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Abstract 
 

This thesis discusses heat and charge transport phenomena in single-crystalline Silicon 

penetrated by nanometer-sized pores, known as mesoporous Silicon (pSi). Despite the extensive 

attention given to it as a thermoelectric material of interest, studies on microscopic thermal and 

electronic transport beyond its macroscopic characterizations are rarely reported. In contrast, 

this work reports the interplay of both. 

PSi samples synthesized by electrochemical anodization display a temperature dependence of 

specific heat 𝐶𝑝 that deviates from the characteristic 𝑇3 behaviour (at 𝑇 < 50𝐾). A thorough 

analysis reveals that both 3D and 2D Einstein and Debye modes contribute to this specific heat. 

Additional 2D Einstein modes (~3 𝑚𝑒𝑉) agree reasonably well with the boson peak of SiO2 in 

pSi pore walls. 2D Debye modes are proposed to account for surface acoustic modes causing a 

significant deviation from the well-known 𝑇3dependence of 𝐶𝑝 at 𝑇 < 50𝐾. 

A novel theoretical model gives insights into the thermal conductivity of pSi in terms of 

porosity and phonon scattering on the nanoscale. The thermal conductivity analysis utilizes the 

peculiarities of the pSi phonon dispersion probed by the inelastic neutron scattering 

experiments. A phonon mean-free path of around 10 𝑛𝑚 extracted from the presented model is 

proposed to cause the reduced thermal conductivity of pSi by two orders of magnitude 

compared to p-doped bulk Silicon. Detailed analysis indicates that compound averaging may 

cause a further 10-50% reduction. The percolation threshold of 65% for thermal conductivity 

of pSi samples is subsequently determined by employing theoretical effective medium models. 

Temperature-dependent electrical conductivity measurements reveal a thermally activated 

transport process. A detailed analysis of the activation energy 𝐸𝐴
𝜎  in the thermally activated 

transport exhibits a Meyer Neldel compensation rule between different samples that originates 

in multi-phonon absorption upon carrier transport. Activation energies 𝐸𝐴
𝑆 obtained from 

temperature-dependent thermopower measurements provide further evidence for multi-phonon 

assisted hopping between localized states as a dominant charge transport mechanism in pSi, as 

they systematically differ from the determined 𝐸𝐴
𝜎 values. 
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Introduction 
 

Today’s energy infrastructure is confronted with the problem of an extensive and ever 

increasing global energy consumption. It amounts already to 150000 𝑇𝑊ℎ per year [3], that is 

100 times more than roughly a century ago and a further, steep increase is expected.  

If one does not want to rely either on nuclear energy and the construction of new nuclear plants 

because of well-known safety and environmental concerns, or on non-renewable sources like 

coal, oil or gas with limited abundance, then one must explore novel energy sources and develop 

an efficient, economic, and preferably green energy infrastructure to satisfy this energy demand.   

Harvesting of sustainable energy in solar or wind parks, subsequent energy storage in novel ion 

batteries with high energy density or alternatively in the form of solar fuels through catalytic 

reactions, e.g., water splitting, as well as fuel cell technologies are considered as main pillars 

of the 21st century energy infrastructure [4, 5]. These technologies readily cover the chain that 

starts with harvesting energy and ends with using the energy.   

Recycling of waste heat is one important aspect that must be part of the next generation energy 

infrastructure. Energy generation processes that are dependent for instance on fossil fuels are 

highly inefficient [6, 7].  Coal plants exploit only 40% of the fuel’s energy content, 60% is lost 

in the form of waste heat [8].  The combustion of gasoline in cars is only to 20% efficient [9].  

These two examples are only a “tip of the iceberg” selection for inefficient technologies. In 

general, an unfavorable ratio of 1:3 is estimated between “used” energy and energy loss 

respectively waste heat. It becomes obviously a paradigm for the near future, to develop 

technologies that harvest these energy losses. To this end, recent years saw a renewed interest 

in thermoelectric materials. 

Thermoelectric materials are mostly solid-state systems [10]. They are capable to convert 

directly heat into electrical power and vice versa electrical power into temperature gradients 

[11, 12]. Envisioned applications for this material class include consequently but not 

exclusively thermal converters that harvest waste heat in exhaust systems, electric generators, 

and solid-state refrigerators without cryogenic and toxic liquids [13, 14].  

Thermoelectric materials do not only come along with the promise to harvest and convert heat.  

Rather it becomes possible to design a new generation of customer products. It is possible to 

conceive devices without moving parts that are wearing off. Devices come in reach, which are 
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exceptionally quiet but highly reliable. Wearable electronics that are powered by body heat [15, 

16] are envisioned for entertainment purposes as well as medical surveillance [17, 18]. 

The most used thermoelectric material of the past decades is bismuth telluride [19, 20]. 

Unfortunately, its conversion efficiency is too low to be of use for more than niche applications 

[21]. In general, state-of-the-art thermoelectrics are often plagued by low efficiencies, the need 

for non-abundant materials that are expensive and even toxic. Consequently, researchers 

identified the need for novel thermoelectric material classes, which overcome these obstacles. 

The efficiency of thermoelectric materials scales with the figure of merit 𝑧𝑇 = 𝜎𝑆2/𝜅 𝑇, which 

depends on electrical conductivity 𝜎, Seebeck coefficient 𝑆 and thermal conductivity 𝜅 as well 

as temperature 𝑇. Optimizing these parameters to obtain figure of merits way above unity is at 

the forefront of fundamental and applied research projects. Often, the slightly contradictory 

concept of an electron crystal and a phonon glass is propagandized [22, 23]. 

A main approach to improve the figure of merit is to manipulate the lattice thermal conductivity 

in crystalline thermoelectric materials [24, 25]. In skutterudites, rattler atoms are incorporated 

into the crystal to act as scattering centers for phonons thus reducing the thermal conductivity 

[26]. In nanostructured materials phonons are scattered at structural features like interfaces or 

boundaries [27, 28]. To improve electrical conductivity in thermoelectrics, doping or more 

challenging concepts like band engineering have been put forward [29]. 

So far, a material that fulfills all demands of being cheap, abundant, efficient and non-toxic has 

yet to be found. In all the existing research whether fundamental or applied, it becomes 

increasingly obvious that a thorough understanding of microscopic heat and charge transport in 

thermoelectric materials must at least accompany the quest for highly efficient systems. It is in 

this framework that the topic of this thesis was conceived.  

In this thesis, I discuss charge and heat transport in mesoporous Silicon that is a form of 

nanostructured Silicon proposed for thermoelectric applications. The outline of the thesis is 

subsequently described. 

Chapter 1 introduces the fundamental concepts of thermoelectricity. It critically reviews state-

of-the art thermoelectrics and discusses strategies to get improved thermoelectric materials. 

Mesoporous Silicon (pSi) is introduced as thermoelectric material of interest.  

Chapter 2 describes the synthesis of pSi by means of electrochemical anodization. It provides 

a comprehensive account on the experimental setup necessary for anodization. It finally details 

the chemical reaction processes during the synthesis. 



 
3 Introduction 

Chapter 3 gives an overview of the main experimental techniques used to characterize heat 

and thermoelectric transport in pSi. The morphology of pSi samples is characterized by sorption 

isotherm measurements and scanning electron microscopy. The thermal transport is 

investigated by means of a laser flash apparatus (LFA) and a physical property measurement 

system (PPMS). The PPMS system is also utilized to measure the temperature dependent 

specific heat of pSi. Thermoelectric transport measurements utilize the dedicated SBA- 

equipment. 

Chapter 4 concentrates on experimental results and their discussion. It presents a thorough 

interpretation of the temperature-dependent specific heat of pSi. A novel theoretical model is 

proposed to understand the thermal conductivity in pSi in terms of porosity and phonon 

scattering on the nanoscale. Electrical transport by multi-phonon assisted hopping between 

localized states is proposed as a dominant transport mechanism.   

Chapter 5 concludes the thesis highlighting key scientific results. 
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1. Theory and fundamentals 
 

1.1. Thermoelectric effects 

 

Thermoelectric materials (TEMs) exploit the Seebeck effect and the Peltier effect for electrical 

energy generation and cooling, respectively [12, 30].  

1.1.1. Seebeck effect 

 

In 1821, Thomas Johann Seebeck discovered that two dissimilar materials joined together 

generate a potential difference (𝛥𝑉) while two ends are held at different temperatures. Charge 

carriers (electrons and holes) diffuse from a hot side to a cold side attributed to their high energy 

in the hot regime. Thus, a charge difference builds up between the hot and cold side and 

produces voltage and electric current. The Seebeck effect can be described as 𝑆 =  − 𝛥𝑉/𝛥𝑇, 

where 𝑆 is the Seebeck coefficient, 𝛥𝑉 is the voltage difference, and 𝛥𝑇 is the temperature 

difference between hot and cold sides of the junction [10]. The sign of Seebeck coefficient tells 

about type of charge carriers in a material. The positive values indicate the presence of holes 

while the negative values show the presence of electrons [30]. 

1.1.2. Peltier effect 

 

In 1834, Jean Charles Peltier discovered that an electrical current can generate or remove heat 

at the junctions of two dissimilar conducting materials [12, 31]. For example, when a current 

passes through a circuit made of two different materials, Peltier heat absorbed at the junction 

can be measured with the relation, 𝑄 =  𝛱𝐼, where 𝑄 is the heat absorbed which is directly 

proportional to the current 𝐼, the proportionality constant being the Peltier coefficient 𝛱 of the 

materials used in the circuit [30]. 

Fig. 1-1 illustrates how a thermoelectric material can convert heat directly to electrical power 

(Seebeck effect) and how a material can heat up or cool down at an electrified junction (Peltier 

effect). 
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1.2. Thermoelectric Figure of Merit  
 

The energy conversion efficiency of TEMs is determined by the dimensionless figure of 

merit 𝑧𝑇 defined as: 

𝑧𝑇 =
𝑆2𝜎

𝜅
𝑇 =  

𝑆2𝜎

𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐+𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒
𝑇 (1.1) 

 

where 𝑆, 𝜎, 𝜅 and 𝑇 are the Seebeck coefficient, the electrical conductivity, the thermal 

conductivity and the absolute temperature at which material properties are measured, 

respectively. The themoelectric device’s efficiency is directly related to 𝑧𝑇.  

For power generation, the maximum efficiency 𝛷𝑚𝑎𝑥 can be expressed as: 

𝛷𝑚𝑎𝑥 = η𝑐𝛾 (1.2) 

where 

η𝑐 = 
𝑇ℎ−𝑇𝑐

𝑇ℎ
 (1.3) 

 

𝛾 =  
√1 + 𝑧𝑇 − 1

√1 + 𝑧𝑇 +
𝑇𝑐
𝑇ℎ
⁄

 

 

(1.4) 

 

Fig. 1-1  Illustration of how a thermoelectric material can convert heat directly 

into electrical power via Seebeck effect (Left) and how a material can heat up 

or cool down via Peltier effect (Right). 
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The maximum efficiency is the product of the Carnot efficiency η𝑐, and 𝛾, which incorporates 

the parameters of the materials. 𝑇ℎ and 𝑇𝑐 are the hot- and cold-end temperatures of the 

thermoelectric material of interest [30].  

Suitable thermoelectric materials have 𝑧𝑇 values close to unity. However, a 𝑧𝑇 value of up to 

three is essential for thermoelectric energy converters that could compete with the efficiency of 

mechano-electric power generators [32]. Since the 1960s, research has been devoted to 

identifying TEMs that could satisfy this requirement.  

A major challenge resides in three inter-connected physical properties used to calculate 𝑧𝑇, i.e. 

𝑆, 𝜎 and 𝜅. In order to obtain a high 𝑧𝑇 value, 𝑆 and 𝜎 should be high while 𝜅 should be reduced. 

Their interdependence has hindered the development of materials for thermoelectric 

applications [10, 12, 14, 32]. For their integration into devices, other challenges are 

encountered, such as the coupling of n‐ and p‐type materials with metallic contacts and the 

coefficient of thermal expansion for materials [14].  

1.3. Strategies to improve the thermoelectric Figure of Merit  
 

The record of 𝑧𝑇 ≈ 1 was broken in the mid-1990s by two different approaches: exploring new 

thermoelectric materials and reducing material dimensions [11, 23, 32-35]. 

1.3.1. Quest for new thermoelectric materials 

 

Thermoelectric effects were first investigated for metals as thermo-elements [35]. However, 

Altenkirch’s theoretical predictions for thermoelectric devices, clearly stated that metals were 

inefficient for thermoelectric applications [35]. Later, Goldsmid et al. contributed to finding the 

most suited semiconductors such as Bismuth Telluride (Bi2Te3) for thermoelectric devices [31]. 

Known as the first generation thermoelectrics with an average 𝑧𝑇 of about 1.0, these materials 

possessed device energy conversion efficiencies of 4‐6% [31, 36]. Extensive research led to the 

development of second generation thermoelectrics with 𝑧𝑇 ≈ 1.7 at high temperatures and 

device energy conversion efficiency of up to 12% [34]. These materials, namely clatharates, 

half-Heuslers, lead tellurides (LAST), and, loosely bonded atoms within a large cage exhibit 

the ‘rattling’ motion generating phonon scattering with minimal impact on charge transport 

[22]. Consequently, the thermal conductivity of these materials can be reduced while 

maintaining high electrical conductivity [14, 32, 34].  

Thermoelectric materials can be further classified into three groups with respect to their 

operating temperatures [30]. Bismuth, antimony, tellurium, and selenium-based alloys are 
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classified under low-temperature materials that can be used at temperatures up to around 450𝐾. 

Materials based on lead telluride belong to the intermediate temperature range up to around 

850𝐾 whereas thermoelectric materials employed at the highest temperatures are silicon-

germanium based alloys that operate up to 1300𝐾. The low 𝑧𝑇 values of commercially available 

thermoelectric materials limit the performance of thermoelectric devices. Metals and metal 

alloys (𝑧𝑇 ≪ 1) can, for example, only be applied in thermocouples to measure temperature. 

Semiconducting thermoelectric materials, such as Bi2Te3 and SiGe alloys with 𝑧𝑇 ≈ 1 are used 

in low-power cooling and low-power thermoelectric generators, such as beverage coolers and 

laser diode coolers, and power generators in space missions [10, 13, 37]. 

 

1.3.2. Nanostructured thermoelectric materials 

 

Nanostructured thermoelectric materials were introduced in the 1990s after the publication of 

Dresselhaus et al. that presented routes to tailor the otherwise interconnected physical 

parameters of 𝑆, 𝜎 and 𝜅 [38]. High 𝑧𝑇 values can be obtained by high 𝜎, a high 𝑆 and low 

𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 and 𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒of the material. 𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒 can be impaired by introducing phonon scattering 

centres within a material via nanostructuring [27, 28, 39]. Nanostructured materials exist in 

various forms, such as quantum wells, nanowires, quantum dots and superlattices [39-41]. 

Fundamentally, these materials can be differentiated based on their dimensionality [32, 

42]. Quantum wells are materials that are so thin as to be essentially of two dimensions. 

Quantum wires, also referred to as nanowires, have significantly small cross-sections and are 

considered one dimensional (1D). Quantum dots (QDs) are 2-10 nm sized tiny crystals. Charge 

carriers in QDs are confined in three dimensions. Superlattices are the multiple-layered 

structure of quantum wells [32]. Artificial boundaries and interfaces in these nanostructures 

reduce the phonon mean free path and increase diffuse scattering causing a significant reduction 

in thermal conductivity [43, 44]. However, electron scattering and charge carrier depletion 

through interface trapping in such systems also impairs electrical conductivity [45, 46]. 

Electrical conductivity can be controlled by doping while the preferential scattering of low-

energy electrons at grain boundaries can potentially enhance the Seebeck coefficient 𝑆 and 

hence the power factor 𝑆2𝜎 [47-49].  
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1.4. Synthesis of nanostructured thermoelectric materials 

 

Nanostructured thermoelectric materials can be synthesized by a variety of physical and 

chemical processes [50]. These methods can be classified under ‘top-down’ and ‘bottom-up’ 

approaches [41, 42]. The top-down approach refers to the reduction of micro and macro scale 

materials into nanoscale domains. Solid‐state synthesis followed by mechanical and melt 

alloying routes is a usually applied method utilized in this approach [41]. Solid‐state synthesis 

and melting techniques are renowned metallurgical processes. A stoichiometric ratio of high 

purity elemental components (in powder or compacted form) is heated or melted for long 

durations to obtain the desired thermoelectric phase [51]. In mechanical alloying, pure 

elemental micron size powders are ball milled to obtain submicron or nanoscale bulk TE 

materials [52]. 

Chemical fabrication methods are mainly bottom‐up approaches that allow a more desirable 

control over a TE material's particle size and morphology by optimizing various parameters. 

Solvothermal [53], hydrothermal [54], solution co‐precipitation [55], sol-gel [56], 

microemulsion [57], and electrochemical synthesis [58] are well known bottom‐up approaches 

[41, 50]. Solution co‐precipitation and solvothermal chemical reactions can produce various TE 

materials with improved thermoelectric performance [53, 55]. 

1.5. Mesoporous Silicon (pSi) 
 

1.5.1. Introduction 

 

Accidentally discovered at Bell Laboratories in 1956 [59], pSi gained attention of researchers 

in 1990s when L. Canham examined its optical properties [42]. Since then, pSi has emerged as 

a versatile material of interest for fundamental and applied research [60-62]. Silicon penetrated 

with pores is basically referred to as porous Silicon (pSi). It is classified as micro-, meso- and 

macro-porous Silicon according to the pore size regimes of < 2 𝑛𝑚 , 2 − 50 𝑛𝑚 and > 50 𝑛𝑚 

respectively based on the IUPAC classification of porous solids [63]. 

 

1.5.2. Synthesis routes 

 

There are several routes to synthesize porous Silicon such as stain etching [64], galvanic etching 

[65], metal assisted etching [66] and E-beam lithography [60, 67]. Approaches such as E-beam 

lithography yields regular nanostructured surface patterns but demands higher expenditures as 
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compared to financially feasible methods such as electrochemical anodization [60, 68, 69]. 

