here the scaled variable
is found to be N0.3W . This scaling is compatible with recent results on the same
model [82]. The focus in this study was rather on the small density behavior than on
the onset of regularity studied here, but the scaling at higher densities was reported
as f(N) = N0.4±0.1. Note, that for the regular lattice, Fig. 2.4a, the critical density
is about two orders of magnitude smaller than for the disordered case (Fig. 2.4b),
but the scaling is the same.

Again, the implications for spreading states will be analyzed by assuming that
spreading leads to a decrease of energy densityW ∼ E/L together with an increase of
dimensionalityN ∼ L. In both cases the scaled variable behaves asN0.3W ∼ E/L0.7

and hence the trajectory is driven towards the KAM-regime where larger and larger
regular islands emerge in phase space. It should be noted that although the tra-
jectory is driven towards the KAM-regime, this does not necessarily mean that
spreading must eventually stop. In fact, assuming the trajectory is chaotic in the
beginning it must stay inside the chaotic layer and can not become regular, at least
as long as the phase space remains finite-dimensional which is assumed in this work.
Then, even if at small enough densities the majority of the phase space consists
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2.5. Measures of Spreading

of islands with regular motion, the chaotic trajectory can travel along tiny chaotic
layers, a mechanism called Arnold diffusion [83]. Moreover, the fact that spreading
states do eventually enter regimes where regular islands exist does not immediately
lead to a clear quantitative statement for the spreading process. When the chaotic
layers get smaller and smaller as the regular islands grow (Pch decreases), Arnold
diffusion predicts an exponential increase of the time scale [17]. However, Chirikov
and Vecheslavov observed the existence of a regime of so-called fast Arnold diffusion
(FAD) [84], where the time scale to travel across a web of such thin chaotic layers
increases only as a power law. Hence, it is unclear at this point how the change
of phase space structure quantitatively influences the dynamics of trajectories in
chaotic layers. Nevertheless, the result for 4–6 is very important as it means that
there Arnold diffusion should not come into play for spreading states, in contrast
to 2–4 where the spreading states potentially reach phase space regions with larger
and larger regular islands.

Finally, a short note on the homogeneous case should be made. For κ = λ the energy
is not a free parameter and can be set to, e.g., E = 1 as it is shown in section 2.2.
Accordingly, also the phase space structure and hence Pch do not depend on the
energy density W . Consequently, the course of spreading does not lead to a change
of phase space structure – the only way to introduce regular islands is by decreasing
the coupling parameter β. Moreover, this scaling of energy even leads to an exact
spreading prediction that will be described in section 4.2.

2.5. Measures of Spreading

2.5.1. Second Moment and Participation Number

In this work, spreading is understood as the course of energy transfer from a number
of initially excited oscillators into non-excited parts of the lattice. The excitation
level of a single oscillator is measured by its local energy density wk as defined
in (2.7). This energy density can be interpreted as probability distribution as it
fulfills 0 ≤ wk ≤ 1 and

∑
k wk = 1. Starting from a connected initial condition at

lattice sites between some k0 and k1, that is choosing qk and pk initially such that:

wk

{
> 0 for k0 < k < k1

= 0 else,
(2.8)

the excitation will most certainly remain connected in the course of spreading if
chaotic diffusion is assumed. That is firstly because due to nearest neighbor coupling
the excitation can not jump across a lattice site and leave a hole, and secondly once
excited from a chaotic, diffusive process an excited oscillator will most likely never
return to zero amplitude. This is also seen in the exemplary trajectories shown in
Figs. 2.1b and 2.2 where the excitation area clearly remains connected during the
spreading process.
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2. Nonlinear Hamiltonian Lattices

The fundamenal phenomenon studied in this work is the increasing number of ex-
cited lattice sites with time, hence a quantification of this excitation area needs
to be introduced. Using the fact that the density {wk} represents a probability
distribution, the most straight-forward measure is the second moment:

∆n2(t) =
∑
k

(k − k̄(t))2wk(t), with k̄(t) =
∑
k

kwk(t), (2.9)

where k̄(t) is the center of the distribution. The square root of the second moment
∆n(t) then is a measure for the excitation area at time t. This quantity has been
used extensively to study spreading in the DANSE model, e.g. [38, 43, 44]. Another
way to estimate the number of excited sites is the so-called participation number:

P (t) =

(∑
k

w2
k(t)

)−1

, (2.10)

also widely used to measure spreading [44,46]. That P indeed is a good estimate for
the number excited sites can be seen when considering an excitation where wk = 1/L
on precisely L sites and wk = 0 everywhere else. The participation number then
calculates as P = L. Note, that the participation number does not require connected
excitation areas, it just measures the number of excited sites, not their distribution
in the lattice, in contrast to the second moment. Being interested in the average
spreading behavior and not single trajectories, one typically measures ∆n2 and P
for many trajectories. This is done by changing the disorder realization or taking
different, random initial conditions. Finallt, the averages 〈∆n2〉, 〈P 〉 over many such
trajectories are computed.

2.5.2. Excitation Times

Although the second moment and the participation number are widely used for
investigating spreading properties, in this work another, superior method will be
employed. This new quantity, firstly introduced by the author et al. in [46], relies
on the very sharp edges at the border of the excitations as described previously
in section 2.3, and on the connected nature of the excitation area. The basic idea
is that due to these super-exponential tails one can simply count the number of
excited sites L between those tails, visualized in Fig. 2.2. As the border is very
sharp, this gives a very precise estimate of the excitation area. Moreover, it creates
the possibility to determine the time ∆T that is required to excite one new oscillator
in the system. So suppose having L lattice sites being excited, then ∆T (L) is the
time required to pass from L to L+ 1 lattice sites and can be understood as a first
passage time of getting from L to L + 1 sites. We define an oscillator as excited
if its local energy density exceeds some critical value wB = 10−50. The actual
value of wB was chosen arbitrarily, but any other choice, e.g. wB = 10−100 would
produce similar results, this is precisely a consequence of the sharp edges. Thus,
∆T measures the propagation time for L → L + 1 in dependence of the current
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t

L

P(t) = <L(t)>

ΔT(L) = < T(L+1) - T(L) >

Figure 2.5.: Schematic graph showing the two ways to measure spreading. The solid lines
correspond to individual trajectories and the dashed lines indicate the different
averaging axes for the two methods. Averaging at fixed L means averaging at
fixed energy density, contrary to averaging at fixed time which uses situations
with different densities.

excitation area L, which is in some sense “adjoint” to the previous method where
the excitation area was determined as a function of time. It can also be understood
as the inverse excitation velocity, which is further clarified in section 3.4. Note, that
this observable can not be used for spreading states that have exponential tails, like
in the DANSE model, because such tails do not allow for a sensible quantification
of the excitation area.

Using ∆T to quantify spreading has two important advantages over ∆n2 or P :

1. ∆T contains no explicit time dependence, hence any possible transient be-
havior occuring before the chaotic diffusion will not influence the values ∆T
anymore as soon as the (sub-)diffusive regime is reached. In contrast, the value
for ∆n2(t) will always include any pre-diffusive behavior.

2. More importantly, using ∆T leads to a more reasonable averaging when con-
sidering ensembles of trajectories. This is because for ∆T , the averaging is
obtained over situations with the same energy density W = E/L. When
averaging ∆n2(t) of many trajectories for a given time on the other hand,
situations with different energy densities are mixed. As it will be shown later
as one of the major results, the spreading process is governed mainly by the
energy density W , hence the averaging over different densities smears out the
results and should be avoided. The two ways of averaging are illustrated in
Fig. 2.5.

Note, that for the excitation times a logarithmic averaging will be used: 〈log10 ∆T 〉,
which is essentially the geometric average.
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2. Nonlinear Hamiltonian Lattices

2.5.3. Rényi Entropies

Another, very general method to analyze the shape of a distribution {wk} are the
Rényi entropies [85]:

Iq =
1

1− q ln
∑
k

wqk, (2.11)

first applied to the spreading states in the DANSE model in [44, 73]. Here, these
quantities are used to characterize the spikiness/flatness of the distribution. Con-
sider the entropy I1, which is just the usual Shannon entropy, and I2, which is
identical to the logarithm of the participation number:

I1 = −
∑

wk lnwk I2 = − ln
∑
k

w2
k = lnP . (2.12)

Then the difference
Sstr = I1 − I2, (2.13)

called structural entropy, provides a measure of the peak structure of the distribu-
tion [86]. For a perfectly uniform excitation with wk = 1/L on L sites and wk = 0
elsewhere, for example, the structural entropy evaluates to Sstr = 0. Deviations
from such an uniform excitation will lead to an increase of Sstr. For a detailed in-
vestigation of the properties of Rényi entropies and the structural entropy and their
application to spreading states see [73].

2.6. Generalization to Two Dimensions

Here, the model introduced in section 2.1 will be generalized to two dimensional
lattices of oscillators and the different measures of spreading in this case will be
described. Essentially, this means introducing a second lattice index and adding
another coupling term to the Hamiltonian (2.1). In this work, only quadratic lat-
tices of oscillators will be considered where each oscillator couples to its four nearest
neighbors. A generalization to other situations, like triangular or honeycomb lattices
is trivial. As the scaling presented for the one-dimensional model in section 2.2 is
independent on the lattice structure, it is also valid for 2D lattices and its repeti-
tion is omitted here. However, again two situations are present: nonhomogeneous
nonlinearities with κ 6= λ, described by the Hamiltonian:

H =

N∑
i,k=1

p2
i,k

2
+
ω2
i,k

κ
qκi,k +

1

λ

N−1∑
i,k=1

(qi+1,k − qi,k)λ + (qi,k+1 − qi,k)λ . (2.14)

Here, i and k are now two lattice indices referring to the two dimensions of the
quadratic grid of oscillators. Again, ωi,k can either be random (soft ωi,k ∈ [0, 1], or
hard ωi,k ∈ [0.5, 1.5] disorder), or regular ωi,k = 1. As in one dimension, the only
parameter is the total energy E of the system. For the homogeneous case κ = λ,
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Figure 2.6.: Spreading in the 2D 2–4 model. The upper panels show logarithmic energy
density log10 wi,k (grey color coding) for the regular case 2–4re (ωi,k = 1) with
an initial energy E = 1, while the lower graphs are for the disordered case 2–4sd
(ωi,k ∈ [0, 1]) and an inital energy of E = 10. The size of the panels correspond
to 160x160 lattice sites.

also the scaling shown in section 2.2 can be applied and the resulting Hamiltonian
reads:

H =

N∑
i,k=1

p2
i,k

2
+
ω2
i,k

κ
qκi,k +

β

κ

N−1∑
i,k=1

(qi+1,k − qi,k)κ + (qi,k+1 − qi,k)κ , (2.15)

with the relative coupling strength β as the only remaining parameter.

Although the two-dimensional case is not much different when looking at the phase
space structure, it has a remarkable advantage over one-dimensional chains: absence
of nonlinear waves also for the regular potential ωi,k = 1. Just like in one dimension,
the fundamental observable is the energy density, cf. (2.7):

wi,k =
Ei,k
E

= E−1(p
2
i,k

2
+
ω2
i,k

κ
qκi,k +

β

2λ
[ (qi+1,k − qi,k)λ + (qi,k − qi−1,k)

λ

+ (qi,k+1 − qi,k)λ + (qi,k − qi,k−1)λ]) ,

(2.16)

which again can be viewed as probability distribution because 0 ≤ wi,k ≤ 1 and∑
i,k wi,k = 1. The absence of nonlinear waves is illustrated in Fig. 2.6, where the

energy density wi,k is plotted for single trajectories for the two dimensional 2–4
model. The upper row shows the spreading of an initially localized excitation with
energy E = 1 for the regular case ωi,k = 1. In contrast to one dimension, where
quasi-compactons emerged from the excitation as shown, for example, in Fig. 2.1a,
in two dimensions no such traveling waves are observed. A complete understanding
of quasi-compactons and their existence, especially in two dimensional lattices, is
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2. Nonlinear Hamiltonian Lattices

still missing, but also not subject of this work. Here, rather the numerical fact of the
absence of quasi-compactons in 2D will be relied on without further investigation of
the issue. However, this absence of nonlinear waves allows for studying the spreading
in regular lattices as well. This will turn out to be particularly interesting for the case
of linear oscillators κ = 2. Indeed, already the results shown in Fig. 2.6 indicate
that the spreading in the regular lattice (top panels) is much faster than in the
disordered case shown in the lower panels. Note, that in the disordered case the
energy density was chosen ten times higher than for the regular case, but still the
regular case exhibits a higher excitation area at the final time t = 106. The regular
2D case of harmonic oscillators will be quantified and studied in detail in section 4.3,
spreading results for the disordered case are presented in section 4.5.4.

In two dimensions the spreading will be measured in terms of the second moment,
which can be defined accordingly to the one dimensional case:

∆n2 =
∑
i,k

(
(i− ī)2 + (k − k̄)2

)
wi,k, (2.17)

where the mean values ī, k̄ are calculated as:

ī =
∑
i,k

i wi,k and k̄ =
∑
i,k

k wi,k. (2.18)

Similarly, the participation number can be defined as:

P =

∑
i,k

w2
i,k

−1

. (2.19)

Although the excitations also have very sharp, super-exponential edges in two di-
mensions and spreading could potentially be analyzed in terms of excitation times
as in the one dimensional case, here only results for the second moment will be
presented. Studies of the excitation times in two dimensions, however, are also ap-
pealing and will be subject of future works. Note, that in two dimensions the second
moment ∆n2 directly gives an estimate of the excitation area which is the number
of excited sites.

The concept of Rényi entropies can also be applied to two-dimensional probability
distributions and one finds:

Iq =
1

1− q ln
∑
i,k

wqi,k. (2.20)

Just like for one-dimensional lattices, the structural entropy Sstr can be introduced
as:

Sstr = I1 − I2. (2.21)
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3. Nonlinear Diffusion Equation

Previous studies of spreading in the DANSE model revealed subdiffusive behavior
where the width of the exciation on average increases as a power law (see section 1.3):

∆n2 ∼ tα, with α ≈ 1/3. (3.1)

This subdiffusive behavior inspired the author et al. to use the nonlinear diffusion
equation (NDE) as a phenomenologic macroscopic description of the spreading pro-
cess, first reported in [44,73]. Although the DANSE model is much more complicated
than the Hamiltonian systems introduced before, it has the same basic properties
when viewed in its eigenmode basis: harmonic oscillators with random frequencies
that are coupled by a fourth order nonlinearity – similar to the models 2–4hd or
2–4sd studied here. Thus, it seems reasonable to also use the nonlinear diffusion
equation as a phenomenological description for spreading in the general nonlinear
Hamiltonian lattices considered here [46].

3.1. The Nonlinear Diffusion Equation

The nonlinear diffusion equation is a generalization of the usual heat equation and
was first introduced to describe transport in porous media [87, 88], but also applies
to heat transfer in plasma, for example [89]. It is defined in terms of some space-
and time-dependent density ρ(~r, t) : Rd × [t0,∞)→ [0,∞), that will be interpreted
as energy density in this work:

∂ρ(~r, t)

∂t
=

∂

∂~r

(
D(ρ(~r, t))

∂ρ(~r, t)

∂~r

)
, with

∫ ∞
−∞

ρ(~r, t) d~r = E ∀ t. (3.2)

The spatial coordinate ~r ∈ Rd is generally d-dimensional, but here only d = 1 and
d = 2 will be considered. The time t is defined such that an initial value problem
of the NDE starts at t0. Mathematically, this is not important as one can always
transform to a time where t0 = 0. For the comparison with numerical results,
however, the notion of t0 will be useful. The function D(ρ) : [0,∞)→ [0,∞) is the
generalization of the diffusion constant introducing density dependence which defines
the nonlinearity. The second equation represents the conservation law obeyed by
solutions of this equation. If D(ρ) = D0 = const, (3.2) simplifies to the usual, well-
known heat equation that describes normal diffusion [90]. By introducing a density
dependent diffusion “constant” D(ρ) one creates an inherently different situation
which changes both mathematical and physical properties of the equation.
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3. Nonlinear Diffusion Equation

As the NDE will be used to describe spreading induced by simple, power-law non-
linearities, it is appealing to restrict oneself to a special class of diffusion func-
tions: D(ρ) = D0ρ

a. Assuming this dependence, the nonlinear diffusion equation
becomes (using ρ ≡ ρ(~r, t) for simplicity):

∂ρ

∂t
= D0

∂

∂~r

(
ρa
∂ρ

∂~r

)
=

D0

a+ 1
4ρa+1, with

∫
ρd~r = E , (3.3)

where 4 is the Laplace operator with respect to ~r. This will be the model used
to describe the average spreading behavior in nonlinear Hamiltonian lattices. The
parameter a ∈ R, a > 0 describes the nonlinearity and will later be related to the
nonlinearities κ and λ of the lattice models. This choice of power-law dependence
D ∼ ρa with a > 0 is sometimes also called the case of slow diffusion (subdiffu-
sion) as it possesses spreading solutions with a spreading rate slower than diffusive.
This property is exactly the motivation why the NDE is considered here as a phe-
nomenological model. However, as it will be shown later there are more similarities
between the NDE and spreading states in Hamiltonian lattices that further justify
the application of the nonlinear diffusion equation.