Electrochemically anodized free-standing pSi membranes come with benefits like scalability 

and a high degree of tunability [17, 70-72]. Anodization parameters allow controlling porosity, 

pore size distribution, pore connectivity and even pore orientation [69, 73]. 

 

1.5.3. Properties and applications 

 

Porous Silicon finds a multitude of potential applications in diverse fields such as 

optoelectronics, batteries and acoustics [40] [74]. Its biocompatibility makes it interesting for 

medical and diagnostic applications such as drug delivery and chip-based biosensing [17]. 

Filters and nanofluidics seek to benefit from the flow dynamics of gases and liquids in the pore 

network [75]. Huge internal surfaces are interesting for battery anodes and capacitors [76]. Its 

exceptionally low thermal conductivity allows its integration into thermoelectrics [77]. Other 

applications include molecular separation [78], bio-sensitivity [79] and tissue engineering [80]. 

 

1.5.4. Porous Silicon as a thermoelectric material of interest 

 

Initial work on Silicon nanowires with reported values of 𝑧𝑇 ≈ 0.5 − 1 at room temperature 

motivated the research on pSi as a thermoelectric material of interest [39, 43, 81-83]. PSi 

combines the Silicon advantages like abundance and processability with a robust and scalable 

fabrication process. However, in contrast to various reports concerning its application in 

optoelectronics and as an insulating material, there has been mainly theoretical research on its 

thermoelectric properties. The theoretical studies of pSi presented by Lee et al. reported a 

reduction in thermal and electrical conductivity at room temperature by a factor of 2 − 4 as 

compared to bulk Silicon [84]. They reported a two-fold increase in the Seebeck coefficient for 

carrier concentrations less than 2 × 10−19𝑐𝑚−3. From the reported results, 𝑧𝑇 was predicted to 

increase by two orders of magnitude compared to bulk Silicon. This enhancement of 𝑧𝑇 was 

attributed to a significant reduction in thermal conductivity compared to a moderate change in 

power factor. Experimental results for pSi with 35% porosity synthesized by block-copolymer 

lithography by Tang et al. reported temperature-dependent 𝑧𝑇 values of 0.05 at 150𝐾 to 0.4 at 

room temperature [85]. Electrical conductivity of around 1000 𝑆/𝑐𝑚 at room temperature was 

reported by Boor et. al. for post-doped pSi samples synthesized by electrochemical anodization 

[86]. Their pSi samples with 60% porosity exhibited effective thermal conductivity of 
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7.6 𝑊/𝑚𝐾 and 𝑧𝑇 values around 0.02 at room temperature, lower than 0.4 as reported by Tang 

et. al.  

These are only a few literature examples about thermoelectric properties of pSi probed by 

macroscopic thermal and electronic measurements. It is essential to have a coherent 

microscopic picture of charge and heat transport phenomena in pSi. In this context, pSi is 

discussed in the following sections as thermoelectric material of interest with detailed insights 

into its macroscopic and microscopic properties.   
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2. Synthesis of pSi 
 

This chapter introduces electrochemical anodization for the synthesis of pSi. Introduction to the 

experimental setup is followed by a description of the formation mechanism of pSi. Anodization 

conditions and their effect on pore size, geometry and porosity of synthesized pSi membranes 

are summarized. Subsequently, synthesis and chemical post treatment of as-etched pSi 

membranes is presented as a method to tune the pore size of pSi in the regime of 8-25 nm.  

 

2.1. Electrochemical anodization 

 

Electrochemical etching of single crystalline bulk Silicon in hydrofluoric acid (HF) based 

electrolytes is the most extensively used method for the synthesis of pSi [61, 68, 69, 72].  

 

2.1.1. Electrochemical anodization setup 

 

Anodization can be carried out using an HF-resistant container, electrodes and power supply. 

For an electrochemical reaction to occur, two electrodes are needed. One supplies electrons to 

the electrolyte solution (the cathode), and the other removes electrons from the solution (the 

anode). Fig. 2-1 presents a schematic of a two-electrode Silicon anodization cell.  

The cell body itself is made of an HF/organic solvent-resistant polymer, i.e. Teflon®, in which 

the electrolyte is placed. An HF resistant and electrically conductive material (Platinum in this 

case) is immersed in the electrolyte and serves as the cathode. In this configuration, a backside 

contact is used. Practically, the surface of the Si wafer, which is anodized, is the one that is in 

contact with the electrolyte, while the opposite side is placed in contact with a metallic plate 

(commonly Al). It serves as an anode, and thus the electrical circuit is closed. The two sides are 

isolated with an O-ring, and thus the electrolyte cannot reach the metallic backside contact. The 

O-ring is composed of HF and organic solvent resistant material, namely Viton®. 

 

2.1.2. Etching parameters 
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The most important etching parameters are the HF concentration, current density and etching 

time. With the appropriate resistivity and crystallographic orientation of the used silicon wafers, 

it is possible to control pore sizes, porosity and inter-connectivity of the etched pore networks 

[69]. 

 

Table 2-1. summarizes important parameters and their effect on pore size, porosity and etching 

rate of electrochemically etched pSi [62]. The resulting structure of pSi depends on the doping 

concentration of the Silicon substrate. More specifically, by anodizing highly doped Si 

substrates, vertical pores with dendritic–like structure are formed [87]. On the other hand, if the 

starting Silicon wafer is lightly doped, the pSi formed has a sponge-like structure [40, 69]. The 

latter material is homogeneous (with both pore diameter and inter-pore spacing typically 2-5 

nm) and isotropic in structure [88, 89]. An increase in the applied current density during etching 

results in pSi membranes with higher porosity and larger pores. A decrease in the concentration 

of HF in the electrolyte leads to higher porosities of the resulting porous Si membranes. The 

etching rate in Table 2-1 refers to the increase in Psi membrane thickness per unit time. 

 

 

 

 

 

Fig. 2-1 Schematic of a two-electrode Silicon anodization cell. 
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Table 2-1. Effects of key parameters on pSi formation 

Increased 

 
Yields  Porosity Pore Diameter Etching Rate 

HF Concentration Decreased Decreased Decreased 

Current Density Increased Increased Increased 

P type doping Decreased Decreased Increased 

N type doping Increased Increased Increased 

Etching time Increased Increased Almost constant 

 

 

In the current work, pSi samples were synthesized by electrochemical anodization of p-type 

(boron doped), [001] oriented Silicon wafers with a resistivity of 0.01 − 0.02 𝛺𝑐𝑚−1. 

Columnar pore channels (with 6 − 10 𝑛𝑚 sized pore diameter), along the [001] 

crystallographic direction, were grown by exposing the wafer to an electrolyte composed of HF 

and ethanol [HF (48%): Ethanol (99.9%)  4:6, 6:4 volumetric ratio] utilizing an etching 

current density of 𝑗 =  12 𝑚𝐴𝑐𝑚−2. Subsequently, after 4 − 6ℎ of anodization, an increased 

current density of  𝑗 =  132 𝑚𝐴𝑐𝑚−2 was applied for 60𝑠 to detach 160 − 250 𝜇𝑚 thick free 

standing pSi membranes from the supporting bulk Silicon wafers in a final lift-off step. 

 

2.2. Formation mechanism of pSi 
 

Dissolution of bulk Silicon and formation of pSi involves a series of electrochemical reactions 

[90] schematically illustrated in Fig. 2-2. Overall process of pSi formation can be expressed by 

an anodic reaction as:  

 

𝑆𝑖 + 4𝐻𝐹2
− + ℎ+ → 𝑆𝑖𝐹6

2− + 2𝐻𝐹 + 𝐻2 + 𝑒
− 

 

(2.1) 

  

The Si-H bonds passivate the silicon surface. Injection of the holes (ℎ+) from the bulk Si to its 

surface causes a nucleophilic attack of the fluorine anions on Si-H bonds and the formation of 

the Si-F bonds. Two hydrogen atoms combine consequently injecting an electron into the 

Silicon substrate. Polarization effect caused by the Si-F bonds leads to the nucleophilic attack 

by another fluorine anion that replace the second hydrogen atom. The Si-F bonds’ induced 

polarization cause the reduction of an electron density of the remaining Si-Si bonds. It makes 

them susceptible to the second nucleophilic attack by the fluoride anions causing the formation 

of Silicon tetra fluoride SiF4. It further reacts with hydrofluoric acid to form stable a fluoro-
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anion 𝑆𝑖𝐹6
2-. Overall, the reaction pathway cause the local removal of Silicon atoms forming 

pores at the regions where the concentration of holes is high.  

As the pore-wall thickness decreases, its resistance to hole transport increases. At a critical 

pore-wall thickness (typically a few nanometers for p-doped silicon), propagation of holes 

along thin silicon filaments (pore-walls) become less favourable than their propagation into the 

bulk Silicon wafer. The increased band gap resulting from quantum confinement causes holes 

to go out of pore walls into the bulk Silicon wafer. At higher current density, pore diameter 

increases cutting through the pore walls in a final lift-off step, detaching pSi membrane from 

the bulk Silicon wafer.  

 

 

 

 

 

 

 

 

 

  

 

 

2.3.  Chemical post-processing of as-etched pSi 
 

A subset of as-etched samples were post-treated at room temperature to increase the pore 

diameter. The post-treatment procedure developed in my work was an extension of the work of 

Kumar et al. [73]. In the cited reference, the membranes were exposed for several hours to 

hydrogen peroxide and hydrofluoric acid, a cyclic approach was used in the current work. 

Porous membranes were repeatedly bathed in H2O2 (98%) and HF (48%) each time for 30 

minutes (1 cycle). H2O2 oxidizes the branchy pore walls. The HF subsequently dissolves the 

formed SiO2. Stopping chemical post treatment after 3-, 6- or 9-cycles, results in different 

samples with varying pore diameter, porosity and specific surface. 

 

Fig. 2-2 Porous Silicon formation mechanism via anodization of Silicon in HF-based electrolyte. 
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3. Characterization techniques 
 

 

This chapter first presents the measurement techniques used to probe the morphology of 

synthesized pSi membranes. Furthermore, the employed macroscopic characterization methods 

are explained together with their fundamental principles and measurement parameters. 

3.1.  Scanning electron microscopy (SEM) 
 

SEM was utilized as a local probe to elucidate morphological characteristics of as-prepared 

mesoporous membranes. The SEM LEO Gemini microscope was used to obtain surface and 

cross-sectional images of pSi membranes. SEM microcgraphs of a porous membrane (Fig. 3-

1) show in a top view the surface morphology without depth information and in a side view a 

small part of the pore cross section. 

 

SEM surface and cross-sectional image of synthesized membranes illustrate polygonal-shaped 

pore growth along the [001] direction with dendritic branches. The top view exhibits a sponge‐

like densely distributed porous structure without long-range order. It allows the determination 

of the pore size distribution by using a dedicated image analysis algorithm [91]. It identifies the 

pores' polygonal contour lines and utilizes the enclosed area to calculate the equivalence radius 

of a circular pore. The resulting pore size distribution (PSD) is shown in the Fig. 3-2. The pore 

size here refers to the pore radius. Close inspection of PSD's obtained from the etched and back-

Fig. 3-1 SEM micrographs of pSi obtained from SEM LEO Gemini microscope employing 

15kV energy with magnification of 400KX. The scale bar represents 30 nm. (Left) Top 

view of the pores in etched silicon. (Right) Side view of pores. 
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side of the membrane shows variation in average radius up to 50% as compared to etched side. 

Detaching pSi membrane at higher current density increases the pore radius on the backside 

[2].  

 

 

3.2. Sorption isotherm 
 

The pore structure information in porous silicon is essential for controlling its structure and 

understanding its formation mechanism. One of the most widely used, robust methods of 

structural characterization of porous, especially mesoporous, materials are the measurements 

of sorption isotherms. Utilizing this technique, one may obtain information of internal specific 

surface, pore size distribution, and, under certain conditions, details of the pore space geometry 

[92]. It can be probed gravimetrically, volumetrically, or by optical reflectivity experiments 

[93, 94]. Thermoporometry has also emerged as an experimental method for structural 

characterization of mesoporous materials that complement sorption isotherm [95]. 

The gas sorption technique relates to the adsorption of nitrogen (or, less commonly, argon, 

xenon or krypton), at cryogenic temperatures, via adsorption and capillary condensation from 

the gas phase and subsequent desorption after complete pore filling. An adsorption-desorption 

isotherm is formed based on the relationship between the adsorbate gas pressure and the 

Fig. 3-2 SEM micrographs and the respective binary images of back-side of pSi (Top) 

and etched-side of pSi (Bottom), Pore contouring and obtained pore size distributions 

for both sides of pSi sample are presented (Right). The red line represents average 

PSD. The scale bars in the SEM images present 100 nm. An artefact due to pore-

contouring at the edge of the SEM image is marked. 

artefact 



 
17 Characterization techniques 

adsorbed/desorbed gas volume. The Nitrogen sorption measurement technique was used to 

determine pore volume and pore size distribution of pSi membranes. It measures volumetrically 

the total uptake of liquid nitrogen 𝑓 =  𝑁/𝑁0 in the pores as function of the reduced pressure 

𝑃𝑟𝑒𝑑  =  𝑃/𝑃0 at fixed temperature 𝑇 =  77 𝐾. 𝑁 and 𝑁0 relate here to the number of molecules 

physisorbed in the pores respectively required to fill the entire pore space whereas 𝑃 and 𝑃0 

refer to the nitrogen vapor pressure below and at  saturation (𝑃0(77𝐾) = 1013 𝑚𝑏𝑎𝑟). The 

characteristic dependence of filling fraction f on reduced pressure 𝑃𝑟𝑒𝑑 relates to physisorption 

of molecules on the pore walls at low pressures and capillary condensation in the pore centers 

at higher pressure. 

The sorption behavior of synthesized pSi sample is illustrated in Fig. 3-3 together with 

schematics of sorption phenomena occurring in the pore. At lower relative pressure, the sorption 

mechanism is comparable to that on plane surfaces [93]. Region A shows multilayer adsorption. 

After reaching a critical film thickness at B, region B-C indicates capillary condensation in the 

pore centers. The plateau near C indicates complete filling of the pores. Evaporation takes place 

at a pressure less than the pore condensation pressure (region D). Region E shows closure of 

the hysteresis loop corresponding to the adsorbed multilayer film in equilibrium with a vapor 

in the pore center.  

  

 

 

 

 

 

 

 

 

 

 

Fig. 3-3 Typical data presenting multilayer adsorption, pore condensation 

and hysteresis in mesoporous silicon. 
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The Kelvin equation relates the pore radius to the relative vapour pressure at which 

condensation occurs: 

𝑅𝑇𝑙𝑛 𝑃 𝑃𝑜
⁄ =  

−2𝛾𝑉

𝑟𝑚
 

(3.1) 

 

where  𝑟𝑚 is the radius of liquid adsorbate’s meniscus, 𝑃 refers to equilibrium vapor pressure 

of a curved meniscus of liquid in capillary/pore, Po is equilibrium pressure of bulk liquid , 𝛾  is 

surface tension of the liquid, 𝑉  refers to molar volume of condensed liquid in the pore and the 

universal gas constant 𝑅 = 𝑁𝐴 × 𝑘𝐵 where 𝑁𝐴 is Avogadro’s number (6.02 ×

1023molecules/mol) and 𝑘𝐵 is Boltzmann constant (1.38 × 10−23𝐽/𝐾). 

The pore radius 𝑟𝑝 = 𝑟𝑚 + 𝑡𝑎 where 𝑡𝑎 refers to the surface adsorbed layer's thickness 

(monolayer or multilayer, before pores filling). This model assumes that the liquid completely 

wets the pores. The smaller the pore radius, the lower the relative pressure at which 

condensation can occur at a given temperature [63, 93]. The Barrett-Joyner-Halenda (BJH)  

method relies on a systematic analysis of the desorption based on the Kelvin equation [93, 96]. 

The BJH analysis of the desorption measurements identifies an average pore radius of  𝑟 = 4 

nm for the synthesized pSi membranes.  

The Brunauer-Emmet-Teller (BET) method is an extensively used procedure to determine 

surface area of solid materials [97]. It involves utilizing the BET equation [92, 93, 97]: 

1

𝑀𝑎𝑑𝑠 ((
𝑃𝑜
𝑃⁄ ) − 1)

=  𝑎 +  𝑚 (𝑃 𝑃𝑜
⁄ ) 

(3.2) 

where 𝑀𝑎𝑑𝑠 refers to the specific amount of nitrogen adsorbed in mol/g at 𝑃/𝑃0 . Linear BET 

plot of 
1

𝑀𝑎𝑑𝑠((
𝑃𝑜

𝑃⁄ )−1)
 vs 𝑃 𝑃𝑜

⁄  restricted to a limited adsorption isotherm regime in the 𝑃/𝑃0 

range of 0.05 − 0.35 (for nitrogen isotherm) allows the extraction of the slope 𝑚 =
𝑐−1

𝑣𝑚×𝑐
 and 

intercept 𝑎 =
1

𝑣𝑚×𝑐
 . 𝑐 is BET constant and 𝑣𝑚 refers to monolayer absorbed gas volume. 

Numerical values of slope 𝑚 and intercept 𝑎 are utilized to solve for 𝑣𝑚 and 𝑐. Specific and 

total surface area 𝐴𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐/𝑡𝑜𝑡𝑎𝑙 is calculated via Eqn. 3.3 

𝐴𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 = 
𝐴𝑡𝑜𝑡𝑎𝑙 

𝑚𝑠𝑎𝑚𝑝𝑙𝑒
⁄     ,    𝐴𝑡𝑜𝑡𝑎𝑙 =  

𝑣𝑚𝑁𝐴𝐴𝑐𝑠
𝑉⁄  (3.3) 
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where 𝑚𝑠𝑎𝑚𝑝𝑙𝑒 refers to the sample’s mass, 𝑁𝐴 is the Avogadro’s number, 

𝑉 refers to molar volume of adsorbed gas and 𝐴𝑐𝑠 denotes cross-sectional area of adsorbate 

molecule (i.e ~16.2Å2 for nitrogen).  