The NDE (3.3) formally is a parabolic nonlinear evolution equation. Strictly speak-
ing, however, this is only true at those points where D(ρ) > 0, hence where ρ > 0.
At points of vanishing diffusion coefficient, i.e. ρ = 0, the NDE is said to be degener-
ate. For an introduction and a summary of mathematical results on the NDE (3.3)
see, e.g. the book by Vásquez [88] – a comprehensive presentation of theorems and
proofs for the general case (3.2) is also given in [91].

It has to be clarified at this point that the introduction of the NDE is purely phe-
nomenological. A derivation of (3.3) from the lattice Hamiltonian, e.g. (2.1), has not
been found yet. Although such a derivation might be possible and some results in
this direction have been obtained, for example in [92] and [93], a clear and rigorous
calculation has not been presented yet. In this work, the validity of the NDE as a
description of energy spreading will be checked by comparing its spreading predic-
tions with numerical simulations of the nonlinear lattices. Moreover, some analysis
of the microscopic dynamics at the excitation edge will be performed leading to
predictions on the relation between the NDE nonlinearity a and the lattice nonlin-
earities κ and λ. But first, some properties of the nonlinear diffusion equation and
its spreading solutions shall be discussed.

3.2. General Properties

As for any nonlinear theory, the solutions of the nonlinear diffusion equation can
not be decomposed into a basis of fundamental solutions. So while for the usual
heat equation (a = 0, D(ρ) = D0) the time evolution of any initial condition can be
computed in terms of a convolution of Gauss kernels, such an approach is not possible
for the NDE. However, the particular simplicity of the diffusion term D(ρ) ∼ ρa leads
to a number of interesting properties that will be presented in the following.
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3.2.1. Existence and Uniqueness

The degenerate nature of the NDE (3.3) leads to considerable difficulties at formu-
lating and proving existence and uniqueness theorems for solutions of the NDE. The
main technique to overcome these issues is the introduction of the concept of weak
solutions, sometimes also called generalized solutions [94]. The basic concept is that
a weak solution ρ(~r, t) does not need to fulfill the NDE (3.3) directly, but rather
its product with any test function has to obey an integrated version of (3.3). A
sophisticated introduction to the theory of weak solutions is by far out of scope of
this work and interested readers are referred to more mathematical texts on this
subject, e.g. [88, 91, 94]. Nevertheless, the main result of the theory is that, under
some conditions of boundedness and smoothness of initial conditions, the existence
of a unique weak solution can be shown. Although this is a very important and fun-
damental mathematical result, here the attention will be drawn to a class of explicit
solutions introduced in section 3.3.

3.2.2. Front Propagation

One of the key differences between the normal heat equation and the NDE is that
the NDE exhibits a finite front propagation velocity. For the heat equation, any
non-zero solution is automatically positive in the whole domain of definition (e.g.
Gaussian tails). That means for a connected initial condition that is non-zero in
some subdomain and zero everywhere else, the heat equation leads to instantaneous
excitation of the whole domain at infinitesimal times. For the NDE, in contrast, such
a connected initial condition leads to a propagating front separating the domain with
ρ > 0 from the rest where ρ = 0. It can be shown, even for the general case (3.2), that
if the support of the initial datum supp ρ(~r, t = 0) is bounded than also supp ρ(~r, t)
is bounded for all times t. The boundary, however, is generally moving with time –
leading to an increase of the support of ρ(~r, t).

3.2.3. Symmetries

Here, the general NDE (3.2) with D(ρ) is considered as these symmetries do not re-
quire the specific power-law form of the diffusion term. As the NDE is homogeneous
in space and time, it is invariant under displacements of the coordinate axes [88].
Assuming ρ(~r, t) is a solution of (3.2), then for every ~r ′ ∈ Rd and t′ ∈ R the function:

ρ̃(~s, τ) := ρ(~s− ~r ′, τ − t′) (3.4)

is also a solution of (3.2).

Moreover, the NDE is invariant under spatial rotations, as the Laplace operator 4
commutes with the operations of the orthogonal group. This is especially important
for the two-dimensional case considered later, where rotational invariance motivates
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3. Nonlinear Diffusion Equation

to search for radially symmetric solutions. But also in one dimension this has an im-
portant consequence, because it means that if ρ(x, t) is a solution then also ρ(−x, t)
is.

3.2.4. Scaling

For the power-law nonlinearity D(ρ) ∼ ρa, the NDE (3.3) additionally exhibits a
scaling invariance. Assuming that ρ(~r, t) is a solution of (3.3) and letting t0 = 0 by
an appropriate time shift as above, the scaled function:

ρ̃(~r, t) := αρ(β~r, γt) (3.5)

is again a solution for α, β, γ > 0 if they fulfill:

αaβ2 = γ. (3.6)

This defines a two-parameter family of transformed solutions [88] and is a very
important property of the NDE with power-law nonlinearity. In particular, it allows
for finding an interrelation between the energy of a solution and its time scale.
Suppose having found a solution with some energy E > 0, then by applying the
scaling above with α = 1/E and β = 1 one finds a new solution to the NDE,
but with energy E′ = 1. That means the energy can always be scaled to E = 1
by a proper rescaling of density amplitude and time. Or, in other words, for any
solution ρ(~r, t ;E) the energy has to appear in such a way that one can write

ρ(~r, t ;E) = Eρ̃(~r, tEa), (3.7)

where ρ̃ does not depend on E and
∫
ρ̃ d~r = 1. Basically, that corresponds to

introducing a new time-scale:
t′ = tEa. (3.8)

The above result allows to compare situations with different energies, hence relate
solutions emerging from different initial conditions. However, to obtain more under-
standing of the properties of a specific solution of the NDE, one can further demand
the invariance of the energy

∫
ρd~r = E under the scaling transformation. This gives

another relation between the scaling parameters:

α = βd, (3.9)

where d denotes the spatial dimensionality, i.e. ~r ∈ Rd. This, eventually, gives a
one-parameter family of scaled solutions and can be expressed in terms of a single
scaling parameter, e.g.:

ρ̃(~r, t) := αρ(α1/d~r, αa+2/dt). (3.10)

This scaling, for example, relates the spatial profiles of a solution ρ at different times
t1, t2 > t0. Such a scaling property indicates the existence of so-called self-similar
solutions, where the time-dependence can be scaled out using the above relation and
one is left with finding the spatial profile. This is subject of the next section.
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Figure 3.1.: The self similar solution ρ(x, t) as given by eq. (3.13) of the one-dimensional
NDE, where x ≡ ~r in 1D. In (a) the shape is shown for a = 2, D0 = 1
and E = 1 at times t = 102, 103, 104, 105 (inner to outer lines) in logarithmic
scale. The dashed line shows a Gaussian profile for comparison. On the right,
(b) shows profiles of spreading states in the homogeneous case 4–4hd together
with the self-similar solution (black lines) for a = 1/4 as predicted by theory
(section 4.2).

3.3. Self-Similar Solutions

As said earlier, the nonlinear diffusion equation will be used to give a phenomeno-
logical model of the spreading process in Hamiltonian lattices. Therefore, special
interest lies in the type of solutions that correspond to spreading of localized initial
conditions, opposed to, e.g. traveling wave solutions. Fortunately, such solutions
do exist for the NDE and can even be written explicitly. They were first found by
Zelkovich and Kompaneetz [95], and shortly after generalized by Barenblatt [96].
Hence, these solutions are sometimes called ZKB- or Barenblatt-solutions. Here,
the term self-similar solution will be used as this name already contains the main
property of these functions. For convenience, the NDE, as introduced in (3.3), is
quickly repeated:

∂ρ

∂t
= D0

∂

∂~r

(
ρa
∂ρ

∂~r

)
=

D0

a+ 1
4ρa+1, with

∫
ρd~r = E . (3.11)

The self-similar similar solution is a so-called source solution, which means that it
solves (3.11) with a source term as initial condition:

ρ(~r, t0) = E δ(~r), (3.12)
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3. Nonlinear Diffusion Equation

where E is the conserved energy and δ is Dirac’s delta distribution. For a > 0 the
self-similar solution for t > t0 is given by [88]:

ρ(~r, t) =

(t− t0)−α
(

(µE)2aβ − a
2(ad+2)D0

|~r|2
(t−t0)2β

)1/a
for |~r|2 < R(t)2

0 for |~r|2 > R(t)2
(3.13)

with α =
d

ad+ 2
and β = α/d =

1

ad+ 2
,

and R(t)2 =
2(ad+ 2)D0

a
[(µE)a(t− t0)]2β . (3.14)

The parameter µ = µ(D0, a, d) is some constant of integration depending only on
D0, the nonlinear exponent a and the dimensionality d of the system and is not
important for the further considerations. However, a derivation of (3.13) is given
in appendix A.2 including an expression for µ. R(t) is the edge of the excitation
propagating through space, in one dimension it is just the left and right boundary,
while for two dimensions the excitation edge is a circle with radius R. Note, how
the scaling requirement (3.7) constitutes nicely in the expression for R2 (3.14). The
time offset t0 is introduced to account for transient behavior in the later numerical
simulations that might not be describable by the NDE.

Fig. 3.1a shows the self similar solution in one dimension in terms of snap-shots
of the spatial profiles at times t = 102 . . . 105 in logarithmic scale. This visualizes
nicely the self-similar character of this function as well as the connected support
with the edges moving as (3.14). Moreover, the logarithmic scale also emphasizes
the property of zero density outside a connected area, especially in contrast to
a Gaussian profile that has “only” exponential tails also shown in Fig. 3.1a as a
dashed line. Note, that taking the limit a → 0 gives the normal heat equation
and also the self-similar solution (3.13) converges towards the Gaussian profile in
this limit. A thorough examination of the self-similar solution (3.13) reveals its
non-differentiability at the points |~r| = R, hence it is not a true solution of the
NDE. However, this problem can be overcome by introducing the concept of “weak
solutions” mentioned earlier. Indeed, the self-similar solution solves (3.11) in this
sense. However, this mathematical detail can fortunately be neglected for further
physical purposes.

The self-similar solution originally has been introduced solely as solution to the
source problem ρ(~r, t0) = Eδ(~r). However, in 1971 Peletier found a remarkable
property [97], making those solutions an even more important subject of study.
There, it was shown that quite arbitrary initial conditions converge towards a suit-
able chosen self-similar solution. That means it does not only solve the, rather
special, source problem but also serves as a prototypical solution for a whole class of
initial conditions as their long time behavior follows the self-similar solution [98,99].
As this work focuses especially on the asymptotic spreading behavior, the properties
of these self-similar solutions appear to be the right quantities to investigate. This
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is further motivated by comparing the spatial profile of a spreading state with the
self-similar solution in Fig. 3.1b. There, the energy density wk of an initial single
site excitation in a lattice of type 4–4hd at time t = 104, 105 and 106 is shown.
Additionally, the self-similar solution (3.13) with a nonlinearity parameter a = 1/4
is plotted. This value of a can be derived exactly from scaling arguments as will
be seen later in section 4.2. The remarkable agreement of the self-similar solution
with the spatial profiles of the spreading states encourages to apply the nonlinear
diffusion equation to nonlinear Hamiltonian lattices.

Following the ideas introduced for the lattice models, an excitation area A can be
defined as the area where ρ > 0:

A(t) ∼ R(t)d ∼ (Ea(t− t0))α, (3.15)

where only the behavior with energy and time is considered. As 0 < α < d/2 for
a > 0, this corresponds to subdiffusive behavior with exponent α(a, d). Using the
definition of α (3.13) one finds aα = 1− 2α/d and the spreading can be written in
a form that emphasizes the energy scaling:

A(t)

E
∼
(
t− t0
E2/d

)α
. (3.16)

This quantifies spreading of the self-similar solution and will later be compared
to spreading results of the Hamiltonian lattices. Unfortunately, this still includes
the transient time t0 that is generally unknown and must be fitted. However, by
considering the inverse spreading velocity, a quantity with no dependence on t0 can
be obtained as follows [46]. First, eq. (3.15) is solved for t− t0:

t− t0 ∼ A1/αE−a (3.17)

and then one immediately finds for the inverse spreading velocity dt/dA, using
1/α− 1 = a+ (2− d)/d:

1

A(2−d)/d

dt

dA
∼
(
A

E

)a
. (3.18)

3.4. NDE Predictions for Spreading in Lattices

In section 2.5 the methods of quantifying spreading in Hamiltonian lattices were
introduced and in the previous section the spreading behavior of the nonlinear diffu-
sion equation was analyzed. Here, these results are combined and the implications
from self-similar solutions for the spreading observables introduced in 2.5 will be
discussed in detail. As numerical results are obtained for one- and two-dimensional
systems, these two cases will be analyzed explicitely.
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3.4.1. Spreading in One Dimension

For one-dimensional systems, d = 1, the excitation area A of the self similar solution
can be compared with the excitation length L, namely the number of excited sites,
of spreading states in Hamiltonian lattices: L ∼ A. Furthermore, the participation
number as well as the square root of the second moment are expected to exhibit the
same time dependence as the excitation length. Hence one finds:

P (t) ∼
√

∆n2(t) ∼ L(t) ∼ A(t) ∼ R(t). (3.19)

Although this relation is quite intuitive, it can even be obtained from an exact
calculation by defining, e.g. P = E2/

∫
ρ2d~r and using the self-similar solution for ρ.

This is shown, also for ∆n2, in appendix A.3. Then, from the result for the behavior
of the excitation area of the self-similar solution (3.16), the following prediction is
obtained for spreading states in one-dimensional Hamiltonian lattices:

P (t)

E
∼
√

∆n2(t)

E
∼
(
t− t0
E2

)α1

with α1 =
1

a+ 2
. (3.20)

Furthermore, in section 2.5.2 the concept of excitation times as the time ∆T to excite
a new lattice site is introduced. This can be compared with the inverse spreading
velocity defined in (3.18) dt/dA ∼ ∆T/∆L, where ∆L corresponds to the increase by
exactly one lattice site, hence ∆L = 1. Therefore, the self-similar solution predicts
for the excitation times:

∆T (L)

L
∼
(
L

E

)a
. (3.21)

These relations, (3.20) and (3.21), are the two predictions that will be tested numer-
ically in one-dimensional systems in order to verify the applicability of the nonlinear
diffusion equation. Specifically, they include a prediction on the energy scaling that
basically already follows from the scaling property of the nonlinear diffusion equa-
tion (3.7) and is not limited to the self-similar solution. This energy scaling can
be tested nicely by running the simulations for different energies, which will be
presented in chapter 4.

Finally, it is quite natural to expect a constant structural entropy if spreading states
follow the self-similar solution:

Sstr = const. (3.22)

This is because due to self-similarity, the peak structure and hence the structural
entropy of spreading states should not change. However, this can also be found from
an explicit calculation for the self-similar solution as shown in appendix A.3.

3.4.2. Spreading in Two Dimensions

For two dimensional lattices, d = 2, the results are very similar. There, spreading
states in Hamiltonian lattices exhibit a two-dimensional excitation area similar to
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the excitation length for the one-dimensional case. As the participation number
and the second moment defined in section 2.6 follow the behavior of the excitation
area, one finds the relation between these quantities and the excitation area A of
the self-similar solution to be:

P (t) ∼ ∆n2(t) ∼ A(t) ∼ R2(t). (3.23)

Again, a rigorous calculation of this relation by explicit integration of the self-similar
solution can be found in appendix A.3.

From the spreading results (3.16) of the NDE one then finds for spreading states in
two-dimensional lattices:

P (t)

E
∼ ∆n2(t)

E
∼
(
t− t0
E

)α2

with α2 =
1

a+ 1
. (3.24)

This will be the main relation to be checked for two-dimensional lattices. For com-
pleteness, also the prediction for the excitation times is given, although it will not
be used later:

∆T (A) ∼
(
A

E

)a
, (3.25)

where A here denotes the number of excited lattice sites in the two-dimensional
lattice. Just as above, the self-similarity of the NDE solution corresponds to a
constant structural entropy and thus also for the 2D case one expects:

Sstr = const. (3.26)

Again, this can be shown by an explicit calculation, given in appendix A.3.
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This chapter contains the main results of this work: a detailed analysis of the prop-
erties of chaotic diffusion in nonlinear Hamiltonian lattices in the meaning of energy
spreading of initially localized excitations. Several combinations of the nonlinear
exponents κ ≥ 2 and λ > 2 will be investigated, with and without disorder and for
one- and two-dimensional lattices. The main idea is to compare predictions from
the NDE, especially on the scaling of energy, with numerical results of spreading
states in nonlinear Hamiltonian lattices. Moreover, a relation between the nonlin-
earity a of the NDE and the nonlinear exponents κ, λ of the lattices is tried to be
derived and compared to numerical observations. For this analytical treatment, two
different techniques are used. Firstly, the energy scaling properties of the Hamilto-
nian system are analyzed and compared with the scaling properties of the NDE and
hence a relation between the lattice nonlinearity and the nonlinear parameter of the
NDE a is obtained. However, this is only possible for the homogeneous case with
equal nonlinear powers κ = λ because only in this case an energy scaling relation
can be used. For the other cases κ 6= λ, the microscopic dynamic at the edge of the
excitation area is investigated, where a non-excited oscillator is driven by its excited
neighbor. The dynamical properties of this situation are studied in detail using
resonant perturbation theory, and as result exact predictions for the subdiffusive
spreading are obtained. Note, that this approach is fundamentally different from
previous attempts, where instead of trying to understand the microscopic dynamics,
the chaotic behavior of excited oscillators is interpreted as an effective noise and its
properties are studied in a statistical, hence macroscopic sense [48].