𝐴𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 =  157 m2/g  was inferred from a Brunauer-Emmet-Teller analysis [93, 97] of the 

low-pressure part (multilayer regime) of the isotherm (Figure. 3-3) before onset of capillary 

condensation membrane volume and 𝑁0  allow finally a porosity estimate of  50%. 

 

3.3.  Inelastic neutron scattering 
 

Neutrons are particularly suitable for measurements of excitations because both their energy 

and wavelength can be simultaneously matched to the sample’s energy and length scales. 

Thermal neutrons which have a wavelength (~ 2 Å) similar to inter-atomic distances have an 

energy (20 meV) similar to elementary excitations in solids. This allows simultaneous 

information on the structure and dynamics of materials to be obtained and to measure dispersion 

relation ℏ𝜔(𝑞 ) of excitations.  

When neutrons are incident on a sample they can be transmitted, scattered or absorbed by the 

sample: Scattered neutron pattern is a specific function of angle 2𝜃 that is characteristic of the 

the sample’s structure. During the scattering process the neutron energy is either unchanged or 

it is gained or lost by the sample. The atom can recoil during the collision with the neutron in 

which case the neutron loses energy and the sample gains energy. Alternatively, if atom is 

already moving e.g. a phonon vibration, it transfers this energy to the neutron, the neutron gains 

energy and the sample loses energy. Elastic neutron scattering is when the neutron energy is 

unchanged. Inelastic neutron scattering occurs when the neutron gains or lose energy in the 

scattering process. 
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The collective motion of the lattice is a phonon. Their energies are quantized with each phonon 

having an energy ℏ𝜔 where 𝜔 refers to the atomic motion frequency associated with that 

phonon. Energy transfer between neutrons and phonons gives rise to neutrons' inelastic coherent 

scattering in which the neutron energy before and after the scattering process varies by an 

amount equal to phonon energy. 

Inelastic neutron scattering data is collected with PUMA, a thermal triple-axis spectrometer at 

the high-flux neutron research reactor FRM II in Garching, Germany. It is designed to probe 

the scattering function S (𝑄,⃗⃗  ⃗ 𝜔) of elementary excitations such as phonons and magnons in 

single-crystalline materials. Excitations with energies up to ℏ𝜔 = 100 meV and wavevectors 

of |𝑞 | = 12 Å-1 can be measured. 

All scattering experiments were performed at room temperature. Two types of scans were 

utilized to measure the phonon energy versus phonon wavevector dispersion relation ℏ𝜔(𝑞 ) in 

pSi and bSi along well-defined crystallographic directions. So-called constant-energy scans 

measure the intensity of scattered neutrons with fixed energy loss for different wavevector 

transfers 𝑞  as depicted in Fig. 3-5. They are suited to probe the low energy dispersion where 

the phonon energy ℏ𝜔 depends strongly on the probed phonon wavevector 𝑞 . So-called 

constant-𝑞  scans record the neutrons depending on the energy loss ℏ𝜔 at fixed wavevector 

transfer 𝑞 . They are typically performed closer to the boundary of the Brillouin zone where a 

weak 𝜔(𝑞 ) dependence is evident. PUMA measures neutrons with a fixed final wavevector 

incedent direction 
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Fig. 3-4 Scattering triangles depicted for both (a) an 

elastic scattering in which neutrons do not loose or gain 

energy (𝑘′ = 𝑘) and (b) inelastic scattering in which the 

neutron either loses energy (𝑘′ < 𝑘) or gains energy (𝑘′ >
𝑘) during the interaction. In both, (a) and (b), the neutron 

is scattered at an angle 2𝜃, and the scattering vector is 

given by the vector relationship �⃗� = �⃗� − 𝑘′⃗⃗  ⃗.  

 

 

Fig. 3-5 Scattering triangles depicted for both (a) an 

elastic scattering in which deflected neutron doesnot loose 

or gain energy (so 𝑘′ = 𝑘) and (b) inelastic scattering in 

which the neutron either loses energy (𝑘′ < 𝑘) or gains 

energy (𝑘′ > 𝑘) during the interaction. In both, (a) and 

(b), the neutron is scattered through the angle 2𝜃, and the 

scattering vector is given by the vector relationship 𝑄 =
𝑘 − 𝑘′.  
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|�⃗� 𝑓| = 4.11 Å-1 and varies the incident wavevector �⃗� 𝑖  for the constant-𝑞  scans. For the constant-

energy scans both |�⃗� 𝑖| and |�⃗� 𝑓| are fixed. Representative scans obtained from PUMA are shown 

in Fig. 3-6. 
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Fig. 3-5 Pictorial illustration of a neutron scattering experiment where (a) the phonon dispersion 

 𝜔(𝑞 ) is probed vertically (𝑞 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) and horizontally ( 𝜔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). (b)+(c) depicts the 

neutron intensity 𝐼 against 𝜔 for the probed dispersion regions. Constant-𝜔 scans probe the low 

energy dispersion whereas constant-q scans probe dispersion closer to the Brillouin zone boundary.   
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The neutron scattering experiments are conceived to elucidate phonons along high symmetry 

directions in the Brillouin zone of Silicon as depicted in Fig. 3-7. Probed are 

specifically Γ𝐿,  Γ𝐾  and Γ𝑋 directions. All information about the phonon dispersion are 

contained within the first Brillouin zone and depend solely on the reduced phonon wavevector 

𝑞   [98].  However, inelastic scattering of neutrons on phonons increases with the absolute 

wavevector transfer �⃗� = �⃗� 𝐵𝑟𝑎𝑔𝑔 + 𝑞   [99] between neutron and lattice. Consequently, phonons 

are best measured in the highest instrumentally accessible Brillouin zones to maximize 

scattering intensity and consequently to improve signal-to-noise ratios. 

Fig. 3-6 (a) A 10 meV transverse phonon is evident in a q-scan along the [110] direction that is measured around 

the (004) Bragg reflection (black symbols). The instrumental configuration of the triple-axis spectrometer PUMA 

probes the phonon in a defocusing condition (q < 0) and a focusing condition (q > 0). Non-linear least squares 

fitting employing two Gaussians  is utilized to extract the wave-vector q of the 10 meV phonon (red line) (c) For a 

wavevector transfer of q =1.06  Å-1 the [110] transverse phonon is evident in an 𝜔 scan for an energy transfer of 

approximately 28 meV. Non-linear least squares fitting employing one Gaussian and a polynomial background is 

utilized to extract the energy of the phonon (red line) (b) + (d) Residual between non-linear least squares 

approximation and the data. 
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3.4.  Electrical conductivity and Seebeck measurements 
 

 

 

Temperature-dependent electrical conductivity and Seebeck coefficient for as-etched and post 

treated pSi samples were measured simultaneously using the NETZSCH SBA-458 system in 

the temperature range from 300𝐾 to 773𝐾 in helium atmosphere. The device's measurement 

part contains four pins linearly in contact with the sample's lower surface that faced the 

electrolyte during synthesis, as shown in Fig 3-8. Two outer rhodium pins inject current through 

the sample while Inconel covered type K thermocouples measure voltage.  

This four-point probe configuration enables the measurement of in-plane electrical conductivity 

with maximum current of 1 𝑚𝐴. The thermopower is determined from the voltage drop across 

Fig. 3-7 First Brillouin zone of a fcc lattice: Dotted arrows mark the cubic [100] directions. 

Red arrows show the high symmetry directions. 

Fig. 3-8 Measurement setup of the Netzsch SBA 458 Nemesis® 

current pin 

thermocouple sample 

support 

heater 

furnace 

∆U 

∆T 
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the thermocouples and temperatures measured at the thermocouples with a thermal gradient 

∆𝑇 <  7.5𝐾 created by successive heating of both sample holder sides. The main drawback of 

the two-point probe technique is the contact resistances. Mainly, the measured resistance 

includes the contact resistances, which introduces significant errors. Thus the obtained 

resistivity value is much less accurate. However, this uncertainty can be surmounted using the 

four-point probe method.  

The value of determined 𝑆 is positive for p-type semiconductors or negative for n-type 

semiconductors, where the transport carriers are holes or electrons, respectively. Fig. 3-9. 

presents temperature dependent electrical conductivity and Seebeck coefficient of pSi 

membranes 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Heat capacity measurements 

 

The  Quantum design physical property measurement system (PPMS) was utilized to measure 

heat capacity 𝐶𝑝 in the temperature range of 2𝐾 –  380𝐾 at a constant pressure. 

Fig. 3-9 Temperature dependent Seebeck coefficient and electrical conductivity of as-etched pSi samples (red 

stars) and bulk Silicon (black circles). For some data points, error bars are of a similar size than the symbols. 
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𝐶𝑝 = (
𝛿𝐻

𝑑𝑇
)
𝑝

 
(3.4) 

𝐻 refers to enthalpy in Eqn. 3.4. The heat capacity option of PPMS utilizes a relaxation 

technique proposed by Hwang et al. [100]. The heat capacity sample holder uses the standard 

PPMS 12-pin format for electrical connections, and it contains a small microcalorimeter 

platform for mounting the sample. PSi samples were mounted to this platform by a standard 

cryogenic Apiezon grease that also acts as a heat transfer material between the sample and the 

platform. Eight thin wires serve as the electrical leads for an embedded heater and thermometer 

connected to the sample platform. The measurement involves heating the sample for a fixed 

time followed by cooling for the same time duration.  The sample's entire temperature response 

is fitted to a model that considers both (i) the sample platform's thermal relaxation to the bath 

temperature and (ii) the relaxation between the sample platform and the sample itself. The latter 

is considered in case of the poor thermal connection between the sample and the platform. This 

modelling ensures correct heat capacity values despite poor thermal contact. 

PPMS software utilises two thermal models, the one-tau model and the two-tau model, to fit 

the temperature response curve. The one-tau model treats the sample and the platform (on which 

the sample is mounted) as one system, whereas in the two-tau model, a heat flow between the 

sample and the platform is considered as well. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-10 Heat flow diagram for (a) One-tau model where 𝐶𝑡𝑜𝑡𝑎𝑙 is the heat capacity of the whole system and 𝜅𝑤 

denotes thermal conductivity of the wires. 𝑇𝑏  is the bath temperature. (b) Two-tau model where 𝜅𝑔 is the thermal 

conductivity of the grease. 𝐶𝑝𝑙, 𝑇𝑝𝑙 and 𝐶𝑠, 𝑇𝑠  are the heat capacity and temperature of the platform and sample 

respectively. 
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In one-tau model, the temperature 𝑇 of the whole system as a function of time 𝑡 obeys the Eqn. 

3.5. 

𝐶𝑡𝑜𝑡𝑎𝑙
𝑑𝑇

𝑑𝑡
= −𝜅𝑤(𝑇 − 𝑇𝑏) + 𝑃(𝑡) 

(3.5) 

  

where 𝐶𝑡𝑜𝑡𝑎𝑙 is the total heat capacity of the sample and sample platform, 𝑃(𝑡) is the power of 

the heater, 𝜅𝑤 is the thermal conductivity of the supporting wires and 𝑇𝑏 is the bath temperature. 

A constant power 𝑃 is applied during the heating part of the measurement and is kept zero 

during the cooling part. The differential Eqn. 3.5 is solved for 𝑇(𝑡) as: 

 

𝑇(𝑡) =

{
 
 

 
 𝑃𝜏 (1 − 𝑒

−𝑡
𝜏⁄ )

𝐶𝑡𝑜𝑡𝑎𝑙 + 𝑇𝑏
                           0 < 𝑡 < 𝑡0

𝑃𝜏 (1 − 𝑒
−𝑡0

𝜏⁄ ) 𝑒
−(𝑡−𝑡0)

𝜏⁄

𝐶𝑡𝑜𝑡𝑎𝑙 + 𝑇𝑏
               𝑡 > 𝑡0

  

(3.6) 

 

where 𝜏 =
𝐶𝑡𝑜𝑡𝑎𝑙

𝜅𝑤⁄  is a characteristic time constant. 

In Eqn. 3.6, the first line describes the heating part. At 𝑡 = 0, the heater is turned on, and the 

temperature increase till the temperature 𝑇𝑏 + 2% is reached at time 𝑡 = 𝑡0. Subsequently, the 

heater switches off, and the bath temperature is attained again, described by the second line. In 

the one-tau model, the sample's heat capacity is the difference between the measured heat 

capacity with and without the sample. 

The two-tau model is used by the PPMS software when the sample has a poor thermal contact 

with the platform. The following equations govern the two-tau model: 

𝐶𝑝𝑙
𝑑𝑇𝑝𝑙

𝑑𝑡
= 𝑃(𝑡) − 𝜅𝑤(𝑇𝑝𝑙(𝑡) − 𝑇𝑏) + 𝜅𝑔(𝑇𝑠(𝑡) − 𝑇𝑝𝑙(𝑡)) 

(3.7) 

𝐶𝑠
𝑑𝑇𝑠
𝑑𝑡

= −𝜅𝑔(𝑇𝑠(𝑡) − 𝑇𝑝𝑙(𝑡)) 
(3.8) 

 

where 𝐶𝑝𝑙 is the platform’s heat capacity, 𝑇𝑝𝑙(𝑡) and 𝑇𝑠(𝑡) are the temperatures of the platform 

and sample, respectively, 𝜅𝑔 is the thermal conductivity of the grease, and 𝐶𝑠 is sample’s heat 
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capacity. The choice of model by the software is based on the fit deviation of the two models. 

In our experiments, the data is obtained by one-tau model. 

 

3.6. Thermal conductivity measurements 

 

Thermal conductivity data was measured in the temperature range from 2K to 670K. The PPMS 

setup was used to determine in-plane thermal conductivity in a temperature range of 2K to 

380K. For a higher temperature range of 300𝐾 − 670𝐾, laser flash analysis (LFA) was used to 

measure  the thermal diffusivity that further enables the calculation of temperature-dependent 

cross-plane thermal conductivity.  

3.6.1. Physical property measurement system (PPMS)  

 

For conducting the PPMS measurement, the pSi sample is placed between a heat source and a 

heat sink. The sample is heated via current heat from a heater with known steady-state power. 

The temperature difference ∆𝑇 as a function of time 𝑡  across a given length 𝐿 of the sample is 

modelled as follows: 

 

∆𝑇𝑚𝑜𝑑𝑒𝑙,ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = ∆𝑇∞ × [1 −
[𝜏1 ×  𝑒𝑥𝑝 (−

𝑡
𝜏1
) − 𝜏2 ×  𝑒𝑥𝑝 (−

𝑡
𝜏2
)]

𝜏1 − 𝜏2 
] 

 

(3.9) 

 

where ∆𝑇∞ is the expected steady state value, 𝜏1 and 𝜏2 are long and short thermal time 

constants respectively, in seconds ( 𝜏1 for the sample and 𝜏2 for the environment). 

Subsequently, the thermal conductivity 𝜅 of the sample is calculated via Fourier’s law of heat 

conduction: 

𝜅 =
𝑄𝐿

𝐴∆𝑇
 

(3.10) 

𝑄 = 𝑃 − 𝑄𝑙𝑜𝑠𝑠 (3.11) 

 

where 𝑄 is the amount of heat passing through the sample, 𝐴 is the sample's cross-sectional 

area, 𝐿 and ∆𝑇 refer to the distance and temperature difference between thermometers 

respectively. 𝑃 = 𝐼2𝑅 is the applied heating power via heat source. The sample is heated via 

application of current  𝐼 through the heater with known resistance 𝑅. 𝑄𝑙𝑜𝑠𝑠  =  𝜎𝑇 × (
𝑆

2
) × 휀 ×
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(𝑇ℎ𝑜𝑡
4 − 𝑇𝑐𝑜𝑙𝑑

4 ) denotes heat losses due to radiation from the sample. 𝑆 is the sample surface 

area, 휀 is the infrared emissivity, 𝑇ℎ𝑜𝑡 and 𝑇𝑐𝑜𝑙𝑑 are average temperatures of the hot and cold 

thermometers respectively. 𝜎𝑇 = 5.67 × 10
−8𝑊𝑚−2𝐾−4 is the Stefan-Boltzmann constant. 

The 
1

2
 factor is due to the approximation that only half of the sample radiates at hot temperature, 

while the other half is at cold temperature. Infrared emissivity = 1 was employed as an 

approximated value suggested for nonmetallic sample surface in the PPMS manual.   

 

Fig. 3-10 shows example plots of temperature dependent specific heat capacity and thermal 

conductivity of pSi sample and corresponding bulk Si reference sample. Distinct thermal 

transport properties of pSi as compared to bulk Silicon is evident in Fig. 3-10. 

 

 

3.6.2. Laser flash analysis (LFA) 

 

The laser flash analysis (LFA) method was used to measure temperature dependent thermal 

diffusivity 𝛼(𝑇) followed by thermal conductivity 𝜅 calculation. The thermal diffusivity 𝛼(𝑇) 

is a material-specific property defined as the rate of temperature spread through a material.  

The sample is placed on a sample robot, which is enclosed by a furnace. For the measurement, 

the furnace is held at a predetermined temperature. A programmable laser pulse (≤ 1 𝑚𝑠𝑒𝑐) 

irradiates one side of the sample, resulting in a temperature rise at the opposite side. A high-

speed IR detector measures the resulting temperature rise of the opposite side of the sample. 

Thermal diffusivity is computed from the ∆𝑇 vs time 𝑡 data. 

 

Fig. 3-10 Temperature dependent specific heat capacity and thermal conductivity of pSi samples and bulk Si obtained 

from PPMS measurement.   
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Various thermal models exist for this purpose, including the original model by Parker et al. 

[101] and its refined versions by Cowan and Cape and Lehman [102]. In the Parker’s model, 

the sample’s thermal diffusivity is calculated based on only one parameter of the temperature 

curve - the time 𝑡1/2 in which the reverse-side temperature reaches one-half of its maximum 

value. Thermal diffusivity is related to the sample thickness 𝑑 and the half time 𝑡1/2 as:  

 

𝛼 = 0.1388
𝑑2

𝑡1/2
 

(3.12) 

 

Parker’s model assumes an isotropic and adiabatic sample (with no heat loss during the 

measurement). Other assumptions include infinitely short pulse time and that the total radiation 

is absorbed in the thin layer of material near the surface. Since this method assumes ideal 

conditions of adiabatic sample and rapid pulse heating, it is somewhat limited in applicability. 

Other methods make it more suitable to experimental conditions, which consider heat losses, 

finite pulse duration, non-uniform pulse heating, and composite structures [101-104]. For 

example, Cowan added the correction regarding heat losses from both the sample's upper and 

lower surfaces [105]. Cape and Lehman analyzed the effects of radiation at high temperatures, 

the finite duration of the heating pulse, and the feasibility of low-temperature measurements 

[102]. The Cape-Lehmann model together with laser pulse correction model was used in the 

current work to determine the thermal diffusivity of pSi samples. It was followed by a thermal 

conductivity calculation by the following equation:  

 

𝜅 = 𝛼(𝑇)𝐶𝑝(𝑇)𝜌𝑝𝑆𝑖 (3.13) 

∆𝑻𝒎𝒂𝒙 

𝟏
𝟐⁄ ∆𝑻𝒎𝒂𝒙 

𝑡1/2 

Theoretical adiabatic curve 

Fig. 3-12 (Right) LFA-457 measurement principle and (Left) obtained signal curve (V against 𝑡) where ∆𝑇 ∝ V. 

Red line represents Cape-Lehmann and laser pulse correction model-fit 
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where 𝐶𝑝(𝑇) is temperature dependent specific heat of the sample measured from differential 

scanning calorimetry and 𝜌
𝑝𝑆𝑖

is the density of pSi sample with respect to bulk Silicon density 

𝜌𝑆𝑖  and porosity 𝜑 (as determined from sorption measurements) of pSi sample as: 

 

 𝜌𝑝𝑆𝑖 = (1 − 𝜑) 𝜌𝑆𝑖 (3.14) 

 

Fig. 3.13 presents temperature dependent thermal conductivity of pSi and p-doped bulk Si 

reference obtained from LFA measurement. Upon nanostructuring, pSi shows a reduction in 

thermal conductivity of about two orders of magnitude as compared to p-doped bulk Si.  

 

  

Fig. 3-13 Temperature dependent thermal conductivity of as-etched pSi samples (red stars) and p-doped bulk 

Silicon (black circles). 
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4. Results and discussion 
 

4.1.  Phonons in porous Silicon 

 

PSi has been proposed as thermoelectric material of interest in various studies [2, 27, 106-108]. 

Notably, thermal conductivity is envisioned to be manipulated by increasing the diffuse 

scattering of phonons at artificial interfaces, e.g. pore walls [109, 110] and the phonon 

dispersion relation is manipulated, for example, via bandgap engineering [24]. While there are 

various theoretical studies on this topic, experimental investigations beyond macroscopic 

sample characterization are few [111]. Experimental, microscopic studies are essential for 

insights into atomistic interactions in nanostructures. Such interactions are encoded in the 

complex dispersion relation [2, 111]. Concerning thermoelectric research on pSi, it is vital to 

study the influence of pSi phonon dispersion on macroscopic quantities such as thermal 

conductivity. 

In the current work, inelastic thermal neutron scattering was used to probe microscopic 

information about phonons across the entire Brillouin zone. It must be considered solely 

sensitive to the properties of the silicon skeleton when the probed phonon wavelengths become 

smaller than the length scale of structuring. However, the experimental demand for macroscopic 

amounts of nanostructured material (≈ 1 cm3) with well-aligned crystallographic orientation is 

a formidable obstacle.  This section presents the insight into phonon dispersion of pSi with 

pores roughly 2R ≈ 8nm across at a porosity of 𝜑 ≈ 50% that is obtained by thermal neutron 

scattering experiments. 

4.1.1. Modelling phonon dispersion 

 

The arguably most intuitive approach to analytically describe the transverse and longitudinal 

phonon dispersions along the high symmetry directions of silicon are one-dimensional chain-

like models. These models readily predict the collective motions of entire planes. Depending 

on the desired degree of approximation, they account for the interaction between neighboring 

lattice planes up to an arbitrary order that are for instance nearest neighbor and next nearest 

neighbor interactions. The entire approach, although simplified, bears a striking resemblance to 

more fundamental Born-von-Kármán calculations [112] and was used here. 

The phonon dispersion for a linear chain of planes is given by 
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𝜔2 = ∑𝐷𝑖

∞

𝑖=1

(1 − cos(𝑞𝑖𝑎)) 
(4.1) 

 

Here, 𝑎 is the distance between adjacent planes, 𝜔 is the frequency of the phonons, and 

𝐷𝑖  encodes the interaction between planes. 

From Eqn. 4.1 the sound velocity is inferred in the low-𝑞 limit to be 

𝑣𝑠 = √∑𝑖2𝐷𝑖
𝑎

2

∞

𝑖=1

 

(4.2) 

 

There are three independent components 𝑐𝑖𝑗 of the stiffness tensor in crystals with cubic 

symmetry. These elastic moduli 𝑐11, 𝑐12  and 𝑐44  relate to the sound velocities in the 

crystallographic directions [ℎ𝑘𝑙] via the general expression 

𝑣𝑇/𝐿
[ℎ𝑘𝑙] = √

𝑓𝑇/𝐿
[ℎ𝑘𝑙] (𝑐11, 𝑐12, 𝑐44)

𝜌
 

(4.3) 

 

where 𝜌 = 2.33 𝑔𝑐𝑚−3 is the silicon mass density and 𝑓𝑇/𝐿
[ℎ𝑘𝑙]  are functions of the three 

independent elastic constants  [2].  It is 

𝑓𝐿
[100] = 𝑐11 

𝑓𝑇
[100] = 𝑐44 

𝑓𝐿
[110] = 

𝑐11 + 𝑐12 + 2𝑐44
2

 

𝑓𝑇
[110] = 𝑐44 

𝑓𝐿
[111] = 

𝑐11 + 2𝑐12 + 4𝑐44
3

 

𝑓𝑇
[111] = 

𝑐11 + 𝑐12 + 𝑐44
3

 

 

(4.4) 

 

 



 
33 Results and discussion 

Knowledge of transverse and longitudinal sound velocities in different crystallographic 

directions allows employing an optimization scheme [2] to determine directly the three elastic 

constants or related quantities like Young moduli 𝑌[ℎ𝑘𝑙] . 

For the non-linear least squares approximation of the phonon dispersion (Fig 4-1) the limited 

number of data points necessitates a conservative approach of minimal number of fitting 

parameters. Consequently, for transverse phonons, the sum in Eqn. 4.2 is truncated at 𝑖 = 2 and 

for longitudinal ones already at 𝑖 = 1. 

 

 

It is important for nanostructured materials like pSi to distinguish between micro- and 

macrostructural properties. Experiments often probe effective quantities averaged and 

homogenized over length scales 𝑙 that are significantly larger than the structuring length 𝑑. In 

such a case 𝑙−1𝑑 ≪ 1 and experiments do not necessarily provide access to microscopic 

properties on the nanoscale. 

Acoustic transmission spectroscopy [113] was employed to study acoustic sound waves in the 

limit of long wavelengths 𝑞 → 0 Å-1, where 𝑞 refers to the wavevector of the respective 

Fig. 4-1 Dispersion of longitudinal and transverse phonons in bSi (open symbols) and in porous 

silicon (filled symbols) along high symmetry directions [100] ( 𝛤𝐿) [110] (𝛤𝐾) and [111] (𝛤𝑋): 

Labels indicate the Bragg reflection at which the phonons were measured. Colored lines (dashed, 

solid) represent Born-von-Kármán approximations of the different dispersion branches. 
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vibrational mode. In the analysis of these experiments, pSi was inherently treated as an effective 

medium that consists of a single-crystalline silicon skeleton penetrated by nanometer sized 

pores. The technique provided consequently insights into the porosity-dependent sound 

velocities and elastic properties of the compound material. Brillouin scattering [114] probes 

phonons close to the center of the Brillouin zone and data analysis again treats pSi as continuum 

to obtain averaged material properties. 

If at all, macroscopic measurements allow inferring microstructural properties only indirectly 

from more or less complex data modeling [115-117]. Thermoelectric transport measurements 

on pSi provide effective thermal conductivities, effective electrical conductivities and effective 

Seebeck coefficients. Relating these effective quantities to microscopic properties requires at 

least spatial averaging over interconnected Si-walls and a geometrically complex pore space to 

properly account for the sample morphology.  

However, in general it is not sufficient to treat properties within effective medium theories [118] 

that relate heterogeneous systems to the properties of a homogenized ‘bulk’ reference system. 

On nanometer-sized length scales matter behaves fundamentally different than on macroscopic 

length scales characteristic for bulk systems. In the case of lattice thermal conductivity for 

instance novel aspects like phonon confinement and additional phonon boundary scattering at 

interfaces have to be considered carefully on the nanoscale [117]. 

The interpretation of macroscopic, mechano-elastic experiments [115, 116, 119] to obtain the 

elastic moduli of the nanostructured Si-skeleton in pSi is similarly challenging. Macroscopic 

deformation experiments can be analyzed by means of finite element calculations that include 

the microscopic properties of the Si-skeleton as adjustable parameters. However, the 

implementation of the complex sample topology is an obvious obstacle to overcome. 

This study does not follow the approach to determine the elastic properties of the pSi-skeleton 

indirectly from macroscopic measurements. 

In contrast, it utilizes inelastic thermal neutron scattering as a microscopic probe to determine 

the elastic moduli directly. The neutron scattering experiments elucidated the dispersion for 

phonons with wavelengths smaller than 2𝑛𝑚 that is well below the structuring length scale of 

pSi (𝜑 ≈  50% , 𝑅 ≈  4𝑛𝑚). An analysis of this dispersion within the framework of Born-von-

Kármán models allowed inferring sound velocities in the Si-skeleton and subsequently the 

differences between bulk and nanostructure elasticity. 
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Fig. 4-1 exhibits the bona-fide indistinguishable phonon dispersions of pSi and bSi for 

longitudinal and transverse phonons (symbols) along the high symmetry directions Γ𝐿,  Γ𝐾  and 

Γ𝑋. The dashed lines represent data modeling according to Eqn. 4.1. An excellent agreement 

between data and the non-linear least squares approximation of Eqn. 4.1 is evident. 

Table 4.1 lists sound velocities for pSi and bSi, which are calculated with Eqn. 4.2 using the 

optimized model parameters 𝐷𝑖 . The sound velocities in the pSi-skeleton with 8𝑛𝑚 wide pores 

and bSi differ by less than 1% in average. The experimentally estimated sound velocities in bSi 

however deviate systematically by 5-10% from accepted literature values. This systematic error 

in the sound velocities forbids the discussion of the elastic moduli in terms of absolute values 

but does not affect the direct comparison between pSi and bSi. 

 

Table 4-1 Sound velocities for transverse and longitudinal phonons in bSi and pSi in the [100], [110], and [111] 

directions. 

 𝒗𝑻
[𝟏𝟎𝟎] 

[m/s] 𝒗𝑳
[𝟏𝟎𝟎] 

[m/s] 𝒗𝑻
[𝟏𝟏𝟎] 

[m/s] 𝒗𝑳
[𝟏𝟏𝟎] 

[m/s] 𝒗𝑻
[𝟏𝟏𝟏] 

[m/s] 𝒗𝑳
[𝟏𝟏𝟏] 

[m/s] 

bSi 5485 ± 29 8992 ± 18 5350 ± 39 8339 ± 48 5124 ± 37 10105 ± 35 

pSi 5454 ± 40 8999 ± 16 5425 ± 52 8275 ± 50 4971 ± 79 10197 ± 41 

bSilit  [2] 5844 8433 5844 9134 5094 9356 

pSi/bSi 0.99 1.00 1.01 0.99 0.97 1.01 

 

Components of the stiffness tensor 𝑐𝑖𝑗  and uniaxial Young moduli for pSi and bSi in Table 4.2 

are derived with Eqn. 4.3. These results refine previous estimates in [2] for the effect of 

nanostructuring on the microstructural elastic properties of Si. Elastic moduli in pSi are reduced 

in average by less than 5% compared to bSi. Given the fairly conservative error estimates, one 

is indeed inclined to dispute any effect of nanostruturing on the elastic properties at all. 

 

Table 4-2 Elastic moduli and uniaxial Young moduli for pSi and bSi as obtained from inelastic thermal neutron 

scattering experiments. 

 𝒄𝟏𝟏[GPa] 𝒄𝟏𝟐[GPa] 𝒄𝟒𝟒[GPa] 𝒀[𝟏𝟎𝟎] 

[GPa] 

𝒀[𝟏𝟏𝟎] 

[GPa] 

𝒀[𝟏𝟏𝟏] [GPa] 

bSi 181 ± 1 68 ± 2 69 ± 1 145 ± 2 162 ± 1 169 ± 1 

pSi 178 ± 2 73 ± 3 69 ± 1 135 ± 5 160 ± 2 170 ± 1.5 
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Phonon-softening refers to the reduction of a phonon group velocity, e.g., upon approaching a 

phase transition, a characteristic temperature or system size. In this sense, Wingert and Yang 

[120, 121] reported reduced elastic moduli that correspond via Eqn. 4.3 to soft phonon modes 

for Si nanotubes smaller than 𝑡𝑁𝑇 = 25 nm in diameter [120] or Si nanoribbons with a surface 

to volume ratio 
𝑆

𝑉
> 0.11 nm-1 [121] 

In analogy with the nanotubes and -ribbons, one can readily characterize pSi by a locally 

defined, averaged pore-wall thickness 𝑡 or the well-defined surface-to-volume ratio 
𝑆

𝑉
. A simple 

geometrical model [2] allows estimating 𝑡 from porosity and average pore radius. Surface-to-

volume ratios can be extracted from the BET-analysis and the Si density 𝜌. 

With values of 𝑡 ≈ 2 nm < 𝑡𝑁𝑇 and 
𝑆

𝑉
= 𝐴 ∗ 𝜌 ≈ 0.366 nm−1 > 0.11 nm−1 both quantities 

imply phonon-softening in pSi. However, no indications are found in the thermal neutron 

scattering experiments that indicate an influence of nanostructuring on the phonon dispersion. 

Whether this difference between pSi and Si nanotubes and nanoribbons relates to the more 

complex, not-simply connected topology of pSi or the heavily disordered pore array is a 

fascinating question that remains unanswered and requires further experimental and theoretical 

studies beyond the scope of this work. 

However, this result puts a practical limit on the minimum thermal conductivity for anodized 

pSi membranes. Excluding unrealistic approaches for pSi like phonon dispersion engineering, 

nanostructuring induced phonon-softening appears as prerequisite to beat the so-called 

amorphous limit [122] of 𝜅𝑝ℎ = 0.1 𝑊𝑚−1𝐾−1 in pSi. In retrospective of the presented results, 

this necessitates samples with even higher porosity and smaller structural feature sizes, samples 

whose mechanical stability cannot be guaranteed. 

It appears in order, to conclude this section with a brief review of results on phonon-softening 

in pSi as presented in [2]. There, Hofmann et.al study phonons with wavelengths between 2 nm 

and 10 nm to determine the elastic properties of pSi. Assuming to probe dominantly the 

properties of the pSi-skeleton a sizable phonon-softening in the range 𝑐𝑖𝑗
𝑏𝑆𝑖 > 𝑐𝑖𝑗

𝑝𝑆𝑖
>

0.75𝑐𝑖𝑗
𝑏𝑆𝑖 is inferred from scattering experiments. These results are clearly refined within the 

present work. 

The cold neutron scattering experiments presented in [2] start the transition from  microscopic 

probes like thermal neutron scattering to macroscopic probes like acoustic transmission 

spectroscopy. This troubling and admonishing tale of length scale dependent experimental 
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results is unfortunately not new and known from diffusion experiments in confinement [123, 

124] where different probes seemingly give different answers to the same question. 

The inelastic neutron scattering studies presented are first steps towards a thorough 

understanding of the influence of nanostructuring on the phonon dynamics in phonon-softening 

silicon. Nanostructuring on sub-10 nanometer length scales does not have an effect on the 

phonon dispersion. In contrast to Si nanoribbons and nanotubes, no sizable phonon-softening 

in pSi is observed in the inelastic neutron scattering experiments. 

 

4.2.  Specific heat capacity 

 

For understanding the behaviour of the heat capacity of a solid, it is important to first obtain an 

expression for its total energy. The total vibrational energy is denoted as the sum of the energy 

of all the phonons in the solid, 𝐸 = ∑
𝑝ℎ
ℏ𝜔 where ℏ = ℎ/2𝜋 with Plank constant ℎ and phonon 

frequency 𝜔. Since many phonons can have the same energy, the total energy can be expressed 

as 𝐸 =  ∑𝜔𝑛(𝜔)ℏ𝜔, where 𝑛(𝜔) is the number of phonons of frequency 𝜔. For a specific 

phonon mode characterized by its energy, ℏ𝜔, the average occupation of that phonon mode at 

a given temperature is expressed by Bose-Einstein statistics 𝑓(𝜔) = 1/(𝑒𝛽ℏ𝜔 − 1), where 𝛽 =

1/𝑘𝐵𝑇 and 𝑘𝐵 is Boltzmann’s constant. 

The number of available phonon modes can be expressed by the density of states 𝑔(𝜔), where 

𝑛(𝜔) = 𝑓(𝜔)𝑔(𝜔). From classical mechanics, it is known that a point mass has three degrees 

of freedom and, hence, a solid containing 𝑁 atoms, comprises 3 𝑁 vibrational modes. Since 𝑁 

is large, the subtraction of the three rotational and three translational degrees of freedom of the 

solid can be neglected. The sum over the vibrational modes can be represented as an integral 

∫𝑔(𝜔)𝑑𝜔 = 3𝑁. 