The results will be presented in the order of “increasing complexity” of the dynamical
behavior starting from the homogeneous case κ = λ, followed by a study on regular
lattices. Then the fully nonlinear case is investigated and finally the most difficult
situation of disordered harmonic oscillators and nonlinear coupling is addressed.

4.1. Numerical Methods

Before getting to the actual results, some notes on the numerical methods used in this
work should be made. The Hamiltonian system of study was introduced in section 2.
Numerically, this model is treated in terms of an initial value problem of the corre-
sponding system of ordinary differential equations for functions qk(t) : [0,∞)→ R,
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4. Energy Diffusion in Nonlinear Lattices

pk(t) : [0,∞)→ R as defined in 2.2:

q̇k =
∂H

∂pk
= pk,

ṗk = −∂H
∂qk

= −ω2
kq
κ−1
k − β

(
(qk − qk+1)λ−1 + (qk − qk−1)λ−1

)
,

qk(0) = qk,0, pk(0) = pk,0.

(4.1)

The equations for two dimensions are similar and can easily be obtained from the
corresponding Hamiltonians (2.14) or (2.15). The boundary conditions are not im-
portant, as explained later. (4.1) defines a system of ordinary differential equations
and given some initial condition qk,0, pk,0, a trajectory can be obtained by numerical
integration. This gives, obviously, only an approximation of an actual trajectory as
the numerical routines can not provide exact results. For more details on numer-
ical integration of ODEs see any of the vast amount of textbooks on this subject,
e.g. [100–102].

To account for the Hamiltonian structure of the problem, in this work a symplectic
integration routine is used [103]. Symplectic routines ensure the conservation of
phase space volume, a property of Hamiltonian systems. Physically, this can be
understood from the fact that a symplectic routine does not provide a trajectory
of the original Hamiltonian system, defined by the Hamilton function H, but of a
slightly disturbed Hamilton function H + ∆H. This is a crucial difference to non-
symplectic routines, where the approximate trajectory generally does not belong to
any Hamilton function. Practically, this means that by using a symplectic routine
it is ensured that no dissipation is introduced by the numerical treatment, a quite
remarkable advantage over simple, non-symplectic methods.

Specifically, in this work a 4-th order symplectic Runge-Kutta-Nystrom [104] method
is used for integrating the equations of motion, in both one and two dimensions. The
time step of the method was set to ∆t = 0.1, unless indicated otherwise. This en-
sured energy conservation with an accuracy ∆E . 10−3. However, some of the
results were tested with smaller time steps and no qualitative difference was ob-
served. After averaging, no dependence on the time step of the reported results
was observed. The very sharp, super-exponential tails of the spreading states allow
for using an adaptive lattice during the numerical integration. E.g. for the one-
dimensional case and an initial condition consisting of L0 excited sites, as mostly
chosen here, the lattice is initially implemented as having N = L0 + 10 sites with
five zero amplitude sites at the left and right boundary. With time, as the exci-
tation starts to spread, new sites get excited. The simulation was written in such
a way that with each newly excited site also the lattice increases such that always
a boundary of five zero-amplitude sites remain to the left and right. This heavily
increases the efficiency of the numerical scheme as the simulation of “empty sites” is
mostly avoided. Furthermore, no boundary conditions need to be worried about as
the excitation is ensured to never reach the boundary at all. A similar technique is
used for the two-dimensional case where the lattice is quadratic and the boundary
is a strip of width five around the excitation area.
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The observables to quantify spreading in this work are the excitation times ∆T and
the second moment ∆n2, introduced in section 2.5. The results presented here are
obtained from a Monte-Carlo study of many trajectories, either for different realiza-
tions of disorder for systems where disorder is present, or for many random initial
conditions in the case of regular lattices. For each of these numerical trajectories,
the macroscopic variable ∆T , or ∆n2 respectively, are calculated and then an av-
eraging over such an ensemble of results is performed. For the excitation times,
the averaging is obtain for the logarithmic quantity, hence 〈 log10 ∆T 〉 is calculated,
while the second moment is averaged directly 〈∆n2 〉. The size of ensembles over
which the averaging is performed varies greatly from only M = 10 for some 2D re-
sults up to M = 1000 for some of the one-dimensional studies. It has been checked,
however, that the method of averaging, logarithmic or direct, does not influence the
fundamental outcomes of this work (scaling and spreading exponents).

All simulations were implemented in C++ and for the numerical scheme the odeint

library was used [105, 106]. Most of the one-dimensional results were obtained on
usual x86 CPUs, with many runs done on the ZEIK-Cluster of the University of
Potsdam, but some also on CUDA GPUs. The 2D results, on the other hand, were
computationally much more challenging, thus for those the CINECA sp6 supercom-
puter in Bologna was employed within the Project HPC-EUROPA2 (Project number
228398).

4.2. Homogeneous Nonlinearities

The first situation that will be studied is that of homogeneous nonlinearities, i.e.
κ = λ because there the analysis of the spreading process is particularly simple. The
Hamiltonian in one dimension reads (cf. (2.6)):

H =

N∑
k=1

p2
k

2
+
ω2
k

κ
qκk +

β

κ

N−1∑
k=1

(qk+1 − qk)κ . (4.2)

For a fixed nonlinear power κ, the coupling strength β is the only relevant parameter
when considering averaged results over disorder realizations {ωk}.

4.2.1. Scaling-Implied Spreading Prediction

In section 2.2 the scaling property for the homogeneous case κ = λ was found (2.5).
Specifically, this implies that when rescaling the energy from some value E to unity
E′ = 1, the time scale changes as t′ ∼ E1/2−1/κ. Remarkably, the nonlinear diffusion
equation exhibits a similar property when transforming from arbitrary energies to
the case E′ = 1: t′ ∼ Ea (3.8). If one assumes that the NDE is the correct description
for spreading in this homogeneous situation, these two scalings have to be equivalent
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Figure 4.1.: Excitation times ∆T for one-dimensional lattices with homogeneous nonlinear-
ities, κ = λ = 4 (a) and κ = λ = 6 (b) for soft disorder (ωk ∈ [0, 1]). The black
dashed lines show the predicted asymptotic behavior (4.4): ∆T ∼ La+1 with
a = (κ − 2)/(2κ). The inset in (a) shows the slopes of the curves and their
convergence towards a+ 1 ≈ 5/4.

and one finds an exact relation between the nonlinear parameter of the NDE a and
the nonlinear power of the lattice Hamiltonian κ:

a =
κ− 2

2κ
. (4.3)

Note that both scalings are independent of the dimensionality and thus this relation
holds for any dimension d. It gives a nice, exact prediction on the spreading process
that can be checked numerically.

4.2.2. Numerical Results in 1D

To verify the application of the NDE as an adequate description of the spreading
process, first a study of excitation times ∆T for the one-dimensional models 4–4sd

and 6–6sd was performed. In both cases the potential was chosen as “soft disorder”:
ωk ∈ [0, 1] and several values for the nonlinear strength were used β = 1/4 . . . 2, all
large enough to ensure chaoticity in the system. The prediction of the NDE for the
excitation times was calculated in section 3.4 as ∆T ∼ La+1 (c.f. (3.21)). Using the
scaling result above (4.3), the following exact prediction is found:

∆T ∼ L5/4 for 4–4, and ∆T ∼ L4/3 for 6–6. (4.4)

Fig. 4.1 shows that the spreading states indeed nicely converge towards this power-
law behavior with exponent 5/4, 4/3 respectively. In Fig. 4.1a, results for initial
single site excitations are shown and one finds good convergence towards the expo-
nent a+ 1 = 5/4 as is emphasized in the inset where the instantaneous exponent
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(b) Model 6–6 in two dimensions.

Figure 4.2.: Second moment ∆n2(t) for the 2D models 4–4 (a) and 6–6 (b) with regular po-
tential (ωi,k = 1) and soft disorder (ωi,k ∈ [0, 1]). The insets show the numerical
spreading exponents α2 obtained from finite differences and the structural en-
tropy Sstr(t).

obtained from finite differences in the log-log representation is plotted. The aver-
aging 〈 log10 ∆T 〉 was done over M = 100 realizations of disorder and logarithmic
bins in L.

A similar procedure was performed for the case κ = λ = 6 and the results are
plotted in Fig. 4.1b. In contrast to above, here the initial condition was a uniform
excitation of L0 = 10 lattice sites, which is presumably the reason for the much
faster convergence against the power-law prediction.

This quite convincing correspondence of the NDE prediction with numerical results
provides a first justification of the validity of the NDE as a phenomenological de-
scription of spreading in nonlinear lattices.

4.2.3. Numerical Results in 2D

In a second approach, simulations in two-dimensional lattices were performed and
compared with the nonlinear diffusion equation. There, the scaling result (4.3) is also
valid, but the NDE prediction will be checked in terms of the second moment ∆n2

rather than excitation times. For the self-similar solution, the second moment was
found to follow the power law ∆n2 ∼ tα2 , with α2 = 1/(a + 1) (c.f. eq. (3.24)).
Assuming the validity of the NDE and again using the scaling result (4.3), the
second moment should, asymptotically, follow the power law:

∆n2 ∼ (t− t0)4/5 for 4–4, and ∆n2 ∼ (t− t0)3/4 for 6–6. (4.5)

This was quite accurately confirmed in numerical simulations as shown in Fig. 4.2.
Remember that for 2D also in the regular case no traveling waves exist and hence
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one can safely study spreading as manifestation of chaotic diffusion also for the
non-random potential ωi,k = 1. In Fig. 4.2a results for the models 4–4re (red) and
4–4sd (black circles) are presented, while Fig. 4.2b shows results for 6–6re (red) and
6–6sd (black circles). The curves in these plots correspond to the second moment
∆n2(t) of single trajectories for a random 5x5 site excitation. To account for the
transient, non-subdiffusive behavior, the parameter t0 was included and adjusted
by eye to a value of t0 ≈ 103 . . . 104. Opposed to the one-dimensional case, here
the excitation eventually spreads over more than 106 lattice sites, which means a
reasonable self-averaging and thus no further averaging over disorder realizations
or random initial conditions seems required. This has been checked by exemplary
additional runs with different initial conditions that produced perfectly overlapping
curves. It is remarkable that asymptotically, there is even no difference between the
regular case ωi,k = 1 and disordered potentials ωi,k ∈ [0, 1]. The convergence of the
spreading exponents towards the predicted value α2 = 4/5, α2 = 3/4 respectively, is
emphasized in the upper insets where the instantaneous (logarithmic) slope of the
numerical results is shown. These results are again a convincing indication for the
applicability of the NDE. Furthermore, an analysis of the structural entropy, shown
in the lower insets in Fig. 4.2 reveals the convergence of Sstr towards some constant
value, another sign of the NDE.

By assuming the validity of the NDE an exact prediction for the power-law behavior
could be obtained based on comparing the scaling behavior of the NDE with that
of homogeneous nonlinear Hamiltonian lattices. This prediction was then to a con-
vincing accuracy confirmed by numerical simulations for one and two dimensional
systems and different values of the lattice nonlinearities κ = 4, 6, and for both dis-
ordered and regular potentials. In all cases the predicted spreading exponent was
numerically verified and one is encouraged to try to apply the NDE also to the more
complicated situation of nonhomogeneous lattices, were no such scaling argument
can be employed.

Note, that here no assumption on chaoticity of the spreading trajectories is required
as the spreading prediction is obtained solely from a scaling analysis. However, for
the choice of the coupling parameter β ∼ 1, the system surely is chaotic, and stays
chaotic for any energy density as a consequence of scaling.

4.3. Resonant Lattices

After having understood the homogeneous nonlinearity, now the simplest nonhomo-
geneous case will be subject of study. Namely, the situation of harmonic oscillators,
κ = 2, with a regular potential, i.e. equal frequencies ωk = 1, coupled by a nonlinear
term with λ = 4 or λ = 6 is considered. The Hamilton function for this case in one
dimension reads:

H =

N∑
k=1

p2
k

2
+
q2
k

2
+

1

λ

N−1∑
k=1

(qk − qk+1)λ. (4.6)
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This will be called the “resonant case”, because all oscillators have the same fre-
quency, hence are in resonance. A careful analysis of this situation will reveal re-
markable properties that again allow to find a prediction for the power-law spreading.
This is done in the next section and will be followed by numerical results confirming
these arguments.

4.3.1. Dynamics at the Excitation Edge

To understand the spreading process in such a fully resonant Hamiltonian (4.6) the
dynamics at the excitation border are studied, i.e. the dynamics of the first non-
excited oscillator exactly at the edge of the excitation. In this case, all oscillators
have the same frequency ωk = 1 and hence are in resonance, even for arbitrarily
small local excitations qk ∼ ε � 1 as will be seen later. To find an estimate for
the spreading exponent, the spreading state is assumed to have some excitation
length L and an uniform energy density W = E/L. This is a severe simplification of
the spreading process and can not be rigorously justified at the moment. However,
the numerical results presented later validate these assumptions. For this situation,
an estimate of the time scale at which a new oscillator will be excited in dependence
on the energy density W will be calculated. Therefore, the focus is laid on the
oscillator at the edge of the excitation area that is not yet excited, but subject to
forcing from its neighbor which is assumed to have a local energy W . Also, first only
the specific case λ = 4 is treated, followed by the generalization to arbitrary λ > 2.
In this simplified picture there are two oscillators, denoted by qd, pd for the excited,
driving oscillator and q , p for the oscillator initially at rest. The Hamiltonian
describing such a situation reads:

H2 =
p2
d

2
+
q2
d

2
+
p2

2
+
q2

2
+

1

4
(q − qd)4 (4.7)

As the driving oscillator is assumed to have an energy densityW , its motion is further
approximated by a periodic function with amplitude ε ∼

√
W and frequency Ω:

qd(t) ≈ ε cos(Ωt) with Ω ≈ 1 +
3

8
ε2. (4.8)

The nonlinear correction of the frequency ∼ ε2 is due to the term q4
d appearing after

an expansion of the coupling, as seen below. Substituting this periodic solution for
qd into the Hamiltonian (4.7) one arrives at a Hamiltonian for a single oscillator
subject to periodic forcing:

H =
p2

2
+
q2

2
+

1

4
(q − ε cos Ωt)4 (4.9)

This highly simplified system can now be analyzed thoroughly using resonant pertur-
bation theory [25]. Therefore, the Hamiltonian is split into an integrable partH0(q, p)
and a perturbation H1(q, p, t) with:

H0 =
p2

2
+
q2

2
+
q4

4
. (4.10)
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4. Energy Diffusion in Nonlinear Lattices

For small amplitudes a0 � 1 the solution for H0 in lowest order a0 writes [107]:

q(t) ≈ a0 cos(ωt) with ω ≈ 1 +
3

8
a2

0. (4.11)

Note, that this nonlinear frequency shift ∼ a2
0 is the reason why the periodic forcing

was assumed to have Ω = 1 + 3ε2/8 because this forcing comes from a similar
nonlinear oscillator with amplitude ε.

Writing H0 in the action/angle variables I, θ with q =
√

2I cos(θ), p =
√

2I sin(θ)
one finds:

H0 = I + γI2, hence ω(I) =
∂H0(I)

∂I
= 1 + 2γI, (4.12)

with some prefactor γ whose value is not important for the result. The perturbation
then writes:

H1 = −q3ε cos(Ωt) +
3

2
q2ε2 cos2(Ωt)− qε3 cos3(Ωt)

= −(2I)3/2ε cos3 θ cos(Ωt) + 3Iε2 cos2 θ cos2(Ωt)

− (2I)1/2ε3 cos θ cos3(Ωt).

(4.13)

Now from the fact that here the regular, “fully resonant” case is considered, the
driving frequency Ω and the frequency of the oscillator at rest ω are known to be
equal, up to quadratic corrections, c.f. (4.8):

Ω− ω ∼ ε2. (4.14)

This encourages to further analyze the main 1:1 resonance, i.e. where ω ≈ Ω. There-
fore, the perturbation (4.13) is written in action-angle variables and only the reso-
nant terms ∼ cos(θ − Ωt) are kept while the others disappear after averaging over
one period of the perturbation frequency Ω:

〈H1〉 = − 3

2
√

2
I3/2ε cos(θ − Ωt) +

3

4
Iε2
(

1− 1

2
cos(2θ − 2Ωt)

)
− 3

4
√

2
I1/2ε3 cos(θ − Ωt).

(4.15)

Details of this calculation are shown in appendix A.4. The complete Hamiltonian
thus is:

H = I + γI2− 3

2
√

2
I3/2ε cos(θ − Ωt) +

3

4
Iε2
(

1− 1

2
cos(2θ − 2Ωt)

)
− 3

4
√

2
I1/2ε3 cos(θ − Ωt).

(4.16)

By applying a canonical transformation to new variables J and ψ induced by the
generating function:

F (I, ψ, t) = −I (ψ + Ωt), where Ω = 1 +
3

8
ε2, (4.17)
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one finds, with J = −∂F/∂ψ = I:

H = −3

8
Jε2 + γJ2 − 3

2
√

2
J3/2ε cosψ +

3

4
Jε2

(
1− 1

2
cos 2ψ

)
− 3

4
√

2
J1/2ε3 cosψ.

(4.18)

Quite remarkably, by another canonical rescaling of variables the small parameter ε
disappears as seen by setting:

J → J̃ = J/ε2, t→ τ = ε2t and H → H̃ = H/ε4. (4.19)

The Hamiltonian in those new variables is:

H̃ = −3

8
J̃ + γJ̃2 − 3

2
√

2

(
J̃3/2 +

1

2
J̃1/2

)
cosψ +

3

4
J̃(1− 1

2
cos 2ψ). (4.20)

This is the universal, ε–independent resonance Hamiltonian for the forced oscillator
(4.9). Thus, it is found that the small parameter ε in such a situation scales out of the
dynamics and only influences the time scale. Going back to two coupled oscillators
with one being at rest while the other one has a local energy W , eq. (4.19) means
the second oscillator should get excited at a time scale ∼ ε2 ∼ W . This is verified
numerically in Fig. 4.3a, where the energy E = (p2 + q2)/2 of the initially resting
oscillator is analyzed using the scaled variables suggested by (4.19): E/W vs tW .
W = p2

d/2 + q2
d/2 is the initial energy of the driving oscillator and the curves for

different values W = 0.1 . . . 0.001 perfectly coincide, supporting the validity of the
above calculation. Note that the curves in Fig. 4.3a represent the envelopes of the
energy to neglect the fast oscillations with frequency ω ≈ 1.