Subsequently, the total vibrational energy of a crystalline material can be expressed as 

𝐸 = ∫ 𝑔(𝜔)
ℏ𝜔

𝑒𝛽ℏ𝜔 − 1

∞

0

𝑑𝜔 
(4.5) 

 

Now taking the derivative with respect to temperature, heat capacity at constant volume 𝑉 can 

be expressed as 
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𝐶𝑣 = (
𝜕𝐸

𝜕𝑇
)
𝑣
= 𝑘𝐵∫ 𝑔(𝜔)

(𝛽ℏ𝜔)2𝑒𝛽ℏ𝜔

(𝑒𝛽ℏ𝜔 − 1)2

∞

0

𝑑𝜔 
(4.6) 

 

In the experiments, the heat capacity was measured at constant pressure expressed as 𝐶𝑝 =

(
𝜕𝐻

𝜕𝑇
)
𝑝
, where 𝐻 denotes enthalpy. However, since solids are almost incompressible in the used 

temperature range, 𝐶𝑝 = (
𝜕𝐻

𝜕𝑇
)
𝑝
  is very close to heat capacity at constant volume, 𝐶𝑣 =

(
𝜕𝐸

𝜕𝑇
)
𝑣
. For bulk Si and pSi, the thermal expansion is negligible in the probed temperature range 

of 4𝐾-300𝐾 and therefore 𝐶𝑝 ≈ 𝐶𝑣  

4.2.1. Dulong-Petit Law 

 

In the 19th century Dulong and Petit discovered that in the high-temperature limit of Eqn. 4.6 

where 𝑘𝐵𝑇 ≫ ℏ𝜔, heat capacity becomes constant and takes the form 𝐶 = 3𝑁𝑘𝐵. It is known 

as the Dulong-Petit law from classical statistical mechanics. Constant heat capacity in this limit 

is simply a consequence of the fact that the quantized nature of the vibrations does not show up 

anymore at such high temperatures. Energy can be taken up in a quasi-continuous manner, and 

one arrives at the classical result that each degree of freedom yields 𝑘𝐵𝑇 to the energy of the 

solid. 

4.2.2. Einstein approximation 

 

 With the introduction of quantum mechanics, Einstein attempted to describe the temperature 

dependence of heat capacity. According to the Einstein approximation [125, 126], crystalline 

material comprising 𝑁 atoms can be treated as an assembly of independent 3𝑁 oscillators, all 

vibrating with one single frequency 𝜔𝐸 for which the density of states 𝑔(𝜔) can be expressed 

as 

𝑔(𝜔) = 3𝑁𝛿(𝜔 − 𝜔𝐸). 
(4.7) 

 

The Einstein temperature Θ𝐸 is defined as 

Θ𝐸 =
ℏ𝜔𝐸
𝑘𝐵

 . 
(4.8) 
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The resulting heat capacity can be expressed as 

𝐶𝐸 = 3𝑁𝑘𝐵 [
𝑒

Θ𝑬
𝑇
⁄
(
Θ𝑬

𝑇⁄ )

2

(𝑒
Θ𝑬

𝑇
⁄
−1)

2 ]. 
(4.9) 

 

In the high-temperature limit (
Θ𝑬

𝑇⁄ ≪ 1 ), the term in square brackets approaches unity, and 

the Dulong-Petit law is recovered. This term decreases for intermediate temperatures and drops 

exponentially to zero for 
Θ𝑬

𝑇⁄ ≫ 1 (i.e. 𝑇  0). 

More specifically, the 𝐶𝐸 starts to deviate significantly from the Dulong-Petit value for 
Θ𝑬

𝑇⁄ ∼

1, i.e. for temperatures Θ𝑬 ∼
ℏ𝜔𝐸

𝑘𝐵
.  For temperatures of the order of Θ𝑬 or below Θ𝑬, the thermal 

energy is no longer enough to excite the corresponding phonon mode quasi-continuously, the 

discrete nature of the vibrational levels starts appearing, and one says that this mode starts to 

“freeze out”. From Eqn. 4.9, it can be seen that the specific heat approaches zero exponentially 

with temperature as 
𝑒
−1

𝑇⁄

𝑇2
, not as 𝑇3 .While the optical branches are unimportant at low 

temperatures, the low-energy acoustic branches may still contribute. It is the contribution from 

the latter that gives rise to the 𝑇3scaling for 𝑇 → 0. 

4.2.3. Debye model 

 

Debye treated the lattice as an elastic continuum. This assumption led to a distribution of 

allowed frequencies rather than a single allowed frequency. 

To adequately address the low-temperature limit, the Debye model takes into account the 

acoustic branches. For 𝑇 > 0𝐾, primarily the lowest energy modes can still be excited 

thermally, i.e. specifically, the part of the single acoustic branch close to the Brillouin zone 

centre. In this region, the dispersion is linear in 𝑞 , and for the corresponding very long 

wavelength modes, the solid behaves like a continuous elastic medium. It is the conceptual idea 

behind the Debye model, which approximates 𝜔(𝑞 ) =  𝑣𝑠𝑞  for all modes, with 𝑣𝑠 the speed of 

sound. Here, only a minimalistic Debye model is discussed because even in a perfectly isotropic 

medium, there would be at least different sound speeds for longitudinal and transverse phonons.  

This linear scaling yields Debye density of states in a quadratic form as following 
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𝑔(𝜔) =
9𝑁𝜔2

𝜔𝐷3
 

(4.10) 

 

 𝜔𝐷 = 𝑣𝑠(6𝜋
2𝑛)

1
3⁄  is the Debye frequency where 𝑛 refers to the number density of atoms in 

Silicon and 𝑣𝑠 is the average sound velocity.  

Since this quadratic form would be unbound for 𝜔 →  ∞, a cutoff Debye frequency 𝜔𝐷 is 

introduced necessary to obtain a total of only 3N degrees of freedom by taking the integral over 

𝑔(𝜔) over all frequencies.  

The Debye temperature for three dimensional (3D) system can be expressed as 

𝛩𝐷
3𝐷 =

ℏ𝜔𝐷

𝑘𝐵
. (4.11) 

 

Debye heat capacity for 3D system [127, 128] can then be expressed as 

𝐶𝐷
3𝐷  = 9𝑁𝑘𝐵 (

𝑇

𝛩𝐷
3𝐷 
)

3

∫
𝑒𝑥𝑥4

(𝑒𝑥 − 1)²

𝛩𝐷
3𝐷 

𝑇
⁄

0
𝑑𝑥 

(4.12) 

 

Considering the temperature dependence of specific heat capacity, it should be noted that 

for 𝑇 ≪ 𝛩𝐷
3𝐷, 𝐶𝐷 is directly proportional to 𝑇3 and for 𝑇 ≪ Θ𝐸 , Einstein heat capacity varies 

with temperature as 
𝑒
𝛩𝐷
3𝐷

𝑇

𝑇2
. The experimental specific heat capacity for most materials in the 

lower temperature regime usually exhibits 𝑇3 behavior following the Debye model.  
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Therefore, the specific heat data from a real solid can be well understood from the discussion 

of the three temperature ranges. Only the acoustic modes contribute noticeably to 𝐶𝑉 at low 

temperatures, for which the Debye model provides a good description. Optical modes are 

excited with increasing temperatures, too, and the 𝐶𝑉 curve changes gradually to the form 

predicted by the Einstein model. Finally, all modes contribute quasi-continuously at sufficiently 

high temperatures, and the classical Dulong-Petit value is approached. Similar to the role of 

 Θ𝐸  in the Einstein model, the Debye temperature  Θ𝐷  indicates the temperature range above 

which classical behaviour sets in and below which modes begin to freeze out due to the 

quantized nature of the lattice vibrations. Debye temperatures are usually obtained by fitting 

the predicted 𝑇3  form of the specific heat to low-temperature experimental data. 

 

4.2.4. Modelling specific heat  

 

Fig. 4-2 presents the temperature-dependent specific heat capacity (𝐶𝑃) of pSi and bulk Si 

measured in the temperature range of 2𝐾 − 300𝐾 with the PPMS. A ‘traditional’ specific heat 

capacity with 𝑇3 dependence at low temperatures is seen for the bulk Si reference sample. 

However, a deviation from the 𝑇3 dependence of the specific heat capacity is observed for pSi 

 at lower temperatures. At high temperatures, the Dulong-Petit law in pSi and bulk Si is 

excess 

 

Fig. 4-2 Specific heat capacity of bulk Silicon (black squares) and pSi (blue circles) measured by PPMS. Red lines 

are fits to the data representing temperature dependence. Excess specific heat capacity identified for pSi as 

compared to bulk Silicon at lower temperature is labelled by green arrow. 



 
42 

retrieved. The deviation is analyzed considering both Einstein and Debye contribution of 

specific heat in bulk Si and pSi. 

For analysis, first bulk Silicon’s specific heat capacity is analyzed with a standard model 

approach governed by Eqn. 4.13.  For a good fit, one needs to incorporate both, the Debye 

specific heat 𝐶𝐷
3𝐷 and the Einstein specific heat 𝐶𝐸

3𝐷  in the model. Both functions are combined 

with different weights 𝑓𝐷
3𝐷 and 𝑓𝐸

3𝐷, in order to describe the data. For that, a plot of Cp / T
3 

against temperature is presented in Fig. 4.3 to model this Cv. Debye contribution is taken into 

account, that is suited for acoustic branches at low temperatures and which show typical 

temperature 𝑇3  behavior at low temperatures. Subsequently, flat part of <110> dispersion 

branch is treated by including Einstein modes (𝐶𝐸
3𝐷) in the current model. 

 

𝐶𝑣
𝐵𝑢𝑙𝑘 𝑆𝑖 = 𝑓𝐷

3𝐷𝐶𝐷
3𝐷 + (1 − 𝑓𝐷

3𝐷)𝐶𝐸
3𝐷

 

 

(4.13) 

 

Fig. 4-3 shows a very good agreement between the model and the experimental result. Model 

fits of bulk Silicon indicated about 90% contribution of Debye specific heat capacity 𝑓𝐷
3𝐷𝐶𝐷

3𝐷 

while 10% contribution of Einstein specific heat capacity (1 − 𝑓𝐷
3𝐷)𝐶𝐸

3𝐷. Out of the model fits, 

Einstein temperature  Θ𝐸 =  177𝐾 (~15𝑚𝑒𝑉) and Debye temperature  Θ𝐷 =

602𝐾 (~52𝑚𝑒𝑉)  are extracted as fitting parameters.  Θ𝐷 = 602𝐾 is found to be in close 

agreement to that reported for bulk Silicon [2] and origin of Einstein contribution is attributed 

to flat part of <110> dispersion [129]. Combined contribution of Debye and Einstein 

contribution guarantees Dulong Petit law at high temperatures. 
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The modelling approach used for porous Silicon’s specific heat capacity was to fix the fitting 

parameters from bulk Silicon and employ additional 2D surface contribution of Debye and 

Einstein specific heat capacity as expressed in the Eqn. 4.14. 

 

𝐶𝑝𝑆𝑖 = 𝑓𝑏𝑢𝑙𝑘𝐶𝑏𝑢𝑙𝑘 + (1−𝑓bulk)[𝑓𝐷
2𝐷𝐶𝐷

2𝐷 + (1 − 𝑓𝐷
2𝐷)𝐶𝐸

2𝐷]. 

 

(4.14) 

 

2D surface contribution of Debye specific heat capacity 𝐶𝐷
2𝐷  [127] is 

 

𝐶𝐷
2𝐷 = 6𝑁𝑘𝐵 (

𝑇

𝛩𝐷
2𝐷)

2

∫ 𝑥3
𝑒𝑥

(𝑒𝑥 − 1)²

𝛩𝐷
2𝐷 

𝑇
⁄

0

𝑑𝑥 

(4.15) 

Fig. 4-3 Experimental data of bulk Silicon’s specific heat (blue circles) represented as Cp/T3 against temperature. 

Experimental data agrees well with a model fit (red line) governed by Eqn. 4.13 taking into account Einstein and 

Debye contribution (dashed lines) to specific heat capacity of bulk Silicon. One should note that data at very low 

temperatures (𝑇 < 4𝐾) are an artefact from the PPMS instrument and is not attributed to the bulk Silicon sample 

but to the copper sample holder.  
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and 2D surface contribution of Einstein specific heat capacity  𝐶𝐸
2𝐷 can be expressed as 

 

         𝐶𝐸
2𝐷 = 3𝑁𝑘𝐵

𝑒
𝛩𝐸
2𝐷 

𝑇
⁄
(
𝛩𝐸
2𝐷 

𝑇
⁄ )

2

(𝑒
𝛩𝐸
2𝐷 

𝑇
⁄
−1)

2 . (4.16) 

 

The surface contribution of each plays a role in excess specific heat capacity observed in pSi at 

lower temperatures. Both are combined with different weights, 𝑓𝐷
2𝐷 and 𝑓𝐸

2𝐷, in order to 

describe the data.  

 

 

 

Fig. 4-4 shows an excellent agreement between the model and experimental data. Out of the 

model fit, Einstein temperature 𝛩𝐸
2𝐷 = 40𝐾 (~3meV)  and Debye temperature 𝛩𝐷

2𝐷 =

149 𝐾 (~12𝑚𝑒𝑉) are extracted for pSi. The Debye contribution of 𝐶𝐷
2𝐷explains the 

characteristic 𝑇2.3 behaviour at low temperature with an assumption of presence of acoustic 

phonon modes on the surface of pSi. The origin of Einstein contribution of 𝐶𝐸
2𝐷 can be attributed 

to a boson peak of amorphous SiO2 in pSi. In amorphous materials, the Boson peak is 

considered a signature of the existence of localized vibrational modes [130]. It was observed in 

other materials as well such as the polymer poly(methylmethacrylate) (PMMA) [131], the 

semiconductors α-Se, B2O3, As2S3 [132], and the metallic glass PdZr [133].  

 

 

Table 4-3 Fitting parameters for pSi specific heat model-fit presented in Fig. 4-4. governed by Eqn. 

4.14.  

Fixed parameters 𝛩𝐷
3𝐷

 [𝐾] 𝛩𝐸
3𝐷 [𝐾] 

602 178 

Free parameters 𝛩𝐷
2𝐷

 [𝐾] 𝛩𝐸
2𝐷

 [𝐾] 𝑓𝐷
2𝐷 [%] 𝑓𝑏𝑢𝑙𝑘 [%] 

149 ± 0.02 40 ± 0.01 10 ± 0.05 90 ± 0.02 
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4.3. Thermal conductivity 
 

In bulk Si, the dominant scattering mechanisms are the phonon – phonon and phonon– carrier 

scattering and the scattering by lattice defects [31]. However, additional scattering events occur 

and dominate in pSi, such as phonon scattering with interfaces [32]. These scattering effects 

reduce the phonon mean free path and significantly increase diffuse scattering, reducing thermal 

conductivity.  

The cross-plane thermal conductivity of pSi was probed by LFA in the temperature range of 

300𝐾 − 640𝐾. The in-plane thermal conductivity of pSi was probed by PPMS in the 

temperature range of 3𝐾 − 300𝐾. Due to experimental constraints, no common temperature 

range was investigated for the in-plane and cross-plane thermal conductivity of pSi samples. 

Fig. 4-4 Experimental specific heat capacity of pSi (blue circles) represented as Cp/T3 against temperature. 

Experimental data agrees excellently with a model fit (red line) taking into account Debye and Einstein 

contribution of Cp in bulk Silicon together with surface contributions. 
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As presented in Appendix C, in-plane and cross-plane thermal conductivities of pSi at 𝑇 =

300𝐾 show anisotropy in thermal conductivity. In the following sections, a robust model for 

the data analysis of the cross-plane thermal conductivity will be developed, followed by a 

discussion of the first ideas to describe the in-plane thermal conductivity of pSi. 

4.3.1. From specific heat to thermal conductivity 

 

It was found that at higher temperature the specific heat capacity of pSi approaches  that of bulk 

Si (Fig. 4-2), dominated by 3D Debye contribution for 𝑇 > 50𝐾. Therefore, 3D Debye 

Callaway model was utilized for the thermal conductivity’s data analysis probed by LFA in the 

temperature range of 𝑇 = 300 − 640𝐾. Specific heat capacity of pSi probed by PPMS for 𝑇 <

50𝐾 was found to deviate from classical 3D Debye model (i.e. classical 𝑇3  dependence for 𝑇 →

0𝐾). This deviation was accounted for 2D Debye DOS contribution to pSi specific heat at low 

temperatures as discussed in the last section. Thermal conductivity probed by PPMS showed 

neither 𝜅~𝑇3 nor 𝜅~𝑇2 temperature dependence mirroring 𝐶𝑝𝑆𝑖~𝑇
2.3 . Rather, thermal 

conductivity measured by PPMS showed 𝜅~𝑇1  temperature dependence for 𝑇 → 0𝐾 as evident 

in Fig. 4-5. This deviation will be discussed in Section 4.3.6.  

 

 

Fig. 4-5 Thermal conductivity of pSi probed by PPMS and LFA. Red lines are linear fits to the 

temperature dependence of thermal conductivity. Green squares represent cross-plane thermal 

conductivity of chemically post-treated pSi samples probed by LFA. Black and blue solid lines 

represent amorphous limits calculated from sine dispersion and Cahill’s model detailed in 

Section 4.3.6 
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4.3.2. Callaway model for cross-plane thermal conductivity (𝑇 = 300𝐾 − 640𝐾) 
 

The temperature dependent lattice thermal conductivity 𝜅 of a crystalline material [134, 135] 

can be expressed as  

𝜅 =
𝜋2𝑘𝐵2𝑇

9ℏ
∫𝜏𝑝ℎ(𝜔)𝑣𝑔²(𝜔)𝑔(𝜔)W(𝜔)d𝜔  

(4.17) 

 

where 𝑣𝑔(𝜔) is the frequency-dependent phonon group velocity and 𝑔(𝜔) represents the 

phonon density of states.  W(𝜔) =  (
ℏ𝜔

𝑘𝐵𝑇
)
2

 
𝑒

ℏ𝜔
𝑘𝐵𝑇

(𝑒

ℏ𝜔
𝑘𝐵𝑇−1)

2  is the so-called window function [136, 

137]. 𝜏𝑝ℎ(𝜔) is the frequency-dependent phonon relaxation time that takes into account various 

phonon scattering processes.  

For bulk Si,  𝜏𝑝ℎ(𝜔) is dominated by point defects, Umklapp and boundary scattering as listed 

in Table 4-4. Total 𝜏𝑝ℎ(𝜔) is calculated using the Matthiessen's rule 

 

1

𝜏𝑝ℎ(𝜔)
=

1

𝜏𝐷(𝜔)
+

1

𝜏𝐵(𝜔)
+

1

𝜏𝑈(𝜔)
+

1

𝜏𝜼(𝜔)
. 

 

(4.18) 

 

Table 4-4 Frequency-dependent phonon relaxation times. In these expressions, the prefactors 𝑀𝑃 and 𝑀𝑈 were 

used as fitting parameters.  𝐹 is specularity parameter and 𝐿 denotes characteristic length of sample’s cross 

section. 𝑇𝑈 is Umklapp temperature, 𝜂 is nanostructure length and 𝑣𝑔(𝜔) is phonon group velocity. 

Scattering process Inverse relaxation time Fitting parameters 

Point defects  1

𝜏𝐷(ℏ𝜔)
= 𝑀𝑃  𝜔

4 
𝑀𝑃 = 3.6419 × 10

−44 ± 1.09 × 10−42 [𝑠3] 

Crystal boundaries 1

𝜏𝐵(ℏ𝜔)
 =

𝑣𝑔(𝜔)

𝐹𝐿
 

𝐹𝐿 = 1.5 × 10−5  (fixed)  [𝑚] 

Umklapp scattering 1

𝜏𝑈(ℏ𝜔)

= 𝑀𝑈 𝜔2 𝑇exp (−
𝑇𝑈
𝑇
) 

𝑀𝑈 = 3.5 × 10−19 ±  1.05 × 10−19  [𝑠/𝐾] 

Nanostructures  1

𝜏𝜼(ℏ𝜔)
 =  

𝑣𝑔(𝜔)

𝜂
 

Not applicable for bulk Si 
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Further, the total mean free path λ(𝜔) can then be expressed as 

 

λ(𝜔) = 𝑣𝑔(𝜔)𝜏𝑝ℎ(𝜔) (4.19) 

 

Experimental data for bulk Silicon obtained from PPMS up to 300𝐾 is modelled using the 

Callaway approach (Fig. 4-6) utilizing phonon sine dispersion relation  𝜔(𝑞). Phonon density 

of states 𝑔(𝜔) =
3

2𝜋2
×
𝑞(𝜔)2

𝑣𝑔
 and phonon group velocity 𝑣𝑔(𝜔) =  

𝜕𝜔
𝜕𝑞⁄  were extracted from 

phonon sine dispersion relation (Eqn. 4.20).  

 

𝜔(𝑞) =  𝜔0sin (𝜋𝑘/2𝑘𝐷) 

 

(4.20) 

𝑣𝑔(𝜔) =  
𝜕𝜔

𝜕𝑞⁄ =
 𝜔0𝜋

2𝑘𝐷
cos(𝜋𝑘/2𝑘𝐷) 

 

(4.21) 

 

 𝜔0 is the frequency at zone boundary (Eqn. 4.22) and 𝑘𝐷 is the Debye wavevector (Eqn. 4.23). 

 

 𝜔0 =
2 𝜔𝐷
𝜋

 

 

(4.22) 

𝑘𝐷 = 
 𝜔𝐷

𝑣𝑠⁄  

 

(4.23) 

 

 𝜔𝐷 in Eqn. 4.22 and Eqn 4.23 denotes Debye cutoff frequency expressed as 

 

 𝜔𝐷 = 𝑣𝑠(6𝜋
2𝑛)

1
3⁄   (4.24) 
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where 𝑛 represents the number density of atoms in Silicon and 𝑣𝑠 is the  averaged sound velocity 

used in the model fits considering three acoustic branches (two transverse and one longitudinal) 

 

𝑣𝑠 = [
1

3
(
1

𝑣𝑙3
+

2

𝑣𝑡3
)]
−
1
3
 

(4.25) 

 

Silicon’s longitudinal sound velocity, 𝑣𝑙 = 8433 𝑚/𝑠 and transverse sound velocity, 𝑣𝑡 =

5844 𝑚/𝑠 along [001] as reported in [2] were used for the current model fits.  𝜔0 and  𝜔𝐷 were 

used as fixed parameters calculated from Eqn. 4.22 and Eqn. 4.24 respectively. Table 4-4 lists 

fitting parameters utilized for least square model fitting of thermal conductivity of p-doped bulk 

Silicon. Parameter 𝐹 in the boundary scattering expression denotes phonon specularity [138]. 

𝐹 is zero for completely specular phonon reflection, and 𝐹 is one for completely diffusive 

boundary scattering. Whenever partial specular reflection occurs, 𝐹 is between zero and one. 𝐿 

represents characteristic length related to the sample’s cross section [134]. Considering 

impurity scattering solely due to the boron doping in Silicon samples, 𝑀𝑃 was extracted as a 

fitting parameter. Umklapp scattering expression of 
1

𝜏𝑈(ℏ𝜔)
= 𝑀𝑈  𝜔2 𝑇exp (−

𝑇𝑈

𝑇
) used for the 

model-fits in the current work was initially obtained by Slack et al. [139]. The value of  𝑀𝑈 was 

determined from the model fit as a fitting parameter.  

Table 4-5 Best-fit parameters extracted from Callaway model fitting of thermal conductivity of p-doped bulk 

Silicon probed by PPMS. 

Fitting parameters 𝑴𝑷 

𝒔𝟑 

𝑴𝑼 

𝒔/𝑲 

𝑻𝑼 

𝑲 

Bulk Silicon (Boron 

doped) 

1.42 × 10−45 2.12 × 10−19 152 

Literature 1.32 × 10−45 [140] 2.8 × 10−19 [140] 

1.73 × 10−19 [44] 

137 [44] 
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At low temperatures, the phonon density is too low for significant phonon–phonon collisions. 

Further, point defect scattering becomes negligible. Rather, λ is determined by 𝜔-independent 

phonon collisions with crystal surfaces and grain boundaries. As expected from the Debye 

model, 𝐶𝑣 depends on 𝑇3, so that 𝜅𝑝ℎ has the same temperature dependence as 𝐶𝑣, that is 𝜅𝑝ℎ ∝

𝑇3. With further increase in temperature, the temperature dependence of 𝜅𝑝ℎ is controlled 

by λ(𝜔) rather than 𝐶𝑣, which changes only slowly with temperature.  λ(𝜔) becomes limited 

by phonon–phonon collisions that obey the Umklapp process. Since λ(𝜔) is inversely 

proportional to the phonon density, 𝜏𝑈(ℏ𝜔) decreases with increasing temperature. Thermal 

conductivity is controlled by λ(𝜔) and 𝐶𝑣 that changes only slowly with temperature. Since 

λ(𝜔) is inversely proportional to phonon density, 𝜅𝑝ℎ decreases with temperature. At 

temperatures above the Debye temperature, 𝐶𝑣 is constant, and the phonon density increases 

with temperature. Thus, the λ(𝜔) decreases as λ(𝜔) ∝ 1/𝑇, which means that 𝜅𝑝ℎ ∝ 𝑇
−1 at 

sufficiently high temperatures [141]. 

For pSi, the Callaway model is not expected to work right away, as it does not take into account 

compound average of pSi pores upon porosification. Therefore, the applicability of effective 

medium models (EMMs) is reviewed in the next section that considers the compound average 

within pSi. PSi phonon dispersion obtained from neutron scattering experiments is followed by 

in-depth analysis of phonon dynamics. No change in pSi phonon dispersion is observed upon 

Fig. 4-6 Thermal conductivity of bulk Si probed by PPMS (green squares). Red line represents Debye Callaway 

model-fit governed by Eqn. 4.19 with the best-fit parameters enlisted in Table 4-5. Debye temperature of bulk 

Silicon is marked with dashed line.   
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nanostructuring. Bulk Si sound velocities from [2] is used to calculate the phonon density of 

states allowing the implementation of the Callaway model on temperature-dependent thermal 

conductivity data. The data analysis considers the compound average of pSi pores taken into 

account by EMMs and a new scattering length introduced in the system upon nanostructuring 

by the Callaway model.  

 

4.3.3. Effective medium models 

 

Developing more precise and unified methods to describe microstructure-property relationships 

(MPR) is essential in most heterogenic materials. In the literature, various equations are utilized 

for predicting the MPR [117, 142-144]. Many of these equations are derivable from theoretical 

approaches, such as effective medium (EM) theories [117, 145, 146]. Numerous models are 

proposed in literature to predict the heterogenic medium's macroscopic properties, knowing the 

constituents' properties and volume fractions [117, 143, 146]. They are known as effective 

medium theories (EMTs) or effective medium approximations (EMAs) [144]. In these models, 

heterogenic materials are considered as being macroscopically homogenous [118].  

For example, heat current density j(𝑟 ) at a particular point r in the material can be correlated to 

thermal conductivity with a temperature gradient at that point as governed by Eqn. 4.26. 

 

j(𝑟 ) = 𝜅(𝑟 )𝛻𝑇(𝑟 ) (4.26) 

< j(𝑟 ) >  =  < 𝜅(𝑟 )𝛻𝑇(𝑟 ) >  = 𝜅𝑒𝑓𝑓 < 𝛻𝑇(𝑟 ) > (4.27) 

where < > refers to ensemble average.  

Heterogeneous materials, such as polycrystalline ceramics, nanophase composites, and multi-

phase composites, constitute two or more phases [117, 147]. The various properties of the 

materials are the macroscopic averages of statistical combinations of different properties of the 

many constituent phases. If the details of the inhomogeneities, i.e. material microstructure, 

change, the results of the statistical combination will change, and the macroscopic properties 

of the materials will also change, assuming that the component phases are isotropic. It is 

convenient to make the "ergodic" hypothesis [118] that the heterogeneous materials are 

statistically homogeneous, which means that if we randomly select some differential volumes 

or elementary structural units from the materials, the physical properties of these differential 
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volumes are the same as the properties of the macroscopic sample. This assumption also means 

that the property parameters' spatial (volume) average can substitute for the ensemble average 

(Eqn. 4.27). 

Various effective medium models are reviewed in literature [117, 143]. Maxwell gave an 

analytical expression for the effective conductivity of a heterogenic medium. His model 

considered spherical particles embedded in a matrix with no thermal interaction existing 

between them [35]. 

Maxwell’s model can be expressed as following 

 

𝑠(𝜑) =
 𝜅𝑒𝑓𝑓

 𝜅𝑏𝑢𝑙𝑘
=
1 − 𝜑

1 + 
𝜑
2

 
(4.28) 

 

where 𝑠(𝜑) denotes the ratio of effective thermal conductivity 𝜅𝑒𝑓𝑓 and bulk thermal 

conductivity  𝜅𝑏𝑢𝑙𝑘 , and 𝜑 is the porosity.  

Many researchers modified Maxwell’s model. Rayleigh described EMM in terms of regular 

array of spheres in a matrix [148]. Bruggemann proposed a differential transition model for low 

to high concentrations of dispersed particles in a matrix [37]. His theory assumes that a 

composite can be constructed incrementally by introducing infinitesimal changes to an existing 

material [34]. This scheme's advantage is that it covers a broad spectrum of materials, e.g. 

composites and porous materials. Another empirical model known as Lewis-Nielsen model [38] 

takes into account a wide range of filler shapes embedded in the matrix.  

With an increased amount of filler particles per unit volume, one eventually reaches a point at 

which they begin to contact. Heat transfer is easier between two contacting particles than 

between the particle and the matrix, assuming highly conductive particles. With increasing filler 

fraction, chains of connected conductive particles begin to appear as channels. The filler volume 

fraction at which this transition occurs is known as the percolation threshold. [145, 147]. In this 

context, porous materials can be considered a hybrid system containing a solid matrix and 

gaseous inclusions (i.e. pores). Long, complex heat transport paths via small solid fractions in 

such materials do not ensure good thermal conduction. The limitation of classical EMMs is that 

they break down for materials with high porosities closer to the percolation threshold. However, 
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the Kirkpatrick model includes a self-consistent effective medium (SCEM) approach and 

considers the percolation threshold in disordered systems [38] as expressed in Eqn. 4.29. 

 

𝑠(𝜑) = 1 −
𝜑

𝜑
𝑐

 

 

(4.29) 

where 𝜑𝑐 is the percolation threshold.  

 

4.3.4. Combination of Callaway and Effective Medium Models 

 

The limitation of the Callaway model is that it does not account for compound averages as in 

the case of effective medium models. However, in the Callaway model, an additional scattering 

length 𝜂 for pSi is taken into account. An additional scaling parameter  𝑠𝜙  plugged in our 

model considers the porosity of pSi samples. The thermal conductivity of pSi can then be 

expressed as 𝜅𝑝𝑆𝑖 = 𝑠𝜙 ∗ 𝜅.  

The idea implemented in the current work is to combine the Callaway model and effective 

medium models to have insights into both macroscopic and microscopic properties of pSi. For 

pSi analysis, it was assumed that porosification will not change the  boundary, point defect and 

Umklapp scattering parameters obtained from Callaway model fitting of bulk Si. Therefore, the 

Callaway model (with these fixed parameters)  was then implemented on thermal conductivity 

data of pSi obtained from LFA diffusivity in the temperature range of 300𝐾 − 640𝐾. Reducing 

the number of free parameters allows the extraction of two free parameters: the scaling 

parameter 𝑠𝛷 and the nanostructure length 𝜂 encoded in inverse scattering rate expression 

1

𝜏𝜂(ℏ𝜔)
 =  

𝑣𝑔(𝜔)

𝜂
, for each pSi sample. Fig. 4-7 shows an example model-fit of one of the pSi 

samples. Table 4-6 enlists fixed and free parameters for the best model fit. 

 

 

 

 

 



 
54 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-6. Best-fit parameters extracted from bulk Si model-fit utilized as fixed parameters in thermal conductivity 

modelling of pSi. 𝑠𝜙 and 𝜂 denotes scaling parameter and nanostructure lengths respectively extracted from 

Callaway model fit of pSi (Fig. 4-7). 

 

Scaling parameters 𝑠𝜙 (extracted from the Callaway model for thermal conductivity) are plotted 

against porosity of each sample as presented in Fig. 4-8 and analysed utilizing various EMMs. 

Fixed parameters 𝑀𝑃 

[𝑠3] 

𝑀𝑈[𝑠/𝐾] 𝑇𝑈 

[𝐾] 

𝐹 × 𝐿 

[𝑚] 

1.42 × 10−45 2.12 × 10−19 152 0.4 × (17.4 × 10−6) 

Free parameters 𝑠𝜙 𝜂 [𝑛𝑚] 

12.1% ± 0.7% 10.2 ± 0.9 nm 

Fig. 4-7 Temperature dependent thermal conductivity of pSi (green squares). Red line represents Callaway 

model-fit with fitting parameters enlisted in Table 4-6. 
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Blue and red squares present experimental data. As presented in the plot, it clearly shows that 

among all model fits, Kirkpatrick’s model fits the best with experimental data while Lewis- 

Nielsen model shows deviation. Red squares in the plot refers to minority of pSi samples that 

show deviation from all EMMs.  

It is essential to analyze thermal conductivity of pSi by taking into account both nanostructuring 

and porosity. Nanostructuring cause the reduction of thermal conductivity by changing the 

phonon mean path and porosity takes into account compound average considering pSi as an 

effective medium containing crystalline Silicon and vacant pore space. Nanostructure length, 

extracted as a free parameter from Callaway model-fits for each pSi sample is related to it’s 

porosity as presented in Fig. 4-9. Nanostructure lengths for all samples were interestingly found 

to be around 10 𝑛𝑚. This new scattering length introduced due to structuring is interpreted to 

play a key role in the reduction of  thermal conductivity (2 orders of magnitude) with reference 

to bulk Silicon while compound averaging cause a further reduction with 𝑠𝜙 ≈ 0.1 − 0.5  . PSi 

porosity with a percolation threshold of around 65% as a function of etching parameters (e.g. 

Fig. 4-8 EMA model fits presenting correlation of scaling parameters (extracted for each pSi sample from 

Callaway model-fit) with porosity. Blue squares show experimental data in line with Kirkpatrick model fit. Red 

squares indicate experimental data points showing prominent deviation from EMA models. 
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electrolyte composition within etching cell) additionally contributes to the thermal conductivity 

reduction.  