A similar calculation can be done for the general case with arbitrary even integers
λ > 2, where the Hamilton function of the forced oscillator is:

H =
p2

2
+
q2

2
+

1

λ
(q − ε cos Ωt)λ. (4.21)

The nonlinearity induces a frequency shift Ω = 1 + γελ−2, with some constant γ.
After introducing action-angle variables, the integrable part of the Hamiltonian can
be chosen as:

H0 = I. (4.22)

The perturbation in those variables is:

H1 =
1

λ
(
√

2I cos θ − ε cos Ωt)λ =
ελ

λ
(
√

2I/ε2 cos θ − cos Ωt)λ (4.23)

Analyzing the main resonance θ ≈ Ωt by averaging over all fast oscillations one gets:

〈H1〉 = ελG(
√

2I/ε2 cos(θ − Ωt),
√

2I/ε2 sin(θ − Ωt)), (4.24)
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Figure 4.3.: Nonlinear resonance for the model (4.7) for different energies W and λ = 4 (a)
and λ = 6 (b). The graphs show the envelope of E/W omiting fast oscillations
to increase visibility. E here is the energy of the oscillator originally at rest.
Results plotted in scaled variables derived from resonance theory E/W vs. tW
for λ = 4 and E/W vs. tW 2 for λ = 6.

where G(x, y) denotes the averaging, which is not explicitly performed here:

G(x, y) =
2π

λ

∫ 2π

0
(x cosϕ− y sinϕ− cosϕ)λdϕ. (4.25)

Note, how the trigonometric identiy cos θ = cos(θ−Ωt+Ωt) = cos(θ−Ωt) cos(Ωt)−
sin(θ−Ωt) sin(Ωt) was used in this last step. Again, a canonical transformation can
be applied that is induced by the generating function:

F (I, ψ, t) = −I(ψ + Ωt), where Ω ∼ 1 + ελ−2, (4.26)

which gives the Hamiltonian:

H = −ελ−2J + ελG(
√
J/ε2 cos(ψ),

√
J/ε2 sin(ψ)). (4.27)

Just like before, the small parameter ε can be scaled out of the equations, but now
the scaling reads:

J → J̃ = J/ε2, t→ τ = ελ−2t and H → H̃ = H/ελ, (4.28)

which eventually gives the ε-independent resonance Hamiltonian for any λ:

H̃ = −J̃ +G
(√

J̃ cos(ψ),
√
J̃ sin(ψ)

)
. (4.29)

This scaling, again, is verified by a numerical analysis of the energy of an oscillator
initially at rest driven by another oscillator with energy W . For λ = 6, (4.28)
suggests rescaling with energy W when using the time scale tW 2. Fig. 4.3b shows
the results in these scaled variables and one again finds perfect overlap of the curves
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4.3. Resonant Lattices

for different energies W = 0.01 . . . 0.1. Note, that this calculation can be easily
generalized to λ ∈ R, λ > 2.

As the aim was to find a prediction for energy spreading in large systems, now a
conclusion from the above analysis of microscopic dynamics back to the situation of
spreading states will be drawn. The idea is that in a situation of L excited sites with
an energy density W = E/L, the excitation of a new oscillator at site L+ 1 can be
modeled as being induced by the forcing of its excited neighbor. Hence, the scaling
found previously is applied. The calculation above then shows that a situation with
arbitrary energy E ∼ ε2 can be scaled to E′ = 1 by changing the time t→ t′ as:

t′ = Eλ/2−1t. (4.30)

Hence, the analysis of the microscopic dynamics done above results in a scaling re-
lation between the energy of the system and its characteristic time scale. Such a
relation was found for the homogeneous case before where it was a simple conse-
quence of the Hamilton function itself. In contrast, here the resonant structure of
the oscillators induces this time-energy-scaling and it is obvious that such a result
can not be found for disordered lattices, where ωk are random and hence are gener-
ally not in resonance for small ε. Again, the scaling result (4.30) can be compared
with the similar property of the NDE (3.8): t′ ∼ Ea, and one finds:

a =
λ− 2

2
. (4.31)

Thus, a careful investigation of the microscopic dynamics at the excitation edge
leads to a scaling prediction which, again assuming validity of the NDE, provides
an exact result for the spreading behavior that can be checked numerically.

The above calculation does not contain any notion of chaoticity, merely the typical
time-scale of two resonantly interacting oscillators is analyzed. From this result one
can not deduce chaotic diffusion, the additional assumption made above to arrive
at the spreading prediction was to describe the state with an uniform excitation
with energy density W = E/L, and apply the nonlinear diffusion equation. Hence
the statement is rather that if the system equilibrates to a roughly uniform shape
while spreading and is describable by the nonlinear diffusion equation, the spreading
should asymptotically follow the above prediction.

4.3.2. Numerical Results in 2D

To verify the assumptions and conclusions for resonant oscillators presented above,
a numerical study of spreading in regular lattices 2–4re and 2–6re was performed. As
one-dimensional regular lattices exhibit quasi-compactons that interfere with chaotic
diffusion, here results for two-dimensional lattices are reported where no such quasi-
compactons are observed (see section 2.6). The main observable in two-dimensional
studies is the second moment ∆n2(t), and both the energy scaling of the spreading
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Figure 4.4.: Spreading results for the two-dimensional inhomogeneous case 2–4re with regu-
lar potential (ωi,k = 1) for different energies. Graph (a) shows the plain results
for M = 10 initial conditions with the averages as dashed black lines. In (b),
only the averages are shown with the scaling suggested by the NDE: 〈∆n2〉/E
vs t/E. The dashed line represents the analytical spreading law (4.32) and the
inset shows the behavior of the averaged structural entropy 〈Sstr(t)〉.

as well as the exact prediction on the exponent will be checked. From the scaling
result above (4.31) one has a = (λ − 2)/2. On the other hand, the properties
of the self-similar solution in two dimensions (3.24) predict a spreading exponent
α2 = 1/(a + 1). Thus, the following results for the behavior of the second moment
are obtained:

∆n2(t)

E
∼
(
t− t0
E

)1/2

for 2–4,

∆n2(t)

E
∼
(
t− t0
E

)1/3

for 2–6.

(4.32)

These predictions were tested by numerical integrations of random initial excitations
on 5x5 sites in a quadratic 2D lattice, starting with the case 2–4re, i.e. λ = 4. These
simulations were repeated for several energies E = 0.1 . . . 5, and for each value of
the energy the results were averaged over M = 10 random initial conditions giving
the average 〈∆n2 〉. The results are presented in Fig. 4.4. Fig. 4.4a shows the plain
results ∆n2(t), thus M = 10 curves for each energy E. One sees that the individual
curves are hardly fluctuating and thus increasing the number of realizations M
seems not required. In Fig. 4.4b only the averages are plotted and the transient,
non-subdiffusive behavior is omitted by introducing t0, adjusted by eye and ranging
from t0 = 103 for E = 2 to t0 = 104 for E = 0.1. Furthermore, the scaling prediction
of the NDE is applied by plotting the scaled variables ∆n2/E vs t/E. As one sees
from the almost perfect overlap of the curves for different energies, the NDE scaling
prediction is verified quite accurately by these numerical results. Moreover, the
spreading exponent also nicely coincides with the prediction (4.32) as seen from the
dashed lines in Fig. 4.4b. Hence, for the case 2–4re, numerical results confirm the
spreading predictions obtained above.
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Figure 4.5.: Spreading results in two dimensions as in Fig. 4.4 but for the case 2–6re. (a)
shows the plain results for M = 24 initial conditions with the averages as
dashed black lines. In (b), the scaling suggested by the NDE: 〈∆n2〉/E vs t/E
is applied and the dashed line represent the analytical spreading law (4.32).
The inset shows the behavior of the averaged structural entropy 〈Sstr(t)〉.

A similar study has been done for the case 2–6re and the results are shown in
Fig. 4.5. Here, the averaging was done overM = 24 realizations as the data exhibited
slightly more fluctuations. Fig. 4.5a again shows the plain data with averages as
dashed black lines, while in Fig. 4.5b the offset t0 is introduced to account for the
transient behavior and the data are plotted in scaled variables. As before, the
scaling prediction is verified quite convincingly and also the predicted spreading law
is found. Hence, the numerical results confirm that one can indeed understand the
spreading process for the resonant case by studying the dynamics only of the edge
oscillators and relate these result with the nonlinear diffusion equation.

Both cases exhibit long transient behavior, with increasing transient time for de-
creasing energy. As in this work the main interest is the asymptotic behavior, the
transients are simply cut off by using t0. However, their origin and properties are
not understood and may be an interesting subject of study on their own.

The structural entropy Sstr shown in the insets in Figs. 4.4b and 4.4b, however, ex-
hibits a non-constant behavior, which is in contradiction to the self-similar solution.
Indeed, a logarithmic increase of Sstr is observed for all energies during the spread-
ing, which is a clear indication that the spreading state is not truly self-similar in
time. A possible explanation for such behavior is the existence of some long-living
breather states in this system that trap some of the energy and decay much slower
than the spreading process, if at all. As the measure of the excitation area ∆n2 is
mainly governed by the excitation boundary, it is insensitive to such non-decaying
breathers which might explain why still the predicted scaling is found.

To summarize, numerical results for the resonant case, i.e. κ = 2 and regular poten-
tial ωi,k = 1, obtained in two dimensions do confirm the energy scaling predicted by
the nonlinear diffusion equation. Furthermore, a calculation for the dynamical be-
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havior of the oscillator at the excitation edge led to a prediction for the nonlinearity
parameter a = (λ − 2)/λ of the NDE in dependence on the lattice nonlinearity λ.
This result was also confirmed to convincing accuracy by the numerical simulations.
Thus, also in this case the NDE proved to be a fruitful tool for understanding the
properties of spreading in nonlinear lattices. However, the results on the structural
entropy indicate deviations from a self-similar spreading and it remains an open
question to fully understand the origin of this observation.

4.4. Fully Nonlinear Lattices

After dealing with resonant harmonic oscillators, in this section the nonhomoge-
neous, fully nonlinear case will be studied, where κ > 2 and λ > κ. For simplicity,
the calculations presented in this work are obtained for the specific case κ = 4,
λ = 6, but most of the results can be generalized based on the ideas presented here.
Namely, an oscillator chain of the following form is investigated:

H =

N∑
k=1

p2
k

2
+
ω2
k

4
q4
k +

1

6

N−1∑
k=1

(qk − qk+1)6. (4.33)

Again, note that the only parameter is the conserved total energy that governs the
relative strength between the local and coupling term in (4.33), as described in
chapter 2.

4.4.1. Dynamics at the Excitation Edge

For the resonant case studied in the last section, an analysis of the dynamics of
the oscillators at the excitation edges turned out to be very successful, hence the
same idea will be applied here as well. That means, a simplified model describing
edge oscillators is tried to be obtained for which a characteristic time scale can be
deduced leading to an estimate of the energy dependence of excitation times. The
analysis of these simplified models is done using standard resonance theory, very
comprehensively introduced in [25], but also found in any textbook on chaos or
nonlinear dynamics, e.g. [2, 17].

Two-Oscillator Description

The most simple case is considered first where the edge of the excitation area is
modeled by two oscillators for the regular case (ωk = 1):

H =
p2

1 + p2
2

2
+
q4

1 + q4
2

4
+
β

6
(q1 − q2)6. (4.34)

Note, that in this section the calculations are done for the case where β is used as
independent parameter while the energy density is fixed W = 1. However, this can
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easily be related to the original system (2.4) by identifying β =
√
W , as described

in section 2.2. Thus, special interest lies in the case of small β � 1 as this mimics
the asymptotic spreading behavior when W gets small. The reason for this choice
of parametrization here is that it simplifies the perturbative calculation presented
below.

As the Hamiltonian (4.34) is supposed to model the excitation edge, the amplitude
of the first oscillator is assumed to be a1 ≈ 1 while the second one is at rest a2 ≈ 0.
Introducing action-angle variables I1,2 and θ1,2 = Ω1,2t of the uncoupled Hamiltonian
and splitting the system into an integrable part and a perturbation, one finds [25]:

H0 = (AI1)4/3 + (AI2)4/3, with A =
3γ

2
√

2
, γ =

π

2K(1/
√

2)
≈ 0.8472. (4.35)

H1 =
β

6
(a1 cos θ1 − a2 cos θ2)6, a1,2 = (3γI1,2)1/3, (4.36)

where a1,2 denote the oscillator amplitudes and K(x) is the full elliptic integral of
the first kind. The nonlinear frequency of the angle variable calculates as:

Ω1,2 = ∂H/∂I1,2 = A4/3I
1/3
1,2 = γa1,2. (4.37)

At this point it is already seen that the two oscillators are typically not in resonance,
as Ω1 ∼ a1 ∼ 1, while Ω2 ∼ a2 ∼ 0. Such a non-resonant perturbation typically does
not induce chaos. Hence, one expects intuitively that below some βc, KAM tori will
prevail and any small amplitude a2 ≈ 0 will remain small for all times. This implies
that for some critical energy density Wc = β2

c spreading should stop because new
oscillators at the excitation would not get excited.

To get a rough estimate for βc the resonance overlap criterion [17,25] is applied. Due
to Chirikov’s arguments, a global chaotic region in phase space emerges if different
resonances induced by the periodic perturbation overlap. Applying this criterion, the
main 1:1 resonance, i.e. Ω1 = Ω2, of this system is analyzed and the critical value βc
is calculated as the point when this resonance overlaps with the 1:3 resonance. The
structure of the perturbation is such that no 1:2 resonance exists in the coupling
terms and hence the 1:3 resonance indeed is the second most important one and
should be used to apply the resonance overlap criterion. This is interpreted as the
rough estimate for the onset of global chaos that allows diffusion from small a2 ≈ 0
to large a2 ≈ 1 amplitudes. Expanding H1, one finds:

H1 =
β

6
(a6

1 cos6 θ1 − 6 a5
1a2 cos5 θ1 cos θ2 + 15 a4

1a
2
2 cos4 θ1 cos2 θ2

− 20 a3
1a

3
2 cos3 θ1 cos3 θ2 + 15 a2

1a
4
2 cos2 θ1 cos4 θ2

− 6 a1a
5
2 cos θ1 cos5 θ2 + a6

2 cos6 θ2).

(4.38)

Using trigonometric identities like cos5 θ1 = 5/8 cos θ1 + 5/16 cos 3θ1 + 1/16 cos 5θ1

and cos θ1 cos θ2 = 1/2 cos(θ1 − θ2) + 1/2 cos(θ1 + θ2), and averaging over any fast
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oscillation but the main 1:1 resonance ∼ cos(θ1 − θ2), the averaged perturbation is
obtained:

〈H1〉 = −β
6

(
15

8
a5

1a2 +
45

8
a3

1a
3
2 +

15

8
a1a

5
2

)
cos(θ1 − θ2) (4.39)

=: β V (a1, a2) cos(θ1 − θ2). (4.40)

The detailed calculation is omitted as it cuts down to repeated application of trigono-
metric identities and an averaging similar to the presentation in appendix A.4. The
Hamiltonian H0 + 〈H1〉 describes the main resonance in the system. For further
analysis, a transformation to resonance variables J , J2, ψ, ψ2 is performed:

J =
1

2
(I1 − I2), J2 =

1

2
(I1 + I2)− Ir = 0

ψ = θ1 − θ2, ψ2 = θ1 + θ2.

The resonance actions are I1,r = I2,r = Ir and are equal for the 1:1 resonance. Their
value can be calculated from 1 = H0 = 2(AIr)

4/3 as Ir = 2−3/4/A. After expanding
H around the resonance action I1,2 = Ir ± J up to second order one arrives at the
resonance Hamiltonian:

Hr =
J2

2M
− β V (ar, ar) cos(ψ), (4.41)

with

ar = (3γIr)
1/3 = 21/4, V (ar, ar) =

75

48
a6
r , M−1 =

2γ2

a2
r

. (4.42)

This describes a resonance with half-width:

∆J = 2
√
βMV = 2

a3
r

γ

√
75

96
β ≈ 3.5 ·

√
β. (4.43)

As a very rough estimate for the critical value βc below which the existence of KAM
tori that prevent energy diffusion from I1 to I2 is expected, the value for β at which
this 1:1 resonance overlaps with the 1:3 resonance is calculated. The values for
the 1:3 resonance are denoted with primes. The resonance actions I ′1,2;r of the 1:3

resonance can be obtained from Ω′1,r = 3Ω′2,r and 1 = H0 = (AI ′1,r)
4/3 + (AI ′2,r)

4/3

using the fact that Ω1,2 = ∂H0/∂I1,2:

I ′1,r =
1

A
(1 + 3−4)−3/4 ≈ 1

A
, I ′2,r =

1

33
I ′1,r ≈

1

27A
. (4.44)

The width of this 1:3 resonance is neglected as being small and thus βc is calculated
as the value for β at which the main 1:1 resonance reaches the point I ′2,r.

Ir −∆J = I ′2,r

2−3/4/A− 3.5
√
βc =

1

27A

−→ βc =

(
27 · 2−3/4 − 1

3.5 · 27A

)2

≈ 0.03. (4.45)
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Figure 4.6.: Phase space portraits of the Hamiltonian (4.34) for different values of β close to
the predicted critical value βc ≈ 0.03. Points in these graphs are intersections
of trajectories with the plane θ1 + θ2 = π.

This result is checked numerically by obtaining a phase space portrait of the original
Hamiltonian (4.34) in Fig. 4.6 for different values of β around the predicted critical
value βc ≈ 0.03. Note, that the trajectories in the four dimensional phase space
are confined to the three dimensional energy surface and points in Fig. 4.6 represent
intersections of trajectories with the plane θ1 +θ2 = π resulting in a two dimensional
plot, called Poincaré section. For β = 0.03 a global chaotic region is found, which
means that in this case even small amplitudes of the second oscillator I2 ≈ 0 can
reach values I2 ≈ 1 by traveling along the chaotic component. When decreasing β,
however, the chaotic component separates and invariant tori appear that prevent
small initial conditions I2 to reach values I2 ≈ 1. This observation confirms the
estimations above and the first expectation is indeed true that for β < βc any small
initial condition I2 ≈ 0 will remain small for all times.

Going back to the spreading problem this would mean that as soon as the critical
energy density Wc = β2

c ≈ 10−3 is reached, the spreading should stop. This is
because from the above arguments, the oscillator at the edge of the excitation can not
be excited up to the level of the others due to the existence of KAM tori as described
above. However, claiming the absence of spreading in chains of oscillators from the
above observation is not correct, as numerical results clearly indicate spreading as
shown in section 4.4.2. Rather, one has to conclude that using just two oscillators
to model the edge of the excitation is too simple and not sufficient to describe the
spreading problem. Indeed, increasing the dimensionality by increasing the number
of oscillators from two to three or more one might find that even though KAM tori
may exist at small densities W < Wc they do not necessarily lead to separation of
the phase space and still allow for a considerable increase of small amplitudes, hence
spreading. This idea will be followed in the next section.
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Many-Oscillator Description

As the simple case of two coupled oscillators does not lead to spreading, now higher-
dimensional situations are considered starting with N = 3 oscillators. Again this is
supposed to describe the excitation edge, thus it is assumed that initially the first
two oscillators are excited with an energy density W ∼ 1, while the third one is
at rest. The fundamental question again is whether it is possible that the third
oscillator gets excited to the same energy density even in the limit of small coupling
β � 1. As above, a transformation to action-angle variables is obtained and only
the main 1:1 resonance is studied. By averaging over fast oscillations, a simplified
Hamiltonian can be obtained describing the two main resonaces between oscillator
one and two and between two and three:

H = (AI1)4/3 + (AI2)4/3 + (AI3)4/3 + β V1 cos(θ1 − θ2) + β V2 cos(θ2 − θ3). (4.46)

The coupling parameters V1(I1, I2), V2(I2, I3) depend on the resonance actions sim-
ilar as above (4.42). As initially I1 ≈ I2 ≈ Ir, the system is always inside the
main resonance of the first two oscillators. This resonance can be analyzed in the
same way as before. For small β one finds that the system is described again by a
pendulum Hamiltonian (4.41) for J = (I1 − I2)/2 while I3 = const is a constant of
motion [25]. Hence, the initial condition I3 ≈ 0 will always remain small provided β
is small enough such that the resonance description is valid. Essentially, this is the
same result as for two oscillators, only the critical value βc below which I3 will not
grow should be different, presumably smaller.

As for three oscillators the phase space has six dimensions and the trajectories lie
on a five-dimensional sub-manifold, the simultaneous intersections of trajectories
with three surfaces are required to obtain a two-dimensional phase space plot like
Fig. 4.6. Unfortunately, it is very difficult, if not impossible, to find three surfaces
through which all trajectories travel frequently. Thus, an as conclusive numerical
verification as for N = 2 can not be obtained for N = 3. However, later a numerical
study will be presented that tests the above predictions and is shown in Fig. 4.7.

But before that, the next case of N = 4 oscillators should be investigated. The
resonance Hamiltonian then writes:

H = H0(~I) +

N−1∑
n=1

β Vn cos(~mn · ~θ), (4.47)

where ~I = (Ik) and ~θ = (θk) with k = 1 . . . 4 are 4-dimensional vectors of action- and
angle-coordinates and ~mn with n = 1 . . . 3 are integer vectors describing the three
main 1:1 resonances, more precisely:

H0(~I) =

N∑
n=1

(AIn)4/3, ~m1 =


1
−1
0
0

 , ~m2 =


0
1
−1
0

 , ~m3 =


0
0
1
−1

 , (4.48)
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The initial conditions are again chosen as I1 ≈ I2 ≈ I3, while the fourth oscillator is
at rest I4 ≈ 0. This initial condition lies on the intersection of the resonance planes
defined by ~m1 and ~m2. This is a fundamentally different case than before as the
system behavior is not described by a single resonance but rather by two resonances,
even for arbitrary small β. This means the system typically exhibits a complicated
chaotic behavior for any small β, because for the oscillator I2, the resonances from
the couplings to the left and right always overlap and thereby give rise to chaos.
The double-resonance Hamiltonian for the resonance variables J1 = (I1 − I2)/2,
J2 = (I2 − I3)/2 and ψ1 = θ1 − θ2, ψ2 = θ2 − θ3 up to second order in J writes
as [25]:

Hr ≈
J2

1

2M11
+

J2
2

2M22
+
J1J2

2M12︸ ︷︷ ︸
Hkin

+β V1 cosψ1 + β V2 cosψ2, (4.49)

with

M11 = ~m1 ·
∂~ω

∂~I
· ~m1, M22 = ~m2 ·

∂~ω

∂~I
· ~m2, M12 = M21 = ~m1 ·

∂~ω

∂~I
· ~m2. (4.50)

Although the trajectories might be chaotic, the existence of an effective quadratic
kinetic energy Hkin bounds the motion to remain inside this double resonance of
width ∼ √β [25]. This is, of course, only true for small enough perturbations β
where the above expansion is valid. For larger β resonance overlaps are expected
and chaotic trajectories might leave the double resonance along the chaotic layer.
Nonetheless, in the limit of small enough β one, as for N = 3, finds that small
initial values I4 ≈ 0 will remain small for all time as the trajectories remain inside
the double resonance where I4 is a constant of motion. Hence, even taking four
oscillators to model the excitation edge is not enough to describe spreading. As
above, this is also numerically verified in a later study, shown in Fig. 4.7.

Thus, the number of oscillators is now increased to N = 5. The Hamiltonian is the
same as (4.47) but now exhibiting four 1:1 resonances described by the resonance
conditions:

~m1 =


1
−1
0
0
0

 , ~m2 =


0
1
−1
0
0

 , ~m3 =


0
0
1
−1
0

 , ~m4 =


0
0
0
1
−1

 . (4.51)

The initial condition is now I1 ≈ I2 ≈ I3 ≈ I4 ≈ Ir while I5 models the non-excited
edge oscillator being at rest: I5 = 0. This initial condition hence lies at the triple
resonance at the intersection of the resonance planes defined by ~m1, ~m2 and ~m3.
Because of the triple resonance, the motion will always be chaotic even for arbitrarily
small β, just like for the double resonance before. As above, a calculation on the
size of this chaotic region in the limit of small β will be performed. So to analyze
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this resonance, the following variables are introduced:

J1 = (I1 − I2)/2, J2 = (I2 − I3)/2, J3 = (I3 − I4)/2,

Ir = (I1 + I2)/2 = (I2 + I3)/2 = (I3 + I4)/2.
(4.52)

To obtain the resonance Hamiltonian, H0 is written in terms of these new variables:

H0(~I) =

N∑
n=1

(AIn)4/3

= A4/3
[
(Ir − J1)4/3 + (Ir + J1)4/3 + (Ir − J3)4/3 + (Ir + J3)4/3

]
.

(4.53)

The resonance Hamiltonian follows from an expansion of the above for small Ji
up to second order. However, the important outcome is already seen in (4.53).
Remarkably, the triplet resonance structure leads to the fact that the resonance
Hamiltonian becomes independent of J2. Consequently, the effective kinetic energy
in the resonance Hamiltonian is also independent of J2 and therefore the motion in J2

is not bounded, even for arbitrary small β. This can be understood also geometrically
from the fact that ~m1⊥~m3, which means that the motion of the resonance ~m1

goes along the resonance plane of ~m3 and hence never leaves the chaotic region
induced by the double resonance created by ~m1 and ~m3, a situation already described
by Chirikov [25]. While in the previous case with four oscillators, the resonance
structure forced both resonance actions J1 and J2 to remain small, now only |J1| .√
β and |J3| .

√
β are bounded while J2 can grow indefinitely inside the resonance.

Although large changes of J2 means that one leaves the ~m2 resonance, one still would
be inside the chaotic region induced by the double resonance of ~m1 and ~m3. Thus,
there is a direction in phase space in which the chaotic layer emerging from this
triplet resonance is not bounded. For the original actions In to remain inside this
chaotic region one finds:

2|J1| = |I1 − I2| .
√
β and 2|J3| = |I3 − I4| .

√
β. (4.54)

Particularly, this means that the chaotic resonance region spawns down to small
values of I4 and thus overlaps with the resonance ~m4 even for an initial value of
I5 = 0. This is true for any small perturbation β and leads to the conclusion that
the triple resonance always overlaps with the resonance ~m4. The existence of such
overlaps with the triplet resonance even for arbitrary small β imply that the chaotic
region expands further, also including the point I5 = 0. Hence, the resonance
description is not applicable at all and one expects to find a global chaotic region
connecting small values I5 ≈ 0 with macroscopic excitations I5 ≈ 1 even for small
perturbations β. That means, no critical βc should exist, a crucial difference to the
findings above with N < 5.

Note, that this result does not imply that the motion in such systems with five or
more oscillators is always chaotic even for arbitrarily small perturbations β � 1.
Rather, here a special initial condition was chosen where four oscillators are already
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Figure 4.7.: Excitation time T of the edge oscillator as function of the energy density W
of excited oscillators for different numbers N of oscillators. Simulations were
done for 100 random initial conditions and solid lines represent the maximum
max{log10 T} while circles correspond to averages 〈log10 T 〉.

in a triplet resonance and it was merely argued that the chaotic region emerging
from this resonance should also include the resting oscillator. Thereby, this initially
resting oscillator can become excited by diffusing along the chaotic layer.

As mentioned above, this can not be checked in terms of phase space diagrams due
to the high dimensionality. However, a different way of confirming these predictions
was found. The idea is that if, for small β, the motion of the excited oscillators is
confined in some region, no considerable increase of the energy of the edge oscillator
initially at rest should be observed. The emergence of an extended chaotic region,
on the other hand, as predicted for N ≥ 5 would lead to a macroscopic excitation
of the resting oscillator even for small β. To check this numerically, systems with
N = 2 . . . 7 oscillators are initialized such that the first N − 1 oscillators have an
energy density W , hence a total energy of W (N − 1), while the last oscillator is at
rest. The initial conditions are random with the condition that individual energies
wi obey W −W 2 < wi < W + W 2 for the first N − 1 oscillators. To make this
study comparable with later spreading results, it is done for the set of variables
where β = 1 and the energy is the crucial quantity. Again, the relation to the
above calculations can be drawn by using β =

√
W . As observable, the time T

is measured until the local energy of the last oscillator reaches some border value,
the exact value of the border is rather arbitrary, here chosen as 0.1 · W . This
is done for decreasing energy densities W = 10−3 . . . 10−7 and 100 random intial
conditions for each density. Fig. 4.7 shows the maximum time max{log10 T} of
these 100 runs for different numbers of oscillators as solid lines. The simulations
where done up to a total time Tmax = 109 and if the border is not reached within
this time, T is considered as divergent. For N = 2, this time diverges immediately
for W < 10−3, which corresponds nicely to the above results as from βc ≈ 0.03 one
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finds Wc = β2
c ≈ 10−3. For N = 3 and N = 4 also divergence of T is found, as

expected from the above arguments. The critical value there is Wc ≈ 10−4, hence
βc ≈ 10−2. For N = 5, one clearly sees an increase of T with decreasing density W ,
but in contrast to N < 5, there is no divergence down to densities as small as
W = 10−7. This is a numerical verification of the above arguments showing that
for N = 5 indeed the a global chaotic region exists that allows energy transfer to
the resting oscillator even for arbitrary small perturbations β. Additionally, Fig. 4.7
shows the mean value 〈log10 T 〉 averaged over the random initial conditions (circles).
One finds that asymptotically, the times seem to exhibit a power law dependence
with exponent 5/3:

T ∼W−5/3. (4.55)

The value of the exponent is a purely numerical result at this point. An analytic
derivation appears to be rather difficult and has not yet been found. However, this
exponent will be compared to numerical findings on spreading states in large lattices
in the next section.

Summarizing the above considerations, it was found that using five oscillators to
model the excitation edge results in a resonance structure that connects the initial
state I5 = 0 with the desired point at I5 ≈ W by a chaotic layer emerging from
the triplet resonance and the overlapping ~m4 resonance. This provides a geometric
argument for the possibility of macroscopic excitation of I5. However, the time
scale at which this excitation happens could not be deduced from these findings. A
numerical study verified these arguments and suggested a power-law dependence of
the excitation time on the energy density (perturbation strength), given in eq. (4.55).

These results are obtained only for the regular case without random potential. But
the general ideas also hold when introducing local disorder, because the local dis-
order does only change the unperturbed Hamiltonian H0 =

∑
ω2
k(AIk)

4/3, but the
resonance picture is still applicable. This is true because the fully nonlinear oscillator
allows to tune its frequency from zero to infinity by adjusting its amplitude appro-
priately. Hence, one still finds single, double and triple resonances for N = 3, 4, 5
oscillators if the initial amplitudes of the oscillators are chosen in the right way.
Thus, the above arguments are applicable in the same way and one would find the
same results when investigating oscillators with some random parameters. The sit-
uation is completely different for oscillators with a harmonic local potential and
random frequencies. There, the nonlinear frequency can not be tuned in such a way
and for small perturbation strengths one typically does not find 1:1 resonances.

4.4.2. Numerical Results in 1D

After having developed a theory for the dynamics of the edge oscillators for the fully
nonlinear case with κ = 4, λ = 6, now the original spreading problem for this case
will be attacked numerically. As before, the goal on one the hand is to verify the
scaling prediction from the NDE, and on the other hand to apply the results of the
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Figure 4.8.: Excitation times ∆T (L) for the one-dimensional case 4–6hd, i.e. ωk ∈ [0.5, 1.5],
with energies E = 0.001 . . . 0.05. Left plot shows results in original variables,
while on the right the scaling prediction of the NDE is applied by plotting
∆T/L vs 1/W where W = E/L. The dashed black line shows the behavior
∆T/L ∼W−5/3.

excitation edge dynamics to properties of spreading states. The numerical results
are obtained for the one-dimensional 4–6hd model, hence with a disordered local
potential ωk ∈ [0.5, 1.5] to avoid the existence of traveling quasi-compactons.

In a first study, again the excitation times ∆T (L) are investigated for different initial
energies E = 0.001 . . . 0.05. The results are obtained by averaging over M = 103

disorder realizations where for each realization the initial condition was a uniform
excitation of 10 lattice sites. The results are shown in Fig. 4.8. While Fig. 4.8a shows
the plain results, in Fig. 4.8b the same data is plotted but in rescaled coordinates
as suggested by the NDE (3.21): ∆T/L vs. L/E. As a first observation one finds
that the scaling works quite well as seen from the overlap of curves in the scaled
plot Fig. 4.8b. However, the scaled data still show a recognizable trend as curves
for smaller energies are shifted upwards. This means the scaling of the nonlinear
diffusion equation is not perfectly fulfilled and there might be some other process
involved that requires further investigation. Nevertheless, the power law behavior
of the spreading times are again a justification of the applicability of the nonlinear
diffusion equation. Secondly, from the study of the dynamics at the excitation
edge presented before in section 4.4.1, the following prediction of the excitation
times in dependence of the energy density was found: T ∼ W−5/3 (4.55). As
there the excitation length L was kept fix while decreasing the energy density, this
result directly translates to the following prediction for the excitation times ∆T of
spreading states, using W = E/L:

∆T

L
∼
(
L

E

)5/3

. (4.56)

This prediction is plotted in Fig. 4.8b as a dashed black line and one sees that the
numerical data quite perfectly follow this prediction. Thus it seems that again the
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Figure 4.9.: Square root of the second moment ∆n(t) for spreading states in the one-
dimensional 4–6hd model for different energies E = 10−3 . . . 1. In (a), the plain
results are presented, while (b) shows the same data but in rescaled variables
∆n/E vs. (t − t0)/E2. The dashed line represents the behavior ∆n ∼ t3/11

given in (4.57).