 

 

4.3.5. Amorphous limit and pSi 

 

One should note that as seen in Fig. 4-5, LFA data of post treated pSi samples exhibit thermal 

conductivity of 0.5 𝑊/𝑚𝐾 at 300𝐾, that is even lower than the so called amorphous limit 

(1.1𝑊/𝑚𝐾) determined by Cahill [1]. This section discusses the amorphous limit reported by 

Cahill’s Debye formulation and the amorphous limit calculated by Sine dispersion in the current 

work. As the name implies, amorphous limit is often discussed in the context of amorphous 

materials lacking long-range crystalline order. This disorder impairs the coherence of lattice 

vibrations and limits the mean free path to a few lattice spacings. It causes extremely low 

thermal conductivity and is referred to as the amorphous limit [1, 149]. In amorphous materials, 

the concept of extended phonon wave is not well-defined, nor is the phonon wave- vector, group 

velocity, or phonon mean free path. It makes thermal transport modelling in such materials 

quite challenging. Einstein [150] presented earlier theoretical studies on amorphous materials 

that was further refined by Slack [151]. Einstein's theory is based on an assumption of 

independent and non-correlated interatomic or lattice vibrations, in contrast to extended waves 

in crystalline materials. Heat conduction is governed by these independent oscillators, each with 

Fig. 4-9 Relation of nanostructure length and porosity of pSi samples. Green dashed line is a guide to the eye 
showing nanostructure length for all samples in the range of 10 ± 5 nm. 
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a characteristic frequency - the Einstein frequency. Slack refined the theory by equating the 

minimum phonon mean free path 𝑙 to be equal to phonon wavelength λ. The thermal 

conductivity obtained from Slack's model is known as the minimum thermal conductivity [1, 

151]. Cahill et al. extended the model by dividing the sample into regions of size λ/2 with 

oscillating frequencies given by the low-frequency speed of sound,  𝜔 = 2𝜋𝑣/ λ. Cahill's 

model assumes 𝑙 =  λ/2 for each oscillator. Cahill model’s physical picture is a random walk 

of energy between localized oscillators of various frequencies and the dominant energy 

transport between nearest neighbours.  In the current work, amorphous limit is calculated using 

Eqn. 4.17 with appropriate mean free path, 𝑙 = 𝜋
𝑣𝑔

𝜔
.  

Table 4-7 enlists calculated values of minimum thermal conductivities 𝜅𝑚𝑖𝑛 of Si at 300𝐾 

utilizing Cahill’s Debye approximation and Sine dispersion. Their temperature dependence is 

presented in Fig. 4-5.   

Table 4-7 Parameters utilized to calculate minimum thermal conductivity of Silicon at 𝑇 = 300𝐾: n number 

density of atoms, Silicon’s transverse and longitudinal speeds of sound, 𝑣𝑡−𝐶𝑎ℎ𝑖𝑙𝑙  and 𝑣𝑙−𝐶𝑎ℎ𝑖𝑙𝑙  , as reported by 

Cahill et. al. [1] and 𝑣𝑡−𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛as reported by Hofmann et. al. [2].  𝜅𝑚𝑖𝑛−𝐶𝑎ℎ𝑖𝑙𝑙  is the minimum thermal 

conductivity of Si calculated using Debye approximation. 𝜅𝑚𝑖𝑛−𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  is the minimum thermal conductivity 

of Si calculated from sine dispersion utilizing speeds of sound reported by Hofmann et al. [2]. 𝜅𝑐𝑟𝑜𝑠𝑠−𝑝𝑙𝑎𝑛𝑒  and 

𝜅𝑐𝑟𝑜𝑠𝑠−𝑝𝑙𝑎𝑛𝑒,𝑝𝑜𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑝𝑆𝑖  refers to the  thermal conductivities of pSi and post treated pSi respectively probed by 

LFA, at 𝑇 = 300𝐾. 

Parameters Numerical values 

N 5 × 1022 𝑐𝑚−3 

𝒗𝒕−𝑪𝒂𝒉𝒊𝒍𝒍 

𝒗𝒕−𝒔𝒊𝒏𝒆 𝒅𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏 

4370 𝑚/𝑠 

5844 𝑚/𝑠 

𝒗𝒍−𝑪𝒂𝒉𝒊𝒍𝒍 

𝒗𝒍−𝒔𝒊𝒏𝒆 𝒅𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏 

7360 𝑚/𝑠 

8433 𝑚/𝑠 

𝜿𝒎𝒊𝒏−𝑪𝒂𝒉𝒊𝒍𝒍  0.96 𝑊/𝑚𝐾 

𝜿𝒎𝒊𝒏−𝒔𝒊𝒏𝒆 𝒅𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏  0.43 𝑊/𝑚𝐾 

𝜿𝒄𝒓𝒐𝒔𝒔−𝒑𝒍𝒂𝒏𝒆  0.92 𝑊/𝑚𝐾 

𝜿𝒄𝒓𝒐𝒔𝒔−𝒑𝒍𝒂𝒏𝒆,𝒑𝒐𝒔𝒕 𝒕𝒓𝒆𝒂𝒕𝒆𝒅 𝒑𝑺𝒊  0.50 𝑊/𝑚𝐾 
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At 300𝐾, Psi samples exhibit cross-plane thermal conductivity of 0.92 𝑊/𝑚𝐾, that is slightly 

lower than the so called amorphous limit (1.1𝑊/𝑚𝐾) determined by Cahill [1] and almost 

twice the κmin−sine dispersion = 0.43𝑊/𝑚𝐾 calculated from sine dispersion utilizing speeds of 

sound reported by Hofmann et al. [2]. Post treated pSi samples exhibit thermal conductivity of 

0.5 𝑊/𝑚𝐾 at 300𝐾, that is lower than the so called amorphous limit (1.1𝑊/𝑚𝐾) determined 

by Cahill [1] and almost equal to κmin−sine dispersion = 0.43𝑊/𝑚𝐾. Cahill uses linear phonon 

dispersion proposed by Debye based on acoustic-elastic wave assumption. However, this 

assumption does not consider the periodic boundary condition's effect on the phonon dispersion 

creating standing waves at Brillouin boundaries, as reported by Born von Karman [152]. It leads 

to a deviation of Debye dispersion for phonon transport close to the Brillouin boundaries, hence 

overestimating lattice thermal conductivity because of the overestimation of the group velocity 

of these high-frequency phonons [152]. Moreover, it overestimates minimum thermal 

conductivity leading to the violation of measured thermal conductivity even lower than Cahill's 

minimum thermal conductivity, as also evident for the measured thermal conductivity values 

of as-etched and post-treated pSi. Minimum thermal conductivity determined in our work 

utilizing sine dispersion shows a deviation from Cahill's by a factor of two, i.e. 

κmin−sine dispersion =
1

2
𝜅𝑚𝑖𝑛−𝐶𝑎ℎ𝑖𝑙𝑙. This result removes the contradiction of the measured 

thermal conductivity of pSi being lower than the minimum thermal conductivity. Moreover, it 

opens further prospects for developing thermally resistive materials for applications such as 

thermoelectrics. 

4.3.6. Modelling of in-plane thermal conductivity (𝑇 = 2𝐾 − 300𝐾)  

 

Thermal conductivity with 𝜅~𝑇1  dependence in a temperature range of 𝑇 = 2𝐾 − 300𝐾 was 

initially analyzed in the current work by utilizing 2D Debye DOS combined with mean free 

path 𝜆𝑚𝑒𝑎𝑛 ∝ 𝜔
−1 with  𝛩𝐷

2𝐷 = 140𝐾  as a fixed parameter (value extracted from specific heat 

capacity data analysis). Experimental data and the model fit are presented in Fig. 4-10 (a), where 

the contribution of 2D Debye DOS is evident for 𝑇 < 50𝐾. As a second step, treating the data 

by utilizing 3D DOS combined with phonon mean free path 𝜆𝑚𝑒𝑎𝑛 ∝ 𝜔
−2 with 𝛩𝐷

3𝐷 = 697𝐾  

leads to quite good agreement of experimental data and the model fit up to 200𝐾 (Fig. 4-10 

(b)) considering frequency-dependent nanostructure scattering. In our speculative 

interpretation, thermal conductivity for 𝑇 > 200𝐾 could be attributed to diffusive heat 

transport through Einstein surface modes governed by Eqn. 4.31 [153] where 𝐷 encodes 

thermal diffusivity and 𝑇𝐸 is the Einstein temperature. 
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𝜅𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐷 ∗ (
𝑇𝐸
𝑇
)
2 𝑒

𝑇𝐸
𝑇

(𝑒
𝑇𝐸
𝑇 − 1)

2 

(4.31) 

Subsequently, combination of 3D Debye DOS model with harmonic oscillator (166 𝑚𝑒𝑉) as a 

third step leads to excellent agreement of experimental data and the model-fit as evident in Fig. 

4-11. In diffusive thermal transport, heat is quantized by non-propogating atomic vibrations 

termed as diffusons, characterized by diffusivity [153]. The diffuson theory of Allen and 

Feldman explains diffusive thermal transport as the harmonic coupling between non-

propagating (i.e., unlike phonons) atomic vibrations [153]. Recently, Mathias et al., in their 

work, proposed that diffusons may better describe heat transfer in amorphous, disordered and 

even nanomaterials, particularly at high temperatures [154]. Earlier, Dell’Anna et al. attributed 

the “re-increase” of thermal conductivity of amorphous silicon above the plateau region to heat 

carried by “diffuson” modes [155]. 𝜔 dependent scattering was also reported in [153] for 

vitreous silica where the role of these modes is explained in terms of diffusive heat transport. 

In a contemporary studies, Sette et al. [156] confirmed 𝜔−2 dependent diffusivity of these  

modes by numerical calculations.  

Concluding, ‘excess’ specific heat capacity of pSi, at low temperature (𝑇 < 50𝐾) is interpreted 

to be due to acoustic phonon modes on the surface of pSi and an additional Einstein 

contribution 𝐶𝐸
2𝐷. The origin of 𝐶𝐸

2𝐷 is attributed to a boson peak of amorphous SiO2 in pSi 

[130]. At temperature range of 𝑇 = 300 − 640𝐾, 3D DOS dominates as interpreted from 

temperature dependent data analysis of specific heat capacity and thermal conductivity. 

 

 

 

 

 

 

Fig. 4-10 Temperature dependent thermal conductivity of pSi (blud dots) probed by PPMS. Red line in (a) 

represents 2D Debye model-fit ( 𝛩𝐷
2𝐷 = 140𝐾, 𝜆𝑚𝑒𝑎𝑛 ∝ 𝜔

−1 ) up to 50𝐾 and (b) represents 3D Debye model-fit 

(𝛩𝐷
3𝐷 = 697𝐾, 𝜆𝑚𝑒𝑎𝑛 ∝ 𝜔

−2) up to 𝑇 = 200𝐾. 

(a) (b) 
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4.4. Electrical transport in pSi 
 

Despite the widespread attention awarded to pSi, there has been little agreement on any 

predominant charge transport mechanism in pSi [42]. Reported studies have proposed different 

charge transport mechanisms [45, 157-160]. Models based on extended states transport [161], 

phonon-assisted hopping [108] and charge carrier tunneling to localized states near band edges 

[162] are few examples. 

This section presents temperature-dependent electrical conductivity and thermopower 

measurements on a multitude of different pSi samples. The detailed data analysis will identify 

multi-phonon absorption as the underlying process that defines pSi's electronic properties.  

The earliest reports on the electrical transport in pSi were about its low electrical conductivity 

compared to bulk Si [157]. In the current work, pSi exhibits the electrical conductivity of up to 

seven orders of magnitude lower than the corresponding p-doped Silicon source wafer (𝜎 =

50 − 100 𝑆𝑐𝑚−1) at 𝑇 = 300𝐾 (Section. 4.4.1, Fig. 4-13). 

The conductivity of p-doped Si wafers shows a temperature dependence as expected for highly 

doped semiconductors (Section. 4.4.1, Fig. 4-13 inset). Increased phonon scattering rate reduces 

the mobility of the holes at higher temperatures. Consequently 𝜎(𝑇) decreases in the extrinsic 

Fig. 4-11 Temperature dependent thermal conductivity of pSi modelled with 3D Debye (Red line) and harmonic 

oscillator (Green line) contribution. Yellow line represents their combined contribution agreeing excellently with 

experimental data up to 400𝐾 (blue dots). 



 
61 Results and discussion 

region (𝑇 >  100𝐾) [126]. In contrast, pSi shows thermally activated charge transport (Fig. 4-

13) in the probed temperature range (𝑇 >  300𝐾). 

Structural disorder in pSi creates localized states in pSi known as Anderson states [163]. These 

additional trap centers create band tails that are not restricted to the surface. The disordered 

nanostructure also introduces new scattering centers for charge carriers. It reduces the mean 

free path for hole transport and hence electrical conductivity. Surface effects and intrinsic 

disorder alter the band structure of pSi. It resembles to that of amorphous silicon containing gap 

states and band tails [164].  

An increase in bandgap from 𝐸𝑔
𝑆𝑖 = 1.14𝑒𝑉 in bulk Si to 𝐸𝑔

𝑝𝑆𝑖 = 1.46𝑒𝑉 in pSi upon nano-

structuring is depicted in UV-vis spectra (Fig. 4-12). This is attributed to charge carrier 

confinement in small dimensional crystalline pore walls that increases the bandgap.  

As reported by Lehmann et al., these regions (i.e pore walls) can be considered as quantum 

wires with a diameter 𝐷 or in a further approximation, with a square cross-sectional box of the 

side length 𝐷. Utilizing particle-in-a-box approximation, the net increase in band gap 

energy, ∆𝐸 can be expressed as:  

∆𝐸 = 
ℎ2

8𝑚∗𝐷2
 = 𝐸𝑔

𝑝𝑆𝑖 − 𝐸𝑔
𝑆𝑖 = ∆𝐸𝑣 + ∆𝐸𝑐 where ℎ = 4.13 × 10−15𝑒𝑉𝑠 is Plank’s constant and 

𝑚∗ = denotes effective hole mass (𝑚ℎ
∗ ) and effective electron mass (𝑚𝑒

∗) for ∆𝐸𝑣 and ∆𝐸𝑐, 

respectively. ∆𝐸 expression allows the estimation of pore wall thickness 𝐷 ≈ 9 𝑛𝑚 for pSi 

samples knowing ∆𝐸 = 𝐸𝑔
𝑝𝑆𝑖 − 𝐸𝑔

𝑆𝑖 = 0.32 𝑒𝑉 through UV-vis spectra.  
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4.3.7. Thermaly activated charge transport and Meyer Neldel Rule (MNR) in pSi 

 

Temperature dependent electrical conductivity measurements of pSi showed thermally 

activated charge transport behavior governed by Eqn. 4.32 where 𝐸𝐴
𝜎 is activation energy and 

𝜎0 is a high temperature limit for electrical conductivity. For each sample, 𝐸𝐴
𝜎  and 𝜎0 were 

extracted by fitting the experimental data to Eqn. 4.32 as shown in Fig. 4-13. 

𝜎 = 𝜎0𝑒𝑥𝑝 (
−𝐸𝐴

𝜎

𝑘𝐵𝑇
⁄ ) 

(4.32) 

Fig. 4-12 Optical bandgap in pSi at 𝑇 = 300𝐾. The so-called tauc-plot exhibits the dependence of the 

absorbance 𝛼 on the incident photon energy ℏ𝜔. Optical bandgap of pSi 1.46eV and bSi 1.14eV are marked. 
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𝐸𝐴
𝜎  values in the range of 100 − 800 𝑚𝑒𝑉 were found to be in close agreement to that reviewed 

by Leigh Canham in ‘Handbook of porous Silicon’ [42]. Porosity in the range of 40 − 60% 

and pore radius (4 − 6𝑛𝑚) did not show any correlation with 𝐸𝐴
𝜎. A quantity expected to 

influence 𝐸𝐴
𝜎 directly is the conductivity of the source wafers that is related to the hole density. 

Electrical conductivity of source wafers was in the range of 50 − 100 𝑆𝑐𝑚−1. Variation of 

temperature dependent electrical conductivity from wafer to wafer could lead very well to the 

different activation energies. However, irrespective of different activation energies, all data sets 

and their non-linear least square fits intersect at one single point with a reasonable margin of 

error. This refers to the so-called Meyer-Neldel rule (MNR) that relates 𝐸𝐴
𝜎  and 𝜎0 values 

extracted from least square approximation fits in Fig. 4-13. This linear correlation of 𝑙𝑛𝜎0 

against 𝐸𝐴
𝜎  is presented in Fig. 4-14. MNR is followed when an increased activation energy in 

a thermally activated charge transport is compensated by an exponential increase of 𝜎0 with 𝐸𝐴
𝜎 

(Eqn. 4.33) 

Fig. 4-13 Temperature dependence of electrical conductivity of porous Silicon samples. Solid lines are best fits to 

Eqn 4.32 in an Arrhenius representation along with 𝐸𝐴
𝜎  and 𝜎0 values extracted for each sample. The two data 

columns are the optimized model parameters. Error bars are of a similar size than the symbols. The inset shows 

the T-dependent conductivity of bulk Silicon. 
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𝜎0 = 𝜎00𝑒𝑥𝑝 (
𝐸𝐴
𝜎

𝐸𝑀𝑁
⁄ ) (4.33) 

 

here 𝜎00 is a constant, 𝐸𝑀𝑁 = 𝑘𝐵𝑇𝑀𝑁  is termed as Meyer Neldel (MN) energy where 𝑇𝑀𝑁 

denotes isokinetic characteristic 𝑀𝑁 temperature. 

From the slope of the MNR model fit in Fig. 4-14, one can extract 𝐸𝑀𝑁. For our  pSi samples, 

it is found to be 58 𝑚𝑒𝑉 that interestingly corresponds to maximum in the phonon density of 

states (DOS) of Silicon [165]. MNR for thermally activated electrical conductivity, atomic 

diffusion or thermal emission of charge carriers are intensively studied in the contemporary 

scientific literature [161, 166-170]. For charge transport in pSi, MNR and the characteristic 𝑀𝑁 

energy 𝐸𝑀𝑁 = 58 𝑚𝑒𝑉 in pSi is explained in the context of level-shift, entropy [170, 171] and 

phonon assisted hopping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-14 Experimentally determined values of 𝜎0 as a function of corresponding 𝐸𝐴
𝜎  for each 

pSi sample. Solid straight line is a best fit to MNR (Eqn. 4.17). 𝐸𝑀𝑁 = 58 𝑚𝑒𝑉 determined 

from inverse of slope of straight line agrees well with maximum in Silicon phonon density of 

states (inset). 
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4.3.8. MNR and level-shift model 

 

Level-shift models relate the MNR to a temperature-dependent Fermi level and a tailored 

electron density of states that causes this temperature dependence governed by Eqn. 4.34 where 

𝐸𝐹 refers to Fermi level and conduction band is denoted by 𝐸𝐶.  