NDE provides a good description of the spreading behavior. Moreover the analysis
of the dynamics of the excitation edge gives the correct power law prediction.

Additionally, a numerical study on the second moment ∆n2(t) of spreading states
was done. There, the nonlinear diffusion equation suggests the scaled variables (3.16):
∆n/E vs. (t−t0)/E2. By comparing eq. (4.56) with (3.21) on identifies the nonlinear
exponent of the NDE to be a = 5/3, hence the spreading exponent in one dimension
calculates as α1 = 1/(a + 2) = 3/11. Putting everything together, the square root
of the second moment ∆n should exhibit the following behavior:

∆n

E
∼
(
t− t0
E2

)3/11

. (4.57)

This is checked in a numerical study where the second moment ∆n2 is measured for
single site initial excitations for different energies E = 10−3 . . . 1. For each energy
the results are averaged over M = 48 realizations of disorder and the plain results are
plotted in Fig. 4.9a. For each energy, some transient behavior has to be neglected
by fitting t0 which gave values t0 ≈ 103. However, this does not influence the
asymptotic observation. Fig. 4.9b shows the same data in rescaled coordinates and
using t0, again nicely verifying the scaling prediction. Moreover, the prediction on
the spreading exponent again is plotted as a dashed line and like for the excitation
times before, the numerical results very accurately follow this prediction.

Hence, both ways of measuring spreading, excitation time ∆T and second moment
∆n2, give compatible results and both support the validity of the nonlinear diffu-
sion equation by following its scaling prediction in a large range of tested energies
E = 10−3 . . . 1. Additionally, the prediction on the nonlinear exponent a ≈ 5/3
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found numerically from an analysis of the microscopic dynamics was verified con-
vincingly up to enormous values of rescaled time t/E2 = 1014 by this numerical
study of spreading states.

Note, that here the excitation of zero-amplitude oscillators heavily relies on chaotic-
ity of the trajectory and hence the term “chaotic diffusion” is perfectly suited to
describe this situation. Without a chaotic region connecting zero-amplitude states
with the higher amplitudes of initially resting oscillators, no energy spreading would
take place. By virtue of the nonlinear diffusion equation, the properties of chaos
could be translated to a diffusion prediction that was perfectly matched in numer-
ical simulations. Such a quantitative result had not been found before and is thus
one of the major outcomes of this work.

4.5. Disordered Lattices of Harmonic Oscillators

Finally, the most complicated situation will be studied, harmonic oscillators with
random frequencies and nonlinear coupling. The Hamilton function in one dimension
for this case writes as (c.f. (2.4)):

H =

N∑
k=1

p2
k

2
+ ω2

k

q2
k

2
+

1

λ

N−1∑
k=1

(qk − qk+1)λ, (4.58)

where ωk are the random frequencies and chosen iid. as ωk ∈ [0, 1] (soft disorder)
or ωk ∈ [0.5, 1.5] (hard disorder). Two values of the coupling nonlinearity will be
studied: λ = 4 and λ = 6 for both one- and two-dimensional lattices.

This case is more difficult to understand then those presented before and a full theory
is still lacking, unfortunately. The reason is that due to the random frequencies, the
oscillators are typically not in resonance. For the regular case studied in section 4.3
it was found that all oscillators are always in resonance, even for arbitrary small
amplitudes. But this was due to the equal frequencies, ωk = 1, a property explicitly
violated here. For fully nonlinear oscillators it was found in section 4.4 that although
the non-excited oscillator is not in resonance with those with finite amplitudes, they
form a multi-resonance that overlaps with the small-amplitude resonance of the
edge-oscillator. This creates the possibility for an oscillator at rest to reach an
excited state by diffusion along a chaotic region in phase space. But this relied on
the fact that one can find four oscillators in a 1:1 resonance, which in the case of
disorder is only possible if the oscillator frequency can be tuned considerably by
amplitude modulations. As that is not the case for harmonic disordered oscillators,
the techniques used in the previous chapters can not be applied directly.

4.5.1. High Density Estimation

For large energy densities W ∼ 1, the nonlinear perturbation introduced by the
coupling might be big enough to overcome the frequency detuning introduced by
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disorder. Then, the situation would be similar to the fully resonant case studied
in section 4.3, because although the frequencies may differ, the energy density and
hence the perturbation is strong enough to bring all oscillators in resonance. Here,
exemplarily only the case λ = 4 should be analyzed. There, the frequency ω̃k
of one harmonic oscillator with amplitude a0, including the nonlinear shift due to
the coupling in lowest order, calculates as ω̃k ≈ ωk + 3a2

0/(8ωk) (c.f. (4.11)). Fur-
thermore, the local energy density of this oscillator depends on the amplitude as
follows: wk = ω2

ka
2
0/2. A global resonance is found in a chain of such oscillators if

the nonlinear frequency shift of an excited oscillator ∼ 3a2
0/8ωk is typically greater

than the frequency detuning to its non-excited neighbor ∆ω1 = |ω1 − ω2|, that is
the zero-amplitude oscillator is in resonance with its neighbor that has a local en-
ergy W = wk. By taking averages one arrives at the following relation for the critical
amplitude ac and hence the critical energy density Wc below which it becomes un-
likely to find such a global resonance:

∆ωk =
3a2

c

8
ωk =

3

4ω3
k

Wc, (4.59)

where x denotes the average over an ensemble of random iid. frequencies. A straight
forward calculation gives ∆ωk = 1/3 and thus one finds, in the case λ = 4, for Wc

for soft (ωk ∈ [0, 1]) and hard (ωk ∈ [0.5, 1.5]) disorder:

Wc,sd ≈ 1/18 ≈ 10−1.25

Wc,hd ≈ 4/9 ≈ 10−0.35,
(4.60)

where the powers of 10 are given for comparison with later numerical findings. For
energy densities around these values, the oscillators are typically in a global reso-
nance and from the results of section 4.3 one expects spreading with the nonlinearity
parameter of the NDE a ≈ 1.

Without a detailed calculation on the critical density, it should just be noted that
for λ = 6 at high energy densities W ∼ 1, the resonance results from section 4.3
predict spreading with the nonlinearity parameter a ≈ 2.

4.5.2. Dynamics at the Excitation Edge

If the density W is too small to create a full 1:1 resonance in the system, spreading
is still possible because the trajectory can move along thin chaotic layers created by
high-order resonances [28]. Such high-order resonances are induced by the quartic
coupling, which leads to terms ∼ cos(θ1 − 3θ2) where θ1,2 are the angle variables of
the two coupled oscillators. This, for example, induces a 1:3 resonance between those
oscillators. Furthermore, the solution of a single harmonic oscillator with quartic
perturbation obtained from:

H =
p2

2
+ ω2

0

q2

2
+
q4

4
(4.61)
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(b) The same data in scaled variables.

Figure 4.10.: Excitation times ∆T (L) for an one-dimensional lattice of harmonic oscillators
and coupling nonlinearity λ = 4 and soft disorder ωk ∈ [0, 1]. In (a) the
direct results ∆T (L) are plotted while for (b) the scaling from the NDE has
been applied. Each color/symbol belongs to an averaged value over disorder
realization for a fixed energy E. The inset in (b) shows the dependence of the
nonlinearity index a(W ) on the density W , obtained via polynomial fitting of
the scaled data (dashed line).

also includes high frequency terms, e.g.:

q(t) = a0 cos(ω0 + ω1) +
a3

32ω2
0

(cos 3ω0t− cosω0t) + . . . (4.62)

with ω1 = 3a2
0/8ω0 as above. Hence, a whole cascade of high-order resonances are

possible for two harmonic oscillators with a nonlinear coupling. However, a full
analysis of this resonance structure with the aim to obtain similar results as before
is rather difficult, firstly because of the complicated resonance structure itself and
secondly because additionally, an ensemble average over the random frequencies
must be obtained. So at this point, the only at least to some extent definite result
is that one might expect a behavior similar to the full resonant case for large energy
densities. But as the density decreases, the main resonance is not accessible anymore
because the nonlinear frequency shifts are getting too small. The implications for
spreading states remain unclear at this point and here numerical results are employed
to obtain further insight on this problem, discussed in the next sections.

4.5.3. Numerical Results in 1D

At first, the one-dimensional chain is considered, starting with the case where the
nonlinear coupling exponent is set to λ = 4. As before for one-dimensional systems,
the excitation times ∆T (L) are measured for different initial energies. Results are
(logarithmically) averaged over M = 1000 realizations of disorder while the initial
condition was always a uniform distribution over L0 = 10 sites. Fig. 4.10 shows
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(b) The same data in scaled variables.

Figure 4.11.: The same as Fig. 4.10 but for “hard disorder”, i.e. ωk ∈ [0.5, 1.5]. Again, the
inset in (b) shows the numerically obtained nonlinear exponent a(W ).

results for soft disorder, i.e. ωk ∈ [0, 1]. Again the data are plotted in usual variables
as well as following the scaling prediction from the NDE (3.20): ∆T/L vs. L/E. One
finds perfect energy scaling and hence good verification of the scaling property of the
nonlinear diffusion equation. However, it is also clearly seen that the curves do not
follow a straight power-law, but rather bend upwards, which means an increasing
density dependent NDE parameter a(W ), where the density W = E/L. To account
for such a density dependence, the following quantity is defined:

a(W ) = −d log10 ∆T/L

d log10W
. (4.63)

This is illustrated in the inset of Fig. 4.10b, where a numerical estimate of this
quantity is shown obtained from fitting the data points in log-log scale by a poly-
nomial and then taking the derivative. Although the scaling works perfectly, the
exponent changes from roughly a ≈ 1 at high densities up to a ≈ 4 at the lowest
densities W ≈ 10−3 reached in this study. At this point, no signature of saturation of
a(W ) can be identified, but nevertheless, no definite answer on the true asymptotic
behavior can be given.

Similar results were found for 2–4hd, i.e. random frequencies ωk ∈ [0.5, 1.5]. Fig. 4.11
again shows the numerical outcome in both normal and scaled variables. As before,
the scaling works perfectly as the curves for different energies nicely overlap onto a
single curve. But again the result is not a straight line, but rather bends upwards
which as above indicates a density dependent exponent a(W ). As shown in the inset
of Fig. 4.11b, the values a(W ) now increase even faster than before, reaching almost
a ≈ 7 for the final density of W ≈ 10−2. However, as before the true asymptotic
behavior can not be concluded from these results.

It was also checked whether this density dependent spreading exponent can be found
when looking at the direct spreading measure rather then excitation times. Fig. 4.12
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Figure 4.12.: Result for the second moment ∆n2(t) for the model 2–4sd, hence the same as in
Fig. 4.10. (a) shows the plain numerical results and (b) the scaling prediction
of the NDE. Results are averaged over M = 100 disorder realizations.

shows results for the second moment exemplarily for the model 2–4sd. Hence this
should be compared with the data in Fig. 4.10. One finds that the scaling prediction
of the NDE, suggesting to use ∆n/E and (t−t0)/E2 as scaled variables to account for
energy dependence, works again reasonably well, shown in Fig. 4.12b. The density
dependence of the nonlinearity exponent a(W ) should manifest in this result as a
density dependent spreading exponent α1(W ) = 1/(a(W ) + 2). An indication of
this is also seen in Fig. 4.12b, as the data points rather follow a curve bending
downwards than a straight line, especially when compared to the exemplary power
law ∆n ∼ t1/6 plotted as dashed line. However, the results are much less clear
and a quantification of the spreading exponent is much harder than it was from
measuring ∆T (L) before. This is exactly due to the fact that when calculating
disorder averages 〈∆n〉, one averages over different values of ∆n, hence situations
with different densities, as explained in section 2.5. Thereby, the density dependence
a(W ) gets, to some extent, averaged away and thus is very hard to be extracted
from results like Fig. 4.12. So only by introducing the new spreading quantification
∆T (L) it was possible to obtain a clear quantitavie result on the density dependent
spreading exponent, as the measures used before are not suitable for this kind of
detailed analysis.

Furthermore, simulations for the case with coupling nonlinear power λ = 6 were
performed. Fig. 4.13a shows the results for soft disorder 2–6sd, ωk ∈ [0, 1] and
Fig. 4.13b for hard disorder 2–6hd, ωk ∈ [0.5, 1.5]. Both graphs are already plotted
in scaled variables ∆T/L vs. L/E and once again the scaling prediction from the
NDE is verified perfectly, indicated by the collapse of curves for different energies.
However, as for quartic couplings, again the numerical results suggest an energy
dependent nonlinearity a(W ), which as above is further visualized by showing nu-
merical derivatives (4.63) in the insets.
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Figure 4.13.: Scaled excitation times ∆T (L) for the one-dimensional case 2–6sd (ωk ∈ [0, 1])
and 2–6hd (ωk ∈ [0.5, 1.5]). The insets show the density dependencies a(W )
obtained from polynomial fits.

This density dependent exponent a(W ) is a fundamental difference to the other cases
presented before, as there the spreading always appeared to follow a pure power law
with a constant exponent. The reason for this behavior is not yet understood, but
a qualitative picture might indeed be that by needing to employ higher and higher
resonances as the density decreases, the chaotic layers on which spreading states
can travel get smaller and smaller which could induce such a slower-than-power-
law behavior. Note that for the 4–6 models, it was shown that the trajectory can
always follow the main 1:1 resonance which leads to a pure power law behavior.
For harmonic oscillators, this is surely not true and it seems quite reasonable that
this leads a to behavior with increasing nonlinear exponent a. This is also, in a
qualitative sense, supported by the findings on the properties of chaos shown in the
beginning in Fig. 2.4b. There, it was shown that chaos in random harmonic chains
depends on the chain-length and density in such a way that spreading states at some
point enter a KAM regime where the chaotic region of phase space gets smaller and
smaller. In contrast, for example, to the fully nonlinear case where spreading states
are moving away from the KAM region as presented in Fig. 2.3.

In conclusion, for one-dimensional random harmonic lattices and coupling nonlin-
earities λ = 4, 6, the NDE scaling prediction is fulfilled very accurately by spreading
states as found from an extensive numerical study. However, in all cases the spread-
ing exponent showed a clear density dependence a(W ) and due to the lack of a
conclusive theoretical description for this complicated situation, no reliable predic-
tion for the asymptotic behavior can be made at this point. The possibilities are
that a(W ) might saturate at some point giving again asymptotic subdiffusive be-
havior, or a(W ) diverges which would lead to a stop of the spreading process, or
a(W ) might keep growing which would mean a sub-subdiffusive process. Additional
results on the second moment showed that studies based on this quantity might be
misleading as the density dependence is surpressed by averaging.
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Figure 4.14.: Spreading results for the two-dimensional harmonic lattice with nonlinear cou-
pling exponent λ = 4 (a) and λ = 6 (b) with “soft disorder“ (ωi,k ∈ [0, 1] iid.).
The results are averaged over random potential realizations and plotted using
the NDE scaling prediction 〈∆n2〉/E vs t/E. The insets show the behavior
of the structural entropy 〈Sstr〉(t).

4.5.4. Numerical Results in 2D

Finally, also two-dimensional lattices of harmonic oscillators with random frequen-
cies are investigated. For the 2D case, spreading is measured in terms of the second
moment, defined in section 2.6, where also the Hamiltonian is presented. The non-
linear diffusion equation predicts the following scaling behavior of the energy (3.24):

∆n2(t)

E
∼
(
t− t0
E

)α2

, with α2 =
1

a+ 1
. (4.64)

This is checked numerically by analyzing the behavior of the second moment of
initial 5x5 uniform excitations in a quadratic lattice. This was done for several
values of the initial energy and the results are averaged over M = 32 realizations
of disorder for each energy. In a first study, the model 2–4sd is considered and
the results are shown in Fig. 4.14a. Fig. 4.14b shows the data obtain for the case
2–6sd. For both models, the scaling is nicely verified by the numerical results as seen
from the collapse of curves for different energies. Moreover, the structural entropy
saturates in all cases further supporting the self-similarity of the spreading states.
The spreading exponent α2 is roughly identified as α2 ≈ 1/4 for 2–4, while for
2–6 one finds α2 ≈ 1/6. Note that in the resonant case studied in section 4.3, these
exponents where calculated as α2 = 1/2 and α2 = 1/3 respectively. Hence spreading
is much slower in the presence of disorder.