 

𝜎(𝑇) = 𝜎00𝑒𝑥𝑝 (
𝛿𝐸𝐹 (𝑇)

𝑘𝐵𝑇
) 𝑒𝑥𝑝 (

𝐸𝐶 − 𝐸𝐹 (𝑇 = 0)

𝑘𝐵𝑇
) 

(4.34) 

 

In Eqn. 4.34, temperature dependence of Fermi level, 𝐸𝐹 (𝑇) is related to the temperature 

dependent occupation of the states [172] and explains MNR in disordered semiconductors such 

as a-Si:H [159]. The second term in Eqn. 4.34 is referred as compensation factor.  

 

4.3.9. MNR and multi excitations entropy (MEE) model 

 

In the MEE-based model framework, Yelon et al. considered charge transport as a 

thermodynamic activation process to explain MNR [171]. The Gibbs free energy 𝐺 is identified 

as the appropriate thermodynamic potential. The activation rate of this process is 𝑋 ∝

𝑒𝑥𝑝(∆𝐺 𝑘𝐵𝑇⁄ ). With the fundamental relation between the Gibbs free energy 𝐺, the enthalpy 

𝐻 and entropy 𝑆 of the system, it is 𝑋 ∝ 𝑒𝑥𝑝(∆𝑆 𝑘𝐵⁄ ) × 𝑒𝑥𝑝(−∆𝐻 𝑘𝐵𝑇⁄ )   and the derivation 

of the MNR is complete with ∆𝐻 = 𝐸𝐴 and ∆𝑆 𝑘𝐵 = ∆𝐻 𝐸𝑀𝑁⁄⁄ .  

The reasoning relies on an intuitive argument. Many elementary excitations (e.g. phonons) must 

be absorbed in a thermal fluctuation to overcome activation energy, which is much larger than 

the thermal energy 𝑘𝐵𝑇 and the energy of the individual excitations itself. Consequently, the 

absorption process comes along with a large ‘selection’ entropy ∆𝑆 as there are multiple ways 

to absorb the required number of phonons. It is this entropy that increases with activation energy 

and causes the compensation factor in the MNR [170, 171]. In this picture, the characteristic 

𝐸𝑀𝑁 was reported to be that of excitations, which in the present context is typical of optical 

phonons [170]. Upon applying the MEE model in the MNR framework to a closely related 

material to pSi, i.e., a-Si:H, its 𝐸𝑀𝑁 was found to be 30 𝑚𝑒𝑉, which equals the typical optical 

phonon energy in the material [168]. However, for a-Si:H materials with high defect 

concentration, the MEE model did not explain obtained 𝐸𝑀𝑁 values much larger than the optical 
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phonon energy. Instead, the level shifts model accounted for a more detailed MNR behaviour 

in a-Si:H [173, 174]. Balberg et al. compiled the data of pSi from various research groups 

together with the data of a-Si:H [168, 175]. Within the MNR framework, they proposed the 

presence of ‘only two’ different charge transport mechanisms. It was manifested by two best-

fit well-separated MNR lines representing all data points (Fig. 4-15). 

One was associated with extended-states transport via band tails [176] as found in a-Si:H (upper 

line), and the second was associated with activated hopping via intercrystallite hopping (lower 

line). However, they could not distinguish the hopping mechanisms in the level-shift and MEE 

model frameworks. They did not comment on 𝐸𝑀𝑁 in relation to the phonon DOS. In contrast, 

M. Ben Chorin et al. advocated hopping conduction in pSi through energy states close to Fermi 

level [177]. 

 

 

 

 

 

 

 

 

 

 

4.3.10. MNR and phononic assisted hopping models 

 

Yelon et al. drew additional confidence in their models from Emin's microscopic optical-

phonon assisted charge hopping models [170]. Emin derived the multi-phonon assisted hopping 

rate (polaronic hopping rate) for a two-site model in an impressively extended calculation [178]. 

This hopping rate includes a compensation factor and allows to assign Meyer-Neldel energy as: 

Fig. 4-15 Experimentally determined values 𝜎0 of as a function of the corresponding 𝐸𝐴
𝜎  values in a variety of 

porous silicon samples. The sources of the data are mentioned in the figure. The solid lines represent the best fit 

to a MNR. Upper line shows transport in extended states, and lower line refers to charge transport by activated 

hopping. 

 

Fig. 4-3 Experimentally determined values 𝜎0 of as a function of the corresponding 𝐸𝐴
𝜎  values in a variety of 

porous silicon samples. The sources of the data are mentioned in the figure. The solid linesrepresent the best fit to 

a MNR. Upper line represent transport in extended states, and lower line refers to charge transport by activated 

hopping. 
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𝐸𝑀𝑁 =
ℏ𝜔0
ln(𝑀)

  ,   𝑀 =
2𝑀𝑒−𝑝

ℏ𝜔0
 

(4.36) 

 

Here, 𝜔0 is dispersionless optical phonon energy, and 𝑀 is the electron-phonon coupling 

strength.  

In the MEE framework, one is tempted to explain the MNR in pSi by multi-phonon absorption 

as the underlying mechanism of a thermally activated carrier transport in localized states. The 

phonon dispersion of Si/pSi has an energy cutoff at around 70 𝑚𝑒𝑉 (Fig. 4-14). Multiple 

phonons are necessary to account for the activation energies 𝐸𝐴
𝜎 ≫ 𝑘𝐵𝑇  required for charge 

transport. The MEE interpretation is appealing considering the exceptional agreement between 

the Meyer-Neldel energy and the maximum in the optical phonon density of states of Si 

respectively pSi. 

In this context, it is important to note that MEE theory only predicts a proportionality and not 

equality between 𝐸𝑀𝑁 and the energy of the elementary excitation, whose details depend on the 

microscopic model (see Eqn. 4.36). Assuming 𝐸𝑀𝑁 = ℏ𝜔0 = 58 𝑚𝑒𝑉, a hole phonon coupling 

of 𝑀𝐻−𝑝 = 78 𝑚𝑒𝑉 was estimated for pSi samples (for p-doped samples, charge transport is 

via holes and therefore coupling constant is denoted here by holes and phonons) in the current 

work. The origin of polaronic coupling holes and phonons in the current interpretation is 

attributed to amorphous silicon oxide that covers the internal surfaces of pSi. Silicon itself is 

not polar, and therefore it is unlikely for pure Si to exhibit polaronic charge transport. Moreover, 

the validity of the MEE model and its justification from comparing it with two site jump models 

for polaronic transport rates in disordered materials is heavily debated. In a nutshell, Fishchuk 

et al. argue that the two-site model of Emin is not sufficient to justify a macroscopic MNR in a 

disordered system within the MEE models [179]. 

Consequently, one must resort to additional arguments rather than relying on MNR 

interpretation in the context of MEE models to conclude that multi-phonon absorption plays a 

vital role in the microscopic charge transport in nanostructured pSi. 

For deeper insight, experimental data of temperature dependent thermopower was analyzed. It 

proved more stringently that charge transport occurs by hopping in localized states assisted by 

several phonons' absorption. The thermopower of non-degenerate semiconductors and 

amorphous semiconductors depends linearly on the inverse temperature (Eqn. 4.37). In Eqn. 
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4.37, 𝐸𝐴
𝑆 is characterizing activation energy for charge transport while 𝐴 encodes details of the 

scattering mechanisms [180]. 

𝑆(𝑇) =
𝑘𝐵
𝑒
(
𝐸𝑎
𝑆

𝑘𝐵𝑇
+ 𝐴) 

(4.37) 

 

Fig. 4-16 shows experimental data of Seebeck coefficient against 1/T of pSi samples along with 

least-squares approximations based on Eqn. 4.37. The positive sign of the thermopower 

evidences hole transport in pSi. 

 

 

  

 

 

 

 

 

 

 

 

 

 

For bulk Silicon, 𝐸𝐴
𝑆 = 45 meV is found in excellent agreement with the energy of the boron 

donor level in the Silicon band gap [126]. For all pSi samples, 𝐸𝐴
𝑆  extracted from Seebeck data 

was found to be lower than that found from electrical conductivity data (Table 4-8). This trivial 

observation provides important insight into the charge transport mechanism in pSi. For charge 

transport in extended states,  𝐸𝐴
𝑆 ≡ 𝐸𝐴

𝜎. However for transport in localized states via hopping, 

it is 𝐸𝐴
𝑆 < 𝐸𝐴

𝜎. The hopping manifests in an exponential temperature dependent 𝑒𝑥𝑝(−𝐸ℎ𝑜𝑝/

𝑘𝐵𝑇) of the mobility. The hopping energy 𝐸ℎ𝑜𝑝 defines the required population of phonon 

b-Si 

 

Fig. 4-16 Temperature dependence of Seebeck coefficient of pSi sample. Solid straight line represents a 

model fit to Eqn. 4.37. Dashed line corresponds to absolute Seebeck coefficient of bulk Silicon. 
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states. This exponential term enters linearly the two thermoelectric transport coefficients 𝐿11 

and 𝐿12 whose ratio defines the thermopower 𝑆 ∝  
𝐿11

𝐿12
⁄ . The absorption/emission of 

phonons during the hopping process does not alter the transported entropy per carrier, which is 

proportional to the thermopower S. 

 

 

Table 4-8 Activation energies for electrical conductivity and thermopower 

Sample 1 2 3 4 5 6 7 8 9 10 

𝑬𝑨
𝝈[𝒎𝒆𝑽] 781 ± 76 527 ± 64 315 ± 59 468 ± 80 804 ± 57 524 ± 120 315 ± 23 126 ± 17 312 ± 47 168 ± 15 

𝑬𝑨
𝑺 [𝒎𝒆𝑽] 460 ± 92 150 ± 65 100 ± 57 250 ± 16 410 ± 52 100 ± 77 140 ± 34 100 ± 10 100 ± 26 100 ± 11 

𝑬𝑨
𝝈 − 𝑬𝑨

𝑺  

[𝒎𝒆𝑽] 

321 ± 119 377 ± 92 65 ± 61 368 ± 98 394 ± 77 425 ± 142 175 ± 42 26 ± 20 212 ± 54 68 ± 19 

 

 

Concluding, porosification alters significantly the electronic transport mechanism in crystalline 

Silicon. Highly p-doped Silicon wafers exhibit the typical conductivity of non-degenerate 

semiconductors with carrier transport in extended states. Increasing temperature increases the 

hole-phonon scattering rates and thus reduces the carrier mobility respectively 𝜎. 

Porosification leads to significant charge carrier depletion due to gap states, localized Anderson 

states in the band tails and band bending at the huge internal interfaces. Electrical conductivity 

measurements reveal a Meyer-Neldel compensation rule for the thermally activated transport. 

It readily relates to multi-pohonon absorption and transport in localized Anderson states. 

Temperature dependent thermopower measurements’ data show activation energies 

significantly smaller than the ones necessary for current flow. It implies a carrier mobility that 

depends on the temperature dependent phonon state population. 
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5. Conclusion 
 

In this chapter, the main scientific insights are concluded as following: 

Phonon dispersion in pSi 

The inelastic neutron scattering studies in the thesis present new scientific insights about the 

influence of nanostructuring on the phonon dynamics in single crystalline silicon. 

Nanostructuring on sub-10 nanometer length scales does not affect the phonon dispersion. In 

contrast to Si nanoribbons and nanotubes, no sizable phonon-softening in pSi was observed in 

the inelastic neutron scattering experiments. Nanostructuring induced phonon softening appears 

as a prerequisite to beat the so-called amorphous limit [6] of 0.1 in pSi. A retrospective of the 

presented results require samples with even higher porosity and smaller structural feature sizes, 

which cannot guarantee mechanical stability. 

Thermal transport in pSi 

Temperature-dependent specific heat and thermal conductivity measurements presented in the 

thesis provided insights into static and dynamic thermal transport properties of nanostructured 

pSi. A noncharacteristic low-temperature specific heat 𝐶𝑝 ≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑇3   was identified 

for pSi. To model non-traditional 𝐶𝑝 , additional 2D Debye and 2D Einstein contribution of 

specific heat in pSi was considered. Their combined contribution in the model-fit evidenced 

excellent agreement with experimental data. The origin of the 2D Debye modes was attributed 

to surface modes and 2D Einstein modes to the boson peak of SiO2 in pSi. 

PSi exhibited a reduction in thermal conductivity by two orders of magnitude compared to bulk 

Si (150 𝑊/𝑚𝐾 at 300𝐾). It indicated a strong effect of nanostructuring on phonon scattering 

rates in pSi. Phonon dispersion results of pSi obtained from neutron scattering experiments 

were followed by in-depth analysis of phonon dynamics. Data analysis considered the 

compound average of pSi pores and new scattering length introduced in a system upon 

nanostructuring by a combination of Callaway and Effective medium models. It was interpreted 

that nanostructuring at sub-10 nanometer cause the thermal conductivity reduction by two 

orders of magnitude in pSi while compound averaging causes a further reduction with 𝑠𝜙 ≈

0.1 − 0.5.  
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Electronic transport in pSi 

Nanostructuring caused the reduction of electrical conductivity of pSi by seven orders of 

magnitude compared to bulk Si. This reduction was attributed to charge carrier depletion 

through interface trapping and scattering at rough surfaces in pSi. The electrical conductivity 

in mesoporous silicon was found to be thermally activated with activation energies up to almost 

1eV. Electrical conductivity measurements revealed a Meyer-Neldel compensation rule for 

thermally activated transport. It readily relates to multi-phonon absorption and transport in 

localized Anderson states. Temperature-dependent thermopower measurements further 

evidenced multi-phonon assisted transport in pSi. Thermopower data showed activation 

energies smaller than the ones obtained from electrical conductivity data. It implies carrier 

mobility that depends on the temperature-dependent phonon state population. 

Overall conclusion 

This thesis provide novel insights into macro and microscopic charge carrier and heat transport 

mechanisms in pSi. As such, it is of interest for fundamental science as well as applied science. 

In particular, material scientists who seek to develop pSi/nanostructured Si-based energy 

materials, e.g. super-capacitors or thermoelectrics, will benefit from this study. 
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Appendices 
 

Appendix A: Post-processing of as-etched pSi 

Robust chemical post treatment method is developed to increase the pore diameter of pSi 

between 10-21 nm as discussed in chapter 2. The left panel of Fig.1 shows a selection of 

nitrogen sorption isotherms measured on as-etched and post-treated pSi membranes. It depicts 

modified sorption behavior of the porous membranes upon different post-treatments. The 

visually most striking feature is the shift of adsorption and desorption branches towards higher 

reduced pressures with increasing number of post treatment cycles. One cycle refers to 30 

minutes oxidization treatment of pSi membranes by dipping in hydrogen peroxide (H2O2)  

 

 

followed by 30 minutes in hydrofluoric acid (HF). It readily encodes changes in the membranes’ 

pore size distribution (PSD). The right panel of Fig. 1 shows accordingly PSDs extracted from 

the isotherms by means of BJH-analysis [3] of the desorption branches. The as-etched sample 

has a pore size distribution centered around 10 nm obtained from sorption measurements. 

Fig. 1 Nitrogen sorption Isotherms and pore size distribution: the left panel shows isotherms for as etched and 

post treated samples. The right panel relates the isotherms to the pore size distributions. 



 
73 Appendices 

Already three cycles of post-treatment shift it towards 14 nm. After six and nine cycles, average 

pore sizes around 16 nm and 21 nm are achieved. For comparison, we note that a one-step post-

treatment exposing the samples for 10 hours to H2O2 and 10 hours to HF leads only to an 

average pore size of 15 nm. Table 1 lists morphological parameters extracted from the 

isotherms. Specific surface area, porosity and pore diameter are given for as-etched and post-

treated samples.  

Table 1 Morphological parameters of differently treated samples 

Sample 1 As-etched 3 cycles 6 cycles 9 cycles 

Pore diameter d [nm] 10 14 16 21 

Surface [m2/g] 239 314 343 373 

Porosity [%] 57 72 77 84 
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Appendix B: Macroscopic thermoelectric measurements of pSi 

 

Thermoelectric measurements of pSi were performed for various samples synthesized with 

varied etching time (4h-6h). The scatter is promininent in temperature dependent thermopower 

denoted by Seebeck coefficient, electrical conductivity and thermal conductivity 

measurements. Electrical conductivity shows thermally activated charge transport. Figure of 

merit shows only a slight increase from 0.01 to 0.04 with respect to temperature.  

 

Fig. 2 Temperature dependent Seebeck coefficient, electrical conductivity, power factor, thermal conductivity and Figure of 
Merit of as- etched pSi samples with 4-6h etching time as indicated in legends.  
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Appendix C: Thermal conductivity – PPMS vs. LFA or inplane vs. crossplane 

 

Inplane-crossplane anisotropy in pSi’s thermal conductivity is identified in current work as 

depicted in Fig. 3. Thermal conductivity measurements by other methods in future (e.g. 3ω 

method) in common temperature range may provide interesting insights into thermal transport 

of pSi for a wide temperature range. 

 

Appendix D: pSi band gap estimation from UV-vis 

 

The spatial confinement of carriers in a crystalline Si skeleton with nanometer-sized walls 

increases the bandgap in pSi significantly. Bulk Si exhibits a bandgap of 1.14 eV at 302 K and 

therefore absorbs light with a wavelength below 1200 nm. This absorption threshold is red-

shifted for pSi. This effect becomes most prominent in UV-vis spectra. PSi band gap values 

obtained from UV-vis experiments for all as-etched samples was found to be 1.4 eV as labelled 

in Fig.4.  

 

 

 

 

 

 

 

Fig. 3 Inplane and crossplane thermal conductivity of pSi and bulk Si probed by 

PPMS and LFA respectively.  
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Fig.4 Optical bandgap in pSi samples at T = 300K: The so-called tauc-plot exhibits the dependence of the absorbance α on 
the incident photon energy ℏ𝜔. The arrow marks the optical bandgap of around 1.4 eV for all pSi samples.  
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