Furthermore, these result do not exhibit a clear deviation from the power law be-
havior that was found in one dimension before. A careful observation of the result
for 2–4 in Fig. 4.14a does reveal some signature of a density dependent nonlinear
parameter a(W ) as the curve seems to bend downwards, but this is effect is hardly
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visible and not observed for 2–6 at all. As the above arguments for a density de-
pendent exponent are not limited to one dimension, such a behavior should also be
observed here. There are two reasons why this is not the case. Firstly, the second
moment used as observable is not a very good tool to identify such a behavior, be-
cause the density dependence might get averaged out as explained previously and is
visible when comparing the results of Fig. 4.10b and Fig. 4.12b. Moreover, instead
of having just one excited neighbor as before, in two dimensions the edge oscillator
at rest typically has two, maybe even three, excited neighbors. As it is enough to
have a resonance with one of those neighbors, this reduces the average detuning:
∆ω = min(∆ω1,∆ω2), which allows for smaller energy densities until higher order
resonances need to be considered. This essentially stretches the curves a(W ) and
together with the averaging issue this could be the explanation why in 2D no such
clear density dependence of the spreading exponent is observed.

In conclusion, again the scaling prediction has been very successfully verified by the
numerical results. Also the structural entropy supports the validity of the nonlinear
diffusion equation for spreading in two-dimensional random harmonic lattices. It
should be said that as only results for the second moment are obtained, a conclusive
answer to the density dependence could not be obtained. A study on the excitation
times for this case is appealing and will be subject of later works. However, the true
asymptotic behavior thus also remains unrevealed here.
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5. Summary and Conclusions

5.1. Summary

In this work, the problem of diffusion induced by chaotic behavior in nonlinear
Hamiltonian systems was discussed. The model, rather academically, were chains
or lattices of harmonic or nonlinear oscillators with a nonlinear nearest neighbor
coupling. A thorough analysis of these models revealed two classes of scaling that
turned out very helpful. The diffusion was measured in terms of energy spreading of
initially localized excitations and several observables to quantify this spreading were
introduced. Specifically, the connected nature and the super-exponential tails of the
spreading states in such models allowed for defining a new quantity called excitation
time ∆T . This quantity was shown to have severe advantages over existing methods
and served as the most important measure of spreading in one-dimensional chains,
while for the two-dimensional studies results were quantified in terms of the well-
known and often used second moment ∆n2.

As a macroscopic description for the spreading process, the nonlinear diffusion equa-
tion (NDE) was presented and its properties were analyzed in detail. From this, a
number of predictions for the spreading states have been found, mainly on the ex-
pected role of the energy as the only free parameter in both the oscillator model
and the nonlinear diffusion equation. Although it is up to now not possible to give
a rigorous derivation of the NDE starting from the microscopic dynamics of the os-
cillators, these predictions provide a convincing set of tests that have been checked
numerically in this work.

The choice of such a relatively simple model of nonlinear oscillators with nearest
neighbor coupling was motivated by the hope of being able to gain deeper insight on
the properties of chaotic diffusion by mathematical treatments. Indeed, for a special
case of nonlinearities, called the ”homogeneous case“, an exact prediction for the
energy diffusion based on scaling properties was found and numerically verified in
section 4.2. This encouraged the application of the nonlinear diffusion equation also
for more complicated situations where such a simple scaling argument is not readily
found.

In section 4.3 the special case of a harmonic lattice of fully resonant oscillators was
analyzed. There, the spreading problem was reduced to the simple consideration
of two coupled oscillators mimicking the edge of the excitation. This simplification
turned out to be very effective. By making use of the fact that all oscillators are in
resonance, again an exact prediction on the spreading behavior for this case could
be deduced. The argumentation was based on the scaling properties found from

69



5. Summary and Conclusions

analyzing the resonance dynamics and then by assuming the validity of the NDE, the
spreading prediction was found. This was also verified numerically, but here a two-
dimensional lattice had to be used to avoid the influence of quasi-compactons that are
observed in one-dimensional, fully resonant chains. Despite the nice correspondence
of the numerical results with the analytic prediction on the spreading exponent,
the peak structure of the spreading states was found to deviate from a self-similar
behavior that is suggested by the nonlinear diffusion equation. The reason for this
might be the existence of persisting breather states that are initially excited and
decay very slowly, but this effect was not further examined here.

After that, the fully nonlinear case was investigated in section 4.4. Motivated by the
previous results, again it was tried to derive the spreading properties from the dy-
namics of the oscillators at the edge of the excitation. It was found that considering
just two oscillators to model the excitation edge is not enough as this leads to a crit-
ical density below which no spreading would be observed. By geometric arguments
about the resonance structure, it was found that with five (or more) oscillators, the
chaos induced by resonance overlaps at the excitation edge is such that even for
arbitrarily small densities spreading can take place. A numerical study revealed a
power-law dependence of chaotic excitation times on the energy density in this sim-
plified model which, by using the nonlinear diffusion equation, was translated to a
spreading prediction in large oscillator chains. This prediction was then compared
to the spreading exponent obtained from numerical simulations and a perfect cor-
respondence was found. Thus, again by starting at the microscopic dynamics, an
exact prediction for the macroscopic spreading behavior was extracted and numeri-
cally verified. Furthermore, the scaling prediction of the energy from the nonlinear
diffusion equation for the spreading states was checked as well in this case. The
results were not as perfect as in other cases but still quite convincing. However, the
slight deviation from the predicted scaling might indicate that the chaotic diffusion
in this case is not perfectly described by the NDE and a further analysis of this
observation will be subject of later works.

Finally, the most complicated case of lattices of harmonic oscillators with random
frequencies and nonlinear coupling was studied. There, no conclusive theory on the
spreading behavior was found as the resonance structure of this situation is consider-
ably more complicated. By some heuristic arguments and supported from previous
results on the properties of chaos for such lattices, some ideas for explaining the
non-power-law spreading were presented. However, the major outcome for this case
are the extensive numerical results for one- and two-dimensional lattices presented
in section 4.5. In all numerical studies done for this case of harmonic oscillators, a
perfect verification of the scaling prediction of the NDE was observed. This, again,
showed the usability of the nonlinear diffusion equation as a macroscopic description
of spreading in such nonlinear Hamiltonian lattices. However, the numerical results
indicated a density dependence of the nonlinear exponent of the NDE, that was orig-
inally assumed to be a constant. Some arguments were given trying to relate this
observation to the complicated resonance structure in the system, but a convincing
calculation was not found for this case.
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Model Analytic Result Equation Numerical Result Figure

1D 4–4sd a = 1/4, α1 = 4/9
(4.3), (4.4)

∆T ∼ La+1 ∼ L5/4 4.1a

1D 6–6sd a = 1/3, α1 = 3/7 ∆T ∼ La+1 ∼ L4/3 4.1b

2D 4–4re a = 1/4, α2 = 4/5

(4.3), (4.5)

∆n2 ∼ tα2 ∼ t4/5 4.2a

2D 4–4sd a = 1/4, α2 = 4/5 ∆n2 ∼ tα2 ∼ t4/5 4.2a

2D 6–6re a = 1/3, α2 = 4/5 ∆n2 ∼ tα2 ∼ t3/4 4.2b

2D 6–6sd a = 1/3, α2 = 4/5 ∆n2 ∼ tα2 ∼ t3/4 4.2b

1D 2–4re a = 1, α1 = 1/3

(4.31), (4.31)

– (quasi-compactons)

1D 2–6re a = 2, α1 = 1/4 – (quasi-compactons)

2D 2–4re a = 1, α2 = 1/2 ∆n2/E ∼ (t/E)1/2 4.4

2D 2–6re a = 2, α2 = 1/3 ∆n2/E ∼ (t/E)1/3 4.5

1D 4–6hd
Semi-Analytic Result (4.55) ∆T/L ∼ (L/E)5/3 4.8

a = 5/3, α1 = 3/11 (4.56),(4.57) ∆n/E ∼ (t/E2)3/11 4.9

Numerical Observation

1D 2–4sd a(W ) ≈ 1 . . . 4 ∆T/L ∼ (L/E)a(W ) 4.10

1D 2–4hd a(W ) ≈ 1 . . . 7 ∆T/L ∼ (L/E)a(W ) 4.11

1D 2–6sd a(W ) ≈ 1 . . . 6 ∆T/L ∼ (L/E)a(W ) 4.13a

1D 2–6hd a(W ) ≈ 2 . . . 8 ∆T/L ∼ (L/E)a(W ) 4.13b

2D 2–4sd α2 ≈ 1/4 ∆n2/E ∼ (t/E)1/4 4.14a

2D 2–6sd α2 ≈ 1/6 ∆n2/E ∼ (t/E)1/6 4.14b

Table 5.1.: Overview of the analytic and numerical results found in this work. The abbrevi-
ations for the models refer to the nonlinear powers and the choice of random (hd
or sd) or regular (re) local potential, as explained in section 2.1. a denotes the
nonlinear exponent of the NDE (3.3) and α1,2 are the corresponding spreading
exponents for 1D (3.20) and 2D (3.24). ∆T is the excitation time as described in
section 2.5.2 while ∆n2 denotes the second moment. For the semi-analytic result
the resonance analysis was performed analytically using geometric arguments,
while the actual value relied on a numerical study. For the density dependent
result a(W ), no theoretical description could be found.

Overall, in this work it was found that the nonlinear diffusion equation is a very
useful tool to describe spreading in nonlinear Hamiltonian systems. With only some
small deviations in a few cases, the scaling prediction of the NDE has been numeri-
cally verified for the harmonic or nonlinear oscillators studied in this work. Secondly,
the technique of analyzing the microscopic dynamics of the oscillators at the edge
of the excitation turned out to be very fruitful leading to several predictions on
the spreading behavior that were also nicely verified by numerical simulations. Ta-
ble 5.1 provides an overview of the studied cases and the analytic and numerical
results presented in this work. Unfortunately, the highly interesting case of har-
monic oscillators with random frequencies is also the most difficult. However, it is
hoped that the techniques, findings and results presented here might eventually also
lead to a full understanding of the observed diffusion in this model.

71



5. Summary and Conclusions

5.2. Comparison with Spreading Results in Nonlinear Anderson Models

One of the motivations for this work was to find a theoretical explanation for the
observed subdiffusive behavior that has been found in disordered nonlinear sys-
tems with linear coupling terms. The most prominent example of such a system
is the DANSE model, where also subdiffusive spreading of initially localized states
is observed, as described in section 1.3. Moreover, another model has gained con-
siderable attention lately, e.g [38]: the disordered Klein-Gordon model (K-G). Like
the DANSE model it has local disorder, local nonlinearity and a linear nearest-
neighbor coupling. But in contrast to the former, the Klein-Gordon model has
only one conserved quantity, while in the DANSE model both energy and norm
are conserved. However, both models consist of harmonic oscillators with random
frequencies and quartic coupling terms, when transformed into the basis of linear,
localized eigenmodes. Thus, they are similar to the 2–4 cases studied here, but
with a more complicated nonlinear coupling of localized linear modes that includes
not only nearest neighbors. In several works, mostly dealing with one-dimensional
lattices, the observation of two spreading regimes was reported [43, 108]. Recently,
such a behavior was also found in two-dimensional Klein-Gordon lattices [109]. For
rather large energy densities, numerical results indicated an exponent of the nonlin-
ear diffusion equation of a ≈ 2 and the situation was called ”strong chaos“. While
for small densities, numerical data suggested a ≈ 4, denoted by ”weak chaos“.

Here, also an increase of this nonlinearity exponent for the case of harmonic os-
cillators with random frequencies and nonlinear coupling was found, as reported
in section 4.5. However, the numerical results presented here do not suggest the
existence of a crossover, nor the convergence of a towards a constant for small den-
sities. Rather, a(W ) seems to monotonically increase for decreasing densities W .
The reason for this discrepancy might be due to the fact that in the DANSE or
Klein-Gordon model, spreading states always have exponential tails, induced from
the exponential tails of the linear modes. Therefore, the technique of measuring
excitation times that lead to the very precise findings of a(W ) can not be applied
there because of the absence of sufficiently sharp excitation edges. In those situa-
tions one has to rely on measuring the second moment to quantify spreading, but
as explained in section 2.5, this has the clear disadvantage that with averaging over
disorder realization, one also averages over different energy densities. Consequently,
a(W ) is effectively averaged over densities as well and it is very difficult to extract
the true behavior of a(W ). This problem is illustrated in section 4.5.3, where results
for ∆T (L) and ∆n(t) are shown in Figures 4.10 and 4.12. While for ∆T the results
very clearly indicated a density dependent exponent a(W ), the results for ∆n were
much less obvious, though still supporting this claim.

Moreover, by interacting not only with nearest, but with several neighbors, the
density dependence a(W ) should become less dramatic. This is because to become
excited, it is sufficient for a linear mode at the edge to exhibit a resonance overlap
with one of its interacting neighbors. Hence, the effective average frequency distance
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of interacting modes decreases and smaller densities can be reached before higher
order resonances have to be employed. For typical choices of disorder, i.e. disorder
strength U = 4, the localization volume V of the linear eigenmodes was found to be
roughly V ≈ 330/U2 ≈ 20 [108]. That means the nonlinearity couples effectively 20
modes, instead of just two nearest neighbor oscillators as in this work. It seems quite
reasonable that this leads to a stretching of the density dependence found in this
work. Accordingly one is required to go to much smaller energy densities to find this
dependence. A first indication of this effect might be the results for two dimensions
presented in section 4.5.4. In two dimensions, the number of interacting neighbors of
a non-excited mode is increased to two, and already the density dependence is very
hard to detect when using the second moment as the spreading measure as it is seen
in Fig. 4.14a. Nevertheless, a definitive statement on the role of the coupling length
requires a more detailed study that is left for future works. It may well be that the
density dependence is indeed due to the nearest neighbor coupling and by allowing
more interactions, one again finds power-law behavior due to some effects not yet
understood. But from the considerations of microscopic dynamics performed here,
no reason for such a claim was found. This remains an open problem and definitely
asks for clarification in subsequent studies.

Another discrepancy between the results obtained here and those presented for the
DANSE- and Klein-Gordon model is the prediction of the spreading behavior for
large densities. In [38], this regime was introduced as ”strong chaos“ as there the
density is large enough to typically ensure resonance overlaps of 1:1 resonances and
hence allow for spreading along this main chaotic layer. A simple calculation gave
the prediction a = 2 for this case. However, such a situation is studied here in
section 4.3, where all oscillators are in resonance even for arbitrary small densities.
A thorough analysis of the microscopic dynamics in this resonant situation gave the
result a = 1, which was also perfectly verified in numerical simulations shown in
Fig. 4.4. The reason for this difference between these results and the findings in [38]
surely needs further investigation as well.

5.3. Outlook

In this work, it was tried to increase the understanding of chaotic Hamiltonian
systems, especially in terms of its diffusive properties. For some cases, analytic
predictions on the spreading properties could be obtained, which were also verified
by extensive numerical simulations. Especially for the fully nonlinear case, more
tests of the theory could be made to further support the analytic arguments, e.g. by
studying different choices of nonlinear powers like 4–8 or 6–8. Furthermore, the slight
deviations from the scaling prediction should be analyzed carefully, for example by
testing the scaling for two dimensional numerical results in this case. Also, the
properties and dependencies of the transient times before the subdiffusive spreading
sets in have been completely neglected in this work. This might be interesting field
of study as well.
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5. Summary and Conclusions

However, the main puzzle that still remains is the understanding of the spreading
mechanism in the case of harmonic oscillators with random frequencies. For such
models, the energy scaling of the nonlinear diffusion equation was numerically ver-
ified, but an energy dependent spreading exponent was observed. Some arguments
on the reason for this density dependence based on the complicated resonance struc-
ture for harmonic oscillators were given, but this is far from a full understanding
of the microscopic dynamics. Also, the role of the nearest neighbor coupling on
this density dependence should be further investigated to resolve the discrepancy
with results for models with exponentially decaying coupling terms. Obviously, this
case still requires more work, but hopefully the methods developed here will help to
ultimately understand the diffusion process in this case as well.

Another open question is how these results should be generalized to situations with
more than one conserved quantity. For example, one could study spreading in a
strongly nonlinear Schrödinger lattice that also has only nearest neighbor coupling,
but conserves norm and energy. First results on such models have been obtained
in [110], but the relation to the nonlinear diffusion equation and its scaling properties
is still to be made. Additionally, it might be appealing to apply the techniques and
theories developed in this work to interacting spin chains, where also energy diffusion
due to nonlinear interactions was found [111].
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and support. Many of the numerical results have been obtained at the CINECA sp6
supercomputer under the Project HPC-EUROPA2 (Project number 228398), with
the support of the European Community - under the FP7 “Research Infrastructure”
Programme, which is highly appreciated. I also thank the DFG for financial support
under the project PI 220/12-1.

Finally, I thank my family for their continuous support over all the years and for
always providing a home I can return to. Last but certainly not least I thank
Mariana who was the main motivation for eventually finishing this work. I thank
her for her patience and sweet pressure.





A. Mathematical Calculations

A.1. Canonical Scaling

Here, it will be shown that the variable scalings introduced in section 2.2 are canon-
ical transformations. The original Hamiltonian reads:

H =

N∑
k=1

p2
k

2
+ U

ω2
k

κ
qκk +

N−1∑
k=1

β̃

λ
(qk+1 − qk)λ . (A.1)

A.1.1. Nonhomogeneous Case

First the non-homogeneous case κ 6= λ will be considered. There, a transformation
to new variables Qk, Pk, t

′ and H ′ was proposed in eq. (2.3):

qk = U bβ̃−bQk

pk = Uλb/2β̃−κb/2Pk

t = U (2−λ)b/2β̃(κ−2)b/2t′

H = Uλbβ̃−κbH ′,

with b = 1/(λ− κ).

(A.2)

A simple substitution of variables into (A.2) immediately gives the Hamiltonian:

H ′ =

N∑
k=1

P 2
k

2
+
ω2
k

κ
Qκk +

1

λ

N−1∑
k=1

(Qk+1 −Qk)λ , (A.3)

where U and β disappeared and the only remaining parameter is the energy E. For
the transformation to be canonical, however, also the equations of motions should be
equivalent. This can be shown by a simple calculation, so first consider the equations
for q̇k:

q̇k =
dqk
dt

=
∂H

∂pk
= pk. (A.4)
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A. Mathematical Calculations

Now by substituting Qk, Pk and t′ one finds:

U bβ̃−b
dt′

dt

dQk
dt′

= Uλb/2β̃−κb/2Pk (A.5)

U bβ̃−bW (λ−2)b/2β̃(2−κ)b/2 dQk
dt′

= Uλb/2β̃−κb/2Pk (A.6)

Uλb/2β̃−κb/2
dQk
dt′

= Uλb/2β̃−κb/2Pk (A.7)

dQk
dt′

= Pk (A.8)

Q̇k =
∂H ′

∂Pk
. (A.9)

A similar calculation can be obtained for the momentum:

ṗk = −∂H/∂qk = −Uω2
kq
κ−1
k − β̃

(
(qk − qk+1)λ−1 + (qk − qk−1)λ−1

)
. (A.10)

Susbtituting Pk and t′ for ṗk one finds:

ṗk = Uλb/2β̃−κb/2
dt′

dt

dPk
dt′

(A.11)

= Uλb/2β̃−κb/2U (λ−2)b/2β̃(2−κ)b/2 dPk
dt′

(A.12)

= U (λ−1)bβ̃(1−κ)bṖk. (A.13)

While subsituting Qk in the rhs gives:

∂H

∂qk
=Uω2

k U
b(κ−1)β̃−b(κ−1)Qκ−1

k

+ β̃U b(λ−1)β̃−b(λ−1)
(

(Qk+1 −Qk)λ−1 + (Qk −Qk−1)λ−1
)
.

(A.14)

Using b = 1/(λ− κ), hence b(κ− 1) + 1 = b(λ− 1) and −b(λ− 1) + 1 = −b(κ− 1),
one obtains:

∂H

∂qk
= U b(λ−1)β̃b(1−κ)

(
ω2
kQ

κ−1
k + (Qk+1 −Qk)λ−1 + (Qk −Qk−1)λ−1

)
. (A.15)

Thus, Ṗk calculates as:

Ṗk = −ω2
kQ

κ−1
k − (Qk+1 −Qk)λ−1 − (Qk −Qk−1)λ−1 = −∂H

′

∂Qk
. (A.16)

Hence, the equations of motion are invariant under the scaling transformations (A.2)
and thus they represent a canonical transformation to the new canonical variables
Qk, Pk, t

′ and H ′.
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A.1. Canonical Scaling

A.1.2. Homogeneous Case

For the homogeneous case κ = λ, the proposed scaling transformation (2.5) is:

qk = E1/κU−1/κQk

pk = E1/2Pk

t = U−1/κE1/κ−1/2t′

H = EH ′ .

(A.17)

Again, a simple substitution in (A.1) gives:

1 = H ′ =

N∑
k=1

P 2
k

2
+
ω2
k

κ
Qκk +

β

κ

N−1∑
k=1

(Qk+1 −Qk)κ , (A.18)

with energy being scaled to E′ = 1 and β = β̃/W as the only parameter. As
above, the transformation of the equations of motion will be checked starting with
q̇k = ∂H/∂pk = pk and substituting Qk, Pk and t′:

E1/κU−1/κdt′

dt

dQk
dt′

= E1/2Pk (A.19)

E1/κU−1/κW 1/κE1/2−1/κdQk
dt′

= E1/2Pk (A.20)

E1/2 dQk
dt′

= E1/2Pk (A.21)

Q̇k = Pk =
∂H ′

∂Pk
. (A.22)

For the momentum ṗk = −∂H/∂qk on finds:

ṗk = E1/2 dt′

dt

dPk
dt′

= E1/2U1/κE1/2−1/κdPk
dt′

= U1/κE1−1/κ Ṗk , (A.23)

and ∂H/∂qk calculates as:

∂H

∂qk
= E(κ−1)/κU (1−κ)/κ(Uω2

kQk + β̃(Qk+1 −Qk)κ−1

+ β̃(Qk −Qk−1)κ−1).
(A.24)

Hence one finds:

Ṗk = −ω2
kQk −

β̃

U

(
(Qk+1 −Qk)κ−1 + (Qk −Qk−1)κ−1

)
= −∂H

′

∂Qk
. (A.25)

This shows that the scaling (A.17) also is a canonical transformation as it leaves the
equations of motion invariant.
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A.2. Derivation of the Self-Similar Solution

Here, the nonlinear diffusion equation is solved by using a self-similar ansatz sug-
gested by the scaling properties of the NDE. This calculation can be found in many
textbooks, e.g. [88], and is repeated here for completeness, adapting the choices of
variables made in this work. The nonlinear diffusion equation with the nonlinear
power a > 0 reads:

∂ρ

∂t
= D0

∂

∂~r

(
ρa
∂ρ

∂~r

)
=

D0

a+ 1
4ρa+1, with

∫
ρd~r = E . (A.26)

The self-similar ansatz is based on the scaling property shown in section 3.2.4 and
is formulated in terms of some function f(~x):

ρ(~r, t) = t−αf(~r t−β). (A.27)

This gives the following derivatives:

ρ̇ = −αt−α−1f − t−α∇f · β~r/tβ+1, (A.28)

D0

a+ 1
4ρa+1 =

D0

a+ 1
t−α(a+1)4fa+1t−2β, (A.29)

where 4f denotes the Laplace operater acting on f(~x) with respect to ~x = ~r t−β.
The NDE hence results in:

t2β+αa−1 (−αf − β~x∇f) =
D0

a+ 1
4fa+1. (A.30)

As the rhs of this equation is independent of t, the following relation must hold:

αa+ 2β = 1 (A.31)

and the time dependence disappears in the scaled variable. Hence one is left with
an ODE for f :

− αf − β~x∇f =
D0

a+ 1
4fa+1 (A.32)

A second relation between α, β and a can be found by substituting the scaling ansatz
for ρ into the conservation law and assuming radial symmetry of ρ = ρ(r, t) with
r = |~r | (and x = |~x |) and accounting for dimensionality ~r ∈ Rd:

E =

∫ ∞
−∞

ρd~r = 2π

∫ ∞
0

ρ(r, t) rd−1dr

= 2πt−α
∫ ∞

0
f(x)tβxd−1t(d−1)βdx

= 2πtdβ−α
∫ ∞

0
xd−1f(x)dx.

(A.33)
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A.2. Derivation of the Self-Similar Solution

As E has to be independent of t, one finds:

α = dβ =
d

ad+ 2
, (A.34)

and hence the following ordinary differential equation for f(~x):

− d

ad+ 2
f − 1

ad+ 2
~x∇f =

D0

a+ 1
4fa+1. (A.35)

The whole problem is rotationally invariant and hence it is reasonable to seek for a
symmetric solution f = f(x) with x = |~x|. Then, denoting f ′ = df/dx, one gets:

D0

a+ 1

(
d− 1

x
(fa+1)′ + (fa+1)′′

)
+ βxf ′ + dβf = 0. (A.36)

After multiplying with x1−d, this can be rewritten as:(
xd−1 D0

a+ 1

(
fa+1

)′
+ βxdf

)′
= 0, (A.37)

which by integration yields:

xd−1 D0

a+ 1

(
fa+1

)′
+ βxdf = C. (A.38)

As this solution should describe spreading states, the following boundary conditions
can be claimed: f(x→∞)→ 0, hence C = 0 and thus:

D0f
a−1f ′ = −βx. (A.39)

A simple integration then gives:

D0

a
fa = −β

2
x2 + C, (A.40)

which can be solved easily by the function:

f(x) =

(
B − a

2(ad+ 2)D0
x2

)1/a

, (A.41)

where β = 1/(ad + 2) is substituted. From physical arguments, the density should
be postive, hence one also demands f(x) > 0, which means this is only a solution in
some region defined by the requirement:

x2 < x2
0 with x0 =

√
B

2(ad+ 2)D0

a
. (A.42)

Outside this region, the solution f = 0, i.e. ρ = 0 is taken. At the boundary these
solutions have to be connected and this represents severe mathematical difficulties
that require the notion of weak solutions as mentioned earlier. However, here it is
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just noted that this is possible and the above result indeed represents a reasonable
solution of the NDE. The integration involves one parameter B that can be related
to the energy E using (A.33):

E = 2π

∫ ∞
0

xd−1f(x)dx. (A.43)

= 2π

∫ x0

0
xd−1

(
B − a

2(ad+ 2)D0
x2

)1/a

dx (A.44)

with y =
a

2(ad+ 2)D0
x2

= π

(
2(ad+ 2)

a
D0

)d/2 ∫ B

0
yd/2−1(B − y)1/ady (A.45)

= π

(
2(ad+ 2)

a
D0

)d/2 Γ(1 + 1/a)Γ(d/2)

Γ(d/2 + 1/a+ 1)
B(ad+2)/2a, (A.46)

where Γ(x) is the usual gamma function. It is convenient to put all the constants
into one parameter µ(a, d,D0) and with α = d/(ad+ 2) one writes:

E =
1

µ
B
d/2αa. (A.47)

Note that in two dimension, i.e. d = 2, µ takes a value independent of a:

µ = (4πD0)−1. (A.48)

Resubstituting into (A.27) with ~x = ~r/tβ and adding a time offset t0, the full self-
similar solution is obtained:

ρ(~r, t) =

(t− t0)−α
(

(µE)2aβ − a
2(ad+2)D0

|~r|2
(t−t0)2β

)1/a
for |~r|2 < R2

0 for |~r|2 > R2
(A.49)

with α =
d

ad+ 2
and β = α/d =

1

ad+ 2
,

and R2 =
2(ad+ 2)D0

a
[(µE)a(t− t0)]2β . (A.50)

A.3. Spreading Properties of the Self-Similar Solution

To relate the spreading properties of the self-similar solution of the NDE to the ob-
servables of spreading states in Hamiltonian lattices, here some explicit calculations
of the second moment, the participation number and the structural entropy for the
self-similar solution will be given. In the following calculations, the time offset t0 is
neglected to avoid lengthy formulas, but it can be introduced simply by replacing t
with t− t0 everywhere.
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A.3. Spreading Properties of the Self-Similar Solution

A.3.1. Second Moment

To apply statistical methods to the self-similar solution, the normalized density
ρ(~r, t)/E is interpreted as probability distribution. Using the radial symmetry and
the fact that the center of the distribution is always at the origin, the following inte-
gral, already expressed in the radial coordinate r = |~r|, defines the second moment:

∆n2 =
2π

E

∫ ∞
0

r2ρ rd−1dr. (A.51)

Substituting the self-similar ansatz (A.27) and introducing x = rt−β, this gives:

∆n2 =
2π

E
t−α

∫ X

0
f(x)xd+1tβ(d+1)tβdx, (A.52)

where X = Rtβ = 2(ad + 2)D0(µE)2aβ/a does not depend on t. As α = dβ, one
finds:

∆n2 =
2π

E
t2β
∫ X

0
f(x)xd+1dx. (A.53)

Focusing only on the time dependence and with R ∼ tβ, the following relation,
claimed already in sections 3.4.1 and 3.4.2, is found:

∆n2(t) ∼ t2β ∼ R2(t). (A.54)

A.3.2. Participation Number

Here, the participation number for the self-similar solution of the NDE is calculated.
Like the second moment, P is defined as an integral:

P−1 =
2π

E2

∫ ∞
0

ρ2(r, t)rd−1dr. (A.55)

Again substituting the self similar ansatz and using x = rt−β gives:

P−1 =
2π

E2
t−2α

∫ X

0
f2(x)xd−1tβ(d−1)tβdr (A.56)

=
2π

E2
t−α

∫ X

0
f2(x)xd−1 dx. (A.57)

where α = dβ is used. The time dependence finally is obtained as:

P ∼ tα ∼ tdβ ∼ Rd, (A.58)

as claimed in sections 3.4.1 and 3.4.2.
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A.3.3. Entropy

Here, the time dependence of the entropy of the self-similar solution of the NDE is
calculated. The entropy is also defined straightforward interpreting ρ/E as proba-
bility density and using radial coordinates:

S = −2π

E

∫ ∞
0

ρ(r, t) ln(ρ(r, t)/E) rd−1 dr (A.59)

Writing ln ρ/E = ln ρ − lnE and integrating the second term one arrives, after
substituting the scaling ansatz ρ = t−αf(rt−β) and x = rt−β, at:

S − lnE = −2π

E
t−α

∫ X

0
f(x) ln(t−αf(x))xd−1tβ(d−1)tβ dr (A.60)

=
2π

E
t−α+dβ

∫ X

0
f(x)[ln t−α + ln f(x)]xd−1dx (A.61)

= α ln t− 2π

E

∫ X

0
f(x) ln f(x)xd−1dx, (A.62)

where the last integral does not include any dependence on t. Hence the time
dependence of the entropy is identified as:

S = α ln t+ const. (A.63)

For the structural entropy one then finds, using P ∼ tα from above:

Sstr = S − lnP = const. (A.64)

A.4. Averaged Hamiltonian for a Resonant Perturbation

Here, the averaging method will be applied to obtain an effective perturbation Hamil-
tonian 〈H1〉 describing the main resonance of two nonlinearly coupled, harmonic
oscillators with equal frequencies studied in section 4.3.1. Starting point is the full
perturbation H1 given in eq. (4.13):

H1 =− (2I)3/2ε cos3 θ cos(Ωt) + 3Iε2 cos2 θ cos2(Ωt)

− (2I)1/2ε3 cos θ cos3(Ωt)

=− (2I)3/2εA1 + 3Iε2A2 − (2I)1/2ε3A3

(A.65)

This perturbation arises from the quartic coupling λ = 4 and An(θ,Ωt) denote the
angular parts that will be averaged. Starting with the first term A1, naming ϕ = Ωt
and making heavy use of trigonometric identities, one finds:

A1 = cos3 θ cosϕ =
1

4
(3 cos θ + cos 3θ) cosϕ (A.66)

=
1

8
(3 cos(θ − ϕ) + 3 cos(θ + ϕ) + 3 cos(3θ − ϕ) + cos(3θ + ϕ)) . (A.67)
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A.4. Averaged Hamiltonian for a Resonant Perturbation

Now from the fact that the main resonance is analyzed, one assumes ω ≈ Ω,
where θ = ωt and hence θ ≈ ϕ. Introducing the slowly varying resonance vari-
able ψ = θ − ϕ, the first perturbation term A1 gives:

A1 =
1

8
(3 cosψ + 3 cos(ψ + 2ϕ) + 3 cos(3ψ + 2ϕ) + cos(3ψ + 4ϕ)) (A.68)

=
1

8
(3 cosψ + 3 cosψ cos 2ϕ− 3 sinψ sin 2ϕ (A.69)

+ cos 3ψ cos 2ϕ− sin 3ψ sin 2ϕ+ cos 3ψ cos 4ϕ− sin 3ψ sin 4ϕ).

Now the averaging over one period of the fast oscillation ϕ is performed where the
slowly varying resonance variable ψ is assumed to remain constant. Performing the
integration over one period ϕ = 0 . . . 2π, all but one terms evaluate to zero, hence:

〈A1〉 =
1

2π

∫ 2π

0
A1(ψ,ϕ)dϕ =

3

8
cosψ. (A.70)

Treating the second term A2 in a similar way results in:

A2 = cos2 θ cos2 ϕ =
1

4
(1− cos 2θ)(1− cos 2ϕ) (A.71)

=
1

4
(1− cos 2θ − cos 2ϕ+

1

2
cos 2(θ − ϕ)− 1

2
cos 2(θ + ϕ)). (A.72)

By introducing the resonance angle ψ = θ − ϕ one obtains:

A2 =
1

4
(1− cos 2ψ cos 2ϕ+ sin 2ψ sin 2ϕ− cos 2ϕ

+
1

2
cos 2ψ − 1

2
cos 2ψ cos 4ϕ+

1

2
sin 2ψ cos 4ϕ).

(A.73)

The averaging then gives:

〈A2〉 =
1

2π

∫ 2π

0
A1(ψ,ϕ)dϕ =

1

4
+

1

8
cos 2ψ. (A.74)

A similar calculation for A3 can be done and reveals the same result as for A1

because of the symmetry of the two terms:

〈A3〉 = 〈A1〉 =
3

8
cosψ. (A.75)

For the averaged perturbation one thus gets:

〈H1〉 = −(2I)3/2ε〈A1〉+ 3Iε2〈A2〉 − (2I)1/2ε3〈A3〉 (A.76)

= − 3

2
√

2
I3/2ε cosψ +

3

4
Iε2
(

1 +
1

2
cos 2ψ

)
− 3

4
√

2
I1/2ε3 cosψ. (A.77)

This is, after going back to θ − Ωt = ψ, the result used in section 4.3.1.
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